Science.gov

Sample records for accelerated human ageing

  1. Obesity accelerates epigenetic aging of human liver.

    PubMed

    Horvath, Steve; Erhart, Wiebke; Brosch, Mario; Ammerpohl, Ole; von Schönfels, Witigo; Ahrens, Markus; Heits, Nils; Bell, Jordana T; Tsai, Pei-Chien; Spector, Tim D; Deloukas, Panos; Siebert, Reiner; Sipos, Bence; Becker, Thomas; Röcken, Christoph; Schafmayer, Clemens; Hampe, Jochen

    2014-10-28

    Because of the dearth of biomarkers of aging, it has been difficult to test the hypothesis that obesity increases tissue age. Here we use a novel epigenetic biomarker of aging (referred to as an "epigenetic clock") to study the relationship between high body mass index (BMI) and the DNA methylation ages of human blood, liver, muscle, and adipose tissue. A significant correlation between BMI and epigenetic age acceleration could only be observed for liver (r = 0.42, P = 6.8 × 10(-4) in dataset 1 and r = 0.42, P = 1.2 × 10(-4) in dataset 2). On average, epigenetic age increased by 3.3 y for each 10 BMI units. The detected age acceleration in liver is not associated with the Nonalcoholic Fatty Liver Disease Activity Score or any of its component traits after adjustment for BMI. The 279 genes that are underexpressed in older liver samples are highly enriched (1.2 × 10(-9)) with nuclear mitochondrial genes that play a role in oxidative phosphorylation and electron transport. The epigenetic age acceleration, which is not reversible in the short term after rapid weight loss induced by bariatric surgery, may play a role in liver-related comorbidities of obesity, such as insulin resistance and liver cancer.

  2. Accelerated aging syndromes, are they relevant to normal human aging?

    PubMed

    Dreesen, Oliver; Stewart, Colin L

    2011-09-01

    Hutchinson-Gilford Progeria (HGPS) and Werner syndromes are diseases that clinically resemble some aspects of accelerated aging. HGPS is caused by mutations in theLMNA gene resulting in post-translational processing defects that trigger Progeria in children. Werner syndrome, arising from mutations in the WRN helicase gene, causes premature aging in young adults. What are the molecular mechanism(s) underlying these disorders and what aspects of the diseases resemble physiological human aging? Much of what we know stems from the study of patient derived fibroblasts with both mutations resulting in increased DNA damage, primarily at telomeres. However, in vivo patients with Werner's develop arteriosclerosis, among other pathologies. In HGPS patients, including iPS derived cells from HGPS patients, as well as some mouse models for Progeria, vascular smooth muscle (VSM) appears to be among the most severely affected tissues. Defective Lamin processing, associated with DNA damage, is present in VSM from old individuals, indicating processing defects may be a factor in normal aging. Whether persistent DNA damage, particularly at telomeres, is the root cause for these pathologies remains to be established, since not all progeroid Lmna mutations result in DNA damage and genome instability.

  3. Epigenetic Age Acceleration Assessed with Human White-Matter Images.

    PubMed

    Hodgson, Karen; Carless, Melanie A; Kulkarni, Hemant; Curran, Joanne E; Sprooten, Emma; Knowles, Emma E; Mathias, Samuel; Göring, Harald H H; Yao, Nailin; Olvera, Rene L; Fox, Peter T; Almasy, Laura; Duggirala, Ravi; Blangero, John; Glahn, David C

    2017-05-03

    The accurate estimation of age using methylation data has proved a useful and heritable biomarker, with acceleration in epigenetic age predicting a number of age-related phenotypes. Measures of white matter integrity in the brain are also heritable and highly sensitive to both normal and pathological aging processes across adulthood. We consider the phenotypic and genetic interrelationships between epigenetic age acceleration and white matter integrity in humans. Our goal was to investigate processes that underlie interindividual variability in age-related changes in the brain. Using blood taken from a Mexican-American extended pedigree sample (n = 628; age = 23.28-93.11 years), epigenetic age was estimated using the method developed by Horvath (2013). For n = 376 individuals, diffusion tensor imaging scans were also available. The interrelationship between epigenetic age acceleration and global white matter integrity was investigated with variance decomposition methods. To test for neuroanatomical specificity, 16 specific tracts were additionally considered. We observed negative phenotypic correlations between epigenetic age acceleration and global white matter tract integrity (ρpheno = -0.119, p = 0.028), with evidence of shared genetic (ρgene = -0.463, p = 0.013) but not environmental influences. Negative phenotypic and genetic correlations with age acceleration were also seen for a number of specific white matter tracts, along with additional negative phenotypic correlations between granulocyte abundance and white matter integrity. These findings (i.e., increased acceleration in epigenetic age in peripheral blood correlates with reduced white matter integrity in the brain and shares common genetic influences) provide a window into the neurobiology of aging processes within the brain and a potential biomarker of normal and pathological brain aging.SIGNIFICANCE STATEMENT Epigenetic measures can be used to predict age with a high degree of accuracy and so

  4. Neurodegeneration in accelerated aging.

    PubMed

    Scheibye-Knudsen, Moren

    2016-11-01

    The growing proportion of elderly people represents an increasing economic burden, not least because of age-associated diseases that pose a significant cost to the health service. Finding possible interventions to age-associated disorders therefore have wide ranging implications. A number of genetically defined accelerated aging diseases have been characterized that can aid in our understanding of aging. Interestingly, all these diseases are associated with defects in the maintenance of our genome. A subset of these disorders, Cockayne syndrome, Xeroderma pigmentosum group A and ataxia-telangiectasia, show neurological involvement reminiscent of what is seen in primary human mitochondrial diseases. Mitochondria are the power plants of the cells converting energy stored in oxygen, sugar, fat, and protein into ATP, the energetic currency of our body. Emerging evidence has linked this organelle to aging and finding mitochondrial dysfunction in accelerated aging disorders thereby strengthens the mitochondrial theory of aging. This theory states that an accumulation of damage to the mitochondria may underlie the process of aging. Indeed, it appears that some accelerated aging disorders that show neurodegeneration also have mitochondrial dysfunction. The mitochondrial alterations may be secondary to defects in nuclear DNA repair. Indeed, nuclear DNA damage may lead to increased energy consumption, alterations in mitochondrial ATP production and defects in mitochondrial recycling, a term called mitophagy. These changes may be caused by activation of poly-ADP-ribose-polymerase 1 (PARP1), an enzyme that responds to DNA damage. Upon activation PARP1 utilizes key metabolites that attenuate pathways that are normally protective for the cell. Notably, pharmacological inhibition of PARP1 or reconstitution of the metabolites rescues the changes caused by PARP1 hyperactivation and in many cases reverse the phenotypes associated with accelerated aging. This implies that modulation

  5. Menopause accelerates biological aging

    PubMed Central

    Levine, Morgan E.; Lu, Ake T.; Chen, Brian H.; Hernandez, Dena G.; Singleton, Andrew B.; Ferrucci, Luigi; Bandinelli, Stefania; Salfati, Elias; Manson, JoAnn E.; Quach, Austin; Kusters, Cynthia D. J.; Kuh, Diana; Wong, Andrew; Teschendorff, Andrew E.; Widschwendter, Martin; Ritz, Beate R.; Absher, Devin; Assimes, Themistocles L.; Horvath, Steve

    2016-01-01

    Although epigenetic processes have been linked to aging and disease in other systems, it is not yet known whether they relate to reproductive aging. Recently, we developed a highly accurate epigenetic biomarker of age (known as the “epigenetic clock”), which is based on DNA methylation levels. Here we carry out an epigenetic clock analysis of blood, saliva, and buccal epithelium using data from four large studies: the Women's Health Initiative (n = 1,864); Invecchiare nel Chianti (n = 200); Parkinson's disease, Environment, and Genes (n = 256); and the United Kingdom Medical Research Council National Survey of Health and Development (n = 790). We find that increased epigenetic age acceleration in blood is significantly associated with earlier menopause (P = 0.00091), bilateral oophorectomy (P = 0.0018), and a longer time since menopause (P = 0.017). Conversely, epigenetic age acceleration in buccal epithelium and saliva do not relate to age at menopause; however, a higher epigenetic age in saliva is exhibited in women who undergo bilateral oophorectomy (P = 0.0079), while a lower epigenetic age in buccal epithelium was found for women who underwent menopausal hormone therapy (P = 0.00078). Using genetic data, we find evidence of coheritability between age at menopause and epigenetic age acceleration in blood. Using Mendelian randomization analysis, we find that two SNPs that are highly associated with age at menopause exhibit a significant association with epigenetic age acceleration. Overall, our Mendelian randomization approach and other lines of evidence suggest that menopause accelerates epigenetic aging of blood, but mechanistic studies will be needed to dissect cause-and-effect relationships further. PMID:27457926

  6. Atherosclerosis in ancient humans, accelerated aging syndromes and normal aging: is lamin a protein a common link?

    PubMed

    Miyamoto, Michael I; Djabali, Karima; Gordon, Leslie B

    2014-06-01

    Imaging studies of ancient human mummies have demonstrated the presence of vascular calcification that is consistent with the presence of atherosclerosis. These findings have stimulated interest in the underlying biological processes that might impart to humans an inherent predisposition to the development of atherosclerosis. Clues to these processes may possibly be found in accelerated aging syndromes, such as Hutchinson-Gilford progeria syndrome (HGPS), an ultra-rare disorder characterized by premature aging phenotypes, including very aggressive forms of atherosclerosis, occurring in childhood. The genetic defect in HGPS eventuates in the production of a mutant form of the nuclear structural protein lamin A, called progerin, which is thought to interfere with normal nuclear functioning. Progerin appears to be expressed in vascular cells, resulting in vessel wall cell loss and replacement by fibrous tissue, reducing vessel compliance and promoting calcification, leading to the vascular dysfunction and atherosclerosis seen in HGPS. Interestingly, vascular progerin is detectable in lower levels, in an age-related manner, in the general population, providing the basis for further study of the potential role of abnormal forms of lamin A in the atherosclerotic process of normal aging.

  7. Huntington's disease accelerates epigenetic aging of human brain and disrupts DNA methylation levels.

    PubMed

    Horvath, Steve; Langfelder, Peter; Kwak, Seung; Aaronson, Jeff; Rosinski, Jim; Vogt, Thomas F; Eszes, Marika; Faull, Richard L M; Curtis, Maurice A; Waldvogel, Henry J; Choi, Oi-Wa; Tung, Spencer; Vinters, Harry V; Coppola, Giovanni; Yang, X William

    2016-07-01

    Age of Huntington's disease (HD) motoric onset is strongly related to the number of CAG trinucleotide repeats in the huntingtin gene, suggesting that biological tissue age plays an important role in disease etiology. Recently, a DNA methylation based biomarker of tissue age has been advanced as an epigenetic aging clock. We sought to inquire if HD is associated with an accelerated epigenetic age. DNA methylation data was generated for 475 brain samples from various brain regions of 26 HD cases and 39 controls. Overall, brain regions from HD cases exhibit a significant epigenetic age acceleration effect (p=0.0012). A multivariate model analysis suggests that HD status increases biological age by 3.2 years. Accelerated epigenetic age can be observed in specific brain regions (frontal lobe, parietal lobe, and cingulate gyrus). After excluding controls, we observe a negative correlation (r=-0.41, p=5.5×10-8) between HD gene CAG repeat length and the epigenetic age of HD brain samples. Using correlation network analysis, we identify 11 co-methylation modules with a significant association with HD status across 3 broad cortical regions. In conclusion, HD is associated with an accelerated epigenetic age of specific brain regions and more broadly with substantial changes in brain methylation levels.

  8. Huntington's disease accelerates epigenetic aging of human brain and disrupts DNA methylation levels

    PubMed Central

    Horvath, Steve; Langfelder, Peter; Kwak, Seung; Aaronson, Jeff; Rosinski, Jim; Vogt, Thomas F.; Eszes, Marika; Faull, Richard L.M.; Curtis, Maurice A.; Waldvogel, Henry J.; Choi, Oi-Wa; Tung, Spencer; Vinters, Harry V.; Coppola, Giovanni; Yang, X. William

    2016-01-01

    Age of Huntington's disease (HD) motoric onset is strongly related to the number of CAG trinucleotide repeats in the huntingtin gene, suggesting that biological tissue age plays an important role in disease etiology. Recently, a DNA methylation based biomarker of tissue age has been advanced as an epigenetic aging clock. We sought to inquire if HD is associated with an accelerated epigenetic age. DNA methylation data was generated for 475 brain samples from various brain regions of 26 HD cases and 39 controls. Overall, brain regions from HD cases exhibit a significant epigenetic age acceleration effect (p=0.0012). A multivariate model analysis suggests that HD status increases biological age by 3.2 years. Accelerated epigenetic age can be observed in specific brain regions (frontal lobe, parietal lobe, and cingulate gyrus). After excluding controls, we observe a negative correlation (r=−0.41, p=5.5×10−8) between HD gene CAG repeat length and the epigenetic age of HD brain samples. Using correlation network analysis, we identify 11 co-methylation modules with a significant association with HD status across 3 broad cortical regions. In conclusion, HD is associated with an accelerated epigenetic age of specific brain regions and more broadly with substantial changes in brain methylation levels. PMID:27479945

  9. Splicing-directed therapy in a new mouse model of human accelerated aging.

    PubMed

    Osorio, Fernando G; Navarro, Claire L; Cadiñanos, Juan; López-Mejía, Isabel C; Quirós, Pedro M; Bartoli, Catherine; Rivera, José; Tazi, Jamal; Guzmán, Gabriela; Varela, Ignacio; Depetris, Danielle; de Carlos, Félix; Cobo, Juan; Andrés, Vicente; De Sandre-Giovannoli, Annachiara; Freije, José M P; Lévy, Nicolas; López-Otín, Carlos

    2011-10-26

    Hutchinson-Gilford progeria syndrome (HGPS) is caused by a point mutation in the LMNA gene that activates a cryptic donor splice site and yields a truncated form of prelamin A called progerin. Small amounts of progerin are also produced during normal aging. Studies with mouse models of HGPS have allowed the recent development of the first therapeutic approaches for this disease. However, none of these earlier works have addressed the aberrant and pathogenic LMNA splicing observed in HGPS patients because of the lack of an appropriate mouse model. Here, we report a genetically modified mouse strain that carries the HGPS mutation. These mice accumulate progerin, present histological and transcriptional alterations characteristic of progeroid models, and phenocopy the main clinical manifestations of human HGPS, including shortened life span and bone and cardiovascular aberrations. Using this animal model, we have developed an antisense morpholino-based therapy that prevents the pathogenic Lmna splicing, markedly reducing the accumulation of progerin and its associated nuclear defects. Treatment of mutant mice with these morpholinos led to a marked amelioration of their progeroid phenotype and substantially extended their life span, supporting the effectiveness of antisense oligonucleotide-based therapies for treating human diseases of accelerated aging.

  10. From old organisms to new molecules: integrative biology and therapeutic targets in accelerated human ageing.

    PubMed

    Cox, L S; Faragher, R G A

    2007-10-01

    Understanding the basic biology of human ageing is a key milestone in attempting to ameliorate the deleterious consequences of old age. This is an urgent research priority given the global demographic shift towards an ageing population. Although some molecular pathways that have been proposed to contribute to ageing have been discovered using classical biochemistry and genetics, the complex, polygenic and stochastic nature of ageing is such that the process as a whole is not immediately amenable to biochemical analysis. Thus, attempts have been made to elucidate the causes of monogenic progeroid disorders that recapitulate some, if not all, features of normal ageing in the hope that this may contribute to our understanding of normal human ageing. Two canonical progeroid disorders are Werner's syndrome and Hutchinson-Gilford progeroid syndrome (also known as progeria). Because such disorders are essentially phenocopies of ageing, rather than ageing itself, advances made in understanding their pathogenesis must always be contextualised within theories proposed to help explain how the normal process operates. One such possible ageing mechanism is described by the cell senescence hypothesis of ageing. Here, we discuss this hypothesis and demonstrate that it provides a plausible explanation for many of the ageing phenotypes seen in Werner's syndrome and Hutchinson-Gilford progeriod syndrome. The recent exciting advances made in potential therapies for these two syndromes are also reviewed.

  11. Topical Estrogen Accelerates Cutaneous Wound Healing in Aged Humans Associated with an Altered Inflammatory Response

    PubMed Central

    Ashcroft, Gillian S.; Greenwell-Wild, Teresa; Horan, Michael A.; Wahl, Sharon M.; Ferguson, Mark W. J.

    1999-01-01

    The effects of intrinsic aging on the cutaneous wound healing process are profound, and the resulting acute and chronic wound morbidity imposes a substantial burden on health services. We have investigated the effects of topical estrogen on cutaneous wound healing in healthy elderly men and women, and related these effects to the inflammatory response and local elastase levels, an enzyme known to be up-regulated in impaired wound healing states. Eighteen health status-defined females (mean age, 74.4 years) and eighteen males (mean age, 70.7 years) were randomized in a double-blind study to either active estrogen patch or identical placebo patch attached for 24 hours to the upper inner arm, through which two 4-mm punch biopsies were made. The wounds were excised at either day 7 or day 80 post-wounding. Compared to placebo, estrogen treatment increased the extent of wound healing in both males and females with a decrease in wound size at day 7, increased collagen levels at both days 7 and 80, and increased day 7 fibronectin levels. In addition, estrogen enhanced the strength of day 80 wounds. Estrogen treatment was associated with a decrease in wound elastase levels secondary to reduced neutrophil numbers, and decreased fibronectin degradation. In vitro studies using isolated human neutrophils indicate that one mechanism underlying the altered inflammatory response involves both a direct inhibition of neutrophil chemotaxis by estrogen and an altered expression of neutrophil adhesion molecules. These data demonstrate that delays in wound healing in the elderly can be significantly diminished by topical estrogen in both male and female subjects. PMID:10514397

  12. Accelerated protein damage in brains of PIMT+/- mice; a possible model for the variability of cognitive decline in human aging.

    PubMed

    Qin, Zhenxia; Dimitrijevic, Aleksandra; Aswad, Dana W

    2015-02-01

    Isoaspartate formation is a common type of protein damage normally kept in check by the repair enzyme protein-L-isoaspartyl methyltransferase (PIMT). Mice with a knockout of the gene (Pcmt1) for this enzyme (KO, -/-) exhibit a pronounced neuropathology with fatal epileptic seizures at 30-60 days. Heterozygous (HZ, +/-) mice have 50% of the PIMT activity found in wild-type (WT, +/+) mice, but appear normal. To see if HZ mice exhibit accelerated aging at the molecular level, we compared brain extracts from HZ and WT mice at 8 months and 2 years with regard to PIMT activity, isoaspartate levels, and activity of an endogenous PIMT substrate, creatine kinase B. PIMT activity declined modestly with age in both genotypes. Isoaspartate was significantly higher in HZ than WT mice at 8 months and more so at 2 years, rising 5× faster in HZ males and 3× faster in females. Creatine kinase activity decreased with age and was always lower in the HZ mice. These findings suggest the individual variation of human PIMT levels may significantly influence the course of age-related central nervous system dysfunction. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Accelerated Aging in Glaucoma: Immunohistochemical Assessment of Advanced Glycation End Products in the Human Retina and Optic Nerve Head

    PubMed Central

    Tezel, Gülgün; Luo, Cheng; Yang, Xiangjun

    2008-01-01

    PURPOSE This study aimed to determine the association between advanced glycation end products (AGEs) and glaucoma based on the known synergism between oxidative stress with AGEs and the evidence of oxidative stress during glaucomatous neurodegeneration. METHODS The extent and cellular localization of immunolabeling for AGEs and their receptor, RAGE, were determined in histologic sections of the retina and optic nerve head obtained from 38 donor eyes with glaucoma and 30 eyes from age-matched donors without glaucoma. RESULTS The extent of AGE and RAGE immunolabeling was greater in older than in younger donor eyes. However, compared with age-matched controls, an enhanced accumulation of AGEs and an up-regulation of RAGE were detectable in the glaucomatous retina and optic nerve head. Although some retinal ganglion cells (RGCs) and glia exhibited intracellular immunolabeling for AGEs, increased AGE immunolabeling in glaucomatous eyes was predominantly extracellular and included laminar cribriform plates in the optic nerve head. Some RAGE immunolabeling was detectable on RGCs; however, increased RAGE immunolabeling in glaucomatous eyes was predominant on glial cells, primarily Müller cells. CONCLUSIONS Given that the generation of AGEs is an age-dependent event, increased AGE accumulation in glaucomatous tissues supports that an accelerated aging process accompanies neurodegeneration in glaucomatous eyes. One of the potential consequences of AGE accumulation in glaucomatous eyes appears to be its contribution to increased rigidity of the lamina cribrosa. The presence of RAGE on RGCs and glia also makes them susceptible to AGE-mediated events through receptor-mediated signaling, which may promote cell death or dysfunction during glaucomatous neurodegeneration. PMID:17325164

  14. Premature and accelerated aging: HIV or HAART?

    PubMed Central

    Smith, Reuben L.; de Boer, Richard; Brul, Stanley; Budovskaya, Yelena; van Spek, Hans

    2013-01-01

    Highly active antiretroviral therapy (HAART) has significantly increased life expectancy of the human immunodeficiency virus (HIV)-positive population. Nevertheless, the average lifespan of HIV-patients remains shorter compared to uninfected individuals. Immunosenescence, a current explanation for this difference invokes heavily on viral stimulus despite HAART efficiency in viral suppression. We propose here that the premature and accelerated aging of HIV-patients can also be caused by adverse effects of antiretroviral drugs, specifically those that affect the mitochondria. The nucleoside reverse transcriptase inhibitor (NRTI) antiretroviral drug class for instance, is known to cause depletion of mitochondrial DNA via inhibition of the mitochondrial specific DNA polymerase-γ. Besides NRTIs, other antiretroviral drug classes such as protease inhibitors also cause severe mitochondrial damage by increasing oxidative stress and diminishing mitochondrial function. We also discuss important areas for future research and argue in favor of the use of Caenorhabditis elegans as a novel model system for studying these effects. PMID:23372574

  15. PETN Coarsening - Predictions from Accelerated Aging Data

    SciTech Connect

    Maiti, Amitesh; Gee, Richard H.

    2011-03-30

    Ensuring good ignition properties over long periods of time necessitates maintaining a good level of porosity in powders of initiator materials and preventing particle coarsening. To simulate porosity changes of such powder materials over long periods of time a common strategy is to perform accelerated aging experiments over shorter time spans at elevated temperatures. In this paper we examine historical accelerated-aging data on powders of Pentaerythritol Tetranitrate (PETN), an important energetic material, and make predictions for long-term aging under ambient conditions. Lastly, we develop an evaporation-condensation- based model to provide some mechanistic understanding of the coarsening process.

  16. Accelerated epigenetic aging in Down syndrome

    PubMed Central

    Horvath, Steve; Garagnani, Paolo; Bacalini, Maria Giulia; Pirazzini, Chiara; Salvioli, Stefano; Gentilini, Davide; Di Blasio, Anna Maria; Giuliani, Cristina; Tung, Spencer; Vinters, Harry V; Franceschi, Claudio

    2015-01-01

    Down Syndrome (DS) entails an increased risk of many chronic diseases that are typically associated with older age. The clinical manifestations of accelerated aging suggest that trisomy 21 increases the biological age of tissues, but molecular evidence for this hypothesis has been sparse. Here, we utilize a quantitative molecular marker of aging (known as the epigenetic clock) to demonstrate that trisomy 21 significantly increases the age of blood and brain tissue (on average by 6.6 years, P = 7.0 × 10−14). PMID:25678027

  17. Is biological aging accelerated in drug addiction?

    PubMed

    Bachi, Keren; Sierra, Salvador; Volkow, Nora D; Goldstein, Rita Z; Alia-Klein, Nelly

    2017-02-01

    Drug-addiction may trigger early onset of age-related disease, due to drug-induced multi-system toxicity and perilous lifestyle, which remains mostly undetected and untreated. We present the literature on pathophysiological processes that may hasten aging and its relevance to addiction, including: oxidative stress and cellular aging, inflammation in periphery and brain, decline in brain volume and function, and early onset of cardiac, cerebrovascular, kidney, and liver disease. Timely detection of accelerated aging in addiction is crucial for the prevention of premature morbidity and mortality.

  18. Accelerated aging of phenolic-bonded flakeboards

    Treesearch

    Andrew J. Baker; Robert H. Gillespie

    1978-01-01

    Specimens of phenolic-bonded flakeboard, vertical-grain southern pine and Douglas-fir, and marine-grade Douglas-fir plywood were exposed to four accelerated aging situations. These consisted of: 1) Multiple cycles of boiling and elevated-temperature drying, 2) multiple cycles of vacuum- pressure soaking and intermediate-temperature drying, 3) the six-cycle ASTM D-1037...

  19. Ultraviolet radiation exposure accelerates the accumulation of the aging-dependent T414G mitochondrial DNA mutation in human skin.

    PubMed

    Birket, Matthew J; Birch-Machin, Mark A

    2007-08-01

    The accumulation of mitochondrial DNA (mtDNA) mutations has been proposed as an underlying cause of the aging process. Such mutations are thought to be generated principally through mechanisms involving oxidative stress. Skin is frequently exposed to a potent mutagen in the form of ultraviolet (UV) radiation and mtDNA deletion mutations have previously been shown to accumulate with photoaging. Here we report that the age-related T414G point mutation originally identified in skin fibroblasts from donors over 65 years also accumulates with age in skin tissue. Moreover, there is a significantly greater incidence of this mutation in skin from sun-exposed sites (chi(2)= 6.8, P < 0.01). Identification and quantification of the T414G mutation in dermal skin tissue from 108 donors ranging from 8 to 97 years demonstrated both increased occurrence with photoaging as well as an increase in the proportion of molecules affected. In addition, we have discovered frequent genetic linkage between a common photoaging-associated mtDNA deletion and the T414G mutation. This linkage indicates that mtDNA mutations such as these are unlikely to be distributed equally across the mtDNA population within the skin tissue, increasing their likelihood of exerting focal effects at the cellular level. Taken together, these data significantly contribute to our understanding of the DNA damaging effects of UV exposure and how resultant mutations may ultimately contribute towards premature aging.

  20. Is schizophrenia a syndrome of accelerated aging?

    PubMed

    Kirkpatrick, Brian; Messias, Erick; Harvey, Philip D; Fernandez-Egea, Emilio; Bowie, Christopher R

    2008-11-01

    Schizophrenia is associated with a number of anatomical and physiological abnormalities outside of the brain, as well as with a decrease in average life span estimated at 20% in the United States. Some studies suggest that this increased mortality is not entirely due to associated causes such as suicide and the use of psychotropic medications. In this article, in order to focus greater attention on the increased mortality associated with schizophrenia, we present a special case of the hypothesis that physiological abnormalities associated with schizophrenia make a contribution to the increased mortality of schizophrenia: specifically, the hypothesis that schizophrenia is a syndrome of accelerated aging. Evidence consistent with this hypothesis comes from several areas. The biological plausibility of the hypothesis is supported by the existence of established syndromes of accelerated aging and by the sharing of risk factors between schizophrenia and other age-related conditions. We propose methods for testing the hypothesis.

  1. Inhibition of silencing and accelerated aging by nicotinamide, a putative negative regulator of yeast sir2 and human SIRT1.

    PubMed

    Bitterman, Kevin J; Anderson, Rozalyn M; Cohen, Haim Y; Latorre-Esteves, Magda; Sinclair, David A

    2002-11-22

    The Saccharomyces cerevisiae Sir2 protein is an NAD(+)-dependent histone deacetylase that plays a critical role in transcriptional silencing, genome stability, and longevity. A human homologue of Sir2, SIRT1, regulates the activity of the p53 tumor suppressor and inhibits apoptosis. The Sir2 deacetylation reaction generates two products: O-acetyl-ADP-ribose and nicotinamide, a precursor of nicotinic acid and a form of niacin/vitamin B(3). We show here that nicotinamide strongly inhibits yeast silencing, increases rDNA recombination, and shortens replicative life span to that of a sir2 mutant. Nicotinamide abolishes silencing and leads to an eventual delocalization of Sir2 even in G(1)-arrested cells, demonstrating that silent heterochromatin requires continual Sir2 activity. We show that physiological concentrations of nicotinamide noncompetitively inhibit both Sir2 and SIRT1 in vitro. The degree of inhibition by nicotinamide (IC(50) < 50 microm) is equal to or better than the most effective known synthetic inhibitors of this class of proteins. We propose a model whereby nicotinamide inhibits deacetylation by binding to a conserved pocket adjacent to NAD(+), thereby blocking NAD(+) hydrolysis. We discuss the possibility that nicotinamide is a physiologically relevant regulator of Sir2 enzymes.

  2. Accelerated aging in the tumor microenvironment

    PubMed Central

    Martinez-Outschoorn, Ubaldo E; Pavlides, Stephanos; Whitaker-Menezes, Diana; Pestell, Richard G; Howell, Anthony

    2011-01-01

    Cancer is thought to be a disease associated with aging. Interestingly, normal aging is driven by the production of ROS and mitochondrial oxidative stress, resulting in the cumulative accumulation of DNA damage. Here, we discuss how ROS signaling, NFκB- and HIF1-activation in the tumor micro-environment induces a form of “accelerated aging,” which leads to stromal inflammation and changes in cancer cell metabolism. Thus, we present a unified model where aging (ROS), inflammation (NFκB) and cancer metabolism (HIF1), act as co-conspirators to drive autophagy (“self-eating”) in the tumor stroma. Then, autophagy in the tumor stroma provides high-energy “fuel” and the necessary chemical building blocks, for accelerated tumor growth and metastasis. Stromal ROS production acts as a “mutagenic motor” and allows cancer cells to buffer—at a distance—exactly how much of a mutagenic stimulus they receive, further driving tumor cell selection and evolution. Surviving cancer cells would be selected for the ability to induce ROS more effectively in stromal fibroblasts, so they could extract more nutrients from the stroma via autophagy. If lethal cancer is a disease of “accelerated host aging” in the tumor stroma, then cancer patients may benefit from therapy with powerful antioxidants. Antioxidant therapy should block the resulting DNA damage, and halt autophagy in the tumor stroma, effectively “cutting off the fuel supply” for cancer cells. These findings have important new implications for personalized cancer medicine, as they link aging, inflammation and cancer metabolism with novel strategies for more effective cancer diagnostics and therapeutics. PMID:21654190

  3. Insights into accelerated aging of SSL luminaires

    NASA Astrophysics Data System (ADS)

    Davis, J. Lynn; Lamvik, Michael; Bittle, James; Shepherd, Sarah; Yaga, Robert; Baldasaro, Nick; Solano, Eric; Bobashev, Georgiy

    2013-09-01

    Although solid-state lighting (SSL) products are often intended to have product lifetimes of 15 years or more, the rapid change in technology has created a need for accelerated life tests (ALTs) that can be performed in the span of several months. A critical element of interpreting results from any systems-level ALT is understanding of the impact of the test environment on each component. Because of its ubiquity in electronics, the use of temperature-humidity environments as potential ALTs for SSL luminaires was investigated. Results from testing of populations of three commercial 6" downlights in environments of 85°C and 85% relative humidity (RH) and 75°C and 75% RH are reported. These test environments were found to accelerate lumen depreciation of the entire luminaire optical system, including LEDs, lenses, and reflectors. The effects of aging were found to depend strongly on both the optical materials that were used and the design of the luminaire; this shows that the lumen maintenance behavior of SSL luminaires must be addressed at the optical systems level. Temperature-Humidity ALTs can be a useful test in understand lumainaire depreciation provided that proper consideration is given to the different aging rates of various materials. Since the impact of the temperature-humidity environment varies among components of the optical system, uniform aging of all system components in a single test is difficult to achieve.

  4. Insights into accelerated aging of SSL luminaires

    DOE PAGES

    Davis, J. Lynn; Lamvik, Michael; Bittle, James; ...

    2013-09-30

    Although solid-state lighting (SSL) products are often intended to have product lifetimes of 15 years or more, the rapid change in technology has created a need for accelerated life tests (ALTs) that can be performed in the span of several months. A critical element of interpreting results from any systems-level ALT is understanding of the impact of the test environment on each component. Because of its ubiquity in electronics, the use of temperature-humidity environments as potential ALTs for SSL luminaires was investigated. Results from testing of populations of three commercial 6” downlights in environments of 85oC and 85% relative humiditymore » (RH) and 75oC and 75% RH are reported. These test environments were found to accelerate lumen depreciation of the entire luminaire optical system, including LEDs, lenses, and reflectors. The effects of aging were found to depend strongly on both the optical materials that were used and the design of the luminaire; this shows that the lumen maintenance behavior of SSL luminaires must be addressed at the optical systems level. Temperature-Humidity ALTs can be a useful test in understand lumainaire depreciation provided that proper consideration is given to the different aging rates of various materials. Since the impact of the temperature-humidity environment varies among components of the optical system, uniform aging of all system components in a single test is difficult to achieve.« less

  5. Insights into accelerated aging of SSL luminaires

    SciTech Connect

    Davis, J. Lynn; Lamvik, Michael; Bittle, James; Shepherd, Sarah; Yaga, Robert; Baldasaro, Nick; Solano, Eric; Bobashev, Georgiy

    2013-09-30

    Although solid-state lighting (SSL) products are often intended to have product lifetimes of 15 years or more, the rapid change in technology has created a need for accelerated life tests (ALTs) that can be performed in the span of several months. A critical element of interpreting results from any systems-level ALT is understanding of the impact of the test environment on each component. Because of its ubiquity in electronics, the use of temperature-humidity environments as potential ALTs for SSL luminaires was investigated. Results from testing of populations of three commercial 6” downlights in environments of 85oC and 85% relative humidity (RH) and 75oC and 75% RH are reported. These test environments were found to accelerate lumen depreciation of the entire luminaire optical system, including LEDs, lenses, and reflectors. The effects of aging were found to depend strongly on both the optical materials that were used and the design of the luminaire; this shows that the lumen maintenance behavior of SSL luminaires must be addressed at the optical systems level. Temperature-Humidity ALTs can be a useful test in understand lumainaire depreciation provided that proper consideration is given to the different aging rates of various materials. Since the impact of the temperature-humidity environment varies among components of the optical system, uniform aging of all system components in a single test is difficult to achieve.

  6. Accelerated Aging in Electrolytic Capacitors for Prognostics

    NASA Technical Reports Server (NTRS)

    Celaya, Jose R.; Kulkarni, Chetan; Saha, Sankalita; Biswas, Gautam; Goebel, Kai Frank

    2012-01-01

    The focus of this work is the analysis of different degradation phenomena based on thermal overstress and electrical overstress accelerated aging systems and the use of accelerated aging techniques for prognostics algorithm development. Results on thermal overstress and electrical overstress experiments are presented. In addition, preliminary results toward the development of physics-based degradation models are presented focusing on the electrolyte evaporation failure mechanism. An empirical degradation model based on percentage capacitance loss under electrical overstress is presented and used in: (i) a Bayesian-based implementation of model-based prognostics using a discrete Kalman filter for health state estimation, and (ii) a dynamic system representation of the degradation model for forecasting and remaining useful life (RUL) estimation. A leave-one-out validation methodology is used to assess the validity of the methodology under the small sample size constrain. The results observed on the RUL estimation are consistent through the validation tests comparing relative accuracy and prediction error. It has been observed that the inaccuracy of the model to represent the change in degradation behavior observed at the end of the test data is consistent throughout the validation tests, indicating the need of a more detailed degradation model or the use of an algorithm that could estimate model parameters on-line. Based on the observed degradation process under different stress intensity with rest periods, the need for more sophisticated degradation models is further supported. The current degradation model does not represent the capacitance recovery over rest periods following an accelerated aging stress period.

  7. Shortened estrous cycle length, increased FSH levels, FSH variance, oocyte spindle aberrations, and early declining fertility in aging senescence-accelerated mouse prone-8 (SAMP8) mice: concomitant characteristics of human midlife female reproductive aging.

    PubMed

    Bernstein, Lori R; Mackenzie, Amelia C L; Kraemer, Duane C; Morley, John E; Farr, Susan; Chaffin, Charles L; Merchenthaler, István

    2014-06-01

    Women experience a series of specific transitions in their reproductive function with age. Shortening of the menstrual cycle begins in the mid to late 30s and is regarded as the first sign of reproductive aging. Other early changes include elevation and increased variance of serum FSH levels, increased incidences of oocyte spindle aberrations and aneuploidy, and declining fertility. The goal of this study was to investigate whether the mouse strain senescence-accelerated mouse-prone-8 (SAMP8) is a suitable model for the study of these midlife reproductive aging characteristics. Midlife SAMP8 mice aged 6.5-7.85 months (midlife SAMP8) exhibited shortened estrous cycles compared with SAMP8 mice aged 2-3 months (young SAMP8, P = .0040). Midlife SAMP8 mice had high FSH levels compared with young SAMP8 mice, and mice with a single day of high FSH exhibited statistically elevated FSH throughout the cycle, ranging from 1.8- to 3.6-fold elevation on the days of proestrus, estrus, metestrus, and diestrus (P < .05). Midlife SAMP8 mice displayed more variance in FSH than young SAMP8 mice (P = .01). Midlife SAMP8 ovulated fewer oocytes (P = .0155). SAMP8 oocytes stained with fluorescently labeled antitubulin antibodies and scored in fluorescence microscopy exhibited increased incidence of meiotic spindle aberrations with age, from 2/126 (1.59%) in young SAMP8 to 38/139 (27.3%) in midlife SAMP8 (17.2-fold increase, P < .0001). Finally, SAMP8 exhibited declining fertility from 8.9 pups/litter in young SAMP8 to 3.5 pups/litter in midlife SAMP8 mice (P < .0001). The age at which these changes occur is younger than for most mouse strains, and their simultaneous occurrence within a single strain has not been described previously. We propose that SAMP8 mice are a model of midlife human female reproductive aging.

  8. Recent acceleration of human adaptive evolution

    PubMed Central

    Hawks, John; Wang, Eric T.; Cochran, Gregory M.; Harpending, Henry C.; Moyzis, Robert K.

    2007-01-01

    Genomic surveys in humans identify a large amount of recent positive selection. Using the 3.9-million HapMap SNP dataset, we found that selection has accelerated greatly during the last 40,000 years. We tested the null hypothesis that the observed age distribution of recent positively selected linkage blocks is consistent with a constant rate of adaptive substitution during human evolution. We show that a constant rate high enough to explain the number of recently selected variants would predict (i) site heterozygosity at least 10-fold lower than is observed in humans, (ii) a strong relationship of heterozygosity and local recombination rate, which is not observed in humans, (iii) an implausibly high number of adaptive substitutions between humans and chimpanzees, and (iv) nearly 100 times the observed number of high-frequency linkage disequilibrium blocks. Larger populations generate more new selected mutations, and we show the consistency of the observed data with the historical pattern of human population growth. We consider human demographic growth to be linked with past changes in human cultures and ecologies. Both processes have contributed to the extraordinarily rapid recent genetic evolution of our species. PMID:18087044

  9. Accelerated Aging of Lead-Free Propellant

    NASA Technical Reports Server (NTRS)

    Furrow, Keith W.; Jervey, David D.

    2000-01-01

    Following higher than expected 2-NDPA depletion rates in a lead-free doublebase formulation (RPD-422), an accelerated aging study was conducted to verify the depletion rates. A test plan was prepared to compare the aging characteristics of lead-free propellant and NOSIH-AA2. The study was also designed to determine which lead-free ballistic modifiers accelerated 2-NDPA depletion. The increased depletion rate occurred in propellants containing monobasic copper salicylate. Four lead-free propellants were then formulated to improved aging characteristics over previous lead-free propellant formulations. The new formulations reduced or replaced the monobasic copper salicylate. The new formulations had improved aging characteristics. Their burn rates, however, were unacceptable for use in a 2.75 inch rocket. To compare aging characteristics, stabilizer depletion rates of RPD-422, AA2, M28, and RLC 470/6A were measured or taken from the literature. The data were fit to a kinetic model. The model contained first and zero order terms which allowed the stabilizer concentration to go to zero. In the model, only the concentration of the primary stabilizer was considered. Derivatives beyond the first nitrated or nitroso derivative of 2-NPDA were not considered. The rate constants were fit to the Arrhenius equation and extrapolated to lower temperatures. The time to complete stabilizer depletion was estimated using the kinetic model. The four propellants were compared and the RPD-422 depleted faster at 45 C than both A22 and M28. These types of predictions depend on the validity of the model and on confidence in the Arrhenius relationship holding at lower temperatures. At 45 C, the zero order portion of the model dominates the depletion rate.

  10. Accelerated Aging of Lead-Free Propellant

    NASA Technical Reports Server (NTRS)

    Furrow, Keith W.; Jervey, David D.

    2000-01-01

    Following higher than expected 2-NDPA depletion rates in a lead-free doublebase formulation (RPD-422), an accelerated aging study was conducted to verify the depletion rates. A test plan was prepared to compare the aging characteristics of lead-free propellant and NOSIH-AA2. The study was also designed to determine which lead-free ballistic modifiers accelerated 2-NDPA depletion. The increased depletion rate occurred in propellants containing monobasic copper salicylate. Four lead-free propellants were then formulated to improved aging characteristics over previous lead-free propellant formulations. The new formulations reduced or replaced the monobasic copper salicylate. The new formulations had improved aging characteristics. Their burn rates, however, were unacceptable for use in a 2.75 inch rocket. To compare aging characteristics, stabilizer depletion rates of RPD-422, AA2, M28, and RLC 470/6A were measured or taken from the literature. The data were fit to a kinetic model. The model contained first and zero order terms which allowed the stabilizer concentration to go to zero. In the model, only the concentration of the primary stabilizer was considered. Derivatives beyond the first nitrated or nitroso derivative of 2-NPDA were not considered. The rate constants were fit to the Arrhenius equation and extrapolated to lower temperatures. The time to complete stabilizer depletion was estimated using the kinetic model. The four propellants were compared and the RPD-422 depleted faster at 45 C than both A22 and M28. These types of predictions depend on the validity of the model and on confidence in the Arrhenius relationship holding at lower temperatures. At 45 C, the zero order portion of the model dominates the depletion rate.

  11. US Particle Accelerators at Age 50.

    ERIC Educational Resources Information Center

    Wilson, R. R.

    1981-01-01

    Reviews the development of accelerators over the past 50 years. Topics include: types of accelerators, including cyclotrons; sociology of accelerators (motivation, financing, construction, and use); impact of war; national laboratories; funding; applications; future projects; foreign projects; and international collaborations. (JN)

  12. US Particle Accelerators at Age 50.

    ERIC Educational Resources Information Center

    Wilson, R. R.

    1981-01-01

    Reviews the development of accelerators over the past 50 years. Topics include: types of accelerators, including cyclotrons; sociology of accelerators (motivation, financing, construction, and use); impact of war; national laboratories; funding; applications; future projects; foreign projects; and international collaborations. (JN)

  13. Accelerated aging of EPDM and butyl elastomers

    SciTech Connect

    Wilson, M.H.

    1996-06-01

    This study was composed of three parts: a post cure study to optimize final properties of an ethylene-propylene-diene (EPDM) formulation, an accelerated aging study to compare the stress relaxation behavior of a butyl and an EPDM elastomer under compression, and a cursory evaluation of a new 70 Shore A EPDM. The optimum postcure for the EPDM was found to be 2 to 4 hours at 182{degrees}C in a vacuum. The EPDM was also shown to have superior aging characteristics compared to the butyl and is recommended for use instead of the butyl material. The physical properties for new 70 Shore A EPDM are satisfactory, and the stress relaxation behavior was only slightly inferior to the other EPDM.

  14. US particle accelerators at age 50

    SciTech Connect

    Wilson, R.R.

    1981-11-01

    Fifty years ago, a dramatic race was under way to see who would be first to accelerate protons to an energy high enough to disintegrate the atomic nucleus. This contest, coincidental with the birth of the American Institute of Physics, could be considered as the beginning of what was to become a Golden age of high-energy physics. The race might also be taken to mark the end of an Age of Innocence of nulcear physicists. Heretofore during an era to which all physicists look back with nostalgia, much of the fundamental knowledge about the nucleus had been by obtained the use of rather primitive experimental devices, followed by sophisticated analysis. Rutherford's famous ..cap alpha..-particle scattering experiment is a case-in-point: a little string and sealing wax and not much else. Not much, that is, except great leaps of reason and imagination. In the future, in addition to make-do skills, physicists were going to have to master arcane techniques, such as those of mechanical and electrical engineers. Indeed they would have to invent a whole new technology of accelerator building in order to explore the inside of the nucleus and to identify and study its constituent parts.

  15. Degradation mechanisms and accelerated aging test design

    SciTech Connect

    Clough, R L; Gillen, K T

    1985-01-01

    The fundamental mechanisms underlying the chemical degradation of polymers can change as a function of environmental stress level. When this occurs, it greatly complicates any attempt to use accelerated tests for predicting long-term material degradation behaviors. Understanding how degradation mechanisms can change at different stress levels facilitates both the design and the interpretation of aging tests. Oxidative degradation is a predominant mechanism for many polymers exposed to a variety of different environments in the presence of air, and there are two mechanistic considerations which are widely applicable to material oxidation. One involves a physical process, oxygen diffusion, as a rate-limiting step. This mechanism can predominate at high stress levels. The second is a chemical process, the time-dependent decomposition of peroxide species. This leads to chain branching and can become a rate-controlling factor at lower stress levels involving time-scales applicable to use environments. The authors describe methods for identifying the operation of these mechanisms and illustrate the dramatic influence they can have on the degradation behaviors of a number of polymer types. Several commonly used approaches to accelerated aging tests are discussed in light of the behaviors which result from changes in degradation mechanisms. 9 references, 4 figures.

  16. Infant's DNA Methylation Age at Birth and Epigenetic Aging Accelerators

    PubMed Central

    Chen, Weidan; Lin, Fangqin

    2016-01-01

    Knowing the biological age of the neonates enables us to evaluate and better understand the health and maturity comprehensively. However, because of dearth of biomarkers, it is difficult to quantify the neonatal biological age. Here we sought to quantify and assess the variability in biological age at birth and to better understand how the aging rates before birth are influenced by exposure in intrauterine period by employing a novel epigenetic biomarker of aging (epigenetic clock). We observed that the methylation age at birth was independent of the infant's sex but was significantly influenced by race. Partial correlation analysis showed a significant negative relationship between maternal socioeconomic status and infants' methylation age (rs = −0.48, Ps = 0.005). A significant association with the risk of fast aging was observed for prenatal exposure to tobacco smoke with OR (95% CI) of 3.17 (1.05–9.56). Both estimated cell abundance measures and lymphocyte subpopulations in cord blood showed that tobacco exposed group exhibit an altered T cell compartment, specifically substantial loss of naive T cells. Present study provides the first evidence that common perinatal exposure (such as maternal smoking and lower socioeconomic status) may be important aging accelerators and substantial loss of naive T cells may play a role in the smoking-related fast aging phenomenon. PMID:28058257

  17. Mechanisms of aging in senescence-accelerated mice

    PubMed Central

    Carter, Todd A; Greenhall, Jennifer A; Yoshida, Shigeo; Fuchs, Sebastian; Helton, Robert; Swaroop, Anand; Lockhart, David J; Barlow, Carrolee

    2005-01-01

    Background Progressive neurological dysfunction is a key aspect of human aging. Because of underlying differences in the aging of mice and humans, useful mouse models have been difficult to obtain and study. We have used gene-expression analysis and polymorphism screening to study molecular senescence of the retina and hippocampus in two rare inbred mouse models of accelerated neurological senescence (SAMP8 and SAMP10) that closely mimic human neurological aging, and in a related normal strain (SAMR1) and an unrelated normal strain (C57BL/6J). Results The majority of age-related gene expression changes were strain-specific, with only a few common pathways found for normal and accelerated neurological aging. Polymorphism screening led to the identification of mutations that could have a direct impact on important disease processes, including a mutation in a fibroblast growth factor gene, Fgf1, and a mutation in and ectopic expression of the gene for the chemokine CCL19, which is involved in the inflammatory response. Conclusion We show that combining the study of inbred mouse strains with interesting traits and gene-expression profiling can lead to the discovery of genes important for complex phenotypes. Furthermore, full-genome polymorphism detection, sequencing and gene-expression profiling of inbred mouse strains with interesting phenotypic differences may provide unique insights into the molecular genetics of late-manifesting complex diseases. PMID:15960800

  18. Accelerated Aging of Polymer Composite Bridge Materials

    SciTech Connect

    Carlson, Nancy Margaret; Blackwood, Larry Gene; Torres, Lucinda Laine; Rodriguez, Julio Gallardo; Yoder, Timothy Scott

    1999-03-01

    Accelerated aging research on samples of composite material and candidate ultraviolet (UV) protective coatings is determining the effects of six environmental factors on material durability. Candidate fastener materials are being evaluated to determine corrosion rates and crevice corrosion effects at load-bearing joints. This work supports field testing of a 30-ft long, 18-ft wide polymer matrix composite (PMC) bridge at the Idaho National Engineering and Environmental Laboratory (INEEL). Durability results and sensor data from tests with live loads provide information required for determining the cost/benefit measures to use in life-cycle planning, determining a maintenance strategy, establishing applicable inspection techniques, and establishing guidelines, standards, and acceptance criteria for PMC bridges for use in the transportation infrastructure.

  19. Progranulin Knockout Accelerates Intervertebral Disc Degeneration in Aging Mice

    PubMed Central

    Zhao, Yun-peng; Tian, Qing-yun; Liu, Ben; Cuellar, Jason; Richbourgh, Brendon; Jia, Tang-hong; Liu, Chuan-ju

    2015-01-01

    Intervertebral disc (IVD) degeneration is a common degenerative disease, yet much is unknown about the mechanisms during its pathogenesis. Herein we investigated whether progranulin (PGRN), a chondroprotective growth factor, is associated with IVD degeneration. PGRN was detectable in both human and murine IVD. The levels of PGRN were upregulated in murine IVD tissue during aging process. Loss of PGRN resulted in an early onset of degenerative changes in the IVD tissue and altered expressions of the degeneration-associated molecules in the mouse IVD tissue. Moreover, PGRN knockout mice exhibited accelerated IVD matrix degeneration, abnormal bone formation and exaggerated bone resorption in vertebra with aging. The acceleration of IVD degeneration observed in PGRN null mice was probably due to the enhanced activation of NF-κB signaling and β-catenin signaling. Taken together, PGRN may play a critical role in homeostasis of IVD, and may serve as a potential molecular target for prevention and treatment of disc degenerative diseases. PMID:25777988

  20. Kinematics of transition during human accelerated sprinting

    PubMed Central

    Nagahara, Ryu; Matsubayashi, Takeo; Matsuo, Akifumi; Zushi, Koji

    2014-01-01

    ABSTRACT This study investigated kinematics of human accelerated sprinting through 50 m and examined whether there is transition and changes in acceleration strategies during the entire acceleration phase. Twelve male sprinters performed a 60-m sprint, during which step-to-step kinematics were captured using 60 infrared cameras. To detect the transition during the acceleration phase, the mean height of the whole-body centre of gravity (CG) during the support phase was adopted as a measure. Detection methods found two transitions during the entire acceleration phase of maximal sprinting, and the acceleration phase could thus be divided into initial, middle, and final sections. Discriminable kinematic changes were found when the sprinters crossed the detected first transition—the foot contacting the ground in front of the CG, the knee-joint starting to flex during the support phase, terminating an increase in step frequency—and second transition—the termination of changes in body postures and the start of a slight decrease in the intensity of hip-joint movements, thus validating the employed methods. In each acceleration section, different contributions of lower-extremity segments to increase in the CG forward velocity—thigh and shank for the initial section, thigh, shank, and foot for the middle section, shank and foot for the final section—were verified, establishing different acceleration strategies during the entire acceleration phase. In conclusion, there are presumably two transitions during human maximal accelerated sprinting that divide the entire acceleration phase into three sections, and different acceleration strategies represented by the contributions of the segments for running speed are employed. PMID:24996923

  1. Infection susceptibility and immune senescence with advancing age replicated in accelerated aging Lmna(Dhe) mice.

    PubMed

    Xin, Lijun; Jiang, Tony T; Kinder, Jeremy M; Ertelt, James M; Way, Sing Sing

    2015-12-01

    Aging confers increased susceptibility to common pathogens including influenza A virus. Despite shared vulnerability to infection with advancing age in humans and rodents, the relatively long time required for immune senescence to take hold practically restricts the use of naturally aged mice to investigate aging-induced immunological shifts. Here, we show accelerated aging Lmna(Dhe) mice with spontaneous mutation in the nuclear scaffolding protein, lamin A, replicate infection susceptibility, and substantial immune cell shifts that occur with advancing age. Naturally aged (≥ 20 month) and 2- to 3-month-old Lmna(Dhe) mice share near identically increased influenza A susceptibility compared with age-matched Lmna(WT) control mice. Increased mortality and higher viral burden after influenza infection in Lmna(Dhe) mice parallel reduced accumulation of lung alveolar macrophage cells, systemic expansion of immune suppressive Foxp3⁺ regulatory T cells, and skewed immune dominance among viral-specific CD8⁺T cells similar to the immunological phenotype of naturally aged mice. Thus, aging-induced infection susceptibility and immune senescence are replicated in accelerated aging Lmna(Dhe) mice. © 2015 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

  2. Biodemography of human ageing

    PubMed Central

    Vaupel, James W.

    2014-01-01

    Human senescence has been delayed by a decade. This finding, documented in 1994 and bolstered since, is a fundamental discovery about the biology of human ageing, and one with profound implications for individuals, society and the economy. Remarkably, the rate of deterioration with age seems to be constant across individuals and over time: it seems that death is being delayed because people are reaching old age in better health. Research by demographers, epidemiologists and other biomedical researchers suggests that further progress is likely to be made in advancing the frontier of survival — and healthy survival — to even greater ages. PMID:20336136

  3. Accelerated Aging of the M119 Simulator

    NASA Technical Reports Server (NTRS)

    Bixon, Eric R.

    2000-01-01

    This paper addresses the storage requirement, shelf life, and the reliability of M119 Whistling Simulator. Experimental conditions have been determined and the data analysis has been completed for the accelerated testing of the system. A general methodology to evaluate the shelf life of the system as a function of the storage time, temperature, and relative humidity is discussed.

  4. Acceleration of the aging process by oxygen

    NASA Technical Reports Server (NTRS)

    Miquel, J.; Lunderen, P. R.; Bensch, K. G.

    1975-01-01

    Tissue changes induced by hyperoxia have been compared with those of normal aging. Results of investigations using male flies prompt conclusion that normal aging, radiation syndrome, and hyperoxic injury share at least one common feature--lipid peroxidation damage to all mambranes resulting in accumulation of age pigment.

  5. Age-Dependent Decrease and Alternative Splicing of Methionine Synthase mRNA in Human Cerebral Cortex and an Accelerated Decrease in Autism

    PubMed Central

    Muratore, Christina R.; Hodgson, Nathaniel W.; Trivedi, Malav S.; Abdolmaleky, Hamid M.; Persico, Antonio M.; Lintas, Carla; De La Monte, Suzanne; Deth, Richard C.

    2013-01-01

    The folate and vitamin B12-dependent enzyme methionine synthase (MS) is highly sensitive to cellular oxidative status, and lower MS activity increases production of the antioxidant glutathione, while simultaneously decreasing more than 200 methylation reactions, broadly affecting metabolic activity. MS mRNA levels in postmortem human cortex from subjects across the lifespan were measured and a dramatic progressive biphasic decrease of more than 400-fold from 28 weeks of gestation to 84 years was observed. Further analysis revealed alternative splicing of MS mRNA, including deletion of folate-binding domain exons and age-dependent deletion of exons from the cap domain, which protects vitamin B12 (cobalamin) from oxidation. Although three species of MS were evident at the protein level, corresponding to full-length and alternatively spliced mRNA transcripts, decreasing mRNA levels across the lifespan were not associated with significant changes in MS protein or methionine levels. MS mRNA levels were significantly lower in autistic subjects, especially at younger ages, and this decrease was replicated in cultured human neuronal cells by treatment with TNF-α, whose CSF levels are elevated in autism. These novel findings suggest that rather than serving as a housekeeping enzyme, MS has a broad and dynamic role in coordinating metabolism in the brain during development and aging. Factors adversely affecting MS activity, such as oxidative stress, can be a source of risk for neurological disorders across the lifespan via their impact on methylation reactions, including epigenetic regulation of gene expression. PMID:23437274

  6. Accelerated DNA Methylation Age: Associations with PTSD and Neural Integrity

    PubMed Central

    Wolf, Erika J.; Logue, Mark W.; Hayes, Jasmeet P.; Sadeh, Naomi; Schichman, Steven A.; Stone, Annjanette; Salat, David H.; Milberg, William; McGlinchey, Regina; Miller, Mark W.

    2015-01-01

    Background Accumulating evidence suggests that post traumatic stress disorder (PTSD) may accelerate cellular aging and lead to premature morbidity and neurocognitive decline. Methods This study evaluated associations between PTSD and DNA methylation (DNAm) age using recently developed algorithms of cellular age by Horvath (2013) and Hannum et al. (2013). These estimates reflect accelerated aging when they exceed chronological age. We also examined if accelerated cellular age manifested in degraded neural integrity, indexed via diffusion tensor imaging. Results Among 281 male and female veterans of the conflicts in Iraq and Afghanistan, DNAm age was strongly related to chronological age (rs ~.88). Lifetime PTSD severity was associated with Hannum DNAm age estimates residualized for chronological age (β = .13, p= .032). Advanced DNAm age was associated with reduced integrity in the genu of the corpus callosum (β = −.17, p= .009) and indirectly linked to poorer working memory performance via this region (indirect β = − .05, p= .029). Horvath DNAm age estimates were not associated with PTSD or neural integrity. Conclusions Results provide novel support for PTSD-related accelerated aging in DNAm and extend the evidence base of known DNAm age correlates to the domains of neural integrity and cognition. PMID:26447678

  7. Accelerated DNA methylation age: Associations with PTSD and neural integrity.

    PubMed

    Wolf, Erika J; Logue, Mark W; Hayes, Jasmeet P; Sadeh, Naomi; Schichman, Steven A; Stone, Annjanette; Salat, David H; Milberg, William; McGlinchey, Regina; Miller, Mark W

    2016-01-01

    Accumulating evidence suggests that posttraumatic stress disorder (PTSD) may accelerate cellular aging and lead to premature morbidity and neurocognitive decline. This study evaluated associations between PTSD and DNA methylation (DNAm) age using recently developed algorithms of cellular age by Horvath (2013) and Hannum et al. (2013). These estimates reflect accelerated aging when they exceed chronological age. We also examined if accelerated cellular age manifested in degraded neural integrity, indexed via diffusion tensor imaging. Among 281 male and female veterans of the conflicts in Iraq and Afghanistan, DNAm age was strongly related to chronological age (rs ∼.88). Lifetime PTSD severity was associated with Hannum DNAm age estimates residualized for chronological age (β=.13, p=.032). Advanced DNAm age was associated with reduced integrity in the genu of the corpus callosum (β=-.17, p=.009) and indirectly linked to poorer working memory performance via this region (indirect β=-.05, p=.029). Horvath DNAm age estimates were not associated with PTSD or neural integrity. Results provide novel support for PTSD-related accelerated aging in DNAm and extend the evidence base of known DNAm age correlates to the domains of neural integrity and cognition. Published by Elsevier Ltd.

  8. Loss of epidermal hypoxia-inducible factor-1α accelerates epidermal aging and affects re-epithelialization in human and mouse.

    PubMed

    Rezvani, Hamid Reza; Ali, Nsrein; Serrano-Sanchez, Martin; Dubus, Pierre; Varon, Christine; Ged, Cécile; Pain, Catherine; Cario-André, Muriel; Seneschal, Julien; Taïeb, Alain; de Verneuil, Hubert; Mazurier, Frédéric

    2011-12-15

    In mouse and human skin, HIF-1α is constitutively expressed in the epidermis, mainly in the basal layer. HIF-1α has been shown to have crucial systemic functions: regulation of kidney erythropoietin production in mice with constitutive HIF-1α epidermal deletion, and hypervascularity following epidermal HIF-1α overexpression. However, its local role in keratinocyte physiology has not been clearly defined. To address the function of HIF-1α in the epidermis, we used the mouse model of HIF-1α knockout targeted to keratinocytes (K14-Cre/Hif1a(flox/flox)). These mice had a delayed skin phenotype characterized by skin atrophy and pruritic inflammation, partly mediated by basement membrane disturbances involving laminin-332 (Ln-332) and integrins. We also investigated the relevance of results of studies in mice to human skin using reconstructed epidermis and showed that HIF-1α knockdown in human keratinocytes impairs the formation of a viable reconstructed epidermis. A diminution of keratinocyte growth potential, following HIF-1α silencing, was associated with a decreased expression of Ln-322 and α6 integrin and β1 integrin. Overall, these results indicate a role of HIF-1α in skin homeostasis especially during epidermal aging.

  9. Sleep and Human Aging.

    PubMed

    Mander, Bryce A; Winer, Joseph R; Walker, Matthew P

    2017-04-05

    Older adults do not sleep as well as younger adults. Why? What alterations in sleep quantity and quality occur as we age, and are there functional consequences? What are the underlying neural mechanisms that explain age-related sleep disruption? This review tackles these questions. First, we describe canonical changes in human sleep quantity and quality in cognitively normal older adults. Second, we explore the underlying neurobiological mechanisms that may account for these human sleep alterations. Third, we consider the functional consequences of age-related sleep disruption, focusing on memory impairment as an exemplar. We conclude with a discussion of a still-debated question: do older adults simply need less sleep, or rather, are they unable to generate the sleep that they still need?

  10. Tissue-specific accelerated aging in nucleotide excision repair deficiency

    PubMed Central

    Niedernhofer, Laura J.

    2008-01-01

    Nucleotide excision repair (NER) is a multi-step DNA repair mechanism that removes helix-distorting modified nucleotides from the genome. NER is divided into two subpathways depending on the location of DNA damage in the genome and how it is first detected. Global genome NER identifies and repairs DNA lesions throughout the genome. This subpathway of NER primarily protects against the accumulation of mutations in the genome. Transcription-coupled (TC) NER rapidly repairs lesions in the transcribed strand of DNA that block transcription by RNA polymerase II. TC-NER prevents cell death in response to stalled transcription. Defects in NER cause three distinct human diseases: xeroderma pigmentosum, Cockayne syndrome and trichothiodystrophy. Each of these syndromes is characterized by premature onset of pathologies that overlap with those associated with old age in humans. This reveals the contribution of DNA damage to multiple age-related diseases. Tissues affected include the skin, eye, bone marrow, nervous system and endocrine axis. This review emphasizes accelerated aging associated with xeroderma pigmentosum and discusses the cause of these pathologies, either mutation accumulation or cell death as a consequence of failure to repair DNA damage. PMID:18538374

  11. Transcranial Electrical Stimulation Accelerates Human Sleep Homeostasis

    PubMed Central

    Reato, Davide; Gasca, Fernando; Datta, Abhishek; Bikson, Marom; Marshall, Lisa; Parra, Lucas C.

    2013-01-01

    The sleeping brain exhibits characteristic slow-wave activity which decays over the course of the night. This decay is thought to result from homeostatic synaptic downscaling. Transcranial electrical stimulation can entrain slow-wave oscillations (SWO) in the human electro-encephalogram (EEG). A computational model of the underlying mechanism predicts that firing rates are predominantly increased during stimulation. Assuming that synaptic homeostasis is driven by average firing rates, we expected an acceleration of synaptic downscaling during stimulation, which is compensated by a reduced drive after stimulation. We show that 25 minutes of transcranial electrical stimulation, as predicted, reduced the decay of SWO in the remainder of the night. Anatomically accurate simulations of the field intensities on human cortex precisely matched the effect size in different EEG electrodes. Together these results suggest a mechanistic link between electrical stimulation and accelerated synaptic homeostasis in human sleep. PMID:23459152

  12. Transcranial electrical stimulation accelerates human sleep homeostasis.

    PubMed

    Reato, Davide; Gasca, Fernando; Datta, Abhishek; Bikson, Marom; Marshall, Lisa; Parra, Lucas C

    2013-01-01

    The sleeping brain exhibits characteristic slow-wave activity which decays over the course of the night. This decay is thought to result from homeostatic synaptic downscaling. Transcranial electrical stimulation can entrain slow-wave oscillations (SWO) in the human electro-encephalogram (EEG). A computational model of the underlying mechanism predicts that firing rates are predominantly increased during stimulation. Assuming that synaptic homeostasis is driven by average firing rates, we expected an acceleration of synaptic downscaling during stimulation, which is compensated by a reduced drive after stimulation. We show that 25 minutes of transcranial electrical stimulation, as predicted, reduced the decay of SWO in the remainder of the night. Anatomically accurate simulations of the field intensities on human cortex precisely matched the effect size in different EEG electrodes. Together these results suggest a mechanistic link between electrical stimulation and accelerated synaptic homeostasis in human sleep.

  13. The coming acceleration of global population ageing.

    PubMed

    Lutz, Wolfgang; Sanderson, Warren; Scherbov, Sergei

    2008-02-07

    The future paths of population ageing result from specific combinations of declining fertility and increasing life expectancies in different parts of the world. Here we measure the speed of population ageing by using conventional measures and new ones that take changes in longevity into account for the world as a whole and for 13 major regions. We report on future levels of indicators of ageing and the speed at which they change. We show how these depend on whether changes in life expectancy are taken into account. We also show that the speed of ageing is likely to increase over the coming decades and to decelerate in most regions by mid-century. All our measures indicate a continuous ageing of the world's population throughout the century. The median age of the world's population increases from 26.6 years in 2000 to 37.3 years in 2050 and then to 45.6 years in 2100, when it is not adjusted for longevity increase. When increases in life expectancy are taken into account, the adjusted median age rises from 26.6 in 2000 to 31.1 in 2050 and only to 32.9 in 2100, slightly less than what it was in the China region in 2005. There are large differences in the regional patterns of ageing. In North America, the median age adjusted for life expectancy change falls throughout almost the entire century, whereas the conventional median age increases significantly. Our assessment of trends in ageing is based on new probabilistic population forecasts. The probability that growth in the world's population will end during this century is 88%, somewhat higher than previously assessed. After mid-century, lower rates of population growth are likely to coincide with slower rates of ageing.

  14. Effects of Horizontal Acceleration on Human Visual Acuity and Stereopsis

    PubMed Central

    Horng, Chi-Ting; Hsieh, Yih-Shou; Tsai, Ming-Ling; Chang, Wei-Kang; Yang, Tzu-Hung; Yauan, Chien-Han; Wang, Chih-Hung; Kuo, Wu-Hsien; Wu, Yi-Chang

    2015-01-01

    The effect of horizontal acceleration on human visual acuity and stereopsis is demonstrated in this study. Twenty participants (mean age 22.6 years) were enrolled in the experiment. Acceleration from two different directions was performed at the Taiwan High-Speed Rail Laboratory. Gx and Gy (< and >0.1 g) were produced on an accelerating platform where the subjects stood. The visual acuity and stereopsis of the right eye were measured before and during the acceleration. Acceleration <0.1 g in the X- or Y-axis did not affect dynamic vision and stereopsis. Vision decreased (mean from 0.02 logMAR to 0.25 logMAR) and stereopsis declined significantly (mean from 40 s to 60.2 s of arc) when Gx > 0.1 g. Visual acuity worsened (mean from 0.02 logMAR to 0.19 logMAR) and poor stereopsis was noted (mean from 40 s to 50.2 s of arc) when Gy > 0.1 g. The effect of acceleration from the X-axis on the visual system was higher than that from the Y-axis. During acceleration, most subjects complained of ocular strain when reading. To our knowledge, this study is the first to report the exact levels of visual function loss during Gx and Gy. PMID:25607601

  15. Effects of horizontal acceleration on human visual acuity and stereopsis.

    PubMed

    Horng, Chi-Ting; Hsieh, Yih-Shou; Tsai, Ming-Ling; Chang, Wei-Kang; Yang, Tzu-Hung; Yauan, Chien-Han; Wang, Chih-Hung; Kuo, Wu-Hsien; Wu, Yi-Chang

    2015-01-19

    The effect of horizontal acceleration on human visual acuity and stereopsis is demonstrated in this study. Twenty participants (mean age 22.6 years) were enrolled in the experiment. Acceleration from two different directions was performed at the Taiwan High-Speed Rail Laboratory. Gx and Gy (< and >0.1 g) were produced on an accelerating platform where the subjects stood. The visual acuity and stereopsis of the right eye were measured before and during the acceleration. Acceleration <0.1 g in the X- or Y-axis did not affect dynamic vision and stereopsis. Vision decreased (mean from 0.02 logMAR to 0.25 logMAR) and stereopsis declined significantly (mean from 40 s to 60.2 s of arc) when Gx > 0.1 g. Visual acuity worsened (mean from 0.02 logMAR to 0.19 logMAR) and poor stereopsis was noted (mean from 40 s to 50.2 s of arc) when Gy > 0.1 g. The effect of acceleration from the X-axis on the visual system was higher than that from the Y-axis. During acceleration, most subjects complained of ocular strain when reading. To our knowledge, this study is the first to report the exact levels of visual function loss during Gx and Gy.

  16. Exposure to Violence Accelerates Epigenetic Aging in Children.

    PubMed

    Jovanovic, Tanja; Vance, L Alexander; Cross, Dorthie; Knight, Anna K; Kilaru, Varun; Michopoulos, Vasiliki; Klengel, Torsten; Smith, Alicia K

    2017-08-21

    Epigenetic processes, including DNA methylation, change reliably with age across the lifespan, such that DNA methylation can be used as an "epigenetic clock". This epigenetic clock can be used to predict age and age acceleration, which occurs when methylation-based prediction of age exceeds chronological age and has been associated with increased mortality. In the current study we examined epigenetic age acceleration using saliva samples collected from children between ages 6-13 (N = 101). Children's exposure to neighborhood violence and heart rate during a stressful task were assessed. Age acceleration was associated with children's direct experience of violence (p = 0.004) and with decreased heart rate (p = 0.002). Children who were predicted to be older than their chronological age had twice as much violence exposure as other children and their heart rate was similar to that of adults. The results remained significant after controlling for demographic variables, such as sex, income and education. This is the first study to show the effects of direct violence exposure on epigenetic aging in children using salivary DNA. Although longitudinal studies are needed to determine whether accelerated epigenetic aging leads to adverse health outcomes later in life, these data point to DNA methylation during childhood as a putative biological mechanism.

  17. Accelerated food source location in aging Drosophila.

    PubMed

    Egenriether, Sada M; Chow, Eileen S; Krauth, Nathalie; Giebultowicz, Jadwiga M

    2015-10-01

    Adequate energy stores are essential for survival, and sophisticated neuroendocrine mechanisms evolved to stimulate foraging in response to nutrient deprivation. Food search behavior is usually investigated in young animals, and it is not known how aging alters this behavior. To address this question in Drosophila melanogaster, we compared the ability to locate food by olfaction in young and old flies using a food-filled trap. As aging is associated with a decline in motor functions, learning, and memory, we expected that aged flies would take longer to enter the food trap than their young counterparts. Surprisingly, old flies located food with significantly shorter latency than young ones. Robust food search behavior was associated with significantly lower fat reserves and lower starvation resistance in old flies. Food-finding latency (FFL) was shortened in young wild-type flies that were starved until their fat was depleted but also in heterozygous chico mutants with reduced insulin receptor activity and higher fat deposits. Conversely, food trap entry was delayed in old flies with increased insulin signaling. Our results suggest that the difference in FFL between young and old flies is linked to age-dependent differences in metabolic status and may be mediated by reduced insulin signaling.

  18. Accelerate Genomic Aging in Congenital Neutropenia

    DTIC Science & Technology

    2016-08-01

    replicative stress and/or changes in the bone marrow microenvironment in patients with congenital neutropenia leads to a higher rate of accumulation of...congenital neutropenia. We hypothesize that replicative stress and/or changes in the bone marrow microenvironment in patients with congenital neutropenia...Research Projection Office (Time frame 1-3 months; completed). DoD approval has been obtained. 1c. Obtain human blood or bone marrow samples from

  19. Accelerated Aging with Electrical Overstress and Prognostics for Power MOSFETs

    NASA Technical Reports Server (NTRS)

    Saha, Sankalita; Celaya, Jose Ramon; Vashchenko, Vladislav; Mahiuddin, Shompa; Goebel, Kai F.

    2011-01-01

    Power electronics play an increasingly important role in energy applications as part of their power converter circuits. Understanding the behavior of these devices, especially their failure modes as they age with nominal usage or sudden fault development is critical in ensuring efficiency. In this paper, a prognostics based health management of power MOSFETs undergoing accelerated aging through electrical overstress at the gate area is presented. Details of the accelerated aging methodology, modeling of the degradation process of the device and prognostics algorithm for prediction of the future state of health of the device are presented. Experiments with multiple devices demonstrate the performance of the model and the prognostics algorithm as well as the scope of application. Index Terms Power MOSFET, accelerated aging, prognostics

  20. Challenges of accelerated aging techniques for elastomer lifetime predictions

    SciTech Connect

    Gillen, Kenneth T.; Bernstein, R.; Celina, M.

    2015-03-01

    Elastomers are often degraded when exposed to air or high humidity for extended times (years to decades). Lifetime estimates normally involve extrapolating accelerated aging results made at higher than ambient environments. Several potential problems associated with such studies are reviewed, and experimental and theoretical methods to address them are provided. The importance of verifying time–temperature superposition of degradation data is emphasized as evidence that the overall nature of the degradation process remains unchanged versus acceleration temperature. The confounding effects that occur when diffusion-limited oxidation (DLO) contributes under accelerated conditions are described, and it is shown that the DLO magnitude can be modeled by measurements or estimates of the oxygen permeability coefficient (POx) and oxygen consumption rate (Φ). POx and Φ measurements can be influenced by DLO, and it is demonstrated how confident values can be derived. In addition, several experimental profiling techniques that screen for DLO effects are discussed. Values of Φ taken from high temperature to temperatures approaching ambient can be used to more confidently extrapolate accelerated aging results for air-aged materials, and many studies now show that Arrhenius extrapolations bend to lower activation energies as aging temperatures are lowered. Furthermore, best approaches for accelerated aging extrapolations of humidity-exposed materials are also offered.

  1. Challenges of accelerated aging techniques for elastomer lifetime predictions

    DOE PAGES

    Gillen, Kenneth T.; Bernstein, R.; Celina, M.

    2015-03-01

    Elastomers are often degraded when exposed to air or high humidity for extended times (years to decades). Lifetime estimates normally involve extrapolating accelerated aging results made at higher than ambient environments. Several potential problems associated with such studies are reviewed, and experimental and theoretical methods to address them are provided. The importance of verifying time–temperature superposition of degradation data is emphasized as evidence that the overall nature of the degradation process remains unchanged versus acceleration temperature. The confounding effects that occur when diffusion-limited oxidation (DLO) contributes under accelerated conditions are described, and it is shown that the DLO magnitude canmore » be modeled by measurements or estimates of the oxygen permeability coefficient (POx) and oxygen consumption rate (Φ). POx and Φ measurements can be influenced by DLO, and it is demonstrated how confident values can be derived. In addition, several experimental profiling techniques that screen for DLO effects are discussed. Values of Φ taken from high temperature to temperatures approaching ambient can be used to more confidently extrapolate accelerated aging results for air-aged materials, and many studies now show that Arrhenius extrapolations bend to lower activation energies as aging temperatures are lowered. Furthermore, best approaches for accelerated aging extrapolations of humidity-exposed materials are also offered.« less

  2. Mechanisms of cardiovascular disease in accelerated aging syndromes.

    PubMed

    Capell, Brian C; Collins, Francis S; Nabel, Elizabeth G

    2007-07-06

    In the past several years, remarkable progress has been made in the understanding of the mechanisms of premature aging. These rare, genetic conditions offer valuable insights into the normal aging process and the complex biology of cardiovascular disease. Many of these advances have been made in the most dramatic of these disorders, Hutchinson-Gilford progeria syndrome. Although characterized by features of normal aging such as alopecia, skin wrinkling, and osteoporosis, patients with Hutchinson-Gilford progeria syndrome are affected by accelerated, premature arteriosclerotic disease that leads to heart attacks and strokes at a mean age of 13 years. In this review, we highlight recent advances in the biology of premature aging uncovered in Hutchinson-Gilford progeria syndrome and other accelerated aging syndromes, advances that provide insight into the mechanisms of cardiovascular diseases ranging from atherosclerosis to arrhythmias.

  3. HIV-associated cellular senescence: A contributor to accelerated aging.

    PubMed

    Cohen, Justin; Torres, Claudio

    2017-07-01

    Due to the advent of antiretroviral therapy HIV is no longer a terminal disease and the HIV infected patients are becoming increasingly older. While this is a major success, with increasing age comes an increased risk for disease. The age-related comorbidities that HIV infected patients experience suggest that they suffer from accelerated aging. One possible contributor to this accelerated aging is cellular senescence, an age-associated response that can occur prematurely in response to stress, and that is emerging as a contributor to disease and aging. HIV patients experience several stressors such as the virus itself, antiretroviral drugs and to a lesser extent, substance abuse that can induce cellular senescence. This review summarizes the current knowledge of senescence induction in response to these stressors and their relation to the comorbidities in HIV patients. Cellular senescence may be a possible therapeutic target for these comorbidities. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Many human accelerated regions are developmental enhancers

    PubMed Central

    Capra, John A.; Erwin, Genevieve D.; McKinsey, Gabriel; Rubenstein, John L. R.; Pollard, Katherine S.

    2013-01-01

    The genetic changes underlying the dramatic differences in form and function between humans and other primates are largely unknown, although it is clear that gene regulatory changes play an important role. To identify regulatory sequences with potentially human-specific functions, we and others used comparative genomics to find non-coding regions conserved across mammals that have acquired many sequence changes in humans since divergence from chimpanzees. These regions are good candidates for performing human-specific regulatory functions. Here, we analysed the DNA sequence, evolutionary history, histone modifications, chromatin state and transcription factor (TF) binding sites of a combined set of 2649 non-coding human accelerated regions (ncHARs) and predicted that at least 30% of them function as developmental enhancers. We prioritized the predicted ncHAR enhancers using analysis of TF binding site gain and loss, along with the functional annotations and expression patterns of nearby genes. We then tested both the human and chimpanzee sequence for 29 ncHARs in transgenic mice, and found 24 novel developmental enhancers active in both species, 17 of which had very consistent patterns of activity in specific embryonic tissues. Of these ncHAR enhancers, five drove expression patterns suggestive of different activity for the human and chimpanzee sequence at embryonic day 11.5. The changes to human non-coding DNA in these ncHAR enhancers may modify the complex patterns of gene expression necessary for proper development in a human-specific manner and are thus promising candidates for understanding the genetic basis of human-specific biology. PMID:24218637

  5. [HIV infection as a cause of accelerated aging and frailty].

    PubMed

    Jiménez, Zaida; Sánchez-Conde, Matilde; Brañas, Fátima

    2017-06-07

    The HIV-infected population is aging due to the success of combination antiretroviral therapy, which prolongs survival, as well as the growing number of newly diagnosed cases in adults 50 years old and over. HIV-infected individuals suffer from an accelerated aging due to the persistent and chronic activation of the immune system that leads to immune exhaustion and accelerated immunosenescence, even when on optimal immuno-virological control treatment. The clinical expression of the immunosenescence state is an increased prevalence of aging-related non-HIV associated comorbidities and a rising prevalence of frailty occurring earlier than in the general population. Thus, HIV-infected patients are biologically older than their chronological age, and they suffer from aging-related problems, such as frailty, which should be assessed. Copyright © 2017 SEGG. Publicado por Elsevier España, S.L.U. All rights reserved.

  6. Toward GPGPU accelerated human electromechanical cardiac simulations

    PubMed Central

    Vigueras, Guillermo; Roy, Ishani; Cookson, Andrew; Lee, Jack; Smith, Nicolas; Nordsletten, David

    2014-01-01

    In this paper, we look at the acceleration of weakly coupled electromechanics using the graphics processing unit (GPU). Specifically, we port to the GPU a number of components of Heart—a CPU-based finite element code developed for simulating multi-physics problems. On the basis of a criterion of computational cost, we implemented on the GPU the ODE and PDE solution steps for the electrophysiology problem and the Jacobian and residual evaluation for the mechanics problem. Performance of the GPU implementation is then compared with single core CPU (SC) execution as well as multi-core CPU (MC) computations with equivalent theoretical performance. Results show that for a human scale left ventricle mesh, GPU acceleration of the electrophysiology problem provided speedups of 164 × compared with SC and 5.5 times compared with MC for the solution of the ODE model. Speedup of up to 72 × compared with SC and 2.6 × compared with MC was also observed for the PDE solve. Using the same human geometry, the GPU implementation of mechanics residual/Jacobian computation provided speedups of up to 44 × compared with SC and 2.0 × compared with MC. © 2013 The Authors. International Journal for Numerical Methods in Biomedical Engineering published by John Wiley & Sons, Ltd. PMID:24115492

  7. Toward GPGPU accelerated human electromechanical cardiac simulations.

    PubMed

    Vigueras, Guillermo; Roy, Ishani; Cookson, Andrew; Lee, Jack; Smith, Nicolas; Nordsletten, David

    2014-01-01

    In this paper, we look at the acceleration of weakly coupled electromechanics using the graphics processing unit (GPU). Specifically, we port to the GPU a number of components of CHeart--a CPU-based finite element code developed for simulating multi-physics problems. On the basis of a criterion of computational cost, we implemented on the GPU the ODE and PDE solution steps for the electrophysiology problem and the Jacobian and residual evaluation for the mechanics problem. Performance of the GPU implementation is then compared with single core CPU (SC) execution as well as multi-core CPU (MC) computations with equivalent theoretical performance. Results show that for a human scale left ventricle mesh, GPU acceleration of the electrophysiology problem provided speedups of 164 × compared with SC and 5.5 times compared with MC for the solution of the ODE model. Speedup of up to 72 × compared with SC and 2.6 × compared with MC was also observed for the PDE solve. Using the same human geometry, the GPU implementation of mechanics residual/Jacobian computation provided speedups of up to 44 × compared with SC and 2.0 × compared with MC. © 2013 The Authors. International Journal for Numerical Methods in Biomedical Engineering published by John Wiley & Sons, Ltd.

  8. [The accelerated aging of the population in Brazil].

    PubMed

    Cassab, Amanda Kampa

    2013-01-01

    Formerly a young country, Brazil is now undergoing a period of acceleration in the ageing of its population. The Brazilian geriatric heathcare sector must prepare itself to advocate and optimise the care of elderly patients. The training of professionals in gerontology must be a priority and public policies need to evolve.

  9. Of sound mind and body: depression, disease, and accelerated aging

    PubMed Central

    M. Wolkowitz, Owen; I. Reus, Victor; H. Mellon, Synthia

    2011-01-01

    Major depressive disorder (MDD) is associated with a high rate of developing serious medical comorbidities such as cardiovascular disease, stroke, dementia, osteoporosis, diabetes, and the metabolic syndrome. These are conditions that typically occur late in life, and it has been suggested that MDD may be associated with “accelerated aging.” We review several moderators and mediators that may accompany MDD and that may give rise to these comorbid medical conditions. We first review the moderating effects of psychological styles of coping, genetic predisposition, and epigenetic modifications (eg, secondary to childhood adversity). We then focus on several interlinked mediators occurring in MDD (or at least in subtypes of MDD) that may contribute to the medical comorbidity burden and to accelerated aging: limbic-hypothalamic-pituitary-adrenal axis alterations, diminution in glucocorticoid receptor function, altered glucose tolerance and insulin sensitivity, excitotoxicity, increases in intracellular calcium, oxidative stress, a proinflammatory milieu, lowered levels of “counter-regulatory” neurosteroids (such as allopregnanolone and dehydroepiandrosterone), diminished neurotrophic activity, and accelerated cell aging, manifest as alterations in telomerase activity and as shortening of telomeres, which can lead to apoptosis and cell death. In this model, MDD is characterized by a surfeit of potentially destructive mediators and an insufficiency of protective or restorative ones. These factors interact in increasing the likelihood of physical disease and of accelerated aging at the cellular level. We conclude with suggestions for novel mechanism-based therapeutics based on these mediators. PMID:21485744

  10. Accelerated aging of GaAs concentrator solar cells

    SciTech Connect

    Gregory, P.E.

    1982-04-01

    An accelerated aging study of AlGaAs/GaAs solar cells has been completed. The purpose of the study was to identify the possible degradation mechanisms of AlGaAs/GaAs solar cells in terrestrial applications. Thermal storage tests and accelerated AlGaAs corrosion studies were performed to provide an experimental basis for a statistical analysis of the estimated lifetime. Results of this study suggest that a properly designed and fabricated AlGaAs/GaAs solar cell can be mechanically rugged and environmentally stable with projected lifetimes exceeding 100 years.

  11. Cognitive deterioration in adult epilepsy: Does accelerated cognitive ageing exist?

    PubMed

    Breuer, L E M; Boon, P; Bergmans, J W M; Mess, W H; Besseling, R M H; de Louw, A; Tijhuis, A G; Zinger, S; Bernas, A; Klooster, D C W; Aldenkamp, A P

    2016-05-01

    A long-standing concern has been whether epilepsy contributes to cognitive decline or so-called 'epileptic dementia'. Although global cognitive decline is generally reported in the context of chronic refractory epilepsy, it is largely unknown what percentage of patients is at risk for decline. This review is focused on the identification of risk factors and characterization of aberrant cognitive trajectories in epilepsy. Evidence is found that the cognitive trajectory of patients with epilepsy over time differs from processes of cognitive ageing in healthy people, especially in adulthood-onset epilepsy. Cognitive deterioration in these patients seems to develop in a 'second hit model' and occurs when epilepsy hits on a brain that is already vulnerable or vice versa when comorbid problems develop in a person with epilepsy. Processes of ageing may be accelerated due to loss of brain plasticity and cognitive reserve capacity for which we coin the term 'accelerated cognitive ageing'. We believe that the concept of accelerated cognitive ageing can be helpful in providing a framework understanding global cognitive deterioration in epilepsy. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Accelerated aging test results for aerospace wire insulation constructions

    NASA Technical Reports Server (NTRS)

    Dunbar, William G.

    1995-01-01

    Several wire insulation constructions were evaluated with and without continuous glow discharges at low pressure and high temperature to determine the aging characteristics of acceptable wire insulation constructions. It was known at the beginning of the test program that insulation aging takes several years when operated at normal ambient temperature and pressure of 20 C and 760 torr. Likewise, it was known that the accelerated aging process decreases insulation life by approximately 50% for each 10 C temperature rise. Therefore, the first phases of the program, not reported in these test results, were to select wire insulation constructions that could operate at high temperature and low pressure for over 10,000 hours with negligible shrinkage and little materials' deterioration.The final phase of the program was to determine accelerated aging characteristics. When an insulation construction is subjected to partial discharges the insulation is locally heated by the bombardment of the discharges, the insulation is also subjected to ozone and other deteriorating gas particles that may significantly increase the aging process. Several insulation systems using either a single material or combinations of teflon, kapton, and glass insulation constructions were tested. All constructions were rated to be partial discharge and/or corona-free at 240 volts, 400 Hz and 260 C (500 F) for 50, 000 hours at altitudes equivalent to the Paschen law. Minimum partial discharge aging tests were preceded by screening tests lasting 20 hours at 260 C. The aging process was accelerated by subjecting the test articles to temperatures up to 370 C (700 F) with and without partial discharges. After one month operation with continuous glow discharges surrounding the test articles, most insulation systems were either destroyed or became brittle, cracked, and unsafe for use. Time with space radiation as with partial discharges is accumulative.

  13. Are Anxiety Disorders Associated with Accelerated Aging? A Focus on Neuroprogression

    PubMed Central

    Perna, Giampaolo; Iannone, Giuseppe; Alciati, Alessandra; Caldirola, Daniela

    2016-01-01

    Anxiety disorders (AnxDs) are highly prevalent throughout the lifespan, with detrimental effects on daily-life functioning, somatic health, and quality of life. An emerging perspective suggested that AnxDs may be associated with accelerated aging. In this paper, we explored the association between AnxDs and hallmarks of accelerated aging, with a specific focus on neuroprogression. We reviewed animal and human findings that suggest an overlap between processes of impaired neurogenesis, neurodegeneration, structural, functional, molecular, and cellular modifications in AnxDs, and aging. Although this research is at an early stage, our review suggests a link between anxiety and accelerated aging across multiple processes involved in neuroprogression. Brain structural and functional changes that accompany normal aging were more pronounced in subjects with AnxDs than in coevals without AnxDs, including reduced grey matter density, white matter alterations, impaired functional connectivity of large-scale brain networks, and poorer cognitive performance. Similarly, molecular correlates of brain aging, including telomere shortening, Aβ accumulation, and immune-inflammatory and oxidative/nitrosative stress, were overrepresented in anxious subjects. No conclusions about causality or directionality between anxiety and accelerated aging can be drawn. Potential mechanisms of this association, limitations of the current research, and implications for treatments and future studies are discussed. PMID:26881136

  14. Accelerated aging and stabilization of radiation-vulcanized EPDM rubber

    NASA Astrophysics Data System (ADS)

    Basfar, A. A.; Abdel-Aziz, M. M.; Mofti, S.

    2000-03-01

    The effect of different antioxidants and their mixtures on the thermal aging and accelerated weathering of γ-radiation vulcanized EPDM rubber in presence of crosslinking coagent, was investigated. The compounds used were either a synergistic blend of phenolic and phosphite antioxidants, i.e. 1:4 Irganox 1076: Irgafos 168 or a blend of arylamine and quinoline type antioxidants, i.e. 1:1 IPPD: TMQ, at fixed concentration. Tinuvin 622 LD hindered amine light stabilized (HALS) was also used. The response was evaluated by the tensile strength and elongation at break for irradiated samples after thermal aging at 100°C for 28 days and accelerated weathering (Xenon test) up to 200 h.

  15. Accelerated Gray and White Matter Deterioration With Age in Schizophrenia.

    PubMed

    Cropley, Vanessa L; Klauser, Paul; Lenroot, Rhoshel K; Bruggemann, Jason; Sundram, Suresh; Bousman, Chad; Pereira, Avril; Di Biase, Maria A; Weickert, Thomas W; Weickert, Cynthia Shannon; Pantelis, Christos; Zalesky, Andrew

    2017-03-01

    Although brain changes in schizophrenia have been proposed to mirror those found with advancing age, the trajectory of gray matter and white matter changes during the disease course remains unclear. The authors sought to measure whether these changes in individuals with schizophrenia remain stable, are accelerated, or are diminished with age. Gray matter volume and fractional anisotropy were mapped in 326 individuals diagnosed with schizophrenia or schizoaffective disorder and in 197 healthy comparison subjects aged 20-65 years. Polynomial regression was used to model the influence of age on gray matter volume and fractional anisotropy at a whole-brain and voxel level. Between-group differences in gray matter volume and fractional anisotropy were regionally localized across the lifespan using permutation testing and cluster-based inference. Significant loss of gray matter volume was evident in schizophrenia, progressively worsening with age to a maximal loss of 8% in the seventh decade of life. The inferred rate of gray matter volume loss was significantly accelerated in schizophrenia up to middle age and plateaued thereafter. In contrast, significant reductions in fractional anisotropy emerged in schizophrenia only after age 35, and the rate of fractional anisotropy deterioration with age was constant and best modeled with a straight line. The slope of this line was 60% steeper in schizophrenia relative to comparison subjects, indicating a significantly faster rate of white matter deterioration with age. The rates of reduction of gray matter volume and fractional anisotropy were significantly faster in males than in females, but an interaction between sex and diagnosis was not evident. The findings suggest that schizophrenia is characterized by an initial, rapid rate of gray matter loss that slows in middle life, followed by the emergence of a deficit in white matter that progressively worsens with age at a constant rate.

  16. Dietary and genetic evidence for phosphate toxicity accelerating mammalian aging.

    PubMed

    Ohnishi, Mutsuko; Razzaque, M Shawkat

    2010-09-01

    Identifying factors that accelerate the aging process can provide important therapeutic targets for slowing down this process. Misregulation of phosphate homeostasis has been noted in various skeletal, cardiac, and renal diseases, but the exact role of phosphate toxicity in mammalian aging is not clearly defined. Phosphate is widely distributed in the body and is involved in cell signaling, energy metabolism, nucleic acid synthesis, and the maintenance of acid-base balance by urinary buffering. In this study, we used an in vivo genetic approach to determine the role of phosphate toxicity in mammalian aging. Klotho-knockout mice (klotho(-/-)) have a short life span and show numerous physical, biochemical, and morphological features consistent with premature aging, including kyphosis, uncoordinated movement, hypogonadism, infertility, severe skeletal muscle wasting, emphysema, and osteopenia, as well as generalized atrophy of the skin, intestine, thymus, and spleen. Molecular and biochemical analyses suggest that increased renal activity of sodium-phosphate cotransporters (NaPi2a) leads to severe hyperphosphatemia in klotho(-/-) mice. Genetically reducing serum phosphate levels in klotho(-/-) mice by generating a NaPi2a and klotho double-knockout (NaPi2a(-/-)/klotho(-/-)) strain resulted in amelioration of premature aging-like features. The NaPi2a(-/-)/klotho(-/-) double-knockout mice regained reproductive ability, recovered their body weight, reduced their organ atrophy, and suppressed ectopic calcifications, with the resulting effect being prolonged survival. More important, when hyperphosphatemia was induced in NaPi2a(-/-)/klotho(-/-) mice by feeding with a high-phosphate diet, premature aging-like features reappeared, clearly suggesting that phosphate toxicity is the main cause of premature aging in klotho(-/-) mice. The results of our dietary and genetic manipulation studies provide in vivo evidence for phosphate toxicity accelerating the aging process and

  17. Coenzyme Q10 prevents accelerated cardiac aging in a rat model of poor maternal nutrition and accelerated postnatal growth.

    PubMed

    Tarry-Adkins, Jane L; Blackmore, Heather L; Martin-Gronert, Malgorzata S; Fernandez-Twinn, Denise S; McConnell, Josie M; Hargreaves, Iain P; Giussani, Dino A; Ozanne, Susan E

    2013-01-01

    Studies in human and animals have demonstrated that nutritionally induced low birth-weight followed by rapid postnatal growth increases the risk of metabolic syndrome and cardiovascular disease. Although the mechanisms underlying such nutritional programming are not clearly defined, increased oxidative-stress leading to accelerated cellular aging has been proposed to play an important role. Using an established rodent model of low birth-weight and catch-up growth, we show here that post-weaning dietary supplementation with coenzyme Q10, a key component of the electron transport chain and a potent antioxidant rescued many of the detrimental effects of nutritional programming on cardiac aging. This included a reduction in nitrosative and oxidative-stress, telomere shortening, DNA damage, cellular senescence and apoptosis. These findings demonstrate the potential for postnatal antioxidant intervention to reverse deleterious phenotypes of developmental programming and therefore provide insight into a potential translatable therapy to prevent cardiovascular disease in at risk humans.

  18. Tracking accelerated aging of composites with ultrasonic attenuation measurements

    SciTech Connect

    Chinn, D.J.; Durbin, P.F.; Thomas, G.H.; Groves, S.E.

    1996-10-01

    Composite materials are steadily replacing traditional materials in many industries. For many carbon composite materials, particularly in aerospace applications, durability is a critical design parameter which must be accurately characterized. Lawrence Livermore National Laboratory (LLNL) and Boeing Commercial Airplane Group have established a cooperative research and development agreement (CRADA) to assist in the high speed research program at Boeing. LLNL`s expertise in fiber composites, computer modeling, mechanical testing, chemical analysis and nondestructive evaluation (ND) will contribute to the study of advanced composite materials in commercial aerospace applications. Through thermo-mechanical experiments with periodic chemical analysis and nondestructive evaluation, the aging mechanisms in several continuous fiber polymer composites will be studied. Several measurement techniques are being studied for their correlation with aging. This paper describes through-transmission ultrasonic attenuation measurements of isothermally aged composite materials and their use as a tracking parameter for accelerated aging.

  19. Electrochemical migration technique to accelerate ageing of cementitious materials

    NASA Astrophysics Data System (ADS)

    Babaahmadi, A.; Tang, L.; Abbas, Z.

    2013-07-01

    Durability assessment of concrete structures for constructions in nuclear waste repositories requires long term service life predictions. As deposition of low and intermediate level radioactive waste (LILW) takes up to 100 000 years, it is necessary to analyze the service life of cementitious materials in this time perspective. Using acceleration methods producing aged specimens would decrease the need of extrapolating short term data sets. Laboratory methods are therefore, needed for accelerating the ageing process without making any influencing distortion in the properties of the materials. This paper presents an electro-chemical migration method to increase the rate of calcium leaching from cementitious specimens. This method is developed based on the fact that major long term deterioration process of hardened cement paste in concrete structures for deposition of LILW is due to slow diffusion of calcium ions. In this method the cementitious specimen is placed in an electrochemical cell as a porous path way through which ions can migrate at a rate far higher than diffusion process. The electrical field is applied to the cell in a way to accelerate the ion migration without making destructions in the specimen's micro and macroscopic properties. The anolyte and catholyte solutions are designed favoring dissolution of calcium hydroxide and compensating for the leached calcium ions with another ion like lithium.

  20. Accelerated aging of outdoor insulation under acid rain conditions

    NASA Astrophysics Data System (ADS)

    Frost, Nancy Ellen

    2000-11-01

    Outdoor insulation has evolved from glass to ceramics to epoxy in the past decades, and more recently into the area of polymer composites. Accelerated aging must be performed to examine the effectiveness of materials prior to use under actual service conditions. Traditionally this aging has been performed with sodium chloride as the conductive component in the high humidity and wet tests. This approach does not necessarily represent actual service conditions, as globally the precipitation is acidic in nature and contains many constituents in addition to sodium and chloride. The main focus of this work was to examine the effect of acid precipitation on materials used in outdoor insulation applications. This was achieved through the use of a rotating tracking wheel and a controlled high humidity chamber with the application of a synthetic acid rain solution. The analysis techniques utilized to examine the results of the accelerated aging were leakage current monitoring, evaluation of changes in dielectric properties as well as electron microscopy. In addition, changes in hydrophobicity were quantified. Based on experimental observations, a first order life prediction model was developed to investigate the usefulness of the acid rain aging technique. This model was founded on the results of a series of tests conducted with varying solution conductivity, while maintaining constant acid content. This model permits the prediction of the life of a material at normal precipitation conductivity levels.

  1. Accelerated ageing and renal dysfunction links lower socioeconomic status and dietary phosphate intake

    PubMed Central

    McClelland, Ruth; Christensen, Kelly; Mohammed, Suhaib; McGuinness, Dagmara; Cooney, Josephine; Bakshi, Andisheh; Demou, Evangelia; MacDonald, Ewan; Caslake, Muriel; Stenvinkel, Peter; Shiels, Paul G.

    2016-01-01

    Background We have sought to explore the impact of dietary Pi intake on human age related health in the pSoBid cohort (n=666) to explain the disparity between health and deprivation status in this cohort. As hyperphosphataemia is a driver of accelerated ageing in rodent models of progeria we tested whether variation in Pi levels in man associate with measures of biological ageing and health. Results We observed significant relationships between serum Pi levels and markers of biological age (telomere length (p=0.040) and DNA methylation content (p=0.028), gender and chronological age (p=0.032). When analyses were adjusted for socio-economic status and nutritional factors, associations were observed between accelerated biological ageing (telomere length, genomic methylation content) and dietary derived Pi levels among the most deprived males, directly related to the frequency of red meat consumption. Conclusions Accelerated ageing is associated with high serum Pi levels and frequency of red meat consumption. Our data provide evidence for a mechanistic link between high intake of Pi and age-related morbidities tied to socio-economic status. PMID:27132985

  2. Accelerated epigenetic aging in brain is associated with pre-mortem HIV-associated neurocognitive disorders.

    PubMed

    Levine, Andrew J; Quach, Austin; Moore, David J; Achim, Cristian L; Soontornniyomkij, Virawudh; Masliah, Eliezer; Singer, Elyse J; Gelman, Benjamin; Nemanim, Natasha; Horvath, Steve

    2016-06-01

    HIV infection leads to age-related conditions in relatively young persons. HIV-associated neurocognitive disorders (HAND) are considered among the most prevalent of these conditions. To study the mechanisms underlying this disorder, researchers need an accurate method for measuring biological aging. Here, we apply a recently developed measure of biological aging, based on DNA methylation, to the study of biological aging in HIV+ brains. Retrospective analysis of tissue bank specimens and pre-mortem data was carried out. Fifty-eight HIV+ adults underwent a medical and neurocognitive evaluation within 1 year of death. DNA was obtained from occipital cortex and analyzed with the Illumina Infinium Human Methylation 450K platform. Biological age determined via the epigenetic clock was contrasted with chronological age to obtain a measure of age acceleration, which was then compared between those with HAND and neurocognitively normal individuals. The HAND and neurocognitively normal groups did not differ with regard to demographic, histologic, neuropathologic, or virologic variables. HAND was associated with accelerated aging relative to neurocognitively normal individuals, with average relative acceleration of 3.5 years. Age acceleration did not correlate with pre-mortem neurocognitive functioning or HAND severity. This is the first study to demonstrate that the epigenetic age of occipital cortex samples is associated with HAND status in HIV+ individuals pre-mortem. While these results suggest that the increased risk of a neurocognitive disorder due to HIV might be mediated by an epigenetic aging mechanism, future studies will be needed to validate the findings and dissect causal relationships and downstream effects.

  3. Accelerated aging tests of liners for uranium mill tailings disposal

    SciTech Connect

    Barnes, S.M.; Buelt, J.L.; Hale, V.Q.

    1981-11-01

    This document describes the results of accelerated aging tests to determine the long-term effectiveness of selected impoundment liner materials in a uranium mill tailings environment. The study was sponsored by the US Department of Energy under the Uranium Mill Tailings Remedial Action Project. The study was designed to evaluate the need for, and the performance of, several candidate liners for isolating mill tailings leachate in conformance with proposed Environmental Protection Agency and Nuclear Regulatory Commission requirements. The liners were subjected to conditions known to accelerate the degradation mechanisms of the various liners. Also, a test environment was maintained that modeled the expected conditions at a mill tailings impoundment, including ground subsidence and the weight loading of tailings on the liners. A comparison of installation costs was also performed for the candidate liners. The laboratory testing and cost information prompted the selection of a catalytic airblown asphalt membrane and a sodium bentonite-amended soil for fiscal year 1981 field testing.

  4. Cerebrolysin Accelerates Metamorphosis and Attenuates Aging-Accelerating Effect of High Temperature in Drosophila Melanogaster

    PubMed Central

    Navrotskaya, V.; Vorobyova, L.; Sharma, H.; Muresanu, D.; Summergrad, P.

    2015-01-01

    Cerebrolysin® (CBL) is a neuroprotective drug used for the treatment of neurodegenerative diseases. CBL’s mechanisms of action remain unclear. Involvement of tryptophan (TRP)–kynurenine (KYN) pathway in neuroprotective effect of CBL might be suggested considering that modulation of KYN pathway of TRP metabolism by CBL, and protection against eclosion defect and prolongation of life span of Drosophila melanogaster with pharmacologically or genetically-induced down-regulation of TRP conversion into KYN. To investigate possible involvement of TRP–KYN pathway in mechanisms of neuroprotective effect of CBL, we evaluated CBL effects on metamorphosis and life span of Drosophila melanogaster maintained at 23 °C and 28 °C ambient temperature. CBL accelerated metamorphosis, exerted strong tendency (p = 0.04) to prolong life span in female but not in male flies, and attenuated aging-accelerating effect of high (28 °C) ambient temperature in both female and male flies. Further research of CBL effects on metamorphosis and resistance to aging-accelerating effect of high temperature might offer new insights in mechanisms of its neuroprotective action and expand its clinical applications. PMID:25798213

  5. Shelf life determination of an epoxy resin by accelerated aging

    SciTech Connect

    Smith, H.M.

    1983-11-01

    The objectives of the study reported were to first define the rate and mode of degradation of an epoxy resin at two storage conditions, 4.4/sup 0/C and 25/sup 0/C, by means of a thermally accelerated aging experiment. Then, samples which had been aged the equivalent of at least 10 years at each storage condition would be tested for conformance to the material specifications. The study's results demonstrate that the commercial resin could be acquired and stored for the required 10 to 11 years without concern over degradation. The expected changes at the two storage temperatures have been defined. Aged resin samples are shown to yield an acceptable product. Sufficient data exist to predict the changes in viscosity and epoxide equivalent of the resin at any other storage temperature of interest. (LEW)

  6. Accelerated Aging Experiments for Capacitor Health Monitoring and Prognostics

    NASA Technical Reports Server (NTRS)

    Kulkarni, Chetan S.; Celaya, Jose Ramon; Biswas, Gautam; Goebel, Kai

    2012-01-01

    This paper discusses experimental setups for health monitoring and prognostics of electrolytic capacitors under nominal operation and accelerated aging conditions. Electrolytic capacitors have higher failure rates than other components in electronic systems like power drives, power converters etc. Our current work focuses on developing first-principles-based degradation models for electrolytic capacitors under varying electrical and thermal stress conditions. Prognostics and health management for electronic systems aims to predict the onset of faults, study causes for system degradation, and accurately compute remaining useful life. Accelerated life test methods are often used in prognostics research as a way to model multiple causes and assess the effects of the degradation process through time. It also allows for the identification and study of different failure mechanisms and their relationships under different operating conditions. Experiments are designed for aging of the capacitors such that the degradation pattern induced by the aging can be monitored and analyzed. Experimental setups and data collection methods are presented to demonstrate this approach.

  7. [The senescence-accelerated oxys rats--a genetic model of premature aging and age-dependent degenerative diseases].

    PubMed

    Kolosova, N G; Stefanova, N A; Korbolina, E E; Fursova, A Zh; Kozhevnikova, O S

    2014-01-01

    The genetic model of accelerated senescence and the associated diseases--the OXYS strain of rats--was created using selection and inbreeding of Wistar rats sensitive to cataractogenic effects of galactose. In the first 5 generations, the development of cataract was induced by galactose overconsumption, and after that, the rats were selected for early spontaneous cataract. Genetically linked with the latter was a set of features of accelerated senescence, which were inherited by the subsequent generations of the animals. At present, we have a 103rd generation of OXYS rats, who at young age develop retinopathy (similar to age-related macular degeneration in humans), osteoporosis, arterial hypertension, accelerated thymus involution, sarcopenia, and neurodegenerative changes in the brain (with the features characteristic of Alzheimer's disease), besides the cataract. This review discusses possible mechanisms of the accelerated senescence: the results of comparison of retinal transcriptomes between OXYS and Wistar(control) rats at different ages, studies of the markers of Alzheimer's disease in the retina and in certain brain regions, and the outcome of the efforts to develop congenic strains of animals via a transfer of several quantitative trait loci (QTLs) of chromosome 1 from OXYS to WAG rats that are associated with the signs of accelerated senescence. The uniqueness of OXYS rats lies in the complex composition of manifestations of the traits; accordingly, this rat model can be used not only for studies of the mechanisms of aging and pathogenesis of the age-related diseases but also for objective evaluation of new methods of treatment and prevention.

  8. Spiked Alloy Production for Accelerated Aging of Plutonium

    SciTech Connect

    Wilk, P A; McNeese, J A; Dodson, K E; Williams, W L; Krikorian, O H; Blau, M S; Schmitz, J E; Bajao, F G; Mew, D A; Matz, T E; Torres, R A; Holck, D M; Moody, K J; Kenneally, J M

    2009-07-10

    The accelerated aging effects on weapons grade plutonium alloys are being studied using {sup 238}Pu-enriched plutonium metal to increase the rate of formation of defect structures. Pyrochemical processing methods have been used to produce two {sup 238}Pu-spiked plutonium alloys with nominal compositions of 7.5 wt% {sup 238}Pu. Processes used in the preparation of the alloys include direct oxide reduction of PuO{sub 2} with calcium and electrorefining. Rolled disks were prepared from the spiked alloys for sampling. Test specimens were cut out of the disks for physical property measurements.

  9. Prediction of elastomer lifetimes from accelerated thermal-aging experiments

    SciTech Connect

    Gillen, K.T.; Clough, R.L.

    1997-09-01

    For elastomers that will be used in applications involving long lifetimes, it is often necessary to first carry out and model accelerated aging experiments at higher than ambient temperatures, and then extrapolate the results in order to make lifetime predictions at the use temperature. Continuing goals in such endeavors are to better understand potential problems with such modeling approaches and to find ways of improving confidence in the predictions when the data are extrapolated. In this paper we will address several important issues involved in these procedures for elastomers exposed to air (oxygen), and discuss some potentially useful techniques and approaches which can increase confidence in lifetime predictions.

  10. Accelerated Aging Influences Cardiovascular Disease Risk in Rheumatoid Arthritis

    PubMed Central

    Crowson, Cynthia S.; Therneau, Terry M.; Davis, John M.; Roger, Véronique L.; Matteson, Eric L.; Gabriel, Sherine E.

    2014-01-01

    OBJECTIVE To determine whether the impact of aging on cardiovascular disease (CVD) risk in the general population (as estimated by the Framingham risk score [FRS]) differs in patients with rheumatoid arthritis (RA). METHODS A population-based inception cohort of Olmsted County, Minnesota residents aged ≥30 years who fulfilled 1987 ACR criteria for RA in 1988–2008 was assembled and followed until death, migration, or 7-1-2012. Data on CVD events were collected by medical record review. The 10-year FRS for CVD was calculated. Cox models adjusted for FRS were used to examine the influence of age on CVD risk. RESULTS The study included 563 patients with RA without prior CVD (mean age: 55 years, 72% women; 69% seropositive [i.e., rheumatoid factor and/or anti-citrullinated protein antibody positive]). During a mean follow-up of 8.2 years, 98 patients developed CVD (74 seropositive and 24 seronegative), but FRS predicted only 59.7 events (35.4 seropositive and 24.3 seronegative). The gap between observed and predicted CVD risk increased exponentially across age, and the age effect on CVD risk in seropositive RA was nearly double its effect in the general population with additional log(age) coefficients of 2.91 for women (p=0.002) and 2.06 for men (p=0.027). CONCLUSION Age exerts an exponentially increasing effect on CVD risk in seropositive RA, but no increased effect among seronegative patients. The causes of accelerated aging in patients with seropositive RA deserve further investigation. PMID:23818136

  11. Comparison of mice with accelerated aging caused by distinct mechanisms

    PubMed Central

    Gurkar, Aditi U.; Niedernhofer, Laura J.

    2015-01-01

    Aging is the primary risk factor for numerous chronic, debilitating diseases. These diseases impact quality of life of the elderly and consume a large portion of health care costs. The cost of age-related diseases will only increase as the world's population continues to live longer. Thus it would be advantageous to consider aging itself as a therapeutic target, potentially stemming multiple age-related diseases simultaneously. While logical, this is extremely challenging as the molecular mechanisms that drive aging are still unknown. Furthermore, clinical trials to treat aging are impractical. Even in preclinical models, testing interventions to extend healthspan in old age is lengthy and therefore costly. One approach to expedite aging studies is to take advantage of mouse strains that are engineered to age rapidly. These strains are genetically and phenotypically quite diverse. This review aims to offer a comparison of several of these strains to highlight their relative strengths and weaknesses as models of mammalian and more specifically human aging. Additionally, careful identification of commonalities amongst the strains may lead to the identification of fundamental pathways of aging. PMID:25617508

  12. Parasite infection accelerates age polyethism in young honey bees.

    PubMed

    Lecocq, Antoine; Jensen, Annette Bruun; Kryger, Per; Nieh, James C

    2016-02-25

    Honey bees (Apis mellifera) are important pollinators and their health is threatened worldwide by persistent exposure to a wide range of factors including pesticides, poor nutrition, and pathogens. Nosema ceranae is a ubiquitous microsporidian associated with high colony mortality. We used lab micro-colonies of honey bees and video analyses to track the effects of N. ceranae infection and exposure on a range of individual and social behaviours in young adult bees. We provide detailed data showing that N. ceranae infection significantly accelerated the age polyethism of young bees, causing them to exhibit behaviours typical of older bees. Bees with high N. ceranae spore counts had significantly increased walking rates and decreased attraction to queen mandibular pheromone. Infected bees also exhibited higher rates of trophallaxis (food exchange), potentially reflecting parasite manipulation to increase colony infection. However, reduction in queen contacts could help bees limit the spread of infection. Such accelerated age polyethism may provide a form of behavioural immunity, particularly if it is elicited by a wide variety of pathogens.

  13. Parasite infection accelerates age polyethism in young honey bees

    PubMed Central

    Lecocq, Antoine; Jensen, Annette Bruun; Kryger, Per; Nieh, James C.

    2016-01-01

    Honey bees (Apis mellifera) are important pollinators and their health is threatened worldwide by persistent exposure to a wide range of factors including pesticides, poor nutrition, and pathogens. Nosema ceranae is a ubiquitous microsporidian associated with high colony mortality. We used lab micro-colonies of honey bees and video analyses to track the effects of N. ceranae infection and exposure on a range of individual and social behaviours in young adult bees. We provide detailed data showing that N. ceranae infection significantly accelerated the age polyethism of young bees, causing them to exhibit behaviours typical of older bees. Bees with high N. ceranae spore counts had significantly increased walking rates and decreased attraction to queen mandibular pheromone. Infected bees also exhibited higher rates of trophallaxis (food exchange), potentially reflecting parasite manipulation to increase colony infection. However, reduction in queen contacts could help bees limit the spread of infection. Such accelerated age polyethism may provide a form of behavioural immunity, particularly if it is elicited by a wide variety of pathogens. PMID:26912310

  14. Cardiorespiratory Fitness and Accelerated Cognitive Decline With Aging

    PubMed Central

    2014-01-01

    Background. Growing evidence suggests that self-reported physical activity accounts for variability in cognitive function among older adults, and aerobic intervention may improve cognitive function in this population. However, much less is known about the longitudinal association between direct measures of cardiorespiratory fitness and cognitive function across the life span. The present study examined the prospective association between symptom-limited maximal oxygen consumption (VO2max) and longitudinal performance on a comprehensive neuropsychological battery. Methods. Up to 1,400 participants aged 19–94 years underwent initial VO2max assessment and completed subsequent tests of memory, attention, perceptuomotor speed, language, and executive function, in addition to cognitive screening measures, on up to six occasions (mean, M = 2; standard deviation, SD = 1) for up to 18 years (M = 7, SD = 3). Mixed-effects regression models were adjusted for demographic, biomedical, and behavioral confounders. Results. Analyses revealed significant longitudinal associations between baseline VO2max and trajectory of performance on multiple measures of verbal and visual memory, as well as on a cognitive screening test (all ps < .05). Individuals with lower VO2max demonstrated accelerated trajectories of cognitive decline over time. Conclusions. Baseline cardiorespiratory fitness is related to longitudinal neuropsychological performance, and memory appears to be a particularly vulnerable domain. Evidence that aerobic fitness is associated with accelerated cognitive decline emphasizes the possible importance of behavioral interventions to optimize cognitive aging over time. PMID:24192540

  15. Ultraweak chemiluminescence of rice seeds during accelerated aging

    NASA Astrophysics Data System (ADS)

    Chen, Wenli; Xing, Da; He, Yonghong

    2002-04-01

    Ultraweak Chemiluminescence (UCL) studies of different aging degree of rice (Oryza sativa L.) seeds stored in a high temperature 40 degree(s)C and high relative humidity 90% environment (0 day, 8 days, 15 days, and 22 days) were carried out. We firstly observed that aging degree of rice seeds was positive correlation with ultraweak chemiluminescence during the early imbibition (0-1h). Addition of water to rice seeds stimulates ultraweak chemiluminescence, the intensity of which depends upon aging degree of seeds. The shorter the seed accelerated aging time was, the higher the intensity of the UCL in the early imbibition period, the lower hydrogen peroxide (H2O2) concentration of rice seeds, the higher percentage seed germination. The germination and superoxide dismutase (SOD) activity of dry rice seeds was obvious positive correlation with the intensity of UCL. While catalase (CAT) activity of rice seeds was determined. Mechanism of ultraweak chemiluminescence was discussed. It was concluded that the store time of rice seeds could be judged from their UCL characters during the early imbibition period, which might be a way to examine vigor of seeds.

  16. Accelerated Aging System for Prognostics of Power Semiconductor Devices

    NASA Technical Reports Server (NTRS)

    Celaya, Jose R.; Vashchenko, Vladislav; Wysocki, Philip; Saha, Sankalita

    2010-01-01

    Prognostics is an engineering discipline that focuses on estimation of the health state of a component and the prediction of its remaining useful life (RUL) before failure. Health state estimation is based on actual conditions and it is fundamental for the prediction of RUL under anticipated future usage. Failure of electronic devices is of great concern as future aircraft will see an increase of electronics to drive and control safety-critical equipment throughout the aircraft. Therefore, development of prognostics solutions for electronics is of key importance. This paper presents an accelerated aging system for gate-controlled power transistors. This system allows for the understanding of the effects of failure mechanisms, and the identification of leading indicators of failure which are essential in the development of physics-based degradation models and RUL prediction. In particular, this system isolates electrical overstress from thermal overstress. Also, this system allows for a precise control of internal temperatures, enabling the exploration of intrinsic failure mechanisms not related to the device packaging. By controlling the temperature within safe operation levels of the device, accelerated aging is induced by electrical overstress only, avoiding the generation of thermal cycles. The temperature is controlled by active thermal-electric units. Several electrical and thermal signals are measured in-situ and recorded for further analysis in the identification of leading indicators of failures. This system, therefore, provides a unique capability in the exploration of different failure mechanisms and the identification of precursors of failure that can be used to provide a health management solution for electronic devices.

  17. Circadian disruption induced by light-at-night accelerates aging and promotes tumorigenesis in rats

    PubMed Central

    Vinogradova, Irina A.; Anisimov, Vladimir N.; Bukalev, Andrey V.; Semenchenko, Anna V.; Zabezhinski, Mark A.

    2009-01-01

    We evaluated the effect of various light/dark regimens on the survival, life span and tumorigenesis in rats. Two hundred eight male and 203 females LIO rats were subdivided into 4 groups and kept at various light/dark regimens: standard 12:12 light/dark (LD); natural lighting of the North-West of Russia (NL); constant light (LL), and constant darkness (DD) since the age of 25 days until natural death. We found that exposure to NL and LL regimens accelerated development of metabolic syndrome and spontaneous tumorigenesis, shortened life span both in male and females rats as compared to the standard LD regimen. We conclude that circadian disruption induced by light-at-night accelerates aging and promotes tumorigenesis in rats. This observation supports the conclusion of the International Agency Research on Cancer that shift-work that involves circadian disruption is probably carcinogenic to humans. PMID:20157558

  18. Telomere Recombination Accelerates Cellular Aging in Saccharomyces cerevisiae

    PubMed Central

    Chen, Xiao-Fen; Meng, Fei-Long; Zhou, Jin-Qiu

    2009-01-01

    Telomeres are nucleoprotein structures located at the linear ends of eukaryotic chromosomes. Telomere integrity is required for cell proliferation and survival. Although the vast majority of eukaryotic species use telomerase as a primary means for telomere maintenance, a few species can use recombination or retrotransposon-mediated maintenance pathways. Since Saccharomyces cerevisiae can use both telomerase and recombination to replicate telomeres, budding yeast provides a useful system with which to examine the evolutionary advantages of telomerase and recombination in preserving an organism or cell under natural selection. In this study, we examined the life span in telomerase-null, post-senescent type II survivors that have employed homologous recombination to replicate their telomeres. Type II recombination survivors stably maintained chromosomal integrity but exhibited a significantly reduced replicative life span. Normal patterns of cell morphology at the end of a replicative life span and aging-dependent sterility were observed in telomerase-null type II survivors, suggesting the type II survivors aged prematurely in a manner that is phenotypically consistent with that of wild-type senescent cells. The shortened life span of type II survivors was extended by calorie restriction or TOR1 deletion, but not by Fob1p inactivation or Sir2p over-expression. Intriguingly, rDNA recombination was decreased in type II survivors, indicating that the premature aging of type II survivors was not caused by an increase in extra-chromosomal rDNA circle accumulation. Reintroduction of telomerase activity immediately restored the replicative life span of type II survivors despite their heterogeneous telomeres. These results suggest that telomere recombination accelerates cellular aging in telomerase-null type II survivors and that telomerase is likely a superior telomere maintenance pathway in sustaining yeast replicative life span. PMID:19557187

  19. Volatile profile of Madeira wines submitted to traditional accelerated ageing.

    PubMed

    Pereira, Vanda; Cacho, Juan; Marques, José C

    2014-11-01

    The evolution of monovarietal fortified Madeira wines forced-aged by traditional thermal processing (estufagem) were studied in terms of volatiles. SPE extracts were analysed by GC-MS before and after heating at 45 °C for 3 months (standard) and at 70 °C for 1 month (overheating). One hundred and ninety volatile compounds were identified, 53 of which were only encountered in baked wines. Most chemical families increased after standard heating, especially furans and esters, up to 61 and 3-fold, respectively. On the contrary, alcohols, acetates and fatty acids decreased after heating. Varietal aromas, such as Malvasia's monoterpenic alcohols were not detected after baking. The accelerated ageing favoured the development of some volatiles previously reported as typical aromas of finest Madeira wines, particularly phenylacetaldeyde, β-damascenone and 5-ethoxymethylfurfural. Additionally, ethyl butyrate, ethyl 2-methylbutyrate, ethyl caproate, ethyl isovalerate, guaiacol, 5-hydroxymethylfurfural and γ-decalactone were also found as potential contributors to the global aroma of baked wines. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. A mouse model of accelerated liver aging due to a defect in DNA repair

    PubMed Central

    Gregg, Siobhán Q.; Gutiérrez, Verónica; Robinson, Andria Rasile; Woodell, Tyler; Nakao, Atsunori; Ross, Mark A.; Michalopoulos, George K.; Rigatti, Lora; Rothermel, Carrie E.; Kamileri, Irene; Garinis, George; Stolz, Donna Beer; Niedernhofer, Laura J.

    2011-01-01

    The liver changes with age leading to an impaired ability to respond to hepatic insults and increased incidence of liver disease in the elderly. Therefore, there is critical need for rapid model systems to study aging-related liver changes. One potential opportunity is murine models of human progerias, or diseases of accelerated aging. Ercc1−/Δ mice model a rare human progeroid syndrome caused by inherited defects in DNA repair. To determine if hepatic changes that occur with normal aging occur prematurely in Ercc1−/Δ mice, we systematically compared liver from 5 month-old, progeroid Ercc1−/Δ mice to old (24–36 month) wild-type (WT) mice. Both displayed areas of necrosis, foci of hepatocellular degeneration and acute inflammation. Loss of hepatic architecture, fibrosis, steatosis, pseudocapillarization, and anisokaryosis were more dramatic in Ercc1−/Δ mice than in old WT mice. Liver enzymes were significantly elevated in serum of Ercc1−/Δ mice and old WT mice, while albumin was reduced, demonstrating liver damage and dysfunction. The regenerative capacity of Ercc1−/Δ liver following partial hepatectomy was significantly reduced. There was evidence of increased oxidative damage in Ercc1−/Δ and old WT liver, including lipofuscin, lipid hydroperoxides and acrolein as well as increased hepatocellular senescence. There was a highly significant correlation in genome-wide transcriptional changes between old WT and 16 but not 5 week-old Ercc1−/Δ mice emphasizing that the Ercc1−/Δ mice acquire an aging profile in early adulthood. Conclusion There are strong functional, regulatory and histopathological parallels between accelerated aging driven by a DNA repair defect and normal aging. This supports a role for DNA damage in driving aging and validates a murine model for rapidly testing hypotheses about causes and treatment for aging-related hepatic changes. PMID:21953681

  1. DNA methylome analysis identifies accelerated epigenetic ageing associated with postmenopausal breast cancer susceptibility.

    PubMed

    Ambatipudi, Srikant; Horvath, Steve; Perrier, Flavie; Cuenin, Cyrille; Hernandez-Vargas, Hector; Le Calvez-Kelm, Florence; Durand, Geoffroy; Byrnes, Graham; Ferrari, Pietro; Bouaoun, Liacine; Sklias, Athena; Chajes, Véronique; Overvad, Kim; Severi, Gianluca; Baglietto, Laura; Clavel-Chapelon, Françoise; Kaaks, Rudolf; Barrdahl, Myrto; Boeing, Heiner; Trichopoulou, Antonia; Lagiou, Pagona; Naska, Androniki; Masala, Giovanna; Agnoli, Claudia; Polidoro, Silvia; Tumino, Rosario; Panico, Salvatore; Dollé, Martijn; Peeters, Petra H M; Onland-Moret, N Charlotte; Sandanger, Torkjel M; Nøst, Therese H; Weiderpass, Elisabete; Quirós, J Ramón; Agudo, Antonio; Rodriguez-Barranco, Miguel; Huerta Castaño, José María; Barricarte, Aurelio; Fernández, Ander Matheu; Travis, Ruth C; Vineis, Paolo; Muller, David C; Riboli, Elio; Gunter, Marc; Romieu, Isabelle; Herceg, Zdenko

    2017-04-01

    A vast majority of human malignancies are associated with ageing, and age is a strong predictor of cancer risk. Recently, DNA methylation-based marker of ageing, known as 'epigenetic clock', has been linked with cancer risk factors. This study aimed to evaluate whether the epigenetic clock is associated with breast cancer risk susceptibility and to identify potential epigenetics-based biomarkers for risk stratification. Here, we profiled DNA methylation changes in a nested case-control study embedded in the European Prospective Investigation into Cancer and Nutrition (EPIC) cohort (n = 960) using the Illumina HumanMethylation 450K BeadChip arrays and used the Horvath age estimation method to calculate epigenetic age for these samples. Intrinsic epigenetic age acceleration (IEAA) was estimated as the residuals by regressing epigenetic age on chronological age. We observed an association between IEAA and breast cancer risk (OR, 1.04; 95% CI, 1.007-1.076, P = 0.016). One unit increase in IEAA was associated with a 4% increased odds of developing breast cancer (OR, 1.04; 95% CI, 1.007-1.076). Stratified analysis based on menopausal status revealed that IEAA was associated with development of postmenopausal breast cancers (OR, 1.07; 95% CI, 1.020-1.11, P = 0.003). In addition, methylome-wide analyses revealed that a higher mean DNA methylation at cytosine-phosphate-guanine (CpG) islands was associated with increased risk of breast cancer development (OR per 1 SD = 1.20; 95 %CI: 1.03-1.40, P = 0.02) whereas mean methylation levels at non-island CpGs were indistinguishable between cancer cases and controls. Epigenetic age acceleration and CpG island methylation have a weak, but statistically significant, association with breast cancer susceptibility. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Accelerated aging-related transcriptome changes in the female prefrontal cortex.

    PubMed

    Yuan, Yuan; Chen, Yi-Ping Phoebe; Boyd-Kirkup, Jerome; Khaitovich, Philipp; Somel, Mehmet

    2012-10-01

    Human female life expectancy is higher than that of males. Intriguingly, it has been reported that women display faster rates of age-related cognitive decline and a higher prevalence of Alzheimer's disease (AD). To assess the molecular bases of these contradictory trends, we analyzed differences in expression changes with age between adult males and females, in four brain regions. In the superior frontal gyrus (SFG), a part of the prefrontal cortex, we observed manifest differences between the two sexes in the timing of age-related changes, that is, sexual heterochrony. Intriguingly, age-related expression changes predominantly occurred earlier, or at a faster pace, in females compared to men. These changes included decreased energy production and neural function and up-regulation of the immune response, all major features of brain aging. Furthermore, we found that accelerated expression changes in the female SFG correlated with expression changes observed in AD, as well as stress effects in the frontal cortex. Accelerated aging-related changes in the female SFG transcriptome may provide a link between a higher stress exposure or sensitivity in women and the higher prevalence of AD.

  3. Advance techniques for monitoring human tolerance to +Gz accelerations.

    NASA Technical Reports Server (NTRS)

    Pelligra, R.; Sandler, H.; Rositano, S.; Skrettingland, K.; Mancini, R.

    1972-01-01

    Standard techniques for monitoring the acceleration-stressed human subject have been augmented by measuring (1) temporal, brachial and/or radial arterial blood flow, and (2) indirect systolic and diastolic blood pressure at 60-sec intervals. Results show that the response of blood pressure to positive accelerations is complex and dependent on an interplay of hydrostatic forces, diminishing venous return, redistribution of blood, and other poorly defined compensatory reflexes.

  4. Accelerated aging in the tumor microenvironment: connecting aging, inflammation and cancer metabolism with personalized medicine.

    PubMed

    Lisanti, Michael P; Martinez-Outschoorn, Ubaldo E; Pavlides, Stephanos; Whitaker-Menezes, Diana; Pestell, Richard G; Howell, Anthony; Sotgia, Federica

    2011-07-01

    Cancer is thought to be a disease associated with aging. Interestingly, normal aging is driven by the production of ROS and mitochondrial oxidative stress, resulting in the cumulative accumulation of DNA damage. Here, we discuss how ROS signaling, NFκB- and HIF1-activation in the tumor microenvironment induces a form of "accelerated aging," which leads to stromal inflammation and changes in cancer cell metabolism. Thus, we present a unified model where aging (ROS), inflammation (NFκB) and cancer metabolism (HIF1), act as co-conspirators to drive autophagy ("self-eating") in the tumor stroma. Then, autophagy in the tumor stroma provides high-energy "fuel" and the necessary chemical building blocks, for accelerated tumor growth and metastasis. Stromal ROS production acts as a "mutagenic motor" and allows cancer cells to buffer-at a distance-exactly how much of a mutagenic stimulus they receive, further driving tumor cell selection and evolution. Surviving cancer cells would be selected for the ability to induce ROS more effectively in stromal fibroblasts, so they could extract more nutrients from the stroma via autophagy. If lethal cancer is a disease of "accelerated host aging" in the tumor stroma, then cancer patients may benefit from therapy with powerful antioxidants. Antioxidant therapy should block the resulting DNA damage, and halt autophagy in the tumor stroma, effectively "cutting off the fuel supply" for cancer cells. These findings have important new implications for personalized cancer medicine, as they link aging, inflammation and cancer metabolism with novel strategies for more effective cancer diagnostics and therapeutics.

  5. Arsenite exposure accelerates aging process regulated by the transcription factor DAF-16/FOXO in Caenorhabditis elegans.

    PubMed

    Yu, Chan-Wei; How, Chun Ming; Liao, Vivian Hsiu-Chuan

    2016-05-01

    Arsenic is a known human carcinogen and high levels of arsenic contamination in food, soils, water, and air are of toxicology concerns. Nowadays, arsenic is still a contaminant of emerging interest, yet the effects of arsenic on aging process have received little attention. In this study, we investigated the effects and the underlying mechanisms of chronic arsenite exposure on the aging process in Caenorhabditis elegans. The results showed that prolonged arsenite exposure caused significantly decreased lifespan compared to non-exposed ones. In addition, arsenite exposure (100 μM) caused significant changes of age-dependent biomarkers, including a decrease of defecation frequency, accumulations of intestinal lipofuscin and lipid peroxidation in an age-dependent manner in C. elegans. Further evidence revealed that intracellular reactive oxygen species (ROS) level was significantly increased in an age-dependent manner upon 100 μM arsenite exposure. Moreover, the mRNA levels of transcriptional makers of aging (hsp-16.1, hsp-16.49, and hsp-70) were increased in aged worms under arsenite exposure (100 μM). Finally, we showed that daf-16 mutant worms were more sensitive to arsenite exposure (100 μM) on lifespan and failed to induce the expression of its target gene sod-3 in aged daf-16 mutant under arsenite exposure (100 μM). Our study demonstrated that chronic arsenite exposure resulted in accelerated aging process in C. elegans. The overproduction of intracellular ROS and the transcription factor DAF-16/FOXO play roles in mediating the accelerated aging process by arsenite exposure in C. elegans. This study implicates a potential ecotoxicological and health risk of arsenic in the environment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Resonance of human brain under head acceleration

    PubMed Central

    Laksari, Kaveh; Wu, Lyndia C.; Kurt, Mehmet; Kuo, Calvin; Camarillo, David C.

    2015-01-01

    Although safety standards have reduced fatal head trauma due to single severe head impacts, mild trauma from repeated head exposures may carry risks of long-term chronic changes in the brain's function and structure. To study the physical sensitivities of the brain to mild head impacts, we developed the first dynamic model of the skull–brain based on in vivo MRI data. We showed that the motion of the brain can be described by a rigid-body with constrained kinematics. We further demonstrated that skull–brain dynamics can be approximated by an under-damped system with a low-frequency resonance at around 15 Hz. Furthermore, from our previous field measurements, we found that head motions in a variety of activities, including contact sports, show a primary frequency of less than 20 Hz. This implies that typical head exposures may drive the brain dangerously close to its mechanical resonance and lead to amplified brain–skull relative motions. Our results suggest a possible cause for mild brain trauma, which could occur due to repetitive low-acceleration head oscillations in a variety of recreational and occupational activities. PMID:26063824

  7. Accelerated aging studies and environmental stability of prototype tamper tapes

    SciTech Connect

    Wright, B.W.; Wright, C.W.; Bunk, A.R.

    1995-05-01

    This report describes the results of accelerated aging experiments (weathering) conducted on prototype tamper tapes bonded to a variety of surface materials. The prototype tamper tapes were based on the patented Confirm{reg_sign} tamper-indicating technology developed and produced by 3M Company. Tamper tapes bonded to surfaces using pressure sensitive adhesive (PSA) and four rapid-set adhesives were evaluated. The configurations of the PSA-bonded tamper tapes were 1.27-cm-wide Confirm{reg_sign} 1700 windows with vinyl underlay and 2.54-cm-wide Confirm{reg_sign} 1700 windows with vinyl and polyester underlays. The configurations of the rapid-set adhesive-bonded tamper tapes were 2.54-cm-wide Confirm{reg_sign} (1700, 1500 with and without primer, and 1300) windows with vinyl underlay. Surfaces used for bonding included aluminum, steel, stainless steel, Kevlar{reg_sign}, brass, copper, fiberglass/resin with and without gel coat, polyurethane-painted steel, acrylonitrile:butadiene:styrene plastic, polyester fiberglass board, Lexan polycarbonate, and cedar wood. Weathering conditions included a QUV cabinet (ultraviolet light at 60{degrees}C, condensing humidity at 40{degrees}C), a thermal cycling cabinet (-18{degrees}C to 46{degrees}C), a Weather-O-Meter (Xenon lamp), and exposure outdoors in Daytona Beach, Florida. Environmental aging exposures lasted from 7 weeks to 5 months. After exposure, the tamper tapes were visually examined and tested for transfer resistance. Tamper tapes were also exposed to a variety of chemical liquids (including organic solvents, acids, bases, and oxidizing liquids) to determine chemical resistance and to sand to determine abrasion resistance.

  8. [The use of biological age on mental work capacity model in accelerated aging assessment of professional lorry-drivers].

    PubMed

    Bashkireva, A S

    2012-01-01

    The studies of biological age, aging rate, mental work capacity in professional drivers were conducted. The examination revealed peculiarities of system organization of functions determining the mental work capacity levels. Dynamics of the aging process of professional driver's organism in relation with calendar age and driving experience were shown using the biological age model. The results point at the premature decrease of the mental work capacity in professional drivers. It was proved, that premature age-related changes of physiologic and psychophysiologic indices in drivers are just "risk indicators", while long driving experience is a real risk factor, accelerating the aging process. The "risk group" with manifestations of accelerating aging was observed in 40-49-year old drivers with 15-19 years of professional experience. The expediency of using the following methods for the age rate estimation according to biologic age indices and necessity of prophylactic measures for premature and accelerated aging prevention among working population was demonstrated.

  9. Rapamycin suppresses brain aging in senescence-accelerated OXYS rats.

    PubMed

    Kolosova, Nataliya G; Vitovtov, Anton O; Muraleva, Natalia A; Akulov, Andrey E; Stefanova, Natalia A; Blagosklonny, Mikhail V

    2013-06-01

    Cellular and organismal aging are driven in part by the MTOR (mechanistic target of rapamycin) pathway and rapamycin extends life span inC elegans, Drosophila and mice. Herein, we investigated effects of rapamycin on brain aging in OXYS rats. Previously we found, in OXYS rats, an early development of age-associated pathological phenotypes similar to several geriatric disorders in humans, including cerebral dysfunctions. Behavioral alterations as well as learning and memory deficits develop by 3 months. Here we show that rapamycin treatment (0.1 or 0.5 mg/kg as a food mixture daily from the age of 1.5 to 3.5 months) decreased anxiety and improved locomotor and exploratory behavior in OXYS rats. In untreated OXYS rats, MRI revealed an increase of the area of hippocampus, substantial hydrocephalus and 2-fold increased area of the lateral ventricles. Rapamycin treatment prevented these abnormalities, erasing the difference between OXYS and Wister rats (used as control). All untreated OXYS rats showed signs of neurodegeneration, manifested by loci of demyelination. Rapamycin decreased the percentage of animals with demyelination and the number of loci. Levels of Tau and phospho-Tau (T181) were increased in OXYS rats (compared with Wistar). Rapamycin significantly decreased Tau and inhibited its phosphorylation in the hippocampus of OXYS and Wistar rats. Importantly, rapamycin treatment caused a compensatory increase in levels of S6 and correspondingly levels of phospo-S6 in the frontal cortex, indicating that some downstream events were compensatory preserved, explaining the lack of toxicity. We conclude that rapamycin in low chronic doses can suppress brain aging.

  10. Accelerated senescence of human erythrocytes cultured with Plasmodium falciparum.

    PubMed

    Omodeo-Salè, Fausta; Motti, Anna; Basilico, Nicoletta; Parapini, Silvia; Olliaro, Piero; Taramelli, Donatella

    2003-07-15

    Red blood cells infected withPlasmodium falciparum(IRBCs) undergo changes primarily in their membrane composition that contribute to malaria pathogenesis. However, all manifestations (eg, anemia) cannot be accounted for by IRBCs alone. Uninfected erythrocytes (URBCs) may play a role, but they have been under-researched. We wanted to document changes in the erythrocyte membrane that could contribute to URBC reduced life span and malaria-associated anemia. Human erythrocytes were cultured withP falciparumand washed at the trophozoite stage. IRBCs and URBCs were separated on Percoll density gradient, thus obtaining erythrocyte fractions of different densities/ages. IRBC- and URBC-purified membranes were analyzed and compared with control normal erythrocytes (NRBCs) of the same age, from the same donor, kept in the same conditions.P falciparumaccelerated aging of both IRBCs and URBCs, causing a significant shift in the cell population toward the denser (old) fraction. Protein, phospholipid, and cholesterol content were reduced in IRBCs and young URBCs. Young and medium uninfected fractions had higher levels of lipid peroxidation and phospholipid saturation (because of the loss of polyunsaturated fatty acids, PUFAs) and lower phosphatidylserine. In IRBCs, thiobarbituric reactive substances (TBARSs) were higher, and PUFAs and phosphatidylserine lower than in NRBCs and URBCs. In comparison, trophozoite membranes had lower phospholipid (particularly sphingomyelin and phosphatidylserine) and cholesterol content and a higher degree of saturation. Parasite-induced peroxidative damage might account for these modifications. In summary, we demonstrated that membrane damage leading to accelerated senescence of both infected and uninfected erythrocytes will likely contribute to malaria anemia.

  11. Lamin Mutations Accelerate Aging via Defective Export of Mitochondrial mRNAs through Nuclear Envelope Budding.

    PubMed

    Li, Yihang; Hassinger, Linda; Thomson, Travis; Ding, Baojin; Ashley, James; Hassinger, William; Budnik, Vivian

    2016-08-08

    Defective RNA metabolism and transport are implicated in aging and degeneration [1, 2], but the underlying mechanisms remain poorly understood. A prevalent feature of aging is mitochondrial deterioration [3]. Here, we link a novel mechanism for RNA export through nuclear envelope (NE) budding [4, 5] that requires A-type lamin, an inner nuclear membrane-associated protein, to accelerated aging observed in Drosophila LaminC (LamC) mutations. These LamC mutations were modeled after A-lamin (LMNA) mutations causing progeroid syndromes (PSs) in humans. We identified mitochondrial assembly regulatory factor (Marf), a mitochondrial fusion factor (mitofusin), as well as other transcripts required for mitochondrial integrity and function, in a screen for RNAs that exit the nucleus through NE budding. PS-modeled LamC mutations induced premature aging in adult flight muscles, including decreased levels of specific mitochondrial protein transcripts (RNA) and progressive mitochondrial degradation. PS-modeled LamC mutations also induced the accelerated appearance of other phenotypes associated with aging, including a progressive accumulation of polyubiquitin aggregates [6, 7] and myofibril disorganization [8, 9]. Consistent with these observations, the mutants had progressive jumping and flight defects. Downregulating marf alone induced the above aging defects. Nevertheless, restoring marf was insufficient for rescuing the aging phenotypes in PS-modeled LamC mutations, as other mitochondrial RNAs are affected by inhibition of NE budding. Analysis of NE budding in dominant and recessive PS-modeled LamC mutations suggests a mechanism by which abnormal lamina organization prevents the egress of these RNAs via NE budding. These studies connect defects in RNA export through NE budding to progressive loss of mitochondrial integrity and premature aging. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Early-life stress and reproductive cost: A two-hit developmental model of accelerated aging?

    PubMed

    Shalev, Idan; Belsky, Jay

    2016-05-01

    Two seemingly independent bodies of research suggest a two-hit model of accelerated aging, one highlighting early-life stress and the other reproduction. The first, informed by developmental models of early-life stress, highlights reduced longevity effects of early adversity on telomere erosion, whereas the second, informed by evolutionary theories of aging, highlights such effects with regard to reproductive cost (in females). The fact that both early-life adversity and reproductive effort are associated with shorter telomeres and increased oxidative stress raises the prospect, consistent with life-history theory, that these two theoretical frameworks currently informing much research are tapping into the same evolutionary-developmental process of increased senescence and reduced longevity. Here we propose a mechanistic view of a two-hit model of accelerated aging in human females through (a) early-life adversity and (b) early reproduction, via a process of telomere erosion, while highlighting mediating biological embedding mechanisms that might link these two developmental aging processes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Induced Accelerated Aging in Induced Pluripotent Stem Cell Lines from Patients with Parkinson’s Disease

    DTIC Science & Technology

    2013-11-01

    Pluripotent Stem Cell Lines from Patients with Parkinson’s Disease PRINCIPAL INVESTIGATOR: Dr. Birgitt Schuele CONTRACTING...5a. CONTRACT NUMBER Induced Accelerated Aging in Induced Pluripotent Stem Cell Lines from Patients with Parkinson’s Disease 5b. GRANT...induced pluripotent stem cells , cellular model, accelerated aging, lamin A, progerin 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT

  14. Senescence-accelerated Mice (SAMs) as a Model for Brain Aging and Immunosenescence

    PubMed Central

    Shimada, Atsuyoshi; Hasegawa-Ishii, Sanae

    2011-01-01

    The Senescence-Accelerated Mouse (SAM) represents a group of inbred mouse strains developed as a model for the study of human aging and age-related diseases. Senescence-prone (SAMP) strains exhibit an early onset of age-related decline in the peripheral immunity such as thymic involution, loss of CD4+ T cells, impaired helper T cell function, decreased antibody-forming capacity, dysfunction of antigen-presenting cells, decreased natural killer activity, increased auto-antibodies, and susceptibility to virus infection. Senescence-prone SAMP10 mice undergo age-related changes in the brain such as brain atrophy, shrinkage and loss of cortical neurons, retraction of cortical neuronal dendrites, loss of dendritic spines, loss of synapses, impaired learning and memory, depressive behavior, accumulation of neuronal DNA damage, neuronal ubiquitinated inclusions, reduced hippocampal cholinergic receptors, decreased neurotrophic factors, decreased hippocampal zinc and zinc transporters, increased sphyngomyelinase, and elevated oxidative-nitrative stress. Recent data indicating increased pro-inflammatory cytokines in the brain of SAMP10 mice are directing investigators toward an integration of immune and neural abnormalities to enhance understanding of the principles of brain aging. We highlight how mouse brain cells adopt cytokine-mediated responses and how SAMP10 mice are defective in these responses. SAMP10 model would be useful to study how age-related disturbances in peripheral immunity have an impact on dysregulation of brain tissue homeostasis, resulting in age-related neurodegeneration. PMID:22396891

  15. The influences of accelerated aging on mechanical properties of veneering ceramics used for zirconia restorations.

    PubMed

    Luo, Huinan; Tang, Xuehua; Dong, Zhen; Tang, Hui; Nakamura, Takashi; Yatani, Hirofumi

    2016-01-01

    This study evaluated the influences of accelerated aging on the mechanical properties of veneering ceramics used for zirconia frameworks. Five different veneering ceramics for zirconia frameworks were used. Twenty specimens were fabricated for each veneering ceramic. All specimens were divided into two groups. One was subjected to accelerated aging and the other was used as a control. Accelerated aging was performed in distilled water for 5 h at 200ºC and 2 atm. The density, open porosity, surface roughness, three-point flexural strength, and Vickers hardness were measured. The results showed that the density, open porosity, and surface roughness of all examined veneering ceramics were changed by the accelerated aging process. Accelerated aging was also found to have a positive effect on strength and a negative effect on the hardness.

  16. DNA methylation age of human tissues and cell types

    PubMed Central

    2013-01-01

    Background It is not yet known whether DNA methylation levels can be used to accurately predict age across a broad spectrum of human tissues and cell types, nor whether the resulting age prediction is a biologically meaningful measure. Results I developed a multi-tissue predictor of age that allows one to estimate the DNA methylation age of most tissues and cell types. The predictor, which is freely available, was developed using 8,000 samples from 82 Illumina DNA methylation array datasets, encompassing 51 healthy tissues and cell types. I found that DNA methylation age has the following properties: first, it is close to zero for embryonic and induced pluripotent stem cells; second, it correlates with cell passage number; third, it gives rise to a highly heritable measure of age acceleration; and, fourth, it is applicable to chimpanzee tissues. Analysis of 6,000 cancer samples from 32 datasets showed that all of the considered 20 cancer types exhibit significant age acceleration, with an average of 36 years. Low age-acceleration of cancer tissue is associated with a high number of somatic mutations and TP53 mutations, while mutations in steroid receptors greatly accelerate DNA methylation age in breast cancer. Finally, I characterize the 353 CpG sites that together form an aging clock in terms of chromatin states and tissue variance. Conclusions I propose that DNA methylation age measures the cumulative effect of an epigenetic maintenance system. This novel epigenetic clock can be used to address a host of questions in developmental biology, cancer and aging research. PMID:24138928

  17. Holocene age of the Yuha burial: Direct radiocarbon determinations by accelerator mass spectrometry

    USGS Publications Warehouse

    Stafford, Thomas W.; Jull, A.J.T.; Zabel, T.H.; Donahue, D.J.; Duhamel, R.C.; Brendel, K.; Haynes, C.V.; Bischoff, J.L.; Payen, L.A.; Taylor, R.E.

    1984-01-01

    The view that human populations may not have arrived in the Western Hemisphere before about 12,000 radiocarbon yr BP1,2 has been challenged by claims of much greater antiquity for a small number of archaeological sites and human skeleton samples. One such site is the Homo sapiens sapiens cairn burial excavated in 1971 from the Yuha desert, Imperial County, California3-5. Radiocarbon analysis of caliche coating one of the bones of the skeleton yielded a radiocarbon age of 21,500??1,000 yr BP4, while radiocarbon and uranium series analyses of caliche coating a cairn boulder yielded ages of 22,125??400 and 19,000??3,000 yr BP, respectively5. The late Pleistocene age assignment to the Yuha burial has been challenged by comparing the cultural context of the burial with other cairn burials in the same region6, on the basis of the site's geomorphological context and from radiocarbon analyses of soil caliches. 7,8 In rebuttal, arguments in defence of the original age assignment have been presented9,10 as well as an amino acid racemization analysis on the Yuha skeleton indicating an age of 23,600??2,600 yr BP11. The tandem accelerator mass spectrometer at the University of Arizona has now been used to measure the ratio of 14C/13C in several organic and inorganic fractions of post-cranial bone from the Yuha H. sapiens sapiens skeleton. Isotope ratios from six chemical fractions all yielded radiocarbon ages for the skeleton of less than 4,000 yr BP. These results indicate that the Yuha skeleton is of Holocene age, in agreement with the cultural context of the burial, and in disagreement with the previously assigned Pleistocene age of 19,000-23,000 yr. ?? 1984 Nature Publishing Group.

  18. Free Glycine Accelerates the Autoproteolytic Activation of Human Asparaginase

    PubMed Central

    Su, Ying; Karamitros, Christos S.; Nomme, Julian; McSorley, Theresa; Konrad, Manfred; Lavie, Arnon

    2013-01-01

    Human asparaginase 3 (hASNase3), which belongs to the N-terminal nucleophile (Ntn) hydrolase superfamily, is synthesized as a single polypeptide that is devoid of asparaginase activity. Intramolecular autoproteolytic processing releases the amino group of Thr168, a moiety required for catalyzing asparagine hydrolysis. Recombinant hASNase3 purifies as the uncleaved, asparaginase-inactive form, and undergoes self-cleavage to the active form at a very slow rate. Here we show that the free amino acid glycine selectively acts to accelerate hASNase3 cleavage both in vitro and in human cells. Other small amino acids such as alanine, serine, or the substrate asparagine are not capable of promoting autoproteolysis. Crystal structures of hASNase3 in complex with glycine in the uncleaved and cleaved enzyme states reveal the mechanism of glycine-accelerated post-translational processing, and explain why no other amino acid can substitute for glycine. PMID:23601642

  19. GPU-Accelerated Molecular Modeling Coming Of Age

    PubMed Central

    Stone, John E.; Hardy, David J.; Ufimtsev, Ivan S.

    2010-01-01

    Graphics processing units (GPUs) have traditionally been used in molecular modeling solely for visualization of molecular structures and animation of trajectories resulting from molecular dynamics simulations. Modern GPUs have evolved into fully programmable, massively parallel co-processors that can now be exploited to accelerate many scientific computations, typically providing about one order of magnitude speedup over CPU code and in special cases providing speedups of two orders of magnitude. This paper surveys the development of molecular modeling algorithms that leverage GPU computing, the advances already made and remaining issues to be resolved, and the continuing evolution of GPU technology that promises to become even more useful to molecular modeling. Hardware acceleration with commodity GPUs is expected to benefit the overall computational biology community by bringing teraflops performance to desktop workstations and in some cases potentially changing what were formerly batch-mode computational jobs into interactive tasks. PMID:20675161

  20. Accelerated Changes in Cortical Thickness Measurements with Age in Military Service Members with Traumatic Brain Injury.

    PubMed

    Savjani, Ricky R; Taylor, Brian A; Acion, Laura; Wilde, Elisabeth A; Jorge, Ricardo E

    2017-08-04

    Finding objective and quantifiable imaging markers of mild traumatic brain injury (TBI) has proven challenging, especially in the military population. Changes in cortical thickness after injury have been reported in animals and in humans, but it is unclear how these alterations manifest in the chronic phase, and it is difficult to characterize accurately with imaging. We used cortical thickness measures derived from Advanced Normalization Tools (ANTs) to predict a continuous demographic variable: age. We trained four different regression models (linear regression, support vector regression, Gaussian process regression, and random forests) to predict age from healthy control brains from publicly available datasets (n = 762). We then used these models to predict brain age in military Service Members with TBI (n = 92) and military Service Members without TBI (n = 34). Our results show that all four models overpredicted age in Service Members with TBI, and the predicted age difference was significantly greater compared with military controls. These data extend previous civilian findings and show that cortical thickness measures may reveal an association of accelerated changes over time with military TBI.

  1. Aging of solidified/stabilized electrolytic manganese solid waste with accelerated carbonation and aging inhibition.

    PubMed

    Du, Bing; Zhou, Changbo; Dan, Zhigang; Zhao, Zhiyuan; Peng, Xianjia; Liu, Jianguo; Duan, Ning

    2016-12-01

    High concentrations of soluble Mn in electrolytic manganese solid waste (EMSW) in soil cause the severe contamination in China. Calcium oxide and magnesium oxide-dominated stabilizers are suitable for the solidification/stabilization (s/s) of EMSW. However, the long-term performance of s/s using those two types of stabilizer is problematic. The aim of this study was to develop an accelerated aging method to simulate the long-term natural carbonation of solidified/stabilized EMSW. The joint use of accelerated carbonation, leaching test, mineralogical analysis, and microstructural observation was applied to assess the long-term performance of the s/s EMSW system. On an accelerated carbonation test for solidified/stabilized EMSW, an increase in Mn leaching from 13.6 to 408 mg/kg and a 1.5-2.3 decrease in pH was achieved by using CaO-dominated stabilizers, while an increase in manganese (Mn) from 30 to 266 mg/kg and a decrease in pH of 0.17-0.68 was seen using MgO-dominated stabilizers. CaO+Na3PO4 and CaO+CaCO3 were exceptions in that the leaching value of soluble Mn was lower after carbonation. Mineralogical analysis showed that rhodochrosite in the carbonated s/s system was generated not only from the reduction of hausmannite but also from the reversible reaction between Mn(OH)2 and MnCO3. Carbonation destroyed the tight particle structure resulting in a porous and loose structure. As for s/s EMSW treated by MgO-dominated stabilizers, carbonation affected the agglomerating structure and mineralogical composition by increasing magnesium (Mg) migration, thereby forming hydromagnesite that had weak binding ability and a nested porous shape. Therefore, carbonation by itself does not cause deterioration to s/s products of the soluble Mn but does have significant effects on the microstructure and mineralogical composition. It is recommended to add Na3PO4 or CaCO3 into a single CaO stabilized EMSW system to prevent aging of the system, allow formation of Mn phosphate

  2. A drug-induced accelerated senescence (DIAS) is a possibility to study aging in time lapse.

    PubMed

    Alili, Lirija; Diekmann, Johanna; Giesen, Melanie; Holtkötter, Olaf; Brenneisen, Peter

    2014-06-01

    Currently, the oxidative stress (or free radical) theory of aging is the most popular explanation of how aging occurs at the molecular level. Accordingly, a stress-induced senescence-like phenotype of human dermal fibroblasts can be induced in vitro by the exposure of human diploid fibroblasts to subcytotoxic concentrations of hydrogen peroxide. However, several biomarkers of replicative senescence e.g. cell cycle arrest and enlarged morphology are abrogated 14 days after treatment, indicating that reactive oxygen species (ROS) rather acts as a trigger for short-term senescence (1-3 days) than being responsible for the maintenance of the senescence-like phenotype. Further, DNA-damaging factors are discussed resulting in a permanent senescent cell type. To induce long-term premature senescence and to understand the molecular alterations occurring during the aging process, we analyzed mitomycin C (MMC) as an alkylating DNA-damaging agent and ROS producer. Human dermal fibroblasts (HDF), used as model for skin aging, were exposed to non-cytotoxic concentrations of MMC and analyzed for potential markers of cellular aging, for example enlarged morphology, activity of senescence-associated-ß-galactosidase, cell cycle arrest, increased ROS production and MMP1-activity, which are well-documented for HDF in replicative senescence. Our data show that mitomycin C treatment results in a drug-induced accelerated senescence (DIAS) with long-term expression of senescence markers, demonstrating that a combination of different susceptibility factors, here ROS and DNA alkylation, are necessary to induce a permanent senescent cell type.

  3. Delayed and Accelerated Aging Share Common Longevity Assurance Mechanisms

    PubMed Central

    Schumacher, Björn; van der Pluijm, Ingrid; Moorhouse, Michael J.; Kosteas, Theodore; Robinson, Andria Rasile; Suh, Yousin; Breit, Timo M.; van Steeg, Harry; Niedernhofer, Laura J.; van IJcken, Wilfred; Bartke, Andrzej; Spindler, Stephen R.; Hoeijmakers, Jan H. J.; van der Horst, Gijsbertus T. J.; Garinis, George A.

    2008-01-01

    Mutant dwarf and calorie-restricted mice benefit from healthy aging and unusually long lifespan. In contrast, mouse models for DNA repair-deficient progeroid syndromes age and die prematurely. To identify mechanisms that regulate mammalian longevity, we quantified the parallels between the genome-wide liver expression profiles of mice with those two extremes of lifespan. Contrary to expectation, we find significant, genome-wide expression associations between the progeroid and long-lived mice. Subsequent analysis of significantly over-represented biological processes revealed suppression of the endocrine and energy pathways with increased stress responses in both delayed and premature aging. To test the relevance of these processes in natural aging, we compared the transcriptomes of liver, lung, kidney, and spleen over the entire murine adult lifespan and subsequently confirmed these findings on an independent aging cohort. The majority of genes showed similar expression changes in all four organs, indicating a systemic transcriptional response with aging. This systemic response included the same biological processes that are triggered in progeroid and long-lived mice. However, on a genome-wide scale, transcriptomes of naturally aged mice showed a strong association to progeroid but not to long-lived mice. Thus, endocrine and metabolic changes are indicative of “survival” responses to genotoxic stress or starvation, whereas genome-wide associations in gene expression with natural aging are indicative of biological age, which may thus delineate pro- and anti-aging effects of treatments aimed at health-span extension. PMID:18704162

  4. Anti-Muscarinic Adjunct Therapy Accelerates Functional Human Oligodendrocyte Repair

    PubMed Central

    Abiraman, Kavitha; Pol, Suyog U.; O'Bara, Melanie A.; Chen, Guang-Di; Khaku, Zainab M.; Wang, Jing; Thorn, David; Vedia, Bansi H.; Ekwegbalu, Ezinne C.; Li, Jun-Xu; Salvi, Richard J.

    2015-01-01

    Therapeutic repair of myelin disorders may be limited by the relatively slow rate of human oligodendrocyte differentiation. To identify appropriate pharmacological targets with which to accelerate differentiation of human oligodendrocyte progenitors (hOPCs) directly, we used CD140a/O4-based FACS of human forebrain and microarray to hOPC-specific receptors. Among these, we identified CHRM3, a M3R muscarinic acetylcholine receptor, as being restricted to oligodendrocyte-biased CD140a+O4+ cells. Muscarinic agonist treatment of hOPCs resulted in a specific and dose-dependent blockade of oligodendrocyte commitment. Conversely, when hOPCs were cocultured with human neurons, M3R antagonist treatment stimulated oligodendrocytic differentiation. Systemic treatment with solifenacin, an FDA-approved muscarinic receptor antagonist, increased oligodendrocyte differentiation of transplanted hOPCs in hypomyelinated shiverer/rag2 brain. Importantly, solifenacin treatment of engrafted animals reduced auditory brainstem response interpeak latency, indicative of increased conduction velocity and thereby enhanced functional repair. Therefore, solifenacin and other selective muscarinic antagonists represent new adjunct approaches to accelerate repair by engrafted human progenitors. PMID:25716865

  5. Diet restriction delays accelerated aging and genomic stress in DNA repair deficient mice

    PubMed Central

    Vermeij, W.P.; Dollé, M.E.T.; Reiling, E.; Jaarsma, D.; Payan-Gomez, C.; Bombardieri, C.R.; Wu, H.; Roks, A.J.M.; Botter, S.M.; van der Eerden, B.C.; Youssef, S.A.; Kuiper, R.V.; Nagarajah, B.; van Oostrom, C.T.; Brandt, R.M.C.; Barnhoorn, S.; Imholz, S.; Pennings, J.L.A.; de Bruin, A.; Gyenis, Á.; Pothof, J.; Vijg, J.; van Steeg, H.; Hoeijmakers, J.H.J.

    2016-01-01

    DNA repair-deficient Ercc1Δ/− mice show numerous accelerated aging features limiting lifespan to 4–6 month1–4. Simultaneously they exhibit a ‘survival response’, which suppresses growth and enhances maintenance, resembling the anti-aging response induced by dietary restriction (DR)1,5. Here we report that subjecting these progeroid, dwarf mutants to 30% DR tripled median and maximal remaining lifespan, and drastically retarded numerous aspects of accelerated aging, e.g. DR animals retained 50% more neurons and maintained full motoric function, even far beyond the lifespan of ad libitum (AL) animals. Repair-deficient, progeroid Xpg−/− mice, a Cockayne syndrome model6, responded similarly, extending this observation to other repair mutants. The DR response in Ercc1Δ/− mice closely resembled DR in wild type animals. Interestingly, AL Ercc1Δ/− liver showed preferential extinction of expression of long genes, a phenomenon we also observe in several normal aging tissues. This is consistent with accumulation of stochastic, transcription-blocking lesions, affecting long genes more than short ones. DR largely prevented declining transcriptional output and reduced γH2AX DNA damage foci, indicating that DR preserves genome function by alleviating DNA damage. Our findings establish Ercc1Δ/− mice as powerful model for interventions sustaining health, reveal untapped potential for reducing endogenous damage, provide new venues for understanding the molecular mechanism of DR, and suggest a counterintuitive DR-like therapy for human progeroid genome instability syndromes and possibly neurodegeneration in general. PMID:27556946

  6. Restricted diet delays accelerated ageing and genomic stress in DNA-repair-deficient mice.

    PubMed

    Vermeij, W P; Dollé, M E T; Reiling, E; Jaarsma, D; Payan-Gomez, C; Bombardieri, C R; Wu, H; Roks, A J M; Botter, S M; van der Eerden, B C; Youssef, S A; Kuiper, R V; Nagarajah, B; van Oostrom, C T; Brandt, R M C; Barnhoorn, S; Imholz, S; Pennings, J L A; de Bruin, A; Gyenis, Á; Pothof, J; Vijg, J; van Steeg, H; Hoeijmakers, J H J

    2016-09-15

    Mice deficient in the DNA excision-repair gene Ercc1 (Ercc1(∆/-)) show numerous accelerated ageing features that limit their lifespan to 4-6 months. They also exhibit a 'survival response', which suppresses growth and enhances cellular maintenance. Such a response resembles the anti-ageing response induced by dietary restriction (also known as caloric restriction). Here we report that a dietary restriction of 30% tripled the median and maximal remaining lifespans of these progeroid mice, strongly retarding numerous aspects of accelerated ageing. Mice undergoing dietary restriction retained 50% more neurons and maintained full motor function far beyond the lifespan of mice fed ad libitum. Other DNA-repair-deficient, progeroid Xpg(-/-) (also known as Ercc5(-/-)) mice, a model of Cockayne syndrome, responded similarly. The dietary restriction response in Ercc1(∆/-) mice closely resembled the effects of dietary restriction in wild-type animals. Notably, liver tissue from Ercc1(∆/-) mice fed ad libitum showed preferential extinction of the expression of long genes, a phenomenon we also observed in several tissues ageing normally. This is consistent with the accumulation of stochastic, transcription-blocking lesions that affect long genes more than short ones. Dietary restriction largely prevented this declining transcriptional output and reduced the number of γH2AX DNA damage foci, indicating that dietary restriction preserves genome function by alleviating DNA damage. Our findings establish the Ercc1(∆/-) mouse as a powerful model organism for health-sustaining interventions, reveal potential for reducing endogenous DNA damage, facilitate a better understanding of the molecular mechanism of dietary restriction and suggest a role for counterintuitive dietary-restriction-like therapy for human progeroid genome instability syndromes and possibly neurodegeneration in general.

  7. Correlation between mechanical and chemical degradation after outdoor and accelerated laboratory aging for multilayer photovoltaic backsheets

    NASA Astrophysics Data System (ADS)

    Lin, Chiao-Chi; Lyu, Yadong; Yu, Li-Chieh; Gu, Xiaohong

    2016-09-01

    Channel cracking fragmentation testing and attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy were utilized to study mechanical and chemical degradation of a multilayered backsheet after outdoor and accelerated laboratory aging. A model sample of commercial PPE backsheet, namely polyethylene terephthalate/polyethylene terephthalate/ethylene vinyl acetate (PET/PET/EVA) was investigated. Outdoor aging was performed in Gaithersburg, Maryland, USA for up to 510 days, and complementary accelerated laboratory aging was conducted on the NIST (National Institute of Standards and Technology) SPHERE (Simulated Photodegradation via High Energy Radiant Exposure). Fracture energy, mode I stress intensity factor and film strength were analyzed using an analytical model based on channel cracking fragmentation testing results. The correlation between mechanical and chemical degradation was discussed for both outdoor and accelerated laboratory aging. The results of this work provide preliminary understanding on failure mechanism of backsheets after weathering, laying the groundwork for linking outdoor and indoor accelerated laboratory testing for multilayer photovoltaic backsheets.

  8. Accelerated aging of preservative-treated structural plywood

    Treesearch

    C. Adam Senalik; Robert J. Ross; Samuel L. Zelinka; Stan T. Lebow; Zhiyong Cai

    2017-01-01

    In this study, the changes in physical properties and preservative retention of high-grade plywood when subjected to artificial aging processes were examined. The plywood was 15/32-in.-thick panels manufactured from southern yellow pine A and C grades of veneer. The artificial aging processes consisted of three primary mechanisms of degradation: thermal degradation,...

  9. Computational model of sustained acceleration effects on human cognitive performance.

    PubMed

    McKinlly, Richard A; Gallimore, Jennie J

    2013-08-01

    Extreme acceleration maneuvers encountered in modern agile fighter aircraft can wreak havoc on human physiology, thereby significantly influencing cognitive task performance. As oxygen content declines under acceleration stress, the activity of high order cortical tissue reduces to ensure sufficient metabolic resources are available for critical life-sustaining autonomic functions. Consequently, cognitive abilities reliant on these affected areas suffer significant performance degradations. The goal was to develop and validate a model capable of predicting human cognitive performance under acceleration stress. Development began with creation of a proportional control cardiovascular model that produced predictions of several hemodynamic parameters, including eye-level blood pressure and regional cerebral oxygen saturation (rSo2). An algorithm was derived to relate changes in rSo2 within specific brain structures to performance on cognitive tasks that require engagement of different brain areas. Data from the "precision timing" experiment were then used to validate the model predicting cognitive performance as a function of G(z) profile. The following are value ranges. Results showed high agreement between the measured and predicted values for the rSo2 (correlation coefficient: 0.7483-0.8687; linear best-fit slope: 0.5760-0.9484; mean percent error: 0.75-3.33) and cognitive performance models (motion inference task--correlation coefficient: 0.7103-0.9451; linear best-fit slope: 0.7416-0.9144; mean percent error: 6.35-38.21; precision timing task--correlation coefficient: 0.6856-0.9726; linear best-fit slope: 0.5795-1.027; mean percent error: 6.30-17.28). The evidence suggests that the model is capable of accurately predicting cognitive performance of simplistic tasks under high acceleration stress.

  10. Effect of polymerization and accelerated aging on iris color stability of ocular prosthesis.

    PubMed

    Goiato, Marcelo Coelho; Moreno, Amália; dos Santos, Daniela Micheline; de Carvalho Dekon, Stefan Fiuza; Pellizzer, Eduardo Piza; Pesqueira, Aldiéris Alves

    2010-10-01

    The purpose of this study was to investigate color change of irises obtained by both printed digital image and painted with gouache, acrylic and oil paints, after polymerization and accelerated aging. Eight samples simulating ocular prostheses were fabricated. Each sample was constituted by one disc of N1 colored acrylic resin and one disc of colorless acrylic resin with the iris interposed between the discs. The irises in brown and blue color were obtained by painting or by digital image. The specimens' colors were measured with a spectrophotometer using the CIE L*a*b* system, at baseline (B), after polymerization (P), and after 504h (A(1)) and 1008h (A(2)) of accelerated aging. The data were evaluated by 2-way repeated-measures ANOVA and the Tukey's HSD test (alpha=.05). Color change was observed in all samples both after polymerization and after accelerated aging. The different periods of accelerated aging did not influence on color change for the irises painted with blue oil paint. The polymerization promoted a statistical significant effect on the iris color stability for all painting techniques in comparison to all accelerated aging periods. After accelerated aging the oil painting technique showed the greatest color stability while the printed digital images technique the worst. Copyright (c) 2010 British Contact Lens Association. Published by Elsevier Ltd. All rights reserved.

  11. Weapon foam accelerated aging using dynamic mechanical analysis

    SciTech Connect

    Rand, P.B.; Hance, B.G.

    1996-03-01

    Rigid polyurethane foams are used for supports and as encapsulants for electronic assemblies in almost all weapon systems. Mechanical properties (storage, loss, rubbery, and glassy moduli) of three foams are being evaluated; the test scheme is illustrated. Aging tests are also being run on the long-term performance of foams being used in the Russian Fissile Material Container; there was no significant change in the glass transition temperature, glassy modulus, or rubbery modulus after one year of aging.

  12. Accelerated retinal aging in PACAP knock-out mice.

    PubMed

    Kovács-Valasek, Andrea; Szabadfi, Krisztina; Dénes, Viktória; Szalontai, Bálint; Tamás, Andrea; Kiss, Péter; Szabó, Aliz; Setalo, Gyorgy; Reglődi, Dóra; Gábriel, Robert

    2017-02-13

    Pituitary adenylate cyclase activating polypeptide (PACAP) is a neurotrophic and neuroprotective peptide. PACAP and its receptors are widely distributed in the retina. A number of reports provided evidence that PACAP is neuroprotective in retinal degenerations. The current study compared retina cell type-specific differences in young (3-4months) and aged adults (14-16months), of wild-type (WT) mice and knock-out (KO) mice lacking endogenous PACAP production during the course of aging. Histological, immunocytochemical and Western blot examinations were performed. The staining for standard neurochemical markers (tyrosine hydroxylase for dopaminergic cells, calbindin 28 kDa for horizontal cells, protein kinase Cα for rod bipolar cells) of young adult PACAP KO retinas showed no substantial alterations compared to young adult WT retinas, except for the specific PACAP receptor (PAC1-R) staining. We could not detect PAC1-R immunoreactivity in bipolar and horizontal cells in young adult PACAP KO animals. Some other age-related changes were observed only in the PACAP KO mice only. These alterations included horizontal and rod bipolar cell dendritic sprouting into the photoreceptor layer and decreased ganglion cell number. Also, Müller glial cells showed elevated GFAP expression compared to the aging WT retinas. Furthermore, Western blot analyses revealed significant differences between the phosphorylation state of ERK1/2 and JNK in KO mice, indicating alterations in the MAPK signaling pathway. These results support the conclusion that endogenous PACAP contributes to protection against aging of the nervous system.

  13. Nylon 6.6 accelerated aging studies : thermal-oxidative degradation and its interaction with hydrolysis.

    SciTech Connect

    Bernstein, Robert; Derzon, Dora Kay; Gillen, Kenneth T.

    2004-06-01

    Accelerated aging of Nylon 6.6 fibers used in parachutes has been conducted by following the tensile strength loss under both thermal-oxidative and 100% relative humidity conditions. Thermal-oxidative studies (air circulating ovens) were performed for time periods of weeks to years at temperatures ranging from 37 C to 138 C. Accelerated aging humidity experiments (100% RH) were performed under both an argon atmosphere to examine the 'pure' hydrolysis pathway, and under an oxygen atmosphere (oxygen partial pressure close to that occurring in air) to mimic true aging conditions. As expected the results indicated that degradation caused by humidity is much more important than thermal-oxidative degradation. Surprisingly when both oxygen and humidity were present the rate of degradation was dramatically enhanced relative to humidity aging in the absence of oxygen. This significant and previously unknown phenomena underscores the importance of careful accelerated aging that truly mimics real world storage conditions.

  14. Caveolin-1 and Accelerated Host Aging in the Breast Tumor Microenvironment

    PubMed Central

    Mercier, Isabelle; Camacho, Jeanette; Titchen, Kanani; Gonzales, Donna M.; Quann, Kevin; Bryant, Kelly G.; Molchansky, Alexander; Milliman, Janet N.; Whitaker-Menezes, Diana; Sotgia, Federica; Jasmin, Jean-François; Schwarting, Roland; Pestell, Richard G.; Blagosklonny, Mikhail V.; Lisanti, Michael P.

    2013-01-01

    Increasing chronological age is the most significant risk factor for human cancer development. To examine the effects of host aging on mammary tumor growth, we used caveolin (Cav)-1 knockout mice as a bona fide model of accelerated host aging. Mammary tumor cells were orthotopically implanted into these distinct microenvironments (Cav-1+/+ versus Cav-1−/− age-matched young female mice). Mammary tumors grown in a Cav-1–deficient tumor microenvironment have an increased stromal content, with vimentin-positive myofibroblasts (a marker associated with oxidative stress) that are also positive for S6-kinase activation (a marker associated with aging). Mammary tumors grown in a Cav-1–deficient tumor microenvironment were more than fivefold larger than tumors grown in a wild-type microenvironment. Thus, a Cav-1–deficient tumor microenvironment provides a fertile soil for breast cancer tumor growth. Interestingly, the mammary tumor-promoting effects of a Cav-1–deficient microenvironment were estrogen and progesterone independent. In this context, chemoprevention was achieved by using the mammalian target of rapamycin (mTOR) inhibitor and anti-aging drug, rapamycin. Systemic rapamycin treatment of mammary tumors grown in a Cav-1–deficient microenvironment significantly inhibited their tumor growth, decreased their stromal content, and reduced the levels of both vimentin and phospho-S6 in Cav-1–deficient cancer-associated fibroblasts. Since stromal loss of Cav-1 is a marker of a lethal tumor microenvironment in breast tumors, these high-risk patients might benefit from treatment with mTOR inhibitors, such as rapamycin or other rapamycin-related compounds (rapalogues). PMID:22698676

  15. [Experimental models of human skin aging].

    PubMed

    Nikolakis, G; Zoschke, C; Makrantonaki, E; Hausmann, C; Schäfer-Korting, M; Zouboulis, C C

    2016-02-01

    The skin is a representative model for the study of human aging. Despite the high regenerative capacity of the skin, skin physiology changes over the course of life. Medical and cosmetic research is trying to prevent aging, to slow, to stop, or to reverse it. Effects of age-related DNA damage and of changing skin structure on pharmacological parameters are largely unknown. This review article summarizes the state of scientific knowledge in the field of experimental models of human skin aging and shows approaches to improve organotypic skin models, to develop predictive models of aging, and improve aging research.

  16. Recipient aging accelerates acquired transthyretin amyloidosis after domino liver transplantation.

    PubMed

    Misumi, Yohei; Narita, Yasuko; Oshima, Toshinori; Ueda, Mitsuharu; Yamashita, Taro; Tasaki, Masayoshi; Obayashi, Konen; Isono, Kaori; Inomata, Yukihiro; Ando, Yukio

    2016-05-01

    Domino liver transplantation (DLT) with liver grafts from patients with hereditary transthyretin (TTR) amyloidosis has been performed throughout the world because of a severe liver graft shortage. Reports of acquired systemic TTR amyloidosis in domino liver recipients have been increasing; however, the precise pathogenesis and clinical course of acquired TTR amyloidosis remains unclear. We analyzed the relationship between the occurrence of acquired amyloidosis and clinical features in 22 consecutive domino liver donors with hereditary TTR amyloidosis (10 males and 12 females; mean age at DLT: 37.2 years; TTR mutations: V30M [n = 19], Y114C [n = 1], L55P [n = 1], and S50I [n = 1]) and 22 liver recipients (16 males and 6 females; mean age at DLT, 46.2 years). The mean times from DLT to amyloid first appearance and transplant recipient symptom onset were 8.2 years and 9.9 years, respectively. Kaplan-Meier analysis and quantification of the amyloid deposition revealed aging of recipients correlated with early de novo amyloid deposition. The sex of donors and recipients and the age, disease duration, and disease severity of donors had no significant effect on the latency of de novo amyloid deposition. In conclusion, our results demonstrate that recipient aging is associated with the early onset de novo amyloidosis. Because acquired amyloidosis will likely increase, careful follow-up for early amyloidosis detection and new treatments, including TTR stabilizers and gene-silencing therapies, are required. Liver Transplantation 22 656-664 2016 AASLD. © 2015 American Association for the Study of Liver Diseases.

  17. Analysis of Human Accelerated DNA Regions Using Archaic Hominin Genomes

    PubMed Central

    Burbano, Hernán A.; Green, Richard E.; Maricic, Tomislav; Lalueza-Fox, Carles; de la Rasilla, Marco; Rosas, Antonio; Kelso, Janet; Pollard, Katherine S.; Lachmann, Michael; Pääbo, Svante

    2012-01-01

    Several previous comparisons of the human genome with other primate and vertebrate genomes identified genomic regions that are highly conserved in vertebrate evolution but fast-evolving on the human lineage. These human accelerated regions (HARs) may be regions of past adaptive evolution in humans. Alternatively, they may be the result of non-adaptive processes, such as biased gene conversion. We captured and sequenced DNA from a collection of previously published HARs using DNA from an Iberian Neandertal. Combining these new data with shotgun sequence from the Neandertal and Denisova draft genomes, we determine at least one archaic hominin allele for 84% of all positions within HARs. We find that 8% of HAR substitutions are not observed in the archaic hominins and are thus recent in the sense that the derived allele had not come to fixation in the common ancestor of modern humans and archaic hominins. Further, we find that recent substitutions in HARs tend to have come to fixation faster than substitutions elsewhere in the genome and that substitutions in HARs tend to cluster in time, consistent with an episodic rather than a clock-like process underlying HAR evolution. Our catalog of sequence changes in HARs will help prioritize them for functional studies of genomic elements potentially responsible for modern human adaptations. PMID:22412940

  18. Comprehensive identification and analysis of human accelerated regulatory DNA

    PubMed Central

    Gittelman, Rachel M.; Hun, Enna; Ay, Ferhat; Madeoy, Jennifer; Pennacchio, Len; Noble, William S.; Hawkins, R. David; Akey, Joshua M.

    2015-01-01

    It has long been hypothesized that changes in gene regulation have played an important role in human evolution, but regulatory DNA has been much more difficult to study compared with protein-coding regions. Recent large-scale studies have created genome-scale catalogs of DNase I hypersensitive sites (DHSs), which demark potentially functional regulatory DNA. To better define regulatory DNA that has been subject to human-specific adaptive evolution, we performed comprehensive evolutionary and population genetics analyses on over 18 million DHSs discovered in 130 cell types. We identified 524 DHSs that are conserved in nonhuman primates but accelerated in the human lineage (haDHS), and estimate that 70% of substitutions in haDHSs are attributable to positive selection. Through extensive computational and experimental analyses, we demonstrate that haDHSs are often active in brain or neuronal cell types; play an important role in regulating the expression of developmentally important genes, including many transcription factors such as SOX6, POU3F2, and HOX genes; and identify striking examples of adaptive regulatory evolution that may have contributed to human-specific phenotypes. More generally, our results reveal new insights into conserved and adaptive regulatory DNA in humans and refine the set of genomic substrates that distinguish humans from their closest living primate relatives. PMID:26104583

  19. Low intensity laser therapy accelerates muscle regeneration in aged rats

    PubMed Central

    Vatansever, Fatma; Rodrigues, Natalia C.; Assis, Livia L.; Peviani, Sabrina S.; Durigan, Joao L.; Moreira, Fernando M.A.; Hamblin, Michael R.; Parizotto, Nivaldo A.

    2013-01-01

    Background Elderly people suffer from skeletal muscle disorders that undermine their daily activity and quality of life; some of these problems can be listed as but not limited to: sarcopenia, changes in central and peripheral nervous system, blood hypoperfusion, regenerative changes contributing to atrophy, and muscle weakness. Determination, proliferation and differentiation of satellite cells in the regenerative process are regulated by specific transcription factors, known as myogenic regulatory factors (MRFs). In the elderly, the activation of MRFs is inefficient which hampers the regenerative process. Recent studies found that low intensity laser therapy (LILT) has a stimulatory effect in the muscle regeneration process. However, the effects of this therapy when associated with aging are still unknown. Objective This study aimed to evaluate the effects of LILT (λ=830 nm) on the tibialis anterior (TA) muscle of aged rats. Subjects and methods The total of 56 male Wistar rats formed two population sets: old and young, with 28 animals in each set. Each of these sets were randomly divided into four groups of young rats (3 months of age) with n=7 per group and four groups of aged rats (10 months of age) with n=7 per group. These groups were submitted to cryoinjury + laser irradiation, cryoinjury only, laser irradiation only and the control group (no cryoinjury/no laser irradiation). The laser treatment was performed for 5 consecutive days. The first laser application was done 24 h after the injury (on day 2) and on the seventh day, the TA muscle was dissected and removed under anesthesia. After this the animals were euthanized. Histological analyses with toluidine blue as well as hematoxylin-eosin staining (for counting the blood capillaries) were performed for the lesion areas. In addition, MyoD and VEGF mRNA was assessed by quantitative polymerase chain reaction. Results The results showed significant elevation (p<0.05) in MyoD and VEGF genes expression levels

  20. Psychological stress-induced catecholamines accelerates cutaneous aging in mice.

    PubMed

    Romana-Souza, Bruna; Santos Lima-Cezar, Gracineide; Monte-Alto-Costa, Andréa

    2015-12-01

    Psychological stress may be an important extrinsic factor which influences aging process. However, neither study demonstrated the mechanism by which chronic stress participates in skin aging. Aim of this study was to investigate the effects of chronic psychological stress on mice skin. Mice were daily submitted to rotational stress, for 28 days, until euthanasia. After 28 days, mice were killed and normal skin was analyzed. Macroscopically, dorsum skin of chronically stressed mice presented more wrinkled when compared to that of nonstressed mice. In mice skin, chronic stress increased lipid peroxidation, carbonyl protein content, nitrotyrosine levels, neutrophil infiltration, neutrophil elastase, tissue inhibitor of metalloproteinase-1 and metalloproteinase-8 levels. Nevertheless, chronic stress reduced dermis thickness, collagen type I, fibrilin-1 and elastin protein levels in mice skin. In in vitro assays, murine skin fibroblasts were exposed to elevated epinephrine levels plus inhibitors of reactive oxygen species (ROS) and reactive nitrogen species (RNS), fibroblast activity was evaluated in a short time. In skin fibroblast culture, treatment with inhibitors of ROS and RNS synthesis abolished the increase in carbonyl protein content and lipid peroxide accumulation induced by epinephrine. In conclusion, chronic psychological stress may be an important extrinsic factor, which contributes to skin aging in mice. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  1. Effect of water load in human body systems upon tolerance to +Gz acceleration.

    PubMed

    Gembicka, D

    1989-01-01

    A possible improvement of +Gz acceleration tolerance, obtained in human subjects through administering specific volumes of water, viz. 7, 14 and 21 ml/kg body weight, to be drunk immediately before centrifuge examination in order to increase the volume of plasma, thus increasing the circulating blood volume, was the starting-point for this work. Two hundred healthy male subjects, aged 19.9 +/- 0.9, were classified in 4 main groups and 2 supplementary groups for examination. It was found that the water intake in volumes of 14 ml/kg body weight produced a significant mean increase in the acceleration tolerance of 0.8 G, and that of 21 ml/kg body weight improved acceleration tolerance by 1.1 G on the average. The increase tolerance to acceleration was maintained throughout a period of about 30 minutes (for 14 ml/kg body weight) up to approximately 50 minutes (for 21 ml/kg body weight). The favourable effect of water load in the body systems upon +Gz acceleration tolerance was probably due to the increase of plasma volume (by 5.24% and 6.98% for 14 and 21 ml/kg body weight, respectively).

  2. Tibial impact accelerations in gait of primary school children: The effect of age and speed.

    PubMed

    Tirosh, Oren; Orland, Guy; Eliakim, Alon; Nemet, Dan; Steinberg, Nili

    2017-09-01

    Tibial stress fractures are associated with increased lower extremity loading at initial foot-ground contact, reflected in high peak positive acceleration (>8g) of the tibia in adults. There is no reported data on peak positive acceleration of the tibia in children during walking and running. The aim of this study was to establish tibial peak positive acceleration responses in children across a range of age and gait speeds. Twenty-four children aged 8.5±1.4years with no known gait pathology comprised two age groups; Young (7-9year, n=12) and Older (10-12 years, n=12). Wireless Inertial Measurement Unit comprising a tri-axial accelerometer was securely taped to the anteromedial aspect of the distal tibia to measure peak positive acceleration responses while walking and running on the treadmill at 3 different speeds (20% below baseline, baseline, and 20% above baseline). Results showed significant increase in peak positive acceleration with increased gait speed and greater variability in young children compared to older children. The study suggests that ground impact in walking, but not running, is mature by age 7 years. Future studies should explore strategies using peak positive acceleration responses to monitor ground impact during sport activities and its application in gait retraining. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Unsupervised abnormal human behaviour detection using acceleration data.

    PubMed

    Carús, Juan Luis; Peláez, Víctor; López, Gloria; Fernández, Miguel Ángel; Alvarez, Eduardo; Díaz, Gabriel

    2013-01-01

    Abnormal human behavior detection under free-living conditions is a reliable technique to detect activity disorders and diseases. This work proposes an acceleration-based algorithm to detect abnormal behavior as an abnormal increase or decrease in physical activity (PA). The algorithm is based on statistical features of human physical activity. Using a period of observed physical activity as a reference, the algorithm is able to detect abnormal behavior in other periods of time. The approach is unsupervised as the modeling of the reference behavior is not required. It has been validated with a group of 12 users under free-living conditions for two days. Results show a precision greater than 75% and a recall of 92%.

  4. Accelerated Telomere Shortening and Replicative Senescence in Human Fibroblasts Overexpressing Mutant and Wild Type Lamin A

    PubMed Central

    Huang, Shurong; Risques, Rosa Ana; Martin, George M.; Rabinovitch, Peter S.; Oshima, Junko

    2008-01-01

    LMNA mutations are responsible for a variety of genetic disorders, including muscular dystrophy, lipodystrophy, and certain progeroid syndromes, notably Hutchinson-Gilford Progeria. Although a number of clinical features of these disorders are suggestive of accelerated aging, it is not known whether cells derived from these patients exhibit cellular phenotypes associated with accelerated aging. We examined a series of isogenic skin fibroblast lines transfected with LMNA constructs bearing known pathogenic point mutations or deletion mutations found in progeroid syndromes. Fibroblasts overexpressing mutant lamin A exhibited accelerated rates of loss of telomeres and shortened replicative lifespans, in addition to abnormal nuclear morphology. To our surprise, these abnormalities were also observed in lines overexpressing wild-type lamin A. Copy number variants are common in human populations; those involving LMNA, whether arising meiotically or mitotically, might lead to progeroid phenotypes. In an initial pilot study of 23 progeroid cases without detectible WRN or LMNA mutations, however, no cases of altered LMNA copy number were detected. Nevertheless, our findings raise a hypothesis that changes in lamina organization may cause accelerated telomere attrition, with different kinetics for overexpession of wild-type and mutant lamin A, which leads to rapid replicative senescence and progroid phenotypes. PMID:17870066

  5. Traumatic stress, oxidative stress and posttraumatic stress disorder: neurodegeneration and the accelerated-aging hypothesis

    PubMed Central

    Miller, Mark W.; Sadeh, Naomi

    2014-01-01

    Posttraumatic stress disorder (PTSD) is associated with elevated risk for a variety of age-related diseases and neurodegeneration. In this paper, we review evidence relevant to the hypothesis that chronic PTSD constitutes a form of persistent life stress that potentiates oxidative stress (OXS) and accelerates cellular aging. We provide an overview of empirical studies that have examined the effects of psychological stress on OXS, discuss the stress-perpetuating characteristics of PTSD, and then identify mechanisms by which PTSD might promote OXS and accelerated aging. We review studies on OXS-related genes and the role that they may play in moderating the effects of PTSD on neural integrity and conclude with a discussion of directions for future research on antioxidant treatments and biomarkers of accelerated aging in PTSD. PMID:25245500

  6. Accelerated ageing in testing bricks used in the conservation of historic buildings

    NASA Astrophysics Data System (ADS)

    Pavlendová, Gabriela; Podoba, Rudolf; Baník, Ivan

    2014-11-01

    The effect of accelerated climate ageing on historical bricks in the laboratory is investigated in the paper. Differences in thermal properties are experimentally determined and studied before and after bricks exposure to climate ageing, which consists of 60 freeze-thaw cycles. For measuring thermal conductivity, diffusivity and specific heat, pulse method is used.

  7. Cigarette smoke induced autophagy-impairment accelerates lung aging, COPD-emphysema exacerbations and pathogenesis.

    PubMed

    Vij, Neeraj; Chandramani, Prashanth; Westphal, Colin Van; Hole, Rachel; Bodas, Manish

    2016-07-13

    Cigarette-smoke (CS) exposure and aging are the leading causes of chronic obstructive pulmonary disease (COPD)-emphysema development, although the molecular mechanism that mediates disease pathogenesis remains poorly understood. To investigate the impact of CS-exposure and aging on autophagy, and pathophysiological changes associated with lung aging (senescence) and emphysema progression. Beas2b cells, C57BL/6 mice and human (GOLD 0-IV) lung tissues were used to determine the central mechanism involved in CS/age-related COPD-emphysema pathogenesis. Beas2b cells and murine lungs exposed to CSE/CS showed a significant (p<0.05) accumulation of poly-ubiquitinated proteins and impaired-autophagy marker, p62, in aggresome-bodies. Moreover, treatment with autophagy-inducing antioxidant drug, cysteamine significantly (p<0.001) decreased CSE/CS-induced aggresome-bodies. We also found a significant (p<0.001) increase in levels of aggresome-bodies in the lungs of smokers and COPD-subjects in comparison to non-smoker controls. Furthermore, the presence and levels of aggresome-bodies statistically correlated with severity of emphysema and alveolar senescence. In addition to CS exposure, lungs from old mice also showed accumulation of aggresome-bodies, suggesting this as a common mechanism to initiate cellular senescence and emphysema. Additionally, Beas2b cells and murine lungs exposed to CSE/CS showed cellular apoptosis and senescence, which were both controlled by cysteamine treatment. In parallel, we evaluated the impact of CS on pulmonary exacerbation, using mice exposed to CS and/or infected with Pseudomonas aeruginosa (Pa), and confirmed cysteamine's potential as an autophagy-inducing antibacterial drug, based on its ability to control CS-induced pulmonary exacerbation (Pa-bacterial counts) and resulting inflammation. CS induced autophagy-impairment accelerates lung aging, COPD-emphysema exacerbations and pathogenesis. Copyright © 2016, American Journal of Physiology

  8. Accelerated thermal aging of petroleum-based ferrofluids

    NASA Astrophysics Data System (ADS)

    Segal, V.; Nattrass, D.; Raj, K.; Leonard, D.

    1999-07-01

    The effect of elevated temperature on the physical and insulating properties of ferrofluid specifically developed for use as a liquid dielectric (D-fluid) for power transformers has been investigated. The D-fluid was produced as a colloidal mix of a specifically synthesized ferrofluid with a conventional mineral oil, and it was subjected to thermal aging conditions modeled after a typical power transformer where the insulation fluid is expected to retain its dielectric performance for about 40 years of continuous service in a sealed tank. The well-known Arrhenius relationship was employed to model "life in service" for up to 40 years at 105°C which corresponded to holding the samples in sealed jars for 10 weeks at 185°C. Another set of small ampules (5 ml) was prepared to test the main physical properties after even longer aging. D-fluid tested after a period of 34 and 50 weeks at 185°C showed no degradation of thermal or colloid stability. The dielectric colloid was also subjected to a 21 day-long test at 110°C in a sealed jar in the presence of typical transformer materials: copper, cellulose, and silicon steel (so-called "bomb" test). Finally, the ferrofluid went through an oxidation stability test (ASTM D2440). Test results show that the newly developed dielectric colloid satisfies the long-term service requirements the transformer users typically apply to conventional mineral oils.

  9. Fine-pore aeration diffusers: accelerated membrane ageing studies.

    PubMed

    Kaliman, An; Rosso, Diego; Leu, Shao-Yuan; Stenstrom, Michael K

    2008-01-01

    Polymeric membranes are widely used in aeration systems for biological treatment. These membranes may degrade over time and are sensitive to fouling and scaling. Membrane degradation is reflected in a decline in operating performance and higher headloss, resulting in increased energy costs. Mechanical property parameters, such as membrane hardness, Young's modulus, and orifice creep, were used to characterize the performance of membranes over time in operation and to predict their failure. Used diffusers from municipal wastewater treatment plants were collected and tested for efficiency and headloss, and then dissected to facilitate measurements of Young's modulus, hardness, and orifice creep. Higher degree of membrane fouling corresponded consistently with larger orifice creep. A lab-scale membrane ageing simulation was performed with polyurethane and four different ethylene-propylene-diene (EPDM) membrane diffusers by subjecting them to chemical ageing cycles and periodic testing. The results confirmed full-scale plant results and showed the superiority of orifice creep over Young's modulus and hardness in predicting diffuser deterioration.

  10. Effect of accelerated aging on the cross-link density of medical grade silicones.

    PubMed

    Mahomed, Aziza; Pormehr, Negin Bagheri

    2016-11-25

    Four specimens of Nagor silicone of different hardness (soft, medium and hard) were swollen, until they reached equilibrium (i.e. constant mass) in five liquids at 25°C, before and after accelerated aging. For the specimens swollen before accelerated aging, the greatest swelling was obtained in methyl cyclohexane, while for the specimens swollen after accelerated aging, the greatest swelling was obtained in cyclohexane. The cross-link density, υ, was also calculated from the swelling measurements for all the specimens, before and after accelerated aging, using the Flory-Rehner equation. The softer silicones, which swelled the most, had lower υ values than harder silicones. The amount of swelling (measured in terms of ϕ) and υ varied significantly (p<0.05) in some cases, between the different silicone hardness and between different liquids. Furthermore, the cross-link density, υ, significantly (p<0.05) increased after accelerated aging in most liquids.Note: ϕ is defined as the volume fraction of polymer in its equilibrium swollen state. A probability value of statistical significance of 0.05 or 5% was selected, hence if a p value of less than 0.05 was obtained, the null hypothesis was rejected (i.e. significant if p<0.05).

  11. Evidence for accelerated vascular aging in bipolar disorder

    PubMed Central

    Sodhi, Simrit K.; Linder, Jonathan; Chenard, Catherine A.; Miller, Del D.; Haynes, William G.; Fiedorowicz, Jess G.

    2012-01-01

    Objective Persons with bipolar disorder face excess risk of cardiovascular disease, although the biobehavioral mechanisms and time course are unclear. We measured vascular stiffness in a cross-sectional sample of participants with bipolar disorder and compared results to published normative data to assess time-course and relationship to behavioral risk factors. Methods 62 individuals with bipolar disorder (33±6.7 years; 64% female) underwent non-invasive assessment of arterial stiffness through arterial applanation tonometry. Lifetime tobacco exposure was estimated on clinical interview. Physical activity was assessed using the long-version of the International Physical Activity Questionnaire (IPAQ). A food frequency questionnaire was used to compute Alternate Healthy Eating Index (AHEI), a measure of overall dietary quality. Medication histories were systematically abstracted from pharmacy records. Results Participants over the age of 32 (median split) had greater arterial stiffness than expected from age-based population norms for pulse wave velocity (PWV) (7.6 vs. 7.0 m/s, p=0.02) and estimated aortic augmentation pressure (AIx) (14.2 vs. 8.2%, p=0.0002). The younger portion of the sample did not differ from population norms on these measures (PWV 6.3 vs. 6.4 m/s, p=0.45 and AIx 7.6 vs. 7.4%, p=0.60). In the older half of the sample, physical activity was inversely associated with AIx and poorer diet marginally associated with PWV. These findings were independent of body mass index (BMI), which was strongly related to arterial stiffness. Conclusion Risk for vascular disease may be acquired over the long-term course of affective illness. This risk appears to reflect maladaptive health behaviors, which may be amenable to intervention. PMID:22850256

  12. Senescence-accelerated OXYS rats: a model of age-related cognitive decline with relevance to abnormalities in Alzheimer disease.

    PubMed

    Stefanova, Natalia A; Kozhevnikova, Oyuna S; Vitovtov, Anton O; Maksimova, Kseniya Yi; Logvinov, Sergey V; Rudnitskaya, Ekaterina A; Korbolina, Elena E; Muraleva, Natalia A; Kolosova, Nataliya G

    2014-01-01

    Senescence-accelerated OXYS rats are an experimental model of accelerated aging that was established from Wistar stock via selection for susceptibility to cataractogenic effects of a galactose-rich diet and via subsequent inbreeding of highly susceptible rats. Currently, we have the 102nd generation of OXYS rats with spontaneously developing cataract and accelerated senescence syndrome, which means early development of a phenotype similar to human geriatric disorders, including accelerated brain aging. In recent years, our group found strong evidence that OXYS rats are a promising model for studies of the mechanisms of brain aging and neurodegenerative processes similar to those seen in Alzheimer disease (AD). The manifestation of behavioral alterations and learning and memory deficits develop since the fourth week of age, i.e., simultaneously with first signs of neurodegeneration detectable on magnetic resonance imaging and under a light microscope. In addition, impaired long-term potentiation has been demonstrated in OXYS rats by the age of 3 months. With age, neurodegenerative changes in the brain of OXYS rats become amplified. We have shown that this deterioration happens against the background of overproduction of amyloid precursor protein (AβPP), accumulation of β-amyloid (Aβ), and hyperphosphorylation of the tau protein in the hippocampus and cortex. The development of AMD-like retinopathy in OXYS rats is also accompanied by increased accumulation of Aβ in the retina. These published data suggest that the OXYS strain may serve as a spontaneous rat model of AD-like pathology and could help to decipher the pathogenesis of AD.

  13. Melatonin and human skin aging

    PubMed Central

    Kleszczynski, Konrad; Fischer, Tobias W.

    2012-01-01

    Like the whole organism, skin follows the process of aging during life-time. Additional to internal factors, several environmental factors, such as solar radiation, considerably contribute to this process. While fundamental mechanisms regarding skin aging are known, new aspects of anti-aging agents such as melatonin are introduced. Melatonin is a hormone produced in the glandula pinealis that follows a circadian light-dependent rhythm of secretion. It has been experimentally implicated in skin functions such as hair cycling and fur pigmentation, and melatonin receptors are expressed in many skin cell types including normal and malignant keratinocytes, melanocytes and fibroblasts. It possesses a wide range of endocrine properties as well as strong antioxidative activity. Regarding UV-induced solar damage, melatonin distinctly counteracts massive generation of reactive oxygen species, mitochondrial and DNA damage. Thus, there is considerable evidence for melatonin to be an effective anti-skin aging compound, and its various properties in this context are described in this review. PMID:23467217

  14. Ageing of the human hypothalamus.

    PubMed

    Swaab, D F

    1995-01-01

    The various hypothalamic nuclei show very different patterns of change in ageing. These patterns are a basis for changes in biological rhythms, hormones, autonomous functions or behavior. The suprachiasmatic nucleus (SCN) coordinates circadian and circannual rhythms. A marked seasonal and circadian variation in the vasopressin (AVP) cell number of the SCN was observed in relation to the variation in photoperiod. During normal ageing, the circadian variation and number of AVP-expressing neurons in the SCN decreases. The sexually dimorphic nucleus (SDN), intermediate nucleus or INAH-1 is localized between the supraoptic and paraventricular nucleus (PVN). In adult men the SDN is twice as large as in adult women. In girls, the SDN shows a first period of decreasing cell numbers during prepubertal development, leading to sexual dimorphism. During ageing a decrease in cell number is found in both sexes. The cells of the supraoptic nucleus and PVN produce AVP or oxytocin and coexpress tyrosine hydroxylase. These nuclei are examples of neuron populations that seem to stay perfectly intact in ageing. Parvicellular corticotropin-releasing-hormone (CRH)-containing neurons are found throughout the PVN. CRH neurons in the PVN are activated in the course of ageing, as indicated by their increase in number and AVP coexpression. Part of the infundibular (or arcuate) nucleus, the subventricular nucleus, contains hypertrophic neurons in postmenopausal women. The hypertrophied neurons contain neurokinin-B (NKB), substance P and estrogen receptors and probably act on LHRH neurons as interneurons. The NKB neurons may also be involved in the initiation of menopausal flushes. The nucleus tuberalis lateralis might be involved in feeding behavior and metabolism.(ABSTRACT TRUNCATED AT 250 WORDS)

  15. Mutations in Human Accelerated Regions Disrupt Cognition and Social Behavior.

    PubMed

    Doan, Ryan N; Bae, Byoung-Il; Cubelos, Beatriz; Chang, Cindy; Hossain, Amer A; Al-Saad, Samira; Mukaddes, Nahit M; Oner, Ozgur; Al-Saffar, Muna; Balkhy, Soher; Gascon, Generoso G; Nieto, Marta; Walsh, Christopher A

    2016-10-06

    Comparative analyses have identified genomic regions potentially involved in human evolution but do not directly assess function. Human accelerated regions (HARs) represent conserved genomic loci with elevated divergence in humans. If some HARs regulate human-specific social and behavioral traits, then mutations would likely impact cognitive and social disorders. Strikingly, rare biallelic point mutations-identified by whole-genome and targeted "HAR-ome" sequencing-showed a significant excess in individuals with ASD whose parents share common ancestry compared to familial controls, suggesting a contribution in 5% of consanguineous ASD cases. Using chromatin interaction sequencing, massively parallel reporter assays (MPRA), and transgenic mice, we identified disease-linked, biallelic HAR mutations in active enhancers for CUX1, PTBP2, GPC4, CDKL5, and other genes implicated in neural function, ASD, or both. Our data provide genetic evidence that specific HARs are essential for normal development, consistent with suggestions that their evolutionary changes may have altered social and/or cognitive behavior. PAPERCLIP.

  16. Chromatic stability of acrylic resins of artificial eyes submitted to accelerated aging and polishing.

    PubMed

    Goiato, Marcelo Coelho; Santos, Daniela Micheline dos; Souza, Josiene Firmino; Moreno, Amália; Pesqueira, Aldiéris Alves

    2010-12-01

    Esthetics and durability of materials used to fabricate artificial eyes has been an important issue since artificial eyes are essential to restore esthetics and function, protect the remaining tissues and help with patients' psychological therapy. However, these materials are submitted to degrading effects of environmental agents on the physical properties of the acrylic resin. This study assessed the color stability of acrylic resins used to fabricate sclera in three basic shades (N1, N2 and N3) when subjected to accelerated aging, mechanical and chemical polishing. Specimens of each resin were fabricated and submitted to mechanical and chemical polishing. Chromatic analysis was performed before and after accelerated aging through ultraviolet reflection spectrophotometry. All specimens revealed color alteration following polishing and accelerated aging. The resins presented statistically significant chromatic alteration (p<0.01) between the periods of 252 and 1008 h. Both polishing methods presented no significant difference between the values of color derivatives of resins.

  17. Accelerated Human Mutant Tau Aggregation by Knocking Out Murine Tau in a Transgenic Mouse Model

    PubMed Central

    Ando, Kunie; Leroy, Karelle; Héraud, Céline; Yilmaz, Zehra; Authelet, Michèle; Suain, Valèrie; De Decker, Robert; Brion, Jean-Pierre

    2011-01-01

    Many models of human tauopathies have been generated in mice by expression of a human mutant tau with maintained expression of mouse endogenous tau. Because murine tau might interfere with the toxic effects of human mutant tau, we generated a model in which a pathogenic human tau protein is expressed in the absence of wild-type tau protein, with the aim of facilitating the study of the pathogenic role of the mutant tau and to reproduce more faithfully a human tauopathy. The Tg30 line is a tau transgenic mouse model overexpressing human 1N4R double-mutant tau (P301S and G272V) that develops Alzheimer's disease-like neurofibrillary tangles in an age-dependent manner. By crossing Tg30 mice with mice invalidated for their endogenous tau gene, we obtained Tg30xtau−/− mice that express only exogenous human double-mutant 1N4R tau. Although Tg30xtau−/− mice express less tau protein compared with Tg30, they exhibit signs of decreased survival, increased proportion of sarkosyl-insoluble tau in the brain and in the spinal cord, increased number of Gallyas-positive neurofibrillary tangles in the hippocampus, increased number of inclusions in the spinal cord, and a more severe motor phenotype. Deletion of murine tau accelerated tau aggregation during aging of this mutant tau transgenic model, suggesting that murine tau could interfere with the development of tau pathology in transgenic models of human tauopathies. PMID:21281813

  18. A stochastic model of randomly accelerated walkers for human mobility

    PubMed Central

    Gallotti, Riccardo; Bazzani, Armando; Rambaldi, Sandro; Barthelemy, Marc

    2016-01-01

    Recent studies of human mobility largely focus on displacements patterns and power law fits of empirical long-tailed distributions of distances are usually associated to scale-free superdiffusive random walks called Lévy flights. However, drawing conclusions about a complex system from a fit, without any further knowledge of the underlying dynamics, might lead to erroneous interpretations. Here we show, on the basis of a data set describing the trajectories of 780,000 private vehicles in Italy, that the Lévy flight model cannot explain the behaviour of travel times and speeds. We therefore introduce a class of accelerated random walks, validated by empirical observations, where the velocity changes due to acceleration kicks at random times. Combining this mechanism with an exponentially decaying distribution of travel times leads to a short-tailed distribution of distances which could indeed be mistaken with a truncated power law. These results illustrate the limits of purely descriptive models and provide a mechanistic view of mobility. PMID:27573984

  19. A stochastic model of randomly accelerated walkers for human mobility

    NASA Astrophysics Data System (ADS)

    Gallotti, Riccardo; Bazzani, Armando; Rambaldi, Sandro; Barthelemy, Marc

    2016-08-01

    Recent studies of human mobility largely focus on displacements patterns and power law fits of empirical long-tailed distributions of distances are usually associated to scale-free superdiffusive random walks called Lévy flights. However, drawing conclusions about a complex system from a fit, without any further knowledge of the underlying dynamics, might lead to erroneous interpretations. Here we show, on the basis of a data set describing the trajectories of 780,000 private vehicles in Italy, that the Lévy flight model cannot explain the behaviour of travel times and speeds. We therefore introduce a class of accelerated random walks, validated by empirical observations, where the velocity changes due to acceleration kicks at random times. Combining this mechanism with an exponentially decaying distribution of travel times leads to a short-tailed distribution of distances which could indeed be mistaken with a truncated power law. These results illustrate the limits of purely descriptive models and provide a mechanistic view of mobility.

  20. The Impact of Aging on Human Sexuality.

    ERIC Educational Resources Information Center

    Rienzo, Barbara A.

    1985-01-01

    Lay persons and professionals need to be educated on the effects of aging on human sexuality. Effective communication techniques and accurate sexuality information can lead to prevention of psychosocial problems and sexual dysfunction. (Author/DF)

  1. The Impact of Aging on Human Sexuality.

    ERIC Educational Resources Information Center

    Rienzo, Barbara A.

    1985-01-01

    Lay persons and professionals need to be educated on the effects of aging on human sexuality. Effective communication techniques and accurate sexuality information can lead to prevention of psychosocial problems and sexual dysfunction. (Author/DF)

  2. Combined effects of age and gender on gait symmetry and regularity assessed by autocorrelation of trunk acceleration.

    PubMed

    Kobayashi, Hiromitsu; Kakihana, Wataru; Kimura, Tasuku

    2014-07-04

    The gait of a healthy person is believed to be more regular and symmetrical than those of an individual with a disease. Thus, symmetry and regularity are important indicators of human gait. The effects of age and gender on gait symmetry and regularity were investigated in 87 Japanese participants by measuring trunk accelerometry during a 7-m walk. The younger group included 26 female and 21 male students, and the elderly group included 24 females and 16 males. Average age for each group was 20 and 70 years, respectively. Gait symmetry and regularity were evaluated on the basis of autocorrelation functions of trunk accelerations of vertical and anteroposterior axes. The relationship between age and gait symmetry and regularity was statistically significant for both vertical and anteroposterior axes. Elderly participants showed lower symmetry and regularity in their gait than young participants. A significant gender effect was observed for the symmetry index of both axes but not for the regularity index. Male participants showed lower gait symmetry than females. An interaction effect between age and gender was significant in the symmetry index of anteroposterior acceleration. Gender effect was appeared more clearly in elderly than young participants. Elderly participants showed a more asymmetrical and irregular gait than young participants. In addition to age, a significant gender effect was observed on gait symmetry. However, the effect size of gender was smaller than that of age, and it was not significant for gait regularity. The gait indices obtained by autocorrelation of trunk acceleration can be considered useful to evaluate aging effect on gait.

  3. Seismic-fragility tests of new and accelerated-aged Class 1E battery cells

    SciTech Connect

    Bonzon, L.L.; Janis, W.J.; Black, D.A.; Paulsen, G.A.

    1987-01-01

    The seismic-fragility response of naturally-aged nuclear station safety-related batteries is of interest for two reasons: (1) to determine actual failure modes and thresholds and (2) to determine the validity of using the electrical capacity of individual cells as an indicator of the potential survivability of a battery given a seismic event. Prior reports in this series discussed the seismic-fragility tests and results for three specific naturally-aged cell types: 12-year old NCX-2250, 10-year old LCU-13, and 10-year old FHC-19. This report focuses on the complementary approach, namely, the seismic-fragility response of accelerated-aged batteries. Of particular interest is the degree to which such approaches accurately reproduce the actual failure modes and thresholds. In these tests the significant aging effects observed, in terms of seismic survivability, were: embrittlement of cell cases, positive bus material and positive plate grids; and excessive sulphation of positive plate active material causing hardening and expansion of positive plates. The IEEE Standard 535 accelerated aging method successfully reproduced seismically significant aging effects in new cells but accelerated grid embrittlement an estimated five years beyond the conditional age of other components.

  4. Accelerated aging test of solar mirrors: Comparison of different UV chambers

    NASA Astrophysics Data System (ADS)

    Avenel, Coralie; Gardette, Jean-Luc; Therias, Sandrine; Disdier, Angela; Raccurt, Olivier

    2017-06-01

    This study aimed to compare three accelerated aging chambers with different lamps and irradiance levels: Suntest XXL+ and Sepap 12/24 from ATLAS MTS and UV5X from AMC/AMTC. Five kinds of solar mirrors were tested: thin and thick monolithic glass, laminated glass, aluminum and a glass mirror stick on a composite polymer substrate. All samples were aged under irradiation with a temperature set onto 70 °C. Temperatures were measured directly onto samples in addition to the chamber value. Temperature was kept constant and equal in each device in order to get the same acceleration factor due to temperature for all aging. This allowed comparing the effect of irradiation only. Specular reflectance was measured at several intervals during aging, and silver and paints surfaces were monitored by optical microscopy. This study is included in the framework of the STAGE-STE European project. One of the objectives is to establish a standard for CSP mirrors accelerated aging tests. Results of aging are needed to understand which tests are relevant to each available technology of mirror. Furthermore, a standard aimed to be applied in any device which can reach required conditions, so influence of these devices has to be known to ensure the reproducibility of aging between chambers and laboratories.

  5. Towards Accelerated Aging Methodologies and Health Management of Power MOSFETs (Technical Brief)

    NASA Technical Reports Server (NTRS)

    Celaya, Jose R.; Patil, Nishad; Saha, Sankalita; Wysocki, Phil; Goebel, Kai

    2009-01-01

    Understanding aging mechanisms of electronic components is of extreme importance in the aerospace domain where they are part of numerous critical subsystems including avionics. In particular, power MOSFETs are of special interest as they are involved in high voltage switching circuits such as drivers for electrical motors. With increased use of electronics in aircraft control, it becomes more important to understand the degradation of these components in aircraft specific environments. In this paper, we present an accelerated aging methodology for power MOSFETs that subject the devices to indirect thermal overstress during high voltage switching. During this accelerated aging process, two major modes of failure were observed - latch-up and die attach degradation. In this paper we present the details of our aging methodology along with details of experiments and analysis of the results.

  6. Accelerated aging and discharge of lithium/thionyl-chloride D cells

    NASA Astrophysics Data System (ADS)

    Cieslak, W. R.

    Lithium/Thionyl-Chloride spiral wound 'D' cells from a variety of suppliers have been evaluated. Abuse testing has been used to verify safety of the cells, and accelerated aging has been used to estimate their performance for long life projects.

  7. Effects of accelerated ageing on viability, leachate exudation, and fatty acid content of Dalbergia sissoo Roxb

    Treesearch

    R.C. Thapliyal; K.F. Connor

    1997-01-01

    Accelerated ageing of seeds of Dalbergia sissoo Roxb., a multi-purpose tropical legume tree, was effective as a vigour test only at temperatures in excess of 43 deg C for 72 h. Increased leakage of solutes accompanied the decrease in viability, but there was no relationship between seed size and conductivity. Analyses of D. sissoo...

  8. Exposure to light at night accelerates aging and spontaneous uterine carcinogenesis in female 129/Sv mice

    PubMed Central

    Popovich, Irina G.; Zabezhinski, Mark A.; Panchenko, Andrei V.; Piskunova, Tatiana S.; Semenchenko, Anna V.; Tyndyk, Maragriata L.; Yurova, Maria N.; Anisimov, Vladimir N.

    2013-01-01

    The effect of the constant illumination on the development of spontaneous tumors in female 129/Sv mice was investigated. Forty-six female 129/Sv mice starting from the age of 2 mo were kept under standard light/dark regimen [12 h light (70 lx):12hr dark; LD, control group], and 46 of 129/Sv mice were kept under constant illumination (24 h a day, 2,500 lx, LL) from the age of 5 mo until to natural death. The exposure to the LL regimen significantly accelerated body weight gain, increased body temperature as well as acceleration of age-related disturbances in estrous function, followed by significant acceleration of the development of the spontaneous uterine tumors in female 129/Sv mice. Total tumor incidence as well as a total number of total or malignant tumors was similar in LL and LD group (p > 0.05). The mice from the LL groups survived less than those from the LD group (χ2 = 8.5; p = 0.00351, log-rank test). According to the estimated parameters of the Cox’s regression model, constant light regimen increased the relative risk of death in female mice compared with the control (LD) group (p = 0.0041). The data demonstrate in the first time that the exposure to constant illumination was followed by the acceleration of aging and spontaneous uterine tumorigenesis in female 129/Sv mice. PMID:23656779

  9. Towards Prognostics of Power MOSFETs: Accelerated Aging and Precursors of Failure

    DTIC Science & Technology

    2010-10-01

    Annual Conference of the Prognostics and Health Management Society, 2010 Towards Prognostics of Power MOSFETs : Accelerated Aging and Precursors of...research results dealing with power MOSFETs (metal oxide semiconductor field effect tran- sistor) within the prognostics and health management of...electronics. Gate controlled power transistors like power MOSFETs (metal oxide semiconductor field effect tran- sistor) are power semiconductor

  10. Effects of accelerated aging and p-coumaric on crimson clover (Trifolium incarnatium L.) seed germination.

    USDA-ARS?s Scientific Manuscript database

    Several phenolic acids, including p-coumaric acid, have been described as allelochemicals that may inhibit seed germination or seedling growth. Whether these effects are exacerbated in forage species by environmental stressors is unknown. Accelerated seed aging (high temperature (41 C) and high hum...

  11. Effect ofartificial accelerated aging on color stability and surface roughness of indirect composites.

    PubMed

    Zanin, Fabíola Rejane; Garcia, Lucas da Fonseca Roberti; Casemiro, Luciana Assirati; Pires-de-Souza, Fernanda de Carvalho Panzeri

    2008-03-01

    Direct and indirect composite resins have different forms of polymerization. Some materials require a post-cure system associating light and heat enhancing clinical properties. This study assessed the changes in color and surface roughness of three indirect composite resins after accelerated aging. Twelve specimens (15 x 2 mm) were obtained for each tested material. Subsequently, the first measurements for roughness tests and colorimetric spectrophotometry (CIE L*a*b* scale) were performed. Specimens were subject to accelerated aging for 384 hours. New measurements were then performed to evaluate the resulting change. Accelerated aging produced color change and increased surface roughness in all composite resins. Solidex resin showed color changes above the clinically accepted value (DeltaE = 4.31 +/- 0.22), and roughness values (Ra = 0.088 +/- 0.008 microm) statistically lower than that of Artglass (Ra = 0.141 +/- 0.026 microm) and Targis (Ra = 0.124 +/- 0.02 microm) (p<0.001). All the indirect resins tested showed color change and increased roughness after accelerated aging. Solidex showed color stability above a quantitative level considered clinically acceptable and lower roughness values compared to the other resins.

  12. Association of hormonal responses and performance of student pilots during acceleration training on the human centrifuge

    NASA Astrophysics Data System (ADS)

    Wirth, D.; Rohleder, N.; Welsch, H.

    2005-08-01

    Prediction of student pilots' +Gz tolerance by stress hormone levels would be a useful tool in aviation medicine. The aim of the present study was to analyze the relationship between neuroendocrine parameters with performance during acceleration training on the human centrifuge (HC).We investigated 21 student pilots during self-controlled acceleration training on the HC. Adrenocorticotropic hormone (ACTH), cortisol, epinephrine, and norepinephrine were measured after individual training sessions and at rest. Performance was defined by several characteristics including maximum tolerated acceleration. ACTH and cortisol, were significantly higher 20 minutes after acceleration training compared to the resting condition. Subjects tolerated a maximal acceleration of +6.69 Gz. HPA hormone levels and responses were associated with maximum tolerated acceleration +Gz. These findings support the expectation that acceleration- induced increases in stress hormones may enable the organism to tolerate a higher acceleration and could therefore be used as predictors for acceleration tolerance.

  13. Animal and human models to understand ageing.

    PubMed

    Lees, Hayley; Walters, Hannah; Cox, Lynne S

    2016-11-01

    Human ageing is the gradual decline in organ and tissue function with increasing chronological time, leading eventually to loss of function and death. To study the processes involved over research-relevant timescales requires the use of accessible model systems that share significant similarities with humans. In this review, we assess the usefulness of various models, including unicellular yeasts, invertebrate worms and flies, mice and primates including humans, and highlight the benefits and possible drawbacks of each model system in its ability to illuminate human ageing mechanisms. We describe the strong evolutionary conservation of molecular pathways that govern cell responses to extracellular and intracellular signals and which are strongly implicated in ageing. Such pathways centre around insulin-like growth factor signalling and integration of stress and nutritional signals through mTOR kinase. The process of cellular senescence is evaluated as a possible underlying cause for many of the frailties and diseases of human ageing. Also considered is ageing arising from systemic changes that cannot be modelled in lower organisms and instead require studies either in small mammals or in primates. We also touch briefly on novel therapeutic options arising from a better understanding of the biology of ageing. Copyright © 2016. Published by Elsevier Ireland Ltd.

  14. Coffee Silverskin Extract Protects against Accelerated Aging Caused by Oxidative Agents.

    PubMed

    Iriondo-DeHond, Amaia; Martorell, Patricia; Genovés, Salvador; Ramón, Daniel; Stamatakis, Konstantinos; Fresno, Manuel; Molina, Antonio; Del Castillo, Maria Dolores

    2016-06-01

    Nowadays, coffee beans are almost exclusively used for the preparation of the beverage. The sustainability of coffee production can be achieved introducing new applications for the valorization of coffee by-products. Coffee silverskin is the by-product generated during roasting, and because of its powerful antioxidant capacity, coffee silverskin aqueous extract (CSE) may be used for other applications, such as antiaging cosmetics and dermaceutics. This study aims to contribute to the coffee sector's sustainability through the application of CSE to preserve skin health. Preclinical data regarding the antiaging properties of CSE employing human keratinocytes and Caenorhabditis elegans are collected during the present study. Accelerated aging was induced by tert-butyl hydroperoxide (t-BOOH) in HaCaT cells and by ultraviolet radiation C (UVC) in C. elegans. Results suggest that the tested concentrations of coffee extracts were not cytotoxic, and CSE 1 mg/mL gave resistance to skin cells when oxidative damage was induced by t-BOOH. On the other hand, nematodes treated with CSE (1 mg/mL) showed a significant increased longevity compared to those cultured on a standard diet. In conclusion, our results support the antiaging properties of the CSE and its great potential for improving skin health due to its antioxidant character associated with phenols among other bioactive compounds present in the botanical material.

  15. Reproductive aging patterns in primates reveal that humans are distinct

    PubMed Central

    Alberts, Susan C.; Altmann, Jeanne; Brockman, Diane K.; Cords, Marina; Fedigan, Linda M.; Pusey, Anne; Stoinski, Tara S.; Strier, Karen B.; Morris, William F.; Bronikowski, Anne M.

    2013-01-01

    Women rarely give birth after ∼45 y of age, and they experience the cessation of reproductive cycles, menopause, at ∼50 y of age after a fertility decline lasting almost two decades. Such reproductive senescence in mid-lifespan is an evolutionary puzzle of enduring interest because it should be inherently disadvantageous. Furthermore, comparative data on reproductive senescence from other primates, or indeed other mammals, remains relatively rare. Here we carried out a unique detailed comparative study of reproductive senescence in seven species of nonhuman primates in natural populations, using long-term, individual-based data, and compared them to a population of humans experiencing natural fertility and mortality. In four of seven primate species we found that reproductive senescence occurred before death only in a small minority of individuals. In three primate species we found evidence of reproductive senescence that accelerated throughout adulthood; however, its initial rate was much lower than mortality, so that relatively few individuals experienced reproductive senescence before death. In contrast, the human population showed the predicted and well-known pattern in which reproductive senescence occurred before death for many women and its rate accelerated throughout adulthood. These results provide strong support for the hypothesis that reproductive senescence in midlife, although apparent in natural-fertility, natural-mortality populations of humans, is generally absent in other primates living in such populations. PMID:23898189

  16. Rationale for practical medical device accelerated aging programs in AAMI TIR 17

    NASA Astrophysics Data System (ADS)

    Lambert, Byron J.; Tang, Fuh-Wei

    2000-03-01

    A Technical Information Report, TIR 17, entitled, "Radiation Sterilization Material Qualification" has been published by the Association for the Advancement of Medical Instrumentation (AAMI) to provide guidance in order to increase the quality and reduce the cost and amount of time required for performing medical device material qualifications. It contains four sections that cover the fundamentals of material selection, processing, testing and accelerated aging programs. The last of these sections, entitled "Accelerating Aging Programs," provides step-by-step guidance for simple, empirical accelerated programs of use to the medical device industry. The methods are based on van't Hoff's observation that the rate of chemical reactions increases by a factor of two for every 10°C increase in temperature, the Q10=2 rule. With critical patient safety concerns in the medical device industry, it is appropriate for both device manufacturers and regulators to ask if simple, empirical methods such as those outlined in TIR 17 are reasonable and responsible. One reason for confidence in the methods is their success when used in aging environments that are much more severe than those commonly used in the medical device industry. Another reason for confidence in the methods is found from the observation that the working equations of the method can be derived from theory. This paper provides an overview of the thermal accelerated aging theory that forms the basis for the working equations of the accelerated aging programs of TIR 17. Assumptions used are examined and found reasonable; the theoretical foundation is established. While this foundation provides added confidence for the application of the methods of TIR 17 to the medical device industry, it is emphasized that application of the methods within appropriate boundaries is critical. Theoretical boundaries are explained and demonstrated by means of Arrhenius plots, and practical boundaries discussed.

  17. Accelerated aging of the putamen in patients with major depressive disorder.

    PubMed

    Sacchet, Matthew D; Camacho, M Catalina; Livermore, Emily E; Thomas, Ewart A C; Gotlib, Ian H

    2017-05-01

    Growing evidence indicates that major depressive disorder (MDD) is characterized by accelerated biological aging, including greater age-related changes in physiological functioning. The disorder is also associated with abnormal neural reward circuitry, particularly in the basal ganglia (BG). Here we assessed age-related changes in BG volume in both patients with MDD and healthy control participants. We obtained whole-brain T1-weighted images from patients with MDD and healthy controls. We estimated grey matter volumes of the BG, including the nucleus accumbens, caudate, pallidum and putamen. Volumes were assessed using multivariate analysis of covariance (MANCOVA) with age as a covariate, followed by appropriate post hoc tests. We included 232 individuals (116 patients with MDD) in our analysis. The MANCOVA yielded a significant group × age interaction (p = 0.043). Analyses for each region yielded a significant group × age interaction in the putamen (univariate test, p = 0.005; permutation test, p = 0.004); this effect was not significant in the other regions. The negative association between age and putamen volume was twice as large in the MDD than in the control group (-35.2 v. -16.7 mm(3)/yr), indicating greater age-related volumetric decreases in the putamen in individuals with MDD than in controls. These findings are cross-sectional; future studies should assess the longitudinal impact of accelerated aging on anhedonia and neural indices of reward processing. Our results indicate that putamen aging is accelerated in patients with MDD. Thus, the putamen may uniquely contribute to the adverse long-term effects of depressive psychopathology and may be a useful target for the treatment of MDD across the lifespan.

  18. The challenges of human population ageing

    PubMed Central

    Sander, Miriam; Oxlund, Bjarke; Jespersen, Astrid; Krasnik, Allan; Mortensen, Erik Lykke; Westendorp, Rudi Gerardus Johannes; Rasmussen, Lene Juel

    2015-01-01

    The 20th century saw an unprecedented increase in average human lifespan as well as a rapid decline in human fertility in many countries of the world. The accompanying worldwide change in demographics of human populations is linked to unanticipated and unprecedented economic, cultural, medical, social, public health and public policy challenges, whose full implications on a societal level are only just beginning to be fully appreciated. Some of these implications are discussed in this commentary, an outcome of Cultures of Health and Ageing, a conference co-sponsored by the University of Copenhagen (UCPH) and the Center for Healthy Ageing at UCPH, which took place on 20–21 June 2014 in Copenhagen, Denmark. Questions discussed here include the following: what is driving age-structural change in human populations? how can we create ‘age-friendly’ societies and promote ‘ageing-in-community’? what tools will effectively promote social engagement and prevent social detachment among older individuals? is there a risk that further extension of human lifespan would be a greater burden to the individual and to society than is warranted by the potential benefit of longer life? PMID:25452294

  19. Manganese-mediated acceleration of age-related hearing loss in mice

    PubMed Central

    Ohgami, Nobutaka; Yajima, Ichiro; Iida, Machiko; Li, Xiang; Oshino, Reina; Kumasaka, Mayuko Y.; Kato, Masashi

    2016-01-01

    Despite the fact that manganese (Mn) is known to be a neurotoxic element relevant to age-related disorders, the risk of oral exposure to Mn for age-related hearing loss remains unclear. In this study, we orally exposed wild-type young adult mice to Mn (Mn-exposed WT-mice) at 1.65 and 16.50 mg/L for 4 weeks. Mn-exposed WT-mice showed acceleration of age-related hearing loss. Mn-exposed WT-mice had neurodegeneration of spiral ganglion neurons (SGNs) with increased number of lipofuscin granules. Mn-exposed WT-mice also had increased hypoxia-inducible factor-1 alpha (Hif-1α) protein with less hydroxylation at proline 564 and decreased c-Ret protein in SGNs. Mn-mediated acceleration of age-related hearing loss involving neurodegeneration of SGNs was rescued in RET-transgenic mice carrying constitutively activated RET. Thus, oral exposure to Mn accelerates age-related hearing loss in mice with Ret-mediated neurodegeneration of SGNs. PMID:27824154

  20. Neuroaxonal dystrophy in aging human sympathetic ganglia.

    PubMed Central

    Schmidt, R. E.; Chae, H. Y.; Parvin, C. A.; Roth, K. A.

    1990-01-01

    Autonomic dysfunction is an increasingly recognized problem in aging animals and man. The pathologic changes that produce autonomic dysfunction in human aging are largely unknown; however, in experimental animal models specific pathologic changes have been found in selected sympathetic ganglia. To address whether similar neuropathologic changes occur in aging humans, the authors have examined paravertebral and prevertebral sympathetic ganglia from a series of 56 adult autopsied nondiabetic patients. They found significant, specific, age-related neuropathologic lesions in the prevertebral sympathetic superior mesenteric ganglia of autopsied patients. Markedly swollen dystrophic preterminal axons compressed or displaced the perikarya of principal sympathetic neurons. Ultrastructurally, these swollen presynaptic axons contained abundant disoriented neurofilaments surrounded by peripherally marginated dense core vesicles. Immunohistochemical studies demonstrated that dystrophic axons contained tyrosine hydroxylase and neuropeptide tyrosine (NPY)-like immunoreactivity but not other neuropeptides (VIP, substance P, gastrin-releasing peptide [GRP]/bombesin, met-enkephalin). Similar to the animal models of aging, lesions were much more frequent in the prevertebral superior mesenteric ganglia than in the paravertebral superior cervical ganglia. These studies demonstrate anatomic, peptidergic, and pathologic specificity in the aging human nervous system similar in many respects to that which the authors have described in experimental animal models. Neuroaxonal dystrophy in the sympathetic nervous system may underlie poorly understood alterations in clinical autonomic nervous system function that develop with age. Images Figure 1 Figure 2 p1333-a Figure 3 PMID:1694057

  1. Compatibility and accelerated aging study for Li(Si)/FeS/sub 2 thermally activated batteries

    NASA Astrophysics Data System (ADS)

    Mead, J. W.; Searcy, J. Q.; Neiswander, P. N.; Poole, R. L.

    1983-12-01

    Thermally activated batteries using the lithium (silicon) iron disulfide (Li(Si)/FeS2) electrochemical system are used in weapons having a required storage life of 25 years and high reliability. A review of known data revealed no information on the compatibility of Li(Si)/FeS2 with the organic materials used in the system. The compatibility question is studied. Accelerated-aging data on pairs of materials were produced. In addition, a group of production batteries was aged and tested. Three aging temperatures were used during the one-year study. Gas analyses, electrical tests and mechanical tests were compared for control and aged samples. Two results, the depletion of oxygen and an increase in hydrogen in the compatibility and accelerated-aging samples, stimulated additional studies. No unexpected or significant changes were observed in the electrical or mechanical properties of the organic materials. Calorific output and chloride ion content of heat pellets indicated no degradation with aging. Ignition sensitivity and burn rate measurements suggested no heat pellet degradation. Oxygen content in aged lithium (silicon) anodes remained within acceptable limits. Single-cell tests and battery test results showed no degradation with aging.

  2. Longitudinal changes of the serum calcium levels and accelerated progression of arterial stiffness with age.

    PubMed

    Kimura, Kazutaka; Tomiyama, Hirofumi; Matsumoto, Chisa; Odaira, Mari; Shiina, Kazuki; Nagata, Mikio; Yamashina, Akira

    2015-12-01

    The progression of arterial stiffness is accelerated by aging, although the underlying mechanisms have not yet been clarified. This prospective observational study was conducted to clarify whether longitudinal changes in the serum calcium/phosphate levels are associated with the accelerated progression of arterial stiffness with age. In a cohort of employees at a construction company (1507 middle-aged Japanese men), the serum calcium/phosphate levels and brachial-ankle pulse wave velocity (baPWV) were measured at the start and at the end of a 3-year study period. A general linear model multivariate analysis revealed a significant interaction of the 2 factors {age and longitudinal changes of the serum calcium levels (delCa) during the follow-up period} on the longitudinal changes of the baPWV during the study period (delPWV). The delCa was significantly correlated with the delPWV even after adjustments for covariates in subjects aged ≥48 years. The delPWV in subjects aged ≥48 years with the delCa in the upper tertile (69 ± 137 cm/s) was significantly larger than that in the other groups even after adjustments for covariates (e.g., del PWV in subjects aged <48 years with the delCa in the lower tertile = 1 ± 94 cm/s) (p < 0.01). The association between the arterial stiffness and serum calcium levels differed with age. Pathophysiological abnormalities related to increased serum calcium levels appeared to be associated with accelerated progression of arterial stiffness with age. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  3. Prediction of brain age suggests accelerated atrophy after traumatic brain injury.

    PubMed

    Cole, James H; Leech, Robert; Sharp, David J

    2015-04-01

    The long-term effects of traumatic brain injury (TBI) can resemble observed in normal ageing, suggesting that TBI may accelerate the ageing process. We investigate this using a neuroimaging model that predicts brain age in healthy individuals and then apply it to TBI patients. We define individuals' differences in chronological and predicted structural "brain age," and test whether TBI produces progressive atrophy and how this relates to cognitive function. A predictive model of normal ageing was defined using machine learning in 1,537 healthy individuals, based on magnetic resonance imaging-derived estimates of gray matter (GM) and white matter (WM). This ageing model was then applied to test 99 TBI patients and 113 healthy controls to estimate brain age. The initial model accurately predicted age in healthy individuals (r = 0.92). TBI brains were estimated to be "older," with a mean predicted age difference (PAD) between chronological and estimated brain age of 4.66 years (±10.8) for GM and 5.97 years (±11.22) for WM. This PAD predicted cognitive impairment and correlated strongly with the time since TBI, indicating that brain tissue loss increases throughout the chronic postinjury phase. TBI patients' brains were estimated to be older than their chronological age. This discrepancy increases with time since injury, suggesting that TBI accelerates the rate of brain atrophy. This may be an important factor in the increased susceptibility in TBI patients for dementia and other age-associated conditions, motivating further research into the age-like effects of brain injury and other neurological diseases. © 2015 The Authors Annals of Neurology published by Wiley Periodicals, Inc. on behalf of American Neurological Association.

  4. Prediction of brain age suggests accelerated atrophy after traumatic brain injury

    PubMed Central

    Cole, James H; Leech, Robert; Sharp, David J

    2015-01-01

    Objective The long-term effects of traumatic brain injury (TBI) can resemble observed in normal ageing, suggesting that TBI may accelerate the ageing process. We investigate this using a neuroimaging model that predicts brain age in healthy individuals and then apply it to TBI patients. We define individuals' differences in chronological and predicted structural "brain age," and test whether TBI produces progressive atrophy and how this relates to cognitive function. Methods A predictive model of normal ageing was defined using machine learning in 1,537 healthy individuals, based on magnetic resonance imaging–derived estimates of gray matter (GM) and white matter (WM). This ageing model was then applied to test 99 TBI patients and 113 healthy controls to estimate brain age. Results The initial model accurately predicted age in healthy individuals (r * 0.92). TBI brains were estimated to be "older," with a mean predicted age difference (PAD) between chronological and estimated brain age of 4.66 years (±10.8) for GM and 5.97 years (±11.22) for WM. This PAD predicted cognitive impairment and correlated strongly with the time since TBI, indicating that brain tissue loss increases throughout the chronic postinjury phase. Interpretation TBI patients' brains were estimated to be older than their chronological age. This discrepancy increases with time since injury, suggesting that TBI accelerates the rate of brain atrophy. This may be an important factor in the increased susceptibility in TBI patients for dementia and other age-associated conditions, motivating further research into the age-like effects of brain injury and other neurological diseases. PMID:25623048

  5. [Blood vessels in human dermis during aging].

    PubMed

    Gunin, A G; Petrov, V V; Vasil'eva, O V; Golubtsova, N N

    2014-01-01

    A factor that potentially influences on skin aging is blood supply which determines global conditions for an organ or a tissue functioning, including skin. Scientific data on conditions of blood supply in the skin during aging are insufficient and contradictory. Therefore, this work was aimed to the study of age-related changes in the number of blood vessels in the human dermis. Blood vessels were visualized with immunohistochemical technique to two endothelial markers, as von Willebrand factor and antigen CD31. The results showed that von Willebrand factor and antigen CD31 are present in endothelial cells of blood vessels of dermis in all examined age periods, from 20 weeks of pregnancy to 85 yeas. Intensity of immunohistochemical staining to von Willebrand factor is enhanced during age. Intensity of staining to CD31 is not changed with age. The number of blood vessels positively stained either to von Willebrand factor or to CD31 in dermis was decreased gradually with age. A total number of fibroblasts in dermis decreased with age. The number of PCNA+ fibroblasts in dermis showing their proliferative activity was decreased with the progression of age. The decrease in the number of blood vessels is statistically associated with that in the general number of fibroblasts and proliferating fibroblasts. Hence, a factor that leads to aged decrease in the number of dermal fibroblasts is diminished blood supply, and actions targeted to enhancement of blood supply are to be in the basis of clinical approaches to prophylaxis and treatment aging changes of the skin.

  6. [Age and aging as incomplete architecture of human ontogenesis].

    PubMed

    Baltes, P B

    1999-12-01

    The focus is on the basic biological-genetic and social-cultural architecture of human development across the life span. The starting point is the frame provided by past evolutionary forces. A first conclusion is that for modern times and the relative brevity of the time windows involved in modernity, further change in human functioning is primarily dependent on the evolution of new cultural forms of knowledge rather than evolution-based changes in the human genome. A second conclusion concerns the general architecture of the life course. Three governing lifespan developmental principles coexist. First, because long-term evolutionary selection evince a negative age correlation, genome-based plasticity and biological potential decrease with age. Second, for growth aspects of human development to extend further into the life span, culture-based resources are required at ever increasing levels. Third, because of age-related losses in biological plasticity and negative effects associated with some principles of learning (e.g., negative transfer), the efficiency of culture is reduced as lifespan development unfolds. Joint application of these principles suggests that the lifespan architecture becomes more and more incomplete with age. Three examples are given to illustrate the implications of the lifespan architecture outlined. The first is a general theory of development involving the orchestration of three component processes and their age-related dynamics: Selection, optimization, and compensation. The second example is theory and research on lifespan intelligence that distinguishes between the biology-based mechanics and culture-based pragmatics of intelligence and specifies distinct age gradients for the two categories of intellectual functioning. The third example considers the goal of evolving a positive biological and cultural scenario for the last phase of life (fourth age). Because of the general lifespan architecture outlined, this objective becomes

  7. Human folate metabolism using 14C-accelerator mass spectrometry

    SciTech Connect

    Clifford, A. J.; Arjomand, A.; Duecker, S. R.; Johnson, H.; Schneider, P. D.; Zulim, R. A.; Bucholz, B. A.; Vogel, J. S.

    1999-03-25

    Folate is a water soluble vitamin required for optimal health, growth and development. It occurs naturally in various states of oxidation of the pteridine ring and with varying lengths to its glutamate chain. Folates function as one-carbon donors through methyl transferase catalyzed reactions. Low-folate diets, especially by those with suboptimal methyltransferase activity, are associated with increased risk of neural tube birth defects in children, hyperhomocysteinemic heart disease, and cancer in adults. Rapidly dividing (neoplastic) cells have a high folate need for DNA synthesis. Chemical analogs of folate (antifolates) that interfere with folate metabolism are used as therapeutic agents in cancer treatment. Although much is known about folate chemistry, metabolism of this vitamin in vivo in humans is not well understood. Since folate levels in blood and tissues are very low and methods to measure them are inadequate, the few previous studies that have examined folate metabolism used large doses of radiolabeled folic acid in patients with Hodgkin's disease and cancer (Butterworth et al. 1969, Krumdieck et al. 1978). A subsequent protocol using deuterated folic acid was also insufficiently sensitive to trace a physiologic folate dose (Stites et al. 1997). Accelerator mass spectrometry (AMS) is an emerging bioanalytical tool that overcomes the limitations of traditional mass spectrometry and of decay counting of long lived radioisotopes (Vogel et al. 1995). AMS can detect attomolar concentrations of 14 C in milligram-sized samples enabling in vivo radiotracer studies in healthy humans. We used AMS to study the metabolism of a physiologic 80 nmol oral dose of 14 C-folic acid (1/6 US RDA) by measuring the 14 C-folate levels in serial plasma, urine and feces samples taken over a 150-day period after dosing a healthy adult volunteer.

  8. Mutagenesis in human cells with accelerated H and Fe ions

    NASA Technical Reports Server (NTRS)

    Kronenberg, Amy

    1994-01-01

    The overall goals of this research were to determine the risks of mutation induction and the spectra of mutations induced by energetic protons and iron ions at two loci in human lymphoid cells. During the three year grant period the research has focused in three major areas: (1) the acquisition of sufficient statistics for human TK6 cell mutation experiments using Fe ions (400 MeV/amu), Fe ions (600 MeV/amu) and protons (250 MeV/amu); (2) collection of thymidine kinase- deficient (tk) mutants or hypoxanthine phosphoribosyltransferase deficient (hprt) mutants induced by either Fe 400 MeV/amu, Fe 600 MeV/amu, or H 250 MeV/amu for subsequent molecular analysis; and (3) molecular characterization of mutants isolated after exposure to Fe ions (600 MeV/amu). As a result of the shutdown of the BEVALAC heavy ion accelerator in December 1992, efforts were rearranged somewhat in time to complete our dose-response studies and to complete mutant collections in particular for the Fe ion beams prior to the shutdown. These goals have been achieved. A major effort was placed on collection, re-screening, and archiving of 3 different series of mutants for the various particle beam exposures: tk-ng mutants, tk-sg mutants, and hprt-deficient mutants. Where possible, groups of mutants were isolated for several particle fluences. Comparative analysis of mutation spectra has occured with characterization of the mutation spectrum for hprt-deficient mutants obtained after exposure of TK6 cells to Fe ions (600 MeV/amu) and a series of spontaneous mutants.

  9. [Physiological features of skin ageing in human].

    PubMed

    Tikhonova, I V; Tankanag, A V; Chemeris, N K

    2013-01-01

    The issue deals with the actual problem of gerontology, notably physiological features of human skin ageing. In the present review the authors have considered the kinds of ageing, central factors, affected on the ageing process (ultraviolet radiation and oxidation stress), as well as the research guidelines of the ageing changes in the skin structure and fuctions: study of mechanical properties, microcirculation, pH and skin thickness. The special attention has been payed to the methods of assessment of skin blood flow, and to results of investigations of age features of peripheral microhemodynamics. The laser Doppler flowmetry technique - one of the modern, noninvasive and extensively used methods for the assessmant of skin blood flow microcirculation system has been expanded in the review. The main results of the study of the ageing changes of skin blood perfusion using this method has been also presented.

  10. Compatibility and accelerated aging study for Li(Si)/FeS2 thermally activated batteries

    NASA Astrophysics Data System (ADS)

    Mead, J. W.; Searcy, J. Q.; Neiswander, P. A.; Poole, R. L.

    Thermally activated batteries using Li(Si)/FeS2 for use in systems which require a storage life of 25 years and high reliability are examined. All of the materials in the system, both organic and inorganic are incorporated except the heat paper and electric match are studied. No compatibility or aging problems are indicated. The following results are reported: oxygen vanishes from the overgas in containers that were accelerated aged; hydrogen increases sharply in the overgas initially but generally decreases as aging progresses. No unexpected or significant changes were observed in the volume resistivity, glass transition temperature, or shear modulus or organic materials.

  11. Acceleration factors for oxidative aging of polymeric materials by oxygen detection.

    SciTech Connect

    Assink, Roger Alan; Celina, Mathias Christopher; Skutnik, Julie Michelle

    2005-01-01

    Three methods that were used to measure the chemical changes associated with oxidative degradation of polymeric materials are presented. The first method is based on the nuclear activation of {sup 18}O in an elastomer that was thermally aged in an {sup 18}O{sub 2} atmosphere. Second, the alcohol groups in a thermally aged elastomer were derivatized with trifluoroacetic anhydride and their concentration measured via {sup 19}F NMR spectroscopy. Finally, a respirometer was used to directly measure the oxidative rates of a polyurethane foam as a function of aging temperature. The measurement of the oxidation rates enabled acceleration factors for oxidative degradation of these materials to be calculated.

  12. Telomere length in subjects with schizophrenia, their unaffected siblings and healthy controls: Evidence of accelerated aging.

    PubMed

    Czepielewski, Leticia Sanguinetti; Massuda, Raffael; Panizzutti, Bruna; da Rosa, Eduarda Dias; de Lucena, David; Macêdo, Danielle; Grun, Lucas Kich; Barbé-Tuana, Florencia María; Gama, Clarissa Severino

    2016-07-01

    Schizophrenia (SZ) is associated with broad burden. The clinical manifestations of SZ are related to pathophysiological alterations similar to what is seen in normal aging. Our aim was to evaluate the differences in telomere length (TL), a biomarker of cellular aging, in subjects with SZ (n=36), unaffected siblings (SB, n=36) and healthy controls (HC, n=47). SZ had shorter TL compared to HC, but no difference was found in SB comparing to SZ. These findings indicate that a pathological accelerated aging profile could be present in the course of SZ and further studies are needed to confirm TL as potential endophenotype, especially in at risk populations.

  13. DNA damage drives accelerated bone aging via an NF-κB-dependent mechanism

    PubMed Central

    Chen, Qian; Liu, Kai; Robinson, Andria R.; Clauson, Cheryl L.; Blair, Harry C.; Robbins, Paul D.; Niedernhofer, Laura J.; Ouyang, Hongjiao

    2013-01-01

    Advanced age is one of the most important risk factors for osteoporosis. Accumulation of oxidative DNA damage has been proposed to contribute to age-related deregulation of osteoblastic and osteoclastic cells. ERCC1 (Excision Repair Cross Complementary group 1)-XPF (Xeroderma Pigmentosum Group F) is an evolutionarily conserved structure-specific endonuclease that is required for multiple DNA repair pathways. Inherited mutations affecting expression of ERCC1-XPF cause a severe progeroid syndrome in humans, including early onset of osteopenia and osteoporosis, or anomalies in skeletal development. Herein, we used progeroid ERCC1-XPF deficient mice, including Ercc1-null (Ercc1−/−) and hypomorphic (Ercc1−/Δ) mice, to investigate the mechanism by which DNA damage leads to accelerated bone aging. Compared to their wild-type littermates, both Ercc1−/− and Ercc1−/Δ mice display severe, progressive osteoporosis caused by reduced bone formation and enhanced osteoclastogenesis. ERCC1 deficiency leads to atrophy of osteoblastic progenitors in the bone marrow stromal cell (BMSC) population. There is increased cellular senescence of BMSCs and osteoblastic cells, as characterized by reduced proliferation, accumulation of DNA damage and a senescence-associated secretory phenotype (SASP). This leads to enhanced secretion of inflammatory cytokines known to drive osteoclastogenesis, such as IL-6, TNFα, and RANKL and thereby induces an inflammatory bone microenvironment favoring osteoclastogenesis. Furthermore, we found that the transcription factor NF-κB is activated in osteoblastic and osteoclastic cells of the Ercc1 mutant mice. Importantly, we demonstrated that haploinsufficiency of the p65 NF-κB subunit partially rescued the osteoporosis phenotype of Ercc1−/Δ mice. Finally, pharmacological inhibition of the NF-κB signaling via an IKK inhibitor reversed cellular senescence and SASP in Ercc1−/Δ BMSCs. These results demonstrate that DNA damage drives

  14. The role of oxidative and nitrosative stress in accelerated aging and major depressive disorder.

    PubMed

    Maurya, Pawan Kumar; Noto, Cristiano; Rizzo, Lucas B; Rios, Adiel C; Nunes, Sandra O V; Barbosa, Décio Sabbatini; Sethi, Sumit; Zeni, Maiara; Mansur, Rodrigo B; Maes, Michael; Brietzke, Elisa

    2016-02-04

    Major depressive disorder (MDD) affects millions of individuals and is highly comorbid with many age associated diseases such as diabetes mellitus, immune-inflammatory dysregulation and cardiovascular diseases. Oxidative/nitrosative stress plays a fundamental role in aging, as well as in the pathogenesis of neurodegenerative/neuropsychiatric disorders including MDD. In this review, we critically review the evidence for an involvement of oxidative/nitrosative stress in acceleration of aging process in MDD. There are evidence of the association between MDD and changes in molecular mechanisms involved in aging. There is a significant association between telomere length, enzymatic antioxidant activities (SOD, CAT, GPx), glutathione (GSH), lipid peroxidation (MDA), nuclear factor κB, inflammatory cytokines with MDD. Major depression also is characterized by significantly lower concentration of antioxidants (zinc, coenzyme Q10, PON1). Since, aging and MDD share a common biological base in their pathophysiology, the potential therapeutic use of antioxidants and anti-aging molecules in MDD could be promising.

  15. Aging of the human ovary and testis.

    PubMed

    Perheentupa, Antti; Huhtaniemi, Ilpo

    2009-02-05

    Aging is associated with structural and functional alterations in all organs of the human body. The aging of gonads represents in this respect a special case, because these organs are not functional for the whole lifespan of an individual and their normal function is not indispensable for functions of the rest of the body. Ovarian function lasts for the reproductive life of a woman, i.e., from menarche until menopause. The testicular endocrine function, in contrast, begins already in utero, is interrupted between neonatal life and puberty, and continues thereafter along with spermatogenesis, with only slight decline, until old age. The aging processes of the ovary and testis are therefore very different. We describe in this review the structural and functional alterations in the human ovary and testis upon aging. Special emphasis will be given to clinically significant alterations, which in women concern the causes and consequences of the individual variability of fertility during the latter part of the reproductive age. The clinically important aspect of testicular aging entails the decline of androgen production in aging men.

  16. Calorie restriction: decelerating mTOR-driven aging from cells to organisms (including humans).

    PubMed

    Blagosklonny, Mikhail V

    2010-02-15

    Although it has been known since 1917 that calorie restriction (CR) decelerates aging, the topic remains highly controversial. What might be the reason? Here I discuss that the anti-aging effect of CR rules out accumulation of DNA damage and failure of maintenance as a cause of aging. Instead, it suggests that aging is driven in part by the nutrient-sensing TOR (target of rapamycin) network. CR deactivates the TOR pathway, thus slowing aging and delaying diseases of aging. Humans are not an exception and CR must increase both maximal and healthy lifespan in humans to the same degree as it does in other mammals. Unlike mice, however, humans benefit from medical care, which prolongs lifespan despite accelerated aging in non-restricted individuals. Therefore in humans the effect of CR may be somewhat blunted. Still how much does CR extend human lifespan? And could this extension be surpassed by gerosuppressants such as rapamycin?

  17. The impact of aging on human sexuality.

    PubMed

    Rienzo, B A

    1985-02-01

    Review of gerontological and medical literature reveals the need for education for lay persons and professionals about the effects of the aging process on human sexuality. Primary prevention of psychosocial problems and sexual dysfunction could be abated by including accurate information about sexuality and aging and effective communication techniques in sexuality education programs, including those with young adults. In addition, professional preparation of health educators must include the skills and knowledge needed in this area.

  18. Reduced quality and accelerated follicle loss with female reproductive aging - does decline in theca dehydroepiandrosterone (DHEA) underlie the problem?

    PubMed

    Ford, Judith H

    2013-12-13

    Infertility, spontaneous abortion and conception of trisomic offspring increase exponentially with age in mammals but in women there is an apparent acceleration in the rate from about age 37. The problems mostly commonly occur when the ovarian pool of follicles is depleted to a critical level with age but are also found in low follicular reserve of other etiologies. Since recent clinical studies have indicated that dehydroepiandrosterone (DHEA) supplementation may reverse the problem of oocyte quality, this review of the literature was undertaken in an attempt to find an explanation of why this is effective? In affected ovaries, oxygenation of follicular fluid is low, ultrastructural disturbances especially of mitochondria, occur in granulosa cells and oocytes, and considerable disturbances of meiosis occur. There is, however, no evidence to date that primordial follicles are compromised. In females with normal fertility, pre-antral ovarian theca cells respond to stimulation by inhibin B to provide androgen-based support for the developing follicle. With depletion of follicle numbers, inhibin B is reduced with consequent reduction in theca DHEA. Theca cells are the sole ovarian site of synthesis of DHEA, which is both a precursor of androstenedione and an essential ligand for peroxisome proliferator-activated receptor alpha (PPARα), the key promoter of genes affecting fatty acid metabolism and fat transport and genes critical to mitochondrial function. As well as inducing a plethora of deleterious changes in follicular cytoplasmic structure and function, the omega 9 palmitate/oleate ratio is increased by lowered activity of PPARα. This provides conditions for increased ceramide synthesis and follicular loss through ceramide-induced apoptosis is accelerated. In humans critical theca DHEA synthesis occurs at about 70 days prior to ovulation thus effective supplementation needs to be undertaken about four months prior to intended conception; timing which is also

  19. Reduced quality and accelerated follicle loss with female reproductive aging - does decline in theca dehydroepiandrosterone (DHEA) underlie the problem?

    PubMed Central

    2013-01-01

    Infertility, spontaneous abortion and conception of trisomic offspring increase exponentially with age in mammals but in women there is an apparent acceleration in the rate from about age 37. The problems mostly commonly occur when the ovarian pool of follicles is depleted to a critical level with age but are also found in low follicular reserve of other etiologies. Since recent clinical studies have indicated that dehydroepiandrosterone (DHEA) supplementation may reverse the problem of oocyte quality, this review of the literature was undertaken in an attempt to find an explanation of why this is effective? In affected ovaries, oxygenation of follicular fluid is low, ultrastructural disturbances especially of mitochondria, occur in granulosa cells and oocytes, and considerable disturbances of meiosis occur. There is, however, no evidence to date that primordial follicles are compromised. In females with normal fertility, pre-antral ovarian theca cells respond to stimulation by inhibin B to provide androgen-based support for the developing follicle. With depletion of follicle numbers, inhibin B is reduced with consequent reduction in theca DHEA. Theca cells are the sole ovarian site of synthesis of DHEA, which is both a precursor of androstenedione and an essential ligand for peroxisome proliferator-activated receptor alpha (PPARα), the key promoter of genes affecting fatty acid metabolism and fat transport and genes critical to mitochondrial function. As well as inducing a plethora of deleterious changes in follicular cytoplasmic structure and function, the omega 9 palmitate/oleate ratio is increased by lowered activity of PPARα. This provides conditions for increased ceramide synthesis and follicular loss through ceramide-induced apoptosis is accelerated. In humans critical theca DHEA synthesis occurs at about 70 days prior to ovulation thus effective supplementation needs to be undertaken about four months prior to intended conception; timing which is also

  20. Accelerated Aging in Schizophrenia Patients: The Potential Role of Oxidative Stress

    PubMed Central

    Okusaga, Olaoluwa O

    2014-01-01

    Several lines of evidence suggest that schizophrenia, a severe mental illness characterized by delusions, hallucinations and thought disorder is associated with accelerated aging. The free radical (oxidative stress) theory of aging assumes that aging occurs as a result of damage to cell constituents and connective tissues by free radicals arising from oxygen-associated reactions. Schizophrenia has been associated with oxidative stress and chronic inflammation, both of which also appear to reciprocally induce each other in a positive feedback manner. The buildup of damaged macromolecules due to increased oxidative stress and failure of protein repair and maintenance systems is an indicator of aging both at the cellular and organismal level. When compared with age-matched healthy controls, schizophrenia patients have higher levels of markers of oxidative cellular damage such as protein carbonyls, products of lipid peroxidation and DNA hydroxylation. Potential confounders such as antipsychotic medication, smoking, socio-economic status and unhealthy lifestyle make it impossible to solely attribute the earlier onset of aging-related changes or oxidative stress to having a diagnosis of schizophrenia. Regardless of whether oxidative stress can be attributed solely to a diagnosis of schizophrenia or whether it is due to other factors associated with schizophrenia, the available evidence is in support of increased oxidative stress-induced cellular damage of macromolecules which may play a role in the phenomenon of accelerated aging presumed to be associated with schizophrenia. PMID:25110609

  1. Accelerated aging in schizophrenia patients: the potential role of oxidative stress.

    PubMed

    Okusaga, Olaoluwa O

    2014-08-01

    Several lines of evidence suggest that schizophrenia, a severe mental illness characterized by delusions, hallucinations and thought disorder is associated with accelerated aging. The free radical (oxidative stress) theory of aging assumes that aging occurs as a result of damage to cell constituents and connective tissues by free radicals arising from oxygen-associated reactions. Schizophrenia has been associated with oxidative stress and chronic inflammation, both of which also appear to reciprocally induce each other in a positive feedback manner. The buildup of damaged macromolecules due to increased oxidative stress and failure of protein repair and maintenance systems is an indicator of aging both at the cellular and organismal level. When compared with age-matched healthy controls, schizophrenia patients have higher levels of markers of oxidative cellular damage such as protein carbonyls, products of lipid peroxidation and DNA hydroxylation. Potential confounders such as antipsychotic medication, smoking, socio-economic status and unhealthy lifestyle make it impossible to solely attribute the earlier onset of aging-related changes or oxidative stress to having a diagnosis of schizophrenia. Regardless of whether oxidative stress can be attributed solely to a diagnosis of schizophrenia or whether it is due to other factors associated with schizophrenia, the available evidence is in support of increased oxidative stress-induced cellular damage of macromolecules which may play a role in the phenomenon of accelerated aging presumed to be associated with schizophrenia.

  2. Evidence of accelerated aging among African Americans and its implications for mortality.

    PubMed

    Levine, M E; Crimmins, E M

    2014-10-01

    Blacks experience morbidity and mortality earlier in the life course compared to whites. Such premature declines in health may be indicative of an acceleration of the aging process. The current study uses data on 7644 black and white participants, ages 30 and above, from the third National Health and Nutrition Examination Survey, to compare the biological ages of blacks and whites as indicated from a combination of ten biomarkers and to determine if such differences in biological age relative to chronological age account for racial disparities in mortality. At a specified chronological age, blacks are approximately 3 years older biologically than whites. Differences in biological age between blacks and whites appear to increase up until ages 60-65 and then decline, presumably due to mortality selection. Finally, differences in biological age were found to completely account for higher levels of all-cause, cardiovascular and cancer mortality among blacks. Overall, these results suggest that being black is associated with significantly higher biological age at a given chronological age and that this is a pathway to early death both overall and from the major age-related diseases.

  3. Obesity-induced oxidative stress, accelerated functional decline with age and increased mortality in mice.

    PubMed

    Zhang, Yiqiang; Fischer, Kathleen E; Soto, Vanessa; Liu, Yuhong; Sosnowska, Danuta; Richardson, Arlan; Salmon, Adam B

    2015-06-15

    Obesity is a serious chronic disease that increases the risk of numerous co-morbidities including metabolic syndrome, cardiovascular disease and cancer as well as increases risk of mortality, leading some to suggest this condition represents accelerated aging. Obesity is associated with significant increases in oxidative stress in vivo and, despite the well-explored relationship between oxidative stress and aging, the role this plays in the increased mortality of obese subjects remains an unanswered question. Here, we addressed this by undertaking a comprehensive, longitudinal study of a group of high fat-fed obese mice and assessed both their changes in oxidative stress and in their performance in physiological assays known to decline with aging. In female C57BL/6J mice fed a high-fat diet starting in adulthood, mortality was significantly increased as was oxidative damage in vivo. High fat-feeding significantly accelerated the decline in performance in several assays, including activity, gait, and rotarod. However, we also found that obesity had little effect on other markers of function and actually improved performance in grip strength, a marker of muscular function. Together, this first comprehensive assessment of longitudinal, functional changes in high fat-fed mice suggests that obesity may induce segmental acceleration of some of the aging process. Published by Elsevier Inc.

  4. Contextual adversity, telomere erosion, pubertal development, and health: Two models of accelerated aging, or one?

    PubMed

    Belsky, Jay; Shalev, Idan

    2016-11-01

    Two independent lines of inquiry suggest that growing up under conditions of contextual adversity (e.g., poverty and household chaos) accelerates aging and undermines long-term health. Whereas work addressing the developmental origins of health and disease highlights accelerated-aging effects of contextual adversity on telomere erosion, that informed by an evolutionary analysis of reproductive strategies highlights such effects with regard to pubertal development (in females). That both shorter telomeres early in life and earlier age of menarche are associated with poor health later in life raises the prospect, consistent with evolutionary life-history theory, that these two bodies of theory and research are tapping into the same evolutionary-developmental process whereby longer term health costs are traded off for increased probability of reproducing before dying via a process of accelerated aging. Here we make the case for such a claim, while highlighting biological processes responsible for these effects, as well as unknowns in the epigenetic equation that might instantiate these contextually regulated developmental processes.

  5. Obesity-induced oxidative stress, accelerated functional decline with age and increased mortality in mice

    PubMed Central

    Zhang, Yiqiang; Fischer, Kathleen E.; Soto, Vanessa; Liu, Yuhong; Sosnowska, Danuta; Richardson, Arlan; Salmon, Adam B.

    2015-01-01

    Obesity is a serious chronic disease that increases the risk of numerous co-morbidities including metabolic syndrome, cardiovascular disease and cancer as well as increases risk of mortality leading some to suggest this represents accelerated aging. Obesity is associated with significant increases in oxidative stress in vivo and, despite the well-explored relationship between oxidative stress and aging, the role this plays in the increased mortality of obese subjects remains an unanswered question. Here, we addressed this by undertaking a comprehensive, longitudinal study of a group of high fat-fed obese mice and assessed both their changes in oxidative stress and in their performance in physiological assays known to decline with aging. In female C57BL/6J mice fed a high-fat diet starting in adulthood, mortality was significantly increased in high fat-fed mice as was oxidative damage in vivo. High fat-feeding significantly accelerated the decline in performance in several assays, including activity, gait, and rotarod. However, we also found that obesity had little effect on other markers and actually improved performance in grip strength, a marker of muscular function. Together, this first comprehensive assessment of longitudinal functional changes in high fat-fed mice suggests that obesity may induce segmental acceleration of some of the aging process. PMID:25558793

  6. Hypercholesterolemia Induces Oxidant Stress That Accelerates the Ageing of Hematopoietic Stem Cells

    PubMed Central

    Tie, Guodong; Messina, Katharine E.; Yan, Jinglian; Messina, Julia A.; Messina, Louis M.

    2014-01-01

    Background Clinical studies suggest that hypercholesterolemia may cause ageing in hematopoietic stem cells (HSCs) because ageing‐associated alterations were found in peripheral blood cells and their bone marrow residing precursors in patients with advanced atherosclerosis. We hypothesized that hypercholesterolemia induces oxidant stress in hematopoietic stems cells that accelerates their ageing. Methods and Results Here we show that HSCs from ApoE−/− mice, as well as HSCs from C57Bl/6 mice fed a high cholesterol diet (HCD) accumulated oxLDL and had greater ROS levels. In accordance, the expression pattern of the genes involved in ROS metabolism changed significantly in HSCs from ApoE−/− mice. Hypercholesterolemia caused a significant reduction in phenotypically defined long‐term HSC compartment, telomere length, and repopulation capacity of KTLS cells, indicating accelerated ageing in these cells. Gene array analysis suggested abnormal cell cycle status, and the key cell cycle regulators including p19ARF, p27Kip1 and p21Waf1 were upregulated in KTLS cells from hypercholesterolemic mice. These effects were p38‐dependent and reversed in vivo by treatment of hypercholesterolemic mice with antioxidant N‐acetylcysteine. The oxidant stress also caused aberrant expression of Notch1 that caused loss of quiescence and proliferation leading to the expansion of KTLS compartment in hypercholesterolemic mice. Conclusion Taken together, we provide evidence that hypercholesterolemia can cause oxidant stress that accelerates the ageing and impairs the reconstitution capacity of HSCs. PMID:24470519

  7. Body Acceleration as Indicator for Walking Economy in an Ageing Population

    PubMed Central

    Valenti, Giulio; Bonomi, Alberto G.; Westerterp, Klaas R.

    2015-01-01

    Background In adults, walking economy declines with increasing age and negatively influences walking speed. This study aims at detecting determinants of walking economy from body acceleration during walking in an ageing population. Methods 35 healthy elderly (18 males, age 51 to 83 y, BMI 25.5±2.4 kg/m2) walked on a treadmill. Energy expenditure was measured with indirect calorimetry while body acceleration was sampled at 60Hz with a tri-axial accelerometer (GT3X+, ActiGraph), positioned on the lower back. Walking economy was measured as lowest energy needed to displace one kilogram of body mass for one meter while walking (WCostmin, J/m/kg). Gait features were extracted from the acceleration signal and included in a model to predict WCostmin. Results On average WCostmin was 2.43±0.42 J/m/kg and correlated significantly with gait rate (r2 = 0.21, p<0.01) and regularity along the frontal (anteroposterior) and lateral (mediolateral) axes (r2 = 0.16, p<0.05 and r2 = 0.12, p<0.05 respectively). Together, the three variables explained 46% of the inter-subject variance (p<0.001) with a standard error of estimate of 0.30 J/m/kg. WCostmin and regularity along the frontal and lateral axes were related to age (WCostmin: r2 = 0.44, p<0.001; regularity: r2 = 0.16, p<0.05 and r2 = 0.12, p<0.05 respectively frontal and lateral). Conclusions The age associated decline in walking economy is induced by the adoption of an increased gait rate and by irregular body acceleration in the horizontal plane. PMID:26512982

  8. Body Acceleration as Indicator for Walking Economy in an Ageing Population.

    PubMed

    Valenti, Giulio; Bonomi, Alberto G; Westerterp, Klaas R

    2015-01-01

    In adults, walking economy declines with increasing age and negatively influences walking speed. This study aims at detecting determinants of walking economy from body acceleration during walking in an ageing population. 35 healthy elderly (18 males, age 51 to 83 y, BMI 25.5±2.4 kg/m2) walked on a treadmill. Energy expenditure was measured with indirect calorimetry while body acceleration was sampled at 60Hz with a tri-axial accelerometer (GT3X+, ActiGraph), positioned on the lower back. Walking economy was measured as lowest energy needed to displace one kilogram of body mass for one meter while walking (WCostmin, J/m/kg). Gait features were extracted from the acceleration signal and included in a model to predict WCostmin. On average WCostmin was 2.43±0.42 J/m/kg and correlated significantly with gait rate (r2 = 0.21, p<0.01) and regularity along the frontal (anteroposterior) and lateral (mediolateral) axes (r2 = 0.16, p<0.05 and r2 = 0.12, p<0.05 respectively). Together, the three variables explained 46% of the inter-subject variance (p<0.001) with a standard error of estimate of 0.30 J/m/kg. WCostmin and regularity along the frontal and lateral axes were related to age (WCostmin: r2 = 0.44, p<0.001; regularity: r2 = 0.16, p<0.05 and r2 = 0.12, p<0.05 respectively frontal and lateral). The age associated decline in walking economy is induced by the adoption of an increased gait rate and by irregular body acceleration in the horizontal plane.

  9. Models of Accelerated Sarcopenia: Critical Pieces for Solving the Puzzle of Age-Related Muscle Atrophy

    PubMed Central

    Buford, Thomas W.; Anton, Stephen D.; Judge, Andrew R.; Marzetti, Emanuele; Wohlgemuth, Stephanie E; Carter, Christy S.; Leeuwenburgh, Christiaan; Pahor, Marco; Manini, Todd M.

    2013-01-01

    Sarcopenia, the age-related loss of skeletal muscle mass, is a significant public health concern that continues to grow in relevance as the population ages. Certain conditions have the strong potential to coincide with sarcopenia to accelerate the progression of muscle atrophy in older adults. Among these conditions are co-morbid diseases common to older individuals such as cancer, kidney disease, diabetes, and peripheral artery disease. Furthermore, behaviors such as poor nutrition and physical inactivity are well-known to contribute to sarcopenia development. However, we argue that these behaviors are not inherent to the development of sarcopenia but rather accelerate its progression. In the present review, we discuss how these factors affect systemic and cellular mechanisms that contribute to skeletal muscle atrophy. In addition, we describe gaps in the literature concerning the role of these factors in accelerating sarcopenia progression. Elucidating biochemical pathways related to accelerated muscle atrophy may allow for improved discovery of therapeutic treatments related to sarcopenia. PMID:20438881

  10. Gamma radiation and magnetic field mediated delay in effect of accelerated ageing of soybean.

    PubMed

    Kumar, Mahesh; Singh, Bhupinder; Ahuja, Sumedha; Dahuja, Anil; Anand, Anjali

    2015-08-01

    Soybean seeds were exposed to gamma radiation (0.5, 1, 3 and 5 kGy), static magnetic field (50, 100 and 200 mT) and a combination of gamma radiation and magnetic energy (0.5 kGy + 200 mT and 5 kGy + 50 mT) and stored at room temperature for six months. These seeds were later subjected to accelerated ageing treatment at 42 °C temperature and 95-100 % relative humidity and were compared for various physical and biochemical characteristics between the untreated and the energized treatments. Energy treatment protected the quality of stored seeds in terms of its protein and oil content . Accelerated aging conditions, however, affected the oil and protein quantity and quality of seed negatively. Antioxidant enzymes exhibited a decline in their activity during aging while the LOX activity, which reflects the rate of lipid peroxidation, in general, increased during the aging. Gamma irradiated (3 and 5 kGy) and magnetic field treated seeds (100 and 200 mT) maintained a higher catalase and ascorbate peroxidase activity which may help in efficient scavenging of deleterious free radical produced during the aging. Aging caused peroxidative changes to lipids, which could be contributed to the loss of oil quality. Among the electromagnetic energy treatments, a dose of 1-5 kGy of gamma and 100 mT, 200 mT magnetic field effectively slowed the rate of biochemical degradation and loss of cellular integrity in seeds stored under conditions of accelerated aging and thus, protected the deterioration of seed quality. Energy combination treatments did not yield any additional protection advantage.

  11. Acceleration of cardiovascular-biological age by amphetamine exposure is a power function of chronological age

    PubMed Central

    Norman, Amanda; Hulse, Gary Kenneth

    2017-01-01

    Background Amphetamine abuse is becoming more widespread internationally. The possibility that its many cardiovascular complications are associated with a prematurely aged cardiovascular system, and indeed biological organism systemically, has not been addressed. Methods Radial arterial pulse tonometry was performed using the SphygmoCor system (Sydney). 55 amphetamine exposed patients were compared with 107 tobacco smokers, 483 non-smokers and 68 methadone patients (total=713 patients) from 2006 to 2011. A cardiovascular-biological age (VA) was determined. Results The age of the patient groups was 30.03±0.51–40.45±1.15 years. This was controlled for with linear regression. The sex ratio was the same in all groups. 94% of amphetamine exposed patients had used amphetamine in the previous week. When the (log) VA was regressed against the chronological age (CA) and a substance-type group in both cross-sectional and longitudinal models, models quadratic in CA were superior to linear models (both p<0.02). When log VA/CA was regressed in a mixed effects model against time, body mass index, CA and drug type, the cubic model was superior to the linear model (p=0.001). Interactions between CA, (CA)2 and (CA)3 on the one hand and exposure type were significant from p=0.0120. The effects of amphetamine exposure persisted after adjustment for all known cardiovascular risk factors (p<0.0001). Conclusions These results show that subacute exposure to amphetamines is associated with an advancement of cardiovascular-organismal age both over age and over time, and is robust to adjustment. That this is associated with power functions of age implies a feed-forward positively reinforcing exacerbation of the underlying ageing process. PMID:28243315

  12. A human prostatic bacterial isolate alters the prostatic microenvironment and accelerates prostate cancer progression

    PubMed Central

    Simons, Brian W; Durham, Nicholas M; Bruno, Tullia C; Grosso, Joseph F; Schaeffer, Anthony J; Ross, Ashley E; Hurley, Paula J; Berman, David M; Drake, Charles G; Thumbikat, Praveen; Schaeffer, Edward M

    2015-01-01

    Inflammation is associated with several diseases of the prostate including benign enlargement and cancer, but a causal relationship has not been established. Our objective was to characterize the prostate inflammatory microenvironment after infection with a human prostate-derived bacterial strain and to determine the effect of inflammation on prostate cancer progression. To this end, we mimicked typical human prostate infection with retrograde urethral instillation of CP1, a human prostatic isolate of Escherichia coli. CP1 bacteria were tropic for the accessory sex glands and induced acute inflammation in the prostate and seminal vesicles, with chronic inflammation lasting at least 1 year. Compared to controls, infection induced both acute and chronic inflammation with epithelial hyperplasia, stromal hyperplasia, and inflammatory cell infiltrates. In areas of inflammation, epithelial proliferation and hyperplasia often persist, despite decreased expression of androgen receptor (AR). Inflammatory cells in the prostates of CP1-infected mice were characterized at 8 weeks post-infection by flow cytometry, which showed an increase in macrophages and lymphocytes, particularly Th17 cells. Inflammation was additionally assessed in the context of carcinogenesis. Multiplex cytokine profiles of inflamed prostates showed that distinct inflammatory cytokines were expressed during prostate inflammation and cancer, with a subset of cytokines synergistically increased during concurrent inflammation and cancer. Furthermore, CP1 infection in the Hi-Myc mouse model of prostate cancer accelerated the development of invasive prostate adenocarcinoma, with 70% more mice developing cancer by 4.5 months of age. This study provides direct evidence that prostate inflammation accelerates prostate cancer progression and gives insight into the microenvironment changes induced by inflammation that may accelerate tumour initiation or progression. PMID:25348195

  13. DNA methylation and healthy human aging.

    PubMed

    Jones, Meaghan J; Goodman, Sarah J; Kobor, Michael S

    2015-12-01

    The process of aging results in a host of changes at the cellular and molecular levels, which include senescence, telomere shortening, and changes in gene expression. Epigenetic patterns also change over the lifespan, suggesting that epigenetic changes may constitute an important component of the aging process. The epigenetic mark that has been most highly studied is DNA methylation, the presence of methyl groups at CpG dinucleotides. These dinucleotides are often located near gene promoters and associate with gene expression levels. Early studies indicated that global levels of DNA methylation increase over the first few years of life and then decrease beginning in late adulthood. Recently, with the advent of microarray and next-generation sequencing technologies, increases in variability of DNA methylation with age have been observed, and a number of site-specific patterns have been identified. It has also been shown that certain CpG sites are highly associated with age, to the extent that prediction models using a small number of these sites can accurately predict the chronological age of the donor. Together, these observations point to the existence of two phenomena that both contribute to age-related DNA methylation changes: epigenetic drift and the epigenetic clock. In this review, we focus on healthy human aging throughout the lifetime and discuss the dynamics of DNA methylation as well as how interactions between the genome, environment, and the epigenome influence aging rates. We also discuss the impact of determining 'epigenetic age' for human health and outline some important caveats to existing and future studies. © 2015 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

  14. Colour stability of temporary restorations with different thicknesses submitted to artificial accelerated aging.

    PubMed

    Silame, F D J; Tonani, R; Alandia-Roman, C C; Chinelatti, M; Panzeri, H; Pires-de-Souza, F C P

    2013-12-01

    This study evaluated the colour stability of temporary prosthetic restorations with different thicknesses submitted to artificial accelerated aging. The occlusal surfaces of 40 molars were grinded to obtain flat enamel surfaces. Twenty acrylic resin specimens [Polymethyl methacrylate (Duralay) and Bis-methyl acrylate (Luxatemp)] were made with two different thicknesses, 0.5 mm and 1.0 mm. Temporary restorations were fixed on enamel and CIE L*a*b* colour parameters of each specimen were assessed before and after artificial accelerated aging. All groups showed colour alterations above the clinically acceptable limit. Luxatemp showed the lowest colour alteration regardless its thickness and Duralay showed the greatest alteration with 0.5 mm.

  15. Spectroscopic characterization of the oligomeric surface structures on polyamide materials formed during accelerated aging.

    PubMed

    Chernev, Boril S; Eder, Gabriele C

    2011-10-01

    Crystalline surface species were observed at the surface of polyamide 12 materials upon accelerated aging. After detection of the depositions with scanning electron microscopy (SEM), the crystalline surface precipitations were analyzed with Fourier transform infrared (FT-IR) and Raman imaging microscopy. These surface species were supposed to be cyclic oligomers (dimer and trimer) of the PA12 monomer laurolactam, which are usually present in polyamide materials and tend to migrate to the surface when the material is subjected to accelerated aging. The evidence for the chemical identity of the crystalline surface structures to be mainly the cyclic dimer and trimer of laurolactam was given by melting-point identification and mass spectroscopic analysis of the methanol eluate of the surface. The Raman and FT-IR spectra of the mixture were extracted from the recorded images.

  16. Advance techniques for monitoring human tolerance to positive Gz accelerations

    NASA Technical Reports Server (NTRS)

    Pelligra, R.; Sandler, H.; Rositano, S.; Skrettingland, K.; Mancini, R.

    1973-01-01

    Tolerance to positive g accelerations was measured in ten normal male subjects using both standard and advanced techniques. In addition to routine electrocardiogram, heart rate, respiratory rate, and infrared television, monitoring techniques during acceleration exposure included measurement of peripheral vision loss, noninvasive temporal, brachial, and/or radial arterial blood flow, and automatic measurement of indirect systolic and diastolic blood pressure at 60-sec intervals. Although brachial and radial arterial flow measurements reflected significant cardiovascular changes during and after acceleration, they were inconsistent indices of the onset of grayout or blackout. Temporal arterial blood flow, however, showed a high correlation with subjective peripheral light loss.

  17. Does cyclic stress and accelerated ageing influence the wear behavior of highly crosslinked polyethylene?

    PubMed

    Affatato, Saverio; De Mattia, Jonathan Salvatore; Bracco, Pierangiola; Pavoni, Eleonora; Taddei, Paola

    2016-06-01

    First-generation (irradiated and remelted or annealed) and second-generation (irradiated and vitamin E blended or doped) highly crosslinked polyethylenes were introduced in the last decade to solve the problems of wear and osteolysis. In this study, the influence of the Vitamin-E addition on crosslinked polyethylene (XLPE_VE) was evaluated by comparing the in vitro wear behavior of crosslinked polyethylene (XLPE) versus Vitamin-E blended polyethylene XLPE and conventional ultra-high molecular weight polyethylene (STD_PE) acetabular cups, after accelerated ageing according to ASTM F2003-02 (70.0±0.1°C, pure oxygen at 5bar for 14 days). The test was performed using a hip joint simulator run for two millions cycles, under bovine calf serum as lubricant. Mass loss was found to decrease along the series XLPE_VE>STD_PE>XLPE, although no statistically significant differences were found between the mass losses of the three sets of cups. Micro-Raman spectroscopy was used to investigate at a molecular level the morphology changes induced by wear. The spectroscopic analyses showed that the accelerated ageing determined different wear mechanisms and molecular rearrangements during testing with regards to the changes in both the chain orientation and the distribution of the all-trans sequences within the orthorhombic, amorphous and third phases. The results of the present study showed that the addition of vitamin E was not effective to improve the gravimetric wear of PE after accelerated ageing. However, from a molecular point of view, the XLPE_VE acetabular cups tested after accelerated ageing appeared definitely less damaged than the STD_PE ones and comparable to XLPE samples.

  18. On the Use of Accelerated Aging Methods for Screening High Temperature Polymeric Composite Materials

    NASA Technical Reports Server (NTRS)

    Gates, Thomas S.; Grayson, Michael A.

    1999-01-01

    A rational approach to the problem of accelerated testing of high temperature polymeric composites is discussed. The methods provided are considered tools useful in the screening of new materials systems for long-term application to extreme environments that include elevated temperature, moisture, oxygen, and mechanical load. The need for reproducible mechanisms, indicator properties, and real-time data are outlined as well as the methodologies for specific aging mechanisms.

  19. Chromatic stability of acrylic resins of artificial eyes submitted to accelerated aging and polishing

    PubMed Central

    GOIATO, Marcelo Coelho; dos SANTOS, Daniela Micheline; SOUZA, Josiene Firmino; MORENO, Amália; PESQUEIRA, Aldiéris Alves

    2010-01-01

    Esthetics and durability of materials used to fabricate artificial eyes has been an important eissue since artificial eyes are essential to restore esthetics and function, protect the remaining tissues and help with patients' psychological therapy. However, these materials are submitted to degrading effects of environmental agents on the physical properties of the acrylic resin. Objective This study assessed the color stability of acrylic resins used to fabricate sclera in three basic shades (N1, N2 and N3) when subjected to accelerated aging, mechanical and chemical polishing. Material and methods Specimens of each resin were fabricated and submitted to mechanical and chemical polishing. Chromatic analysis was performed before and after accelerated aging through ultraviolet reflection spectrophotometry. Results All specimens revealed color alteration following polishing and accelerated aging. The resins presented statistically significant chromatic alteration (p<0.01) between the periods of 252 and 1008 h. Conclusions Both polishing methods presented no significant difference between the values of color derivatives of resins. PMID:21308298

  20. Aging enhances contraction to thromboxane A2 in aorta from female senescence-accelerated mice.

    PubMed

    Novella, Susana; Dantas, Ana Paula; Segarra, Gloria; Novensa, Laura; Heras, Magda; Hermenegildo, Carlos; Medina, Pascual

    2013-02-01

    The time-course for aging-associated effects on vascular reactivity to U46619, a stable analogue of thromboxane A(2) (TXA(2)), was studied in aorta from female senescence-accelerated mice-prone (SAMP8), a murine model of accelerated senescence. SAMP8 and senescence-accelerated mice-resistant (SAMR1) were divided into three groups: 3-, 6- and 10-month-old. Contractile curves to U46619 (10(-9) to 10(-6) M) were performed in aortic rings in the absence or in the presence of nitric oxide synthase (NOS) inhibitor N(G)-nitro-L-arginine methyl ester (L-NAME; 10(-4) M) and/or cyclooxygenase (COX) inhibitor indomethacin (10(-5) M). Protein and gene expression for COX-1 and COX-2 were determined by immunofluorescence and real-time PCR, respectively. Maximal contraction to U46619 was markedly higher in SAMP8 at all ages. In SAMR1, increases were seen at 10 months, while SAMP8 displays augmented contraction at 6 months, which was further increased at 10 months. L-NAME enhanced U46619 contractions in both 6-month-old groups, although the increase was higher on vessels from SAMR1 at this age. Indomethacin equally increased U46619 contractions in both 3-month-old groups, suggesting the production of vasodilator prostaglandin in young animals. In contrast, at 6 and 10 months indomethacin decreased U46619 contractions in both groups, indicating an aging-associated swap to a release of contractile prostanoids in aorta. In conclusion, aging enhances contractile responses to TXA(2) in aorta from female mice by a mechanism involving a decrease of NO production and increased action of contractile prostanoids. This process occurs earlier in SAMP8 mice, establishing these mice as good model to study cardiovascular aging in a convenient and standard time-course.

  1. Accelerated brain aging in schizophrenia and beyond: a neuroanatomical marker of psychiatric disorders.

    PubMed

    Koutsouleris, Nikolaos; Davatzikos, Christos; Borgwardt, Stefan; Gaser, Christian; Bottlender, Ronald; Frodl, Thomas; Falkai, Peter; Riecher-Rössler, Anita; Möller, Hans-Jürgen; Reiser, Maximilian; Pantelis, Christos; Meisenzahl, Eva

    2014-09-01

    Structural brain abnormalities are central to schizophrenia (SZ), but it remains unknown whether they are linked to dysmaturational processes crossing diagnostic boundaries, aggravating across disease stages, and driving the neurodiagnostic signature of the illness. Therefore, we investigated whether patients with SZ (N = 141), major depression (MD; N = 104), borderline personality disorder (BPD; N = 57), and individuals in at-risk mental states for psychosis (ARMS; N = 89) deviated from the trajectory of normal brain maturation. This deviation was measured as difference between chronological and the neuroanatomical age (brain age gap estimation [BrainAGE]). Neuroanatomical age was determined by a machine learning system trained to individually estimate age from the structural magnetic resonance imagings of 800 healthy controls. Group-level analyses showed that BrainAGE was highest in SZ (+5.5 y) group, followed by MD (+4.0), BPD (+3.1), and the ARMS (+1.7) groups. Earlier disease onset in MD and BPD groups correlated with more pronounced BrainAGE, reaching effect sizes of the SZ group. Second, BrainAGE increased across at-risk, recent onset, and recurrent states of SZ. Finally, BrainAGE predicted both patient status as well as negative and disorganized symptoms. These findings suggest that an individually quantifiable "accelerated aging" effect may particularly impact on the neuroanatomical signature of SZ but may extend also to other mental disorders.

  2. Cell senescence in human aging and disease.

    PubMed

    Fossel, Michael

    2002-04-01

    The most common causes of death and suffering, even in most underdeveloped nations, are age-related diseases. These diseases share fundamental and often unappreciated pathology at the cellular and genetic levels, through cell senescence. In cancer, enforcing cell senescence permits us to kill cancer cells without significantly harming normal cells. In other age-related diseases, cell senescence plays a direct role, and we may be able to prevent and reverse much of the pathology. While aging is attributed to "wear and tear," genetic studies show that these effects are avoidable (as is the case in germ cell lines) and occur only when cells down-regulate active (and sufficient) repair mechanisms, permitting degradation to occur. Aging occurs when cells permit accumulative damage by wear and tear, by altering their gene expression rather than vice versa. Using telomerase in laboratory settings, we can currently reset this pattern and its consequences both within cells and between cells. Doing so resets not only cell behavior but the pathological consequences within tissues comprising such cells. We can currently grow histologically young, reconstituted human skin using old human skin cells (keratinocytes and fibroblasts). Technically we could now test this approach in joints, vessels, the immune system, and other tissues. This model is consistent with all available laboratory data and known aging pathology. Within the next decade, we will be able to treat age-related diseases more effectively than ever before.

  3. Aging-associated changes in human brain.

    PubMed

    Mrak, R E; Griffin, S T; Graham, D I

    1997-12-01

    A wide variety of anatomic and histological alterations are common in brains of aged individuals. However, identification of intrinsic aging changes--as distinct from changes resulting from cumulative environmental insult--is problematic. Some degree of neuronal and volume loss would appear to be inevitable, but recent studies have suggested that the magnitudes of such changes are much less than previously thought, and studies of dendritic complexity in cognitively intact individuals suggest continuing neuronal plasticity into the eighth decade. A number of vascular changes become more frequent with age, many attributable to systemic conditions such as hypertension and atherosclerosis. Age-associated vascular changes not clearly linked to such conditions include hyaline arteriosclerotic changes with formation of arterial tortuosities in small intracranial vessels and the radiographic changes in deep cerebral white matter known as "leukoaraiosis." Aging is accompanied by increases in glial cell activation, in oxidative damage to proteins and lipids, in irreversible protein glycation, and in damage to DNA, and such changes may underlie in part the age-associated increasing incidence of "degenerative" conditions such as Alzheimer disease and Parkinson disease. A small number of histological changes appear to be universal in aged human brains. These include increasing numbers of corpora amylacea within astrocytic processes near blood-brain or cerebrospinal fluid-brain interfaces, accumulation of the "aging" pigment lipofuscin in all brain regions, and appearance of Alzheimer-type neurofibrillary tangles (but not necessarily amyloid plaques) in mesial temporal structures.

  4. The human ocular torsion position response during yaw angular acceleration.

    PubMed

    Smith, S T; Curthoys, I S; Moore, S T

    1995-07-01

    Recent results by Wearne [(1993) Ph.D. thesis] using the scleral search-coil method of measuring eye position indicate that changes in ocular torsion position (OTP) occur during yaw angular acceleration about an earth vertical axis. The present set of experiments, using an image processing method of eye movement measurement free from the possible confound of search coil slippage, demonstrates the generality and repeatability of this phenomenon and examines its possible causes. The change in torsion position is not a linear vestibulo-ocular reflex (LVOR) response to interaural linear acceleration stimulation of the otoliths, but rather the effect is dependent on the characteristics of the angular acceleration stimulus, commencing at the onset and decaying at the offset of the angular acceleration. In the experiments reported here, the magnitude of the angular acceleration stimulus was varied and the torsion position response showed corresponding variations. We consider that the change in torsion position observed during angular acceleration is most likely to be due to activity of the semicircular canals.

  5. Association Between Accelerated Multimorbidity and Age-Related Cognitive Decline in Older Baltimore Longitudinal Study of Aging Participants without Dementia.

    PubMed

    Fabbri, Elisa; An, Yang; Zoli, Marco; Tanaka, Toshiko; Simonsick, Eleanor M; Kitner-Triolo, Melissa H; Studenski, Stephanie A; Resnick, Susan M; Ferrucci, Luigi

    2016-05-01

    To explore the association between rate of physical health deterioration, operationalized as rising multimorbidity overtime, and longitudinal decline in cognitive function in older adults without dementia. Longitudinal (Baltimore Longitudinal Study of Aging (BLSA)). Community. BLSA participants aged 65 and older followed for an average of 3 years and free of dementia or mild cognitive impairment (MCI) at baseline and follow-up (N = 756). Standardized neurocognitive tests evaluating mental status, memory, executive function, processing speed, and verbal fluency were administered. Multimorbidity was assessed at each visit as number of diagnosed chronic diseases from a predefined list. Faster accumulation of chronic diseases was defined as upper quartile of rate of change in number of diseases over time (≥0.25 diseases/year). Faster accumulation of chronic diseases was significantly associated with greater rate of decline on the Category (P = .01) and Letter (P = .01) Fluency Tests. Similar trends were also found for the Trail-Making Test Parts A (P = .08) and B (P = .07); no association was found with rate of change in visual and verbal memory. Although further investigations are required to validate the results and fully understand the underlying mechanisms, these findings suggest that accelerated deterioration of physical health is associated with accelerated decline with aging in specific cognitive domains in older adults without dementia. © 2016, Copyright the Authors Journal compilation © 2016, The American Geriatrics Society.

  6. Proposition of an Accelerated Ageing Method for Natural Fibre/Polylactic Acid Composite

    NASA Astrophysics Data System (ADS)

    Zandvliet, Clio; Bandyopadhyay, N. R.; Ray, Dipa

    2015-10-01

    Natural fibre composite based on polylactic acid (PLA) composite is of special interest because it is entirely from renewable resources and biodegradable. Some samples of jute/PLA composite and PLA alone made 6 years ago and kept in tropical climate on a shelf shows too fast ageing degradation. In this work, an accelerated ageing method for natural fibres/PLA composite is proposed and tested. Experiment was carried out with jute and flax fibre/PLA composite. The method was compared with the standard ISO 1037-06a. The residual flexural strength after ageing test was compared with the one of common wood-based panels and of real aged samples prepared 6 years ago.

  7. Do US Black Women Experience Stress-Related Accelerated Biological Aging?

    PubMed Central

    Hicken, Margaret T.; Pearson, Jay A.; Seashols, Sarah J.; Brown, Kelly L.; Cruz, Tracey Dawson

    2010-01-01

    We hypothesize that black women experience accelerated biological aging in response to repeated or prolonged adaptation to subjective and objective stressors. Drawing on stress physiology and ethnographic, social science, and public health literature, we lay out the rationale for this hypothesis. We also perform a first population-based test of its plausibility, focusing on telomere length, a biomeasure of aging that may be shortened by stressors. Analyzing data from the Study of Women's Health Across the Nation (SWAN), we estimate that at ages 49–55, black women are 7.5 years biologically “older” than white women. Indicators of perceived stress and poverty account for 27% of this difference. Data limitations preclude assessing objective stressors and also result in imprecise estimates, limiting our ability to draw firm inferences. Further investigation of black-white differences in telomere length using large-population-based samples of broad age range and with detailed measures of environmental stressors is merited. PMID:20436780

  8. Accelerated features of age-related bone loss in zmpste24 metalloproteinase-deficient mice.

    PubMed

    Rivas, Daniel; Li, Wei; Akter, Rahima; Henderson, Janet E; Duque, Gustavo

    2009-10-01

    Age-related bone loss is associated with changes in bone cellularity, which include marrow fat infiltration and decreasing levels of osteoblastogenesis. The mechanisms that explain these changes remain unclear. Although nuclear lamina alterations occur in premature aging syndromes that include changes in body fat and severe osteoporosis, the role of proteins of the nuclear lamina in age-related bone loss remains unknown. Using the Zmpste24-null progeroid mice (Zmpste24(-/-)), which exhibit nuclear lamina defects and accumulate unprocessed prelamin A, we identified several alterations in bone cellularity in vivo. We found that defective prelamin A processing induced accelerated features of age-related bone loss including lower osteoblast and osteocyte numbers and higher levels of marrow adipogenesis. In summary, processing of prelamin A could become a new approach to regulate osteoblastogenesis and bone turnover and thus for the prevention and treatment of senile osteoporosis.

  9. Service Lifetime Estimation of EPDM Rubber Based on Accelerated Aging Tests

    NASA Astrophysics Data System (ADS)

    Liu, Jie; Li, Xiangbo; Xu, Likun; He, Tao

    2017-02-01

    Service lifetime of ethylene propylene diene monomer (EPDM) rubber at room temperature (25 °C) was estimated based on accelerated aging tests. The study followed sealing stress loss on compressed cylinder samples by compression stress relaxation methods. The results showed that the cylinder samples of EPDM can quickly reach the physical relaxation equilibrium by using the over-compression method. The non-Arrhenius behavior occurred at the lowest aging temperature. A significant linear relationship was observed between compression set values and normalized stress decay results, and the relationship was not related to the ambient temperature of aging. It was estimated that the sealing stress loss in view of practical application would occur after around 86.8 years at 25 °C. The estimations at 25 °C based on the non-Arrhenius behavior were in agreement with compression set data from storage aging tests in natural environment.

  10. Service Lifetime Estimation of EPDM Rubber Based on Accelerated Aging Tests

    NASA Astrophysics Data System (ADS)

    Liu, Jie; Li, Xiangbo; Xu, Likun; He, Tao

    2017-04-01

    Service lifetime of ethylene propylene diene monomer (EPDM) rubber at room temperature (25 °C) was estimated based on accelerated aging tests. The study followed sealing stress loss on compressed cylinder samples by compression stress relaxation methods. The results showed that the cylinder samples of EPDM can quickly reach the physical relaxation equilibrium by using the over-compression method. The non-Arrhenius behavior occurred at the lowest aging temperature. A significant linear relationship was observed between compression set values and normalized stress decay results, and the relationship was not related to the ambient temperature of aging. It was estimated that the sealing stress loss in view of practical application would occur after around 86.8 years at 25 °C. The estimations at 25 °C based on the non-Arrhenius behavior were in agreement with compression set data from storage aging tests in natural environment.

  11. Surface degradation of polymer insulators under accelerated climatic aging in weather-ometer

    SciTech Connect

    Xu, G.; McGrath, P.B.; Burns, C.W.

    1996-12-31

    Climatic aging experiments were conducted on two types of outdoor polymer insulators by using a programmable weather-ometer. The housing materials for the insulators were silicone rubber (SR) and ethylene propylene diene monomer (EPDM). The accelerated aging stresses were comprised of ultraviolet radiation, elevated temperature, temperature cycling, thermal shock and high humidity. Their effects on the insulator surface conditions and electrical performance wee examined through visual inspection and SEM studies, contact angle measurements, thermogravimetric analysis (TGA), energy dispersive spectroscopy (EDS) analysis, and 50% impulse flashover voltage tests. The results showed a significant damage on the insulator surface caused by some of the imposed aging stresses. The EDS analysis suggested a photooxidation process that happened on the insulator surface during the aging period.

  12. Beneficial effects of melatonin on cardiological alterations in a murine model of accelerated aging.

    PubMed

    Forman, Katherine; Vara, Elena; García, Cruz; Kireev, Roman; Cuesta, Sara; Acuña-Castroviejo, Darío; Tresguerres, J A F

    2010-10-01

    This study investigated the effect of aging-related parameters such as inflammation, oxidative stress and cell death in the heart in an animal model of accelerated senescence and analyzed the effects of chronic administration of melatonin on these markers. Thirty male mice of senescence-accelerated prone (SAMP8) and 30 senescence-accelerated-resistant mice (SAMR1) at 2 and 10 months of age were used. Animals were divided into eight experimental groups, four from each strain: two young control groups, two old untreated control groups, and four melatonin-treated groups. Melatonin was provided at two different dosages (1 and 10 mg/kg/day) in the drinking water. After 30 days of treatment, the expression of inflammatory mediators (tumor necrosis factor-alpha, interleukin 1 and 10, NFkBp50 and NFkBp52), apoptosis markers (BAD, BAX and Bcl2) and parameters related to oxidative stress (heme oxygenases 1 and 2, endothelial and inducible nitric oxide synthases) were determined in the heart by real-time reverse transcription polymerase chain reaction (RT-PCR). Inflammation, as well as, oxidative stress and apoptosis markers was increased in old SAMP8 males, when compared to its young controls. SAMR1 mice showed significantly lower basal levels of the measured parameters and smaller increases with age or no increases at all. After treatment with melatonin, these age-altered parameters were partially reversed, especially in SAMP8 mice. The results suggest that oxidative stress and inflammation increase with aging and that chronic treatment with melatonin, a potent antioxidant, reduces these parameters. The effects were more marked in the SAMP8 animals. © 2010 The Authors. Journal of Pineal Research © 2010 John Wiley & Sons A/S.

  13. Monitoring migration and transformation of nanomaterials in polymeric composites during accelerated aging

    NASA Astrophysics Data System (ADS)

    Vilar, G.; Fernández-Rosas, E.; Puntes, V.; Jamier, V.; Aubouy, L.; Vázquez-Campos, S.

    2013-04-01

    The incorporation of small amounts of nanoadditives in polymeric compounds can introduce new mechanical, physical, electrical, magnetic, thermal and/or optical properties. The properties of these advanced materials have enabled new applications in several industrial sectors (electronics, automotive, textile...). In particular, for the nanomaterials (NM) described in this work, multi-walled carbon nanotubes (MWCNT) and silicon dioxide nanoparticles (SiO2 NP), the following properties have been described: MWCNT act as nucleating agents in thermoplastics, and change viscosity, affecting dispersion, orientation, and therefore mechanical, thermal, and electrical properties; and SiO2 NP act as flame retardant and display improved electrical and mechanical properties. The work described here is focused on the evaluation of the migration and transformation of NM included in polymer nanocomposites (NC) during accelerated climatic ageing. To this aim, we generated polyamide 6 (PA6) NC with different degree of compatibility between the NM and the polymeric matrix. These NC were submitted to accelerated aging conditions to simulate outdoor conditions (simulation of the use phase of the polymeric NC). The NC contain as nanofillers MWCNT and SiO2 NP with different surface properties to influence the compatibility with the polymeric matrix. The generated NC were evaluated by scanning electron microscopy (SEM), transmission electron microscopy (TEM) with Energy-dispersive X-ray spectroscopy (EDX), thermogravimetry (TGA) and differential scanning calorimetry (DSC) before and after the aging process, to monitor the compatibility of the NM with the matrix: dispersion within the matrix, migration during aging, and modification of the polymer properties. The dispersion of SiO2 NP in the NC depended on their compatibility with the matrix. However, independently of their compatibility with the matrix, SiO2 NP were aggregated at the end of the accelerated aging process. In addition

  14. Aged Garlic Extract Modifies Human Immunity.

    PubMed

    Percival, Susan S

    2016-02-01

    Garlic contains numerous compounds that have the potential to influence immunity. Immune cells, especially innate immune cells, are responsible for the inflammation necessary to kill pathogens. Two innate lymphocytes, γδ-T and natural killer (NK) cells, appear to be susceptible to diet modification. The purpose of this review was to summarize the influence of aged garlic extract (AGE) on the immune system. The author's laboratory is interested in AGE's effects on cell proliferation and activation and inflammation and to learn whether those changes might affect the occurrence and severity of colds and flu. Healthy human participants (n = 120), between 21 and 50 y of age, were recruited for a randomized, double-blind, placebo-controlled parallel-intervention study to consume 2.56 g AGE/d or placebo supplements for 90 d during the cold and flu season. Peripheral blood mononuclear cells were isolated before and after consumption, and γδ-T and NK cell function was assessed by flow cytometry. The effect on cold and flu symptoms was determined by using daily diary records of self-reported illnesses. After 45 d of AGE consumption, γδ-T and NK cells proliferated better and were more activated than cells from the placebo group. After 90 d, although the number of illnesses was not significantly different, the AGE group showed reduced cold and flu severity, with a reduction in the number of symptoms, the number of days participants functioned suboptimally, and the number of work/school days missed. These results suggest that AGE supplementation may enhance immune cell function and may be partly responsible for the reduced severity of colds and flu reported. The results also suggest that the immune system functions well with AGE supplementation, perhaps with less accompanying inflammation. This trial was registered at clinicaltrials.gov as NCT01390116.

  15. Biological Aging and the Human Gut Microbiota.

    PubMed

    Maffei, Vincent J; Kim, Sangkyu; Blanchard, Eugene; Luo, Meng; Jazwinski, S Michal; Taylor, Christopher M; Welsh, David A

    2017-04-25

    The human gastrointestinal microbiota plays a key homeostatic role in normal functioning of physiologic processes commonly undermined by aging. We used a previously validated 34-item frailty index (FI34) to identify changes in gut microbiota community structure associated with biological age of community-dwelling adults. Stool 16S rRNA cDNA libraries from 85 subjects ranging in age (43-79) and FI34 score (0-0.365) were deep sequenced, denoised, and clustered using DADA2. Subject biological age but not chronological age correlated with a decrease in stool microbial diversity. Specific microbial genera were differentially abundant in the lower, middle, and upper 33rd percentiles of biological age. Using Sparse Inverse Covariance Estimation for Ecological Association and Statistical Inference (SPIEC-EASI) and Weighted Gene Co-Expression Network Analysis (WGCNA), we identified modules of coabundant microbial genera that distinguished biological from chronological aging. A biological age-associated module composed of Eggerthella, Ruminococcus, and Coprobacillus genera was robust to correction for subject age, sex, body mass index, antibiotic usage, and other confounders. Subject FI34 score positively correlated with the abundance of this module, which exhibited a distinct inferred metagenome as predicted by Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt). We conclude that increasing biological age in community-dwelling adults is associated with gastrointestinal dysbiosis. © The Author 2017. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  16. Tooth loss early in life accelerates age-related bone deterioration in mice.

    PubMed

    Kurahashi, Minori; Kondo, Hiroko; Iinuma, Mitsuo; Tamura, Yasuo; Chen, Huayue; Kubo, Kin-ya

    2015-01-01

    Both osteoporosis and tooth loss are health concerns that affect many older people. Osteoporosis is a common skeletal disease of the elderly, characterized by low bone mass and microstructural deterioration of bone tissue. Chronic mild stress is a risk factor for osteoporosis. Many studies showed that tooth loss induced neurological alterations through activation of a stress hormone, corticosterone, in mice. In this study, we tested the hypothesis that tooth loss early in life may accelerate age-related bone deterioration using a mouse model. Male senescence-accelerated mouse strain P8 (SAMP8) mice were randomly divided into control and toothless groups. Removal of the upper molar teeth was performed at one month of age. Bone response was evaluated at 2, 5 and 9 months of age. Tooth loss early in life caused a significant increase in circulating corticosterone level with age. Osteoblast bone formation was suppressed and osteoclast bone resorption was activated in the toothless mice. Trabecular bone volume fraction of the vertebra and femur was decreased in the toothless mice with age. The bone quality was reduced in the toothless mice at 5 and 9 months of age, compared with the age-matched control mice. These findings indicate that tooth loss early in life impairs the dynamic homeostasis of the bone formation and bone resorption, leading to reduced bone strength with age. Long-term tooth loss may have a cumulative detrimental effect on bone health. It is important to take appropriate measures to treat tooth loss in older people for preventing and/or treating senile osteoporosis.

  17. Characterization and Accelerated Ageing of UHMWPE Used in Orthopedic Prosthesis by Peroxide

    PubMed Central

    Rocha, Magda; Mansur, Alexandra; Mansur, Herman

    2009-01-01

    Ultra-high molecular weight polyethylene (UHMWPE) has been the most commonly used bearing material in total joint arthroplasty. Wear and oxidation fatigue resistance of UHMWPE are regarded as two important mechanical properties to extend the longevity of knee prostheses. Though accelerated in vitro protocols have been developed to test the relative oxidation resistance of various types of UHMWPE, its mechanism is not accurately understood yet. Thus, in the present study an accelerated ageing of UHMWPE in hydrogen peroxide solution was performed and relative oxidation was extensively characterized by Fourier Transformed Infrared Spectroscopy (FTIR) spectroscopy and the morphological changes were analyzed by Scanning Electron Microscopy (SEM). Different chemical groups of UHMWPE associated with the degradation reaction were monitored for over 120 days in order to evaluate the possible oxidation mechanism(s) which may have occurred. The results have provided strong evidence that the oxidation mechanism is rather complex, and two stages with their own particular first-order kinetics reaction patterns have been clearly identified. Furthermore, hydrogen peroxide has proven to be an efficient oxidative medium to accelerate ageing of UHMWPE.

  18. The influence of the accelerated ageing on the black screen element of the Electroink prints

    NASA Astrophysics Data System (ADS)

    Majnaric, I.; Bolanca, Z.; Bolanca Mirkovic, I.

    2010-06-01

    Printing material and prints undergo changes during ageing which can be recognized in deterioration in the physical, chemical and optical properties. The aim of this work is to determine the optical changes of the prints caused by ageing of the printing material and of the prints obtained by the application of the indirect electrophotography. The change of the screen elements in lighter halftone areas, which was obtained by the usage of the microscopic image analysis, has been discussed in the article. For the preparation of samples the following papers were used: fine art paper, recycled paper and offset paper as well as black Electroink. Three sample series were observed: prints on nonaged paper and ElectroInk, prints on aged paper and ElectroInk and prints on aged paper and nonaged ElectroInk. The investigation results show that by ageing of the uncoated printing substrates the decrease of the dots on prints can be expected, while the printing on the aged paper results in the increased reproduction of the halftone dots. The obtained results are the contribution to the explanation of the influence of the accelerated ageing process of papers which are used for printing and the aged prints on the halftone dot changes. Except the mentioned determined scientific contribution the results are applicable in the area of the printing product quality as well as in the forensic science.

  19. Avoidance of accelerated aging in schizophrenia?: Clinical and biological characterization of an exceptionally high functioning individual.

    PubMed

    Palmer, Barton W; Moore, Raeanne C; Eyler, Lisa T; Pinto, Luz L; Saks, Elyn R; Jeste, Dilip V

    2017-08-08

    To determine the clinical and biological characteristics of an exceptionally high functioning index person (IP) with schizophrenia in her mid-50s, which may represent compensatory mechanisms, and potentially, avoidance of the accelerated aging typically associated with schizophrenia. IP, 11 other women with schizophrenia, and 11 non-psychiatric comparison (NC) women were assessed with standard ratings of psychopathology, neurocognitive function, decisional capacity, and functional brain imaging. IP was also compared to a sample of demographically similar NCs (N=45) and persons with schizophrenia (N=42) on a set of blood-based biomarkers of aging related to metabolic function, oxidative stress, and inflammation. IP's scores on working memory, and levels of brain activation during an affective face matching task in the left fusiform, right lingual, and left precentral gyri, exceeded NCs. IP was similar to NCs in severity of negative symptoms, most neurocognitive functions, decisional capacity, and brain activation in the left inferior occipital gyrus during a selective stopping task. IP's levels on 11 of 14 metabolic and inflammatory biomarkers of aging were better than NCs and the schizophrenia group. Although speculative, results suggest a possible model in which superior working memory permits a person to be aware of the potentially psychotic nature of a thought or perception, and adjust response accordingly. Compensatory overactivity of brain regions during affective processing may also reflect heightened meta-awareness in emotional situations. Biomarker levels raise the possibility that IP partially avoided the accelerated biological aging associated with schizophrenia. Published by Elsevier B.V.

  20. Accelerated long-term forgetting in aging and intra-sleep awakenings.

    PubMed

    Mary, Alison; Schreiner, Svenia; Peigneux, Philippe

    2013-01-01

    The architecture of sleep and the functional neuroanatomical networks subtending memory consolidation processes are both modified with aging, possibly leading to accelerated forgetting in long-term memory. We investigated associative learning and declarative memory consolidation processes in 16 young (18-30 years) and 16 older (65-75 years) healthy adults. Performance was tested using a cued recall procedure at the end of learning (immediate recall), and 30 min and 7 days later. A delayed recognition test was also administered on day 7. Daily sleep diaries were completed during the entire experiment. Results revealed a similar percentage of correct responses at immediate and 30-min recall in young and older participants. However, recall was significantly decreased 7 days later, with an increased forgetting in older participants. Additionally, intra-sleep awakenings were more frequent in older participants than young adults during the seven nights, and were negatively correlated with delayed recall performance on day 7 in the older group. Altogether, our results suggest a decline in verbal declarative memory consolidation processes with aging, eventually leading to accelerated long-term forgetting indicating that increased sleep fragmentation due to more frequent intra-sleep awakenings in older participants contribute to the reported age-related decline in long-term memory retrieval. Our results highlight the sensitivity of long-term forgetting measures to evidence consolidation deficits in healthy aging.

  1. Effect of energy density on color stability in dental resin composites under accelerated aging.

    PubMed

    Zamarripa, Eliezer; Ancona, Adriana L; D'Accorso, Norma B; Macchi, Ricardo L; Abate, Pablo F

    2008-01-01

    The effects of the energy density that is used for polymerization on properties of dental resin composites are well known. However, few studies relate color stability to this factor. The aim of this study was to assess color changes (deltaE*), in vitro, in terms of accelerated aging under UV exposure of specimens prepared with different energy densities. Four commercial dental resin composites were included in the study. Thirty six specimens were prepared for each one of them, following the procedure established by ISO 4049 Standard, and assigned to three groups: A (3.75 J/cm2), B (9 J/cm2), C (24 J/cm2). Each group was further subdivided into four subgroups: 1 (no aging), 2 (500 hours aging), 3 (1000 hours aging) and 4 (1500 hours aging). The results were analyzed by means of ANOVA and Tukey's test (alpha = 0.05) to determine the effect of the factors. Correlation was performed in order to determine the possible relationship among variables. Energy density is not a significant factor in color stability. However aging is directly proportional to color changes. deltaE* depends on filler size; hybrid material presented deltaE* of 2.1(0.5), 2.4(0.6) and 3.3(0.3) at 500, 1000 and 1500 hours of accelerated aging respectively, and nanofilled material showed deltaE* of 3.0(0.6), 4.5(1.2) and 5.9(0.6) at the same times respectively. It can be concluded that deltaE* does not depend on energy density; however other factors are involved in color change. Further studies in this area are warranted.

  2. Cycle life estimation of lithium secondary battery by extrapolation method and accelerated aging test

    NASA Astrophysics Data System (ADS)

    Takei, K.; Kumai, K.; Kobayashi, Y.; Miyashiro, H.; Terada, N.; Iwahori, T.; Tanaka, T.

    The testing methods to estimate the life cycles of lithium ion batteries for a short period, have been developed using a commercialized cell with LiCoO 2/hard carbon cell system. The degradation reactions with increasing cycles were suggested to occur predominantly above 4 V from the results of operating voltage range divided tests. In the case of the extrapolation method using limited cycle data, the straight line approximation was useful as the cycle performance has the linearity, but the error is at most 40% in using the initial short cycle data. In the case of the accelerated aging tests using the following stress factors, the charge and/or discharge rate, large accelerated coefficients were obtained in the high charge rate and the high temperature thermal stress.

  3. Early-life adversity accelerates cellular ageing and affects adult inflammation: Experimental evidence from the European starling

    PubMed Central

    Nettle, Daniel; Andrews, Clare; Reichert, Sophie; Bedford, Tom; Kolenda, Claire; Parker, Craig; Martin-Ruiz, Carmen; Monaghan, Pat; Bateson, Melissa

    2017-01-01

    Early-life adversity is associated with accelerated cellular ageing during development and increased inflammation during adulthood. However, human studies can only establish correlation, not causation, and existing experimental animal approaches alter multiple components of early-life adversity simultaneously. We developed a novel hand-rearing paradigm in European starling nestlings (Sturnus vulgaris), in which we separately manipulated nutritional shortfall and begging effort for a period of 10 days. The experimental treatments accelerated erythrocyte telomere attrition and increased DNA damage measured in the juvenile period. For telomere attrition, amount of food and begging effort exerted additive effects. Only the combination of low food amount and high begging effort increased DNA damage. We then measured two markers of inflammation, high-sensitivity C-reactive protein and interleukin-6, when the birds were adults. The experimental treatments affected both inflammatory markers, though the patterns were complex and different for each marker. The effect of the experimental treatments on adult interleukin-6 was partially mediated by increased juvenile DNA damage. Our results show that both nutritional input and begging effort in the nestling period affect cellular ageing and adult inflammation in the starling. However, the pattern of effects is different for different biomarkers measured at different time points. PMID:28094324

  4. Biomarkers related to aging in human populations.

    PubMed

    Crimmins, Eileen; Vasunilashorn, Sarinnapha; Kim, Jung Ki; Alley, Dawn

    2008-01-01

    Biomarkers are increasingly employed in empirical studies of human populations to understand physiological processes that change with age, diseases whose onset appears linked to age, and the aging process itself. In this chapter, we describe some of the most commonly used biomarkers in population aging research, including their collection, associations with other markers, and relationships to health outcomes. We discuss biomarkers of the cardiovascular system, metabolic processes, inflammation, activity in the hypothalamic-pituitary axis (HPA) and sympathetic nervous system (SNS), and organ functioning (including kidney, lung, and heart). In addition, we note that markers of functioning of the central nervous system and genetic markers are now becoming part of population measurement. Where possible, we detail interrelationships between these markers by providing correlations between high risk levels of each marker from three population-based surveys: the National Health and Nutrition Examination Survey (NHANES) III, NHANES 1999-2002, and the MacArthur Study of Successful Aging. NHANES III is used instead of NHANES 1999-2002 when specific markers of interest are available only in NHANES III and when we examine the relationship of biomarkers to mortality which is only known for NHANES III. We also describe summary measures combining biomarkers across systems. Finally, we examine associations between individual markers and mortality and provide information about biomarkers of growing interest for future research in population aging and health.

  5. The Age of Human Cerebral Cortex Neurons

    SciTech Connect

    Bhardwaj, R D; Curtis, M A; Spalding, K L; Buchholz, B A; Fink, D; Bjork-Eriksson, T; Nordborg, C; Gage, F H; Druid, H; Eriksson, P S; Frisen, J

    2006-04-06

    The traditional static view of the adult mammalian brain has been challenged by the realization of continuous generation of neurons from stem cells. Based mainly on studies in experimental animals, adult neurogenesis may contribute to recovery after brain insults and decreased neurogenesis has been implicated in the pathogenesis of neurological and psychiatric diseases in man. The extent of neurogenesis in the adult human brain has, however, been difficult to establish. We have taken advantage of the integration of {sup 14}C, generated by nuclear bomb tests during the Cold War, in DNA to establish the age of neurons in the major areas of the human cerebral cortex. Together with the analysis of the cortex from patients who received BrdU, which integrates in the DNA of dividing cells, our results demonstrate that whereas non-neuronal cells turn over, neurons in the human cerebral cortex are not generated postnatally at detectable levels, but are as old as the individual.

  6. Human serum metabolic profiles are age dependent

    PubMed Central

    Yu, Zhonghao; Zhai, Guangju; Singmann, Paula; He, Ying; Xu, Tao; Prehn, Cornelia; Römisch-Margl, Werner; Lattka, Eva; Gieger, Christian; Soranzo, Nicole; Heinrich, Joachim; Standl, Marie; Thiering, Elisabeth; Mittelstraß, Kirstin; Wichmann, Heinz-Erich; Peters, Annette; Suhre, Karsten; Li, Yixue; Adamski, Jerzy; Spector, Tim D; Illig, Thomas; Wang-Sattler, Rui

    2012-01-01

    Understanding the complexity of aging is of utmost importance. This can now be addressed by the novel and powerful approach of metabolomics. However, to date, only a few metabolic studies based on large samples are available. Here, we provide novel and specific information on age-related metabolite concentration changes in human homeostasis. We report results from two population-based studies: the KORA F4 study from Germany as a discovery cohort, with 1038 female and 1124 male participants (32–81 years), and the TwinsUK study as replication, with 724 female participants. Targeted metabolomics of fasting serum samples quantified 131 metabolites by FIA-MS/MS. Among these, 71/34 metabolites were significantly associated with age in women/men (BMI adjusted). We further identified a set of 13 independent metabolites in women (with P values ranging from 4.6 × 10−04 to 7.8 × 10−42, αcorr = 0.004). Eleven of these 13 metabolites were replicated in the TwinsUK study, including seven metabolite concentrations that increased with age (C0, C10:1, C12:1, C18:1, SM C16:1, SM C18:1, and PC aa C28:1), while histidine decreased. These results indicate that metabolic profiles are age dependent and might reflect different aging processes, such as incomplete mitochondrial fatty acid oxidation. The use of metabolomics will increase our understanding of aging networks and may lead to discoveries that help enhance healthy aging. PMID:22834969

  7. Influence of aging on human sound localization

    PubMed Central

    Dobreva, Marina S.; O'Neill, William E.

    2011-01-01

    Errors in sound localization, associated with age-related changes in peripheral and central auditory function, can pose threats to self and others in a commonly encountered environment such as a busy traffic intersection. This study aimed to quantify the accuracy and precision (repeatability) of free-field human sound localization as a function of advancing age. Head-fixed young, middle-aged, and elderly listeners localized band-passed targets using visually guided manual laser pointing in a darkened room. Targets were presented in the frontal field by a robotically controlled loudspeaker assembly hidden behind a screen. Broadband targets (0.1–20 kHz) activated all auditory spatial channels, whereas low-pass and high-pass targets selectively isolated interaural time and intensity difference cues (ITDs and IIDs) for azimuth and high-frequency spectral cues for elevation. In addition, to assess the upper frequency limit of ITD utilization across age groups more thoroughly, narrowband targets were presented at 250-Hz intervals from 250 Hz up to ∼2 kHz. Young subjects generally showed horizontal overestimation (overshoot) and vertical underestimation (undershoot) of auditory target location, and this effect varied with frequency band. Accuracy and/or precision worsened in older individuals for broadband, high-pass, and low-pass targets, reflective of peripheral but also central auditory aging. In addition, compared with young adults, middle-aged, and elderly listeners showed pronounced horizontal localization deficiencies (imprecision) for narrowband targets within 1,250–1,575 Hz, congruent with age-related central decline in auditory temporal processing. Findings underscore the distinct neural processing of the auditory spatial cues in sound localization and their selective deterioration with advancing age. PMID:21368004

  8. Anticedants and natural prevention of environmental toxicants induced accelerated aging of skin.

    PubMed

    Tanuja Yadav; Mishra, Shivangi; Das, Shefali; Aggarwal, Shikha; Rani, Vibha

    2015-01-01

    Skin is frequently exposed to a variety of environmental and chemical agents that accelerate ageing. External stress such as UV radiations (UVR) and environmental pollutants majorly deteriorate the skin morphology, by activating certain intrinsic factors such as Reactive Oxygen Species (ROS) which trigger the activation of Matrix Metalloproteinases (MMPs) and inflammatory responses hence damaging the extracellular matrix (ECM) components. To counter this, an exogenous supply of anti-oxidants, is required since the endogenous anti-oxidant system cannot alone suffice the need. Bio-prospecting of natural resources for anti-oxidants has hence been intensified. Immense research is being carried out to identify potential plants with potent anti-oxidant activity against skin ageing. This review summarizes the major factors responsible for premature skin ageing and the plants being targeted to lessen the impact of those.

  9. Colour stability, opacity and cross-link density of composites submitted to accelerated artificial aging.

    PubMed

    Mundim, Fabrício Mariano; Pires-de-Souza, Fernanda de Carvalho Panzeri; Garcia, Lucas da Fonseca Roberti; Consani, Simonides

    2010-06-01

    The study evaluated the influence of accelerated artificial aging on colour stability, opacity and cross-link density of resin-based composites (RBCs). Seven specimens were obtained of five RBCs (Heliomolar, 4 Seasons, Tetric Evo Ceram, SR Adoro), which were submitted to colour stability and opacity analysis and cross-link density evaluation. All tests were performed before and after aging. After statistical analysis (one-way ANOVA; Tukey; p<0.05), it was observed that QuiXfil and SR Adoro presented colour alteration values above those that are clinically acceptable (deltaE=5.77 and 4.34 respectively) and the variation in opacity was lowest for SR Adoro. There was an increase in the cross-link density of all studied materials after aging.

  10. Aging after noise exposure: acceleration of cochlear synaptopathy in "recovered" ears.

    PubMed

    Fernandez, Katharine A; Jeffers, Penelope W C; Lall, Kumud; Liberman, M Charles; Kujawa, Sharon G

    2015-05-13

    Cochlear synaptic loss, rather than hair cell death, is the earliest sign of damage in both noise- and age-related hearing impairment (Kujawa and Liberman, 2009; Sergeyenko et al., 2013). Here, we compare cochlear aging after two types of noise exposure: one producing permanent synaptic damage without hair cell loss and another producing neither synaptopathy nor hair cell loss. Adult mice were exposed (8-16 kHz, 100 or 91 dB SPL for 2 h) and then evaluated from 1 h to ∼ 20 months after exposure. Cochlear function was assessed via distortion product otoacoustic emissions and auditory brainstem responses (ABRs). Cochlear whole mounts and plastic sections were studied to quantify hair cells, cochlear neurons, and the synapses connecting them. The synaptopathic noise (100 dB) caused 35-50 dB threshold shifts at 24 h. By 2 weeks, thresholds had recovered, but synaptic counts and ABR amplitudes at high frequencies were reduced by up to ∼ 45%. As exposed animals aged, synaptopathy was exacerbated compared with controls and spread to lower frequencies. Proportional ganglion cell losses followed. Threshold shifts first appeared >1 year after exposure and, by ∼ 20 months, were up to 18 dB greater in the synaptopathic noise group. Outer hair cell losses were exacerbated in the same time frame (∼ 10% at 32 kHz). In contrast, the 91 dB exposure, producing transient threshold shift without acute synaptopathy, showed no acceleration of synaptic loss or cochlear dysfunction as animals aged, at least to ∼ 1 year after exposure. Therefore, interactions between noise and aging may require an acute synaptopathy, but a single synaptopathic exposure can accelerate cochlear aging. Copyright © 2015 the authors 0270-6474/15/357509-12$15.00/0.

  11. Loss of circadian clock accelerates aging in neurodegeneration-prone mutants

    PubMed Central

    Krishnan, Natraj; Rakshit, Kuntol; Chow, Eileen S.; Wentzell, Jill S.; Kretzschmar, Doris; Giebultowicz, Jadwiga M.

    2012-01-01

    Circadian clocks generate rhythms in molecular, cellular, physiological, and behavioral processes. Recent studies suggest that disruption of the clock mechanism accelerates organismal senescence and age-related pathologies in mammals. Impaired circadian rhythms are observed in many neurological diseases; however, it is not clear whether loss of rhythms is the cause or result of neurodegeneration, or both. To address this important question, we examined the effects of circadian disruption in Drosophila melanogaster mutants that display clock-unrelated neurodegenerative phenotypes. We combined a null mutation in the clock gene period (per01) that abolishes circadian rhythms, with a hypomorphic mutation in the carbonyl reductase gene sniffer (sni1), which displays oxidative stress induced neurodegeneration. We report that disruption of circadian rhythms in sni1 mutants significantly reduces their lifespan compared to single mutants. Shortened lifespan in double mutants was coupled with accelerated neuronal degeneration evidenced by vacuolization in the adult brain. In addition, per01 sni1 flies showed drastically impaired vertical mobility and increased accumulation of carbonylated proteins compared to age-matched single mutant flies. Loss of per function does not affect sni mRNA expression, suggesting that these genes act via independent pathways producing additive effects. Finally, we show that per01 mutation accelerates the onset of brain pathologies when combined with neurodegeneration-prone mutation in another gene, swiss cheese (sws1), which does not operate through the oxidative stress pathway. Taken together, our data suggest that the period gene may be causally involved in neuroprotective pathways in aging Drosophila. PMID:22227001

  12. Accelerated structural decrements in the aging female rhesus macaque lung compared with males

    PubMed Central

    Herring, Matt J.; Avdalovic, Mark V.; Quesenberry, Cheryl L.; Putney, Lei F.; Tyler, Nancy K.; Ventimiglia, Frank F.; St. George, Judith A.

    2013-01-01

    Aging is associated with morphometric changes in the lung that lead to decreased lung function. The nonhuman primate lung has been shown to have similar architectural, morphological, and developmental patterns to that of humans. We hypothesized that the lungs of rhesus monkeys age in a pattern similar to human lungs. Thirty-four rhesus monkeys from the California National Primate Research Center were euthanized, necropsied, and the whole lungs sampled. Stereological analysis was performed to assess the morphological changes associated with age. The number of alveoli declined significantly from age 9 to 33 yr with a greater decline in females compared with males. Lungs of females contained roughly 20% more alveoli at age 9 yr than males, but by ∼30 yr of age, females had 30% fewer alveoli than males. The volume of alveolar air also showed a significant linear decrease in females relative to age, while males did not. The number-weighted mean volume of alveoli showed a significant positive correlation with age in females but not in males. The volume of alveolar duct showed a significant positive correlation with age in females, but not in males. Structural decrements due to aging in the lung were increased in the female compared with male rhesus monkey. PMID:23144321

  13. New Aging Index Using Signal Features of Both Photoplethysmograms and Acceleration Plethysmograms

    PubMed Central

    2017-01-01

    Objectives Acceleration plethysmograms (APGs) are obtained by taking the second derivative of photoplethysmograms (PPGs) and are noninvasive circulatory signals related to risk factors for atherosclerosis with age. There has been growing interest in the development of mobile devices to collect and analyze PPG single features for ambulatory health monitoring. The present study aimed to extract a new feature from the morphologies of APG and PPG signals to classify the dominant indices related to the pulsatile volume of blood in tissue according to age. Methods Ten APG and 14 PPG indices were simultaneously extracted. All indices were compared via Pearson correlation coefficients (r) and a regression analysis. We introduced a combined index extracted from both the PPG and APG indices defined as the inflection point area plus the d_peak (IPAD). The participants included 93 healthy adults aged 36–86 years with a mean ± standard deviation age of 57.43 ± 11.99 years. Results The d_peak and age index for the APG indices were significantly correlated with age (r = −0.408, p < 0.0001 and r = 0.296, p = 0.0039, respectively). Only the A1 time for PPG indices was moderately correlated with age (r = −0.247, p = 0.017). The stiffness index, including individual height information, was not related to age (r = −0.031, p = 0.7713). However, the combined IPAD index was significantly more correlated with age (r = 0.56, p < 0.001) than the other indices. Conclusions The proposed index outperformed the other 24 indices for evaluating vascular aging. We suggest that the IPAD is a significant factor related to the clinical information embedded in the PPG waveform. PMID:28261531

  14. Relaxographic studies of aging normal human lenses.

    PubMed

    Bettelheim, Frederick A; Lizak, Martin J; Zigler, J Samuel

    2002-12-01

    Ten excised normal human lenses of various ages were studied. Seven sections of each lens, from anterior outer cortex to posterior outer cortex were imaged and the T(1) (spin-lattice) and T(2) (spin-spin) relaxation data on each section were collected. T(1) and T(2) relaxation were analysed by fitting pixel intensity to one term exponential expressions. Both T(1) and T(2) relaxation times showed minimal values in the nuclear region and maxima at the two outer cortexes. The pre-exponential terms of the fittings of both T(1) and T(2) relaxation,M(1) and M(2), were normalized in order to eliminate instrumental variations over a 2 year period. M(2) had a maximum in the nucleus and minima in the two cortexes. M(1) exhibited minimal value in the nucleus and maxima at the two cortexes. The positional dependence of T(2) relaxation times as well as that of M(2) indicated that they represent the behavior of the bound water in the lens. The positional dependence of M(1) suggests that this relaxation represents the total water that has a minimal value in the nucleus. The T(2) relaxation time decreases with increase in the age of the lens at each location. The slope of the change in T(2) relaxation time with age is greatest in the outer cortexes and diminishes as one proceeds to the nucleus. T(1) relaxation times and M(1) do not show significant change with age. This and the age dependence of the other relaxographic parameters imply that the aging of the lens involves major changes in its hydration properties that are more accentuated in the cortexes. The interpretation of these changes is in agreement with the syneretic theory of lens aging.

  15. A role of peroxydases in acceleration of the aging of potato minitubers under influence of microgravity

    NASA Astrophysics Data System (ADS)

    Nedukha, Olena; Kordyum, Elizabeth; Martyn, Gennadiy; Galina, Martyn

    2005-08-01

    The structure of periderm and storage parenchyma cells, and the peroxidase location and activity in potato minitubers (Solanum tuberosum L., cv Adreta) formed on the horizontal clinostat (2 rev/min) and in the stationary conditions have been investigated by the methods of transmission electron microscopy, immuno-cytochemistry and biochemistry. Long-term horizontal clinorotation that particle simulated microgravity led to the acceleration of minituber aging, an increase in FITC-peroxidase complex fluorescence intensity, partial destruction of investigated cells as well as an increase in the guaiacol- and ascorbate- peroxidase activity. The intensification of peroxidase activity it is supposed to connect with the strengthened antioxidant processes in potato minitubers under clinorotation.

  16. Acceleration of Age-Associated Methylation Patterns in HIV-1-Infected Adults

    PubMed Central

    Sehl, Mary; Sinsheimer, Janet S.; Hultin, Patricia M.; Hultin, Lance E.; Quach, Austin; Martínez-Maza, Otoniel; Horvath, Steve; Vilain, Eric; Jamieson, Beth D.

    2015-01-01

    Patients with treated HIV-1-infection experience earlier occurrence of aging-associated diseases, raising speculation that HIV-1-infection, or antiretroviral treatment, may accelerate aging. We recently described an age-related co-methylation module comprised of hundreds of CpGs; however, it is unknown whether aging and HIV-1-infection exert negative health effects through similar, or disparate, mechanisms. We investigated whether HIV-1-infection would induce age-associated methylation changes. We evaluated DNA methylation levels at >450,000 CpG sites in peripheral blood mononuclear cells (PBMC) of young (20-35) and older (36-56) adults in two separate groups of participants. Each age group for each data set consisted of 12 HIV-1-infected and 12 age-matched HIV-1-uninfected samples for a total of 96 samples. The effects of age and HIV-1 infection on methylation at each CpG revealed a strong correlation of 0.49, p<1 x10-200 and 0.47, p<1x10-200. Weighted gene correlation network analysis (WGCNA) identified 17 co-methylation modules; module 3 (ME3) was significantly correlated with age (cor=0.70) and HIV-1 status (cor=0.31). Older HIV-1+ individuals had a greater number of hypermethylated CpGs across ME3 (p=0.015). In a multivariate model, ME3 was significantly associated with age and HIV status (Data set 1: βage= 0.007088, p=2.08 x 10-9; βHIV= 0.099574, p=0.0011; Data set 2: βage= 0.008762, p=1.27x 10-5; βHIV= 0.128649, p= 0.0001). Using this model, we estimate that HIV-1 infection accelerates age-related methylation by approximately 13.7 years in data set 1 and 14.7 years in data set 2. The genes related to CpGs in ME3 are enriched for polycomb group target genes known to be involved in cell renewal and aging. The overlap between ME3 and an aging methylation module found in solid tissues is also highly significant (Fisher-exact p=5.6 x 10-6, odds ratio=1.91). These data demonstrate that HIV-1 infection is associated with methylation patterns that are similar to

  17. Onset of human aging estimated from hazard functions associated with various causes of death.

    PubMed

    Luder, H U

    1993-04-01

    In an attempt to estimate the onset of aging-associated mortality in humans, Swiss national survival and mortality data from 1978 to 1983 were analyzed. The nonparametric kernel method served to estimate gender-specific survival and hazard functions related to five major as well as all causes of death. On the basis of graphical models, it was hypothesized that the onset of aging conceivably was associated with prominent acceleration in mortality rates. The earliest maximal accelerations in hazard functions for most causes of death occurred during the second and again during the fourth age decade. Overall mortality rates of males and females exhibited prominent humps between the two periods of acceleration. These humps were accounted for largely by a high incidence of deaths from violence (accidents, suicide, and crime), which have to be attributed to environmental factors rather than to senescence. On the other hand, no plausible argument could be found against the assumption that maximal acceleration in death rates from ischemic heart and other circulatory diseases around 20 years of age was related to aging. Therefore, these data were interpreted to indicate that in the population examined, senescent mortality sets in around 20 years of age, about 5 years earlier in males than in females. However, when considering overall hazard rates, aging is hidden from view by mortality associated with environmental factors, which predominates up to ages of 30-35 years in both genders.

  18. Effect of accelerated environmental aging on tensile properties of oil palm/jute hybrid composites

    NASA Astrophysics Data System (ADS)

    Jawaid, M.; Saba, N.; Alothman, O.; Paridah, M. T.

    2016-11-01

    Recently natural fibre based hybrid composites are receiving growing consideration due to environmental and biodegradability properties. In order to look behaviour of hybrid composites in outdoor applications, its environmental degradation properties such as UV accelerated weathering properties need to analyze. In this study oil palm empty fruit bunch (EFB) and jute fibres reinforced hybrid composites, pure EFB, pure jute and epoxy composites were fabricated through hand lay-up techniques. Hybrid composites with different layering pattern (EFB/jute/EFB and Jute/EFB/jute) while maintaining 40 wt. % total fibre loading were fabricates to compared with EFB and jute composites. Effect of UV accelerated environmental aging on tensile properties of epoxy, pure EFB, pure jute, and hybrid composites were assessed and evaluate under UV exposure. Tensile samples of all composites were subjected to accelerated weathering for 100h, at temperature (75°C), relative humidity (35%), Light (125 W/m2), and water spray off. Obtained results indicated that there is reduction in tensile strength, modulus and elongation at break values of hybrid and pure composites due to degradation of lignin and fibre-matrix interfacial bonding.

  19. Priming of microglia in a DNA-repair deficient model of accelerated aging.

    PubMed

    Raj, Divya D A; Jaarsma, Dick; Holtman, Inge R; Olah, Marta; Ferreira, Filipa M; Schaafsma, Wandert; Brouwer, Nieske; Meijer, Michel M; de Waard, Monique C; van der Pluijm, Ingrid; Brandt, Renata; Kreft, Karim L; Laman, Jon D; de Haan, Gerald; Biber, Knut P H; Hoeijmakers, Jan H J; Eggen, Bart J L; Boddeke, Hendrikus W G M

    2014-09-01

    Aging is associated with reduced function, degenerative changes, and increased neuroinflammation of the central nervous system (CNS). Increasing evidence suggests that changes in microglia cells contribute to the age-related deterioration of the CNS. The most prominent age-related change of microglia is enhanced sensitivity to inflammatory stimuli, referred to as priming. It is unclear if priming is due to intrinsic microglia ageing or induced by the ageing neural environment. We have studied this in Ercc1 mutant mice, a DNA repair-deficient mouse model that displays features of accelerated aging in multiple tissues including the CNS. In Ercc1 mutant mice, microglia showed hallmark features of priming such as an exaggerated response to peripheral lipopolysaccharide exposure in terms of cytokine expression and phagocytosis. Specific targeting of the Ercc1 deletion to forebrain neurons resulted in a progressive priming response in microglia exemplified by phenotypic alterations. Summarizing, these data show that neuronal genotoxic stress is sufficient to switch microglia from a resting to a primed state.

  20. Wet climate and transportation routes accelerate spread of human plague.

    PubMed

    Xu, Lei; Stige, Leif Chr; Kausrud, Kyrre Linné; Ben Ari, Tamara; Wang, Shuchun; Fang, Xiye; Schmid, Boris V; Liu, Qiyong; Stenseth, Nils Chr; Zhang, Zhibin

    2014-04-07

    Currently, large-scale transmissions of infectious diseases are becoming more closely associated with accelerated globalization and climate change, but quantitative analyses are still rare. By using an extensive dataset consisting of date and location of cases for the third plague pandemic from 1772 to 1964 in China and a novel method (nearest neighbour approach) which deals with both short- and long-distance transmissions, we found the presence of major roads, rivers and coastline accelerated the spread of plague and shaped the transmission patterns. We found that plague spread velocity was positively associated with wet conditions (measured by an index of drought and flood events) in China, probably due to flood-driven transmission by people or rodents. Our study provides new insights on transmission patterns and possible mechanisms behind variability in transmission speed, with implications for prevention and control measures. The methodology may also be applicable to studies of disease dynamics or species movement in other systems.

  1. Wet climate and transportation routes accelerate spread of human plague

    PubMed Central

    Xu, Lei; Stige, Leif Chr.; Kausrud, Kyrre Linné; Ben Ari, Tamara; Wang, Shuchun; Fang, Xiye; Schmid, Boris V.; Liu, Qiyong; Stenseth, Nils Chr.; Zhang, Zhibin

    2014-01-01

    Currently, large-scale transmissions of infectious diseases are becoming more closely associated with accelerated globalization and climate change, but quantitative analyses are still rare. By using an extensive dataset consisting of date and location of cases for the third plague pandemic from 1772 to 1964 in China and a novel method (nearest neighbour approach) which deals with both short- and long-distance transmissions, we found the presence of major roads, rivers and coastline accelerated the spread of plague and shaped the transmission patterns. We found that plague spread velocity was positively associated with wet conditions (measured by an index of drought and flood events) in China, probably due to flood-driven transmission by people or rodents. Our study provides new insights on transmission patterns and possible mechanisms behind variability in transmission speed, with implications for prevention and control measures. The methodology may also be applicable to studies of disease dynamics or species movement in other systems. PMID:24523275

  2. Excessive daytime sleepiness and fatigue may indicate accelerated brain aging in cognitively normal late middle-aged and older adults.

    PubMed

    Carvalho, Diego Z; St Louis, Erik K; Boeve, Bradley F; Mielke, Michelle M; Przybelski, Scott A; Knopman, David S; Machulda, Mary M; Roberts, Rosebud O; Geda, Yonas E; Petersen, Ronald C; Jack, Clifford R; Vemuri, Prashanthi

    2017-04-01

    Excessive daytime sleepiness (EDS) and fatigue increases with age. The aim of this study was to investigate the association between EDS and fatigue with cortical thickness and hippocampal volume in cognitively normal, late middle-aged and older adults. We performed a cross-sectional observational study of 1374 cognitively-normal subjects aged 50 years and older who had a structural MRI. Regional cortical thickness and hippocampal volume were measured. Multiple linear regression models were fit to explore associations between EDS and fatigue and structural MRI measures in different brain regions, adjusting for multiple covariates. EDS was defined as Epworth Sleepiness Scale ≥10. Fatigue severity was assessed with the Beck Depression Inventory-2. 208 participants had EDS, 27 had significant fatigue, and 11 had both. Participants with EDS or fatigue had significantly lower cognitive scores, more disturbed sleep, and medical comorbidities. The presence of EDS was associated with both global and regional atrophy, whereas fatigue was more associated with frontal and temporal changes. Cortical thinning predicted by EDS and fatigue was maximal in the temporal region with average reduction of 34.2 μm (95% CI, -54.1, -14.3; P = 0.001) and 90.2 μm (95% CI, -142.1, -38.2; P = 0.001), respectively. Fatigue was also associated with hippocampal volume reduction of -374.2 mm(3) (95% CI, -670.8, -77.7; P = 0.013). Temporal cortical thinning predicted by presence of EDS and fatigue was equivalent to more than 3.5 and 9 additional years of aging, respectively. EDS and fatigue were associated with cortical thickness reduction primarily in regions with increased age-susceptibility, which may indicate accelerated brain aging.

  3. Bitter taste receptor polymorphisms and human aging.

    PubMed

    Campa, Daniele; De Rango, Francesco; Carrai, Maura; Crocco, Paolina; Montesanto, Alberto; Canzian, Federico; Rose, Giuseppina; Rizzato, Cosmeri; Passarino, Giuseppe; Barale, Roberto

    2012-01-01

    Several studies have shown that genetic factors account for 25% of the variation in human life span. On the basis of published molecular, genetic and epidemiological data, we hypothesized that genetic polymorphisms of taste receptors, which modulate food preferences but are also expressed in a number of organs and regulate food absorption processing and metabolism, could modulate the aging process. Using a tagging approach, we investigated the possible associations between longevity and the common genetic variation at the three bitter taste receptor gene clusters on chromosomes 5, 7 and 12 in a population of 941 individuals ranging in age from 20 to 106 years from the South of Italy. We found that one polymorphism, rs978739, situated 212 bp upstream of the TAS2R16 gene, shows a statistically significant association (p = 0.001) with longevity. In particular, the frequency of A/A homozygotes increases gradually from 35% in subjects aged 20 to 70 up to 55% in centenarians. These data provide suggestive evidence on the possible correlation between human longevity and taste genetics.

  4. Bitter Taste Receptor Polymorphisms and Human Aging

    PubMed Central

    Carrai, Maura; Crocco, Paolina; Montesanto, Alberto; Canzian, Federico; Rose, Giuseppina; Rizzato, Cosmeri

    2012-01-01

    Several studies have shown that genetic factors account for 25% of the variation in human life span. On the basis of published molecular, genetic and epidemiological data, we hypothesized that genetic polymorphisms of taste receptors, which modulate food preferences but are also expressed in a number of organs and regulate food absorption processing and metabolism, could modulate the aging process. Using a tagging approach, we investigated the possible associations between longevity and the common genetic variation at the three bitter taste receptor gene clusters on chromosomes 5, 7 and 12 in a population of 941 individuals ranging in age from 20 to 106 years from the South of Italy. We found that one polymorphism, rs978739, situated 212 bp upstream of the TAS2R16 gene, shows a statistically significant association (p = 0.001) with longevity. In particular, the frequency of A/A homozygotes increases gradually from 35% in subjects aged 20 to 70 up to 55% in centenarians. These data provide suggestive evidence on the possible correlation between human longevity and taste genetics. PMID:23133589

  5. Chronological ageing of human hair keratin fibres.

    PubMed

    Thibaut, S; de Becker, E; Bernard, B A; Huart, M; Fiat, F; Baghdadli, N; Luengo, G S; Leroy, F; Angevin, P; Kermoal, A M; Muller, S; Peron, M; Provot, G; Kravtchenko, S; Saint-Léger, D; Desbois, G; Gauchet, L; Nowbuth, K; Galliano, A; Kempf, J Y; Silberzan, I

    2010-12-01

    Examination of very long hair (length > 2.4 m) using a large range of evaluation methods including physical, chemical, biochemical and microscopic techniques has enabled to attain a detailed understanding of natural ageing of human hair keratin fibres. Scrutinizing hair that has undergone little or no oxidative aggression--because of the absence of action of chemical agents such as bleaching or dyeing--from the root to the tip shows the deterioration process, which gradually takes place from the outside to the inside of the hair shaft: first, a progressive abrasion of the cuticle, whilst the cortex structure remains unaltered, is evidenced along a length of roughly 1 m onwards together with constant shine, hydrophobicity and friction characteristics. Further along the fibre, a significant damage to cuticle scales occurs, which correlates well with ceramides and 18-Methyl Eicosanoic Acid (18-MEA) decline, and progressive decrease in keratin-associated protein content. Most physical descriptors of mechanical and optical properties decay significantly. This detailed description of natural ageing of human hair fibres by a fine analysis of hair components and physical parameters in relationship with cosmetic characteristics provides a time-dependent 'damage scale' of human hair, which may help in designing new targeted hair care formulations.

  6. Aging stem cells. A Werner syndrome stem cell model unveils heterochromatin alterations as a driver of human aging.

    PubMed

    Zhang, Weiqi; Li, Jingyi; Suzuki, Keiichiro; Qu, Jing; Wang, Ping; Zhou, Junzhi; Liu, Xiaomeng; Ren, Ruotong; Xu, Xiuling; Ocampo, Alejandro; Yuan, Tingting; Yang, Jiping; Li, Ying; Shi, Liang; Guan, Dee; Pan, Huize; Duan, Shunlei; Ding, Zhichao; Li, Mo; Yi, Fei; Bai, Ruijun; Wang, Yayu; Chen, Chang; Yang, Fuquan; Li, Xiaoyu; Wang, Zimei; Aizawa, Emi; Goebl, April; Soligalla, Rupa Devi; Reddy, Pradeep; Esteban, Concepcion Rodriguez; Tang, Fuchou; Liu, Guang-Hui; Belmonte, Juan Carlos Izpisua

    2015-06-05

    Werner syndrome (WS) is a premature aging disorder caused by WRN protein deficiency. Here, we report on the generation of a human WS model in human embryonic stem cells (ESCs). Differentiation of WRN-null ESCs to mesenchymal stem cells (MSCs) recapitulates features of premature cellular aging, a global loss of H3K9me3, and changes in heterochromatin architecture. We show that WRN associates with heterochromatin proteins SUV39H1 and HP1α and nuclear lamina-heterochromatin anchoring protein LAP2β. Targeted knock-in of catalytically inactive SUV39H1 in wild-type MSCs recapitulates accelerated cellular senescence, resembling WRN-deficient MSCs. Moreover, decrease in WRN and heterochromatin marks are detected in MSCs from older individuals. Our observations uncover a role for WRN in maintaining heterochromatin stability and highlight heterochromatin disorganization as a potential determinant of human aging. Copyright © 2015, American Association for the Advancement of Science.

  7. Presbyopia - a maverick of human aging.

    PubMed

    Pierścionek, B K; Weale, R A

    1995-01-01

    The aim of this study was to examine the extent to which the age-related variations of properties of the human lens may be able to account for presbyopia. Dimensionless linear regressions were calculated for age-related biological functions with special reference to ocular and lenticular ones. Their intercepts on the x-(age-)axis are compared, and their distribution is analyzed. An analysis was made of the effect of the growth of the lens on the relation between its shape and the proximal zonular anchorages on the one hand and the age-related variation of the angle between the zonule and the equatorial plane of the lens. The lens is not unusual in seeming to have evolved in support of a life-span of about 120 years. Presbyopia, however, fails to fit into the general picture and this is hypothesized to result from lenticular growth and a combination of factors which are not all governed by senescence. The potential involvement of the root of the iris throws an interesting light on the apparently worldwide variation of the condition.

  8. The electrical performance of polymeric insulating materials under accelerated aging in a fog chamber

    SciTech Connect

    Gorur, R.S.; Cherney, E.A.; Hackam, R. ); Orbeck, T. )

    1988-07-01

    A comparative study of the ac (60 Hz) surface aging in a fog chamber is reported on cylindrical rod samples of high temperature vulcanized (HTV) silicone rubber and ethylene propylene diene monomer (EPDM) rubber containing various amounts of alumina trihydrate (ATH) and/or silica fillers. In low conductivity (250 ..mu..S/cm) fog, silicone rubber performed better than EPDM samples whereas in high conductivity (1000 ..mu..S/cm) fog, the order of performance was reversed. The mechanisms by which fillers impart tracking and erosion resistance to materials is discussed as influenced by the experimental conditions of the accelerated aging tests. Surface studies by ESCA (Electron Spectroscopy for Chemical Analysis) demonstrate that the hydrophobicity of silicone rubber, despite the accumulation of surface contamination, can be attributed to migration of low molecular weight polymer chains and/or mobile fluids, such as silicone oil.

  9. Macrophage Response to UHMWPE Submitted to Accelerated Ageing in Hydrogen Peroxide

    PubMed Central

    Rocha, Magda F.G.; Mansur, Alexandra A.P.; Martins, Camila P.S.; Barbosa-Stancioli, Edel F.; Mansur, Herman S.

    2010-01-01

    Ultra-high molecular weight polyethylene (UHMWPE) has been the most commonly used bearing material in total joint arthroplasty. Wear and oxidation fatigue resistance of UHMWPE are regarded as two important properties to extend the longevity of knee prostheses. The present study investigated the accelerated ageing of UHMWPE in hydrogen peroxide highly oxidative chemical environment. The sliced samples of UHMWPE were oxidized in a hydrogen peroxide solution for 120 days with their total level of oxidation (Iox) characterized by Fourier Transformed Infrared Spectroscopy (FTIR). The potential inflammatory response, cell viability and biocompatibility of such oxidized UHMWPE systems were assessed by a novel biological in vitro assay based on the secretion of nitric oxide (NO) by activated murine macrophages with gamma interferon (IFN-γ) cytokine and lipopolysaccharide (LPS). Furthermore, macrophage morphologies in contact with UHMWPE oxidized surfaces were analyzed by cell spreading-adhesion procedure using scanning electron microscopy (SEM). The results have given significant evidence that the longer the period of accelerated aging of UHMWPE the higher was the macrophage inflammatory equivalent response based on NO secretion analysis. PMID:20721321

  10. Macrophage Response to UHMWPE Submitted to Accelerated Ageing in Hydrogen Peroxide.

    PubMed

    Rocha, Magda F G; Mansur, Alexandra A P; Martins, Camila P S; Barbosa-Stancioli, Edel F; Mansur, Herman S

    2010-06-10

    Ultra-high molecular weight polyethylene (UHMWPE) has been the most commonly used bearing material in total joint arthroplasty. Wear and oxidation fatigue resistance of UHMWPE are regarded as two important properties to extend the longevity of knee prostheses. The present study investigated the accelerated ageing of UHMWPE in hydrogen peroxide highly oxidative chemical environment. The sliced samples of UHMWPE were oxidized in a hydrogen peroxide solution for 120 days with their total level of oxidation (Iox) characterized by Fourier Transformed Infrared Spectroscopy (FTIR). The potential inflammatory response, cell viability and biocompatibility of such oxidized UHMWPE systems were assessed by a novel biological in vitro assay based on the secretion of nitric oxide (NO) by activated murine macrophages with gamma interferon (IFN-gamma) cytokine and lipopolysaccharide (LPS). Furthermore, macrophage morphologies in contact with UHMWPE oxidized surfaces were analyzed by cell spreading-adhesion procedure using scanning electron microscopy (SEM). The results have given significant evidence that the longer the period of accelerated aging of UHMWPE the higher was the macrophage inflammatory equivalent response based on NO secretion analysis.

  11. A Model-based Prognostics Methodology for Electrolytic Capacitors Based on Electrical Overstress Accelerated Aging

    NASA Technical Reports Server (NTRS)

    Celaya, Jose; Kulkarni, Chetan; Biswas, Gautam; Saha, Sankalita; Goebel, Kai

    2011-01-01

    A remaining useful life prediction methodology for electrolytic capacitors is presented. This methodology is based on the Kalman filter framework and an empirical degradation model. Electrolytic capacitors are used in several applications ranging from power supplies on critical avionics equipment to power drivers for electro-mechanical actuators. These devices are known for their comparatively low reliability and given their criticality in electronics subsystems they are a good candidate for component level prognostics and health management. Prognostics provides a way to assess remaining useful life of a capacitor based on its current state of health and its anticipated future usage and operational conditions. We present here also, experimental results of an accelerated aging test under electrical stresses. The data obtained in this test form the basis for a remaining life prediction algorithm where a model of the degradation process is suggested. This preliminary remaining life prediction algorithm serves as a demonstration of how prognostics methodologies could be used for electrolytic capacitors. In addition, the use degradation progression data from accelerated aging, provides an avenue for validation of applications of the Kalman filter based prognostics methods typically used for remaining useful life predictions in other applications.

  12. Validation of accelerated ageing of Thales rotary Stirling cryocoolers for the estimation of MTTF

    NASA Astrophysics Data System (ADS)

    Seguineau, C.,; Cauquil, J.-M.; Martin, J.-Y.; Benschop, T.

    2016-05-01

    The cooled IR detectors are used in a wide range of applications. Most of the time, the cryocoolers are one of the components dimensioning the lifetime of the system. The current market needs tend to reliability figures higher than 15,000hrs in "standard conditions". Field returns are hardly useable mostly because of the uncertain environmental conditions of use, or the differences in user profiles. A previous paper explains how Thales Cryogenics has developed an approach based on accelerated ageing and statistical analysis [1]. The aim of the current paper is to compare results obtained on accelerated ageing on one side, and on the other side, specific field returns where the conditions of use are well known. The comparison between prediction and effective failure rate is discussed. Moreover, a specific focus is done on how some new applications of cryocoolers (continuous operation at a specific temperature) can increase the MTTF. Some assumptions are also exposed on how the failure modes, effects and criticality analysis evolves for continuous operation at a specific temperature and compared to experimental data.

  13. Diabetes exacerbates amyloid and neurovascular pathology in aging-accelerated mice.

    PubMed

    Currais, Antonio; Prior, Marguerite; Lo, David; Jolivalt, Corinne; Schubert, David; Maher, Pamela

    2012-12-01

    Mounting evidence supports a link between diabetes, cognitive dysfunction, and aging. However, the physiological mechanisms by which diabetes impacts brain function and cognition are not fully understood. To determine how diabetes contributes to cognitive dysfunction and age-associated pathology, we used streptozotocin to induce type 1 diabetes (T1D) in senescence-accelerated prone 8 (SAMP8) and senescence-resistant 1 (SAMR1) mice. Contextual fear conditioning demonstrated that T1D resulted in the development of cognitive deficits in SAMR1 mice similar to those seen in age-matched, nondiabetic SAMP8 mice. No further cognitive deficits were observed when the SAMP8 mice were made diabetic. T1D dramatically increased Aβ and glial fibrillary acidic protein immunoreactivity in the hippocampus of SAMP8 mice and to a lesser extent in age-matched SAMR1 mice. Further analysis revealed aggregated Aβ within astrocyte processes surrounding vessels. Western blot analyses from T1D SAMP8 mice showed elevated amyloid precursor protein processing and protein glycation along with increased inflammation. T1D elevated tau phosphorylation in the SAMR1 mice but did not further increase it in the SAMP8 mice where it was already significantly higher. These data suggest that aberrant glucose metabolism potentiates the aging phenotype in old mice and contributes to early stage central nervous system pathology in younger animals.

  14. Accelerated failure time models provide a useful statistical framework for aging research.

    PubMed

    Swindell, William R

    2009-03-01

    Survivorship experiments play a central role in aging research and are performed to evaluate whether interventions alter the rate of aging and increase lifespan. The accelerated failure time (AFT) model is seldom used to analyze survivorship data, but offers a potentially useful statistical approach that is based upon the survival curve rather than the hazard function. In this study, AFT models were used to analyze data from 16 survivorship experiments that evaluated the effects of one or more genetic manipulations on mouse lifespan. Most genetic manipulations were found to have a multiplicative effect on survivorship that is independent of age and well-characterized by the AFT model "deceleration factor". AFT model deceleration factors also provided a more intuitive measure of treatment effect than the hazard ratio, and were robust to departures from modeling assumptions. Age-dependent treatment effects, when present, were investigated using quantile regression modeling. These results provide an informative and quantitative summary of survivorship data associated with currently known long-lived mouse models. In addition, from the standpoint of aging research, these statistical approaches have appealing properties and provide valuable tools for the analysis of survivorship data.

  15. The signaling pathways by which the Fas/FasL system accelerates oocyte aging.

    PubMed

    Zhu, Jiang; Lin, Fei-Hu; Zhang, Jie; Lin, Juan; Li, Hong; Li, You-Wei; Tan, Xiu-Wen; Tan, Jing-He

    2016-02-01

    In spite of great efforts, the mechanisms for postovulatory oocyte aging are not fully understood. Although our previous work showed that the FasL/Fas signaling facilitated oocyte aging, the intra-oocyte signaling pathways are unknown. Furthermore, the mechanisms by which oxidative stress facilitates oocyte aging and the causal relationship between Ca2+ rises and caspase-3 activation and between the cell cycle and apoptosis during oocyte aging need detailed investigations. Our aim was to address these issues by studying the intra-oocyte signaling pathways for Fas/FasL to accelerate oocyte aging. The results indicated that sFasL released by cumulus cells activated Fas on the oocyte by increasing reactive oxygen species via activating NADPH oxidase. The activated Fas triggered Ca2+ release from the endoplasmic reticulum by activating phospholipase C-γ pathway and cytochrome c pathway. The cytoplasmic Ca2+ rises activated calcium/calmodulin-dependent protein kinase II (CaMKII) and caspase-3. While activated CaMKII increased oocyte susceptibility to activation by inactivating maturation-promoting factor (MPF) through cyclin B degradation, the activated caspase-3 facilitated further Ca2+releasing that activates more caspase-3 leading to oocyte fragmentation. Furthermore, caspase-3 activation and fragmentation were prevented in oocytes with a high MPF activity, suggesting that an oocyte must be in interphase to undergo apoptosis.

  16. Inflammatory Cytokines and Comorbidity Development in Breast Cancer Survivors Versus Noncancer Controls: Evidence for Accelerated Aging?

    PubMed

    Alfano, Catherine M; Peng, Juan; Andridge, Rebecca R; Lindgren, Monica E; Povoski, Stephen P; Lipari, Adele M; Agnese, Doreen M; Farrar, William B; Yee, Lisa D; Carson, William E; Kiecolt-Glaser, Janice K

    2017-01-10

    Purpose The sequelae of cancer treatment may increase systemic inflammation and create a phenotype at increased risk of functional decline and comorbidities, leading to premature mortality. Little is known about how this trajectory compares with natural aging among peers of the same age without cancer. This longitudinal study investigated proinflammatory cytokines and comorbidity development over time among breast cancer survivors and a noncancer control group. Methods Women (N = 315; 209 with breast cancer and 106 in the control group) were recruited at the time of their work-up for breast cancer; they completed the baseline questionnaire, interview, and blood draw (lipopolysaccharide-stimulated production of interleukin [IL] -6, tumor necrosis factor-α, and IL-1β). Measures were repeated 6 and 18 months after primary cancer treatment (cancer survivors) or within a comparable time frame (control group). Results There were no baseline differences in comorbidities or cytokines between survivors and the control group. Over time, breast cancer survivors had significantly higher tumor necrosis factor-α and IL-6 compared with the control group. Survivors treated with surgery, radiation, and chemotherapy accumulated a significantly greater burden of comorbid conditions and suffered greater pain associated with inflammation over time after cancer treatment than did the control group. Conclusion Survivors who had multimodal treatment had higher cytokines and comorbidities, suggestive of accelerated aging. Comorbidities were related to inflammation in this sample, which could increase the likelihood of premature mortality. Given that many comorbidities take years to develop, future research with extended follow-up beyond 18 months is necessary to examine the evidence of accelerated aging in cancer survivors and to determine the responsible mechanisms.

  17. 27-Hydroxycholesterol accelerates cellular senescence in human lung resident cells.

    PubMed

    Hashimoto, Yuichiro; Sugiura, Hisatoshi; Togo, Shinsaku; Koarai, Akira; Abe, Kyoko; Yamada, Mitsuhiro; Ichikawa, Tomohiro; Kikuchi, Takashi; Numakura, Tadahisa; Onodera, Katsuhiro; Tanaka, Rie; Sato, Kei; Yanagisawa, Satoru; Okazaki, Tatsuma; Tamada, Tsutomu; Kikuchi, Toshiaki; Hoshikawa, Yasushi; Okada, Yoshinori; Ichinose, Masakazu

    2016-06-01

    Cellular senescence is reportedly involved in the pathogenesis of chronic obstructive pulmonary disease (COPD). We previously showed that 27-hydroxycholesterol (27-OHC) is elevated in the airways of COPD patients compared with those in healthy subjects. The aim of this study was to investigate whether lung fibroblasts of COPD patients are senescent and to determine the effects of 27-OHC on senescence of lung resident cells, including fibroblasts and airway epithelial cells. Localization of senescence-associated proteins and sterol 27-hydroxylase was investigated in the lungs of COPD patients by immunohistochemical staining. To evaluate whether 27-OHC accelerates cellular senescence, lung resident cells were exposed to 27-OHC. Senescence markers and fibroblast-mediated tissue repair were investigated in the 27-OHC-treated cells. Expression of senescence-associated proteins was significantly enhanced in lung fibroblasts of COPD patients. Similarly, expression of sterol 27-hydroxylase was significantly upregulated in lung fibroblasts and alveolar macrophages in these patients. Treatment with the concentration of 27-OHC detected in COPD airways significantly augmented expression of senescence-associated proteins and senescence-associated β-galactosidase activity, and delayed cell growth through the prostaglandin E2-reactive nitrogen species pathway. The 27-OHC-treated fibroblasts impaired tissue repair function. Fibroblasts from lungs of COPD patients showed accelerated senescence and were more susceptible to 27-OHC-induced cellular senescence compared with those of healthy subjects. In conclusion, 27-OHC accelerates cellular senescence in lung resident cells and may play a pivotal role in cellular senescence in COPD. Copyright © 2016 the American Physiological Society.

  18. [Analysis of human tissue samples for volatile fire accelerants].

    PubMed

    Treibs, Rudolf

    2014-01-01

    In police investigations of fires, the cause of a fire and the fire debris analysis regarding traces of fire accelerants are important aspects for forensic scientists. Established analytical procedures were recently applied to the remains of fire victims. When examining lung tissue samples, vapors inhaled from volatile ignitable liquids could be identified and differentiated from products of pyrolysis caused by the fire. In addition to the medico-legal results this evidence allowed to draw conclusions as to whether the fire victim was still alive when the fire started.

  19. Aging attenuates the vestibulosympathetic reflex in humans

    NASA Technical Reports Server (NTRS)

    Ray, Chester A.; Monahan, Kevin D.

    2002-01-01

    BACKGROUND: The vestibular system contributes to sympathetic activation by engagement of the otolith organs. However, there is a significant loss of vestibular function with aging. Therefore, the purpose of the present study was to determine if young and older individuals differ in their cardiovascular and sympathetic responses to otolithic stimulation (ie, head-down rotation, HDR). We hypothesized that responses to otolithic stimulation would be attenuated in older adults because of morphological and physiological alterations that occur in the vestibular system with aging. METHODS AND RESULTS: Arterial blood pressure, heart rate, muscle sympathetic nerve activity (MSNA), and head rotation were measured during HDR in 11 young (26 +/- 1 years) and 11 older (64 +/- 1 years) subjects in the prone posture. Five older subjects performed head rotation (chin to chest) in the lateral decubitus position, which simulates HDR but does not alter afferent inputs from the vestibular system. MSNA responses to HDR were significantly attenuated in older as compared with young subjects (P<0.01). MSNA increased in the older subjects by only 12 +/- 5% as compared with 85 +/- 16% in the young. Furthermore, HDR elicited significant reductions in mean arterial blood pressure in older (Delta-6 +/- 1 mm Hg; P<0.01) but not young subjects (Delta1 +/- 1 mm Hg). In contrast to HDR, head rotation performed in the lateral decubitus position did not elicit hypotension. MSNA responses to baroreceptor unloading and the cold pressor test were not different between the age groups. CONCLUSIONS: These data indicate that aging attenuates the vestibulosympathetic reflex in humans and may contribute to the increased prevalence of orthostatic hypotension with age.

  20. Aging attenuates the vestibulosympathetic reflex in humans

    NASA Technical Reports Server (NTRS)

    Ray, Chester A.; Monahan, Kevin D.

    2002-01-01

    BACKGROUND: The vestibular system contributes to sympathetic activation by engagement of the otolith organs. However, there is a significant loss of vestibular function with aging. Therefore, the purpose of the present study was to determine if young and older individuals differ in their cardiovascular and sympathetic responses to otolithic stimulation (ie, head-down rotation, HDR). We hypothesized that responses to otolithic stimulation would be attenuated in older adults because of morphological and physiological alterations that occur in the vestibular system with aging. METHODS AND RESULTS: Arterial blood pressure, heart rate, muscle sympathetic nerve activity (MSNA), and head rotation were measured during HDR in 11 young (26 +/- 1 years) and 11 older (64 +/- 1 years) subjects in the prone posture. Five older subjects performed head rotation (chin to chest) in the lateral decubitus position, which simulates HDR but does not alter afferent inputs from the vestibular system. MSNA responses to HDR were significantly attenuated in older as compared with young subjects (P<0.01). MSNA increased in the older subjects by only 12 +/- 5% as compared with 85 +/- 16% in the young. Furthermore, HDR elicited significant reductions in mean arterial blood pressure in older (Delta-6 +/- 1 mm Hg; P<0.01) but not young subjects (Delta1 +/- 1 mm Hg). In contrast to HDR, head rotation performed in the lateral decubitus position did not elicit hypotension. MSNA responses to baroreceptor unloading and the cold pressor test were not different between the age groups. CONCLUSIONS: These data indicate that aging attenuates the vestibulosympathetic reflex in humans and may contribute to the increased prevalence of orthostatic hypotension with age.

  1. Accelerated telomere shortening and replicative senescence in human fibroblasts overexpressing mutant and wild-type lamin A

    SciTech Connect

    Huang Shurong; Risques, Rosa Ana; Martin, George M.; Rabinovitch, Peter S.; Oshima, Junko

    2008-01-01

    LMNA mutations are responsible for a variety of genetic disorders, including muscular dystrophy, lipodystrophy, and certain progeroid syndromes, notably Hutchinson-Gilford Progeria. Although a number of clinical features of these disorders are suggestive of accelerated aging, it is not known whether cells derived from these patients exhibit cellular phenotypes associated with accelerated aging. We examined a series of isogenic skin fibroblast lines transfected with LMNA constructs bearing known pathogenic point mutations or deletion mutations found in progeroid syndromes. Fibroblasts overexpressing mutant lamin A exhibited accelerated rates of loss of telomeres and shortened replicative lifespans, in addition to abnormal nuclear morphology. To our surprise, these abnormalities were also observed in lines overexpressing wild-type lamin A. Copy number variants are common in human populations; those involving LMNA, whether arising meiotically or mitotically, might lead to progeroid phenotypes. In an initial pilot study of 23 progeroid cases without detectable WRN or LMNA mutations, however, no cases of altered LMNA copy number were detected. Nevertheless, our findings raise a hypothesis that changes in lamina organization may cause accelerated telomere attrition, with different kinetics for overexpession of wild-type and mutant lamin A, which leads to rapid replicative senescence and progroid phenotypes.

  2. Can agricultural fungicides accelerate the discovery of human antifungal drugs?

    PubMed

    Myung, Kyung; Klittich, Carla J R

    2015-01-01

    Twelve drugs from four chemical classes are currently available for treatment of systemic fungal infections in humans. By contrast, more than 100 structurally distinct compounds from over 30 chemical classes have been developed as agricultural fungicides, and these fungicides target many modes of action not represented among human antifungal drugs. In this article we introduce the diverse aspects of agricultural fungicides and compare them with human antifungal drugs. We propose that the information gained from the development of agricultural fungicides can be applied to the discovery of new mechanisms of action and new antifungal agents for the management of human fungal infections.

  3. Caveolin-1 and accelerated host aging in the breast tumor microenvironment: chemoprevention with rapamycin, an mTOR inhibitor and anti-aging drug.

    PubMed

    Mercier, Isabelle; Camacho, Jeanette; Titchen, Kanani; Gonzales, Donna M; Quann, Kevin; Bryant, Kelly G; Molchansky, Alexander; Milliman, Janet N; Whitaker-Menezes, Diana; Sotgia, Federica; Jasmin, Jean-François; Schwarting, Roland; Pestell, Richard G; Blagosklonny, Mikhail V; Lisanti, Michael P

    2012-07-01

    Increasing chronological age is the most significant risk factor for human cancer development. To examine the effects of host aging on mammary tumor growth, we used caveolin (Cav)-1 knockout mice as a bona fide model of accelerated host aging. Mammary tumor cells were orthotopically implanted into these distinct microenvironments (Cav-1(+/+) versus Cav-1(-/-) age-matched young female mice). Mammary tumors grown in a Cav-1-deficient tumor microenvironment have an increased stromal content, with vimentin-positive myofibroblasts (a marker associated with oxidative stress) that are also positive for S6-kinase activation (a marker associated with aging). Mammary tumors grown in a Cav-1-deficient tumor microenvironment were more than fivefold larger than tumors grown in a wild-type microenvironment. Thus, a Cav-1-deficient tumor microenvironment provides a fertile soil for breast cancer tumor growth. Interestingly, the mammary tumor-promoting effects of a Cav-1-deficient microenvironment were estrogen and progesterone independent. In this context, chemoprevention was achieved by using the mammalian target of rapamycin (mTOR) inhibitor and anti-aging drug, rapamycin. Systemic rapamycin treatment of mammary tumors grown in a Cav-1-deficient microenvironment significantly inhibited their tumor growth, decreased their stromal content, and reduced the levels of both vimentin and phospho-S6 in Cav-1-deficient cancer-associated fibroblasts. Since stromal loss of Cav-1 is a marker of a lethal tumor microenvironment in breast tumors, these high-risk patients might benefit from treatment with mTOR inhibitors, such as rapamycin or other rapamycin-related compounds (rapalogues).

  4. Telomere shortening and accelerated aging in COPD: findings from the BODE cohort.

    PubMed

    Córdoba-Lanús, Elizabeth; Cazorla-Rivero, Sara; Espinoza-Jiménez, Adriana; de-Torres, Juan P; Pajares, María J; Aguirre-Jaime, Armando; Celli, Bartolomé; Casanova, Ciro

    2017-04-13

    Chronic Obstructive Pulmonary Disease (COPD) may be associated with accelerated aging. Telomere shortening is a biomarker of aging. Cross-sectional studies describe shorter telomeres in COPD compared with matched controls. No studies have described telomere length trajectory and its relationship with COPD progression. We investigated telomere shortening over time and its relationship to clinical and lung function parameters in a COPD cohort and smoker controls without COPD. At baseline leukocyte telomere length was measured by qPCR in 121 smokers with COPD and 121 without COPD matched by age (T/S0). The measurements were repeated in 70 of those patients with COPD and 73 non-COPD smokers after 3 years of follow up (T/S3). At initial measurement, telomeres were shorter in COPD patients when compared to smoker controls (T/S = 0.68 ± 0.25 vs. 0.88 ± 0.52, p = 0.003) independent from age and sex. During the follow-up period, we observed an accelerated telomere shortening in individuals with COPD in contrast to smoker controls (T/S0 = 0.66 ± 0.21 vs. T/S3 = 0.46 ± 0.16, p < 0.001, for the patients with COPD and T/S0 = 0.83 ± 0.56 vs. T/S3 = 0.74 ± 0.52, p = 0.023 for controls; GLIM, p = 0.001). This shortening was inversely related to the baseline telomere length (r = -0.49, p < 0.001). No significant relationship was found between the rate of change in telomere length and change in lung function in the patients with COPD (p > 0.05). Compared with smokers, patients with COPD have accelerated telomere shortening and this rate of attrition depends on baseline telomere length. Furthermore, the telomere length and its rate of shortening did not relate to clinical and lung function parameters changes over 3 years of follow-up.

  5. Bisphenol A exposure accelerated the aging process in the nematode Caenorhabditis elegans.

    PubMed

    Tan, Ling; Wang, Shunchang; Wang, Yun; He, Mei; Liu, Dahai

    2015-06-01

    Bisphenol A (BPA) is a well-known environmental estrogenic disruptor that causes adverse effects. Recent studies have found that chronic exposure to BPA is associated with a high incidence of several age-related diseases. Aging is characterized by progressive function decline, which affects quality of life. However, the effects of BPA on the aging process are largely unknown. In the present study, by using the nematode Caenorhabditis elegans as a model, we investigated the influence of BPA exposure on the aging process. The decrease in body length, fecundity, and population size and the increased egg laying defection suggested that BPA exposure resulted in fitness loss and reproduction aging in this animal. Lifetime exposure of worms to BPA shortened the lifespan in a dose-dependant manner. Moreover, prolonged BPA exposure resulted in age-related behavior degeneration and the accumulation of lipofuscin and lipid peroxide products. The expression of mitochondria-specific HSP-6 and endoplasmic reticulum (ER)-related HSP-70 exhibited hormetic decrease. The expression of ER-related HSP-4 decreased significantly while HSP-16.2 showed a dose-dependent increase. The decreased expression of GCS-1 and GST-4 implicated the reduced antioxidant ability under BPA exposure, and the increase in SOD-3 expression might be caused by elevated levels of reactive oxygen species (ROS) production. Finally, BPA exposure increased the generation of hydrogen peroxide-related ROS and superoxide anions. Our results suggest that BPA exposure resulted in an accelerated aging process in C. elegans mediated by the induction of oxidative stress.

  6. Melatonin and aging: prospects for human treatment.

    PubMed

    Bubenik, G A; Konturek, S J

    2011-02-01

    Human life span, with or without modern medicine is around 85-95 years. All living creatures have their inner clock that measures their daily (circadian) and their seasonal (circannual) time. These time changes are mediated by the alteration of levels of melatonin, an evolutionary ancient hormone, which is produced in many body tissues, including the pineal gland, retina and the gastrointestinal tract (GIT). Light is blocking the production of melatonin in the pineal gland, darkness is stimulating it. So, the diurnal changes of light intensity of melatonin, provide a "daily clock" and the seasonal changes provide a "seasonal clock". Finally, the reduction of melatonin observed with aging, may indicate the presence of an "age clock". Melatonin is a strong antioxidant (often it is called scavenger of free radicals), which protects the body from the effects of noxious compounds. Therefore it was hypothesized that the reduction of melatonin levels with age contributes to the aging process. So far, the only remedy to extend the life span was a 40% reduction in caloric intake, which prolonged the life in mice, rats, dogs and monkeys by 30-50%. A large group of people imitate these experiments performed on animals, but the results of these experiments will not be known for several decades. How is being hungry prolonging the life span? There is a connection between caloric reduction and melatonin levels in GIT. Several experiments indicate that fasting in animals substantially increased their production of GIT melatonin. Therefore, instead of being permanently hungry, a prolongation of human life could be achieved by a replacement melatonin therapy. A daily intake of melatonin before bed time might achieve the same effect as fasting e.g. an increase of body melatonin levels, which will protect the individual from the ravages of old age. That includes Parkinson's disease and Alzheimer's disease. There is a large group of people taking melatonin daily who believe that

  7. Aging of oocyte, ovary, and human reproduction.

    PubMed

    Ottolenghi, Chris; Uda, Manuela; Hamatani, Toshio; Crisponi, Laura; Garcia, Jose-Elias; Ko, Minoru; Pilia, Giuseppe; Sforza, Chiarella; Schlessinger, David; Forabosco, Antonino

    2004-12-01

    We review age-related changes in the ovary and their effect on female fertility, with particular emphasis on follicle formation, follicle dynamics, and oocyte quality. The evidence indicates that the developmental processes leading to follicle formation set the rules determining follicle quiescence and growth. This regulatory system is maintained until menopause and is directly affected in at least some models of premature ovarian failure (POF), most strikingly in the Foxl2 mouse knockout, a model of human POF with monogenic etiology (blepharophimosis/ptosis/epicanthus inversus syndrome). Several lines of evidence indicate that if the ovarian germ cell lineage maintains regenerative potential, as recently suggested in the mouse, a role in follicle dynamics for germ stem cells, if any, is likely indirect or secondary. In addition, age-related variations in oocyte quality in animal models suggest that reproductive competence is acquired progressively and might depend on parallel growth and differentiation of follicle cells and stroma. Genomewide analyses of the mouse oocyte transcriptome have begun to be used to systematically investigate the mechanisms of reproductive competence that are altered with aging. Investigative and therapeutic strategies can benefit from considering the role of continuous interactions between follicle cells and oocytes from the beginning of histogenesis to full maturation.

  8. N-glycosylation profiling of plasma provides evidence for accelerated physiological aging in post-traumatic stress disorder.

    PubMed

    Moreno-Villanueva, M; Morath, J; Vanhooren, V; Elbert, T; Kolassa, S; Libert, C; Bürkle, A; Kolassa, I-T

    2013-10-29

    The prevalence of age-related diseases is increased in individuals with post-traumatic stress disorder (PTSD). However, the underlying biological mechanisms are still unclear. N-glycosylation is an age-dependent process, identified as a biomarker for physiological aging (GlycoAge Test). To investigate whether traumatic stress accelerates the aging process, we analyzed the N-glycosylation profile in n=13 individuals with PTSD, n=9 trauma-exposed individuals and in n=10 low-stress control subjects. Individuals with PTSD and trauma-exposed individuals presented an upward shift in the GlycoAge Test, equivalent to an advancement of the aging process by 15 additional years. Trauma-exposed individuals presented an intermediate N-glycosylation profile positioned between severely traumatized individuals with PTSD and low-stress control subjects. In conclusion, our data suggest that cumulative exposure to traumatic stressors accelerates the process of physiological aging.

  9. Transcriptomic insights into human brain evolution: acceleration, neutrality, heterochrony.

    PubMed

    Somel, Mehmet; Rohlfs, Rori; Liu, Xiling

    2014-12-01

    Primate brain transcriptome comparisons within the last 12 years have yielded interesting but contradictory observations on how the transcriptome evolves, and its adaptive role in human cognitive evolution. Since the human-chimpanzee common ancestor, the human prefrontal cortex transcriptome seems to have evolved more than that of the chimpanzee. But at the same time, most expression differences among species, especially those observed in adults, appear as consequences of neutral evolution at cis-regulatory sites. Adaptive expression changes in the human brain may be rare events involving timing shifts, or heterochrony, in specific neurodevelopmental processes. Disentangling adaptive and neutral expression changes, and associating these with human-specific features of the brain require improved methods, comparisons across more species, and further work on comparative development.

  10. Accelerated Age-Dependent Hippocampal Volume Loss in Parkinson Disease With Mild Cognitive Impairment.

    PubMed

    Schneider, Christine B; Donix, Markus; Linse, Katharina; Werner, Annett; Fauser, Mareike; Klingelhoefer, Lisa; Löhle, Matthias; von Kummer, Rüdiger; Reichmann, Heinz; Storch, Alexander

    2017-09-01

    Patients with Parkinson disease are at high risk of developing dementia. During the course of the disease, a substantial number of patients will experience a cognitive decline, indicating the dynamics of the underlying neuropathology. Magnetic resonance imaging (MRI) has become increasingly useful for identifying structural characteristics in radiological brain anatomy existing prior to clinical symptoms. Whether these changes reflect pathology, whether they are aging related, or both often remains unclear. We hypothesized that aging-associated brain structural changes would be more pronounced in the hippocampal region among patients with Parkinson disease having mild cognitive deficits relative to cognitively unimpaired patients. Using MRI, we investigated 30 cognitively healthy patients with Parkinson disease and 33 patients with nondemented Parkinson disease having mild cognitive impairment. All participants underwent structural MRI scanning and extensive clinical and neuropsychological assessments. Irrespective of the study participants' cognitive status, older age was associated with reduced cortical thickness in various neocortical regions. Having mild cognitive impairment was not associated with an increased rate of cortical thinning or volume loss in these regions, except in the hippocampus bilaterally. Patients with Parkinson disease having mild cognitive impairment show an accelerated age-dependent hippocampal volume loss when compared with cognitively healthy patients with Parkinson disease. This may indicate pathological processes in a key region for memory functioning in patients with Parkinson disease at risk of developing dementia. Structural MRI of the hippocampal region could potentially contribute to identifying patients who should receive early treatment aimed at delaying the clinical onset of dementia.

  11. Fat-specific Dicer deficiency accelerates aging and mitigates several effects of dietary restriction in mice

    PubMed Central

    Reis, Felipe C. G.; Branquinho, Jéssica L. O.; Brandão, Bruna B.; Guerra, Beatriz A.; Silva, Ismael D.; Frontini, Andrea; Thomou, Thomas; Sartini, Loris; Cinti, Saverio; Kahn, C. Ronald; Festuccia, William T.; Kowaltowski, Alicia J.; Mori, Marcelo A.

    2016-01-01

    Aging increases the risk of type 2 diabetes, and this can be prevented by dietary restriction (DR). We have previously shown that DR inhibits the downregulation of miRNAs and their processing enzymes - mainly Dicer - that occurs with aging in mouse white adipose tissue (WAT). Here we used fat-specific Dicer knockout mice (AdicerKO) to understand the contributions of adipose tissue Dicer to the metabolic effects of aging and DR. Metabolomic data uncovered a clear distinction between the serum metabolite profiles of Lox control and AdicerKO mice, with a notable elevation of branched-chain amino acids (BCAA) in AdicerKO. These profiles were associated with reduced oxidative metabolism and increased lactate in WAT of AdicerKO mice and were accompanied by structural and functional changes in mitochondria, particularly under DR. AdicerKO mice displayed increased mTORC1 activation in WAT and skeletal muscle, where Dicer expression is not affected. This was accompanied by accelerated age-associated insulin resistance and premature mortality. Moreover, DR-induced insulin sensitivity was abrogated in AdicerKO mice. This was reverted by rapamycin injection, demonstrating that insulin resistance in AdicerKO mice is caused by mTORC1 hyperactivation. Our study evidences a DR-modulated role for WAT Dicer in controlling metabolism and insulin resistance. PMID:27241713

  12. A long-standing hyperglycaemic condition impairs skin barrier by accelerating skin ageing process.

    PubMed

    Park, Hwa-Young; Kim, Jae-Hong; Jung, Minyoung; Chung, Choon Hee; Hasham, Rosnani; Park, Chang Seo; Choi, Eung Ho

    2011-12-01

    Uncontrolled chronic hyperglycaemia including type 2 diabetes mellitus (DM) induces many skin problems related to chronic impaired skin barrier state. However, little is known about the skin barrier state of chronic hyperglycaemia patients, the dysfunction of which may be a major cause of their skin problems. In this study, we investigated whether a long-standing hyperglycaemic condition including type 2 DM impairs skin barrier homoeostasis in proportion to the duration and its pathomechanism. We utilized the Otsuka Long-Evans Tokushima Fatty (OLETF) rats as an animal model of long-standing hyperglycaemia and Long-Evans Tokushima Otsuka rats as a control strain. We confirmed that a long-standing hyperglycaemia delayed skin barrier homoeostasis, which correlated with haemoglobin A1c levels. OLETF rats as a long-standing hyperglycaemia model exhibited decreased epidermal lipid synthesis and antimicrobial peptide expression with increasing age. Decreased epidermal lipid synthesis accounted for decreased lamellar body production. In addition, OLETF rats had significantly higher serum levels of advanced glycation end products (AGEs) and elevated levels of the receptor for AGE in the epidermis. A long-standing hyperglycaemic condition impairs skin barrier function including permeability and antimicrobial barriers by accelerating skin ageing process in proportion to the duration of hyperglycaemia, which could be a major pathophysiology underlying cutaneous complications of DM.

  13. How bioinformatics can help reverse engineer human aging.

    PubMed

    de Magalhães, João Pedro; Toussaint, Olivier

    2004-04-01

    To study human aging is an enormous challenge. The complexity of the aging phenotype and the near impossibility of studying aging directly in humans oblige researchers to resort to models and extrapolations. Computational approaches offer a powerful set of tools to study human aging. In one direction we have data-mining methods, from comparative genomics to DNA microarrays, to retrieve information in large amounts of data. Afterwards, tools from systems biology to reverse engineering algorithms allow researchers to integrate different types of information to increase our knowledge about human aging. Computer methodologies will play a crucial role to reconstruct the genetic network of human aging and the associated regulatory mechanisms.

  14. Influence of Accelerated Aging on the Color Stability of Dental Zirconia.

    PubMed

    Ângela Mazıero Volpato, Cláudıa; Francısco Cesar, Paulo; Antônıo Bottıno, Marco

    2016-09-01

    This study evaluated the influence of different aging times on the color stability of zirconia that is either veneered or not by ceramic. Fifteen zirconia disks (3Y-TZP) were produced (12.0 mm in diameter and 1.0 mm-thick). Five disks (G1) did not receive veneering ceramic layer; 5 disks (G2) were veneered with 1.0 mm a ceramic layer and the other 5 disks (G3) were veneered with layer of 1.5 mm. The L*a*b* coordinates (T1) were measured with a spectrophotometer. The disks were subjected to an accelerated aging protocol for 1 hour (T2), 2 hours (T3) and 4 hours (T4). Measurements were made after each aging time. Differences in color (ΔE00), lightness (ΔL'), chroma (ΔC'), and hue (ΔH') were calculated by CIEDE2000 color difference formula among standard-averages, aging times and thickness tested. For ΔE00 , one-way ANOVA was performed for the G1 and two-way ANOVA for G2 and G3. Repeated measures ANOVA was performed for ΔL', ΔC', and ΔH'. Multiple comparisons were performed using Tukey's test (α = 0.05). For G1, statistical differences were found for lightness (ΔL'), chroma (ΔC'), and hue differences (ΔH') (p = 0.0001), highlighting the major in chroma differences (ΔC'). Discrete color differences (ΔE00 ) were observed (0.95ΔE00 ) especially after 4 hours of aging (T4). For G2 and G3, statistical differences for ΔL', ΔC', and ΔH' were found as a function of the thickness of the ceramic coating (p < 0.0001) and aging time (p = 0.02). When 3Y-TZP was subjected to aging, discrete color differences were present. With exception of the G2, the color difference was less than 1.25ΔE00 , demonstrating that the zirconia maintained its colorimetric properties after aging protocol. After prolonged aging, discrete color changes can occur in zirconia, particularly when it is contact with the oral environment, as is the case of abutments and monolithic crowns. Thus, clinical and laboratory care should be taken to maintain surface integrity of

  15. Disparity between online and offline tests in accelerated aging tests of LED lamps under electric stress.

    PubMed

    Wang, Yao; Jing, Lei; Ke, Hong-Liang; Hao, Jian; Gao, Qun; Wang, Xiao-Xun; Sun, Qiang; Xu, Zhi-Jun

    2016-09-20

    The accelerated aging tests under electric stress for one type of LED lamp are conducted, and the differences between online and offline tests of the degradation of luminous flux are studied in this paper. The transformation of the two test modes is achieved with an adjustable AC voltage stabilized power source. Experimental results show that the exponential fitting of the luminous flux degradation in online tests possesses a higher fitting degree for most lamps, and the degradation rate of the luminous flux by online tests is always lower than that by offline tests. Bayes estimation and Weibull distribution are used to calculate the failure probabilities under the accelerated voltages, and then the reliability of the lamps under rated voltage of 220 V is estimated by use of the inverse power law model. Results show that the relative error of the lifetime estimation by offline tests increases as the failure probability decreases, and it cannot be neglected when the failure probability is less than 1%. The relative errors of lifetime estimation are 7.9%, 5.8%, 4.2%, and 3.5%, at the failure probabilities of 0.1%, 1%, 5%, and 10%, respectively.

  16. Age-Infusion Approach to Derive Injury Risk Curves for Dummies from Human Cadaver Tests.

    PubMed

    Yoganandan, Narayan; Banerjee, Anjishnu; Pintar, Frank A

    2015-01-01

    Injury criteria and risk curves are needed for anthropomorphic test devices (dummies) to assess injuries for improving human safety. The present state of knowledge is based on using injury outcomes and biomechanical metrics from post-mortem human subject (PMHS) and mechanical records from dummy tests. Data from these models are combined to develop dummy injury assessment risk curves (IARCs)/dummy injury assessment risk values (IARVs). This simple substitution approach involves duplicating dummy metrics for PMHS tested under similar conditions and pairing with PMHS injury outcomes. It does not directly account for the age of each specimen tested in the PMHS group. Current substitution methods for injury risk assessments use age as a covariate and dummy metrics (e.g., accelerations) are not modified so that age can be directly included in the model. The age-infusion methodology presented in this perspective article accommodates for an annual rate factor that modifies the dummy injury risk assessment responses to account for the age of the PMHS that the injury data were based on. The annual rate factor is determined using human injury risk curves. The dummy metrics are modulated based on individual PMHS age and rate factor, thus "infusing" age into the dummy data. Using PMHS injuries and accelerations from side-impact experiments, matched-pair dummy tests, and logistic regression techniques, the methodology demonstrates the process of age-infusion to derive the IARCs and IARVs.

  17. Age-Infusion Approach to Derive Injury Risk Curves for Dummies from Human Cadaver Tests

    PubMed Central

    Yoganandan, Narayan; Banerjee, Anjishnu; Pintar, Frank A.

    2015-01-01

    Injury criteria and risk curves are needed for anthropomorphic test devices (dummies) to assess injuries for improving human safety. The present state of knowledge is based on using injury outcomes and biomechanical metrics from post-mortem human subject (PMHS) and mechanical records from dummy tests. Data from these models are combined to develop dummy injury assessment risk curves (IARCs)/dummy injury assessment risk values (IARVs). This simple substitution approach involves duplicating dummy metrics for PMHS tested under similar conditions and pairing with PMHS injury outcomes. It does not directly account for the age of each specimen tested in the PMHS group. Current substitution methods for injury risk assessments use age as a covariate and dummy metrics (e.g., accelerations) are not modified so that age can be directly included in the model. The age-infusion methodology presented in this perspective article accommodates for an annual rate factor that modifies the dummy injury risk assessment responses to account for the age of the PMHS that the injury data were based on. The annual rate factor is determined using human injury risk curves. The dummy metrics are modulated based on individual PMHS age and rate factor, thus “infusing” age into the dummy data. Using PMHS injuries and accelerations from side-impact experiments, matched-pair dummy tests, and logistic regression techniques, the methodology demonstrates the process of age-infusion to derive the IARCs and IARVs. PMID:26697422

  18. Evaluation of oxidative behavior of polyolefin geosynthetics utilizing accelerated aging tests based on temperature and pressure

    NASA Astrophysics Data System (ADS)

    Li, Mengjia

    Polyolefin geosynthetics are susceptible to oxidation, which eventually leads to the reduction in their engineering properties. In the application of polyolefin geosynthetics, a major issue is an estimate of the materials durability (i.e. service lifetime) under various aging conditions. Antioxidant packages are added to the polyolefin products to extend the induction time, during which antioxidants are gradually depleted and polymer oxidation reactions are prevented. In this PhD study, an improved laboratory accelerating aging method under elevated and high pressure environments was applied to evaluate the combined effect of temperature and pressure on the depletion of the antioxidants and the oxidation of polymers. Four types of commercial polyolefn geosynthetic materials selected for aging tests included HDPE geogrid, polypropylene woven and nonwoven geotextiles. A total of 33 different temperature/pressure aging conditions were used, with the incubation duration up to 24 months. The applied oven temperature ranged from 35°C to 105°C and the partial oxygen pressure ranged from 0.005 MPa to 6.3 MPa. Using the Oxidative Induction Time (OIT) test, the antioxidant depletion, which is correlated to the decrease of the OIT value, was found to follow apparent first-order decay. The OIT data also showed that, the antioxidant depletion rate increased with temperature according to the Arrhenius equation, while under constant temperatures, the rate increased exponentially with the partial pressure of oxygen. A modified Arrhenius model was developed to fit the antioxidant depletion rate as a function of temperature and pressure and to predict the antioxidant lifetime under various field conditions. This study has developed new temperature/pressure incubation aging test method with lifetime prediction models. Using this new technique, the antioxidant lifetime prediction results are close to regular temperature aging data while the aging duration can be reduced considerably

  19. Accelerator-mass spectrometer ages for late-glacial events at Ballybetagh, Ireland

    NASA Astrophysics Data System (ADS)

    Cwynar, Les C.; Watts, W. A.

    1989-05-01

    Although the character of late-glacial vegetation development in Ireland is well known, the dating is weak for a number of reasons. We report six accelerator-mass spectrometer (AMS) 14C dates of hand-picked organic material from Ballybetagh. Several of the dates are based on terrestrial plant remains, thus eliminating the commonly encountered problem associated with Irish sites of errors due to the hard-water effect. The two most significant indicate that (1) the Rumex-Salix zone, which represents the initial establishment of vegetation following deglaciation, began about 12,600 yr B.P. and (2) the classic Younger Dryas began at 10,600 yr B.P., somewhat younger than the traditionally accepted age of 11,000 yr B.P.

  20. From randomly accelerated particles to Lévy walks: non-ergodic behavior and aging

    NASA Astrophysics Data System (ADS)

    Radons, Guenter; Albers, Tony; Institute of Physics, Complex Systems; Nonlinear Dynamics Team

    For randomly accelerated particles we detected, and were able to analyze in detail (PRL 113, 184101 (2014)), the phenomenon of weak-ergodicity breaking (WEB), i.e. the inequivalence of ensemble- and time-averaged mean-squared displacements (MSD). These results, including their aging time dependence, are relevant for anomalous chaotic diffusion in Hamiltonian systems, for passive tracer transport in turbulent flows, and many other systems showing momentum diffusion. There are, however, several related models, such as the integrated random excursion model, or, space-time correlated Lévy walks and flights, with similar statistical behavior. We compare the WEB related properties of these models and find surprising differences although, for equivalent parameters, all of them are supposed to lead to the same ensemble-averaged MSD. Our findings are relevant for distinguishing possible models for the anomalous diffusion occurring in experimental situations.

  1. ACCELERATED-AGING OF SHIPPING PACKAGE O-RINGS FOR PU STORAGE

    SciTech Connect

    Hoffman, E

    2008-01-10

    The Savannah River Site (SRS) is storing surplus plutonium (Pu) materials in the K-Area Materials Storage (KAMS) facility. The Pu materials are packaged per the DOE 3013 Standard. The nested, welded 300 series stainless steel 3013 containers are transported to KAMS in Type B shipping packages and subsequently stored in the same packages. These type B shipping packages consist of double containment vessels sealed with dual O-rings. The O-ring compound is Parker Seals V0835-75, based on Viton{reg_sign} GLT fluoroelastomer. This work evaluates the performance of the V0835-75 O-rings at accelerated-aging conditions. The results will be used to develop a lifetime prediction model for O-rings in KAMS.

  2. Evaluation of Experimental Parameters in the Accelerated Aging of Closed-Cell Foam Insulation

    SciTech Connect

    Stovall, Therese K; Vanderlan, Michael; Atchley, Jerald Allen

    2012-12-01

    The thermal conductivity of many closed-cell foam insulation products changes over time as production gases diffuse out of the cell matrix and atmospheric gases diffuse into the cells. Thin slicing has been shown to be an effective means of accelerating this process in such a way as to produce meaningful results. Efforts to produce a more prescriptive version of the ASTM C1303 standard test method led to the ruggedness test described here. This test program included the aging of full size insulation specimens for time periods of five years for direct comparison to the predicted results. Experimental parameters under investigation include: slice thickness, slice origin (at the surface or from the core of the slab), thin slice stack composition, product facings, original product thickness, product density, and product type. The test protocol has been completed and this report provides a detailed evaluation of the impact of the test parameters on the accuracy of the 5-year thermal conductivity prediction.

  3. Accelerated aging, decreased white matter integrity, and associated neuropsychological dysfunction 25 years after pediatric lymphoid malignancies.

    PubMed

    Schuitema, Ilse; Deprez, Sabine; Van Hecke, Wim; Daams, Marita; Uyttebroeck, Anne; Sunaert, Stefan; Barkhof, Frederik; van Dulmen-den Broeder, Eline; van der Pal, Helena J; van den Bos, Cor; Veerman, Anjo J P; de Sonneville, Leo M J

    2013-09-20

    CNS-directed chemotherapy (CT) and cranial radiotherapy (CRT) for childhood acute lymphoblastic leukemia or lymphoma have various neurotoxic properties. This study aimed to assess their impact on the maturing brain 20 to 30 years after diagnosis, providing a much stronger perspective on long-term quality of life than previous studies. Ninety-three patients treated between 1978 and 1990 at various intensities, with and without CRT, and 49 healthy controls were assessed with magnetic resonance diffusion tensor imaging (DTI) and neuropsychological tests. Differences in fractional anisotropy (FA)-a DTI measure describing white matter (WM) microstructure-were analyzed by using whole brain voxel-based analysis. CRT-treated survivors demonstrated significantly decreased FA compared with controls in frontal, parietal, and temporal WM tracts. Trends for lower FA were seen in the CT-treated survivors. Decreases in FA correlated well with neuropsychological dysfunction. In contrast to the CT group and controls, the CRT group showed a steep decline of FA with age at assessment. Younger age at cranial irradiation and higher dosage were associated with worse outcome of WM integrity. CRT-treated survivors show decreased WM integrity reflected by significantly decreased FA and associated neuropsychological dysfunction 25 years after treatment, although effects of CT alone seem mild. Accelerated aging of the brain and increased risk of early onset dementia are suspected after CRT, but not after CT.

  4. Wear resistance of highly cross-linked and remelted polyethylenes after ion implantation and accelerated ageing.

    PubMed

    Medel, F J; Puértolas, J A

    2008-08-01

    Ion implantation may provide medical polyethylenes with excellent mechanical and tribological properties, helping to lower the risk of long-term osteolysis. Highly crosslinked and remelted polyethylenes, materials currently used as soft components in artificial joints, were implanted with N+ and He+ ions at different ion fluences. The mechanical and tribological properties under distilled water lubrication at body temperature were assessed after ion implantation by means of microhardness and pin-on-disc tests respectively. Thus, the influences of the ionic species and implantation dose on surface hardness, friction coefficient, and wear factor were fully characterized. Furthermore, the tribological behaviour was evaluated after an accelerated ageing protocol (120 degrees C for 36h). Ion implantation increased the surface hardness, as well as friction coefficients, and decreased the wear factors especially at the highest doses. Also, even though all artificially aged materials showed a worse wear behaviour, polyethylenes implanted with either N+ or He+ at the highest doses maintained a relatively good wear factor in comparison with the aged non-implanted material. The origins of these modifications are discussed according to the effects of ion implantation on the microstructure of the polymer.

  5. Human behavioral complexity peaks at age 25.

    PubMed

    Gauvrit, Nicolas; Zenil, Hector; Soler-Toscano, Fernando; Delahaye, Jean-Paul; Brugger, Peter

    2017-04-01

    Random Item Generation tasks (RIG) are commonly used to assess high cognitive abilities such as inhibition or sustained attention. They also draw upon our approximate sense of complexity. A detrimental effect of aging on pseudo-random productions has been demonstrated for some tasks, but little is as yet known about the developmental curve of cognitive complexity over the lifespan. We investigate the complexity trajectory across the lifespan of human responses to five common RIG tasks, using a large sample (n = 3429). Our main finding is that the developmental curve of the estimated algorithmic complexity of responses is similar to what may be expected of a measure of higher cognitive abilities, with a performance peak around 25 and a decline starting around 60, suggesting that RIG tasks yield good estimates of such cognitive abilities. Our study illustrates that very short strings of, i.e., 10 items, are sufficient to have their complexity reliably estimated and to allow the documentation of an age-dependent decline in the approximate sense of complexity.

  6. The aging human recipient of transfusion products.

    PubMed

    Nydegger, Urs E; Luginbühl, Martin; Risch, Martin

    2015-06-01

    In this review the different mechanisms of aging and frailty such as DNA defects due to impaired DNA repair, inflammatory processes, disturbances of oxidative phosphorylation are discussed together with mechanisms of cell repair. Components of blood plasma, such as the growth-differentiation protein GDF11, were shown to enhance neurogenesis and to improve the vasculature in the animal cortex and to rejuvenate muscle tissue. Advances in laboratory assays allow to identify plasma proteins that may affect tissue regeneration. This new knowledge from animal research might affect transfusion practice in geriatric patients in the future. Provided it can be translated and confirmed in human research, blood products might no longer be considered only as oxygen carriers or drugs to improve hemostasis. In the present time blood transfusion (RBCs, plasma or platelets) should be directed by differentiated guidelines considering not only cut-off values of hemoglobin, platelet count or coagulation but also old age-specific biologic variation, comorbidities and the clinical context e.g. of bleeding.

  7. Human behavioral complexity peaks at age 25

    PubMed Central

    Brugger, Peter

    2017-01-01

    Random Item Generation tasks (RIG) are commonly used to assess high cognitive abilities such as inhibition or sustained attention. They also draw upon our approximate sense of complexity. A detrimental effect of aging on pseudo-random productions has been demonstrated for some tasks, but little is as yet known about the developmental curve of cognitive complexity over the lifespan. We investigate the complexity trajectory across the lifespan of human responses to five common RIG tasks, using a large sample (n = 3429). Our main finding is that the developmental curve of the estimated algorithmic complexity of responses is similar to what may be expected of a measure of higher cognitive abilities, with a performance peak around 25 and a decline starting around 60, suggesting that RIG tasks yield good estimates of such cognitive abilities. Our study illustrates that very short strings of, i.e., 10 items, are sufficient to have their complexity reliably estimated and to allow the documentation of an age-dependent decline in the approximate sense of complexity. PMID:28406953

  8. The role of calcium in human aging.

    PubMed

    Beto, Judith A

    2015-01-01

    Calcium is an essential nutrient that is necessary for many functions in human health. Calcium is the most abundant mineral in the body with 99% found in teeth and bone. Only 1% is found in serum. The serum calcium level is tightly monitored to remain within normal range by a complex metabolic process. Calcium metabolism involves other nutrients including protein, vitamin D, and phosphorus. Bone formation and maintenance is a lifelong process. Early attention to strong bones in childhood and adulthood will provide more stable bone mass during the aging years. Research has shown that adequate calcium intake can reduce the risk of fractures, osteoporosis, and diabetes in some populations. The dietary requirements of calcium and other collaborative nutrients vary slightly around the world. Lactose intolerance due to lactase deficiency is a common cause of low calcium intake. Strategies will be discussed for addressing this potential barrier to adequate intake. The purpose of this narrative review is a) to examine the role of calcium in human health, b) to compare nutrient requirements for calcium across lifecycle groups and global populations, c) to review relationships between calcium intake, chronic disease risk, and fractures, and d) to discuss strategies to address diet deficiencies and lactose intolerance.

  9. The Role of Calcium in Human Aging

    PubMed Central

    2015-01-01

    Calcium is an essential nutrient that is necessary for many functions in human health. Calcium is the most abundant mineral in the body with 99% found in teeth and bone. Only 1% is found in serum. The serum calcium level is tightly monitored to remain within normal range by a complex metabolic process. Calcium metabolism involves other nutrients including protein, vitamin D, and phosphorus. Bone formation and maintenance is a lifelong process. Early attention to strong bones in childhood and adulthood will provide more stable bone mass during the aging years. Research has shown that adequate calcium intake can reduce the risk of fractures, osteoporosis, and diabetes in some populations. The dietary requirements of calcium and other collaborative nutrients vary slightly around the world. Lactose intolerance due to lactase deficiency is a common cause of low calcium intake. Strategies will be discussed for addressing this potential barrier to adequate intake. The purpose of this narrative review is a) to examine the role of calcium in human health, b) to compare nutrient requirements for calcium across lifecycle groups and global populations, c) to review relationships between calcium intake, chronic disease risk, and fractures, and d) to discuss strategies to address diet deficiencies and lactose intolerance. PMID:25713787

  10. Effect of disinfection and accelerated ageing on dimensional stability and detail reproduction of a facial silicone with nanoparticles.

    PubMed

    Pesqueira, A A; Goiato, M C; Dos Santos, D M; Haddad, M F; Moreno, A

    2012-05-01

    The aim of the present study was to evaluate the effect of disinfection and accelerated ageing on the dimensional stability and detail reproduction of a facial silicone with different types of nanoparticle. A total of 60 specimens were fabricated with Silastic MDX 4-4210 silicone and they were divided into three groups: colourless and pigmented with nanoparticles (make-up powder and ceramic powder). Half of the specimens of each group were disinfected with Efferdent tablets and half with neutral soap for 60 days. Afterwards, all specimens were subjected to accelerated ageing. Both dimensional stability and detail reproduction tests were performed after specimen fabrication (initial period), after chemical disinfection, and after accelerated ageing periods (252, 504 and 1008 hours). The dimensional stability test was conducted using AutoCAD software, while detail reproduction was analysed using a stereoscope magnifying glass. Dimensional stability values were statistically evaluated by analysis of variance (ANOVA) followed by Tukey's test (p < 0.01). Detail reproduction results were compared using a score. Chemical disinfection and also accelerated ageing affected the dimensional stability of the facial silicone with statistically significant results. The silicone's detail reproduction was not affected by these two factors regardless of nanoparticle type, disinfection and accelerated ageing.

  11. Accelerated increase and relative decrease in subjective age and changes in attitudes toward own aging over a 4-year period: results from the Health and Retirement Study.

    PubMed

    Bodner, Ehud; Ayalon, Liat; Avidor, Sharon; Palgi, Yuval

    2017-03-01

    The passage of time may force people to adjust their subjective age in response to changes in their attitudes toward own aging (ATOA). Although positive associations have been found between well-being and both positive ATOA and younger subjective age, the relationships between changes in these measures have not been examined yet. We expected (1) a decrease in positive ATOA to be associated with an accelerated increase in subjective age and (2) an increase in positive ATOA to be associated with a relative decrease in subjective age. Participants were individuals and their spouses, aged 50 and over, recruited by the Health and Retirement Study, who provided responses to a question concerning one's subjective age in 2008 and 2012 (n = 4174). A change in subjective age over the two waves was regarded as (1) an accelerated increase if it was greater than 5 years (36.2 % of the sample); (2) a relative decrease (39.1 %), if it was less than the 3 years; (3) no change if it did not comply with criteria 1 or 2 (24.7 %). A decrease in positive ATOA over the two waves resulted in an accelerated increase in subjective age, and an increase resulted in a relative decrease in subjective age. Older age and more physical impairments and depressive symptoms in 2012 compared with 2008 were associated with an accelerated increase in subjective age. Our findings emphasize the consequences ATOA might have on subjective age experiences, and the need to improve them.

  12. iPSC technology to study human aging and aging-related disorders.

    PubMed

    Liu, Guang-Hui; Ding, Zhichao; Izpisua Belmonte, Juan Carlos

    2012-12-01

    A global aging population, normally accompanied by a high incidence of aging-associated diseases, has prompted a renewed interest in basic research on human aging. Although encouraging progress has been achieved using animal models, the underlying fundamental mechanisms of aging remain largely unknown. Here, we review the human induced pluripotent stem cell (hiPSC)-based models of aging and aging-related diseases. These models seek to advance our knowledge of aging molecular mechanisms and help to develop strategies for treating aging-associated human diseases.

  13. The effect of copper, MDA, and accelerated aging on jet fuel thermal stability as measured by the gravimetric JFTOT

    SciTech Connect

    Pande, S.G.; Hardy, D.R.

    1995-05-01

    Thermally unstable jet fuels pose operational problems. In order to adequately identify such fuels, factors that realistically impact on thermal stability were examined. Evaluation was based on a quantitative method of measuring thermal stability, viz., NRL`s recently developed gravimetric JFTOT. This method gives a quantitative measurement of both the strip deposit and filterables formed. The pertinent factors examined, included the individual and interactive effects of: soluble copper, MDA (metal deactivator), and aging. The latter was accelerated to simulate field conditions of approximately six months aging at ambient temperature and pressure. The results indicate that the individual and interactive effects of copper, MDA, and accelerated aging appear to be fuel dependent. Based on the results, the three test fuels examined (one JP-8 and two JP-5s) were categorized as exhibiting very good, typical, and poor thermal stabilities, respectively. For both the very good and poor thermal stability fuels, the effect of copper in conjunction with accelerated aging did not significantly increase the total thermal deposits of the neat fuels. In contrast, for the typical thermal stability fuel, the combined effects of copper and accelerated aging, did. Furthermore, the addition of MDA prior to aging of the copper-doped, typical stability fuel significantly counteracted the adverse effect of copper and aging. A similar beneficial effect of MDA was not observed for the poor stability fuel. These results focus on the compositional differences among fuels and the need to elucidate these differences (physical and chemical) for a better understanding and prediction of their performance.

  14. Comparative Study on Accelerated Thermal Ageing of Vegetable Insulating Oil-paperboard and Mineral Oil-paperboard

    NASA Astrophysics Data System (ADS)

    Zhou, Zhu-Jun; Hu, Ting; Cheng, Lin; Tian, Kai; Yang, Jun; Wang, Xuan; Fang, Fu-Xin; Kong, Hai-Yang; Qian, Hang

    2016-05-01

    To comparatively study the insulation ageing life of vegetable insulating oil-paperboard and mineral oil-paperboard, we conducted accelerated thermal ageing experiments at 170°C. Then according to the temperature rise of vegetable insulating oil transformer, we conducted accelerated thermal ageing experiments at 150°C for vegetable insulating oil-paperboard and at 140°C for mineral oil-paperboard. The appearance, polymerization degree, and SEM microstructure of the paperboard after different ageing experiments were comparative analyzed. The results show that after the oil-paperboard system is accelerated ageing for 1 000 h at 170°C, that is equivalent to 20 years natural ageing, the structure of paperboard in vegetable insulating oil is damaged severely, which indicates that the lifetime of transformer are in the late stage; while the structure of paperboard in mineral oil maintain complete, and the polymerization degree is still above 500, which indicate that the lifetime of transformer are in the middle stage. The accelerated ageing rate of the vegetable insulating oil-paperboard system at 150°C is slower than that of the mineral oil-paperboard system, which indicates that the lifetime of the vegetable insulating oil-paperboard is longer than that of the mineral oil-paperboard.

  15. Effects of Operating Temperatures and Accelerated Environmental Ageing on the Mechanical Properties of a Glass-Vinylester Composite

    NASA Astrophysics Data System (ADS)

    Klasztorny, M.; Nycz, D. B.; Romanowski, R. K.; Gotowicki, P.; Kiczko, A.; Rudnik, D.

    2017-07-01

    Experimental identification of the mechanical properties of a selected glass-vinylester structural composite is developed, performed, and analysed taking into account accelerated environmental ageing and three operating temperatures (-20, 20, and 55°C) corresponding to the operating temperature range for composite footbridges in the Central Europe. The main constituents of the composite fabricated using infusion technology are a bidirectional balanced stitched E-glass fabric and a flame retardant, vinylester resin. After homogenization, the composite reinforced with one fabric forms a single lamina and is modeled as a linear elastic-brittle orthotropic material. Full sets of material constants were identified for the initial and aged composites at the selected operating temperatures. The accelerated environmental ageing of the composite was performed on 4-layer symmetric laminate platelets protected with a 300-mm-thick gelcoat layer, using an ageing chamber and a relevant ageing programme. A comparative analysis was carried out in order to determine the effects of operating temperature and accelerated environmental ageing on the material constants of the GFRP composite. It is found that the composite tested can be modeled as a linear elastic-brittle orthotropic material to the level of 20% of its strength in each strength test. The impact of the accelerated environmental ageing and operating temperature in the range from -20 to 55°C on the elastic/strength/ultimate strain constants of the selected E-glass/vinylester composite can be significant and different for individual constants.

  16. Influence of acceleration voltage on scanning electron microscopy of human blood platelets.

    PubMed

    Pretorius, E

    2010-03-01

    Scanning electron microscopy (SEM) is used to view a variety of surface structures, molecules, or nanoparticles of different materials, ranging from metals, dental and medical instruments, and chemistry (e.g. polymer analysis) to biological material. Traditionally, the operating conditions of the SEM are very important in the material sciences, particularly the acceleration voltage. However, in biological sciences, it is not typically seen as an important parameter. Acceleration voltage allows electrons to penetrate the sample; thus, the higher the acceleration voltage the more penetration into the sample will occur. As a result, ultrastructural information from deeper layers will interfere with the actual surface morphology that is seen. Therefore, ultimately, if acceleration voltage is lower, a better quality of the surface molecules and structures will be produced. However, in biological sciences, this is an area that is not well-documented. Typically, acceleration voltages of between 5 and 20 kV are used. This manuscript investigates the influence of acceleration voltages ranging from 5 kV to as low as 300 V, by studying surface ultrastructure of a human platelet aggregate. It is concluded that, especially at higher magnifications, much more surface detail is visible in biological samples when using an acceleration voltage between 2 kV and 300 V.

  17. Low micronutrient intake may accelerate the degenerative diseases of aging through allocation of scarce micronutrients by triage

    PubMed Central

    Ames, Bruce N.

    2006-01-01

    Inadequate dietary intakes of vitamins and minerals are widespread, most likely due to excessive consumption of energy-rich, micronutrient-poor, refined food. Inadequate intakes may result in chronic metabolic disruption, including mitochondrial decay. Deficiencies in many micronutrients cause DNA damage, such as chromosome breaks, in cultured human cells or in vivo. Some of these deficiencies also cause mitochondrial decay with oxidant leakage and cellular aging and are associated with late onset diseases such as cancer. I propose DNA damage and late onset disease are consequences of a triage allocation response to micronutrient scarcity. Episodic shortages of micronutrients were common during evolution. Natural selection favors short-term survival at the expense of long-term health. I hypothesize that short-term survival was achieved by allocating scarce micronutrients by triage, in part through an adjustment of the binding affinity of proteins for required micronutrients. If this hypothesis is correct, micronutrient deficiencies that trigger the triage response would accelerate cancer, aging, and neural decay but would leave critical metabolic functions, such as ATP production, intact. Evidence that micronutrient malnutrition increases late onset diseases, such as cancer, is discussed. A multivitamin-mineral supplement is one low-cost way to ensure intake of the Recommended Dietary Allowance of micronutrients throughout life. PMID:17101959

  18. Modular knowledge systems accelerate human migration in asymmetric random environments.

    PubMed

    Wang, Dong; Deem, Michael W

    2016-12-01

    Migration is a key mechanism for expansion of communities. In spatially heterogeneous environments, rapidly gaining knowledge about the local environment is key to the evolutionary success of a migrating population. For historical human migration, environmental heterogeneity was naturally asymmetric in the north-south (NS) and east-west (EW) directions. We here consider the human migration process in the Americas, modelled as random, asymmetric, modularly correlated environments. Knowledge about the environments determines the fitness of each individual. We present a phase diagram for asymmetry of migration as a function of carrying capacity and fitness threshold. We find that the speed of migration is proportional to the inverse complement of the spatial environmental gradient, and in particular, we find that NS migration rates are lower than EW migration rates when the environmental gradient is higher in the NS direction. Communication of knowledge between individuals can help to spread beneficial knowledge within the population. The speed of migration increases when communication transmits pieces of knowledge that contribute in a modular way to the fitness of individuals. The results for the dependence of migration rate on asymmetry and modularity are consistent with existing archaeological observations. The results for asymmetry of genetic divergence are consistent with patterns of human gene flow.

  19. Cerebrospinal fluid metabolomics reveals altered waste clearance and accelerated aging in HIV patients with neurocognitive impairment

    PubMed Central

    Cassol, Edana; Misra, Vikas; Dutta, Anupriya; Morgello, Susan; Gabuzda, Dana

    2014-01-01

    Objective(s): HIV-associated neurocognitive disorders (HAND) remain prevalent in HIV-infected patients on antiretroviral therapy (ART), but the underlying mechanisms are unclear. Some features of HAND resemble those of age-associated cognitive decline in the absence of HIV, suggesting that overlapping mechanisms may contribute to neurocognitive impairment. Design: Cross-sectional analysis of cerebrospinal fluid (CSF) from 100 individuals (46 HIV-positive patients and 54 HIV-negative controls). Methods: Untargeted CSF metabolite profiling was performed using liquid/gas chromatography followed by mass spectrometry. Cytokine profiling was performed by Bioplex. Bioinformatic analyses were performed in Metaboanalyst and R. Results: Alterations in the CSF metabolome of HIV patients on ART mapped to pathways associated with neurotransmitter production, mitochondrial function, oxidative stress, and metabolic waste. Many CSF metabolites altered in HIV overlapped with those altered with advanced age in HIV-negative controls, suggesting a pattern indicative of accelerated aging. Machine learning models identified neurotransmitters (glutamate, N-acetylaspartate), markers of glial activation (myo-inositol), and ketone bodies (beta-hydroxybutyric acid, 1,2-propanediol) as top-ranked classifiers of HAND. These CSF metabolites correlated with worse neurocognitive test scores, plasma inflammatory biomarkers [interferon (IFN)-α, IFN-γ, interleukin (IL)-8, IL-1β, IL-6, IL-2Ra], and intrathecal IFN responses (IFN-γ and kynurenine : tryptophan ratio), suggesting inter-relationships between systemic and intrathecal inflammation and metabolic alterations in CSF. Conclusions: Alterations in the CSF metabolome of HIV patients on ART suggest that persistent inflammation, glial responses, glutamate neurotoxicity, and altered brain waste disposal systems contribute to mechanisms involved in HAND that may be augmented with aging. PMID:24752083

  20. The anorexia of aging in humans.

    PubMed

    Hays, Nicholas P; Roberts, Susan B

    2006-06-30

    Energy intake is reduced in older individuals, with several lines of evidence suggesting that both physiological impairment of food intake regulation and non-physiological mechanisms are important. Non-physiological causes of the anorexia of aging include social (e.g. poverty, isolation), psychological (e.g. depression, dementia), medical (e.g. edentulism, dysphagia), and pharmacological factors. Physiological factors include changes in taste and smell, diminished sensory-specific satiety, delayed gastric emptying, altered digestion-related hormone secretion and hormonal responsiveness, as well as food intake-related regulatory impairments for which specific mechanisms remain largely unknown. Studies in healthy elderly individuals have shown that men who consume diets over several weeks providing either too few or too many calories relative to dietary energy needs subsequently do not compensate for the resulting energy deficit or surplus when provided an ad libitum diet. Healthy elders have also been shown to be less hungry at meal initiation and to become more rapidly satiated during a standard meal compared to younger adults. Studies in animal models are required to investigate potential mechanisms underlying these observations, while human studies should focus on examining the potential consequences of this phenomenon and practical therapeutic strategies for the maintenance of appropriate energy intake with increasing age. In light of this need, we have recently demonstrated that low reported hunger assessed using a simple questionnaire predicts unintentional weight loss in a sample of healthy older women, and thus may provide a clinically useful tool for identifying older individuals at risk for undesirable weight change and therefore at high priority for intervention.

  1. The effect of accelerated ageing on performance properties of addition type silicone biomaterials.

    PubMed

    Stathi, K; Tarantili, P A; Polyzois, G

    2010-05-01

    The UV-protection provided to addition type silicone elastomers by various colorants, such as conventional dry earth pigments, as well as the so called "functional or reactive" pigments, was investigated. Moreover, the effect of a UV light absorber and a silica filler was also explored. Under the experimental parameters of this work, the exposure of silicone to UV radiation resulted in some changes of the IR absorbance, thermal decomposition after 400 degrees C, T(g) and tensile properties, whereas the storage modulus of samples was not affected. The obtained spectroscopic data, as well as the results of TGA and storage modulus, were interpreted by assuming that chain scission takes place during aging, whereas the improvement of tensile strength allows the hypothesis of a post-curing process, initiated by UV radiation. Therefore, the increase of T(g) could partly be due to the above reason and, furthermore, to the contribution of a rearrangement of chain fragments within the free volume of the elastomeric material. Regarding the evaluation of various coloring agents used in this work, the obtained results show that dry pigments are more sensitive to accelerated ageing conditions in comparison with functional liquid pigments. Moreover, the hydrophobic character of silicone matrix is enhanced, with the addition of this type pigments because of the vinyl functional silanes groups present in their chemical structure. Finally, it should be noted that the incorporation of silica nanofiller did not seem to prevent the silicone elastomer from degradation upon UV irradiation, but showed a significant reinforcing effect.

  2. Stability of ethyl glucuronide in hair reference materials after accelerated aging.

    PubMed

    Ammann, D; Becker, R; Nehls, I

    2015-12-01

    Two different hair reference materials, one produced from authentic hair displaying an ethyl glucuronide (EtG) content of about 25 pg/mg and one obtained by fortification of blank hair to an EtG level of 85 pg/mg were submitted to accelerated aging between 4 °C and 60 °C for periods between one and 24 months. Subsequently, the EtG content was determined in the aged samples and untreated reference samples stored at -22 °C under repeatability conditions following the so-called isochronous approach. The EtG content remained stable even at 40 °C for 24 months and at 60 °C over six months. This is in contrast to many organic analytes contained in trace concentrations in diverse matrices. A slight but significant increase of the recovered EtG in case of authentic hair samples having been exposed for 24 months between 4 °C and 60 °C may be due to a temperature-driven process that allows increased recoveries of the physiologically embedded EtG. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  3. Accelerated aging of solid lubricants for the W76-1 TSL : effects of polymer outgassing.

    SciTech Connect

    Dugger, Michael Thomas; Wallace, William O.; Huffman, Elizabeth M.

    2006-09-01

    The behavior of MoS{sub 2} lubricants intended for the W76-1 TSL was evaluated after 17 and 82 thermal cycles, each lasting seven days and including a low temperature of -35 C and a high temperature of 93 C, in a sealed container containing organic materials. The MoS{sub 2} was applied by tumbling with MoS{sub 2} powder and steel pins (harperized), or by spraying with a resin binder (AS Mix). Surface composition measurements indicated an uptake of carbon and silicon on the lubricant surfaces after aging. Oxidation of the MoS{sub 2} on harperized coupons, where enough MoS{sub 2} was present at the surface to result in significant Mo and S concentrations, was found to be minimal for the thermal cycles in an atmosphere of primarily nitrogen. Bare steel surfaces showed a reduction in friction for exposed coupons compared to control coupons stored in nitrogen, at least for the initial cycles of sliding until the adsorbed contaminants were worn away. Lubricated surfaces showed no more than a ten percent increase in steady-state friction coefficient after exposure. Initial coefficient of friction was up to 250 percent higher than steady-state for AS Mix films on H950 coupons after 82 thermal cycles. However, the friction coefficient exhibited by lubricated coupons was never greater than 0.25, and more often less than 0.15, even after the accelerated aging exposures.

  4. An alternative model for studying age-associated metabolic complications: Senescence-accelerated mouse prone 8.

    PubMed

    Liu, Hung-Wen; Chan, Yin-Ching; Wei, Chu-Chun; Chen, Yun-An; Wang, Ming-Fu; Chang, Sue-Joan

    2017-08-23

    Rodent animal models take at least 18months to develop aging phenotypes for researchers to investigate the mechanism of age-related metabolic complications. Senescence-accelerated mouse prone 8 (SAMP8) shortens the process of aging and may facilitate an alternative model for studying age-related insulin resistance. The short-lived strain SAMP8 and two long-lived strains SAM resistant 1 (SAMR1) mice and C57BL/6 mice at 12 (young) and 40weeks old (old) were used in the present study. Glucose tolerance test, histology and signaling pathways involved in lipid metabolism in adipose tissue and liver and key components of insulin signaling pathway in the skeletal muscle were determined in these three strains. We found that short-lived SAMP8 mice developed symptoms of insulin resistance including hyperglycemia, hyperinsulinemia, and impaired glucose tolerance in association with adipocyte hypertrophy and ectopic lipid accumulation in liver and muscle at 40-wk.-old. Significantly increased serum IL-6, leptin, and resistin levels and adipogenic transcription factor PPARγ and macrophage marker F4/80 mRNA expression in adipose tissues were observed in old SAMP8 mice, compared with that in young SAMP8 mice. Marked increases in SREBP1 and PPARγ and a decrease in PPARα at mRNA level in accordance with activation of mTOR/Akt pathway were contributed to hepatic lipid accumulation in old SAMP8 mice. Down-regulation of insulin signaling pathway including IRβ, IRS1, and AS160 at protein level in skeletal muscle was observed in old SAMP8 mice. At 40-wk.-old, both long-lived SAMR1 and C57BL/6 mice have not been fully developed age-related metabolic disorders including insulin resistance and visceral fat expansion in line with fewer defects in lipid metabolism and skeletal muscle insulin signaling pathway. In conclusion, our data suggest the suitability of the SAMP8 mice as a model for studying age-related metabolic complications. Copyright © 2017. Published by Elsevier Inc.

  5. Simulation analysis for effects of bone loss on acceleration tolerance of human lumbar vertebra

    NASA Astrophysics Data System (ADS)

    Ma, Honglei; Zhang, Feng; Zhu, Yu; Xiao, Yanhua; Wazir, Abrar

    2014-02-01

    The purpose of the present study was to analyze and predict the changes in acceleration tolerance of human vertebra as a result of bone loss caused by long-term space flight. A human L3-L4 vertebra FEM model was constructed, in which the cancellous bone was separated, and surrounding ligaments were also taken into account. The simulation results demonstrated that bone loss has more of an effect on the acceleration tolerance in x-direction. The results serve to aid in the creation of new acceleration tolerance standards, ensuring astronauts return home safely after long-term space flight. This study shows that more attention should be focused on the bone degradation of crew members and to create new protective designs for space capsules in the future.

  6. Accelerating epistasis analysis in human genetics with consumer graphics hardware

    PubMed Central

    2009-01-01

    Background Human geneticists are now capable of measuring more than one million DNA sequence variations from across the human genome. The new challenge is to develop computationally feasible methods capable of analyzing these data for associations with common human disease, particularly in the context of epistasis. Epistasis describes the situation where multiple genes interact in a complex non-linear manner to determine an individual's disease risk and is thought to be ubiquitous for common diseases. Multifactor Dimensionality Reduction (MDR) is an algorithm capable of detecting epistasis. An exhaustive analysis with MDR is often computationally expensive, particularly for high order interactions. This challenge has previously been met with parallel computation and expensive hardware. The option we examine here exploits commodity hardware designed for computer graphics. In modern computers Graphics Processing Units (GPUs) have more memory bandwidth and computational capability than Central Processing Units (CPUs) and are well suited to this problem. Advances in the video game industry have led to an economy of scale creating a situation where these powerful components are readily available at very low cost. Here we implement and evaluate the performance of the MDR algorithm on GPUs. Of primary interest are the time required for an epistasis analysis and the price to performance ratio of available solutions. Findings We found that using MDR on GPUs consistently increased performance per machine over both a feature rich Java software package and a C++ cluster implementation. The performance of a GPU workstation running a GPU implementation reduces computation time by a factor of 160 compared to an 8-core workstation running the Java implementation on CPUs. This GPU workstation performs similarly to 150 cores running an optimized C++ implementation on a Beowulf cluster. Furthermore this GPU system provides extremely cost effective performance while leaving the CPU

  7. Accelerating epistasis analysis in human genetics with consumer graphics hardware.

    PubMed

    Sinnott-Armstrong, Nicholas A; Greene, Casey S; Cancare, Fabio; Moore, Jason H

    2009-07-24

    Human geneticists are now capable of measuring more than one million DNA sequence variations from across the human genome. The new challenge is to develop computationally feasible methods capable of analyzing these data for associations with common human disease, particularly in the context of epistasis. Epistasis describes the situation where multiple genes interact in a complex non-linear manner to determine an individual's disease risk and is thought to be ubiquitous for common diseases. Multifactor Dimensionality Reduction (MDR) is an algorithm capable of detecting epistasis. An exhaustive analysis with MDR is often computationally expensive, particularly for high order interactions. This challenge has previously been met with parallel computation and expensive hardware. The option we examine here exploits commodity hardware designed for computer graphics. In modern computers Graphics Processing Units (GPUs) have more memory bandwidth and computational capability than Central Processing Units (CPUs) and are well suited to this problem. Advances in the video game industry have led to an economy of scale creating a situation where these powerful components are readily available at very low cost. Here we implement and evaluate the performance of the MDR algorithm on GPUs. Of primary interest are the time required for an epistasis analysis and the price to performance ratio of available solutions. We found that using MDR on GPUs consistently increased performance per machine over both a feature rich Java software package and a C++ cluster implementation. The performance of a GPU workstation running a GPU implementation reduces computation time by a factor of 160 compared to an 8-core workstation running the Java implementation on CPUs. This GPU workstation performs similarly to 150 cores running an optimized C++ implementation on a Beowulf cluster. Furthermore this GPU system provides extremely cost effective performance while leaving the CPU available for other

  8. Effect of brushing and accelerated ageing on color stability and surface roughness of composites.

    PubMed

    Roselino, Lourenço de Moraes Rego; Cruvinel, Diogo Rodrigues; Chinelatti, Michelle Alexandra; Pires-de-Souza, Fernanda de Carvalho Panzeri

    2013-11-01

    The aim of this study was to evaluate the effect of brushing and artificial accelerated ageing (AAA) on color stability and surface roughness of aesthetic restorative materials. One hundred and twenty specimens (12 mm diameter × 2 mm thick), 40 of each material (n=8) were obtained using nanosized composite Z350 (3M ESPE), nanohybrid composite Tetric N-Ceram (Ivoclar Vivadent) and ceramic IPS e.max Ceram (Ivoclar Vivadent), as control. Initial color (Spectrophotometer PCB 6807) and surface roughness (Surfcorder SE 1700) readouts were taken and the samples were separated into five groups (n=8) and treated as follows: Group 1: mechanical brushing with dentifrice RDA* 68 (Colgate), Group 2: mechanical brushing with dentifrice RDA* 180 (Colgate Total Plus Whitening), Group 3: AAA, Group 4: AAA followed by mechanical brushing with dentifrice RDA* 68 and Group 5: AAA followed by mechanical brushing with dentifrice RDA* 180. Mechanical brushing was performed for 205 min and AAA for 480 h; new color and surface roughness readouts were taken. Data were statistically analyzed (two-way ANOVA repeated measures, Bonferroni test, p<0.05). Dentifrice abrasiveness was not significant for color change and surface roughness. When submitted to AAA+brushing, the color stability of Tetric was statistically significant (p<0.05) with both dentifrices and with dentifrice RDA* 180 for Z350. The roughness was different (p<0.05) for Z350 when brushed with RDA* 68 after AAA. Dentifrice abrasiveness did not interfere in the ability to remove stains and roughness from aged samples. However, staining is material-dependent. The abrasiveness of dentifrice does not change the color and surface roughness of the composites and does not help to remove surface stains from the aged samples. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Circadian disruption induced by light-at-night accelerates aging and promotes tumorigenesis in young but not in old rats

    PubMed Central

    Vinogradova, Irina A.; Anisimov, Vladimir N.; Bukalev, Andrey V.; Ilyukha, Viktor A.; Khizhkin, Evgeniy A.; Lotosh, Tatiana A.; Semenchenko, Anna V.; Zabezhinski, Mark A.

    2010-01-01

    We evaluated the effect of exposure to constant light started at the age of 1 month and at the age of 14 months on the survival, life span, tumorigenesis and age-related dynamics of antioxidant enzymes activity in various organs in comparison to the rats maintained at the standard (12:12 light/dark) light/dark regimen. We found that exposure to constant light started at the age of 1 month accelerated spontaneous tumorigenesis and shortened life span both in male and female rats as compared to the standard regimen. At the same time, the exposure to constant light started at the age of 14 months failed to influence survival of male and female rats. While delaying tumors in males, constant light accelerated tumors in females. We conclude that circadian disruption induced by light-at-night started at the age of 1 month accelerates aging and promotes tumorigenesis in rats, however failed affect survival when started at the age of 14 months. PMID:20354269

  10. Possible acceleration of aging by adjuvant chemotherapy: a cause of early onset frailty?

    PubMed

    Maccormick, Ronald Eric

    2006-01-01

    Cancer chemotherapy has three main applications. It is curative for a small number of malignancies including childhood leukemia, Hodgkin's and non-Hodgkin's lymphoma, and germ cell malignancies. It has a palliative role for most metastatic epithelial malignancies. Finally, it has an adjuvant role in several types of resected epithelial malignancies particularly breast cancer. First successfully employed in the mid 1970s, adjuvant chemotherapy is associated with up to a 30% relative improvement in long-term overall survival in high risk breast cancer but demonstrates significantly less absolute improvement. Now that adjuvant chemotherapy is being used in lower risk disease, both the relative and absolute improvement in overall survival is even less impressive. With a growing number of long-term survivors, we are only now able to define the delayed implications of adjuvant chemotherapy. These long-term side effects include acceleration of neurocognitive decline, musculoskeletal complications such as early onset osteoporosis, premature skin and ocular changes and the most common long-term complaint; mild to profound fatigue. This complex of problems is suggestive of early onset frailty. This paper explores various potential mechanisms of aging including accumulation of free-radical damage, accumulation of DNA damage, telomere shortening with accompanying decline in telomerase activity and finally a decline in neuroendocrine/immune function. The impact of chemotherapy, particularly those agents used in the adjuvant setting, in relationship to these aging mechanisms is explored. There is good evidence that chemotherapy can effect all these aging mechanisms leading to early onset frailty. The implications of this hypothesis are quite profound. Whereas short-term toxicity of chemotherapy can usually be considered acceptable even for a small improvement in survival, long-term toxicity such as early onset frailty can have an impact on quality of life that could last for

  11. Cannabis exposure as an interactive cardiovascular risk factor and accelerant of organismal ageing: a longitudinal study

    PubMed Central

    Reece, Albert Stuart; Hulse, Gary Kenneth

    2016-01-01

    Objectives Many reports exist of the cardiovascular toxicity of smoked cannabis but none of arterial stiffness measures or vascular age (VA). In view of its diverse toxicology, the possibility that cannabis-exposed patients may be ageing more quickly requires investigation. Design Cross-sectional and longitudinal, observational. Prospective. Setting Single primary care addiction clinic in Brisbane, Australia. Participants 11 cannabis-only smokers, 504 tobacco-only smokers, 114 tobacco and cannabis smokers and 534 non-smokers. Exclusions: known cardiovascular disease or therapy or acute exposure to alcohol, amphetamine, heroin or methadone. Intervention Radial arterial pulse wave tonometry (AtCor, SphygmoCor, Sydney) performed opportunistically and sequentially on patients between 2006 and 2011. Main outcome measure Algorithmically calculated VA. Secondary outcomes: other central haemodynamic variables. Results Differences between group chronological ages (CA, 30.47±0.48 to 40.36±2.44, mean±SEM) were controlled with linear regression. Between-group sex differences were controlled by single-sex analysis. Mean cannabis exposure among patients was 37.67±7.16 g-years. In regression models controlling for CA, Body Mass Index (BMI), time and inhalant group, the effect of cannabis use on VA was significant in males (p=0.0156) and females (p=0.0084). The effect size in males was 11.84%. A dose–response relationship was demonstrated with lifetime exposure (p<0.002) additional to that of tobacco and opioids. In both sexes, the effect of cannabis was robust to adjustment and was unrelated to its acute effects. Significant power interactions between cannabis exposure and the square and cube of CA were demonstrated (from p<0.002). Conclusions Cannabis is an interactive cardiovascular risk factor (additional to tobacco and opioids), shows a prominent dose–response effect and is robust to adjustment. Cannabis use is associated with an acceleration of the cardiovascular

  12. Accelerated ageing of an EAF black slag by carbonation and percolation for long-term behaviour assessment.

    PubMed

    Gurtubay, L; Gallastegui, G; Elias, A; Rojo, N; Barona, A

    2014-07-01

    The efficient reuse of industrial by-products, such as the electric arc furnace (EAF) black slag, is still hindered by concern over their long-term behaviour in outdoor environments. The aim of this study was to develop an accelerated ageing method to simulate the long-term natural carbonation of EAF slag exposed to the elements. The degree of carbonation achieved in a freshly produced slag after accelerated ageing and in a slag used on a fifteen-year-old unpaved road was very similar. The influence of particle size on accelerated carbonation was assessed, with it being concluded that the slag sample with a particle size bigger than 5-6 mm underwent slight carbonation over time when it was exposed to CO2. The accelerated ageing procedure based on percolating a previously carbonated water solution through the slag column allowed gradual leaching with simulated acid rain, as well as providing information about the gradual and total chemical release from the slag. Three classification groups were established according to the release rate of the determined elements. The joint use of the accelerated carbonation method and the percolation test is proposed as a useful tool for environmental risk assessment concerning the long-term air exposure of EAF black slag. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Human mass balance study of the novel anticancer agent ixabepilone using accelerator mass spectrometry

    PubMed Central

    Garner, R. C.; Cohen, M. B.; Galbraith, S.; Duncan, G. F.; Griffin, T.; Beijnen, J. H.; Schellens, J. H. M.

    2007-01-01

    Summary Ixabepilone (BMS-247550) is a semi-synthetic, microtubule stabilizing epothilone B analogue which is more potent than taxanes and has displayed activity in taxane-resistant patients. The human plasma pharmacokinetics of ixabepilone have been described. However, the excretory pathways and contribution of metabolism to ixabepilone elimination have not been determined. To investigate the elimination pathways of ixabepilone we initiated a mass balance study in cancer patients. Due to autoradiolysis, ixabepilone proved to be very unstable when labeled with conventional [14C]-levels (100 μCi in a typical human radio-tracer study). This necessitated the use of much lower levels of [14C]-labeling and an ultra-sensitive detection method, Accelerator Mass Spectrometry (AMS). Eight patients with advanced cancer (3 males, 5 females; median age 54.5 y; performance status 0–2) received an intravenous dose of 70 mg, 80 nCi of [14C]ixabepilone over 3 h. Plasma, urine and faeces were collected up to 7 days after administration and total radioactivity (TRA) was determined using AMS. Ixabepilone in plasma and urine was quantitated using a validated LC-MS/MS method. Mean recovery of ixabepilone-derived radioactivity was 77.3% of dose. Fecal excretion was 52.2% and urinary excretion was 25.1%. Only a minor part of TRA is accounted for by unchanged ixabepilone in both plasma and urine, which indicates that metabolism is a major elimination mechanism for this drug. Future studies should focus on structural elucidation of ixabepilone metabolites and characterization of their activities. PMID:17347871

  14. Oxidative stress and age-related changes in T cells: is thalassemia a model of accelerated immune system aging?

    PubMed Central

    Ghatreh-Samani, Mahdi; Esmaeili, Nafiseh; Soleimani, Masoud; Asadi-Samani, Majid; Ghatreh-Samani, Keihan

    2016-01-01

    Iron overload in β-thalassemia major occurs mainly due to blood transfusion, an essential treatment for β-thalassemia major patients, which results in oxidative stress. It has been thought that oxidative stress causes elevation of immune system senescent cells. Under this condition, cells normally enhance in aging, which is referred to as premature immunosenescence. Because there is no animal model for immunosenescence, most knowledge on the immunosenescence pattern is based on induction of immunosenescence. In this review, we describe iron overload and oxidative stress in β-thalassemia major patients and how they make these patients a suitable human model for immunosenescence. We also consider oxidative stress in some kinds of chronic virus infections, which induce changes in the immune system similar to β-thalassemia major. In conclusion, a therapeutic approach used to improve the immune system in such chronic virus diseases, may change the immunosenescence state and make life conditions better for β-thalassemia major patients. PMID:27095931

  15. Mechanisms of maladaptive repair after AKI leading to accelerated kidney ageing and CKD

    PubMed Central

    Ferenbach, David A.; Bonventre, Joseph V.

    2015-01-01

    Acute kidney injury is an increasingly common complication of hospital admission and is associated with high levels of morbidity and mortality. A hypotensive, septic, or toxic insult can initiate a cascade of events, resulting in impaired microcirculation, activation of inflammatory pathways and tubular cell injury or death. These processes ultimately result in acutely impaired kidney function and initiation of a repair response. This Review explores the various mechanisms responsible for the initiation and propagation of acute kidney injury, the prototypic mechanisms by which a substantially damaged kidney can regenerate its normal architecture, and how the adaptive processes of repair can become maladaptive. These mechanisms, which include G2/M cell-cycle arrest, cell senescence, profibrogenic cytokine production, and activation of pericytes and interstitial myofibroblasts, contribute to the development of progressive fibrotic kidney disease. The end result is a state that mimics accelerated kidney ageing. These mechanisms present important opportunities for the design of targeted therapeutic strategies to promote adaptive renal recovery and minimize progressive fibrosis and chronic kidney disease after acute insults. PMID:25643664

  16. Effect of Accelerated Aging on Color Change of Direct and Indirect Fiber-Reinforced Composite Restorations

    PubMed Central

    Tabatabaei, Masoumeh Hasani; Farahat, Farnaz; Ahmadi, Elham; Hassani, Zahra

    2016-01-01

    Objectives: The aim of this study was to assess the effect of artificial accelerated aging (AAA) on color change of direct and indirect fiber-reinforced composite (FRC) restorations. Materials and Methods: Direct (Z250) and indirect (Gradia) composite resins were reinforced with glass (GF) and polyethylene fibers (PF) based on the manufacturers’ instructions. Forty samples were fabricated and divided into eight groups (n=5). Four groups served as experimental groups and the remaining four served as controls. Color change (ΔE) and color parameters (ΔL*, Δa*, Δb*) were read at baseline and after AAA based on the CIELAB system. Three-way ANOVA and Tukey’s test were used for statistical analysis. Results: Significant differences were found in ΔE, ΔL*, Δa* and Δb* among the groups after AAA (P<0.05). Most of the studied samples demonstrated an increase in lightness and a red-yellow shift after AAA. Conclusions: The obtained ΔE values were unacceptable after AAA (ΔE≥ 3.3). All indirect samples showed a green-blue shift with a reduction in lightness except for Gradia/PF+ NuliteF. PMID:28392813

  17. Polyphenols, antioxidant potential and color of fortified wines during accelerated ageing: the Madeira Wine case study.

    PubMed

    Pereira, Vanda; Albuquerque, Francisco; Cacho, Juan; Marques, José C

    2013-03-05

    Polyphenols, antioxidant potential and color of three types of fortified Madeira wines were evaluated during the accelerated ageing, named as estufagem. The traditional estufagem process was set to 45 °C for 3 months. Overheating conditions, 1 month at 70 °C, were also examined. Total polyphenols (TP), total monomeric anthocyanins (TMA) and total flavonoids (TF) were assessed by spectrophotometric methods, while individual polyphenols and furans were simultaneously determined by HPLC-DAD. Antioxidant potential (AP) was estimated by ABTS, DPPH and FRAP assays, while color was evaluated by Glories and CIELab. Traditional estufagem decreased the TP and AP up to 20% and 26%, respectively, with final values similar to other wines. TMA of the Madeira wines from red grapes decreased during estufagem. Six hydroxybenzoic acids, three hydroxycinnamic acids, one stilbene, three flavonols and three flavan-3-ols were found in these wines. The prominent phenolics were hydroxycinnamates and hydroxybenzoates, even after estufagem. Most polyphenols decreased, with the exception of caffeic, ferulic, p-coumaric, gallic and syringic acids. Finally, both chromatic systems revealed that all wines tended to similar chromatic characteristics after estufagem. The study suggests that estufagem can be applied without high impact on polyphenols and antioxidant potential of these fortified wines.

  18. Accelerated Aging Experiments for Prognostics of Damage Growth in Composite Materials

    NASA Technical Reports Server (NTRS)

    Saxena, Abhinav; Goebel, Kai Frank; Larrosa, Cecilia C.; Janapati, Vishnuvardhan; Roy, Surajit; Chang, Fu-Kuo

    2011-01-01

    Composite structures are gaining importance for use in the aerospace industry. Compared to metallic structures their behavior is less well understood. This lack of understanding may pose constraints on their use. One possible way to deal with some of the risks associated with potential failure is to perform in-situ monitoring to detect precursors of failures. Prognostic algorithms can be used to predict impending failures. They require large amounts of training data to build and tune damage model for making useful predictions. One of the key aspects is to get confirmatory feedback from data as damage progresses. These kinds of data are rarely available from actual systems. The next possible resource to collect such data is an accelerated aging platform. To that end this paper describes a fatigue cycling experiment with the goal to stress carbon-carbon composite coupons with various layups. Piezoelectric disc sensors were used to periodically interrogate the system. Analysis showed distinct differences in the signatures of growing failures between data collected at conditions. Periodic X-radiographs were taken to assess the damage ground truth. Results after signal processing showed clear trends of damage growth that were correlated to damage assessed from the X-ray images.

  19. Degradation mechanism of LiCoO2/mesocarbon microbeads battery based on accelerated aging tests

    NASA Astrophysics Data System (ADS)

    Guan, Ting; Zuo, Pengjian; Sun, Shun; Du, Chunyu; Zhang, Lingling; Cui, Yingzhi; Yang, Lijie; Gao, Yunzhi; Yin, Geping; Wang, Fuping

    2014-12-01

    A series of LiCoO2/mesocarbon microbeads (MCMB) commercial cells cycled at different rates (0.6C, 1.2C, 1.5C, 1.8C, 2.4C and 3.0C) are disassembled and the capacity fade mechanism is proposed by analyzing the structure, morphology and electrochemical performance evolution at the capacity retention of 95%, 90%, 85%, 80%. The capacity deterioration of the commercial cell is mainly caused by the decay of the reversible capacity of LiCoO2 cathode, the irreversible loss of active lithium and the lithium remaining in anode. The proportions of effects by the above three factors are calculated accurately. The consumption of the active lithium leads to a cell imbalance between the anode and the cathode. The electrochemical test results indicate that the capacity fade of the active materials at the low rate is more obvious than that at the high rate. The influence of the active lithium is gradually increscent with the increasing rate. The rate of 1.5C is the optimal value to accelerate the aging of the full cell by comparing the testing results at different capacity retentions in the specific condition of low charge/discharge rate and shallow depth of discharge.

  20. Microstructure and mechanical properties of composite resins subjected to accelerated artificial aging.

    PubMed

    dos Reis, Andréa Cândido; de Castro, Denise Tornavoi; Schiavon, Marco Antônio; da Silva, Leandro Jardel; Agnelli, José Augusto Marcondes

    2013-01-01

    The aim of this study was to investigate the influence of accelerated artificial aging (AAA) on the microstructure and mechanical properties of the Filtek Z250, Filtek Supreme, 4 Seasons, Herculite, P60, Tetric Ceram, Charisma and Filtek Z100. composite resins. The composites were characterized by Fourier-transform Infrared spectroscopy (FTIR) and thermal analyses (Differential Scanning Calorimetry - DSC and Thermogravimetry - TG). The microstructure of the materials was examined by scanning electron microscopy. Surface hardness and compressive strength data of the resins were recorded and the mean values were analyzed statistically by ANOVA and Tukey's test (α=0.05). The results showed significant differences among the commercial brands for surface hardness (F=86.74, p<0.0001) and compressive strength (F=40.31, p<0.0001), but AAA did not affect the properties (surface hardness: F=0.39, p=0.53; compressive strength: F=2.82, p=0.09) of any of the composite resins. FTIR, DSC and TG analyses showed that resin polymerization was complete, and there were no differences between the spectra and thermal curve profiles of the materials obtained before and after AAA. TG confirmed the absence of volatile compounds and evidenced good thermal stability up to 200 °C, and similar amounts of residues were found in all resins evaluated before and after AAA. The AAA treatment did not significantly affect resin surface. Therefore, regardless of the resin brand, AAA did not influence the microstructure or the mechanical properties.

  1. Composites Associated with Pulp-Protection Material: Color-Stability Analysis after Accelerated Artificial Aging

    PubMed Central

    Cruvinel, Diogo Rodrigues; Garcia, Lucas da Fonseca Roberti; Consani, Simonides; de Carvalho Panzeri Pires-de-Souza, Fernanda

    2010-01-01

    Objectives: This study assessed the color stability of two composites associated with two pulp protectors submitted to accelerated artificial aging (AAA). Methods: 60 test specimens were made with 0.5 mm of protection material (calcium hydroxide - CH or glass ionomer cement - GIC) and 2.5 mm of restoration material (Concept or QuixFil) and divided into 3 groups (n=10) according to the type of protection material/composite, and the control group (no protection). After polishing, color readings were obtained with a spectrophotometer (PCB 6807 Byk Gardner) before and after AAA for 384 hours, and L*, a*, and b* coordinates and total color variation (ΔE) were analyzed (2-way ANOVA, Bonferroni, α=05). Results: Composites placed on CH presented lower L* levels than those on GIC, which presented higher L* values than the control group and lower b* values than those of the CH group. The Concept composite presented higher ΔE levels for all groups, differing statistically from QuixFil, except when placed on GIC. Conclusions: It was concluded that the protection material could affect the color stability and AAA is a factor that enhances this effect, depending on the type of composite used. PMID:20046473

  2. Effect of Accelerated Artificial Aging on Translucency of Methacrylate and Silorane-Based Composite Resins

    PubMed Central

    Shirinzad, Mehdi; Rezaei-Soufi, Loghman; Mirtorabi, Maryam Sadat; Vahdatinia, Farshid

    2016-01-01

    Objectives: Composite restorations must have tooth-like optical properties namely color and translucency and maintain them for a long time. This study aimed to compare the effect of accelerated artificial aging (AAA) on the translucency of three methacrylate-based composites (Filtek Z250, Filtek Z250XT and Filtek Z350XT) and one silorane-based composite resin (Filtek P90). Materials and Methods: For this in vitro study, 56 composite discs were fabricated (n=14 for each group). Using scanning spectrophotometer, CIE L*a*b* parameters and translucency of each specimen were measured at 24 hours and after AAA for 384 hours. Data were analyzed using one-way ANOVA, Tukey's test and paired t-test at P=0.05 level of significance. Results: The mean (±standard deviation) translucency parameter for Filtek Z250, Filtek Z250XT, Filtek Z350XT and Filtek P90 was 5.67±0.64, 4.59±0.77, 7.87±0.82 and 4.21±0.71 before AAA and 4.25±0.615, 3.53±0.73, 5.94±0.57 and 4.12±0.54 after AAA, respectively. After aging, the translucency of methacrylate-based composites decreased significantly (P<0.05). However, the translucency of Filtek P90 did not change significantly (P>0.05). Conclusions: The AAA significantly decreased the translucency of methacrylate-based composites (Filtek Z250, Filtek Z250XT and Filtek Z350XT) but no change occurred in the translucency of Filtek P90 silorane-based composite. PMID:27928237

  3. Gene expression and DNA repair in progeroid syndromes and human aging.

    PubMed

    Kyng, Kasper J; Bohr, Vilhelm A

    2005-11-01

    Human progeroid syndromes are caused by mutations in single genes accelerating some but not all features of normal aging. Most progeroid disorders are linked to defects in genome maintenance, and while it remains unknown if similar processes underlie normal and premature aging, they provide useful models for the study of aging. Altered transcription is speculated to play a causative role in aging, and is involved in the pathology of most if not all progeroid syndromes. Previous studies demonstrate that there is a similar pattern of gene expression changes in primary cells from old and Werner syndrome compared to young suggesting a presence of common cellular aging mechanisms in old and progeria. Here we review the role of transcription in progeroid syndromes and discuss the implications of similar transcription aberrations in normal and premature aging.

  4. Genome-Wide Identification of Regulatory Sequences Undergoing Accelerated Evolution in the Human Genome.

    PubMed

    Dong, Xinran; Wang, Xiao; Zhang, Feng; Tian, Weidong

    2016-10-01

    Accelerated evolution of regulatory sequence can alter the expression pattern of target genes, and cause phenotypic changes. In this study, we used DNase I hypersensitive sites (DHSs) to annotate putative regulatory sequences in the human genome, and conducted a genome-wide analysis of the effects of accelerated evolution on regulatory sequences. Working under the assumption that local ancient repeat elements of DHSs are under neutral evolution, we discovered that ∼0.44% of DHSs are under accelerated evolution (ace-DHSs). We found that ace-DHSs tend to be more active than background DHSs, and are strongly associated with epigenetic marks of active transcription. The target genes of ace-DHSs are significantly enriched in neuron-related functions, and their expression levels are positively selected in the human brain. Thus, these lines of evidences strongly suggest that accelerated evolution on regulatory sequences plays important role in the evolution of human-specific phenotypes. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  5. [Autonomic regulation at emotional stress under hypoxic conditions in the elderly with physiological and accelerated aging: effect of hypoxic training].

    PubMed

    Os'mak, E D; Asanov, É O

    2014-01-01

    The effect of hypoxic training on autonomic regulation in psycho-emotional stress conditions in hypoxic conditions in older people with physiological (25 people) and accelerated (28 people) aging respiratory system. It is shown that hypoxic training leads to an increase in vagal activity indicators (HF) and reduced simpatovagal index (LF/HF), have a normalizing effect on the autonomic balance during stress loads in older people with different types of aging respiratory system.

  6. Influence of Different Types of Resin Luting Agents on Color Stability of Ceramic Laminate Veneers Subjected to Accelerated Artificial Aging.

    PubMed

    Silami, Francisca Daniele Jardilino; Tonani, Rafaella; Alandia-Román, Carla Cecilia; Pires-de-Souza, Fernanda de Carvalho Panzeri

    2016-01-01

    The aim of this study was to evaluate the influence of accelerated aging (AAA) on the color stability of resin cements for bonding ceramic laminate veneers of different thicknesses. The occlusal surfaces of 80 healthy human molars were flattened. Ceramic laminate veneers (IPS e-max Ceram) of two thicknesses (0.5 and 1.0 mm) were bonded with three types of luting agents: light-cured, conventional dual and self-adhesive dual cement. Teeth without restorations and cement samples (0.5 mm) were used as control. After initial color evaluations, the samples were subjected to AAA for 580 h. After this, new color readouts were made, and the color stability (ΔE) and luminosity (ΔL) data were analyzed. The greatest color changes (p<0.05) occurred when 0.5 mm veneers were fixed with light-cured cement and the lowest when 1.0 mm veneers were fixed with conventional dual cement. There was no influence of the restoration thickness when the self-adhesive dual cement was used. When veneers were compared with the control groups, it was verified that the cement samples presented the greatest alterations (p<0.05) in comparison with both substrates and restored teeth. Therefore, it was concluded that the thickness of the restoration influences color and luminosity changes for conventional dual and light-cured cements. The changes in self-adhesive cement do not depend on restoration thickness.

  7. Olfactory phenotypic expression unveils human aging

    PubMed Central

    Mazzatenta, Andrea; Cellerino, Alessandro; Origlia, Nicola; Barloscio, Davide; Sartucci, Ferdinando; Giulio, Camillo Di; Domenici, Luciano

    2016-01-01

    The mechanism of the natural aging of olfaction and its declinein the absence of any overt disease conditions remains unclear. Here, we investigated this mechanism through measurement of one of the parameters of olfactory function, the absolute threshold, in a healthy population from childhood to old age. The absolute olfactory threshold data were collected from an Italian observational study with 622 participants aged 5-105 years. A subjective testing procedure of constant stimuli was used, which was also compared to the ‘staircase’ method, with the calculation of the reliability. The n-butanol stimulus was used as an ascending series of nine molar concentrations that were monitored using an electronic nose. The data were analyzed using nonparametric statistics because of the multimodal distribution. We show that the age-related variations in the absolute olfactory threshold are not continuous; instead, there are multiple olfactory phenotypes. Three distinct age-related phenotypes were defined, termed as ‘juvenile’, ‘mature’ and ‘elder’. The frequency of these three phenotypes depends on age. Our data suggest that the sense of smell does not decrease linearly with aging. Our findings provide the basis for further understanding of olfactory loss as an anticipatory sign of aging and neurodegenerative processes. PMID:27027240

  8. Effect of dietary, social, and lifestyle determinants of accelerated aging and its common clinical presentation: A survey study.

    PubMed

    Samarakoon, S M S; Chandola, H M; Ravishankar, B

    2011-07-01

    Aging is unavoidable and natural phenomenon of life. Modern gerontologists are realizing the fact that aging is a disease, which Ayurveda had accepted as natural disease since long. Rate of aging is determined by one's biological, social, lifestyle, and psychological conditions and adversity of which leads to accelerated form of aging (Akalaja jara or premature aging). The aim of this study is to identify potential factors that may accelerate aging in the context of dietry factors, lifestyle and mental makeup. The 120 diagnosed subjects of premature-ageing of 30-60 years were randomly selected in the survey study. Premature ageing was common among females (75.83%), in 30-40 age group (70%), 86.67% were married, had secondary level of education (36.66%), house-views (61.67%), belongs top middle class (58.33%) and engaged in occupations that dominating physical labour (88.33%). The maximum patients are constipated (60%), had mandagni (80%), vata-kapha prakriti (48.33%), rajasika prakriti (58.33%), madhyama vyayama shakti (73.33%), and madhyama jarana shakti (85.83%). Collectively, 43.33% patients were above normal BMI. The more patients had anushna (38.33%) and vishamasana dietary pattern (25.83%), consumed Lavana (88.33%) and Amla rasa (78.33%) in excess on regular basis. Some patients had addicted to tobacco (11.67%) and beetle chewing (5.83%). The maximum patients had no any exercise (79.17%) and specific hobby (79.17%) in their leisure times. Analyzing Hamilton Anxiety and Depression Rating Scales revealed that 39.80%, 37.86%, 33.98%, 24.27% and 18.44% patients had insomnia, depression, tension, GIT symptoms and anxious mood respectively. These data suggest that certain social, dietary and lifestyle factors contribute towards accelerated ageing among young individuals.

  9. Effect of dietary, social, and lifestyle determinants of accelerated aging and its common clinical presentation: A survey study

    PubMed Central

    Samarakoon, S. M. S.; Chandola, H M; Ravishankar, B.

    2011-01-01

    Aging is unavoidable and natural phenomenon of life. Modern gerontologists are realizing the fact that aging is a disease, which Ayurveda had accepted as natural disease since long. Rate of aging is determined by one's biological, social, lifestyle, and psychological conditions and adversity of which leads to accelerated form of aging (Akalaja jara or premature aging). The aim of this study is to identify potential factors that may accelerate aging in the context of dietry factors, lifestyle and mental makeup. The 120 diagnosed subjects of premature-ageing of 30-60 years were randomly selected in the survey study. Premature ageing was common among females (75.83%), in 30-40 age group (70%), 86.67% were married, had secondary level of education (36.66%), house-views (61.67%), belongs top middle class (58.33%) and engaged in occupations that dominating physical labour (88.33%). The maximum patients are constipated (60%), had mandagni (80%), vata-kapha prakriti (48.33%), rajasika prakriti (58.33%), madhyama vyayama shakti (73.33%), and madhyama jarana shakti (85.83%). Collectively, 43.33% patients were above normal BMI. The more patients had anushna (38.33%) and vishamasana dietary pattern (25.83%), consumed Lavana (88.33%) and Amla rasa (78.33%) in excess on regular basis. Some patients had addicted to tobacco (11.67%) and beetle chewing (5.83%). The maximum patients had no any exercise (79.17%) and specific hobby (79.17%) in their leisure times. Analyzing Hamilton Anxiety and Depression Rating Scales revealed that 39.80%, 37.86%, 33.98%, 24.27% and 18.44% patients had insomnia, depression, tension, GIT symptoms and anxious mood respectively. These data suggest that certain social, dietary and lifestyle factors contribute towards accelerated ageing among young individuals. PMID:22529643

  10. Human Tolerance to Rapidly Applied Accelerations: A Summary of the Literature

    NASA Technical Reports Server (NTRS)

    Eiband, A. Martin

    1959-01-01

    The literature is surveyed to determine human tolerance to rapidly applied accelerations. Pertinent human and animal experiments applicable to space flight and to crash impact forces are analyzed and discussed. These data are compared and presented on the basis of a trapezoidal pulse. The effects of body restraint and of acceleration direction, onset rate, and plateau duration on the maximum tolerable and survivable rapidly applied accelerations are shown. Results of the survey indicate that adequate torso and extremity restraint is the primary variable in tolerance to rapidly applied accelerations. The harness, or restraint system, must be arranged to transmit the major portion of the accelerating force directly to the pelvic structure and not via the vertebral column. When the conditions of adequate restraint have been met, then the other variables, direction, magnitude, and onset rate of rapidly applied accelerations, govern maximum tolerance and injury limits. The results also indicate that adequately stressed aft-faced passenger seats offer maximum complete body support with minimum objectionable harnessing. Such a seat, whether designed for 20-, 30-, or 40-G dynamic loading, would include lap strap, chest (axillary) strap, and winged-back seat to increase headward and lateral G protection, full-height integral head rest, arm rests (load-bearing) with recessed hand-holds and provisions to prevent arms from slipping either laterally or beyond the seat back, and leg support to keep the legs from being wedged under the seat. For crew members and others whose duties require forward-facing seats, maximum complete body support requires lap, shoulder, and thigh straps, lap-belt tie-down strap, and full-height seat back with integral head support.

  11. Confocal Raman study of aging process in diabetes mellitus human voluntaries

    NASA Astrophysics Data System (ADS)

    Pereira, Liliane; Téllez Soto, Claudio Alberto; dos Santos, Laurita; Ali, Syed Mohammed; Fávero, Priscila Pereira; Martin, Airton A.

    2015-06-01

    Accumulation of AGEs [Advanced Glycation End - products] occurs slowly during the human aging process. However, its formation is accelerated in the presence of diabetes mellitus. In this paper, we perform a noninvasive analysis of glycation effect on human skin by in vivo confocal Raman spectroscopy. This technique uses a laser of 785 nm as excitation source and, by the inelastic scattering of light, it is possible to obtain information about the biochemical composition of the skin. Our aim in this work was to characterize the aging process resulting from the glycation process in a group of 10 Health Elderly Women (HEW) and 10 Diabetic Elderly Women (DEW). The Raman data were collected from the dermis at a depth of 70-130 microns. Through the theory of functional density (DFT) the bands positions of hydroxyproline, proline and AGEs (pentosidine and glucosepane) were calculated by using Gaussian 0.9 software. A molecular interpretation of changes in type I collagen was performed by the changes in the vibrational modes of the proline (P) and hydroxyproline (HP). The data analysis shows that the aging effects caused by glycation of proteins degrades type I collagen differently and leads to accelerated aging process.

  12. An advanced scheme of compressed sensing of acceleration data for telemonintoring of human gait.

    PubMed

    Wu, Jianning; Xu, Haidong

    2016-03-05

    The compressed sensing (CS) of acceleration data has been drawing increasing attention in gait telemonitoring application. In such application, there still exist some challenging issues including high energy consumption of body-worn device for acceleration data acquisition and the poor reconstruction performance due to nonsparsity of acceleration data. Thus, the novel scheme of compressive sensing of acceleration data is needed urgently for solutions that are found to these issues. In our scheme, the sparse binary matrix is firstly designed as an optimal measurement matrix only containing a smallest number of nonzero entries. And then the block sparse Bayesian learning (BSBL) algorithm is introduced to reconstruct acceleration data with high fidelity by exploiting block sparsity. Finally, some commonly used gait classification models such as multilayer perceptron (MLP), support vector machine (SVM) and KStar are applied to further validate the feasibility of our scheme for gait telemonitoring application. The acceleration data were selected from open Human Activity Dataset of Southern California University (USC-HAD). The optimal sparse binary matrix (a smallest number of nonzero entries is 8) is as strong as the full optimal measurement matrix such as Gaussian random matrix. Moreover, BSBL algorithm significantly outperforms existing conventional CS reconstruction algorithms, and reaches the maximal signal-to-noise ratio value (70 dB). In comparison, MLP is best for gait classification, and it can classify upstairs and downstairs patterns with best accuracy of 95 % and seven gait patterns with maximal accuracy of 92 %, respectively. These results show that sparse binary matrix and BSBL algorithm are feasibly applied in compressive sensing of acceleration data to achieve the perfect compression and reconstruction performance, which has a great potential for gait telemonitoring application.

  13. Human information processing in different age.

    PubMed

    Korobeynikov, G

    2002-01-01

    The aim of investigation was to study the aging pecularities of information processing organization. 60 men and 90 women in four age groups: 30-39, 40-49, 50-59 and 60-65 were examined. The information processing was modeled by special computer test with working algorithm changes. The time and accuracy of each assignment were registered for each person. The psychophysiological mechanisms of informational processing were studied by informative mathematical methods. The results are showed that within the aging reduction of perception, processing and speed of reaction in older. As a result of the negative influence of aging shows the decline of mental activity efficiency. Aging decrease on mental capability provokes the compensation of psychophysiological mechanisms of adaptation. The main mechanism increases the psychophysiological organization stochastic and changes the type organization in informational processing to a self-finishing quest response. (Tab. 5, Ref. 22.)

  14. A 32-Channel Head Coil Array with Circularly Symmetric Geometry for Accelerated Human Brain Imaging

    PubMed Central

    Chu, Ying-Hua; Hsu, Yi-Cheng; Keil, Boris; Kuo, Wen-Jui; Lin, Fa-Hsuan

    2016-01-01

    The goal of this study is to optimize a 32-channel head coil array for accelerated 3T human brain proton MRI using either a Cartesian or a radial k-space trajectory. Coils had curved trapezoidal shapes and were arranged in a circular symmetry (CS) geometry. Coils were optimally overlapped to reduce mutual inductance. Low-noise pre-amplifiers were used to further decouple between coils. The SNR and noise amplification in accelerated imaging were compared to results from a head coil array with a soccer-ball (SB) geometry. The maximal SNR in the CS array was about 120% (1070 vs. 892) and 62% (303 vs. 488) of the SB array at the periphery and the center of the FOV on a transverse plane, respectively. In one-dimensional 4-fold acceleration, the CS array has higher averaged SNR than the SB array across the whole FOV. Compared to the SB array, the CS array has a smaller g-factor at head periphery in all accelerated acquisitions. Reconstructed images using a radial k-space trajectory show that the CS array has a smaller error than the SB array in 2- to 5-fold accelerations. PMID:26909652

  15. A 32-Channel Head Coil Array with Circularly Symmetric Geometry for Accelerated Human Brain Imaging.

    PubMed

    Chu, Ying-Hua; Hsu, Yi-Cheng; Keil, Boris; Kuo, Wen-Jui; Lin, Fa-Hsuan

    2016-01-01

    The goal of this study is to optimize a 32-channel head coil array for accelerated 3T human brain proton MRI using either a Cartesian or a radial k-space trajectory. Coils had curved trapezoidal shapes and were arranged in a circular symmetry (CS) geometry. Coils were optimally overlapped to reduce mutual inductance. Low-noise pre-amplifiers were used to further decouple between coils. The SNR and noise amplification in accelerated imaging were compared to results from a head coil array with a soccer-ball (SB) geometry. The maximal SNR in the CS array was about 120% (1070 vs. 892) and 62% (303 vs. 488) of the SB array at the periphery and the center of the FOV on a transverse plane, respectively. In one-dimensional 4-fold acceleration, the CS array has higher averaged SNR than the SB array across the whole FOV. Compared to the SB array, the CS array has a smaller g-factor at head periphery in all accelerated acquisitions. Reconstructed images using a radial k-space trajectory show that the CS array has a smaller error than the SB array in 2- to 5-fold accelerations.

  16. Alcohols produce reversible and irreversible acceleration of phospholipid flip-flop in the human erythrocyte membrane.

    PubMed

    Schwichtenhövel, C; Deuticke, B; Haest, C W

    1992-10-19

    The slow, non-mediated transmembrane movement of the lipid probes lysophosphatidylcholine, NBD-phosphatidylcholine and NBD-phosphatidylserine in human erythrocytes becomes highly enhanced in the presence of 1-alkanols (C2-C8) and 1,2-alkane diols (C4-C8). Above a threshold concentration characteristic for each alcohol, flip rates increase exponentially with the alcohol concentration. The equieffective concentrations of the alcohols decrease about 3-fold per methylene added. All 1-alkanols studied are equieffective at comparable calculated membrane concentrations. This is also observed or the 1,2-alkane diols, albeit at a 5-fold lower membrane concentration. At low alcohol concentrations, flip enhancement is reversible to a major extent upon removal of the alcohol. In contrast, a residual irreversible flip acceleration is observed following removal of the alcohol after a treatment at higher concentrations. The threshold concentrations to produce irreversible flip acceleration by 1-alkanols and 1,2-alkane diols are 1.5- and 3-fold higher than those for flip acceleration in the presence of the corresponding alcohols. A causal role in reversible flip-acceleration of a global increase of membrane fluidity or membrane polarity seems to be unlikely. Alcohols may act by increasing the probability of formation of transient structural defects in the hydrophobic barrier that already occur in the native membrane. Membrane defects responsible for irreversible flip-acceleration may result from alterations of membrane skeletal proteins by alcohols.

  17. Acute Exposure to Di(2-Ethylhexyl) Phthalate in Adulthood Causes Adverse Reproductive Outcomes Later in Life and Accelerates Reproductive Aging in Female Mice

    PubMed Central

    Hannon, Patrick R.; Niermann, Sarah; Flaws, Jodi A.

    2016-01-01

    Humans are ubiquitously exposed to di(2-ethylhexyl) phthalate (DEHP), which is an environmental toxicant incorporated in consumer products. Studies have shown that DEHP targets the ovary to disrupt essential processes required for reproductive and nonreproductive health. Specifically, 10-day exposure to DEHP accelerates primordial follicle recruitment and disrupts estrous cyclicity in adult mice. However, it is unknown if these effects on folliculogenesis and cyclicity following acute DEHP exposure can have permanent effects on reproductive outcomes. Further, the premature depletion of primordial follicles can cause early reproductive senescence, and it is unknown if acute DEHP exposure accelerates reproductive aging. This study tested the hypothesis that acute DEHP exposure causes infertility, disrupts estrous cyclicity, alters hormone levels, and depletes follicle numbers by inducing atresia later in life, leading to accelerated reproductive aging. Adult CD-1 mice were orally dosed with vehicle or DEHP (20 μg/kg/day–500 mg/kg/day) daily for 10 days, and reproductive outcomes were assessed at 6 and 9 months postdosing. Acute DEHP exposure significantly altered estrous cyclicity compared to controls at 6 and 9 months postdosing by increasing the percentage of days the mice were in estrus and metestrus/diestrus, respectively. DEHP also significantly decreased inhibin B levels compared to controls at 9 months postdosing. Further, DEHP significantly increased the BAX/BCL2 ratio in primordial follicles leading to a significant decrease in primordial and total follicle numbers compared to controls at 9 months postdosing. Collectively, the adverse effects present following acute DEHP exposure persist later in life and are consistent with accelerated reproductive aging. PMID:26678702

  18. Myths of Human Sexuality in the Aging.

    ERIC Educational Resources Information Center

    Andrus, Charles E.

    Human sexuality is discussed in terms of misconceptions about its function and the changing sexual needs of older adults. A review of history indicates that human sexuality has traditionally been connected with ideas of purity and strict importance of procreation. Judaeo-Christian ethics and the doctrine of Saint Augustine illustrate these…

  19. Myths of Human Sexuality in the Aging.

    ERIC Educational Resources Information Center

    Andrus, Charles E.

    Human sexuality is discussed in terms of misconceptions about its function and the changing sexual needs of older adults. A review of history indicates that human sexuality has traditionally been connected with ideas of purity and strict importance of procreation. Judaeo-Christian ethics and the doctrine of Saint Augustine illustrate these…

  20. Structural Basis for Accelerated Cleavage of Bovine Pancreatic Trypsin Inhibitor (BPTI) by Human Mesotrypsin

    SciTech Connect

    Salameh,M.; Soares, A.; Hockla, A.; Radisky, E.

    2008-01-01

    Human mesotrypsin is an isoform of trypsin that displays unusual resistance to polypeptide trypsin inhibitors and has been observed to cleave several such inhibitors as substrates. Whereas substitution of arginine for the highly conserved glycine 193 in the trypsin active site has been implicated as a critical factor in the inhibitor resistance of mesotrypsin, how this substitution leads to accelerated inhibitor cleavage is not clear. Bovine pancreatic trypsin inhibitor (BPTI) forms an extremely stable and cleavage-resistant complex with trypsin, and thus provides a rigorous challenge of mesotrypsin catalytic activity toward polypeptide inhibitors. Here, we report kinetic constants for mesotrypsin and the highly homologous (but inhibitor sensitive) human cationic trypsin, describing inhibition by, and cleavage of BPTI, as well as crystal structures of the mesotrypsin-BPTI and human cationic trypsin-BPTI complexes. We find that mesotrypsin cleaves BPTI with a rate constant accelerated 350-fold over that of human cationic trypsin and 150,000-fold over that of bovine trypsin. From the crystal structures, we see that small conformational adjustments limited to several side chains enable mesotrypsin-BPTI complex formation, surmounting the predicted steric clash introduced by Arg-193. Our results show that the mesotrypsin-BPTI interface favors catalysis through (a) electrostatic repulsion between the closely spaced mesotrypsin Arg-193 and BPTI Arg-17, and (b) elimination of two hydrogen bonds between the enzyme and the amine leaving group portion of BPTI. Our model predicts that these deleterious interactions accelerate leaving group dissociation and deacylation.

  1. Antioxidants, free radicals, storage proteins, puroindolines, and proteolytic activities in bread wheat (Triticum aestivum) seeds during accelerated aging.

    PubMed

    Calucci, Lucia; Capocchi, Antonella; Galleschi, Luciano; Ghiringhelli, Silvia; Pinzino, Calogero; Saviozzi, Franco; Zandomeneghi, Maurizio

    2004-06-30

    Seeds of bread wheat were incubated at 40 degrees C and 100% relative humidity for 0, 3, 4, 6, and 10 days. The effects of accelerated aging on seed germinability and some biochemical properties of flour (carotenoid, free radical, and protein contents and proteolytic activity) and gluten (free radical content and flexibility) were investigated. Seed germinability decreased during aging, resulting in seed death after 10 days. A progressive decrease of carotenoid content, in particular, lutein, was observed, prolonging the incubation, whereas the free radical content increased in both flour and gluten. A degradation of soluble and storage proteins was found, associated with a marked increase of proteolytic activity and a loss of viscoelastic properties of gluten. On the contrary, puroindolines were quite resistant to the treatment. The results are discussed in comparison with those previously obtained during accelerated aging of durum wheat seeds.

  2. How individual age-associated changes may influence human morbidity and mortality patterns.

    PubMed

    Ukraintseva, S V; Yashin, A I

    2001-09-15

    Patterns of human mortality share common traits in different populations. They include higher mortality in early childhood, lower mortality during the reproductive period, an accelerated increase of mortality near the end of the reproductive period, and deceleration in the mortality increase at oldest old ages. The deceleration of mortality rate is one of the most intriguing recent findings in longevity research. The role of differential selection in this phenomenon has been well studied. Possible contribution of individual aging in the shape of mortality curve is also recognized. However, this contribution has not been studied in details. In this paper, we specify most common patterns of age-associated changes in an individual organism and discuss their possible influence on morbidity and mortality in population. We subdivide individual age-associated changes into three components, having different influence on morbidity and mortality: (1) basal, (2) ontogenetic, and (3) time-dependent. Basal changes are connected with the universal decrease in the rate of living during an individual life. As a result, some phenotypic effects of aging may accumulate in an organism at a slower rate with age. Basal changes are likely to contribute to a plateau of morbidity often observed at old ages, and may partially be responsible for mortality deceleration at oldest old ages. Ontogenetic component is connected with change of the stages of ontogenesis (e.g., the growth, the reproductive period and the climacteric) during an individual life. The ontogenesis-related changes contribute to wave-like patterns of morbidity in population and may partially be responsible for mortality increase at middle ages and its deceleration at old ages. Time-dependent changes are connected with long-time exposure of an organism to different harmful factors. They are most likely to contribute to morbidity and mortality acceleration. We discuss how all three components of individual age

  3. The Werner syndrome. A model for the study of human aging.

    PubMed

    Nehlin, J O; Skovgaard, G L; Bohr, V A

    2000-06-01

    Human aging is a complex process that leads to the gradual deterioration of body functions with time. Various models to approach the study of aging have been launched over the years such as the genetic analysis of life span in the yeast S. cerevisiae, the worm C. elegans, the fruitfly, and mouse, among others. In human models, there have been extensive efforts using replicative senescence, the study of centenerians, comparisons of young versus old at the organismal, cellular, and molecular levels, and the study of premature aging syndromes to understand the mechanisms leading to aging. One good model for studying human aging is a rare autosomal recessive disorder known as the Werner syndrome (WS), which is characterized by accelerated aging in vivo and in vitro. A genetic defect implicated in WS was mapped to the WRN locus. Mutations in this gene are believed to be associated, early in adulthood, with clinical symptoms normally found in old individuals. WRN functions as a DNA helicase, and recent evidence, summarized in this review, suggests specific biochemical roles for this multifaceted protein. The interaction of WRN protein with RPA (replication protein A) and p53 will undoubtedly direct efforts to further dissect the genetic pathway(s) in which WRN protein functions in DNA metabolism and will help to unravel its contribution to the human aging process.

  4. The sense of balance in humans: Structural features of otoconia and their response to linear acceleration.

    PubMed

    Kniep, Rüdiger; Zahn, Dirk; Wulfes, Jana; Walther, Leif Erik

    2017-01-01

    We explored the functional role of individual otoconia within the otolith system of mammalians responsible for the detection of linear accelerations and head tilts in relation to the gravity vector. Details of the inner structure and the shape of intact human and artificial otoconia were studied using environmental scanning electron microscopy (ESEM), including decalcification by ethylenediaminetetraacetic acid (EDTA) to discriminate local calcium carbonate density. Considerable differences between the rhombohedral faces of human and artificial otoconia already indicate that the inner architecture of otoconia is not consistent with the point group -3m. This is clearly confirmed by decalcified otoconia specimen which are characterized by a non-centrosymmetric volume distribution of the compact 3+3 branches. This structural evidence for asymmetric mass distribution was further supported by light microscopy in combination with a high speed camera showing the movement of single otoconia specimen (artificial specimen) under gravitational influence within a viscous medium (artificial endolymph). Moreover, the response of otoconia to linear acceleration forces was investigated by particle dynamics simulations. Both, time-resolved microscopy and computer simulations of otoconia acceleration show that the dislocation of otoconia include significant rotational movement stemming from density asymmetry. Based on these findings, we suggest an otolith membrane expansion/stiffening mechanism for enhanced response to linear acceleration transmitted to the vestibular hair cells.

  5. Using noninvasive brain stimulation to accelerate learning and enhance human performance.

    PubMed

    Parasuraman, Raja; McKinley, Richard A

    2014-08-01

    The authors evaluate the effectiveness of noninvasive brain stimulation, in particular, transcranial direct current stimulation (tDCS), for accelerating learning and enhancing human performance on complex tasks. Developing expertise in complex tasks typically requires extended training and practice. Neuroergonomics research has suggested new methods that can accelerate learning and boost human performance. TDCS is one such method. It involves the application of a weak DC current to the scalp and has the potential to modulate brain networks underlying the performance of a perceptual, cognitive, or motor task. Examples of tDCS studies of declarative and procedural learning are discussed. This mini-review focuses on studies employing complex simulations representative of surveillance and security operations, intelligence analysis, and procedural learning in complex monitoring. The evidence supports the view that tDCS can accelerate learning and enhance performance in a range of complex cognitive tasks. Initial findings also suggest that such benefits can be retained over time, but additional research is needed on training schedules and transfer of training. Noninvasive brain stimulation can accelerate skill acquisition in complex tasks and may provide an alternative or addition to other training methods.

  6. Assessment of human exposure doses received by activation of medical linear accelerator components

    NASA Astrophysics Data System (ADS)

    Lee, D.-Y.; Kim, J.-H.; Park, E.-T.

    2017-08-01

    This study analyzes the radiation exposure dose that an operator can receive from radioactive components during maintenance or repair of a linear accelerator. This study further aims to evaluate radiological safety. Simulations are performed on 10 MV and 15 MV photon beams, which are the most frequently used high-energy beams in clinics. The simulation analyzes components in order of activity and the human exposure dose based on the amount of neutrons received. As a result, the neutron dose, radiation dose, and human exposure dose are ranked in order of target, primary collimator, flattening filter, multi-leaf collimator, and secondary collimator, where the minimum dose is 9.34E-07 mSv/h and the maximum is 1.71E-02 mSv/h. When applying the general dose limit (radiation worker 20 mSv/year, pubic 1 mSv/year) in accordance with the Nuclear Safety Act, all components of a linear accelerator are evaluated as below the threshold value. Therefore, the results suggest that there is no serious safety issue for operators in maintaining and repairing a linear accelerator. Nevertheless, if an operator recognizes an exposure from the components of a linear accelerator during operation and considers the operating time and shielding against external exposure, exposure of the operator is expected to be minimized.

  7. Hypothalamic Leptin Gene Therapy Reduces Body Weight without Accelerating Age-Related Bone Loss

    PubMed Central

    Turner, Russell T.; Dube, Michael; Branscum, Adam J.; Wong, Carmen P.; Olson, Dawn A.; Zhong, Xiaoying; Kweh, Mercedes F.; Larkin, Iske V.; Wronski, Thomas J.; Rosen, Clifford J.; Kalra, Satya P.; Iwaniec, Urszula T.

    2015-01-01

    Excessive weight gain in adults is associated with a variety of negative health outcomes. Unfortunately, dieting, exercise, and pharmacological interventions have had limited long-term success in weight control and can result in detrimental side effects, including accelerating age-related cancellous bone loss. We investigated the efficacy of using hypothalamic leptin gene therapy as an alternative method for reducing weight in skeletally-mature (9-month-old) female rats and determined the impact of leptin-induced weight loss on bone mass, density, and microarchitecture, and serum biomarkers of bone turnover (CTx and osteocalcin). Rats were implanted with cannulae in the 3rd ventricle of the hypothalamus and injected with either recombinant adeno-associated virus encoding the gene for rat leptin (rAAV-Leptin, n=7) or a control vector encoding green fluorescent protein (rAAV-GFP, n=10) and sacrificed 18 weeks later. A baseline control group (n=7) was sacrificed at vector administration. rAAV-Leptin-treated rats lost weight (−4±2%) while rAAV-GFP-treated rats gained weight (14±2%) during the study. At study termination, rAAV-Leptin-treated rats weighed 17% less than rAAV-GFP-treated rats and had lower abdominal white adipose tissue weight (−80%), serum leptin (−77%), and serum IGF1 (−34%). Cancellous bone volume fraction in distal femur metaphysis and epiphysis, and in lumbar vertebra tended to be lower (p<0.1) in rAAV-GFP-treated rats (13.5-months-old) compared to baseline control rats (9-months-old). Significant differences in cancellous bone or biomarkers of bone turnover were not detected between rAAV-Leptin and rAAV-GFP rats. In summary, rAAV-Leptin-treated rats maintained a lower body weight compared to baseline and rAAV-GFP-treated rats with minimal effects on bone mass, density, microarchitecture, or biochemical markers of bone turnover. PMID:26487675

  8. Hypothalamic leptin gene therapy reduces body weight without accelerating age-related bone loss.

    PubMed

    Turner, Russell T; Dube, Michael; Branscum, Adam J; Wong, Carmen P; Olson, Dawn A; Zhong, Xiaoying; Kweh, Mercedes F; Larkin, Iske V; Wronski, Thomas J; Rosen, Clifford J; Kalra, Satya P; Iwaniec, Urszula T

    2015-12-01

    Excessive weight gain in adults is associated with a variety of negative health outcomes. Unfortunately, dieting, exercise, and pharmacological interventions have had limited long-term success in weight control and can result in detrimental side effects, including accelerating age-related cancellous bone loss. We investigated the efficacy of using hypothalamic leptin gene therapy as an alternative method for reducing weight in skeletally-mature (9 months old) female rats and determined the impact of leptin-induced weight loss on bone mass, density, and microarchitecture, and serum biomarkers of bone turnover (CTx and osteocalcin). Rats were implanted with cannulae in the 3rd ventricle of the hypothalamus and injected with either recombinant adeno-associated virus encoding the gene for rat leptin (rAAV-Leptin, n=7) or a control vector encoding green fluorescent protein (rAAV-GFP, n=10) and sacrificed 18 weeks later. A baseline control group (n=7) was sacrificed at vector administration. rAAV-Leptin-treated rats lost weight (-4±2%) while rAAV-GFP-treated rats gained weight (14±2%) during the study. At study termination, rAAV-Leptin-treated rats weighed 17% less than rAAV-GFP-treated rats and had lower abdominal white adipose tissue weight (-80%), serum leptin (-77%), and serum IGF1 (-34%). Cancellous bone volume fraction in distal femur metaphysis and epiphysis, and in lumbar vertebra tended to be lower (P<0.1) in rAAV-GFP-treated rats (13.5 months old) compared to baseline control rats (9 months old). Significant differences in cancellous bone or biomarkers of bone turnover were not detected between rAAV-Leptin and rAAV-GFP rats. In summary, rAAV-Leptin-treated rats maintained a lower body weight compared to baseline and rAAV-GFP-treated rats with minimal effects on bone mass, density, microarchitecture, or biochemical markers of bone turnover. © 2015 Society for Endocrinology.

  9. Exposure to omega-3 fatty acids at early age accelerate bone growth and improve bone quality.

    PubMed

    Koren, Netta; Simsa-Maziel, Stav; Shahar, Ron; Schwartz, Betty; Monsonego-Ornan, Efrat

    2014-06-01

    Omega-3 fatty acids (FAs) are essential nutritional components that must be obtained from foods. Increasing evidence validate that omega-3 FAs are beneficial for bone health, and several mechanisms have been suggested to mediate their effects on bone, including alterations in calcium absorption and urinary calcium loss, prostaglandin synthesis, lipid oxidation, osteoblast formation and inhibition of osteoclastogenesis. However, to date, there is scant information regarding the effect of omega-3 FAs on the developing skeleton during the rapid growth phase. In this study we aim to evaluate the effect of exposure to high levels of omega-3 FAs on bone development and quality during prenatal and early postnatal period. For this purpose, we used the fat-1 transgenic mice that have the ability to convert omega-6 to omega-3 fatty acids and the ATDC5 chondrogenic cell line as models. We show that exposure to high concentrations of omega-3 FAs at a young age accelerates bone growth through alterations of the growth plate, associated with increased chondrocyte proliferation and differentiation. We further propose that those effects are mediated by the receptors G-protein coupled receptor 120 (GPR120) and hepatic nuclear factor 4α, which are expressed by chondrocytes in culture. Additionally, using a combined study on the structural and mechanical bone parameters, we show that high omega-3 levels contribute to superior trabecular and cortical structure, as well as to stiffer bones and improved bone quality. Most interestingly, the fat-1 model allowed us to demonstrate the role of maternal high omega-3 concentration on bone growth during the gestation and postnatal period.

  10. Age, human performance, and physical employment standards.

    PubMed

    Kenny, Glen P; Groeller, Herbert; McGinn, Ryan; Flouris, Andreas D

    2016-06-01

    The proportion of older workers has increased substantially in recent years, with over 25% of the Canadian labour force aged ≥55 years. Along with chronological age comes age-related declines in functional capacity associated with impairments to the cardiorespiratory and muscular systems. As a result, older workers are reported to exhibit reductions in work output and in the ability to perform and/or sustain the required effort when performing work tasks. However, research has presented some conflicting views on the consequences of aging in the workforce, as physically demanding occupations can be associated with improved or maintained physical function. Furthermore, the current methods for evaluating physical function in older workers often lack specificity and relevance to the actual work tasks, leading to an underestimation of physical capacity in the older worker. Nevertheless, industry often lacks the appropriate information and/or tools to accommodate the aging workforce, particularly in the context of physical employment standards. Ultimately, if appropriate workplace strategies and work performance standards are adopted to optimize the strengths and protect against the vulnerability of the aging workers, they can perform as effectively as their younger counterparts. Our aim in this review is to evaluate the impact of different individual (including physiological decline, chronic disease, lifestyle, and physical activity) and occupational (including shift work, sleep deprivation, and cold/heat exposure) factors on the physical decline of older workers, and therefore the risk of work-related injuries or illness.

  11. Rapid evaluation of the durability of cortical neural implants using accelerated aging with reactive oxygen species

    NASA Astrophysics Data System (ADS)

    Takmakov, Pavel; Ruda, Kiersten; Phillips, K. Scott; Isayeva, Irada S.; Krauthamer, Victor; Welle, Cristin G.

    2015-04-01

    Objective. A challenge for implementing high bandwidth cortical brain-machine interface devices in patients is the limited functional lifespan of implanted recording electrodes. Development of implant technology currently requires extensive non-clinical testing to demonstrate device performance. However, testing the durability of the implants in vivo is time-consuming and expensive. Validated in vitro methodologies may reduce the need for extensive testing in animal models. Approach. Here we describe an in vitro platform for rapid evaluation of implant stability. We designed a reactive accelerated aging (RAA) protocol that employs elevated temperature and reactive oxygen species (ROS) to create a harsh aging environment. Commercially available microelectrode arrays (MEAs) were placed in a solution of hydrogen peroxide at 87 °C for a period of 7 days. We monitored changes to the implants with scanning electron microscopy and broad spectrum electrochemical impedance spectroscopy (1 Hz-1 MHz) and correlated the physical changes with impedance data to identify markers associated with implant failure. Main results. RAA produced a diverse range of effects on the structural integrity and electrochemical properties of electrodes. Temperature and ROS appeared to have different effects on structural elements, with increased temperature causing insulation loss from the electrode microwires, and ROS concentration correlating with tungsten metal dissolution. All array types experienced impedance declines, consistent with published literature showing chronic (>30 days) declines in array impedance in vivo. Impedance change was greatest at frequencies <10 Hz, and smallest at frequencies 1 kHz and above. Though electrode performance is traditionally characterized by impedance at 1 kHz, our results indicate that an impedance change at 1 kHz is not a reliable predictive marker of implant degradation or failure. Significance. ROS, which are known to be present in vivo, can create

  12. Rapid evaluation of the durability of cortical neural implants using accelerated aging with reactive oxygen species

    PubMed Central

    Takmakov, Pavel; Ruda, Kiersten; Phillips, K Scott; Isayeva, Irada S; Krauthamer, Victor; Welle, Cristin G

    2017-01-01

    Objective A challenge for implementing high bandwidth cortical brain–machine interface devices in patients is the limited functional lifespan of implanted recording electrodes. Development of implant technology currently requires extensive non-clinical testing to demonstrate device performance. However, testing the durability of the implants in vivo is time-consuming and expensive. Validated in vitro methodologies may reduce the need for extensive testing in animal models. Approach Here we describe an in vitro platform for rapid evaluation of implant stability. We designed a reactive accelerated aging (RAA) protocol that employs elevated temperature and reactive oxygen species (ROS) to create a harsh aging environment. Commercially available microelectrode arrays (MEAs) were placed in a solution of hydrogen peroxide at 87 °C for a period of 7 days. We monitored changes to the implants with scanning electron microscopy and broad spectrum electrochemical impedance spectroscopy (1 Hz–1 MHz) and correlated the physical changes with impedance data to identify markers associated with implant failure. Main results RAA produced a diverse range of effects on the structural integrity and electrochemical properties of electrodes. Temperature and ROS appeared to have different effects on structural elements, with increased temperature causing insulation loss from the electrode microwires, and ROS concentration correlating with tungsten metal dissolution. All array types experienced impedance declines, consistent with published literature showing chronic (>30 days) declines in array impedance in vivo. Impedance change was greatest at frequencies <10 Hz, and smallest at frequencies 1 kHz and above. Though electrode performance is traditionally characterized by impedance at 1 kHz, our results indicate that an impedance change at 1 kHz is not a reliable predictive marker of implant degradation or failure. Significance ROS, which are known to be present in vivo, can create

  13. Molecular aging and rejuvenation of human muscle stem cells

    PubMed Central

    Carlson, Morgan E; Suetta, Charlotte; Conboy, Michael J; Aagaard, Per; Mackey, Abigail; Kjaer, Michael; Conboy, Irina

    2009-01-01

    Very little remains known about the regulation of human organ stem cells (in general, and during the aging process), and most previous data were collected in short-lived rodents. We examined whether stem cell aging in rodents could be extrapolated to genetically and environmentally variable humans. Our findings establish key evolutionarily conserved mechanisms of human stem cell aging. We find that satellite cells are maintained in aged human skeletal muscle, but fail to activate in response to muscle attrition, due to diminished activation of Notch compounded by elevated transforming growth factor beta (TGF-β)/phospho Smad3 (pSmad3). Furthermore, this work reveals that mitogen-activated protein kinase (MAPK)/phosphate extracellular signal-regulated kinase (pERK) signalling declines in human muscle with age, and is important for activating Notch in human muscle stem cells. This molecular understanding, combined with data that human satellite cells remain intrinsically young, introduced novel therapeutic targets. Indeed, activation of MAPK/Notch restored ‘youthful’ myogenic responses to satellite cells from 70-year-old humans, rendering them similar to cells from 20-year-old humans. These findings strongly suggest that aging of human muscle maintenance and repair can be reversed by ‘youthful’ calibration of specific molecular pathways. PMID:20049743

  14. Reciprocal angular acceleration of the ankle and hip joints during quiet standing in humans.

    PubMed

    Aramaki, Y; Nozaki, D; Masani, K; Sato, T; Nakazawa, K; Yano, H

    2001-02-01

    Human quiet standing is often modeled as a single inverted pendulum rotating around the ankle joint, under the assumption that movement around the hip joint is quite small. However, several recent studies have shown that movement around the hip joint can play a significant role in the efficient maintenance of the center of body mass (COM) above the support area. The aim of this study was to investigate how coordination between the hip and ankle joints is controlled during human quiet standing. Subjects stood quietly for 30 s with their eyes either opened (EO) or closed (EC), and we measured subtle angular displacements around the ankle (thetaa) and hip (thetah) joints using three highly sensitive CCD laser displacement sensors. Reliable data were obtained for both angular displacement and angular velocity (the first derivative of the angular displacement). Further, measurement error was not predominant, even among the angular acceleration data, which were obtained by taking the second derivative of the angular displacement. The angular displacement, velocity, and acceleration of the hip were found to be significantly greater (P<0.001) than those of the ankle, confirming that hip-joint motion cannot be ignored, even during quiet standing. We also found that a consistent reciprocal relationship exists between the angular accelerations of the hip and ankle joints, namely positive or negative angular acceleration of ankle joint is compensated for by oppositely directed angular acceleration of the hip joint. Principal component analysis revealed that this relationship can be expressed as: thetah=gammathetaa with gamma=-3.15+/-1.24 and gamma=-3.12+/-1.46 (mean +/-SD) for EO and EC, respectively, where theta is the angular acceleration. There was no significant difference in the values of y for EO and EC, and these values were in agreement with the theoretical value calculated assuming the acceleration of COM was zero. On the other hand, such a consistent relationship was

  15. Analysis of cancer genomes reveals basic features of human aging and its role in cancer development

    PubMed Central

    Podolskiy, Dmitriy I.; Lobanov, Alexei V.; Kryukov, Gregory V.; Gladyshev, Vadim N.

    2016-01-01

    Somatic mutations have long been implicated in aging and disease, but their impact on fitness and function is difficult to assess. Here by analysing human cancer genomes we identify mutational patterns associated with aging. Our analyses suggest that age-associated mutation load and burden double approximately every 8 years, similar to the all-cause mortality doubling time. This analysis further reveals variance in the rate of aging among different human tissues, for example, slightly accelerated aging of the reproductive system. Age-adjusted mutation load and burden correlate with the corresponding cancer incidence and precede it on average by 15 years, pointing to pre-clinical cancer development times. Behaviour of mutation load also exhibits gender differences and late-life reversals, explaining some gender-specific and late-life patterns in cancer incidence rates. Overall, this study characterizes some features of human aging and offers a mechanism for age being a risk factor for the onset of cancer. PMID:27515585

  16. Biological psychological and social determinants of old age: bio-psycho-social aspects of human aging.

    PubMed

    Dziechciaż, Małgorzata; Filip, Rafał

    2014-01-01

    The aging of humans is a physiological and dynamic process ongoing with time. In accordance with most gerontologists' assertions it starts in the fourth decade of life and leads to death. The process of human aging is complex and individualized, occurs in the biological, psychological and social sphere. Biological aging is characterized by progressive age-changes in metabolism and physicochemical properties of cells, leading to impaired self-regulation, regeneration, and to structural changes and functional tissues and organs. It is a natural and irreversible process which can run as successful aging, typical or pathological. Biological changes that occur with age in the human body affect mood, attitude to the environment, physical condition and social activity, and designate the place of seniors in the family and society. Psychical ageing refers to human awareness and his adaptability to the ageing process. Among adaptation attitudes we can differentiate: constructive, dependence, hostile towards others and towards self attitudes. With progressed age, difficulties with adjustment to the new situation are increasing, adverse changes in the cognitive and intellectual sphere take place, perception process involutes, perceived sensations and information received is lowered, and thinking processes change. Social ageing is limited to the role of an old person is culturally conditioned and may change as customs change. Social ageing refers to how a human being perceives the ageing process and how society sees it.

  17. Effects of gravitational acceleration on cardiovascular autonomic control in resting humans.

    PubMed

    Fontolliet, Timothée; Pichot, Vincent; Antonutto, Guglielmo; Bonjour, Julien; Capelli, Carlo; Tam, Enrico; Barthélémy, Jean-Claude; Ferretti, Guido

    2015-07-01

    Previous studies of cardiovascular responses in hypergravity suggest increased sympathetic regulation. The analysis of spontaneous heart rate variability (HRV) parameters and spontaneous baroreflex sensitivity (BRS) informs on the reciprocal balance of parasympathetic and sympathetic regulations at rest. This paper was aimed at determining the effects of gravitational acceleration (a g) on HRV and BRS. Eleven healthy subjects (age 26.6 ± 6.1) were studied in a human centrifuge at four a g levels (1, 1.5, 2 and 2.5 g) during 5-min sessions at rest. We evaluated spontaneous variability of R-R interval (RR), and of systolic and diastolic blood pressure (SAP and DAP, respectively), by power spectral analysis, and BRS by the sequence method, using the BRSanalysis(®) software. At 2.5 g, compared to 1 g, (1) the total power (P TOT) and the powers of LF and HF components of HRV were lower, while the LF/HF ratio was higher; (2) normalized units for LF and HF did not changed significantly; (3) the P TOT, LF and HF powers of SAP were higher; (4) the P TOT and LF power of DAP were higher; and (5) BRS was decreased. These results do not agree with the notion of sympathetic up-regulation supported by the increase in HR and DAP (tonic indices), and of SAP and DAP LF powers (oscillatory indices). The P TOT reduction leads to speculate that only the sympathetic branch of the ANS might have been active during elevated a g exposure. The vascular response occurred in a condition of massive baroreceptive unloading.

  18. Oxidative stress in aging human skin.

    PubMed

    Rinnerthaler, Mark; Bischof, Johannes; Streubel, Maria Karolin; Trost, Andrea; Richter, Klaus

    2015-04-21

    Oxidative stress in skin plays a major role in the aging process. This is true for intrinsic aging and even more for extrinsic aging. Although the results are quite different in dermis and epidermis, extrinsic aging is driven to a large extent by oxidative stress caused by UV irradiation. In this review the overall effects of oxidative stress are discussed as well as the sources of ROS including the mitochondrial ETC, peroxisomal and ER localized proteins, the Fenton reaction, and such enzymes as cyclooxygenases, lipoxygenases, xanthine oxidases, and NADPH oxidases. Furthermore, the defense mechanisms against oxidative stress ranging from enzymes like superoxide dismutases, catalases, peroxiredoxins, and GSH peroxidases to organic compounds such as L-ascorbate, α-tocopherol, beta-carotene, uric acid, CoQ10, and glutathione are described in more detail. In addition the oxidative stress induced modifications caused to proteins, lipids and DNA are discussed. Finally age-related changes of the skin are also a topic of this review. They include a disruption of the epidermal calcium gradient in old skin with an accompanying change in the composition of the cornified envelope. This modified cornified envelope also leads to an altered anti-oxidative capacity and a reduced barrier function of the epidermis.

  19. Oxidative Stress in Aging Human Skin

    PubMed Central

    Rinnerthaler, Mark; Bischof, Johannes; Streubel, Maria Karolin; Trost, Andrea; Richter, Klaus

    2015-01-01

    Oxidative stress in skin plays a major role in the aging process. This is true for intrinsic aging and even more for extrinsic aging. Although the results are quite different in dermis and epidermis, extrinsic aging is driven to a large extent by oxidative stress caused by UV irradiation. In this review the overall effects of oxidative stress are discussed as well as the sources of ROS including the mitochondrial ETC, peroxisomal and ER localized proteins, the Fenton reaction, and such enzymes as cyclooxygenases, lipoxygenases, xanthine oxidases, and NADPH oxidases. Furthermore, the defense mechanisms against oxidative stress ranging from enzymes like superoxide dismutases, catalases, peroxiredoxins, and GSH peroxidases to organic compounds such as L-ascorbate, α-tocopherol, beta-carotene, uric acid, CoQ10, and glutathione are described in more detail. In addition the oxidative stress induced modifications caused to proteins, lipids and DNA are discussed. Finally age-related changes of the skin are also a topic of this review. They include a disruption of the epidermal calcium gradient in old skin with an accompanying change in the composition of the cornified envelope. This modified cornified envelope also leads to an altered anti-oxidative capacity and a reduced barrier function of the epidermis. PMID:25906193

  20. Behavior of human horizontal vestibulo-ocular reflex in response to high-acceleration stimuli

    NASA Technical Reports Server (NTRS)

    Maas, E. F.; Huebner, W. P.; Seidman, S. H.; Leigh, R. J.

    1989-01-01

    The horizontal vestibulo-ocular reflex (VOR) during transient, high-acceleration (1900-7100 deg/sec-squared) head rotations was studied in four human subjects. Such stimuli perturbed the angle of gaze and caused illusory movement of a viewed target (oscillopsia). The disturbance of gaze could be attributed to the latency of the VOR (which ranged from 6-15 ms) and inadequate compensatory eye rotations (median VOR gain ranged from 0.61-0.83).

  1. Behavior of human horizontal vestibulo-ocular reflex in response to high-acceleration stimuli

    NASA Technical Reports Server (NTRS)

    Maas, E. F.; Huebner, W. P.; Seidman, S. H.; Leigh, R. J.

    1989-01-01

    The horizontal vestibulo-ocular reflex (VOR) during transient, high-acceleration (1900-7100 deg/sec-squared) head rotations was studied in four human subjects. Such stimuli perturbed the angle of gaze and caused illusory movement of a viewed target (oscillopsia). The disturbance of gaze could be attributed to the latency of the VOR (which ranged from 6-15 ms) and inadequate compensatory eye rotations (median VOR gain ranged from 0.61-0.83).

  2. Effects of Head Impact Acceleration on Human Performance: Overview and Preliminary Battery Identification.

    DTIC Science & Technology

    1983-05-01

    Rimel , Giordani, Barth, Boll, & Jane, 1981). Human performance disruptions caused by impact acceleration are the focus of the present investigation...National Safety Council, 1979; Rimel , et al., 1981; Sances, Weber, Larson, et al., 1981). Part of the NBDL modeling effort involves the use of...Unterharnscheldt, 1983). Transient reduction in the amplitude of the cortical SSEPs occurred as a linear function of the level of frontal impact (-X

  3. Experimental induction of type 2 diabetes in aging-accelerated mice triggered Alzheimer-like pathology and memory deficits.

    PubMed

    Mehla, Jogender; Chauhan, Balwantsinh C; Chauhan, Neelima B

    2014-01-01

    Alzheimer's disease (AD) is an age-dependent neurodegenerative disease constituting ~95% of late-onset non-familial/sporadic AD, and only ~5% accounting for early-onset familial AD. Availability of a pertinent model representing sporadic AD is essential for testing candidate therapies. Emerging evidence indicates a causal link between diabetes and AD. People with diabetes are >1.5-fold more likely to develop AD. Senescence-accelerated mouse model (SAMP8) of accelerated aging displays many features occurring early in AD. Given the role played by diabetes in the pre-disposition of AD, and the utility of SAMP8 non-transgenic mouse model of accelerated aging, we examined if high fat diet-induced experimental type 2 diabetes in SAMP8 mice will trigger pathological aging of the brain. Results showed that compared to non-diabetic SAMP8 mice, diabetic SAMP8 mice exhibited increased cerebral amyloid-β, dysregulated tau-phosphorylating glycogen synthase kinase 3β, reduced synaptophysin immunoreactivity, and displayed memory deficits, indicating Alzheimer-like changes. High fat diet-induced type 2 diabetic SAMP8 mice may represent the metabolic model of AD.

  4. Issues on human acceleration tolerance after long-duration space flights

    NASA Technical Reports Server (NTRS)

    Kumar, K. Vasantha; Norfleet, William T.

    1992-01-01

    This report reviewed the literature on human tolerance to acceleration at 1 G and changes in tolerance after exposure to hypogravic fields. It was found that human tolerance decreased after exposure to hypokinetic and hypogravic fields, but the magnitude of such reduction ranged from 0 to 30 percent for plateau G forces and 30 to 70 percent for time tolerance on sustained G forces. A logistic regression model of the probability of individuals with 25 percent reduction in +Gz tolerance after 1 to 41 days of hypogravic exposures was constructed. The estimated values from the model showed a good correlation with the observed data. A brief review of the need for in-flight centrifuge during long-duration missions was also presented. Review of the available data showed that the use of countermeasures (such as anti-G suits, periodic acceleration, and exercise) reduced the decrement in acceleration tolerance after long-duration space flights. Areas of further research include quantification of the effect of countermeasures on tolerance, and methods to augment tolerance during and after exposures to hypogravic fields. Such data are essential for planning long-duration human missions.

  5. Differential Gene Expression in the Human Brain Is Associated with Conserved, but Not Accelerated, Noncoding Sequences

    PubMed Central

    Meyer, Kyle A.; Marques-Bonet, Tomas

    2017-01-01

    Previous studies have found that genes which are differentially expressed within the developing human brain disproportionately neighbor conserved noncoding sequences (CNSs) that have an elevated substitution rate in humans and in other species. One explanation for this general association of differential expression with accelerated CNSs is that genes with pre-existing patterns of differential expression have been preferentially targeted by species-specific regulatory changes. Here we provide support for an alternative explanation: genes that neighbor a greater number of CNSs have a higher probability of differential expression and a higher probability of neighboring a CNS with lineage-specific acceleration. Thus, neighboring an accelerated element from any species signals that a gene likely neighbors many CNSs. We extend the analyses beyond the prenatal time points considered in previous studies to demonstrate that this association persists across developmental and adult periods. Examining differential expression between non-neural tissues suggests that the relationship between the number of CNSs a gene neighbors and its differential expression status may be particularly strong for expression differences among brain regions. In addition, by considering this relationship, we highlight a recently defined set of putative human-specific gain-of-function sequences that, even after adjusting for the number of CNSs neighbored by genes, shows a positive relationship with upregulation in the brain compared with other tissues examined. PMID:28204568

  6. Recombinant human growth hormone accelerates wound healing in children with large cutaneous burns.

    PubMed Central

    Gilpin, D A; Barrow, R E; Rutan, R L; Broemeling, L; Herndon, D N

    1994-01-01

    OBJECTIVE: Two forms of recombinant growth hormone that accelerate the healing of skin graft donor sites in severely burned children were evaluated. SUMMARY BACKGROUND DATA: Growth hormone has been shown to reduce wound healing times in burned pediatric patients. Through genetic engineering, several different forms have been synthesized; however, not all are marketed currently. Two forms of growth hormone were used in these studies, Protropin (Genentech, Inc., San Francisco, CA), a commercially available product that possesses a N-terminal methionine residue not found in the second form Nutropin (Genentech, Inc., San Francisco, CA), which, as yet, is not commercially available. Through the use of recombinant human growth hormone, rapid wound healing may reduce the hypermetabolic period, the risk of infection, and accelerate the healing of donor sites used for grafting onto burned areas. The two structurally different forms of growth hormone were tested for their efficacy in healing donor sites in severely burned children. METHODS: Forty-six children, with a > 40% total body surface area and > 20% total body surface area full-thickness burn were entered in a double-blind, randomized study to receive rhGH within 8 days of injury. Twenty received (0.2 mg/kg/day) Nutropin or placebo by subcutaneous or intramuscular injection beginning on the morning of the initial excision. Eighteen patients who failed the entry criteria for receiving Nutropin received Protropin therapeutically (0.2 mg/kg/day). Donor sites were harvested at 0.006 to 0.010 inches in depth and dressed with Scarlet Red impregnated fine mesh gauze (Sherwood Medical, St. Louis, MO). The initial donor site healing time, in days, was reached when the gauze could be removed without any trauma to the healed site. RESULTS: Donor sites in patients receiving Nutropin (n = 20) or Protropin (n = 18) healed at 6.8 +/- 1.5 and 6.0 +/- 1.5 (mean +/- SD) days, respectively, whereas those receiving placebo (n = 26) had a

  7. Aging of the Human Vestibular System

    PubMed Central

    Zalewski, Christopher K.

    2015-01-01

    Aging affects every sensory system in the body, including the vestibular system. Although its impact is often difficult to quantify, the deleterious impact of aging on the vestibular system is serious both medically and economically. The deterioration of the vestibular sensory end organs has been known since the 1970s; however, the measurable impact from these anatomical changes remains elusive. Tests of vestibular function either fall short in their ability to quantify such anatomical deterioration, or they are insensitive to the associated physiologic decline and/or central compensatory mechanisms that accompany the vestibular aging process. When compared with healthy younger individuals, a paucity of subtle differences in test results has been reported in the healthy older population, and those differences are often observed only in response to nontraditional and/or more robust stimuli. In addition, the reported differences are often clinically insignificant insomuch that the recorded physiologic responses from the elderly often fall within the wide normative response ranges identified for normal healthy adults. The damaging economic impact of such vestibular sensory decline manifests itself in an exponential increase in geriatric dizziness and a subsequent higher prevalence of injurious falls. An estimated $10 to $20 billion dollar annual cost has been reported to be associated with falls-related injuries and is the sixth leading cause of death in the elderly population, with a 20% mortality rate. With an estimated 115% increase in the geriatric population over 65 years of age by the year 2050, the number of balanced-disordered patients with a declining vestibular system is certain to reach near epidemic proportions. An understanding of the effects of age on the vestibular system is imperative if clinicians are to better manage elderly patients with balance disorders, dizziness, and vestibular disease. PMID:27516717

  8. Metabolic acceleration and the evolution of human brain size and life history.

    PubMed

    Pontzer, Herman; Brown, Mary H; Raichlen, David A; Dunsworth, Holly; Hare, Brian; Walker, Kara; Luke, Amy; Dugas, Lara R; Durazo-Arvizu, Ramon; Schoeller, Dale; Plange-Rhule, Jacob; Bovet, Pascal; Forrester, Terrence E; Lambert, Estelle V; Thompson, Melissa Emery; Shumaker, Robert W; Ross, Stephen R

    2016-05-19

    Humans are distinguished from the other living apes in having larger brains and an unusual life history that combines high reproductive output with slow childhood growth and exceptional longevity. This suite of derived traits suggests major changes in energy expenditure and allocation in the human lineage, but direct measures of human and ape metabolism are needed to compare evolved energy strategies among hominoids. Here we used doubly labelled water measurements of total energy expenditure (TEE; kcal day(-1)) in humans, chimpanzees, bonobos, gorillas and orangutans to test the hypothesis that the human lineage has experienced an acceleration in metabolic rate, providing energy for larger brains and faster reproduction without sacrificing maintenance and longevity. In multivariate regressions including body size and physical activity, human TEE exceeded that of chimpanzees and bonobos, gorillas and orangutans by approximately 400, 635 and 820 kcal day(-1), respectively, readily accommodating the cost of humans' greater brain size and reproductive output. Much of the increase in TEE is attributable to humans' greater basal metabolic rate (kcal day(-1)), indicating increased organ metabolic activity. Humans also had the greatest body fat percentage. An increased metabolic rate, along with changes in energy allocation, was crucial in the evolution of human brain size and life history.

  9. Metabolic acceleration and the evolution of human brain size and life history

    PubMed Central

    Pontzer, Herman; Brown, Mary H.; Raichlen, David A.; Dunsworth, Holly; Hare, Brian; Walker, Kara; Luke, Amy; Dugas, Lara R.; Durazo-Arvizu, Ramon; Schoeller, Dale; Plange-Rhule, Jacob; Bovet, Pascal; Forrester, Terrence E.; Lambert, Estelle V.; Thompson, Melissa Emery; Shumaker, Robert W.; Ross, Stephen R.

    2016-01-01

    Humans are distinguished from the other living apes in having larger brains and an unusual life history that combines high reproductive output with slow childhood growth and exceptional longevity1. This suite of derived traits suggests major changes in energy expenditure and allocation in the human lineage, but direct measures of human and ape metabolism are needed to compare evolved energy strategies among hominoids. Here we used doubly labelled water measurements of total energy expenditure (TEE; kcal day−1) in humans, chimpanzees, bonobos, gorillas and orangutans to test the hypothesis that the human lineage has experienced an acceleration in metabolic rate, providing energy for larger brains and faster reproduction without sacrificing maintenance and longevity. In multivariate regressions including body size and physical activity, human TEE exceeded that of chimpanzees and bonobos, gorillas and orangutans by approximately 400, 635 and 820 kcal day−1, respectively, readily accommodating the cost of humans' greater brain size and reproductive output. Much of the increase in TEE is attributable to humans' greater basal metabolic rate (kcal day−1), indicating increased organ metabolic activity. Humans also had the greatest body fat percentage. An increased metabolic rate, along with changes in energy allocation, was crucial in the evolution of human brain size and life history. PMID:27144364

  10. Gene expression in the aging human brain: an overview.

    PubMed

    Mohan, Adith; Mather, Karen A; Thalamuthu, Anbupalam; Baune, Bernhard T; Sachdev, Perminder S

    2016-03-01

    The review aims to provide a summary of recent developments in the study of gene expression in the aging human brain. Profiling differentially expressed genes or 'transcripts' in the human brain over the course of normal aging has provided valuable insights into the biological pathways that appear activated or suppressed in late life. Genes mediating neuroinflammation and immune system activation in particular, show significant age-related upregulation creating a state of vulnerability to neurodegenerative and neuropsychiatric disease in the aging brain. Cellular ionic dyshomeostasis and age-related decline in a host of molecular influences on synaptic efficacy may underlie neurocognitive decline in later life. Critically, these investigations have also shed light on the mobilization of protective genetic responses within the aging human brain that help determine health and disease trajectories in older age. There is growing interest in the study of pre and posttranscriptional regulators of gene expression, and the role of noncoding RNAs in particular, as mediators of the phenotypic diversity that characterizes human brain aging. Gene expression studies in healthy brain aging offer an opportunity to unravel the intricately regulated cellular underpinnings of neurocognitive aging as well as disease risk and resiliency in late life. In doing so, new avenues for early intervention in age-related neurodegenerative disease could be investigated with potentially significant implications for the development of disease-modifying therapies.

  11. Human Values in a Technological Age.

    ERIC Educational Resources Information Center

    Gorman, Michael

    2001-01-01

    Discusses technology and its effects on society and humans, particularly library and information technology. Highlights include the evolving history of technology; and values related to technology in libraries, including democracy, stewardship, service, intellectual freedom, privacy, literacy and learning, rationalism, and equity of access. (LRW)

  12. Human Values in a Technological Age.

    ERIC Educational Resources Information Center

    Gorman, Michael

    2001-01-01

    Discusses technology and its effects on society and humans, particularly library and information technology. Highlights include the evolving history of technology; and values related to technology in libraries, including democracy, stewardship, service, intellectual freedom, privacy, literacy and learning, rationalism, and equity of access. (LRW)

  13. Accelerated aging of thermally activated batteries which utilize the Li/Si//LiCl-KCl/FeS2 system

    NASA Astrophysics Data System (ADS)

    Searcy, J. Q.; Neiswander, P. A.

    The thermally activated Li(Si)/LiCl-KCl/FeS2 batteries considered are intended for applications which require high reliability and a shelf life of 25 years. In order to determine the feasibility of achieving these requirements, an accelerated aging study was undertaken. The major objective of this work was to identify deleterious chemical reactions that could affect performance and reliability during the 25 year shelf life. The approach used was to accelerate the aging of batteries by storage at elevated temperature, and then to examine and analyze materials from some batteries, while discharging others. The results of the study indicate that the reaction of Li(Si) with water outgassed from the various battery parts is deleterious to shelf life. No other deleterious effects were observed.

  14. Multi-Directional Sprinting and Acceleration Phase in Basketball and Handball Players Aged 14 and 15 Years.

    PubMed

    Popowczak, Marek; Rokita, Andrzej; Struzik, Artur; Cichy, Ireneusz; Dudkowski, Andrzej; Chmura, Paweł

    2016-10-01

    An important role in handball and basketball is played by ability to accelerate and ability to repeat multiple sprints. The aim of the study was to assess level of ability in multi-directional sprinting and running time over the first 5 m of the 30 m sprint in 93 basketball and handball players (46 boys and 47 girls) aged 14 to 15 years. The attempts were also made to find the relationships between the time of a 5-m run to evaluate initial acceleration phase and multi-directional sprinting evaluated using Five-Time Shuttle Run To Gates Test Statistical analysis revealed no important differences in times of 5-m runs and times of multi-directional sprinting between groups with different ages, genders, and sports specialties. Furthermore, no significant correlations were found based on Spearman's rank correlation coefficient between times of 5-m run and multi-directional sprinting in the most of subgroups studied.

  15. Reward Motivation Accelerates the Onset of Neural Novelty Signals in Humans to 85 Milliseconds

    PubMed Central

    Bunzeck, Nico; Doeller, Christian F.; Fuentemilla, Lluis; Dolan, Raymond J.; Duzel, Emrah

    2009-01-01

    Summary The neural responses that distinguish novel from familiar items in recognition memory tasks are remarkably fast in both humans and nonhuman primates. In humans, the earliest onsets of neural novelty effects emerge at about ∼150–200 ms after stimulus onset [1–5]. However, in recognition memory studies with nonhuman primates, novelty effects can arise at as early as 70–80 ms [6, 7]. Here, we address the possibility that this large species difference in onset latencies is caused experimentally by the necessity of using reward reinforcement to motivate the detection of novel or familiar items in nonhuman primates but not in humans. Via magnetoencephalography in humans, we show in two experiments that the onset of neural novelty signals is accelerated from ∼200 ms to ∼85 ms if correct recognition memory for either novel or familiar items is rewarded. Importantly, this acceleration is independent of whether the detection of the novel or the familiar scenes is rewarded. Furthermore, this early novelty effect contributed to memory retrieval because neural reward responses, which were contingent upon novelty detection, followed ∼100 ms later. Thus, under the contextual influence of reward motivation, behaviorally relevant novelty signals emerge much faster than previously held possible in humans. PMID:19576774

  16. Lifestyle-induced metabolic inflexibility and accelerated ageing syndrome: insulin resistance, friend or foe?

    PubMed Central

    Nunn, Alistair VW; Bell, Jimmy D; Guy, Geoffrey W

    2009-01-01

    determines functional longevity, a rather more descriptive term for the metabolic syndrome is the 'lifestyle-induced metabolic inflexibility and accelerated ageing syndrome'. Ultimately, thriftiness is good for us as long as we have hormetic stimuli; unfortunately, mankind is attempting to remove all hormetic (stressful) stimuli from his environment. PMID:19371409

  17. Influence of surface sealing on color stability and roughness of composite submitted to ultraviolet-accelerated aging.

    PubMed

    Catelan, Anderson; Suzuki, Thaís Yumi Umeda; Becker, Francisco; Briso, André Luiz Fraga; Dos Santos, Paulo Henrique

    2017-05-01

    In the present study, we evaluated the influence of surface sealing on color stability and surface roughness of a composite resin after accelerated artificial aging. Thirty-two specimens of a composite were prepared. After 24 h, the specimens were polished and divided into four groups (n = 8), according to the surface sealant used, including the control, which had no sealant application. Baseline color was measured according to the CIELab system using a reflection spectrophotometer. Surface roughness was determined using a profilometer with a cut-off of 0.25 mm. After these tests, specimens were aged for 252 h in an ultraviolet (UV)-accelerated aging chamber. Color stability was determined by difference between coordinates obtained before and after the aging procedure. Data of color change and roughness were evaluated by anova and Fisher's exact test (α = 0.05). The results showed that the unsealed group had the highest color change compared to other groups (P = 0.0289), and there was no significant difference between groups sealed with surface sealant (P > 0.05). The artificial aging caused an increase in roughness values independent of the experimental group studied (P = 0.0015). The sealed composites showed lower color change after UV aging, but all groups showed clinically-acceptable color change, and only liquid polish decreased roughness. © 2016 John Wiley & Sons Australia, Ltd.

  18. Human ageing and the origins of religion.

    PubMed

    Holliday, R

    2001-01-01

    During the evolution of hominids, the population could be sustained even with an expectation of life at birth of less than 20 years. Under these circumstances very few individuals reached old age. In these hunter-gatherer communities, altruistic behaviour was encouraged because it increased the likelihood of survival, whereas self-interest did not. An early moral code benefited the community as a whole. As social evolution progressed, the chances of survival increased, and for the first time very elderly individuals appeared. However, the reward for survival to old age was merely decrepitude and death. Under these circumstances, new incentives became a social necessity, and these took the form of a belief in an eternal afterlife. Religion then became the basis for the moral code, and it provided an assurance of continual survival after death.

  19. T CELL REPLICATIVE SENESCENCE IN HUMAN AGING

    PubMed Central

    Chou, Jennifer P.; Effros, Rita B.

    2013-01-01

    The decline of the immune system appears to be an intractable consequence of aging, leading to increased susceptibility to infections, reduced effectiveness of vaccination and higher incidences of many diseases including osteoporosis and cancer in the elderly. These outcomes can be attributed, at least in part, to a phenomenon known as T cell replicative senescence, a terminal state characterized by dysregulated immune function, loss of the CD28 costimulatory molecule, shortened telomeres and elevated production of pro-inflammatory cytokines. Senescent CD8 T cells, which accumulate in the elderly, have been shown to frequently bear antigen specificity against cytomegalovirus (CMV), suggesting that this common and persistent infection may drive immune senescence and result in functional and phenotypic changes to the T cell repertoire. Senescent T cells have also been identified in patients with certain cancers, autoimmune diseases and chronic infections, such as HIV. This review discusses the in vivo and in vitro evidence for the contribution of CD8 T cell replicative senescence to a plethora of age-related pathologies and a few possible therapeutic avenues to delay or prevent this differentiative end-state in T cells. The age-associated remodeling of the immune system, through accumulation of senescent T cells has far-reaching consequences on the individual and society alike, for the current healthcare system needs to meet the urgent demands of the increasing proportions of the elderly in the US and abroad. PMID:23061726

  20. DNA-related pathways defective in human premature aging.

    PubMed

    Bohr, Vilhelm A

    2002-05-07

    One of the major issues in studies on aging is the choice of biological model system. The human premature aging disorders represent excellent model systems for the study of the normal aging process, which occurs at a much earlier stage in life in these individuals than in normals. The patients with premature aging also get the age associated diseases at an early stage in life, and thus age associated disease can be studied as well. It is thus of great interest to understand the molecular pathology of these disorders.

  1. Climate change in the age of humans

    Treesearch

    J. Curt. Stager

    2014-01-01

    The Anthropocene epoch presents a mix of old and new challenges for the world’s forests. Climatic instability has typified most of the Cenozoic Era but today’s situation is unique due to the presence of billions of humans on the planet. The potential rate and magnitude of future warming driven by continued fossil fuel combustion could be unprecedented during the last...

  2. Loss of telomeric DNA during aging of normal and trisomy 21 human lymphocytes

    SciTech Connect

    Vaziri, H.; Uchida, I.; Lan Wei; Harley, C.B. ); Schaechter, F.; Cohen, D. ); Xiaoming Zhu; Effros, R. )

    1993-04-01

    The telomere hypothesis of cellular aging proposes that loss of telomeric DNA (TTAGGG) from human chromosomes may ultimately cause cell-cycle exit during replicative senescence. Since lymphocytes have a limited replicative capacity and since blood cells were previously shown to lose telomeric DNA during aging in vivo, the authors wished to determine (a) whether accelerated telomere loss is associated with the premature immunosenescence of lymphocytes in individuals with Down syndrome (DS) and (b) whether telomeric DNA is also lost during aging of lymphocytes in vitro. To investigate the effects of aging and trisomy 21 on telomere loss in vivo, genomic DNA was isolated from peripheral blood lymphocytes of 140 individuals (age 0--107 years), including 21 DS patients (age 0--45 years). Digestion with restriction enzymes HinfI and RsaI generated terminal restriction fragments (TRFs), which were detected by Southern analysis using a telomere-specific probe ([sup 32]P-(C[sub 3]TA[sub 2])[sub 3]). The rate of telomere loss was calculated from the decrease in mean TRF length, as a function of donor age. DS patients showed a significantly higher rate of telomere loss with donor age (133 [+-] 15 bp/year) compared with age-matched controls (41 [+-] 7.7 bp/year) (P < .0005), suggesting that accelerated telomere loss is a biomarker of premature immunosenescence of DS patients and that it may play a role in this process. Telomere loss during aging in vitro was calculated for lymphocytes from four normal individuals, grown in culture for 10--30 population doublings. The rate of telomere loss was [approximately]120 bp/cell doubling, comparable to that seen in other somatic cells. Moreover, telomere lengths of lymphocytes from centenarians and from older DS patients were similar to those of senescent lymphocytes in culture, which suggests that replicative senescence could partially account for aging of the immune system in DS patients and in elderly individuals. 31 refs., 3 figs.

  3. Investigation of the effect of high +Gz accelerations on human cardiac function.

    PubMed

    Jamshidi, M; Ahmadian, M T

    2013-11-01

    This study investigates the effect of body acceleration on human cardiac function. Finite element analysis is conducted to simulate geometrical and mechanical properties of human heart. Heart geometrical modeling in three-dimension is performed by segmentation of cardiac MRI images. The nonlinear mechanical behavior of myocardium is modeled by Mooney-Rivlin, Polynomial, Ogden and Yeoh hyperelastic material models. Stress-strain curves of myocardial tissue are obtained from experimental compression tests on bovine heart samples. The experimental results are employed for the evaluation of material coefficients by the nonlinear least squares method. Among hyperelastic models, the Yeoh model presents the best fit with experimental stress-strain curve and is used for finite element simulation of heart tissue. Obtained material coefficients are implemented into the constructed heart model and nonlinear finite element analysis is performed for different levels of acceleration in upward direction of vertical axis of body during the rapid filling phase of cardiac cycle. Based on the finite element analysis, ventricular volume change, stress and deformation of heart model are evaluated. It is revealed that when the body is subjected to high accelerations, structural changes in the heart reduce blood supply to body up to 7.2% at +6G. © 2013 Elsevier Ltd. All rights reserved.

  4. Biochemical Markers of Aging for Longitudinal Studies in Humans

    PubMed Central

    Engelfriet, Peter M.; Jansen, Eugène H. J. M.; Picavet, H. Susan J.; Dollé, Martijn E. T.

    2013-01-01

    Much progress has been made in the past decades in unraveling the mechanisms that are responsible for aging. The discovery that particular gene mutations in experimental species such as yeast, flies, and nematodes are associated with longevity has led to many important insights into pathways that regulate aging processes. However, extrapolating laboratory findings in experimental species to knowledge that is valid for the complexity of human physiology remains a major challenge. Apart from the restricted experimental possibilities, studying aging in humans is further complicated by the development of various age-related diseases. The availability of a set of biomarkers that really reflect underlying aging processes would be of much value in disentangling age-associated pathology from specific aging mechanisms. In this review, we survey the literature to identify promising biochemical markers of aging, with a particular focus on using them in longitudinal studies of aging in humans that entail repeated measurements on easily obtainable material, such as blood samples. Our search strategy was a 2-pronged approach, one focused on general mechanisms of aging and one including studies on clinical biomarkers of age-related diseases. PMID:23382477

  5. Heat waves, aging, and human cardiovascular health.

    PubMed

    Kenney, W Larry; Craighead, Daniel H; Alexander, Lacy M

    2014-10-01

    This brief review is based on a President's Lecture presented at the Annual Meeting of the American College of Sports Medicine in 2013. The purpose of this review was to assess the effects of climate change and consequent increases in environmental heat stress on the aging cardiovascular system. The earth's average global temperature is slowly but consistently increasing, and along with mean temperature changes come increases in heat wave frequency and severity. Extreme passive thermal stress resulting from prolonged elevations in ambient temperature and prolonged physical activity in hot environments creates a high demand on the left ventricle to pump blood to the skin to dissipate heat. Even healthy aging is accompanied by altered cardiovascular function, which limits the extent to which older individuals can maintain stroke volume, increase cardiac output, and increase skin blood flow when exposed to environmental extremes. In the elderly, the increased cardiovascular demand during heat waves is often fatal because of increased strain on an already compromised left ventricle. Not surprisingly, excess deaths during heat waves 1) occur predominantly in older individuals and 2) are overwhelmingly cardiovascular in origin. Increasing frequency and severity of heat waves coupled with a rapidly growing at-risk population dramatically increase the extent of future untoward health outcomes.

  6. Aging Effects of Caenorhabditis elegans Ryanodine Receptor Variants Corresponding to Human Myopathic Mutations

    PubMed Central

    Baines, Katie Nicoll; Ferreira, Célia; Hopkins, Philip M.; Shaw, Marie-Anne; Hope, Ian A.

    2017-01-01

    Delaying the decline in skeletal muscle function will be critical to better maintenance of an active lifestyle in old age. The skeletal muscle ryanodine receptor, the major intracellular membrane channel through which calcium ions pass to elicit muscle contraction, is central to calcium ion balance and is hypothesized to be a significant factor for age-related decline in muscle function. The nematode Caenorhabditis elegans is a key model system for the study of human aging, and strains were generated with modified C. elegans ryanodine receptors corresponding to human myopathic variants linked with malignant hyperthermia and related conditions. The altered response of these strains to pharmacological agents reflected results of human diagnostic tests for individuals with these pathogenic variants. Involvement of nerve cells in the C. elegans responses may relate to rare medical symptoms concerning the central nervous system that have been associated with ryanodine receptor variants. These single amino acid modifications in C. elegans also conferred a reduction in lifespan and an accelerated decline in muscle integrity with age, supporting the significance of ryanodine receptor function for human aging. PMID:28325813

  7. Testosterone in Newly Diagnosed, Antipsychotic-Naïve Men with Nonaffective Psychosis: A Test of the Accelerated Aging Hypothesis

    PubMed Central

    Fernandez-Egea, Emilio; García-Rizo, Clemente; Miller, Brian; Parellada, Eduard; Justicia, Azucena; Bernardo, Miguel; Kirkpatrick, Brian

    2011-01-01

    Objective Schizophrenia has been associated with age-related abnormalities, including abnormal glucose tolerance, increased pulse pressure, increased inflammation, abnormal stem cell signalling and shorter telomere length. These metabolic abnormalities as well as other findings suggest schizophrenia and related disorders might be associated with accelerated aging. Testosterone activity has a progressive decline with increasing age. Methods We tested the hypothesis that circulating biologically active testosterone is lower in newly diagnosed, antipsychotic-naïve male patients with nonaffective psychosis than in matched control subjects. Results Patients (n=33) were matched to control subjects (n=33) for age, gender, body mass index, socioeconomic status of the family of origin, and smoking. The free androgen index (FAI), a measure of biologically active testosterone, was significantly lower in the psychosis group [mean 57.7%, SD=26.1] than in control subjects [71.6%, 27.0; p=0.04], with an effect size of 0.53. Multivariate analysis also supported the findings. In the psychosis group, FAI had a significant negative correlation with the conceptual disorganization item (r=-0.35, p=0.049), but not with reality distortion (r=-0.21; p=0.24), negative symptoms (r=0.004; p=0.98) or depression (r=-0.014; p=0.94). Conclusion Lower testosterone is consistent with accelerated aging in nonaffective psychosis, but further testing of this hypothesis is needed. PMID:21949421

  8. Accelerating growth and size-dependent distribution of human online activities.

    PubMed

    Wu, Lingfei; Zhang, Jiang

    2011-08-01

    Research on human online activities usually assumes that total activity T increases linearly with active population P, that is, T∝P(γ) (γ=1). However, we find examples of systems where total activity grows faster than active population. Our study shows that the power law relationship T∝P(γ) (γ>1) is in fact ubiquitous in online activities such as microblogging, news voting, and photo tagging. We call the pattern "accelerating growth" and find it relates to a type of distribution that changes with system size. We show both analytically and empirically how the growth rate γ associates with a scaling parameter b in the size-dependent distribution. As most previous studies explain accelerating growth by power law distribution, the model of size-dependent distribution is worth further exploration.

  9. Accelerating growth and size-dependent distribution of human online activities

    NASA Astrophysics Data System (ADS)

    Wu, Lingfei; Zhang, Jiang

    2011-08-01

    Research on human online activities usually assumes that total activity T increases linearly with active population P, that is, T∝Pγ(γ=1). However, we find examples of systems where total activity grows faster than active population. Our study shows that the power law relationship T∝Pγ(γ>1) is in fact ubiquitous in online activities such as microblogging, news voting, and photo tagging. We call the pattern “accelerating growth” and find it relates to a type of distribution that changes with system size. We show both analytically and empirically how the growth rate γ associates with a scaling parameter b in the size-dependent distribution. As most previous studies explain accelerating growth by power law distribution, the model of size-dependent distribution is worth further exploration.

  10. Increased ghrelin signaling prolongs survival in mouse models of human aging through activation of sirtuin1

    PubMed Central

    Fujitsuka, N; Asakawa, A; Morinaga, A; Amitani, M S; Amitani, H; Katsuura, G; Sawada, Y; Sudo, Y; Uezono, Y; Mochiki, E; Sakata, I; Sakai, T; Hanazaki, K; Yada, T; Yakabi, K; Sakuma, E; Ueki, T; Niijima, A; Nakagawa, K; Okubo, N; Takeda, H; Asaka, M; Inui, A

    2016-01-01

    Caloric restriction (CR) is known to retard aging and delay functional decline as well as the onset of diseases in most organisms. Ghrelin is secreted from the stomach in response to CR and regulates energy metabolism. We hypothesized that in CR ghrelin has a role in protecting aging-related diseases. We examined the physiological mechanisms underlying the ghrelin system during the aging process in three mouse strains with different genetic and biochemical backgrounds as animal models of accelerated or normal human aging. The elevated plasma ghrelin concentration was observed in both klotho-deficient and senescence-accelerated mouse prone/8 (SAMP8) mice. Ghrelin treatment failed to stimulate appetite and prolong survival in klotho-deficient mice, suggesting the existence of ghrelin resistance in the process of aging. However, ghrelin antagonist hastened death and ghrelin signaling potentiators rikkunshito and atractylodin ameliorated several age-related diseases with decreased microglial activation in the brain and prolonged survival in klotho-deficient, SAMP8 and aged ICR mice. In vitro experiments, the elevated sirtuin1 (SIRT1) activity and protein expression through the cAMP–CREB pathway was observed after ghrelin and ghrelin potentiator treatment in ghrelin receptor 1a-expressing cells and human umbilical vein endothelial cells. Furthermore, rikkunshito increased hypothalamic SIRT1 activity and SIRT1 protein expression of the heart in the all three mouse models of aging. Pericarditis, myocardial calcification and atrophy of myocardial and muscle fiber were improved by treatment with rikkunshito. Ghrelin signaling may represent one of the mechanisms activated by CR, and potentiating ghrelin signaling may be useful to extend health and lifespan. PMID:26830139

  11. Reliability and Failure Modes of Solid-State Lighting Electrical Drivers Subjected to Accelerated Aging

    SciTech Connect

    Lall, Pradeep; Sakalaukus, Peter; Davis, Lynn

    2015-02-19

    Here, an investigation of an off-the-shelf solid-state lighting device with the primary focus on the accompanied light-emitting diode (LED) electrical driver (ED) has been conducted. A set of 10 EDs were exposed to temperature humidity life testing of 85% RH and 85 °C (85/85) without an electrical bias per the JEDEC standard JESD22-A101C in order to accelerate the ingress of moisture into the aluminum electrolytic capacitor (AEC) and the EDs in order to assess the reliability of the LED drivers for harsh environment applications. The capacitance and equivalent series resistance for each AEC inside the ED were measured using a handheld LCR meter as possible leading indications of failure. The photometric quantities of a single pristine light engine were monitored in order to investigate the interaction between the light engine and the EDs. These parameters were used in assessing the overall reliability of the EDs. In addition, a comparative analysis has been conducted between the 85/85 accelerated test data and a previously published high-temperature storage life accelerated test of 135 °C. The results of the 85/85 acceleration test and the comparative analysis are presented in this paper.

  12. Reliability and Failure Modes of Solid-State Lighting Electrical Drivers Subjected to Accelerated Aging

    DOE PAGES

    Lall, Pradeep; Sakalaukus, Peter; Davis, Lynn

    2015-02-19

    Here, an investigation of an off-the-shelf solid-state lighting device with the primary focus on the accompanied light-emitting diode (LED) electrical driver (ED) has been conducted. A set of 10 EDs were exposed to temperature humidity life testing of 85% RH and 85 °C (85/85) without an electrical bias per the JEDEC standard JESD22-A101C in order to accelerate the ingress of moisture into the aluminum electrolytic capacitor (AEC) and the EDs in order to assess the reliability of the LED drivers for harsh environment applications. The capacitance and equivalent series resistance for each AEC inside the ED were measured using amore » handheld LCR meter as possible leading indications of failure. The photometric quantities of a single pristine light engine were monitored in order to investigate the interaction between the light engine and the EDs. These parameters were used in assessing the overall reliability of the EDs. In addition, a comparative analysis has been conducted between the 85/85 accelerated test data and a previously published high-temperature storage life accelerated test of 135 °C. The results of the 85/85 acceleration test and the comparative analysis are presented in this paper.« less

  13. Accelerated protein evolution and origins of human-specific features: Foxp2 as an example.

    PubMed

    Zhang, Jianzhi; Webb, David M; Podlaha, Ondrej

    2002-12-01

    Genes responsible for human-specific phenotypes may have been under altered selective pressures in human evolution and thus exhibit changes in substitution rate and pattern at the protein sequence level. Using comparative analysis of human, chimpanzee, and mouse protein sequences, we identified two genes (PRM2 and FOXP2) with significantly enhanced evolutionary rates in the hominid lineage. PRM2 is a histone-like protein essential to spermatogenesis and was previously reported to be a likely target of sexual selection in humans and chimpanzees. FOXP2 is a transcription factor involved in speech and language development. Human FOXP2 experienced a >60-fold increase in substitution rate and incorporated two fixed amino acid changes in a broadly defined transcription suppression domain. A survey of a diverse group of placental mammals reveals the uniqueness of the human FOXP2 sequence and a population genetic analysis indicates possible adaptive selection behind the accelerated evolution. Taken together, our results suggest an important role that FOXP2 may have played in the origin of human speech and demonstrate a strategy for identifying candidate genes underlying the emergences of human-specific features.

  14. Vertical accelerator device to apply loads simulating blast environments in the military to human surrogates.

    PubMed

    Yoganandan, Narayan; Pintar, Frank A; Schlick, Michael; Humm, John R; Voo, Liming; Merkle, Andrew; Kleinberger, Michael

    2015-09-18

    The objective of the study was to develop a simple device, Vertical accelerator (Vertac), to apply vertical impact loads to Post Mortem Human Subject (PMHS) or dummy surrogates because injuries sustained in military conflicts are associated with this vector; example, under-body blasts from explosive devices/events. The two-part mechanically controlled device consisted of load-application and load-receiving sections connected by a lever arm. The former section incorporated a falling weight to impact one end of the lever arm inducing a reaction at the other/load-receiving end. The "launch-plate" on this end of the arm applied the vertical impact load/acceleration pulse under different initial conditions to biological/physical surrogates, attached to second section. It is possible to induce different acceleration pulses by using varying energy absorbing materials and controlling drop height and weight. The second section of Vertac had the flexibility to accommodate different body regions for vertical loading experiments. The device is simple and inexpensive. It has the ability to control pulses and flexibility to accommodate different sub-systems/components of human surrogates. It has the capability to incorporate preloads and military personal protective equipment (e.g., combat helmet). It can simulate vehicle roofs. The device allows for intermittent specimen evaluations (x-ray and palpation, without changing specimen alignment). The two free but interconnected sections can be used to advance safety to military personnel. Examples demonstrating feasibilities of the Vertac device to apply vertical impact accelerations using PMHS head-neck preparations with helmet and booted Hybrid III dummy lower leg preparations under in-contact and launch-type impact experiments are presented.

  15. Astrocytes show reduced support of motor neurons with aging that is accelerated in a rodent model of ALS.

    PubMed

    Das, Melanie M; Svendsen, Clive N

    2015-02-01

    Astrocytes play a crucial role in supporting motor neurons in health and disease. However, there have been few attempts to understand how aging may influence this effect. Here, we report that rat astrocytes show an age-dependent senescence phenotype and a significant reduction in their ability to support motor neurons. In a rodent model of familial amyotrophic lateral sclerosis (ALS) overexpressing mutant superoxide dismutase 1 (SOD1), the rate of astrocytes acquiring a senescent phenotype is accelerated and they subsequently provide less support to motor neurons. This can be partially reversed by glial cell line-derived neurotrophic factor (GDNF). Replacing aging astrocytes with young ones producing GDNF may therefore have a significant survival promoting affect on aging motor neurons and those lost through diseases such as ALS.

  16. Increased superoxide in vivo accelerates age-associated muscle atrophy through mitochondrial dysfunction and neuromuscular junction degeneration

    PubMed Central

    Jang, Youngmok C.; Lustgarten, Michael S.; Liu, Yuhong; Muller, Florian L.; Bhattacharya, Arunabh; Liang, Hanyu; Salmon, Adam B.; Brooks, Susan V.; Larkin, Lisa; Hayworth, Christopher R.; Richardson, Arlan; Van Remmen, Holly

    2010-01-01

    Oxidative stress has been implicated in the etiology of age-related muscle loss (sarcopenia). However, the underlying mechanisms by which oxidative stress contributes to sarcopenia have not been thoroughly investigated. To directly examine the role of chronic oxidative stress in vivo, we used a mouse model that lacks the antioxidant enzyme CuZnSOD (Sod1). Sod1−/− mice are characterized by high levels of oxidative damage and an acceleration of sarcopenia. In the present study, we demonstrate that muscle atrophy in Sod1−/− mice is accompanied by a progressive decline in mitochondrial bioenergetic function and an elevation of mitochondrial generation of reactive oxygen species. In addition, Sod1−/− muscle exhibits a more rapid induction of mitochondrial-mediated apoptosis and loss of myonuclei. Furthermore, aged Sod1−/− mice show a striking increase in muscle mitochondrial content near the neuromuscular junctions (NMJs). Despite the increase in content, the function of mitochondria is significantly impaired, with increased denervated NMJs and fragmentation of acetylcholine receptors. As a consequence, contractile force in aged Sod1−/− muscles is greatly diminished. Collectively, we show that Sod1−/− mice display characteristics of normal aging muscle in an accelerated manner and propose that the superoxide-induced NMJ degeneration and mitochondrial dysfunction are potential mechanisms of sarcopenia.—Jang, Y. C., Lustgarten, M. S., Liu, Y., Muller, F. L., Bhattacharya, A., Liang, H., Salmon, A. B., Brooks, S. V., Larkin, L., Hayworth, C. R., Richardson, A., and Van Remmen, H. Increased superoxide in vivo accelerates age-associated muscle atrophy through mitochondrial dysfunction and neuromuscular junction degeneration. PMID:20040516

  17. Equality and the duty to retard human ageing.

    PubMed

    Farrelly, Colin

    2010-10-01

    Where does the aspiration to retard human ageing fit in the 'big picture' of medical necessities and the requirements of just healthcare? Is there a duty to retard human ageing? And if so, how much should we invest in the basic science that studies the biology of ageing and could lead to interventions that modify the biological processes of human ageing? I consider two prominent accounts of equality and just healthcare - Norman Daniels's application of the principle of fair equality of opportunity and Ronald Dworkin's account of equality of resources - and conclude that, once suitably amended and revised, both actually support the conclusion that anti-ageing research is important and could lead to interventions that ought to be considered 'medical necessities'.

  18. Expanding Our Understanding of Human Skin Aging.

    PubMed

    Chang, Anne Lynn S

    2016-05-01

    Two very different studies expand our understanding of human skin aging. In the first study, Hüls et al. show an association between nitrogen dioxide levels in outdoor air and number of lentigines on the cheek. In the second study, Bowman and Birch-Machin show that mitochondrial complex II activity in human skin fibroblasts decreases with age. Copyright © 2016 The Author. Published by Elsevier Inc. All rights reserved.

  19. Age effects on B cells and humoral immunity in humans

    PubMed Central

    Frasca, Daniela; Diaz, Alain; Romero, Maria; Landin, Ana Marie; Blomberg, Bonnie B

    2010-01-01

    Both humoral and cellular immune responses are impaired in aged individuals, leading to decreased vaccine responses. Although T cell defects occur, defects in B cells play a significant role in age-related humoral immune changes. The ability to undergo class switch recombination (CSR), the enzyme for CSR, AID (activation-induced cytidine deaminase) and the transcription factor E47 are all decreased in aged stimulated B cells. We here present an overview of age-related changes in human B cell markers and functions, and also discuss some controversies in the field of B cell aging. PMID:20728581

  20. Accelerator mass spectrometry for human biochemistry: The practice and the potential

    NASA Astrophysics Data System (ADS)

    Vogel, John S.

    2000-10-01

    Isotopic labels are a primary tool for tracing chemicals in natural systems. Accelerator mass spectrometry (AMS) quantifies long-lived isotopes that can be used in safe, sensitive and precise biochemical research with human participants. AMS could reduce the use of animals in biochemical research and remove the uncertain extrapolations from animal models to humans. Animal data seldom represent the sort of variability expected in a human population. People, knowingly or not, routinely expose themselves to radiation risks much greater than AMS-based biochemical research that traces μg/kg doses of chemicals containing tens of nCi of 14C for as long as 7 months. AMS is applied to research in toxicology, pharmacology and nutrition.

  1. Epigenetic Mechanisms of the Aging Human Retina.

    PubMed

    Pennington, Katie L; DeAngelis, Margaret M

    2015-01-01

    Degenerative retinal diseases, such as glaucoma, age-related macular degeneration, and diabetic retinopathy, have complex etiologies with environmental, genetic, and epigenetic contributions to disease pathology. Much effort has gone into elucidating both the genetic and the environmental risk factors for these retinal diseases. However, little is known about how these genetic and environmental risk factors bring about molecular changes that lead to pathology. Epigenetic mechanisms have received extensive attention of late for their promise of bridging the gap between environmental exposures and disease development via their influence on gene expression. Recent studies have identified epigenetic changes that associate with the incidence and/or progression of each of these retinal diseases. Therefore, these epigenetic modifications may be involved in the underlying pathological mechanisms leading to blindness. Further genome-wide epigenetic studies that incorporate well-characterized tissue samples, consider challenges similar to those relevant to gene expression studies, and combine the genome-wide epigenetic data with genome-wide genetic and expression data to identify additional potentially causative agents of disease are needed. Such studies will allow researchers to create much-needed therapeutics to prevent and/or intervene in disease progression. Improved therapeutics will greatly enhance the quality of life and reduce the burden of disease management for millions of patients living with these potentially blinding conditions.

  2. Epigenetic Mechanisms of the Aging Human Retina

    PubMed Central

    Pennington, Katie L.; DeAngelis, Margaret M.

    2015-01-01

    Degenerative retinal diseases, such as glaucoma, age-related macular degeneration, and diabetic retinopathy, have complex etiologies with environmental, genetic, and epigenetic contributions to disease pathology. Much effort has gone into elucidating both the genetic and the environmental risk factors for these retinal diseases. However, little is known about how these genetic and environmental risk factors bring about molecular changes that lead to pathology. Epigenetic mechanisms have received extensive attention of late for their promise of bridging the gap between environmental exposures and disease development via their influence on gene expression. Recent studies have identified epigenetic changes that associate with the incidence and/or progression of each of these retinal diseases. Therefore, these epigenetic modifications may be involved in the underlying pathological mechanisms leading to blindness. Further genome-wide epigenetic studies that incorporate well-characterized tissue samples, consider challenges similar to those relevant to gene expression studies, and combine the genome-wide epigenetic data with genome-wide genetic and expression data to identify additional potentially causative agents of disease are needed. Such studies will allow researchers to create much-needed therapeutics to prevent and/or intervene in disease progression. Improved therapeutics will greatly enhance the quality of life and reduce the burden of disease management for millions of patients living with these potentially blinding conditions. PMID:26966390

  3. U. S. -French Cooperative Research Program: U. S. test results for cable insulation and jacket materials at the completion of accelerated aging

    SciTech Connect

    Bustard, L.D.

    1984-01-01

    Eight different U.S. insulation and jacket products have been accelerated aged at Sandia. The experimental variables included: (1) sequential versus simultaneous accelerated aging exposures; (2) the order of the sequential exposures; and (3) ambient versus 70/sup 0/C irradiation temperatures during sequential aging exposures. We observed that the irradiation temperature (70/sup 0/C or ambient) was secondary in importance to the choice of sequence for thermal and radiation aging. For most materials studied (except TEFZEL) the irradiation then thermal aging sequence was as severe or more severe than the thermal then irradiation aging sequence.

  4. A new role for oxidative stress in aging: The accelerated aging phenotype in Sod1(-/)(-) mice is correlated to increased cellular senescence.

    PubMed

    Zhang, Yiqiang; Unnikrishnan, Archana; Deepa, Sathyaseelan S; Liu, Yuhong; Li, Yan; Ikeno, Yuji; Sosnowska, Danuta; Van Remmen, Holly; Richardson, Arlan

    2017-04-01

    In contrast to other mouse models that are deficient in antioxidant enzymes, mice null for Cu/Zn-superoxide dismutase (Sod1(-/)(-) mice) show a major decrease in lifespan and several accelerated aging phenotypes. The goal of this study was to determine if cell senescence might be a contributing factor in the accelerated aging phenotype observed in the Sod1(-/)(-) mice. We focused on kidney because it is a tissue that has been shown to a significant increase in senescent cells with age. The Sod1(-/)(-) mice are characterized by high levels of DNA oxidation in the kidney, which is attenuated by DR. The kidney of the Sod1(-/)(-) mice also have higher levels of double strand DNA breaks than wild type (WT) mice. Expression (mRNA and protein) of p16 and p21, two of the markers of cellular senescence, which increased with age, are increased significantly in the kidney of Sod1(-/)(-) mice as is β-gal staining cells. In addition, the senescence associated secretory phenotype was also increased significantly in the kidney of Sod1(-/)(-) mice compared to WT mice as measured by the expression of transcripts for IL-6 and IL-1β. Dietary restriction of the Sod1(-/)(-) mice attenuated the increase in DNA damage, cellular senescence, and expression of IL-6 and IL-1β. Interestingly, the Sod1(-/)(-) mice showed higher levels of circulating cytokines than WT mice, suggesting that the accelerated aging phenotype shown by the Sod1(-/)(-) mice could result from increased inflammation arising from an accelerated accumulation of senescent cells. Based on our data with Sod1(-/)(-) mice, we propose that various bouts of increased oxidative stress over the lifespan of an animal leads to the accumulation of senescent cells. The accumulation of senescent cells in turn leads to increased inflammation, which plays a major role in the loss of function and increased pathology that are hallmark features of aging. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  5. Evolution of the microstructure of unmodified and polymer modified asphalt binders with aging in an accelerated weathering tester.

    PubMed

    Menapace, Ilaria; Masad, Eyad

    2016-09-01

    This paper presents findings on the evolution of the surface microstructure of two asphalt binders, one unmodified and one polymer modified, directly exposed to aging agents with increasing durations. The aging is performed using an accelerated weathering tester, where ultraviolet radiation, oxygen and an increased temperature are applied to the asphalt binder surface. Ultraviolet and dark cycles, which simulated the succession of day and night, alternated during the aging process, and also the temperature varied, which corresponded to typical summer day and night temperatures registered in the state of Qatar. Direct aging of an exposed binder surface is more effective in showing microstructural modifications than previously applied protocols, which involved the heat treatment of binders previously aged with standardized methods. With the new protocol, any molecular rearrangements in the binder surface after aging induced by the heat treatment is prevented. Optical photos show the rippling and degradation of the binder surface due to aging. Microstructure images obtained by means of atomic force microscopy show gradual alteration of the surface due to aging. The original relatively flat microstructure was substituted with a profoundly different microstructure, which significantly protrudes from the surface, and is characterized by various shapes, such as rods, round structures and finally 'flower' or 'leaf' structures.

  6. Uniquely Human Self-Control Begins at School Age

    ERIC Educational Resources Information Center

    Herrmann, Esther; Misch, Antonia; Hernandez-Lloreda, Victoria; Tomasello, Michael

    2015-01-01

    Human beings have remarkable skills of self-control, but the evolutionary origins of these skills are unknown. Here we compare children at 3 and 6 years of age with one of humans' two nearest relatives, chimpanzees, on a battery of reactivity and self-control tasks. Three-year-old children and chimpanzees were very similar in their abilities to…

  7. Uniquely Human Self-Control Begins at School Age

    ERIC Educational Resources Information Center

    Herrmann, Esther; Misch, Antonia; Hernandez-Lloreda, Victoria; Tomasello, Michael

    2015-01-01

    Human beings have remarkable skills of self-control, but the evolutionary origins of these skills are unknown. Here we compare children at 3 and 6 years of age with one of humans' two nearest relatives, chimpanzees, on a battery of reactivity and self-control tasks. Three-year-old children and chimpanzees were very similar in their abilities to…

  8. Colour stability and opacity of resin cements and flowable composites for ceramic veneer luting after accelerated ageing.

    PubMed

    Archegas, Lucí Regina Panka; Freire, Andrea; Vieira, Sergio; Caldas, Danilo Biazzetto de Menezes; Souza, Evelise Machado

    2011-11-01

    Colour changes of the luting material can become clinically visible affecting the aesthetic appearance of thin ceramic laminates. The aim of this in vitro study was to evaluate the colour stability and opacity of light- and dual-cured resin cements and flowable composites after accelerated ageing. The luting agents were bonded (0.2 mm thick) to ceramic disks (0.75 mm thick) built with the pressed-ceramic IPS Aesthetic Empress (n=7). Colour measurements were determined using a FTIR spectrophotometer before and after accelerated ageing in a weathering machine with a total energy of 150 kJ. Changes in colour (ΔE) and opacity (ΔO) were obtained using the CIE L*a*b* system. The results were submitted to one-way ANOVA, Tukey HSD test and Student's t test (α=5%). All the materials showed significant changes in colour and opacity. The ΔE of the materials ranged from 0.41 to 2.40. The highest colour changes were attributed to RelyX ARC and AllCem, whilst lower changes were found in Variolink Veneer, Tetric Flow and Filtek Z350 Flow. The opacity of the materials ranged from -0.01 to 1.16 and its variation was not significant only for Opallis Flow and RelyX ARC. The accelerated ageing led to colour changes in all the evaluated materials, although they were considered clinically acceptable (ΔE<3). Amongst the dual-cured resin cements, Variolink II demonstrated the highest colour stability. All the flowable composites showed proper colour stability for the luting of ceramic veneers. After ageing, an increase in opacity was observed for most of the materials. Copyright © 2011 Elsevier Ltd. All rights reserved.

  9. Methodology for designing accelerated aging tests for predicting life of photovoltaic arrays

    NASA Technical Reports Server (NTRS)

    Gaines, G. B.; Thomas, R. E.; Derringer, G. C.; Kistler, C. W.; Bigg, D. M.; Carmichael, D. C.

    1977-01-01

    A methodology for designing aging tests in which life prediction was paramount was developed. The methodology builds upon experience with regard to aging behavior in those material classes which are expected to be utilized as encapsulant elements, viz., glasses and polymers, and upon experience with the design of aging tests. The experiences were reviewed, and results are discussed in detail.

  10. Modulation of leg joint function to produce emulated acceleration during walking and running in humans

    PubMed Central

    Raiteri, Brent J.

    2017-01-01

    Understanding how humans adapt gait mechanics for a wide variety of locomotor tasks is important for inspiring the design of robotic, prosthetic and wearable assistive devices. We aimed to elicit the mechanical adjustments made to leg joint functions that are required to generate accelerative walking and running, using metrics with direct relevance to device design. Twelve healthy male participants completed constant speed (CS) walking and running and emulated acceleration (ACC) trials on an instrumented treadmill. External force and motion capture data were combined in an inverse dynamics analysis. Ankle, knee and hip joint mechanics were described and compared using angles, moments, powers and normalized functional indexes that described each joint as relatively more: spring, motor, damper or strut-like. To accelerate using a walking gait, the ankle joint was switched from predominantly spring-like to motor-like, while the hip joint was maintained as a motor, with an increase in hip motor-like function. Accelerating while running involved no change in the primary function of any leg joint, but involved high levels of spring and motor-like function at the hip and ankle joints. Mechanical adjustments for ACC walking were achieved primarily via altered limb positioning, but ACC running needed greater joint moments. PMID:28405377

  11. Glutamate Cysteine Ligase Modifier Subunit (Gclm) Null Mice Have Increased Ovarian Oxidative Stress and Accelerated Age-Related Ovarian Failure

    PubMed Central

    Lim, Jinhwan; Nakamura, Brooke N.; Mohar, Isaac; Kavanagh, Terrance J.

    2015-01-01

    Glutathione (GSH) is the one of the most abundant intracellular antioxidants. Mice lacking the modifier subunit of glutamate cysteine ligase (Gclm), the rate-limiting enzyme in GSH synthesis, have decreased GSH. Our prior work showed that GSH plays antiapoptotic roles in ovarian follicles. We hypothesized that Gclm−/− mice have accelerated ovarian aging due to ovarian oxidative stress. We found significantly decreased ovarian GSH concentrations and oxidized GSH/oxidized glutathione redox potential in Gclm−/− vs Gclm+/+ ovaries. Prepubertal Gclm−/− and Gclm+/+ mice had similar numbers of ovarian follicles, and as expected, the total number of ovarian follicles declined with age in both genotypes. However, the rate of decline in follicles was significantly more rapid in Gclm−/− mice, and this was driven by accelerated declines in primordial follicles, which constitute the ovarian reserve. We found significantly increased 4-hydroxynonenal immunostaining (oxidative lipid damage marker) and significantly increased nitrotyrosine immunostaining (oxidative protein damage marker) in prepubertal and adult Gclm−/− ovaries compared with controls. The percentage of small ovarian follicles with increased granulosa cell proliferation was significantly higher in prepubertal and 2-month-old Gclm−/− vs Gclm+/+ ovaries, indicating accelerated recruitment of primordial follicles into the growing pool. The percentages of growing follicles with apoptotic granulosa cells were increased in young adult ovaries. Our results demonstrate increased ovarian oxidative stress and oxidative damage in young Gclm−/− mice, associated with an accelerated decline in ovarian follicles that appears to be mediated by increased recruitment of follicles into the growing pool, followed by apoptosis at later stages of follicular development. PMID:26083875

  12. Age-Dependent Pancreatic Gene Regulation Reveals Mechanisms Governing Human β Cell Function.

    PubMed

    Arda, H Efsun; Li, Lingyu; Tsai, Jennifer; Torre, Eduardo A; Rosli, Yenny; Peiris, Heshan; Spitale, Robert C; Dai, Chunhua; Gu, Xueying; Qu, Kun; Wang, Pei; Wang, Jing; Grompe, Markus; Scharfmann, Raphael; Snyder, Michael S; Bottino, Rita; Powers, Alvin C; Chang, Howard Y; Kim, Seung K

    2016-05-10

    Intensive efforts are focused on identifying regulators of human pancreatic islet cell growth and maturation to accelerate development of therapies for diabetes. After birth, islet cell growth and function are dynamically regulated; however, establishing these age-dependent changes in humans has been challenging. Here, we describe a multimodal strategy for isolating pancreatic endocrine and exocrine cells from children and adults to identify age-dependent gene expression and chromatin changes on a genomic scale. These profiles revealed distinct proliferative and functional states of islet α cells or β cells and histone modifications underlying age-dependent gene expression changes. Expression of SIX2 and SIX3, transcription factors without prior known functions in the pancreas and linked to fasting hyperglycemia risk, increased with age specifically in human islet β cells. SIX2 and SIX3 were sufficient to enhance insulin content or secretion in immature β cells. Our work provides a unique resource to study human-specific regulators of islet cell maturation and function. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Glycosaminoglycans in the Human Cornea: Age-Related Changes

    PubMed Central

    Pacella, Elena; Pacella, Fernanda; De Paolis, Giulio; Parisella, Francesca Romana; Turchetti, Paolo; Anello, Giulia; Cavallotti, Carlo

    2015-01-01

    AIM To investigate possible age-related changes in glycosaminoglycans (GAGs) in the human cornea. The substances today called GAGs were previously referred to as mucopolysaccharides. METHODS Samples of human cornea were taken from 12 younger (age 21 ± 1.2) and 12 older (age 72 ± 1.6) male subjects. Samples were weighed, homogenized, and used for biochemical and molecular analyses. All the quantitative results were statistically analyzed. RESULTS The human cornea appears to undergo age-related changes, as evidenced by our biochemical and molecular results. The total GAG and hyaluronic acid counts were significantly higher in the younger subjects than in the older subjects. The sulfated heavy GAGs, such as chondroitin, dermatan, keratan, and heparan sulfate, were lower in the younger subjects than in the older subjects. DISCUSSION GAGs of the human cornea undergo numerous age-related changes. Their quantity is significantly altered in the elderly in comparison with younger subjects. GAGs play an important role in age-related diseases of the human cornea. PMID:25674020

  14. The concept of ageing in evolutionary algorithms: Discussion and inspirations for human ageing.

    PubMed

    Dimopoulos, Christos; Papageorgis, Panagiotis; Boustras, George; Efstathiades, Christodoulos

    2017-02-04

    This paper discusses the concept of ageing as this applies to the operation of Evolutionary Algorithms, and examines its relationship to the concept of ageing as this is understood for human beings. Evolutionary Algorithms constitute a family of search algorithms which base their operation on an analogy from the evolution of species in nature. The paper initially provides the necessary knowledge on the operation of Evolutionary Algorithms, focusing on the use of ageing strategies during the implementation of the evolutionary process. Background knowledge on the concept of ageing, as this is defined scientifically for biological systems, is subsequently presented. Based on this information, the paper provides a comparison between the two ageing concepts, and discusses the philosophical inspirations which can be drawn for human ageing based on the operation of Evolutionary Algorithms.

  15. When does brain aging accelerate? Dangers of quadratic fits in cross-sectional studies.

    PubMed

    Fjell, Anders M; Walhovd, Kristine B; Westlye, Lars T; Østby, Ylva; Tamnes, Christian K; Jernigan, Terry L; Gamst, Anthony; Dale, Anders M

    2010-05-01

    Many brain structures show a complex, non-linear pattern of maturation and age-related change. Often, quadratic models (beta(0) + beta(1)age + beta(2)age(2) + epsilon) are used to describe such relationships. Here, we demonstrate that the fitting of quadratic models is substantially affected by seemingly irrelevant factors, such as the age-range sampled. Hippocampal volume was measured in 434 healthy participants between 8 and 85 years of age, and quadratic models were fit to subsets of the sample with different age-ranges. It was found that as the bottom of the age-range increased, the age at which volumes appeared to peak was moved upwards and the estimated decline in the last part of the age-span became larger. Thus, whether children were included or not affected the estimated decline between 60 and 85 years. We conclude that caution should be exerted in inferring age-trajectories from global fit models, e.g. the quadratic model. A nonparametric local smoothing technique (the smoothing spline) was found to be more robust to the effects of different starting ages. The results were replicated in an independent sample of 309 participants. 2010 Elsevier Inc. All rights reserved.

  16. The Role of SIRT6 Protein in Aging and Reprogramming of Human Induced Pluripotent Stem Cells*

    PubMed Central

    Sharma, Amit; Diecke, Sebastian; Zhang, Wendy Y.; Lan, Feng; He, Chunjiang; Mordwinkin, Nicholas M.; Chua, Katrin F.; Wu, Joseph C.

    2013-01-01

    Aging is known to be the single most important risk factor for multiple diseases. Sirtuin 6, or SIRT6, has recently been identified as a critical regulator of transcription, genome stability, telomere integrity, DNA repair, and metabolic homeostasis. A knockout mouse model of SIRT6 has displayed dramatic phenotypes of accelerated aging. In keeping with its role in aging, we demonstrated that human dermal fibroblasts (HDFs) from older human subjects were more resistant to reprogramming by classic Yamanaka factors than those from younger human subjects, but the addition of SIRT6 during reprogramming improved such efficiency in older HDFs substantially. Despite the importance of SIRT6, little is known about the molecular mechanism of its regulation. We show, for the first, time posttranscriptional regulation of SIRT6 by miR-766 and inverse correlation in the expression of this microRNA in HDFs from different age groups. Our results suggest that SIRT6 regulates miR-766 transcription via a feedback regulatory loop, which has implications for the modulation of SIRT6 expression in reprogramming of aging cells. PMID:23653361

  17. The role of SIRT6 protein in aging and reprogramming of human induced pluripotent stem cells.

    PubMed

    Sharma, Amit; Diecke, Sebastian; Zhang, Wendy Y; Lan, Feng; He, Chunjiang; Mordwinkin, Nicholas M; Chua, Katrin F; Wu, Joseph C

    2013-06-21

    Aging is known to be the single most important risk factor for multiple diseases. Sirtuin 6, or SIRT6, has recently been identified as a critical regulator of transcription, genome stability, telomere integrity, DNA repair, and metabolic homeostasis. A knockout mouse model of SIRT6 has displayed dramatic phenotypes of accelerated aging. In keeping with its role in aging, we demonstrated that human dermal fibroblasts (HDFs) from older human subjects were more resistant to reprogramming by classic Yamanaka factors than those from younger human subjects, but the addition of SIRT6 during reprogramming improved such efficiency in older HDFs substantially. Despite the importance of SIRT6, little is known about the molecular mechanism of its regulation. We show, for the first, time posttranscriptional regulation of SIRT6 by miR-766 and inverse correlation in the expression of this microRNA in HDFs from different age groups. Our results suggest that SIRT6 regulates miR-766 transcription via a feedback regulatory loop, which has implications for the modulation of SIRT6 expression in reprogramming of aging cells.

  18. Identification of the Imprinted KLF14 Transcription Factor Undergoing Human-Specific Accelerated Evolution

    PubMed Central

    Parker-Katiraee, Layla; Carson, Andrew R; Yamada, Takahiro; Arnaud, Philippe; Feil, Robert; Abu-Amero, Sayeda N; Moore, Gudrun E; Kaneda, Masahiro; Perry, George H; Stone, Anne C; Lee, Charles; Meguro-Horike, Makiko; Sasaki, Hiroyuki; Kobayashi, Keiko; Nakabayashi, Kazuhiko; Scherer, Stephen W

    2007-01-01

    Imprinted genes are expressed in a parent-of-origin manner and are located in clusters throughout the genome. Aberrations in the expression of imprinted genes on human Chromosome 7 have been suggested to play a role in the etiologies of Russell-Silver Syndrome and autism. We describe the imprinting of KLF14, an intronless member of the Krüppel-like family of transcription factors located at Chromosome 7q32. We show that it has monoallelic maternal expression in all embryonic and extra-embryonic tissues studied, in both human and mouse. We examine epigenetic modifications in the KLF14 CpG island in both species and find this region to be hypomethylated. In addition, we perform chromatin immunoprecipitation and find that the murine Klf14 CpG island lacks allele-specific histone modifications. Despite the absence of these defining features, our analysis of Klf14 in offspring from DNA methyltransferase 3a conditional knockout mice reveals that the gene's expression is dependent upon a maternally methylated region. Due to the intronless nature of Klf14 and its homology to Klf16, we suggest that the gene is an ancient retrotransposed copy of Klf16. By sequence analysis of numerous species, we place the timing of this event after the divergence of Marsupialia, yet prior to the divergence of the Xenarthra superclade. We identify a large number of sequence variants in KLF14 and, using several measures of diversity, we determine that there is greater variability in the human lineage with a significantly increased number of nonsynonymous changes, suggesting human-specific accelerated evolution. Thus, KLF14 may be the first example of an imprinted transcript undergoing accelerated evolution in the human lineage. PMID:17480121

  19. Identification of the imprinted KLF14 transcription factor undergoing human-specific accelerated evolution.

    PubMed

    Parker-Katiraee, Layla; Carson, Andrew R; Yamada, Takahiro; Arnaud, Philippe; Feil, Robert; Abu-Amero, Sayeda N; Moore, Gudrun E; Kaneda, Masahiro; Perry, George H; Stone, Anne C; Lee, Charles; Meguro-Horike, Makiko; Sasaki, Hiroyuki; Kobayashi, Keiko; Nakabayashi, Kazuhiko; Scherer, Stephen W

    2007-05-04

    Imprinted genes are expressed in a parent-of-origin manner and are located in clusters throughout the genome. Aberrations in the expression of imprinted genes on human Chromosome 7 have been suggested to play a role in the etiologies of Russell-Silver Syndrome and autism. We describe the imprinting of KLF14, an intronless member of the Krüppel-like family of transcription factors located at Chromosome 7q32. We show that it has monoallelic maternal expression in all embryonic and extra-embryonic tissues studied, in both human and mouse. We examine epigenetic modifications in the KLF14 CpG island in both species and find this region to be hypomethylated. In addition, we perform chromatin immunoprecipitation and find that the murine Klf14 CpG island lacks allele-specific histone modifications. Despite the absence of these defining features, our analysis of Klf14 in offspring from DNA methyltransferase 3a conditional knockout mice reveals that the gene's expression is dependent upon a maternally methylated region. Due to the intronless nature of Klf14 and its homology to Klf16, we suggest that the gene is an ancient retrotransposed copy of Klf16. By sequence analysis of numerous species, we place the timing of this event after the divergence of Marsupialia, yet prior to the divergence of the Xenarthra superclade. We identify a large number of sequence variants in KLF14 and, using several measures of diversity, we determine that there is greater variability in the human lineage with a significantly increased number of nonsynonymous changes, suggesting human-specific accelerated evolution. Thus, KLF14 may be the first example of an imprinted transcript undergoing accelerated evolution in the human lineage.

  20. The many faces of human ageing: toward a psychological culture of old age.

    PubMed

    Baltes, P B

    1991-11-01

    In an effort to distil major findings about the nature of human ageing, seven propositions are presented as a guiding frame of reference. This propositional framework is then used to specify some conditions for a positive culture of old age and to advance one possible model of good psychological ageing. This model focuses on the dynamic interplay between three processes: selection, optimization, and compensation. The model is universal in its basic features, but at the same time emphasizes individual variations in phenotypic manifestation.

  1. Development of a lifetime prediction model for lithium-ion batteries based on extended accelerated aging test data

    NASA Astrophysics Data System (ADS)

    Ecker, Madeleine; Gerschler, Jochen B.; Vogel, Jan; Käbitz, Stefan; Hust, Friedrich; Dechent, Philipp; Sauer, Dirk Uwe

    2012-10-01

    Battery lifetime prognosis is a key requirement for successful market introduction of electric and hybrid vehicles. This work aims at the development of a lifetime prediction approach based on an aging model for lithium-ion batteries. A multivariable analysis of a detailed series of accelerated lifetime experiments representing typical operating conditions in hybrid electric vehicle is presented. The impact of temperature and state of charge on impedance rise and capacity loss is quantified. The investigations are based on a high-power NMC/graphite lithium-ion battery with good cycle lifetime. The resulting mathematical functions are physically motivated by the occurring aging effects and are used for the parameterization of a semi-empirical aging model. An impedance-based electric-thermal model is coupled to the aging model to simulate the dynamic interaction between aging of the battery and the thermal as well as electric behavior. Based on these models different drive cycles and management strategies can be analyzed with regard to their impact on lifetime. It is an important tool for vehicle designers and for the implementation of business models. A key contribution of the paper is the parameterization of the aging model by experimental data, while aging simulation in the literature usually lacks a robust empirical foundation.

  2. Age estimation based on aspartic acid racemization in human sclera.

    PubMed

    Klumb, Karolin; Matzenauer, Christian; Reckert, Alexandra; Lehmann, Klaus; Ritz-Timme, Stefanie

    2016-01-01

    Age estimation based on racemization of aspartic acid residues (AAR) in permanent proteins has been established in forensic medicine for years. While dentine is the tissue of choice for this molecular method of age estimation, teeth are not always available which leads to the need to identify other suitable tissues. We examined the suitability of total tissue samples of human sclera for the estimation of age at death. Sixty-five samples of scleral tissue were analyzed. The samples were hydrolyzed and after derivatization, the extent of aspartic acid racemization was determined by gas chromatography. The degree of AAR increased with age. In samples from younger individuals, the correlation of age and D-aspartic acid content was closer than in samples from older individuals. The age-dependent racemization in total tissue samples proves that permanent or at least long-living proteins are present in scleral tissue. The correlation of AAR in human sclera and age at death is close enough to serve as basis for age estimation. However, the precision of age estimation by this method is lower than that of age estimation based on the analysis of dentine which is due to molecular inhomogeneities of total tissue samples of sclera. Nevertheless, the approach may serve as a valuable alternative or addition in exceptional cases.

  3. Mitochondrial superoxide anion overproduction in Tet-mev-1 transgenic mice accelerates age-dependent corneal cell dysfunctions.

    PubMed

    Onouchi, Hiromi; Ishii, Takamasa; Miyazawa, Masaki; Uchino, Yuichi; Yasuda, Kayo; Hartman, Phil S; Kawai, Kenji; Tsubota, Kazuo; Ishii, Naoaki

    2012-08-31

    The Tet-mev-1 mouse expressing a mitochondrial complex-II mutated SDHC(V69E) gene controlled by a tetracycline (Tet)-On/Off system can overproduce O(2)(·-) and is a versatile whole-animal model for studying mitochondrial oxidative stress. Here we report a series of age-dependent variations in corneal epithelium, endothelium, and parenchymal cells of the Tet-mev-1 mice relative to wild-type C57BL/6j mice. Measurements of (1) mitochondrial electron transport enzyme activities; (2) O(2)(·-) production; (3) carbonylated protein, and 8-hydroxydeoxyguanosine (8-OHdG) levels as markers of oxidative stress; (4) pathologic analyses under optical and electron microscopy; (5) hematoxylin-eosin or toluidine-blue staining; and (6) immunohistochemistry with an anti-β-catenin antibody were performed in the eye, especially the cornea. Complex II-III activity was decreased by electron leakage between complex II and CoQ. This resulted in increased age-dependent intracellular oxidative stress in the eye of Tet-mev-1 mice. Corneal epithelialization was delayed in Tet-mev-1 mice after 20% ethanol treatment, as the number of cells and mitotic cells decreased in the corneal epithelium of Tet-mev-1 mice compared with that of wild type. The age-dependent decrease in cell number accelerated in the corneal endothelium cells. Moreover, it was suggested that the corneal thickness was decreased by thinning of parenchymal cells with age in Tet-mev-1 mice. These results suggest that mitochondrial oxidative stress with electron transport chain dysfunction can influence pathogenesis and progression of age-related corneal diseases, as well as generalized corneal aging acceleration.

  4. Melatonin can improve insulin resistance and aging-induced pancreas alterations in senescence-accelerated prone male mice (SAMP8).

    PubMed

    Cuesta, Sara; Kireev, Roman; García, Cruz; Rancan, Lisa; Vara, Elena; Tresguerres, Jesús A F

    2013-06-01

    The aim of the present study was to investigate the effect of aging on several parameters related to glucose homeostasis and insulin resistance in pancreas and how melatonin administration could affect these parameters. Pancreas samples were obtained from two types of male mice models: senescence-accelerated prone (SAMP8) and senescence-accelerated-resistant mice (SAMR1). Insulin levels in plasma were increased with aging in both SAMP8 and SAMR1 mice, whereas insulin content in pancreas was decreased with aging in SAMP8 and increased in SAMR1 mice. Expressions of glucagon and GLUT2 messenger RNAs (mRNAs) were increased with aging in SAMP8 mice, and no differences were observed in somatostatin and insulin mRNA expressions. Furthermore, aging decreased also the expressions of Pdx-1, FoxO 1, FoxO 3A and Sirt1 in pancreatic SAMP8 samples. Pdx-1 was decreased in SAMR1 mice, but no differences were observed in the rest of parameters on these mice strains. Treatment with melatonin was able to decrease plasma insulin levels and to increase its pancreatic content in SAMP8 mice. In SAMR1, insulin pancreatic content and plasma levels were decreased. HOMA-IR was decreased with melatonin treatment in both strains of animals. On the other hand, in SAMP8 mice, treatment decreased the expression of glucagon, GLUT2, somatostatin and insulin mRNA. Furthermore, it was also able to increase the expression of Sirt1, Pdx-1 and FoxO 3A. According to these results, aging is associated with significant alterations in the relative expression of pancreatic genes associated to glucose metabolism. This has been especially observed in SAMP8 mice. Melatonin administration was able to improve pancreatic function in old SAMP8 mice and to reduce HOMA-IR improving their insulin physiology and glucose metabolism.

  5. Loss of Brain Aerobic Glycolysis in Normal Human Aging.

    PubMed

    Goyal, Manu S; Vlassenko, Andrei G; Blazey, Tyler M; Su, Yi; Couture, Lars E; Durbin, Tony J; Bateman, Randall J; Benzinger, Tammie L-S; Morris, John C; Raichle, Marcus E

    2017-08-01

    The normal aging human brain experiences global decreases in metabolism, but whether this affects the topography of brain metabolism is unknown. Here we describe PET-based measurements of brain glucose uptake, oxygen utilization, and blood flow in cognitively normal adults from 20 to 82 years of age. Age-related decreases in brain glucose uptake exceed that of oxygen use, resulting in loss of brain aerobic glycolysis (AG). Whereas the topographies of total brain glucose uptake, oxygen utilization, and blood flow remain largely stable with age, brain AG topography changes significantly. Brain regions with high AG in young adults show the greatest change, as do regions with prolonged developmental transcriptional features (i.e., neoteny). The normal aging human brain thus undergoes characteristic metabolic changes, largely driven by global loss and topographic changes in brain AG. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Accelerated death of retinal microvascular cells in human and experimental diabetic retinopathy.

    PubMed

    Mizutani, M; Kern, T S; Lorenzi, M

    1996-06-15

    To reconstruct the mechanisms for the vasoobliteration that transforms diabetic retinopathy into an ischemic retinopathy, we compared the occurrence of cell death in situ in retinal microvessels of diabetic and nondiabetic individuals. Trypsin digests and sections prepared from the retinas of seven patients (age 67 +/- 7 yr) with .9 +/- 4 yr of diabetes and eight age- and sex-matched nondiabetic controls were studied with the terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) reaction which detects preferentially apoptotic DNA fragmentation. The count of total TUNEL+ nuclei was significantly greater in the microvessels of diabetic (13 +/- 12 per one-sixth of retina) than control subjects (1.3 +/- 1.4, P = 0.0016), as were the counts of TUNEL+ pericytes and endothelial cells (P < 0.006). The neural retinas from both diabetic and nondiabetic subjects were uniformly TUNEL-. Retinal microvessels of rats with short duration of experimental diabetes or galactosemia and absent or minimal morphological changes of retinopathy, showed TUNEL+ pericytes and endothelial cells, which were absent in control rats. These findings indicate that (a) diabetes and galactosemia lead to accelerated death in situ of both retinal pericytes and endothelial cells; (b) the event is specific for vascular cells; (c) it precedes histological evidence of retinopathy; and (d) it can be induced by isolated hyperhexosemia. A cycle of accelerated death and renewal of endothelial cells may contribute to vascular architectural changes and, upon exhaustion of replicative life span, to capillary obliteration.

  7. Chronologic and actinically induced aging in human facial skin

    SciTech Connect

    Gilchrest, B.A.; Szabo, G.; Flynn, E.; Goldwyn, R.M.

    1983-06-01

    Clinical and histologic stigmata of aging are much more prominent in habitually sun-exposed skin than in sun-protected skin, but other possible manifestations of actinically induced aging are almost unexplored. We have examined the interrelation of chronologic and actinic aging using paired preauricular (sun-exposed) and postauricular (sun-protected) skin specimens. Keratinocyte cultures derived from sun-exposed skin consistently had a shorter in vitro lifespan but increased plating efficiency compared with cultures derived from adjacent sun-protected skin of the same individual, confirming a previous study of different paired body sites. Electron microscopic histologic sections revealed focal abnormalities of keratinocyte proliferation and alignment in vitro especially in those cultures derived from sun-exposed skin and decreased intercellular contact in stratified colonies at late passage, regardless of donor site. One-micron histologic sections of the original biopsy specimens revealed no striking site-related keratinocyte alterations, but sun-exposed specimens had fewer epidermal Langerhans cells (p less than 0.001), averaging approximately 50 percent the number in sun-protected skin, a possible exaggeration of the previously reported age-associated decrease in this cell population. These data suggest that sun exposure indeed accelerates aging by several criteria and that, regardless of mechanism, environmental factors may adversely affect the appearance and function of aging skin in ways amenable to experimental quantitation.

  8. Influence of age, irradiation and humanization on NSG mouse phenotypes.

    PubMed

    Knibbe-Hollinger, Jaclyn S; Fields, Natasha R; Chaudoin, Tammy R; Epstein, Adrian A; Makarov, Edward; Akhter, Sidra P; Gorantla, Santhi; Bonasera, Stephen J; Gendelman, Howard E; Poluektova, Larisa Y

    2015-09-09

    Humanized mice are frequently utilized in bench to bedside therapeutic tests to combat human infectious, cancerous and degenerative diseases. For the fields of hematology-oncology, regenerative medicine, and infectious diseases, the immune deficient mice have been used commonly in basic research efforts. Obstacles in true translational efforts abound, as the relationship between mouse and human cells in disease pathogenesis and therapeutic studies requires lengthy investigations. The interplay between human immunity and mouse biology proves ever more complicated when aging, irradiation, and human immune reconstitution are considered. All can affect a range of biochemical and behavioral functions. To such ends, we show age- and irradiation-dependent influences for the development of macrocytic hyper chromic anemia, myelodysplasia, blood protein reductions and body composition changes. Humanization contributes to hematologic abnormalities. Home cage behavior revealed day and dark cycle locomotion also influenced by human cell reconstitutions. Significant age-related day-to-day variability in movement, feeding and drinking behaviors were observed. We posit that this data serves to enable researchers to better design translational studies in this rapidly emerging field of mouse humanization.

  9. Influence of age, irradiation and humanization on NSG mouse phenotypes

    PubMed Central

    Knibbe-Hollinger, Jaclyn S.; Fields, Natasha R.; Chaudoin, Tammy R; Epstein, Adrian A.; Makarov, Edward; Akhter, Sidra P.; Gorantla, Santhi; Bonasera, Stephen J.; Gendelman, Howard E.; Poluektova, Larisa Y.

    2015-01-01

    ABSTRACT Humanized mice are frequently utilized in bench to bedside therapeutic tests to combat human infectious, cancerous and degenerative diseases. For the fields of hematology-oncology, regenerative medicine, and infectious diseases, the immune deficient mice have been used commonly in basic research efforts. Obstacles in true translational efforts abound, as the relationship between mouse and human cells in disease pathogenesis and therapeutic studies requires lengthy investigations. The interplay between human immunity and mouse biology proves ever more complicated when aging, irradiation, and human immune reconstitution are considered. All can affect a range of biochemical and behavioral functions. To such ends, we show age- and irradiation-dependent influences for the development of macrocytic hyper chromic anemia, myelodysplasia, blood protein reductions and body composition changes. Humanization contributes to hematologic abnormalities. Home cage behavior revealed day and dark cycle locomotion also influenced by human cell reconstitutions. Significant age-related day-to-day variability in movement, feeding and drinking behaviors were observed. We posit that this data serves to enable researchers to better design translational studies in this rapidly emerging field of mouse humanization. PMID:26353862

  10. Increased human AP endonuclease 1 level confers protection against the paternal age effect in mice

    PubMed Central

    Sanchez, Jamila R.; Reddick, Traci L.; Perez, Marissa; Centonze, Victoria E.; Mitra, Sankar; Izumi, Tadahide; McMahan, C. Alex; Walter, Christi A.

    2015-01-01

    Increased paternal age is associated with a greater risk of producing children with genetic disorders originating from de novo germline mutations. Mice mimic the human condition by displaying an age-associated increase in spontaneous mutant frequency in spermatogenic cells. The observed increase in mutant frequency appears to be associated with a decrease in the DNA repair protein, AP endonuclease1 (APEX1) and Apex1 heterozygous mice display an accelerated paternal age effect as young adults. In this study, we directly tested if APEX1 over-expression in cell lines and transgenic mice could prevent increases in mutagenesis. Cell lines with ectopic expression of APEX1 had increased APEX1 activity and lower spontaneous and induced mutations in the lacI reporter gene relative to the control. Spermatogenic cells obtained from mice transgenic for human APEX1 displayed increased APEX1 activity, were protected from the age-dependent increase in spontaneous germline mutagenesis, and exhibited increased apoptosis in the spermatogonial cell population. These results directly indicate that increases in APEX1 level confer protection against the murine paternal age effect, thus highlighting the role of APEX1 in preserving reproductive health with increasing age and in protection against genotoxin-induced mutagenesis in somatic cells. PMID:26201249

  11. Microstructural modifications induced by accelerated aging and lipid absorption in remelted and annealed UHMWPEs for total hip arthroplasty

    PubMed Central

    Puppulin, Leonardo; Zhu, Wenliang; Sugano, Nobuhiko

    2014-01-01

    Three types of commercially available ultra-high molecular weight polyethylene (UHMWPE) acetabular cups currently used in total hip arthroplasty have been studied by means of Raman micro-spectroscopy to unfold the microstructural modification induced by the oxidative degradation after accelerated aging with and without lipid absorption. The three investigated materials were produced by three different manufacturing procedures, as follows: irradiation followed by remelting, one-step irradiation followed by annealing, 3-step irradiation and annealing. Clear microstructural differences were observed in terms of phase contents (i.e. amorphous, crystalline and intermediate phase fraction). The three-step annealed material showed the highest crystallinity fraction in the bulk, while the remelted polyethylene is clearly characterized by the lowest content of crystalline phase and the highest content of amorphous phase. After accelerated aging either with or without lipids, the amount of amorphous phase decreased in all the samples as a consequence of the oxidation-induced recrystallization. The most remarkable variations of phase contents were detected in the remelted and in the single-step annealed materials. The presence of lipids triggered oxidative degradation especially in the remelted polyethylene. Such experimental evidence might be explained by the highest amount of amorphous phase in which lipids can be absorbed prior to accelerated aging. The results of these spectroscopic characterizations help to rationalize the complex effect of different irradiation and post-irradiation treatments on the UHMWPE microstructure and gives useful information on how significantly any single step of the manufacturing procedures might affect the oxidative degradation of the polymer. PMID:25179830

  12. Aging study of Li(Si)/FeS/sub 2/ thermally activated batteries. [Results of accelerated aging at 130/sup 0/C

    SciTech Connect

    Searcy, J. Q.; Neiswander, P. A.

    1980-05-01

    A technique for accelerating the aging process of thermally activated batteries that use iron disulfide was developed. In this approach, storage at 130/sup 0/C for one week was assumed equivalent to a shelf life of five years. Some of the batteries stored at 130/sup 0/C were discharged to test for functionality changes, and others were disassembled and carefully analyzed for evidence of deleterious reactions. Some functionality anomalies were observed. The only deleterious reaction observed was that of Li(Si) reacting with water vapor. 3 figures, 6 tables.

  13. Nutrition modulation of human aging: The calorie restriction paradigm.

    PubMed

    Das, Sai Krupa; Balasubramanian, Priya; Weerasekara, Yasoma K

    2017-11-05

    Globally, the aging population is growing rapidly, creating an urgent need to attenuate age-related health conditions, including metabolic disease and disability. A promising strategy for healthy aging based on consistently positive results from studies with a variety of species, including non-human primates (NHP), is calorie restriction (CR), or the restriction of energy intake while maintaining intake of essential nutrients. The burgeoning evidence for this approach in humans is reviewed and the major study to date to address this question, CALERIE (Comprehensive Assessment of the Long-term Effects of Reducing Intake of Energy), is described. CALERIE findings indicate the feasibility of CR in non-obese humans, confirm observations in NHP, and are consistent with improvements in disease risk reduction and potential anti-aging effects. Finally, the mechanisms of CR in humans are reviewed which sums up the fact that evolutionarily conserved mechanisms mediate the anti-aging effects of CR. Overall, the prospect for further research in both NHP and humans is highly encouraging. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Increased mobilization of aged carbon to rivers by human disturbance

    NASA Astrophysics Data System (ADS)

    Butman, David E.; Wilson, Henry F.; Barnes, Rebecca T.; Xenopoulos, Marguerite A.; Raymond, Peter A.

    2015-02-01

    Approximately 8% of anthropogenic carbon dioxide emissions are estimated to come from land-use change, but this estimate excludes fluxes of terrestrial carbon to aquatic ecosystems from human disturbance. Carbon fluxes from land to rivers have probably increased by 0.1 to 0.2 petagrams of carbon per year as a result of disturbances such as deforestation, agricultural intensification and the injection of human wastewater. Most dissolved organic carbon in rivers originates from young organic carbon from soils and vegetation, but aged carbon removed from the modern carbon cycle is also exported in many systems. Here we analyse a global data set of radiocarbon ages of riverine dissolved organic carbon and spatial data on land cover, population and environmental variables. We find that the age of dissolved organic carbon in rivers increases with population density and the proportion of human-dominated landscapes within a watershed, and decreases with annual precipitation. We reason that disturbance reintroduces aged soil organic matter into the modern carbon cycle, although fossil carbon in fertilizer or petroleum products may also be a source of aged carbon in disturbed watersheds. The total export from the terrestrial environment to freshwater systems remains unknown; nevertheless, our results suggest that 3-9% of dissolved organic carbon in rivers is aged carbon mobilized by human disturbance.

  15. Accelerated cellular senescence phenotype of GAPDH-depleted human lung carcinoma cells

    SciTech Connect

    Phadke, Manali; Krynetskaia, Natalia; Mishra, Anurag; Krynetskiy, Evgeny

    2011-07-29

    Highlights: {yields} We examined the effect of glyceraldehyde 3-phosphate (GAPDH) depletion on proliferation of human carcinoma A549 cells. {yields} GAPDH depletion induces accelerated senescence in tumor cells via AMPK network, in the absence of DNA damage. {yields} Metabolic and genetic rescue experiments indicate that GAPDH has regulatory functions linking energy metabolism and cell cycle. {yields} Induction of senescence in LKB1-deficient lung cancer cells via GAPDH depletion suggests a novel strategy to control tumor cell proliferation. -- Abstract: Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) is a pivotal glycolytic enzyme, and a signaling molecule which acts at the interface between stress factors and the cellular apoptotic machinery. Earlier, we found that knockdown of GAPDH in human carcinoma cell lines resulted in cell proliferation arrest and chemoresistance to S phase-specific cytotoxic agents. To elucidate the mechanism by which GAPDH depletion arrests cell proliferation, we examined the effect of GAPDH knockdown on human carcinoma cells A549. Our results show that GAPDH-depleted cells establish senescence phenotype, as revealed by proliferation arrest, changes in morphology, SA-{beta}-galactosidase staining, and more than 2-fold up-regulation of senescence-associated genes DEC1 and GLB1. Accelerated senescence following GAPDH depletion results from compromised glycolysis and energy crisis leading to the sustained AMPK activation via phosphorylation of {alpha} subunit at Thr172. Our findings demonstrate that GAPDH depletion switches human tumor cells to senescent phenotype via AMPK network, in the absence of DNA damage. Rescue experiments using metabolic and genetic models confirmed that GAPDH has important regulatory functions linking the energy metabolism and the cell cycle networks. Induction of senescence in LKB1-deficient non-small cell lung cancer cells via GAPDH depletion suggests a novel strategy to control tumor cell proliferation.

  16. Stratigraphic placement and age of modern humans from Kibish, Ethiopia.

    PubMed

    McDougall, Ian; Brown, Francis H; Fleagle, John G

    2005-02-17

    In 196