Sample records for accelerated hypofractionated radiation

  1. Hypofractionated radiation therapy for prostate cancer: biologic and technical considerations

    PubMed Central

    Sanfilippo, Nicholas J; Cooper, Benjamin T

    2014-01-01

    The optimal radiation schedule for the curative treatment of prostate cancer is not known. The dose-response of tumors and normal tissues to fractionated irradiation can be described according to a parameter called the alpha-beta ratio (α/β). In the past several years numerous reports have been published that suggest that the alpha-beta ratio for prostate cancer may be quite low; between 1 and 3. If this hypothesis is true, then a radiation therapy schedule that employs less frequent and larger fractions, termed hypofractionation, may be more efficacious. Multiple randomized trials have been conducted comparing moderate (less than 5 Gy/day) hypofractionated radiation therapy and standard radiation therapy in men with prostate cancer. In the majority of these studies the moderate hypofractionated arm had equivalent efficacy with a similar or improved side effect profile. One area to use caution may be in patients with compromised (IPSS > 12) urinary function at baseline due to an increase in urinary toxicity observed in patients treated with hypofractionated radiation in one study. Extreme hypofractionation (greater than or equal to 5 Gy/day), is currently being compared in a randomized trial. Early prospectively collected data from multiple institutions demonstrates efficacy and toxicity that compares favorably with historical controls. The cost savings from hypofractionation could be profound on a national level and only increases the necessity of testing hypofractionated treatment schedules. Long term data and future trials will help radiation oncologists determine the ideal fractionation scheme based on cost, efficacy, and toxicity. PMID:25606574

  2. Hypofractionated Radiation Therapy for Breast Ductal Carcinoma In Situ

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hathout, Lara; Hijal, Tarek; Théberge, Valérie

    2013-12-01

    Purpose: Conventional radiation therapy (RT) administered in 25 fractions after breast-conserving surgery (BCS) is the standard treatment for ductal carcinoma in situ (DCIS) of the breast. Although accelerated hypofractionated regimens in 16 fractions have been shown to be equivalent to conventional RT for invasive breast cancer, few studies have reported results of using hypofractionated RT in DCIS. Methods and Materials: In this multicenter collaborative effort, we retrospectively reviewed the records of all women with DCIS at 3 institutions treated with BCS followed by hypofractionated whole-breast RT (WBRT) delivered in 16 fractions. Results: Between 2003 and 2010, 440 patients with DCISmore » underwent BCS followed by hypofractionated WBRT in 16 fractions for a total dose of 42.5 Gy (2.66 Gy per fraction). Boost RT to the surgical bed was given to 125 patients (28%) at a median dose of 10 Gy in 4 fractions (2.5 Gy per fraction). After a median follow-up time of 4.4 years, 14 patients had an ipsilateral local relapse, resulting in a local recurrence-free survival of 97% at 5 years. Positive surgical margins, high nuclear grade, age less than 50 years, and a premenopausal status were all statistically associated with an increased occurrence of local recurrence. Tumor hormone receptor status, use of adjuvant hormonal therapy, and administration of additional boost RT did not have an impact on local control in our cohort. On multivariate analysis, positive margins, premenopausal status, and nuclear grade 3 tumors had a statistically significant worse local control rate. Conclusions: Hypofractionated RT using 42.5 Gy in 16 fractions provides excellent local control for patients with DCIS undergoing BCS.« less

  3. High-dose accelerated hypofractionated three-dimensional conformal radiotherapy (at 3 Gy/fraction) with concurrent vinorelbine and carboplatin chemotherapy in locally advanced non-small-cell lung cancer: a feasibility study.

    PubMed

    Liu, Yue-E; Lin, Qiang; Meng, Fan-Jie; Chen, Xue-Ji; Ren, Xiao-Cang; Cao, Bin; Wang, Na; Zong, Jie; Peng, Yu; Ku, Ya-Jun; Chen, Yan

    2013-08-11

    Increasing the radiotherapy dose can result in improved local control for non-small-cell lung cancer (NSCLC) and can thereby improve survival. Accelerated hypofractionated radiotherapy can expose tumors to a high dose of radiation in a short period of time, but the optimal treatment regimen remains unclear. The purpose of this study was to evaluate the feasibility of utilizing high-dose accelerated hypofractionated three-dimensional conformal radiotherapy (at 3 Gy/fraction) with concurrent vinorelbine (NVB) and carboplatin (CBP) chemotherapy for the treatment of local advanced NSCLC. Untreated patients with unresectable stage IIIA/IIIB NSCLC or patients with a recurrence of NSCLC received accelerated hypofractionated three-dimensional conformal radiotherapy. The total dose was greater than or equal to 60 Gy. The accelerated hypofractionated radiotherapy was conducted once daily at 3 Gy/fraction with 5 fractions per week, and the radiotherapy was completed in 5 weeks. In addition to radiotherapy, the patients also received at least 1 cycle of a concurrent two-drug chemotherapy regimen of NVB and CBP. A total of 26 patients (19 previously untreated cases and 7 cases of recurrent disease) received 60Gy-75Gy radiotherapy with concurrent chemotherapy. All of the patients underwent evaluations for toxicity and preliminary therapeutic efficacy. There were no treatment-related deaths within the entire patient group. The major acute adverse reactions were radiation esophagitis (88.5%) and radiation pneumonitis (42.3%). The percentages of grade III acute radiation esophagitis and grade III radiation pneumonitis were 15.4% and 7.7%, respectively. Hematological toxicities were common and did not significantly affect the implementation of chemoradiotherapy after supportive treatment. Two patients received high dose of 75 Gy had grade III late esophageal toxicity, and none had grade IV and above. Grade III and above late lung toxicity did not occur. High-dose accelerated

  4. High-dose accelerated hypofractionated three-dimensional conformal radiotherapy (at 3 Gy/fraction) with concurrent vinorelbine and carboplatin chemotherapy in locally advanced non-small-cell lung cancer: a feasibility study

    PubMed Central

    2013-01-01

    Background Increasing the radiotherapy dose can result in improved local control for non-small-cell lung cancer (NSCLC) and can thereby improve survival. Accelerated hypofractionated radiotherapy can expose tumors to a high dose of radiation in a short period of time, but the optimal treatment regimen remains unclear. The purpose of this study was to evaluate the feasibility of utilizing high-dose accelerated hypofractionated three-dimensional conformal radiotherapy (at 3 Gy/fraction) with concurrent vinorelbine (NVB) and carboplatin (CBP) chemotherapy for the treatment of local advanced NSCLC. Methods Untreated patients with unresectable stage IIIA/IIIB NSCLC or patients with a recurrence of NSCLC received accelerated hypofractionated three-dimensional conformal radiotherapy. The total dose was greater than or equal to 60 Gy. The accelerated hypofractionated radiotherapy was conducted once daily at 3 Gy/fraction with 5 fractions per week, and the radiotherapy was completed in 5 weeks. In addition to radiotherapy, the patients also received at least 1 cycle of a concurrent two-drug chemotherapy regimen of NVB and CBP. Results A total of 26 patients (19 previously untreated cases and 7 cases of recurrent disease) received 60Gy-75Gy radiotherapy with concurrent chemotherapy. All of the patients underwent evaluations for toxicity and preliminary therapeutic efficacy. There were no treatment-related deaths within the entire patient group. The major acute adverse reactions were radiation esophagitis (88.5%) and radiation pneumonitis (42.3%). The percentages of grade III acute radiation esophagitis and grade III radiation pneumonitis were 15.4% and 7.7%, respectively. Hematological toxicities were common and did not significantly affect the implementation of chemoradiotherapy after supportive treatment. Two patients received high dose of 75 Gy had grade III late esophageal toxicity, and none had grade IV and above. Grade III and above late lung toxicity did not occur

  5. Accelerated hypofractionated three-dimensional conformal radiation therapy (3 Gy/fraction) combined with concurrent chemotherapy for patients with unresectable stage III non-small cell lung cancer: preliminary results of an early terminated phase II trial.

    PubMed

    Ren, Xiao-Cang; Wang, Quan-Yu; Zhang, Rui; Chen, Xue-Ji; Wang, Na; Liu, Yue-E; Zong, Jie; Guo, Zhi-Jun; Wang, Dong-Ying; Lin, Qiang

    2016-04-23

    Increasing the biological effective dose (BED) of radiotherapy for non-small cell lung cancer (NSCLC) can increase local control rates and improve overall survival. Compared with conventional fractionated radiotherapy, accelerated hypofractionated radiotherapy can yield higher BED, shorten the total treatment time, and theoretically obtain better efficacy. However, currently, there is no optimal hypofractionated radiotherapy regimen. Based on phase I trial results, we performed this phase II trial to further evaluate the safety and preliminary efficacy of accelerated hypofractionated three-dimensional conformal radiation therapy(3-DCRT) combined with concurrent chemotherapy for patients with unresectable stage III NSCLC. Patients with previously untreated unresectable stage III NSCLC received 3-DCRT with a total dose of 69 Gy, delivered at 3 Gy per fraction, once daily, five fractions per week, completed within 4.6 weeks. At the same time, platinum doublet chemotherapy was applied. After 12 patients were enrolled in the group, the trial was terminated early. There were five cases of grade III radiation esophagitis, of which four cases completed the radiation doses of 51 Gy, 51 Gy, 54 Gy, and 66 Gy, and one case had 16 days of radiation interruption. The incidence of grade III acute esophagitis in patients receiving an irradiation dose per fraction ≥2.7 Gy on the esophagus was 83.3% (5/6). The incidence of symptomatic grade III radiation pneumonitis among the seven patients who completed 69 Gy according to the plan was 28.6% (2/7). The median local control (LC) and overall survival (OS) were not achieved; the 1-year LC rate was 59.3%, and the 1-year OS rate was 78.6%. For unresectable stage III NSCLC, the accelerated hypofractionated radiotherapy with a total dose of 69 Gy (3 Gy/f) combined with concurrent chemotherapy might result in severe radiation esophagitis and pneumonitis to severely affect the completion of the radiotherapy. Therefore, we considered that

  6. The Impact of Radiation Oncologists on the Early Adoption of Hypofractionated Radiation Therapy for Early-Stage Breast Cancer.

    PubMed

    Boero, Isabel J; Gillespie, Erin F; Hou, Jiayi; Paravati, Anthony J; Kim, Ellen; Einck, John P; Yashar, Catheryn; Mell, Loren K; Murphy, James D

    2017-03-01

    Despite multiple randomized trials showing the efficacy of hypofractionated radiation therapy in early-stage breast cancer, the United States has been slow to adopt this treatment. The goal of this study was to evaluate the impact of individual radiation oncologists on the early adoption of hypofractionated radiation therapy for early-stage breast cancer. We identified 22,233 Medicare beneficiaries with localized breast cancer that was diagnosed from 2004 to 2011 who underwent breast-conserving surgery with adjuvant radiation. Multilevel, multivariable logistic models clustered by radiation oncologist and geographic practice area were used to determine the impact of the provider and geographic region on the likelihood of receiving hypofractionated compared with standard fractionated radiation therapy while controlling for a patient's clinical and demographic covariates. Odds ratios (OR) describe the impact of demographic or clinical covariates, and the median OR (MOR) describes the relative impact of the individual radiation oncologist and geographic region on the likelihood of undergoing hypofractionated radiation therapy. Among the entire cohort, 2333 women (10.4%) were treated with hypofractionated radiation therapy, with unadjusted rates ranging from 0.0% in the bottom quintile of radiation oncologists to 30.4% in the top quintile. Multivariable analysis found that the individual radiation oncologist (MOR 3.08) had a greater impact on the use of hypofractionation than did geographic region (MOR 2.10) or clinical and demographic variables. The impact of the provider increased from the year 2004 to 2005 (MOR 2.82) to the year 2010 to 2011 (MOR 3.16) despite the publication of long-term randomized trial results in early 2010. Male physician and radiation oncologists treating the highest volume of breast cancer patients were less likely to perform hypofractionation (P<.05). The individual radiation oncologist strongly influenced the likelihood of a patient

  7. Moderately hypofractionated conformal radiation treatment of thoracic esophageal carcinoma.

    PubMed

    Ma, Jin-Bo; Wei, Lin; Chen, Er-Cheng; Qin, Guang; Song, Yi-Peng; Chen, Xiang-Ming; Hao, Chuan-Guo

    2012-01-01

    To prospectively assess the efficacy and safety of moderately hypofractionated conformal radiotherapy in patients with thoracic esophageal cancer. From Sept. 2002 to Oct. 2005, 150 eligible patients with T2-4N0-1M0 stage thoracic esophageal squamous cell cancers were enrolled to receive either conventional fractionated radiation (CFR) or moderately hypofractionated radiation (MHR) with a three- dimensional conformal radiation technique. Of the total, 74 received moderately hypofractionated radiation with total dose of 54-60 Gy/18-20 fractions for 3.5-4 weeks in the MHR arm, and 76 received conventional radiation with total dose of 60 Gy/30 fractions for 6 weeks in the CFR arm. Concurrent chemotherapy comprised of paclitaxel and cisplatin. Safety was evaluated, and local control and overall survival rates were calculated. Statistically significant differences between the CFR versus MHR arms were observed in local/regional failure rate (47.3% v 27.0%, P=0.034) and the percentage of patients with persistent local disease (26.3% v 10.8%, P=0.012). But 3 and 5-year overall survival rates (43.2%, 38.8% v 38.2%, 28.0%, respectively) were not different between the two arms (P=0.268). There were no significant differences in the incidences of grade 3 or higher acute toxicities (66.3% v 50.0%) and late complications rates (27.0% v 22.4%) between the MHR and CFR arms. Moderately hypofractionated, three-dimensional radiation treatment could improve the local control rate of esophageal cancer and potentially increase patient survival.

  8. Hypofractionated stereotactic radiation therapy in three to five fractions for vestibular schwannoma.

    PubMed

    Morimoto, Masahiro; Yoshioka, Yasuo; Kotsuma, Tadayuki; Adachi, Kana; Shiomi, Hiroya; Suzuki, Osamu; Seo, Yuji; Koizumi, Masahiko; Kagawa, Naoki; Kinoshita, Manabu; Hashimoto, Naoya; Ogawa, Kazuhiko

    2013-08-01

    To retrospectively examine the outcomes of hypofractionated stereotactic radiation therapy in three to five fractions for vestibular schwannomas. Twenty-five patients with 26 vestibular schwannomas were treated with hypofractionated stereotactic radiation therapy using a CyberKnife. The vestibular schwannomas of 5 patients were associated with type II neurofibromatosis. The median follow-up time was 80 months (range: 6-167); the median planning target volume was 2.6 cm(3) (0.3-15.4); and the median prescribed dose (≥D90) was 21 Gy in three fractions (18-25 Gy in three to five fractions). Progression was defined as ≥2 mm 3-dimensional post-treatment tumor enlargement excluding transient expansion. Progression or any death was counted as an event in progression-free survival rates, whereas only progression was counted in progression-free rates. The 7-year progression-free survival and progression-free rates were 78 and 95%, respectively. Late adverse events (≥3 months) with grades based on Common Terminology Criteria for Adverse Events, v4.03 were observed in 6 patients: Grade 3 hydrocephalus in one patient, Grade 2 facial nerve disorders in two and Grade 1-2 tinnitus in three. In total, 12 out of 25 patients maintained pure tone averages ≤50 dB before hypofractionated stereotactic radiation therapy, and 6 of these 12 patients (50%) maintained pure tone averages at this level at the final audiometric follow-up after hypofractionated stereotactic radiation therapy. However, gradient deterioration of pure tone average was observed in 11 of these 12 patients. The mean pure tone averages before hypofractionated stereotactic radiation therapy and at the final follow-up for the aforementioned 12 patients were 29.8 and 57.1 dB, respectively. Treating vestibular schwannomas with hypofractionated stereotactic radiation therapy in three to five fractions may prevent tumor progression with tolerable toxicity. However, gradient deterioration of pure tone average was

  9. Whole-Pelvic Nodal Radiation Therapy in the Context of Hypofractionation for High-Risk Prostate Cancer Patients: A Step Forward

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaidar-Person, Orit; Roach, Mack; Créhange, Gilles, E-mail: gcrehange@cgfl.fr

    2013-07-15

    Given the low α/β ratio of prostate cancer, prostate hypofractionation has been tested through numerous clinical studies. There is a growing body of literature suggesting that with high conformal radiation therapy and even with more sophisticated radiation techniques, such as high-dose-rate brachytherapy or image-guided intensity modulated radiation therapy, morbidity associated with shortening overall treatment time with higher doses per fraction remains low when compared with protracted conventional radiation therapy to the prostate only. In high-risk prostate cancer patients, there is accumulating evidence that either dose escalation to the prostate or hypofractionation may improve outcome. Nevertheless, selected patients who have amore » high risk of lymph node involvement may benefit from whole-pelvic radiation therapy (WPRT). Although combining WPRT with hypofractionated prostate radiation therapy is feasible, it remains investigational. By combining modern advances in radiation oncology (high-dose-rate prostate brachytherapy, intensity modulated radiation therapy with an improved image guidance for soft-tissue sparing), it is hypothesized that WPRT could take advantage of recent results from hypofractionation trials. Moreover, the results from hypofractionation trials raise questions as to whether hypofractionation to pelvic lymph nodes with a high risk of occult involvement might improve the outcomes in WPRT. Although investigational, this review discusses the challenging idea of WPRT in the context of hypofractionation for patients with high-risk prostate cancer.« less

  10. Image Guided Hypofractionated Postprostatectomy Intensity Modulated Radiation Therapy for Prostate Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lewis, Stephen L.; Patel, Pretesh; Song, Haijun

    2016-03-01

    Purpose: Hypofractionated radiation therapy (RT) has promising long-term biochemical relapse-free survival (bRFS) with comparable toxicity for definitive treatment of prostate cancer. However, data reporting outcomes after adjuvant and salvage postprostatectomy hypofractionated RT are sparse. Therefore, we report the toxicity and clinical outcomes after postprostatectomy hypofractionated RT. Methods and Materials: From a prospectively maintained database, men receiving image guided hypofractionated intensity modulated RT (HIMRT) with 2.5-Gy fractions constituted our study population. Androgen deprivation therapy was used at the discretion of the radiation oncologist. Acute toxicities were graded according to the Common Terminology Criteria for Adverse Events version 4.0. Late toxicities weremore » scored using the Radiation Therapy Oncology Group/European Organization for Research and Treatment of Cancer scale. Biochemical recurrence was defined as an increase of 0.1 in prostate-specific antigen (PSA) from posttreatment nadir or an increase in PSA despite treatment. The Kaplan-Meier method was used for the time-to-event outcomes. Results: Between April 2008 and April 2012, 56 men received postoperative HIMRT. The median follow-up time was 48 months (range, 21-67 months). Thirty percent had pre-RT PSA <0.1; the median pre-RT detectable PSA was 0.32 ng/mL. The median RT dose was 65 Gy (range, 57.5-65 Gy). Ten patients received neoadjuvant and concurrent hormone therapy. Posttreatment acute urinary toxicity was limited. There was no acute grade 3 toxicity. Late genitourinary (GU) toxicity of any grade was noted in 52% of patients, 40% of whom had pre-RT urinary incontinence. The 4-year actuarial rate of late grade 3 GU toxicity (exclusively gross hematuria) was 28% (95% confidence interval [CI], 16%-41%). Most grade 3 GU toxicity resolved; only 7% had persistent grade ≥3 toxicity at the last follow-up visit. Fourteen patients experienced biochemical

  11. Choosing Wisely? Patterns and Correlates of the Use of Hypofractionated Whole-Breast Radiation Therapy in the State of Michigan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jagsi, Reshma, E-mail: rjagsi@med.umich.edu; Griffith, Kent A.; Heimburger, David

    Purpose: Given evidence from randomized trials that have established the non-inferiority of more convenient and less costly courses of hypofractionated radiotherapy to the whole breast in selected breast cancer patients who receive lumpectomy, we sought to investigate the use of hypofractionated radiation therapy and factors associated with its use in a consortium of radiation oncology practices in Michigan. We sought to determine the extent to which variation in use occurs at the physician or practice level versus the extent to which use reflects individualization based on potentially relevant patient characteristics (such as habitus, age, chemotherapy receipt, or laterality). Methods andmore » Materials: We evaluated associations between receipt of hypofractionated radiation therapy and various patient, provider, and practice characteristics in a multilevel model. Results: Of 1477 patients who received lumpectomy and whole-breast radiation therapy and were registered by the Michigan Radiation Oncology Quality Consortium (MROQC) from October 2011 to December 2013, 913 had T1-2, N0 breast cancer. Of these 913, 283 (31%) received hypofractionated radiation therapy. Among the 13 practices, hypofractionated radiation therapy use ranged from 2% to 80%. On multilevel analysis, 51% of the variation in the rate of hypofractionation was attributable to the practice level, 21% to the provider level, and 28% to the patient level. On multivariable analysis, hypofractionation was more likely in patients who were older (odds ratio [OR] 2.16 for age ≥50 years, P=.007), less likely in those with larger body habitus (OR 0.52 if separation between tangent entry and exit ≥25 cm, P=.002), and more likely without chemotherapy receipt (OR 3.82, P<.001). Hypofractionation use was not higher in the last 6 months analyzed: 79 of 252 (31%) from June 2013 to December 2013 and 204 of 661 (31%) from October 2011 to May 2013 (P=.9). Conclusions: Hypofractionated regimens of whole

  12. The Pattern of Use of Hypofractionated Radiation Therapy for Early-Stage Breast Cancer in New South Wales, Australia, 2008 to 2012

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Delaney, Geoff P., E-mail: Geoff.delaney@swsahs.nsw.gov.au; Collaboration for Cancer Outcomes Research and Evaluation, University of New South Wales, Sydney; Ingham Health and Medical Research Institute, Sydney

    Purpose: Increasing phase 3 evidence has been published about the safety and efficacy of hypofractionated radiation therapy, in comparison with standard fractionation, in early-stage, node-negative breast cancer. However, uptake of hypofractionation has not been universal. The aim of this study was to investigate the hypofractionation regimen variations in practice across public radiation oncology facilities in New South Wales (NSW). Methods and Materials: Patients with early breast cancer registered in the NSW Clinical Cancer Registry who received radiation therapy for early-stage breast cancer in a publicly funded radiation therapy department between 2008 and 2012 were identified. Data extracted and analyzed includedmore » dose and fractionation type, patient age at first fraction, address (for geocoding), year of diagnosis, year of treatment, laterality, and department of treatment. A logistic regression model was used to identify factors associated with fractionation type. Results: Of the 5880 patients fulfilling the study criteria, 3209 patients (55%) received standard fractionation and 2671 patients (45%) received hypofractionation. Overall, the use of hypofractionation increased from 37% in 2008 to 48% in 2012 (range, 7%-94% across departments). Treatment facility and the radiation oncologist prescribing the treatment were the strongest independent predictors of hypofractionation. Weaker associations were also found for age, tumor site laterality, year of treatment, and distance to facility. Conclusions: Hypofractionated regimens of whole breast radiation therapy have been variably administered in the adjuvant setting in NSW despite the publication of long-term trial results and consensus guidelines. Some factors that predict the use of hypofractionation are not based on guideline recommendations, including lower rates of left-sided treatment and increasing distance from a treatment facility.« less

  13. Geographic Disparity in the Use of Hypofractionated Radiation Therapy Among Elderly Women Undergoing Breast Conservation for Invasive Breast Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gillespie, Erin F.; Matsuno, Rayna K.; Xu, Beibei

    Purpose: To evaluate geographic heterogeneity in the delivery of hypofractionated radiation therapy (RT) for breast cancer among Medicare beneficiaries across the United States. Methods and Materials: We identified 190,193 patients from the Centers for Medicare and Medicaid Services Chronic Conditions Warehouse. The study included patients aged >65 years diagnosed with invasive breast cancer treated with breast conservation surgery followed by radiation diagnosed between 2000 and 2012. We analyzed data by hospital referral region based on patient residency ZIP code. The proportion of women who received hypofractionated RT within each region was analyzed over the study period. Multivariable logistic regression models identified predictors ofmore » hypofractionated RT. Results: Over the entire study period we found substantial geographic heterogeneity in the use of hypofractionated RT. The proportion of women receiving hypofractionated breast RT in individual hospital referral regions varied from 0% to 61%. We found no correlation between the use of hypofractionated RT and urban/rural setting or general geographic region. The proportion of hypofractionated RT increased in regions with higher density of radiation oncologists, as well as lower total Medicare reimbursements. Conclusions: This study demonstrates substantial geographic heterogeneity in the use of hypofractionated RT among elderly women with invasive breast cancer treated with lumpectomy in the United States. This heterogeneity persists despite clinical data from multiple randomized trials proving efficacy and safety compared with standard fractionation, and highlights possible inefficiency in health care delivery.« less

  14. Hypofractionation vs Conventional Radiation Therapy for Newly Diagnosed Diffuse Intrinsic Pontine Glioma: A Matched-Cohort Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Janssens, Geert O., E-mail: g.janssens@rther.umcn.nl; Jansen, Marc H.; Lauwers, Selmer J.

    2013-02-01

    Purpose: Despite conventional radiation therapy, 54 Gy in single doses of 1.8 Gy (54/1.8 Gy) over 6 weeks, most children with diffuse intrinsic pontine glioma (DIPG) will die within 1 year after diagnosis. To reduce patient burden, we investigated the role of hypofractionation radiation therapy given over 3 to 4 weeks. A 1:1 matched-cohort analysis with conventional radiation therapy was performed to assess response and survival. Methods and Materials: Twenty-seven children, aged 3 to 14, were treated according to 1 of 2 hypofractionation regimens over 3 to 4 weeks (39/3 Gy, n=16 or 44.8/2.8 Gy, n=11). All patients had symptomsmore » for {<=}3 months, {>=}2 signs of the neurologic triad (cranial nerve deficit, ataxia, long tract signs), and characteristic features of DIPG on magnetic resonance imaging. Twenty-seven patients fulfilling the same diagnostic criteria and receiving at least 50/1.8 to 2.0 Gy were eligible for the matched-cohort analysis. Results: With hypofractionation radiation therapy, the overall survival at 6, 9, and 12 months was 74%, 44%, and 22%, respectively. Progression-free survival at 3, 6, and 9 months was 77%, 43%, and 12%, respectively. Temporary discontinuation of steroids was observed in 21 of 27 (78%) patients. No significant difference in median overall survival (9.0 vs 9.4 months; P=.84) and time to progression (5.0 vs 7.6 months; P=.24) was observed between hypofractionation vs conventional radiation therapy, respectively. Conclusions: For patients with newly diagnosed DIPG, a hypofractionation regimen, given over 3 to 4 weeks, offers equal overall survival with less treatment burden compared with a conventional regimen of 6 weeks.« less

  15. Adoption of Hypofractionated Radiation Therapy for Breast Cancer After Publication of Randomized Trials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jagsi, Reshma, E-mail: rjagsi@med.umich.edu; Falchook, Aaron D.; Hendrix, Laura H.

    2014-12-01

    Purpose: Large randomized trials have established the noninferiority of shorter courses of “hypofractionated” radiation therapy (RT) to the whole breast compared to conventional courses using smaller daily doses in the adjuvant treatment of selected breast cancer patients undergoing lumpectomy. Hypofractionation is more convenient and less costly. Therefore, we sought to determine uptake of hypofractionated breast RT over time. Methods and Materials: In the Surveillance, Epidemiology, and End Results (SEER)-Medicare-linked database, we identified 16,096 women with node-negative breast cancer and 4269 with ductal carcinoma in situ (DCIS) who received lumpectomy followed by more than 12 fractions of RT between 2004 andmore » 2010. Based on Medicare claims, we determined the number of RT treatments given and grouped patients into those receiving hypofractionation (13-24) or those receiving conventional fractionation (≥25). We also determined RT technique (intensity modulated RT or not) using Medicare claims. We evaluated patterns and correlates of hypofractionation receipt using bivariate and multivariable analyses. Results: Hypofractionation use was similar in patients with DCIS and those with invasive disease. Overall, the use of hypofractionation increased from 3.8% in 2006 to 5.4% in 2007, to 9.4% in 2008, and to 13.6% in 2009 and 2010. Multivariable analysis showed increased use of hypofractionation in recent years and in patients with older age, smaller tumors, increased comorbidity, higher regional education, and Western SEER regions. However, even in patients over the age of 80, the hypofractionation rate in 2009 to 2010 was only 25%. Use of intensity modulated RT (IMRT) also increased over time (from 9.4% in 2004 to 22.7% in 2009-2010) and did not vary significantly between patients receiving hypofractionation and those receiving traditional fractionation. Conclusions: Hypofractionation use increased among low-risk older US breast cancer patients with

  16. Long-term Cardiac Mortality After Hypofractionated Radiation Therapy in Breast Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tjessem, Kristin Holm, E-mail: krtjes@ous-hf.no; Johansen, Safora; Malinen, Eirik

    Purpose: To explore very-long-term mortality from ischemic heart disease (IHD) after locoregional radiation therapy of breast cancer (BC) in relation to degree of hypofractionation and other treatment variables. Methods and Materials: Two hypofractionated regimens used for locoregional radiation therapy for BC from 1975 to 1991 were considered. Patients received 4.3 Gy × 2/week (10 fractions; target dose 43 Gy; n=1107) or 2.5 Gy × 5/week (20 fractions; target dose 50 Gy; n=459). To estimate cardiac doses, radiation fields were reconstructed in a planning system. Time to death from IHD was the endpoint, comparing the groups with each other and withmore » age-matched, cancer-free control individuals, modeled with the Cox proportional hazards model. Results: Patients given 4.3 Gy × 10 had an increased risk of dying of IHD compared with both the 2.5 Gy group (hazard ratio [HR] = 2.37; 95% confidence interval [CI]: 1.06-5.32; P=.036) and the control group (HR = 1.59; 95% CI: 1.13-2.23; P=.008). Photon beams for parasternal fields gave an increased risk of dying of IHD compared with electron beams (HR = 2.56; 95% CI: 1.12-5.84; P=.025). Multivariate analysis gave an increased risk for the 4.3-Gy versus 2.5-Gy regimen with borderline significance (HR = 2.90; 95% CI: 0.97-8.79; P=.057) but not for parasternal irradiation. Conclusions: The degree of hypofractionation and parasternal photon beams contributed to increased cardiac mortality in this patient cohort. Differences emerged after 12 to 15 years, indicating the need of more studies with observation time of 2 decades.« less

  17. On the importance of prompt oxygen changes for hypofractionated radiation treatments.

    PubMed

    Kissick, Michael; Campos, David; van der Kogel, Albert; Kimple, Randall

    2013-10-21

    This discussion is motivated by observations of prompt oxygen changes occurring prior to a significant number of cancer cells dying (permanently stopping their metabolic activity) from therapeutic agents like large doses of ionizing radiation. Such changes must be from changes in the vasculature that supplies the tissue or from the metabolic changes in the tissue itself. An adapted linear-quadratic treatment is used to estimate the cell survival variation magnitudes from repair and reoxygenation from a two-fraction treatment in which the second fraction would happen prior to significant cell death from the first fraction, in the large fraction limit. It is clear the effects of oxygen changes are likely to be the most significant factor for hypofractionation because of large radiation doses. It is a larger effect than repair. Optimal dose timing should be determined by the peak oxygen timing. A call is made to prioritize near real time measurements of oxygen dynamics in tumors undergoing hypofractionated treatments in order to make these treatments adaptable and patient-specific.

  18. β1 integrin- and JNK-dependent tumor growth upon hypofractionated radiation.

    PubMed

    Sayeed, Aejaz; Lu, Huimin; Liu, Qin; Deming, David; Duffy, Alexander; McCue, Peter; Dicker, Adam P; Davis, Roger J; Gabrilovich, Dmitry; Rodeck, Ulrich; Altieri, Dario C; Languino, Lucia R

    2016-08-16

    Radiation therapy is an effective cancer treatment modality although tumors invariably become resistant. Using the transgenic adenocarcinoma of mouse prostate (TRAMP) model system, we report that a hypofractionated radiation schedule (10 Gy/day for 5 consecutive days) effectively blocks prostate tumor growth in wild type (β1wt /TRAMP) mice as well as in mice carrying a conditional ablation of β1 integrins in the prostatic epithelium (β1pc-/- /TRAMP). Since JNK is known to be suppressed by β1 integrins and mediates radiation-induced apoptosis, we tested the effect of SP600125, an inhibitor of c-Jun amino-terminal kinase (JNK) in the TRAMP model system. Our results show that SP600125 negates the effect of radiation on tumor growth in β1pc-/- /TRAMP mice and leads to invasive adenocarcinoma. These effects are associated with increased focal adhesion kinase (FAK) expression and phosphorylation in prostate tumors in β1pc-/- /TRAMP mice. In marked contrast, radiation-induced tumor growth suppression, FAK expression and phosphorylation are not altered by SP600125 treatment of β1wt /TRAMP mice. Furthermore, we have reported earlier that abrogation of insulin-like growth factor receptor (IGF-IR) in prostate cancer cells enhances the sensitivity to radiation. Here we further explore the β1/IGF-IR crosstalk and report that β1 integrins promote cell proliferation partly by enhancing the expression of IGF-IR. In conclusion, we demonstrate that β1 integrin-mediated inhibition of JNK signaling modulates tumor growth rate upon hypofractionated radiation.

  19. Treatment of advanced canine anal sac adenocarcinoma with hypofractionated radiation therapy: 77 cases (1999-2013).

    PubMed

    McQuown, B; Keyerleber, M A; Rosen, K; McEntee, M C; Burgess, K E

    2017-09-01

    Currently no standard of care exists for advanced, inoperable or metastatic anal sac adenocarcinoma (ASAC). The objective of this retrospective study was to assess the role of hypofractionated radiation therapy (RT) in 77 dogs with measurable ASAC. A total of 38% of dogs experienced a partial response to RT. For dogs presenting with clinical signs related to the tumour, improvement or resolution of signs was noted in 63%. For dogs presenting with hypercalcemia of malignancy, resolution was noted in 31% with RT alone and an additional 46% with radiation, prednisone, and/or bisphosphonates. Median overall survival was 329 days (range: 252-448 days). Median progression free survival was 289 days (range: 224-469). There was no difference in survival based on radiation protocol, use of chemotherapy, previous surgery or advanced stage. Radiation toxicities were mild and infrequent. Hypofractionated RT is well tolerated and is applicable in the treatment of advanced primary, locoregional or metastatic ASAC. © 2016 John Wiley & Sons Ltd.

  20. Phase 2 Study of Accelerated Hypofractionated Thoracic Radiation Therapy and Concurrent Chemotherapy in Patients With Limited-Stage Small-Cell Lung Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xia, Bing; Department of Radiation Oncology, Hangzhou Cancer Hospital, Hangzhou; Hong, Ling-Zhi

    Purpose: To prospectively investigate the efficacy and toxicity of accelerated hypofractionated thoracic radiation therapy (HypoTRT) combined with concurrent chemotherapy in the treatment of limited-stage small-cell lung cancer (LS-SCLC), with the hypothesis that both high radiation dose and short radiation time are important in this setting. Methods and Materials: Patients with previously untreated LS-SCLC, Eastern Cooperative Oncology Group performance status of 0 to 2, and adequate organ function were eligible. HypoTRT of 55 Gy at 2.5 Gy per fraction over 30 days was given on the first day of the second or third cycle of chemotherapy. An etoposide/cisplatin regimen was given to 4 tomore » 6 cycles. Patients who had a good response to initial treatment were offered prophylactic cranial irradiation. The primary endpoint was the 2-year progression-free survival rate. Results: Fifty-nine patients were enrolled from July 2007 through February 2012 (median age, 58 years; 86% male). The 2-year progression-free survival rate was 49.0% (95% confidence interval [CI] 35.3%-62.7%). Median survival time was 28.5 months (95% CI 9.0-48.0 months); the 2-year overall survival rate was 58.2% (95% CI 44.5%-71.9%). The 2-year local control rate was 76.4% (95% CI 63.7%-89.1%). The severe hematologic toxicities (grade 3 or 4) were leukopenia (32%), neutropenia (25%), and thrombocytopenia (15%). Acute esophagitis and pneumonitis of grade ≥3 occurred in 25% and 10% of the patients, respectively. Thirty-eight patients (64%) received prophylactic cranial irradiation. Conclusion: Our study showed that HypoTRT of 55 Gy at 2.5 Gy per fraction daily concurrently with etoposide/cisplatin chemotherapy has favorable survival and acceptable toxicity. This radiation schedule deserves further investigation in LS-SCLC.« less

  1. Normal tissue toxicity after small field hypofractionated stereotactic body radiation.

    PubMed

    Milano, Michael T; Constine, Louis S; Okunieff, Paul

    2008-10-31

    Stereotactic body radiation (SBRT) is an emerging tool in radiation oncology in which the targeting accuracy is improved via the detection and processing of a three-dimensional coordinate system that is aligned to the target. With improved targeting accuracy, SBRT allows for the minimization of normal tissue volume exposed to high radiation dose as well as the escalation of fractional dose delivery. The goal of SBRT is to minimize toxicity while maximizing tumor control. This review will discuss the basic principles of SBRT, the radiobiology of hypofractionated radiation and the outcome from published clinical trials of SBRT, with a focus on late toxicity after SBRT. While clinical data has shown SBRT to be safe in most circumstances, more data is needed to refine the ideal dose-volume metrics.

  2. Hypo-fractionated radiation, magnetic nanoparticle hyperthermia and a viral immunotherapy treatment of spontaneous canine cancer

    NASA Astrophysics Data System (ADS)

    Hoopes, P. Jack; Moodie, Karen L.; Petryk, Alicia A.; Petryk, James D.; Sechrist, Shawntel; Gladstone, David J.; Steinmetz, Nicole F.; Veliz, Frank A.; Bursey, Alicea A.; Wagner, Robert J.; Rajan, Ashish; Dugat, Danielle; Crary-Burney, Margaret; Fiering, Steven N.

    2017-02-01

    It has recently been shown that cancer treatments such as radiation and hyperthermia, which have conventionally been viewed to have modest immune based anti-cancer effects, may, if used appropriately stimulate a significant and potentially effective local and systemic anti-cancer immune effect (abscopal effect) and improved prognosis. Using eight spontaneous canine cancers (2 oral melanoma, 3 oral amelioblastomas and 1 carcinomas), we have shown that hypofractionated radiation (6 x 6 Gy) and/or magnetic nanoparticle hyperthermia (2 X 43°C / 45 minutes) and/or an immunogenic virus-like nanoparticle (VLP, 2 x 200 μg) are capable of delivering a highly effective cancer treatment that includes an immunogenic component. Two tumors received all three therapeutic modalities, one tumor received radiation and hyperthermia, two tumors received radiation and VLP, and three tumors received only mNP hyperthermia. The treatment regimen is conducted over a 14-day period. All patients tolerated the treatments without complication and have had local and distant tumor responses that significantly exceed responses observed following conventional therapy (surgery and/or radiation). The results suggest that both hypofractionated radiation and hyperthermia have effective immune responses that are enhanced by the intratumoral VLP treatment. Molecular data from these tumors suggest Heat Shock Protein (HSP) 70/90, calreticulin and CD47 are targets that can be exploited to enhance the local and systemic (abscopal effect) immune potential of radiation and hyperthermia cancer treatment.

  3. Dose painting to treat single-lobe prostate cancer with hypofractionated high-dose radiation using targeted external beam radiation: Is it feasible?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amini, Arya; Westerly, David C.; Waxweiler, Timothy V.

    Targeted focal therapy strategies for treating single-lobe prostate cancer are under investigation. In this planning study, we investigate the feasibility of treating a portion of the prostate to full-dose external beam radiation with reduced dose to the opposite lobe, compared with full-dose radiation delivered to the entire gland using hypofractionated radiation. For 10 consecutive patients with low- to intermediate-risk prostate cancer, 2 hypofractionated, single-arc volumetric-modulated arc therapy (VMAT) plans were designed. The first plan (standard hypofractionation regimen [STD]) included the entire prostate gland, treated to 70 Gy delivered in 28 fractions. The second dose painting plan (DP) encompassed the involvedmore » lobe treated to 70 Gy delivered in 28 fractions, whereas the opposing, uninvolved lobe received 50.4 Gy in 28 fractions. Mean dose to the opposing neurovascular bundle (NVB) was considerably lower for DP vs STD, with a mean dose of 53.9 vs 72.3 Gy (p < 0.001). Mean penile bulb dose was 18.6 Gy for DP vs 19.2 Gy for STD (p = 0.880). Mean rectal dose was 21.0 Gy for DP vs 22.8 Gy for STD (p = 0.356). Rectum V{sub 70} (the volume receiving ≥70 Gy) was 2.01% for DP vs 2.74% for STD (p = 0.328). Bladder V{sub 70} was 1.69% for DP vs 2.78% for STD (p = 0.232). Planning target volume (PTV) maximum dose points were 76.5 and 76.3 Gy for DP and STD, respectively (p = 0.760). This study demonstrates the feasibility of using VMAT for partial-lobe prostate radiation in patients with prostate cancer involving 1 lobe. Partial-lobe prostate plans appeared to spare adjacent critical structures including the opposite NVB.« less

  4. Ten-year results of accelerated hypofractionated adjuvant whole-breast radiation with concomitant boost to the lumpectomy cavity after conserving surgery for early breast cancer.

    PubMed

    Cante, Domenico; Petrucci, Edoardo; Sciacero, Piera; Piva, Cristina; Ferrario, Silvia; Bagnera, Silvia; Patania, Sebastiano; Mondini, Guido; Pasquino, Massimo; Casanova Borca, Valeria; Vellani, Giorgio; La Porta, Maria Rosa; Franco, Pierfrancesco

    2017-09-01

    Accelerated hypofractionated whole-breast radiotherapy (WBRT) is considered a standard therapeutic option for early breast cancer (EBC) in the postoperative setting after breast conservation (BCS). A boost to the lumpectomy cavity may further increase local control. We herein report on the 10-year results of a series of EBC patients treated after BCS with hypofractionated WBRT with a concomitant photon boost to the surgical bed over 4 weeks. Between 2005 and 2007, 178 EBC patients were treated with a basic course of radiotherapy consisting of 45 Gy to the whole breast in 20 fractions (2.25 Gy daily) with an additional boost dose of 0.25 Gy delivered concomitantly to the lumpectomy cavity, for an additional dose of 5 Gy. Median follow-up period was 117 months. At 10-year, overall, cancer-specific, disease-free survival and local control were 92.2% (95% CI 88.7-93.4%), 99.2% (95% CI 96.7-99.7%), 95.5% (95% CI 91.2-97.2%) and 97.3% (95% CI 94.5-98.9%), respectively. Only eight patients recurred. Four in-breast recurrences, two axillary node relapses and two metastatic localizations were observed. Fourteen patients died during the observation period due to other causes while breast cancer-related deaths were eight. At last follow-up, ≥G2 fibrosis and telangiectasia were seen in 7% and 5% of patients. No major lung and heart toxicities were observed. Cosmetic results were excellent/good in 87.8% of patients and fair/poor in 12.2%. Hypofractionated WBRT with concomitant boost to the lumpectomy cavity after BCS in EBC led to consistent clinical results at 10 years. Hence, it can be considered a valid treatment option in this setting.

  5. A systematic review of hypofractionation for primary management of prostate cancer.

    PubMed

    Koontz, Bridget F; Bossi, Alberto; Cozzarini, Cesare; Wiegel, Thomas; D'Amico, Anthony

    2015-10-01

    Technological advances in radiation therapy delivery have permitted the use of high-dose-per-fraction radiation therapy (RT) for early-stage prostate cancer (PCa). Level 1 evidence supporting the safety and efficacy of hypofractionated RT is evolving as this modality becomes more widely utilized and refined. To perform a systematic review of the current evidence on the safety and efficacy of hypofractionated RT for early-stage PCa and to provide in-context recommendations for current application of this technology. Embase, PubMed, and Scopus electronic databases were queried for English-language articles from January 1990 through June 2014. Prospective studies with a minimum of 50 patients were included. Separate consideration was made for studies involving moderate hypofractionation (doses of 2.5-4Gy per fraction) and extreme hypofractionation (5-10Gy in 4-7 fractions). Six relatively small superiority designed randomized trials of standard fractionation versus moderate hypofractionation in predominantly low- and intermediate-risk PCa have been published with follow-up ranging from 4 to 8 yr, noting similar biochemical control (5-yr freedom from biochemical failure in modern studies is >80% for low-risk and intermediate-risk patients) and late grade ≥2 genitourinary and gastrointestinal toxicities (between 2% and 20%). Noninferiority studies are pending. In prospective phase 2 studies, extreme hypofractionation has promising 2- to 5-yr biochemical control rates of >90% for low-risk patients. Results from a randomized trial are expected in 2015. Moderate hypofractionation has 5-yr data to date establishing safety compared with standard fractionation, but 10-yr outcomes and longer follow-up are needed to establish noninferiority for clinical effectiveness. Extreme hypofractionation is promising but as yet requires reporting of randomized data prior to application outside of a clinical protocol. Hypofractionation for prostate cancer delivers relatively high doses

  6. Rationale, conduct, and outcome using hypofractionated radiotherapy in prostate cancer

    PubMed Central

    Ritter, Mark

    2008-01-01

    Hypofractionated radiation therapy for prostate cancer has become of increasing interest with the recognition of a potential improvement in therapeutic ratio with treatments delivered in larger-sized fractions. In addition, the associated reduction in fraction number produces attractive cost and patient convenience advantages as well. A still limited but growing number of hypofractionation trials have reported acceptable short-term levels of toxicity and biochemical control, but most have insufficient follow-up to assure the long-term safety and efficacy of this approach. This situation will improve as many currently active trials mature, particularly several high value randomized trials. In contrast, extreme hypofractionation, with schedules delivering only on the order of 5 fractions, is truly in its infancy for prostate cancer, with extremely limited tolerance and efficacy information currently available. Several uncertainties in the radiobiology of hypofractionation mitigate for an organized, cautious investigational approach. The fractionation response (α/β ratio) of prostate cancers and, for that matter, late responding normal tissues, has yet to be rigorously defined. Additionally, the linear quadratic (LQ) model used in the design of hypofractionation schedules is subject to its own uncertainties, particularly with respect to the upper limit of fraction sizes for which it remains valid. Contemporary dose escalated radiation therapy is already highly effective, making it imperative that ongoing and future studies of hypofractionation be carried out in carefully designed, randomized clinical trials. Clinical validation permitting, the adaptation of hypofractionation as a standard of care could profoundly influence future management of localized prostate cancer. PMID:18725112

  7. Risk of Late Toxicity in Men Receiving Dose-Escalated Hypofractionated Intensity Modulated Prostate Radiation Therapy: Results From a Randomized Trial

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoffman, Karen E., E-mail: khoffman1@mdanderson.org; Voong, K. Ranh; Pugh, Thomas J.

    Objective: To report late toxicity outcomes from a randomized trial comparing conventional and hypofractionated prostate radiation therapy and to identify dosimetric and clinical parameters associated with late toxicity after hypofractionated treatment. Methods and Materials: Men with localized prostate cancer were enrolled in a trial that randomized men to either conventionally fractionated intensity modulated radiation therapy (CIMRT, 75.6 Gy in 1.8-Gy fractions) or to dose-escalated hypofractionated IMRT (HIMRT, 72 Gy in 2.4-Gy fractions). Late (≥90 days after completion of radiation therapy) genitourinary (GU) and gastrointestinal (GI) toxicity were prospectively evaluated and scored according to modified Radiation Therapy Oncology Group criteria. Results: 101 men receivedmore » CIMRT and 102 men received HIMRT. The median age was 68, and the median follow-up time was 6.0 years. Twenty-eight percent had low-risk, 71% had intermediate-risk, and 1% had high-risk disease. There was no difference in late GU toxicity in men treated with CIMRT and HIMRT. The actuarial 5-year grade ≥2 GU toxicity was 16.5% after CIMRT and 15.8% after HIMRT (P=.97). There was a nonsignificant numeric increase in late GI toxicity in men treated with HIMRT compared with men treated with CIMRT. The actuarial 5-year grade ≥2 GI toxicity was 5.1% after CIMRT and 10.0% after HIMRT (P=.11). In men receiving HIMRT, the proportion of rectum receiving 36.9 Gy, 46.2 Gy, 64.6 Gy, and 73.9 Gy was associated with the development of late GI toxicity (P<.05). The 5-year actuarial grade ≥2 GI toxicity was 27.3% in men with R64.6Gy ≥ 20% but only 6.0% in men with R64.6Gy < 20% (P=.016). Conclusions: Dose-escalated IMRT using a moderate hypofractionation regimen (72 Gy in 2.4-Gy fractions) can be delivered safely with limited grade 2 or 3 late toxicity. Minimizing the proportion of rectum that receives moderate and high dose decreases the risk of late rectal toxicity after this

  8. Radiobiology of hypofractionated stereotactic radiotherapy: what are the optimal fractionation schedules?

    PubMed Central

    Shibamoto, Yuta; Miyakawa, Akifumi; Otsuka, Shinya; Iwata, Hiromitsu

    2016-01-01

    In hypofractionated stereotactic radiotherapy (SRT), high doses per fraction are usually used and the dose delivery pattern is different from that of conventional radiation. The daily dose is usually given intermittently over a longer time compared with conventional radiotherapy. During prolonged radiation delivery, sublethal damage repair takes place, leading to the decreased effect of radiation. In in vivo tumors, however, this decrease in effect may be counterbalanced by rapid reoxygenation. Another issue related to hypofractionated SRT is the mathematical model for dose evaluation and conversion. The linear–quadratic (LQ) model and biologically effective dose (BED) have been suggested to be incorrect when used for hypofractionation. The LQ model overestimates the effect of high fractional doses of radiation. BED is particularly incorrect when used for tumor responses in vivo, since it does not take reoxygenation into account. Correction of the errors, estimated at 5–20%, associated with the use of BED is necessary when it is used for SRT. High fractional doses have been reported to exhibit effects against tumor vasculature and enhance host immunity, leading to increased antitumor effects. This may be an interesting topic that should be further investigated. Radioresistance of hypoxic tumor cells is more problematic in hypofractionated SRT, so trials of hypoxia-targeted agents are encouraged in the future. In this review, the radiobiological characteristics of hypofractionated SRT are summarized, and based on the considerations, we would like to recommend 60 Gy in eight fractions delivered three times a week for lung tumors larger than 2 cm in diameter. PMID:27006380

  9. Management of Mediastinal Relapse after Treatment with Stereotactic Body Radiotherapy or Accelerated Hypofractionated Radiotherapy for Stage I/II Non–Small-Cell Lung Cancer

    PubMed Central

    Kilburn, Jeremy M.; Lester, Scott C.; Lucas, John T.; Soike, Michael H.; Blackstock, A. William; Kearns, William T.; Hinson, William H.; Miller, Antonius A.; Petty, William J.; Munley, Michael T.; Urbanic, James J.

    2014-01-01

    Purpose/Objective(s) Regional failures occur in up to 15% of patients treated with stereotactic body radiotherapy (SBRT) for stage I/II lung cancer. This report focuses on the management of the unique scenario of isolated regional failures. Methods Patients treated initially with SBRT or accelerated hypo-fractionated radiotherapy were screened for curative intent treatment of isolated mediastinal failures (IMFs). Local control, regional control, progression-free survival, and distant control were estimated from the date of salvage treatment using the Kaplan–Meier method. Results Among 160 patients treated from 2002 to 2012, 12 suffered IMF and were amenable to salvage treatment. The median interval between treatments was 16 months (2–57 mo). Median salvage dose was 66 Gy (60–70 Gy). With a median follow-up of 10 months, the median overall survival was 15 months (95% confidence interval, 5.8–37 mo). When estimated from original treatment, the median overall survival was 38 months (95% confidence interval, 17–71 mo). No subsequent regional failures occurred. Distant failure was the predominant mode of relapse following salvage for IMF with a 2-year distant control rate of 38%. At the time of this analysis, three patients have died without recurrence while four are alive and no evidence of disease. High-grade toxicity was uncommon. Conclusions To our knowledge, this is first analysis of salvage mediastinal radiation after SBRT or accelerated hypofractionated radiotherapy in lung cancer. Outcomes appear similar to stage III disease at presentation. Distant failures were common, suggesting a role for concurrent or sequential chemotherapy. A standard full course of external beam radiotherapy is advisable in this unique clinical scenario. PMID:24736084

  10. The impact of toceranib, piroxicam and thalidomide with or without hypofractionated radiation therapy on clinical outcome in dogs with inflammatory mammary carcinoma.

    PubMed

    Rossi, F; Sabattini, S; Vascellari, M; Marconato, L

    2018-05-27

    In dogs, inflammatory mammary carcinoma is a clinicopathological entity characterized by rapid progression and aggressive behavior from onset of disease. Reported median survival time is short, with no effective treatment options. The aims of this prospective, noncontrolled clinical trial were to investigate outcome variables and safety profile of toceranib, thalidomide and piroxicam with or without hypofractionated radiation therapy in dogs with measurable histologically confirmed inflammatory mammary carcinoma that underwent a complete staging. Eighteen dogs were enrolled: 14 received medical treatment, and 4 were treated with hypofractionated radiation therapy and medical therapy. Overall, median time to progression was 34 days and median survival time was 109 days. In dogs treated with medical therapy, overall response rate was 21%, and clinical benefit rate (CBR) was 64%; median time to progression was 28 days and median survival time was 59 days. In dogs receiving medical therapy and undergoing radiation therapy, overall response rate and clinical benefit rate were 100%, with significantly longer time to progression (156 days) and survival time (180 days). Overall, treatment was well tolerated, with mild gastrointestinal and dermatological adverse events. Although the optimal treatment to this disease remains uncertain, the current approach consisting of systemic anti-angiogenic drugs with or without hypofractionated radiation therapy, provided clinical benefit in a significant proportion of dogs and should, therefore, be further explored. © 2018 John Wiley & Sons Ltd.

  11. Comparison of Radiation-Induced Normal Lung Tissue Density Changes for Patients From Multiple Institutions Receiving Conventional or Hypofractionated Treatments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Diot, Quentin, E-mail: quentin.diot@ucdenver.edu; Marks, Lawrence B.; Bentzen, Soren M.

    Purpose: To quantitatively assess changes in computed tomography (CT)–defined normal lung tissue density after conventional and hypofractionated radiation therapy (RT). Methods and Materials: The pre-RT and post-RT CT scans from 118 and 111 patients receiving conventional and hypofractionated RT, respectively, at 3 institutions were registered to each other and to the 3-dimensional dose distribution to quantify dose-dependent changes in normal lung tissue density. Dose-response curves (DRC) for groups of patients receiving conventional and hypofractionated RT were generated for each institution, and the frequency of density changes >80 Hounsfield Units (HU) was modeled depending on the fractionation type using a Probitmore » model for different follow-up times. Results: For the pooled data from all institutions, there were significant differences in the DRC between the conventional and hypofractionated groups; the respective doses resulting in 50% complication risk (TD{sub 50}) were 62 Gy (95% confidence interval [CI] 57-67) versus 36 Gy (CI 33-39) at <6 months, 48 Gy (CI 46-51) versus 31 Gy (CI 28-33) at 6-12 months, and 47 Gy (CI 45-49) versus 35 Gy (32-37) at >12 months. The corresponding m values (slope of the DRC) were 0.52 (CI 0.46-0.59) versus 0.31 (CI 0.28-0.34) at <6 months, 0.46 (CI 0.42-0.51) versus 0.30 (CI 0.26-0.34) at 6-12 months, and 0.45 (CI 0.42-0.50) versus 0.31 (CI 0.27-0.35) at >12 months (P<.05 for all comparisons). Conclusion: Compared with conventional fractionation, hypofractionation has a lower TD{sub 50} and m value, both suggesting an increased degree of normal tissue density sensitivity with hypofractionation.« less

  12. Hypofractionation for Prostate Cancer

    PubMed Central

    Ritter, Mark; Forman, Jeffrey; Kupelian, Patrick; Lawton, Colleen; Petereit, Daniel

    2011-01-01

    Hypofractionation for prostate cancer was originally carried out in the pursuit of efficiency and convenience, but has now attracted greatly renewed interest based upon a hypothesis that prostate cancers have a higher sensitivity to fraction size, reflected in a low α/β ratio, then do late responding organs at risk such as the rectum or bladder. Tumor control and acceptable toxicity outcomes from several hypofractionation or brachytherapy analyses do in fact support an α/β ratio for prostate cancer that is low, perhaps even lower that that for the normal organs that ordinarily constrain the delivery of radiation therapy. However, many of these studies lack sufficient patient numbers and follow-up, are clouded by dose inhomogeneity issues in the case of brachytherapy, or delivered effective doses that were too low by contemporary standards. Thus, the clinical efficacy of the approach has yet to be fully validated. However, a number of newer prospective trials, some randomized, are underway or have reached accrual await sufficient follow-up for analysis. These studies, which cover a wide range of doses per fraction, should ultimately be capable of validating the utility of prostate hypofractionation and the models that predict its effects. With hypofractionation’s significant potential for therapeutic gain, cost savings and improved patient convenience, the future management of localized prostate cancer could be profoundly altered in the process. PMID:19197165

  13. Dose-per-fraction escalation of accelerated hypofractionated three-dimensional conformal radiotherapy in locally advanced non-small cell lung cancer.

    PubMed

    Kepka, Lucyna; Tyc-Szczepaniak, Dobromira; Bujko, Krzysztof

    2009-07-01

    To determine the efficacy of accelerated hypofractionated three-dimensional conformal radiotherapy (3D-CRT) with dose-per-fraction escalation for treatment of stage III non-small cell lung cancer (NSCLC). Between 2001 and 2007, 173 patients with stage III NSCLC were treated using accelerated 3D-CRT and the simultaneous boost technique. Initially, the total dose of 56.7 Gy (including 39.9 Gy to the elective area) was delivered over 4 weeks in fractions of 2.7 Gy (1.9 Gy to the elective area). The dose-per-fraction escalation study commenced after the outcomes of 70 patients had been evaluated. The dose per fraction was increased from 2.7 through 2.8 Gy (level 1 escalation) to 2.9 Gy (level 2 escalation); the total dose increased, respectively, from 56.7 Gy through 58.8 Gy to 60.9 Gy. The dose to the elective area and the overall treatment time remained unchanged. Fit patients received two to three courses of chemotherapy before radiotherapy. The 2- and 3-year overall survival rates were 32 and 19%, respectively (median survival = 17 months). Of the patients, 7% had grade III acute esophageal toxicity and 6% had grade III or greater late pulmonary toxicity. Two of the nine patients who received the level 2 escalation (60.9 Gy) died of pulmonary toxicity. The study was terminated at a dose of 58.8 Gy and this schema was adopted as the institutional policy for treatment of stage III NSCLC. Although dose escalation with accelerated hypofractionated 3D-CRT was limited, the results and toxicity profiles obtained using this technique are promising.

  14. Hypofractionated Versus Standard Radiation Therapy With or Without Temozolomide for Older Glioblastoma Patients

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arvold, Nils D.; Tanguturi, Shyam K.; Aizer, Ayal A.

    Purpose: Older patients with newly diagnosed glioblastoma have poor outcomes, and optimal treatment is controversial. Hypofractionated radiation therapy (HRT) is frequently used but has not been compared to patients receiving standard fractionated radiation therapy (SRT) and temozolomide (TMZ). Methods and Materials: We conducted a retrospective analysis of patients ≥65 years of age who received radiation for the treatment of newly diagnosed glioblastoma from 1994 to 2013. The distribution of clinical covariates across various radiation regimens was analyzed for possible selection bias. Survival was calculated using the Kaplan-Meier method. Comparison of hypofractionated radiation (typically, 40 Gy/15 fractions) versus standard fractionation (typically, 60 Gy/30 fractions)more » in the setting of temozolomide was conducted using Cox regression and propensity score analysis. Results: Patients received SRT + TMZ (n=57), SRT (n=35), HRT + TMZ (n=34), or HRT (n=9). Patients receiving HRT were significantly older (median: 79 vs 69 years of age; P<.001) and had worse baseline performance status (P<.001) than those receiving SRT. On multivariate analysis, older age (adjusted hazard ratio [AHR]: 1.06; 95% confidence interval [CI]: 1.01-1.10, P=.01), lower Karnofsky performance status (AHR: 1.02; 95% CI: 1.01-1.03; P=.01), multifocal disease (AHR: 2.11; 95% CI: 1.23-3.61, P=.007), and radiation alone (vs SRT + TMZ; SRT: AHR: 1.72; 95% CI: 1.06-2.79; P=.03; HRT: AHR: 3.92; 95% CI: 1.44-10.60, P=.007) were associated with decreased overall survival. After propensity score adjustment, patients receiving HRT with TMZ had similar overall survival compared with those receiving SRT with TMZ (AHR: 1.10, 95% CI: 0.50-2.4, P=.82). Conclusions: With no randomized data demonstrating equivalence between HRT and SRT in the setting of TMZ for glioblastoma, significant selection bias exists in the implementation of HRT. Controlling for this bias, we observed similar

  15. Hypofractionated radiation therapy for prostate cancer: The McGill University Health Center experience.

    PubMed

    Barbosa Neto, O; Souhami, L; Faria, S

    2015-10-01

    In 2002, at the McGill University Health Centre, we began a program of hypofractionated radiotherapy for patients with low risk prostate cancer as an alternative to conventionally fractionated radiotherapy. Our initial hypofractionation regimen was 66 Gy given in 22 fractions, prescribed to the isocenter, delivered with 3D-conformal radiotherapy plan. The clinical target volume was the prostate gland and the planning target volume consisted of the clinical target volume plus a 7-mm margin in all directions. Hormonal therapy was not given to any patient. The long-term results for this group of patients confirmed the feasibility, good tolerance and excellent disease control of the regimen with the extra-benefit of being convenient to both patients and the health system by shortening treatment duration. The outcomes of this approach stimulated us to use hypofractionation in patients with intermediate-risk. Analysis of 100 intermediate-risk patients receiving our hypofractionated radiotherapy regimen (no hormones) shows, at median follow-up of 75 months, 8-year biochemical recurrence free and cancer specific survival rates of 90% and 95%, respectively, with acceptable toxicity. Our technique changed from 3D to intensity modulated radiotherapy with the dose adjusted to 60 Gy in 20 fractions. Lastly, we have expanded the program to high-risk patients where IMRT treatments are given to the pelvic nodes (44 Gy in 20 fractions) with a simultaneous integrated boost delivery to the prostate (60 Gy in the same 20 fractions). Our long-term results have shown that moderate hypofractionated radiotherapy for prostate cancer is safe and provides good tumor control comparable to high-dose conventionally fractionated radiotherapy. This hypofractionated regimen has been routinely used in our institution. Copyright © 2015 Société française de radiothérapie oncologique (SFRO). Published by Elsevier SAS. All rights reserved.

  16. Hypofractionated whole breast radiation and partial breast radiation for early-stage breast cancers: an update on progress.

    PubMed

    McCormick, Beryl

    2012-09-01

    This article provides an update of recent progress using partial breast irradiation (PBI) for the treatment of early-stage breast cancer, rather than whole breast radiotherapy (WBRT), which is the standard of care. Several large, prospective, randomized trials are nearing target accrual or have been completed, including the NSABP/RTOG trial, the Milan-based intraoperative radiation trial, and the international TARGIT trial, and the status of each is discussed. The American Society for Radiation Oncology has also published a consensus statement to guide the use of PBI until some of the phase III trials are more mature. Finally, several articles have appeared recently, reporting unexpected adverse effects of PBI in small series, and this information is reviewed. Several recent prospective trials of WBRT are also discussed, with the theme of comparing the standard 25 fractions to a shortened, hypofractionated trial arm delivering equivalent doses of WBRT in approximately 15 treatments, another radiation strategy for a shortened course of treatment after breast-conserving surgery.

  17. [Practice evolution of hypofractionation in breast radiation therapy and medical impact].

    PubMed

    Dupin, C; Vilotte, F; Lagarde, P; Petit, A; Breton-Callu, C

    2016-06-01

    Whole breast irradiation after conservative surgery is the standard treatment for invasive breast cancer. Randomized studies indicate that hypofractionation can be equivalent for selected patients. This study focuses on fractionation practice evolution in a single centre, and analyses the economic impact of practice modification. All prescriptions for invasive breast cancer between January 2010 and June 2014 were analyzed. Female patients 60 years or older, pN0 were considered for the economic study. Patients included in clinical trials or patient with high-grade tumours were excluded from the hypofractionation practice study, because physician could not choose fractionation. We used data from the Medical public health system to calculate cost per fraction and transportation cost. Two thousand thirty one patients were treated; 399 were eligible for the economic study (20%) and 282 for the practice study (14%). Treatment with 25 fractions decreased from 90% to 16% in the first half of 2014. Meanwhile, treatment with 15 or 16 fractions increased from 6% in 2010 to 68% in the first half of 2014. Hypofractionated treatment proportion was 100% with 42.5Gy in 16 fractions in 2010 and 100% 40Gy in 15 fractions in 2014, according to long-term follow-up publication of START trials. Treatment with five fractions remained stable around 7% (4 to 16%), reserved for patients over 80 years (P<0.0001). Based on data from 3451 fractions in 2013, transport cost was calculated at 62 € per fraction, in addition to a 170.77 € reimbursement per fraction, giving a cost per fraction of 232.77 €. Practice change led to an increase of hypofractionation in recent years. Hypofractionation may be currently prescribed and may concern 20% of patients. This practice evolution is beneficial for patients and the public health system. Copyright © 2016 Société française de radiothérapie oncologique (SFRO). Published by Elsevier SAS. All rights reserved.

  18. The use of hypofractionated intensity-modulated irradiation in the treatment of glioblastoma multiforme: preliminary results of a prospective trial.

    PubMed

    Sultanem, Khalil; Patrocinio, Horacio; Lambert, Christine; Corns, Robert; Leblanc, Richard; Parker, William; Shenouda, George; Souhami, Luis

    2004-01-01

    be equal to or less than 40 Gy in 20 fractions. When Radiation Therapy Oncology Group recursive partitioning analysis was used, 10 patients were class III-IV, and 15 patients were class V-VI. To date, 21 patients have had clinical and/or radiologic evidence of disease progression, and 16 patients have died. The median survival was 9.5 months (range: 2.8-22.9 months), the 1-year survival rate was 40%, and the median progression-free survival was 5.2 months (range: 1.9-12.8 months). This hypofractionated accelerated irradiation schedule using forward planning (step-and-shoot) hypofractionated, intensity-modulated accelerated radiotherapy is feasible and seems to be a safe treatment for patients with GBM. A 2-week reduction in the treatment time may be of valuable benefit for this group of patients. However, despite this accelerated regimen, no survival advantage has been observed.

  19. Stereotactic Radiosurgery and Hypofractionated Radiotherapy for Glioblastoma.

    PubMed

    Shah, Jennifer L; Li, Gordon; Shaffer, Jenny L; Azoulay, Melissa I; Gibbs, Iris C; Nagpal, Seema; Soltys, Scott G

    2018-01-01

    Glioblastoma is the most common primary brain tumor in adults. Standard therapy depends on patient age and performance status but principally involves surgical resection followed by a 6-wk course of radiation therapy given concurrently with temozolomide chemotherapy. Despite such treatment, prognosis remains poor, with a median survival of 16 mo. Challenges in achieving local control, maintaining quality of life, and limiting toxicity plague treatment strategies for this disease. Radiotherapy dose intensification through hypofractionation and stereotactic radiosurgery is a promising strategy that has been explored to meet these challenges. We review the use of hypofractionated radiotherapy and stereotactic radiosurgery for patients with newly diagnosed and recurrent glioblastoma. Copyright © 2017 by the Congress of Neurological Surgeons.

  20. Hypofractionated Radiotherapy Is Superior to Conventional Fractionation in an Orthotopic Model of Anaplastic Thyroid Cancer.

    PubMed

    Oweida, Ayman; Phan, Andy; Vancourt, Benjamin; Robin, Tyler; Hararah, Mohammad K; Bhatia, Shilpa; Milner, Dallin; Lennon, Shelby; Pike, Laura; Raben, David; Haugen, Bryan; Pozdeyev, Nikita; Schweppe, Rebecca; Karam, Sana D

    2018-06-01

    Anaplastic thyroid cancer (ATC) is an aggressive and highly lethal disease with poor outcomes and resistance to therapy. Despite multimodality treatment, including radiation therapy and chemotherapy, response rates remain <15%, with a median time to progression of less than three months. Recent advances in radiotherapy (RT) delivery and gene-expression profiling may help guide patient selection for personalized therapy. The purpose of this study was to characterize the response to radiation in a panel of ATC cell lines and to test alternative RT fractionation schedules for overcoming radioresistance. The cellular response to radiation was characterized based on clonogenic assays. Radiation response was correlated with microarray gene-expression data. Hypofractionated and conventional RT was tested in an orthotopic ATC tumor model, and tumor growth was assayed locally and distantly with in vivo and ex vivo bioluminescence imaging. A spectrum of radiosensitivities was observed in ATC cell lines. Radioresistant cell lines had higher levels of CXCR4 compared to radiosensitive cell lines. Compared to conventionally fractionated RT, hypofractionated RT resulted in significantly improved tumor growth delay, decreased regional and distant metastases, and improved overall survival. The findings demonstrate the heterogeneity of response to radiation in ATC tumors and the superiority of hypofractionated RT in improving local control, metastatic spread, and survival in preclinical models. These data support the design of clinical trials targeting radioresistant pathways in combination with hypofractionated RT.

  1. Cost-effectiveness analysis of intensity-modulated radiation therapy with normal and hypofractionated schemes for the treatment of localised prostate cancer.

    PubMed

    Zemplényi, A T; Kaló, Z; Kovács, G; Farkas, R; Beöthe, T; Bányai, D; Sebestyén, Z; Endrei, D; Boncz, I; Mangel, L

    2018-01-01

    The aim of our analysis was to compare the cost-effectiveness of high-dose intensity-modulated radiation therapy (IMRT) and hypofractionated intensity-modulated radiation therapy (HF-IMRT) versus conventional dose three-dimensional radiation therapy (3DCRT) for the treatment of localised prostate cancer. A Markov model was constructed to calculate the incremental quality-adjusted life years and costs. Transition probabilities, adverse events and utilities were derived from relevant systematic reviews. Microcosting in a large university hospital was applied to calculate cost vectors. The expected mean lifetime cost of patients undergoing 3DCRT, IMRT and HF-IMRT were 7,160 euros, 6,831 euros and 6,019 euros respectively. The expected quality-adjusted life years (QALYs) were 5.753 for 3DCRT, 5.956 for IMRT and 5.957 for HF-IMRT. Compared to 3DCRT, both IMRT and HF-IMRT resulted in more health gains at a lower cost. It can be concluded that high-dose IMRT is not only cost-effective compared to the conventional dose 3DCRT but, when used with a hypofractionation scheme, it has great cost-saving potential for the public payer and may improve access to radiation therapy for patients. © 2016 John Wiley & Sons Ltd.

  2. Hypofractionated IMRT of the Prostate Bed After Radical Prostatectomy: Acute Toxicity in the PRIAMOS-1 Trial

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Katayama, Sonja, E-mail: sonja.katayama@med.uni-heidelberg.de; Striecker, Thorbjoern; Kessel, Kerstin

    Purpose: Hypofractionated radiation therapy as primary treatment for prostate cancer is currently being investigated in large phase 3 trials. However, there are few data on postoperative hypofractionation. The Radiation therapy for the Prostate Bed With or Without the Pelvic Lymph Nodes (PRIAMOS 1) trial was initiated as a prospective phase 2 trial to assess treatment safety and toxicity of a hypofractionated intensity modulated radiation therapy (IMRT) of the prostate bed. Methods and Materials: From February to September 2012, 40 patients with indications for adjuvant or salvage radiation therapy were enrolled. One patient dropped out before treatment. Patients received 54 Gy inmore » 18 fractions to the prostate bed with IMRT and daily image guidance. Gastrointestinal (GI) and genitourinary (GU) toxicities (according to National Cancer Institute Common Terminology Criteria for Adverse Events, version 4.0) were recorded weekly during treatment and 10 weeks after radiation therapy. Results: Overall acute toxicity was favorable, with no recorded adverse events grade ≥3. Acute GI toxicity rates were 56.4% (grade 1) and 17.9% (grade 2). Acute GU toxicity was recorded in 35.9% of patients (maximum grade 1). Urinary stress incontinence was not influenced by radiation therapy. The incidence of grade 1 urinary urge incontinence increased from 2.6% before to 23.1% 10 weeks after therapy, but grade 2 urge incontinence remained unchanged. Conclusions: Postoperative hypofractionated IMRT of the prostate bed is tolerated well, with no severe acute side effects.« less

  3. Retrospective study of canine nasal tumor treated with hypofractionated radiotherapy.

    PubMed

    Maruo, Takuya; Shida, Takuo; Fukuyama, Yasuhiro; Hosaka, Soshi; Noda, Masashi; Ito, Tetsuro; Sugiyama, Hiroki; Ishikawa, Takeshi; Madarame, Hiroo

    2011-02-01

    The object of this study was to evaluate hypofractionated multiportal field and two-portion (rostral and caudal portions divided by the eyelid) radiation therapy for canine nasal tumors. Sixty-three dogs underwent multiportal hypofractionated radiation therapy. The radiation field was divided into rostral and caudal portions by the eyelid. Treatments were performed four times for 57 dogs. The median irradiation dose/fraction was 8 Gy (range, 5-10 Gy); the median total dose was 32 Gy (10-40 Gy). Improvement of clinical symptoms was achieved in 53 (84.1%) of 63 cases. Median survival time was 197 days (range, 2-1,080 days). Median survival times with and without destruction of the cribriform plate before radiotherapy were 163 and 219 days, respectively. There was no significant difference between them. No other factors were related to survival according to a univariate analysis. All radiation side effects, except one, were grade I according to the VRTOG classification. It was not necessary to treat any dogs for skin side effects. One dog (1.6%) developed an oronasal fistula 1 year after completion of radiation therapy. This radiation protocol may be useful in reducing radiation side effects in dogs with cribriform plate destruction.

  4. Hypofractionated conformal irradiation of patients with malignant glioma.

    PubMed

    Aboziada, Mohamed A; Abo-Kresha, Ahmed E

    2012-09-01

    The aim of the study is to evaluate the effect of a conformal irradiation in short fractionation scheme of 49.5Gy in 15 fractions in an overall time of 3 weeks, in terms of overall survival (OAS) and progression free survival (PFS) rates in brain glioma patients. A prospective study was conducted on 54 brain glioma patients and was carried out in the Radiation Oncology Department, South Egypt Cancer Institute, Assiut University during the period from April 2006 till June 2009. Patients were treated by hypofractionated conformal irradiation (49.5 Gy/15 fractions/3 weeks). The median follow up was 23 months (range: 9-39 months). Two-year OAS and PFS rates were 68% and 60%, respectively. In univariate analysis, age >50 years, poor performance status [Karnofasky score of ≥40-≤70%], poor neuroperformance status of score III, high-grade tumor [glioblastoma multiforme], and biopsy were all associated with statistically significant reduction in OAS and PFS rates. Multivariate analysis, showed that age >50 years and glioblastoma pathology were the only independent prognostic factors that were associated with poor OAS (p=0.003 and p=0.004, respectively), and PFS (p=0.027 and p=0.011, respectively). Hypofractionated conformal radiotherapy was as effective as the conventional radiotherapy, with time sparing for patients, and for radiation oncology centers. Hypofractionated radiotherapy may be considered the radiotherapy regimen of choice in clinical practice for patients with gliomas. Copyright © 2012. Published by Elsevier B.V.

  5. Hypofractionated Intensity Modulated Radiation Therapy in Combined Modality Treatment for Bladder Preservation in Elderly Patients With Invasive Bladder Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Turgeon, Guy-Anne; Souhami, Luis, E-mail: luis.souhami@muhc.mcgill.ca; Cury, Fabio L.

    2014-02-01

    Purpose/Objective(s): To review our experience with bladder-preserving trimodality treatment (TMT) using hypofractionated intensity modulated radiation therapy (IMRT) for the treatment of elderly patients with muscle-invasive bladder cancer. Methods and Materials: Retrospective study of elderly patients treated with TMT using hypofractionated IMRT (50 Gy in 20 fractions) with concomitant weekly radiosensitizing chemotherapy. Eligibility criteria were as follows: age ≥70 years, a proven diagnosis of muscle-invasive transitional cell bladder carcinoma, stage T2-T3N0M0 disease, and receipt of TMT with curative intent. Response rate was assessed by cystoscopic evaluation and bladder biopsy. Results: 24 patients with a median age of 79 years were eligible.more » A complete response was confirmed in 83% of the patients. Of the remaining patients, 1 of them underwent salvage cystectomy, and no disease was found in the bladder on histopathologic assessment. After a median follow-up time of 28 months, of the patients with a complete response, 2 patients had muscle-invasive recurrence, 1 experienced locoregional failure, and 3 experienced distant metastasis. The overall and cancer-specific survival rates at 3 years were 61% and 71%, respectively. Of the surviving patients, 75% have a disease-free and functioning bladder. All patients completed hypofractionated IMRT, and 19 patients tolerated all 4 cycles of chemotherapy. Acute grade 3 gastrointestinal or genitourinary toxicities occurred in only 4% of the patients, and acute grade 3 or 4 hematologic toxicities, liver toxicities, or both were experienced by 17% of the cohort. No patient experienced grade 4 gastrointestinal or genitourinary toxicity. Conclusions: Hypofractionated IMRT with concurrent radiosensitizing chemotherapy appears to be an effective and well-tolerated curative treatment strategy in the elderly population and should be considered for patients who are not candidates for cystectomy or who wish to avoid

  6. Significance of tumor volume related to peritumoral edema in intracranial meningioma treated with extreme hypofractionated stereotactic radiation therapy in three to five fractions.

    PubMed

    Morimoto, Masahiro; Yoshioka, Yasuo; Shiomi, Hiroya; Isohashi, Fumiaki; Konishi, Koji; Kotsuma, Tadayuki; Fukuda, Shoichi; Kagawa, Naoki; Kinoshita, Manabu; Hashimoto, Naoya; Yoshimine, Toshiki; Koizumi, Masahiko

    2011-05-01

    To investigate the treatment results of intracranial meningiomas treated with hypofractionated stereotactic radiation therapy in three to five fractions. Thirty-one patients (32 lesions) with intracranial meningioma were treated with hypofractionated stereotactic radiation therapy in three to five fractions using CyberKnife. Fifteen lesions were diagnosed as Grade I (World Health Organization classification) by surgical resection and 17 lesions were diagnosed as meningioma based on radiological findings. The median follow-up time was 48 months. The median planning target volume was 6.3 cm(3) (range, 1.4-27.1), and the prescribed dose (D90≤) ranged from 21 to 36 Gy (median, 27.8) administrated in three to five fractions. Five-year overall and progression-free survival rate of all 31 patients with intracranial meningioma was 86 and 83%, respectively. Five-year progression-free rate of all 32 lesions was 87%. Six of the 31 patients (19%) developed marked peritumoral edema, three of whom were asymptomatic and three symptomatic, the latter with late adverse effects of more than or equal to Grade 3. The mean planning target volume of the six lesions with marked peritumoral edema was 15.6 cm(3), and for the remaining 26 lesions without marked peritumoral edema was 7.1 cm(3) (P = 0.004). The threshold diameter of 2.56 cm for meningioma was calculated from the planning target volume (11 cm(3)) and was used as marker of developing peritumoral edema (P = 0.003). Tumor volume is a significant indicative factor for peritumoral edema in intracranial meningioma treated with hypofractionated stereotactic radiation therapy in three to five factions.

  7. Phase 2 Trial of Hypofractionated High-Dose Intensity Modulated Radiation Therapy With Concurrent and Adjuvant Temozolomide for Newly Diagnosed Glioblastoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iuchi, Toshihiko, E-mail: tiuchi@chiba-c.jp; Hatano, Kazuo; Kodama, Takashi

    Purpose/Objectives: To assess the effect and toxicity of hypofractionated high-dose intensity modulated radiation therapy (IMRT) with concurrent and adjuvant temozolomide (TMZ) in 46 patients with newly diagnosed glioblastoma multiforme (GBM). Methods and Materials: All patients underwent postsurgical hypofractionated high-dose IMRT. Three layered planning target volumes (PTVs) were contoured. PTV1 was the surgical cavity and residual tumor on T1-weighted magnetic resonance images with 5-mm margins, PTV2 was the area with 15-mm margins surrounding the PTV1, and PTV3 was the high-intensity area on fluid-attenuated inversion recovery images. Irradiation was performed in 8 fractions at total doses of 68, 40, and 32 Gy formore » PTV1, PTV2, and PTV3, respectively. Concurrent TMZ was given at 75 mg/m{sup 2}/day for 42 consecutive days. Adjuvant TMZ was given at 150 to 200 mg/m{sup 2}/day for 5 days every 28 days. Overall and progression-free survivals were evaluated. Results: No acute IMRT-related toxicity was observed. The dominant posttreatment failure pattern was dissemination. During a median follow-up time of 16.3 months (range, 4.3-80.8 months) for all patients and 23.7 months (range, 12.4-80.8 months) for living patients, the median overall survival was 20.0 months after treatment. Radiation necrosis was diagnosed in 20 patients and was observed not only in the high-dose field but also in the subventricular zone (SVZ). Necrosis in the SVZ was significantly correlated with prolonged survival (hazard ratio, 4.08; P=.007) but caused deterioration in the performance status of long-term survivors. Conclusions: Hypofractionated high-dose IMRT with concurrent and adjuvant TMZ altered the dominant failure pattern from localized to disseminated and prolonged the survival of patients with GBM. Necrosis in the SVZ was associated with better patient survival, but the benefit of radiation to this area remains controversial.« less

  8. Prostate Hypofractionated Radiation Therapy With Injection of Hyaluronic Acid: Acute Toxicities in a Phase 2 Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chapet, Olivier, E-mail: olivier.chapet@chu-lyon.fr; EMR3738, Université Lyon 1, Lyon; Decullier, Evelyne

    Purpose: Hypofractionated radiation therapy (RT) in prostate cancer can be developed only if the risk of rectal toxicity is controlled. In a multicenter phase 2 trial, hypofractionated irradiation was combined with an injection of hyaluronic acid (HA) to preserve the rectal wall. Tolerance of the injection and acute toxicity rates are reported. Methods and Materials: The study was designed to assess late grade 2 toxicity rates. The results described here correspond to the secondary objectives. Acute toxicity was defined as occurring during RT or within 3 months after RT and graded according to the Common Terminology Criteria for Adverse Eventsmore » version 4.0. HA tolerance was evaluated with a visual analog scale during the injection and 30 minutes after injection and then by use of the Common Terminology Criteria at each visit. Results: From 2010 to 2012, 36 patients with low-risk to intermediate-risk prostate cancer were included. The HA injection induced a mean pain score of 4.6/10 ± 2.3. Thirty minutes after the injection, 2 patients still reported pain (2/10 and 3/10), which persisted after the intervention. Thirty-three patients experienced at least 1 acute genitourinary toxicity and 20 patients at least 1 acute gastrointestinal toxicity. Grade 2 toxicities were reported for 19 patients with urinary obstruction, frequency, or both and for 1 patient with proctitis. No grade 3 or 4 toxicities were reported. At the 3-month visit, 4 patients described grade 2 obstruction or frequency, and no patients had any grade 2 gastrointestinal toxicities. Conclusions: The injection of HA makes it possible to deliver hypofractionated irradiation over 4 weeks with a dose per fraction of > 3 Gy, with limited acute rectal toxicity.« less

  9. Clinical Outcomes of Image Guided Adaptive Hypofractionated Weekly Radiation Therapy for Bladder Cancer in Patients Unsuitable for Radical Treatment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hafeez, Shaista, E-mail: shaista.hafeez@icr.ac.uk; The Royal Marsden NHS Foundation Trust, Sutton, Surrey; McDonald, Fiona

    Purpose and Objectives: We report on the clinical outcomes of a phase 2 study assessing image guided hypofractionated weekly radiation therapy in bladder cancer patients unsuitable for radical treatment. Methods and Materials: Fifty-five patients with T2-T4aNx-2M0-1 bladder cancer not suitable for cystectomy or daily radiation therapy treatment were recruited. A “plan of the day” radiation therapy approach was used, treating the whole (empty) bladder to 36 Gy in 6 weekly fractions. Acute toxicity was assessed weekly during radiation therapy, at 6 and 12 weeks using the Common Terminology Criteria for Adverse Events version 3.0. Late toxicity was assessed at 6 months and 12 monthsmore » using Radiation Therapy Oncology Group grading. Cystoscopy was used to assess local control at 3 months. Cumulative incidence function was used to determine local progression at 1 at 2 years. Death without local progression was treated as a competing risk. Overall survival was estimated using the Kaplan-Meier method. Results: Median age was 86 years (range, 68-97 years). Eighty-seven percent of patients completed their prescribed course of radiation therapy. Genitourinary and gastrointestinal grade 3 acute toxicity was seen in 18% (10/55) and 4% (2/55) of patients, respectively. No grade 4 genitourinary or gastrointestinal toxicity was seen. Grade ≥3 late toxicity (any) at 6 and 12 months was seen in 6.5% (2/31) and 4.3% (1/23) of patients, respectively. Local control after radiation therapy was 92% of assessed patients (60% total population). Cumulative incidence of local progression at 1 year and 2 years for all patients was 7% (95% confidence interval [CI] 2%-17%) and 17% (95% CI 8%-29%), respectively. Overall survival at 1 year was 63% (95% CI 48%-74%). Conclusion: Hypofractionated radiation therapy delivered weekly with a plan of the day approach offers good local control with acceptable toxicity in a patient population not suitable for radical bladder

  10. Hypofractionated Dose-Painting Intensity Modulated Radiation Therapy With Chemotherapy for Nasopharyngeal Carcinoma: A Prospective Trial

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bakst, Richard L.; Lee, Nancy; Pfister, David G.

    2011-05-01

    Purpose: To evaluate the feasibility of dose-painting intensity-modulated radiation therapy (DP-IMRT) with a hypofractionated regimen to treat nasopharyngeal carcinoma (NPC) with concomitant toxicity reduction. Methods and Materials: From October 2002 through April 2007, 25 newly diagnosed NPC patients were enrolled in a prospective trial. DP-IMRT was prescribed to deliver 70.2 Gy using 2.34-Gy fractions to the gross tumor volume for the primary and nodal sites while simultaneously delivering 54 Gy in 1.8-Gy fractions to regions at risk of microscopic disease. Patients received concurrent and adjuvant platin-based chemotherapy similar to the Intergroup 0099 trial. Results: Patient and disease characteristics are asmore » follows: median age, 46; 44% Asian; 68% male; 76% World Health Organization III; 20% T1, 52% T2, 16% T3, 12% T4; 20% N0, 36% N1, 36% N2, 8% N3. With median follow-up of 33 months, 3-year local control was 91%, regional control was 91%, freedom from distant metastases was 91%, and overall survival was 89%. The average mean dose to each cochlea was 43 Gy. With median audiogram follow-up of 14 months, only one patient had clinically significant (Grade 3) hearing loss. Twelve percent of patients developed temporal lobe necrosis; one patient required surgical resection. Conclusions: Preliminary findings using a hypofractionated DP-IMRT regimen demonstrated that local control, freedom from distant metastases, and overall survival compared favorably with other series of IMRT and chemotherapy. The highly conformal boost to the tumor bed resulted low rates of severe ototoxicity (Grade 3-4). However, the incidence of in-field brain radiation necrosis indicates that 2.34 Gy per fraction is not safe in this setting.« less

  11. Hypofractionated Radiation Therapy (66 Gy in 22 Fractions at 3 Gy per Fraction) for Favorable-Risk Prostate Cancer: Long-term Outcomes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patel, Nita; Faria, Sergio, E-mail: sergio.faria@muhc.mcgill.ca; Cury, Fabio

    2013-07-01

    Purpose: To report long-term outcomes of low- and intermediate-risk prostate cancer patients treated with high-dose hypofractionated radiation therapy (HypoRT). Methods and Materials: Patients with low- and intermediate-risk prostate cancer were treated using 3-dimensional conformal radiation therapy to a dose of 66 Gy in 22 daily fractions of 3 Gy without hormonal therapy. A uniform 7-mm margin was created around the prostate for the planning target volume, and treatment was prescribed to the isocenter. Treatment was delivered using daily ultrasound image-guided radiation therapy. Common Terminology Criteria for Adverse Events, version 3.0, was used to prospectively score toxicity. Biochemical failure was definedmore » as the nadir prostate-specific antigen level plus 2 ng/mL. Results: A total of 129 patients were treated between November 2002 and December 2005. With a median follow-up of 90 months, the 5- and 8-year actuarial biochemical control rates were 97% and 92%, respectively. The 5- and 8-year actuarial overall survival rates were 92% and 88%, respectively. Only 1 patient died from prostate cancer at 92 months after treatment, giving an 8-year actuarial cancer-specific survival of 98%. Radiation therapy was well tolerated, with 57% of patients not experiencing any acute gastrointestinal (GI) or genitourinary (GU) toxicity. For late toxicity, the worst grade ≥2 rate for GI and GU toxicity was 27% and 33%, respectively. There was no grade >3 toxicity. At last follow-up, the rate of grade ≥2 for both GI and GU toxicity was only 1.5%. Conclusions: Hypofractionation with 66 Gy in 22 fractions prescribed to the isocenter using 3-dimensional conformal radiation therapy produces excellent biochemical control rates, with moderate toxicity. However, this regimen cannot be extrapolated to the intensity modulated radiation therapy technique.« less

  12. Mild Lung Restriction in Breast Cancer Patients After Hypofractionated and Conventional Radiation Therapy: A 3-Year Follow-Up

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Verbanck, Sylvia, E-mail: sylvia.verbanck@uzbrussel.be; Hanon, Shane; Schuermans, Daniel

    Purpose: To assess the effect of radiation therapy on lung function over the course of 3 years. Methods and Materials: Evolution of restrictive and obstructive lung function parameters was investigated in 108 breast cancer participants in a randomized, controlled trial comparing conventional radiation therapy (CR) and hypofractionated tomotherapy (TT) (age at inclusion ranging 32-81 years). Spirometry, plethysmography, and hemoglobin-corrected diffusing capacity were assessed at baseline and after 3 months and 1, 2, and 3 years. Natural aging was accounted for by considering all lung function parameters in terms of percent predicted values using the most recent reference values for women aged up to 80 years. Results:more » In the patients with negligible history of respiratory disease or smoking (n=77), the greatest rate of functional decline was observed during the initial 3 months, this acute decrease being more marked in the CR versus the TT arm. During the remainder of the 3-year follow-up period, values (in terms of percent predicted) were maintained (diffusing capacity) or continued to decline at a slower rate (forced vital capacity). However, the average decline of the restrictive lung function parameters over a 3-year period did not exceed 9% predicted in either the TT or the CR arm. Obstructive lung function parameters remained unaffected throughout. Including also the 31 patients with a history of respiratory disease or more than 10 pack-years showed a very similar restrictive pattern. Conclusions: In women with breast cancer, both conventional radiation therapy and hypofractionated tomotherapy induce small but consistent restrictive lung patterns over the course of a 3-year period, irrespective of baseline respiratory status or smoking history. The fastest rate of lung function decline generally occurred in the first 3 months.« less

  13. Magnetic Resonance Imaging-Guided Adaptive Radiation Therapy: A "Game Changer" for Prostate Treatment?

    PubMed

    Pathmanathan, Angela U; van As, Nicholas J; Kerkmeijer, Linda G W; Christodouleas, John; Lawton, Colleen A F; Vesprini, Danny; van der Heide, Uulke A; Frank, Steven J; Nill, Simeon; Oelfke, Uwe; van Herk, Marcel; Li, X Allen; Mittauer, Kathryn; Ritter, Mark; Choudhury, Ananya; Tree, Alison C

    2018-02-01

    Radiation therapy to the prostate involves increasingly sophisticated delivery techniques and changing fractionation schedules. With a low estimated α/β ratio, a larger dose per fraction would be beneficial, with moderate fractionation schedules rapidly becoming a standard of care. The integration of a magnetic resonance imaging (MRI) scanner and linear accelerator allows for accurate soft tissue tracking with the capacity to replan for the anatomy of the day. Extreme hypofractionation schedules become a possibility using the potentially automated steps of autosegmentation, MRI-only workflow, and real-time adaptive planning. The present report reviews the steps involved in hypofractionated adaptive MRI-guided prostate radiation therapy and addresses the challenges for implementation. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  14. Precision Hypofractionated Radiation Therapy in Poor Performing Patients With Non-Small Cell Lung Cancer: Phase 1 Dose Escalation Trial

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Westover, Kenneth D.; Loo, Billy W.; Gerber, David E.

    2015-09-01

    Purpose: Treatment regimens for locally advanced non-small cell lung cancer (NSCLC) give suboptimal clinical outcomes. Technological advancements such as radiation therapy, the backbone of most treatment regimens, may enable more potent and effective therapies. The objective of this study was to escalate radiation therapy to a tumoricidal hypofractionated dose without exceeding the maximally tolerated dose (MTD) in patients with locally advanced NSCLC. Methods and Materials: Patients with stage II to IV or recurrent NSCLC and Eastern Cooperative Oncology Group performance status of 2 or greater and not candidates for surgical resection, stereotactic radiation, or concurrent chemoradiation were eligible. Highly conformal radiationmore » therapy was given to treat intrathoracic disease in 15 fractions to a total of 50, 55, or 60 Gy. Results: Fifty-five patients were enrolled: 15 at the 50-Gy, 21 at the 55-Gy, and 19 at the 60-Gy dose levels. A 90-day follow-up was completed in each group without exceeding the MTD. With a median follow-up of 12.5 months, there were 93 grade ≥3 adverse events (AEs), including 39 deaths, although most AEs were considered related to factors other than radiation therapy. One patient from the 55- and 60-Gy dose groups developed grade ≥3 esophagitis, and 5, 4, and 4 patients in the respective dose groups experienced grade ≥3 dyspnea, but only 2 of these AEs were considered likely related to therapy. There was no association between fraction size and toxicity (P=.24). The median overall survival was 6 months with no significant differences between dose levels (P=.59). Conclusions: Precision hypofractionated radiation therapy consisting of 60 Gy in 15 fractions for locally advanced NSCLC is generally well tolerated. This treatment regimen could provide patients with poor performance status a potent alternative to chemoradiation. This study has implications for the cost effectiveness of lung cancer therapy. Additional studies of

  15. SU-E-T-776: Use of Quality Metrics for a New Hypo-Fractionated Pre-Surgical Mesothelioma Protocol

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Richardson, S; Mehta, V

    Purpose: The “SMART” (Surgery for Mesothelioma After Radiation Therapy) approach involves hypo-fractionated radiotherapy of the lung pleura to 25Gy over 5 days followed by surgical resection within 7. Early clinical results suggest that this approach is very promising, but also logistically challenging due to the multidisciplinary involvement. Due to the compressed schedule, high dose, and shortened planning time, the delivery of the planned doses were monitored for safety with quality metric software. Methods: Hypo-fractionated IMRT treatment plans were developed for all patients and exported to Quality Reports™ software. Plan quality metrics or PQMs™ were created to calculate an objective scoringmore » function for each plan. This allows for an objective assessment of the quality of the plan and a benchmark for plan improvement for subsequent patients. The priorities of various components were incorporated based on similar hypo-fractionated protocols such as lung SBRT treatments. Results: Five patients have been treated at our institution using this approach. The plans were developed, QA performed, and ready within 5 days of simulation. Plan Quality metrics utilized in scoring included doses to OAR and target coverage. All patients tolerated treatment well and proceeded to surgery as scheduled. Reported toxicity included grade 1 nausea (n=1), grade 1 esophagitis (n=1), grade 2 fatigue (n=3). One patient had recurrent fluid accumulation following surgery. No patients experienced any pulmonary toxicity prior to surgery. Conclusion: An accelerated course of pre-operative high dose radiation for mesothelioma is an innovative and promising new protocol. Without historical data, one must proceed cautiously and monitor the data carefully. The development of quality metrics and scoring functions for these treatments allows us to benchmark our plans and monitor improvement. If subsequent toxicities occur, these will be easy to investigate and incorporate into

  16. [Hypofractionated whole breast irradiation (WBRT): Results and indications].

    PubMed

    Cutuli, B

    2016-10-01

    Breast irradiation after breast-conserving surgery is essential for maximizing local control and overall survival. The increase of breast cancer (BC) incidence, constraints of classical five weeks (w) radiation regimens and scarcity of radiotherapy units have led to test short hypofractionated WBRT schemes. One pilot study and three prospective randomized trials have tested various hypofractionated regimens of WBRT. About 7000 patients were included and follow-up ranged from 5 to 12 years. The conclusion of these trials is similar, showing local control and toxicity equivalent to these of the standard regimens. Three schemes are now clearly validated: 42.5Gy/16fr/3w, 40Gy/15fr/3w, or 42Gy/13fr/5w. However, the majority of included patients had favorable prognostic factors, were treated to the breast only and the boost dose, when indicated, was delivered with a standard fractionation. Therefore, we recommend the regimens preferentially in patients treated to the breast only, and without nodal involvement. These studies did not evaluate the addition of a boost dose with a hypofractionated scheme. If a boost is to be given, a standard fractionation should be used. Particular care should be taken to avoid heterogeneities leading to high fraction doses to organs at risk (lung and heart). Copyright © 2016 Société française de radiothérapie oncologique (SFRO). Published by Elsevier SAS. All rights reserved.

  17. Four-Week Course of Radiation for Breast Cancer Using Hypofractionated Intensity Modulated Radiation Therapy With an Incorporated Boost

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Freedman, Gary M.; Anderson, Penny R.; Goldstein, Lori J.

    Purpose: Standard radiation for early breast cancer requires daily treatment for 6 to 7 weeks. This is an inconvenience to many women, and for some a barrier for breast conservation. We present the acute toxicity of a 4-week course of hypofractionated radiation. Methods and Materials: A total of 75 patients completed radiation on a Phase II trial approved by the hospital institutional review board. Eligibility criteria were broad to include any patient normally eligible for standard radiation: age {>=}18 years, invasive or in situ cancer, American Joint Committee on Cancer Stage 0 to II, breast-conserving surgery, and any systemic therapymore » not given concurrently. The median age was 52 years (range, 31-81 years). Of the patients, 15% had ductal carcinoma in situ, 67% T1, and 19% T2; 71% were N0, 17% N1, and 12% NX. Chemotherapy was given before radiation in 44%. Using photon intensity-modulated radiation therapy and incorporated electron beam boost, the whole breast received 45 Gy and the lumpectomy bed 56 Gy in 20 treatments over 4 weeks. Results: The maximum acute skin toxicity by the end of treatment was Grade 0 in 9 patients (12%), Grade 1 in 49 (65%) and Grade 2 in 17 (23%). There was no Grade 3 or higher skin toxicity. After radiation, all Grade 2 toxicity had resolved by 6 weeks. Hematologic toxicity was Grade 0 in most patients except for Grade 1 neutropenia in 2 patients, and Grade 1 anemia in 11 patients. There were no significant differences in baseline vs. 6-week posttreatment patient-reported or physician-reported cosmetic scores. Conclusions: This 4-week course of postoperative radiation using intensity-modulated radiation therapy is feasible and is associated with acceptable acute skin toxicity and quality of life. Long-term follow-up data are needed. This radiation schedule may represent an alternative both to longer 6-week to 7-week standard whole-breast radiation and more radically shortened 1-week, partial-breast treatment schedules.« less

  18. WE-F-304-00: Outcomes of Hypofractionated Treatments - Results of the WGSBRT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    Stereotactic Body Radiation Therapy (SBRT) was introduced clinically more than twenty years ago, and many subsequent publications have reported safety and efficacy data. The AAPM Working Group on Biological Effects of Hypofractionated Radiotherapy/SBRT (WGSBRT) extracted published treatment outcomes data from extensive literature searches to summarize and construct tumor control probability (TCP) and normal tissue complication probability (NTCP) models for six anatomical regions: Cranial, Head and Neck, Thoracic, Abdominal, Pelvic, and Spinal. In this session, we present the WGSBRT’s work for cranial sites, and recurrent head and neck cancer. From literature-based data and associated models, guidelines to aid with safe andmore » effective hypofractionated radiotherapy treatment are being determined. Further, the ability of existing and proposed radiobiological models to fit these data is considered as to the ability to distinguish between the linear-quadratic and alternative radiobiological models such as secondary cell death from vascular damage, immunogenic, or bystander effects. Where appropriate, specific model parameters are estimated. As described in “The lessons of QUANTEC,” (1), lack of adequate reporting standards continues to limit the amount of useful quantitative information that can be extracted from peer-reviewed publications. Recommendations regarding reporting standards are considered, to enable such reviews to achieve more complete characterization of clinical outcomes. 1 Jackson A, Marks LB, Bentzen SM, Eisbruch A, Yorke ED, Ten Haken RK, Constine LS, Deasy JO. The lessons of QUANTEC: recommendations for reporting and gathering data on dose-volume dependencies of treatment outcome. Int J Radiat Oncol Biol Phys. 2010 Mar 1;76(3 Suppl):S155–60. Learning Objectives: Describe the techniques, types of cancer and dose schedules used in treating recurrent H&N cancers with SBRT List the radiobiological models that compete with the linear

  19. WE-F-304-03: Optic Nerve/Chiasm Hypofractionated SRS/SRT Dose Tolerance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Milano, M.

    Stereotactic Body Radiation Therapy (SBRT) was introduced clinically more than twenty years ago, and many subsequent publications have reported safety and efficacy data. The AAPM Working Group on Biological Effects of Hypofractionated Radiotherapy/SBRT (WGSBRT) extracted published treatment outcomes data from extensive literature searches to summarize and construct tumor control probability (TCP) and normal tissue complication probability (NTCP) models for six anatomical regions: Cranial, Head and Neck, Thoracic, Abdominal, Pelvic, and Spinal. In this session, we present the WGSBRT’s work for cranial sites, and recurrent head and neck cancer. From literature-based data and associated models, guidelines to aid with safe andmore » effective hypofractionated radiotherapy treatment are being determined. Further, the ability of existing and proposed radiobiological models to fit these data is considered as to the ability to distinguish between the linear-quadratic and alternative radiobiological models such as secondary cell death from vascular damage, immunogenic, or bystander effects. Where appropriate, specific model parameters are estimated. As described in “The lessons of QUANTEC,” (1), lack of adequate reporting standards continues to limit the amount of useful quantitative information that can be extracted from peer-reviewed publications. Recommendations regarding reporting standards are considered, to enable such reviews to achieve more complete characterization of clinical outcomes. 1 Jackson A, Marks LB, Bentzen SM, Eisbruch A, Yorke ED, Ten Haken RK, Constine LS, Deasy JO. The lessons of QUANTEC: recommendations for reporting and gathering data on dose-volume dependencies of treatment outcome. Int J Radiat Oncol Biol Phys. 2010 Mar 1;76(3 Suppl):S155–60. Learning Objectives: Describe the techniques, types of cancer and dose schedules used in treating recurrent H&N cancers with SBRT List the radiobiological models that compete with the linear

  20. [Linear accelerator-based stereotactic radiation treatment of patients with medial middle fossa meningiomas].

    PubMed

    Golanov, A V; Cherekaev, V A; Serova, N K; Pronin, I N; Gorlachev, G E; Kotel'nikova, T M; Podoprigora, A E; Kudriavtseva, P A; Galkin, M V

    2010-01-01

    Medial middle fossa meningiomas are challenging for neurosurgical treatment. Invasion of cranial nerves and vessels leads to high risk of complications after removal of such meningiomas. Currently methods of conformal stereotactic radiation treatment are applied wider and wider for the discussed lesions. During a 3.5-year period 80 patients with medial middle fossa meningiomas were treated in Burdenko Moscow Neurosurgical Institute using linear accelerator "Novalis". In 31 case radiation treatment was preceded by surgical resection. In majority of patients symptoms included cranial nerve dysfunction: oculomotor disturbances in 62.5%, trigeminal impairment--in 37.5%, visual deficit--in 43.8%, facial nerve palsy--in 1.25%. 74 patients underwent radiotherapy with classical fractioning, 2--in hypofractionated mode and 4 received radiosurgery. In cases of classical fractioning mean marginal dose reached 46.3 Gy during 28-33 fractions, in hypofractioning (7 fractions)--31.5 Gy, in radiosurgery--16.25 Gy. Mean follow-up period was 18.4 months (6-42 months). Control of tumor growth was achieved in 97.5% of cases (78 patients): in 42 (52.5%) lesion shrinked, in 36 (45%) stabilization was observed. Clinical examination revealed improvement of visual function in 15 patients (18%) and deterioration in 2 (2.5%). No new neuropathies were found. Stereotactic radiation treatment is the method of choice for medial anterior and middle fossa meningiomas due to effective control of tumor progression and minimal rate of complications.

  1. The effect of hypofractionated radiation and magnetic nanoparticle hyperthermia on tumor immunogenicity and overall treatment response

    NASA Astrophysics Data System (ADS)

    Hoopes, P. Jack; Wagner, Robert J.; Song, Ailin; Osterberg, Bjorn; Gladstone, David J.; Bursey, Alicea A.; Fiering, Steven N.; Giustini, Andrew J.

    2017-02-01

    It is now known that many tumors develop molecular signals (immune checkpoint modulators) that inhibit an effective tumor immune response. New information also suggest that even well-known cancer treatment modalities such as radiation and hyperthermia generate potentially beneficial immune responses that have been blocked or mitigated by such immune checkpoints, or similar molecules. The cancer therapy challenge is to; a) identify these treatment-based immune signals (proteins, antigens, etc.); b) the treatment doses or regimens that produce them; and c) the mechanisms that block or have the potential to promote them. The goal of this preliminary study, using the B6 mouse - B16 tumor model, clinically relevant radiation doses and fractionation schemes (including those used clinically in hypofractionated radiation therapy), magnetic nanoparticle hyperthermia (mNPH) and sophisticated protein, immune and tumor growth analysis techniques and modulators, is to determine the effect of specific radiation or hyperthermia alone and combined on overall treatment efficacy and immunologic response mechanisms. Preliminary analysis suggests that radiation dose (10 Gy vs. 2 Gy) significantly alters the mechanism of cell death (apoptosis vs. mitosis vs. necrosis) and the resulting immunogenicity. Our hypothesis and data suggest this difference is protein/antigen and immune recognition-based. Similarly, our evidence suggest that radiation doses larger than the conventional 2 Gy dose and specific hyperthermia doses and techniques (including mNP hyperthermia treatment) can be immunologically different, and potentially superior to, the radiation and heat therapy regimens that are typically used in research and clinical practice.

  2. Radiation from violently accelerated bodies

    NASA Astrophysics Data System (ADS)

    Gerlach, Ulrich H.

    2001-11-01

    A determination is made of the radiation emitted by a linearly uniformly accelerated uncharged dipole transmitter. It is found that, first of all, the radiation rate is given by the familiar Larmor formula, but it is augmented by an amount which becomes dominant for sufficiently high acceleration. For an accelerated dipole oscillator, the criterion is that the center of mass motion become relativistic within one oscillation period. The augmented formula and the measurements which it summarizes presuppose an expanding inertial observation frame. A static inertial reference frame will not do. Secondly, it is found that the radiation measured in the expanding inertial frame is received with 100% fidelity. There is no blueshift or redshift due to the accelerative motion of the transmitter. Finally, it is found that a pair of coherently radiating oscillators accelerating (into opposite directions) in their respective causally disjoint Rindler-coordinatized sectors produces an interference pattern in the expanding inertial frame. Like the pattern of a Young double slit interferometer, this Rindler interferometer pattern has a fringe spacing which is inversely proportional to the proper separation and the proper frequency of the accelerated sources. The interferometer, as well as the augmented Larmor formula, provide a unifying perspective. It joins adjacent Rindler-coordinatized neighborhoods into a single spacetime arena for scattering and radiation from accelerated bodies.

  3. Hypofractionated Image-guided Radiation Therapy (3Gy/fraction) in Patients Affected by Inoperable Advanced-stage Non-small Cell Lung Cancer After Long-term Follow-up.

    PubMed

    Agolli, Linda; Valeriani, Maurizio; Bracci, Stefano; Nicosia, Luca; DE Sanctis, Vitaliana; Enrici, Riccardo Maurizi; Osti, Mattia Falchetto

    2015-10-01

    We conducted long-term follow-up analysis of the outcomes for patients affected by advanced-stage non-small cell lung cancer (NSCLC) treated with hypofractionated radiotherapy (RT). Sixty patients with advanced-stage NSCLC (IIIA-IV) treated with hypofractionated radiotherapy (60Gy/20 fractions) were analyzed. Radiation was delivered using an image-guided RT technique to verify the correct position. Toxicities were graded according to the Common Toxicity Criteria for Adverse Effects v4.0 scale. Overall, six patients achieved a complete response and 46 patients had a partial response (tumor response rate 86%). After a median follow-up of 30 months, locoregional progression occurred in 23 patients and distant progression occurred in 38. The 1-year and 2-years overall survival were 57% and 40%, respectively. The 1-year and 2-years progression-free survival (PFS) were 47.1% and 33.5%, respectively. The median duration of OS and PFS was 13 months and 12 months, respectively. The 2-year local PFS and metastases-free survival (MFS) were 53% and 40.3%, respectively. On univariate analysis, the T-size (≥5 cm), and type of response to RT (non-response/progressive disease) were significantly associated with worse OS. Type of response was identified as significant prognostic factors for PFS (p<0.01) local PFS (p=0.015) and MFS (p<0.01). Acute grade 3 esophagitis and pneumonitis occurred in three patients (5%) and four patients (6%), respectively. Late grade 3 esophagitis and pneumonitis occurred in 2% (one patient) and 3% (two patients), respectively. No patient experienced grade 4 acute or late RT-related toxicities. Hypofractionated RT offers good disease control for patients with advanced-stage NSCLC with acceptable toxicity rates. Phase III randomized trials are necessary to compare hypofractionated RT with conventional RT. Copyright© 2015 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  4. Low incidence of new biochemical and clinical hypogonadism following hypofractionated stereotactic body radiation therapy (SBRT) monotherapy for low- to intermediate-risk prostate cancer

    PubMed Central

    2011-01-01

    Background The CyberKnife is an appealing delivery system for hypofractionated stereotactic body radiation therapy (SBRT) because of its ability to deliver highly conformal radiation therapy to moving targets. This conformity is achieved via 100s of non-coplanar radiation beams, which could potentially increase transitory testicular irradiation and result in post-therapy hypogonadism. We report on our early experience with CyberKnife SBRT for low- to intermediate-risk prostate cancer patients and assess the rate of inducing biochemical and clinical hypogonadism. Methods Twenty-six patients were treated with hypofractionated SBRT to a dose of 36.25 Gy in 5 fractions. All patients had histologically confirmed low- to intermediate-risk prostate adenocarcinoma (clinical stage ≤ T2b, Gleason score ≤ 7, PSA ≤ 20 ng/ml). PSA and total testosterone levels were obtained pre-treatment, 1 month post-treatment and every 3 months thereafter, for 1 year. Biochemical hypogonadism was defined as a total serum testosterone level below 8 nmol/L. Urinary and gastrointestinal toxicity was assessed using Common Toxicity Criteria v3; quality of life was assessed using the American Urological Association Symptom Score, Sexual Health Inventory for Men and Expanded Prostate Cancer Index Composite questionnaires. Results All 26 patients completed the treatment with a median 15 months (range, 13-19 months) follow-up. Median pre-treatment PSA was 5.75 ng/ml (range, 2.3-10.3 ng/ml), and a decrease to a median of 0.7 ng/ml (range, 0.2-1.8 ng/ml) was observed by one year post-treatment. The median pre-treatment total serum testosterone level was 13.81 nmol/L (range, 5.55 - 39.87 nmol/L). Post-treatment testosterone levels slowly decreased with the median value at one year follow-up of 10.53 nmol/L, significantly lower than the pre-treatment value (p < 0.013). The median absolute fall was 3.28 nmol/L and the median percent fall was 23.75%. There was no increase in biochemical hypogonadism

  5. Improving Dose Determination Accuracy in Nonstandard Fields of the Varian TrueBeam Accelerator

    NASA Astrophysics Data System (ADS)

    Hyun, Megan A.

    In recent years, the use of flattening-filter-free (FFF) linear accelerators in radiation-based cancer therapy has gained popularity, especially for hypofractionated treatments (high doses of radiation given in few sessions). However, significant challenges to accurate radiation dose determination remain. If physicists cannot accurately determine radiation dose in a clinical setting, cancer patients treated with these new machines will not receive safe, accurate and effective treatment. In this study, an extensive characterization of two commonly used clinical radiation detectors (ionization chambers and diodes) and several potential reference detectors (thermoluminescent dosimeters, plastic scintillation detectors, and alanine pellets) has been performed to investigate their use in these challenging, nonstandard fields. From this characterization, reference detectors were identified for multiple beam sizes, and correction factors were determined to improve dosimetric accuracy for ionization chambers and diodes. A validated computational (Monte Carlo) model of the TrueBeam(TM) accelerator, including FFF beam modes, was also used to calculate these correction factors, which compared favorably to measured results. Small-field corrections of up to 18 % were shown to be necessary for clinical detectors such as microionization chambers. Because the impact of these large effects on treatment delivery is not well known, a treatment planning study was completed using actual hypofractionated brain, spine, and lung treatments that were delivered at the UW Carbone Cancer Center. This study demonstrated that improperly applying these detector correction factors can have a substantial impact on patient treatments. This thesis work has taken important steps toward improving the accuracy of FFF dosimetry through rigorous experimentally and Monte-Carlo-determined correction factors, the validation of an important published protocol (TG-51) for use with FFF reference fields, and a

  6. [Hypofractionation and radiotherapy: "the eternal return"].

    PubMed

    Cosset, J-M; Mornex, F; Eschwège, F

    2013-10-01

    Hypofractionation is not a new idea in radiotherapy. The use of a few high-dose fractions has been proposed by some pioneers of our specialty in the early years of the 20th century. Hypofractionation then reappeared several times in the next decades, based on successive radiobiological concepts, a number of them having been shown to be wrong. The nominal single dose (NSD), for example, so fashionable in the 1970's, dramatically underestimated the late toxicity of the high-dose fractions. Consequently, the NSD was directly responsible for a significant increase of the incidence and of the severity of late complications in large cohorts of patients. The linear-quadratic model (LQ) unequivocally improved our understanding of fractionation sensitivity, but one has to keep in mind its limitations, both in the areas of low and high doses per fraction. For more than a decade, prostate cancer has been the subject of fierce discussions about its sensitivity to fractionation. A number of studies have suggested an unusually low (for a malignant tumor) alpha/beta ratio. However, the available data do not allow a precise evaluation of this ratio; "very low" (1.5 Gy), with an advantage of hypofractionation in terms of local control? Or simply "low" (3-4 Gy), only allowing a reduction of the total number of fractions (with a dose adequately reduced)? While waiting for complementary data, it is advised to remain very careful when modifying the classical schemes towards hypofractionation. Copyright © 2013. Published by Elsevier SAS.

  7. Hypofractionated high-energy proton-beam irradiation is an alternative treatment for WHO grade I meningiomas.

    PubMed

    Vlachogiannis, Pavlos; Gudjonsson, Olafur; Montelius, Anders; Grusell, Erik; Isacsson, Ulf; Nilsson, Kristina; Blomquist, Erik

    2017-12-01

    Radiation treatment is commonly employed in the treatment of meningiomas. The aim of this study was to evaluate the effectiveness and safety of hypofractionated high-energy proton therapy as adjuvant or primary treatment for WHO grade I meningiomas. A total of 170 patients who received irradiation with protons for grade I meningiomas between 1994 and 2007 were included in the study. The majority of the tumours were located at the skull base (n = 155). Eighty-four patients were treated post subtotal resection, 42 at tumour relapse and 44 with upfront radiotherapy after diagnosis based on the typical radiological image. Irradiation was given in a hypofractionated fashion (3-8 fractions, usually 5 or 6 Gy) with a mean dose of 21.9 Gy (range, 14-46 Gy). All patients were planned for follow-up with clinical controls and magnetic resonance imaging scans at 6 months and 1, 2, 3, 5, 7 and 10 years after treatment. The median follow-up time was 84 months. Age, gender, tumour location, Simpson resection grade and target volume were assessed as possible prognostic factors for post-irradiation tumour progression and radiation related complications. The actuarial 5- and 10-year progression-free survival rates were 93% and 85% respectively. Overall mortality rate was 13.5%, while disease-specific mortality was 1.7% (3/170 patients). Older patients and patients with tumours located in the middle cranial fossa had a lower risk for tumour progression. Radiation-related complications were seen in 16 patients (9.4%), with pituitary insufficiency being the most common. Tumour location in the anterior cranial fossa was the only factor that significantly increased the risk of complications. Hypofractionated proton-beam radiation therapy may be used particularly in the treatment of larger World Health Organisation grade I meningiomas not amenable to total surgical resection. Treatment is associated with high rates of long-term tumour growth control and acceptable risk for

  8. Five-year Local Control in a Phase II Study of Hypofractionated Intensity Modulated Radiation Therapy With an Incorporated Boost for Early Stage Breast Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Freedman, Gary M., E-mail: Gary.Freedman@uphs.upenn.edu; Anderson, Penny R.; Bleicher, Richard J.

    Purpose: Conventional radiation fractionation of 1.8-2 Gy per day for early stage breast cancer requires daily treatment for 6-7 weeks. We report the 5-year results of a phase II study of intensity modulated radiation therapy (IMRT), hypofractionation, and incorporated boost that shortened treatment time to 4 weeks. Methods and Materials: The study design was phase II with a planned accrual of 75 patients. Eligibility included patients aged {>=}18 years, Tis-T2, stage 0-II, and breast conservation. Photon IMRT and an incorporated boost was used, and the whole breast received 2.25 Gy per fraction for a total of 45 Gy, and themore » tumor bed received 2.8 Gy per fraction for a total of 56 Gy in 20 treatments over 4 weeks. Patients were followed every 6 months for 5 years. Results: Seventy-five patients were treated from December 2003 to November 2005. The median follow-up was 69 months. Median age was 52 years (range, 31-81). Median tumor size was 1.4 cm (range, 0.1-3.5). Eighty percent of tumors were node negative; 93% of patients had negative margins, and 7% of patients had close (>0 and <2 mm) margins; 76% of cancers were invasive ductal type: 15% were ductal carcinoma in situ, 5% were lobular, and 4% were other histology types. Twenty-nine percent of patients 29% had grade 3 carcinoma, and 20% of patients had extensive in situ carcinoma; 11% of patients received chemotherapy, 36% received endocrine therapy, 33% received both, and 20% received neither. There were 3 instances of local recurrence for a 5-year actuarial rate of 2.7%. Conclusions: This 4-week course of hypofractionated radiation with incorporated boost was associated with excellent local control, comparable to historical results of 6-7 weeks of conventional whole-breast fractionation with sequential boost.« less

  9. Feasibility and Acute Toxicity of Hypofractionated Radiation in Large-breasted Patients

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dorn, Paige L., E-mail: pdorn@radonc.uchicago.edu; Corbin, Kimberly S.; Al-Hallaq, Hania

    Purpose: To determine the feasibility of and acute toxicity associated with hypofractionated whole breast radiation (HypoRT) after breast-conserving surgery in patients excluded from or underrepresented in randomized trials comparing HypoRT with conventional fractionation schedules. Methods and Materials: A review was conducted of all patients consecutively treated with HypoRT at University of Chicago. All patients were treated to 42.56 Gy in 2.66 Gy daily fractions in either the prone or supine position. Planning was performed in most cases using wedges and large segments or a 'field-in-field' technique. Breast volume was estimated using volumetric measurements of the planning target volume (PTV). Dosimetricmore » parameters of heterogeneity (V105, V107, V110, and maximum dose) were recorded for each treatment plan. Acute toxicity was scored for each treated breast. Results: Between 2006 and 2010, 78 patients were treated to 80 breasts using HypoRT. Most women were overweight or obese (78.7%), with a median body mass index of 29.2 kg/m{sup 2}. Median breast volume was 1,351 mL. Of the 80 treated breasts, the maximum acute skin toxicity was mild erythema or hyperpigmentation in 70.0% (56/80), dry desquamation in 21.25% (17/80), and focal moist desquamation in 8.75% (7/80). Maximum acute toxicity occurred after the completion of radiation in 31.9% of patients. Separation >25 cm was not associated with increased toxicity. Breast volume was the only patient factor significantly associated with moist desquamation on multivariable analysis (p = 0.01). Patients with breast volume >2,500 mL experienced focal moist desquamation in 27.2% of cases compared with 6.34% in patients with breast volume <2,500 mL (p = 0.03). Conclusions: HypoRT is feasible and safe in patients with separation >25 cm and in patients with large breast volume when employing modern planning and positioning techniques. We recommend counseling regarding expected increases in skin toxicity in women

  10. Early hypofractionated salvage radiotherapy for postprostatectomy biochemical recurrence.

    PubMed

    Kruser, Tim J; Jarrard, David F; Graf, Andrew K; Hedican, Sean P; Paolone, David R; Wegenke, John D; Liu, Glenn; Geye, Heather M; Ritter, Mark A

    2011-06-15

    Postprostatectomy adjuvant or salvage radiotherapy, when using standard fractionation, requires 6.5 to 8 weeks of treatment. The authors report on the safety and efficacy of an expedited radiotherapy course for salvage prostate radiotherapy. A total of 108 consecutive patients were treated with salvage radiation therapy to 65 grays (Gy) in 26 fractions of 2.5 Gy. Median follow-up was 32.4 months. Median presalvage prostate-specific antigen (PSA) was 0.44 (range, 0.05-9.50). Eighteen (17%) patients received androgen deprivation after surgery or concurrently with radiation. The actuarial freedom from biochemical failure for the entire group at 4 years was 67% ± 5.3%. An identical 67% control rate was seen at 5 years for the first 50 enrolled patients, whose median follow-up was longer at 43 months. One acute grade 3 genitourinary toxicity occurred, with no acute grade 3 gastrointestinal and no late grade 3 toxicities observed. On univariate analysis, higher Gleason score (P = .006), PSA doubling time ≤12 months (P = .03), perineural invasion (P = .06), and negative margins (P = .06) showed association with unsuccessful salvage. On multivariate analysis, higher Gleason score (P = .057) and negative margins (P = .088) retained an association with biochemical failure. Hypofractionated radiotherapy (65 Gy in 2.5 Gy fractions in about 5 weeks) reduces the length of treatment by from 1-½ to 3 weeks relative to other treatment schedules commonly used, produces low rates of toxicity, and demonstrates encouraging efficacy at 4 to 5 years. Hypofractionation may provide a convenient, resource-efficient, and well-tolerated salvage approach for the estimated 20,000 to 35,000 US men per year experiencing biochemical recurrence after prostatectomy. Copyright © 2010 American Cancer Society.

  11. Ischaemic heart disease following conventional and hypofractionated radiation treatment in a contemporary breast cancer series.

    PubMed

    James, Melissa; Swadi, Sami; Yi, Ma; Johansson, Lisa; Robinson, Bridget; Dixit, Ashutosh

    2018-06-01

    We report the incidence of ischaemic cardiac toxicity in a contemporary cohort of patients receiving conventional (CFRT) or hypofractionated (HFRT) radiation after surgery for early breast cancer and investigate the interplay of cardiac risk factors and fractionation. Included were patients receiving external beam radiation treatment from 2002 to 2006 at the Christchurch public hospital. Hospital coding databases, oncology databases and medical records were reviewed for baseline characteristics, treatment details and outcomes. The primary outcome was cardiac toxicity (including myocardial infarction, admission for cardiac chest pain, coronary angiogram positivity and ischaemic cardiac death). Kaplan-Meier methods were used to derive ischaemic cardiac event free and overall survival. Predefined univariate and multivariate analysis was performed to investigate interaction with radiation fraction size, cardiac risk factors, age and side of cancer. Standardised mortality ratios were constructed. Five hundred and one patients were identified, 220 treated with CFRT and 281 with HFRT. The median age was 56 and median follow-up 10.33 years. The 10-year breast cancer specific survival was 81.8% (95% CI %.78.1-85.0). The 10-year freedom from cardiac death was 98.6% (95% CI 96.9-99.4). There were 27 post radiation cardiac events including 5 cardiac deaths and 19 cases of acute myocardial infarction. 265 (53%) had at least one cardiac risk factor. Twenty five of the 27 patients with a cardiac event had cardiac risk factors. On univariate and multivariate analysis, fractionation schedule was not significantly associated with a post radiation ischaemic event, however, there was a significant relationship with age and the presence of a cardiac risk factor. The standardised mortality ratio was 0.89 (95% CI: 0-3.13). Our study has shown a low rate of ischaemic cardiac disease for both CFRT and HFRT in women treated for breast cancer with no evidence of an effect with fractionation

  12. Recent advances in radiation cancer therapy

    NASA Astrophysics Data System (ADS)

    Ma, C.-M. Charlie

    2007-03-01

    This paper presents the recent advances in radiation therapy techniques for the treatment of cancer. Significant improvement has been made in imaging techniques such as CT, MRI, MRS, PET, ultrasound, etc. that have brought marked advances in tumor target and critical structure delineation for treatment planning and patient setup and target localization for accurate dose delivery in radiation therapy of cancer. Recent developments of novel treatment modalities including intensity-modulated x-ray therapy (IMXT), energy- and intensity modulated electron therapy (MERT) and intensity modulated proton therapy (IMPT) together with the use of advanced image guidance have enabled precise dose delivery for dose escalation and hypofractionation studies that may result in better local control and quality of life. Particle acceleration using laser-induced plasmas has great potential for new cost-effective radiation sources that may have a great impact on the management of cancer using radiation therapy.

  13. A Pilot Study of Hypofractionated Stereotactic Radiation Therapy and Sunitinib in Previously Irradiated Patients With Recurrent High-Grade Glioma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wuthrick, Evan J., E-mail: evan.wuthrick@osumc.edu; Curran, Walter J.; Camphausen, Kevin

    Purpose/Objective(s): Angiogenic blockade with irradiation may enhance the therapeutic ratio of radiation therapy (RT) through vascular normalization. We sought to determine the safety and toxicity profile of continuous daily-dosed sunitinib when combined with hypofractionated stereotactic RT (fSRT) for recurrent high-grade gliomas (rHGG). Methods and Materials: Eligible patients had malignant high-grade glioma that recurred or progressed after primary surgery and RT. All patients received a minimum of a 10-day course of fSRT, had World Health Organization performance status of 0 to 1, and a life expectancy of >3 months. During fSRT, sunitinib was administered at 37.5 mg daily. The primary endpoint was acutemore » toxicity, and response was assessed via serial magnetic resonance imaging. Results: Eleven patients with rHGG were enrolled. The fSRT doses delivered ranged from 30 to 42 Gy in 2.5- to 3.75-Gy fractions. The median follow-up time was 40 months. Common acute toxicities included hematologic disorders, fatigue, hypertension, and elevated liver transaminases. Sunitinib and fSRT were well tolerated. One grade 4 mucositis toxicity occurred, and no grade 4 or 5 hypertensive events or intracerebral hemorrhages occurred. One patient had a nearly complete response, and 4 patients had stable disease for >9 months. Two patients (18%) remain alive and progression-free >3 years from enrollment. The 6-month progression-free survival was 45%. Conclusions: Sunitinib at a daily dose of 37.5 mg given concurrently with hypofractionated stereotactic reirradiation for rHGG yields acceptable toxicities and an encouraging 6-month progression-free survival.« less

  14. Chest wall toxicity after hypofractionated proton beam therapy for liver malignancies.

    PubMed

    Yeung, Rosanna; Bowen, Stephen R; Chapman, Tobias R; MacLennan, Grayden T; Apisarnthanarax, Smith

    2017-12-24

    Normal liver-sparing with proton beam therapy (PBT) allows for dose escalation in the treatment of liver malignancies, but it may result in high doses to the chest wall (CW). CW toxicity (CWT) data after PBT for liver malignancies are limited, with most published reports describing toxicity after a combination of hypofractionated proton and photon radiation therapy. We examined the incidence and associated factors for CWT after hypofractionated PBT for liver malignancies. We retrospectively reviewed the charts of 37 consecutive patients with liver malignancies (30 hepatocellular carcinoma, 6 intrahepatic cholangiocarcinoma, and 1 metastasis) treated with hypofractionated PBT. CWT was scored using Common Terminology Criteria for Adverse Events, version 4. Receiver-operating characteristic curves were used to identify patient and dosimetric factors associated with CWT and to determine optimal dose-volume histogram parameters/cutoffs. Cox regression univariate analysis was used to associate factors to time-dependent onset of CWT. Thirty-nine liver lesions were treated with a median dose of 60 GyE (range, 35-67.5) in 15 fractions (range, 13-20). Median follow-up was 11 months (range, 2-44). Grade ≥2 and 3 CW pain occurred in 7 (19%) and 4 (11%) patients, respectively. Median time to onset of pain was 6 months (range, 1-14). No patients had radiographic rib fracture. On univariate analysis, CW equivalent 2 Gy dose with an α/β = 3 Gy (EQD2 α/β=3 ), V57 >20 cm 3 (hazard ratio [HR], 2.7; P = .004), V63 >17 cm 3 (HR, 2.7; P = .003), and V78 >8 cm 3 (HR, 2.6; P = .003) had the strongest association with grade ≥2 CW pain, as did tumor dose of >75 Gy EQD2 α/β=10 (HR, 8.7; P = .03). No other patient factors were associated with CWT. CWT after hypofractionated PBT for liver malignancies is clinically relevant. For a 15-fraction regimen, V47 >20 cm 3 , V50 >17 cm 3 , and V58 >8 cm 3 were associated with higher rates of CWT. Further investigation of PBT techniques to

  15. Patterns of Failure After Concurrent Bevacizumab and Hypofractionated Stereotactic Radiation Therapy for Recurrent High-Grade Glioma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shapiro, Lauren Q.; Beal, Kathryn, E-mail: bealk@mskcc.org; Goenka, Anuj

    2013-03-01

    Purpose: Concurrent bevacizumab with hypofractionated stereotactic radiation therapy (HSRT) is safe and effective for the treatment of recurrent high-grade gliomas (HGG). The objective of this study was to characterize the patterns of failure after this treatment regimen. Methods and Materials: Twenty-four patients with recurrent enhancing HGG were previously treated on an institutional review board-approved protocol of concurrent bevacizumab and reirradiation. Patients received 30 Gy in 5 fractions to the recurrent tumor with HSRT. Brain magnetic resonance imaging (MRI) was performed every 2 cycles, and bevacizumab was continued until clinical or radiographic tumor progression according to the criteria of Macdonald etmore » al. MRI at the time of progression was fused to the HSRT treatment plan, and the location of recurrence was classified on the basis of volume within the 95% isodose line. Outcomes based on patient characteristics, tumor grade, recurrence pattern, and best response to treatment were analyzed by the Kaplan-Meier method. Results: Twenty-two patients experienced either clinical or radiographic progression. Recurrent tumor was enhancing in 15 (71.4%) and nonenhancing in 6 (28.6%) patients. Eleven patients (52.4%) had recurrence within the radiation field, 5 patients (23.8%) had marginal recurrence, and 5 patients had recurrence outside the radiation field. Pattern of enhancement and location of failure did not correlate with overall survival or progression-free survival. Radiographic response was the only variable to significantly correlate with progression-free survival. Conclusions: Despite the promising initial response seen with the addition of HSRT to bevacizumab as salvage treatment for recurrent HGG, approximately half of patients ultimately still experience failure within the radiation field. The rate of local failure with the addition of HSRT seems to be lower than that seen with bevacizumab alone in the salvage setting. Our data

  16. The changing role of accelerators in radiation therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hanson, W.F.

    Conventional low energy x-rays have been used in radiation therapy since the turn of the century. Van de Graaff and Betatron accelerators changed the complexion of radiation therapy in the mid 1940's by providing significantly deeper penetrating photon beams and also providing therapeutic quality electron beams. The development of Cobalt-60 teletherapy in the mid 1950's suppressed the role of accelerators in radiation therapy for nearly 20 years. However, with the development of reliable isocentric rotating linear accelerators, accelerators are rapidly becoming the most popular conventional therapy devices. Following unfavorable clinical results with fast neutron therapy in the late 1930's andmore » early 1940's, the role of cyclotron produced fast neutrons is presently experiencing a renewal in radiation therapy. Several facilities are also experimenting with heavy charged particle beams for therapy.« less

  17. Impact of conventional fractionated RT to pelvic lymph nodes and dose-escalated hypofractionated RT to prostate gland using IMRT treatment delivery in high-risk prostate cancer

    NASA Astrophysics Data System (ADS)

    Pervez, Nadeem

    Prostate cancer is the most common cancer among Canadian men. The standard treatment in high-risk category is radical radiation, with androgen suppression treatment (AST). Significant disease progression is reported despite this approach. Radiation dose escalation has been shown to improve disease-free survival; however, it results in higher toxicities. Hypofractionated radiation schedules (larger dose each fraction in shorter overall treatment time) are expected to deliver higher biological doses. A hypofractionated scheme was used in this study to escalate radiation doses with AST. Treatment was well tolerated acutely. Early results of self-administered quality of life reported by patients shows a decrease in QOL which is comparable to other treatment schedules. Significant positional variation of the prostate was observed during treatment. Therefore, we suggest daily target verification to avoid a target miss. Initial late effects are reasonable and early treatment outcomes are promising. Longer follow-up is required for full outcomes assessments.

  18. Double-pulse THz radiation bursts from laser-plasma acceleration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bosch, R. A.

    2006-11-15

    A model is presented for coherent THz radiation produced when an electron bunch undergoes laser-plasma acceleration and then exits axially from a plasma column. Radiation produced when the bunch is accelerated is superimposed with transition radiation from the bunch exiting the plasma. Computations give a double-pulse burst of radiation comparable to recent observations. The duration of each pulse very nearly equals the electron bunch length, while the time separation between pulses is proportional to the distance between the points where the bunch is accelerated and where it exits the plasma. The relative magnitude of the two pulses depends upon bymore » the radius of the plasma column. Thus, the radiation bursts may be useful in diagnosing the electron bunch length, the location of the bunch's acceleration, and the plasma radius.« less

  19. A Phase 2 Trial of Once-Weekly Hypofractionated Breast Irradiation: First Report of Acute Toxicity, Feasibility, and Patient Satisfaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dragun, Anthony E., E-mail: aedrag01@louisville.edu; Quillo, Amy R.; Riley, Elizabeth C.

    2013-03-01

    Purpose: To report on early results of a single-institution phase 2 trial of a 5-fraction, once-weekly radiation therapy regimen for patients undergoing breast-conserving surgery (BCS). Methods and Materials: Patients who underwent BCS for American Joint Committee on Cancer stage 0, I, or II breast cancer with negative surgical margins were eligible to receive whole breast radiation therapy to a dose of 30 Gy in 5 weekly fractions of 6 Gy with or without an additional boost. Elective nodal irradiation was not permitted. There were no restrictions on breast size or the use of cytotoxic chemotherapy for otherwise eligible patients. Patientsmore » were assessed at baseline, treatment completion, and at first posttreatment follow-up to assess acute toxicity (Common Terminology Criteria for Adverse Events, version 3.0) and quality of life (European Organization for Research and Treatment of Cancer QLQ-BR23). Results: Between January and September 2011, 42 eligible patients underwent weekly hypofractionated breast irradiation immediately following BCS (69.0%) or at the conclusion of cytotoxic chemotherapy (31.0%). The rates of grade ≥2 radiation-induced dermatitis, pain, fatigue, and breast edema were 19.0%, 11.9%, 9.5%, and 2.4%, respectively. Only 1 grade 3 toxicity—pain requiring a course of narcotic analgesics—was observed. One patient developed a superficial cellulitis (grade 2), which resolved with the use of oral antibiotics. Patient-reported moderate-to-major breast symptoms (pain, swelling, and skin problems), all decreased from baseline through 1 month, whereas breast sensitivity remained stable over the study period. Conclusions: The tolerance of weekly hypofractionated breast irradiation compares well with recent reports of daily hypofractionated whole-breast irradiation schedules. The regimen appears feasible and cost-effective. Additional follow-up with continued accrual is needed to assess late toxicity, cosmesis, and disease-specific outcomes.« less

  20. High dose hypofractionated frameless volumetric modulated arc radiotherapy is a feasible method for treating canine trigeminal nerve sheath tumors.

    PubMed

    Dolera, Mario; Malfassi, Luca; Marcarini, Silvia; Mazza, Giovanni; Carrara, Nancy; Pavesi, Simone; Sala, Massimo; Finesso, Sara; Urso, Gaetano

    2018-06-08

    The aim of this prospective pilot study was to evaluate the feasibility and effectiveness of curative intent high dose hypofractionated frameless volumetric modulated arc radiotherapy for treatment of canine trigeminal peripheral nerve sheath tumors. Client-owned dogs with a presumptive imaging-based diagnosis of trigeminal peripheral nerve sheath tumor were recruited for the study during the period of February 2010 to December 2013. Seven dogs were enrolled and treated with high dose hypofractionated volumetric modulated arc radiotherapy delivered by a 6 MV linear accelerator equipped with a micro-multileaf beam collimator. The plans were computed using a Monte Carlo algorithm with a prescription dose of 37 Gy delivered in five fractions on alternate days. Overall survival was estimated using a Kaplan-Meier curve analysis. Magnetic resonance imaging (MRI) follow-up examinations revealed complete response in one dog, partial response in four dogs, and stable disease in two dogs. Median overall survival was 952 days with a 95% confidence interval of 543-1361 days. Volumetric modulated arc radiotherapy was demonstrated to be feasible and effective for trigeminal peripheral nerve sheath tumor treatment in this sample of dogs. The technique required few sedations and spared organs at risk. Even though larger studies are required, these preliminary results supported the use of high dose hypofractionated volumetric modulated arc radiotherapy as an alternative to other treatment modalities. © 2018 American College of Veterinary Radiology.

  1. Effect of image-guided hypofractionated stereotactic radiotherapy on peripheral non-small-cell lung cancer

    PubMed Central

    Wang, Shu-wen; Ren, Juan; Yan, Yan-li; Xue, Chao-fan; Tan, Li; Ma, Xiao-wei

    2016-01-01

    The objective of this study was to compare the effects of image-guided hypofractionated radiotherapy and conventional fractionated radiotherapy on non-small-cell lung cancer (NSCLC). Fifty stage- and age-matched cases with NSCLC were randomly divided into two groups (A and B). There were 23 cases in group A and 27 cases in group B. Image-guided radiotherapy (IGRT) and stereotactic radiotherapy were conjugately applied to the patients in group A. Group A patients underwent hypofractionated radiotherapy (6–8 Gy/time) three times per week, with a total dose of 64–66 Gy; group B received conventional fractionated radiotherapy, with a total dose of 68–70 Gy five times per week. In group A, 1-year and 2-year local failure survival rate and 1-year local failure-free survival rate were significantly higher than in group B (P<0.05). The local failure rate (P<0.05) and distant metastasis rate (P>0.05) were lower in group A than in group B. The overall survival rate of group A was significantly higher than that of group B (P=0.03), and the survival rate at 1 year was 87% vs 63%, (P<0.05). The median survival time of group A was longer than that of group B. There was no significant difference in the incidence of complications between the two groups (P>0.05). Compared with conventional fractionated radiation therapy, image-guided hypofractionated stereotactic radiotherapy in NSCLC received better treatment efficacy and showed good tolerability. PMID:27574441

  2. Postoperative Radiation Therapy for Prostate Cancer: Comparison of Conventional Versus Hypofractionated Radiation Regimens.

    PubMed

    Tandberg, Daniel J; Oyekunle, Taofik; Lee, W Robert; Wu, Yuan; Salama, Joseph K; Koontz, Bridget F

    2018-06-01

    To compare acute/late toxicity and biochemical control in contemporaneous prostate cancer patient cohorts treated with hypofractionated postprostatectomy radiation therapy (hypoPORT) or conventional PORT (coPORT). Consecutive patients treated with intensity modulated hypoPORT (2.5 Gy per fraction, median cumulative dose 65 Gy [range, 57.5-70 Gy]) or coPORT (1.8-2.0 Gy per fraction, median cumulative dose 66 Gy [range, 60-74 Gy]) between 2005 and 2016 at 2 institutions constituted the study cohort. Acute toxicity and cumulative late grade 2 and ≥3 genitourinary (GU) and gastrointestinal (GI) toxicity incidences were calculated for all patients using the Kaplan-Meier method and compared between cohorts. Biochemical progression-free survival (bPFS) was calculated in patients with ≥12 months' follow-up. Median follow-up for all 461 patients was 38.6 months. Of the 461 patients, 167 (36%) received hypoPORT, and 294 (64%) patients received coPORT. The hypoPORT cohort had significantly worse baseline urinary incontinence. Acute grade ≥2 GU toxicity was more common after hypoPORT (22% vs 8%) (P = .0001). Late grade ≥3 GU toxicity cumulative incidence at 6 years was 11% (hypoPORT) and 4% (coPORT) (P = .0081). However, hypoPORT was not associated with late grade ≥2 GU toxicity on multivariate analysis (hazard ratio 1.39, 95% confidence interval 0.86-2.34) (P = .18). There was no difference in acute or late GI toxicity. In the subset of patients with ≥12 month's follow-up (n = 364, median follow-up 52 months), 4-year bPFS was 78% (95% CI 69.4-85.0) after hypoPORT (P = .0038) and 65% (95% CI 57.6-71.1) after coPORT. HypoPORT was not significant for bPFS on multivariate analysis (hazard ratio 0.64, 95% CI 0.41-1.02, P = .059). HypoPORT shows promising early biochemical control. After controlling for baseline urinary function, hypoPORT was not associated with greater GU toxicity than coPORT. © 2018 Elsevier Inc. Copyright © 2018 Elsevier Inc. All

  3. Self-shielded electron linear accelerators designed for radiation technologies

    NASA Astrophysics Data System (ADS)

    Belugin, V. M.; Rozanov, N. E.; Pirozhenko, V. M.

    2009-09-01

    This paper describes self-shielded high-intensity electron linear accelerators designed for radiation technologies. The specific property of the accelerators is that they do not apply an external magnetic field; acceleration and focusing of electron beams are performed by radio-frequency fields in the accelerating structures. The main characteristics of the accelerators are high current and beam power, but also reliable operation and a long service life. To obtain these characteristics, a number of problems have been solved, including a particular optimization of the accelerator components and the application of a variety of specific means. The paper describes features of the electron beam dynamics, accelerating structure, and radio-frequency power supply. Several compact self-shielded accelerators for radiation sterilization and x-ray cargo inspection have been created. The introduced methods made it possible to obtain a high intensity of the electron beam and good performance of the accelerators.

  4. Macroscopic Hematuria After Conventional or Hypofractionated Radiation Therapy: Results From a Prospective Phase 3 Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sanguineti, Giuseppe, E-mail: sanguineti@ifo.it; Arcidiacono, Fabio; Landoni, Valeria

    2016-10-01

    Purpose: To assess the macroscopic hematuria rates within a single-institution randomized phase 3 trial comparing dose-escalated, conventionally fractionated radiation therapy (CFRT) and moderately hypofractionated radiation therapy (MHRT) for localized prostate cancer. Methods and Materials: Patients with intermediate- to high-risk localized prostate cancer were treated with conformal RT and short-course androgen deprivation. Both the prostate and the entire seminal vesicles were treated to 80 Gy in 40 fractions over 8 weeks (CFRT) or 62 Gy in 20 fractions over 5 weeks (MHRT). The endpoint of the present study was the development of any episode or grade of macroscopic hematuria. The median follow-up period was 93 monthsmore » (range 6-143). Results: Macroscopic hematuria was reported by 25 of 168 patients (14.9%). The actuarial estimate of hematuria at 8 years was 17.0% (95% confidence interval [CI] 10.7%-23.3%). The number of patients with hematuria was 6 and 19 in the CFRT and MHRT arms, respectively, for an actuarial 8-year estimate of 9.7% and 24.3%, respectively (hazard ratio 3.468, 95% CI 1.385-8.684; P=.008). Overall, 8 of 25 patients were found to have biopsy-proven urothelial carcinoma (3 in the CFRT arm and 5 in the MHRT arm; P=.27). Thus, the 8-year actuarial incidence of macroscopic hematuria (after censoring urothelial cancer–related episodes) was 4.1% and 18.2% after CFRT and MHRT, respectively (hazard ratio 4.961, 95% CI 1.426-17.263; P=.012). The results were confirmed by multivariate analysis after accounting for several patient-, treatment-, and tumor-related covariates. Conclusions: MHRT was associated with a statistically significant increased risk of macroscopic hematuria compared with CFRT.« less

  5. Radiation from Accelerated Particles in Shocks and Reconnections

    NASA Technical Reports Server (NTRS)

    Nishikawa, K. I.; Choi, E. J.; Min, K. W.; Niemiec, J.; Zhang, B.; Hardee, P.; Mizuno, Y.; Medvedev, M.; Nordlund, A.; Frederiksen, J.; hide

    2012-01-01

    Plasma instabilities are responsible not only for the onset and mediation of collisionless shocks but also for the associated acceleration of particles. We have investigated particle acceleration and shock structure associated with an unmagnetized relativistic electron-positron jet propagating into an unmagnetized electron-positron plasma. Cold jet electrons are thermalized and slowed while the ambient electrons are swept up to create a partially developed hydrodynamic-like shock structure. In the leading shock, electron density increases by a factor of about 3.5 in the simulation frame. Strong electromagnetic fields are generated in the trailing shock and provide an emission site. These magnetic fields contribute to the electrons transverse deflection and, more generally, relativistic acceleration behind the shock. We have calculated, self-consistently, the radiation from electrons accelerated in the turbulent magnetic fields. We found that the synthetic spectra depend on the Lorentz factor of the jet, its thermal temperature and strength of the generated magnetic fields. Our initial results of a jet-ambient interaction with anti-parallelmagnetic fields show pile-up of magnetic fields at the colliding shock, which may lead to reconnection and associated particle acceleration. We will investigate the radiation in a transient stage as a possible generation mechanism of precursors of prompt emission. In our simulations we calculate the radiation from electrons in the shock region. The detailed properties of this radiation are important for understanding the complex time evolution and spectral structure in gamma-ray bursts, relativistic jets, and supernova remnants.

  6. Hypofractionated Irradiation Has Immune Stimulatory Potential and Induces a Timely Restricted Infiltration of Immune Cells in Colon Cancer Tumors

    PubMed Central

    Frey, Benjamin; Rückert, Michael; Weber, Julia; Mayr, Xaver; Derer, Anja; Lotter, Michael; Bert, Christoph; Rödel, Franz; Fietkau, Rainer; Gaipl, Udo S.

    2017-01-01

    In addition to locally controlling the tumor, hypofractionated radiotherapy (RT) particularly aims to activate immune cells in the RT-modified microenvironment. Therefore, we examined whether hypofractionated RT can activate dendritic cells (DCs), induce immune cell infiltration in tumors, and how the chronology of immune cell migration into tumors occurs to gain knowledge for future definition of radiation breaks and inclusion of immunotherapy. Colorectal cancer treatments offer only limited survival benefit, and immunobiological principles for additional therapies need to be explored with preclinical models. The impact of hypofractionated RT on CT26 colon cancer tumor cell death, migration of DCs toward supernatants (SN) of tumor cells, and activation of DCs by SN were analyzed. The subcutaneous tumor of a BALB/c-CT26 mouse model was locally irradiated with 2 × 5 Gy, the tumor volume was monitored, and the infiltration of immune cells in the tumor was determined by flow cytometry daily. Hypofractionated RT induced a mixture of apoptotic and necrotic CT26 cells, which is known to be in particular immunogenic. DCs that migrated toward SN of CT26 cells particularly upregulated the activation markers CD80 and CD86 when in contact with SN of irradiated tumor cells. After hypofractionated RT, the tumor outgrowth was significantly retarded and in the irradiated tumors an increased infiltration of macrophages (CD11bhigh/F4-80+) and DCs (MHC-II+), but only between day 5 and 10 after the first irradiation, takes place. While CD4+ T cells migrated into non-irradiated and irradiated tumors, CD8+ T cells were only found in tumors that had been irradiated and they were highly increased at day 8 after the first irradiation. Myeloid-derived suppressor cells and regulatory T cells show regular turnover in irradiated and non-irradiated tumors. Tumor cell-specific anti-IgM antibodies were enhanced in the serum of animals with irradiated tumors. We conclude that

  7. Hypofractionated Palliative Radiotherapy with Concurrent Radiosensitizing Chemotherapy for Advanced Head and Neck Cancer Using the "QUAD-SHOT Regimen".

    PubMed

    Gamez, Mauricio E; Agarwal, Manuj; Hu, Kenneth S; Lukens, John N; Harrison, Louis B

    2017-02-01

    To analyze the outcomes using the hypofractionated palliative radiotherapy regimen "QUAD-Shot" with concurrent radiosensitizing chemotherapy for advanced head and neck cancer. We analyzed twenty-one patients with newly-diagnosed or recurrent head and neck cancer treated with palliative hypofractionated concurrent chemoradiation using the QUAD-Shot regimen. All patients received at least one cycle of RT, with sixteen patients (76%) completing all three cycles. 85.7 % of patients had objective response to therapy with five patients (23.8%) demonstrating complete response (CR) and thirteen patients (61.9%) demonstrating partial response (PR). Palliation of symptoms was achieved in all (100%) of the sixteen patients that completed the three cycles. Median overall survival and median progression-free survival were 7 and 4 months, respectively. QUAD-Shot palliative radiation therapy coupled with radiosensitizing chemotherapy is efficacious and well-tolerated in patients with newly-diagnosed or recurrent head and neck cancer not amenable to curative therapy. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  8. Radiative processes of uniformly accelerated entangled atoms

    NASA Astrophysics Data System (ADS)

    Menezes, G.; Svaiter, N. F.

    2016-05-01

    We study radiative processes of uniformly accelerated entangled atoms, interacting with an electromagnetic field prepared in the Minkowski vacuum state. We discuss the structure of the rate of variation of the atomic energy for two atoms traveling in different hyperbolic world lines. We identify the contributions of vacuum fluctuations and radiation reaction to the generation of entanglement as well as to the decay of entangled states. Our results resemble the situation in which two inertial atoms are coupled individually to two spatially separated cavities at different temperatures. In addition, for equal accelerations we obtain that one of the maximally entangled antisymmetric Bell state is a decoherence-free state.

  9. Adjuvant Hypofractionated Versus Conventional Whole Breast Radiation Therapy for Early-Stage Breast Cancer: Long-Term Hospital-Related Morbidity From Cardiac Causes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chan, Elisa K.; Woods, Ryan; McBride, Mary L.

    Purpose: The risk of cardiac injury with hypofractionated whole-breast/chest wall radiation therapy (HF-WBI) compared with conventional whole-breast/chest wall radiation therapy (CF-WBI) in women with left-sided breast cancer remains a concern. The purpose of this study was to determine if there is an increase in hospital-related morbidity from cardiac causes with HF-WBI relative to CF-WBI. Methods and Materials: Between 1990 and 1998, 5334 women ≤80 years of age with early-stage breast cancer were treated with postoperative radiation therapy to the breast or chest wall alone. A population-based database recorded baseline patient, tumor, and treatment factors. Hospital administrative records identified baseline cardiacmore » risk factors and other comorbidities. Factors between radiation therapy groups were balanced using a propensity-score model. The first event of a hospital admission for cardiac causes after radiation therapy was determined from hospitalization records. Ten- and 15-year cumulative hospital-related cardiac morbidity after radiation therapy was estimated for left- and right-sided cases using a competing risk approach. Results: The median follow-up was 13.2 years. For left-sided cases, 485 women were treated with CF-WBI, and 2221 women were treated with HF-WBI. Mastectomy was more common in the HF-WBI group, whereas boost was more common in the CF-WBI group. The CF-WBI group had a higher prevalence of diabetes. The 15-year cumulative hospital-related morbidity from cardiac causes (95% confidence interval) was not different between the 2 radiation therapy regimens after propensity-score adjustment: 21% (19-22) with HF-WBI and 21% (17-25) with CF-WBI (P=.93). For right-sided cases, the 15-year cumulative hospital-related morbidity from cardiac causes was also similar between the radiation therapy groups (P=.76). Conclusions: There is no difference in morbidity leading to hospitalization from cardiac causes among women with left-sided early

  10. Radiation from Accelerating Electric Charges: The Third Derivative of Position

    NASA Astrophysics Data System (ADS)

    Butterworth, Edward

    2010-03-01

    While some textbooks appear to suggest that acceleration of an electric charge is both a necessary and sufficient cause for the generation of electromagnetic radiation, the question has in fact had an intricate and involved history. In particular, the acceleration of a charge in hyperbolic motion, the behavior of a charge supported against a gravitational force (and its implications for the Equivalence Principle), and a charge accelerated by a workless constraint have been the subject of repeated investigation. The present paper examines specifically the manner in which the third derivative of position enters into the equations of motion, and the implications this has for the emission of radiation. Plass opens his review article with the statement that ``A fundamental property of all charged particles is that electromagnetic energy is radiated whenever they are accelerated'' (Plass 1961; emphasis mine). His treatment of the equations of motion, however, emphasizes the importance of the occurrence of the third derivative of position therein, present in linear motion only when the rate of acceleration is increasing or decreasing. There appears to be general agreement that the presence of a nonzero third derivative indicates that this charge is radiating; but does its absence preclude radiation? This question leads back to the issues of charges accelerated by a uniform gravitational field. We will examine the equations of motion as presented in Fulton & Rohrlich (1960), Plass (1961), Barut (1964), Teitelboim (1970) and Mo & Papas (1971) in the light of more recent literature in an attempt to clarify this question.

  11. Hypofractionated accelerated radiotherapy (HART) with concurrent and adjuvant temozolomide in newly diagnosed glioblastoma: a phase II randomized trial (HART-GBM trial).

    PubMed

    Mallick, Supriya; Kunhiparambath, Haresh; Gupta, Subhash; Benson, Rony; Sharma, Seema; Laviraj, M A; Upadhyay, Ashish Datt; Julka, Pramod Kumar; Sharma, Dayanand; Rath, Goura Kishor

    2018-06-23

    Maximal safe surgical resection followed by adjuvant chemoradiation has been standard for newly diagnosed glioblastoma multiforme (GBM). Hypofractionated accelerated radiotherapy (HART) has the potential to improve outcome as it reduces the overall treatment time and increases the biological effective dose. Between October 2011 and July 2017, a total of 89 newly diagnosed GBM patients were randomized to conventional fractionated radiotherapy (CRT) or HART. Radiotherapy was delivered in all patients with a three-dimensional conformal radiotherapy technique in CRT arm (60 Gy in 30 fractions over 6 weeks @ 2 Gy/per fraction) or simultaneous integrated boost intensity modulated radiotherapy in HART arm (60 Gy in 20 fractions over 4 weeks @ 3 Gy/per fraction to high-risk planning target volume (PTV) and 50 Gy in 20 fractions over 4 weeks @ 2.5 Gy/per fraction to low-risk PTV). The primary endpoint of the trial was overall survival (OS). After a median follow-up of 11.4 months (Range: 2.9-42.5 months), 26 patients died and 39 patients had progression of the disease. Median OS for the entire cohort was 23.4 months. Median OS in the CRT and HART arms were 18.07 months (95% CI 14.52-NR) and 25.18 months (95% CI 12.89-NR) respectively, p = 0.3. Median progression free survival (PFS) for the entire cohort was 13.5 months (Range: 11.7-15.7 months). In multivariate analysis patients younger than 40 years of age, patients with a gross total resection of tumor and a mutated IDH-1 had significantly better OS. PFS was significantly better for patients with a gross total resection of tumor and a mutated IDH-1. All patients included in the trial completed the planned course of radiation. Only two patients required hospital admission for features of raised intracranial tension. One patient in the HART arm required treatment interruption. HART is comparable to CRT in terms of survival outcome. HART arm had no excess treatment interruption and minimal toxicity. Dose

  12. Short-Course Hypofractionated Radiation Therapy With Boost in Women With Stages 0 to IIIa Breast Cancer: A Phase 2 Trial.

    PubMed

    Ahlawat, Stuti; Haffty, Bruce G; Goyal, Sharad; Kearney, Thomas; Kirstein, Laurie; Chen, Chunxia; Moore, Dirk F; Khan, Atif J

    2016-01-01

    Conventionally fractionated whole-breast irradiation (WBI) with a boost takes approximately 6 to 7 weeks. We evaluated a short course of hypofractionated (HF), accelerated WBI in which therapy was completed in 3 weeks inclusive of a sequential boost. We delivered a whole-breast dose of 36.63 Gy in 11 fractions of 3.33 Gy over 11 days, followed by a lumpectomy bed boost in 4 fractions of 3.33 Gy delivered once daily for a total of 15 treatment days. Acute toxicities were scored using Common Terminology Criteria for Adverse Events version 4. Late toxicities were scored using the Radiation Therapy Oncology Group/European Organization for Research and Treatment of Cancer scale. Cosmesis was scored using the Harvard Cosmesis Scale. Our primary endpoint was freedom from locoregional failure; we incorporated early stopping criteria based on predefined toxicity thresholds. Cosmesis was examined as a secondary endpoint. We enrolled 83 women with stages 0 to IIIa breast cancer. After a median follow-up of 40 months, 2 cases of isolated ipsilateral breast tumor recurrence occurred (2 of 83; crude rate, 2.4%). Three-year estimated local recurrence-free survival was 95.9% (95% confidence interval [CI]: 87.8%-98.7%). The 3-year estimated distant recurrence-free survival was 97.3% (95% CI: 89.8%-99.3%). Three-year secondary malignancy-free survival was 94.3% (95% CI: 85.3%-97.8%). Twenty-nine patients (34%) had grade 2 acute toxicity, and 1 patient had a late grade 2 toxicity (fibrosis). One patient had acute grade 3 dermatitis, whereas 2 patients experienced grade 3 late skin toxicity. Ninety-four percent of evaluable patients had good or excellent cosmesis. Our phase 2 institutional study offers one of the shortest courses of HF therapy, delivered in 15 fractions inclusive of a sequential boost. We demonstrated expected low toxicity and high local control rates with good to excellent cosmetic outcomes. This fractionation scheme is feasible and well tolerated and offers women

  13. Calculating the radiation characteristics of accelerated electrons in laser-plasma interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, X. F.; Graduate School of Engineering, Utsunomiya University, 7-1-2 Yohtoh, Utsunomiya 321-8585; Yu, Q.

    2016-03-15

    In this paper, we studied the characteristics of radiation emitted by electrons accelerated in a laser–plasma interaction by using the Lienard–Wiechert field. In the interaction of a laser pulse with a underdense plasma, electrons are accelerated by two mechanisms: direct laser acceleration (DLA) and laser wakefield acceleration (LWFA). At the beginning of the process, the DLA electrons emit most of the radiation, and the DLA electrons emit a much higher peak photon energy than the LWFA electrons. As the laser–plasma interaction progresses, the LWFA electrons become the major radiation emitter; however, even at this stage, the contribution from DLA electronsmore » is significant, especially to the peak photon energy.« less

  14. Does electromagnetic radiation accelerate galactic cosmic rays

    NASA Technical Reports Server (NTRS)

    Eichler, D.

    1977-01-01

    The 'reactor' theories of Tsytovich and collaborators (1973) of cosmic-ray acceleration by electromagnetic radiation are examined in the context of galactic cosmic rays. It is shown that any isotropic synchrotron or Compton reactors with reasonable astrophysical parameters can yield particles with a maximum relativistic factor of only about 10,000. If they are to produce particles with higher relativistic factors, the losses due to inverse Compton scattering of the electromagnetic radiation in them outweigh the acceleration, and this violates the assumptions of the theory. This is a critical restriction in the context of galactic cosmic rays, which have a power-law spectrum extending up to a relativistic factor of 1 million.

  15. Outcome in dogs with advanced (stage 3b) anal sac gland carcinoma treated with surgery or hypofractionated radiation therapy.

    PubMed

    Meier, V; Polton, G; Cancedda, S; Roos, M; Laganga, P; Emmerson, T; Rohrer Bley, C

    2017-09-01

    Stage 3b anal sac gland carcinoma (ASGC) can be life-threatening. A surgical approach is not always possible or may be declined. Dogs with stage 3b ASGC treated with surgery or conformal radiation therapy (RT) with 8 × 3.8 Gy (total dose 30.4 Gy, over 2.5 weeks) were retrospectively evaluated. Patient characteristics, median progression-free interval (PFI) and median survival time (MST) were compared. Twenty-eight dogs were included; 15 underwent surgery, 13 underwent RT. At the time of presentation, 21% showed life-threatening obstipation and 25% showed hypercalcaemia. PFI and MST for surgery cases were 159 days (95% CI: 135-184 days) and 182 days (95% CI: 146-218 days), both significantly lower than for RT cases with 347 days (95% CI: 240-454 days) and 447 days (95% CI: 222-672 days), (P = 0.01, P = 0.019). Surgery as well as RT led to a fast relief of symptoms. PFI and survival of surgical patients were significantly inferior to that of a comparable patient group treated with conformal hypofractionated RT. © 2016 John Wiley & Sons Ltd.

  16. Dusty Cloud Acceleration by Radiation Pressure in Rapidly Star-forming Galaxies

    NASA Astrophysics Data System (ADS)

    Zhang, Dong; Davis, Shane W.; Jiang, Yan-Fei; Stone, James M.

    2018-02-01

    We perform two-dimensional and three-dimensional radiation hydrodynamic simulations to study cold clouds accelerated by radiation pressure on dust in the environment of rapidly star-forming galaxies dominated by infrared flux. We utilize the reduced speed of light approximation to solve the frequency-averaged, time-dependent radiative transfer equation. We find that radiation pressure is capable of accelerating the clouds to hundreds of kilometers per second while remaining dense and cold, consistent with observations. We compare these results to simulations where acceleration is provided by entrainment in a hot wind, where the momentum injection of the hot flow is comparable to the momentum in the radiation field. We find that the survival time of the cloud accelerated by the radiation field is significantly longer than that of a cloud entrained in a hot outflow. We show that the dynamics of the irradiated cloud depends on the initial optical depth, temperature of the cloud, and intensity of the flux. Additionally, gas pressure from the background may limit cloud acceleration if the density ratio between the cloud and background is ≲ {10}2. In general, a 10 pc-scale optically thin cloud forms a pancake structure elongated perpendicular to the direction of motion, while optically thick clouds form a filamentary structure elongated parallel to the direction of motion. The details of accelerated cloud morphology and geometry can also be affected by other factors, such as the cloud lengthscale, reduced speed of light approximation, spatial resolution, initial cloud structure, and dimensionality of the run, but these have relatively little affect on the cloud velocity or survival time.

  17. Ablative Hypofractionated Radiation Therapy Enhances Non-Small Cell Lung Cancer Cell Killing via Preferential Stimulation of Necroptosis In Vitro and In Vivo.

    PubMed

    Wang, Huan-Huan; Wu, Zhi-Qiang; Qian, Dong; Zaorsky, Nicholas G; Qiu, Ming-Han; Cheng, Jing-Jing; Jiang, Chao; Wang, Juan; Zeng, Xian-Liang; Liu, Chun-Lei; Tian, Li-Jun; Ying, Guo-Guang; Meng, Mao-Bin; Hao, Xi-Shan; Yuan, Zhi-Yong

    2018-05-01

    To investigate how necroptosis (ie, programmed necrosis) is involved in killing of non-small cell lung cancer (NSCLC) after ablative hypofractionated radiation therapy (HFRT). Deoxyribonucleic acid damage, DNA repair, and the death form of NSCLC cells were assessed after radiation therapy. The overexpression and silencing of receptor-interacting protein kinases 3 (RIP3, a key protein involved activation of necroptosis)-stable NSCLC cell lines were successfully constructed. The form of cell death, the number and area of colonies, and the regulatory proteins of necroptosis were characterized after radiation therapy in vitro. Finally, NSCLC xenografts and patient specimens were used to examine involvement of necroptosis after ablative HFRT in vivo. Radiation therapy induced expected DNA damage and repair of NSCLC cell lines, but ablative HFRT at ≥10 Gy per fraction preferentially stimulated necroptosis in NSCLC cells and xenografts with high RIP3 expression, as characterized by induction and activation of RIP3 and mixed-lineage kinase domain-like protein and release of immune-activating chemokine high-mobility group box 1. In contrast, RNA interference of RIP3 attenuated ablative HFRT-induced necroptosis and activation of its regulatory proteins. Among central early-stage NSCLC patients receiving stereotactic body radiation therapy, high expression of RIP3 was associated with improved local control and progression-free survival (all P < .05). Ablative HFRT at ≥10 Gy per fraction enhances killing of NSCLC with high RIP3 expression via preferential stimulation of necroptosis. RIP3 may serve as a useful biomarker to predict favorable response to stereotactic body radiation therapy. Copyright © 2018 Elsevier Inc. All rights reserved.

  18. Accelerating gradient improvement using shape-tailor laser front in radiation pressure acceleration progress

    NASA Astrophysics Data System (ADS)

    Wang, W. P.; Shen, B. F.; Xu, Z. Z.

    2017-05-01

    The accelerating gradient of a proton beam is crucial for stable radiation pressure acceleration (RPA) because the multi-dimensional instabilities increase γ times slower in the relativistic region. In this paper, a shape-tailored laser is proposed to significantly accelerate the ions in a controllable high accelerating gradient. In this method, the fastest ions initially rest in the middle of the foil are controlled to catch the compressed electron layer at the end of the hole-boring stage, thus the light-sail stage can start as soon as possible. Then the compressed electron layer is accelerated tightly together with the fastest ions by the shaped laser intensity, which further increases the accelerating gradient in the light-sail stage. Such tailored pulse may be beneficial for the RPA driven by the 10-fs 10 petawatt laser in the future.

  19. High-Dose Hypofractionated Radiation Therapy for Noncompressive Vertebral Metastases in Combination With Zoledronate: A Phase 1 Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pichon, Baptiste; Campion, Loïc; Delpon, Grégory

    Introduction: Hypofractionated stereotactic radiation therapy (HSRT) for vertebral metastases gives good results in terms of local control but increases the risk of fracture in the treated volume. Preclinical and clinical studies have shown that zoledronate not only reduces the risk of fracture and stimulates osteoclastic remodeling but also increases the immune response and radiosensitivity. This study aimed to evaluate the tolerability and effectiveness of zoledronate in association with radiation therapy. Patients and Methods: We conducted a multicenter phase 1 study that combined HSRT (3 × 9 Gy) and zoledronate in patients with vertebral metastasis ( (NCT01219790)). The principal objective was the absence ofmore » spinal cord adverse reactions at 1 year. The secondary objectives were acute tolerability, the presentation of a bone event, local tumor control, pain control, progression-free survival, and overall survival. Results: Thirty patients (25 male, 5 female), median age 66 years, who were followed up for a median period of 19.2 months, received treatment for 49 vertebral metastases. A grade 3 acute mucosal adverse event occurred in 1 patient during the treatment and in 2 more at 1 month. No late neurologic adverse events were reported at 1 year. The mean pain scores diminished significantly at 1 month (1.35; P=.0125) and 3 months (0.77; P<.0001) compared with pain scores at study entry (2.49). Vertebral collapse in the irradiated zone occurred in 1 (2%) treated vertebra. Control of local disease was achieved in 94% of irradiated patients (3 local recurrences). Conclusion: The combination of zoledronate and HSRT in the treatment of vertebral metastasis is well tolerated and seems to reduce the rate of vertebral collapse, effectively relieve pain, and achieve good local tumor control with no late neurologic adverse effects.« less

  20. Generation of auroral kilometric radiation and the structure of auroral acceleration region

    NASA Technical Reports Server (NTRS)

    Lee, L. C.; Kan, J. R.; Wu, C. S.

    1980-01-01

    Generation of auroral kilometric radiation (AKR) in the auroral acceleration region is studied. It is shown that auroral kilometric radiation can be generated by backscattered electrons trapped in the acceleration region via a cyclotron maser process. The parallel electric field in the acceleration region is required to be distributed over 1-2 earth radii. The observed AKR frequency spectrum can be used to estimate the altitude range of the auroral acceleration region. The altitudes of the lower and upper boundaries of the acceleration region determined from the AKR data are respectively approximately 2000 and 9000 km.

  1. Physical Interpretation of the Schott Energy of An Accelerating Point Charge and the Question of Whether a Uniformly Accelerating Charge Radiates

    ERIC Educational Resources Information Center

    Rowland, David R.

    2010-01-01

    A core topic in graduate courses in electrodynamics is the description of radiation from an accelerated charge and the associated radiation reaction. However, contemporary papers still express a diversity of views on the question of whether or not a uniformly accelerating charge radiates suggesting that a complete "physical" understanding of the…

  2. Microscopic Processes On Radiation from Accelerated Particles in Relativistic Jets

    NASA Technical Reports Server (NTRS)

    Nishikawa, K.-I.; Hardee, P. E.; Mizuno, Y.; Medvedev, M.; Zhang, B.; Sol, H.; Niemiec, J.; Pohl, M.; Nordlund, A.; Fredriksen, J.; hide

    2009-01-01

    Nonthermal radiation observed from astrophysical systems containing relativistic jets and shocks, e.g., gamma-ray bursts (GRBs), active galactic nuclei (AGNs), and Galactic microquasar systems usually have power-law emission spectra. Recent PIC simulations of relativistic electron-ion (electro-positron) jets injected into a stationary medium show that particle acceleration occurs within the downstream jet. In the collisionless relativistic shock particle acceleration is due to plasma waves and their associated instabilities (e.g., the Buneman instability, other two-streaming instability, and the Weibel (filamentation) instability) created in the shocks are responsible for particle (electron, positron, and ion) acceleration. The simulation results show that the Weibel instability is responsible for generating and amplifying highly nonuniform, small-scale magnetic fields. These magnetic fields contribute to the electron's transverse deflection behind the jet head. The jitter'' radiation from deflected electrons has different properties than synchrotron radiation which is calculated in a uniform magnetic field. This jitter radiation may be important to understanding the complex time evolution and/or spectral structure in gamma-ray bursts, relativistic jets, and supernova remnants.

  3. Design considerations and test facilities for accelerated radiation effects testing

    NASA Technical Reports Server (NTRS)

    Price, W. E.; Miller, C. G.; Parker, R. H.

    1972-01-01

    Test design parameters for accelerated dose rate radiation effects tests for spacecraft parts and subsystems used in long term mission (years) are detailed. A facility for use in long term accelerated and unaccelerated testing is described.

  4. Hypofractionated Nodal Radiation Therapy for Breast Cancer Was Not Associated With Increased Patient-Reported Arm or Brachial Plexopathy Symptoms.

    PubMed

    Leong, Nelson; Truong, Pauline T; Tankel, Keith; Kwan, Winkle; Weir, Lorna; Olivotto, Ivo A

    2017-12-01

    To determine whether nodal radiation therapy (RT) for breast cancer using modest hypofractionation (HF) with 2.25 to 2.5 Gy per fraction (fx) was associated with increased patient-reported arm symptoms, compared with conventional fractionation (CF) ≤2 Gy/fx. Two cancer registries were used to identify subjects who received computed tomography-planned nodal RT for pT1-3, pN0-2, M0 breast cancer, from 2007 to 2010 at 2 cancer institutions. After ethics approval, patients were mailed an explanatory letter and the Self-reported Arm Symptom Scale, a validated instrument with 8 questions about arm symptoms and 5 related to activities of daily living. Clinicopathologic characteristics and Self-reported Arm Symptom Scale scores were compared between HF/CF cohorts using nonparametric analysis, χ 2 analysis, and multivariate ordinal regression. Of 1759 patients, 800 (45.5%) returned a completed survey. A total of 708 eligible cases formed the study cohort. Of these, 406 (57%) received HFRT (40 Gy/16 fx, 45 Gy/20 fx), and 302 (43%) received CFRT (45-50 Gy/25 fx, 50.4 Gy/28 fx). Median time interval after RT was 5.7 years. Forty-three percent and 75% of patients received breast-conserving surgery and chemotherapy, respectively. Twenty-two percent received breast boost RT, independent of fractionation. Median age at diagnosis was 59 years (HF) and 53 years (CF) (P<.001). The mean numbers of excised (n=12) and involved (n=3) nodes were similar between fractionation cohorts (P=.44), as were the mean sums of responses in arm symptoms (P=.17) and activities of daily living (P=.85). Patients receiving HF reported lower rates of shoulder stiffness (P=.04), trouble moving the arm (P=.02), and difficulty reaching overhead (P<.01) compared with the CF cohort. There was no difference in self-reported arm swelling or symptoms related to brachial plexopathy. Nodal RT with hypofractionation was not associated with increased patient-reported arm symptoms or functional deficits

  5. Salvage Treatment With Hypofractionated Radiotherapy in Patients With Recurrent Small Hepatocellular Carcinoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bae, Sun Hyun; Park, Hee Chul, E-mail: rophc@skku.edu; Lim, Do Hoon

    2012-03-15

    Purpose: To investigate the rates of tumor response and local control in patients with recurrent small hepatocellular carcinoma (HCC) treated with hypofractionated radiotherapy (RT) as a salvage treatment and to evaluate treatment-related toxicities. Methods and Materials: Between 2006 and 2009, a total of 20 patients with recurrent small HCC were treated with hypofractionated RT after the failure of previous treatment. The eligibility criteria for hypofractionated RT were as follows: 1) HCC less than 5 cm, 2) HCC not adjacent to critical organs, 3) HCC without portal vein tumor thrombosis, and 4) less than 15% of normal liver volume that wouldmore » be irradiated with 50% of prescribed dose. The RT dose was 50 Gy in 10 fractions. The tumor response was determined by CT scans performed 3 months after the end of RT. Results: The median follow-up period after RT was 22 months. The overall survival rates at 1 and 2 years were 100% and 87.9%, respectively. Complete response (CR) was achieved in seven of 20 lesions (35%) evaluated by CT scans performed 3 months after the end of RT. In-field local control was achieved in 85% of patients. Fourteen patients (70%) developed intra-hepatic metastases. Six patients developed grade 1 nausea or anorexia during RT, and two patients had progression of ascites after RT. There was no grade 3 or greater treatment-related toxicities. Conclusions: The current study showed a favorable outcome with respect to hypofractionated RT for small HCC. Partial liver irradiation with 50 Gy in 10 fractions is considered tolerable without severe complications.« less

  6. Plasma Radiation and Acceleration Effectiveness of CME-driven Shocks

    NASA Astrophysics Data System (ADS)

    Gopalswamy, N.; Schmidt, J. M.

    2008-05-01

    CME-driven shocks are effective radio radiation generators and accelerators for Solar Energetic Particles (SEPs). We present simulated 3 D time-dependent radio maps of second order plasma radiation generated by CME- driven shocks. The CME with its shock is simulated with the 3 D BATS-R-US CME model developed at the University of Michigan. The radiation is simulated using a kinetic plasma model that includes shock drift acceleration of electrons and stochastic growth theory of Langmuir waves. We find that in a realistic 3 D environment of magnetic field and solar wind outflow of the Sun the CME-driven shock shows a detailed spatial structure of the density, which is responsible for the fine structure of type II radio bursts. We also show realistic 3 D reconstructions of the magnetic cloud field of the CME, which is accelerated outward by magnetic buoyancy forces in the diverging magnetic field of the Sun. The CME-driven shock is reconstructed by tomography using the maximum jump in the gradient of the entropy. In the vicinity of the shock we determine the Alfven speed of the plasma. This speed profile controls how steep the shock can grow and how stable the shock remains while propagating away from the Sun. Only a steep shock can provide for an effective particle acceleration.

  7. Plasma radiation and acceleration effectiveness of CME-driven shocks

    NASA Astrophysics Data System (ADS)

    Schmidt, Joachim

    CME-driven shocks are effective radio radiation generators and accelerators for Solar Energetic Particles (SEPs). We present simulated 3 D time-dependent radio maps of second order plasma radiation generated by CME-driven shocks. The CME with its shock is simulated with the 3 D BATS-R-US CME model developed at the University of Michigan. The radiation is simulated using a kinetic plasma model that includes shock drift acceleration of electrons and stochastic growth theory of Langmuir waves. We find that in a realistic 3 D environment of magnetic field and solar wind outflow of the Sun the CME-driven shock shows a detailed spatial structure of the density, which is responsible for the fine structure of type II radio bursts. We also show realistic 3 D reconstructions of the magnetic cloud field of the CME, which is accelerated outward by magnetic buoyancy forces in the diverging magnetic field of the Sun. The CME-driven shock is reconstructed by tomography using the maximum jump in the gradient of the entropy. In the vicinity of the shock we determine the Alfven speed of the plasma. This speed profile controls how steep the shock can grow and how stable the shock remains while propagating away from the Sun. Only a steep shock can provide for an effective particle acceleration.

  8. Targeted Radiation Therapy for Cancer Initiative

    DTIC Science & Technology

    2012-09-01

    pelvic floor . Problem Areas: As previously reported, it was unanimously decided to discontinue efforts at VAPSHCS based on several factors...Calypso system, 3) whether Beacon® Transponder is of benefit in pelvic radiation therapy following prostatectomy, 4) whether hypofractionated treatment...Localization System occurred at MAMC. The radiation team continues to receive training and technical support of the system from Calypso as needed

  9. Moderate Hypofractionated Protracted Radiation Therapy and Dose Escalation for Prostate Cancer: Do Dose and Overall Treatment Time Matter?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kountouri, Melpomeni; Zilli, Thomas; Rouzaud, Michel

    2016-02-01

    Purpose: This was a retrospective study of 2 sequential dose escalation regimens of twice-weekly 4 Gy/fractions hypofractionated intensity modulated radiation therapy (IMRT): 56 Gy and 60 Gy delivered within a protracted overall treatment time (OTT) of 6.5 and 7 weeks, respectively. Methods and Materials: 163 prostate cancer patients with cT1c-T3a disease and nodal involvement risk ≤20% (Roach index) were treated twice weekly to the prostate ± seminal vesicles with 2 sequential dose-escalated IMRT schedules: 56 Gy (14 × 4 Gy, n=81) from 2003 to 2007 and 60 Gy (15 × 4 Gy, n=82) from 2006 to 2010. Patient repositioning was made with bone matching on portal images. Gastrointestinal (GI) and genitourinary (GU) toxicities weremore » scored according to the Common Terminology Criteria for Adverse Events version 3.0 grading scale. Results: There were no significant differences regarding the acute GU and GI toxicities in the 2 dose groups. The median follow-up times were 80.2 months (range, 4.5-121 months) and 56.5 months (range, 1.4-91.2 months) for patients treated to 56 and 60 Gy, respectively. The 5-year grade ≥2 late GU toxicity-free survivals with 56 Gy and 60 Gy were 96 ± 2.3% and 78.2 ± 5.1% (P=.001), respectively. The 5-year grade ≥2 late GI toxicity-free survivals with 56 Gy and 60 Gy were 98.6 ± 1.3% and 85.1 ± 4.5% (P=.005), respectively. Patients treated with 56 Gy showed a 5-year biochemical progression-free survival (bPFS) of 80.8 ± 4.7%, worse than patients treated with 60 Gy (93.2 ± 3.9%, P=.007). A trend for a better 5-year distant metastasis-free survival was observed among patients treated in the high-dose group (95.3 ± 2.7% vs 100%, P=.073, respectively). On multivariate analysis, only the 60-Gy group predicted for a better bPFS (P=.016, hazard ratio = 4.58). Conclusions: A single 4-Gy additional fraction in patients treated with a hypofractionated protracted IMRT schedule of 14 × 4

  10. Radiation from Accelerated Particles in Shocks and Reconnections

    NASA Technical Reports Server (NTRS)

    Nishikawa, K.-I.; Zhang, B.; Niemiec, J.; Medvedev, M.; Hardee, P.; Mizuno, Y.; Nordlund, A.; Frederiksen, J. T.; Sol, H.; Pohl, M.; hide

    2011-01-01

    Plasma instabilities are responsible not only for the onset and mediation of collisionless shocks but also for the associated acceleration of particles. We have investigated particle acceleration and shock structure associated with an unmagnetized relativistic electron-positron jet propagating into an unmagnetized electron-positron plasma. Cold jet electrons are thermalized and slowed while the ambient electrons are swept up to create a partially developed hydrodynamic-like shock structure. In the leading shock, electron density increases by a factor of about 3.5 in the simulation frame. Strong electromagnetic fields are generated in the trailing shock and provide an emission site. These magnetic fields contribute to the electrons transverse deflection and, more generally, relativistic acceleration behind the shock. We have calculated, self-consistently, the radiation from electrons accelerated in the turbulent magnetic fields. We found that the synthetic spectra depend on the Lorentz factor of the jet, its thermal temperature and strength of the generated magnetic fields. We are currently investigating the specific case of a jet colliding with an anti-parallel magnetized ambient medium. The properties of the radiation may be important for understanding the complex time evolution and/or spectral structure in gamma-ray bursts, relativistic jets in general, and supernova remnants.

  11. Sci—Thur AM: YIS - 02: Radiogenomic Modeling of Normal Tissue Toxicities in Prostate Cancer Patients Receiving Hypofractionated Radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coates, J; Jeyaseelan, K; Ybarra, N

    2014-08-15

    Inter-patient radiation sensitivity variability has recently been shown to have a genetic component. This genetic component may play a key role in explaining the fluctuating rates of radiation-induced toxicities (RITs). Single nucleotide polymorphisms (SNPs) have thus far yielded inconsistent results in delineating RITs while copy number variations (CNVs) have not yet been investigated for such purposes. We explore a radiogenomic modeling approach to investigate the association of CNVs and SNPs, along with clinical and dosimetric variables, in radiation induced rectal bleeding (RB) and erectile dysfunction (ED) in prostate cancer patients treated with curative hypofractionated irradiation. A cohort of 62 prostatemore » cancer patients who underwent hypofractionated radiotherapy (66 Gy in 22 fractions) between 2002 to 2010 were retrospectively genotyped for CNV and SNP rs5489 in the xrcc1 DNA repair gene. Late toxicity rates for RB grade 2 and 3 and grade 3 alone were 29.0% and 12.9%, respectively. ED toxicity was found to be 62.9%. Radiogenomic model performance was evaluated using receiver operating characteristic area under the curve (AUC) and resampling by cross-validation. Binary variables were evaluated using Chi-squared contingency table analysis and multivariate models by Spearman's rank correlation coefficient (rs). Ten patients were found to have three copies of xrcc1 CNV (RB: χ{sup 2}=14.6, p<0.001 and ED: χ{sup 2}=4.88, p=0.0272) and twelve had heterozygous rs25489 SNP (RB: χ{sup 2}=0.278, p=0.599 and ED: χ{sup 2}=0.112, p=0.732). Radiogenomic modeling yielded significant, cross-validated NTCP models for RB (AUC=0.665) and ED (AUC=0.754). These results indicate that CNVs may be potential predictive biomarkers of both late ED and RB.« less

  12. Hypofractionated Stereotactic Radiotherapy in Five Daily Fractions for Post-Operative Surgical Cavities in Brain Metastases Patients with and without Prior Whole Brain Radiation

    PubMed Central

    Al-Omair, Ameen; Soliman, Hany; Xu, Wei; Karotki, Aliaksandr; Mainprize, Todd; Phan, Nicolas; Das, Sunit; Keith, Julia; Yeung, Robert; Perry, James; Tsao, May; Sahgal, Arjun

    2013-01-01

    Our purpose was to report efficacy of hypofractionated cavity stereotactic radiotherapy (HCSRT) in patients with and without prior whole brain radiotherapy (WBRT). 32 surgical cavities in 30 patients (20 patients/21 cavities had no prior WBRT and 10 patients/11 cavities had prior WBRT) were treated with image-guided linac stereotactic radiotherapy. 7 of the 10 prior WBRT patients had “resistant” local disease given prior surgery, post-operative WBRT and a re-operation, followed by salvage HCSRT. The clinical target volume was the post-surgical cavity, and a 2-mm margin applied as planning target volume. The median total dose was 30 Gy (range: 25-37.5 Gy) in 5 fractions. In the no prior and prior WBRT cohorts, the median follow-up was 9.7 months (range: 3.0-23.6) and 15.3 months (range: 2.9-39.7), the median survival was 23.6 months and 39.7 months, and the 1-year cavity local recurrence progression-free survival (LRFS) was 79 and 100%, respectively. At 18 months the LRFS dropped to 29% in the prior WBRT cohort. Grade 3 radiation necrosis occurred in 3 prior WBRT patients. We report favorable outcomes with HCSRT, and well selected patients with prior WBRT and “resistant” disease may have an extended survival favoring aggressive salvage HCSRT at a moderate risk of radiation necrosis. PMID:23617283

  13. Hypofractionated stereotactic radiotherapy in five daily fractions for post-operative surgical cavities in brain metastases patients with and without prior whole brain radiation.

    PubMed

    Al-Omair, Ameen; Soliman, Hany; Xu, Wei; Karotki, Aliaksandr; Mainprize, Todd; Phan, Nicolas; Das, Sunit; Keith, Julia; Yeung, Robert; Perry, James; Tsao, May; Sahgal, Arjun

    2013-12-01

    Our purpose was to report efficacy of hypofractionated cavity stereotactic radiotherapy (HCSRT) in patients with and without prior whole brain radiotherapy (WBRT). 32 surgical cavities in 30 patients (20 patients/21 cavities had no prior WBRT and 10 patients/11 cavities had prior WBRT) were treated with image-guided linac stereotactic radiotherapy. 7 of the 10 prior WBRT patients had "resistant" local disease given prior surgery, post-operative WBRT and a re-operation, followed by salvage HCSRT. The clinical target volume was the post-surgical cavity, and a 2-mm margin applied as planning target volume. The median total dose was 30 Gy (range: 25-37.5 Gy) in 5 fractions. In the no prior and prior WBRT cohorts, the median follow-up was 9.7 months (range: 3.0-23.6) and 15.3 months (range: 2.9-39.7), the median survival was 23.6 months and 39.7 months, and the 1-year cavity local recurrence progression- free survival (LRFS) was 79 and 100%, respectively. At 18 months the LRFS dropped to 29% in the prior WBRT cohort. Grade 3 radiation necrosis occurred in 3 prior WBRT patients. We report favorable outcomes with HCSRT, and well selected patients with prior WBRT and "resistant" disease may have an extended survival favoring aggressive salvage HCSRT at a moderate risk of radiation necrosis.

  14. Entropy bounds, acceleration radiation, and the generalized second law

    NASA Astrophysics Data System (ADS)

    Unruh, William G.; Wald, Robert M.

    1983-05-01

    We calculate the net change in generalized entropy occurring when one attempts to empty the contents of a thin box into a black hole in the manner proposed recently by Bekenstein. The case of a "thick" box also is treated. It is shown that, as in our previous analysis, the effects of acceleration radiation prevent a violation of the generalized second law of thermodynamics. Thus, in this example, the validity of the generalized second law is shown to rest only on the validity of the ordinary second law and the existence of acceleration radiation. No additional assumptions concerning entropy bounds on the contents of the box need to be made.

  15. Pulsed electron accelerator for radiation technologies in the enviromental applications

    NASA Astrophysics Data System (ADS)

    Korenev, Sergey

    1997-05-01

    The project of pulsed electron accelerator for radiation technologies in the environmental applications is considered. An accelerator consists of high voltage generator with vacuum insulation and vacuum diode with plasma cathode on the basis discharge on the surface of dielectric of large dimensions. The main parameters of electron accelerators are following: kinetic energy 0.2 - 2.0 MeV, electron beam current 1 - 30 kA and pulse duration 1- 5 microseconds. The main applications of accelerator for decomposition of wastewaters are considered.

  16. Vacuum electron acceleration by coherent dipole radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Troha, A.L.; Van Meter, J.R.; Landahl, E.C.

    1999-07-01

    The validity of the concept of laser-driven vacuum acceleration has been questioned, based on an extrapolation of the well-known Lawson-Woodward theorem, which stipulates that plane electromagnetic waves cannot accelerate charged particles in vacuum. To formally demonstrate that electrons can indeed be accelerated in vacuum by focusing or diffracting electromagnetic waves, the interaction between a point charge and coherent dipole radiation is studied in detail. The corresponding four-potential exactly satisfies both Maxwell{close_quote}s equations and the Lorentz gauge condition everywhere, and is analytically tractable. It is found that in the far-field region, where the field distribution closely approximates that of a planemore » wave, we recover the Lawson-Woodward result, while net acceleration is obtained in the near-field region. The scaling of the energy gain with wave-front curvature and wave amplitude is studied systematically. {copyright} {ital 1999} {ital The American Physical Society}« less

  17. Incorporating Cancer Stem Cells in Radiation Therapy Treatment Response Modeling and the Implication in Glioblastoma Multiforme Treatment Resistance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Victoria Y.; Nguyen, Dan; Pajonk, Frank

    Purpose: To perform a preliminary exploration with a simplistic mathematical cancer stem cell (CSC) interaction model to determine whether the tumor-intrinsic heterogeneity and dynamic equilibrium between CSCs and differentiated cancer cells (DCCs) can better explain radiation therapy treatment response with a dual-compartment linear-quadratic (DLQ) model. Methods and Materials: The radiosensitivity parameters of CSCs and DCCs for cancer cell lines including glioblastoma multiforme (GBM), non–small cell lung cancer, melanoma, osteosarcoma, and prostate, cervical, and breast cancer were determined by performing robust least-square fitting using the DLQ model on published clonogenic survival data. Fitting performance was compared with the single-compartment LQ (SLQ) and universalmore » survival curve models. The fitting results were then used in an ordinary differential equation describing the kinetics of DCCs and CSCs in response to 2- to 14.3-Gy fractionated treatments. The total dose to achieve tumor control and the fraction size that achieved the least normal biological equivalent dose were calculated. Results: Smaller cell survival fitting errors were observed using DLQ, with the exception of melanoma, which had a low α/β = 0.16 in SLQ. Ordinary differential equation simulation indicated lower normal tissue biological equivalent dose to achieve the same tumor control with a hypofractionated approach for 4 cell lines for the DLQ model, in contrast to SLQ, which favored 2 Gy per fraction for all cells except melanoma. The DLQ model indicated greater tumor radioresistance than SLQ, but the radioresistance was overcome by hypofractionation, other than the GBM cells, which responded poorly to all fractionations. Conclusion: The distinct radiosensitivity and dynamics between CSCs and DCCs in radiation therapy response could perhaps be one possible explanation for the heterogeneous intertumor response to hypofractionation and in some cases superior outcome

  18. Solar wind conditions leading to efficient radiation belt electron acceleration: A superposed epoch analysis

    DOE PAGES

    Li, W.; Thorne, R. M.; Bortnik, J.; ...

    2015-09-07

    In this study by determining preferential solar wind conditions leading to efficient radiation belt electron acceleration is crucial for predicting radiation belt electron dynamics. Using Van Allen Probes electron observations (>1 MeV) from 2012 to 2015, we identify a number of efficient and inefficient acceleration events separately to perform a superposed epoch analysis of the corresponding solar wind parameters and geomagnetic indices. By directly comparing efficient and inefficient acceleration events, we clearly show that prolonged southward Bz, high solar wind speed, and low dynamic pressure are critical for electron acceleration to >1 MeV energies in the heart of the outermore » radiation belt. We also evaluate chorus wave evolution using the superposed epoch analysis for the identified efficient and inefficient acceleration events and find that chorus wave intensity is much stronger and lasts longer during efficient electron acceleration events, supporting the scenario that chorus waves play a key role in MeV electron acceleration.« less

  19. A system for monitoring the radiation effects of a proton linear accelerator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Skorkin, V. M., E-mail: skorkin@inr.ru; Belyanski, K. L.; Skorkin, A. V.

    2016-12-15

    The system for real-time monitoring of radioactivity of a high-current proton linear accelerator detects secondary neutron emission from proton beam losses in transport channels and measures the activity of radionuclides in gas and aerosol emissions and the radiation background in the environment affected by a linear accelerator. The data provided by gamma, beta, and neutron detectors are transferred over a computer network to the central server. The system allows one to monitor proton beam losses, the activity of gas and aerosol emissions, and the radiation emission level of a linear accelerator in operation.

  20. Toxicity Assessment of Pelvic Intensity-Modulated Radiotherapy With Hypofractionated Simultaneous Integrated Boost to Prostate for Intermediate- and High-Risk Prostate Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCammon, Robert; Rusthoven, Kyle E.; Kavanagh, Brian

    Purpose: To evaluate the toxicity of pelvic intensity-modulated radiotherapy (IMRT) with hypofractionated simultaneous integrated boost (SIB) to the prostate for patients with intermediate- to high-risk prostate cancer. Methods and Materials: A retrospective toxicity analysis was performed in 30 consecutive patients treated definitively with pelvic SIB-IMRT, all of whom also received androgen suppression. The IMRT plans were designed to deliver 70 Gy in 28 fractions (2.5 Gy/fraction) to the prostate while simultaneously delivering 50.4 Gy in 28 fractions (1.8 Gy/fraction) to the pelvic lymph nodes. The National Cancer Institute Common Terminology Criteria for Adverse Events, version 3.0, was used to scoremore » toxicity. Results: The most common acute Grade 2 events were cystitis (36.7%) and urinary frequency/urgency (26.7%). At a median follow-up of 24 months, late toxicity exceeding Grade 2 in severity was uncommon, with two Grade 3 events and one Grade 4 event. Grade 2 or greater acute bowel toxicity was associated with signficantly greater bowel volume receiving {>=}25 Gy (p = .04); Grade 2 or greater late bowel toxicity was associated with a higher bowel maximal dose (p = .04) and volume receiving {>=}50 Gy (p = .02). Acute or late bladder and rectal toxicity did not correlate with any of the dosimetric parameters examined. Conclusion: Pelvic IMRT with SIB to the prostate was well tolerated in this series, with low rates of Grade 3 or greater acute and late toxicity. SIB-IMRT combines pelvic radiotherapy and hypofractionation to the primary site and offers an accelerated approach to treating intermediate- to high-risk disease. Additional follow-up is necessary to fully define the long-term toxicity after hypofractionated, whole pelvic treatment combined with androgen suppression.« less

  1. Phase II Study to Assess the Efficacy of Hypofractionated Stereotactic Radiotherapy in Patients With Large Cavernous Sinus Hemangiomas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang Xin; Liu Xiaoxia; Mei Guanghai

    Purpose: Cavernous sinus hemangioma is a rare vascular tumor. The direct microsurgical approach usually results in massive hemorrhage. Although radiosurgery plays an important role in managing cavernous sinus hemangiomas as a treatment alternative to microsurgery, the potential for increased toxicity with single-session treatment of large tumors is a concern. The purpose of this study was to assess the efficacy of hypofractionated stereotactic radiotherapy in patients with large cavernous sinus hemangiomas. Methods: Fourteen patients with large (volume >20 cm{sup 3}) cavernous sinus hemangiomas were enrolled in a prospective Phase II study between December 2007 and December 2010. The hypofractionated stereotactic radiotherapymore » dose was 21 Gy delivered in 3 fractions. Results: After a mean follow-up of 15 months (range, 6-36 months), the magnetic resonance images showed a mean of 77% tumor volume reduction (range, 44-99%). Among the 6 patients with cranial nerve impairments before hypofractionated stereotactic radiotherapy, 1 achieved symptomatic complete resolution and 5 had improvement. No radiotherapy-related complications were observed during follow-up. Conclusion: Our current experience, though preliminary, substantiates the role of hypofractionated stereotactic radiotherapy for large cavernous sinus hemangiomas. Although a longer and more extensive follow-up is needed, hypofractionated stereotactic radiotherapy of 21 Gy delivered in 3 fractions is effective in reducing the tumor volume without causing any new deficits and can be considered as a treatment modality for large cavernous sinus hemangiomas.« less

  2. Initial Results of Hypofractionated Carbon Ion Radiotherapy for Cholangiocarcinoma.

    PubMed

    Abe, Takanori; Shibuya, Kei; Koyama, Yoshinori; Okamoto, Masahiko; Kiyohara, Hiroki; Katoh, Hiroyuki; Shimada, Hirohumi; Kuwano, Hiroyuki; Ohno, Tatsuya; Nakano, Takashi

    2016-06-01

    To report initial results of hypofractionated carbon ion radiotherapy (C-ion RT) for cholangiocarcinoma. Data regarding seven patients with cholangiocarcinoma treated by C-ion RT were analyzed. Prescribed doses were 52.8 Gy [relative biological effectiveness (RBE)] or 60.0 Gy (RBE) in four fractions for intrahepatic cases and 12 fractions for hilar hepatic/close to gastro-intestinal tract cases. Local control and overall survival were evaluated and toxicity was graded using Common Terminology Criteria for Adverse Events, version 4.0. The median follow-up period was 16 months. There were two patients with stage I cancer, one with stage II, one with stage III, and three with stage IVA. Local control was achieved in five out of seven patients (71%) and survival was maintained in six out of seven patients (86%). There were no occurrences of acute or late toxicity of grade 3 or higher. Initial results show that hypofractionated C-ion RT appears to be tolerated and effective for cholangiocarcinoma. Copyright© 2016 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  3. Hypofractionated stereotactic radiotherapy in combination with bevacizumab or fotemustine for patients with progressive malignant gliomas.

    PubMed

    Minniti, Giuseppe; Agolli, Linda; Falco, Teresa; Scaringi, Claudia; Lanzetta, Gaetano; Caporello, Paola; Osti, Mattia Falchetto; Esposito, Vincenzo; Enrici, Riccardo Maurizi

    2015-05-01

    To evaluate the efficacy of hypofractionated stereotactic radiotherapy performed as reirradiation in combination with fotemustine or bevacizumab as salvage treatment in patients with recurrent malignant glioma. Between May 2006 and December 2013, 54 patients with recurrent malignant glioma received hypofractionated stereotactic radiotherapy (HSRT, 25 Gy in 5-Gy fractions) plus either fotemustine or bevacizumab at University of Rome Sapienza, Sant'Andrea Hospital. All patients had Karnofsky performance score (KPS) ≥ 60 and were previously treated with standard chemoradiotherapy. Forty-two patients had a GBM and 12 patients had an anaplastic astrocytoma (AA). The median overall survival (OS) time and 12-month OS rates after HSRT was 11 months and 30 % for patients treated with HSRT plus bevacizumab and 8.3 months and 5 % for those treated with HSRT plus fotemustine (p = 0.01). Median PFS times were 4 and 6 months for patients treated with HSRT plus fotemustine or bevacizumab, respectively (p = 0.01). KPS > 70 (p = 0.04), AA histology, and the treatment with bevacizumab were independent favourable prognostic factors for OS. In general, both treatments were well tolerated with relatively low treatment-related toxicity. HSRT combined with bevacizumab or fotemustine may represent a feasible treatment option for patients with progressive malignant gliomas, although most of the tumors recur in a few months. Efficacy of bevacizumab or alkylating agents in combination with different radiation schedules needs to be evaluated in prospective studies.

  4. Long-term Outcomes of Hypofractionation Versus Conventional Radiation Therapy After Breast-Conserving Surgery for Ductal Carcinoma In Situ of the Breast

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lalani, Nafisha; Paszat, Lawrence; Department of Radiation Oncology, Sunnybrook Health Sciences Centre, Toronto, Ontario

    Purpose: Whole-breast radiation therapy (XRT) after breast-conserving surgery (BCS) for ductal carcinoma in situ (DCIS) may decrease the risk of local recurrence, but the optimal dose regimen remains unclear. Past studies administered 50 Gy in 25 fractions (conventional); however, treatment pattern studies report that hypofractionated (HF) regimens (42.4 Gy in 16 fractions) are frequently used. We report the impact of HF (vs conventional) on the risk of local recurrence after BCS for DCIS. Methods and Materials: All women with DCIS treated with BCS and XRT in Ontario, Canada from 1994 to 2003 were identified. Treatment and outcomes were assessed through administrative databasesmore » and validated by chart review. Survival analyses were performed. To account for systematic differences between women treated with alternate regimens, we used a propensity score adjustment approach. Results: We identified 1609 women, of whom 971 (60%) received conventional regimens and 638 (40%) received HF. A total of 489 patients (30%) received a boost dose, of whom 143 (15%) received conventional radiation therapy and 346 (54%) received HF. The median follow-up time was 9.2 years. The median age at diagnosis was 56 years (interquartile range [IQR], 49-65 years). On univariate analyses, the 10-year actuarial local recurrence–free survival was 86% for conventional radiation therapy and 89% for HF (P=.03). On multivariable analyses, age <45 years (hazard ratio [HR] = 2.4; 95% CI: 1.6-3.4; P<.0001), high (HR=2.9; 95% CI: 1.2-7.3; P=.02) or intermediate nuclear grade (HR=2.7; 95% CI: 1.1-6.6; P=.04), and positive resection margins (HR=1.4; 95% CI: 1.0-2.1; P=.05) were associated with an increased risk of local recurrence. HF was not significantly associated with an increased risk of local recurrence compared with conventional radiation therapy on multivariate analysis (HR=0.8; 95% CI: 0.5-1.2; P=.34). Conclusions: The risk of local recurrence among individuals treated with HF

  5. New techniques for assessing response after hypofractionated radiotherapy for lung cancer

    PubMed Central

    Mattonen, Sarah A.; Huang, Kitty; Ward, Aaron D.; Senan, Suresh

    2014-01-01

    Hypofractionated radiotherapy (HFRT) is an effective and increasingly-used treatment for early stage non-small cell lung cancer (NSCLC). Stereotactic ablative radiotherapy (SABR) is a form of HFRT and delivers biologically effective doses (BEDs) in excess of 100 Gy10 in 3-8 fractions. Excellent long-term outcomes have been reported; however, response assessment following SABR is complicated as radiation induced lung injury can appear similar to a recurring tumor on CT. Current approaches to scoring treatment responses include Response Evaluation Criteria in Solid Tumors (RECIST) and positron emission tomography (PET), both of which appear to have a limited role in detecting recurrences following SABR. Novel approaches to assess response are required, but new techniques should be easily standardized across centers, cost effective, with sensitivity and specificity that improves on current CT and PET approaches. This review examines potential novel approaches, focusing on the emerging field of quantitative image feature analysis, to distinguish recurrence from fibrosis after SABR. PMID:24688782

  6. Quality control methods for linear accelerator radiation and mechanical axes alignment.

    PubMed

    Létourneau, Daniel; Keller, Harald; Becker, Nathan; Amin, Md Nurul; Norrlinger, Bernhard; Jaffray, David A

    2018-06-01

    The delivery accuracy of highly conformal dose distributions generated using intensity modulation and collimator, gantry, and couch degrees of freedom is directly affected by the quality of the alignment between the radiation beam and the mechanical axes of a linear accelerator. For this purpose, quality control (QC) guidelines recommend a tolerance of ±1 mm for the coincidence of the radiation and mechanical isocenters. Traditional QC methods for assessment of radiation and mechanical axes alignment (based on pointer alignment) are time consuming and complex tasks that provide limited accuracy. In this work, an automated test suite based on an analytical model of the linear accelerator motions was developed to streamline the QC of radiation and mechanical axes alignment. The proposed method used the automated analysis of megavoltage images of two simple task-specific phantoms acquired at different linear accelerator settings to determine the coincidence of the radiation and mechanical isocenters. The sensitivity and accuracy of the test suite were validated by introducing actual misalignments on a linear accelerator between the radiation axis and the mechanical axes using both beam steering and mechanical adjustments of the gantry and couch. The validation demonstrated that the new QC method can detect sub-millimeter misalignment between the radiation axis and the three mechanical axes of rotation. A displacement of the radiation source of 0.2 mm using beam steering parameters was easily detectable with the proposed collimator rotation axis test. Mechanical misalignments of the gantry and couch rotation axes of the same magnitude (0.2 mm) were also detectable using the new gantry and couch rotation axis tests. For the couch rotation axis, the phantom and test design allow detection of both translational and tilt misalignments with the radiation beam axis. For the collimator rotation axis, the test can isolate the misalignment between the beam radiation axis

  7. Hypofractionated stereotactic photon radiotherapy of posteriorly located choroidal melanoma with five fractions at ten Gy--clinical results after six years of experience.

    PubMed

    Dunavoelgyi, Roman; Zehetmayer, Martin; Gleiss, Andreas; Geitzenauer, Wolfgang; Kircher, Karl; Georg, Dietmar; Schmidt-Erfurth, Ursula; Poetter, Richard; Dieckmann, Karin

    2013-08-01

    To evaluate long-term safety and efficacy of hypofractionated stereotactic photon radiotherapy with 5 five fractions at 10 Gy each in patients with centrally located choroidal melanoma. Ninety-one patients with centrally located choroidal melanoma were treated stereotactically at a linear accelerator with 6 MV photon beams with 5 fractions at 10 Gy each. Examinations were performed at baseline and every 3 months in the first 2 years, then every 6 months until 5 years and yearly thereafter. Median follow-up was 37.8 months (IQR 19.2-49.9). They included visual acuity assessment, routine ophthalmological examinations with fundoscopy, echography for measurement of tumor dimensions, medical examinations and, if necessary, fluorescein angiography. Initial tumor base diameters, height and volume were 11.20mm (IQR 9.10-13.70), 9.80 mm (IQR 7.80-11.70), 4.53 mm (IQR 3.33-6.43) and 253.8mm(3) (IQR 127.5-477.0). Local tumor control and eye retention rates were 97.7% and 86.4% after 5 years, respectively. Eight patients developed metastatic disease and 3 of them died due to metastatic disease during the follow-up period. Median visual acuity decreased from 0.67 initially to 0.05 at the last individual follow-up (p<0.001). The most common toxicities (any grade) were radiation retinopathy (n=39), optic neuropathy (n=32), radiogenic cataract (n=21), neovascular glaucoma (n=15) and dry eye syndrome (n=10). The 5 year probabilities to remain free of these side effects (any grade) were 26.0%, 45.4%, 55.4%, 72.6% and 80.5%, respectively. The most important prognostic factors for toxicities were the largest tumor base diameter, tumor height and tumor distance to the optic disk. Hypofractionated stereotactic photon radiotherapy with a total dose of 50 Gy delivered in 5 fractions is a highly effective treatment option in patients with centrally located choroidal melanoma and has a moderate toxicity profile. Copyright © 2013. Published by Elsevier Ireland Ltd.

  8. Efficacy of hypofractionated radiotherapy for nasal tumours in 38 dogs (2005-2008).

    PubMed

    Fujiwara, A; Kobayashi, T; Kazato, Y; Yayoshi, N; Fujita, M

    2013-02-01

    To evaluate the efficacy of hypofractionated radiotherapy for canine nasal tumours, including the improvement in clinical signs, rate of complications and assessment of prognostic factors. Medical records of 38 dogs with malignant nasal tumours were reviewed, and those treated with a weekly schedule of hypofractionated radiotherapy were included in the study. Acute and late side effects were defined as complications noted either within 1 month or after 6 months of irradiation, respectively. Progression-free interval and overall survival were calculated using the Kaplan-Meier method. Log-rank test and Cox proportional hazard model were also performed. Clinical signs improved in 30 of 36 dogs. Acute complications were seen in 28 of 36 dogs and were considered manageable. Late complications were observed in 17 of 30 dogs that survived 6 months or longer, but severe side effects were not observed. The median progression-free interval and overall survival was 245 days (95% CI: 127-512 days) and 512 days (95% CI: 203-820 days), respectively. Age, breed and presence of dyspnoea were negatively correlated with overall survival. These results suggest that hypofractionated radiotherapy could be a viable option for the treatment of nasal tumours in dogs that are not candidates for conventional multi-fractionated radiotherapy. © 2013 British Small Animal Veterinary Association.

  9. Particle Acceleration and Radiation associated with Magnetic Field Generation from Relativistic Collisionless Shocks

    NASA Technical Reports Server (NTRS)

    Nishikawa, K.; Hardee, P. E.; Richardson, G. A.; Preece, R. D.; Sol, H.; Fishman, G. J.

    2003-01-01

    Shock acceleration is an ubiquitous phenomenon in astrophysical plasmas. Plasma waves and their associated instabilities (e.g., the Buneman instability, two-streaming instability, and the Weibel instability) created in the shocks are responsible for particle (electron, positron, and ion) acceleration. Using a 3-D relativistic electromagnetic particle (REMP) code, we have investigated particle acceleration associated with a relativistic jet front propagating through an ambient plasma with and without initial magnetic fields. We find only small differences in the results between no ambient and weak ambient magnetic fields. Simulations show that the Weibel instability created in the collisionless shock front accelerates particles perpendicular and parallel to the jet propagation direction. While some Fermi acceleration may occur at the jet front, the majority of electron acceleration takes place behind the jet front and cannot be characterized as Fermi acceleration. The simulation results show that this instability is responsible for generating and amplifying highly nonuniform, small-scale magnetic fields, which contribute to the electron s transverse deflection behind the jet head. The "jitter" radiation from deflected electrons has different properties than synchrotron radiation which is calculated in a uniform magnetic field. This jitter radiation may be important to understanding the complex time evolution and/or spectral structure in gamma-ray bursts, relativistic jets, and supernova remnants.

  10. Nation-Scale Adoption of Shorter Breast Radiation Therapy Schedules Can Increase Survival in Resource Constrained Economies: Results From a Markov Chain Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khan, Atif J., E-mail: atif.j.khan@rutgers.edu; Rafique, Raza; Zafar, Waleed

    Purpose: Hypofractionated whole breast irradiation and accelerated partial breast irradiation (APBI) offer women options for shorter courses of breast radiation therapy. The impact of these shorter schedules on the breast cancer populations of emerging economies with limited radiation therapy resources is unknown. We hypothesized that adoption of these schedules would improve throughput in the system and, by allowing more women access to life-saving treatments, improve patient survival within the system. Methods and Materials: We designed a Markov chain model to simulate the different health states that a postlumpectomy or postmastectomy patient could enter over the course of a 20-year follow-upmore » period. Transition rates between health states were adapted from published data on recurrence rates. We used primary data from a tertiary care hospital in Lahore, Pakistan, to populate the model with proportional use of mastectomy versus breast conservation and to estimate the proportion of patients suitable for APBI. Sensitivity analyses on the use of APBI and relative efficacy of APBI were conducted to study the impact on the population. Results: The shorter schedule resulted in more women alive and more women remaining without evidence of disease (NED) compared with the conventional schedule, with an absolute difference of about 4% and 7% at 15 years, respectively. Among women who had lumpectomies, the chance of remaining alive and with an intact breast was 62% in the hypofractionation model and 54% in the conventional fractionation model. Conclusions: Increasing throughput in the system can result in improved survival, improved chances of remaining without evidence of disease, and improved chances of remaining alive with a breast. These findings are significant and suggest that adoption of hypofractionation in emerging economies is not simply a question of efficiency and cost but one of access to care and patient survivorship.« less

  11. Intraoperative radiation therapy using mobile electron linear accelerators: report of AAPM Radiation Therapy Committee Task Group No. 72.

    PubMed

    Beddar, A Sam; Biggs, Peter J; Chang, Sha; Ezzell, Gary A; Faddegon, Bruce A; Hensley, Frank W; Mills, Michael D

    2006-05-01

    Intraoperative radiation therapy (IORT) has been customarily performed either in a shielded operating suite located in the operating room (OR) or in a shielded treatment room located within the Department of Radiation Oncology. In both cases, this cancer treatment modality uses stationary linear accelerators. With the development of new technology, mobile linear accelerators have recently become available for IORT. Mobility offers flexibility in treatment location and is leading to a renewed interest in IORT. These mobile accelerator units, which can be transported any day of use to almost any location within a hospital setting, are assembled in a nondedicated environment and used to deliver IORT. Numerous aspects of the design of these new units differ from that of conventional linear accelerators. The scope of this Task Group (TG-72) will focus on items that particularly apply to mobile IORT electron systems. More specifically, the charges to this Task Group are to (i) identify the key differences between stationary and mobile electron linear accelerators used for IORT, (ii) describe and recommend the implementation of an IORT program within the OR environment, (iii) present and discuss radiation protection issues and consequences of working within a nondedicated radiotherapy environment, (iv) describe and recommend the acceptance and machine commissioning of items that are specific to mobile electron linear accelerators, and (v) design and recommend an efficient quality assurance program for mobile systems.

  12. Norm- and hypo-fractionated radiotherapy is capable of activating human dendritic cells.

    PubMed

    Kulzer, Lorenz; Rubner, Yvonne; Deloch, Lisa; Allgäuer, Andrea; Frey, Benjamin; Fietkau, Rainer; Dörrie, Jan; Schaft, Niels; Gaipl, Udo S

    2014-10-01

    Despite the transient immunosuppressive properties of local radiotherapy (RT), this classical treatment modality of solid tumors is capable of inducing immunostimulatory forms of tumor-cell death. The resulting 'immunotoxicity' in the tumor, but not in healthy tissues, may finally lead to immune-mediated destruction of the tumor. However, little is known about the best irradiation scheme in this setting. This study examines the immunological effects of differently irradiated human colorectal tumor cells on human monocyte-derived dendritic cells (DC). Human SW480 tumor cells were irradiated with a norm-fractionation scheme (5 × 2 Gy), a hypo-fractionated protocol (3 × 5 Gy), and with a high single irradiation dose (radiosurgery; 1 × 15 Gy). Subsequently, human immature DC (iDC) were co-incubated with supernatants (SN) of these differently treated tumor cells. Afterwards, DC were analyzed regarding the expression of maturation markers, the release of cytokines, and the potential to stimulate CD4(+) T-cells. The co-incubation of iDC with SN of tumor cells exposed to norm- or hypo-fractionated RT resulted in a significantly increased secretion of the immune activating cytokines IL-12p70, IL-8, IL-6, and TNFα, compared to iDC co-incubated with SN of tumor cells that received a high single irradiation dose or were not irradiated. In addition, DC-maturation markers CD80, CD83, and CD25 were also exclusively elevated after co-incubation with the SN of fractionated irradiated tumor cells. Furthermore, the SN of tumor cells that were irradiated with norm- or hypo-fractionated RT triggered iDC to stimulate CD4(+) T-cells not only in an allogenic, but also in an antigen-specific manner like mature DC. Collectively, these results demonstrate that norm- and hypo-fractionated RT induces a fast human colorectal tumor-cell death with immunogenic potential that can trigger DC maturation and activation in vitro. Such findings may contribute to the improvement of

  13. Hawking radiation of scalar particles from accelerating and rotating black holes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gillani, Usman A.; Rehman, Mudassar; Saifullah, K., E-mail: mani_precious2001@yahoo.com, E-mail: mudassar051@yahoo.com, E-mail: saifullah@qau.edu.pk

    2011-06-01

    Hawking radiation of uncharged and charged scalar particles from accelerating and rotating black holes is studied. We calculate the tunneling probabilities of these particles from the rotation and acceleration horizons of these black holes. Using this method we recover the correct Hawking temperature as well.

  14. Hypofractionated accelerated CT-guided interstitial ¹⁹²Ir-HDR-Brachytherapy as re-irradiation in inoperable recurrent cervical lymphadenopathy from head and neck cancer.

    PubMed

    Tselis, Nikolaos; Ratka, Markus; Vogt, Hans-Georg; Kolotas, Christos; Baghi, Mehran; Baltas, Dimos; Fountzilas, George; Georgoulias, Vassilios; Ackermann, Hanns; Zamboglou, Nikolaos

    2011-01-01

    Despite significant improvements in the treatment of head and neck cancer (HNC), lymph node recurrences remain a clinical challenge after primary radiotherapy. The value of interstitial (IRT) brachytherapy (BRT) for control of lymph node recurrence remains unclear. In order to clarify its role a retrospective review was undertaken on the value of computed tomography (CT)-guided IRT high-dose-rate (HDR)-BRT in isolated recurrent disease from HNC. From 2000 to 2007, 74 patients were treated for inoperable recurrent cervical lymphadenopathy. All patients had previously been treated with radical radiotherapy or chemoradiation with or without surgery. The HDR-BRT delivered a median salvage dose of 30.0 Gy (range, 12.0-36.0 Gy) in twice-daily fractions of 2.0-5.0 Gy in 71 patients and of 30.0 Gy (range, 10.0-36.0 Gy) in once-daily fractions of 6.0-10.0 Gy in three patients. The overall and disease-free survival rates at one, two and three years were 42%, 19%, 6%, and 42%, 37% and 19%, respectively. The local control probability at one, two and three years was 67% at all three time points. Grade III-IV complications occurred in 13% of patients. In patients with inoperable recurrent neck disease from HNC, hypofractionated accelerated CT-guided IRT-HDR-BRT can play an important role in providing palliation and tumor control. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  15. Cherenkov Radiation Control via Self-accelerating Wave-packets.

    PubMed

    Hu, Yi; Li, Zhili; Wetzel, Benjamin; Morandotti, Roberto; Chen, Zhigang; Xu, Jingjun

    2017-08-18

    Cherenkov radiation is a ubiquitous phenomenon in nature. It describes electromagnetic radiation from a charged particle moving in a medium with a uniform velocity larger than the phase velocity of light in the same medium. Such a picture is typically adopted in the investigation of traditional Cherenkov radiation as well as its counterparts in different branches of physics, including nonlinear optics, spintronics and plasmonics. In these cases, the radiation emitted spreads along a "cone", making it impractical for most applications. Here, we employ a self-accelerating optical pump wave-packet to demonstrate controlled shaping of one type of generalized Cherenkov radiation - dispersive waves in optical fibers. We show that, by tuning the parameters of the wave-packet, the emitted waves can be judiciously compressed and focused at desired locations, paving the way to such control in any physical system.

  16. The radiation field measurement and analysis outside the shielding of A 10 MeV electron irradiation accelerator

    NASA Astrophysics Data System (ADS)

    Shang, Jing; Li, Juexin; Xu, Bing; Li, Yuxiong

    2011-10-01

    Electron accelerators are employed widely for diverse purposes in the irradiation-processing industry, from sterilizing medical products to treating gemstones. Because accelerators offer high efficiency, high power, and require little preventative maintenance, they are becoming more and more popular than using the 60Co isotope approach. However, the electron accelerator exposes potential radiation hazards. To protect workers and the public from exposure to radiation, the radiation field around the electronic accelerator must be assessed, especially that outside the shielding. Thus, we measured the radiation dose at different positions outside the shielding of a 10-MeV electron accelerator using a new data-acquisition unit named Mini-DDL (Mini-Digital Data Logging). The measurements accurately reflect the accelerator's radiation status. In this paper, we present our findings, results and compare them with our theoretical calculations. We conclude that the measurements taken outside the irradiation hall are consistent with the findings from our calculations, except in the maze outside the door of the accelerator room. We discuss the reason for this discrepancy.

  17. Investigation of advanced propulsion technologies: The RAM accelerator and the flowing gas radiation heater

    NASA Technical Reports Server (NTRS)

    Bruckner, A. P.; Knowlen, C.; Mattick, A. T.; Hertzberg, A.

    1992-01-01

    The two principal areas of advanced propulsion investigated are the ram accelerator and the flowing gas radiation heater. The concept of the ram accelerator is presented as a hypervelocity launcher for large-scale aeroballistic range applications in hypersonics and aerothermodynamics research. The ram accelerator is an in-bore ramjet device in which a projectile shaped like the centerbody of a supersonic ramjet is propelled in a stationary tube filled with a tailored combustible gas mixture. Combustion on and behind the projectile generates thrust which accelerates it to very high velocities. The acceleration can be tailored for the 'soft launch' of instrumented models. The distinctive reacting flow phenomena that have been observed in the ram accelerator are relevant to the aerothermodynamic processes in airbreathing hypersonic propulsion systems and are useful for validating sophisticated CFD codes. The recently demonstrated scalability of the device and the ability to control the rate of acceleration offer unique opportunities for the use of the ram accelerator as a large-scale hypersonic ground test facility. The flowing gas radiation receiver is a novel concept for using solar energy to heat a working fluid for space power or propulsion. Focused solar radiation is absorbed directly in a working gas, rather than by heat transfer through a solid surface. Previous theoretical analysis had demonstrated that radiation trapping reduces energy loss compared to that of blackbody receivers, and enables higher efficiencies and higher peak temperatures. An experiment was carried out to measure the temperature profile of an infrared-active gas and demonstrate the effect of radiation trapping. The success of this effort validates analytical models of heat transfer in this receiver, and confirms the potential of this approach for achieving high efficiency space power and propulsion.

  18. Electron acceleration and radiation signatures in loop coronal transients

    NASA Technical Reports Server (NTRS)

    Vlahos, L.; Gergely, T. E.; Papadopoulos, K.

    1982-01-01

    It is proposed that in loop coronal transients an erupting loop moves away from the solar surface, with a velocity exceeding the local Alfven speed, pushing against the overlying magnetic fields and driving a shock in the front of the moving part of the loop. Lower hybrid waves are excited at the shock front and propagate radially toward the center of the loop with phase velocity along the magnetic field that exceeds the thermal velocity. The lower hybrid waves stochastically accelerate the tail of the electron distribution inside the loop. The manner in which the accelerated electrons are trapped in the moving loop are discussed, and their radiation signature is estimated. It is suggested that plasma radiation can explain the power observed in stationary and moving type IV bursts.

  19. Multi-dimensional effects in radiation pressure acceleration of ions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tripathi, V. K., E-mail: tripathivipin@yahoo.co.in

    A laser carries momentum. On reflection from an ultra-thin overdense plasma foil, it deposits recoil momentum on the foil, i.e. exerts radiation pressure on the foil electrons and pushes them to the rear. The space charge field thus created takes the ions along, accelerating the electron-ion double layer as a single unit. When the foil has surface ripple, of wavelength comparable to laser wavelength, the radiation pressure acts non-uniformly on the foil and the perturbation grows as Reyleigh-Taylor (RT) instability as the foil moves. The finite spot size of the laser causes foil to bend. These effects limit the quasi-monomore » energy acceleration of ions. Multi-ion foils, e.g., diamond like carbon foil embedded with protons offer the possibility of suppressing RT instability.« less

  20. [Clinical experience in image-guided ultra-conformal hypofractionated radiotherapy in case of metastatic diseases at the University of Pécs].

    PubMed

    László, Zoltán; Boronkai, Árpád; Lõcsei, Zoltán; Kalincsák, Judit; Szappanos, Szabolcs; Farkas, Róbert; Al Farhat, Yousuf; Sebestyén, Zsolt; Sebestyén, Klára; Kovács, Péter; Csapó, László; Mangel, László

    2015-06-01

    With the development of radiation therapy technology, the utilization of more accurate patient fixation, inclusion of PET/CT image fusion into treatment planning, 3D image-guided radiotherapy, and intensity-modulated dynamic arc irradiation, the application of hypofractionated stereotactic radiotherapy can be extended to specified extracranial target volumes, and so even to the treatment of various metastases. Between October 2012 and August 2014 in our institute we performed extracranial, hypofractionated, image-többguided radiotherapy with RapidArc system for six cases, and 3D conformal multifield technique for one patient with Novalis TX system in case of different few-numbered and slow-growing metastases. For the precise definition of the target volumes we employed PET/CT during the treatment planning procedure. Octreotid scan was applied in one carcinoid tumour patient. Considering the localisation of the metastases and the predictable motion of the organs, we applied 5 to 20 mm safety margin during the contouring procedure. The average treatment volume was 312 cm3. With 2.5-3 Gy fraction doses we delivered 39-45 Gy total dose, and the treatment duration was 2.5 to 3 weeks. The image guidance was carried out via ExacTrac, and kV-Cone Beam CT equipment based on an online protocol, therefore localisation differences were corrected before every single treatment. The patients tolerated the treatments well without major (Gr>2) side effects. Total or near total regression of the metastases was observed at subsequent control examinations in all cases (the median follow-up time was 5 months). According to our first experience, extracranial, imageguided hypofractionated radiotherapy is well-tolerated by patients and can be effectively applied in the treatment of slow-growing and few-numbered metastases.

  1. Dose constraints for moderate hypofractionated radiotherapy for prostate cancer: The French genito-urinary group (GETUG) recommendations.

    PubMed

    Langrand-Escure, J; de Crevoisier, R; Llagostera, C; Créhange, G; Delaroche, G; Lafond, C; Bonin, C; Bideault, F; Sargos, P; Belhomme, S; Pasquier, D; Latorzeff, I; Supiot, S; Hennequin, C

    2018-04-01

    Considering recent phase III trials results, moderate hypofractionated radiotherapy can be considered as a standard treatment for low and intermediate risk prostate cancer management. This assessment call for a framework allowing homogeneous and reproducible practices in the different centers using this radiotherapy schedule. The French Genito-Urinary Group (GETUG) provides here recommendations for daily practice of moderate hypofractionated radiotherapy for prostate cancer, with indications, dose, fractionation, pre-treatment planning, volume of interest delineation (target volume and organs at risk) and margins, dose constraints and radiotherapy techniques. Copyright © 2018. Published by Elsevier SAS.

  2. Requirements for Simulating Space Radiation With Particle Accelerators

    NASA Technical Reports Server (NTRS)

    Schimmerling, W.; Wilson, J. W.; Cucinotta, F.; Kim, M-H Y.

    2004-01-01

    Interplanetary space radiation consists of fully ionized nuclei of atomic elements with high energy for which only the few lowest energy ions can be stopped in shielding materials. The health risk from exposure to these ions and their secondary radiations generated in the materials of spacecraft and planetary surface enclosures is a major limiting factor in the management of space radiation risk. Accurate risk prediction depends on a knowledge of basic radiobiological mechanisms and how they are modified in the living tissues of a whole organism. To a large extent, this knowledge is not currently available. It is best developed at ground-based laboratories, using particle accelerator beams to simulate the components of space radiation. Different particles, in different energy regions, are required to study different biological effects, including beams of argon and iron nuclei in the energy range 600 to several thousand MeV/nucleon and carbon beams in the energy range of approximately 100 MeV/nucleon to approximately 1000 MeV/nucleon. Three facilities, one each in the United States, in Germany and in Japan, currently have the partial capability to satisfy these constraints. A facility has been proposed using the Brookhaven National Laboratory Booster Synchrotron in the United States; in conjunction with other on-site accelerators, it will be able to provide the full range of heavy ion beams and energies required. International cooperation in the use of these facilities is essential to the development of a safe international space program.

  3. Tumor Control Outcomes After Hypofractionated and Single-Dose Stereotactic Image-Guided Intensity-Modulated Radiotherapy for Extracranial Metastases From Renal Cell Carcinoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zelefsky, Michael J., E-mail: zelefskm@mskcc.org; Greco, Carlo; Motzer, Robert

    2012-04-01

    Purpose: To report tumor local progression-free outcomes after treatment with single-dose, image-guided, intensity-modulated radiotherapy and hypofractionated regimens for extracranial metastases from renal cell primary tumors. Patients and Methods: Between 2004 and 2010, 105 lesions from renal cell carcinoma were treated with either single-dose, image-guided, intensity-modulated radiotherapy to a prescription dose of 18-24 Gy (median, 24) or hypofractionation (three or five fractions) with a prescription dose of 20-30 Gy. The median follow-up was 12 months (range, 1-48). Results: The overall 3-year actuarial local progression-free survival for all lesions was 44%. The 3-year local progression-free survival for those who received a highmore » single-dose (24 Gy; n = 45), a low single-dose (<24 Gy; n = 14), or hypofractionation regimens (n = 46) was 88%, 21%, and 17%, respectively (high single dose vs. low single dose, p = .001; high single dose vs. hypofractionation, p < .001). Multivariate analysis revealed the following variables were significant predictors of improved local progression-free survival: 24 Gy dose compared with a lower dose (p = .009) and a single dose vs. hypofractionation (p = .008). Conclusion: High single-dose, image-guided, intensity-modulated radiotherapy is a noninvasive procedure resulting in high probability of local tumor control for metastatic renal cell cancer generally considered radioresistant according to the classic radiobiologic ranking.« less

  4. Tumor Control Outcomes Following Hypofractionated and Single-Dose Stereotactic Image-Guided Intensity-Modulated Radiotherapy for Extracranial Metastases from Renal Cell Carcinoma

    PubMed Central

    Zelefsky, Michael J; Greco, Carlo; Motzer, Robert; Magsanoc, Juan Martin; Pei, Xin; Lovelock, Michael; Mechalakos, Jim; Zatcky, Joan; Fuks, Zvi; Yamada, Yoshiya

    2014-01-01

    Purpose To report tumor local progression-free outcomes following treatment with single-dose image-guided intensity-modulated radiotherapy (SD-IGRT) and hypofractionated regimens for extracranial metastases from renal cell primary tumors. Methods and Materials Between 2004 and 2010, a total of 105 lesions from renal cell carcinomas were treated with either SD-IGRT to prescription doses of 18–24 Gy (median, 24 Gy) or hypofractionation (3 or 5 fractions) with prescription doses ranging between 20 and 30 Gy. The median follow-up was 12 months (range, 1–48 months). Results The overall 3-year actuarial local progression-free survival (LPFS) for all lesions was 44%. The 3-year LPFS for those who received high single-dose (24 Gy; n = 45), low single-dose (< 24 Gy; n = 14), and hypofractionation regimens (n = 46) were 88%, 21%, and 17%, respectively (high single dose versus low single dose, p = 0.001; high single dose versus hypofractionation, p < 0.001). Multivariate analysis revealed the following variables as significant predictors of improved LPFS: dose of 24 Gy compared with lower dose (p = 0.009), and single dose versus hypofractionation (p = 0.008). Conclusion High-dose SD-IGRT is a non-invasive procedure resulting in high probability of local tumor control for metastatic renal cell cancers, generally considered radioresistant according to classical radiobiological ranking. PMID:21596489

  5. High Energy Ion Acceleration by Extreme Laser Radiation Pressure

    DTIC Science & Technology

    2017-03-14

    and was published in Nuclear Instruments and Methods A [11]. For similar targets, it was found that by monitoring the divergence of a low- energy ...AFRL-AFOSR-UK-TR-2017-0015 High energy ion acceleration by extreme laser radiation pressure Paul McKenna UNIVERSITY OF STRATHCLYDE VIZ ROYAL COLLEGE...MM-YYYY)   14-03-2017 2. REPORT TYPE  Final 3. DATES COVERED (From - To)  01 May 2013 to 31 Dec 2016 4. TITLE AND SUBTITLE High energy ion acceleration

  6. Radiation therapy in early-stage invasive breast cancer.

    PubMed

    Lin, Ray; Tripuraneni, Prabhakar

    2011-06-01

    The treatment of breast cancer involves a multi-disciplinary approach with radiation therapy playing a key role. Breast-conserving surgery has been an option for women with early-stage breast cancer for over two decades now. Multiple randomized trials now have demonstrated the efficacy of breast-conserving surgery followed by radiation therapy. With the advancements in breast imaging and the successful campaign for early detection of breast cancer, more women today are found to have early-stage small breast cancers. Patient factors (breast size, tumor location, history of prior radiation therapy, preexisting conditions such as collagen vascular disease, age, having prosthetically augmented breasts), pathological factors (margin status, tumor size, presence of extensive intraductal component requiring multiple surgical excisions), as well as patient preference are all taken into consideration prior to surgical management of breast cancer. Whole-breast fractionated radiation therapy between 5 and 7 weeks is considered as the standard of care treatment following breast-conserving surgery. However, new radiation treatment strategies have been developed in recent years to provide alternatives to the conventional 5-7 week whole-breast radiation therapy for some patients. Accelerated partial breast radiation therapy (APBI) was introduced because the frequency of breast recurrences outside of the surgical cavity has been shown to be low. This technique allows treatments to be delivered quicker (usually 1 week, twice daily) to a limited volume. Often times, this treatment involves the use of a brachytherapy applicator to be placed into the surgical cavity following breast-conserving surgery. Accelerated hypofractionated whole-breast irradiation may be another faster way to deliver radiation therapy following breast-conserving surgery. This journal article reviews the role of radiation therapy in women with early-stage breast cancer addressing patient selection in breast

  7. Skyshine radiation resulting from 6 MV and 10 MV photon beams from a medical accelerator.

    PubMed

    Elder, Deirdre H; Harmon, Joseph F; Borak, Thomas B

    2010-07-01

    Skyshine radiation scattered in the atmosphere above a radiation therapy accelerator facility can result in measurable dose rates at locations near the facility on the ground and at roof level. A Reuter Stokes RSS-120 pressurized ion chamber was used to measure exposure rates in the vicinity of a Varian Trilogy Linear Accelerator at the Colorado State University Veterinary Medical Center. The linear accelerator was used to deliver bremsstrahlung photons from 6 MeV and 10 MeV electron beams with several combinations of field sizes and gantry angles. An equation for modeling skyshine radiation in the vicinity of medical accelerators was published by the National Council on Radiation Protection and Measurements in 2005. However, this model did not provide a good fit to the observed dose rates at ground level or on the roof. A more accurate method of estimating skyshine may be to measure the exposure rate of the radiation exiting the roof of the facility and to scale the results using the graphs presented in this paper.

  8. Dynamic Monte Carlo simulations of radiatively accelerated GRB fireballs

    NASA Astrophysics Data System (ADS)

    Chhotray, Atul; Lazzati, Davide

    2018-05-01

    We present a novel Dynamic Monte Carlo code (DynaMo code) that self-consistently simulates the Compton-scattering-driven dynamic evolution of a plasma. We use the DynaMo code to investigate the time-dependent expansion and acceleration of dissipationless gamma-ray burst fireballs by varying their initial opacities and baryonic content. We study the opacity and energy density evolution of an initially optically thick, radiation-dominated fireball across its entire phase space - in particular during the Rph < Rsat regime. Our results reveal new phases of fireball evolution: a transition phase with a radial extent of several orders of magnitude - the fireball transitions from Γ ∝ R to Γ ∝ R0, a post-photospheric acceleration phase - where fireballs accelerate beyond the photosphere and a Thomson-dominated acceleration phase - characterized by slow acceleration of optically thick, matter-dominated fireballs due to Thomson scattering. We quantify the new phases by providing analytical expressions of Lorentz factor evolution, which will be useful for deriving jet parameters.

  9. The Radiation Belt Storm Probes (RBSP) Energetic Particle, Composition, and Thermal plasma (ECT) Suite: Upcoming Opportunties for Testing Radiation Belt Acceleration Mechanisms

    NASA Astrophysics Data System (ADS)

    Spence, Harlan; Reeves, Geoffrey

    2012-07-01

    The Radiation Belt Storm Probes (RBSP) mission will launch in late summer 2012 and begin its exploration of acceleration and dynamics of energetic particles in the inner magnetosphere. In this presentation, we discuss opportunities afforded by the RBSP Energetic Particle, Composition, and Thermal plasma (ECT) instrument suite to advance our understanding of acceleration processes in the radiation belts. The RBSP-ECT instrument suite comprehensively measures the electron and major ion populations of the inner magnetosphere, from the lowest thermal plasmas of the plasmasphere, to the hot plasma of the ring current, to the relativistic populations of the radiation belts. Collectively, the ECT measurements will reveal the complex cross-energy coupling of these colocated particle populations, which along with concurrent RBSP wave measurements, will permit various wave-particle acceleration mechanisms to be tested. We review the measurement capabilities of the RBSP-ECT instrument suite, and demonstrate several examples of how these measurements will be used to explore candidate acceleration mechanisms and dynamics of radiation belt particles.

  10. A feasibility study of treatment verification using EPID cine images for hypofractionated lung radiotherapy

    NASA Astrophysics Data System (ADS)

    Tang, Xiaoli; Lin, Tong; Jiang, Steve

    2009-09-01

    We propose a novel approach for potential online treatment verification using cine EPID (electronic portal imaging device) images for hypofractionated lung radiotherapy based on a machine learning algorithm. Hypofractionated radiotherapy requires high precision. It is essential to effectively monitor the target to ensure that the tumor is within the beam aperture. We modeled the treatment verification problem as a two-class classification problem and applied an artificial neural network (ANN) to classify the cine EPID images acquired during the treatment into corresponding classes—with the tumor inside or outside of the beam aperture. Training samples were generated for the ANN using digitally reconstructed radiographs (DRRs) with artificially added shifts in the tumor location—to simulate cine EPID images with different tumor locations. Principal component analysis (PCA) was used to reduce the dimensionality of the training samples and cine EPID images acquired during the treatment. The proposed treatment verification algorithm was tested on five hypofractionated lung patients in a retrospective fashion. On average, our proposed algorithm achieved a 98.0% classification accuracy, a 97.6% recall rate and a 99.7% precision rate. This work was first presented at the Seventh International Conference on Machine Learning and Applications, San Diego, CA, USA, 11-13 December 2008.

  11. New technologies in radiation therapy: ensuring patient safety, radiation safety and regulatory issues in radiation oncology.

    PubMed

    Amols, Howard I

    2008-11-01

    New technologies such as intensity modulated and image guided radiation therapy, computer controlled linear accelerators, record and verify systems, electronic charts, and digital imaging have revolutionized radiation therapy over the past 10-15 y. Quality assurance (QA) as historically practiced and as recommended in reports such as American Association of Physicists in Medicine Task Groups 40 and 53 needs to be updated to address the increasing complexity and computerization of radiotherapy equipment, and the increased quantity of data defining a treatment plan and treatment delivery. While new technology has reduced the probability of many types of medical events, seeing new types of errors caused by improper use of new technology, communication failures between computers, corrupted or erroneous computer data files, and "software bugs" are now being seen. The increased use of computed tomography, magnetic resonance, and positron emission tomography imaging has become routine for many types of radiotherapy treatment planning, and QA for imaging modalities is beyond the expertise of most radiotherapy physicists. Errors in radiotherapy rarely result solely from hardware failures. More commonly they are a combination of computer and human errors. The increased use of radiosurgery, hypofractionation, more complex intensity modulated treatment plans, image guided radiation therapy, and increasing financial pressures to treat more patients in less time will continue to fuel this reliance on high technology and complex computer software. Clinical practitioners and regulatory agencies are beginning to realize that QA for new technologies is a major challenge and poses dangers different in nature than what are historically familiar.

  12. Hypofractionated Radiotherapy for Complicated Bone Metastases in Patients with Poor Performance Status: A Phase II International Trial.

    PubMed

    Silva, Mauricio F; Marta, Gustavo N; Lisboa, Felipe P C; Watte, Guilherme; Trippa, Fabio; Maranzano, Ernesto; da Motta, Neiro W; Popovic, Marko; Ha, Tuan; Burmeister, Bryan; Chow, Edward

    2017-06-01

    Purpose To evaluate the efficacy and safety of hypofractionated radiotherapy (16 Gy in 2 fractions, 1 week apart) in patients with complicated bone metastases and poor performance status. Methods A prospective single-arm phase II clinical trial was conducted from July 2014 to May 2016. The primary endpoint was pain response as defined in the International Consensus on Palliative Radiotherapy Endpoints. Secondary endpoints included quality of life as measured by quality of life questionnaire (QLQ) PAL-15 and QLQ-BM22 European Organisation for Research and Treatment of Cancer guidelines, pain flare, adverse events, re-irradiation, and skeletal complications. Results Fifty patients were enrolled. There were 23 men with a median age of 58 years (range 26-86). Of the 50 patients, 38 had an extraosseous soft tissue component, 18 needed postsurgical radiation, 3 had neuropathic pain, and 3 had an impending fracture in a weight-bearing bone. At 2 months, 33 patients were alive (66%). Four (12.5%) had a complete response and 12 (37.5%) had a partial response. A statistically significant improvement was seen in the functional interference (p = 0.01) and psychosocial aspects (p = 0.03) of the BM22. No patient had spinal cord compression. One patient required surgery for pathologic fracture, and another re-irradiation. Conclusions Hypofractionated radiotherapy (16 Gy in 2 fractions of 8 Gy 1 week apart) achieved satisfactory pain relief and safety results in patients with complicated bone metastases and poor performance status.

  13. Radiation Safety System for SPIDER Neutral Beam Accelerator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sandri, S.; Poggi, C.; Coniglio, A.

    2011-12-13

    SPIDER (Source for Production of Ion of Deuterium Extracted from RF Plasma only) and MITICA (Megavolt ITER Injector Concept Advanced) are the ITER neutral beam injector (NBI) testing facilities of the PRIMA (Padova Research Injector Megavolt Accelerated) Center. Both injectors accelerate negative deuterium ions with a maximum energy of 1 MeV for MITICA and 100 keV for SPIDER with a maximum beam current of 40 A for both experiments. The SPIDER facility is classified in Italy as a particle accelerator. At present, the design of the radiation safety system for the facility has been completed and the relevant reports havemore » been presented to the Italian regulatory authorities. Before SPIDER can operate, approval must be obtained from the Italian Regulatory Authority Board (IRAB) following a detailed licensing process. In the present work, the main project information and criteria for the SPIDER injector source are reported together with the analysis of hypothetical accidental situations and safety issues considerations. Neutron and photon nuclear analysis is presented, along with special shielding solutions designed to meet Italian regulatory dose limits. The contribution of activated corrosion products (ACP) to external exposure of workers has also been assessed. Nuclear analysis indicates that the photon contribution to worker external exposure is negligible, and the neutron dose can be considered by far the main radiation protection issue. Our results confirm that the injector has no important radiological impact on the population living around the facility.« less

  14. The Multi-Dimensional Structure of Radiative Shocks: Suppressed Thermal X-rays and Relativistic Ion Acceleration

    NASA Astrophysics Data System (ADS)

    Steinberg, Elad; Metzger, Brian D.

    2018-06-01

    Radiative shocks, behind which gas cools faster than the dynamical time, play a key role in many astrophysical transients, including classical novae and young supernovae interacting with circumstellar material. The dense layer behind high Mach number M ≫ 1 radiative shocks is susceptible to thin-shell instabilities, creating a "corrugated" shock interface. We present two and three-dimensional hydrodynamical simulations of optically-thin radiative shocks to study their thermal radiation and acceleration of non-thermal relativistic ions. We employ a moving-mesh code and a specialized numerical technique to eliminate artificial heat conduction across grid cells. The fraction of the shock's luminosity Ltot radiated at X-ray temperatures kT_sh ≈ (3/16)μ m_p v_sh2 expected from a one-dimensional analysis is suppressed by a factor L(>T_sh/3)/L_tot ≈ 4.5/M^{4/3} for M ≈ 4-36. This suppression results in part from weak shocks driven into under-pressured cold filaments by hot shocked gas, which sap thermal energy from the latter faster than it is radiated. Combining particle-in-cell simulation results for diffusive shock acceleration with the inclination angle distribution across the shock (relative to an upstream magnetic field in the shock plane-the expected geometry for transient outflows), we predict the efficiency and energy spectrum of ion acceleration. Though negligible acceleration is predicted for adiabatic shocks, the corrugated shock front enables local regions to satisfy the quasi-parallel magnetic field geometry required for efficient acceleration, resulting in an average acceleration efficiency of ɛnth ˜ 0.005 - 0.02 for M ≈ 12-36, in agreement with modeling of the gamma-ray nova ASASSN-16ma.

  15. The use of accelerated radiation testing for avionics

    NASA Astrophysics Data System (ADS)

    Quinn, Heather

    2013-04-01

    In recent years, the use of unmanned aerial vehicles (UAVs) for military and national security applications has been increasing. One possible use of these vehicles is as remote sensing platforms, where the UAV carries several sensors to provide real-time information about biological, chemical or radiological agents that might have been released into the environment. One such UAV, the Global Hawk, has a payload space that can carry nearly one ton of sensing equipment, which makes these platforms significantly larger than many satellites. Given the size of the potential payload and the heightened radiation environment at high altitudes, these systems could be affected by the radiation-induced failure mechanisms from the naturally occurring terrestrial environment. In this paper, we will explore the use of accelerated radiation testing to prepare UAV payloads for deployment.

  16. PREFACE: Acceleration and radiation generation in space and laboratory plasmas

    NASA Astrophysics Data System (ADS)

    Bingham, R.; Katsouleas, T.; Dawson, J. M.; Stenflo, L.

    1994-01-01

    Sixty-six leading researchers from ten nations gathered in the Homeric village of Kardamyli, on the southern coast of mainland Greece, from August 29-September 4, 1993 for the International Workshop on Acceleration and Radiation Generation in Space and Laboratory Plasmas. This Special Issue represents a cross-section of the presentations made at and the research stimulated by that meeting. According to the Iliad, King Agamemnon used Kardamyli as a dowry offering in order to draw a sulking Achilles into the Trojan War. 3000 years later, Kardamyli is no less seductive. Its remoteness and tranquility made it an ideal venue for promoting the free exchange of ideas between various disciplines that do not normally interact. Through invited presen tations, informal poster discussions and working group sessions, the Workshop brought together leaders from the laboratory and space/astrophysics communities working on common problems of acceleration and radiation generation in plasmas. It was clear from the presentation and discussion sessions that there is a great deal of common ground between these disciplines which is not at first obvious due to the differing terminologies and types of observations available to each community. All of the papers in this Special Issue highlight the role collective plasma processes play in accelerating particles or generating radiation. Some are state-of-the-art presentations of the latest research in a single discipline, while others investi gate the applicability of known laboratory mechanisms to explain observations in natural plasmas. Notable among the latter are the papers by Marshall et al. on kHz radiation in the magnetosphere ; Barletta et al. on collective acceleration in solar flares; and by Dendy et al. on ion cyclotron emission. The papers in this Issue are organized as follows: In Section 1 are four general papers by Dawson, Galeev, Bingham et al. and Mon which serves as an introduction to the physical mechanisms of acceleration

  17. Radiative accelerations in stellar envelopes

    NASA Astrophysics Data System (ADS)

    Seaton, M. J.

    1997-08-01

    In stars which are sufficiently quiescent, changes in the relative abundances of the chemical elements can result from gravitational settling and from levitation produced by radiation pressure forces, usually expressed as radiative accelerations g_rad. Those changes can affect the structure of such stars, due to modifications in opacities, and can lead to marked peculiarities in observed atmospheric abundances. It is necessary to consider diffusive movements both in the atmospheres and in much deeper layers of the stellar envelopes. For the envelopes the equation of radiative transfer can be solved in a diffusion approximation and, for an element k in ionization stage j, one obtains expressions for g_rad(j, k) proportional to the total radiative flux, to the Rosseland-mean opacity kappa_R (which may depend on the abundance of k), and to a dimensionless quantity gamma(j, k) which, due to saturation effects, can be sensitive to the abundance of k. The radiative accelerations are required for each ionization stage, because the diffusion coefficients depend on j. Using atomic data obtained in the course of the work of the Opacity Project (OP), we calculate kappa_R and gamma(j, k) for the chemical elements C, N, O, Ne, Na, Mg, Al, Si, S, Ar, Ca, Cr, Mn, Fe and Ni. We start from standard Solar system abundances, and then vary the abundance of one element at a time (element k) by a factor chi. The following results are obtained and are available at the Centre de Donnees astronomiques de Strasbourg (CDS). (1) Files stages.zz (where zz specifies the nuclear charge of the selected element k) containing values of kappa_R and gamma(j, k) on a mesh of values of (T, N_e, chi), where T is temperature, and N_e is electron density. We include derivatives of kappa_R and gamma(j, k) with respect to chi, which are used for making interpolations. (2) A code add.f which reads a file stages.zz and writes a file acc.zz containing values of gamma(k) obtained on summing the gamma(j, k

  18. Repetitive nanosecond electron accelerators type URT-1 for radiation technology

    NASA Astrophysics Data System (ADS)

    Sokovnin, S. Yu.; Balezin, M. E.

    2018-03-01

    The electron accelerator URT-1М-300 for mobile installation was created for radiation disinfecting to correct drawbacks that were found the URT-1M electron accelerator operation (the accelerating voltage up to 1 МV, repetition rate up to 300 pps, electron beam size 400 × 100 mm, the pulse width about 100 ns). Accelerator configuration was changed that allowed to reduce significantly by 20% tank volume with oil where is placed the system of formation high-voltage pulses, thus the average power of the accelerator is increased by 6 times at the expense of increase in pulses repetition rate. Was created the system of the computerized monitoring parameters (output parameters and thermal mode) and remote control of the accelerator (charge voltage, pulse repetition rate), its elements and auxiliary systems (heat of the thyratron, vacuum system), the remote control panel is connected to the installation by the fiber-optical channel, what lightens the work for service personnel. For generating an electron beam up to 400 mm wide there are used metal- ceramic] and metal-dielectric cold cathodes of several emission elements (plates) with a non-uniform distribution of the electron beam current density on the output foil ± 15%. It was found that emission drop of both type of cathodes, during the operation at the high repetition rate (100 pps) is substantial at the beginning of the process, and then proceeds rather slowly that allows for continuous operation up to 40 h. Experiments showed that linear dependence of the voltage and a signal from the pin-diode remains within the range of the charge voltage 45-65 kV. Thus, voltage increases from 690 to 950 kV, and the signal from the pin-diode - from (2,8-4,6)*104 Gy/s. It allows to select electron energy quite precisely with consideration of the radiation technology requirements.

  19. Stereotactic hypofractionated radiation therapy for stage I non-small cell lung cancer.

    PubMed

    Zimmermann, Frank B; Geinitz, Hans; Schill, Sabine; Grosu, Anca; Schratzenstaller, Ulrich; Molls, Michael; Jeremic, Branislav

    2005-04-01

    We reviewed our initial institutional experience with the use of stereotactic hypofractionated radiation therapy (SFRT) in patients with stage I non-small cell lung cancer (NSCLC). Thirty patients with inoperable stage I non-small cell lung cancer due to a severe chronic obstructive pulmonary disease (COPD) and/or chronic heart disease (Eastern Cooperative Oncology Group (ECOG) performance status of 0-2) were treated between December 2000 and October 2003 with SFRT in curative intent. Infiltration of locoregional lymph nodes and distant metastases were ruled out by computerized tomography (CT) scan of the brain, thorax, and abdomen, and by whole body FDG-positron emission tomography scan in all patients. Total RT doses ranged from 24.0 to 37.5 Gy, given in 3-5 fractions to the 60% isodose encompassing the planning target volume. Immobilization was carried out by a vacuum couch and a low-pressure foil. The clinical target volume was the tumor as it appeared in lung windowing on lung CT scan. Organ movements (caused by breathing; range, 6-22 mm) and reproducibility of patient positioning in the couch (range, 3-12 mm) were calculated by sequential CT and orthogonal films. The individual values were taken into account as a safety margin for the definition of the planning target volume (PTV). The median follow-up of living patients is 18 months (range, 6-38 months). As maximum response, there were 10 (33%) complete responses (CRs) and 14 (47%) partial responses (PRs), resulting in a total response rate of 80%. Stable disease was observed in 6 (20%) patients, while no patient experienced progressive disease. During follow-up, 2 (7%) local recurrences were observed (after 17 and 18 months, respectively). Of 5 (17%) patients who developed distant metastasis, 1 patient developed it in liver (3 months), another one in brain (6 months), and another one in the lung (36 months), while 2 patients developed it in mediastinal lymph nodes (after 8, and 11 months, respectively) only

  20. Accelerator Facilities for Radiation Research

    NASA Technical Reports Server (NTRS)

    Cucinotta, Francis A.

    1999-01-01

    HSRP Goals in Accelerator Use and Development are: 1.Need for ground-based heavy ion and proton facility to understand space radiation effects discussed most recently by NAS/NRC Report (1996). 2. Strategic Program Goals in facility usage and development: -(1) operation of AGS for approximately 600 beam hours/year; (2) operation of Loma Linda University (LLU) proton facility for approximately 400 beam hours/year; (3) construction of BAF facility; and (4) collaborative research at HIMAC in Japan and with other existing or potential international facilities. 3. MOA with LLU has been established to provide proton beams with energies of 40-250 important for trapped protons and solar proton events. 4. Limited number of beam hours available at Brookhaven National Laboratory's (BNL) Alternating Gradient Synchrotron (AGS).

  1. Radiation reaction effect on laser driven auto-resonant particle acceleration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sagar, Vikram; Sengupta, Sudip; Kaw, P. K.

    2015-12-15

    The effects of radiation reaction force on laser driven auto-resonant particle acceleration scheme are studied using Landau-Lifshitz equation of motion. These studies are carried out for both linear and circularly polarized laser fields in the presence of static axial magnetic field. From the parametric study, a radiation reaction dominated region has been identified in which the particle dynamics is greatly effected by this force. In the radiation reaction dominated region, the two significant effects on particle dynamics are seen, viz., (1) saturation in energy gain by the initially resonant particle and (2) net energy gain by an initially non-resonant particlemore » which is caused due to resonance broadening. It has been further shown that with the relaxation of resonance condition and with optimum choice of parameters, this scheme may become competitive with the other present-day laser driven particle acceleration schemes. The quantum corrections to the Landau-Lifshitz equation of motion have also been taken into account. The difference in the energy gain estimates of the particle by the quantum corrected and classical Landau-Lifshitz equation is found to be insignificant for the present day as well as upcoming laser facilities.« less

  2. Undulator radiation from laser-plasma-accelerated electron beams

    NASA Astrophysics Data System (ADS)

    Shaw, B.; van Tilborg, J.; Gonsalves, A.; Nakamura, K.; Sokollik, T.; Shiraishi, S.; Mittal, R.; Esarey, E.; Schroeder, C.; Toth, C.; Leemans, W. P.

    2012-12-01

    Recent experiments coupled electron beams from the LOASIS TREX laser plasma accelerator (LPA) [1, 2, 3] to the Tapered Hybrid Undulator (THUNDER). Using the 1.5m, 66 period undulator, followed by an XUV spectrometer, spontaneous radiation was observed at photon energies extending to 100 eV. Previous experiments have reported visible [4] and soft-x-ray [5] radiation. The purpose of our experiments is to do highly precise, single shot diagnostics of the energy spread and emittance for each electron beam. We present recent results including measurements of electron beam transport through the undulator with and without the use of permanent magnetic quadrapoles, and measurements of XUV spectra up to 100 eV from LPA produced e-beams.

  3. Studying Radiation Damage in Structural Materials by Using Ion Accelerators

    NASA Astrophysics Data System (ADS)

    Hosemann, Peter

    2011-02-01

    Radiation damage in structural materials is of major concern and a limiting factor for a wide range of engineering and scientific applications, including nuclear power production, medical applications, or components for scientific radiation sources. The usefulness of these applications is largely limited by the damage a material can sustain in the extreme environments of radiation, temperature, stress, and fatigue, over long periods of time. Although a wide range of materials has been extensively studied in nuclear reactors and neutron spallation sources since the beginning of the nuclear age, ion beam irradiations using particle accelerators are a more cost-effective alternative to study radiation damage in materials in a rather short period of time, allowing researchers to gain fundamental insights into the damage processes and to estimate the property changes due to irradiation. However, the comparison of results gained from ion beam irradiation, large-scale neutron irradiation, and a variety of experimental setups is not straightforward, and several effects have to be taken into account. It is the intention of this article to introduce the reader to the basic phenomena taking place and to point out the differences between classic reactor irradiations and ion irradiations. It will also provide an assessment of how accelerator-based ion beam irradiation is used today to gain insight into the damage in structural materials for large-scale engineering applications.

  4. Deep Inspiration Breath Hold—Based Radiation Therapy: A Clinical Review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boda-Heggemann, Judit, E-mail: judit.boda-heggemann@umm.de; Knopf, Antje-Christin; Simeonova-Chergou, Anna

    Several recent developments in linear accelerator–based radiation therapy (RT) such as fast multileaf collimators, accelerated intensity modulation paradigms like volumeric modulated arc therapy and flattening filter-free (FFF) high-dose-rate therapy have dramatically shortened the duration of treatment fractions. Deliverable photon dose distributions have approached physical complexity limits as a consequence of precise dose calculation algorithms and online 3-dimensional image guided patient positioning (image guided RT). Simultaneously, beam quality and treatment speed have continuously been improved in particle beam therapy, especially for scanned particle beams. Applying complex treatment plans with steep dose gradients requires strategies to mitigate and compensate for motion effectsmore » in general, particularly breathing motion. Intrafractional breathing-related motion results in uncertainties in dose delivery and thus in target coverage. As a consequence, generous margins have been used, which, in turn, increases exposure to organs at risk. Particle therapy, particularly with scanned beams, poses additional problems such as interplay effects and range uncertainties. Among advanced strategies to compensate breathing motion such as beam gating and tracking, deep inspiration breath hold (DIBH) gating is particularly advantageous in several respects, not only for hypofractionated, high single-dose stereotactic body RT of lung, liver, and upper abdominal lesions but also for normofractionated treatment of thoracic tumors such as lung cancer, mediastinal lymphomas, and breast cancer. This review provides an in-depth discussion of the rationale and technical implementation of DIBH gating for hypofractionated and normofractionated RT of intrathoracic and upper abdominal tumors in photon and proton RT.« less

  5. WE-FG-BRA-03: Oxygen Interplay in Hypofractionated Radiotherapy: A Hidden Opportunity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kissick, M; Campos, D; Desai, V

    2016-06-15

    Purpose: Local oxygen during a radiotherapy fraction has been shown to change over a full range of the oxygen enhancement ratio (OER) during the same time scale as the treatment fraction. Interplay with local oxygen is then likely a concern, especially for hypofractionation. Our experiments that show a strong role for metabolic dynamics suggesting one could manipulate this interplay for more efficacious treatments. Methods: Two published experiments are presented with the same human head and neck cancer cell line (UM-SCC-22B). One is a cell-specific in vitro prompt response to a 10 Gy dose of orthovotage radiation using fluorescence lifetime imagingmore » (FLIM), benchmarked with a Seahorse assay. The other in vivo study uses autocorrelation analysis with blood oxygen level dependent magnetic resonance imaging (MRI-BOLD) on xenografts. In vivo results are verified with diffuse optics using spectra fitting and photoacoustic measurements. All these measurements are at high time resolution: sampling is one per minute. Results: Interplay happens when the radiosensitivity modulates at the same time scale as the radiation. These results show dynamics at these time scales. 1. The dominant time scale of the acute hypoxia in cell line xenografts is shown to be on the order of minutes to tens of minutes: similar to a metabolic oscillation known as the ‘glycolytic oscillator.’ 2. The radiation dose itself alters metabolism within minutes to tens of minutes also. Conclusion: These results vary with cell type. There is a possibility that special timing and dose levels could be used for radiation. Gating could be used for maximal oxygen during treatment. There is an analogy to the interplay discussions with tumor motion, except that an oxygen interplay could more likely be patient-specific at a more fundamental level.« less

  6. Extracranial Facial Nerve Schwannoma Treated by Hypo-fractionated CyberKnife Radiosurgery.

    PubMed

    Sasaki, Ayaka; Miyazaki, Shinichiro; Hori, Tomokatsu

    2016-09-21

    Facial nerve schwannoma is a rare intracranial tumor. Treatment for this benign tumor has been controversial. Here, we report a case of extracranial facial nerve schwannoma treated successfully by hypo-fractionated CyberKnife (Accuray, Sunnyvale, CA) radiosurgery and discuss the efficacy of this treatment. A 34-year-old female noticed a swelling in her right mastoid process. The lesion enlarged over a seven-month period, and she experienced facial spasm on the right side. She was diagnosed with a facial schwannoma via a magnetic resonance imaging (MRI) scan of the head and neck and was told to wait until the facial nerve palsy subsides. She was referred to our hospital for radiation therapy. We planned a fractionated CyberKnife radiosurgery for three consecutive days. After CyberKnife radiosurgery, the mass in the right parotid gradually decreased in size, and the facial nerve palsy disappeared. At her eight-month follow-up, her facial spasm had completely disappeared. There has been no recurrence and the facial nerve function has been normal. We successfully demonstrated the efficacy of CyberKnife radiosurgery as an alternative treatment that also preserves neurofunction for facial nerve schwannomas.

  7. Kinetic Modeling of Radiative Turbulence in Relativistic Astrophysical Plasmas: Particle Acceleration and High-Energy Flares

    NASA Astrophysics Data System (ADS)

    Uzdensky, Dmitri

    Relativistic astrophysical plasma environments routinely produce intense high-energy emission, which is often observed to be nonthermal and rapidly flaring. The recently discovered gamma-ray (> 100 MeV) flares in Crab Pulsar Wind Nebula (PWN) provide a quintessential illustration of this, but other notable examples include relativistic active galactic nuclei (AGN) jets, including blazars, and Gamma-ray Bursts (GRBs). Understanding the processes responsible for the very efficient and rapid relativistic particle acceleration and subsequent emission that occurs in these sources poses a strong challenge to modern high-energy astrophysics, especially in light of the necessity to overcome radiation reaction during the acceleration process. Magnetic reconnection and collisionless shocks have been invoked as possible mechanisms. However, the inferred extreme particle acceleration requires the presence of coherent electric-field structures. How such large-scale accelerating structures (such as reconnecting current sheets) can spontaneously arise in turbulent astrophysical environments still remains a mystery. The proposed project will conduct a first-principles computational and theoretical study of kinetic turbulence in relativistic collisionless plasmas with a special focus on nonthermal particle acceleration and radiation emission. The main computational tool employed in this study will be the relativistic radiative particle-in-cell (PIC) code Zeltron, developed by the team members at the Univ. of Colorado. This code has a unique capability to self-consistently include the synchrotron and inverse-Compton radiation reaction force on the relativistic particles, while simultaneously computing the resulting observable radiative signatures. This proposal envisions performing massively parallel, large-scale three-dimensional simulations of driven and decaying kinetic turbulence in physical regimes relevant to real astrophysical systems (such as the Crab PWN), including the

  8. Accelerated radiation damage testing of x-ray mask membrane materials

    NASA Astrophysics Data System (ADS)

    Seese, Philip A.; Cummings, Kevin D.; Resnick, Douglas J.; Yanof, Arnold W.; Johnson, William A.; Wells, Gregory M.; Wallace, John P.

    1993-06-01

    An accelerated test method and resulting metrology data are presented to show the effects of x- ray radiation on various x-ray mask membrane materials. A focused x-ray beam effectively reduces the radiation time to 1/5 of that required by normal exposure beam flux. Absolute image displacement results determined by this method indicate imperceptible movement for boron-doped silicon and silicon carbide membranes at a total incident dose of 500 KJ/cm2, while image displacement for diamond is 50 nm at 150 KJ/cm2 and silicon nitride is 70 nm at 36 KJ/cm2. Studies of temperature rise during the radiation test and effects of the high flux radiation, i.e., reciprocity tests, demonstrate the validity of this test method.

  9. Study on radiation production in the charge stripping section of the RISP linear accelerator

    NASA Astrophysics Data System (ADS)

    Oh, Joo-Hee; Oranj, Leila Mokhtari; Lee, Hee-Seock; Ko, Seung-Kook

    2015-02-01

    The linear accelerator of the Rare Isotope Science Project (RISP) accelerates 200 MeV/nucleon 238U ions in a multi-charge states. Many kinds of radiations are generated while the primary beam is transported along the beam line. The stripping process using thin carbon foil leads to complicated radiation environments at the 90-degree bending section. The charge distribution of 238U ions after the carbon charge stripper was calculated by using the LISE++ program. The estimates of the radiation environments were carried out by using the well-proved Monte Carlo codes PHITS and FLUKA. The tracks of 238U ions in various charge states were identified using the magnetic field subroutine of the PHITS code. The dose distribution caused by U beam losses for those tracks was obtained over the accelerator tunnel. A modified calculation was applied for tracking the multi-charged U beams because the fundamental idea of PHITS and FLUKA was to transport fully-ionized ion beam. In this study, the beam loss pattern after a stripping section was observed, and the radiation production by heavy ions was studied. Finally, the performance of the PHITS and the FLUKA codes was validated for estimating the radiation production at the stripping section by applying a modified method.

  10. Transport calculations and accelerator experiments needed for radiation risk assessment in space.

    PubMed

    Sihver, Lembit

    2008-01-01

    The major uncertainties on space radiation risk estimates in humans are associated to the poor knowledge of the biological effects of low and high LET radiation, with a smaller contribution coming from the characterization of space radiation field and its primary interactions with the shielding and the human body. However, to decrease the uncertainties on the biological effects and increase the accuracy of the risk coefficients for charged particles radiation, the initial charged-particle spectra from the Galactic Cosmic Rays (GCRs) and the Solar Particle Events (SPEs), and the radiation transport through the shielding material of the space vehicle and the human body, must be better estimated Since it is practically impossible to measure all primary and secondary particles from all possible position-projectile-target-energy combinations needed for a correct risk assessment in space, accurate particle and heavy ion transport codes must be used. These codes are also needed when estimating the risk for radiation induced failures in advanced microelectronics, such as single-event effects, etc., and the efficiency of different shielding materials. It is therefore important that the models and transport codes will be carefully benchmarked and validated to make sure they fulfill preset accuracy criteria, e.g. to be able to predict particle fluence, dose and energy distributions within a certain accuracy. When validating the accuracy of the transport codes, both space and ground based accelerator experiments are needed The efficiency of passive shielding and protection of electronic devices should also be tested in accelerator experiments and compared to simulations using different transport codes. In this paper different multipurpose particle and heavy ion transport codes will be presented, different concepts of shielding and protection discussed, as well as future accelerator experiments needed for testing and validating codes and shielding materials.

  11. Design considerations for the use of laser-plasma accelerators for advanced space radiation studies

    NASA Astrophysics Data System (ADS)

    Königstein, T.; Karger, O.; Pretzler, G.; Rosenzweig, J. B.; Hidding, B.; Hidding

    2012-08-01

    We present design considerations for the use of laser-plasma accelerators for mimicking space radiation and testing space-grade electronics. This novel application takes advantage of the inherent ability of laser-plasma accelerators to produce particle beams with exponential energy distribution, which is a characteristic shared with the hazardous relativistic electron flux present in the radiation belts of planets such as Earth, Saturn and Jupiter. Fundamental issues regarding laser-plasma interaction parameters, beam propagation, flux development, and experimental setup are discussed.

  12. Betatron x-ray radiation in the self-modulated wakefield acceleration regime (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Albert, Felicie

    2017-05-01

    Betatron x-ray radiation, driven by electrons from laser-wakefield acceleration, has unique properties to probe high energy density (HED) plasmas and warm dense matter. Betatron radiation is produced when relativistic electrons oscillate in the plasma wake of a laser pulse. Its properties are similar to those of synchrotron radiation, with a 1000 fold shorter pulse. This presentation will focus on the experimental challenges and results related to the development of betatron radiation in the self modulated regime of laser wakefield acceleration. We observed multi keV Betatron x-rays from a self-modulated laser wakefield accelerator. The experiment was performed at the Jupiter Laser Facility, LLNL, by focusing the Titan short pulse beam (4-150 J, 1 ps) onto the edge of a Helium gas jet at electronic densities around 1019 cm-3. For the first time on this laser system, we used a long focal length optic, which produced a laser normalized potential a0 in the range 1-3. Under these conditions, electrons are accelerated by the plasma wave created in the wake of the light pulse. As a result, intense Raman satellites, which measured shifts depend on the electron plasma density, were observed on the laser spectrum transmitted through the target. Electrons with energies up to 200 MeV, as well as Betatron x-rays with critical energies around 20 keV, were measured. OSIRIS 2D PIC simulations confirm that the electrons gain energy both from the plasma wave and from their interaction with the laser field.

  13. Accelerated Radiation-Damping for Increased Spin Equilibrium (ARISE)

    PubMed Central

    Huang, Susie Y.; Witzel, Thomas; Wald, Lawrence L.

    2008-01-01

    Control of the longitudinal magnetization in fast gradient echo sequences is an important factor enabling the high efficiency of balanced Steady State Free Precession (bSSFP) sequences. We introduce a new method for accelerating the return of the longitudinal magnetization to the +z-axis that is independent of externally applied RF pulses and shows improved off-resonance performance. The Accelerated Radiation damping for Increased Spin Equilibrium (ARISE) method uses an external feedback circuit to strengthen the Radiation Damping (RD) field. The enhanced RD field rotates the magnetization back to the +z-axis at a rate faster than T1 relaxation. The method is characterized in gradient echo phantom imaging at 3T as a function of feedback gain, phase, and duration and compared with results from numerical simulations of the Bloch equations incorporating RD. A short period of feedback (10ms) during a refocused interval of a crushed gradient echo sequence allowed greater than 99% recovery of the longitudinal magnetization when very little T2 relaxation has time to occur. Appropriate applications might include improving navigated sequences. Unlike conventional flip-back schemes, the ARISE “flip-back” is generated by the spins themselves, thereby offering a potentially useful building block for enhancing gradient echo sequences. PMID:18956463

  14. TU-A-BRD-01: Outcomes of Hypofractionated Treatments - Initial Results of the WGSBRT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, X; Lee, P; Ohri, N

    2014-06-15

    Stereotactic Body Radiation Therapy (SBRT) has emerged in recent decades as a treatment paradigm that is becoming increasingly important in clinical practice. Clinical outcomes data are rapidly accumulating. Although published relations between outcomes and dose distributions are still sparse, the field has progressed to the point where evidence-based normal tissue dose-volume constraints, prescription strategies, and Tumor Control Probability (TCP) and Normal Tissue Complication Probability (NTCP) models can be developed. The Working Group on SBRT (WGSBRT), under the Biological Effects Subcommittee of AAPM, is a group of physicists and physicians working in the area of SBRT. It is currently performing criticalmore » literature reviews to extract and synthesize usable data and to develop guidelines and models to aid with safe and effective treatment. The group is investigating clinically relevant findings from SBRT in six anatomical regions: Cranial, Head and Neck, Thoracic, Abdominal, Pelvic, and Spinal. In this session of AAPM 2014, interim results are presented on TCP for lung and liver, NTCP for thoracic organs, and radiobiological foundations:• Lung TCP: Detailed modeling of TCP data from 118 published studies on early stage lung SBRT investigates dose response and hypothesized mechanisms to explain the improved outcomes of SBRT. This is presented from the perspective of a physicist, a physician, and a radiobiologist.• Liver TCP: For primary and metastatic liver tumors, individual patient data were extracted from published reports to examine the effects of biologically effective dose on local control.• Thoracic NTCP: Clinically significant SBRT toxicity of lung, rib / chest wall and other structures are evaluated and compared among published clinical data, in terms of risk, risk factors, and safe practice.• Improving the clinical utility of published toxicity reports from SBRT and Hypofractionated treatments. What do we want, and how do we get it

  15. Radiation pressure acceleration: The factors limiting maximum attainable ion energy

    DOE PAGES

    Bulanov, S. S.; Esarey, E.; Schroeder, C. B.; ...

    2016-04-15

    Radiation pressure acceleration (RPA) is a highly efficient mechanism of laser-driven ion acceleration, with near complete transfer of the laser energy to the ions in the relativistic regime. However, there is a fundamental limit on the maximum attainable ion energy, which is determined by the group velocity of the laser. The tightly focused laser pulses have group velocities smaller than the vacuum light speed, and, since they offer the high intensity needed for the RPA regime, it is plausible that group velocity effects would manifest themselves in the experiments involving tightly focused pulses and thin foils. However, in this case,more » finite spot size effects are important, and another limiting factor, the transverse expansion of the target, may dominate over the group velocity effect. As the laser pulse diffracts after passing the focus, the target expands accordingly due to the transverse intensity profile of the laser. Due to this expansion, the areal density of the target decreases, making it transparent for radiation and effectively terminating the acceleration. The off-normal incidence of the laser on the target, due either to the experimental setup, or to the deformation of the target, will also lead to establishing a limit on maximum ion energy.« less

  16. A gas-dynamical approach to radiation pressure acceleration

    NASA Astrophysics Data System (ADS)

    Schmidt, Peter; Boine-Frankenheim, Oliver

    2016-06-01

    The study of high intensity ion beams driven by high power pulsed lasers is an active field of research. Of particular interest is the radiation pressure acceleration, for which simulations predict narrow band ion energies up to GeV. We derive a laser-piston model by applying techniques for non-relativistic gas-dynamics. The model reveals a laser intensity limit, below which sufficient laser-piston acceleration is impossible. The relation between target thickness and piston velocity as a function of the laser pulse length yields an approximation for the permissible target thickness. We performed one-dimensional Particle-In-Cell simulations to confirm the predictions of the analytical model. These simulations also reveal the importance of electromagnetic energy transport. We find that this energy transport limits the achievable compression and rarefies the plasma.

  17. Efficient injection of radiation-pressure-accelerated sub-relativistic protons into laser wakefield acceleration based on 10 PW lasers

    NASA Astrophysics Data System (ADS)

    Liu, M.; Weng, S. M.; Wang, H. C.; Chen, M.; Zhao, Q.; Sheng, Z. M.; He, M. Q.; Li, Y. T.; Zhang, J.

    2018-06-01

    We propose a hybrid laser-driven ion acceleration scheme using a combination target of a solid foil and a density-tailored background plasma. In the first stage, a sub-relativistic proton beam can be generated by radiation pressure acceleration in intense laser interaction with the solid foil. In the second stage, this sub-relativistic proton beam is further accelerated by the laser wakefield driven by the same laser pulse in a near-critical-density background plasma with decreasing density profile. The propagating velocity of the laser front and the phase velocity of the excited wakefield wave are effectively lowered at the beginning of the second stage. By decreasing the background plasma density gradually from near critical density along the laser propagation direction, the wake travels faster and faster, while it accelerates the protons. Consequently, the dephasing between the protons and the wake is postponed and an efficient wakefield proton acceleration is achieved. This hybrid laser-driven proton acceleration scheme can be realized by using ultrashort laser pulses at the peak power of 10 PW for the generation of multi-GeV proton beams.

  18. Heavy ion linear accelerator for radiation damage studies of materials

    NASA Astrophysics Data System (ADS)

    Kutsaev, Sergey V.; Mustapha, Brahim; Ostroumov, Peter N.; Nolen, Jerry; Barcikowski, Albert; Pellin, Michael; Yacout, Abdellatif

    2017-03-01

    A new eXtreme MATerial (XMAT) research facility is being proposed at Argonne National Laboratory to enable rapid in situ mesoscale bulk analysis of ion radiation damage in advanced materials and nuclear fuels. This facility combines a new heavy-ion accelerator with the existing high-energy X-ray analysis capability of the Argonne Advanced Photon Source. The heavy-ion accelerator and target complex will enable experimenters to emulate the environment of a nuclear reactor making possible the study of fission fragment damage in materials. Material scientists will be able to use the measured material parameters to validate computer simulation codes and extrapolate the response of the material in a nuclear reactor environment. Utilizing a new heavy-ion accelerator will provide the appropriate energies and intensities to study these effects with beam intensities which allow experiments to run over hours or days instead of years. The XMAT facility will use a CW heavy-ion accelerator capable of providing beams of any stable isotope with adjustable energy up to 1.2 MeV/u for 238U50+ and 1.7 MeV for protons. This energy is crucial to the design since it well mimics fission fragments that provide the major portion of the damage in nuclear fuels. The energy also allows damage to be created far from the surface of the material allowing bulk radiation damage effects to be investigated. The XMAT ion linac includes an electron cyclotron resonance ion source, a normal-conducting radio-frequency quadrupole and four normal-conducting multi-gap quarter-wave resonators operating at 60.625 MHz. This paper presents the 3D multi-physics design and analysis of the accelerating structures and beam dynamics studies of the linac.

  19. Heavy ion linear accelerator for radiation damage studies of materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kutsaev, Sergey V.; Mustapha, Brahim; Ostroumov, Peter N.

    A new eXtreme MATerial (XMAT) research facility is being proposed at Argonne National Laboratory to enable rapid in situ mesoscale bulk analysis of ion radiation damage in advanced materials and nuclear fuels. This facility combines a new heavy-ion accelerator with the existing high-energy X-ray analysis capability of the Argonne Advanced Photon Source. The heavy-ion accelerator and target complex will enable experimenters to emulate the environment of a nuclear reactor making possible the study of fission fragment damage in materials. Material scientists will be able to use the measured material parameters to validate computer simulation codes and extrapolate the response ofmore » the material in a nuclear reactor environment. Utilizing a new heavy-ion accelerator will provide the appropriate energies and intensities to study these effects with beam intensities which allow experiments to run over hours or days instead of years. The XMAT facility will use a CW heavy-ion accelerator capable of providing beams of any stable isotope with adjustable energy up to 1.2 MeV/u for U-238(50+) and 1.7 MeV for protons. This energy is crucial to the design since it well mimics fission fragments that provide the major portion of the damage in nuclear fuels. The energy also allows damage to be created far from the surface of the material allowing bulk radiation damage effects to be investigated. The XMAT ion linac includes an electron cyclotron resonance ion source, a normal-conducting radio-frequency quadrupole and four normal-conducting multi-gap quarter-wave resonators operating at 60.625 MHz. This paper presents the 3D multi-physics design and analysis of the accelerating structures and beam dynamics studies of the linac.« less

  20. Accelerated radiation damage test facility using a 5 MV tandem ion accelerator

    NASA Astrophysics Data System (ADS)

    Wady, P. T.; Draude, A.; Shubeita, S. M.; Smith, A. D.; Mason, N.; Pimblott, S. M.; Jimenez-Melero, E.

    2016-01-01

    We have developed a new irradiation facility that allows to perform accelerated damage tests of nuclear reactor materials at temperatures up to 400 °C using the intense proton (<100 μA) and heavy ion (≈10 μA) beams produced by a 5 MV tandem ion accelerator. The dedicated beam line for radiation damage studies comprises: (1) beam diagnosis and focusing optical components, (2) a scanning and slit system that allows uniform irradiation of a sample area of 0.5-6 cm2, and (3) a sample stage designed to be able to monitor in-situ the sample temperature, current deposited on the sample, and the gamma spectrum of potential radio-active nuclides produced during the sample irradiation. The beam line capabilities have been tested by irradiating a 20Cr-25Ni-Nb stabilised stainless steel with a 3 MeV proton beam to a dose level of 3 dpa. The irradiation temperature was 356 °C, with a maximum range in temperature values of ±6 °C within the first 24 h of continuous irradiation. The sample stage is connected to ground through an electrometer to measure accurately the charge deposited on the sample. The charge can be integrated in hardware during irradiation, and this methodology removes uncertainties due to fluctuations in beam current. The measured gamma spectrum allowed the identification of the main radioactive nuclides produced during the proton bombardment from the lifetimes and gamma emissions. This dedicated radiation damage beam line is hosted by the Dalton Cumbrian Facility of the University of Manchester.

  1. Accelerated aging and stabilization of radiation-vulcanized EPDM rubber

    NASA Astrophysics Data System (ADS)

    Basfar, A. A.; Abdel-Aziz, M. M.; Mofti, S.

    2000-03-01

    The effect of different antioxidants and their mixtures on the thermal aging and accelerated weathering of γ-radiation vulcanized EPDM rubber in presence of crosslinking coagent, was investigated. The compounds used were either a synergistic blend of phenolic and phosphite antioxidants, i.e. 1:4 Irganox 1076: Irgafos 168 or a blend of arylamine and quinoline type antioxidants, i.e. 1:1 IPPD: TMQ, at fixed concentration. Tinuvin 622 LD hindered amine light stabilized (HALS) was also used. The response was evaluated by the tensile strength and elongation at break for irradiated samples after thermal aging at 100°C for 28 days and accelerated weathering (Xenon test) up to 200 h.

  2. Acute toxicity and its dosimetric correlates for high-risk prostate cancer treated with moderately hypofractionated radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arunsingh, Moses; Mallick, Indranil, E-mail: imallick@gmail.com; Prasath, Sriram

    Aims: To report the acute toxicity and the dosimetric correlates after moderately hypofractionated radiotherapy for localized prostate cancer. Methods: A total of 101 patients with localized prostate cancer were treated with image-guided intensity-modulated radiation therapy. Patients were treated to 65 Gy/25 Fr/5 weeks (n = 18), or 60 Gy/20 Fr/4 weeks (n = 83). Most (82.2%) had high-risk or pelvic node-positive disease. Acute toxicity was assessed using Radiation Therapy Oncology Group (RTOG) acute morbidity scoring criteria. Dose thresholds for acute rectal and bladder toxicity were identified. Results: The incidence of acute grade 2 GI toxicity was 20.8%, and grade 2more » genitourinary (GU) toxicity was 6.9%. No Grade 3 to 4 toxicity occurred. Small bowel toxicity was uncommon (Gr 2 = 4%). The 2 Gy equivalent doses (EQD2) to the rectum and bladder (α/β = 3) calculated showed that the absolute doses were more consistent predictors of acute toxicities than the relative volumes. Those with grade 2 or more GI symptoms had significantly higher V{sub EQD2-60} {sub Gy} (13.2 vs 9.9 cc, p = 0.007) and V{sub EQD2-50} {sub Gy} (20.6 vs 15.4 cc, p = 0.005). Those with grade 2 or more GU symptoms had significantly higher V{sub EQD2-70} {sub Gy} (30.4 vs 18.4 cc, p = 0.001) and V{sub EQD2-65} {sub Gy} (44.0 vs 28.8 cc, p = 0.001). The optimal cutoff value for predicting grade 2 acute proctitis, for V{sub EQD2-60} {sub Gy} was 9.7 cc and for V{sub EQD2-50} {sub Gy} was 15.9 cc. For grade 2 GU symptoms, the threshold values were 23.6 cc for V{sub EQD2-70} {sub Gy} and 38.1 cc for V{sub EQD2-65} {sub Gy}. Conclusions: Hypofractionated radiotherapy for prostate cancer is well tolerated and associated with manageable acute side effects. The absolute dose-volume parameters of rectum and bladder predict for acute toxicities.« less

  3. Simulation of the Focal Spot of the Accelerator Bremsstrahlung Radiation

    NASA Astrophysics Data System (ADS)

    Sorokin, V.; Bespalov, V.

    2016-06-01

    Testing of thick-walled objects by bremsstrahlung radiation (BR) is primarily performed via high-energy quanta. The testing parameters are specified by the focal spot size of the high-energy bremsstrahlung radiation. In determining the focal spot size, the high- energy BR portion cannot be experimentally separated from the low-energy BR to use high- energy quanta only. The patterns of BR focal spot formation have been investigated via statistical modeling of the radiation transfer in the target material. The distributions of BR quanta emitted by the target for different energies and emission angles under normal distribution of the accelerated electrons bombarding the target have been obtained, and the ratio of the distribution parameters has been determined.

  4. Heavy ion acceleration in the radiation pressure acceleration and breakout afterburner regimes

    NASA Astrophysics Data System (ADS)

    Petrov, G. M.; McGuffey, C.; Thomas, A. G. R.; Krushelnick, K.; Beg, F. N.

    2017-07-01

    We present a theoretical study of heavy ion acceleration from ultrathin (20 nm) gold foil irradiated by high-intensity sub-picosecond lasers. Using two-dimensional particle-in-cell simulations, three laser systems are modeled that cover the range between femtosecond and picosecond pulses. By varying the laser pulse duration we observe a transition from radiation pressure acceleration (RPA) to the relativistic induced transparency (RIT) regime for heavy ions akin to light ions. The underlying physics of beam formation and acceleration is similar for light and heavy ions, however, nuances of the acceleration process make the heavy ions more challenging. A more detailed study involving variation of peak laser intensity I 0 and pulse duration τFWHM revealed that the transition point from RPA to RIT regime depends on the peak laser intensity on target and occurs for pulse duration {τ }{{F}{{W}}{{H}}{{M}}}{{R}{{P}}{{A}}\\to {{R}}{{I}}{{T}}}[{{f}}{{s}}]\\cong 210/\\sqrt{{I}0[{{W}} {{{cm}}}-2]/{10}21}. The most abundant gold ion and charge-to-mass ratio are Au51+ and q/M ≈ 1/4, respectively, half that of light ions. For ultrathin foils, on the order of one skin depth, we established a linear scaling of the maximum energy per nucleon (E/M)max with (q/M)max, which is more favorable than the quadratic one found previously. The numerical simulations predict heavy ion beams with very attractive properties for applications: high directionality (<10° half-angle), high fluxes (>1011 ions sr-1) and energy (>20 MeV/nucleon) from laser systems delivering >20 J of energy on target.

  5. Stable radiation pressure acceleration of ions by suppressing transverse Rayleigh-Taylor instability with multiple Gaussian pulses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, M. L.; Liu, B.; Hu, R. H.

    In the case of a thin plasma slab accelerated by the radiation pressure of an ultra-intense laser pulse, the development of Rayleigh-Taylor instability (RTI) will destroy the acceleration structure and terminate the acceleration process much sooner than theoretical limit. In this paper, a new scheme using multiple Gaussian pulses for ion acceleration in a radiation pressure acceleration regime is investigated with particle-in-cell simulation. We found that with multiple Gaussian pulses, the instability could be efficiently suppressed and the divergence of the ion bunch is greatly reduced, resulting in a longer acceleration time and much more collimated ion bunch with highermore » energy than using a single Gaussian pulse. An analytical model is developed to describe the suppression of RTI at the laser-plasma interface. The model shows that the suppression of RTI is due to the introduction of the long wavelength mode RTI by the multiple Gaussian pulses.« less

  6. Betatron radiation based diagnostics for plasma wakefield accelerated electron beams at the SPARC_LAB test facility

    NASA Astrophysics Data System (ADS)

    Shpakov, V.; Anania, M. P.; Biagioni, A.; Chiadroni, E.; Cianchi, A.; Curcio, A.; Dabagov, S.; Ferrario, M.; Filippi, F.; Marocchino, A.; Paroli, B.; Pompili, R.; Rossi, A. R.; Zigler, A.

    2016-09-01

    Recent progress with wake-field acceleration has shown a great potential in providing high gradient acceleration fields, while the quality of the beams remains relatively poor. Precise knowledge of the beam size at the exit from the plasma and matching conditions for the externally injected beams are the key for improvement of beam quality. Betatron radiation emitted by the beam during acceleration in the plasma is a powerful tool for the transverse beam size measurement, being also non-intercepting. In this work we report on the technical solutions chosen at SPARC_LAB for such diagnostics tool, along with expected parameters of betatron radiation.

  7. Enhancement of maximum attainable ion energy in the radiation pressure acceleration regime using a guiding structure

    DOE PAGES

    Bulanov, S. S.; Esarey, E.; Schroeder, C. B.; ...

    2015-03-13

    Radiation Pressure Acceleration is a highly efficient mechanism of laser driven ion acceleration, with the laser energy almost totally transferrable to the ions in the relativistic regime. There is a fundamental limit on the maximum attainable ion energy, which is determined by the group velocity of the laser. In the case of a tightly focused laser pulses, which are utilized to get the highest intensity, another factor limiting the maximum ion energy comes into play, the transverse expansion of the target. Transverse expansion makes the target transparent for radiation, thus reducing the effectiveness of acceleration. Utilization of an external guidingmore » structure for the accelerating laser pulse may provide a way of compensating for the group velocity and transverse expansion effects.« less

  8. Maintaining stable radiation pressure acceleration of ion beams via cascaded electron replenishment

    NASA Astrophysics Data System (ADS)

    Shen, X. F.; Qiao, B.; Chang, H. X.; Zhang, W. L.; Zhang, H.; Zhou, C. T.; He, X. T.

    2017-03-01

    A method to maintain ion stable radiation pressure acceleration (RPA) from laser-irradiated thin foils is proposed, where a series of high-Z nanofilms are placed behind to successively replenish co-moving electrons into the accelerating foil as electron charging stations (ECSs). Such replenishment of co-moving electrons, on the one hand, helps to keep a dynamic balance between the electrostatic pressure in the accelerating slab and the increasing laser radiation pressure with a Gaussian temporal profile at the rising front, i.e. dynamically matching the optimal condition of RPA; on the other hand, it aids in suppressing the foil Coulomb explosion due to loss of electrons induced by transverse instabilities during RPA. Two-dimensional and three-dimensional particle-in-cell simulations show that a monoenergetic Si14+ beam with a peak energy of 3.7 GeV and particle number 4.8× {10}9 (charge 11 nC) can be obtained at an intensity of 7 × 1021 W cm-2 and the conversion efficiency from laser to high energy ions is improved significantly by using the ECSs in our scheme.

  9. Local Tumor Control, Visual Acuity, and Survival After Hypofractionated Stereotactic Photon Radiotherapy of Choroidal Melanoma in 212 Patients Treated Between 1997 and 2007

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dunavoelgyi, Roman; Dieckmann, Karin, E-mail: karin.dieckmann@meduniwien.ac.at; Gleiss, Andreas

    2011-09-01

    Purpose: To evaluate long-term local tumor control, visual acuity, and survival after hypofractionated linear accelerator-based stereotactic photon radiotherapy in patients with choroidal melanoma. Methods and Materials: Between 1997 and 2007, 212 patients with choroidal melanoma unsuitable for ruthenium-106 brachytherapy or local resection were treated stereotactically at a linear accelerator with 6-MV photon beams at the Medical University of Vienna in five fractions over 7 days. Twenty-four patients received a total dose of 70 Gy (five fractions of 14 Gy), 158 a total dose of 60 Gy (five fractions of 12 Gy) and 30 patients a total dose of 50 Gymore » (five fractions of 10 Gy) applied on the 80% isodose. Ophthalmologic examinations were performed at baseline and every 3 months in the first 2 years, every 6 months until 5 years, and once a year thereafter until 10 years after radiotherapy. Assessment of visual acuity, routine ophthalmologic examinations, and measurement of tumor base dimension and height using standardized A-scan and B-scan echography were done at each visit. Funduscopy and fluorescein angiography were done when necessary to document tumor response. Results: Median tumor height and volume decreased from 4.8 mm and 270.7 mm{sup 3} at baseline to 2.6 mm and 86.6 mm{sup 3} at the last individual follow-up, respectively (p < 0.001, p < 0.001). Median visual acuity decreased from 0.55 at baseline to hand motion at the last individual follow-up (p < 0.001). Local tumor control was 95.9% after 5 years and 92.6% after 10 years. Thirty-two patients developed metastatic disease, and 22 of these patients died during the follow-up period. Conclusion: Hypofractionated stereotactic photon radiotherapy with 70 to 50 Gy delivered in five fractions in 7 days is sufficient to achieve excellent local tumor control in patients with malignant melanoma of the choroid. Disease outcome and vision are comparable to those achieved with proton beam radiotherapy

  10. Definitive hypofractionated radiotherapy for early glottic carcinoma: experience of 55Gy in 20 fractions.

    PubMed

    Ermiş, Ekin; Teo, Mark; Dyker, Karen E; Fosker, Chris; Sen, Mehmet; Prestwich, Robin Jd

    2015-09-23

    A wide variety of fractionation schedules have been employed for the treatment of early glottic cancer. The aim is to report our 10-year experience of using hypofractionated radiotherapy with 55Gy in 20 fractions at 2.75Gy per fraction. Patients treated between 2004 and 2013 with definitive radiotherapy to a dose of 55Gy in 20 fractions over 4 weeks for T1/2 N0 squamous cell carcinoma of the glottis were retrospectively identified. Patients with prior therapeutic minor surgery (eg. laser stripping, cordotomy) were included. The probabilities of local control, ultimate local control (including salvage surgery), regional control, cause specific survival (CSS) and overall survival (OS) were calculated. One hundred thirty-two patients were identified. Median age was 65 years (range 33-89). Median follow up was 72 months (range 7-124). 50 (38 %), 18 (14 %) and 64 (48 %) of patients had T1a, T1b and T2 disease respectively. Five year local control and ultimate local control rates were: overall - 85.6 % and 97.3 % respectively, T1a - 91.8 % and 100 %, T1b - 81.6 and 93.8 %, and T2 - 80.9 % and 95.8 %. Five year regional control, CSS and OS rates were 95.4 %, 95.7 % and 78.8 % respectively. There were no significant associations of covariates (e.g. T-stage, extent of laryngeal extension, histological grade) with local control on univariate analysis. Only increasing age and transglottic extension in T2 disease were significantly associated with overall survival (both p <0.01). Second primary cancers developed in 17 % of patients. 13 (9.8 %) of patients required enteral tube feeding support during radiotherapy; no patients required long term enteral nutrition. One patient required a tracheostomy due to a non-functioning larynx on long term follow up. Hypofractionated radiation therapy with a dose of 55Gy in 20 fractions for early stage glottic cancer provides high rates of local control with acceptable toxicity.

  11. Transformation of Physical DVHs to Radiobiologically Equivalent Ones in Hypofractionated Radiotherapy Analyzing Dosimetric and Clinical Parameters: A Practical Approach for Routine Clinical Practice in Radiation Oncology

    PubMed Central

    Thrapsanioti, Zoi; Karanasiou, Irene; Platoni, Kalliopi; Efstathopoulos, Efstathios P.; Matsopoulos, George; Dilvoi, Maria; Patatoukas, George; Chaldeopoulos, Demetrios; Kelekis, Nikolaos; Kouloulias, Vassilis

    2013-01-01

    Purpose. The purpose of this study was to transform DVHs from physical to radiobiological ones as well as to evaluate their reliability by correlations of dosimetric and clinical parameters for 50 patients with prostate cancer and 50 patients with breast cancer, who were submitted to Hypofractionated Radiotherapy. Methods and Materials. To achieve this transformation, we used both the linear-quadratic model (LQ model) and the Niemierko model. The outcome of radiobiological DVHs was correlated with acute toxicity score according to EORTC/RTOG criteria. Results. Concerning the prostate radiotherapy, there was a significant correlation between RTOG acute rectal toxicity and D 50 (P < 0.001) and V 60 (P = 0.001) dosimetric parameters, calculated for α/β = 10 Gy. Moreover, concerning the breast radiotherapy there was a significant correlation between RTOG skin toxicity and V ≥60 dosimetric parameter, calculated for both α/β = 2.3 Gy (P < 0.001) and α/β = 10 Gy (P < 0.001). The new tool seems reliable and user-friendly. Conclusions. Our proposed model seems user-friendly. Its reliability in terms of agreement with the presented acute radiation induced toxicity was satisfactory. However, more patients are needed to extract safe conclusions. PMID:24348743

  12. Hypo-fractionated stereotactic radiotherapy of five fractions with linear accelerator for vestibular schwannomas: A systematic review and meta-analysis.

    PubMed

    Nguyen, Thien; Duong, Courtney; Sheppard, John P; Lee, Seung Jin; Kishan, Amar U; Lee, Percy; Tenn, Stephen; Chin, Robert; Kaprealian, Tania B; Yang, Isaac

    2018-03-01

    Vestibular schwannomas (VS) are benign tumors stemming from the eighth cranial nerve. Treatment options for VS include conservative management, microsurgery, stereotactic radiosurgery, and fractionated radiotherapy. Though microsurgery has been the standard of care for larger lesions, hypo-fractionated stereotactic radiotherapy (hypo-FSRT) is an emerging modality. However, its clinical efficacy and safety have yet to be established. We conducted a systematic review and meta-analysis of manuscripts indexed in PubMed, Scopus, Web of Science, Embase, and Cochrane databases reporting outcomes of VS cases treated with hypo-FSRT. Five studies representing a total of 228 patients were identified. Across studies, the pooled rates of tumor control, hearing, facial nerve, and trigeminal nerve preservation were 95%, 37%, 97%, and 98%. No instances of malignant induction were observed at median follow-up of 34.8 months. Complications included trigeminal neuropathy (n = 3), maxillary paresthesia (n = 1), neuralgia (n = 1), vestibular dysfunction (n = 1), radionecrosis (n = 1), and hydrocephalus (n = 1). Hypo-FSRT may be another useful approach to manage VS, but studies with extended follow-up times are required to establish long-term safety. Copyright © 2018. Published by Elsevier B.V.

  13. A Phase I Dose Escalation Study of Hypofractionated IMRT Field-in-Field Boost for Newly Diagnosed Glioblastoma Multiforme

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Monjazeb, Arta M., E-mail: arta.monjazeb@ucdmc.ucdavis.edu; Ayala, Deandra; Jensen, Courtney

    2012-02-01

    Objectives: To describe the results of a Phase I dose escalation trial for newly diagnosed glioblastoma multiforme (GBM) using a hypofractionated concurrent intensity-modulated radiotherapy (IMRT) boost. Methods: Twenty-one patients were enrolled between April 1999 and August 2003. Radiotherapy consisted of daily fractions of 1.8 Gy with a concurrent boost of 0.7 Gy (total 2.5 Gy daily) to a total dose of 70, 75, or 80 Gy. Concurrent chemotherapy was not permitted. Seven patients were enrolled at each dose and dose limiting toxicities were defined as irreversible Grade 3 or any Grade 4-5 acute neurotoxicity attributable to radiotherapy. Results: All patientsmore » experienced Grade 1 or 2 acute toxicities. Acutely, 8 patients experienced Grade 3 and 1 patient experienced Grade 3 and 4 toxicities. Of these, only two reversible cases of otitis media were attributable to radiotherapy. No dose-limiting toxicities were encountered. Only 2 patients experienced Grade 3 delayed toxicity and there was no delayed Grade 4 toxicity. Eleven patients requiring repeat resection or biopsy were found to have viable tumor and radiation changes with no cases of radionecrosis alone. Median overall and progression-free survival for this cohort were 13.6 and 6.5 months, respectively. One- and 2-year survival rates were 57% and 19%. At recurrence, 15 patients received chemotherapy, 9 underwent resection, and 5 received radiotherapy. Conclusions: Using a hypofractionated concurrent IMRT boost, we were able to safely treat patients to 80 Gy without any dose-limiting toxicity. Given that local failure still remains the predominant pattern for GBM patients, a trial of dose escalation with IMRT and temozolomide is warranted.« less

  14. Image Fusion for Radiosurgery, Neurosurgery and Hypofractionated Radiotherapy.

    PubMed

    Inoue, Hiroshi K; Nakajima, Atsushi; Sato, Hiro; Noda, Shin-Ei; Saitoh, Jun-Ichi; Suzuki, Yoshiyuki

    2015-03-01

    Precise target detection is essential for radiosurgery, neurosurgery and hypofractionated radiotherapy because treatment results and complication rates are related to accuracy of the target definition. In skull base tumors and tumors around the optic pathways, exact anatomical evaluation of cranial nerves are important to avoid adverse effects on these structures close to lesions. Three-dimensional analyses of structures obtained with MR heavy T2-images and image fusion with CT thin-sliced sections are desirable to evaluate fine structures during radiosurgery and microsurgery. In vascular lesions, angiography is most important for evaluations of whole structures from feeder to drainer, shunt, blood flow and risk factors of bleeding. However, exact sites and surrounding structures in the brain are not shown on angiography. True image fusions of angiography, MR images and CT on axial planes are ideal for precise target definition. In malignant tumors, especially recurrent head and neck tumors, biologically active areas of recurrent tumors are main targets of radiosurgery. PET scan is useful for quantitative evaluation of recurrences. However, the examination is not always available at the time of radiosurgery. Image fusion of MR diffusion images with CT is always available during radiosurgery and useful for the detection of recurrent lesions. All images are fused and registered on thin sliced CT sections and exactly demarcated targets are planned for treatment. Follow-up images are also able to register on this CT. Exact target changes, including volume, are possible in this fusion system. The purpose of this review is to describe the usefulness of image fusion for 1) skull base, 2) vascular, 3) recurrent target detection, and 4) follow-up analyses in radiosurgery, neurosurgery and hypofractionated radiotherapy.

  15. Image Fusion for Radiosurgery, Neurosurgery and Hypofractionated Radiotherapy

    PubMed Central

    Nakajima, Atsushi; Sato, Hiro; Noda, Shin-ei; Saitoh, Jun-ichi; Suzuki, Yoshiyuki

    2015-01-01

    Precise target detection is essential for radiosurgery, neurosurgery and hypofractionated radiotherapy because treatment results and complication rates are related to accuracy of the target definition. In skull base tumors and tumors around the optic pathways, exact anatomical evaluation of cranial nerves are important to avoid adverse effects on these structures close to lesions. Three-dimensional analyses of structures obtained with MR heavy T2-images and image fusion with CT thin-sliced sections are desirable to evaluate fine structures during radiosurgery and microsurgery. In vascular lesions, angiography is most important for evaluations of whole structures from feeder to drainer, shunt, blood flow and risk factors of bleeding. However, exact sites and surrounding structures in the brain are not shown on angiography. True image fusions of angiography, MR images and CT on axial planes are ideal for precise target definition. In malignant tumors, especially recurrent head and neck tumors, biologically active areas of recurrent tumors are main targets of radiosurgery. PET scan is useful for quantitative evaluation of recurrences. However, the examination is not always available at the time of radiosurgery. Image fusion of MR diffusion images with CT is always available during radiosurgery and useful for the detection of recurrent lesions. All images are fused and registered on thin sliced CT sections and exactly demarcated targets are planned for treatment. Follow-up images are also able to register on this CT. Exact target changes, including volume, are possible in this fusion system. The purpose of this review is to describe the usefulness of image fusion for 1) skull base, 2) vascular, 3) recurrent target detection, and 4) follow-up analyses in radiosurgery, neurosurgery and hypofractionated radiotherapy. PMID:26180676

  16. Betatron x-ray radiation from laser-plasma accelerators driven by femtosecond and picosecond laser systems

    NASA Astrophysics Data System (ADS)

    Albert, F.; Lemos, N.; Shaw, J. L.; King, P. M.; Pollock, B. B.; Goyon, C.; Schumaker, W.; Saunders, A. M.; Marsh, K. A.; Pak, A.; Ralph, J. E.; Martins, J. L.; Amorim, L. D.; Falcone, R. W.; Glenzer, S. H.; Moody, J. D.; Joshi, C.

    2018-05-01

    A comparative experimental study of betatron x-ray radiation from laser wakefield acceleration in the blowout and self-modulated regimes is presented. Our experiments use picosecond duration laser pulses up to 150 J (self-modulated regime) and 60 fs duration laser pulses up to 10 J (blowout regime), for plasmas with electronic densities on the order of 1019 cm-3. In the self-modulated regime, where betatron radiation has been very little studied compared to the blowout regime, electrons accelerated in the wake of the laser pulse are subject to both the longitudinal plasma and transverse laser electrical fields. As a result, their motion within the wake is relatively complex; consequently, the experimental and theoretical properties of the x-ray source based on self-modulation differ from the blowout regime of laser wakefield acceleration. In our experimental configuration, electrons accelerated up to about 250 MeV and betatron x-ray spectra with critical energies of about 10-20 keV and photon fluxes between 108 and 1010 photons/eV Sr are reported. Our experiments open the prospect of using betatron x-ray radiation for applications, and the source is competitive with current x-ray backlighting methods on multi-kilojoule laser systems.

  17. Studies of Particle Acceleration, Transport and Radiation in Impulsive Phase of Solar Flares

    NASA Technical Reports Server (NTRS)

    Petrosian, Vahe

    2005-01-01

    Solar activity and its most prominent aspect, the solar flares, have considerable influence on terrestrial and space weather. Solar flares also provide a suitable laboratory for the investigation of many plasma and high energy processes important in the magnetosphere of the Earth and many other space and astrophysical situations. Hence, progress in understanding of flares will have considerable scientific and societal impact. The primary goal of this grant is the understanding of two of the most important problems of solar flare physics, namely the determination of the energy release mechanism and how this energy accelerates particles. This is done through comparison of the observations with theoretical models, starting from observations and gradually proceeding to theoretically more complex situations as the lower foundations of our understanding are secured. It is generally agreed that the source of the flare energy is the annihilation of magnetic fields by the reconnection process. Exactly how this energy is released or how it is dissipated remains controversial. Moreover, the exact mechanism of the acceleration of the particles is still a matter of debate. Data from many spacecrafts and ground based instruments obtained over the past decades have given us some clues. Theoretical analyses of these data have led to the standard thick target model (STT) where most of the released energy goes into an (assumed) power law spectrum of accelerated particles, and where all the observed radiations are the consequence of the interaction of these particles with the flare plasma. However, some theoretical arguments, and more importantly some new observations, have led us to believe that the above picture is not complete. It appears that plasma turbulence plays a more prominent role than suspected previously, and that it is the most likely agent for accelerating particles. The model we have developed is based on production of a high level of plasma waves and turbulence in

  18. Simulating synchrotron radiation in accelerators including diffuse and specular reflections

    DOE PAGES

    Dugan, G.; Sagan, D.

    2017-02-24

    An accurate calculation of the synchrotron radiation flux within the vacuum chamber of an accelerator is needed for a number of applications. These include simulations of electron cloud effects and the design of radiation masking systems. To properly simulate the synchrotron radiation, it is important to include the scattering of the radiation at the vacuum chamber walls. To this end, a program called synrad3d has been developed which simulates the production and propagation of synchrotron radiation using a collection of photons. Photons generated by a charged particle beam are tracked from birth until they strike the vacuum chamber wall wheremore » the photon is either absorbed or scattered. Both specular and diffuse scattering is simulated. If a photon is scattered, it is further tracked through multiple encounters with the wall until it is finally absorbed. This paper describes the synrad3d program, with a focus on the details of its scattering model, and presents some examples of the program’s use.« less

  19. Preliminary analysis of accelerated space flight ionizing radiation testing

    NASA Technical Reports Server (NTRS)

    Wilson, J. W.; Stock, L. V.; Carter, D. J.; Chang, C. K.

    1982-01-01

    A preliminary analysis shows that radiation dose equivalent to 30 years in the geosynchronous environment can be accumulated in a typical composite material exposed to space for 2 years or less onboard a spacecraft orbiting from perigee of 300 km out to the peak of the inner electron belt (approximately 2750 km). Future work to determine spacecraft orbits better tailored to materials accelerated testing is indicated. It is predicted that a range of 10 to the 9th power to 10 to the 10th power rads would be accumulated in 3-6 mil thick epoxy/graphite exposed by a test spacecraft orbiting in the inner electron belt. This dose is equivalent to the accumulated dose that this material would be expected to have after 30 years in a geosynchronous orbit. It is anticipated that material specimens would be brought back to Earth after 2 years in the radiation environment so that space radiation effects on materials could be analyzed by laboratory methods.

  20. Quasi-monoenergetic protons accelerated by laser radiation pressure and shocks in thin gaseous targets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    He Minqing; Shao Xi; Liu Chuansheng

    Recent experiments and simulations have demonstrated effective CO{sub 2} laser acceleration of quasi-monoenergetic protons from thick gaseous hydrogen target (of thickness tens of laser wavelengths) via hole boring and shock accelerations. We present here an alternative novel acceleration scheme by combining laser radiation pressure acceleration with shock acceleration of protons in a thin gaseous target of thickness several laser wavelengths. The laser pushes the thin gaseous plasma forward while compressing it with protons trapped in it. We demonstrated the combined acceleration with two-dimensional particle-in-cell simulation and obtained quasi-monoenergetic protons {approx}44 MeV in a gas target of thickness twice of themore » laser wavelength irradiated by circularly polarized CO{sub 2} laser with normalized laser amplitude a{sub 0}=10.« less

  1. SU-F-T-432: Magnetic Field Dose Effects for Various Radiation Beam Geometries for Patients Treated with Hypofractionated Partial Breast Irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lim-Reinders, S; University of Toronto, Department of Physics; Keller, B

    Purpose: Hypofractionated partial breast irradiation (HPBI) is being used at our clinic to treat inoperable breast cancer patients who have advanced disease. We are investigating how these patients could benefit from being treated in an MRI-linac, where real-time daily MRI tumor imaging and plan adaptation would be possible. As a first step, this study evaluates the dosimetric impact of the magnetic field for different radiation beam geometries on relevant OARs. Methods: Five patients previously treated using HPBI were selected. Six treatment plans were generated for each patient, evaluating three beam geometries (VMAT, IMRT, 3DCRT) with and without B{sub 0}=1.5 T.more » The Monaco TPS was used with the Elekta MRI-Linac beam model, where the magnetic field is orthogonal to the radiation beam. All plans were re-scaled to the same isocoverage with a prescription of 40Gy/5 to the PTV. Plans were evaluated for the effect of the magnetic field and beam modality on skin V{sub 3} {sub 0}, lung V{sub 2} {sub 0} and mean heart dose. Results: Averaged over all patients, skin V{sub 3} {sub 0}for 3DCRT was higher than VMAT and IMRT (by +22% and +21%, with B{sub 0}-ON). The magnetic field caused larger increases in skin V{sub 3} {sub 0}for 3DCRT (+8%) than VMAT (+3%) and IMRT (+4%) compared with B{sub 0}-OFF. With B{sub 0}-ON, 3DCRT had a markedly lower mean heart dose than VMAT (by 538cGy) and IMRT (by 562cGy); for lung V{sub 2} {sub 0}, 3DCRT had a marginally lower dose than VMAT (by −2.2%) and IMRT (also −2.2%). The magnetic field had minimal effect on the mean heart dose and lung V{sub 2} {sub 0} for all geometries. Conclusion: The decreased skin dose in VMAT and IMRT can potentially mitigate the effects of skin reactions for HPBI in an MRI-linac. This study illustrated that more beam angles may result in lower skin toxicity and better tumor conformality, with the trade-off of elevated heart and lung doses. We are receiving funding support from Elekta.« less

  2. VLF Wave Local Acceleration & ULF Wave Radial Diffusion: The Importance of K-Dependent PSD Analysis for Diagnosing the cause of Radiation Belt Acceleration.

    NASA Astrophysics Data System (ADS)

    Ozeke, L.; Mann, I. R.; Claudepierre, S. G.; Morley, S.; Henderson, M. G.; Baker, D. N.; Kletzing, C.; Spence, H. E.

    2017-12-01

    We present results showing the temporal evolution of electron Phase Space Density (PSD) in the outer radiation belt during the most intense geomagnetic storm of the last decade which occurred on March 17th 2015. Based on observations of growing local PSD peaks at fixed first and second adiabatic invariants of M=1000 MeV/G and K=0.18 G1/2Re respectively, previous studies argued that the outer radiation belt flux enhancement that occurred during this storm resulted from local acceleration driven by VLF waves. Here we show that the vast majority of the outer radiation belt consisted of electrons with much lower K-values than 0.18 G1/2Re, and that at these lower K-values there is no clear evidence of growing local PSD peaks consistent with that expected from local acceleration. Contrary to prior studies we show that the outer radiation belt flux enhancement is consistent with inward radial diffusion driven by ULF waves and present evidence that the growing local PSD peaks at K=0.18 G1/2Re and M=1000 MeV/G result from pitch-angle scattering of lower-K electrons to K=0.18 G1/2Re. In addition, we also show that the observed outer radiation belt flux enhancement during this geomagnetic storm can be reproduced using a radial diffusion model driven by measured ULF waves without including any local acceleration. These results highlight the importance of careful analysis of the electron PSD profiles as a function of L* over a range of fixed first, M and second K, adiabatic invariants to correctly determine the mechanism responsible for the electron flux enhancements observed in the outer radiation belt.

  3. Radiation protection challenges in the management of radioactive waste from high-energy accelerators.

    PubMed

    Ulrici, Luisa; Algoet, Yvon; Bruno, Luca; Magistris, Matteo

    2015-04-01

    The European Laboratory for Particle Physics (CERN) has operated high-energy accelerators for fundamental physics research for nearly 60 y. The side-product of this activity is the radioactive waste, which is mainly generated as a result of preventive and corrective maintenance, upgrading activities and the dismantling of experiments or accelerator facilities. Prior to treatment and disposal, it is common practice to temporarily store radioactive waste on CERN's premises and it is a legal requirement that these storage facilities are safe and secure. Waste treatment typically includes sorting, segregation, volume and size reduction and packaging, which will depend on the type of component, its chemical composition, residual activity and possible surface contamination. At CERN, these activities are performed in a dedicated waste treatment centre under the supervision of the Radiation Protection Group. This paper gives an overview of the radiation protection challenges in the conception of a temporary storage and treatment centre for radioactive waste in an accelerator facility, based on the experience gained at CERN. The CERN approach consists of the classification of waste items into 'families' with similar radiological and physical-chemical properties. This classification allows the use of specific, family-dependent techniques for radiological characterisation and treatment, which are simultaneously efficient and compliant with best practices in radiation protection. The storage was planned on the basis of radiological and other possible hazards such as toxicity, pollution and fire load. Examples are given of technical choices for the treatment and radiological characterisation of selected waste families, which could be of interest to other accelerator facilities. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  4. Review of advanced catheter technologies in radiation oncology brachytherapy procedures

    PubMed Central

    Zhou, Jun; Zamdborg, Leonid; Sebastian, Evelyn

    2015-01-01

    The development of new catheter and applicator technologies in recent years has significantly improved treatment accuracy, efficiency, and outcomes in brachytherapy. In this paper, we review these advances, focusing on the performance of catheter imaging and reconstruction techniques in brachytherapy procedures using magnetic resonance images and electromagnetic tracking. The accuracy of catheter reconstruction, imaging artifacts, and other notable properties of plastic and titanium applicators in gynecologic treatments are reviewed. The accuracy, noise performance, and limitations of electromagnetic tracking for catheter reconstruction are discussed. Several newly developed applicators for accelerated partial breast irradiation and gynecologic treatments are also reviewed. New hypofractionated high dose rate treatment schemes in prostate cancer and accelerated partial breast irradiation are presented. PMID:26203277

  5. Optimizing Timing of Immunotherapy Improves Control of Tumors by Hypofractionated Radiation Therapy

    PubMed Central

    Baird, Jason R.; Savage, Talicia; Cottam, Benjamin; Friedman, David; Bambina, Shelly; Messenheimer, David J.; Fox, Bernard; Newell, Pippa; Bahjat, Keith S.; Gough, Michael J.; Crittenden, Marka R.

    2016-01-01

    The anecdotal reports of promising results seen with immunotherapy and radiation in advanced malignancies have prompted several trials combining immunotherapy and radiation. However, the ideal timing of immunotherapy with radiation has not been clarified. Tumor bearing mice were treated with 20Gy radiation delivered only to the tumor combined with either anti-CTLA4 antibody or anti-OX40 agonist antibody. Immunotherapy was delivered at a single timepoint around radiation. Surprisingly, the optimal timing of these therapies varied. Anti-CTLA4 was most effective when given prior to radiation therapy, in part due to regulatory T cell depletion. Administration of anti-OX40 agonist antibody was optimal when delivered one day following radiation during the post-radiation window of increased antigen presentation. Combination treatment of anti-CTLA4, radiation, and anti-OX40 using the ideal timing in a transplanted spontaneous mammary tumor model demonstrated tumor cures. These data demonstrate that the combination of immunotherapy and radiation results in improved therapeutic efficacy, and that the ideal timing of administration with radiation is dependent on the mechanism of action of the immunotherapy utilized. PMID:27281029

  6. Accelerating execution of the integrated TIGER series Monte Carlo radiation transport codes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, L.M.; Hochstedler, R.D.

    1997-02-01

    Execution of the integrated TIGER series (ITS) of coupled electron/photon Monte Carlo radiation transport codes has been accelerated by modifying the FORTRAN source code for more efficient computation. Each member code of ITS was benchmarked and profiled with a specific test case that directed the acceleration effort toward the most computationally intensive subroutines. Techniques for accelerating these subroutines included replacing linear search algorithms with binary versions, replacing the pseudo-random number generator, reducing program memory allocation, and proofing the input files for geometrical redundancies. All techniques produced identical or statistically similar results to the original code. Final benchmark timing of themore » accelerated code resulted in speed-up factors of 2.00 for TIGER (the one-dimensional slab geometry code), 1.74 for CYLTRAN (the two-dimensional cylindrical geometry code), and 1.90 for ACCEPT (the arbitrary three-dimensional geometry code).« less

  7. OUT-OF-FIELD DOSES IN CHILDREN TREATED FOR LARGE ARTERIOVENOUS MALFORMATIONS USING HYPOFRACTIONATED GAMMA KNIFE RADIOSURGERY AND INTENSITY-MODULATED RADIATION THERAPY.

    PubMed

    De Saint-Hubert, Marijke; Majer, Marija; Hršak, Hrvoje; Heinrich, Zdravko; Kneževic, Željka; Miljanic, Saveta; Porwol, Paulina; Stolarczyk, Liliana; Vanhavere, Filip; Harrison, Roger M

    2018-01-17

    The purpose of this study was to measure out-of-field organ doses in two anthropomorphic child phantoms for the treatment of large brain arteriovenous malformations (AVMs) using hypofractionated gamma knife (GK) radiosurgery and to compare these with an alternative treatment using intensity-modulated radiation therapy (IMRT). Target volume was identical in size and shape in all cases. Radiophotoluminescent (RPL), thermoluminescent (TL) and optically stimulated luminescent (OSL) dosimeters were used for out-of-field dosimetry during GK treatment and a good agreement within 1-2% between results was shown. In addition, the use of multiple dosimetry systems strengthens the reliability of the findings. The number of GK isocentres was confirmed to be important for the magnitude of out-of-field doses. Measured GK doses for the same distance from the target, when expressed per target dose and isocentre, were comparable in both phantoms. GK out-of-field doses averaged for both phantoms were evaluated to be 120 mGy/Gy for eyes then sharply reduced to 20 mGy/Gy for mandible and slowly reduced up to 0.8 mGy/Gy for testes. Taking into account the fractionation regimen used to treat AVM patients, the total treatment organ doses to the out-of-field organs were calculated and compared with IMRT. The eyes were better spared with GK whilst for more distant organs doses were up to a factor of 2.8 and 4 times larger for GK compared to IMRT in 5-year and 10-year old phantoms, respectively. Presented out-of-field dose values are specific for the investigated AVM case, phantoms and treatment plans used for GK and IMRT, but provide useful information about out-of-field dose levels and emphasise their importance. © The Author(s) 2018. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  8. High-energy coherent terahertz radiation emitted by wide-angle electron beams from a laser-wakefield accelerator

    NASA Astrophysics Data System (ADS)

    Yang, Xue; Brunetti, Enrico; Jaroszynski, Dino A.

    2018-04-01

    High-charge electron beams produced by laser-wakefield accelerators are potentially novel, scalable sources of high-power terahertz radiation suitable for applications requiring high-intensity fields. When an intense laser pulse propagates in underdense plasma, it can generate femtosecond duration, self-injected picocoulomb electron bunches that accelerate on-axis to energies from 10s of MeV to several GeV, depending on laser intensity and plasma density. The process leading to the formation of the accelerating structure also generates non-injected, sub-picosecond duration, 1–2 MeV nanocoulomb electron beams emitted obliquely into a hollow cone around the laser propagation axis. These wide-angle beams are stable and depend weakly on laser and plasma parameters. Here we perform simulations to characterise the coherent transition radiation emitted by these beams if passed through a thin metal foil, or directly at the plasma–vacuum interface, showing that coherent terahertz radiation with 10s μJ to mJ-level energy can be produced with an optical to terahertz conversion efficiency up to 10‑4–10‑3.

  9. R-IDEAL: A Framework for Systematic Clinical Evaluation of Technical Innovations in Radiation Oncology.

    PubMed

    Verkooijen, Helena M; Kerkmeijer, Linda G W; Fuller, Clifton D; Huddart, Robbert; Faivre-Finn, Corinne; Verheij, Marcel; Mook, Stella; Sahgal, Arjun; Hall, Emma; Schultz, Chris

    2017-01-01

    The pace of innovation in radiation oncology is high and the window of opportunity for evaluation narrow. Financial incentives, industry pressure, and patients' demand for high-tech treatments have led to widespread implementation of innovations before, or even without, robust evidence of improved outcomes has been generated. The standard phase I-IV framework for drug evaluation is not the most efficient and desirable framework for assessment of technological innovations. In order to provide a standard assessment methodology for clinical evaluation of innovations in radiotherapy, we adapted the surgical IDEAL framework to fit the radiation oncology setting. Like surgery, clinical evaluation of innovations in radiation oncology is complicated by continuous technical development, team and operator dependence, and differences in quality control. Contrary to surgery, radiotherapy innovations may be used in various ways, e.g., at different tumor sites and with different aims, such as radiation volume reduction and dose escalation. Also, the effect of radiation treatment can be modeled, allowing better prediction of potential benefits and improved patient selection. Key distinctive features of R-IDEAL include the important role of predicate and modeling studies (Stage 0), randomization at an early stage in the development of the technology, and long-term follow-up for late toxicity. We implemented R-IDEAL for clinical evaluation of a recent innovation in radiation oncology, the MRI-guided linear accelerator (MR-Linac). MR-Linac combines a radiotherapy linear accelerator with a 1.5-T MRI, aiming for improved targeting, dose escalation, and margin reduction, and is expected to increase the use of hypofractionation, improve tumor control, leading to higher cure rates and less toxicity. An international consortium, with participants from seven large cancer institutes from Europe and North America, has adopted the R-IDEAL framework to work toward coordinated, evidence

  10. Synchrotron radiation laboratories at the Bonn electron accelerators. a status report

    NASA Astrophysics Data System (ADS)

    Hormes, J.

    1987-07-01

    At the Physikalisches Institut of the University in Bonn experiments with synchrotron radiation were carried out ever since 1962. At the moment (June 1986) all work takes place in the SR-laboratory at the 2.5 GeV synchrotron. A 3.5 GeV stretcher ring (ELSA) is under construction and will come into operation at the end of 1986. This accelerator will also run as a storage ring for synchrotron radiation experiments and a laboratory to be used at this machine is also under consideration. The SR experiments which are carried out in Bonn try to take advantage of the fact that we are still using a high energy synchrotron for our work. Besides basic research also applied work is done using synchrotron radiation even as a production tool for X-ray lithography.

  11. Plasma inverse transition acceleration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xie, Ming

    It can be proved fundamentally from the reciprocity theorem with which the electromagnetism is endowed that corresponding to each spontaneous process of radiation by a charged particle there is an inverse process which defines a unique acceleration mechanism, from Cherenkov radiation to inverse Cherenkov acceleration (ICA) [1], from Smith-Purcell radiation to inverse Smith-Purcell acceleration (ISPA) [2], and from undulator radiation to inverse undulator acceleration (IUA) [3]. There is no exception. Yet, for nearly 30 years after each of the aforementioned inverse processes has been clarified for laser acceleration, inverse transition acceleration (ITA), despite speculation [4], has remained the least understood,more » and above all, no practical implementation of ITA has been found, until now. Unlike all its counterparts in which phase synchronism is established one way or the other such that a particle can continuously gain energy from an acceleration wave, the ITA to be discussed here, termed plasma inverse transition acceleration (PITA), operates under fundamentally different principle. As a result, the discovery of PITA has been delayed for decades, waiting for a conceptual breakthrough in accelerator physics: the principle of alternating gradient acceleration [5, 6, 7, 8, 9, 10]. In fact, PITA was invented [7, 8] as one of several realizations of the new principle.« less

  12. Kinetic study of radiation-reaction-limited particle acceleration during the relaxation of unstable force-free equilibria

    DOE PAGES

    Yuan, Yajie; Nalewajko, Krzysztof; Zrake, Jonathan; ...

    2016-09-07

    Many powerful and variable gamma-ray sources, including pulsar wind nebulae, active galactic nuclei and gamma-ray bursts, seem capable of accelerating particles to gamma-ray emitting energies efficiently over very short timescales. These are likely due to the rapid dissipation of electromagnetic energy in a highly magnetized, relativistic plasma. In order to understand the generic features of such processes, we have investigated simple models based on the relaxation of unstable force-free magnetostatic equilibria. In this work, we make the connection between the corresponding plasma dynamics and the expected radiation signal, using 2D particle-in-cell simulations that self-consistently include synchrotron radiation reactions. We focusmore » on the lowest order unstable force-free equilibrium in a 2D periodic box. We find that rapid variability, with modest apparent radiation efficiency as perceived by a fixed observer, can be produced during the evolution of the instability. The "flares" are accompanied by an increased polarization degree in the high energy band, with rapid variation in the polarization angle. Furthermore, the separation between the acceleration sites and the synchrotron radiation sites for the highest energy particles facilitates acceleration beyond the synchrotron radiation reaction limit. We also discuss the dynamical consequences of the radiation reaction, and some astrophysical applications of this model. Our current simulations with numerically tractable parameters are not yet able to reproduce the most dramatic gamma-ray flares, e.g., from the Crab Nebula. As a result, higher magnetization studies are promising and will be carried out in the future.« less

  13. KINETIC STUDY OF RADIATION-REACTION-LIMITED PARTICLE ACCELERATION DURING THE RELAXATION OF UNSTABLE FORCE-FREE EQUILIBRIA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yuan, Yajie; Nalewajko, Krzysztof; Zrake, Jonathan

    2016-09-10

    Many powerful and variable gamma-ray sources, including pulsar wind nebulae, active galactic nuclei and gamma-ray bursts, seem capable of accelerating particles to gamma-ray emitting energies efficiently over very short timescales. These are likely due to the rapid dissipation of electromagnetic energy in a highly magnetized, relativistic plasma. In order to understand the generic features of such processes, we have investigated simple models based on the relaxation of unstable force-free magnetostatic equilibria. In this work, we make the connection between the corresponding plasma dynamics and the expected radiation signal, using 2D particle-in-cell simulations that self-consistently include synchrotron radiation reactions. We focusmore » on the lowest order unstable force-free equilibrium in a 2D periodic box. We find that rapid variability, with modest apparent radiation efficiency as perceived by a fixed observer, can be produced during the evolution of the instability. The “flares” are accompanied by an increased polarization degree in the high energy band, with rapid variation in the polarization angle. Furthermore, the separation between the acceleration sites and the synchrotron radiation sites for the highest energy particles facilitates acceleration beyond the synchrotron radiation reaction limit. We also discuss the dynamical consequences of the radiation reaction, and some astrophysical applications of this model. Our current simulations with numerically tractable parameters are not yet able to reproduce the most dramatic gamma-ray flares, e.g., from the Crab Nebula. Higher magnetization studies are promising and will be carried out in the future.« less

  14. Radiogenic Side Effects After Hypofractionated Stereotactic Photon Radiotherapy of Choroidal Melanoma in 212 Patients Treated Between 1997 and 2007

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dunavoelgyi, Roman; Dieckmann, Karin; Gleiss, Andreas

    2012-05-01

    Purpose: To evaluate side effects of hypofractionated stereotactic photon radiotherapy for patients with choroidal melanoma. Patients and Methods: Two hundred and twelve patients with choroidal melanoma unsuitable for ruthenium-106 brachytherapy or local resection were treated stereotactically at the Medical University of Vienna between 1997 and 2007 with a Linac with 6-MV photon beams in five fractions with 10, 12, or 14 Gy per fraction. Examinations for radiogenic side effects were performed at baseline and every 3 months in the first 2 years, then every 6 months until 5 years and then once a year thereafter until 10 years after radiotherapy.more » Adverse side effects were assessed using slit-lamp examination, funduscopy, gonioscopy, tonometry, and, if necessary, fundus photography and fluorescein angiography. Evaluations of incidence of side effects are based on an actuarial analysis. Results: One hundred and eighty-nine (89.2%) and 168 (79.2%) of the tumors were within 3 mm of the macula and the optic disc, respectively. The five most common radiotherapy side effects were retinopathy and optic neuropathy (114 cases and 107 cases, respectively), cataract development (87 cases), neovascular glaucoma (46 cases), and corneal epithelium defects (41 cases). In total, 33.6%, 38.5%, 51.2%, 75.5%, and 77.6% of the patients were free of any radiation retinopathy, optic neuropathy, cataract, neovascular glaucoma, or corneal epithelium defects 5 years after radiotherapy, respectively. Conclusion: In centrally located choroidal melanoma hypofractionated stereotactic photon radiotherapy shows a low to moderate rate of adverse long-term side effects comparable with those after proton beam radiotherapy. Future fractionation schemes should seek to further reduce adverse side effects rate while maintaining excellent local tumor control.« less

  15. WE-F-304-01: Overview of the Working Group On Stereotactic Body Radiation Therapy (WGSBRT)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yorke, E.

    Stereotactic Body Radiation Therapy (SBRT) was introduced clinically more than twenty years ago, and many subsequent publications have reported safety and efficacy data. The AAPM Working Group on Biological Effects of Hypofractionated Radiotherapy/SBRT (WGSBRT) extracted published treatment outcomes data from extensive literature searches to summarize and construct tumor control probability (TCP) and normal tissue complication probability (NTCP) models for six anatomical regions: Cranial, Head and Neck, Thoracic, Abdominal, Pelvic, and Spinal. In this session, we present the WGSBRT’s work for cranial sites, and recurrent head and neck cancer. From literature-based data and associated models, guidelines to aid with safe andmore » effective hypofractionated radiotherapy treatment are being determined. Further, the ability of existing and proposed radiobiological models to fit these data is considered as to the ability to distinguish between the linear-quadratic and alternative radiobiological models such as secondary cell death from vascular damage, immunogenic, or bystander effects. Where appropriate, specific model parameters are estimated. As described in “The lessons of QUANTEC,” (1), lack of adequate reporting standards continues to limit the amount of useful quantitative information that can be extracted from peer-reviewed publications. Recommendations regarding reporting standards are considered, to enable such reviews to achieve more complete characterization of clinical outcomes. 1 Jackson A, Marks LB, Bentzen SM, Eisbruch A, Yorke ED, Ten Haken RK, Constine LS, Deasy JO. The lessons of QUANTEC: recommendations for reporting and gathering data on dose-volume dependencies of treatment outcome. Int J Radiat Oncol Biol Phys. 2010 Mar 1;76(3 Suppl):S155–60. Learning Objectives: Describe the techniques, types of cancer and dose schedules used in treating recurrent H&N cancers with SBRT List the radiobiological models that compete with the linear

  16. Assessing the Impact of Earth Radiation Pressure Acceleration on Low-Earth Orbit Satellites

    NASA Astrophysics Data System (ADS)

    Vielberg, Kristin; Forootan, Ehsan; Lück, Christina; Kusche, Jürgen; Börger, Klaus

    2017-04-01

    The orbits of satellites are influenced by several external forces. The main non-gravitational forces besides thermospheric drag, acting on the surface of satellites, are accelerations due to the Earth and Solar Radiation Pres- sure (SRP and ERP, respectively). The sun radiates visible and infrared light reaching the satellite directly, which causes the SRP. Earth also emits and reflects the sunlight back into space, where it acts on satellites. This is known as ERP acceleration. The influence of ERP increases with decreasing distance to the Earth, and for low-earth orbit (LEO) satellites ERP must be taken into account in orbit and gravity computations. Estimating acceler- ations requires knowledge about energy emitted from the Earth, which can be derived from satellite remote sensing data, and also by considering the shape and surface material of a satellite. In this sensitivity study, we assess ERP accelerations based on different input albedo and emission fields and their modelling for the satellite missions Challenging Mini-Satellite Payload (CHAMP) and Gravity Recovery and Climate Experiment (GRACE). As input fields, monthly 1°x1° products of Clouds and the Earth's Radiant En- ergy System (CERES), L3 are considered. Albedo and emission models are generated as latitude-dependent, as well as in terms of spherical harmonics. The impact of different albedo and emission models as well as the macro model and the altitude of satellites on ERP accelerations will be discussed.

  17. Comparison of Local Recurrence Among Early Breast Cancer Patients Treated With Electron Intraoperative Radiotherapy vs Hypofractionated Photon Radiotherapy an Observational Study.

    PubMed

    Guenzi, Marina; Bonzano, Elisabetta; Corvò, Renzo; Merolla, Francesca; Pastorino, Alice; Cavagnetto, Francesca; Garelli, Stefania; Cutolo, Carlo Alberto; Friedman, Daniele; Belgioia, Liliana

    2018-01-01

    To evaluate local recurrence (LR) in women with early breast cancer (BC) who underwent intraoperative radiation therapy with electrons particles (IORT-E) or adjuvant hypofractionated external radiotherapy (HYPOFX). We retrospectively analyzed 470 patients with early BC treated at our center from September 2009 to December 2012. 235 women were treated with breast-conserving surgery and immediate IORT-E (21 Gy/1 fraction) while 235 patients underwent wide excision followed by hypofractionated whole-breast irradiation. Radiotherapy modality was chosen according to an individualized decision based on tumor features, stage, technical feasibility, age, and acceptance to be enrolled in the IORT-E group. After a median follow-up of 6 years, we observed 8 (3.4%) and 1 (0.42%) LR in the IORT-E and in the HYPOFX group ( p  = 0.02), respectively. The two groups differed in the prevalence of clinical characteristics ( p  < 0.05): age, tumor size, surgical margins, receptors, ki67, and histology. 4 and 1 woman in the IORT-E and HYPOFX group died of BC, respectively ( p  = 0.167). OS and DFS hazard ratio [HR] were 2.14 (95% IC, 1.10-4.15) and 2.09 (95% IC, 1.17-3.73), respectively. Our comparison showed that IORT-E and HYPOFX are two effective radiotherapy modalities after conservative surgery in early BC. However, at 6 years a significant higher rate of LR occurred in patients submitted to IORT-E with respect to HYPOFX. This finding may be correlated to some subsets of patients who, depending on the biological characteristics of the BC, may be less suitable to IORT-E.

  18. Hypofractionated stereotactic radiotherapy combined with topotecan in recurrent malignant glioma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wurm, Reinhard E.; Kuczer, David A.; Schlenger, Lorenz

    Purpose: To assess hypofractionated stereotactic radiotherapy (H-SRT) with concurrent topotecan in patients with recurrent malignant glioma. Methods and Materials: Between February 1998 and December 2001, 25 patients with recurrent malignant glioma were treated in a phase I-II study (8 females and 17 males; median age, 45 years; range, 11-66 years; median Karnofsky performance status, 80%, range, 50-100%; median Mini Mental Standard Examination score, 25 points; range, 10-30 points). Of the 25 patients, 20% had World Health Organization Grade III and 80% World Health Organization Grade IV glioma. All patients had been treated previously by external beam radiotherapy with 54.4 Gymore » in 34 fractions twice daily, at least 6 h apart, within 3.5 weeks or 60 Gy in 30 fractions within 6 weeks. In addition, 84% had already received at least one chemotherapy regimen for recurrence. The median H-SRT dose at the 80% isodose was 25 Gy, and the maximal dose was 30 Gy delivered in five to six fractions on consecutive days. Topotecan (1.1 mg/m{sup 2}/d) was given as a continuous i.v. infusion during H-SRT. Depending on the toxicity and compliance, patients received an additional 48 topotecan courses. Results: For all patients, the actuarial median progression-free survival was 10.5 months (range, 1.4-47.8 months), the median functional survival was 12.6 months (range, 1.6-49.5 months), and the median overall survival was 14.5 months (range, 3-56.4 months). Twelve percent of patients developed presumed adverse radiation effects (Radiation Therapy Oncology Group Grade 2). According to the Common Toxicity Criteria, version 2.0, no topotecan-related Grade 4 toxicity was noted. Grade 3 neutropenia was documented after 14 and Grade 3 thrombopenia after 12 courses. Conclusion: H-SRT with topotecan is feasible and well-tolerated in patients with recurrent high-grade glioma and results in similar survival compared with other repeat treatment modalities.« less

  19. Radiation Field Forming for Industrial Electron Accelerators Using Rare-Earth Magnetic Materials

    NASA Astrophysics Data System (ADS)

    Ermakov, A. N.; Khankin, V. V.; Shvedunov, N. V.; Shvedunov, V. I.; Yurov, D. S.

    2016-09-01

    The article describes the radiation field forming system for industrial electron accelerators, which would have uniform distribution of linear charge density at the surface of an item being irradiated perpendicular to the direction of its motion. Its main element is non-linear quadrupole lens made with the use of rare-earth magnetic materials. The proposed system has a number of advantages over traditional beam scanning systems that use electromagnets, including easier product irradiation planning, lower instantaneous local dose rate, smaller size, lower cost. Provided are the calculation results for a 10 MeV industrial electron accelerator, as well as measurement results for current distribution in the prototype build based on calculations.

  20. Radiation from an accelerating neutral body: The case of rotation

    NASA Astrophysics Data System (ADS)

    Yarman, Tolga; Arik, Metin; Kholmetskii, Alexander L.

    2013-11-01

    When an object is bound at rest to an attractional field, its rest mass (owing to the law of energy conservation, including the mass and energy equivalence of the Special Theory of Relativity) must decrease. The mass deficiency coming into play indicates a corresponding rest energy discharge. Thus, bringing an object to a rotational motion means that the energy transferred for this purpose serves to extract just as much rest mass (or similarly "rest energy", were the speed of light in empty space taken to be unity) out of it. Here, it is shown that during angular acceleration, photons of fundamental energy are emitted, while the object is kept on being delivered to a more and more intense rotational accelerational field, being the instantaneous angular velocity of the rotating object. This fundamental energy, as seen, does not depend on anything else (such as the mass or charge of the object), and it is in harmony with Bohr's Principle of Correspondence. This means at the same time, that emission will be achieved, as long as the angular velocity keeps on increasing, and will cease right after the object reaches a stationary rotational motion (a constant centrifugal acceleration), but if the object were brought to rotation in vacuum with no friction. By the same token, one can affirm that even the rotation at a macroscopic level is quantized, and can only take on "given angular velocities" (which can only be increased, bit by bit). The rate of emission of photons of concern is, on the other hand, proportional to the angular acceleration of the object, similarly to the derivative of the tangential acceleration with respect to time. It is thus constant for a "constant angular acceleration", although the energy of the emitted photons will increase with increasing , until the rotation reaches a stationary level, after which we expect no emission --let us stress-- if the object is in rotation in vacuum, along with no whatsoever friction (such as the case of a rotating

  1. OPserver: opacities and radiative accelerations on demand

    NASA Astrophysics Data System (ADS)

    Mendoza, C.; González, J.; Seaton, M. J.; Buerger, P.; Bellorín, A.; Meléndez, M.; Rodríguez, L. S.; Delahaye, F.; Zeippen, C. J.; Palacios, E.; Pradhan, A. K.

    2009-05-01

    We report on developments carried out within the Opacity Project (OP) to upgrade atomic database services to comply with e-infrastructure requirements. We give a detailed description of an interactive, online server for astrophysical opacities, referred to as OPserver, to be used in sophisticated stellar modelling where Rosseland mean opacities and radiative accelerations are computed at every depth point and each evolution cycle. This is crucial, for instance, in chemically peculiar stars and in the exploitation of the new asteroseismological data. OPserver, downloadable with the new OPCD_3.0 release from the Centre de Données Astronomiques de Strasbourg, France, computes mean opacities and radiative data for arbitrary chemical mixtures from the OP monochromatic opacities. It is essentially a client-server network restructuring and optimization of the suite of codes included in the earlier OPCD_2.0 release. The server can be installed locally or, alternatively, accessed remotely from the Ohio Supercomputer Center, Columbus, Ohio, USA. The client is an interactive web page or a subroutine library that can be linked to the user code. The suitability of this scheme in grid computing environments is emphasized, and its extension to other atomic database services for astrophysical purposes is discussed.

  2. Radiation belt electron acceleration during the 17 March 2015 geomagnetic storm: Observations and simulations

    DOE PAGES

    Li, W.; Ma, Q.; Thorne, R. M.; ...

    2016-06-10

    Various physical processes are known to cause acceleration, loss, and transport of energetic electrons in the Earth's radiation belts, but their quantitative roles in different time and space need further investigation. During the largest storm over the past decade (17 March 2015), relativistic electrons experienced fairly rapid acceleration up to ~7 MeV within 2 days after an initial substantial dropout, as observed by Van Allen Probes. In the present paper, we evaluate the relative roles of various physical processes during the recovery phase of this large storm using a 3-D diffusion simulation. By quantitatively comparing the observed and simulated electronmore » evolution, we found that chorus plays a critical role in accelerating electrons up to several MeV near the developing peak location and produces characteristic flat-top pitch angle distributions. By only including radial diffusion, the simulation underestimates the observed electron acceleration, while radial diffusion plays an important role in redistributing electrons and potentially accelerates them to even higher energies. Moreover, plasmaspheric hiss is found to provide efficient pitch angle scattering losses for hundreds of keV electrons, while its scattering effect on > 1 MeV electrons is relatively slow. Although an additional loss process is required to fully explain the overestimated electron fluxes at multi-MeV, the combined physical processes of radial diffusion and pitch angle and energy diffusion by chorus and hiss reproduce the observed electron dynamics remarkably well, suggesting that quasi-linear diffusion theory is reasonable to evaluate radiation belt electron dynamics during this big storm.« less

  3. Radiation belt electron acceleration during the 17 March 2015 geomagnetic storm: Observations and simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, W.; Ma, Q.; Thorne, R. M.

    Various physical processes are known to cause acceleration, loss, and transport of energetic electrons in the Earth's radiation belts, but their quantitative roles in different time and space need further investigation. During the largest storm over the past decade (17 March 2015), relativistic electrons experienced fairly rapid acceleration up to ~7 MeV within 2 days after an initial substantial dropout, as observed by Van Allen Probes. In the present paper, we evaluate the relative roles of various physical processes during the recovery phase of this large storm using a 3-D diffusion simulation. By quantitatively comparing the observed and simulated electronmore » evolution, we found that chorus plays a critical role in accelerating electrons up to several MeV near the developing peak location and produces characteristic flat-top pitch angle distributions. By only including radial diffusion, the simulation underestimates the observed electron acceleration, while radial diffusion plays an important role in redistributing electrons and potentially accelerates them to even higher energies. Moreover, plasmaspheric hiss is found to provide efficient pitch angle scattering losses for hundreds of keV electrons, while its scattering effect on > 1 MeV electrons is relatively slow. Although an additional loss process is required to fully explain the overestimated electron fluxes at multi-MeV, the combined physical processes of radial diffusion and pitch angle and energy diffusion by chorus and hiss reproduce the observed electron dynamics remarkably well, suggesting that quasi-linear diffusion theory is reasonable to evaluate radiation belt electron dynamics during this big storm.« less

  4. The influence of simultaneous integrated boost, hypofractionation and oncoplastic surgery on cosmetic outcome and PROMs after breast conserving therapy.

    PubMed

    Lansu, J T P; Essers, M; Voogd, A C; Luiten, E J T; Buijs, C; Groenendaal, N; Poortmans, P M H

    2015-10-01

    We retrospectively investigated the possible influence of a simultaneous integrated boost (SIB), hypofractionation and oncoplastic surgery on cosmetic outcome in 125 patients with stage I-II breast cancer treated with breast conserving therapy (BCT). The boost was given sequentially (55%) or by SIB (45%); fractionation was conventional (83%) or hypofractionated (17%); the surgical technique was a conventional lumpectomy (74%) or an oncoplastic technique (26%). We compared cosmetic results subjectively using a questionnaire independently completed by the patient and by the physician and objectively with the BCCT.core software. Independent-samples T-tests were used to compare outcome in different groups. Patients also completed the EORTC QLQ C30 and BR23. Univariate analyses indicated no significant differences of the cosmetic results (P ≤ 0.05) for the type of boost or fractionation. However, the conventional lumpectomy group scored significantly better than the oncoplastic group in the BCCT.core evaluation, without a significant difference in the subjective cosmetic evaluation. Quality of life outcome was in favour of SIB, hypofractionation and conventional surgery. Our study indicates that the current RT techniques seem to be safe for cosmetic outcome and quality of life. Further investigation is needed to verify the possible negative influence of oncoplastic surgery on the cosmetic outcome and the quality of life as this technique is especially indicated for patients with an unfavourable tumour/breast volume ratio. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Hypofractionated Volumetric Modulated Arc Radiotherapy with simultaneous Elective Nodal Irradiation is feasible in prostate cancer patients: A single institution experience.

    PubMed

    Hegazy, Mohamed W; Mahmood, Rana I; Al Otaibi, Mohammed F; Khalil, Ehab M

    2016-06-01

    To assess feasibility, toxicity and biochemical relapse-free survival (b-RFS) for a group of organ confined (OC) Saudi prostate cancer patients treated by hypo-fractionated Volumetric Modulated Arc Radiation Therapy (VMAT) Simultaneous Integrated Boost (SIB) Elective Nodal Irradiation (ENI) whole pelvic radiotherapy (WPRT). Between March 2009 and January 2014, 29 OC prostate cancer patients; median age 64years, PS 0-1 were treated in King Faisal Specialist Hospital - Riyadh, Kingdom of Saudi Arabia using VMAT-SIB-ENI-WPRT, to a total dose of 70Gy in 28 fractions. Twenty Four patients (83%) were treated with neo-adjuvant; concurrent androgen deprivation therapy (ADT). Median follow-up (FU) was 42months (range: 18-72months). The 3-year actuarial b-RFS for low/intermediate and high risk groups were 100%, and 48%, respectively (p=0.09) with a median FU period of 34months (range: 14-53months). Gleason Score (p=0.02), and pretreatment PSA (p=0.01) were predictive for biochemical failure on univariate analysis; with no observed prostate cancer-related deaths. Grade 2 acute/late GI and GU toxicities were 28%/0% and 17%/10% respectively with no reported grade 3/4 toxicities. Four (50%) out of the 8 patients with baseline partial potency, retained sexual function on long term follow-up. Hypo-fractionation dose escalation VMAT-SIB-ENI-WPRT using 2 arcs is a feasible technique for intermediate/high risk OC prostate cancer patients, with acceptable rates of acute/late toxicities, much favorable planning target volume (PTV) coverage, and shorter overall treatment time. Prospective randomized controlled trials are encouraged to confirm its equivalence to other fractionation schemes. Copyright © 2016 National Cancer Institute, Cairo University. Production and hosting by Elsevier B.V. All rights reserved.

  6. Van Allen Probes Observations of Radiation Belt Acceleration associated with Solar Wind Shocks

    NASA Astrophysics Data System (ADS)

    Foster, J. C.; Wygant, J. R.; Baker, D. N.

    2017-12-01

    During a moderate solar wind shock event on 8 October 2013 the twin Van Allen Probes spacecraft observed the shock-induced electric field in the dayside magnetosphere and the response of the electron populations across a broad range of energies. Whereas other mechanisms populating the radiation belts close to Earth (L 3-5) take place on time scales of months (diffusion) or hours (storm and substorm effects), acceleration during shock events occurs on a much faster ( 1 minute) time scale. During this event the dayside equatorial magnetosphere experienced a strong dusk-dawn/azimuthal component of the electric field of 1 min duration. This shock-induced pulse accelerates radiation belt electrons for the length of time they are exposed to it creating "quasi-periodic pulse-like" enhancements in the relativistic (2 - 6 MeV) electron flux. Electron acceleration occurs on a time scale that is a fraction of their orbital drift period around the Earth. Those electrons whose drift velocity closely matches the azimuthal phase velocity of the shock-induced pulse stay in the accelerating wave as it propagates tailward and receive the largest increase in energy. Relativistic electron gradient drift velocities are energy-dependent, selecting a preferred range of energies (3-4 MeV) for the strongest enhancement. The time scale for shock acceleration is short with respect to the electron drift period ( 5 min), but long with respect to bounce and gyro periodicities. As a result, the third invariant is broken and the affected electron populations are displaced earthward experiencing an adiabatic energy gain. At radial distances tailward of the peak in phase space density, the impulsive inward displacement of the electron population produces a decrease in electron flux and a sequence of gradient drifting "negative holes".Dual spacecraft coverage of the 8 October 2013 event provided a before/after time sequence documenting shock effects.

  7. Laser-plasma accelerator and femtosecond photon sources-based ultrafast radiation chemistry and biophysics

    NASA Astrophysics Data System (ADS)

    Gauduel, Y. A.

    2017-02-01

    The initial distribution of energy deposition triggered by the interaction of ionizing radiations (far UV and X rays, electron, proton and accelerated ions) with molecular targets or integrated biological systems is often decisive for the spatio-temporal behavior of radiation effects that take place on several orders of magnitude. This contribution deals with an interdisciplinary approach that concerns cutting-edge advances on primary radiation events, considering the potentialities of innovating strategies based on ultrafast laser science, from femtosecond photon sources to laser-driven relativistic particles acceleration. Recent advances of powerful TW laser sources (~ 1019 Wcm-2) and laser-plasma interactions providing ultrashort relativistic particle beams in the energy domain 2.5-150 MeV open exciting opportunities for the development of high-energy radiation femtochemistry (HERF). Early radiation damages being dependent on the survival probability of secondary electrons and radial distribution of short-lived radicals inside ionization clusters, a thorough knowledge of these processes involves the real-time probing of primary events in the temporal range 10-14-10-11 s. In the framework of a closed synergy between low-energy radiation femtochemistry (LERF) and the emerging domain of HERF, the paper focuses on early phenomena that occur in the prethermal regime of low-energy secondary electrons, considering very short-lived quantum effects in aqueous environments. A high dose-rate delivered by femtosecond electron beam (~ 1011-1013 Gy s-1) can be used to investigate early radiation processes in native ionization tracks, down to 10-12 s and 10-9 m. We explain how this breakthrough favours the innovating development of real-time nanodosimetry in biologically relevant environments and open new perspectives for spatio-temporal radiation biophysics. The emerging domain of HERF would provide guidance for understanding the specific bioeffects of ultrashort particle

  8. QALMA: A computational toolkit for the analysis of quality protocols for medical linear accelerators in radiation therapy

    NASA Astrophysics Data System (ADS)

    Rahman, Md Mushfiqur; Lei, Yu; Kalantzis, Georgios

    2018-01-01

    Quality Assurance (QA) for medical linear accelerator (linac) is one of the primary concerns in external beam radiation Therapy. Continued advancements in clinical accelerators and computer control technology make the QA procedures more complex and time consuming which often, adequate software accompanied with specific phantoms is required. To ameliorate that matter, we introduce QALMA (Quality Assurance for Linac with MATLAB), a MALAB toolkit which aims to simplify the quantitative analysis of QA for linac which includes Star-Shot analysis, Picket Fence test, Winston-Lutz test, Multileaf Collimator (MLC) log file analysis and verification of light & radiation field coincidence test.

  9. Simulations of radiation pressure ion acceleration with the VEGA Petawatt laser

    NASA Astrophysics Data System (ADS)

    Stockhausen, Luca C.; Torres, Ricardo; Conejero Jarque, Enrique

    2016-09-01

    The Spanish Pulsed Laser Centre (CLPU) is a new high-power laser facility for users. Its main system, VEGA, is a CPA Ti:Sapphire laser which, in its final phase, will be able to reach Petawatt peak powers in pulses of 30 fs with a pulse contrast of 1 :1010 at 1 ps. The extremely low level of pre-pulse intensity makes this system ideally suited for studying the laser interaction with ultrathin targets. We have used the particle-in-cell (PIC) code OSIRIS to carry out 2D simulations of the acceleration of ions from ultrathin solid targets under the unique conditions provided by VEGA, with laser intensities up to 1022 W cm-2 impinging normally on 20 - 60 nm thick overdense plasmas, with different polarizations and pre-plasma scale lengths. We show how signatures of the radiation pressure-dominated regime, such as layer compression and bunch formation, are only present with circular polarization. By passively shaping the density gradient of the plasma, we demonstrate an enhancement in peak energy up to tens of MeV and monoenergetic features. On the contrary linear polarization at the same intensity level causes the target to blow up, resulting in much lower energies and broader spectra. One limiting factor of Radiation Pressure Acceleration is the development of Rayleigh-Taylor like instabilities at the interface of the plasma and photon fluid. This results in the formation of bubbles in the spatial profile of laser-accelerated proton beams. These structures were previously evidenced both experimentally and theoretically. We have performed 2D simulations to characterize this bubble-like structure and report on the dependency on laser and target parameters.

  10. Radiation Pressure Forces, the Anomalous Acceleration, and Center of Mass Motion for the TOPEX/POSEIDON Spacecraft

    NASA Technical Reports Server (NTRS)

    Kubitschek, Daniel G.; Born, George H.

    2000-01-01

    Shortly after launch of the TOPEX/POSEIDON (T/P) spacecraft (s/c), the Precision Orbit Determination (POD) Team at NASA's Goddard Space Flight Center (GSFC) and the Center for Space Research at the University of Texas, discovered residual along-track accelerations, which were unexpected. Here, we describe the analysis of radiation pressure forces acting on the T/P s/c for the purpose of understanding and providing an explanation for the anomalous accelerations. The radiation forces acting on the T/P solar army, which experiences warping due to temperature gradients between the front and back surfaces, are analyzed and the resulting along-track accelerations are determined. Characteristics similar to those of the anomalous acceleration are seen. This analysis led to the development of a new radiation form model, which includes solar array warping and a solar array deployment deflection of as large as 2 deg. As a result of this new model estimates of the empirical along-track acceleration are reduced in magnitude when compared to the GSFC tuned macromodel and are less dependent upon beta(prime), the location of the Sun relative to the orbit plane. If these results we believed to reflect the actual orientation of the T/P solar array then motion of the solar array must influence the location of the s/c center of mass. Preliminary estimates indicate that the center of mass can vary by as much as 3 cm in the radial component of the s/c's position due to rotation of the deflected, warped solar array panel .The altimeter measurements rely upon accurate knowledge of the center of mass location relative to the s/c frame of reference. Any radial motion of the center of mass directly affects the altimeter measurements.

  11. TU-G-BRA-01: Assessing Radiation-Induced Reductions in Regional Lung Perfusion Following Stereotactic Radiotherapy for Lung Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McGurk, R; Green, R; Lawrence, M

    2015-06-15

    Purpose: The dose-dependent nature of radiation therapy (RT)-induced lung injury following hypo-fractionated stereotactic RT is unclear. We herein report preliminary results of a prospective study assessing the magnitude of RT-induced reductions in regional lung perfusion following hypo-fractionated stereotactic RT. Methods: Four patients undergoing hypo-fractionated stereotactic lung RT (SBRT: 12 Gy x 4 fractions or 10 Gy x 5 fractions) had a pre-treatment SPECT (single-photon emission computed tomography) perfusion scan providing a 3D map of regional lung perfusion. Scans were repeated 3–6 months post-treatment. Pre- and post SPECT scans were registered to the planning CT scan (and hence the 3D dosemore » data). Changes in regional perfusion (counts per cc on the pre-post scans) were computed in regions of the lung exposed to different doses of radiation (in 5 Gy intervals), thus defining a dose-response function. SPECT scans were internally normalized to the regions receiving <5 Gy. Results: At 3 months post-RT, the changes in perfusion are highly variable. At 6 months, there is a consistent dose-dependent reduction in regional perfusion. The average percent decline in regional perfusion was 10% at 15–20 Gy, 20% at 20–25 Gy, and 30% at 25–30 Gy representing a relatively linear dose response with an approximate 2% reduction per Gray for doses in excess of 10 Gy. There was a subtle increase in perfusion in the lung receiving <10 Gy. Conclusion: Hypo-fractionated stereotactic RT appears to cause a dose-dependent reduction in regional lung perfusion. There appears to be a threshold effect with no apparent perfusion loss at doses <10 Gy, though this might be in part due to the normalization technique used. Additional data is needed from a larger number of patients to better assess this issue. This sort of data can be used to assist optimizing RT treatment plans that minimize the risk of lung injury. Partly supported by the NIH (CA69579) and the Lance

  12. PTV margin definition in hypofractionated IGRT of localized prostate cancer using cone beam CT and orthogonal image pairs with fiducial markers.

    PubMed

    Oehler, Christoph; Lang, Stephanie; Dimmerling, Peter; Bolesch, Christian; Kloeck, Stephan; Tini, Alessandra; Glanzmann, Christoph; Najafi, Yousef; Studer, Gabriela; Zwahlen, Daniel R

    2014-11-11

    To evaluate PTV margins for hypofractionated IGRT of prostate comparing kV/kV imaging or CBCT. Between 2009 and 2012, 20 patients with low- (LR), intermediate- (IR) and high-risk (HR) prostate cancer were treated with VMAT in supine position with fiducial markers (FM), endorectal balloon (ERB) and full bladder. CBCT's and kV/kV imaging were performed before and additional CBCT's after treatment assessing intra-fraction motion. CTVP for 5 patients with LR and CTVPSV for 5 patients with IR/HR prostate cancer were contoured independently by 3 radiation oncologists using MRI. The van Hark formula (PTV margin =2.5Σ +0.7σ) was applied to calculate PTV margins of prostate/seminal vesicles (P/PSV) using CBCT or FM. 172 and 52 CBCTs before and after RT and 507 kV/kV images before RT were analysed. Differences between FM in CBCT or in planar kV image pairs were below 1 mm. Accounting for both random and systematic uncertainties anisotropic PTV margins were 5-8 mm for P (LR) and 6-11 mm for PSV (IR/HR). Random uncertainties like intra-fraction and inter-fraction (setup) uncertainties were of similar magnitude (0.9-1.4 mm). Largest uncertainty was introduced by CTV delineation (LR: 1-2 mm, IR/HR: 1.6-3.5 mm). Patient positioning using bone matching or ERB-matching resulted in larger PTV margins. For IGRT CBCT or kV/kV-image pairs with FM are interchangeable in respect of accuracy. Especially for hypofractionated RT, PTV margins can be kept in the range of 5 mm or below if stringent daily IGRT, ideally including prostate tracking, is applied. MR-based CTV delineation optimization is recommended.

  13. Sci—Fri PM: Dosimetry—06: Commissioning of a 3D patient specific QA system for hypofractionated prostate treatments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rivest, R; Venkataraman, S; McCurdy, B

    The objective of this work is to commission the 6MV-SRS beam model in COMPASS (v2.1, IBA-Dosimetry) and validate its use for patient specific QA of hypofractionated prostate treatments. The COMPASS system consists of a 2D ion chamber array (MatriXX{sup Evolution}), an independent gantry angle sensor and associated software. The system can either directly calculate or reconstruct (using measured detector responses) a 3D dose distribution on the patient CT dataset for plan verification. Beam models are developed and commissioned in the same manner as a beam model is commissioned in a standard treatment planning system. Model validation was initially performed bymore » comparing both COMPASS calculations and reconstructions to measured open field beam data. Next, 10 hypofractionated prostate RapidArc plans were delivered to both the COMPASS system and a phantom with ion chamber and film inserted. COMPASS dose distributions calculated and reconstructed on the phantom CT dataset were compared to the chamber and film measurements. The mean (± standard deviation) difference between COMPASS reconstructed dose and ion chamber measurement was 1.4 ± 1.0%. The maximum discrepancy was 2.6%. Corresponding values for COMPASS calculation were 0.9 ± 0.9% and 2.6%, respectively. The average gamma agreement index (3%/3mm) for COMPAS reconstruction and film was 96.7% and 95.3% when using 70% and 20% dose thresholds, respectively. The corresponding values for COMPASS calculation were 97.1% and 97.1%, respectively. Based on our results, COMPASS can be used for the patient specific QA of hypofractionated prostate treatments delivered with the 6MV-SRS beam.« less

  14. Radical-intent hypofractionated radiotherapy for locally advanced non-small-cell lung cancer: a systematic review of the literature.

    PubMed

    Kaster, Tyler S; Yaremko, Brian; Palma, David A; Rodrigues, George B

    2015-03-01

    To identify survival and toxicity characteristics associated with radical-intent hypofractionated radiotherapy for the treatment of stage III non-small-cell lung cancer (NSCLC). Relevant studies were identified from a systematic PubMed search of articles published between January 1990 and January 2014. All studies were peer reviewed and included both retrospective and prospective studies of NSCLC patients being treated with radical hypofractionated radiotherapy. Data on overall survival (OS) and toxicity were extracted from each of the studies where available. Of 685 studies initially identified by the search, a total of 33 studies were found to be relevant and were included in this systematic review. The number of fractions ranged from 15 to 35, the dose per fraction ranged from 2.3 to 3.5 Gy, and the delivered dose ranged from 45.0 to 85.5 Gy. Fifteen of the studies included concurrent chemotherapy, while 18 did not. OS was found to be associated with tumor biological effective dose, with the Pearson correlation coefficient ranging from 0.34 to 0.48. For both concurrent and nonconcurrent chemoradiotherapy acute pulmonary, late esophageal and late pulmonary incidences of toxicity ranged from 1.2% to 12.2%, but had 95% confidence intervals that included zero. The greatest incidence of toxicity was acute esophageal toxicity at 14.9% (95% confidence interval, 0.7%, 29.1%). There is a moderate linear relationship between biological effective dose and OS, and greater acute esophageal toxicity with concurrent chemotherapy. Improving outcomes in stage III NSCLC may involve some form of hypofractionation in the context of systemic concurrent therapy. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. A procedure to determine the radiation isocenter size in a linear accelerator.

    PubMed

    González, A; Castro, I; Martínez, J A

    2004-06-01

    Measurement of radiation isocenter is a fundamental part of commissioning and quality assurance (QA) for a linear accelerator (linac). In this work we present an automated procedure for the analysis of the stars-shots employed in the radiation isocenter determination. Once the star-shot film has been developed and digitized, the resulting image is analyzed by scanning concentric circles centered around the intersection of the lasers that had been previously marked on the film. The center and the radius of the minimum circle intersecting the central rays are determined with an accuracy and precision better than 1% of the pixel size. The procedure is applied to the position and size determination of the radiation isocenter by means of the analysis of star-shots, placed in different planes with respect to the gantry, couch and collimator rotation axes.

  16. Cost Implications of an Evidence-Based Approach to Radiation Treatment After Lumpectomy for Early-Stage Breast Cancer

    PubMed Central

    Greenup, Rachel A.; Blitzblau, Rachel C.; Houck, Kevin L.; Sosa, Julie Ann; Horton, Janet; Peppercorn, Jeffrey M.; Taghian, Alphonse G.; Smith, Barbara L.; Hwang, E. Shelley

    2018-01-01

    Introduction Breast cancer treatment costs are rising, and identification of high-value oncology treatment strategies is increasingly needed. We sought to determine the potential cost savings associated with an evidence-based radiation treatment (RT) approach among women with early-stage breast cancer treated in the United States. Patients and Methods Using the National Cancer Database, we identified women with T1–T2 N0 invasive breast cancers treated with lumpectomy during 2011. Adjuvant RT regimens were categorized as conventionally fractionated whole-breast irradiation, hypofractionated whole-breast irradiation, and omission of RT. National RT patterns were determined, and RT costs were estimated using the Medicare Physician Fee Schedule. Results Within the 43,247 patient cohort, 64% (n = 27,697) received conventional RT, 13.3% (n = 5,724) received hypofractionated RT, 1.1% (n = 477) received accelerated partial-breast irradiation, and 21.6% (n = 9,349) received no RT. Among patients who were eligible for shorter RT or omission of RT, 57% underwent treatment with longer, more costly regimens. Estimated RT expenditures of the national cohort approximated $420.2 million during 2011, compared with $256.2 million had women been treated with the least expensive regimens for which they were safely eligible. This demonstrated a potential annual savings of $164.0 million, a 39% reduction in associated treatment costs. Conclusion Among women with early-stage breast cancer after lumpectomy, use of an evidence-based approach illustrates an example of high-value care within oncology. Identification of high-value cancer treatment strategies is critically important to maintaining excellence in cancer care while reducing health care expenditures. PMID:28291382

  17. MO-FG-BRA-05: Dosimetric and Radiobiological Validation of Respiratory Gating in Conventional and Hypofractionated Radiotherapy of the Lung: Effect of Dose, Dose Rate, Gating Window and Breathing Pattern

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cervino, L; Soultan, D; Pettersson, N

    2016-06-15

    Purpose: to evaluate the dosimetric and radiobiological consequences from having different gating windows, dose rates, and breathing patterns in gated VMAT lung radiotherapy. Methods: A novel 3D-printed moving phantom with central high and peripheral low tracer uptake regions was 4D FDG-PET/CT-scanned using ideal, patient-specific regular, and irregular breathing patterns. A scan of the stationary phantom was obtained as a reference. Target volumes corresponding to different uptake regions were delineated. Simultaneous integrated boost (SIB) 6 MV VMAT plans were produced for conventional and hypofractionated radiotherapy, using 30–70 and 100% cycle gating scenarios. Prescribed doses were 200 cGy with SIB to 240more » cGy to high uptake volume for conventional, and 800 with SIB to 900 cGy for hypofractionated plans. Dose rates of 600 MU/min (conventional and hypofractionated) and flattening filter free 1400 MU/min (hypofractionated) were used. Ion chamber measurements were performed to verify delivered doses. Vials with A549 cells placed in locations matching ion chamber measurements were irradiated using the same plans to measure clonogenic survival. Differences in survival for the different doses, dose rates, gating windows, and breathing patterns were analyzed. Results: Ion chamber measurements agreed within 3% of the planned dose, for all locations, breathing patterns and gating windows. Cell survival depended on dose alone, and not on gating window, breathing pattern, MU rate, or delivery time. The surviving fraction varied from approximately 40% at 2Gy to 1% for 9 Gy and was within statistical uncertainty relative to that observed for the stationary phantom. Conclusions: Use of gated VMAT in PET-driven SIB radiotherapy was validated using ion chamber measurements and cell survival assays for conventional and hypofractionated radiotherapy.« less

  18. [Combined palliative hypofractionated radiation and carboplatin chemotherapy of intranasal tumours in dogs].

    PubMed

    Schwietzer, A; Kessler, M; Kandel-Tschiederer, B

    2012-10-17

    Combination therapy of intranasal tumours in dogs with palliative 60 cobalt radiation and carboplatin chemotherapy. Twenty-five dogs with intranasal tumours were treated in the Hofheim Veterinary Hospital (Germany) from 2004 to 2006 with a total radiation dose of 24Gy (3 fractions of 8 Gy on days 0, 7 and 21) and five doses of Carboplatin (270-300 mg/m² BSA i.v. every 21-28 days). In 88% patients, clinical symptoms subsided partially or completely resulting in improvement in quality of life. Computed tomography revealed partial (5/25) or complete (5/25) tumour remissions. Chemotherapy was well tolerated. Radiation therapy caused no or minimal side effects except for 3 dogs (12%), which experienced serious ocular side effects resulting in loss of vision of the affected eye and one dog with epileptic seizures. Survival times ranged from 10-639 days with a median of 156 days. There was no statistically significant correlation between the parameters breed, age, sex, brain invasion or tumour stage and survival time or progression free interval. Survival time and progression free interval were significantly correlated with the degree of tumour remission. It can be concluded from this study that palliative radiation therapy combined with chemotherapy results in excellent palliation of clinical symptoms and acceptable survival times. There was no advantage of combined therapy (radiation with carboplatin) when compared to literature data on results of radiation therapy alone.

  19. TU-H-BRA-06: Characterization of a Linear Accelerator Operating in a Compact MRIGuided Radiation Therapy System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Green, O; Mutic, S; Li, H

    2016-06-15

    Purpose: To describe the performance of a linear accelerator operating in a compact MRI-guided radiation therapy system. Methods: A commercial linear accelerator was placed in an MRI unit that is employed in a commercial MR-based image guided radiation therapy (IGRT) system. The linear accelerator components were placed within magnetic field-reducing hardware that provided magnetic fields of less than 40 G for the magnetron, gun driver, and port circulator, with 1 G for the linear accelerator. The system did not employ a flattening filter. The test linear accelerator was an industrial 4 MV model that was employed to test the abilitymore » to run an accelerator in the MR environment. An MR-compatible diode detector array was used to measure the beam profiles with the accelerator outside and inside the MR field and with the gradient coils on and off to examine if there was any effect on the delivered dose distribution. The beam profiles and time characteristics of the beam were measured. Results: The beam profiles exhibited characteristic unflattened Bremsstrahlung features with less than ±1.5% differences in the profile magnitude when the system was outside and inside the magnet and less than 1% differences with the gradient coils on and off. The central axis dose rate fluctuated by less than 1% over a 30 second period when outside and inside the MRI. Conclusion: A linaccompatible MR design has been shown to be effective in not perturbing the operation of a commercial linear accelerator. While the accelerator used in the tests was 4MV, there is nothing fundamentally different with the operation of a 6MV unit, implying that the design will enable operation of the proposed clinical unit. Research funding provided by ViewRay, Inc.« less

  20. Terahertz radiation source using a high-power industrial electron linear accelerator

    NASA Astrophysics Data System (ADS)

    Kalkal, Yashvir; Kumar, Vinit

    2017-04-01

    High-power (˜ 100 kW) industrial electron linear accelerators (linacs) are used for irradiations, e.g., for pasteurization of food products, disinfection of medical waste, etc. We propose that high-power electron beam from such an industrial linac can first pass through an undulator to generate useful terahertz (THz) radiation, and the spent electron beam coming out of the undulator can still be used for the intended industrial applications. This will enhance the utilization of a high-power industrial linac. We have performed calculation of spontaneous emission in the undulator to show that for typical parameters, continuous terahertz radiation having power of the order of μW can be produced, which may be useful for many scientific applications such as multispectral imaging of biological samples, chemical samples etc.

  1. Introduction of Parallel GPGPU Acceleration Algorithms for the Solution of Radiative Transfer

    NASA Technical Reports Server (NTRS)

    Godoy, William F.; Liu, Xu

    2011-01-01

    General-purpose computing on graphics processing units (GPGPU) is a recent technique that allows the parallel graphics processing unit (GPU) to accelerate calculations performed sequentially by the central processing unit (CPU). To introduce GPGPU to radiative transfer, the Gauss-Seidel solution of the well-known expressions for 1-D and 3-D homogeneous, isotropic media is selected as a test case. Different algorithms are introduced to balance memory and GPU-CPU communication, critical aspects of GPGPU. Results show that speed-ups of one to two orders of magnitude are obtained when compared to sequential solutions. The underlying value of GPGPU is its potential extension in radiative solvers (e.g., Monte Carlo, discrete ordinates) at a minimal learning curve.

  2. Synchrotron radiation and diffusive shock acceleration - A short review and GRB perspective

    NASA Astrophysics Data System (ADS)

    Karlica, Mile

    2015-12-01

    In this talk we present the sponge" model and its possible implications on the GRB afterglow light curves. "Sponge" model describes source of GRB afterglow radiation as fragmented GRB ejecta where bubbles move through the rarefied medium. In the first part of the talk a short introduction to synchrotron radiation and Fermi acceleration was presented. In the assumption that X-ray luminosity of GRB afterglow phase comes from the kinetic energy losses of clouds in ejecta medium radiated as synchrotron radiation we solved currently very simple equation of motion to find which combination of cloud and medium regime describes the afterglow light curve the best. We proposed for the first step to watch simple combinations of expansion regimes for both bubbles and surrounding medium. The closest case to the numerical fit of GRB 150403A with time power law index k = 1.38 is the combination of constant bubbles and Sedov like expanding medium with time power law index k = 1.25. Of course the question of possible mixture of variuos regime combinations is still open within this model.

  3. Symptomatic Radiation Pneumonitis After Accelerated Partial Breast Irradiation Using Three-dimensional Conformal Radiotherapy.

    PubMed

    Shikama, Naoto; Kumazaki, Y U; Miyazawa, Kazunari; Miyaura, Kazunori; Kato, Shingo; Nakamura, Naoki; Kawamori, Jiro; Shimizuguchi, Takuya; Saito, Naoko; Saeki, Toshiaki

    2016-05-01

    To examine the relationship between symptomatic radiation pneumonitis and lung dose-volume parameters for patients receiving accelerated partial breast irradiation (APBI) using three dimensional-conformal radiotherapy (3D-CRT). The prescribed radiation dose was 30 Gy in 5 fractions over 10 days. Toxicity was graded according to the Common Terminology Criteria for Adverse Events (version 4.0). Fifty-five patients were enrolled from August 2010 to October 2013 and the median follow-up time was 30 months (range=18-46 months). Three patients (5%) developed grade 2 symptomatic radiation pneumonitis after 3D-CRT APBI. Among 16 patients with ILV10Gy (% ipsilateral lung receiving ≥10 Gy) of 10% or higher, three patients (19%) developed symptomatic radiation pneumonitis. This trend was not observed in any of the patients with ILV10Gy less than 10% (p=0.005). High ILV10Gy might be associated with symptomatic radiation pneumonitis after 3D-CRT APBI. Copyright© 2016 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  4. Machine and radiation protection challenges of high energy/intensity accelerators: the role of Monte Carlo calculations

    NASA Astrophysics Data System (ADS)

    Cerutti, F.

    2017-09-01

    The role of Monte Carlo calculations in addressing machine protection and radiation protection challenges regarding accelerator design and operation is discussed, through an overview of different applications and validation examples especially referring to recent LHC measurements.

  5. P13.11USAGE OF CYBER KNIFE HYPOFRACTIONATED RADIOSURGERY IN HIGH GRADE GLIOMAS COMPLEX TREATMENT

    PubMed Central

    Glavatskyi, O.; Buryk, V.M.; Kardash, K.A.; Pylypas, O.P.; Chebotaryova, T.I.

    2014-01-01

    INTRODUCTION: A complex approach to the treatment of malignant brain tumors includes maximum surgical resection, radiotherapy and chemotherapy. The purpose of the current study is to review retrospectively the ability of Cyber Knife (“Accuray Incorporated”, Sunnyvale, CA, USA) radiosurgery to provide local tumor control of newly diagnosed or recurrent malignant brain tumors. MATERIAL AND METHOD: 26 patients with malignant brain tumors (glioblastoma multiform (GBM) - 14 patients, anaplastic astrocytoma (AA) - 12 patients) were treated in 2012-2013 with Cyber Knife stereotactic radiosurgery. Before radiosurgery 8 patients had complete removal of the tumor, 9 patients had subtotal resection and 9 patients had biopsy. 17 patients received adjuvant chemotherapy with temozolomide according to the different treatment protocols. 9 patients who were previously irradiated received re-irradiation. In all patients CT, MRI, PET (native, enhanced, CT-perfusion, MRI-diffusion (DWI) studies) before and after treatment were performed with (3, 6, 12, 18 month follow up). The volume of tumors ranged from 10-12 cm3 to 101,1 cm3. The maximum mean dose of irradiation applied was 36.99 Gy (ranged from 21,3 Gy to 48,8 Gy). 3-6 fractions of hypofractionated treatment were used. RESULTS: At this stage of the study, we assessed the absence of complications after stereotactic hypofractionated radiosurgery. Objective survival evaluation has being performed in 12-24 months after radiosurgical treatment. A significant decrease in the number and severity of seizures was seen in 7 patients out of 21 (33 %). 18 patients (64%) had regression of limb weakness. In case of biopsy 7 of 9 tumors (78 %) showed a decrease in volume. In patients with clinical deterioration (3 patients) repeated surgical treatment was performed. All of them had signs of post-irradiation necrosis and pathomorphosis in tumor tissue. Median overall survival and progression free survival were 17 months and 11 months

  6. Experimental Evidence of Radiation Reaction in the Collision of a High-Intensity Laser Pulse with a Laser-Wakefield Accelerated Electron Beam

    NASA Astrophysics Data System (ADS)

    Cole, J. M.; Behm, K. T.; Gerstmayr, E.; Blackburn, T. G.; Wood, J. C.; Baird, C. D.; Duff, M. J.; Harvey, C.; Ilderton, A.; Joglekar, A. S.; Krushelnick, K.; Kuschel, S.; Marklund, M.; McKenna, P.; Murphy, C. D.; Poder, K.; Ridgers, C. P.; Samarin, G. M.; Sarri, G.; Symes, D. R.; Thomas, A. G. R.; Warwick, J.; Zepf, M.; Najmudin, Z.; Mangles, S. P. D.

    2018-02-01

    The dynamics of energetic particles in strong electromagnetic fields can be heavily influenced by the energy loss arising from the emission of radiation during acceleration, known as radiation reaction. When interacting with a high-energy electron beam, today's lasers are sufficiently intense to explore the transition between the classical and quantum radiation reaction regimes. We present evidence of radiation reaction in the collision of an ultrarelativistic electron beam generated by laser-wakefield acceleration (ɛ >500 MeV ) with an intense laser pulse (a0>10 ). We measure an energy loss in the postcollision electron spectrum that is correlated with the detected signal of hard photons (γ rays), consistent with a quantum description of radiation reaction. The generated γ rays have the highest energies yet reported from an all-optical inverse Compton scattering scheme, with critical energy ɛcrit>30 MeV .

  7. Radiation pressure acceleration of corrugated thin foils by Gaussian and super-Gaussian beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adusumilli, K.; Goyal, D.; Tripathi, V. K.

    Rayleigh-Taylor instability of radiation pressure accelerated ultrathin foils by laser having Gaussian and super-Gaussian intensity distribution is investigated using a single fluid code. The foil is allowed to have ring shaped surface ripples. The radiation pressure force on such a foil is non-uniform with finite transverse component F{sub r}; F{sub r} varies periodically with r. Subsequently, the ripple grows as the foil moves ahead along z. With a Gaussian beam, the foil acquires an overall curvature due to non-uniformity in radiation pressure and gets thinner. In the process, the ripple perturbation is considerably washed off. With super-Gaussian beam, the ripplemore » is found to be more strongly washed out. In order to avoid transmission of the laser through the thinning foil, a criterion on the foil thickness is obtained.« less

  8. Accelerated hematopoietic toxicity by high energy (56)Fe radiation.

    PubMed

    Datta, Kamal; Suman, Shubhankar; Trani, Daniela; Doiron, Kathryn; Rotolo, Jimmy A; Kallakury, Bhaskar V S; Kolesnick, Richard; Cole, Michael F; Fornace, Albert J

    2012-03-01

    There is little information on the relative toxicity of highly charged (Z) high-energy (HZE) radiation in animal models compared to γ or X-rays, and the general assumption based on in vitro studies has been that acute toxicity is substantially greater. C57BL/6J mice were irradiated with (56)Fe ions (1 GeV/nucleon), and acute (within 30 d) toxicity compared to that of γ rays or protons (1 GeV). To assess relative hematopoietic and gastrointestinal toxicity, the effects of (56)Fe ions were compared to γ rays using complete blood count (CBC), bone marrow granulocyte-macrophage colony forming unit (GM-CFU), terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay for apoptosis in bone marrow, and intestinal crypt survival. Although onset was more rapid, (56)Fe ions were only slightly more toxic than γ rays or protons with lethal dose (LD)(50/30) (a radiation dose at which 50% lethality occurs at 30-day) values of 5.8, 7.25, and 6.8 Gy, respectively, with relative biologic effectiveness for (56)Fe ions of 1.25 and 1.06 for protons. (56)Fe radiation caused accelerated and more severe hematopoietic toxicity. Early mortality correlated with more profound leukopenia and subsequent sepsis. Results indicate that there is selective enhanced toxicity to bone marrow progenitor cells, which are typically resistant to γ rays, and bone marrow stem cells, because intestinal crypt cells did not show increased HZE toxicity.

  9. Hypofractionated radiosurgery for intact or resected brain metastases: defining the optimal dose and fractionation.

    PubMed

    Eaton, Bree R; Gebhardt, Brian; Prabhu, Roshan; Shu, Hui-Kuo; Curran, Walter J; Crocker, Ian

    2013-06-07

    Hypofractionated Radiosurgery (HR) is a therapeutic option for delivering partial brain radiotherapy (RT) to large brain metastases or resection cavities otherwise not amenable to single fraction radiosurgery (SRS). The use, safety and efficacy of HR for brain metastases is not well characterized and the optimal RT dose-fractionation schedule is undefined. Forty-two patients treated with HR in 3-5 fractions for 20 (48%) intact and 22 (52%) resected brain metastases with a median maximum dimension of 3.9 cm (0.8-6.4 cm) between May 2008 and August 2011 were reviewed. Twenty-two patients (52%) had received prior radiation therapy. Local (LC), intracranial progression free survival (PFS) and overall survival (OS) are reported and analyzed for relationship to multiple RT variables through Cox-regression analysis. The most common dose-fractionation schedules were 21 Gy in 3 fractions (67%), 24 Gy in 4 fractions (14%) and 30 Gy in 5 fractions (12%). After a median follow-up time of 15 months (range 2-41), local failure occurred in 13 patients (29%) and was a first site of failure in 6 patients (14%). Kaplan-Meier estimates of 1 year LC, intracranial PFS, and OS are: 61% (95% CI 0.53 - 0.70), 55% (95% CI 0.47 - 0.63), and 73% (95% CI 0.65 - 0.79), respectively. Local tumor control was negatively associated with PTV volume (p = 0.007) and was a significant predictor of OS (HR 0.57, 95% CI 0.33 - 0.98, p = 0.04). Symptomatic radiation necrosis occurred in 3 patients (7%). HR is well tolerated in both new and recurrent, previously irradiated intact or resected brain metastases. Local control is negatively associated with PTV volume and a significant predictor of overall survival, suggesting a need for dose escalation when using HR for large intracranial lesions.

  10. Relativistic klystron driven compact high gradient accelerator as an injector to an X-ray synchrotron radiation ring

    DOEpatents

    Yu, David U. L.

    1990-01-01

    A compact high gradient accelerator driven by a relativistic klystron is utilized to inject high energy electrons into an X-ray synchrotron radiation ring. The high gradients provided by the relativistic klystron enables accelerator structure to be much shorter (typically 3 meters) than conventional injectors. This in turn enables manufacturers which utilize high energy, high intensity X-rays to produce various devices, such as computer chips, to do so on a cost effective basis.

  11. Singular F(R) cosmology unifying early- and late-time acceleration with matter and radiation domination era

    NASA Astrophysics Data System (ADS)

    Odintsov, S. D.; Oikonomou, V. K.

    2016-06-01

    We present some cosmological models which unify the late- and early-time acceleration eras with the radiation and the matter domination era, and we realize the cosmological models by using the theoretical framework of F(R) gravity. Particularly, the first model unifies the late- and early-time acceleration with the matter domination era, and the second model unifies all the evolution eras of our Universe. The two models are described in the same way at early and late times, and only the intermediate stages of the evolution have some differences. Each cosmological model contains two Type IV singularities which are chosen to occur one at the end of the inflationary era and one at the end of the matter domination era. The cosmological models at early times are approximately identical to the R 2 inflation model, so these describe a slow-roll inflationary era which ends when the slow-roll parameters become of order one. The inflationary era is followed by the radiation era and after that the matter domination era follows, which lasts until the second Type IV singularity, and then the late-time acceleration era follows. The models have two appealing features: firstly they produce a nearly scale invariant power spectrum of primordial curvature perturbations and a scalar-to-tensor ratio which are compatible with the most recent observational data and secondly, it seems that the deceleration-acceleration transition is crucially affected by the presence of the second Type IV singularity which occurs at the end of the matter domination era. As we demonstrate, the Hubble horizon at early times shrinks, as expected for an initially accelerating Universe, then during the matter domination era, it expands and finally after the Type IV singularity, the Hubble horizon starts to shrink again, during the late-time acceleration era. Intriguingly enough, the deceleration-acceleration transition, occurs after the second Type IV singularity. In addition, we investigate which F(R) gravity

  12. Photon bubbles and ion acceleration in a plasma dominated by the radiation pressure of an electromagnetic pulse.

    PubMed

    Pegoraro, F; Bulanov, S V

    2007-08-10

    The stability of a thin plasma foil accelerated by the radiation pressure of a high intensity electromagnetic (e.m.) pulse is investigated analytically and with particle in cell numerical simulations. It is shown that the onset of a Rayleigh-Taylor-like instability can lead to transverse bunching of the foil and to broadening of the energy spectrum of fast ions. The use of a properly tailored e.m. pulse with a sharp intensity rise can stabilize the foil acceleration.

  13. Expanding the use of real-time electromagnetic tracking in radiation oncology.

    PubMed

    Shah, Amish P; Kupelian, Patrick A; Willoughby, Twyla R; Meeks, Sanford L

    2011-11-15

    In the past 10 years, techniques to improve radiotherapy delivery, such as intensity-modulated radiation therapy (IMRT), image-guided radiation therapy (IGRT) for both inter- and intrafraction tumor localization, and hypofractionated delivery techniques such as stereotactic body radiation therapy (SBRT), have evolved tremendously. This review article focuses on only one part of that evolution, electromagnetic tracking in radiation therapy. Electromagnetic tracking is still a growing technology in radiation oncology and, as such, the clinical applications are limited, the expense is high, and the reimbursement is insufficient to cover these costs. At the same time, current experience with electromagnetic tracking applied to various clinical tumor sites indicates that the potential benefits of electromagnetic tracking could be significant for patients receiving radiation therapy. Daily use of these tracking systems is minimally invasive and delivers no additional ionizing radiation to the patient, and these systems can provide explicit tumor motion data. Although there are a number of technical and fiscal issues that need to be addressed, electromagnetic tracking systems are expected to play a continued role in improving the precision of radiation delivery.

  14. Hypofractionation Results in Reduced Tumor Cell Kill Compared to Conventional Fractionation for Tumors With Regions of Hypoxia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carlson, David J., E-mail: david.j.carlson@yale.ed; Yale University School of Medicine, Department of Therapeutic Radiology, New Haven, CT; Keall, Paul J.

    2011-03-15

    Purpose: Tumor hypoxia has been observed in many human cancers and is associated with treatment failure in radiation therapy. The purpose of this study is to quantify the effect of different radiation fractionation schemes on tumor cell killing, assuming a realistic distribution of tumor oxygenation. Methods and Materials: A probability density function for the partial pressure of oxygen in a tumor cell population is quantified as a function of radial distance from the capillary wall. Corresponding hypoxia reduction factors for cell killing are determined. The surviving fraction of a tumor consisting of maximally resistant cells, cells at intermediate levels ofmore » hypoxia, and normoxic cells is calculated as a function of dose per fraction for an equivalent tumor biological effective dose under normoxic conditions. Results: Increasing hypoxia as a function of distance from blood vessels results in a decrease in tumor cell killing for a typical radiotherapy fractionation scheme by a factor of 10{sup 5} over a distance of 130 {mu}m. For head-and-neck cancer and prostate cancer, the fraction of tumor clonogens killed over a full treatment course decreases by up to a factor of {approx}10{sup 3} as the dose per fraction is increased from 2 to 24 Gy and from 2 to 18 Gy, respectively. Conclusions: Hypofractionation of a radiotherapy regimen can result in a significant decrease in tumor cell killing compared to standard fractionation as a result of tumor hypoxia. There is a potential for large errors when calculating alternate fractionations using formalisms that do not account for tumor hypoxia.« less

  15. Accelerated Hematopoietic Toxicity by High Energy 56Fe Radiation

    PubMed Central

    Datta, Kamal; Suman, Shubhankar; Trani, Daniela; Doiron, Kathryn; Rotolo, Jimmy A.; Kallakury, Bhaskar V. S.; Kolesnick, Richard; Cole, Michael F.; Fornace, Albert J.

    2013-01-01

    Purpose There is little information on the relative toxicity of highly charged (Z) high-energy (HZE) radiation in animal models compared to γ or x-rays, and the general assumption based on in vitro studies has been that acute toxicity is substantially greater. Methods C57BL/6J mice were irradiated with 56Fe ions (1 GeV/nucleon), and acute (within 30 d) toxicity compared to that of γ rays or protons (1 GeV). To assess relative hematopoietic and gastrointestinal toxicity, the effects of 56Fe ions were compared to γ rays using complete blood count (CBC), bone marrow granulocyte-macrophage colony forming unit (GM-CFU), terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay for apoptosis in bone marrow, and intestinal crypt survival. Results Although onset was more rapid, 56Fe ions were only slightly more toxic than γ rays or protons with lethal dose (LD)50/30 (a radiation dose at which 50% lethality occurs at 30-day) values of 5.8, 7.25, and 6.8 Gy respectively with relative biologic effectiveness for 56Fe ions of 1.25 and 1.06 for protons. Conclusions 56Fe radiation caused accelerated and more severe hematopoietic toxicity. Early mortality correlated with more profound leukopenia and subsequent sepsis. Results indicate that there is selective enhanced toxicity to bone marrow progenitor cells, which are typically resistant to γ rays, and bone marrow stem cells, because intestinal crypt cells did not show increased HZE toxicity. PMID:22077279

  16. Big Data and Comparative Effectiveness Research in Radiation Oncology: Synergy and Accelerated Discovery.

    PubMed

    Trifiletti, Daniel M; Showalter, Timothy N

    2015-01-01

    Several advances in large data set collection and processing have the potential to provide a wave of new insights and improvements in the use of radiation therapy for cancer treatment. The era of electronic health records, genomics, and improving information technology resources creates the opportunity to leverage these developments to create a learning healthcare system that can rapidly deliver informative clinical evidence. By merging concepts from comparative effectiveness research with the tools and analytic approaches of "big data," it is hoped that this union will accelerate discovery, improve evidence for decision making, and increase the availability of highly relevant, personalized information. This combination offers the potential to provide data and analysis that can be leveraged for ultra-personalized medicine and high-quality, cutting-edge radiation therapy.

  17. Non-LTE radiative transfer with lambda-acceleration - Convergence properties using exact full and diagonal lambda-operators

    NASA Technical Reports Server (NTRS)

    Macfarlane, J. J.

    1992-01-01

    We investigate the convergence properties of Lambda-acceleration methods for non-LTE radiative transfer problems in planar and spherical geometry. Matrix elements of the 'exact' A-operator are used to accelerate convergence to a solution in which both the radiative transfer and atomic rate equations are simultaneously satisfied. Convergence properties of two-level and multilevel atomic systems are investigated for methods using: (1) the complete Lambda-operator, and (2) the diagonal of the Lambda-operator. We find that the convergence properties for the method utilizing the complete Lambda-operator are significantly better than those of the diagonal Lambda-operator method, often reducing the number of iterations needed for convergence by a factor of between two and seven. However, the overall computational time required for large scale calculations - that is, those with many atomic levels and spatial zones - is typically a factor of a few larger for the complete Lambda-operator method, suggesting that the approach should be best applied to problems in which convergence is especially difficult.

  18. SU-F-J-130: Margin Determination for Hypofractionated Partial Breast Irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Geady, C; Keller, B; Hahn, E

    2016-06-15

    Purpose: To determine the Planning Target Volume (PTV) margin for Hypofractionated Partial Breast Irradiation (HPBI) using the van Herk formalism (M=2.5∑+0.7σ). HPBI is a novel technique intended to provide local control in breast cancer patients not eligible for surgical resection, using 40 Gy in 5 fractions prescribed to the gross disease. Methods: Setup uncertainties were quantified through retrospective analysis of cone-beam computed tomography (CBCT) data sets, collected prior to (prefraction) and after (postfraction) treatment delivery. During simulation and treatment, patients were immobilized using a wing board and an evacuated bag. Prefraction CBCT was rigidly registered to planning 4-dimensional computed tomographymore » (4DCT) using the chest wall and tumor, and translational couch shifts were applied as needed. This clinical workflow was faithfully reproduced in Pinnacle (Philips Medical Systems) to yield residual setup and intrafractional error through translational shifts and rigid registrations (ribs and sternum) of prefraction CBCT to 4DCT and postfraction CBCT to prefraction CBCT, respectively. All ten patients included in this investigation were medically inoperable; the median age was 84 (range, 52–100) years. Results: Systematic (and random) setup uncertainties (in mm) detected for the left-right, craniocaudal and anteroposterior directions were 0.4 (1.5), 0.8 (1.8) and 0.4 (1.0); net uncertainty was determined to be 0.7 (1.5). Rotations >2° in any axis occurred on 8/72 (11.1%) registrations. Conclusion: Preliminary results suggest a non-uniform setup margin (in mm) of 2.2, 3.3 and 1.7 for the left-right, craniocaudal and anteroposterior directions is required for HPBI, given its immobilization techniques and online setup verification protocol. This investigation is ongoing, though published results from similar studies are consistent with the above findings. Determination of margins in breast radiotherapy is a paradigm shift, but a

  19. Error-Rate Estimation Based on Multi-Signal Flow Graph Model and Accelerated Radiation Tests.

    PubMed

    He, Wei; Wang, Yueke; Xing, Kefei; Deng, Wei; Zhang, Zelong

    2016-01-01

    A method of evaluating the single-event effect soft-error vulnerability of space instruments before launched has been an active research topic in recent years. In this paper, a multi-signal flow graph model is introduced to analyze the fault diagnosis and meantime to failure (MTTF) for space instruments. A model for the system functional error rate (SFER) is proposed. In addition, an experimental method and accelerated radiation testing system for a signal processing platform based on the field programmable gate array (FPGA) is presented. Based on experimental results of different ions (O, Si, Cl, Ti) under the HI-13 Tandem Accelerator, the SFER of the signal processing platform is approximately 10-3(error/particle/cm2), while the MTTF is approximately 110.7 h.

  20. The CSU Accelerator and FEL Facility

    NASA Astrophysics Data System (ADS)

    Biedron, Sandra; Milton, Stephen; D'Audney, Alex; Edelen, Jonathan; Einstein, Josh; Harris, John; Hall, Chris; Horovitz, Kahren; Martinez, Jorge; Morin, Auralee; Sipahi, Nihan; Sipahi, Taylan; Williams, Joel

    2014-03-01

    The Colorado State University (CSU) Accelerator Facility will include a 6-MeV L-Band electron linear accelerator (linac) with a free-electron laser (FEL) system capable of producing Terahertz (THz) radiation, a laser laboratory, a microwave test stand, and a magnetic test stand. The photocathode drive linac will be used in conjunction with a hybrid undulator capable of producing THz radiation. Details of the systems used in CSU Accelerator Facility are discussed.

  1. Recording the synchrotron radiation by a picosecond streak camera for bunch diagnostics in cyclic accelerators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vereshchagin, A K; Vorob'ev, N S; Gornostaev, P B

    2016-02-28

    A PS-1/S1 picosecond streak camera with a linear sweep is used to measure temporal characteristics of synchrotron radiation pulses on a damping ring (DR) at the Budker Institute of Nuclear Physics (BINP) of the Siberian Branch of the Russian Academy of Sciences (Novosibirsk). The data obtained allow a conclusion as to the formation processes of electron bunches and their 'quality' in the DR after injection from the linear accelerator. The expediency of employing the streak camera as a part of an optical diagnostic accelerator complex for adjusting the injection from a linear accelerator is shown. Discussed is the issue ofmore » designing a new-generation dissector with a time resolution up to a few picoseconds, which would allow implementation of a continuous bunch monitoring in the DR during mutual work with the electron-positron colliders at the BINP. (acoustooptics)« less

  2. Application accelerator system having bunch control

    DOEpatents

    Wang, Dunxiong; Krafft, Geoffrey Arthur

    1999-01-01

    An application accelerator system for monitoring the gain of a free electron laser. Coherent Synchrotron Radiation (CSR) detection techniques are used with a bunch length monitor for ultra short, picosec to several tens of femtosec, electron bunches. The monitor employs an application accelerator, a coherent radiation production device, an optical or beam chopping device, an infrared radiation collection device, a narrow-banding filter, an infrared detection device, and a control.

  3. Laser Acceleration of Ions for Radiation Therapy

    NASA Astrophysics Data System (ADS)

    Tajima, Toshiki; Habs, Dietrich; Yan, Xueqing

    Ion beam therapy for cancer has proven to be a successful clinical approach, affording as good a cure as surgery and a higher quality of life. However, the ion beam therapy installation is large and expensive, limiting its availability for public benefit. One of the hurdles is to make the accelerator more compact on the basis of conventional technology. Laser acceleration of ions represents a rapidly developing young field. The prevailing acceleration mechanism (known as target normal sheath acceleration, TNSA), however, shows severe limitations in some key elements. We now witness that a new regime of coherent acceleration of ions by laser (CAIL) has been studied to overcome many of these problems and accelerate protons and carbon ions to high energies with higher efficiencies. Emerging scaling laws indicate possible realization of an ion therapy facility with compact, cost-efficient lasers. Furthermore, dense particle bunches may allow the use of much higher collective fields, reducing the size of beam transport and dump systems. Though ultimate realization of a laser-driven medical facility may take many years, the field is developing fast with many conceptual innovations and technical progress.

  4. Investigation of radiative bow-shocks in magnetically accelerated plasma flows

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bott-Suzuki, S. C., E-mail: sbottsuzuki@ucsd.edu; Caballero Bendixsen, L. S.; Cordaro, S. W.

    2015-05-15

    We present a study of the formation of bow shocks in radiatively cooled plasma flows. This work uses an inverse wire array to provide a quasi-uniform, large scale hydrodynamic flow accelerated by Lorentz forces to supersonic velocities. This flow impacts a stationary object placed in its path, forming a well-defined Mach cone. Interferogram data are used to determine a Mach number of ∼6, which may increase with radial position suggesting a strongly cooling flow. Self-emission imaging shows the formation of a thin (<60 μm) strongly emitting shock region, where T{sub e} ∼ 40–50 eV, and rapid cooling behind the shock. Emission is observed upstreammore » of the shock position which appears consistent with a radiation driven phenomenon. Data are compared to 2-dimensional simulations using the Gorgon MHD code, which show good agreement with the experiments. The simulations are also used to investigate the effect of magnetic field in the target, demonstrating that the bow-shocks have a high plasma β, and the influence of B-field at the shock is small. This consistent with experimental measurement with micro bdot probes.« less

  5. PHYSICS OF OUR DAYS Physical conditions in potential accelerators of ultra-high-energy cosmic rays: updated Hillas plot and radiation-loss constraints

    NASA Astrophysics Data System (ADS)

    Ptitsyna, Kseniya V.; Troitsky, Sergei V.

    2010-10-01

    We review basic constraints on the acceleration of ultra-high-energy (UHE) cosmic rays (CRs) in astrophysical sources, namely, the geometric (Hillas) criterion and the restrictions from radiation losses in different acceleration regimes. Using the latest available astrophysical data, we redraw the Hillas plot and find potential UHECR accelerators. For the acceleration in the central engines of active galactic nuclei, we constrain the maximal UHECR energy for a given black hole mass. Among active galaxies, only the most powerful ones, radio galaxies and blazars, are able to accelerate protons to UHE, although acceleration of heavier nuclei is possible in much more abundant lower-power Seyfert galaxies.

  6. Frontier applications of electrostatic accelerators

    NASA Astrophysics Data System (ADS)

    Liu, Ke-Xin; Wang, Yu-Gang; Fan, Tie-Shuan; Zhang, Guo-Hui; Chen, Jia-Er

    2013-10-01

    Electrostatic accelerator is a powerful tool in many research fields, such as nuclear physics, radiation biology, material science, archaeology and earth sciences. Two electrostatic accelerators, one is the single stage Van de Graaff with terminal voltage of 4.5 MV and another one is the EN tandem with terminal voltage of 6 MV, were installed in 1980s and had been put into operation since the early 1990s at the Institute of Heavy Ion Physics. Many applications have been carried out since then. These two accelerators are described and summaries of the most important applications on neutron physics and technology, radiation biology and material science, as well as accelerator mass spectrometry (AMS) are presented.

  7. Experimental observation of direct particle acceleration by stimulated emission of radiation.

    PubMed

    Banna, Samer; Berezovsky, Valery; Schächter, Levi

    2006-09-29

    We report the first experimental evidence for direct particle acceleration by stimulated emission of radiation. In the framework of this proof-of-principle experiment, a 45 MeV electron macrobunch was modulated by a high-power CO2 laser and then injected into an excited CO2 gas mixture. The emerging microbunches experienced a 0.15% relative change in the kinetic energy, in a less than 40 cm long interaction region. According to our experimental results, a fraction of these electrons have gained more than 200 keV each, implying that such an electron has undergone an order of magnitude of 2 x 10(6) collisions of the second kind.

  8. Big Data and Comparative Effectiveness Research in Radiation Oncology: Synergy and Accelerated Discovery

    PubMed Central

    Trifiletti, Daniel M.; Showalter, Timothy N.

    2015-01-01

    Several advances in large data set collection and processing have the potential to provide a wave of new insights and improvements in the use of radiation therapy for cancer treatment. The era of electronic health records, genomics, and improving information technology resources creates the opportunity to leverage these developments to create a learning healthcare system that can rapidly deliver informative clinical evidence. By merging concepts from comparative effectiveness research with the tools and analytic approaches of “big data,” it is hoped that this union will accelerate discovery, improve evidence for decision making, and increase the availability of highly relevant, personalized information. This combination offers the potential to provide data and analysis that can be leveraged for ultra-personalized medicine and high-quality, cutting-edge radiation therapy. PMID:26697409

  9. Ultraviolet radiation accelerates BRAF-driven melanomagenesis by targeting TP53

    PubMed Central

    Rae, Joel; Hogan, Kate; Ejiama, Sarah; Girotti, Maria Romina; Cook, Martin; Dhomen, Nathalie; Marais, Richard

    2014-01-01

    Cutaneous melanoma is epidemiologically linked to ultraviolet radiation (UVR), but the molecular mechanisms by which UVR drives melanomagenesis remain unclear1,2. The most common somatic mutation in melanoma is a V600E substitution in BRAF, which is an early event3. To investigate how UVR accelerates oncogenic BRAF-driven melanomagenesis, we used a V600EBRAF mouse model. In mice expressing V600EBRAF in their melanocytes, a single dose of UVR that mimicked mild sunburn in humans induced clonal expansion of the melanocytes, and repeated doses of UVR increased melanoma burden. We show that sunscreen (UVA superior: UVB SPF50) delayed the onset of UVR-driven melanoma, but only provided partial protection. The UVR-exposed tumours presented increased numbers of single nucleotide variants (SNVs) and we observed mutations (H39Y, S124F, R245C, R270C, C272G) in the Trp53 tumour suppressor in ~40% of cases. TP53 is an accepted UVR target in non-melanoma skin cancer, but is not thought to play a major role in melanoma4. However, we show that mutant Trp53 accelerated V600EBRAF-driven melanomagenesis and that TP53 mutations are linked to evidence of UVR-induced DNA damage in human melanoma. Thus, we provide mechanistic insight into epidemiological data linking UVR to acquired naevi in humans5. We identify TP53/Trp53 as a UVR-target gene that cooperates with V600EBRAF to induce melanoma, providing molecular insight into how UVR accelerates melanomagenesis. Our study validates public health campaigns that promote sunscreen protection for individuals at risk of melanoma. PMID:24919155

  10. Application of linear multifrequency-grey acceleration to preconditioned Krylov iterations for thermal radiation transport

    DOE PAGES

    Till, Andrew T.; Warsa, James S.; Morel, Jim E.

    2018-06-15

    The thermal radiative transfer (TRT) equations comprise a radiation equation coupled to the material internal energy equation. Linearization of these equations produces effective, thermally-redistributed scattering through absorption-reemission. In this paper, we investigate the effectiveness and efficiency of Linear-Multi-Frequency-Grey (LMFG) acceleration that has been reformulated for use as a preconditioner to Krylov iterative solution methods. We introduce two general frameworks, the scalar flux formulation (SFF) and the absorption rate formulation (ARF), and investigate their iterative properties in the absence and presence of true scattering. SFF has a group-dependent state size but may be formulated without inner iterations in the presence ofmore » scattering, while ARF has a group-independent state size but requires inner iterations when scattering is present. We compare and evaluate the computational cost and efficiency of LMFG applied to these two formulations using a direct solver for the preconditioners. Finally, this work is novel because the use of LMFG for the radiation transport equation, in conjunction with Krylov methods, involves special considerations not required for radiation diffusion.« less

  11. Application accelerator system having bunch control

    DOEpatents

    Wang, D.; Krafft, G.A.

    1999-06-22

    An application accelerator system for monitoring the gain of a free electron laser is disclosed. Coherent Synchrotron Radiation (CSR) detection techniques are used with a bunch length monitor for ultra short, picosec to several tens of femtosec, electron bunches. The monitor employs an application accelerator, a coherent radiation production device, an optical or beam chopping device, an infrared radiation collection device, a narrow-banding filter, an infrared detection device, and a control. 1 fig.

  12. On the Energy and Momentum of an Accelerated Charged Particle and the Sources of Radiation

    ERIC Educational Resources Information Center

    Eriksen, Erik; Gron, Oyvind

    2007-01-01

    We give a systematic development of the theory of the radiation field of an accelerated charged particle with reference to an inertial reference frame in flat spacetime. Special emphasis is given to the role of the Schott energy and momentum in the energy-momentum balance of the charge and its field. It is shown that the energy of the radiation…

  13. Error-Rate Estimation Based on Multi-Signal Flow Graph Model and Accelerated Radiation Tests

    PubMed Central

    Wang, Yueke; Xing, Kefei; Deng, Wei; Zhang, Zelong

    2016-01-01

    A method of evaluating the single-event effect soft-error vulnerability of space instruments before launched has been an active research topic in recent years. In this paper, a multi-signal flow graph model is introduced to analyze the fault diagnosis and meantime to failure (MTTF) for space instruments. A model for the system functional error rate (SFER) is proposed. In addition, an experimental method and accelerated radiation testing system for a signal processing platform based on the field programmable gate array (FPGA) is presented. Based on experimental results of different ions (O, Si, Cl, Ti) under the HI-13 Tandem Accelerator, the SFER of the signal processing platform is approximately 10−3(error/particle/cm2), while the MTTF is approximately 110.7 h. PMID:27583533

  14. Two Step Acceleration Process of Electrons in the Outer Van Allen Radiation Belt by Time Domain Electric Field Bursts and Large Amplitude Chorus Waves

    NASA Astrophysics Data System (ADS)

    Agapitov, O. V.; Mozer, F.; Artemyev, A.; Krasnoselskikh, V.; Lejosne, S.

    2014-12-01

    A huge number of different non-linear structures (double layers, electron holes, non-linear whistlers, etc) have been observed by the electric field experiment on the Van Allen Probes in conjunction with relativistic electron acceleration in the Earth's outer radiation belt. These structures, found as short duration (~0.1 msec) quasi-periodic bursts of electric field in the high time resolution electric field waveform, have been called Time Domain Structures (TDS). They can quite effectively interact with radiation belt electrons. Due to the trapping of electrons into these non-linear structures, they are accelerated up to ~10 keV and their pitch angles are changed, especially for low energies (˜1 keV). Large amplitude electric field perturbations cause non-linear resonant trapping of electrons into the effective potential of the TDS and these electrons are then accelerated in the non-homogeneous magnetic field. These locally accelerated electrons create the "seed population" of several keV electrons that can be accelerated by coherent, large amplitude, upper band whistler waves to MeV energies in this two step acceleration process. All the elements of this chain acceleration mechanism have been observed by the Van Allen Probes.

  15. Ionizing radiation accelerates Drp1-dependent mitochondrial fission, which involves delayed mitochondrial reactive oxygen species production in normal human fibroblast-like cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kobashigawa, Shinko, E-mail: kobashin@nagasaki-u.ac.jp; Suzuki, Keiji; Yamashita, Shunichi

    2011-11-04

    Highlights: Black-Right-Pointing-Pointer We report first time that ionizing radiation induces mitochondrial dynamic changes. Black-Right-Pointing-Pointer Radiation-induced mitochondrial fission was caused by Drp1 localization. Black-Right-Pointing-Pointer We found that radiation causes delayed ROS from mitochondria. Black-Right-Pointing-Pointer Down regulation of Drp1 rescued mitochondrial dysfunction after radiation exposure. -- Abstract: Ionizing radiation is known to increase intracellular level of reactive oxygen species (ROS) through mitochondrial dysfunction. Although it has been as a basis of radiation-induced genetic instability, the mechanism involving mitochondrial dysfunction remains unclear. Here we studied the dynamics of mitochondrial structure in normal human fibroblast like cells exposed to ionizing radiation. Delayed mitochondrial O{submore » 2}{sup {center_dot}-} production was peaked 3 days after irradiation, which was coupled with accelerated mitochondrial fission. We found that radiation exposure accumulated dynamin-related protein 1 (Drp1) to mitochondria. Knocking down of Drp1 expression prevented radiation induced acceleration of mitochondrial fission. Furthermore, knockdown of Drp1 significantly suppressed delayed production of mitochondrial O{sub 2}{sup {center_dot}-}. Since the loss of mitochondrial membrane potential, which was induced by radiation was prevented in cells knocking down of Drp1 expression, indicating that the excessive mitochondrial fission was involved in delayed mitochondrial dysfunction after irradiation.« less

  16. Hypofractionated Prostate Radiotherapy with or without Conventionally Fractionated Nodal Irradiation: Clinical Toxicity Observations and Retrospective Daily Dosimetry.

    PubMed

    McDonald, Andrew M; Bishop, Justin M; Jacob, Rojymon; Dobelbower, Michael C; Kim, Robert Y; Yang, Eddy S; Smith, Heather; Wu, Xingen; Fiveash, John B

    2012-01-01

    Purpose. To evaluate toxicity associated with the addition of elective nodal irradiation (ENI) to a hypofractionated regimen for the treatment of prostate cancer. Methods and Materials. Fifty-seven patients received pelvic image-guided IMRT to 50.4 Gy in 28 fractions with a hypofractionated simultaneous boost to the prostate to 70 Gy. Thirty-one patients received prostate-only treatment to 70 Gy in 28 fractions. Results. Median followup was 41.1 months. Early grade ≥2 urinary toxicity rates were 49% (28 of 57) for patients receiving ENI and 58% (18 of 31) for those not (P = 0.61). Early grade ≥2 rectal toxicity rates were 40% (23 of 57) and 23% (7 of 31), respectively (P = 0.09). The addition of ENI resulted in a 21% actuarial rate of late grade ≥2 rectal toxicity at 4 years, compared to 0% for patients treated to the prostate only (P = 0.02). Retrospective daily dosimetry of patients experiencing late rectal toxicity revealed an average increase of 2.67% of the rectal volume receiving 70 Gy compared to the original plan. Conclusions. The addition of ENI resulted in an increased risk of late rectal toxicity. Grade ≥2 late rectal toxicity was associated with worse daily rectal dosimetry compared to the treatment plan.

  17. Expanding the use of real‐time electromagnetic tracking in radiation oncology

    PubMed Central

    Kupelian, Patrick A.; Willoughby, Twyla R.; Meeks, Sanford L.

    2011-01-01

    In the past 10 years, techniques to improve radiotherapy delivery, such as intensity‐modulated radiation therapy (IMRT), image‐guided radiation therapy (IGRT) for both inter‐ and intrafraction tumor localization, and hypofractionated delivery techniques such as stereotactic body radiation therapy (SBRT), have evolved tremendously. This review article focuses on only one part of that evolution, electromagnetic tracking in radiation therapy. Electromagnetic tracking is still a growing technology in radiation oncology and, as such, the clinical applications are limited, the expense is high, and the reimbursement is insufficient to cover these costs. At the same time, current experience with electromagnetic tracking applied to various clinical tumor sites indicates that the potential benefits of electromagnetic tracking could be significant for patients receiving radiation therapy. Daily use of these tracking systems is minimally invasive and delivers no additional ionizing radiation to the patient, and these systems can provide explicit tumor motion data. Although there are a number of technical and fiscal issues that need to be addressed, electromagnetic tracking systems are expected to play a continued role in improving the precision of radiation delivery. PACS number: 87.63.‐d PMID:22089017

  18. Radiation Therapy Field Extent for Adjuvant Treatment of Axillary Metastases From Malignant Melanoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beadle, Beth M.; Guadagnolo, B. Ashleigh; Ballo, Matthew T.

    2009-04-01

    Purpose: To compare treatment-related outcomes and toxicity for patients with axillary lymph node metastases from malignant melanoma treated with postoperative radiation therapy (RT) to either the axilla only or both the axilla and supraclavicular fossa (extended field [EF]). Methods and Materials: The medical records of 200 consecutive patients treated with postoperative RT for axillary lymph node metastases from malignant melanoma were retrospectively reviewed. All patients received postoperative hypofractionated RT for high-risk features; 95 patients (48%) received RT to the axilla only and 105 patients (52%) to the EF. Results: At a median follow-up of 59 months, 111 patients (56%) hadmore » sustained relapse, and 99 patients (50%) had died. The 5-year overall survival, disease-free survival, and distant metastasis-free survival rates were 51%, 43%, and 46%, respectively. The 5-year axillary control rate was 88%. There was no difference in axillary control rates on the basis of the treated field (89% for axilla only vs. 86% for EF; p = 0.4). Forty-seven patients (24%) developed treatment-related complications. On both univariate and multivariate analyses, only treatment with EF irradiation was significantly associated with increased treatment-related complications. Conclusions: Adjuvant hypofractionated RT to the axilla only for metastatic malignant melanoma with high-risk features is an effective method to control axillary disease. Limiting the radiation field to the axilla only produced equivalent axillary control rates to EF and resulted in lower treatment-related complication rates.« less

  19. Terahertz radiation from accelerating charge carriers in graphene under ultrafast photoexcitation

    NASA Astrophysics Data System (ADS)

    Rustagi, Avinash; Stanton, C. J.

    2016-11-01

    We study the generation of terahertz (THz) radiation from the acceleration of ultrafast photoexcited charge carriers in graphene in the presence of a dc electric field. Our model is based on calculating the transient current density from the time-dependent distribution function which is determined using the Boltzmann transport equation (BTE) within a relaxation time approximation. We include the time-dependent generation of carriers by the pump pulse by solving for the carrier generation rate using the optical Bloch equations in the rotating wave approximation (RWA). The linearly polarized pump pulse generates an anisotropic distribution of photoexcited carriers in the kx-ky plane. The collision integral in the Boltzmann equation includes a term that leads to the thermalization of carriers via carrier-carrier scattering to an effective temperature above the lattice temperature, as well as a cooling term, which leads to energy relaxation via inelastic carrier-phonon scattering. The radiated signal is proportional to the time derivative of the transient current density. In spite of the fact that the magnitude of the velocity is the same for all the carriers in graphene, there is still emitted radiation from the photoexcited charge carriers with frequency components in the THz range due to a change in the direction of velocity of the photoexcited carriers in the external electric field as well as cooling of the photoexcited carriers on a subpicosecond time scale.

  20. "Light sail" acceleration reexamined.

    PubMed

    Macchi, Andrea; Veghini, Silvia; Pegoraro, Francesco

    2009-08-21

    The dynamics of the acceleration of ultrathin foil targets by the radiation pressure of superintense, circularly polarized laser pulses is investigated by analytical modeling and particle-in-cell simulations. By addressing self-induced transparency and charge separation effects, it is shown that for "optimal" values of the foil thickness only a thin layer at the rear side is accelerated by radiation pressure. The simple "light sail" model gives a good estimate of the energy per nucleon, but overestimates the conversion efficiency of laser energy into monoenergetic ions.

  1. Production of high energy protons with hole-boring radiation pressure acceleration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robinson, A. P. L.

    The possibility of producing energetic protons with energies in the range of 100-200 MeV via hole-boring (HB) radiation pressure acceleration (RPA) at intensities around 10{sup 21} W cm{sup -2} is reexamined. It is found that hole-boring RPA can occur well below the relativistically corrected critical density in numerical simulations, with average proton energies in good agreement with established formulas. This suggests that protons in this energy range can be produced via HB RPA at around 10{sup 21} W cm{sup -2}. It is also shown that the prospects of doing this could be improved by using lasers of the same intensitymore » but longer wavelength.« less

  2. Utilization of hypofractionated whole-breast radiation therapy in patients receiving chemotherapy: a National Cancer Database analysis.

    PubMed

    Diwanji, Tejan P; Molitoris, Jason K; Chhabra, Arpit M; Snider, James W; Bentzen, Soren M; Tkaczuk, Katherine H; Rosenblatt, Paula Y; Kesmodel, Susan B; Bellavance, Emily C; Cohen, Randi J; Cheston, Sally B; Nichols, Elizabeth M; Feigenberg, Steven J

    2017-09-01

    Results from four major hypofractionated whole-breast radiotherapy (HF-WBRT) trials have demonstrated equivalence in select patients with early-stage breast cancer when compared with conventionally fractionated WBRT (CF-WBRT). Because relatively little data were available on patients receiving neoadjuvant or adjuvant chemotherapy, consensus guidelines published in 2011 did not endorse the use of HF-WBRT in this population. Our goal is to evaluate trends in utilization of HF-WBRT in patients receiving chemotherapy. We retrospectively analyzed data from 2004 to 2013 in the National Cancer DataBase on breast cancer patients treated with HF-WBRT who met the clinical criteria proposed by consensus guidelines (i.e., age >0 years, T1-2N0, and breast-conserving surgery), regardless of receipt of chemotherapy. We employed logistic regression to delineate and compare clinical and demographic factors associated with utilization of HF-WBRT and CF-WBRT. A total of 56,836 women were treated with chemotherapy and WBRT (without regional nodal irradiation) from 2004 to 2013; 9.0% (n = 5093) were treated with HF-WBRT. Utilization of HF-WBRT increased from 4.6% in 2004 to 18.2% in 2013 (odds ratio [OR] 1.21/year; P < 0.001). Among patients receiving chemotherapy, factors most dramatically associated with increased odds of receiving HF-WBRT on multivariate analysis were academic facilities (OR 2.07; P < 0.001), age >80 (OR 2.58; P < 0.001), west region (OR 1.91; P < 0.001), and distance >50 miles from cancer reporting facility (OR 1.43; P < 0.001). Factors associated with decreased odds of receiving HF-WBRT included white race, income <$48,000, lack of private insurance, T2 versus T1, and higher grade (all P < 0.02). Despite the absence of consensus guideline recommendations, the use of HF-WBRT in patients receiving chemotherapy has increased fourfold (absolute = 13.6%) over the last decade. Increased utilization of HF-WBRT should result in institutional reports

  3. Radiation-pressure acceleration of ion beams from nanofoil targets: the leaky light-sail regime.

    PubMed

    Qiao, B; Zepf, M; Borghesi, M; Dromey, B; Geissler, M; Karmakar, A; Gibbon, P

    2010-10-08

    A new ion radiation-pressure acceleration regime, the "leaky light sail," is proposed which uses sub-skin-depth nanometer foils irradiated by circularly polarized laser pulses. In the regime, the foil is partially transparent, continuously leaking electrons out along with the transmitted laser field. This feature can be exploited by a multispecies nanofoil configuration to stabilize the acceleration of the light ion component, supplementing the latter with an excess of electrons leaked from those associated with the heavy ions to avoid Coulomb explosion. It is shown by 2D particle-in-cell simulations that a monoenergetic proton beam with energy 18 MeV is produced by circularly polarized lasers at intensities of just 10¹⁹  W/cm². 100 MeV proton beams are obtained by increasing the intensities to 2 × 10²⁰  W/cm².

  4. Leakage of radioactive materials from particle accelerator facilities by non-radiation disasters like fire and flooding and its environmental impacts

    NASA Astrophysics Data System (ADS)

    Lee, A.; Jung, N. S.; Mokhtari Oranj, L.; Lee, H. S.

    2018-06-01

    The leakage of radioactive materials generated at particle accelerator facilities is one of the important issues in the view of radiation safety. In this study, fire and flooding at particle accelerator facilities were considered as the non-radiation disasters which result in the leakage of radioactive materials. To analyse the expected effects at each disaster, the case study on fired and flooded particle accelerator facilities was carried out with the property investigation of interesting materials presented in the accelerator tunnel and the activity estimation. Five major materials in the tunnel were investigated: dust, insulators, concrete, metals and paints. The activation levels on the concerned materials were calculated using several Monte Carlo codes (MCNPX 2.7+SP-FISPACT 2007, FLUKA 2011.4c and PHITS 2.64+DCHAIN-SP 2001). The impact weight to environment was estimated for the different beam particles (electron, proton, carbon and uranium) and the different beam energies (100, 430, 600 and 1000 MeV/nucleon). With the consideration of the leakage path of radioactive materials due to fire and flooding, the activation level of selected materials, and the impacts to the environment were evaluated. In the case of flooding, dust, concrete and metal were found as a considerable object. In the case of fire event, dust, insulator and paint were the major concerns. As expected, the influence of normal fire and flooding at electron accelerator facilities would be relatively low for both cases.

  5. SHEAR ACCELERATION IN EXPANDING FLOWS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rieger, F. M.; Duffy, P., E-mail: frank.rieger@mpi-hd.mpg.de, E-mail: peter.duffy@ucd.ie

    Shear flows are naturally expected to occur in astrophysical environments and potential sites of continuous non-thermal Fermi-type particle acceleration. Here we investigate the efficiency of expanding relativistic outflows to facilitate the acceleration of energetic charged particles to higher energies. To this end, the gradual shear acceleration coefficient is derived based on an analytical treatment. The results are applied to the context of the relativistic jets from active galactic nuclei. The inferred acceleration timescale is investigated for a variety of conical flow profiles (i.e., power law, Gaussian, Fermi–Dirac) and compared to the relevant radiative and non-radiative loss timescales. The results exemplifymore » that relativistic shear flows are capable of boosting cosmic-rays to extreme energies. Efficient electron acceleration, on the other hand, requires weak magnetic fields and may thus be accompanied by a delayed onset of particle energization and affect the overall jet appearance (e.g., core, ridge line, and limb-brightening).« less

  6. Accelerators for Cancer Therapy

    DOE R&D Accomplishments Database

    Lennox, Arlene J.

    2000-05-30

    The vast majority of radiation treatments for cancerous tumors are given using electron linacs that provide both electrons and photons at several energies. Design and construction of these linacs are based on mature technology that is rapidly becoming more and more standardized and sophisticated. The use of hadrons such as neutrons, protons, alphas, or carbon, oxygen and neon ions is relatively new. Accelerators for hadron therapy are far from standardized, but the use of hadron therapy as an alternative to conventional radiation has led to significant improvements and refinements in conventional treatment techniques. This paper presents the rationale for radiation therapy, describes the accelerators used in conventional and hadron therapy, and outlines the issues that must still be resolved in the emerging field of hadron therapy.

  7. Applications of Accelerators and Radiation Sources in the Field of Space Research and Industry.

    PubMed

    Campajola, Luigi; Di Capua, Francesco

    2016-12-01

    Beyond their important economic role in commercial communications, satellites in general are critical infrastructure because of the services they provide. In addition to satellites providing information which facilitates a better understanding of the space environment and improved performance of physics experiments, satellite observations are also used to actively monitor weather, geological processes, agricultural development and the evolution of natural and man-made hazards. Defence agencies depend on satellite services for communication in remote locations, as well as for reconnaissance and intelligence. Both commercial and government users rely on communication satellites to provide communication in the event of a disaster that damages ground-based communication systems, provide news, education and entertainment to remote areas and connect global businesses. The space radiation environment is an hazard to most satellite missions and can lead to extremely difficult operating conditions for all of the equipment travelling in space. Here, we first provide an overview of the main components of space radiation environment, followed by a description of the basic mechanism of the interaction of radiation with matter. This is followed by an introduction to the space radiation hardness assurance problem and the main effects of natural radiation to the microelectronics (total ionizing dose, displacement damage and the single-event effect and a description of how different effects occurring in the space can be tested in on-ground experiments by using particle accelerators and radiation sources. We also discuss standards and the recommended procedures to obtain reliable results.

  8. Optical Diagnostics for Plasma-based Particle Accelerators

    NASA Astrophysics Data System (ADS)

    Muggli, Patric

    2009-05-01

    One of the challenges for plasma-based particle accelerators is to measure the spatio-temporal characteristics of the accelerated particle bunch. ``Optical'' diagnostics are particularly interesting and useful because of the large number of techniques that exits to determine the properties of photon pulses. The accelerated bunch can produce photons pulses that carry information about its characteristics for example through synchrotron radiation in a magnet, Cherenkov radiation in a gas, and transition radiation (TR) at the boundary between two media with different dielectric constants. Depending on the wavelength of the emission when compared to the particle bunch length, the radiation can be incoherent or coherent. Incoherent TR in the optical range (or OTR) is useful to measure the transverse spatial characteristics of the beam, such as charge distribution and size. Coherent TR (or CTR) carries information about the bunch length that can in principle be retrieved by standard auto-correlation or interferometric techniques, as well as by spectral measurements. A measurement of the total CTR energy emitted by bunches with constant charge can also be used as a shot-to-shot measurement for the relative bunch length as the CTR energy is proportional to the square of the bunch population and inversely proportional to its length (for a fixed distribution). Spectral interferometry can also yield the spacing between bunches in the case where multiple bunches are trapped in subsequent buckets of the plasma wave. Cherenkov radiation can be used as an energy threshold diagnostic for low energy particles. Cherenkov, synchrotron and transition radiation can be used in a dispersive section of the beam line to measure the bunch energy spectrum. The application of these diagnostics to plasma-based particle accelerators, with emphasis on the beam-driven, plasma wakefield accelerator (PWFA) at the SLAC National Accelerator Laboratory will be discussed.

  9. A Phase I Study of Hypofractionated Carbon-ion Radiotherapy for Stage III Non-small Cell Lung Cancer.

    PubMed

    Saitoh, Jun-Ichi; Shirai, Katsuyuki; Abe, Takanori; Kubo, Nobuteru; Ebara, Takeshi; Ohno, Tatsuya; Minato, Koichi; Saito, Ryusei; Yamada, Masanobu; Nakano, Takashi

    2018-02-01

    The aim of this study was to assess the feasibility and safety of hypofractionated carbon-ion radiotherapy (C-ion RT) in patients with stage III non-small cell lung cancer (NSCLC). Patients with untreated, histologically proven, unresectable stage III NSCLC and not candidates for chemotherapy were included in this study. C-ion RT was planned and administered with 4 Gy (relative biological effectiveness (RBE)) in daily fractions for a total dose of 64 Gy (RBE) without combined chemotherapy. Dose-limiting toxicity (DLT) was defined as suspension of C-ion RT treatment for 2 weeks due to ≥ grade 2 pneumonitis, or any other ≥ grade 3 adverse event, or as any ≥ grade 4 adverse event within 3 months from the start of treatment. Six patients were treated between June 2013 and December 2014. The planned full dose of C-ion RT (64 Gy (RBE)) was completed in all patients. No patient developed DLT, and no patient experienced toxicities of ≥grade 3 severity. The overall response rate was 100%, and local tumor control was achieved in all patients during the survival period. Hypofractionated C-ion RT of patients with stage III NSCLC was feasible and well tolerated. Although the number of patients in this study was small, the results support further investigations to confirm the long-term therapeutic efficacy of this treatment. Copyright© 2018, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  10. Beamlets from stochastic acceleration

    NASA Astrophysics Data System (ADS)

    Perri, Silvia; Carbone, Vincenzo

    2008-09-01

    We investigate the dynamics of a realization of the stochastic Fermi acceleration mechanism. The model consists of test particles moving between two oscillating magnetic clouds and differs from the usual Fermi-Ulam model in two ways. (i) Particles can penetrate inside clouds before being reflected. (ii) Particles can radiate a fraction of their energy during the process. Since the Fermi mechanism is at work, particles are stochastically accelerated, even in the presence of the radiated energy. Furthermore, due to a kind of resonance between particles and oscillating clouds, the probability density function of particles is strongly modified, thus generating beams of accelerated particles rather than a translation of the whole distribution function to higher energy. This simple mechanism could account for the presence of beamlets in some space plasma physics situations.

  11. A study on leakage radiation dose at ELV-4 electron accelerator bunker

    NASA Astrophysics Data System (ADS)

    Chulan, Mohd Rizal Md; Yahaya, Redzuwan; Ghazali, Abu BakarMhd

    2014-09-01

    Shielding is an important aspect in the safety of an accelerator and the most important aspects of a bunker shielding is the door. The bunker's door should be designed properly to minimize the leakage radiation and shall not exceed the permitted limit of 2.5μSv/hr. In determining the leakage radiation dose that passed through the door and gaps between the door and the wall, 2-dimensional manual calculations are often used. This method is hard to perform because visual 2-dimensional is limited and is also very difficult in the real situation. Therefore estimation values are normally performed. In doing so, the construction cost would be higher because of overestimate or underestimate which require costly modification to the bunker. Therefore in this study, two methods are introduced to overcome the problem such as simulation using MCNPX Version 2.6.0 software and manual calculation using 3-dimensional model from Autodesk Inventor 2010 software. The values from the two methods were eventually compared to the real values from direct measurements using Ludlum Model 3 with Model 44-9 probe survey meter.

  12. Intranasal melanoma treated with radiation therapy in three dogs.

    PubMed

    Davies, Owen; Spencer, Sarah; Necova, Slavomira; Holmes, Emma; Taylor, Angela; Blackwood, Laura; Lara-Garcia, Ana

    2017-12-01

    Three dogs were investigated for chronic unilateral nasal discharge. In all cases CT imaging showed an intranasal mass causing turbinate lysis and no evidence of metastasis. Cytology in cases 1 (a 14-year-old neutered male crossbreed dog) and 2 (a five-year-old neutered male German Shepherd dog) demonstrated a pleomorphic cell population with variable intracellular pigment suspicious of melanocytic neoplasia. Histopathology with immunohistochemistry (Melan-A and vimentin, plus PNL-2 in one case) confirmed the diagnosis of melanoma in all dogs. All dogs were treated with megavoltage radiotherapy using linear accelerators. Cases 1 and 3 (a nine-year-old neutered female beagle dog) received a hypofractionated (4 × 8 Gy) protocol and case 2 received a definitive (12 × 4 Gy) protocol. Complete remission was demonstrated on repeat CT scan five months after diagnosis in case 1 and seven months in case 2. Stable disease was documented on CT at four months for case 3; however, clinical signs in this dog remained controlled for 10 months in total. Case 1 died of unrelated causes five months after diagnosis, case 2 was euthanased due to the development of seizures 13 months after diagnosis, and case 3 was lost to follow-up 12 months after diagnosis. Melanoma should be considered as a rare differential diagnosis for primary nasal neoplasia in the dog and radiation therapy can be used as effective local therapy.

  13. Long-term outcome of 56 dogs with nasal tumours treated with four doses of radiation at intervals of seven days.

    PubMed

    Mellanby, R J; Stevenson, R K; Herrtage, M E; White, R A S; Dobson, J M

    2002-08-31

    A retrospective study was undertaken on 56 dogs treated for nasal tumours by megavoltage radiotherapy with a hypofractionated schedule consisting of four doses of 9 Gy given at intervals of seven days. The dogs were followed until they died or were euthanased. The clinical signs had improved in 53 of the 56 dogs by the end of the treatment schedule. Mild acute radiation side effects were observed in the majority of the dogs but late radiation side effects were rare. Kaplan-Meier survival analysis revealed a median survival time after the final dose of radiation of 212 days. The one- and two-year survival rates were 45 per cent and 15 per cent. Fifty of the dogs were euthanased because the initial clinical signs recurred.

  14. Phase I/II study of hypofractioned radiation with three-dimensional conformal radiotherapy for clinical T3-4N0-1M0 stage esophageal carcinoma.

    PubMed

    Song, Y-P; Ma, J-B; Hu, L-K; Zhou, W; Chen, E-C; Zhang, W

    2011-02-01

    Compared to conventional fractionated-dose radiotherapy, high hypofractionated-dose radiotherapy could yield tumoricidal effects. However, few clinical trials of hypofractionated radiotherapy in loco-regionally advanced incurable esophageal cancer at present have yet been performed. The purpose of the current study was to evaluate the efficacy and toxicity of hypofractioned radiation with three-dimensional conformal radiotherapy for clinical T3-4N0-1M0 stage esophageal carcinoma. From September 2003 to December 2005, 45 patients with locally advanced esophageal carcinoma were grouped and received three-dimensional conformal hypofractioned radiotherapy (3D-CRT) whose fractionated dose was gradually increase per group. Radiotherapy was administered to a total dose of from 50 to 54 Gy (fractionated dose of from 3.0 to 6.0 Gy, 3 times weekly), over a 3-4 week period. And patients received 4 cycles chemotherapy. The median follow-up period for survivors was 38 months. Treatment tolerance rate was 78.8% with daily dose of from 3 to 5 Gy. There are 21.2% patients occurring Grade ≥ 3 acute toxicities. But patients couldn't tolerate daily dose of 6 Gy (55.6%). The 1-year, 2-year and 3-year local control rates were 62%, 49% and 39% respectively. And the 1-year, 2-year and 3-year overall survival rates were 34%, 21% and 9% respectively. The median overall survival time was 17 months. At the time of following up, 13 patients (31.0%) had occurred esophageal late complications, with mainly esophageal perforation, hemorrhage or stenosis, including initial stenosis aggravation. Therefore hypofractionated irradiation was thought to be feasible for clinical T3-4N0-1M0 stage esophageal carcinoma. And daily dose of ≤5 Gy was comparatively suitable in hypofractionated irradiation for esophageal carcinoma, and the patients tolerated well. But further research was in need also.

  15. Phantom-to-clinic development of hypofractionated stereotactic body radiotherapy for early-stage glottic laryngeal cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ding, Chuxiong; Chun, Stephen G.; Sumer, Baran D.

    The purpose of this study was to commission and clinically test a robotic stereotactic delivery system (CyberKnife, Sunnyvale, CA) to treat early-stage glottic laryngeal cancer. We enrolled 15 patients with cTis-T2N0M0 carcinoma of the glottic larynx onto an institutional review board (IRB)-approved clinical trial. Stereotactic body radiotherapy (SBRT) plans prescribed 45 Gy/10 fractions to the involved hemilarynx. SBRT dosimetry was compared with (1) standard carotid-sparing laryngeal intensity-modulated radiation therapy (IMRT) and (2) selective hemilaryngeal IMRT. Our results demonstrate that SBRT plans improved sparing of the contralateral arytenoid (mean 20.0 Gy reduction, p <0.001), ipsilateral carotid D{sub max} (mean 20.6 Gy reduction, p <0.001), contralateral carotidmore » D{sub max} (mean 28.1 Gy reduction, p <0.001), and thyroid D{sub mean} (mean 15.0 Gy reduction, p <0.001) relative to carotid-sparing IMRT. SBRT also modestly improved dose sparing to the contralateral arytenoid (mean 4.8 Gy reduction, p = 0.13) and spinal cord D{sub max} (mean 4.9 Gy reduction, p = 0.015) relative to selective hemilaryngeal IMRT plans. This “phantom-to-clinic” feasibility study confirmed that hypofractionated SBRT treatment for early-stage laryngeal cancer can potentially spare dose to adjacent normal tissues relative to current IMRT standards. Clinical efficacy and toxicity correlates continue to be collected through an ongoing prospective trial.« less

  16. EFFECTS OF LASER RADIATION ON MATTER: Simulation of photon acceleration upon irradiation of a mylar target by femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Andreev, Stepan N.; Rukhadze, Anri A.; Tarakanov, V. P.; Yakutov, B. P.

    2010-01-01

    Acceleration of protons is simulated by the particle-in-cell (PIC) method upon irradiation of mylar targets of different thicknesses by femtosecond plane-polarised pulsed laser radiation and at different angles of radiation incidence on the target. The comparison of the results of calculations with the experimental data obtained in recent experiments shows their good agreement. The optimal angle of incidence (458) at which the proton energy achieves its absolute maximum is obtained.

  17. Physics and Novel Schemes of Laser Radiation Pressure Acceleration for Quasi-monoenergetic Proton Generation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Chuan S.; Shao, Xi

    2016-06-14

    The main objective of our work is to provide theoretical basis and modeling support for the design and experimental setup of compact laser proton accelerator to produce high quality proton beams tunable with energy from 50 to 250 MeV using short pulse sub-petawatt laser. We performed theoretical and computational studies of energy scaling and Raleigh--Taylor instability development in laser radiation pressure acceleration (RPA) and developed novel RPA-based schemes to remedy/suppress instabilities for high-quality quasimonoenergetic proton beam generation as we proposed. During the project period, we published nine peer-reviewed journal papers and made twenty conference presentations including six invited talks onmore » our work. The project supported one graduate student who received his PhD degree in physics in 2013 and supported two post-doctoral associates. We also mentored three high school students and one undergraduate student of physics major by inspiring their interests and having them involved in the project.« less

  18. Intrafraction Prostate Translations and Rotations During Hypofractionated Robotic Radiation Surgery: Dosimetric Impact of Correction Strategies and Margins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Water, Steven van de, E-mail: s.vandewater@erasmusmc.nl; Valli, Lorella; Alma Mater Studiorum, Department of Physics and Astronomy, Bologna University, Bologna

    Purpose: To investigate the dosimetric impact of intrafraction prostate motion and the effect of robot correction strategies for hypofractionated CyberKnife treatments with a simultaneously integrated boost. Methods and Materials: A total of 548 real-time prostate motion tracks from 17 patients were available for dosimetric simulations of CyberKnife treatments, in which various correction strategies were included. Fixed time intervals between imaging/correction (15, 60, 180, and 360 seconds) were simulated, as well as adaptive timing (ie, the time interval reduced from 60 to 15 seconds in case prostate motion exceeded 3 mm or 2° in consecutive images). The simulated extent of robot corrections was alsomore » varied: no corrections, translational corrections only, and translational corrections combined with rotational corrections up to 5°, 10°, and perfect rotational correction. The correction strategies were evaluated for treatment plans with a 0-mm or 3-mm margin around the clinical target volume (CTV). We recorded CTV coverage (V{sub 100%}) and dose-volume parameters of the peripheral zone (boost), rectum, bladder, and urethra. Results: Planned dose parameters were increasingly preserved with larger extents of robot corrections. A time interval between corrections of 60 to 180 seconds provided optimal preservation of CTV coverage. To achieve 98% CTV coverage in 98% of the treatments, translational and rotational corrections up to 10° were required for the 0-mm margin plans, whereas translational and rotational corrections up to 5° were required for the 3-mm margin plans. Rectum and bladder were spared considerably better in the 0-mm margin plans. Adaptive timing did not improve delivered dose. Conclusions: Intrafraction prostate motion substantially affected the delivered dose but was compensated for effectively by robot corrections using a time interval of 60 to 180 seconds. A 0-mm margin required larger extents of additional rotational corrections

  19. Feasibility of Optical Transition Radiation Imaging for Laser-driven Plasma Accelerator Electron-Beam Diagnostics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lumpkin, A. H.; Rule, D. W.; Downer, M. C.

    We report the initial considerations of using linearly polarized optical transition radiation (OTR) to characterize the electron beams of laser plasma accelerators (LPAs) such as at the Univ. of Texas at Austin. The two LPAs operate at 100 MeV and 2-GeV, and they currently have estimated normalized emittances at ~ 1-mm mrad regime with beam divergences less than 1/γ and beam sizes to be determined at the micron level. Analytical modeling results indicate the feasibility of using these OTR techniques for the LPA applications.

  20. Shielding analyses for repetitive high energy pulsed power accelerators

    NASA Astrophysics Data System (ADS)

    Jow, H. N.; Rao, D. V.

    Sandia National Laboratories (SNL) designs, tests and operates a variety of accelerators that generate large amounts of high energy Bremsstrahlung radiation over an extended time. Typically, groups of similar accelerators are housed in a large building that is inaccessible to the general public. To facilitate independent operation of each accelerator, test cells are constructed around each accelerator to shield it from the radiation workers occupying surrounding test cells and work-areas. These test cells, about 9 ft. high, are constructed of high density concrete block walls that provide direct radiation shielding. Above the target areas (radiation sources), lead or steel plates are used to minimize skyshine radiation. Space, accessibility and cost considerations impose certain restrictions on the design of these test cells. SNL Health Physics division is tasked to evaluate the adequacy of each test cell design and compare resultant dose rates with the design criteria stated in DOE Order 5480.11. In response, SNL Health Physics has undertaken an intensive effort to assess existing radiation shielding codes and compare their predictions against measured dose rates. This paper provides a summary of the effort and its results.

  1. Radiation skyshine from a 6 MeV medical accelerator.

    PubMed

    Gossman, Michael S; McGinley, Patton H; Rising, Mary B; Pahikkala, A Jussi

    2010-05-06

    This study assesses the dose level from skyshine produced by a 6 MeV medical accelerator. The analysis of data collected on skyshine yields professional guidance for future investigators as they attempt to quantify and qualify radiation protection concerns in shielding therapy vaults. Survey measurements using various field sizes and at varying distances from a primary barrier have enabled us to identify unique skyshine behavior in comparison to other energies already seen in literature. In order to correctly quantify such measurements outside a shielded barrier, one must take into consideration the fact that a skyshine maximum may not be observed at the same distance for all field sizes. A physical attribute of the skyshine scatter component was shown to increase to a maximum value at 4.6 m from the barrier for the largest field size used. We recommend that the largest field sizes be used in the field for the determination of skyshine effect and that the peak value be further analyzed specifically when considering shielding designs.

  2. Achieving Stable Radiation Pressure Acceleration of Heavy Ions via Successive Electron Replenishment from Ionization of a High-Z Material Coating

    NASA Astrophysics Data System (ADS)

    Shen, X. F.; Qiao, B.; Zhang, H.; Kar, S.; Zhou, C. T.; Chang, H. X.; Borghesi, M.; He, X. T.

    2017-05-01

    A method to achieve stable radiation pressure acceleration (RPA) of heavy ions from laser-irradiated ultrathin foils is proposed, where a high-Z material coating in front is used. The coated high-Z material, acting as a moving electron repository, continuously replenishes the accelerating heavy ion foil with comoving electrons in the light-sail acceleration stage due to its successive ionization under laser fields with Gaussian temporal profile. As a result, the detrimental effects such as foil deformation and electron loss induced by the Rayleigh-Taylor-like and other instabilities in RPA are significantly offset and suppressed so that stable acceleration of heavy ions are maintained. Particle-in-cell simulations show that a monoenergetic Al13 + beam with peak energy 3.8 GeV and particle number 1 010 (charge >20 nC ) can be obtained at intensity 1 022 W /cm2 .

  3. 4D radiobiological modelling of the interplay effect in conventionally and hypofractionated lung tumour IMRT.

    PubMed

    Selvaraj, J; Uzan, J; Baker, C; Nahum, A

    2015-01-01

    To study the impact of the interplay between respiration-induced tumour motion and multileaf collimator leaf movements in intensity-modulated radiotherapy (IMRT) as a function of number of fractions, dose rate on population mean tumour control probability ([Formula: see text]) using an in-house developed dose model. Delivered dose was accumulated in a voxel-by-voxel basis inclusive of tumour motion over the course of treatment. The effect of interplay on dose and [Formula: see text] was studied for conventionally and hypofractionated treatments using digital imaging and communications in medicine data sets. Moreover, the effect of dose rate on interplay was also studied for single-fraction treatments. Simulations were repeated several times to obtain [Formula: see text] for each plan. The average variation observed in mean dose to the target volumes were -0.76% ± 0.36% for the 20-fraction treatment and -0.26% ± 0.68% and -1.05% ± 0.98% for the three- and single-fraction treatments, respectively. For the 20-fraction treatment, the drop in [Formula: see text] was -1.05% ± 0.39%, whereas for the three- and single-fraction treatments, it was -2.80% ± 1.68% and -4.00% ± 2.84%, respectively. By reducing the dose rate from 600 to 300 MU min(-1) for the single-fraction treatments, the drop in [Formula: see text] was reduced by approximately 1.5%. The effect of interplay on [Formula: see text] is negligible for conventionally fractionated treatments, whereas considerable drop in [Formula: see text] is observed for the three- and single-fraction treatments. Reduced dose rate could be used in hypofractionated treatments to reduce the interplay effect. A novel in silico dose model is presented to determine the impact of interplay effect in IMRT treatments on [Formula: see text].

  4. 4D radiobiological modelling of the interplay effect in conventionally and hypofractionated lung tumour IMRT

    PubMed Central

    Uzan, J; Baker, C; Nahum, A

    2015-01-01

    Objective: To study the impact of the interplay between respiration-induced tumour motion and multileaf collimator leaf movements in intensity-modulated radiotherapy (IMRT) as a function of number of fractions, dose rate on population mean tumour control probability () using an in-house developed dose model. Methods: Delivered dose was accumulated in a voxel-by-voxel basis inclusive of tumour motion over the course of treatment. The effect of interplay on dose and was studied for conventionally and hypofractionated treatments using digital imaging and communications in medicine data sets. Moreover, the effect of dose rate on interplay was also studied for single-fraction treatments. Simulations were repeated several times to obtain for each plan. Results: The average variation observed in mean dose to the target volumes were −0.76% ± 0.36% for the 20-fraction treatment and −0.26% ± 0.68% and −1.05% ± 0.98% for the three- and single-fraction treatments, respectively. For the 20-fraction treatment, the drop in was −1.05% ± 0.39%, whereas for the three- and single-fraction treatments, it was −2.80% ± 1.68% and −4.00% ± 2.84%, respectively. By reducing the dose rate from 600 to 300 MU min−1 for the single-fraction treatments, the drop in was reduced by approximately 1.5%. Conclusion: The effect of interplay on is negligible for conventionally fractionated treatments, whereas considerable drop in is observed for the three- and single-fraction treatments. Reduced dose rate could be used in hypofractionated treatments to reduce the interplay effect. Advances in knowledge: A novel in silico dose model is presented to determine the impact of interplay effect in IMRT treatments on . PMID:25251400

  5. Radiation effects in accelerator components

    NASA Astrophysics Data System (ADS)

    Borden, M. J.

    1995-05-01

    A review of basic radiation effects is presented. The fundamental definitions of radioactivity are given for alpha, beta, positron decay, gamma-ray emission and electron capture. The interaction of neutrons with material is covered including: absorption through radiative capture, neutron-proton interaction, alpha particle emission, neutron-multi-neutron reactions and fission. Basic equations defining inelastic and elastic scattering are presented with examples of neutron energy loss per collision for several elements. Photon interactions are considered for gamma-rays and x-rays. Photoelectric collisions, the Compton effect and pair production are reviewed. Electron-proton interactions are discussed with emphasis placed on defect production. Basic displacement damage mechanisms for photon and particle interaction are presented. Several examples of radiation effects to plastics, electronics and ceramics are presented. Extended references are given for each example.

  6. Phase 2 Trial of Accelerated, Hypofractionated Whole-Breast Irradiation of 39 Gy in 13 Fractions Followed by a Tumor Bed Boost Sequentially Delivering 9 Gy in 3 Fractions in Early-Stage Breast Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Ja Young; Jung, So-Youn; Lee, Seeyoun

    Purpose: To report a phase 2 trial of accelerated, hypofractionated whole-breast irradiation (AH-WBI) delivered as a daily dose of 3 Gy to the whole breast followed by a tumor bed boost. Methods and Materials: Two hundred seventy-six patients diagnosed with breast cancer (pT1-2 and pN0-1a) who had undergone breast-conserving surgery in which the operative margins were negative were treated with AH-WBI delivered as 39 Gy in 13 fractions of 3 Gy to the whole breast once daily over 5 consecutive working days, and 9 Gy in 3 sequential fractions of 3 Gy to a lumpectomy cavity, all within 3.2 weeks.more » Results: After a median follow-up period of 57 months (range: 27-75 months), the rate of 5-year locoregional recurrence was 1.4% (n=4), whereas that of disease-free survival was 97.4%. No grade 3 skin toxicity was reported during the follow-up period. Qualitative physician cosmetic assessments of good or excellent were noted in 82% of the patients at 2 months after the completion of AH-WBI. The global cosmetic outcome did not worsen over time, and a good or excellent cosmetic outcome was reported in 82% of the patients at 3 years. The mean pretreatment percentage breast retraction assessment was 12.00 (95% confidence interval [CI]: 11.14-12.86). The mean value of percentage breast retraction assessment increased to 13.99 (95% CI: 12.17-15.96) after 1 year and decreased to 13.54 (95% CI: 11.84-15.46) after 3 years but was not significant (P>.05). Conclusions: AH-WBI consisting of 39 Gy in 13 fractions followed by a tumor bed boost sequentially delivering 9 Gy in 3 fractions can be delivered with excellent disease control and tolerable skin toxicity in patients with early-stage breast cancer after breast-conserving surgery.« less

  7. Phase 2 trial of accelerated, hypofractionated whole-breast irradiation of 39 Gy in 13 fractions followed by a tumor bed boost sequentially delivering 9 Gy in 3 fractions in early-stage breast cancer.

    PubMed

    Kim, Ja Young; Jung, So-Youn; Lee, Seeyoun; Kang, Han-Sung; Lee, Eun Sook; Park, In Hae; Lee, Keun Seok; Ro, Jungsil; Lee, Nam Kwon; Shin, Kyung Hwan

    2013-12-01

    To report a phase 2 trial of accelerated, hypofractionated whole-breast irradiation (AH-WBI) delivered as a daily dose of 3 Gy to the whole breast followed by a tumor bed boost. Two hundred seventy-six patients diagnosed with breast cancer (pT1-2 and pN0-1a) who had undergone breast-conserving surgery in which the operative margins were negative were treated with AH-WBI delivered as 39 Gy in 13 fractions of 3 Gy to the whole breast once daily over 5 consecutive working days, and 9 Gy in 3 sequential fractions of 3 Gy to a lumpectomy cavity, all within 3.2 weeks. After a median follow-up period of 57 months (range: 27-75 months), the rate of 5-year locoregional recurrence was 1.4% (n=4), whereas that of disease-free survival was 97.4%. No grade 3 skin toxicity was reported during the follow-up period. Qualitative physician cosmetic assessments of good or excellent were noted in 82% of the patients at 2 months after the completion of AH-WBI. The global cosmetic outcome did not worsen over time, and a good or excellent cosmetic outcome was reported in 82% of the patients at 3 years. The mean pretreatment percentage breast retraction assessment was 12.00 (95% confidence interval [CI]: 11.14-12.86). The mean value of percentage breast retraction assessment increased to 13.99 (95% CI: 12.17-15.96) after 1 year and decreased to 13.54 (95% CI: 11.84-15.46) after 3 years but was not significant (P>.05). AH-WBI consisting of 39 Gy in 13 fractions followed by a tumor bed boost sequentially delivering 9 Gy in 3 fractions can be delivered with excellent disease control and tolerable skin toxicity in patients with early-stage breast cancer after breast-conserving surgery. Copyright © 2013 Elsevier Inc. All rights reserved.

  8. Under-reported dosimetry errors due to interplay effects during VMAT dose delivery in extreme hypofractionated stereotactic radiotherapy.

    PubMed

    Gauer, Tobias; Sothmann, Thilo; Blanck, Oliver; Petersen, Cordula; Werner, René

    2018-06-01

    Radiotherapy of extracranial metastases changed from normofractioned 3D CRT to extreme hypofractionated stereotactic treatment using VMAT beam techniques. Random interaction between tumour motion and dynamically changing beam parameters might result in underdosage of the CTV even for an appropriately dimensioned ITV (interplay effect). This study presents a clinical scenario of extreme hypofractionated stereotactic treatment and analyses the impact of interplay effects on CTV dose coverage. For a thoracic/abdominal phantom with an integrated high-resolution detector array placed on a 4D motion platform, dual-arc treatment plans with homogenous target coverage were created using a common VMAT technique and delivered in a single fraction. CTV underdosage through interplay effects was investigated by comparing dose measurements with and without tumour motion during plan delivery. Our study agrees with previous works that pointed out insignificant interplay effects on target coverage for very regular tumour motion patterns like simple sinusoidal motion. However, we identified and illustrated scenarios that are likely to result in a clinically relevant CTV underdosage. For tumour motion with abnormal variability, target coverage quantified by the CTV area receiving more than 98% of the prescribed dose decreased to 78% compared to 100% at static dose measurement. This study is further proof of considerable influence of interplay effects on VMAT dose delivery in stereotactic radiotherapy. For selected conditions of an exemplary scenario, interplay effects and related motion-induced target underdosage primarily occurred in tumour motion pattern with increased motion variability and VMAT plan delivery using complex MLC dose modulation.

  9. Use of hypofractionated post-mastectomy radiotherapy reduces health costs by over $2000 per patient: An Australian perspective.

    PubMed

    Mortimer, Joshua W; McLachlan, Craig S; Hansen, Carmen J; Assareh, Hassan; Last, Andrew; McKay, Michael J; Shakespeare, Thomas P

    2016-02-01

    The most recent clinical practice guidelines released by Cancer Australia draw attention to unanswered questions concerning the health economic considerations associated with hypofractionated radiotherapy. This study aimed to quantify and compare the healthcare costs at a regional Australian radiotherapy institute with respect to conventionally fractionated post-mastectomy radiotherapy (Cf-PMRT) versus hypofractionated post-mastectomy radiotherapy (Hf-PMRT) administration. Medical records of 196 patients treated with post-mastectomy radiotherapy at the NSW North Coast Cancer Institute from February 2008 to June 2014 were retrospectively reviewed. Australian Medicare item numbers billed for patients receiving either Cf-PMRT of 50 Gy in 25 daily fractions or Hf-PMRT of 40.05 Gy in 15 daily fractions were calculated. Decision tree analysis was used to model costs. Independent-samples t-tests and Mann-Whitney U-tests were used to compare crude average costs for Cf-PMRT and Hf-PMRT and determine which treatment components accounted for any differences. Hf-PMRT, with or without irradiation to the regional lymph nodes, was associated with significantly reduced Medicare costs ($5613 AUD per patient for Hf-PMRT vs $8272 AUD per patient for Cf-PMRT; P < 0.001). Savings associated with Hf-PMRT ranged from $1353 (22.1%) for patients receiving no regional irradiation to $2898 (32.0%) for patients receiving both axillary and supraclavicular therapy. Hf-PMRT results in a significant reduction in the financial costs associated with treating breast cancer patients in a regional Australian setting when compared with Cf-PMRT. © 2015 The Royal Australian and New Zealand College of Radiologists.

  10. Radiation techniques used in patients with breast cancer: Results of a survey in Spain

    PubMed Central

    Algara, Manuel; Arenas, Meritxell; De las Peñas Eloisa Bayo, Dolores; Muñoz, Julia; Carceller, José Antonio; Salinas, Juan; Moreno, Ferran; Martínez, Francisco; González, Ezequiel; Montero, Ángel

    2012-01-01

    Aim To evaluate the resources and techniques used in the irradiation of patients with breast cancer after lumpectomy or mastectomy and the status of implementation of new techniques and therapeutic schedules in our country. Background The demand for cancer care has increased among the Spanish population, as long as cancer treatment innovations have proliferated. Radiation therapy in breast cancer has evolved exponentially in recent years with the implementation of three-dimensional conformal radiotherapy, intensity modulated radiotherapy, image guided radiotherapy and hypofractionation. Material and Methods An original survey questionnaire was sent to institutions participating in the SEOR-Mama group (GEORM). In total, the standards of practice in 969 patients with breast cancer after surgery were evaluated. Results The response rate was 70% (28/40 centers). In 98.5% of cases 3D conformal treatment was used. All the institutions employed CT-based planning treatment. Boost was performed in 56.4% of patients: electrons in 59.8%, photons in 23.7% and HDR brachytherapy in 8.8%. Fractionation was standard in 93.1% of patients. Supine position was the most frequent. Only 3 centers used prone position. The common organs of risk delimited were: homolateral lung (80.8%) and heart (80.8%). In 84% histograms were used. An 80.8% of the centers used isocentric technique. In 62.5% asymmetric fields were employed. CTV was delimited in 46.2%, PTV in 65% and both in 38.5%. A 65% of the centers checked with portal films. IMRT and hypofractionation were used in 1% and in 5.5% respectively. Conclusion In most of centers, 3D conformal treatment and CT-based planning treatment were used. IMRT and hypofractionation are currently poorly implemented in Spain. PMID:24377012

  11. The history and future of accelerator radiological protection.

    PubMed

    Thomas, R H

    2001-01-01

    The development of accelerator radiological protection from the mid-1930s, just after the invention of the cyclotron, to the present day is described. Three major themes--physics, personalities and politics--are developed. In the sections describing physics the development of shielding design though measurement, radiation transport calculations, the impact of accelerators on the environment and dosimetry in accelerator radiation fields are described. The discussion is limited to high-energy, high-intensity electron and proton accelerators. The impact of notable personalities on the development of both the basic science and on the accelerator health physics profession itself is described. The important role played by scholars and teachers is discussed. In the final section. which discusses the future of accelerator radiological protection, some emphasis is given to the social and political aspects that must he faced in the years ahead.

  12. Achieving Stable Radiation Pressure Acceleration of Heavy Ions via Successive Electron Replenishment from Ionization of a High-Z Material Coating.

    PubMed

    Shen, X F; Qiao, B; Zhang, H; Kar, S; Zhou, C T; Chang, H X; Borghesi, M; He, X T

    2017-05-19

    A method to achieve stable radiation pressure acceleration (RPA) of heavy ions from laser-irradiated ultrathin foils is proposed, where a high-Z material coating in front is used. The coated high-Z material, acting as a moving electron repository, continuously replenishes the accelerating heavy ion foil with comoving electrons in the light-sail acceleration stage due to its successive ionization under laser fields with Gaussian temporal profile. As a result, the detrimental effects such as foil deformation and electron loss induced by the Rayleigh-Taylor-like and other instabilities in RPA are significantly offset and suppressed so that stable acceleration of heavy ions are maintained. Particle-in-cell simulations show that a monoenergetic Al^{13+} beam with peak energy 3.8 GeV and particle number 10^{10} (charge >20  nC) can be obtained at intensity 10^{22}  W/cm^{2}.

  13. Accelerated hematopoietic recovery with angiotensin-(1-7) after total body radiation.

    PubMed

    Rodgers, Kathleen E; Espinoza, Theresa; Roda, Norma; Meeks, Christopher J; Hill, Colin; Louie, Stan G; Dizerega, Gere S

    2012-06-01

    Angiotensin (1-7) [A(1-7)] is a component of the renin angiotensin system (RAS) that stimulates hematopoietic recovery after myelosuppression. In a Phase I/IIa clinical trial, thrombocytopenia after chemotherapy was reduced by A(1-7). In this study, the ability of A(1-7) to improve recovery after total body irradiation (TBI) is shown with specific attention to radiation-induced hematopoietic injury. Mice were exposed to TBI (doses of 2-7 Gray [Gy]) of cesium 137 gamma rays, followed by treatment with A(1-7), typical doses were 100-1000 μg/kg given once or once daily for a specified number of days depending on the study. Animals are injected subcutaneously via the nape of the neck with 0.1 ml drug in saline. The recovery of blood and bone marrow cells was determined. Effects of TBI and A(1-7) on survival and bleeding time was also evaluated. Daily administration of A(1-7) after radiation exposure improved survival (from 60% to 92-97%) and reduced bleeding time at day 30 after TBI. Further, A(1-7) increased early mixed progenitors (3- to 5-fold), megakaryocyte (2- to 3-fold), myeloid (3- to 6-fold) and erythroid (2- to 5-fold) progenitors in the bone marrow and reduced radiation-induced thrombocytopenia (RIT) (up to 2-fold). Reduction in the number of treatments to 3 per week also improved bone marrow recovery and reduced RIT. As emergency responder and healthcare systems in case of nuclear accident or/and terrorist attack may be overwhelmed, the consequence of delayed initiation of treatment was ascertained. Treatment with A(1-7) can be delayed up to 5 days and still be effective in the reduction of RIT or acceleration of bone marrow recovery. The data presented in this paper indicate that A(1-7) reduces the consequences of critical radiation exposure and can be initiated well after initial exposure with maximal effects on early responding hematopoietic progenitors when treatment is initiated 2 days after exposure and 5 days after exposure for the later responding

  14. 1985 Particle Accelerator Conference: Accelerator Engineering and Technology, 11th, Vancouver, Canada, May 13-16, 1985, Proceedings

    NASA Astrophysics Data System (ADS)

    Strathdee, A.

    1985-10-01

    The topics discussed are related to high-energy accelerators and colliders, particle sources and electrostatic accelerators, controls, instrumentation and feedback, beam dynamics, low- and intermediate-energy circular accelerators and rings, RF and other acceleration systems, beam injection, extraction and transport, operations and safety, linear accelerators, applications of accelerators, radiation sources, superconducting supercolliders, new acceleration techniques, superconducting components, cryogenics, and vacuum. Accelerator and storage ring control systems are considered along with linear and nonlinear orbit theory, transverse and longitudinal instabilities and cures, beam cooling, injection and extraction orbit theory, high current dynamics, general beam dynamics, and medical and radioisotope applications. Attention is given to superconducting RF structures, magnet technology, superconducting magnets, and physics opportunities with relativistic heavy ion accelerators.

  15. Radiative acceleration in Schwarzschild space-times

    NASA Astrophysics Data System (ADS)

    Keane, A. J.; Barrett, R. K.; Simmons, J. F. L.

    2001-03-01

    We examine the radial motion of a material particle in the intense radiation field of a static spherically symmetric compact object with spherical emitting surface outside the Schwarzschild radius. This paper generalizes previous work which dealt with radial motion in the Thomson limit, where the radiation force is simply proportional to the radiative flux. In the general case the average time component of the 4-momentum transferred to the particle is not negligible compared with its rest mass. Consequently, we find that the frequency dependence of the radiation force owing to Compton scattering for highly energetic photons gives rise to an increase in the effective mass of the test particle. In this work we outline the effects of this frequency dependence and compare these with the results in the Thomson limit. We present the frequency dependent saturation velocity curves for a range of stellar luminosities and radiation frequencies and present the resulting phase-space diagrams corresponding to the radial test particle trajectories. In particular, the stable equilibrium points which exist in the Thomson limit are found to be absent in the general case.

  16. Emulating RRTMG Radiation with Deep Neural Networks for the Accelerated Model for Climate and Energy

    NASA Astrophysics Data System (ADS)

    Pal, A.; Norman, M. R.

    2017-12-01

    The RRTMG radiation scheme in the Accelerated Model for Climate and Energy Multi-scale Model Framework (ACME-MMF), is a bottleneck and consumes approximately 50% of the computational time. To simulate a case using RRTMG radiation scheme in ACME-MMF with high throughput and high resolution will therefore require a speed-up of this calculation while retaining physical fidelity. In this study, RRTMG radiation is emulated with Deep Neural Networks (DNNs). The first step towards this goal is to run a case with ACME-MMF and generate input data sets for the DNNs. A principal component analysis of these input data sets are carried out. Artificial data sets are created using the previous data sets to cover a wider space. These artificial data sets are used in a standalone RRTMG radiation scheme to generate outputs in a cost effective manner. These input-output pairs are used to train multiple architectures DNNs(1). Another DNN(2) is trained using the inputs to predict the error. A reverse emulation is trained to map the output to input. An error controlled code is developed with the two DNNs (1 and 2) and will determine when/if the original parameterization needs to be used.

  17. Fundamentals of Radiation Physics

    DTIC Science & Technology

    2008-07-01

    Sources of Ionizing Radiation Electrically generated • Charged particle accelerators • Van de Graaff generator , cyclotron linear accelerator ...Presented at the Armed Forces Radiobiology Research Institute Scientific Medical Effects of Ionizing Radiation Course July 28 through August 1, 2008...conducted once a year, focuses on the latest research about the medical effects of ionizing radiation to help clinicians, health physicists, and

  18. EDITORIAL: Laser and plasma accelerators Laser and plasma accelerators

    NASA Astrophysics Data System (ADS)

    Bingham, Robert

    2009-02-01

    This special issue on laser and plasma accelerators illustrates the rapid advancement and diverse applications of laser and plasma accelerators. Plasma is an attractive medium for particle acceleration because of the high electric field it can sustain, with studies of acceleration processes remaining one of the most important areas of research in both laboratory and astrophysical plasmas. The rapid advance in laser and accelerator technology has led to the development of terawatt and petawatt laser systems with ultra-high intensities and short sub-picosecond pulses, which are used to generate wakefields in plasma. Recent successes include the demonstration by several groups in 2004 of quasi-monoenergetic electron beams by wakefields in the bubble regime with the GeV energy barrier being reached in 2006, and the energy doubling of the SLAC high-energy electron beam from 42 to 85 GeV. The electron beams generated by the laser plasma driven wakefields have good spatial quality with energies ranging from MeV to GeV. A unique feature is that they are ultra-short bunches with simulations showing that they can be as short as a few femtoseconds with low-energy spread, making these beams ideal for a variety of applications ranging from novel high-brightness radiation sources for medicine, material science and ultrafast time-resolved radiobiology or chemistry. Laser driven ion acceleration experiments have also made significant advances over the last few years with applications in laser fusion, nuclear physics and medicine. Attention is focused on the possibility of producing quasi-mono-energetic ions with energies ranging from hundreds of MeV to GeV per nucleon. New acceleration mechanisms are being studied, including ion acceleration from ultra-thin foils and direct laser acceleration. The application of wakefields or beat waves in other areas of science such as astrophysics and particle physics is beginning to take off, such as the study of cosmic accelerators considered

  19. Modelling the Impact of Fractionation on Late Urinary Toxicity After Postprostatectomy Radiation Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fiorino, Claudio, E-mail: fiorino.claudio@hsr.it; Cozzarini, Cesare; Rancati, Tiziana

    2014-12-01

    Purpose: To fit urinary toxicity data of patients treated with postprostatectomy radiation therapy with the linear quadratic (LQ) model with/without introducing a time factor. Methods and Materials: Between 1993 and 2010, 1176 patients were treated with conventional fractionation (1.8 Gy per fraction, median 70.2 Gy, n=929) or hypofractionation (2.35-2.90 Gy per fraction, n=247). Data referred to 2004-2010 (when all schemes were in use, n=563; conventional fractionation: 316; hypofractionation: 247) were fitted as a logit function of biological equivalent dose (BED), according to the LQ model with/without including a time factor γ (fixing α/β = 5 Gy). The 3-year risks of severe urethral stenosis, incontinence, and hematuriamore » were considered as endpoints. Best-fit parameters were derived, and the resulting BEDs were taken in multivariable backward logistic models, including relevant clinical variables, considering the whole population. Results: The 3-year incidences of severe stenosis, incontinence, and hematuria were, respectively, 6.6%, 4.8%, and 3.3% in the group treated in 2004-2010. The best-fitted α/β values were 0.81 Gy and 0.74 Gy for incontinence and hematuria, respectively, with the classic LQ formula. When fixing α/β = 5 Gy, best-fit values for γ were, respectively, 0.66 Gy/d and 0.85 Gy/d. Sensitivity analyses showed reasonable values for γ (0.6-1.0 Gy/d), with comparable goodness of fit for α/β values between 3.5 and 6.5 Gy. Likelihood ratio tests showed that the fits with/without including γ were equivalent. The resulting multivariable backward logistic models in the whole population included BED, pT4, and use of antihypertensives (area under the curve [AUC] = 0.72) for incontinence and BED, pT4, and year of surgery (AUC = 0.80) for hematuria. Stenosis data could not be fitted: a 4-variable model including only clinical factors (acute urinary toxicity, pT4, year of surgery, and use of antihypertensives) was

  20. Radiation skyshine from a 6 MeV medical accelerator

    PubMed Central

    McGinley, Patton H.; Rising, Mary B.; Pahikkala, A. Jussi

    2010-01-01

    This study assesses the dose level from skyshine produced by a 6 MeV medical accelerator. The analysis of data collected on skyshine yields professional guidance for future investigators as they attempt to quantify and qualify radiation protection concerns in shielding therapy vaults. Survey measurements using various field sizes and at varying distances from a primary barrier have enabled us to identify unique skyshine behavior in comparison to other energies already seen in literature. In order to correctly quantify such measurements outside a shielded barrier, one must take into consideration the fact that a skyshine maximum may not be observed at the same distance for all field sizes. A physical attribute of the skyshine scatter component was shown to increase to a maximum value at 4.6 m from the barrier for the largest field size used. We recommend that the largest field sizes be used in the field for the determination of skyshine effect and that the peak value be further analyzed specifically when considering shielding designs. PACS numbers: 87.52.‐g, 87.52.Df, 87.52.Tr, 87.53.‐j, 87.53.Bn, 87.53.Dq, 87.66.‐a, 89., 89.60.+x

  1. Concept of a staged FEL enabled by fast synchrotron radiation cooling of laser-plasma accelerated beam by solenoidal magnetic fields in plasma bubble

    NASA Astrophysics Data System (ADS)

    Seryi, Andrei; Lesz, Zsolt; Andreev, Alexander; Konoplev, Ivan

    2017-03-01

    A novel method for generating GigaGauss solenoidal fields in a laser-plasma bubble, using screw-shaped laser pulses, has been recently presented. Such magnetic fields enable fast synchrotron radiation cooling of the beam emittance of laser-plasma accelerated leptons. This recent finding opens a novel approach for design of laser-plasma FELs or colliders, where the acceleration stages are interleaved with laser-plasma emittance cooling stages. In this concept paper, we present an outline of what a staged plasma-acceleration FEL could look like, and discuss further studies needed to investigate the feasibility of the concept in detail.

  2. Charged particle accelerator grating

    DOEpatents

    Palmer, Robert B.

    1986-01-01

    A readily disposable and replaceable accelerator grating for a relativistic particle accelerator. The grating is formed for a plurality of liquid droplets that are directed in precisely positioned jet streams to periodically dispose rows of droplets along the borders of a predetermined particle beam path. A plurality of lasers are used to direct laser beams into the droplets, at predetermined angles, thereby to excite the droplets to support electromagnetic accelerating resonances on their surfaces. Those resonances operate to accelerate and focus particles moving along the beam path. As the droplets are distorted or destroyed by the incoming radiation, they are replaced at a predetermined frequency by other droplets supplied through the jet streams.

  3. Charged particle accelerator grating

    DOEpatents

    Palmer, R.B.

    1985-09-09

    A readily disposable and replaceable accelerator grating for a relativistic particle accelerator is described. The grating is formed for a plurality of liquid droplets that are directed in precisely positioned jet streams to periodically dispose rows of droplets along the borders of a predetermined particle beam path. A plurality of lasers are used to direct laser beams onto the droplets, at predetermined angles, thereby to excite the droplets to support electromagnetic accelerating resonances on their surfaces. Those resonances operate to accelerate and focus particles moving along the beam path. As the droplets are distorted or destroyed by the incoming radiation, they are replaced at a predetermined frequency by other droplets supplied through the jet streams.

  4. Charged particle accelerator grating

    DOEpatents

    Palmer, Robert B.

    1986-09-02

    A readily disposable and replaceable accelerator grating for a relativistic particle accelerator. The grating is formed for a plurality of liquid droplets that are directed in precisely positioned jet streams to periodically dispose rows of droplets along the borders of a predetermined particle beam path. A plurality of lasers are used to direct laser beams into the droplets, at predetermined angles, thereby to excite the droplets to support electromagnetic accelerating resonances on their surfaces. Those resonances operate to accelerate and focus particles moving along the beam path. As the droplets are distorted or destroyed by the incoming radiation, they are replaced at a predetermined frequency by other droplets supplied through the jet streams.

  5. Phase locked multiple rings in the radiation pressure ion acceleration process

    NASA Astrophysics Data System (ADS)

    Wan, Y.; Hua, J. F.; Pai, C.-H.; Li, F.; Wu, Y. P.; Lu, W.; Zhang, C. J.; Xu, X. L.; Joshi, C.; Mori, W. B.

    2018-04-01

    Laser contrast plays a crucial role for obtaining high quality ion beams in the radiation pressure ion acceleration (RPA) process. Through one- and two-dimensional particle-in-cell (PIC) simulations, we show that a plasma with a bi-peak density profile can be produced from a thin foil on the effects of a picosecond prepulse, and it can then lead to distinctive modulations in the ion phase space (phase locked double rings) when the main pulse interacts with the target. These fascinating ion dynamics are mainly due to the trapping effect from the ponderomotive potential well of a formed moving standing wave (i.e. the interference between the incoming pulse and the pulse reflected by a slowly moving surface) at nodes, quite different from the standard RPA process. A theoretical model is derived to explain the underlying mechanism, and good agreements have been achieved with PIC simulations.

  6. Rapid acceleration of outer radiation belt electrons associated with solar wind pressure pulse: Simulation study with Arase and Van Allen Probe observations

    NASA Astrophysics Data System (ADS)

    Hayashi, M.; Yoshizumi, M.; Saito, S.; Matsumoto, Y.; Kurita, S.; Teramoto, M.; Hori, T.; Matsuda, S.; Shoji, M.; Machida, S.; Amano, T.; Seki, K.; Higashio, N.; Mitani, T.; Takashima, T.; Kasahara, Y.; Kasaba, Y.; Yagitani, S.; Ishisaka, K.; Tsuchiya, F.; Kumamoto, A.; Matsuoka, A.; Shinohara, I.; Blake, J. B.; Fennell, J. F.; Claudepierre, S. G.

    2017-12-01

    Relativistic electron fluxes of the outer radiation belt rapidly change in response to solar wind variations. One of the shortest acceleration processes of electrons in the outer radiation belt is wave-particle interactions between drifting electrons and fast-mode waves induced by compression of the dayside magnetopause caused by interplanetary shocks. In order to investigate this process by a solar wind pressure pulse, we perform a code-coupling simulation using the GEMSIS-RB test particle simulation (Saito et al., 2010) and the GEMSIS-GM global MHD magnetosphere simulation (Matsumoto et al., 2010). As a case study, an interplanetary pressure pulse with the enhancement of 5 nPa is used as the up-stream condition. In the magnetosphere, the fast mode waves with the azimuthal electric field ( negative 𝐸𝜙 : |𝐸&;#120601;| 10 mV/m, azimuthal mode number : m ≤ 2) propagates from the dayside to nightside, interacting with electrons. From the simulation results, we derived effective acceleration model and condition : The electrons whose drift velocities vd ≥ (π/2)Vfast are accelerated efficiently. On December 20, 2016, the Arase (ERG) satellite was launched , allowing more accurate multi-point simultaneous observation with other satellites. We will compare our simulation results with observations from Arase and Van Allen Probes, and investigate the acceleration condition of relativistic electrons associated with storm sudden commencement (SSC).

  7. High field gradient particle accelerator

    DOEpatents

    Nation, J.A.; Greenwald, S.

    1989-05-30

    A high electric field gradient electron accelerator utilizing short duration, microwave radiation, and capable of operating at high field gradients for high energy physics applications or at reduced electric field gradients for high average current intermediate energy accelerator applications is disclosed. Particles are accelerated in a smooth bore, periodic undulating waveguide, wherein the period is so selected that the particles slip an integral number of cycles of the r.f. wave every period of the structure. This phase step of the particles produces substantially continuous acceleration in a traveling wave without transverse magnetic or other guide means for the particle. 10 figs.

  8. High field gradient particle accelerator

    DOEpatents

    Nation, John A.; Greenwald, Shlomo

    1989-01-01

    A high electric field gradient electron accelerator utilizing short duration, microwave radiation, and capable of operating at high field gradients for high energy physics applications or at reduced electric field gradients for high average current intermediate energy accelerator applications. Particles are accelerated in a smooth bore, periodic undulating waveguide, wherein the period is so selected that the particles slip an integral number of cycles of the r.f. wave every period of the structure. This phase step of the particles produces substantially continuous acceleration in a traveling wave without transverse magnetic or other guide means for the particle.

  9. COX-2 expression and outcome in canine nasal carcinomas treated with hypofractionated radiotherapy.

    PubMed

    Belshaw, Z; Constantio-Casas, F; Brearley, M J; Dunning, M D; Holmes, M A; Dobson, J M

    2011-06-01

    The expression of cyclooxygenase isoform 2 (COX-2) in canine nasal carcinomas has been well documented. COX-2 expression has proven to be a prognostic factor in several human tumours. The aims of this study were to assess the correlation between immunohistochemical COX-2 expression and prognosis using rhinoscopic biopsies from 42 dogs with nasal carcinomas treated with hypofractionated radiotherapy, and to establish a replicable COX-2 scoring system. Ninety per cent of sections evaluated were COX-2 positive with a mean score of 6.6 (median 8.0; range 0-12). Neither COX-2 expression nor tumour type had a significant correlation with survival. There are likely to be many as yet unidentified variants which contribute to length of survival in dogs with nasal carcinomas. Immunohistochemical COX-2 expression appears unlikely to be of prognostic significance for canine nasal carcinoma. © 2010 Blackwell Publishing Ltd.

  10. SU-E-T-361: Energy Dependent Radiation/light-Field Misalignment On Truebeam Linear Accelerator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sperling, N; Tanny, S; Parsai, E

    2015-06-15

    Purpose: Verifying the co-incidence of the radiation and light field is recommended by TG-142 for monthly and annual checks. On a digital accelerator, it is simple to verify that beam steering settings are consistent with accepted and commissioned values. This fact should allow for physicists to verify radiation-light-field co-incidence for a single energy and accept that Result for all energies. We present a case where the radiation isocenter deviated for a single energy without any apparent modification to the beam steering parameters. Methods: The radiation isocenter was determined using multiple Methods: Gafchromic film, a BB test, and radiation profiles measuredmore » with a diode. Light-field borders were marked on Gafchromic film and then irradiated for all photon energies. Images of acceptance films were compared with films taken four months later. A phantom with a radio-opaque BB was aligned to isocenter using the light-field and imaged using the EPID for all photon energies. An unshielded diode was aligned using the crosshairs and then beam profiles of multiple field sizes were obtained. Field centers were determined using Omni-Pro v7.4 software, and compared to similar scans taken during commissioning. Beam steering parameter files were checked against backups to determine that the steering parameters were unchanged. Results: There were no differences between the configuration files from acceptance. All three tests demonstrated that a single energy had deviated from accepted values by 0.8 mm in the inline direction. The other two energies remained consistent with previous measurements. The deviated energy was re-steered to be within our clinical tolerance. Conclusions: Our study demonstrates that radiation-light-field coincidence is an energy dependent effect for modern linacs. We recommend that radiation-light-field coincidence be verified for all energies on a monthly basis, particularly for modes used to treat small fields, as these may drift

  11. Observation of Betatron X-Ray Radiation in a Self-Modulated Laser Wakefield Accelerator Driven with Picosecond Laser Pulses

    DOE PAGES

    Albert, F.; Lemos, N.; Shaw, J. L.; ...

    2017-03-31

    We investigate a new regime for betatron x-ray emission that utilizes kilojoule-class picosecond lasers to drive wakes in plasmas. When such laser pulses with intensities of ~ 5 × 1 0 18 W / cm 2 are focused into plasmas with electron densities of ~ 1 × 1 0 19 cm - 3 , they undergo self-modulation and channeling, which accelerates electrons up to 200 MeV energies and causes those electrons to emit x rays. The measured x-ray spectra are fit with a synchrotron spectrum with a critical energy of 10–20 keV, and 2D particle-in-cell simulations were used to modelmore » the acceleration and radiation of the electrons in our experimental conditions« less

  12. Achieving Stable Radiation Pressure Acceleration of Heavy Ions via Successive Electron Replenishment from Ionization of a High-Z Material Coating

    NASA Astrophysics Data System (ADS)

    Qiao, Bin; Shen, X. F.; Zhang, H.; Kar, S.; Zhou, C. T.; Chang, H. X.; Borghesi, M.; He, X. T.

    2017-10-01

    Among various laser-driven acceleration schemes, radiation pressure acceleration (RPA) is regarded as one of the most promising schemes to obtain high-quality ion beams. Although RPA is very attractive in principle, it is difficult to be achieved experimentally. One of the most important reasons is the dramatic growth of the multi-dimensional Rayleigh-Taylor-like (RT) instabilities. In this talk, we report a novel method to achieve stable RPA of ions from laser-irradiated ultrathin foils, where a high-Z material coating in front is used. The coated high-Z material, acting as a moving electron repository, continuously replenishes the accelerating ion foil with comoving electrons in the light-sail acceleration stage due to its successive ionization under laser fields with Gaussian temporal profile. As a result, the detrimental effects such as electron loss induced by the RT and other instabilities are significantly offset and suppressed so that stable acceleration of ions are maintained. Supported by the NSAF, Grant No. U1630246; the NNSF China Grants No. 11575298; and the National Key Program of S&T Research and Development, Grant No. 2016YFA0401100.

  13. Advanced Accelerators for Medical Applications

    NASA Astrophysics Data System (ADS)

    Uesaka, Mitsuru; Koyama, Kazuyoshi

    We review advanced accelerators for medical applications with respect to the following key technologies: (i) higher RF electron linear accelerator (hereafter “linac”); (ii) optimization of alignment for the proton linac, cyclotron and synchrotron; (iii) superconducting magnet; (iv) laser technology. Advanced accelerators for medical applications are categorized into two groups. The first group consists of compact medical linacs with high RF, cyclotrons and synchrotrons downsized by optimization of alignment and superconducting magnets. The second group comprises laser-based acceleration systems aimed of medical applications in the future. Laser plasma electron/ion accelerating systems for cancer therapy and laser dielectric accelerating systems for radiation biology are mentioned. Since the second group has important potential for a compact system, the current status of the established energy and intensity and of the required stability are given.

  14. Advanced Accelerators for Medical Applications

    NASA Astrophysics Data System (ADS)

    Uesaka, Mitsuru; Koyama, Kazuyoshi

    We review advanced accelerators for medical applications with respect to the following key technologies: (i) higher RF electron linear accelerator (hereafter "linac"); (ii) optimization of alignment for the proton linac, cyclotron and synchrotron; (iii) superconducting magnet; (iv) laser technology. Advanced accelerators for medical applications are categorized into two groups. The first group consists of compact medical linacs with high RF, cyclotrons and synchrotrons downsized by optimization of alignment and superconducting magnets. The second group comprises laserbased acceleration systems aimed of medical applications in the future. Laser plasma electron/ion accelerating systems for cancer therapy and laser dielectric accelerating systems for radiation biology are mentioned. Since the second group has important potential for a compact system, the current status of the established energy and intensity and of the required stability are given.

  15. Neutron dose per fluence and weighting factors for use at high energy accelerators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cossairt, J.Donald; Vaziri, Kamran; /Fermilab

    2008-07-01

    In June 2007, the United States Department of Energy incorporated revised values of neutron weighting factors into its occupational radiation protection Regulation 10 CFR Part 835 as part of updating its radiation dosimetry system. This has led to a reassessment of neutron radiation fields at high energy proton accelerators such as those at the Fermi National Accelerator Laboratory (Fermilab). Values of dose per fluence factors appropriate for accelerator radiation fields calculated elsewhere are collated and radiation weighting factors compared. The results of this revision to the dosimetric system are applied to americium-beryllium neutron energy spectra commonly used for instrument calibrations.more » A set of typical accelerator neutron energy spectra previously measured at Fermilab are reassessed in light of the new dosimetry system. The implications of this revision are found to be of moderate significance.« less

  16. Radiation pressure injection in laser-wakefield acceleration

    NASA Astrophysics Data System (ADS)

    Liu, Y. L.; Kuramitsu, Y.; Isayama, S.; Chen, S. H.

    2018-01-01

    We investigated the injection of electrons in laser-wakefield acceleration induced by a self-modulated laser pulse by a two dimensional particle-in-cell simulation. The localized electric fields and magnetic fields are excited by the counter-streaming flows on the surface of the ion bubble, owing to the Weibel or two stream like instability. The electrons are injected into the ion bubble from the sides of it and then accelerated by the wakefield. Contrary to the conventional wave breaking model, the injection of monoenergetic electrons are mainly caused by the electromagnetic process. A simple model was proposed to address the instability, and the growth rate was verified numerically and theoretically.

  17. An accelerator-based neutron microbeam system for studies of radiation effects

    PubMed Central

    Xu, Yanping; Randers-Pehrson, Gerhard; Marino, Stephen A.; Bigelow, Alan W.; Akselrod, Mark S.; Sykora, Jeff G.; Brenner, David J.

    2011-01-01

    A novel neutron microbeam is being developed at the Radiological Research Accelerator Facility (RARAF) of Columbia University. The RARAF microbeam facility has been used for studies of radiation bystander effects in mammalian cells for many years. Now a prototype neutron microbeam is being developed that can be used for bystander effect studies. The neutron microbeam design here is based on the existing charged particle microbeam technology at the RARAF. The principle of the neutron microbeam is to use the proton beam with a micrometre-sized diameter impinging on a very thin lithium fluoride target system. From the kinematics of the 7Li(p,n)7Be reaction near the threshold of 1.881 MeV, the neutron beam is confined within a narrow, forward solid angle. Calculations show that the neutron spot using a target with a 17-µm thick gold backing foil will be <20 µm in diameter for cells attached to a 3.8-µm thick propylene-bottomed cell dish in contact with the target backing. The neutron flux will roughly be 2000 per second based on the current beam setup at the RARAF singleton accelerator. The dose rate will be about 200 mGy min−1. The principle of this neutron microbeam system has been preliminarily tested at the RARAF using a collimated proton beam. The imaging of the neutron beam was performed using novel fluorescent nuclear track detector technology based on Mg-doped luminescent aluminum oxide single crystals and confocal laser scanning fluorescent microscopy. PMID:21131327

  18. Quality of Life After Hypofractionated Concomitant Intensity-Modulated Radiotherapy Boost for High-Risk Prostate Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Quon, Harvey; Department of Radiation Oncology, University of Toronto, Toronto, ON; Cheung, Patrick C.F., E-mail: patrick.cheung@sunnybrook.ca

    Purpose: To evaluate the change in health-related quality of life (QOL) of patients with high-risk prostate cancer treated using hypofractionated radiotherapy combined with long-term androgen deprivation therapy. Methods and Materials: A prospective Phase I-II study enrolled patients with any of the following: clinical Stage T3 disease, prostate-specific antigen level {>=}20 ng/mL, or Gleason score 8-10. Radiotherapy consisted of 45 Gy (1.8 Gy per fraction) to the pelvic lymph nodes with a concomitant 22.5 Gy intensity-modulated radiotherapy boost to the prostate, for a total of 67.5 Gy (2.7 Gy per fraction) in 25 fractions over 5 weeks. Daily image guidance wasmore » performed using three gold seed fiducials. Quality of life was measured using the Expanded Prostate Cancer Index Composite (EPIC), a validated tool that assesses four primary domains (urinary, bowel, sexual, and hormonal). Results: From 2004 to 2007, 97 patients were treated. Median follow-up was 39 months. Compared with baseline, at 24 months there was no statistically significant change in the mean urinary domain score (p = 0.99), whereas there were decreases in the bowel (p < 0.01), sexual (p < 0.01), and hormonal (p < 0.01) domains. The proportion of patients reporting a clinically significant difference in EPIC urinary, bowel, sexual, and hormonal scores at 24 months was 27%, 31%, 55%, and 60%, respectively. However, moderate and severe distress related to these symptoms was minimal, with increases of only 3% and 5% in the urinary and bowel domains, respectively. Conclusions: Hypofractionated radiotherapy combined with long-term androgen deprivation therapy was well tolerated. Although there were modest rates of clinically significant patient-reported urinary and bowel toxicity, most of this caused only mild distress, and moderate and severe effects on QOL were limited. Additional follow-up is ongoing to characterize long-term QOL.« less

  19. Hypofractionated Whole-Brain Radiotherapy for Multiple Brain Metastases From Transitional Cell Carcinoma of the Bladder

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rades, Dirk, E-mail: Rades.Dirk@gmx.ne; Department of Radiation Oncology, University of Hamburg; Meyners, Thekla

    2010-10-01

    Purpose: Brain metastases in bladder cancer patients are extremely rare. Most patients with multiple lesions receive longer-course whole-brain radiotherapy (WBRT) with 10 x 3 Gy/2 weeks or 20 x 2 Gy/4 weeks. Because its radiosensitivity is relatively low, metastases from bladder cancer may be treated better with hypofractionated radiotherapy. This study compared short-course hypofractionated WBRT (5 x 4 Gy/1 week) to longer-course WBRT. Methods and Materials: Data for 33 patients receiving WBRT alone for multiple brain metastases from transitional cell bladder carcinoma were retrospectively analyzed. Short-course WBRT with 5 x 4 Gy (n = 12 patients) was compared to longer-coursemore » WBRT with 10 x 3 Gy/20 x 2 Gy (n = 21 patients) for overall survival (OS) and local (intracerebral) control (LC). Five additional potential prognostic factors were investigated: age, gender, Karnofsky performance score (KPS), number of brain metastases, and extracranial metastases. The Bonferroni correction for multiple tests was used to adjust the p values derived from the multivariate analysis. p values of <0.025 were considered significant. Results: At 6 months, OS was 42% after 5 x 4 Gy and 24% after 10 x 3/20 x 2 Gy (p = 0.31). On univariate analysis, improved OS was associated with less than four brain metastases (p = 0.021) and almost associated with a lack of extracranial metastases (p = 0.057). On multivariate analysis, both factors were not significant. At 6 months, LC was 83% after 5 x 4 Gy and 27% after 10 x 3/20 x 2 Gy (p = 0.035). Improved LC was almost associated with a KPS of {>=}70 (p = 0.051). On multivariate analysis, WBRT regimen was almost significant (p = 0.036). KPS showed a trend (p = 0.07). Conclusions: Short-course WBRT with 5 x 4 Gy should be seriously considered for most patients with multiple brain metastases from bladder cancer, as it resulted in improved LC.« less

  20. Particle Acceleration, Magnetic Field Generation and Emission from Relativistic Jets

    NASA Technical Reports Server (NTRS)

    Nishikawa, K.-I.; Hardee, P.; Hededal, C.; Mizuno, Yosuke; Fishman, G. Jerry; Hartmann, D. H.

    2006-01-01

    Nonthermal radiation observed from astrophysical systems containing relativistic jets and shocks, e.g., active galactic nuclei (AGNs), gamma-ray bursts (GRBs), supernova remnants, and Galactic microquasar systems usually have power-law emission spectra. Fermi acceleration is the mechanism usually assumed for the acceleration of particles in astrophysical environments. Recent PIC simulations using injected relativistic electron-ion (electro-positron) jets show that particle acceleration occurs within the downstream jet, rather than by the scattering of particles back and forth across the shock as in Fermi acceleration. Shock acceleration' is a ubiquitous phenomenon in astrophysical plasmas. Plasma waves and their associated instabilities (e.g., the Buneman instability, other two-streaming instability, and the Weibel instability) created in the shocks are responsible for particle (electron, positron, and ion) acceleration. The simulation results show that the Weibel instability is responsible for generating and amplifying highly nonuniform, small-scale magnetic fields. These magnetic fields contribute to the electron's transverse deflection behind the jet head. The "jitter" radiation from deflected electrons has different spectral properties than synchrotron radiation which is calculated in a uniform magnetic field. This jitter radiation may be important to understanding the complex time evolution and/or spectral structure in gamma-ray bursts, relativistic jets, and supernova remnants. We will review recent PIC simulations of relativistic jets and try to make a connection with observations.

  1. Observation of acceleration and deceleration in gigaelectron-volt-per-metre gradient dielectric wakefield accelerators

    DOE PAGES

    O’Shea, B. D.; Andonian, G.; Barber, S. K.; ...

    2016-09-14

    There is urgent need to develop new acceleration techniques capable of exceeding gigaelectron-volt-per-metre (GeV m –1) gradients in order to enable future generations of both light sources and high-energy physics experiments. To address this need, short wavelength accelerators based on wakefields, where an intense relativistic electron beam radiates the demanded fields directly into the accelerator structure or medium, are currently under intense investigation. One such wakefield based accelerator, the dielectric wakefield accelerator, uses a dielectric lined-waveguide to support a wakefield used for acceleration. Here we show gradients of 1.347±0.020 GeV m –1 using a dielectric wakefield accelerator of 15 cmmore » length, with sub-millimetre transverse aperture, by measuring changes of the kinetic state of relativistic electron beams. We follow this measurement by demonstrating accelerating gradients of 320±17 MeV m –1. As a result, both measurements improve on previous measurements by and order of magnitude and show promise for dielectric wakefield accelerators as sources of high-energy electrons.« less

  2. Observation of acceleration and deceleration in gigaelectron-volt-per-metre gradient dielectric wakefield accelerators

    PubMed Central

    O'Shea, B. D.; Andonian, G.; Barber, S. K.; Fitzmorris, K. L.; Hakimi, S.; Harrison, J.; Hoang, P. D.; Hogan, M. J.; Naranjo, B.; Williams, O. B.; Yakimenko, V.; Rosenzweig, J. B.

    2016-01-01

    There is urgent need to develop new acceleration techniques capable of exceeding gigaelectron-volt-per-metre (GeV m−1) gradients in order to enable future generations of both light sources and high-energy physics experiments. To address this need, short wavelength accelerators based on wakefields, where an intense relativistic electron beam radiates the demanded fields directly into the accelerator structure or medium, are currently under intense investigation. One such wakefield based accelerator, the dielectric wakefield accelerator, uses a dielectric lined-waveguide to support a wakefield used for acceleration. Here we show gradients of 1.347±0.020 GeV m−1 using a dielectric wakefield accelerator of 15 cm length, with sub-millimetre transverse aperture, by measuring changes of the kinetic state of relativistic electron beams. We follow this measurement by demonstrating accelerating gradients of 320±17 MeV m−1. Both measurements improve on previous measurements by and order of magnitude and show promise for dielectric wakefield accelerators as sources of high-energy electrons. PMID:27624348

  3. Phase locked multiple rings in the radiation pressure ion acceleration process

    DOE PAGES

    Wan, Y.; Hua, J. F.; Pai, C. -H.; ...

    2018-03-05

    Laser contrast plays a crucial role for obtaining high quality ion beams in the radiation pressure ion acceleration (RPA) process. Through one- and two-dimensional particle-in-cell (PIC) simulations, we show that a plasma with a bi-peak density profile can be produced from a thin foil on the effects of a picosecond prepulse, and it can then lead to distinctive modulations in the ion phase space (phase locked double rings) when the main pulse interacts with the target. These fascinating ion dynamics are mainly due to the trapping effect from the ponderomotive potential well of a formed moving standing wave (i.e. themore » interference between the incoming pulse and the pulse reflected by a slowly moving surface) at nodes, quite different from the standard RPA process. Here, a theoretical model is derived to explain the underlying mechanism, and good agreements have been achieved with PIC simulations.« less

  4. Phase locked multiple rings in the radiation pressure ion acceleration process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wan, Y.; Hua, J. F.; Pai, C. -H.

    Laser contrast plays a crucial role for obtaining high quality ion beams in the radiation pressure ion acceleration (RPA) process. Through one- and two-dimensional particle-in-cell (PIC) simulations, we show that a plasma with a bi-peak density profile can be produced from a thin foil on the effects of a picosecond prepulse, and it can then lead to distinctive modulations in the ion phase space (phase locked double rings) when the main pulse interacts with the target. These fascinating ion dynamics are mainly due to the trapping effect from the ponderomotive potential well of a formed moving standing wave (i.e. themore » interference between the incoming pulse and the pulse reflected by a slowly moving surface) at nodes, quite different from the standard RPA process. Here, a theoretical model is derived to explain the underlying mechanism, and good agreements have been achieved with PIC simulations.« less

  5. Breast interest group faculty of radiation oncology: Australian and New Zealand patterns of practice survey on breast radiotherapy.

    PubMed

    Nguyen, Kimberley; Mackenzie, Penny; Allen, Angela; Dreosti, Marcus; Morgia, Marita; Zissiadis, Yvonne; Lamoury, Gilian; Windsor, Apsara

    2017-08-01

    This patterns of practice study was conducted on behalf of the RANZCR Breast Interest Group in order to document current radiotherapy practices for breast cancer in Australia and New Zealand. The survey identifies variations and highlights potential contentious aspects of radiotherapy management of breast cancer. A fifty-eight question survey was disseminated via the Survey Monkey digital platform to 388 Radiation Oncologists in Australia and New Zealand. In total, 156 responses were received and collated. Areas of notable consensus among respondents included hypofractionation (77.3% of respondents would 'always' or 'sometimes' consider hypofractionation in the management of ductal carcinoma in-situ and 99.3% in early invasive breast cancer); margin status in early breast cancer (73.8% believe a clear inked margin is sufficient and does not require further surgery) and use of bolus in post-mastectomy radiotherapy (PMRT) (91.1% of participants use bolus in PMRT). Areas with a wider degree of variability amongst respondents included regional nodal irradiation and components of radiotherapy planning and delivery (examples include the technique used for delivery of boost and frequency of bolus application for PMRT). The results of these patterns of practice survey informs radiation oncologists in Australia and New Zealand of the current clinical practices being implemented by their peers. The survey identifies areas of consensus and contention, the latter of which may lead to a development of research trials and/or educational activities to address these areas of uncertainty. © 2016 The Royal Australian and New Zealand College of Radiologists.

  6. EDITORIAL: Laser and Plasma Accelerators Workshop, Kardamyli, Greece, 2009 Laser and Plasma Accelerators Workshop, Kardamyli, Greece, 2009

    NASA Astrophysics Data System (ADS)

    Bingham, Bob; Muggli, Patric

    2011-01-01

    The Laser and Plasma Accelerators Workshop 2009 was part of a very successful series of international workshops which were conceived at the 1985 Laser Acceleration of Particles Workshop in Malibu, California. Since its inception, the workshop has been held in Asia and in Europe (Kardamyli, Kyoto, Presqu'ile de Giens, Portovenere, Taipei and the Azores). The purpose of the workshops is to bring together the most recent results in laser wakefield acceleration, plasma wakefield acceleration, laser-driven ion acceleration, and radiation generation produced by plasma-based accelerator beams. The 2009 workshop was held on 22-26 June in Kardamyli, Greece, and brought together over 80 participants. (http://cfp.ist.utl.pt/lpaw09/). The workshop involved five main themes: • Laser plasma electron acceleration (experiment/theory/simulation) • Computational methods • Plasma wakefield acceleration (experiment/theory/simulation) • Laser-driven ion accelerationRadiation generation and application. All of these themes are covered in this special issue of Plasma Physics and Controlled Fusion. The topic and application of plasma accelerators is one of the success stories in plasma physics, with laser wakefield acceleration of mono-energetic electrons to GeV energies, of ions to hundreds of MeV, and electron-beam-driven wakefield acceleration to 85 GeV. The accelerating electric field in the wake is of the order 1 GeV cm-1, or an accelerating gradient 1000 times greater than in conventional accelerators, possibly leading to an accelerator 1000 times smaller (and much more affordable) for the same energy. At the same time, the electron beams generated by laser wakefield accelerators have very good emittance with a correspondingly good energy spread of about a few percent. They also have the unique feature in being ultra-short in the femtosecond scale. This makes them attractive for a variety of applications, ranging from material science to ultra-fast time

  7. Spatio-temporal radiation biology with conventionally or laser-accelerated particles for ELIMED

    NASA Astrophysics Data System (ADS)

    Ristić-Fira, A.; Bulat, T.; Keta, O.; Romano, F.; Cirrone, P.; Cuttone, G.; Petrović, I.

    2013-07-01

    The aim of this study is to investigate the behavior of radio-resistant human malignant cells, thus enabling better understanding of radiobiological effects of ions in such a case. Radiation sources such as accelerated continuous ion beams and laser technology-based ultra short radiation sources with energy of around 10 MeV will be used. The HTB140 melanoma cells are chosen since it has been shown that they represent the limit case of cellular radio-resistance among the studied tumor cell lines. These cells are particularly interesting as they provide data on the very edge of inactivation capacity of each beam line that is tested. After exposing the cell monolayers to continuous radiations of low (γ-rays) and high (protons) linear energy transfer, the kinetics of disappearance of the phosphorylated histone H2AX (γ-H2AX) foci per cell will be determined. The same procedure will be performed with the pulsed high dose rate protons. Detection and quantification of γ-H2AX foci will be performed by immunohistochemical 3D time-dependent imaging analyses using laser scanning confocal microscopy. Immunoblotting will enable the follow-up of the relation between γ-H2AX and cell cycle arrest via the p53/p21 pathway. In such a way the spatio-temporal changes on sub-cellular level will be visualized, quantified and compared. These results will show whether there is a difference in the effects on cells between continuous and pulsed irradiation mode. Therefore, they will contribute to the data base that might promote pulsed sources for medical treatments of malignant growths.

  8. Molecular imaging biomarkers of resistance to radiation therapy for spontaneous nasal tumors in canines.

    PubMed

    Bradshaw, Tyler J; Bowen, Stephen R; Deveau, Michael A; Kubicek, Lyndsay; White, Pamela; Bentzen, Søren M; Chappell, Richard J; Forrest, Lisa J; Jeraj, Robert

    2015-03-15

    Imaging biomarkers of resistance to radiation therapy can inform and guide treatment management. Most studies have so far focused on assessing a single imaging biomarker. The goal of this study was to explore a number of different molecular imaging biomarkers as surrogates of resistance to radiation therapy. Twenty-two canine patients with spontaneous sinonasal tumors were treated with accelerated hypofractionated radiation therapy, receiving either 10 fractions of 4.2 Gy each or 10 fractions of 5.0 Gy each to the gross tumor volume. Patients underwent fluorodeoxyglucose (FDG)-, fluorothymidine (FLT)-, and Cu(II)-diacetyl-bis(N4-methylthiosemicarbazone) (Cu-ATSM)-labeled positron emission tomography/computed tomography (PET/CT) imaging before therapy and FLT and Cu-ATSM PET/CT imaging during therapy. In addition to conventional maximum and mean standardized uptake values (SUV(max); SUV(mean)) measurements, imaging metrics providing response and spatiotemporal information were extracted for each patient. Progression-free survival was assessed according to response evaluation criteria in solid tumor. The prognostic value of each imaging biomarker was evaluated using univariable Cox proportional hazards regression. Multivariable analysis was also performed but was restricted to 2 predictor variables due to the limited number of patients. The best bivariable model was selected according to pseudo-R(2). The following variables were significantly associated with poor clinical outcome following radiation therapy according to univariable analysis: tumor volume (P=.011), midtreatment FLT SUV(mean) (P=.018), and midtreatment FLT SUV(max) (P=.006). Large decreases in FLT SUV(mean) from pretreatment to midtreatment were associated with worse clinical outcome (P=.013). In the bivariable model, the best 2-variable combination for predicting poor outcome was high midtreatment FLT SUV(max) (P=.022) in combination with large FLT response from pretreatment to midtreatment (P=.041

  9. Ultrasound Imaging in Radiation Therapy: From Interfractional to Intrafractional Guidance

    PubMed Central

    Western, Craig; Hristov, Dimitre

    2015-01-01

    External beam radiation therapy (EBRT) is included in the treatment regimen of the majority of cancer patients. With the proliferation of hypofractionated radiotherapy treatment regimens, such as stereotactic body radiation therapy (SBRT), interfractional and intrafractional imaging technologies are becoming increasingly critical to ensure safe and effective treatment delivery. Ultrasound (US)-based image guidance systems offer real-time, markerless, volumetric imaging with excellent soft tissue contrast, overcoming the limitations of traditional X-ray or computed tomography (CT)-based guidance for abdominal and pelvic cancer sites, such as the liver and prostate. Interfractional US guidance systems have been commercially adopted for patient positioning but suffer from systematic positioning errors induced by probe pressure. More recently, several research groups have introduced concepts for intrafractional US guidance systems leveraging robotic probe placement technology and real-time soft tissue tracking software. This paper reviews various commercial and research-level US guidance systems used in radiation therapy, with an emphasis on hardware and software technologies that enable the deployment of US imaging within the radiotherapy environment and workflow. Previously unpublished material on tissue tracking systems and robotic probe manipulators under development by our group is also included. PMID:26180704

  10. Accelerated radiation damping for increased spin equilibrium (ARISE): a new method for controlling the recovery of longitudinal magnetization.

    PubMed

    Huang, Susie Y; Witzel, Thomas; Wald, Lawrence L

    2008-11-01

    Control of the longitudinal magnetization in fast gradient-echo (GRE) sequences is an important factor in enabling the high efficiency of balanced steady-state free precession (bSSFP) sequences. We introduce a new method for accelerating the return of the longitudinal magnetization to the +z-axis that is independent of externally applied RF pulses and shows improved off-resonance performance. The accelerated radiation damping for increased spin equilibrium (ARISE) method uses an external feedback circuit to strengthen the radiation damping (RD) field. The enhanced RD field rotates the magnetization back to the +z-axis at a rate faster than T(1) relaxation. The method is characterized in GRE phantom imaging at 3T as a function of feedback gain, phase, and duration, and compared with results from numerical simulations of the Bloch equations incorporating RD. A short period of feedback (10 ms) during a refocused interval of a crushed GRE sequence allowed greater than 99% recovery of the longitudinal magnetization when very little T(2) relaxation had time to occur. An appropriate application might be to improve navigated sequences. Unlike conventional flip-back schemes, the ARISE "flip-back" is generated by the spins themselves, thereby offering a potentially useful building block for enhancing GRE sequences.

  11. Prostate-specific antigen bounce after high-dose-rate prostate brachytherapy and hypofractionated external beam radiotherapy.

    PubMed

    Patel, Nita; Souhami, Luis; Mansure, Jose João; Duclos, Marie; Aprikian, Armen; Faria, Sergio; David, Marc; Cury, Fabio L

    2014-01-01

    To report the frequency, timing, and magnitude of prostate-specific antigen (PSA) bounce (PB) in patients who received high-dose-rate (HDR) brachytherapy (HDRB) plus hypofractionated external beam radiation therapy (HypoRT) and to assess a possible correlation between PB and biochemical failure (BF). Patients with intermediate-risk prostate cancer received 10Gy single-fraction (192)Ir HDRB followed by 50Gy in 20 daily fractions of HypoRT without androgen deprivation therapy. All patients had a minimum 2-year followup. The PB was defined as PSA elevation higher than 0.2ng/mL from previous measurement with subsequent drop to pre-bounce level. The BF was defined as PSA nadir+2ng/mL. A total of 114 patients treated between 2001 and 2009 were eligible for analysis. At a median followup of 66 months, the PB was found in 45 (39%) patients with a median time to bounce of 16 months (range, 3-76 months). The median time to PSA normalization after a PB was 9 months (range, 2-40 months). The median magnitude of PB was 0.45ng/mL (range, 0.2-6.62). The BF occurred in 12 (10.5%) patients of whom three had a PB. Median time to BF was 52.5 months. Four patients (3.5%) in the PB group fit the criteria for BF. The PB is common after HDRB and HypoRT and can occur up to 76 months after treatment. It can rarely fit the criteria for BF. The time to PB is shorter than the time to BF. There is a lower incidence of BF in patients with a PB. An acknowledgment of this phenomenon should be made when interpreting PSA results during followup to prevent unnecessary interventions. Copyright © 2014 American Brachytherapy Society. Published by Elsevier Inc. All rights reserved.

  12. Outcomes and Toxicity for Hypofractionated and Single-Fraction Image-Guided Stereotactic Radiosurgery for Sarcomas Metastasizing to the Spine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Folkert, Michael R.; Bilsky, Mark H.; Tom, Ashlyn K.

    2014-04-01

    Purpose: Conventional radiation treatment (20-40 Gy in 5-20 fractions, 2-5 Gy per fraction) for sarcoma metastatic to the spine provides subtherapeutic doses, resulting in poor durable local control (LC) (50%-77% at 1 year). Hypofractionated (HF) and/or single-fraction (SF) image-guided stereotactic radiosurgery (IG-SRS) may provide a more effective means of managing these lesions. Methods and Materials: Patients with pathologically proven high-grade sarcoma metastatic to the spine treated with HF and SF IG-SRS were included. LC and overall survival (OS) were analyzed by the use of Kaplan-Meier statistics. Univariate and multivariate analyses were performed by the use of Cox regression with competing-risksmore » analysis; all confidence intervals are 95%. Toxicities were assessed according to Common Terminology Criteria for Adverse Events, version 4.0. Results: From May 2005 to November 11, 2012, 88 patients with 120 discrete metastases received HF (3-6 fractions; median dose, 28.5 Gy; n=52, 43.3%) or SF IG-SRS (median dose, 24 Gy; n=68, 56.7%). The median follow-up time was 12.3 months. At 12 months, LC was 87.9% (confidence interval [CI], 81.3%-94.5%), OS was 60.6% (CI, 49.6%-71.6%), and median survival was 16.9 months. SF IG-SRS demonstrated superior LC to HF IG-SRS (12-month LC of 90.8% [CI, 83%-98.6%] vs 84.1% [CI, 72.9%-95.3%] P=.007) and retained significance on multivariate analysis (P=.030, hazard ratio 0.345; CI, 0.132-0.901]. Treatment was well tolerated, with 1% acute grade 3 toxicity, 4.5% chronic grade 3 toxicity, and no grade >3 toxicities. Conclusions: In the largest series of metastatic sarcoma to the spine to date, IG-SRS provides excellent LC in the setting of an aggressive disease with low radiation sensitivity and poor prognosis. Single-fraction IG-SRS is associated with the highest rates of LC with minimal toxicity.« less

  13. Accelerated Solar-UV Test Chamber

    NASA Technical Reports Server (NTRS)

    Gupta, A.; Laue, E. G.

    1984-01-01

    Medium-pressure mercury-vapor lamps provide high ratio of ultraviolet to total power. Chamber for evaluating solar-ultraviolet (UV) radiation damage permits accelerated testing without overheating test specimens.

  14. Initial Human Response to Nuclear Radiation

    DTIC Science & Technology

    1982-04-01

    radiation from a linear accelerator . Victim A , age 31, received a dose of 100 rads; victim B, age 29... The radiation has always been in the million-electron- volt range, usually from a cobalt 60 source but sometimes using linear accelerators prouucing up...more recent medical experience, Appendix B presents comments by a radiation oncologist on the

  15. Electron cyclotron harmonic wave acceleration

    NASA Technical Reports Server (NTRS)

    Karimabadi, H.; Menyuk, C. R.; Sprangle, P.; Vlahos, L.

    1987-01-01

    A nonlinear analysis of particle acceleration in a finite bandwidth, obliquely propagating electromagnetic cyclotron wave is presented. It has been suggested by Sprangle and Vlahos in 1983 that the narrow bandwidth cyclotron radiation emitted by the unstable electron distribution inside a flaring solar loop can accelerate electrons outside the loop by the interaction of a monochromatic wave propagating along the ambient magnetic field with the ambient electrons. It is shown here that electrons gyrating and streaming along a uniform, static magnetic field can be accelerated by interacting with the fundamental or second harmonic of a monochromatic, obliquely propagating cyclotron wave. It is also shown that the acceleration is virtually unchanged when a wave with finite bandwidth is considered. This acceleration mechanism can explain the observed high-energy electrons in type III bursts.

  16. TU-H-BRA-02: The Physics of Magnetic Field Isolation in a Novel Compact Linear Accelerator Based MRI-Guided Radiation Therapy System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Low, D; Mutic, S; Shvartsman, S

    Purpose: To develop a method for isolating the MRI magnetic field from field-sensitive linear accelerator components at distances close to isocenter. Methods: A MRI-guided radiation therapy system has been designed that integrates a linear accelerator with simultaneous MR imaging. In order to accomplish this, the magnetron, port circulator, radiofrequency waveguide, gun driver, and linear accelerator needed to be placed in locations with low magnetic fields. The system was also required to be compact, so moving these components far from the main magnetic field and isocenter was not an option. The magnetic field sensitive components (exclusive of the waveguide) were placedmore » in coaxial steel sleeves that were electrically and mechanically isolated and whose thickness and placement were optimized using E&M modeling software. Six sets of sleeves were placed 60° apart, 85 cm from isocenter. The Faraday effect occurs when the direction of propagation is parallel to the magnetic RF field component, rotating the RF polarization, subsequently diminishing RF power. The Faraday effect was avoided by orienting the waveguides such that the magnetic field RF component was parallel to the magnetic field. Results: The magnetic field within the shields was measured to be less than 40 Gauss, significantly below the amount needed for the magnetron and port circulator. Additional mu-metal was employed to reduce the magnetic field at the linear accelerator to less than 1 Gauss. The orientation of the RF waveguides allowed the RT transport with minimal loss and reflection. Conclusion: One of the major challenges in designing a compact linear accelerator based MRI-guided radiation therapy system, that of creating low magnetic field environments for the magnetic-field sensitive components, has been solved. The measured magnetic fields are sufficiently small to enable system integration. This work supported by ViewRay, Inc.« less

  17. Accelerators for America's Future

    NASA Astrophysics Data System (ADS)

    Bai, Mei

    2016-03-01

    Particle accelerator, a powerful tool to energize beams of charged particles to a desired speed and energy, has been the working horse for investigating the fundamental structure of matter and fundermental laws of nature. Most known examples are the 2-mile long Stanford Linear Accelerator at SLAC, the high energy proton and anti-proton collider Tevatron at FermiLab, and Large Hadron Collider that is currently under operation at CERN. During the less than a century development of accelerator science and technology that led to a dazzling list of discoveries, particle accelerators have also found various applications beyond particle and nuclear physics research, and become an indispensible part of the economy. Today, one can find a particle accelerator at almost every corner of our lives, ranging from the x-ray machine at the airport security to radiation diagnostic and therapy in hospitals. This presentation will give a brief introduction of the applications of this powerful tool in fundermental research as well as in industry. Challenges in accelerator science and technology will also be briefly presented

  18. A non-human primate model of human radiation-induced venocclusive liver disease and hepatocyte injury

    PubMed Central

    Yamamoto, Toshiyuki; Ito, Ryotaro; Brooks, Jenna M.; Guzman-Lepe, Jorge; Galambos, Csaba; Fong, Jason V.; Deutsch, Melvin; Quader, Mubina A.; Yamanouchi, Kosho; Kabarriti, Rafi; Mehta, Keyur; Soto-Gutierrez, Alejandro; Roy-Chowdhury, Jayanta; Locker, Joseph; Abe, Michio; Enke, Charles A.; Baranowska-Kortylewicz, Janina; Solberg, Timothy D.; Guha, Chandan; Fox, Ira J.

    2014-01-01

    Background Human liver has an unusual sensitivity to radiation that limits its use in cancer therapy or in preconditioning for hepatocyte transplantation. Since the characteristic venocclusive lesions of radiation-induced liver disease do not occur in rodents, there has been no experimental model to investigate the limits of safe radiation therapy or explore the pathogenesis of hepatic venocclusive disease. Methods We performed a dose escalation study in a primate, the cynomolgus monkey, using hypofractionated stereotactic body radiotherapy in 13 animals. Results At doses ≥40Gy, animals developed a systemic syndrome resembling human radiation-induced liver disease, consisting of decreased albumin, elevated alkaline phosphatase, loss of appetite, ascites, and normal bilirubin. Higher radiation doses were lethal, causing severe disease that required euthanasia approximately 10 weeks after radiation. Even at lower doses where radiation-induced liver disease was mild or non-existent, latent and significant injury to hepatocytes was demonstrated by asialoglycoprotein-mediated functional imaging. These monkeys developed hepatic failure with encephalopathy when they received parenteral nutrition containing high concentrations of glucose. Histologically, livers showed central obstruction via an unusual intimal swelling that progressed to central fibrosis. Conclusions The cynomolgus monkey, as the first animal model of human venocclusive radiation-induced liver disease, provides a resource for characterizing the early changes and pathogenesis of venocclusion, for establishing nonlethal therapeutic dosages, and for examining experimental therapies to minimize radiation injury. PMID:24315566

  19. Research on the electromagnetic radiation characteristics of the gas main switch of a capacitive intense electron-beam accelerator

    NASA Astrophysics Data System (ADS)

    Qiu, Yongfeng; Liu, Jinliang; Yang, Jianhua; Cheng, Xinbing; Li, Guolin

    2017-11-01

    Strong electromagnetic fields are radiated during the operation of the intense electron-beam accelerator (IEBA), which may lead to the nearby electronic devices out of order. In this paper, the research on the electromagnetic radiation characteristic of the gas main switch of a capacitive IEBA is carried out by the methods of theory analysis and experiment investigation. It is obtained that the gas main switch is the dominating radiation resource. In the absence of electromagnetic shielding for the gas main switch, when the pulse forming line of the IEBA is charged to 700 kV, the radiation field with amplitude of 3280 V/m, dominant frequency of 84 MHz and high frequency 100 MHz is obtained at a distance of 10 meters away from the gas main switch. The experimental results of the radiation field agree with the theoretical calculations. We analyze the achievements of several research groups and find that there is a relationship between the rise time (T) of the transient current of the gas main switch and the dominant frequency (F) of the radiation field, namely, F*T=1. Contrast experiment is carried out with a metal shield cover for the gas main switch. Experimental results show that for the shielded setup the radiation field reduces to 115 V/m, the dominant frequency increases to 86.5 MHz at a distance of 10 away meters from the gas main switch. These conclusions are beneficial for further research on the electromagnetic radiation and protection of the IEBA.

  20. Using the FLUKA Monte Carlo Code to Simulate the Interactions of Ionizing Radiation with Matter to Assist and Aid Our Understanding of Ground Based Accelerator Testing, Space Hardware Design, and Secondary Space Radiation Environments

    NASA Technical Reports Server (NTRS)

    Reddell, Brandon

    2015-01-01

    Designing hardware to operate in the space radiation environment is a very difficult and costly activity. Ground based particle accelerators can be used to test for exposure to the radiation environment, one species at a time, however, the actual space environment cannot be duplicated because of the range of energies and isotropic nature of space radiation. The FLUKA Monte Carlo code is an integrated physics package based at CERN that has been under development for the last 40+ years and includes the most up-to-date fundamental physics theory and particle physics data. This work presents an overview of FLUKA and how it has been used in conjunction with ground based radiation testing for NASA and improve our understanding of secondary particle environments resulting from the interaction of space radiation with matter.

  1. TH-A-BRD-01: Radiation Biology for Radiation Therapy Physicists

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Orton, C; Borras, C; Carlson, D

    Mechanisms by which radiation kills cells and ways cell damage can be repaired will be reviewed. The radiobiological parameters of dose, fractionation, delivery time, dose rate, and LET will be discussed. The linear-quadratic model for cell survival for high and low dose rate treatments and the effect of repopulation will be presented and discussed. The rationale for various radiotherapy techniques such as conventional fractionation, hyperfractionation, hypofractionation, and low and high dose rate brachytherapy, including permanent implants, will be presented. The radiobiological principles underlying radiation protection guidelines and the different radiation dosimetry terms used in radiation biology and in radiation protectionmore » will be reviewed. Human data on radiation induced cancer, including increases in the risk of second cancers following radiation therapy, as well as data on radiation induced tissue reactions, such as cardiovascular effects, for follow up times up to 20–40 years, published by ICRP, NCRP and BEIR Committees, will be examined. The latest risk estimates per unit dose will be presented. Their adoption in recent radiation protection standards and guidelines and their impact on patient and workers safety in radiotherapy will be discussed. Biologically-guided radiotherapy (BGRT) provides a systematic method to derive prescription doses that integrate patient-specific information about tumor and normal tissue biology. Treatment individualization based on patient-specific biology requires the identification of biological objective functions to facilitate the design and comparison of competing treatment modalities. Biological objectives provide a more direct approach to plan optimization instead of relying solely on dose-based surrogates and can incorporate factors that alter radiation response, such as DNA repair, tumor hypoxia, and relative biological effectiveness. We review concepts motivating biological objectives and provide examples

  2. Induction linear accelerators

    NASA Astrophysics Data System (ADS)

    Birx, Daniel

    1992-03-01

    Among the family of particle accelerators, the Induction Linear Accelerator is the best suited for the acceleration of high current electron beams. Because the electromagnetic radiation used to accelerate the electron beam is not stored in the cavities but is supplied by transmission lines during the beam pulse it is possible to utilize very low Q (typically<10) structures and very large beam pipes. This combination increases the beam breakup limited maximum currents to of order kiloamperes. The micropulse lengths of these machines are measured in 10's of nanoseconds and duty factors as high as 10-4 have been achieved. Until recently the major problem with these machines has been associated with the pulse power drive. Beam currents of kiloamperes and accelerating potentials of megavolts require peak power drives of gigawatts since no energy is stored in the structure. The marriage of liner accelerator technology and nonlinear magnetic compressors has produced some unique capabilities. It now appears possible to produce electron beams with average currents measured in amperes, peak currents in kiloamperes and gradients exceeding 1 MeV/meter, with power efficiencies approaching 50%. The nonlinear magnetic compression technology has replaced the spark gap drivers used on earlier accelerators with state-of-the-art all-solid-state SCR commutated compression chains. The reliability of these machines is now approaching 1010 shot MTBF. In the following paper we will briefly review the historical development of induction linear accelerators and then discuss the design considerations.

  3. Radiobiological research at JINR's accelerators

    NASA Astrophysics Data System (ADS)

    Krasavin, E. A.

    2016-04-01

    The half-a-century development of radiobiological studies at the Joint Institute for Nuclear Research (JINR) is reviewed on a stage-by-stage basis. With the use of the institute's accelerators, some key aspects of radiation biology have been settled, including the relative biological effectiveness (RBE) of various types of ionizing radiation with different physical characteristics; radiation-induced mutagenesis mechanisms, and the formation and repair of genetic structure damage. Practical space radiobiology problems that can be solved using high-energy charged particles are discussed.

  4. Technical Note: Mobile accelerator guidance using an optical tracker during docking in IOERT procedures.

    PubMed

    Marinetto, Eugenio; Victores, Juan González; García-Sevilla, Mónica; Muñoz, Mercedes; Calvo, Felipe Ángel; Balaguer, Carlos; Desco, Manuel; Pascau, Javier

    2017-10-01

    Intraoperative electron radiation therapy (IOERT) involves the delivery of a high radiation dose during tumor resection in a shorter time than other radiation techniques, thus improving local control of tumors. However, a linear accelerator device is needed to produce the beam safely. Mobile linear accelerators have been designed as dedicated units that can be moved into the operating room and deliver radiation in situ. Correct and safe dose delivery is a key concern when using mobile accelerators. The applicator is commonly fixed to the patient's bed to ensure that the dose is delivered to the prescribed location, and the mobile accelerator is moved to dock the applicator to the radiation beam output (gantry). In a typical clinical set-up, this task is time-consuming because of safety requirements and the limited degree of freedom of the gantry. The objective of this study was to present a navigation solution based on optical tracking for guidance of docking to improve safety and reduce procedure time. We used an optical tracker attached to the mobile linear accelerator to track the prescribed localization of the radiation collimator inside the operating room. Using this information, the integrated navigation system developed computes the movements that the mobile linear accelerator needs to perform to align the applicator and the radiation gantry and warns the physician if docking is unrealizable according to the available degrees of freedom of the mobile linear accelerator. Furthermore, we coded a software application that connects all the necessary functioning elements and provides a user interface for the system calibration and the docking guidance. The system could safeguard against the spatial limitations of the operating room, calculate the optimal arrangement of the accelerator and reduce the docking time in computer simulations and experimental setups. The system could be used to guide docking with any commercial linear accelerator. We believe that the

  5. Aloe vera oral administration accelerates acute radiation-delayed wound healing by stimulating transforming growth factor-β and fibroblast growth factor production.

    PubMed

    Atiba, Ayman; Nishimura, Mayumi; Kakinuma, Shizuko; Hiraoka, Takeshi; Goryo, Masanobu; Shimada, Yoshiya; Ueno, Hiroshi; Uzuka, Yuji

    2011-06-01

    Delayed wound healing is a significant clinical problem in patients who have had previous irradiation. This study investigated the effectiveness of Aloe vera (Av) on acute radiation-delayed wound healing. The effect of Av was studied in radiation-exposed rats compared with radiation-only and control rats. Skin wounds were excised on the back of rats after 3 days of local radiation. Wound size was measured on days 0, 3, 6, 9, and 12 after wounding. Wound tissues were examined histologically and the expressions of transforming growth factor β-1 (TGF-β-1) and basic fibroblast growth factor (bFGF) were examined by immunohistochemistry and reverse-transcription polymerase chain reaction. Wound contraction was accelerated significantly by Av on days 6 and 12 after wounding. Furthermore, the inflammatory cell infiltration, fibroblast proliferation, collagen deposition, angiogenesis, and the expression levels of TGF-β-1 and bFGF were significantly higher in the radiation plus Av group compared with the radiation-only group. These data showed the potential application of Av to improve the acute radiation-delayed wound healing by increasing TGF-β-1 and bFGF production. Copyright © 2011 Elsevier Inc. All rights reserved.

  6. SU-E-J-17: A Study of Accelerator-Induced Cerenkov Radiation as a Beam Diagnostic and Dosimetry Tool

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bateman, F; Tosh, R

    2014-06-01

    Purpose: To investigate accelerator-induced Cerenkov radiation imaging as a possible beam diagnostic and medical dosimetry tool. Methods: Cerenkov emission produced by clinical accelerator beams in a water phantom was imaged using a camera system comprised of a high-sensitivity thermoelectrically-cooled CCD camera coupled to a large aperture (f/0.75) objective lens with 16:1 magnification. This large format lens allows a significant amount of the available Cerenkov light to be collected and focused onto the CCD camera to form the image. Preliminary images, obtained with 6 MV photon beams, used an unshielded camera mounted horizontally with the beam normal to the water surface,more » and confirmed the detection of Cerenkov radiation. Several improvements were subsequently made including the addition of radiation shielding around the camera, and altering of the beam and camera angles to give a more favorable geometry for Cerenkov light collection. A detailed study was then undertaken over a range of electron and photon beam energies and dose rates to investigate the possibility of using this technique for beam diagnostics and dosimetry. Results: A series of images were obtained at a fixed dose rate over a range of electron energies from 6 to 20 MeV. The location of maximum intensity was found to vary linearly with the energy of the beam. A linear relationship was also found between the light observed from a fixed point on the central axis and the dose rate for both photon and electron beams. Conclusion: We have found that the analysis of images of beam-induced Cerenkov light in a water phantom has potential for use as a beam diagnostic and medical dosimetry tool. Our future goals include the calibration of the light output in terms of radiation dose and development of a tomographic system for 3D Cerenkov imaging in water phantoms and other media.« less

  7. Blazars: The accelerating inner jet model.

    NASA Astrophysics Data System (ADS)

    Georganopoulos, M.; Marscher, A. P.

    1996-05-01

    The standard interpretation of the nonthermal continuum radiation of blazars from radio to gamma -rays is thought to be synchrotron and inverse Compton radiation from a relativistic jet. The inner jet of a blazar is the section of the jet that connects the central engine with the VLBI core of the radio jet. This is a small (la 1 pc) region where the jet is formed, collimated and accelerated to speeds close to that of light. In the accelerating inner jet model ultrarelativistic plasma is generated continuously near the central engine of the AGN and is accelerated hydrodynamically. An external hydrostatic and/or magnetohydrodynamic pressure collimates the flow. In this work a simple relativistic hydrodynamic scheme that produces a simultaneously accelerating and converging flow is coupled with a detailed calculation of the evolution of the electron energy distribution and synchrotron emissivity due to relativistic electrons radiating in a mostly random magnetic field. Higher frequency radiation emanates from smaller distances from the central engine, implying shorter flux variation timescales at higher frequencies, as observed. The velocity of the jet increases with distance; this implies larger Doppler boosting for greater distances down the jet up to the point where the Lorentz factor Gamma la theta (-1) , where theta is the angle between the velocity vector and the line of sight, and therefore at lower frequencies. This can explain some of the differences between RBLs and XBLs as a line-of-sight orientation effect. A square density wave is propagated with the jet velocity and the variability thus induced is studied, taking into account time delay effects. The model is found to agree qualitatively with the observed steady state spectra as well as with the observed variability properties of BL Lac objects.

  8. An Undulator-Based Laser Wakefield Accelerator Electron Beam Diagnostic

    NASA Astrophysics Data System (ADS)

    Bakeman, Michael S.

    Currently particle accelerators such as the Large Hadron Collider use RF cavities with a maximum field gradient of 50-100 MV/m to accelerate particles over long distances. A new type of plasma based accelerator called a Laser Plasma Accelerator (LPA) is being investigated at the LOASIS group at Lawrence Berkeley National Laboratory which can sustain field gradients of 10-100 GV/m. This new type of accelerator offers the potential to create compact high energy accelerators and light sources. In order to investigate the feasibility of producing a compact light source an undulator-based electron beam diagnostic for use on the LOASIS LPA has been built and calibrated. This diagnostic relies on the principal that the spectral analysis of synchrotron radiation from an undulator can reveal properties of the electron beam such as emittance, energy and energy spread. The effects of electron beam energy spread upon the harmonics of undulator produced synchrotron radiation were derived from the equations of motion of the beam and numerically simulated. The diagnostic consists of quadrupole focusing magnets to collimate the electron beam, a 1.5 m long undulator to produce the synchrotron radiation, and a high resolution high gain XUV spectrometer to analyze the radiation. The undulator was aligned and tuned in order to maximize the flux of synchrotron radiation produced. The spectrometer was calibrated at the Advanced Light Source, with the results showing the ability to measure electron beam energy spreads at resolutions as low as 0.1% rms, a major improvement over conventional magnetic spectrometers. Numerical simulations show the ability to measure energy spreads on realistic LPA produced electron beams as well as the improvements in measurements made with the quadrupole magnets. Experimentally the quadrupoles were shown to stabilize and focus the electron beams at specific energies for their insertion into the undulator, with the eventual hope of producing an all optical

  9. Rectal Bleeding After High-Dose-Rate Brachytherapy Combined With Hypofractionated External-Beam Radiotherapy for Localized Prostate Cancer: The Relationship Between Dose-Volume Histogram Parameters and the Occurrence Rate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Okamoto, Masahiko, E-mail: masaoka@showa.gunma-u.ac.jp; Ishikawa, Hitoshi; Ebara, Takeshi

    2012-02-01

    Purpose: To determine the predictive risk factors for Grade 2 or worse rectal bleeding after high-dose-rate brachytherapy (HDR-BT) combined with hypofractionated external-beam radiotherapy (EBRT) for prostate cancer using dose-volume histogram analysis. Methods and Materials: The records of 216 patients treated with HDR-BT combined with EBRT were analyzed. The treatment protocols for HDR-BT were 5 Gy Multiplication-Sign five times in 3 days or 7 Gy Multiplication-Sign three, 10.5 Gy Multiplication-Sign two, or 9 Gy Multiplication-Sign two in 2 days. The EBRT doses ranged from 45 to 51 Gy with a fractional dose of 3 Gy. Results: In 20 patients Grade 2more » or worse rectal bleeding developed, and the cumulative incidence rate was 9% at 5 years. By converting the HDR-BT and EBRT radiation doses into biologic effective doses (BED), the BED{sub 3} at rectal volumes of 5% and 10% in the patients who experienced bleeding were significantly higher than those in the remaining 196 patients. Univariate analysis showed that a higher rectal BED{sub 3-5%} and the use of fewer needles in brachytherapy were correlated with the incidence of bleeding, but BED{sub 3-5%} was found to be the only significant factor on multivariate analysis. Conclusions: The radiation dose delivered to small rectal lesions as 5% is important for predicting Grade 2 or worse rectal bleeding after HDR-BT combined with EBRT for prostate cancer.« less

  10. Abscopal Effects With Hypofractionated Schedules Extending Into the Effector Phase of the Tumor-Specific T-Cell Response.

    PubMed

    Zhang, Xuanwei; Niedermann, Gabriele

    2018-05-01

    Hypofractionated radiation therapy (hRT) combined with immune checkpoint blockade can induce T-cell-mediated local and abscopal antitumor effects. We had previously observed peak levels of tumor-infiltrating lymphocytes (TILs) between days 5 and 8 after hRT. Because TILs are regarded as radiosensitive, hRT schedules extending into this period might be less immunogenic, prompting us to compare clinically relevant, short and extended schedules with equivalent biologically effective doses combined with anti-programmed cell death 1 (PD1) antibody treatment. In mice bearing 2 B16-CD133 melanoma tumors, the primary tumor was irradiated with 3 × 9.18 Gy in 3 or 5 days or with 5 × 6.43 Gy in 10 days; an anti-PD1 antibody was given weekly. The mice were monitored for tumor growth and survival. T-cell responses were determined on days 8 and 15 of treatment. The role of regional lymph nodes was studied by administering FTY720, which blocks lymph node egress of activated T cells. Tumor growth measurements after combination treatment using short or extended hRT and control treatment were also performed in the wild-type B16 melanoma and 4T1 breast carcinoma models. In the B16-CD133 model, growth inhibition of irradiated primary and nonirradiated secondary tumors and overall survival were similar with all 3 hRT/anti-PD1 combinations, superior to hRT and anti-PD1 monotherapy, and was strongly dependent on CD8 + T cells. TIL infiltration and local and systemic tumor-specific CD8 + T-cell responses were also similar, regardless of whether short or extended hRT was used. Administration of FTY720 accelerated growth of both primary and secondary tumors, strongly reduced their TIL infiltration, and increased tumor-specific CD8 + T cells in the lymph nodes draining the irradiated tumor. In the 4T1 model, local and abscopal tumor control was also similar, regardless of whether short or extended hRT was used, although the synergy between hRT and anti-PD1 was weaker. No

  11. Time-driven activity-based cost comparison of prostate cancer brachytherapy and intensity-modulated radiation therapy.

    PubMed

    Dutta, Sunil W; Bauer-Nilsen, Kristine; Sanders, Jason C; Trifiletti, Daniel M; Libby, Bruce; Lash, Donna H; Lain, Melody; Christodoulou, Deborah; Hodge, Constance; Showalter, Timothy N

    To evaluate the delivery cost of frequently used radiotherapy options offered to patients with intermediate- to high-risk prostate cancer using time-driven activity-based costing and compare the results with Medicare reimbursement and relative value units (RVUs). Process maps were created to represent each step of prostate radiotherapy treatment at our institution. Salary data, equipment purchase costs, and consumable costs were factored into the cost analysis. The capacity cost rate was determined for each resource and calculated for each treatment option from initial consultation to its completion. Treatment options included low-dose-rate brachytherapy (LDR-BT), combined high-dose-rate brachytherapy single fraction boost with 25-fraction intensity-modulated radiotherapy (HDR-BT-IMRT), moderately hypofractionated 28-fraction IMRT, conventionally fractionated 39-fraction IMRT, and conventionally fractionated (2 Gy/fraction) 23-fraction pelvis irradiation with 16-fraction prostate boost. The total cost to deliver LDR-BT, HDR-BT-IMRT, moderately hypofractionated 28-fraction IMRT, conventionally fractionated 39-fraction IMRT, conventionally fractionated 39-fraction IMRT, and conventionally fractionated (2 Gy/fraction) 23-fraction pelvis irradiation with 16-fraction prostate boost was $2719, $6517, $4173, $5507, and $5663, respectively. Total reimbursement for each course was $3123, $10,156, $7862, $9725, and $10,377, respectively. Radiation oncology attending time was 1.5-2 times higher for treatment courses incorporating BT. Attending radiation oncologist's time consumed per RVU was higher with BT (4.83 and 2.56 minutes per RVU generated for LDR-BT and HDR-BT-IMRT, respectively) compared to without BT (1.41-1.62 minutes per RVU). Time-driven activity-based costing analysis identified higher delivery costs associated with prostate BT compared with IMRT alone. In light of recent guidelines promoting BT for intermediate- to high-risk disease, re-evaluation of payment

  12. Ferroelectric ceramics in a pyroelectric accelerator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shchagin, A. V., E-mail: shchagin@kipt.kharkov.ua; Belgorod State University, Belgorod 308015; Miroshnik, V. S.

    2015-12-07

    The applicability of polarized ferroelectric ceramics as a pyroelectric in a pyroelectric accelerator is shown by experiments. The spectra of X-ray radiation of energy up to tens of keV, generated by accelerated electrons, have been measured on heating and cooling of the ceramics in vacuum. It is suggested that curved layers of polarized ferroelectric ceramics be used as elements of ceramic pyroelectric accelerators. Besides, nanotubes and nanowires manufactured from ferroelectric ceramics are proposed for the use in nanometer-scale ceramic pyroelectric nanoaccelerators for future applications in nanotechnologies.

  13. Clinical Pathways: A Catalyst for the Adoption of Hypofractionation for Early-Stage Breast Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chapman, Bhavana V.; Rajagopalan, Malolan S.; Heron, Dwight E.

    2015-11-15

    Purpose: Hypofractionated whole-breast irradiation (HF-WBI) remains underutilized in the United States despite support by multiple clinical trials. We evaluated the success of iterative modifications of our breast cancer clinical pathway on the adoption of HF-WBI in a large, integrated radiation oncology network. Methods and Materials: The breast clinical pathway was modified in January 2011 (Amendment 1) to recommend HF-WBI as the first option for women ≥70 of age with stages 0 to IIA, while maintaining conventional fractionation (CF) as a pathway-concordant secondary option. In January 2013 (Amendment 2), the pathway's HF-WBI recommendation was extended to women ≥50 years of age.more » In January 2014 (Amendment 3), the pathway mandated HF-WBI as the only pathway-concordant option in women ≥50 years of age, and all pathway-discordant plans were subject to peer review and justification. Women ≥50 years of age with ductal carcinoma in situ or invasive breast cancer who underwent breast conserving surgery and adjuvant WBI were included in this analysis. Results: We identified 5112 patients from 2009 to 2014 who met inclusion criteria. From 2009 to 2012, the overall HF-WBI use rate was 8.3%. Following Amendments 2 and 3 (2013 and 2014, respectively), HF-WBI use significantly increased to 21.8% (17.3% in the community, 39.7% at academic sites) and 76.7% (75.5% in the community, 81.4% at academic sites), respectively (P<.001). Compared to 2009 to 2012, the relative risk of using HF-WBI was 7.9 (95% confidence interval: 7.1-8.6, P<.001) and 10.7 (95% CI: 10.3-11.0, P<.001), respectively, after Amendments 2 and 3, respectively. Age ≥70 and treatment at an academic site increased the likelihood of receiving HF-WBI in 2009 to 2012 and following Amendment 2 (P<.001). Conclusions: This study demonstrates the transformative effect of a clinical pathway on patterns of care for breast radiation therapy. Although our initial HF-WBI use rate was low (8%-22%) and

  14. 3-D RPIC simulations of relativistic jets: Particle acceleration, magnetic field generation, and emission

    NASA Technical Reports Server (NTRS)

    Nishikawa, K.-I.

    2006-01-01

    Nonthermal radiation observed from astrophysical systems containing (relativistic) jets and shocks, e.g., supernova remnants, active galactic nuclei (AGNs), gamma-ray bursts (GRBs), and Galactic microquasar systems usually have power-law emission spectra. Fermi acceleration is the mechanism usually assumed for the acceleration of particles in astrophysical environments. Recent PIC simulations using injected relativistic electron-ion (electro-positron) jets show that acceleration occurs within the downstream jet, rather than by the scattering of particles back and forth across the shock as in Fermi acceleration. Shock acceleration is a ubiquitous phenomenon in astrophysical plasmas. Plasma waves and their associated instabilities (e.g., the Buneman instability, other two-streaming instability, and the Weibel instability) created in the .shocks are responsible for particle (electron, positron, and ion) acceleration. The simulation results show that the Weibel instability is responsible for generating and amplifying highly nonuniform, small-scale magnetic fields. These magnetic fields contribute to the electron's transverse deflection behind the jet head. The "jitter" radiation from deflected electrons has different properties than synchrotron radiation which is calculated in a uniform magnetic field. This jitter radiation may be important to understanding the complex time evolution and/or spectral structure in gamma-ray bursts, relativistic jets, and supernova remnants. We will review recent PIC simulations which show particle acceleration in jets.

  15. A Nonhuman Primate Model of Human Radiation-Induced Venocclusive Liver Disease and Hepatocyte Injury

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yannam, Govardhana Rao; Han, Bing; Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi

    Background: Human liver has an unusual sensitivity to radiation that limits its use in cancer therapy or in preconditioning for hepatocyte transplantation. Because the characteristic veno-occlusive lesions of radiation-induced liver disease do not occur in rodents, there has been no experimental model to investigate the limits of safe radiation therapy or explore the pathogenesis of hepatic veno-occlusive disease. Methods and Materials: We performed a dose-escalation study in a primate, the cynomolgus monkey, using hypofractionated stereotactic body radiotherapy in 13 animals. Results: At doses ≥40 Gy, animals developed a systemic syndrome resembling human radiation-induced liver disease, consisting of decreased albumin, elevatedmore » alkaline phosphatase, loss of appetite, ascites, and normal bilirubin. Higher radiation doses were lethal, causing severe disease that required euthanasia approximately 10 weeks after radiation. Even at lower doses in which radiation-induced liver disease was mild or nonexistent, latent and significant injury to hepatocytes was demonstrated by asialoglycoprotein-mediated functional imaging. These monkeys developed hepatic failure with encephalopathy when they received parenteral nutrition containing high concentrations of glucose. Histologically, livers showed central obstruction via an unusual intimal swelling that progressed to central fibrosis. Conclusions: The cynomolgus monkey, as the first animal model of human veno-occlusive radiation-induced liver disease, provides a resource for characterizing the early changes and pathogenesis of venocclusion, for establishing nonlethal therapeutic dosages, and for examining experimental therapies to minimize radiation injury.« less

  16. TU-H-BRA-01: The Physics of High Power Radiofrequency Isolation in a Novel Compact Linear Accelerator Based MRI Guided Radiation Therapy System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lamb, J; Low, D; Mutic, S

    Purpose: To develop a method for isolating the radiofrequency waves emanating from linear accelerator components from the magnetic resonance imaging (MRI) system of an integrated MRI-linac. Methods: An MRI-guided radiation therapy system has been designed that integrates a linear accelerator with simultaneous MR imaging. The radiofrequency waves created by the accelerating process would degrade MR image quality, so a method for containing the radiofrequency waves and isolating the MR imager from them was developed. The linear accelerator radiofrequency modulator was placed outside the room, so a filter was designed to eliminate the radiofrequency corresponding to the proton Larmour frequency ofmore » 14.7 MHz. Placing the radiofrequency emitting components in a typical Faraday cage would have reduced the radiofrequency emissions, but the design would be susceptible to small gaps in the shield due to the efficiency of the Faraday cage reflecting internal radiofrequency emissions. To reduce internal radiofrequency reflections, the Faraday cage was lined with carbon fiber sheets. Carbon fiber has the property of attenuating the radiofrequency energy so that the overall radiofrequency field inside the Faraday cage is reduced, decreasing any radiofrequency energy emitted from small gaps in the cage walls. Results: Within a 1.2 MHz band centered on the Larmor frequency, the radiofrequency (RF) leakage from the Faraday cage was measured to be −90 dB with no RF on, −40 dB with the RF on and no shield, returning to −90 dB with the RF on and shields in place. The radiofrequency filter attenuated the linear accelerator modulator emissions in the 14.7 MHz band by 70 dB. Conclusions: One of the major challenges in designing a compact linear accelerator based MRI-guided radiation therapy system, that of isolating the high power RF system from the MRI, has been solved. The measured radiofrequency emissions are sufficiently small to enable system integration. This research

  17. Particle acceleration, magnetic field generation, and emission in relativistic pair jets

    NASA Technical Reports Server (NTRS)

    Nishikawa, K.-I.; Ramirez-Ruiz, E.; Hardee, P.; Hededal, C.; Kouveliotou, C.; Fishman, G. J.; Mizuno, Y.

    2005-01-01

    Shock acceleration is a ubiquitous phenomenon in astrophysical plasmas. Recent simulations show that the Weibel instability created by relativistic pair jets is responsible for particle (electron, positron, and ion) acceleration. Using a 3-D relativistic electromagnetic particle (REMP) code, we have investigated particle acceleration associated with a relativistic jet propagating through an ambient plasma with and without initial magnetic fields. The growth rates of the Weibel instability depends on the distribution of pair jets. The Weibel instability created in the collisionless shock accelerates particles perpendicular and parallel to the jet propagation direction. This instability is also responsible for generating and amplifying highly nonuniform, small-scale magnetic fields, which contribute to the electron s transverse deflection behind the jet head. The jitter radiation from deflected electrons has different properties than synchrotron radiation which is calculated in a uniform magnetic field. This jitter radiation may be important to understanding the complex time evolution and/or spectral structure in gamma-ray bursts, relativistic jets, and supernova remnants.

  18. Short-course radiotherapy in elderly patients with glioblastoma: feasibility and efficacy of results from a single centre.

    PubMed

    Fariselli, L; Pinzi, V; Milanesi, I; Silvani, A; Marchetti, M; Farinotti, M; Salmaggi, A

    2013-06-01

    The incidence of glioblastoma (GBM) in the elderly population is currently increasing, with a peak seen between 65 and 84 years. The optimal treatment in terms of both efficacy and quality of life still remains a relevant and debated issue today. The purpose of our study was to evaluate the feasibility of short-course hypofractionated accelerated radiotherapy (HART) in GBM patients aged over 70 years and with a good Karnofsky performance score (KPS). A review of medical records at the "Istituto Neurologico C. Besta" was undertaken; patients aged ≥ 70 years who had undergone adjuvant HART for GBM between January 2000 and January 2004 were included in the study. HART was administered to a total dose of 45 Gy, 2.5 Gy/fraction, in three daily fractions for three consecutive days/cycle fractions each, delivered in two cycles (split 15 days). A total of 33 patients were evaluable for the current analysis. Median follow-up was 10 months. According to CTCAE (version 3.0) criteria, none of the patients developed radiation-induced neurological status deterioration or necrosis. KPS evaluation after HART was found to be stable in 73 % of patients, improved in 24 %, and worse in 3 %. The median overall survival time of the entire study population was 8 months (range 2-24). Our findings suggest that a hypofractionated accelerated schedule can be a safe and effective option in the treatment of GBM in the elderly.

  19. Field size dependent mapping of medical linear accelerator radiation leakage

    NASA Astrophysics Data System (ADS)

    Vũ Bezin, Jérémi; Veres, Attila; Lefkopoulos, Dimitri; Chavaudra, Jean; Deutsch, Eric; de Vathaire, Florent; Diallo, Ibrahima

    2015-03-01

    The purpose of this study was to investigate the suitability of a graphics library based model for the assessment of linear accelerator radiation leakage. Transmission through the shielding elements was evaluated using the build-up factor corrected exponential attenuation law and the contribution from the electron guide was estimated using the approximation of a linear isotropic radioactive source. Model parameters were estimated by a fitting series of thermoluminescent dosimeter leakage measurements, achieved up to 100 cm from the beam central axis along three directions. The distribution of leakage data at the patient plane reflected the architecture of the shielding elements. Thus, the maximum leakage dose was found under the collimator when only one jaw shielded the primary beam and was about 0.08% of the dose at isocentre. Overall, we observe that the main contributor to leakage dose according to our model was the electron beam guide. Concerning the discrepancies between the measurements used to calibrate the model and the calculations from the model, the average difference was about 7%. Finally, graphics library modelling is a readily and suitable way to estimate leakage dose distribution on a personal computer. Such data could be useful for dosimetric evaluations in late effect studies.

  20. Role of target thickness in proton acceleration from near-critical mass-limited plasmas

    NASA Astrophysics Data System (ADS)

    Kuri, Deep Kumar; Das, Nilakshi; Patel, Kartik

    2017-07-01

    The role played by the target thickness in generating high energetic protons by a circularly polarized laser from near-critical mass-limited targets (MLT) has been investigated with the help of three-dimensional (3D) particle-in-cell (PIC) simulations. The radiation pressure accelerates protons from the front side of the target. Due to hole boring, the target front side gets deformed resulting in a change in the effective angle of incidence which causes vacuum heating and hence generates hot electrons. These hot electrons travel through the target at an angle with the laser axis and hence get more diverged along transverse directions for large target thickness. The hot electrons form sheath fields on the target rear side which accelerates protons via target normal sheath acceleration (TNSA). It is observed that the collimation of radiation pressure accelerated protons gets degraded on reaching the target rear side due to TNSA. The effect of transverse hot electron recirculations gets suppressed and the energetic protons get highly collimated on decreasing target thickness as the radiation pressure acceleration (RPA) starts dominating the acceleration process.

  1. Minibeam therapy with protons and light ions: physical feasibility and potential to reduce radiation side effects and to facilitate hypofractionation.

    PubMed

    Dilmanian, F Avraham; Eley, John G; Krishnan, Sunil

    2015-06-01

    Despite several advantages of proton therapy over megavoltage x-ray therapy, its lack of proximal tissue sparing is a concern. The method presented here adds proximal tissue sparing to protons and light ions by turning their uniform incident beams into arrays of parallel, small, or thin (0.3-mm) pencil or planar minibeams, which are known to spare tissues. As these minibeams penetrate the tissues, they gradually broaden and merge with each other to produce a solid beam. Broadening of 0.3-mm-diameter, 109-MeV proton pencil minibeams was measured using a stack of radiochromic films with plastic spacers. Monte Carlo simulations were used to evaluate the broadening in water of minibeams of protons and several light ions and the dose from neutron generated by collimator. A central parameter was tissue depth, where the beam full width at half maximum (FWHM) reached 0.7 mm, beyond which tissue sparing decreases. This depth was 22 mm for 109-MeV protons in a film stack. It was also found by simulations in water to be 23.5 mm for 109 MeV proton pencil minibeams and 26 mm for 116 MeV proton planar minibeams. For light ions, all with 10 cm range in water, that depth increased with particle size; specifically it was 51 mm for Li-7 ions. The ∼2.7% photon equivalent neutron skin dose from the collimator was reduced 7-fold by introducing a gap between the collimator and the skin. Proton minibeams can be implemented at existing particle therapy centers. Because they spare the shallow tissues, they could augment the efficacy of proton therapy and light particle therapy, particularly in treating tumors that benefit from sparing of proximal tissues such as pediatric brain tumors. They should also allow hypofractionated treatment of all tumors by allowing the use of higher incident doses with less concern about proximal tissue damage. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Minibeam Therapy With Protons and Light Ions: Physical Feasibility and Potential to Reduce Radiation Side Effects and to Facilitate Hypofractionation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dilmanian, F. Avraham, E-mail: avraham.dilmanian@stonybrook.edu; Eley, John G.; Krishnan, Sunil

    2015-06-01

    Purpose: Despite several advantages of proton therapy over megavoltage x-ray therapy, its lack of proximal tissue sparing is a concern. The method presented here adds proximal tissue sparing to protons and light ions by turning their uniform incident beams into arrays of parallel, small, or thin (0.3-mm) pencil or planar minibeams, which are known to spare tissues. As these minibeams penetrate the tissues, they gradually broaden and merge with each other to produce a solid beam. Methods and Materials: Broadening of 0.3-mm-diameter, 109-MeV proton pencil minibeams was measured using a stack of radiochromic films with plastic spacers. Monte Carlo simulationsmore » were used to evaluate the broadening in water of minibeams of protons and several light ions and the dose from neutron generated by collimator. Results: A central parameter was tissue depth, where the beam full width at half maximum (FWHM) reached 0.7 mm, beyond which tissue sparing decreases. This depth was 22 mm for 109-MeV protons in a film stack. It was also found by simulations in water to be 23.5 mm for 109 MeV proton pencil minibeams and 26 mm for 116 MeV proton planar minibeams. For light ions, all with 10 cm range in water, that depth increased with particle size; specifically it was 51 mm for Li-7 ions. The ∼2.7% photon equivalent neutron skin dose from the collimator was reduced 7-fold by introducing a gap between the collimator and the skin. Conclusions: Proton minibeams can be implemented at existing particle therapy centers. Because they spare the shallow tissues, they could augment the efficacy of proton therapy and light particle therapy, particularly in treating tumors that benefit from sparing of proximal tissues such as pediatric brain tumors. They should also allow hypofractionated treatment of all tumors by allowing the use of higher incident doses with less concern about proximal tissue damage.« less

  3. Relativistically strong electromagnetic radiation in a plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bulanov, S. V., E-mail: svbulanov@gmail.com, E-mail: bulanov.sergei@jaea.go.jp; Esirkepov, T. Zh.; Kando, M.

    Physical processes in a plasma under the action of relativistically strong electromagnetic waves generated by high-power lasers have been briefly reviewed. These processes are of interest in view of the development of new methods for acceleration of charged particles, creation of sources of bright hard electromagnetic radiation, and investigation of macroscopic quantum-electrodynamical processes. Attention is focused on nonlinear waves in a laser plasma for the creation of compact electron accelerators. The acceleration of plasma bunches by the radiation pressure of light is the most efficient regime of ion acceleration. Coherent hard electromagnetic radiation in the relativistic plasma is generated inmore » the form of higher harmonics and/or electromagnetic pulses, which are compressed and intensified after reflection from relativistic mirrors created by nonlinear waves. In the limit of extremely strong electromagnetic waves, radiation friction, which accompanies the conversion of radiation from the optical range to the gamma range, fundamentally changes the behavior of the plasma. This process is accompanied by the production of electron–positron pairs, which is described within quantum electrodynamics theory.« less

  4. Proceedings of the First International Symposium on the Biological Interpretation of Dose from Accelerator-Produced Radiation, Held at the Lawrence Radiation Laboratory, Berkeley, California, March 13--16, 1967

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wallace, R.

    1967-03-13

    The objective of the meeting was to provide a companion meeting to the ''First Symposium on Accelerator Radiation Dosimetry and Experience'' which was held November 3-5, 1965, at the Brookhaven National Laboratory. This first symposium was limited in scope to an intensified discussion of dosimetry techniques. The biology which is associated with high energy radiation was specifically excluded, since it was the original plan to hold a second symposium devoted entirely to biology. Thus the present Symposium was a sequel to the first and they were inseparable in their objectives. Since those attending the BNL Symposium were almost entirely healthmore » physicists with a background in physical science and actively engaged in the solution of radiation protection problems at high energy accelerators, it was felt that it would be necessary to begin the BID Symposium with a general review session on radiation biology, in order to provide a biological background for the proper understanding of the later sessions. This first session was arranged to give the health physicist a meaningful transition from fundamental radiobiological considerations to current new research activities in high energy biology. In our opinion, and also based on the comments of several of those attending these objectives were quite well attained. The talks by Bond, Robertson, Brustad, Wolff, and Patt were quite exhaustive as an introduction to the several areas of specialization in radiobiology. The overall purpose of the meeting was of course to inform the health physicists about the state of knowledge in advanced biological research as it might apply to their problems. It has often been said that it takes a long time for laboratory findings to be applied in practical situations, but this is certainly not true in radiobiology. Through this conference and others like it, the most recent understanding of high energy radiobiology is available to the practicing health physicist and is probably used

  5. SOLAR INTERACTING PROTONS VERSUS INTERPLANETARY PROTONS IN THE CORE PLUS HALO MODEL OF DIFFUSIVE SHOCK ACCELERATION AND STOCHASTIC RE-ACCELERATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kocharov, L.; Laitinen, T.; Vainio, R.

    2015-06-10

    With the first observations of solar γ-rays from the decay of pions, the relationship of protons producing ground level enhancements (GLEs) on the Earth to those of similar energies producing the γ-rays on the Sun has been debated. These two populations may be either independent and simply coincident in large flares, or they may be, in fact, the same population stemming from a single accelerating agent and jointly distributed at the Sun and also in space. Assuming the latter, we model a scenario in which particles are accelerated near the Sun in a shock wave with a fraction transported backmore » to the solar surface to radiate, while the remainder is detected at Earth in the form of a GLE. Interplanetary ions versus ions interacting at the Sun are studied for a spherical shock wave propagating in a radial magnetic field through a highly turbulent radial ray (the acceleration core) and surrounding weakly turbulent sector in which the accelerated particles can propagate toward or away from the Sun. The model presented here accounts for both the first-order Fermi acceleration at the shock front and the second-order, stochastic re-acceleration by the turbulence enhanced behind the shock. We find that the re-acceleration is important in generating the γ-radiation and we also find that up to 10% of the particle population can find its way to the Sun as compared to particles escaping to the interplanetary space.« less

  6. Combination of longitudinal and circumferential three-dimensional esophageal dose distribution predicts acute esophagitis in hypofractionated reirradiation of patients with non-small-cell lung cancer treated in stereotactic body frame.

    PubMed

    Poltinnikov, Igor M; Fallon, Kevin; Xiao, Yian; Reiff, Jay E; Curran, Walter J; Werner-Wasik, Maria

    2005-07-01

    To evaluate dosimetric predictors of acute esophagitis (AE) and clinical outcome of patients with non-small-cell lung cancer (NSCLC) receiving reirradiation. Seventeen patients with NSCLC received reirradiation to the lung tumors/mediastinum, while immobilized in stereotactic body frame (SBF). CT simulation and hypofractionated three-dimensional radiotherapy were used. Two axial segments of esophagus contours merged together were defined as esophagus disc (ED). For each ED, the percentage (%) of the volume of esophageal circumference treated to % of prescribed dose (PD) was assessed. Number of EDs with 50% or any % of volume (V) of esophageal circumference receiving more than or equal to (>/=) 50%, 80%, and 100% of PD (50% V >/=50% PD; 50% V >/=80% PD; any % V >/=100% PD) were calculated. These dosimetric variables and the length of the esophagus within the radiation therapy (RT) port were correlated with AE using exact Wilcoxon test. A median RT dose was 32 Gy with a median fraction size of 4 Gy. Eleven of 13 patients presenting with pain and/or shortness of breath had complete or partial resolution of symptoms. Median survival time from the start of reirradiation in SBF until death was 5.5 months. AE was observed in 7 patients and resolved within 3 months of RT completion. No Grade 3 or higher events were noticed. The length of the esophagus within RT port did not predict for AE (p = 0.71). However, an increased number of EDs predicted for AE for the following dosimetric variables: 50% V >/=50% PD (p = 0.023), 50% V >/=80% PD (p = 0.047), and any % V >/=100% PD (p = 0.004). Patients with at least 2 EDs receiving >/=100% PD to any % V of circumference had AE compared to those with zero EDs. Reirradiation using hypofractionated three-dimensional radiotherapy and SBF immobilization is an effective strategy for palliation of symptoms in selected patients with recurrent NSCLC. The length of the esophagus in the RT field does not predict for AE. However, an increasing

  7. Radiation characteristics and implosion dynamics of tungsten wire array Z-pinches on the YANG accelerator

    NASA Astrophysics Data System (ADS)

    Huang, Xian-Bin; Yang, Li-Bing; Li, Jing; Zhou, Shao-Tong; Ren, Xiao-Dong; Zhang, Si-Qun; Dan, Jia-Kun; Cai, Hong-Chun; Duan, Shu-Chao; Chen, Guang-Hua; Zhang, Zheng-Wei; Ouyang, Kai; Li, Jun; Zhang, Zhao-Hui; Zhou, Rong-Guo; Wang, Gui-Lin

    2012-05-01

    We investigated the radiation characteristics and implosion dynamics of low-wire-number cylindrical tungsten wire array Z-pinches on the YANG accelerator with a peak current 0.8-1.1 MA and a rising time ~ 90 ns. The arrays are made up of (8-32) × 5 μm wires 6/10 mm in diameter and 15 mm in height. The highest X-ray power obtained in the experiments was about 0.37 TW with the total radiation energy ~ 13 kJ and the energy conversion efficiency ~ 9% (24 × 5 μm wires, 6 mm in diameter). Most of the X-ray emissions from tungsten Z-pinch plasmas were distributed in the spectral band of 100-600 eV, peaked at 250 and 375 eV. The dominant wavelengths of the wire ablation and the magneto-Rayleigh—Taylor instability were found and analyzed through measuring the time-gated self-emission and laser interferometric images. Through analyzing the implosion trajectories obtained by an optical streak camera, the run-in velocities of the Z-pinch plasmas at the end of the implosion phase were determined to be about (1.3-2.1) × 107 cm/s.

  8. A Variable Energy CW Compact Accelerator for Ion Cancer Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnstone, Carol J.; Taylor, J.; Edgecock, R.

    2016-03-10

    Cancer is the second-largest cause of death in the U.S. and approximately two-thirds of all cancer patients will receive radiation therapy with the majority of the radiation treatments performed using x-rays produced by electron linacs. Charged particle beam radiation therapy, both protons and light ions, however, offers advantageous physical-dose distributions over conventional photon radiotherapy, and, for particles heavier than protons, a significant biological advantage. Despite recognition of potential advantages, there is almost no research activity in this field in the U.S. due to the lack of clinical accelerator facilities offering light ion therapy in the States. In January, 2013, amore » joint DOE/NCI workshop was convened to address the challenges of light ion therapy [1], inviting more than 60 experts from diverse fields related to radiation therapy. This paper reports on the conclusions of the workshop, then translates the clinical requirements into accelerat or and beam-delivery technical specifications. A comparison of available or feasible accelerator technologies is compared, including a new concept for a compact, CW, and variable energy light ion accelerator currently under development. This new light ion accelerator is based on advances in nonscaling Fixed-Field Alternating gradient (FFAG) accelerator design. The new design concepts combine isochronous orbits with long (up to 4m) straight sections in a compact racetrack format allowing inner circulating orbits to be energy selected for low-loss, CW extraction, effectively eliminating the high-loss energy degrader in conventional CW cyclotron designs.« less

  9. Electron acceleration and emission in a field of a plane and converging dipole wave of relativistic amplitudes with the radiation reaction force taken into account

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bashinov, Aleksei V; Gonoskov, Arkady A; Kim, A V

    2013-04-30

    A comparative analysis is performed of the electron emission characteristics as the electrons move in laser fields with ultra-relativistic intensity and different configurations corresponding to a plane or tightly focused wave. For a plane travelling wave, analytical expressions are derived for the emission characteristics, and it is shown that the angular distribution of the radiation intensity changes qualitatively even when the wave intensity is much less than that in the case of the radiation-dominated regime. An important conclusion is drawn that the electrons in a travelling wave tend to synchronised motion under the radiation reaction force. The characteristic features ofmore » the motion of electrons are found in a converging dipole wave, associated with the curvature of the phase front and nonuniformity of the field distribution. The values of the maximum achievable longitudinal momenta of electrons accelerated to the centre, as well as their distribution function are determined. The existence of quasi-periodic trajectories near the focal region of the dipole wave is shown, and the characteristics of the emission of both accelerated and oscillating electrons are analysed. (extreme light fields and their applications)« less

  10. Arc-driven rail accelerator research

    NASA Technical Reports Server (NTRS)

    Ray, Pradosh K.

    1987-01-01

    Arc-driven rail accelerator research is analyzed by considering wall ablation and viscous drag in the plasma. Plasma characteristics are evaluated through a simple fluid-mechanical analysis considering only wall ablation. By equating the energy dissipated in the plasma with the radiation heat loss, the average properties of the plasma are determined as a function of time and rate of ablation. Locations of two simultaneously accelerating arcs were determined by optical and magnetic probes and fron streak camera photographs. All three measurements provide consistent results.

  11. Stereotactic body radiation therapy for abdominal oligometastases: a biological and clinical review

    PubMed Central

    2012-01-01

    Advances in imaging and biological targeting have led to the development of stereotactic body radiation therapy (SBRT) as an alternative treatment of extracranial oligometastases. New radiobiological concepts, such as ceramide-induced endothelial apoptosis after hypofractionated high-dose SBRT, and the identification of patients with oligometastatic disease by microRNA expression may yet lead to further developments. Key factors in SBRT are delivery of a high dose per fraction, proper patient positioning, target localisation, and management of breathing–related motion. Our review addresses the radiation doses and schedules used to treat liver, abdominal lymph node (LN) and adrenal gland oligometastases and treatment outcomes. Reported local control (LC) rates for liver and abdominal LN oligometastases are high (median 2-year actuarial LC: 61 -100% for liver oligometastases; 4-year actuarial LC: 68% in a study of abdominal LN oligometastases). Early toxicity is low-to-moderate; late adverse effects are rare. SBRT of adrenal gland oligometastases shows promising results in the case of isolated lesions. In conclusion, properly conducted SBRT procedures are a safe and effective treatment option for abdominal oligometastases. PMID:22852764

  12. Applications of the Strategic Defense Initiative's compact accelerators

    NASA Technical Reports Server (NTRS)

    Montanarelli, Nick; Lynch, Ted

    1991-01-01

    The Strategic Defense Initiative's (SDI) investment in particle accelerator technology for its directed energy weapons program has produced breakthroughs in the size and power of new accelerators. These accelerators, in turn, have produced spinoffs in several areas: the radio frequency quadrupole linear accelerator (RFQ linac) was recently incorporated into the design of a cancer therapy unit at the Loma Linda University Medical Center, an SDI-sponsored compact induction linear accelerator may replace Cobalt-60 radiation and hazardous ethylene-oxide as a method for sterilizing medical products, and other SDIO-funded accelerators may be used to produce the radioactive isotopes oxygen-15, nitrogen-13, carbon-11, and fluorine-18 for positron emission tomography (PET). Other applications of these accelerators include bomb detection, non-destructive inspection, decomposing toxic substances in contaminated ground water, and eliminating nuclear waste.

  13. Particle tracking acceleration via signed distance fields in direct-accelerated geometry Monte Carlo

    DOE PAGES

    Shriwise, Patrick C.; Davis, Andrew; Jacobson, Lucas J.; ...

    2017-08-26

    Computer-aided design (CAD)-based Monte Carlo radiation transport is of value to the nuclear engineering community for its ability to conduct transport on high-fidelity models of nuclear systems, but it is more computationally expensive than native geometry representations. This work describes the adaptation of a rendering data structure, the signed distance field, as a geometric query tool for accelerating CAD-based transport in the direct-accelerated geometry Monte Carlo toolkit. Demonstrations of its effectiveness are shown for several problems. The beginnings of a predictive model for the data structure's utilization based on various problem parameters is also introduced.

  14. Indirect Tumor Cell Death After High-Dose Hypofractionated Irradiation: Implications for Stereotactic Body Radiation Therapy and Stereotactic Radiation Surgery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, Chang W., E-mail: songx001@umn.edu; Korea Institute of Radiological and Medical Sciences, Seoul; Lee, Yoon-Jin

    Purpose: The purpose of this study was to reveal the biological mechanisms underlying stereotactic body radiation therapy (SBRT) and stereotactic radiation surgery (SRS). Methods and Materials: FSaII fibrosarcomas grown subcutaneously in the hind limbs of C3H mice were irradiated with 10 to 30 Gy of X rays in a single fraction, and the clonogenic cell survival was determined with in vivo–in vitro excision assay immediately or 2 to 5 days after irradiation. The effects of radiation on the intratumor microenvironment were studied using immunohistochemical methods. Results: After cells were irradiated with 15 or 20 Gy, cell survival in FSaII tumors declined for 2 to 3 daysmore » and began to recover thereafter in some but not all tumors. After irradiation with 30 Gy, cell survival declined continuously for 5 days. Cell survival in some tumors 5 days after 20 to 30 Gy irradiation was 2 to 3 logs less than that immediately after irradiation. Irradiation with 20 Gy markedly reduced blood perfusion, upregulated HIF-1α, and increased carbonic anhydrase-9 expression, indicating that irradiation increased tumor hypoxia. In addition, expression of VEGF also increased in the tumor tissue after 20 Gy irradiation, probably due to the increase in HIF-1α activity. Conclusions: Irradiation of FSaII tumors with 15 to 30 Gy in a single dose caused dose-dependent secondary cell death, most likely by causing vascular damage accompanied by deterioration of intratumor microenvironment. Such indirect tumor cell death may play a crucial role in the control of human tumors with SBRT and SRS.« less

  15. Hypofractionated intensity modulated irradiation for localized prostate cancer, results from a phase I/II feasibility study

    PubMed Central

    Junius, Sara; Haustermans, Karin; Bussels, Barbara; Oyen, Raymond; Vanstraelen, Bianca; Depuydt, Tom; Verstraete, Jan; Joniau, Steven; Van Poppel, Hendrik

    2007-01-01

    Background To assess acute (primary endpoint) and late toxicity, quality of life (QOL), biochemical or clinical failure (secondary endpoints) of a hypofractionated IMRT schedule for prostate cancer (PC). Methods 38 men with localized PC received 66 Gy (2.64 Gy) to prostate,2 Gy to seminal vesicles (50 Gy total) using IMRT. Acute toxicity was evaluated weekly during radiotherapy (RT), at 1–3 months afterwards using RTOG acute scoring system. Late side effects were scored at 6, 9, 12, 16, 20, 24 and 36 months after RT using RTOG/EORTC criteria. Quality of life was assessed by EORTC-C30 questionnaire and PR25 prostate module. Biochemical failure was defined using ASTRO consensus and nadir+2 definition, clinical failure as local, regional or distant relapse. Results None experienced grade III-IV toxicity. 10% had no acute genito-urinary (GU) toxicity, 63% grade I; 26% grade II. Maximum acute gastrointestinal (GI) scores 0, I, II were 37%, 47% and 16%. Maximal acute toxicity was reached weeks 4–5 and resolved within 4 weeks after RT in 82%. Grade II rectal bleeding needing coagulation had a peak incidence of 18% at 16 months after RT but is 0% at 24–36 months. One developed a urethral stricture at 2 years (grade II late GU toxicity) successfully dilated until now. QOL urinary symptom scores reached a peak incidence 1 month after RT but normalized 6 months later. Bowel symptom scores before, at 1–6 months showed similar values but rose slowly 2–3 years after RT. Nadir of sexual symptom scores was reached 1–6 months after RT but improved 2–3 years later as well as physical, cognitive and role functional scales. Emotional, social functional scales were lowest before RT when diagnosis was given but improved later. Two years after RT global health status normalized. Conclusion This hypofractionated IMRT schedule for PC using 25 fractions of 2.64 Gy did not result in severe acute side effects. Until now late urethral, rectal toxicities seemed acceptable as well

  16. Particle Acceleration, Magnetic Field Generation, and Emission in Relativistic Pair Jets

    NASA Technical Reports Server (NTRS)

    Nishikawa, K.-I.; Ramirez-Ruiz, E.; Hardee, P.; Hededal, C.; Mizuno, Y.

    2005-01-01

    Shock acceleration is a ubiquitous phenomenon in astrophysical plasmas. Plasma waves and their associated instabilities (e.g., the Buneman instability, two-streaming instability, and the Weibel instability) created by relativistic pair jets are responsible for particle (electron, positron, and ion) acceleration. Using a 3-D relativistic electromagnetic particle (REMP) code, we have investigated particle acceleration associated with a relativistic jet propagating through an ambient plasma with and without initial magnetic fields. The growth rates of the Weibel instability depends on the distribution of pair jets. Simulations show that the Weibel instability created in the collisionless shock accelerates particles perpendicular and parallel to the jet propagation direction. The simulation results show that this instability is responsible for generating and amplifying highly nonuniform, small-scale magnetic fields, which contribute to the electron's transverse deflection behind the jet head. The "jitter" radiation from deflected electrons has different properties than synchrotron radiation which is calculated in a uniform magnetic field. This jitter radiation may be important to understanding the complex time evolution and/or spectral structure in gamma-ray bursts, relativistic jets, and supernova remnants.

  17. Particle Acceleration, Magnetic Field Generation, and Emission in Relativistic Pair Jets

    NASA Technical Reports Server (NTRS)

    Nishikawa, K. I.; Hardee, P.; Hededal, C. B.; Richardson, G.; Sol, H.; Preece, R.; Fishman, G. J.

    2004-01-01

    Shock acceleration is a ubiquitous phenomenon in astrophysical plasmas. Plasma waves and their associated instabilities (e.g., Buneman, Weibel and other two-stream instabilities) created in collisionless shocks are responsible for particle (electron, positron, and ion) acceleration. Using a 3-D relativistic electromagnetic particle (REMP) code, we have investigated particle acceleration associated with a relativistic jet front propagating into an ambient plasma. We find that the growth times depend on the Lorenz factors of jets. The jets with larger Lorenz factors grow slower. Simulations show that the Weibel instability created in the collisionless shock front accelerates jet and ambient particles both perpendicular and parallel to the jet propagation direction. The small scale magnetic field structure generated by the Weibel instability is appropriate to the generation of "jitter" radiation from deflected electrons (positrons) as opposed to synchrotron radiation. The jitter radiation resulting from small scale magnetic field structures may be important for understanding the complex time structure and spectral evolution observed in gamma-ray bursts or other astrophysical sources containing relativistic jets and relativistic collisionless shocks.

  18. Single event effects in high-energy accelerators

    NASA Astrophysics Data System (ADS)

    García Alía, Rubén; Brugger, Markus; Danzeca, Salvatore; Cerutti, Francesco; de Carvalho Saraiva, Joao Pedro; Denz, Reiner; Ferrari, Alfredo; Foro, Lionel L.; Peronnard, Paul; Røed, Ketil; Secondo, Raffaello; Steckert, Jens; Thurel, Yves; Toccafondo, Iacocpo; Uznanski, Slawosz

    2017-03-01

    The radiation environment encountered at high-energy hadron accelerators strongly differs from the environment relevant for space applications. The mixed-field expected at modern accelerators is composed of charged and neutral hadrons (protons, pions, kaons and neutrons), photons, electrons, positrons and muons, ranging from very low (thermal) energies up to the TeV range. This complex field, which is extensively simulated by Monte Carlo codes (e.g. FLUKA) is due to beam losses in the experimental areas, distributed along the machine (e.g. collimation points) and deriving from the interaction with the residual gas inside the beam pipe. The resulting intensity, energy distribution and proportion of the different particles largely depends on the distance and angle with respect to the interaction point as well as the amount of installed shielding material. Electronics operating in the vicinity of the accelerator will therefore be subject to both cumulative damage from radiation (total ionizing dose, displacement damage) as well as single event effects which can seriously compromise the operation of the machine. This, combined with the extensive use of commercial-off-the-shelf components due to budget, performance and availability reasons, results in the need to carefully characterize the response of the devices and systems to representative radiation conditions.

  19. Storm-time radiation belt electron dynamics: Repeatability in the outer radiation belt

    NASA Astrophysics Data System (ADS)

    Murphy, K. R.; Mann, I. R.; Rae, J.; Watt, C.; Boyd, A. J.; Turner, D. L.; Claudepierre, S. G.; Baker, D. N.; Spence, H. E.; Reeves, G. D.; Blake, J. B.; Fennell, J. F.

    2017-12-01

    During intervals of enhanced solar wind driving the outer radiation belt becomes extremely dynamic leading to geomagnetic storms. During these storms the flux of energetic electrons can vary by over 4 orders of magnitude. Despite recent advances in understanding the nature of competing storm-time electron loss and acceleration processes the dynamic behavior of the outer radiation belt remains poorly understood; the outer radiation belt can exhibit either no change, an enhancement, or depletion in radiation belt electrons. Using a new analysis of the total radiation belt electron content, calculated from the Van Allen probes phase space density (PSD), we statistically analyze the time-dependent and global response of the outer radiation belt during storms. We demonstrate that by removing adiabatic effects there is a clear and repeatable sequence of events in storm-time radiation belt electron dynamics. Namely, the relativistic (μ=1000 MeV/G) and ultra-relativistic (μ=4000 MeV/G) electron populations can be separated into two phases; an initial phase dominated by loss followed by a second phase dominated by acceleration. At lower energies, the radiation belt seed population of electrons (μ=150 MeV/G) shows no evidence of loss but rather a net enhancement during storms. Further, we investigate the dependence of electron dynamics as a function of the second adiabatic invariant, K. These results demonstrate a global coherency in the dynamics of the source, relativistic and ultra-relativistic electron populations as function of the second adiabatic invariant K. This analysis demonstrates two key aspects of storm-time radiation belt electron dynamics. First, the radiation belt responds repeatably to solar wind driving during geomagnetic storms. Second, the response of the radiation belt is energy dependent, relativistic electrons behaving differently than lower energy seed electrons. These results have important implications in radiation belt research. In particular

  20. Different rectal toxicity tolerance with and without simultaneous conventionally-fractionated pelvic lymph node treatment in patients receiving hypofractionated prostate radiotherapy.

    PubMed

    McDonald, Andrew M; Baker, Christopher B; Popple, Richard A; Shekar, Kiran; Yang, Eddy S; Jacob, Rojymon; Cardan, Rex; Kim, Robert Y; Fiveash, John B

    2014-06-03

    To investigate added morbidity associated with the addition of pelvic elective nodal irradiation (ENI) to hypofractionated radiotherapy to the prostate. Two-hundred twelve patients, treated with hypofractionated radiotherapy to the prostate between 2004 and 2011, met the inclusion criteria for the analysis. All patients received 70 Gy to the prostate delivered over 28 fractions and 103 (49%) received ENI consisting of 50.4 Gy to the pelvic lymphatics delivered simultaneously in 1.8 Gy fractions. The mean dose-volume histograms were compared between the two subgroups defined by use of ENI, and various dose-volume parameters were analyzed for effect on late lower gastrointestinal (GI) and genitourinary (GU) toxicity. Acute grade 2 lower GI toxicity occurred in 38 (37%) patients receiving ENI versus 19 (17%) in those who did not (p = 0.001). The Kaplan-Meier estimate of grade ≥ 2 lower GI toxicity at 3 years was 15.3% for patients receiving ENI versus 5.3% for those who did not (p = 0.026). Each rectal isodose volume was increased for patients receiving ENI up to 50 Gy (p ≤ 0.021 for each 5 Gy increment). Across all patients, the absolute V70 of the rectum was the only predictor of late GI toxicity. When subgroups, defined by the use of ENI, were analyzed separately, rectal V70 was only predictive of late GI toxicity for patients who received ENI. For patients receiving ENI, V70 > 3 cc was associated with an increased risk of late GI events. Elective nodal irradiation increases the rates of acute and late GI toxicity when delivered simultaneously with hypofractioanted prostate radiotherapy. The use of ENI appears to sensitize the rectum to hot spots, therefore we recommend added caution to minimize the volume of rectum receiving 100% of the prescription dose in these patients.

  1. Fluctuation-dissipation relation in accelerated frames

    NASA Astrophysics Data System (ADS)

    Adhikari, Ananya; Bhattacharya, Krishnakanta; Chowdhury, Chandramouli; Majhi, Bibhas Ranjan

    2018-02-01

    A uniformly accelerated (Rindler) observer will detect particles in the Minkowski vacuum, known as the Unruh effect. The spectrum is thermal and the temperature is given by that of the Killing horizon, which is proportional to the acceleration. Considering that these particles are kept in a thermal bath with this temperature, we find that the correlation function of the random force due to radiation acting on the particles, as measured by the accelerated frame, shows the fluctuation-dissipation relation. It is observed that the correlations, in both (1 +1 ) spacetime and (1 +3 ) dimensional spacetimes, are of the Brownian type. We discuss the implications of this new observation.

  2. Particle acceleration magnetic field generation, and emission in Relativistic pair jets

    NASA Technical Reports Server (NTRS)

    Nishikawa, K.-I.; Ramirez-Ruiz, E.; Hardee, P.; Hededal, C.; Kouveliotou, C.; Fishman, G. J.

    2005-01-01

    Plasma waves and their associated instabilities (e.g., the Buneman instability, two-streaming instability, and the Weibel instability) are responsible for particle acceleration in relativistic pair jets. Using a 3-D relativistic electromagnetic particle (REMP) code, we have investigated particle acceleration associated with a relativistic pair jet propagating through a pair plasma. Simulations show that the Weibel instability created in the collisionless shock accelerates particles perpendicular and parallel to the jet propagation direction. Simulation results show that this instability generates and amplifies highly nonuniform, small-scale magnetic fields, which contribute to the electron's transverse deflection behind the jet head. The "jitter' I radiation from deflected electrons can have different properties than synchrotron radiation which is calculated in a uniform magnetic field. This jitter radiation may be important to understanding the complex time evolution and/or spectral structure in gamma-ray bursts, relativistic jets, and supernova remnants. The growth rate of the Weibel instability and the resulting particle acceleration depend on the magnetic field strength and orientation, and on the initial particle distribution function. In this presentation we explore some of the dependencies of the Weibel instability and resulting particle acceleration on the magnetic field strength and orientation, and the particle distribution function.

  3. Laser-plasma-based Space Radiation Reproduction in the Laboratory

    PubMed Central

    Hidding, B.; Karger, O.; Königstein, T.; Pretzler, G.; Manahan, G. G.; McKenna, P.; Gray, R.; Wilson, R.; Wiggins, S. M.; Welsh, G. H.; Beaton, A.; Delinikolas, P.; Jaroszynski, D. A.; Rosenzweig, J. B.; Karmakar, A.; Ferlet-Cavrois, V.; Costantino, A.; Muschitiello, M.; Daly, E.

    2017-01-01

    Space radiation is a great danger to electronics and astronauts onboard space vessels. The spectral flux of space electrons, protons and ions for example in the radiation belts is inherently broadband, but this is a feature hard to mimic with conventional radiation sources. Using laser-plasma-accelerators, we reproduced relativistic, broadband radiation belt flux in the laboratory, and used this man-made space radiation to test the radiation hardness of space electronics. Such close mimicking of space radiation in the lab builds on the inherent ability of laser-plasma-accelerators to directly produce broadband Maxwellian-type particle flux, akin to conditions in space. In combination with the established sources, utilisation of the growing number of ever more potent laser-plasma-accelerator facilities worldwide as complementary space radiation sources can help alleviate the shortage of available beamtime and may allow for development of advanced test procedures, paving the way towards higher reliability of space missions. PMID:28176862

  4. Spectrum bandwidth narrowing of Thomson scattering X-rays with energy chirped electron beams from laser wakefield acceleration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Tong; Chen, Min, E-mail: minchen@sjtu.edu.cn; Li, Fei-Yu

    2014-01-06

    We study incoherent Thomson scattering between an ultrashort laser pulse and an electron beam accelerated from a laser wakefield. The energy chirp effects of the accelerated electron beam on the final radiation spectrum bandwidth are investigated. It is found that the scattered X-ray radiation has the minimum spectrum width and highest intensity as electrons are accelerated up to around the dephasing point. Furthermore, it is proposed that the electron acceleration process inside the wakefield can be studied by use of 90° Thomson scattering. The dephasing position and beam energy chirp can be deduced from the intensity and bandwidth of themore » scattered radiation.« less

  5. Postoperative hypofractionated stereotactic brain radiation (HSRT) for resected brain metastases: improved local control with higher BED10.

    PubMed

    Kumar, Aryavarta M S; Miller, Jonathan; Hoffer, Seth A; Mansur, David B; Coffey, Michael; Lo, Simon S; Sloan, Andrew E; Machtay, Mitchell

    2018-05-10

    HSRT directed to large surgical beds in patients with resected brain metastases improves local control while sparing patients the toxicity associated with whole brain radiation. We review our institutional series to determine factors predictive of local failure. In a total of 39 consecutive patients with brain metastases treated from August 2011 to August 2016, 43 surgical beds were treated with HSRT in three or five fractions. All treatments were completed on a robotic radiosurgery platform using the 6D Skull tracking system. Volumetric MRIs from before and after surgery were used for radiation planning. A 2-mm PTV margin was used around the contoured surgical bed and resection margins; these were reviewed by the radiation oncologist and neurosurgeon. Lower total doses were prescribed based on proximity to critical structures or if prior radiation treatments were given. Local control in this study is defined as no volumetric MRI evidence of recurrence of tumor within the high dose radiation volume. Statistics were calculated using JMP Pro v13. Of the 43 surgical beds analyzed, 23 were from NSCLC, 5 were from breast, 4 from melanoma, 5 from esophagus, and 1 each from SCLC, sarcoma, colon, renal, rectal, and unknown primary. Ten were treated with three fractions with median dose 24 Gy and 33 were treated with five fractions with median dose 27.5 Gy using an every other day fractionation. There were no reported grade 3 or higher toxicities. Median follow up was 212 days after completion of radiation. 10 (23%) surgical beds developed local failure with a median time to failure of 148 days. All but three patients developed new brain metastases outside of the treated field and were treated with stereotactic radiosurgery, whole brain radiation and/or chemotherapy. Five patients (13%) developed leptomeningeal disease. With a median follow up of 226 days, 30 Gy/5 fx was associated with the best local control (93%) with only 1 local failure. A lower total dose in

  6. PW-class laser-driven super acceleration systems in underdense plasmas

    NASA Astrophysics Data System (ADS)

    Yano, Masahiro; Zhidkov, Alexei; Kodama, Ryosuke

    2017-10-01

    Probing laser driven super-acceleration systems can be important tool to understand physics related to vacuum, space time, and particle acceleration. We show two proposals to probe the systems through Hawking-like effect using PW class lasers and x-ray free electron lasers. For that we study the interaction of ultrahigh intense laser pulses with intensity 1022 -1024 W/cm2 and underdense plasmas including ion motion and plasma radiation for the first time. While the acceleration w a0ωp /ωL in a wake is not maximal, the pulse propagation is much stable. The effect is that a constantly accelerated detector with acceleration w sees a boson's thermal bath at temperature ℏw / 2 πkB c . We present two designs for x-ray scattering from highly accelerated electrons produced in the plasma irradiated by intense laser pulses for such detection. Properly chosen observation angles enable us to distinguish spectral broadening from Doppler shift with a reasonable photon number. Also, ion motion and radiation damping on the interaction are investigated via fully relativistic 3D particle-in-cell simulation. We observe high quality electron bunches under super-acceleration when transverse plasma waves are excited by ponderomotive force producing plasma channel.

  7. Acute and Short-Term Toxicities of Conventionally Fractionated Versus Hypofractionated Whole Breast Irradiation in a Prospective, Randomized Trial

    PubMed Central

    Shaitelman, Simona F.; Schlembach, Pamela J.; Arzu, Isidora; Ballo, Matthew; Bloom, Elizabeth S.; Buchholz, Daniel; Chronowski, Gregory M.; Dvorak, Tomas; Grade, Emily; Hoffman, Karen E.; Kelly, Patrick; Ludwig, Michelle; Perkins, George H.; Reed, Valerie; Shah, Shalin; Stauder, Michael C.; Strom, Eric A.; Tereffe, Welela; Woodward, Wendy A.; Ensor, Joe; Baumann, Donald; Thompson, Alastair M.; Amaya, Diana; Davis, Tanisha; Guerra, William; Hamblin, Lois; Hortobagyi, Gabriel; Hunt, Kelly K.; Buchholz, Thomas A.; Smith, Benjamin D.

    2015-01-01

    IMPORTANCE The most appropriate dose-fractionation for whole breast irradiation (WBI) remains uncertain. OBJECTIVE To assess acute and six-month toxicity and quality of life (QoL) with conventionally fractionated WBI (CF-WBI) versus hypofractionated WBI (HF-WBI). DESIGN Unblinded randomized trial of CF-WBI (n=149; 50 Gy/25 fractions + boost [10–14 Gy/5–7 fractions]) versus HF-WBI (n=138; 42.56 Gy/16 fractions + boost [10–12.5 Gy/4–5 fractions]). SETTING Community-based and academic cancer centers. PARTICIPANTS 287 women age ≥ 40 years with stage 0–II breast cancer treated with breast-conserving surgery for whom whole breast irradiation without addition of a third field was recommended. 76% (n=217) were overweight or obese. Patients were enrolled from February 2011 through February 2014. INTERVENTION(S) FOR CLINICAL TRIALS CF-WBI versus HF-WBI. MAIN OUTCOME MEASURES Physician-reported acute and six-month toxicities using NCICTCv4.0 and patient-reported QoL using the FACT-B version 4. All analyses were intention-to-treat, with outcomes compared using chi-square, Cochran-Armitage test, and ordinal logistic regression. Patients were followed for a minimum of 6 months. RESULTS Treatment arms were well-matched for baseline characteristics including FACT-B total score (P=0.46) and individual QoL items such as lack of energy (P=0.86) and trouble meeting family needs (P=0.54). Maximal physician-reported acute dermatitis (P<0.001), pruritus (P<0.001), breast pain (P=0.001), hyperpigmentation (P=0.002), and fatigue (P=0.02) during radiation were lower in patients randomized to HF-WBI. Overall grade ≥2 acute toxicity was less with HF-WBI vs. CF-WBI (47% vs. 78%; P<0.001). Six months after radiation, physicians reported less fatigue in patients randomized to HF-WBI (P=0.01), and patients randomized to HF-WBI reported less lack of energy (P<0.001) and less trouble meeting family needs (P=0.01). Multivariable regression confirmed the superiority of HF-WBI in terms

  8. Particle Acceleration and Magnetic Field Generation in Electron-Positron Relativistic Shocks

    NASA Technical Reports Server (NTRS)

    Nishikawa, K.-I.; Hardee, P.; Richardson, G.; Preece, R.; Sol, H.; Fishman, G. J.

    2004-01-01

    Shock acceleration is an ubiquitous phenomenon in astrophysical plasmas. Plasma waves and their associated instabilities (e.g., Buneman, Weibel and other two-stream instabilities) created in collisionless shocks are responsible for particle (electron, positron, and ion) acceleration. Using a 3-D relativistic electromagnetic particle (REMP) code, we have investigated particle acceleration associated with a relativistic electron-positron jet front propagating into an ambient electron-positron plasma with and without initial magnetic fields. We find small differences in the results for no ambient and modest ambient magnetic fields. Simulations show that the Weibel instability created in the collisionless shock front accelerates jet and ambient particles both perpendicular and parallel to the jet propagation direction. The non-linear fluctuation amplitudes of densities, currents, electric, and magnetic fields in the electron-positron shock are larger than those found in the electron-ion shock studied in a previous paper. This comes from the fact that both electrons and positrons contribute to generation of the Weibel instability. Additionally, we have performed simulations with different electron skin depths. We find that growth times scale inversely with the plasma frequency, and the sizes of structures created by the Weibel instability scale proportional to the electron skin depth. This is the expected result and indicates that the simulations have sufficient grid resolution. While some Fermi acceleration may occur at the jet front, the majority of electron and positron acceleration takes place behind the jet front and cannot be characterized as Fermi acceleration. The simulation results show that the Weibel instability is responsible for generating and amplifying nonuniform, small-scale magnetic fields which contribute to the electron's (positron's) transverse deflection behind the jet head. This small scale magnetic field structure is appropriate to the generation

  9. Particle Acceleration and Magnetic Field Generation in Electron-Positron Relativistic Shocks

    NASA Technical Reports Server (NTRS)

    Nishikawa, K.-L.; Hardee, P.; Richardson, G.; Preece, R.; Sol, H.; Fishman, G. J.

    2004-01-01

    Shock acceleration is an ubiquitous phenomenon in astrophysical plasmas. Plasma waves and their associated instabilities (e.g., Buneman, Weibel and other two-stream instabilities) created in collisionless shocks are responsible for particle (electron, positron, and ion) acceleration. Using a 3-D relativistic electromagnetic particle (REMP) code, we have investigated particle acceleration associated with a relativistic electron-positron jet front propagating into an ambient electron-positron plasma with and without initial magnetic fields. We find small differences in the results for no ambient and modest ambient magnetic fields. Simulations show that the Weibel instability created in the collisionless shock front accelerates jet and ambient particles both perpendicular and parallel to the jet propagation direction. The non-linear fluctuation amplitudes of densities, currents, electric, and magnetic fields in the electron-positron shock are larger than those found in the electron-ion shock studied in a previous paper at the comparable simulation time. This comes from the fact that both electrons and positrons contribute to generation of the Weibel instability. Additionally, we have performed simulations with different electron skin depths. We find that growth times scale inversely with the plasma frequency, and the sizes of structures created by the Weibel instability scale proportional to the electron skin depth. This is the expected result and indicates that the simulations have sufficient grid resolution. While some Fermi acceleration may occur at the jet front, the majority of electron and positron acceleration takes place behind the jet front and cannot be characterized as Fermi acceleration. The simulation results show that the Weibel instability is responsible for generating and amplifying nonuniform: small-scale magnetic fields which contribute to the electron's (positron's) transverse deflection behind the jet head. This small scale magnetic field structure

  10. Particle Acceleration and Magnetic Field Generation in Electron-Positron Relativistic Shocks

    NASA Technical Reports Server (NTRS)

    Nishikawa, K.-I.; Hardee, P.; Richardson, G.; Preece, R.; Sol, H.; Fishman, G. J.

    2005-01-01

    Shock acceleration is a ubiquitous phenomenon in astrophysical plasmas. Plasma waves and their associated instabilities (e.g., Buneman, Weibel, and other two-stream instabilities) created in collisionless shocks are responsible for particle (electron, positron, and ion) acceleration. Using a three-dimensional relativistic electromagnetic particle (REMP) code, we have investigated particle acceleration associated with a relativistic electron-positron jet front propagating into an ambient electron-positron plasma with and without initial magnetic fields. We find small differences in the results for no ambient and modest ambient magnetic fields. New simulations show that the Weibel instability created in the collisionless shock front accelerates jet and ambient particles both perpendicular and parallel to the jet propagation direction. Furthermore, the nonlinear fluctuation amplitudes of densities, currents, and electric and magnetic fields in the electron-positron shock are larger than those found in the electron-ion shock studied in a previous paper at a comparable simulation time. This comes from the fact that both electrons and positrons contribute to generation of the Weibel instability. In addition, we have performed simulations with different electron skin depths. We find that growth times scale inversely with the plasma frequency, and the sizes of structures created by tine Weibel instability scale proportionally to the electron skin depth. This is the expected result and indicates that the simulations have sufficient grid resolution. While some Fermi acceleration may occur at the jet front, the majority of electron and positron acceleration takes place behind the jet front and cannot be characterized as Fermi acceleration. The simulation results show that the Weibel instability is responsible for generating and amplifying nonuniform, small-scale magnetic fields, which contribute to the electron s (positron s) transverse deflection behind the jet head. This

  11. Prospects for Accelerator Technology

    NASA Astrophysics Data System (ADS)

    Todd, Alan

    2011-02-01

    Accelerator technology today is a greater than US$5 billion per annum business. Development of higher-performance technology with improved reliability that delivers reduced system size and life cycle cost is expected to significantly increase the total accelerator technology market and open up new application sales. Potential future directions are identified and pitfalls in new market penetration are considered. Both of the present big market segments, medical radiation therapy units and semiconductor ion implanters, are approaching the "maturity" phase of their product cycles, where incremental development rather than paradigm shifts is the norm, but they should continue to dominate commercial sales for some time. It is anticipated that large discovery-science accelerators will continue to provide a specialty market beset by the unpredictable cycles resulting from the scale of the projects themselves, coupled with external political and economic drivers. Although fraught with differing market entry difficulties, the security and environmental markets, together with new, as yet unrealized, industrial material processing applications, are expected to provide the bulk of future commercial accelerator technology growth.

  12. X-ray phase contrast imaging of biological specimens with femtosecond pulses of betatron radiation from a compact laser plasma wakefield accelerator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kneip, S.; Center for Ultrafast Optical Science, University of Michigan, Ann Arbor 48109; McGuffey, C.

    2011-08-29

    We show that x-rays from a recently demonstrated table top source of bright, ultrafast, coherent synchrotron radiation [Kneip et al., Nat. Phys. 6, 980 (2010)] can be applied to phase contrast imaging of biological specimens. Our scheme is based on focusing a high power short pulse laser in a tenuous gas jet, setting up a plasma wakefield accelerator that accelerates and wiggles electrons analogously to a conventional synchrotron, but on the centimeter rather than tens of meter scale. We use the scheme to record absorption and phase contrast images of a tetra fish, damselfly and yellow jacket, in particular highlightingmore » the contrast enhancement achievable with the simple propagation technique of phase contrast imaging. Coherence and ultrafast pulse duration will allow for the study of various aspects of biomechanics.« less

  13. Reactor for simulation and acceleration of solar ultraviolet damage

    NASA Technical Reports Server (NTRS)

    Laue, E.; Gupta, A.

    1979-01-01

    An environmental test chamber providing acceleration of UV radiation and precise temperature control (+ or -)1 C was designed, constructed and tested. This chamber allows acceleration of solar ultraviolet up to 30 suns while maintaining temperature of the absorbing surface at 30 C - 60 C. This test chamber utilizes a filtered medium pressure mercury arc as the source of radiation, and a combination of selenium radiometer and silicon radiometer to monitor solar ultraviolet (295-340 nm) and total radiant power output, respectively. Details of design and construction and operational procedures are presented along with typical test data.

  14. Achieving Stable Radiation Pressure Acceleration of Heavy Ions via Successive Electron Replenishment from Ionization of a High-Z Material Coating

    NASA Astrophysics Data System (ADS)

    Shen, X. F.; Qiao, B.; Chang, H. X.; Kar, S.; Zhou, C. T.; Borghesi, M.; He, X. T.

    2016-10-01

    Generation of monoenergetic heavy ion beams aroused more scientific interest in recent years. Radiation pressure acceleration (RPA) is an ideal mechanism for obtaining high-quality heavy ion beams, in principle. However, to achieve the same energy per nucleon (velocity) as protons, heavy ions undergo much more serious Rayleigh-Taylor-like (RT) instability and afterwards much worse Coulomb explosion due to loss of co-moving electrons. This leads to premature acceleration termination of heavy ions and very low energy attained in experiment. The utilization of a high-Z coating in front of the target may suppress the RT instability and Coulomb explosion by continuously replenishing the accelerating heavy ion foil with co-moving electrons due to its successive ionization under laser fields with Gaussian temporal and spatial profiles. Thus stable RPA can be realized. Two-dimensional and three-dimensional particles-in-cell simulations with dynamic ionization show that a monoenergetic Al13+ beam with peak energy 4.0GeV and particle number 1010 (charge > 20nC) can be obtained at intensity 1022 W/cm2. Supported by the NSF, Nos. 11575298 and 1000-Talents Program of China.

  15. Radiation-Free Weekend Rescued! Continuous Accelerated Irradiation of 7-Days per Week Is Equal to Accelerated Fractionation With Concomitant Boost of 7 Fractions in 5-Days per Week: Report on Phase 3 Clinical Trial in Head-and-Neck Cancer Patients

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Skladowski, Krzysztof, E-mail: skladowski@io.gliwice.pl; Hutnik, Marcin; Wygoda, Andrzej

    2013-03-01

    Purpose: To report long-term results of randomized trial comparing 2 accelerated fractionations of definitive radiation therapy assessing the need to irradiate during weekend in patients with head and neck squamous cell carcinoma. Methods and Materials: A total of 345 patients with SCC of the oral cavity, larynx, and oro- or hypo-pharynx, stage T2-4N0-1M0, were randomized to receive continuous accelerated irradiation (CAIR: once per day, 7 days per week) or concomitant accelerated boost (CB: once per day, 3 days per week, and twice per day, 2 days per week). Total dose ranged from 66.6-72 Gy, dose per fraction was 1.8 Gy,more » number of fractions ranged from 37-40 fractions, and overall treatment time ranged from 37-40 days. Results: No differences for all trial end-points were noted. At 5 and 10 years, the actuarial rates of local-regional control were 63% and 60% for CAIR vs 65% and 60% for CB, and the corresponding overall survival were 40% and 25% vs 44% and 25%, respectively. Confluent mucositis was the main acute toxicity, with an incidence of 89% in CAIR and 86% in CB patients. The 5-year rate of grade 3-4 late radiation morbidity was 6% for both regimens. Conclusions: Results of this trial indicate that the effects of accelerated fractionation can be achieve by delivering twice-per-day irradiation on weekday(s). This trial has also confirmed that an accelerated, 6-weeks schedule is a reasonable option for patients with intermediate-stage head-and-neck squamous cell carcinoma because of the associated high cure rate and minimal severe late toxicity.« less

  16. Environmental Impact From Accelerator Operation at SLAC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, James C

    1999-03-22

    Environmental impacts from electron accelerator operations at the Stanford Linear Accelerator Center, which is located near populated areas, are illustrated by using examples of three different accelerator facilities: the low power (a few watts) SSRL, the high power (a few kilowatts) PEP-II, and the 50-kW SLC. Three types of major impacts are discussed: (1) off-site doses from skyshine radiation, mainly neutrons, (2) off-site doses from radioactive air emission, mainly {sup 13}N, and (3) radioactivities, mainly {sup 3}H, produced in the groundwater. It was found that, from SSRL operation, the skyshine radiation result in a MEI (Maximum Exposed Individual) of 0.3more » {mu}Sv/y while a conservative calculation using CAP88 showed a MEI of 0.36 {mu}Sv/y from radioactive air releases. The calculated MEI doses due to future PEP-II operation are 30 {mu}Sv/y from skyshine radiation and 2 {mu}Sv/y from air releases. The population doses due to radioactive air emission are 0.5 person-mSv from SSRL and 12 person-mSv from PEP-II. Because of the stronger decrease of skyshine dose as the distance increases, the population dose from skyshine radiation are smaller than that from air release. The third environmental impact, tritium activity produced in the groundwater, was also demonstrated to be acceptable from both the well water measurements and the FLUKA calculations for the worst case of the SLC high-power dump.« less

  17. Diagnosis and treatment of a dermal malignant melanoma in an African lion (Panthera leo).

    PubMed

    Steeil, James C; Schumacher, Juergen; Baine, Katherine; Ramsay, Edward C; Sura, Patricia; Hodshon, Rebecca; Donnell, Robert L; Lee, Nathan D

    2013-09-01

    A 13-yr-old intact male African lion (Panthera leo) presented with a 4-mo history of left maxillary lip swelling. On physical examination, a 10-cm-diameter, ulcerated, round, firm, and pigmented mass at the level of the left maxillary canine tooth was noticed. All other organ systems examined were within normal limits. Multiple biopsies of the mass were collected and fixed in 10% neutral buffered formalin. Histopathologic evaluation of the biopsies revealed a malignant dermal melanoma. Hematologic and plasma biochemical parameters were within normal reference ranges. Thoracic radiographs taken 3 days following initial presentation showed no evidence of metastasis of the tumor. Computed tomography of the skull and neck was performed to evaluate local tumor invasion and to plan for hypofractionated radiation therapy. Therapy included four weekly treatments of 8 gray external-beam hypofractionated radiation and four bimonthly immunotherapy treatments. Following this treatment regime, the tumor size was reduced by 50%, and surgical excision was performed. No major side effects associated with radiation or immunotherapy were seen. Six months after diagnosis, hematologic and plasma biochemical parameters were within normal limits, thoracic radiographs showed no evidence of metastasis, and the lion showed no clinical signs of disease. The lion will continue to receive immunotherapy every 6 mo for the rest of its life. To the authors' knowledge, this is the first report of a successful treatment of a malignant dermal melanoma with external-beam hypofractionated radiation, immunotherapy, and surgical excision in an African lion.

  18. Proceedings of the Symposium on the Protection Against Radiation Hazards in Space Book 1: Radiation Environment in Space. Effects of Space Radiation on Radio Sensitive Objects. Biological Effects of Space Radiation

    NASA Technical Reports Server (NTRS)

    1962-01-01

    The realization in recent years that outer space is traversed by high-energy radiations has caused man to reevaluate the feasibility of manned or even instrumented exploration outside our atmosphere. Fortunately, it is possible to determine the nature and intensities of these radiations and to produce similar radiations on earth by means of accelerators. Thus we can learn how to attenuate them and to design capsules which afford protection against them. Of course this protection carries a weight penalty so that there is a premium on optimizing the shield design. Many groups in the United states are engaged in research to this end,and it was the purpose of this symposium to bring these groups together so that they could exchange information. To make the meeting more comprehensive, sessions on the nature of the radiations and their effects on people and things were included. However, the major part of the meeting was devoted to discussions on shielding research, comprising theoretical calculations and experiments carried out mainly with high-energy accelerators. The symposium committee feels that the aims of the symposium were met and that progress in space research program was greatly accelerated thereby.

  19. SEE induced in SRAM operating in a superconducting electron linear accelerator environment

    NASA Astrophysics Data System (ADS)

    Makowski, D.; Mukherjee, Bhaskar; Grecki, M.; Simrock, Stefan

    2005-02-01

    Strong fields of bremsstrahlung photons and photoneutrons are produced during the operation of high-energy electron linacs. Therefore, a mixed gamma and neutron radiation field dominates the accelerators environment. The gamma radiation induced Total Ionizing Dose (TID) effect manifests the long-term deterioration of the electronic devices operating in accelerator environment. On the other hand, the neutron radiation is responsible for Single Event Effects (SEE) and may cause a temporal loss of functionality of electronic systems. This phenomenon is known as Single Event Upset (SEU). The neutron dose (KERMA) was used to scale the neutron induced SEU in the SRAM chips. Hence, in order to estimate the neutron KERMA conversion factor for Silicon (Si), dedicated calibration experiments using an Americium-Beryllium (241Am/Be) neutron standard source was carried out. Single Event Upset (SEU) influences the short-term operation of SRAM compared to the gamma induced TID effect. We are at present investigating the feasibility of an SRAM based real-time beam-loss monitor for high-energy accelerators utilizing the SEU caused by fast neutrons. This paper highlights the effects of gamma and neutron radiations on Static Random Access Memory (SRAM), placed at selected locations near the Superconducting Linear Accelerator driving the Vacuum UV Free Electron Laser (VUVFEL) of DESY.

  20. Cyberknife hypofractionated stereotactic radiosurgery (HSRS) of resection cavity after excision of large cerebral metastasis: efficacy and safety of an 800 cGy × 3 daily fractions regimen.

    PubMed

    Wang, Che-Chuan; Floyd, Scott R; Chang, Chin-Hong; Warnke, Peter C; Chio, Chung-Ching; Kasper, Ekkehard M; Mahadevan, Anand; Wong, Eric T; Chen, Clark C

    2012-02-01

    Development of hypofractionated stereotactic radiosurgery (HSRS) has expanded the size of lesion that can be safely treated by focused radiation in a limited number of treatment sessions. However, clinical data regarding the efficacy and morbidity of HSRS in the treatment of cerebral metastasis is lacking. Here, we review our experience with CyberKnife(®) HSRS for this indication. From 2005 to 2010, we identified 37 patients with large (>3 cm in diameter) cerebral metastases resection cavity that was treated with HSRS. This constituted approximately 8% of all treated resection cavities. We reviewed dose regimens, local control, distal control, and treatment associated morbidities. Primary sites for the metastatic lesions included: lung (n = 10), melanoma (n = 12), breast (n = 9), kidney (n = 4), and colon (n = 2). All patients underwent resection of the cerebral metastasis and received 800 cGy × 3 daily fractions to the resection cavity. Of the 37 patients treated, one-year follow-up data was available for 35 patients. The median survival was 5.5 months. Actuarial local control rate at 6 months was 80%. Local failures did not correlate with prior WBRT, or tumor histology. Distant recurrence occurred in 7 of the 35 patients. Morbidities associated with HSRS totaled 9%, including radiation necrosis (n = 1, 2.9%), prolonged steroid use (n = 1, 2.9%), and new-onset seizures (n = 1, 2.9%). This study demonstrates the safety and efficacy of an 800 cGy × 3 daily fractions CyberKnife(®) HSRS regimen for irradiation of large resection cavity. The efficacy compares favorably to historical data derived from patients undergoing WBRT, SRS, or brachytherapy.

  1. Applications of laser wakefield accelerator-based light sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Albert, Felicie; Thomas, Alec G. R.

    Laser-wakefield accelerators (LWFAs) were proposed more than three decades ago, and while they promise to deliver compact, high energy particle accelerators, they will also provide the scientific community with novel light sources. In a LWFA, where an intense laser pulse focused onto a plasma forms an electromagnetic wave in its wake, electrons can be trapped and are now routinely accelerated to GeV energies. From terahertz radiation to gamma-rays, this article reviews light sources from relativistic electrons produced by LWFAs, and discusses their potential applications. Betatron motion, Compton scattering and undulators respectively produce x-rays or gamma-rays by oscillating relativistic electrons inmore » the wakefield behind the laser pulse, a counter-propagating laser field, or a magnetic undulator. Other LWFA-based light sources include bremsstrahlung and terahertz radiation. Here, we first evaluate the performance of each of these light sources, and compare them with more conventional approaches, including radio frequency accelerators or other laser-driven sources. We have then identified applications, which we discuss in details, in a broad range of fields: medical and biological applications, military, defense and industrial applications, and condensed matter and high energy density science.« less

  2. Applications of laser wakefield accelerator-based light sources

    DOE PAGES

    Albert, Felicie; Thomas, Alec G. R.

    2016-10-01

    Laser-wakefield accelerators (LWFAs) were proposed more than three decades ago, and while they promise to deliver compact, high energy particle accelerators, they will also provide the scientific community with novel light sources. In a LWFA, where an intense laser pulse focused onto a plasma forms an electromagnetic wave in its wake, electrons can be trapped and are now routinely accelerated to GeV energies. From terahertz radiation to gamma-rays, this article reviews light sources from relativistic electrons produced by LWFAs, and discusses their potential applications. Betatron motion, Compton scattering and undulators respectively produce x-rays or gamma-rays by oscillating relativistic electrons inmore » the wakefield behind the laser pulse, a counter-propagating laser field, or a magnetic undulator. Other LWFA-based light sources include bremsstrahlung and terahertz radiation. Here, we first evaluate the performance of each of these light sources, and compare them with more conventional approaches, including radio frequency accelerators or other laser-driven sources. We have then identified applications, which we discuss in details, in a broad range of fields: medical and biological applications, military, defense and industrial applications, and condensed matter and high energy density science.« less

  3. Recirculating Electron Accelerators with Noncircular Electron Orbits as Radiation Sources for Applications (a Review)

    NASA Astrophysics Data System (ADS)

    Dubinov, Alexander E.; Ochkina, Elena I.

    2018-05-01

    State-of-the-art compact recirculating electron accelerators operating at intermediate energies (tens of MeV) are reviewed. The acceleration schemes implemented in the rhodotron, ridgetron, fantron, and cylindertron machines are discussed. Major accelerator components such as the electron guns, accelerating cavities, and bending magnets are described. The parameters of currently operating recirculating accelerators are tabulated, and applications of these accelerators in different processes of irradiation are exemplified.

  4. X-ray Observations of Cosmic Ray Acceleration

    NASA Technical Reports Server (NTRS)

    Petre, Robert

    2012-01-01

    Since the discovery of cosmic rays, detection of their sources has remained elusive. A major breakthrough has come through the identification of synchrotron X-rays from the shocks of supernova remnants through imaging and spectroscopic observations by the most recent generation of X-ray observatories. This radiation is most likely produced by electrons accelerated to relativistic energy, and thus has offered the first, albeit indirect, observational evidence that diffusive shock acceleration in supernova remnants produces cosmic rays to TeV energies, possibly as high as the "knee" in the cosmic ray spectrum. X-ray observations have provided information about the maximum energy to which these shOCks accelerate electrons, as well as indirect evidence of proton acceleration. Shock morphologies measured in X-rays have indicated that a substantial fraction of the shock energy can be diverted into particle acceleration. This presentation will summarize what we have learned about cosmic ray acceleration from X-ray observations of supernova remnants over the past two decades.

  5. Efficacy and toxicity of external-beam radiation therapy for localised prostate cancer: a network meta-analysis

    PubMed Central

    Zhu, Z; Zhang, J; Liu, Y; Chen, M; Guo, P; Li, K

    2014-01-01

    Background: Many radiation regimens for treating prostate cancer have been used over the years, but which regimen is optimal for localised or locally advanced prostate cancer lacks consensus. We performed a network meta-analysis to identify the optimal radiation regimen. Methods: We systematically reviewed data from 27 randomised controlled trials and could group seven radiation regimens as follows: low- and high-dose radiation therapy (LDRT and HDRT), LDRT+ short- or long-term androgen deprivation therapy (LDRT+SADT and LDRT+LADT), HDRT+SADT, hypofractionated radiotherapy (HFRT), and HFRT+SADT. The main outcomes were overall mortality (OM), prostate-specific antigen (PSA) failure, cancer-specific mortality, and adverse events. Results: For the network meta-analysis of 27 trials, LDRT+LADT and LDRT+SADT were associated with decreased risk of OM as compared with LDRT alone as was LDRT+LADT compared with HDRT. Apart from HFRT, all other treatments were associated with decreased risk of PSA failure as compared with LDRT. HFRT+SADT was associated with decreased risk of cancer-specific mortality as compared with HFRT, LDRT+SADT, HDRT, and LDRT. Conclusions: HFRT+SADT therapy might be the most efficacious treatment but with worst toxicity for localised or locally advanced prostate cancer, and HDRT showed excellent efficacy but more adverse events. PMID:24736585

  6. Thermodynamics of Accelerating Black Holes.

    PubMed

    Appels, Michael; Gregory, Ruth; Kubizňák, David

    2016-09-23

    We address a long-standing problem of describing the thermodynamics of an accelerating black hole. We derive a standard first law of black hole thermodynamics, with the usual identification of entropy proportional to the area of the event horizon-even though the event horizon contains a conical singularity. This result not only extends the applicability of black hole thermodynamics to realms previously not anticipated, it also opens a possibility for studying novel properties of an important class of exact radiative solutions of Einstein equations describing accelerated objects. We discuss the thermodynamic volume, stability, and phase structure of these black holes.

  7. Particle Acceleration, Magnetic Field Generation, and Associated Emission in Collisionless Relativistic Jets

    NASA Technical Reports Server (NTRS)

    Nishikawa, K.-I.

    2007-01-01

    Nonthermal radiation observed from astrophysical systems containing relativistic jets and shocks, e.g., active galactic nuclei (AGNs), gamma-ray bursts (GRBs), and Galactic microquasar systems usually have power-law emission spectra. Recent PIC simulations using injected relativistic electron-ion (electro-positron)jets show that acceleration occurs within the downstream jet. Shock acceleration is a ubiquitous phenomenon in astrophysical plasmas. Plasma waves and their associated instabilities (e.g., the Buneman instability, other two-streaming instability, and the Weibel instability) created in the shocks are responsible for particle (electron, positron, and ion) acceleration. The simulation results show that the Weibel instability is responsible for generating and amplifying highly nonuniform, small-scale magnetic fields. These magnetic fields contribute to the electron's transverse deflection behind the jet head. The "jitter" radiation from deflected electrons has different properties than synchrotron radiation which is calculated in a uniform magnetic field. This jitter radiation may be important to understanding the complex time evolution and/or spectral structure in gamma-ray bursts, relativistic jets, and supernova remnants.

  8. Particle Acceleration, Magnetic Field Generation and Associated Emission in Collisionless Relativistic Jets

    NASA Technical Reports Server (NTRS)

    Nishikawa, K. I.; Ramirez-Ruiz, E.; Hardee, P.; Mizuno, Y.; Fishman. G. J.

    2007-01-01

    Nonthermal radiation observed from astrophysical systems containing relativistic jets and shocks, e.g., active galactic nuclei (AGNs), gamma-ray bursts (GRBs), and Galactic microquasar systems usually have power-law emission spectra. Recent PIC simulations using injected relativistic electron-ion (electro-positron) jets show that acceleration occurs within the downstream jet. Shock acceleration is a ubiquitous phenomenon in astrophysical plasmas. Plasma waves and their associated instabilities (e.g., the Buneman instability, other two-streaming instability, and the Weibel instability) created in the shocks are responsible for particle (electron, positron, and ion) acceleration. The simulation results show that the Weibel instability is responsible for generating and amplifying highly nonuniform, small-scale magnetic fields. These magnetic fields contribute to the electron's transverse deflection behind the jet head. The "jitter" radiation from deflected electrons has different properties than synchrotron radiation which is calculated in a uniform magnetic field. This jitter radiation may be important to understanding the complex time evolution and/or spectral structure in gamma-ray bursts, relativistic jets, and supernova remnants.

  9. Method for Monitoring of Neutron Fields near High-Energy Accelerators

    NASA Astrophysics Data System (ADS)

    Beskrovnaia, L. G.; Guseva, S. V.; Timoshenko, G. N.

    2018-05-01

    The monitoring of neutron radiation from high-energy accelerators cannot fully rely on the standard dosimeters and radiometers manufactured in Russia, since these are sensitive only to neutrons with energies below some 10 MeV. This is because neutrons of higher energies can significantly contribute to the personnel doses both close to the accelerator shield and in the neutron multiscattered field around the shield. In this paper, we propose to measure the ambient neutron dose in energy range 10-2 MeV to 1 GeV with a device consisting of two polyethylene balls with diameters of 3 and 10 in. housing slow-neutron detectors. The larger ball also comprises a lead converter (10'' + Pb). This device can be implemented in zonal radiation monitoring in the near-accelerator area.

  10. Highly relativistic radiation belt electron acceleration, transport, and loss: Large solar storm events of March and June 2015

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baker, Daniel N.; Jaynes, A. N.; Kanekal, S. G.

    Two of the largest geomagnetic storms of the last decade were witnessed in 2015. On 17 March 2015, a coronal mass ejection-driven event occurred with a Dst (storm time ring current index) value reaching –223 nT. On 22 June 2015 another strong storm (Dst reaching –204 nT) was recorded. These two storms each produced almost total loss of radiation belt high-energy (E ≳ 1 MeV) electron fluxes. Following the dropouts of radiation belt fluxes there were complex and rather remarkable recoveries of the electrons extending up to nearly 10 MeV in kinetic energy. The energized outer zone electrons showed amore » rich variety of pitch angle features including strong “butterfly” distributions with deep minima in flux at α = 90°. However, despite strong driving of outer zone earthward radial diffusion in these storms, the previously reported “impenetrable barrier” at L ≈ 2.8 was pushed inward, but not significantly breached, and no E ≳ 2.0 MeV electrons were seen to pass through the radiation belt slot region to reach the inner Van Allen zone. Altogether, these intense storms show a wealth of novel features of acceleration, transport, and loss that are demonstrated in the present detailed analysis.« less

  11. Highly relativistic radiation belt electron acceleration, transport, and loss: Large solar storm events of March and June 2015

    DOE PAGES

    Baker, Daniel N.; Jaynes, A. N.; Kanekal, S. G.; ...

    2016-07-01

    Two of the largest geomagnetic storms of the last decade were witnessed in 2015. On 17 March 2015, a coronal mass ejection-driven event occurred with a Dst (storm time ring current index) value reaching –223 nT. On 22 June 2015 another strong storm (Dst reaching –204 nT) was recorded. These two storms each produced almost total loss of radiation belt high-energy (E ≳ 1 MeV) electron fluxes. Following the dropouts of radiation belt fluxes there were complex and rather remarkable recoveries of the electrons extending up to nearly 10 MeV in kinetic energy. The energized outer zone electrons showed amore » rich variety of pitch angle features including strong “butterfly” distributions with deep minima in flux at α = 90°. However, despite strong driving of outer zone earthward radial diffusion in these storms, the previously reported “impenetrable barrier” at L ≈ 2.8 was pushed inward, but not significantly breached, and no E ≳ 2.0 MeV electrons were seen to pass through the radiation belt slot region to reach the inner Van Allen zone. Altogether, these intense storms show a wealth of novel features of acceleration, transport, and loss that are demonstrated in the present detailed analysis.« less

  12. Highly relativistic radiation belt electron acceleration, transport, and loss: Large solar storm events of March and June 2015

    NASA Astrophysics Data System (ADS)

    Baker, D. N.; Jaynes, A. N.; Kanekal, S. G.; Foster, J. C.; Erickson, P. J.; Fennell, J. F.; Blake, J. B.; Zhao, H.; Li, X.; Elkington, S. R.; Henderson, M. G.; Reeves, G. D.; Spence, H. E.; Kletzing, C. A.; Wygant, J. R.

    2016-07-01

    Two of the largest geomagnetic storms of the last decade were witnessed in 2015. On 17 March 2015, a coronal mass ejection-driven event occurred with a Dst (storm time ring current index) value reaching -223 nT. On 22 June 2015 another strong storm (Dst reaching -204 nT) was recorded. These two storms each produced almost total loss of radiation belt high-energy (E ≳ 1 MeV) electron fluxes. Following the dropouts of radiation belt fluxes there were complex and rather remarkable recoveries of the electrons extending up to nearly 10 MeV in kinetic energy. The energized outer zone electrons showed a rich variety of pitch angle features including strong "butterfly" distributions with deep minima in flux at α = 90°. However, despite strong driving of outer zone earthward radial diffusion in these storms, the previously reported "impenetrable barrier" at L ≈ 2.8 was pushed inward, but not significantly breached, and no E ≳ 2.0 MeV electrons were seen to pass through the radiation belt slot region to reach the inner Van Allen zone. Overall, these intense storms show a wealth of novel features of acceleration, transport, and loss that are demonstrated in the present detailed analysis.

  13. 3-D RPIC Simulations of Relativistic Jets: Particle Acceleration, Magnetic Field Generation, and Emission

    NASA Technical Reports Server (NTRS)

    Nishikawa, K.-I.; Mizuno, Y.; Hardee, P.; Hededal, C. B.; Fishman, G. J.

    2006-01-01

    Recent PIC simulations using injected relativistic electron-ion (electro-positron) jets into ambient plasmas show that acceleration occurs in relativistic shocks. The Weibel instability created in shocks is responsible for particle acceleration, and generation and amplification of highly inhomogeneous, small-scale magnetic fields. These magnetic fields contribute to the electron's transverse deflection in relativistic jets. The "jitter" radiation from deflected electrons has different properties than the synchrotron radiation which is calculated in a uniform magnetic field. This jitter radiation may be important to understand the complex time evolution and spectral structure in relativistic jets and gamma-ray bursts. We will present recent PIC simulations which show particle acceleration and magnetic field generation. We will also calculate associated self-consistent emission from relativistic shocks.

  14. Intensity-Modulated Radiation Therapy (IMRT)

    MedlinePlus

    ... specialized training in the field of radiation oncology physics, ensures the linear accelerator delivers the precise radiation ... critical normal structures, as well as the patient's health. Typically, patients are scheduled for IMRT sessions five ...

  15. Constraints on the extremely high-energy cosmic ray accelerators from classical electrodynamics

    NASA Astrophysics Data System (ADS)

    Aharonian, F. A.; Belyanin, A. A.; Derishev, E. V.; Kocharovsky, V. V.; Kocharovsky, Vl. V.

    2002-07-01

    We formulate the general requirements, set by classical electrodynamics, on the sources of extremely high-energy cosmic rays (EHECRs). It is shown that the parameters of EHECR accelerators are strongly limited not only by the particle confinement in large-scale magnetic fields or by the difference in electric potentials (generalized Hillas criterion) but also by the synchrotron radiation, the electro-bremsstrahlung, or the curvature radiation of accelerated particles. Optimization of these requirements in terms of an accelerator's size and magnetic field strength results in the ultimate lower limit to the overall source energy budget, which scales as the fifth power of attainable particle energy. Hard γ rays accompanying generation of EHECRs can be used to probe potential acceleration sites. We apply the results to several populations of astrophysical objects-potential EHECR sources-and discuss their ability to accelerate protons to 1020 eV and beyond. The possibility of gain from ultrarelativistic bulk flows is addressed, with active galactic nuclei and gamma-ray bursts being the examples.

  16. Constraints on the extremely high-energy cosmic rays accelerators from classical electrodynamics

    NASA Astrophysics Data System (ADS)

    Belyanin, A.; Aharonian, F.; Derishev, E.; Kocharovsky, V.; Kocharovsky, V.

    We formulate the general requirements, set by classical electrodynamics, to the sources of extremely high-energy cosmic rays (EHECRs). It is shown that the parameters of EHECR accelerators are strongly limited not only by the particle confinement in large-scale magnetic field or by the difference in electric potentials (generalized Hillas criterion), but also by the synchrotron radiation, the electro-bremsstrahlung, or the curvature radiation of accelerated particles. Optimization of these requirements in terms of accelerator's size and magnetic field strength results in the ultimate lower limit to the overall source energy budget, which scales as the fifth power of attainable particle energy. Hard gamma-rays accompanying generation of EHECRs can be used to probe potential acceleration sites. We apply the results to several populations of astrophysical objects - potential EHECR sources - and discuss their ability to accelerate protons to 1020 eV and beyond. A possibility to gain from ultrarelativistic bulk flows is addressed, with Active Galactic Nuclei and Gamma-Ray Bursts being the examples.

  17. Working group written presentation: Solar radiation

    NASA Technical Reports Server (NTRS)

    Slemp, Wayne S.

    1989-01-01

    The members of the Solar Radiation Working Group arrived at two major solar radiation technology needs: (1) generation of a long term flight data base; and (2) development of a standardized UV testing methodology. The flight data base should include 1 to 5 year exposure of optical filters, windows, thermal control coatings, hardened coatings, polymeric films, and structural composites. The UV flux and wavelength distribution, as well as particulate radiation flux and energy, should be measured during this flight exposure. A standard testing methodology is needed to establish techniques for highly accelerated UV exposure which will correlate well with flight test data. Currently, UV can only be accelerated to about 3 solar constants and can correlate well with flight exposure data. With space missions to 30 years, acceleration rates of 30 to 100X are needed for efficient laboratory testing.

  18. Is Africa a 'Graveyard' for Linear Accelerators?

    PubMed

    Reichenvater, H; Matias, L Dos S

    2016-12-01

    Linear accelerator downtimes are common and problematic in many African countries and may jeopardise the outcome of affected radiation treatments. The predicted increase in cancer incidence and prevalence on the African continent will require, inter alia, improved response with regard to a reduction in linear accelerator downtimes. Here we discuss the problems associated with the maintenance and repair of linear accelerators and propose alternative solutions relevant for local conditions in African countries. The paper is based on about four decades of experience in capacity building, installing, commissioning, calibrating, servicing and repairing linear accelerators in Africa, where about 40% of the low and middle income countries in the world are geographically located. Linear accelerators can successfully be operated, maintained and repaired in African countries provided proper maintenance and repair plans are put in place and executed. Copyright © 2016 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.

  19. WE-F-209-02: Radiation Safety Surveys of Linear Accelerators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martin, M.

    2016-06-15

    Over the past few years, numerous Accreditation Bodies, Regulatory Agencies, and State Regulations have implemented requirements for Radiation Safety Surveys following installation or modification to x-ray rooms. The objective of this session is to review best practices in performing radiation safety surveys for both Therapy and Diagnostic installations, as well as a review of appropriate survey instruments. This session will be appropriate for both therapy and imaging physicists who are looking to increase their working knowledge of radiation safety surveys. Learning Objectives: Identify Appropriate Survey Meters for Radiation Safety Surveys Develop best practices for Radiation Safety Surveys for Therapy unitsmore » that include common areas of concern. Develop best practices for Radiation Safety Surveys of Diagnostic and Nuclear Medicine rooms. Identify acceptable dose levels and the factors that affect the calculations associated with performing Radiation Safety Surveys.« less

  20. Inertial Mass Viewed as Reaction of the Vacuum to Accelerated Motion

    NASA Technical Reports Server (NTRS)

    Rueda, Alfonso; Haisch, Bernhard

    1999-01-01

    Preliminary analysis of the momentum flux (or of the Poynting vector) of the classical electromagnetic version of the quantum vacuum consisting of zero-point radiation impinging on accelerated objects as viewed by an inertial observer suggests that the resistance to acceleration attributed to inertia may be a force of opposition originating in the vacuum. This analysis avoids the ad hoc modeling of particle-field interaction dynamics used previously by Haisck Rueda and Puthoff (1994) to derive a similar result. This present approach is not dependent upon what happens at the particle point but on how an external observer assesses the kinematical characteristics of the zero-point radiation impinging on the accelerated object. A relativistic form of the equation of motion results from the present analysis.

  1. Radiation from Relativistic Jets

    NASA Technical Reports Server (NTRS)

    Nishikawa, K.-I.; Mizuno, Y.; Hardee, P.; Sol, H.; Medvedev, M.; Zhang, B.; Nordlund, A.; Frederiksen, J. T.; Fishman, G. J.; Preece, R.

    2008-01-01

    Nonthermal radiation observed from astrophysical systems containing relativistic jets and shocks, e.g., gamma-ray bursts (GRBs), active galactic nuclei (AGNs), and Galactic microquasar systems usually have power-law emission spectra. Recent PIC simulations of relativistic electron-ion (electron-positron) jets injected into a stationary medium show that particle acceleration occurs within the downstream jet. In the presence of relativistic jets, instabilities such as the Buneman instability, other two-streaming instability, and the Weibel (filamentation) instability create collisionless shocks, which are responsible for particle (electron, positron, and ion) acceleration. The simulation results show that the Weibel instability is responsible for generating and amplifying highly nonuniform, small-scale magnetic fields. These magnetic fields contribute to the electron's transverse deflection behind the jet head. The 'jitter' radiation from deflected electrons in small-scale magnetic fields has different properties than synchrotron radiation which is calculated in a uniform magnetic field. This jitter radiation, a case of diffusive synchrotron radiation, may be important to understand the complex time evolution and/or spectral structure in gamma-ray bursts, relativistic jets, and supernova remnants.

  2. Electron cyclotron wave acceleration outside a flaring loop

    NASA Technical Reports Server (NTRS)

    Sprangle, P.; Vlahos, L.

    1983-01-01

    A model for the secondary acceleration of electrons outside a flaring loop is proposed. The results suggest that the narrow bandwidth radiation emitted by the unstable electron distribution inside a flaring loop can become the driver for secondary electron acceleration outside the loop. It is shown that a system of electrons gyrating about and streaming along an adiabatically spatially varying, static magnetic field can be efficiently accelerated to high energies by an electromagnetic wave propagating along and polarized transverse to the static magnetic field. The predictions from our model appear to be in general agreement with existing observations.

  3. Laser acceleration of protons using multi-ion plasma gaseous targets

    DOE PAGES

    Liu, Tung -Chang; Shao, Xi; Liu, Chuan -Sheng; ...

    2015-02-01

    We present a theoretical and numerical study of a novel acceleration scheme by applying a combination of laser radiation pressure and shielded Coulomb repulsion in laser acceleration of protons in multi-species gaseous targets. By using a circularly polarized CO₂ laser pulse with a wavelength of 10 μm—much greater than that of a Ti: Sapphire laser—the critical density is significantly reduced, and a high-pressure gaseous target can be used to achieve an overdense plasma. This gives us a larger degree of freedom in selecting the target compounds or mixtures, as well as their density and thickness profiles. By impinging such amore » laser beam on a carbon–hydrogen target, the gaseous target is first compressed and accelerated by radiation pressure until the electron layer disrupts, after which the protons are further accelerated by the electron-shielded carbon ion layer. An 80 MeV quasi-monoenergetic proton beam can be generated using a half-sine shaped laser beam with a peak power of 70 TW and a pulse duration of 150 wave periods.« less

  4. Compact laser accelerators for X-ray phase-contrast imaging

    PubMed Central

    Najmudin, Z.; Kneip, S.; Bloom, M. S.; Mangles, S. P. D.; Chekhlov, O.; Dangor, A. E.; Döpp, A.; Ertel, K.; Hawkes, S. J.; Holloway, J.; Hooker, C. J.; Jiang, J.; Lopes, N. C.; Nakamura, H.; Norreys, P. A.; Rajeev, P. P.; Russo, C.; Streeter, M. J. V.; Symes, D. R.; Wing, M.

    2014-01-01

    Advances in X-ray imaging techniques have been driven by advances in novel X-ray sources. The latest fourth-generation X-ray sources can boast large photon fluxes at unprecedented brightness. However, the large size of these facilities means that these sources are not available for everyday applications. With advances in laser plasma acceleration, electron beams can now be generated at energies comparable to those used in light sources, but in university-sized laboratories. By making use of the strong transverse focusing of plasma accelerators, bright sources of betatron radiation have been produced. Here, we demonstrate phase-contrast imaging of a biological sample for the first time by radiation generated by GeV electron beams produced by a laser accelerator. The work was performed using a greater than 300 TW laser, which allowed the energy of the synchrotron source to be extended to the 10–100 keV range. PMID:24470414

  5. LIONs at the Stanford Linear Accelerator Center

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Constant, T.N.; Zdarko, R.W.; Simmons, R.H.

    1998-01-01

    The term LION is an acronym for Long Ionization Chamber. This is a distributed ion chamber which is used to monitor secondary ionization along the shield walls of a beam line resulting from incorrectly steered charged particle beams in lieu of the use of many discrete ion chambers. A cone of ionizing radiation emanating from a point source as a result of incorrect steering intercepts a portion of 1-5/8 inch Heliax cable (about 100 meters in length) filled with Argon gas at 20 psi and induces a pulsed current which is proportional to the ionizing charge. This signal is transmittedmore » via the cable to an integrator circuit whose output is directed to an electronic comparators, which in turn is used to turn off the accelerated primary beam when preset limits are exceeded. This device is used in the Stanford Linear Accelerator Center (SLAC) Beam Containment System (BCS) to prevent potentially hazardous ionizing radiation resulting from incorrectly steered beams in areas that might be occupied by people. This paper describes the design parameters and experience in use in the Final Focus Test Beam (FFTB) area of the Stanford Linear Accelerator Center.« less

  6. Force approach to radiation reaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    López, Gustavo V., E-mail: gulopez@udgserv.cencar.udg.mx

    The difficulty of the usual approach to deal with the radiation reaction is pointed out, and under the condition that the radiation force must be a function of the external force and is zero whenever the external force be zero, a new and straightforward approach to radiation reaction force and damping is proposed. Starting from the Larmor formula for the power radiated by an accelerated charged particle, written in terms of the applied force instead of the acceleration, an expression for the radiation force is established in general, and applied to the examples for the linear and circular motion ofmore » a charged particle. This expression is quadratic in the magnitude of the applied force, inversely proportional to the speed of the charged particle, and directed opposite to the velocity vector. This force approach may contribute to the solution of the very old problem of incorporating the radiation reaction to the motion of the charged particles, and future experiments may tell us whether or not this approach point is in the right direction.« less

  7. Preclinical evaluation of radiation and systemic, RGD-targeted, adeno-associated virus phage-TNF gene therapy in a mouse model of spontaneously metastatic melanoma.

    PubMed

    Quinn, T J; Healy, N; Sara, A; Maggi, E; Claros, C S; Kabarriti, R; Scandiuzzi, L; Liu, L; Gorecka, J; Adem, A; Basu, I; Yuan, Z; Guha, C

    2017-01-01

    The incidence of melanoma in the United States continues to rise, with metastatic lesions notoriously recalcitrant to therapy. There are limited effective treatment options available and a great need for more effective therapies that can be rapidly integrated in the clinic. In this study, we demonstrate that the combination of RGD-targeted adeno-associated virus phage (RGD-AAVP-TNF) with hypofractionated radiation therapy results in synergistic inhibition of primary syngeneic B16 melanoma in a C57 mouse model. Furthermore, this combination appeared to modify the tumor microenvironment, resulting in decreased Tregs in the draining LN and increased tumor-associated macrophages within the primary tumor. Finally, there appeared to be a reduction in metastatic potential and a prolongation of overall survival in the combined treatment group. These results indicate the use of targeted TNF gene therapy vector with radiation treatment could be a valuable treatment option for patients with metastatic melanoma.

  8. Different rectal toxicity tolerance with and without simultaneous conventionally-fractionated pelvic lymph node treatment in patients receiving hypofractionated prostate radiotherapy

    PubMed Central

    2014-01-01

    Purpose To investigate added morbidity associated with the addition of pelvic elective nodal irradiation (ENI) to hypofractionated radiotherapy to the prostate. Methods and materials Two-hundred twelve patients, treated with hypofractionated radiotherapy to the prostate between 2004 and 2011, met the inclusion criteria for the analysis. All patients received 70 Gy to the prostate delivered over 28 fractions and 103 (49%) received ENI consisting of 50.4 Gy to the pelvic lymphatics delivered simultaneously in 1.8 Gy fractions. The mean dose-volume histograms were compared between the two subgroups defined by use of ENI, and various dose-volume parameters were analyzed for effect on late lower gastrointestinal (GI) and genitourinary (GU) toxicity. Results Acute grade 2 lower GI toxicity occurred in 38 (37%) patients receiving ENI versus 19 (17%) in those who did not (p = 0.001). The Kaplan-Meier estimate of grade ≥ 2 lower GI toxicity at 3 years was 15.3% for patients receiving ENI versus 5.3% for those who did not (p = 0.026). Each rectal isodose volume was increased for patients receiving ENI up to 50 Gy (p ≤ 0.021 for each 5 Gy increment). Across all patients, the absolute V70 of the rectum was the only predictor of late GI toxicity. When subgroups, defined by the use of ENI, were analyzed separately, rectal V70 was only predictive of late GI toxicity for patients who received ENI. For patients receiving ENI, V70 > 3 cc was associated with an increased risk of late GI events. Conclusions Elective nodal irradiation increases the rates of acute and late GI toxicity when delivered simultaneously with hypofractioanted prostate radiotherapy. The use of ENI appears to sensitize the rectum to hot spots, therefore we recommend added caution to minimize the volume of rectum receiving 100% of the prescription dose in these patients. PMID:24893842

  9. Accelerating Climate Simulations Through Hybrid Computing

    NASA Technical Reports Server (NTRS)

    Zhou, Shujia; Sinno, Scott; Cruz, Carlos; Purcell, Mark

    2009-01-01

    Unconventional multi-core processors (e.g., IBM Cell B/E and NYIDIDA GPU) have emerged as accelerators in climate simulation. However, climate models typically run on parallel computers with conventional processors (e.g., Intel and AMD) using MPI. Connecting accelerators to this architecture efficiently and easily becomes a critical issue. When using MPI for connection, we identified two challenges: (1) identical MPI implementation is required in both systems, and; (2) existing MPI code must be modified to accommodate the accelerators. In response, we have extended and deployed IBM Dynamic Application Virtualization (DAV) in a hybrid computing prototype system (one blade with two Intel quad-core processors, two IBM QS22 Cell blades, connected with Infiniband), allowing for seamlessly offloading compute-intensive functions to remote, heterogeneous accelerators in a scalable, load-balanced manner. Currently, a climate solar radiation model running with multiple MPI processes has been offloaded to multiple Cell blades with approx.10% network overhead.

  10. Accelerated life assessment of coating on the radar structure components in coastal environment.

    PubMed

    Liu, Zhe; Ming, ZhiMao

    2016-07-04

    This paper aimed to build an accelerated life test scheme and carry out quantitative analysis between accelerated life test in the laboratory and actual service for the coating composed of epoxy primer and polyurethane paint on structure components of some kind of radar served in the coastal environment of South China Sea. The accelerated life test scheme was built based on the service environment and failure analysis of the coating. The quantitative analysis between accelerated life test and actual service was conducted by comparing the gloss loss, discoloration, chalking, blistering, cracking and electrochemical impedance spectroscopy of the coating. The main factors leading to the coating failure were ultraviolet radiation, temperature, moisture, salt fog and loads, the accelerated life test included ultraviolet radiation, damp heat, thermal shock, fatigue and salt spray. The quantitative relationship was that one cycle of the accelerated life test was equal to actual service for one year. It was established that one cycle of the accelerated life test was equal to actual service for one year. It provided a precise way to predict actual service life of newly developed coatings for the manufacturer.

  11. Highly Relativistic Radiation Belt Electron Acceleration, Transport, and Loss: Large Solar Storm Events of March and June 2015

    NASA Technical Reports Server (NTRS)

    Baker, D. N.; Jaynes, A. N.; Kanekal, S. G.; Foster, J.C.; Erickson, P. J.; Fennell, Joseph; Blake, J. B.; Zhao, H.; Li, X.; Elkington, S. R.; hide

    2016-01-01

    Two of the largest geomagnetic storms of the last decade were witnessed in 2015. On 17 March 2015, a coronal mass ejection-driven event occurred with a Dst (Disturbance Storm Time Ring Current Index) value reaching 223 nanoteslas. On 22 June 2015 another strong storm (Dst reaching 204 nanoteslas) was recorded. These two storms each produced almost total loss of radiation belt high-energy (E (Energy) greater than or approximately equal to 1 millielectronvolt) electron fluxes. Following the dropouts of radiation belt fluxes there were complex and rather remarkable recoveries of the electrons extending up to nearly 10 millielectronvolts in kinetic energy. The energized outer zone electrons showed a rich variety of pitch angle features including strong butterfly distributions with deep minima in flux at alpha equals 90 degrees. However, despite strong driving of outer zone earthward radial diffusion in these storms, the previously reported impenetrable barrier at L (L-shell magnetic field line value) approximately equal to 2.8 was pushed inward, but not significantly breached, and no E (Energy) greater than or approximately equal to 2.0 millielectronvolts electrons were seen to pass through the radiation belt slot region to reach the inner Van Allen zone. Overall, these intense storms show a wealth of novel features of acceleration, transport, and loss that are demonstrated in the present detailed analysis.

  12. Highly relativistic radiation belt electron acceleration, transport, and loss: Large solar storm events of March and June 2015

    PubMed Central

    Jaynes, A. N.; Kanekal, S. G.; Foster, J. C.; Erickson, P. J.; Fennell, J. F.; Blake, J. B.; Zhao, H.; Li, X.; Elkington, S. R.; Henderson, M. G.; Reeves, G. D.; Spence, H. E.; Kletzing, C. A.; Wygant, J. R.

    2016-01-01

    Abstract Two of the largest geomagnetic storms of the last decade were witnessed in 2015. On 17 March 2015, a coronal mass ejection‐driven event occurred with a Dst (storm time ring current index) value reaching −223 nT. On 22 June 2015 another strong storm (Dst reaching −204 nT) was recorded. These two storms each produced almost total loss of radiation belt high‐energy (E ≳ 1 MeV) electron fluxes. Following the dropouts of radiation belt fluxes there were complex and rather remarkable recoveries of the electrons extending up to nearly 10 MeV in kinetic energy. The energized outer zone electrons showed a rich variety of pitch angle features including strong “butterfly” distributions with deep minima in flux at α = 90°. However, despite strong driving of outer zone earthward radial diffusion in these storms, the previously reported “impenetrable barrier” at L ≈ 2.8 was pushed inward, but not significantly breached, and no E ≳ 2.0 MeV electrons were seen to pass through the radiation belt slot region to reach the inner Van Allen zone. Overall, these intense storms show a wealth of novel features of acceleration, transport, and loss that are demonstrated in the present detailed analysis. PMID:27867796

  13. Radiation Protection

    NASA Astrophysics Data System (ADS)

    Grupen, Claus

    Radiation protection is a very important aspect for the application of particle detectors in many different fields, like high energy physics, medicine, materials science, oil and mineral exploration, and arts, to name a few. The knowledge of radiation units, the experience with shielding, and information on biological effects of radiation are vital for scientists handling radioactive sources or operating accelerators or X-ray equipment. This article describes the modern radiation units and their conversions to older units which are still in use in many countries. Typical radiation sources and detectors used in the field of radiation protection are presented. The legal regulations in nearly all countries follow closely the recommendations of the International Commission on Radiological Protection (ICRP). Tables and diagrams with relevant information on the handling of radiation sources provide useful data for the researcher working in this field.

  14. Assessment of normal tissue complications following prostate cancer irradiation: Comparison of radiation treatment modalities using NTCP models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takam, Rungdham; Bezak, Eva; Yeoh, Eric E.

    2010-09-15

    Purpose: Normal tissue complication probability (NTCP) of the rectum, bladder, urethra, and femoral heads following several techniques for radiation treatment of prostate cancer were evaluated applying the relative seriality and Lyman models. Methods: Model parameters from literature were used in this evaluation. The treatment techniques included external (standard fractionated, hypofractionated, and dose-escalated) three-dimensional conformal radiotherapy (3D-CRT), low-dose-rate (LDR) brachytherapy (I-125 seeds), and high-dose-rate (HDR) brachytherapy (Ir-192 source). Dose-volume histograms (DVHs) of the rectum, bladder, and urethra retrieved from corresponding treatment planning systems were converted to biological effective dose-based and equivalent dose-based DVHs, respectively, in order to account for differences inmore » radiation treatment modality and fractionation schedule. Results: Results indicated that with hypofractionated 3D-CRT (20 fractions of 2.75 Gy/fraction delivered five times/week to total dose of 55 Gy), NTCP of the rectum, bladder, and urethra were less than those for standard fractionated 3D-CRT using a four-field technique (32 fractions of 2 Gy/fraction delivered five times/week to total dose of 64 Gy) and dose-escalated 3D-CRT. Rectal and bladder NTCPs (5.2% and 6.6%, respectively) following the dose-escalated four-field 3D-CRT (2 Gy/fraction to total dose of 74 Gy) were the highest among analyzed treatment techniques. The average NTCP for the rectum and urethra were 0.6% and 24.7% for LDR-BT and 0.5% and 11.2% for HDR-BT. Conclusions: Although brachytherapy techniques resulted in delivering larger equivalent doses to normal tissues, the corresponding NTCPs were lower than those of external beam techniques other than the urethra because of much smaller volumes irradiated to higher doses. Among analyzed normal tissues, the femoral heads were found to have the lowest probability of complications as most of their volume was irradiated to

  15. Generation of X-rays by electrons recycling through thin internal targets of cyclic accelerators

    NASA Astrophysics Data System (ADS)

    Kaplin, V.; Kuznetsov, S.; Uglov, S.

    2018-05-01

    The use of thin (< 10‑3 radiation length) internal targets in cyclic accelerators leads to multiple passes (recycling effect) of electrons through them. The multiplicity of electron passes (M) is determined by the electron energy, accelerator parameters, the thickness, structure and material of a target and leads to an increase in the effective target thickness and the efficiency of radiation generation. The increase of M leads to the increase in the emittance of electron beams which can change the characteristics of radiation processes. The experimental results obtained using the Tomsk synchrotron and betatron showed the possibility of increasing the yield and brightness of coherent X-rays generated by the electrons passing (recycling) through thin crystals and periodic multilayers placed into the chambers of accelerators, when the recycling effect did not influence on the spectral and angular characteristics of generated X-rays.

  16. Acceleration of skin wound healing by low-dose indirect ionizing radiation in male rats.

    PubMed

    Jabbari, Nasrollah; Farjah, Gholam Hossein; Ghadimi, Behnam; Zanjani, Hajar; Heshmatian, Behnam

    2017-08-01

    A recent hypothesis has revealed that low-dose irradiation (LDI) with ionizing radiation might have a promoting effect on fracture healing. The aim of this study was to investigate the influence of direct (electron beam) and indirect (gamma-ray) low-dose ionizing irradiations on the wound healing process in male rats. In 72 male rats, a full-thickness wound was incised. The animals were randomly assigned to three groups, each with 24 rats. The first two groups were named IG-I and IG-II and respectively exposed to electron and gamma-radiations (75 cGy) immediately after the surgical procedure. The third group was considered as the control (CG) and remained untreated. Skin biopsies from the subgroups were collected on days 3, 7, 15, and 21 after the operation and evaluated using histological and biomechanical methods. Data were analyzed by one-way ANOVA, followed by Tukey's post hoc test using SPSS 20 software. Histological studies of tissues showed that the mean number of fibroblasts, macrophages, blood vessel sections, and neutrophils on the third and seventh days after the surgery in the gamma-treated group was higher than that in both other groups. In contrast, on day 21, the mean number of mentioned cells in the gamma-treated group was lower than in the other two groups. In addition, the mean maximum stress value was significantly greater in the gamma-treated group. Results of this study showed that gamma-ray irradiation is effective in the acceleration of wound healing. Copyright © 2017. Published by Elsevier Taiwan.

  17. Driving gas shells with radiation pressure on dust in radiation-hydrodynamic simulations

    NASA Astrophysics Data System (ADS)

    Costa, Tiago; Rosdahl, Joakim; Sijacki, Debora; Haehnelt, Martin G.

    2018-01-01

    We present radiation-hydrodynamic simulations of radiatively-driven gas shells launched by bright active galactic nuclei (AGN) in isolated dark matter haloes. Our goals are (1) to investigate the ability of AGN radiation pressure on dust to launch galactic outflows and (2) to constrain the efficiency of infrared (IR) multiscattering in boosting outflow acceleration. Our simulations are performed with the radiation-hydrodynamic code RAMSES-RT and include both single- and multiscattered radiation pressure from an AGN, radiative cooling and self-gravity. Since outflowing shells always eventually become transparent to the incident radiation field, outflows that sweep up all intervening gas are likely to remain gravitationally bound to their halo even at high AGN luminosities. The expansion of outflowing shells is well described by simple analytic models as long as the shells are mildly optically thick to IR radiation. In this case, an enhancement in the acceleration of shells through IR multiscattering occurs as predicted, i.e. a force \\dot{P} ≈ τ_IR L/c is exerted on the gas. For high optical depths τIR ≳ 50, however, momentum transfer between outflowing optically thick gas and IR radiation is rapidly suppressed, even if the radiation is efficiently confined. At high τIR, the characteristic flow time becomes shorter than the required trapping time of IR radiation such that the momentum flux \\dot{P} ≪ τ_IR L/c. We argue that while unlikely to unbind massive galactic gaseous haloes, AGN radiation pressure on dust could play an important role in regulating star formation and black hole accretion in the nuclei of massive compact galaxies at high redshift.

  18. A comparison of mutations induced by accelerated iron particles versus those induced by low earth orbit space radiation in the FEM-3 gene of Caenorhabditis elegans

    NASA Technical Reports Server (NTRS)

    Hartman, P. S.; Hlavacek, A.; Wilde, H.; Lewicki, D.; Schubert, W.; Kern, R. G.; Kazarians, G. A.; Benton, E. V.; Benton, E. R.; Nelson, G. A.

    2001-01-01

    The fem-3 gene of Caenorhabditis elegans was employed to determine the mutation frequency as well as the nature of mutations induced by low earth orbit space radiation ambient to Space Shuttle flight STS-76. Recovered mutations were compared to those induced by accelerated iron ions generated by the AGS synchrotron accelerator at Brookhaven National Laboratory. For logistical reasons, dauer larvae were prepared at TCU, transported to either Kennedy Space Center or Brookhaven National Laboratory, flown in space or irradiated, returned to TCU and screened for mutants. A total of 25 fem-3 mutants were recovered after the shuttle flight and yielded a mutation frequency of 2.1x10(-5), roughly 3.3-fold higher than the spontaneous rate of 6.3x10(-6). Four of the mutations were homozygous inviable, suggesting that they were large deletions encompassing fem-3 as well as neighboring, essential genes. Southern blot analyses revealed that one of the 25 contained a polymorphism in fem-3, further evidence that space radiation can induce deletions. While no polymorphisms were detected among the iron ion-induced mutations, three of the 15 mutants were homozygous inviable, which is in keeping with previous observations that high LET iron particles generate deficiencies. These data provide evidence, albeit indirect, that an important mutagenic component of ambient space radiation is high LET charged particles such as iron ions.

  19. A pixel detector system for laser-accelerated ion detection

    NASA Astrophysics Data System (ADS)

    Reinhardt, S.; Draxinger, W.; Schreiber, J.; Assmann, W.

    2013-03-01

    Laser ion acceleration is an unique acceleration process that creates ultra-short ion pulses of high intensity ( > 107 ions/cm2/ns), which makes online detection an ambitious task. Non-electronic detectors such as radio-chromic films (RCF), imaging plates (IP) or nuclear track detectors (e.g. CR39) are broadly used at present. Only offline information on ion pulse intensity and position are available by these detectors, as minutes to hours of processing time are required after their exposure. With increasing pulse repetition rate of the laser system, there is a growing need for detection of laser accelerated ions in real-time. Therefore, we have investigated a commercial pixel detector system for online detection of laser-accelerated proton pulses. The CMOS imager RadEye1 was chosen, which is based on a photodiode array, 512 × 1024 pixels with 48 μm pixel pitch, thus offering a large sensitive area of approximately 25 × 50 mm2. First detection tests were accomplished at the conventional electrostatic 14 MV Tandem accelerator in Munich as well as Atlas laser accelerator. Detector response measurements at the conventional accelerator have been accomplished in a proton beam in dc (15 MeV) and pulsed (20 MeV) irradiation mode, the latter providing comparable particle flux as under laser acceleration conditions. Radiation hardness of the device was studied using protons (20 MeV) and C-ions (77 MeV), additionally. The detector system shows a linear response up to a maximum pulse flux of about 107 protons/cm2/ns. Single particle detection is possible in a low flux beam (104 protons/cm2/s) for all investigated energies. The radiation hardness has shown to give reasonable lifetime for an application at the laser accelerator. The results from the irradiation at a conventional accelerator are confirmed by a cross-calibration with CR39 in a laser-accelerated proton beam at the MPQ Atlas Laser in Garching, showing no problems of detector operation in presence of electro

  20. A comparison between surgical resection in combination with WBRT or hypofractionated stereotactic irradiation in the treatment of solitary brain metastases.

    PubMed

    Lindvall, Peter; Bergström, Per; Löfroth, Per-Olov; Tommy Bergenheim, A

    2009-09-01

    The standard treatment of solitary brain metastases previously has been tumour resection in combination with whole-brain radiation therapy (WBRT). Stereotactic radiotherapy has emerged as a non-invasive treatment option especially for small brain metastases. We now report our results on resection + WBRT or hypofractionated stereotactic irradiation (HCSRT) in the treatment of solitary brain metastases. Between 1993 and 2004 patients with metastatic cancer and solitary brain metastases were selected for surgical resection + WBRT or HCSRT alone at the Umeå University Hospital. Fifty-nine patients were treated with surgical resection + WBRT (34 male, 25 female, mean age 63.3 years). Forty-seven patients were treated with HCSRT alone (15 male, 32 female, mean age 64.9 years). In patients followed radiologically, 28% treated with resection + WBRT showed a local recurrence after a median time of 8.0 months, whereas there was a lack of local control in 16% in the HCSRT group after a median time of 3.0 months. There was a significantly longer survival time for patients treated with resection + WBRT (median 7.9, mean 12.9 months) compared to HCSRT (median 5.0, mean 7.6 months). Even in patients with a tumour volume <10 cc, there was a significantly longer survival in favour of resection + WBRT (median 8.4, mean 17.4 months) compared to HCSRT (median 5.0, mean 7.9 months). This retrospective and non-randomised study indicates that surgical resection in combination with WBRT may be an option even for small brain metastases suitable for treatment with HCSRT. Since survival and local control following resection + WBRT was at least as favourable as compared to HCSRT alone, tumour location and expected neurological outcome may be the strongest aspect when selecting treatment modality.

  1. Suppressing longitudinal double-layer oscillations by using elliptically polarized laser pulses in the hole-boring radiation pressure acceleration regime

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu Dong; Yan, X. Q.; Key Laboratory of High Energy Density Physics Simulation, Ministry of Education, Peking University, Beijing 100871

    It is shown that well collimated mono-energetic ion beams with a large particle number can be generated in the hole-boring radiation pressure acceleration regime by using an elliptically polarized laser pulse with appropriate theoretically determined laser polarization ratio. Due to the J Multiplication-Sign B effect, the double-layer charge separation region is imbued with hot electrons that prevent ion pileup, thus suppressing the double-layer oscillations. The proposed mechanism is well confirmed by Particle-in-Cell simulations, and after suppressing the longitudinal double-layer oscillations, the ion beams driven by the elliptically polarized lasers own much better energy spectrum than those by circularly polarized lasers.

  2. WE-D-BRE-02: BEST IN PHYSICS (THERAPY) - Radiogenomic Modeling of Normal Tissue Toxicities in Prostate Cancer Patients Receiving Hypofractionated Radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coates, J; Jeyaseelan, K; Ybarra, N

    2014-06-15

    Purpose: It has been realized that inter-patient radiation sensitivity variability is a multifactorial process involving dosimetric, clinical, and genetic factors. Therefore, we explore a new framework to integrate physical, clinical, and biological data denoted as radiogenomic modeling. In demonstrating the feasibility of this work, we investigate the association of genetic variants (copy number variations [CNVs] and single nucleotide polymorphisms [SNPs]) with radiation induced rectal bleeding (RB) and erectile dysfunction (ED) while taking into account dosimetric and clinical variables in prostate cancer patients treated with curative irradiation. Methods: A cohort of 62 prostate cancer patients who underwent hypofractionated radiotherapy (66 Gymore » in 22 fractions) was retrospectively genotyped for CNV and SNP rs25489 in the xrcc1 DNA repair gene. Dosevolume metrics were extracted from treatment plans of 54 patients who had complete dosimetric profiles. Treatment outcomes were considered to be a Result of functional mapping of radiogenomic input variables according to a logit transformation. Model orders were estimated using resampling by leave-one out cross-validation (LOO-CV). Radiogenomic model performance was evaluated using area under the ROC curve (AUC) and LOO-CV. For continuous univariate dosimetric and clinical variables, Spearmans rank coefficients were calculated and p-values reported accordingly. In the case of binary variables, Chi-squared statistics and contingency table calculations were used. Results: Ten patients were found to have three copies of xrcc1 CNV (RB: χ2=14.6 [p<0.001] and ED: χ2=4.88[p=0.0272]) and twelve had heterozygous rs25489 SNP (RB: χ2=0.278[p=0.599] and ED: χ2=0.112[p=0.732]). LOO-CV identified penile bulb D60 as the only significant QUANTEC predictor (rs=0.312 [p=0.0145]) for ED. Radiogenomic modeling yielded statistically significant, cross-validated NTCP models for RB (rs=0.243[p=0.0443], AUC=0.665) and ED (rs=0

  3. Testing relativistic electron acceleration mechanisms

    NASA Astrophysics Data System (ADS)

    Green, Janet Carol

    2002-09-01

    This dissertation tests models of relativistic electron acceleration in the earth's outer radiation belt. The models fall into two categories: external and internal. External acceleration models transport and accelerate electrons from a source region in the outer magnetosphere to the inner magnetosphere. Internal acceleration models accelerate a population of electrons already present in the inner magnetosphere. In this dissertation, we test one specific external acceleration mechanism, perform a general test that differentiates between internal and external acceleration models, and test one promising internal acceleration model. We test the models using Polar-HIST data that we transform into electron phase space density (PSD) as a function of adiabatic invariants. We test the ultra low frequency (ULF) wave enhanced radial diffusion external acceleration mechanism by looking for a causal relationship between increased wave power and increased electron PSD at three L* values. One event with increased wave power at two L* values and no subsequent PSD increase does not support the model suggesting that ULF wave power alone is not sufficient to cause an electron response. Excessive loss of electrons and the duration of wave power do not explain the lack of a PSD enhancement at low L*. We differentiate between internal and external acceleration mechanisms by examining the radial profile of electron PSD. We observe PSD profiles that depend on local time. Nightside profiles are highly dependent on the magnetic field model used to calculate PSD as a function of adiabatic invariants and are not reliable. Dayside PSD profiles are more robust and consistent with internal acceleration of electrons. We test one internal acceleration model, the whistler/electromagnetic ion cyclotron wave model, by comparing observed pitch angle distributions to those predicted by the model using a superposed epoch analysis. The observations show pitch angle distributions corresponding to

  4. On The Detection Of Footprints From Strong Electron Acceleration In High-Intensity Laser Fields, Including The Unruh Effect

    NASA Astrophysics Data System (ADS)

    Thirolf, P. G.; Habs, D.; Homma, K.; Hörlein, R.; Karsch, S.; Krausz, F.; Maia, C.; Osterhoff, J.; Popp, A.; Schmid, K.; Schreiber, J.; Schützhold, R.; Tajima, T.; Veisz, L.; Wulz, J.; Yamazaki, T.

    2010-04-01

    The ultra-high fields of high-power short-pulse lasers are expected to contribute to understanding fundamental properties of the quantum vacuum and quantum theory in very strong fields. For example, the neutral QED vacuum breaks down at the Schwinger field strength of 1.3 1018V/m, where a virtual e+e- pair gains its rest mass energy over a Compton wavelength and materializes as a real pair. At such an ultra-high field strength, an electron experiences an acceleration of as = 2 1028 g and hence fundamental phenomena such as the long predicted Unruh effect start to play a role. The Unruh effect implies that the accelerated electron experiences the vacuum as a thermal bath with the Unruh temperature. In its accelerated frame the electron scatters photons off the thermal bath, corresponding to the emission of an entangled pair of photons in the laboratory frame. In upcoming experiments with intense accelerating fields, we will encounter a set of opportunities to experimentally study the radiation from electrons under extreme fields. Even before the Unruh radiation detection, we should run into the copious Larmor radiation. The detection of Larmor radiation and its characterization themselves have never been experimentally carried out to the best of our knowledge, and thus this amounts to a first serious study of physics at extreme acceleration. For example, we can study radiation damping effects like the Landau-Lifshitz radiation. Furthermore, the experiment should be able to confirm or disprove whether the Larmor and Landau-Lifshitz radiation components may be enhanced by a collective (N2) radiation, if a tightly clumped cluster of electrons is accelerated. The technique of laser driven dense electron sheet formation by irradiating a thin DLC foil target should provide such a coherent electron cluster with a very high density. If and when such mildly relativistic electron sheets are realized, a counterpropagating second laser can interact with them coherently. Under

  5. Computational study of radiation doses at UNLV accelerator facility

    NASA Astrophysics Data System (ADS)

    Hodges, Matthew; Barzilov, Alexander; Chen, Yi-Tung; Lowe, Daniel

    2017-09-01

    A Varian K15 electron linear accelerator (linac) has been considered for installation at University of Nevada, Las Vegas (UNLV). Before experiments can be performed, it is necessary to evaluate the photon and neutron spectra as generated by the linac, as well as the resulting dose rates within the accelerator facility. A computational study using MCNPX was performed to characterize the source terms for the bremsstrahlung converter. The 15 MeV electron beam available in the linac is above the photoneutron threshold energy for several materials in the linac assembly, and as a result, neutrons must be accounted for. The angular and energy distributions for bremsstrahlung flux generated by the interaction of the 15 MeV electron beam with the linac target were determined. This source term was used in conjunction with the K15 collimators to determine the dose rates within the facility.

  6. Complications following linear accelerator based stereotactic radiation for cerebral arteriovenous malformations.

    PubMed

    Skjøth-Rasmussen, Jane; Roed, Henrik; Ohlhues, Lars; Jespersen, Bo; Juhler, Marianne

    2010-06-01

    Primarily, gamma knife centers are predominant in publishing results on arteriovenous malformations (AVM) treatments including reports on risk profile. However, many patients are treated using a linear accelerator-most of these at smaller centers. Because this setting is different from a large gamma knife center, the risk profile at Linac departments could be different from the reported experience. Prescribed radiation doses are dependent on AVM volume. This study details results from a medium sized Linac department center focusing on risk profiles. A database was searched for all patients with AVMs. We included 50 consecutive patients with a minimum of 24 months follow-up (24-51 months). AVM occlusion was verified in 78% of patients (39/50). AVM occlusion without new deficits (excellent outcome) was obtained in 44%. Good or fair outcome (AVM occlusion with mild or moderate new deficits) was seen in 30%. Severe complications after AVM occlusion occurred in 4% with a median interval of 15 months after treatment (range, 1-26 months). We applied an AVM grading score developed at the Mayo Clinic to predict probable outcome after radiosurgery in a large patient population treated with Gamma knife. A cutoff above and below a score of 1.5 could not discriminate between the likelihood of having an excellent outcome (approximately 45%). The chance of having an excellent or good outcome was slightly higher in patients with an AVM score below 1.5 (64% vs. 57%). Copyright 2010 Elsevier Inc. All rights reserved.

  7. NONCOHERENT RADIATION DUE TO ELECTRONS IN A SYNCHROTRON AND SOME OF ITS APPLICATION (in Russian)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ado, Yu.M.

    1963-01-01

    Experiments are described in which the properties ot noncoherent radiation due to electrons accelerated in a synchrotron are investigated. The experiments were performed at the 280-Mev electron synchrotron of the Lebedeff Institute for Physics. An apparatus was constructed for the determination of optical radiation spectra arising from monoenergetic electrons during the complete acceleration cycle. The energy distribution of the radiation was determined for three electron energies, 150, 225, and 250 Mev. The intensity of various wvavelength radiation was measured as a function of the electron energy from 70 to 280 Mev. The effect of the intensity on the number ofmore » electrons was found to be linear for 250-Mev electrons. Three applications are described for the electron optical radiation: the determination of the number of accelerated electrons, the measurement of the amount of electrons hitting a target during the acceleration process, and the determination of the azimuthal extent of the clots of accelerated electrons. (TTT)« less

  8. Beam by design: Laser manipulation of electrons in modern accelerators

    NASA Astrophysics Data System (ADS)

    Hemsing, Erik; Stupakov, Gennady; Xiang, Dao; Zholents, Alexander

    2014-07-01

    Accelerator-based light sources such as storage rings and free-electron lasers use relativistic electron beams to produce intense radiation over a wide spectral range for fundamental research in physics, chemistry, materials science, biology, and medicine. More than a dozen such sources operate worldwide, and new sources are being built to deliver radiation that meets with the ever-increasing sophistication and depth of new research. Even so, conventional accelerator techniques often cannot keep pace with new demands and, thus, new approaches continue to emerge. In this article, a variety of recently developed and promising techniques that rely on lasers to manipulate and rearrange the electron distribution in order to tailor the properties of the radiation are reviewed. Basic theories of electron-laser interactions, techniques to create microstructures and nanostructures in electron beams, and techniques to produce radiation with customizable waveforms are reviewed. An overview of laser-based techniques for the generation of fully coherent x rays, mode-locked x-ray pulse trains, light with orbital angular momentum, and attosecond or even zeptosecond long coherent pulses in free-electron lasers is presented. Several methods to generate femtosecond pulses in storage rings are also discussed. Additionally, various schemes designed to enhance the performance of light sources through precision beam preparation including beam conditioning, laser heating, emittance exchange, and various laser-based diagnostics are described. Together these techniques represent a new emerging concept of "beam by design" in modern accelerators, which is the primary focus of this article.

  9. Near monochromatic 20 Me V proton acceleration using fs laser irradiating Au foils in target normal sheath acceleration regime

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Torrisi, L., E-mail: Lorenzo.Torrisi@unime.it; Ceccio, G.; Cannavò, A.

    2016-04-15

    A 200 mJ laser pulse energy, 39 fs-pulse duration, 10 μm focal spot, p-polarized radiation has been employed to irradiate thin Au foils to produce proton acceleration in the forward direction. Gold foils were employed to produce high density relativistic electrons emission in the forward direction to generate a high electric field driving the ion acceleration. Measurements were performed by changing the focal position in respect of the target surface. Proton acceleration was monitored using fast SiC detectors in time-of-flight configuration. A high proton energy, up to about 20 Me V, with a narrow energy distribution, was obtained in particular conditions dependingmore » on the laser parameters, the irradiation conditions, and a target optimization.« less

  10. Space Acceleration Measurement System (SAMS)/Orbital Acceleration Research Experiment (OARE)

    NASA Technical Reports Server (NTRS)

    Hakimzadeh, Roshanak

    1998-01-01

    The Life and Microgravity Spacelab (LMS) payload flew on the Orbiter Columbia on mission STS-78 from June 20th to July 7th, 1996. The LMS payload on STS-78 was dedicated to life sciences and microgravity experiments. Two accelerometer systems managed by the NASA Lewis Research Center (LERC) flew to support these experiments, namely the Orbital Acceleration Research Experiment (OARE) and the Space Acceleration Measurements System (SAMS). In addition, the Microgravity Measurement Assembly (NOAA), managed by the European Space Research and Technology Center (ESA/ESTEC), and sponsored by NASA, collected acceleration data in support of the experiments on-board the LMS mission. OARE downlinked real-time quasi-steady acceleration data, which was provided to the investigators. The SAMS recorded higher frequency data on-board for post-mission analysis. The MMA downlinked real-time quasi-steady as well as higher frequency acceleration data, which was provided to the investigators. The Principal Investigator Microgravity Services (PIMS) project at NASA LERC supports principal investigators of microgravity experiments as they evaluate the effects of varying acceleration levels on their experiments. A summary report was prepared by PIMS to furnish interested experiment investigators with a guide to evaluate the acceleration environment during STS-78, and as a means of identifying areas which require further study. The summary report provides an overview of the STS-78 mission, describes the accelerometer systems flown on this mission, discusses some specific analyses of the accelerometer data in relation to the various activities which occurred during the mission, and presents plots resulting from these analyses as a snapshot of the environment during the mission. Numerous activities occurred during the STS-78 mission that are of interest to the low-gravity community. Specific activities of interest during this mission were crew exercise, radiator deployment, Vernier Reaction

  11. The biological effect of prolonged radiation and ways of selecting new anti-radiation drugs effective in this kind of radiation injury

    NASA Technical Reports Server (NTRS)

    Rogozkin, V. D.; Chertkov, K. S.; Nikolov, I.

    1974-01-01

    The basic characteristics of prolonged radiation - increased tolerance of radiation injury - are attributed to cellular kinetics; as dose rate is reduced, the population rate is not disturbed, particularly that of stem cells which makes it possible for the organism to tolerate higher radiation loads. It is concluded that this effect makes approved radio protectors, whose effect contains an established cytostatic component, unsuitable for prolonged radiation. It is better to correct the stem pool formation process by either accelerating the proliferation of cells or limiting the effect of stimuli causing cells to lose colony forming properties.

  12. Free electron lasers driven by linear induction accelerators: High power radiation sources

    NASA Technical Reports Server (NTRS)

    Orzechowski, T. J.

    1989-01-01

    The technology of Free Electron Lasers (FELs) and linear induction accelerators (LIAs) is addressed by outlining the following topics: fundamentals of FELs; basic concepts of linear induction accelerators; the Electron Laser Facility (a microwave FEL); PALADIN (an infrared FEL); magnetic switching; IMP; and future directions (relativistic klystrons). This presentation is represented by viewgraphs only.

  13. Method for generating extreme ultraviolet with mather-type plasma accelerators for use in Extreme Ultraviolet Lithography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hassanein, Ahmed; Konkashbaev, Isak

    A device and method for generating extremely short-wave ultraviolet electromagnetic wave uses two intersecting plasma beams generated by two plasma accelerators. The intersection of the two plasma beams emits electromagnetic radiation and in particular radiation in the extreme ultraviolet wavelength. In the preferred orientation two axially aligned counter streaming plasmas collide to produce an intense source of electromagnetic radiation at the 13.5 nm wavelength. The Mather type plasma accelerators can utilize tin, or lithium covered electrodes. Tin, lithium or xenon can be used as the photon emitting gas source.

  14. Laser-driven dielectric electron accelerator for radiobiology researches

    NASA Astrophysics Data System (ADS)

    Koyama, Kazuyoshi; Matsumura, Yosuke; Uesaka, Mitsuru; Yoshida, Mitsuhiro; Natsui, Takuya; Aimierding, Aimidula

    2013-05-01

    In order to estimate the health risk associated with a low dose radiation, the fundamental process of the radiation effects in a living cell must be understood. It is desired that an electron bunch or photon pulse precisely knock a cell nucleus and DNA. The required electron energy and electronic charge of the bunch are several tens keV to 1 MeV and 0.1 fC to 1 fC, respectively. The smaller beam size than micron is better for the precise observation. Since the laser-driven dielectric electron accelerator seems to suite for the compact micro-beam source, a phase-modulation-masked-type laser-driven dielectric accelerator was studied. Although the preliminary analysis made a conclusion that a grating period and an electron speed must satisfy the matching condition of LG/λ = v/c, a deformation of a wavefront in a pillar of the grating relaxed the matching condition and enabled the slow electron to be accelerated. The simulation results by using the free FDTD code, Meep, showed that the low energy electron of 20 keV felt the acceleration field strength of 20 MV/m and gradually felt higher field as the speed was increased. Finally the ultra relativistic electron felt the field strength of 600 MV/m. The Meep code also showed that a length of the accelerator to get energy of 1 MeV was 3.8 mm, the required laser power and energy were 11 GW and 350 mJ, respectively. Restrictions on the laser was eased by adopting sequential laser pulses. If the accelerator is illuminated by sequential N pulses, the pulse power, pulse width and the pulse energy are reduced to 1/N, 1/N and 1/N2, respectively. The required laser power per pulse is estimated to be 2.2 GW when ten pairs of sequential laser pulse is irradiated.

  15. The Near-Earth Space Radiation Environment

    NASA Technical Reports Server (NTRS)

    Xapsos, Michael

    2008-01-01

    This viewgraph presentation reviews the effects of the Near-Earth space radiation environment on NASA missions. Included in this presentation is a review of The Earth s Trapped Radiation Environment, Solar Particle Events, Galactic Cosmic Rays and Comparison to Accelerator Facilities.

  16. Particle Acceleration in Active Galactic Nuclei

    NASA Technical Reports Server (NTRS)

    Miller, James A.

    1997-01-01

    The high efficiency of energy generation inferred from radio observations of quasars and X-ray observations of Seyfert active galactic nuclei (AGNs) is apparently achieved only by the gravitational conversion of the rest mass energy of accreting matter onto supermassive black holes. Evidence for the acceleration of particles to high energies by a central engine is also inferred from observations of apparent superluminal motion in flat spectrum, core-dominated radio sources. This phenomenon is widely attributed to the ejection of relativistic bulk plasma from the nuclei of active galaxies, and accounts for the existence of large scale radio jets and lobes at large distances from the central regions of radio galaxies. Reports of radio jets and superluminal motion from galactic black hole candidate X-ray sources indicate that similar processes are operating in these sources. Observations of luminous, rapidly variable high-energy radiation from active galactic nuclei (AGNs) with the Compton Gamma Ray Observatory show directly that particles are accelerated to high energies in a compact environment. The mechanisms which transform the gravitational potential energy of the infalling matter into nonthermal particle energy in galactic black hole candidates and AGNs are not conclusively identified, although several have been proposed. These include direct acceleration by static electric fields (resulting from, for example, magnetic reconnection), shock acceleration, and energy extraction from the rotational energy of Kerr black holes. The dominant acceleration mechanism(s) operating in the black hole environment can only be determined, of course, by a comparison of model predictions with observations. The purpose of the work proposed for this grant was to investigate stochastic particle acceleration through resonant interactions with plasma waves that populate the magnetosphere surrounding an accreting black hole. Stochastic acceleration has been successfully applied to the

  17. Evaluation of proton cross-sections for radiation sources in the proton accelerator

    NASA Astrophysics Data System (ADS)

    Cho, Young-Sik; Lee, Cheol-Woo; Lee, Young-Ouk

    2007-08-01

    Proton Engineering Frontier Project (PEFP) is currently building a proton accelerator in Korea which consists of a proton linear accelerator with 100 MeV of energy, 20 mA of current and various particle beam facilities. The final goal of this project consists of the production of 1 GeV proton beams, which will be used for various medical and industrial applications as well as for research in basic and applied sciences. Carbon and copper in the proton accelerator for PEPP, through activation, become radionuclides such as 7Be and 64Cu. Copper is a major element of the accelerator components and the carbon is planned to be used as a target material of the beam dump. A recent survey showed that the currently available cross-sections create a large difference from the experimental data in the production of some residual nuclides by the proton-induced reactions for carbon and copper. To more accurately estimate the production of radioactive nuclides in the accelerator, proton cross-sections for carbon and copper are evaluated. The TALYS code was used for the evaluation of the cross-sections for the proton-induced reactions. To obtain the cross-sections which best fits the experimental data, optical model parameters for the neutron, proton and other complex particles such as the deuteron and alpha were successively adjusted. The evaluated cross-sections in this study are compared with the measurements and other evaluations .

  18. Esophageal dose tolerance to hypofractionated stereotactic body radiation therapy: risk factors for late toxicity.

    PubMed

    Stephans, Kevin L; Djemil, Toufik; Diaconu, Claudiu; Reddy, Chandana A; Xia, Ping; Woody, Neil M; Greskovich, John; Makkar, Vinit; Videtic, Gregory M M

    2014-09-01

    To identify factors associated with grade ≥3 treatment related late esophageal toxicity after lung or liver stereotactic body radiation therapy (SBRT). This was a retrospective review of 52 patients with a planning target volume within 2 cm of the esophagus from a prospective registry of 607 lung and liver SBRT patients treated between 2005 and 2011. Patients were treated using a risk-adapted dose regimen to a median dose of 50 Gy in 5 fractions (range, 37.5-60 Gy in 3-10 fractions). Normal structures were contoured using Radiation Therapy Oncology Group (RTOG) defined criteria. The median esophageal point dose and 1-cc dose were 32.3 Gy (range, 8.9-55.4 Gy) and 24.0 Gy (range, 7.8-50.9 Gy), respectively. Two patients had an esophageal fistula at a median of 8.4 months after SBRT, with maximum esophageal point doses of 51.5 and 52 Gy, and 1-cc doses of 48.1 and 50 Gy, respectively. These point and 1-cc doses were exceeded by 9 and 2 patients, respectively, without a fistula. The risk of a fistula for point doses exceeding 40, 45, and 50 Gy was 9.5% (n=2/21), 10.5% (n=2/19), and 12.5% (n=2/16), respectively. The risk of fistula for 1-cc doses exceeding 40, 45, and 50 Gy was 25% (n=2/9), 50% (n=2/4), and 50% (n=2/4), respectively. Eighteen patients received systemic therapy after SBRT (11 systemic chemotherapy, and 6 biologic agents, and 1 both). Both patients with fistulas had received adjuvant anti-angiogenic (vascular endothelial growth factor) agents within 2 months of completing SBRT. No patient had a fistula in the absence of adjuvant VEGF-modulating agents. Esophageal fistula is a rare complication of SBRT. In this series, fistula was seen with esophageal point doses exceeding 51 Gy and 1-cc doses greater than 48 Gy. Notably, however, fistula was seen only in those patients who also received adjuvant VEGF-modulating agents after SBRT. The potential interaction of dose and adjuvant therapy should be considered when delivering SBRT near the esophagus

  19. Marshak Lectureship: The Turkish Accelerator Center, TAC

    NASA Astrophysics Data System (ADS)

    Yavas, Omer

    2012-02-01

    The Turkish Accelerator Center (TAC) project is comprised of five different electron and proton accelerator complexes, to be built over 15 years, with a phased approach. The Turkish Government funds the project. Currently there are 23 Universities in Turkey associated with the TAC project. The current funded project, which is to run until 2013 aims *To establish a superconducting linac based infra-red free electron laser and Bremsstrahlung Facility (TARLA) at the Golbasi Campus of Ankara University, *To establish the Institute of Accelerator Technologies in Ankara University, and *To complete the Technical Design Report of TAC. The proposed facilities are a 3^rd generation Synchrotron Radiation facility, SASE-FEL facility, a GeV scale Proton Accelerator facility and an electron-positron collider as a super charm factory. In this talk, an overview on the general status and road map of TAC project will be given. National and regional importance of TAC will be expressed and the structure of national and internatonal collaborations will be explained.

  20. Third party EPID with IGRT capability retrofitted onto an existing medical linear accelerator

    PubMed Central

    Odero, DO; Shimm, DS

    2009-01-01

    Radiation therapy requires precision to avoid unintended irradiation of normal organs. Electronic Portal Imaging Devices (EPIDs), can help with precise patient positioning for accurate treatment. EPIDs are now bundled with new linear accelerators, or they can be purchased from the Linac manufacturer for retrofit. Retrofitting a third party EPID to a linear accelerator can pose challenges. The authors describe a relatively inexpensive third party CCD camera-based EPID manufactured by TheraView (Cablon Medical B.V.), installed onto a Siemens Primus linear accelerator, and integrated with a Lantis record and verify system, an Oldelft simulator with Digital Therapy Imaging (DTI) unit, and a Philips ADAC Pinnacle treatment planning system (TPS). This system integrates well with existing equipment and its software can process DICOM images from other sources. The system provides a complete imaging system that eliminates the need for separate software for portal image viewing, interpretation, analysis, archiving, image guided radiation therapy and other image management applications. It can also be accessed remotely via safe VPN tunnels. TheraView EPID retrofit therefore presents an example of a less expensive alternative to linear accelerator manufacturers’ proprietary EPIDs suitable for implementation in third world countries radiation therapy departments which are often faced with limited financial resources. PMID:21611056

  1. Third party EPID with IGRT capability retrofitted onto an existing medical linear accelerator.

    PubMed

    Odero, D O; Shimm, D S

    2009-07-01

    Radiation therapy requires precision to avoid unintended irradiation of normal organs. Electronic Portal Imaging Devices (EPIDs), can help with precise patient positioning for accurate treatment. EPIDs are now bundled with new linear accelerators, or they can be purchased from the Linac manufacturer for retrofit. Retrofitting a third party EPID to a linear accelerator can pose challenges. The authors describe a relatively inexpensive third party CCD camera-based EPID manufactured by TheraView (Cablon Medical B.V.), installed onto a Siemens Primus linear accelerator, and integrated with a Lantis record and verify system, an Oldelft simulator with Digital Therapy Imaging (DTI) unit, and a Philips ADAC Pinnacle treatment planning system (TPS). This system integrates well with existing equipment and its software can process DICOM images from other sources. The system provides a complete imaging system that eliminates the need for separate software for portal image viewing, interpretation, analysis, archiving, image guided radiation therapy and other image management applications. It can also be accessed remotely via safe VPN tunnels. TheraView EPID retrofit therefore presents an example of a less expensive alternative to linear accelerator manufacturers' proprietary EPIDs suitable for implementation in third world countries radiation therapy departments which are often faced with limited financial resources.

  2. Rectal bleeding after high-dose-rate brachytherapy combined with hypofractionated external-beam radiotherapy for localized prostate cancer: Impact of rectal dose in high-dose-rate brachytherapy on occurrence of grade 2 or worse rectal bleeding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akimoto, Tetsuo; Katoh, Hiroyuki; Kitamoto, Yoshizumi

    2006-06-01

    Purpose: To evaluate the incidence of Grade 2 or worse rectal bleeding after high-dose-rate (HDR) brachytherapy combined with hypofractionated external-beam radiotherapy (EBRT), with special emphasis on the relationship between the incidence of rectal bleeding and the rectal dose from HDR brachytherapy. Methods and Materials: The records of 100 patients who were treated by HDR brachytherapy combined with EBRT for {>=}12 months were analyzed. The fractionation schema for HDR brachytherapy was prospectively changed, and the total radiation dose for EBRT was fixed at 51 Gy. The distribution of the fractionation schema used in the patients was as follows: 5 Gy xmore » 5 in 13 patients; 7 Gy x 3 in 19 patients; and 9 Gy x 2 in 68 patients. Results: Ten patients (10%) developed Grade 2 or worse rectal bleeding. Regarding the correlation with dosimetric factors, no significant differences were found in the average percentage of the entire rectal volume receiving 30%, 50%, 80%, and 90% of the prescribed radiation dose from EBRT between those with bleeding and those without. The average percentage of the entire rectal volume receiving 10%, 30%, 50%, 80%, and 90% of the prescribed radiation dose from HDR brachytherapy in those who developed rectal bleeding was 77.9%, 28.6%, 9.0%, 1.5%, and 0.3%, respectively, and was 69.2%, 22.2%, 6.6%, 0.9%, and 0.4%, respectively, in those without bleeding. The differences in the percentages of the entire rectal volume receiving 10%, 30%, and 50% between those with and without bleeding were statistically significant. Conclusions: The rectal dose from HDR brachytherapy for patients with prostate cancer may have a significant impact on the incidence of Grade 2 or worse rectal bleeding.« less

  3. Dense plasma focus (DPF) accelerated non radio isotopic radiological source

    DOEpatents

    Rusnak, Brian; Tang, Vincent

    2017-01-31

    A non-radio-isotopic radiological source using a dense plasma focus (DPF) to produce an intense z-pinch plasma from a gas, such as helium, and which accelerates charged particles, such as generated from the gas or injected from an external source, into a target positioned along an acceleration axis and of a type known to emit ionizing radiation when impinged by the type of accelerated charged particles. In a preferred embodiment, helium gas is used to produce a DPF-accelerated He2+ ion beam to a beryllium target, to produce neutron emission having a similar energy spectrum as a radio-isotopic AmBe neutron source. Furthermore, multiple DPFs may be stacked to provide staged acceleration of charged particles for enhancing energy, tunability, and control of the source.

  4. Particle-in-cell simulation of x-ray wakefield acceleration and betatron radiation in nanotubes

    DOE PAGES

    Zhang, Xiaomei; Tajima, Toshiki; Farinella, Deano; ...

    2016-10-18

    Though wakefield acceleration in crystal channels has been previously proposed, x-ray wakefield acceleration has only recently become a realistic possibility since the invention of the single-cycled optical laser compression technique. We investigate the acceleration due to a wakefield induced by a coherent, ultrashort x-ray pulse guided by a nanoscale channel inside a solid material. By two-dimensional particle-in-cell computer simulations, we show that an acceleration gradient of TeV/cm is attainable. This is about 3 orders of magnitude stronger than that of the conventional plasma-based wakefield accelerations, which implies the possibility of an extremely compact scheme to attain ultrahigh energies. In additionmore » to particle acceleration, this scheme can also induce the emission of high energy photons at ~O(10–100) MeV. Here, our simulations confirm such high energy photon emissions, which is in contrast with that induced by the optical laser driven wakefield scheme. In addition to this, the significantly improved emittance of the energetic electrons has been discussed.« less

  5. Study on acceleration processes of the radiation belt electrons through interaction with sub-packet chorus waves in parallel propagation

    NASA Astrophysics Data System (ADS)

    Hiraga, R.; Omura, Y.

    2017-12-01

    entrapping is influenced by some factors such as the magnitude of wave amplitude or inhomogeneity of the Earth's dipole magnetic field. In addition, an energy range of electrons is also a major factor. In this way, it has been examined in detail how and under which conditions electrons are efficiently accelerated in the formation process of the radiation belts.

  6. Beam Size Measurement by Optical Diffraction Radiation and Laser System for Compton Polarimeter (in Chinese)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Chuyu

    2012-12-31

    Beam diagnostics is an essential constituent of any accelerator, so that it is named as "organs of sense" or "eyes of the accelerator." Beam diagnostics is a rich field. A great variety of physical effects or physical principles are made use of in this field. Some devices are based on electro-magnetic influence by moving charges, such as faraday cups, beam transformers, pick-ups; Some are related to Coulomb interaction of charged particles with matter, such as scintillators, viewing screens, ionization chambers; Nuclear or elementary particle physics interactions happen in some other devices, like beam loss monitors, polarimeters, luminosity monitors; Some measuremore » photons emitted by moving charges, such as transition radiation, synchrotron radiation monitors and diffraction radiation-which is the topic of the first part of this thesis; Also, some make use of interaction of particles with photons, such as laser wire and Compton polarimeters-which is the second part of my thesis. Diagnostics let us perceive what properties a beam has and how it behaves in a machine, give us guideline for commissioning, controlling the machine and indispensable parameters vital to physics experiments. In the next two decades, the research highlight will be colliders (TESLA, CLIC, JLC) and fourth-generation light sources (TESLA FEL, LCLS, Spring 8 FEL) based on linear accelerator. These machines require a new generation of accelerator with smaller beam, better stability and greater efficiency. Compared with those existing linear accelerators, the performance of next generation linear accelerator will be doubled in all aspects, such as 10 times smaller horizontal beam size, more than 10 times smaller vertical beam size and a few or more times higher peak power. Furthermore, some special positions in the accelerator have even more stringent requirements, such as the interaction point of colliders and wigglor of free electron lasers. Higher performance of these accelerators

  7. Multimegawatt cyclotron autoresonance accelerator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hirshfield, J.L.; LaPointe, M.A.; Ganguly, A.K.

    1996-05-01

    Means are discussed for generation of high-quality multimegawatt gyrating electron beams using rf gyroresonant acceleration. TE{sub 111}-mode cylindrical cavities in a uniform axial magnetic field have been employed for beam acceleration since 1968; such beams have more recently been employed for generation of radiation at harmonics of the gyration frequency. Use of a TE{sub 11}-mode waveguide for acceleration, rather than a cavity, is discussed. It is shown that the applied magnetic field and group velocity axial tapers allow resonance to be maintained along a waveguide, but that this is impractical in a cavity. In consequence, a waveguide cyclotron autoresonance acceleratormore » (CARA) can operate with near-100{percent} efficiency in power transfer from rf source to beam, while cavity accelerators will, in practice, have efficiency values limited to about 40{percent}. CARA experiments are described in which an injected beam of up to 25 A, 95 kV has had up to 7.2 MW of rf power added, with efficiencies of up to 96{percent}. Such levels of efficiency are higher than observed previously in any fast-wave interaction, and are competitive with efficiency values in industrial linear accelerators. Scaling arguments suggest that good quality gyrating megavolt beams with peak and average powers of 100 MW and 100 kW can be produced using an advanced CARA, with applications in the generation of high-power microwaves and for possible remediation of flue gas pollutants. {copyright} {ital 1996 American Institute of Physics.}« less

  8. High-Altitude Particle Acceleration and Radiation in Pulsar Slot Gaps

    NASA Technical Reports Server (NTRS)

    Muslimov, Alex G.; Harding, Alice K.

    2004-01-01

    We explore the pulsar slot gap (SG) electrodynamics up to very high altitudes, where for most relatively rapidly rotating pulsars both the standard small-angle approximation and the assumption that the magnetic field lines are ideal stream lines break down. We address the importance of the electrodynamic conditions at the SG boundaries and the occurrence of a steady-state drift of charged particles across the SG field lines at very high altitudes. These boundary conditions and the cross-field particle motion determine the asymptotic behavior of the scalar potential at all radii from the polar cap (PC) to near the light cylinder. As a result, we demonstrate that the steady-state accelerating electric field, E(sub ll), must approach a small and constant value at high altitude above the PC. This E(sub ll) is capable of maintaining electrons moving with high Lorentz factors (approx. a few x 10(exp 7)) and emitting curvature gamma-ray photons up to nearly the light cylinder. By numerical simulations, we show that primary electrons accelerating from the PC surface to high altitude in the SG along the outer edge of the open field region will form caustic emission patterns on the trailing dipole field lines. Acceleration and emission in such an extended SG may form the physical basis of a model that can successfully reproduce some pulsar high-energy light curves.

  9. Radiation therapy for Bowen's disease of the skin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lukas VanderSpek, Lauren A.; Pond, Gregory R.; Wells, Woodrow

    2005-10-01

    distant cutaneous site. As of last follow-up, 32 patients (73%) were known to be alive. Median follow-up was 2.6 years (range, 0-11.8 years). All but 3 patients were disease-free at last follow-up, 1 of whom died with distant, but not local disease. The 5-year overall survival rate was 68%. Biologically effective dose was not associated with recurrence. The crude local control rate was 93%. There was a trend toward higher radiation doses for smaller pretreatment tumor and field sizes. The BED did not correlate with Grade 4 toxicity; however, the three cases of Grade 4 toxicity occurred in patients treated with hypofractionated regimens (dose per fraction >4 Gy) for extremity lesions. Conclusions: Radiation therapy is an effective treatment option for Bowen's disease of the skin. Local recurrences seem to be equally low in patients treated with high- and low-dose regimens. Avoiding hypofractionated regimens (dose per fraction >4 Gy) in extremity locations might reduce the risk of Grade 4 toxicity.« less

  10. A phase 1 dose-escalation study of the oral histone deacetylase inhibitor abexinostat in combination with standard hypofractionated radiotherapy in advanced solid tumors

    PubMed Central

    Deutsch, Eric; Moyal, Elizabeth Cohen-Jonathan; Gregorc, Vanesa; Zucali, Paolo Andrea; Menard, Jean; Soria, Jean-Charles; Kloos, Ioana; Hsu, Jeff; Luan, Ying; Liu, Emily; Vezan, Remus; Graef, Thorsten; Rivera, Sofia

    2017-01-01

    Current treatments for advanced solid tumors tend to be only palliative. Although radiotherapy is administered with a curative intent, radioresistance and dose-limiting toxicities pose limitations to treatment. Abexinostat, an oral pan-histone deacetylase inhibitor, demonstrated enhanced sensitivity to radiation in various solid tumor cell lines. We conducted an exploratory, phase 1, dose-escalation study of abexinostat in combination with standard hypofractionated radiotherapy in patients with advanced solid tumors treated in a palliative setting. Among 58 treated patients, the median age was 61.5 years (range, 20-82); 47% of the patients had M1 stage disease, and 95% had received previous chemotherapy alone or chemotherapy in combination with surgery and/or radiotherapy. The recommended phase 2 dose was determined to be 90 mg/m2 (140 mg). Of the 51 patients evaluable for response, best overall response was 8% (1 complete response [CR], 3 partial responses [PRs]), and best loco-regional response was 12% (1 CR and 5 PRs) at a median follow-up of 16 weeks. Of note, patients with target or non-target brain lesions showed encouraging responses, with 1 patient achieving a best loco-regional response of CR. Treatment-emergent grade ≥3 adverse events (AEs) were few, with most common being thrombocytopenia (17%), lymphopenia (12%), and hypokalemia (7%). Six patients (10%) discontinued treatment due to AEs. No grade ≥3 prolongation of the QTc interval was observed, with no treatment discontinuations due to this AE. Oral abexinostat combined with radiotherapy was well tolerated in patients with advanced solid tumors. The combination may have potential for treatment of patients with brain lesions. PMID:28915584

  11. Complications Following Linear Accelerator Based Stereotactic Radiation for Cerebral Arteriovenous Malformations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Skjoth-Rasmussen, Jane, E-mail: jane@skjoeth-rasmussen.d; Roed, Henrik; Ohlhues, Lars

    2010-06-01

    Purpose: Primarily, gamma knife centers are predominant in publishing results on arteriovenous malformations (AVM) treatments including reports on risk profile. However, many patients are treated using a linear accelerator-most of these at smaller centers. Because this setting is different from a large gamma knife center, the risk profile at Linac departments could be different from the reported experience. Prescribed radiation doses are dependent on AVM volume. This study details results from a medium sized Linac department center focusing on risk profiles. Method and Materials: A database was searched for all patients with AVMs. We included 50 consecutive patients with amore » minimum of 24 months follow-up (24-51 months). Results: AVM occlusion was verified in 78% of patients (39/50). AVM occlusion without new deficits (excellent outcome) was obtained in 44%. Good or fair outcome (AVM occlusion with mild or moderate new deficits) was seen in 30%. Severe complications after AVM occlusion occurred in 4% with a median interval of 15 months after treatment (range, 1-26 months). Conclusions: We applied an AVM grading score developed at the Mayo Clinic to predict probable outcome after radiosurgery in a large patient population treated with Gamma knife. A cutoff above and below a score of 1.5 could not discriminate between the likelihood of having an excellent outcome (approximately 45%). The chance of having an excellent or good outcome was slightly higher in patients with an AVM score below 1.5 (64% vs. 57%).« less

  12. Ultra-low-frequency wave-driven diffusion of radiation belt relativistic electrons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Su, Zhenpeng; Zhu, Hui; Xiao, Fuliang

    The Van Allen radiation belts are typically two zones of energetic particles encircling the Earth separated by the slot region. How the outer radiation belt electrons are accelerated to relativistic energies remains an unanswered question. Recent studies have presented compelling evidence for the local acceleration by very-low-frequency (VLF) chorus waves. However, there has been a competing theory to the local acceleration, radial diffusion by ultra-low-frequency (ULF) waves, whose importance has not yet been determined definitively. Here we report a unique radiation belt event with intense ULF waves but no detectable VLF chorus waves. So, our results demonstrate that the ULFmore » waves moved the inner edge of the outer radiation belt earthward 0.3 Earth radii and enhanced the relativistic electron fluxes by up to one order of magnitude near the slot region within about 10 h, providing strong evidence for the radial diffusion of radiation belt relativistic electrons.« less

  13. Ultra-low-frequency wave-driven diffusion of radiation belt relativistic electrons

    DOE PAGES

    Su, Zhenpeng; Zhu, Hui; Xiao, Fuliang; ...

    2015-12-22

    The Van Allen radiation belts are typically two zones of energetic particles encircling the Earth separated by the slot region. How the outer radiation belt electrons are accelerated to relativistic energies remains an unanswered question. Recent studies have presented compelling evidence for the local acceleration by very-low-frequency (VLF) chorus waves. However, there has been a competing theory to the local acceleration, radial diffusion by ultra-low-frequency (ULF) waves, whose importance has not yet been determined definitively. Here we report a unique radiation belt event with intense ULF waves but no detectable VLF chorus waves. So, our results demonstrate that the ULFmore » waves moved the inner edge of the outer radiation belt earthward 0.3 Earth radii and enhanced the relativistic electron fluxes by up to one order of magnitude near the slot region within about 10 h, providing strong evidence for the radial diffusion of radiation belt relativistic electrons.« less

  14. Space Radiation Shielding Studies for Astronaut and Electronic Component Risk Assessment

    NASA Technical Reports Server (NTRS)

    Fuchs, Jordan Robert

    2010-01-01

    The dosimetry component of the Center for Radiation Engineering and Science for Space Exploration (CRESSE) will design, develop and characterize the response of a suite of radiation detectors and supporting instrumentation and electronics with three primary goals that will: (1) Use established space radiation detection systems to characterize the primary and secondary radiation fields existing in the experimental test-bed zones during exposures at particle accelerator facilities. (2) Characterize the responses of newly developed space radiation detection systems in the experimental test-bed zones during exposures at particle accelerator facilities, and (3) Provide CRESSE collaborators with detailed dosimetry information in experimental test-bed zones.

  15. SU-F-J-124: Reduction in Dosimetric Impact of Motion Using VMAT Compared to IMRT in Hypofractionated Prostate Cancer Patients

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ravindranath, B; Xiong, J; Happersett, L

    2016-06-15

    Purpose: To quantify and compare the dosimetric impact of motion management correction strategies during VMAT and IMRT for hypofractionated prostate treatment. Methods: Two arc VMAT and 9 field IMRT plans were generated for two prostate cancer patients undergoing hypofractionated radiotherapy (7.5Gy × 5 and 8Gy × 5). 212 motion traces were retrospectively extracted from treatment records of prostate cancer patients with implanted Calypso beacons. Dose to the CTV and normal tissues was reconstructed for each trace and plan taking into account the actual treatment delivery time. Following motion correction scenarios were simulated: (1) VMAT plan – (a) No correction, (b)more » correction between arcs, (c) correction every 20 degrees of gantry rotation and (2) IMRT plan - (a) No correction,(b) correction between fields. Two mm action threshold for position correction was assumed. The 5–95% confidence interval (CI) range was extracted from the family of DVHs for each correction scenario. Results: Treatment duration for 8Gy plan (VMAT vs IMRT) was 3 vs 12 mins and for 7.5Gy plan was 3 vs 9 mins. In the absence of correction, the VMAT 5–−95% CI dose spread was, on average, less than the IMRT dose spread by 2% for CTVD95, 9% for rectalwall (RW) D1cc and 9% for bladderwall (BW) D53. Further, VMAT b/w arcs correction strategy reduced the spread about the planned value compared to IMRT b/w fields correction by: 1% for CTVD95, 2.6% for RW1cc and 2% for BWD53. VMAT 20 degree strategy led to greater reduction in dose spread compared to IMRT by: 2% for CTVD95, 4.5% for RW1cc and 6.7% for BWD53. Conclusion: In the absence of a correction strategy, the limited motion during VMAT’s shorter delivery times translates into less motion-induced dosimetric degradation than IMRT. Performing limited periodic motion correction during VMAT can yield excellent conformity to planned values that is superior to IMRT. This work was partially supported by Varian Medical Systems.« less

  16. Esophageal Dose Tolerance to Hypofractionated Stereotactic Body Radiation Therapy: Risk Factors for Late Toxicity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stephans, Kevin L., E-mail: stephak@ccf.org; Djemil, Toufik; Diaconu, Claudiu

    2014-09-01

    Purpose: To identify factors associated with grade ≥3 treatment related late esophageal toxicity after lung or liver stereotactic body radiation therapy (SBRT). Methods and Materials: This was a retrospective review of 52 patients with a planning target volume within 2 cm of the esophagus from a prospective registry of 607 lung and liver SBRT patients treated between 2005 and 2011. Patients were treated using a risk-adapted dose regimen to a median dose of 50 Gy in 5 fractions (range, 37.5-60 Gy in 3-10 fractions). Normal structures were contoured using Radiation Therapy Oncology Group (RTOG) defined criteria. Results: The median esophageal point dose andmore » 1-cc dose were 32.3 Gy (range, 8.9-55.4 Gy) and 24.0 Gy (range, 7.8-50.9 Gy), respectively. Two patients had an esophageal fistula at a median of 8.4 months after SBRT, with maximum esophageal point doses of 51.5 and 52 Gy, and 1-cc doses of 48.1 and 50 Gy, respectively. These point and 1-cc doses were exceeded by 9 and 2 patients, respectively, without a fistula. The risk of a fistula for point doses exceeding 40, 45, and 50 Gy was 9.5% (n=2/21), 10.5% (n=2/19), and 12.5% (n=2/16), respectively. The risk of fistula for 1-cc doses exceeding 40, 45, and 50 Gy was 25% (n=2/9), 50% (n=2/4), and 50% (n=2/4), respectively. Eighteen patients received systemic therapy after SBRT (11 systemic chemotherapy, and 6 biologic agents, and 1 both). Both patients with fistulas had received adjuvant anti-angiogenic (vascular endothelial growth factor) agents within 2 months of completing SBRT. No patient had a fistula in the absence of adjuvant VEGF-modulating agents. Conclusions: Esophageal fistula is a rare complication of SBRT. In this series, fistula was seen with esophageal point doses exceeding 51 Gy and 1-cc doses greater than 48 Gy. Notably, however, fistula was seen only in those patients who also received adjuvant VEGF-modulating agents after SBRT. The potential interaction of dose and adjuvant

  17. Hawking radiation inside a Schwarzschild black hole

    NASA Astrophysics Data System (ADS)

    Hamilton, Andrew J. S.

    2018-05-01

    The boundary of any observer's spacetime is the boundary that divides what the observer can see from what they cannot see. The boundary of an observer's spacetime in the presence of a black hole is not the true (future event) horizon of the black hole, but rather the illusory horizon, the dimming, redshifting surface of the star that collapsed to the black hole long ago. The illusory horizon is the source of Hawking radiation seen by observers both outside and inside the true horizon. The perceived acceleration (gravity) on the illusory horizon sets the characteristic frequency scale of Hawking radiation, even if that acceleration varies dynamically, as it must do from the perspective of an infalling observer. The acceleration seen by a non-rotating free-faller both on the illusory horizon below and in the sky above is calculated for a Schwarzschild black hole. Remarkably, as an infaller approaches the singularity, the acceleration becomes isotropic, and diverging as a power law. The isotropic, power-law character of the Hawking radiation, coupled with conservation of energy-momentum, the trace anomaly, and the familiar behavior of Hawking radiation far from the black hole, leads to a complete description of the quantum energy-momentum inside a Schwarzschild black hole. The quantum energy-momentum near the singularity diverges as r^{-6}, and consists of relativistic Hawking radiation and negative energy vacuum in the ratio 3 : - 2. The classical back reaction of the quantum energy-momentum on the geometry, calculated using the Einstein equations, serves merely to exacerbate the singularity. All the results are consistent with traditional calculations of the quantum energy-momentum in 1 + 1 spacetime dimensions.

  18. Dependence of radiation belt simulations to assumed radial diffusion rates

    NASA Astrophysics Data System (ADS)

    Drozdov, A.; Shprits, Y.; Aseev, N.; Kellerman, A. C.; Reeves, G. D.

    2017-12-01

    Radial diffusion is one of the dominant physical mechanisms that drives acceleration and loss of the radiation belt electrons due to wave-particle interaction with ultra low frequency (ULF) waves, which makes it very important for radiation belt modeling and forecasting. We investigate the sensitivity of several parameterizations of the radial diffusion including Brautigam and Albert [2000], Ozeke et al. [2014] and Ali et al. [2016] on long-term radiation belt modeling using the Versatile Electron Radiation Belt (VERB). Following previous studies, we first perform 1-D radial diffusion simulations. To take into account effects of local acceleration and loss, we perform additional 3-D simulations, including pitch-angle, energy and mixed diffusion. The obtained result demonstrates that the inclusion of local acceleration and pitch-angle diffusion can provide a negative feedback effect, such that the result is largely indistinguishable between simulations conducted with different radial diffusion parameterizations. We also perform a number of sensitivity tests by multiplying radial diffusion rates by constant factors and show that such an approach leads to unrealistic predictions of radiation belt dynamics.

  19. Synchrotron radiation based beam diagnostics at the Fermilab Tevatron

    DOE PAGES

    Thurman-Keup, R.; Cheung, H. W. K.; Hahn, A.; ...

    2011-09-16

    Synchrotron radiation has been used for many years as a beam diagnostic at electron accelerators. It is not normally associated with proton accelerators as the intensity of the radiation is too weak to make detection practical. Therefore, if one utilizes the radiation originating near the edge of a bending magnet, or from a short magnet, the rapidly changing magnetic field serves to enhance the wavelengths shorter than the cutoff wavelength, which for more recent high energy proton accelerators such as Fermilab's Tevatron, tends to be visible light. This paper discusses the implementation at the Tevatron of two devices. A transversemore » beam profile monitor images the synchrotron radiation coming from the proton and antiproton beams separately and provides profile data for each bunch. A second monitor measures the low-level intensity of beam in the abort gaps which poses a danger to both the accelerator's superconducting magnets and the silicon detectors of the high energy physics experiments. Comparisons of measurements from the profile monitor to measurements from the flying wire profile systems are presented as are a number of examples of the application of the profile and abort gap intensity measurements to the modelling of Tevatron beam dynamics.« less

  20. Shielding for High-Energy Electron Accelerator Installations. National Bureau of Standards Handbook 97.

    ERIC Educational Resources Information Center

    National Bureau of Standards (DOC), Washington, DC.

    Recommendations for radiation shielding, protection, and measurement are presented. This handbook is an extension of previous recommendations for protection against radiation from--(1) high energy and power electron accelerators, (2) food processing equipment, and (3) general sterilization equipment. The new recommendations are concerned with…