NASA Technical Reports Server (NTRS)
Hubeny, I.; Lanz, T.
1995-01-01
A new munerical method for computing non-Local Thermodynamic Equilibrium (non-LTE) model stellar atmospheres is presented. The method, called the hybird complete linearization/accelerated lambda iretation (CL/ALI) method, combines advantages of both its constituents. Its rate of convergence is virtually as high as for the standard CL method, while the computer time per iteration is almost as low as for the standard ALI method. The method is formulated as the standard complete lineariation, the only difference being that the radiation intensity at selected frequency points is not explicity linearized; instead, it is treated by means of the ALI approach. The scheme offers a wide spectrum of options, ranging from the full CL to the full ALI method. We deonstrate that the method works optimally if the majority of frequency points are treated in the ALI mode, while the radiation intensity at a few (typically two to 30) frequency points is explicity linearized. We show how this method can be applied to calculate metal line-blanketed non-LTE model atmospheres, by using the idea of 'superlevels' and 'superlines' introduced originally by Anderson (1989). We calculate several illustrative models taking into accont several tens of thosands of lines of Fe III to Fe IV and show that the hybrid CL/ALI method provides a robust method for calculating non-LTE line-blanketed model atmospheres for a wide range of stellar parameters. The results for individual stellar types will be presented in subsequent papers in this series.
NASA Astrophysics Data System (ADS)
Milić, Ivan; Atanacković, Olga
2014-10-01
State-of-the-art methods in multidimensional NLTE radiative transfer are based on the use of local approximate lambda operator within either Jacobi or Gauss-Seidel iterative schemes. Here we propose another approach to the solution of 2D NLTE RT problems, Forth-and-Back Implicit Lambda Iteration (FBILI), developed earlier for 1D geometry. In order to present the method and examine its convergence properties we use the well-known instance of the two-level atom line formation with complete frequency redistribution. In the formal solution of the RT equation we employ short characteristics with two-point algorithm. Using an implicit representation of the source function in the computation of the specific intensities, we compute and store the coefficients of the linear relations J=a+bS between the mean intensity J and the corresponding source function S. The use of iteration factors in the ‘local’ coefficients of these implicit relations in two ‘inward’ sweeps of 2D grid, along with the update of the source function in other two ‘outward’ sweeps leads to four times faster solution than the Jacobi’s one. Moreover, the update made in all four consecutive sweeps of the grid leads to an acceleration by a factor of 6-7 compared to the Jacobi iterative scheme.
NASA Technical Reports Server (NTRS)
Kutepov, A. A.; Kunze, D.; Hummer, D. G.; Rybicki, G. B.
1991-01-01
An iterative method based on the use of approximate transfer operators, which was designed initially to solve multilevel NLTE line formation problems in stellar atmospheres, is adapted and applied to the solution of the NLTE molecular band radiative transfer in planetary atmospheres. The matrices to be constructed and inverted are much smaller than those used in the traditional Curtis matrix technique, which makes possible the treatment of more realistic problems using relatively small computers. This technique converges much more rapidly than straightforward iteration between the transfer equation and the equations of statistical equilibrium. A test application of this new technique to the solution of NLTE radiative transfer problems for optically thick and thin bands (the 4.3 micron CO2 band in the Venusian atmosphere and the 4.7 and 2.3 micron CO bands in the earth's atmosphere) is described.
Chebyshev acceleration for lambda mode calculations
Belchior, A. Jr.; Moreira, J.M.L. )
1992-01-01
Coordenadoria para Projetos Especals (COPESP) has been making an effort to develop a power distribution mapping system utilizing self-powered neutron detectors. The scheme adopted to estimate the power distribution is based on an expansion of lambda modes for a given reactor state. Two-dimensional lambda modes were obtained previously with a modified version of the CITATION code. The method was based on the orthogonality properties of the lambda modes. Several modes could be obtained, but the convergence was slow because of the lack of an appropriate accelerating scheme in the CITATION code for calculating lambda modes. This work presents the acceleration scheme implemented into the CITATION code to obtain lambda modes.
NASA Technical Reports Server (NTRS)
Macfarlane, J. J.
1992-01-01
We investigate the convergence properties of Lambda-acceleration methods for non-LTE radiative transfer problems in planar and spherical geometry. Matrix elements of the 'exact' A-operator are used to accelerate convergence to a solution in which both the radiative transfer and atomic rate equations are simultaneously satisfied. Convergence properties of two-level and multilevel atomic systems are investigated for methods using: (1) the complete Lambda-operator, and (2) the diagonal of the Lambda-operator. We find that the convergence properties for the method utilizing the complete Lambda-operator are significantly better than those of the diagonal Lambda-operator method, often reducing the number of iterations needed for convergence by a factor of between two and seven. However, the overall computational time required for large scale calculations - that is, those with many atomic levels and spatial zones - is typically a factor of a few larger for the complete Lambda-operator method, suggesting that the approach should be best applied to problems in which convergence is especially difficult.
An accelerated subspace iteration for eigenvector derivatives
NASA Technical Reports Server (NTRS)
Ting, Tienko
1991-01-01
An accelerated subspace iteration method for calculating eigenvector derivatives has been developed. Factors affecting the effectiveness and the reliability of the subspace iteration are identified, and effective strategies concerning these factors are presented. The method has been implemented, and the results of a demonstration problem are presented.
Anderson Acceleration for Fixed-Point Iterations
Walker, Homer F.
2015-08-31
The purpose of this grant was to support research on acceleration methods for fixed-point iterations, with applications to computational frameworks and simulation problems that are of interest to DOE.
On the safety of ITER accelerators.
Li, Ge
2013-01-01
Three 1 MV/40A accelerators in heating neutral beams (HNB) are on track to be implemented in the International Thermonuclear Experimental Reactor (ITER). ITER may produce 500 MWt of power by 2026 and may serve as a green energy roadmap for the world. They will generate -1 MV 1 h long-pulse ion beams to be neutralised for plasma heating. Due to frequently occurring vacuum sparking in the accelerators, the snubbers are used to limit the fault arc current to improve ITER safety. However, recent analyses of its reference design have raised concerns. General nonlinear transformer theory is developed for the snubber to unify the former snubbers' different design models with a clear mechanism. Satisfactory agreement between theory and tests indicates that scaling up to a 1 MV voltage may be possible. These results confirm the nonlinear process behind transformer theory and map out a reliable snubber design for a safer ITER.
Accelerated Schwarz iterations for Helmholtz equation
NASA Astrophysics Data System (ADS)
Nagid, Nabila; Belhadj, Hassan; Amattouch, Mohamed Ridouan
2017-01-01
In this paper, the Restricted additive Schwarz (RAS) method is applied to solve Helmholtz equation. To accelerate the RAS iterations, we propose to apply the vector ɛ-algorithm. Some convergence analysis of the proposed method is presented, and applied succeffully to Helmholtz problem. The obtained results show the efficiency of the proposed approach. Moreover, the algorithm yields much faster convergence than the classical Schwarz iterations.
On the safety of ITER accelerators
Li, Ge
2013-01-01
Three 1 MV/40A accelerators in heating neutral beams (HNB) are on track to be implemented in the International Thermonuclear Experimental Reactor (ITER). ITER may produce 500 MWt of power by 2026 and may serve as a green energy roadmap for the world. They will generate −1 MV 1 h long-pulse ion beams to be neutralised for plasma heating. Due to frequently occurring vacuum sparking in the accelerators, the snubbers are used to limit the fault arc current to improve ITER safety. However, recent analyses of its reference design have raised concerns. General nonlinear transformer theory is developed for the snubber to unify the former snubbers' different design models with a clear mechanism. Satisfactory agreement between theory and tests indicates that scaling up to a 1 MV voltage may be possible. These results confirm the nonlinear process behind transformer theory and map out a reliable snubber design for a safer ITER. PMID:24008267
Accelerated iterative beam angle selection in IMRT
Bangert, Mark; Unkelbach, Jan
2016-03-15
Purpose: Iterative methods for beam angle selection (BAS) for intensity-modulated radiation therapy (IMRT) planning sequentially construct a beneficial ensemble of beam directions. In a naïve implementation, the nth beam is selected by adding beam orientations one-by-one from a discrete set of candidates to an existing ensemble of (n − 1) beams. The best beam orientation is identified in a time consuming process by solving the fluence map optimization (FMO) problem for every candidate beam and selecting the beam that yields the largest improvement to the objective function value. This paper evaluates two alternative methods to accelerate iterative BAS based on surrogates for the FMO objective function value. Methods: We suggest to select candidate beams not based on the FMO objective function value after convergence but (1) based on the objective function value after five FMO iterations of a gradient based algorithm and (2) based on a projected gradient of the FMO problem in the first iteration. The performance of the objective function surrogates is evaluated based on the resulting objective function values and dose statistics in a treatment planning study comprising three intracranial, three pancreas, and three prostate cases. Furthermore, iterative BAS is evaluated for an application in which a small number of noncoplanar beams complement a set of coplanar beam orientations. This scenario is of practical interest as noncoplanar setups may require additional attention of the treatment personnel for every couch rotation. Results: Iterative BAS relying on objective function surrogates yields similar results compared to naïve BAS with regard to the objective function values and dose statistics. At the same time, early stopping of the FMO and using the projected gradient during the first iteration enable reductions in computation time by approximately one to two orders of magnitude. With regard to the clinical delivery of noncoplanar IMRT treatments, we could
Distributed Minimal Residual (DMR) method for acceleration of iterative algorithms
NASA Technical Reports Server (NTRS)
Lee, Seungsoo; Dulikravich, George S.
1991-01-01
A new method for enhancing the convergence rate of iterative algorithms for the numerical integration of systems of partial differential equations was developed. It is termed the Distributed Minimal Residual (DMR) method and it is based on general Krylov subspace methods. The DMR method differs from the Krylov subspace methods by the fact that the iterative acceleration factors are different from equation to equation in the system. At the same time, the DMR method can be viewed as an incomplete Newton iteration method. The DMR method was applied to Euler equations of gas dynamics and incompressible Navier-Stokes equations. All numerical test cases were obtained using either explicit four stage Runge-Kutta or Euler implicit time integration. The formulation for the DMR method is general in nature and can be applied to explicit and implicit iterative algorithms for arbitrary systems of partial differential equations.
Physics design of the HNB accelerator for ITER
NASA Astrophysics Data System (ADS)
de Esch, H. P. L.; Kashiwagi, M.; Taniguchi, M.; Inoue, T.; Serianni, G.; Agostinetti, P.; Chitarin, G.; Marconato, N.; Sartori, E.; Sonato, P.; Veltri, P.; Pilan, N.; Aprile, D.; Fonnesu, N.; Antoni, V.; Singh, M. J.; Hemsworth, R. S.; Cavenago, M.
2015-09-01
The physics design of the accelerator for the heating neutral beamline on ITER is now finished and this paper describes the considerations and choices which constitute the basis of this design. Equal acceleration gaps of 88 mm have been chosen to improve the voltage holding capability while keeping the beam divergence low. Kerbs (metallic plates around groups of apertures, attached to the downstream surface of the grids) are used to compensate for the beamlet-beamlet interaction and to point the beamlets in the right direction. A novel magnetic configuration is employed to compensate for the beamlet deflection caused by the electron suppression magnets in the extraction grid. A combination of long-range and short-range magnetic fields is used to reduce electron leakage between the grids and limit the transmitted electron power to below 800 kW.
GPU-Accelerated Asynchronous Error Correction for Mixed Precision Iterative Refinement
Antz, Hartwig; Luszczek, Piotr; Dongarra, Jack; Heuveline, Vinent
2011-12-14
In hardware-aware high performance computing, block- asynchronous iteration and mixed precision iterative refinement are two techniques that are applied to leverage the computing power of SIMD accelerators like GPUs. Although they use a very different approach for this purpose, they share the basic idea of compensating the convergence behaviour of an inferior numerical algorithm by a more efficient usage of the provided computing power. In this paper, we want to analyze the potential of combining both techniques. Therefore, we implement a mixed precision iterative refinement algorithm using a block-asynchronous iteration as an error correction solver, and compare its performance with a pure implementation of a block-asynchronous iteration and an iterative refinement method using double precision for the error correction solver. For matrices from theUniversity of FloridaMatrix collection,we report the convergence behaviour and provide the total solver runtime using different GPU architectures.
Willert, Jeffrey; Taitano, William T.; Knoll, Dana
2014-09-15
In this note we demonstrate that using Anderson Acceleration (AA) in place of a standard Picard iteration can not only increase the convergence rate but also make the iteration more robust for two transport applications. We also compare the convergence acceleration provided by AA to that provided by moment-based acceleration methods. Additionally, we demonstrate that those two acceleration methods can be used together in a nested fashion. We begin by describing the AA algorithm. At this point, we will describe two application problems, one from neutronics and one from plasma physics, on which we will apply AA. We provide computational results which highlight the benefits of using AA, namely that we can compute solutions using fewer function evaluations, larger time-steps, and achieve a more robust iteration.
Benzi, Michele; Evans, Thomas M.; Hamilton, Steven P.; ...
2017-03-05
Here, we consider hybrid deterministic-stochastic iterative algorithms for the solution of large, sparse linear systems. Starting from a convergent splitting of the coefficient matrix, we analyze various types of Monte Carlo acceleration schemes applied to the original preconditioned Richardson (stationary) iteration. We expect that these methods will have considerable potential for resiliency to faults when implemented on massively parallel machines. We also establish sufficient conditions for the convergence of the hybrid schemes, and we investigate different types of preconditioners including sparse approximate inverses. Numerical experiments on linear systems arising from the discretization of partial differential equations are presented.
Iterative acceleration methods for Monte Carlo and deterministic criticality calculations
Urbatsch, T.J.
1995-11-01
If you have ever given up on a nuclear criticality calculation and terminated it because it took so long to converge, you might find this thesis of interest. The author develops three methods for improving the fission source convergence in nuclear criticality calculations for physical systems with high dominance ratios for which convergence is slow. The Fission Matrix Acceleration Method and the Fission Diffusion Synthetic Acceleration (FDSA) Method are acceleration methods that speed fission source convergence for both Monte Carlo and deterministic methods. The third method is a hybrid Monte Carlo method that also converges for difficult problems where the unaccelerated Monte Carlo method fails. The author tested the feasibility of all three methods in a test bed consisting of idealized problems. He has successfully accelerated fission source convergence in both deterministic and Monte Carlo criticality calculations. By filtering statistical noise, he has incorporated deterministic attributes into the Monte Carlo calculations in order to speed their source convergence. He has used both the fission matrix and a diffusion approximation to perform unbiased accelerations. The Fission Matrix Acceleration method has been implemented in the production code MCNP and successfully applied to a real problem. When the unaccelerated calculations are unable to converge to the correct solution, they cannot be accelerated in an unbiased fashion. A Hybrid Monte Carlo method weds Monte Carlo and a modified diffusion calculation to overcome these deficiencies. The Hybrid method additionally possesses reduced statistical errors.
NASA Astrophysics Data System (ADS)
Rybicki, G. B.; Hummer, D. G.
1994-10-01
Since the mass of the electron is very small relative to atomic masses, Thomson scattering of low-energy photons (hν<
Acceleration of iterative tomographic image reconstruction by reference-based back projection
NASA Astrophysics Data System (ADS)
Cheng, Chang-Chieh; Li, Ping-Hui; Ching, Yu-Tai
2016-03-01
The purpose of this paper is to design and implement an efficient iterative reconstruction algorithm for computational tomography. We accelerate the reconstruction speed of algebraic reconstruction technique (ART), an iterative reconstruction method, by using the result of filtered backprojection (FBP), a wide used algorithm of analytical reconstruction, to be an initial guess and the reference for the first iteration and each back projection stage respectively. Both two improvements can reduce the error between the forward projection of each iteration and the measurements. We use three methods of quantitative analysis, root-mean-square error (RMSE), peak signal to noise ratio (PSNR), and structural content (SC), to show that our method can reduce the number of iterations by more than half and the quality of the result is better than the original ART.
Banerjee, Amartya S.; Suryanarayana, Phanish; Pask, John E.
2016-01-21
Pulay's Direct Inversion in the Iterative Subspace (DIIS) method is one of the most widely used mixing schemes for accelerating the self-consistent solution of electronic structure problems. In this work, we propose a simple generalization of DIIS in which Pulay extrapolation is performed at periodic intervals rather than on every self-consistent field iteration, and linear mixing is performed on all other iterations. Lastly, we demonstrate through numerical tests on a wide variety of materials systems in the framework of density functional theory that the proposed generalization of Pulay's method significantly improves its robustness and efficiency.
Status of the 1 MeV Accelerator Design for ITER NBI
Kuriyama, M.; Boilson, D.; Hemsworth, R.; Svensson, L.; Graceffa, J.; Schunke, B.; Decamps, H.; Tanaka, M.; Bonicelli, T.; Masiello, A.
2011-09-26
The beam source of neutral beam heating/current drive system for ITER is needed to accelerate the negative ion beam of 40A with D{sup -} at 1 MeV for 3600 sec. In order to realize the beam source, design and R and D works are being developed in many institutions under the coordination of ITER organization. The development of the key issues of the ion source including source plasma uniformity, suppression of co-extracted electron in D beam operation and also after the long beam duration time of over a few 100 sec, is progressed mainly in IPP with the facilities of BATMAN, MANITU and RADI. In the near future, ELISE, that will be tested the half size of the ITER ion source, will start the operation in 2011, and then SPIDER, which demonstrates negative ion production and extraction with the same size and same structure as the ITER ion source, will start the operation in 2014 as part of the NBTF. The development of the accelerator is progressed mainly in JAEA with the MeV test facility, and also the computer simulation of beam optics also developed in JAEA, CEA and RFX. The full ITER heating and current drive beam performance will be demonstrated in MITICA, which will start operation in 2016 as part of the NBTF.
Detailed design optimization of the MITICA negative ion accelerator in view of the ITER NBI
NASA Astrophysics Data System (ADS)
Agostinetti, P.; Aprile, D.; Antoni, V.; Cavenago, M.; Chitarin, G.; de Esch, H. P. L.; De Lorenzi, A.; Fonnesu, N.; Gambetta, G.; Hemsworth, R. S.; Kashiwagi, M.; Marconato, N.; Marcuzzi, D.; Pilan, N.; Sartori, E.; Serianni, G.; Singh, M.; Sonato, P.; Spada, E.; Toigo, V.; Veltri, P.; Zaccaria, P.
2016-01-01
The ITER Neutral Beam Test Facility (PRIMA) is presently under construction at Consorzio RFX (Padova, Italy). PRIMA includes two experimental devices: an ITER-size ion source with low voltage extraction, called SPIDER, and the full prototype of the whole ITER Heating Neutral Beams (HNBs), called MITICA. The purpose of MITICA is to demonstrate that all operational parameters of the ITER HNB accelerator can be experimentally achieved, thus establishing a large step forward in the performances of neutral beam injectors in comparison with the present experimental devices. The design of the MITICA extractor and accelerator grids, here described in detail, was developed using an integrated approach, taking into consideration at the same time all the relevant physics and engineering aspects. Particular care was taken also to support and validate the design on the basis of the expertise and experimental data made available by the collaborating neutral beam laboratories of CEA, IPP, CCFE, NIFS and JAEA. Considering the operational requirements and the other physics constraints of the ITER HNBs, the whole design has been thoroughly optimized and improved. Furthermore, specific innovative concepts have been introduced.
Status of the 1 MeV Accelerator Design for ITER NBI
NASA Astrophysics Data System (ADS)
Kuriyama, M.; Boilson, D.; Hemsworth, R.; Svensson, L.; Graceffa, J.; Schunke, B.; Decamps, H.; Tanaka, M.; Bonicelli, T.; Masiello, A.; Bigi, M.; Chitarin, G.; Luchetta, A.; Marcuzzi, D.; Pasqualotto, R.; Pomaro, N.; Serianni, G.; Sonato, P.; Toigo, V.; Zaccaria, P.; Kraus, W.; Franzen, P.; Heinemann, B.; Inoue, T.; Watanabe, K.; Kashiwagi, M.; Taniguchi, M.; Tobari, H.; De Esch, H.
2011-09-01
The beam source of neutral beam heating/current drive system for ITER is needed to accelerate the negative ion beam of 40A with D- at 1 MeV for 3600 sec. In order to realize the beam source, design and R&D works are being developed in many institutions under the coordination of ITER organization. The development of the key issues of the ion source including source plasma uniformity, suppression of co-extracted electron in D beam operation and also after the long beam duration time of over a few 100 sec, is progressed mainly in IPP with the facilities of BATMAN, MANITU and RADI. In the near future, ELISE, that will be tested the half size of the ITER ion source, will start the operation in 2011, and then SPIDER, which demonstrates negative ion production and extraction with the same size and same structure as the ITER ion source, will start the operation in 2014 as part of the NBTF. The development of the accelerator is progressed mainly in JAEA with the MeV test facility, and also the computer simulation of beam optics also developed in JAEA, CEA and RFX. The full ITER heating and current drive beam performance will be demonstrated in MITICA, which will start operation in 2016 as part of the NBTF.
NASA Astrophysics Data System (ADS)
Iotti, Robert
2015-04-01
ITER is an international experimental facility being built by seven Parties to demonstrate the long term potential of fusion energy. The ITER Joint Implementation Agreement (JIA) defines the structure and governance model of such cooperation. There are a number of necessary conditions for such international projects to be successful: a complete design, strong systems engineering working with an agreed set of requirements, an experienced organization with systems and plans in place to manage the project, a cost estimate backed by industry, and someone in charge. Unfortunately for ITER many of these conditions were not present. The paper discusses the priorities in the JIA which led to setting up the project with a Central Integrating Organization (IO) in Cadarache, France as the ITER HQ, and seven Domestic Agencies (DAs) located in the countries of the Parties, responsible for delivering 90%+ of the project hardware as Contributions-in-Kind and also financial contributions to the IO, as ``Contributions-in-Cash.'' Theoretically the Director General (DG) is responsible for everything. In practice the DG does not have the power to control the work of the DAs, and there is not an effective management structure enabling the IO and the DAs to arbitrate disputes, so the project is not really managed, but is a loose collaboration of competing interests. Any DA can effectively block a decision reached by the DG. Inefficiencies in completing design while setting up a competent organization from scratch contributed to the delays and cost increases during the initial few years. So did the fact that the original estimate was not developed from industry input. Unforeseen inflation and market demand on certain commodities/materials further exacerbated the cost increases. Since then, improvements are debatable. Does this mean that the governance model of ITER is a wrong model for international scientific cooperation? I do not believe so. Had the necessary conditions for success
Xu, Qiaofeng; Yang, Deshan; Tan, Jun; Sawatzky, Alex; Anastasio, Mark A.
2016-01-01
Purpose: The development of iterative image reconstruction algorithms for cone-beam computed tomography (CBCT) remains an active and important research area. Even with hardware acceleration, the overwhelming majority of the available 3D iterative algorithms that implement nonsmooth regularizers remain computationally burdensome and have not been translated for routine use in time-sensitive applications such as image-guided radiation therapy (IGRT). In this work, two variants of the fast iterative shrinkage thresholding algorithm (FISTA) are proposed and investigated for accelerated iterative image reconstruction in CBCT. Methods: Algorithm acceleration was achieved by replacing the original gradient-descent step in the FISTAs by a subproblem that is solved by use of the ordered subset simultaneous algebraic reconstruction technique (OS-SART). Due to the preconditioning matrix adopted in the OS-SART method, two new weighted proximal problems were introduced and corresponding fast gradient projection-type algorithms were developed for solving them. We also provided efficient numerical implementations of the proposed algorithms that exploit the massive data parallelism of multiple graphics processing units. Results: The improved rates of convergence of the proposed algorithms were quantified in computer-simulation studies and by use of clinical projection data corresponding to an IGRT study. The accelerated FISTAs were shown to possess dramatically improved convergence properties as compared to the standard FISTAs. For example, the number of iterations to achieve a specified reconstruction error could be reduced by an order of magnitude. Volumetric images reconstructed from clinical data were produced in under 4 min. Conclusions: The FISTA achieves a quadratic convergence rate and can therefore potentially reduce the number of iterations required to produce an image of a specified image quality as compared to first-order methods. We have proposed and investigated
Lorber, A.A.; Carey, G.F.; Bova, S.W.; Harle, C.H.
1996-12-31
The connection between the solution of linear systems of equations by iterative methods and explicit time stepping techniques is used to accelerate to steady state the solution of ODE systems arising from discretized PDEs which may involve either physical or artificial transient terms. Specifically, a class of Runge-Kutta (RK) time integration schemes with extended stability domains has been used to develop recursion formulas which lead to accelerated iterative performance. The coefficients for the RK schemes are chosen based on the theory of Chebyshev iteration polynomials in conjunction with a local linear stability analysis. We refer to these schemes as Chebyshev Parameterized Runge Kutta (CPRK) methods. CPRK methods of one to four stages are derived as functions of the parameters which describe an ellipse {Epsilon} which the stability domain of the methods is known to contain. Of particular interest are two-stage, first-order CPRK and four-stage, first-order methods. It is found that the former method can be identified with any two-stage RK method through the correct choice of parameters. The latter method is found to have a wide range of stability domains, with a maximum extension of 32 along the real axis. Recursion performance results are presented below for a model linear convection-diffusion problem as well as non-linear fluid flow problems discretized by both finite-difference and finite-element methods.
Zhao, Tuo; Liu, Han
2016-01-01
We propose an accelerated path-following iterative shrinkage thresholding algorithm (APISTA) for solving high dimensional sparse nonconvex learning problems. The main difference between APISTA and the path-following iterative shrinkage thresholding algorithm (PISTA) is that APISTA exploits an additional coordinate descent subroutine to boost the computational performance. Such a modification, though simple, has profound impact: APISTA not only enjoys the same theoretical guarantee as that of PISTA, i.e., APISTA attains a linear rate of convergence to a unique sparse local optimum with good statistical properties, but also significantly outperforms PISTA in empirical benchmarks. As an application, we apply APISTA to solve a family of nonconvex optimization problems motivated by estimating sparse semiparametric graphical models. APISTA allows us to obtain new statistical recovery results which do not exist in the existing literature. Thorough numerical results are provided to back up our theory. PMID:28133430
Azmy, Y.Y.
1999-06-10
The author proposes preconditioning as a viable acceleration scheme for the inner iterations of transport calculations in slab geometry. In particular he develops Adjacent-Cell Preconditioners (AP) that have the same coupling stencil as cell-centered diffusion schemes. For lowest order methods, e.g., Diamond Difference, Step, and 0-order Nodal Integral Method (ONIM), cast in a Weighted Diamond Difference (WDD) form, he derives AP for thick (KAP) and thin (NAP) cells that for model problems are unconditionally stable and efficient. For the First-Order Nodal Integral Method (INIM) he derives a NAP that possesses similarly excellent spectral properties for model problems. The two most attractive features of the new technique are:(1) its cell-centered coupling stencil, which makes it more adequate for extension to multidimensional, higher order situations than the standard edge-centered or point-centered Diffusion Synthetic Acceleration (DSA) methods; and (2) its decreasing spectral radius with increasing cell thickness to the extent that immediate pointwise convergence, i.e., in one iteration, can be achieved for problems with sufficiently thick cells. He implemented these methods, augmented with appropriate boundary conditions and mixing formulas for material heterogeneities, in the test code APID that he uses to successfully verify the analytical spectral properties for homogeneous problems. Furthermore, he conducts numerical tests to demonstrate the robustness of the KAP and NAP in the presence of sharp mesh or material discontinuities. He shows that the AP for WDD is highly resilient to such discontinuities, but for INIM a few cases occur in which the scheme does not converge; however, when it converges, AP greatly reduces the number of iterations required to achieve convergence.
Lin, Lin; Yang, Chao
2013-10-28
We discuss techniques for accelerating the self consistent field (SCF) iteration for solving the Kohn-Sham equations. These techniques are all based on constructing approximations to the inverse of the Jacobian associated with a fixed point map satisfied by the total potential. They can be viewed as preconditioners for a fixed point iteration. We point out different requirements for constructing preconditioners for insulating and metallic systems respectively, and discuss how to construct preconditioners to keep the convergence rate of the fixed point iteration independent of the size of the atomistic system. We propose a new preconditioner that can treat insulating and metallic system in a unified way. The new preconditioner, which we call an elliptic preconditioner, is constructed by solving an elliptic partial differential equation. The elliptic preconditioner is shown to be more effective in accelerating the convergence of a fixed point iteration than the existing approaches for large inhomogeneous systems at low temperature.
A proximity algorithm accelerated by Gauss-Seidel iterations for L1/TV denoising models
NASA Astrophysics Data System (ADS)
Li, Qia; Micchelli, Charles A.; Shen, Lixin; Xu, Yuesheng
2012-09-01
Our goal in this paper is to improve the computational performance of the proximity algorithms for the L1/TV denoising model. This leads us to a new characterization of all solutions to the L1/TV model via fixed-point equations expressed in terms of the proximity operators. Based upon this observation we develop an algorithm for solving the model and establish its convergence. Furthermore, we demonstrate that the proposed algorithm can be accelerated through the use of the componentwise Gauss-Seidel iteration so that the CPU time consumed is significantly reduced. Numerical experiments using the proposed algorithm for impulsive noise removal are included, with a comparison to three recently developed algorithms. The numerical results show that while the proposed algorithm enjoys a high quality of the restored images, as the other three known algorithms do, it performs significantly better in terms of computational efficiency measured in the CPU time consumed.
GPU-accelerated regularized iterative reconstruction for few-view cone beam CT
Matenine, Dmitri; Goussard, Yves
2015-04-15
Purpose: The present work proposes an iterative reconstruction technique designed for x-ray transmission computed tomography (CT). The main objective is to provide a model-based solution to the cone-beam CT reconstruction problem, yielding accurate low-dose images via few-views acquisitions in clinically acceptable time frames. Methods: The proposed technique combines a modified ordered subsets convex (OSC) algorithm and the total variation minimization (TV) regularization technique and is called OSC-TV. The number of subsets of each OSC iteration follows a reduction pattern in order to ensure the best performance of the regularization method. Considering the high computational cost of the algorithm, it is implemented on a graphics processing unit, using parallelization to accelerate computations. Results: The reconstructions were performed on computer-simulated as well as human pelvic cone-beam CT projection data and image quality was assessed. In terms of convergence and image quality, OSC-TV performs well in reconstruction of low-dose cone-beam CT data obtained via a few-view acquisition protocol. It compares favorably to the few-view TV-regularized projections onto convex sets (POCS-TV) algorithm. It also appears to be a viable alternative to full-dataset filtered backprojection. Execution times are of 1–2 min and are compatible with the typical clinical workflow for nonreal-time applications. Conclusions: Considering the image quality and execution times, this method may be useful for reconstruction of low-dose clinical acquisitions. It may be of particular benefit to patients who undergo multiple acquisitions by reducing the overall imaging radiation dose and associated risks.
Long pulse acceleration of MeV class high power density negative H{sup −} ion beam for ITER
Umeda, N. Kojima, A.; Kashiwagi, M.; Tobari, H.; Hiratsuka, J.; Watanabe, K.; Dairaku, M.; Yamanaka, H.; Hanada, M.
2015-04-08
R and D of high power density negative ion beam acceleration has been carried out at MeV test facility in JAEA to realize ITER neutral beam accelerator. The main target is H{sup −} ion beam acceleration up to 1 MeV with 200 A/m{sup 2} for 60 s whose pulse length is the present facility limit. For long pulse acceleration at high power density, new extraction grid (EXG) has been developed with high cooling capability, which electron suppression magnet is placed under cooling channel similar to ITER. In addition, aperture size of electron suppression grid (ESG) is enlarged from 14 mm to 16 mm to reduce direct interception on the ESG and emission of secondary electron which leads to high heat load on the upstream acceleration grid. By enlarging ESG aperture, beam current increased 10 % at high current beam and total acceleration grid heat load reduced from 13 % to 10 % of input power at long pulse beam. In addition, heat load by back stream positive ion into the EXG is measured for the first time and is estimated as 0.3 % of beam power, while heat load by back stream ion into the source chamber is estimated as 3.5 ~ 4.0 % of beam power. Beam acceleration up to 60 s which is the facility limit, has achieved at 683 keV, 100 A/m{sup 2} of negative ion beam, whose energy density increases two orders of magnitude since 2011.
Compensations of beamlet deflections for 1 MeV accelerator of ITER NBI
NASA Astrophysics Data System (ADS)
Kashiwagi, Mieko; Taniguchi, Masaki; Umeda, Naotaka; Dairaku, Masayuki; Tobari, Hiroyuki; Yamanaka, Haruhiko; Watanabe, Kazuhiro; Inoue, Takashi; de Esch, H. P. L.; Grisham, Larry R.; Boilson, Deirdre; Hemsworth, Ronald S.; Tanaka, Masanobu
2013-02-01
Compensation methods of beamlet deflections have been studied in a three dimensional (3D) beam analysis using OPERA-3d code for 1 MeV accelerator of the ITER neutral beam injector (NBI). The beamlet deflection is caused by i) magnetic field generated by permanent magnets embedded in the extraction grid (EXG) for electron suppression and ii) space charge repulsion between the beamlets and beam groups. Moreover, the beamlet deflection is caused due to electric field distortion formed by a grid support structure. In order to compensate the beamlet deflections due to i) and ii), an aperture offset of 0.6 mm was applied in the electron suppression grid (ESG) and a metal bar with 3 mm in thickness, so-called a kerb, was attached around the aperture area at the back side of the ESG, respectively. Detailed configuration of the compensation methods was also considered so as to suppress the beam spread due to the electric field distortion and to lower electric field concentrations at the edge of the kerb. For the beamlets near the grid support structure, the beamlet deflection due to the space charge repulsion could be negated due to the electric field distortion formed by the grid support structure.
NASA Astrophysics Data System (ADS)
Olson, Allen H.
1987-08-01
The Simultaneous Iterative Reconstruction Technique (SIRT) is a variation of Richardson's method for solving linear systems with positive definitive matrices, and can be used for solving any least squares problem. Previous SIRT methods used in tomography have suggested a constant normalization factor for the step size. With this normalization, the convergence rate of the eigencomponents decreases as the eigenvalue decreases, making these methods impractical for obtaining large bandwidth solutions. By allowing the normalization factor to change with each iteration, the error after k iterations is shown to be a k th order polynomial. The factors are then chosen to yield a Chebyshev polynomial so that the maximum error in the iterative method is minimized over a prescribed range of eigenvalues. Compared with k iterations using a constant normalization, the Chebyshev method requires only √ and has the property that all eigencomponents converge at the same rate. Simple expressions are given which permit the number of iterations to be determined in advanced based upon the desired accuracy and bandwidth. A stable ordering of the Chebyshev factors is also given which minimizes the effects of numerical roundoff. Since a good upper bound for the maximum eigenvalue of the normal matrix is essential to the calculations, the well known 'power method with shift of origin' is combined with the Chebyshev method to estimate its value.
Pratapa, Phanisri P.; Suryanarayana, Phanish; Pask, John E.
2015-12-01
We employ Anderson extrapolation to accelerate the classical Jacobi iterative method for large, sparse linear systems. Specifically, we utilize extrapolation at periodic intervals within the Jacobi iteration to develop the Alternating Anderson–Jacobi (AAJ) method. We verify the accuracy and efficacy of AAJ in a range of test cases, including nonsymmetric systems of equations. We demonstrate that AAJ possesses a favorable scaling with system size that is accompanied by a small prefactor, even in the absence of a preconditioner. In particular, we show that AAJ is able to accelerate the classical Jacobi iteration by over four orders of magnitude, with speed-upsmore » that increase as the system gets larger. Moreover, we find that AAJ significantly outperforms the Generalized Minimal Residual (GMRES) method in the range of problems considered here, with the relative performance again improving with size of the system. As a result, the proposed method represents a simple yet efficient technique that is particularly attractive for large-scale parallel solutions of linear systems of equations.« less
Pratapa, Phanisri P.; Suryanarayana, Phanish; Pask, John E.
2015-12-01
We employ Anderson extrapolation to accelerate the classical Jacobi iterative method for large, sparse linear systems. Specifically, we utilize extrapolation at periodic intervals within the Jacobi iteration to develop the Alternating Anderson–Jacobi (AAJ) method. We verify the accuracy and efficacy of AAJ in a range of test cases, including nonsymmetric systems of equations. We demonstrate that AAJ possesses a favorable scaling with system size that is accompanied by a small prefactor, even in the absence of a preconditioner. In particular, we show that AAJ is able to accelerate the classical Jacobi iteration by over four orders of magnitude, with speed-ups that increase as the system gets larger. Moreover, we find that AAJ significantly outperforms the Generalized Minimal Residual (GMRES) method in the range of problems considered here, with the relative performance again improving with size of the system. As a result, the proposed method represents a simple yet efficient technique that is particularly attractive for large-scale parallel solutions of linear systems of equations.
Mizuno, T; Taniguchi, M; Kashiwagi, M; Umeda, N; Tobari, H; Watanabe, K; Dairaku, M; Sakamoto, K; Inoue, T
2010-02-01
Heat load on acceleration grids by secondary particles such as electrons, neutrals, and positive ions, is a key issue for long pulse acceleration of negative ion beams. Complicated behaviors of the secondary particles in multiaperture, multigrid (MAMuG) accelerator have been analyzed using electrostatic accelerator Monte Carlo code. The analytical result is compared to experimental one obtained in a long pulse operation of a MeV accelerator, of which second acceleration grid (A2G) was removed for simplification of structure. The analytical results show that relatively high heat load on the third acceleration grid (A3G) since stripped electrons were deposited mainly on A3G. This heat load on the A3G can be suppressed by installing the A2G. Thus, capability of MAMuG accelerator is demonstrated for suppression of heat load due to secondary particles by the intermediate grids.
Accelerating the weighted histogram analysis method by direct inversion in the iterative subspace
Zhang, Cheng; Lai, Chun-Liang; Pettitt, B. Montgomery
2016-01-01
The weighted histogram analysis method (WHAM) for free energy calculations is a valuable tool to produce free energy differences with the minimal errors. Given multiple simulations, WHAM obtains from the distribution overlaps the optimal statistical estimator of the density of states, from which the free energy differences can be computed. The WHAM equations are often solved by an iterative procedure. In this work, we use a well-known linear algebra algorithm which allows for more rapid convergence to the solution. We find that the computational complexity of the iterative solution to WHAM and the closely-related multiple Bennett acceptance ratio (MBAR) method can be improved by using the method of direct inversion in the iterative subspace. We give examples from a lattice model, a simple liquid and an aqueous protein solution. PMID:27453632
Upper bounds for convergence rates of acceleration methods with initial iterations
NASA Astrophysics Data System (ADS)
Sidi, Avram; Shapira, Yair
1998-06-01
GMRES(n,k), a version of GMRES for the solution of large sparse linear systems, is introduced. A cycle of GMRES(n,k) consists of n Richardson iterations followed by k iterations of GMRES. Such cycles can be repeated until convergence is achieved. The advantage in this approach is in the opportunity to use moderate k, which results in time and memory saving. Because the number of inner products among the vectors of iteration is about k2/2, using a moderate k is particularly attractive on message-passing parallel architectures, where inner products require expensive global communication. The present analysis provides tight upper bounds for the convergence rates of GMRES(n,k) for problems with diagonalizable coefficient matrices whose spectra lie in an ellipse in 0. The advantage of GMRES(n,k) over GMRES(k) is illustrated numerically.
Long-pulse beam acceleration of MeV-class H(-) ion beams for ITER NB accelerator.
Umeda, N; Kashiwagi, M; Taniguchi, M; Tobari, H; Watanabe, K; Dairaku, M; Yamanaka, H; Inoue, T; Kojima, A; Hanada, M
2014-02-01
In order to realize neutral beam systems in International Thermonuclear Experimental Reactor whose target is to produce a 1 MeV, 200 A/m(2) during 3600 s D(-) ion beam, the electrostatic five-stages negative ion accelerator so-called "MeV accelerator" has been developed at Japan Atomic Energy Agency. To extend pulse length, heat load of the acceleration grids was reduced by controlling the ion beam trajectory. Namely, the beam deflection due to the residual magnetic field of filter magnet was suppressed with the newly developed extractor with a 0.5 mm off-set aperture displacement. The new extractor improved the deflection angle from 6 mrad to 1 mrad, resulting in the reduction of direct interception of negative ions from 23% to 15% of the total acceleration power, respectively. As a result, the pulse length of 130 A/m(2), 881 keV H(-) ion beam has been successfully extended from a previous value of 0.4 s to 8.7 s. This is the first long pulse negative ion beam acceleration over 100 MW/m(2).
Acceleration of iterative image reconstruction for x-ray imaging for security applications
NASA Astrophysics Data System (ADS)
Degirmenci, Soysal; Politte, David G.; Bosch, Carl; Tricha, Nawfel; O'Sullivan, Joseph A.
2015-03-01
Three-dimensional image reconstruction for scanning baggage in security applications is becoming increasingly important. Compared to medical x-ray imaging, security imaging systems must be designed for a greater variety of objects. There is a lot of variation in attenuation and nearly every bag scanned has metal present, potentially yielding significant artifacts. Statistical iterative reconstruction algorithms are known to reduce metal artifacts and yield quantitatively more accurate estimates of attenuation than linear methods. For iterative image reconstruction algorithms to be deployed at security checkpoints, the images must be quantitatively accurate and the convergence speed must be increased dramatically. There are many approaches for increasing convergence; two approaches are described in detail in this paper. The first approach includes a scheduled change in the number of ordered subsets over iterations and a reformulation of convergent ordered subsets that was originally proposed by Ahn, Fessler et. al.1 The second approach is based on varying the multiplication factor in front of the additive step in the alternating minimization (AM) algorithm, resulting in more aggressive updates in iterations. Each approach is implemented on real data from a SureScanTM x 1000 Explosive Detection System∗ and compared to straightforward implementations of the alternating minimization algorithm of O'Sullivan and Benac2 with a Huber-type edge-preserving penalty, originally proposed by Lange.3
Lightest Double-Lambda Hypernucleus
NASA Astrophysics Data System (ADS)
Nakaichi-Maeda, S.; Akaishi, Y.
1990-12-01
A variational calculation for (4) _{Lambda Lambda}H is made by employing the phenomenological N Lambda and Lambda Lambda potentials derived recently. It is shown that the binding of (4) _{Lambda Lambda}H below the Lambda+(3}_{Lambda) H threshold is consistent with the (6) _{Lambda Lambda}He data, and also with the (10) _{Lambda Lambda}Be data when repulsive alpha alpha Lambda and alpha Lambda Lambda three-body forces are considered.
Iterative image reconstruction with a single-board computer employing hardware acceleration
Mayans, R.; Rogers, W.L.; Clinthorne, N.H.; Atkins, D.; Chin, I.; Hanao, J.
1984-01-01
Iterative reconstruction of tomographic images offers much greater flexibility than filtered backprojection; finite ray width, spatially variant resolution, nonstandard ray geometry, missing angular samples and irregular attenuation maps are all readily accommodated. In addition, various solution strategies such as least square or maximum entropy can be implemented. The principal difficulty is that either a large computer must be used or the computation time is excessive. The authors have developed an image reconstructor based on the Intel 86/12 single-board computer. The design strategy was to first implement a family of reconstruction algorithms in PLM-86 and to identify the slowest common computation segments. Next, double precision arithmetic was recoded and extended addressing calls replaced with in-line code. Finally, the inner loop was shortened by factoring the computation. Computation times for these versions were in the ratio 1:0:75:0.5. Using software only, a single iteration of the ART algorithm for finite beam geometry involving 300k pixel weights could be accomplished in 70 seconds with high quality images obtained in three iterations. In addition the authors examined multibus compatible hardware additions to further speed the computation. The simplest of those schemes, which performs only the forward projection, has been constructed and is being tested. With this addition, computation time is expected to be reduced an additional 40%. With this approach that have combined flexible choice of algorithm with reasonable image reconstruction time.
NASA Astrophysics Data System (ADS)
Kole, J. S.; Beekman, F. J.
2006-02-01
Statistical reconstruction methods offer possibilities to improve image quality as compared with analytical methods, but current reconstruction times prohibit routine application in clinical and micro-CT. In particular, for cone-beam x-ray CT, the use of graphics hardware has been proposed to accelerate the forward and back-projection operations, in order to reduce reconstruction times. In the past, wide application of this texture hardware mapping approach was hampered owing to limited intrinsic accuracy. Recently, however, floating point precision has become available in the latest generation commodity graphics cards. In this paper, we utilize this feature to construct a graphics hardware accelerated version of the ordered subset convex reconstruction algorithm. The aims of this paper are (i) to study the impact of using graphics hardware acceleration for statistical reconstruction on the reconstructed image accuracy and (ii) to measure the speed increase one can obtain by using graphics hardware acceleration. We compare the unaccelerated algorithm with the graphics hardware accelerated version, and for the latter we consider two different interpolation techniques. A simulation study of a micro-CT scanner with a mathematical phantom shows that at almost preserved reconstructed image accuracy, speed-ups of a factor 40 to 222 can be achieved, compared with the unaccelerated algorithm, and depending on the phantom and detector sizes. Reconstruction from physical phantom data reconfirms the usability of the accelerated algorithm for practical cases.
Kole, J S; Beekman, F J
2006-02-21
Statistical reconstruction methods offer possibilities to improve image quality as compared with analytical methods, but current reconstruction times prohibit routine application in clinical and micro-CT. In particular, for cone-beam x-ray CT, the use of graphics hardware has been proposed to accelerate the forward and back-projection operations, in order to reduce reconstruction times. In the past, wide application of this texture hardware mapping approach was hampered owing to limited intrinsic accuracy. Recently, however, floating point precision has become available in the latest generation commodity graphics cards. In this paper, we utilize this feature to construct a graphics hardware accelerated version of the ordered subset convex reconstruction algorithm. The aims of this paper are (i) to study the impact of using graphics hardware acceleration for statistical reconstruction on the reconstructed image accuracy and (ii) to measure the speed increase one can obtain by using graphics hardware acceleration. We compare the unaccelerated algorithm with the graphics hardware accelerated version, and for the latter we consider two different interpolation techniques. A simulation study of a micro-CT scanner with a mathematical phantom shows that at almost preserved reconstructed image accuracy, speed-ups of a factor 40 to 222 can be achieved, compared with the unaccelerated algorithm, and depending on the phantom and detector sizes. Reconstruction from physical phantom data reconfirms the usability of the accelerated algorithm for practical cases.
NASA Technical Reports Server (NTRS)
Jameson, A.
1975-01-01
The use of a fast elliptic solver in combination with relaxation is presented as an effective way to accelerate the convergence of transonic flow calculations, particularly when a marching scheme can be used to treat the supersonic zone in the relaxation process.
Grey transport acceleration method for time-dependent radiative transfer problems
Larsen, E.
1988-10-01
A new iterative method for solving hte time-dependent multifrequency radiative transfer equations is described. The method is applicable to semi-implicit time discretizations that generate a linear steady-state multifrequency transport problem with pseudo-scattering within each time step. The standard ''lambda'' iteration method is shown to often converge slowly for such problems, and the new grey transport acceleration (GTA) method, based on accelerating the lambda method by employing a grey, or frequency-independent transport equation, is developed. The GTA method is shown, theoretically by an iterative Fourier analysis, and experimentally by numerical calculations, to converge significantly faster than the lambda method. In addition, the GTA method is conceptually simple to implement for general differencing schemes, on either Eulerian or Lagrangian meshes. copyright 1988 Academic Press, Inc.
NASA Astrophysics Data System (ADS)
Czajkowski, Michael
2014-06-01
There is an explosion in the quantity and quality of IMINT data being captured in Intelligence Surveillance and Reconnaissance (ISR) today. While automated exploitation techniques involving computer vision are arriving, only a few architectures can manage both the storage and bandwidth of large volumes of IMINT data and also present results to analysts quickly. Lockheed Martin Advanced Technology Laboratories (ATL) has been actively researching in the area of applying Big Data cloud computing techniques to computer vision applications. This paper presents the results of this work in adopting a Lambda Architecture to process and disseminate IMINT data using computer vision algorithms. The approach embodies an end-to-end solution by processing IMINT data from sensors to serving information products quickly to analysts, independent of the size of the data. The solution lies in dividing up the architecture into a speed layer for low-latent processing and a batch layer for higher quality answers at the expense of time, but in a robust and fault-tolerant way. This approach was evaluated using a large corpus of IMINT data collected by a C-130 Shadow Harvest sensor over Afghanistan from 2010 through 2012. The evaluation data corpus included full motion video from both narrow and wide area field-of-views. The evaluation was done on a scaled-out cloud infrastructure that is similar in composition to those found in the Intelligence Community. The paper shows experimental results to prove the scalability of the architecture and precision of its results using a computer vision algorithm designed to identify man-made objects in sparse data terrain.
Beam optics in a MeV-class multi-aperture multi-grid accelerator for the ITER neutral beam injector.
Kashiwagi, M; Taniguchi, M; Umeda, N; de Esch, H P L; Grisham, L R; Boilson, D; Hemsworth, R S; Tanaka, M; Tobari, H; Watanabe, K; Inoue, T
2012-02-01
In a multi-aperture multi-grid accelerator of the ITER neutral beam injector, the beamlets are deflected due to space charge repulsion between beamlets and beam groups, and also due to magnetic field. Moreover, the beamlet deflection is influenced by electric field distortion generated by grid support structure. Such complicated beamlet deflections and the compensations have been examined utilizing a three-dimensional beam analysis. The space charge repulsion and the influence by the grid support structure were studied in a 1∕4 model of the accelerator including 320 beamlets. Beamlet deflection due to the magnetic field was studied by a single beamlet model. As the results, compensation methods of the beamlet deflection were designed, so as to utilize a metal bar (so-called field shaping plate) of 1 mm thick beneath the electron suppression grid (ESG), and an aperture offset of 1 mm in the ESG.
What does the free space Lambda Lambda interaction predict for Lambda Lambda hypernuclei?
Albertus, C; Amaro, J E; Nieves, J
2002-07-15
Data on LambdaLambda hypernuclei provide a unique method to learn details about the strangeness S = -2 sector of the baryon-baryon interaction. From the free space Bonn-Jülich potentials, determined from data on baryon-baryon scattering in the S = 0,-1 channels, we construct an interaction in the S = -2 sector to describe the experimentally known LambdaLambda hypernuclei. After including short-range (Jastrow) and RPA correlations, we find masses for these LambdaLambda hypernuclei in a reasonable agreement with data, taking into account theoretical and experimental uncertainties. Thus, we provide a natural extension, at low energies, of the Bonn-Jülich one-boson exchange potentials to the S = -2 channel.
{lambda}0 Polarization in Exclusive pp Reactions
Felix, J.
2006-09-25
Among all properties of baryons, the polarization they acquire when created from unpolarized p-nucleus collisions is the most recent discovered one; so far, the origin of this polarization remains unexplained in spite of the experimental evidences accumulated in the past thirty years. Up to these days, {lambda}0 is the most studied baryon for polarization, due to it is very easy to produce {lambda}0's at the energies of the principal high energy physics accelerators of the world. This article is a review of the experimental experience accumulated on the polarization of {lambda}0 in unpolarized exclusive pp collisions as function of xF, PT, and M({lambda}0K+) in the past fifteen years here at the Instituto de Fisica, Universidad de Guanajuato, inside Fermilab e690 and Brookhaven National Laboratory e766 collaborations.
Measurement of the Lambda b lifetime in the exclusive decay Lambda b --> J/psi Lambda.
Abazov, V M; Abbott, B; Abolins, M; Acharya, B S; Adams, M; Adams, T; Aguilo, E; Ahn, S H; Ahsan, M; Alexeev, G D; Alkhazov, G; Alton, A; Alverson, G; Alves, G A; Anastasoaie, M; Ancu, L S; Andeen, T; Anderson, S; Andrieu, B; Anzelc, M S; Arnoud, Y; Arov, M; Arthaud, M; Askew, A; Asman, B; Jesus, A C S Assis; Atramentov, O; Autermann, C; Avila, C; Ay, C; Badaud, F; Baden, A; Bagby, L; Baldin, B; Bandurin, D V; Banerjee, P; Banerjee, S; Barberis, E; Barfuss, A-F; Bargassa, P; Baringer, P; Barreto, J; Bartlett, J F; Bassler, U; Bauer, D; Beale, S; Bean, A; Begalli, M; Begel, M; Belanger-Champagne, C; Bellantoni, L; Bellavance, A; Benitez, J A; Beri, S B; Bernardi, G; Bernhard, R; Berntzon, L; Bertram, I; Besançon, M; Beuselinck, R; Bezzubov, V A; Bhat, P C; Bhatnagar, V; Biscarat, C; Blazey, G; Blekman, F; Blessing, S; Bloch, D; Bloom, K; Boehnlein, A; Boline, D; Bolton, T A; Borissov, G; Bos, K; Bose, T; Brandt, A; Brock, R; Brooijmans, G; Bross, A; Brown, D; Buchanan, N J; Buchholz, D; Buehler, M; Buescher, V; Burdin, S; Burke, S; Burnett, T H; Buszello, C P; Butler, J M; Calfayan, P; Calvet, S; Cammin, J; Caron, S; Carvalho, W; Casey, B C K; Cason, N M; Castilla-Valdez, H; Chakrabarti, S; Chakraborty, D; Chan, K; Chan, K M; Chandra, A; Charles, F; Cheu, E; Chevallier, F; Cho, D K; Choi, S; Choudhary, B; Christofek, L; Christoudias, T; Cihangir, S; Claes, D; Clément, B; Clément, C; Coadou, Y; Cooke, M; Cooper, W E; Corcoran, M; Couderc, F; Cousinou, M-C; Crépé-Renaudin, S; Cutts, D; Cwiok, M; da Motta, H; Das, A; Davies, G; De, K; de Jong, P; de Jong, S J; De La Cruz-Burelo, E; De Oliveira Martins, C; Degenhardt, J D; Déliot, F; Demarteau, M; Demina, R; Denisov, D; Denisov, S P; Desai, S; Diehl, H T; Diesburg, M; Dominguez, A; Dong, H; Dudko, L V; Duflot, L; Dugad, S R; Duggan, D; Duperrin, A; Dyer, J; Dyshkant, A; Eads, M; Edmunds, D; Ellison, J; Elvira, V D; Enari, Y; Eno, S; Ermolov, P; Evans, H; Evdokimov, A; Evdokimov, V N; Ferapontov, A V; Ferbel, T; Fiedler, F; Filthaut, F; Fisher, W; Fisk, H E; Ford, M; Fortner, M; Fox, H; Fu, S; Fuess, S; Gadfort, T; Galea, C F; Gallas, E; Galyaev, E; Garcia, C; Garcia-Bellido, A; Gavrilov, V; Gay, P; Geist, W; Gelé, D; Gerber, C E; Gershtein, Y; Gillberg, D; Ginther, G; Gollub, N; Gómez, B; Goussiou, A; Grannis, P D; Greenlee, H; Greenwood, Z D; Gregores, E M; Grenier, G; Gris, Ph; Grivaz, J-F; Grohsjean, A; Grünendahl, S; Grünewald, M W; Guo, F; Guo, J; Gutierrez, G; Gutierrez, P; Haas, A; Hadley, N J; Haefner, P; Hagopian, S; Haley, J; Hall, I; Hall, R E; Han, L; Hanagaki, K; Hansson, P; Harder, K; Harel, A; Harrington, R; Hauptman, J M; Hauser, R; Hays, J; Hebbeker, T; Hedin, D; Hegeman, J G; Heinmiller, J M; Heinson, A P; Heintz, U; Hensel, C; Herner, K; Hesketh, G; Hildreth, M D; Hirosky, R; Hobbs, J D; Hoeneisen, B; Hoeth, H; Hohlfeld, M; Hong, S J; Hooper, R; Hossain, S; Houben, P; Hu, Y; Hubacek, Z; Hynek, V; Iashvili, I; Illingworth, R; Ito, A S; Jabeen, S; Jaffré, M; Jain, S; Jakobs, K; Jarvis, C; Jesik, R; Johns, K; Johnson, C; Johnson, M; Jonckheere, A; Jonsson, P; Juste, A; Käfer, D; Kahn, S; Kajfasz, E; Kalinin, A M; Kalk, J M; Kalk, J R; Kappler, S; Karmanov, D; Kasper, J; Kasper, P; Katsanos, I; Kau, D; Kaur, R; Kaushik, V; Kehoe, R; Kermiche, S; Khalatyan, N; Khanov, A; Kharchilava, A; Kharzheev, Y M; Khatidze, D; Kim, H; Kim, T J; Kirby, M H; Kirsch, M; Klima, B; Kohli, J M; Konrath, J-P; Kopal, M; Korablev, V M; Kothari, B; Kozelov, A V; Krop, D; Kryemadhi, A; Kuhl, T; Kumar, A; Kunori, S; Kupco, A; Kurca, T; Kvita, J; Lam, D; Lammers, S; Landsberg, G; Lazoflores, J; Lebrun, P; Lee, W M; Leflat, A; Lehner, F; Lellouch, J; Lesne, V; Leveque, J; Lewis, P; Li, J; Li, L; Li, Q Z; Lietti, S M; Lima, J G R; Lincoln, D; Linnemann, J; Lipaev, V V; Lipton, R; Liu, Y; Liu, Z; Lobo, L; Lobodenko, A; Lokajicek, M; Lounis, A; Love, P; Lubatti, H J; Lyon, A L; Maciel, A K A; Mackin, D; Madaras, R J; Mättig, P; Magass, C; Magerkurth, A; Makovec, N; Mal, P K; Malbouisson, H B; Malik, S; Malyshev, V L; Mao, H S; Maravin, Y; Martin, B; McCarthy, R; Melnitchouk, A; Mendes, A; Mendoza, L; Mercadante, P G; Merkin, M; Merritt, K W; Meyer, A; Meyer, J; Michaut, M; Millet, T; Mitrevski, J; Molina, J; Mommsen, R K; Mondal, N K; Moore, R W; Moulik, T; Muanza, G S; Mulders, M; Mulhearn, M; Mundal, O; Mundim, L; Nagy, E; Naimuddin, M; Narain, M; Naumann, N A; Neal, H A; Negret, J P; Neustroev, P; Nilsen, H; Noeding, C; Nomerotski, A; Novaes, S F; Nunnemann, T; O'dell, V; O'neil, D C; Obrant, G; Ochando, C; Onoprienko, D; Oshima, N; Osta, J; Otec, R; Otero Y Garzón, G J; Owen, M; Padley, P; Pangilinan, M; Panikashvili, N; Parashar, N; Park, S-J; Park, S K; Parsons, J; Partridge, R; Parua, N; Patwa, A; Pawloski, G; Perea, P M; Peters, K; Peters, Y; Pétroff, P; Petteni, M; Piegaia, R; Piper, J; Pleier, M-A; Podesta-Lerma, P L M; Podstavkov, V M; Pogorelov, Y; Pol, M-E; Pompos, A; Pope, B G; Popov, A V; Potter, C; Prado da Silva, W L; Prosper, H B; Protopopescu, S; Qian, J; Quadt, A; Quinn, B; Rakitine, A; Rangel, M S; Rani, K J; Ranjan, K; Ratoff, P N; Renkel, P; Reucroft, S; Rich, P; Rijssenbeek, M; Ripp-Baudot, I; Rizatdinova, F; Robinson, S; Rodrigues, R F; Royon, C; Rubinov, P; Ruchti, R; Safronov, G; Sajot, G; Sánchez-Hernández, A; Sanders, M P; Santoro, A; Savage, G; Sawyer, L; Scanlon, T; Schaile, D; Schamberger, R D; Scheglov, Y; Schellman, H; Schieferdecker, P; Schliephake, T; Schmitt, C; Schwanenberger, C; Schwartzman, A; Schwienhorst, R; Sekaric, J; Sengupta, S; Severini, H; Shabalina, E; Shamim, M; Shary, V; Shchukin, A A; Shivpuri, R K; Shpakov, D; Siccardi, V; Simak, V; Sirotenko, V; Skubic, P; Slattery, P; Smirnov, D; Smith, R P; Snow, G R; Snow, J; Snyder, S; Söldner-Rembold, S; Sonnenschein, L; Sopczak, A; Sosebee, M; Soustruznik, K; Souza, M; Spurlock, B; Stark, J; Steele, J; Stolin, V; Stone, A; Stoyanova, D A; Strandberg, J; Strandberg, S; Strang, M A; Strauss, M; Ströhmer, R; Strom, D; Strovink, M; Stutte, L; Sumowidagdo, S; Svoisky, P; Sznajder, A; Talby, M; Tamburello, P; Tanasijczuk, A; Taylor, W; Telford, P; Temple, J; Tiller, B; Tissandier, F; Titov, M; Tokmenin, V V; Tomoto, M; Toole, T; Torchiani, I; Trefzger, T; Tsybychev, D; Tuchming, B; Tully, C; Tuts, P M; Unalan, R; Uvarov, L; Uvarov, S; Uzunyan, S; Vachon, B; van den Berg, P J; van Eijk, B; Van Kooten, R; van Leeuwen, W M; Varelas, N; Varnes, E W; Vartapetian, A; Vasilyev, I A; Vaupel, M; Verdier, P; Vertogradov, L S; Verzocchi, M; Villeneuve-Seguier, F; Vint, P; Von Toerne, E; Voutilainen, M; Vreeswijk, M; Wagner, R; Wahl, H D; Wang, L; Wang, M H L S; Warchol, J; Watts, G; Wayne, M; Weber, G; Weber, M; Weerts, H; Wenger, A; Wermes, N; Wetstein, M; White, A; Wicke, D; Wilson, G W; Wimpenny, S J; Wobisch, M; Wood, D R; Wyatt, T R; Xie, Y; Yacoob, S; Yamada, R; Yan, M; Yasuda, T; Yatsunenko, Y A; Yip, K; Yoo, H D; Youn, S W; Yu, C; Yu, J; Yurkewicz, A; Zatserklyaniy, A; Zeitnitz, C; Zhang, D; Zhao, T; Zhou, B; Zhu, J; Zielinski, M; Zieminska, D; Zieminski, A; Zivkovic, L; Zutshi, V; Zverev, E G
2007-10-05
We have measured the Lambda b lifetime using the exclusive decay Lambda b --> J/psi Lambda, based on 1.2 fb(-1) of data collected with the D0 detector during 2002-2006. From 171 reconstructed Lambda b decays, where the J/psi and Lambda are identified via the decays J/psi --> mu+ mu- and Lambda --> ppi, we measured the Lambda b lifetime to be tau(Lambda b)=1.218 (+0.130)/(-0.115) (stat) +/- 0.042(syst) ps. We also measured the B0 lifetime in the decay B0 --> J/psi(mu+ mu-)K(0)/(S)(pi+ pi-) to be tau(B0)=1.501 (+0.078)/(-0.074) (stat) +/- 0.050(syst) ps, yielding a lifetime ratio of tau(Lambda b)/tau(B0)=0.811 (+0.096)/(-0.087) (stat) +/- 0.034(syst).
ERIC Educational Resources Information Center
Futhey, Tracy
2005-01-01
In this column, the author discusses the four key questions related to the National LambdaRail (NLR) networking technology. NLR uses Dense Wave Division Multiplexing (DWDM) to enable multiple networks to coexist on a national fiber footprint, and is owned and operated not by carriers, but by the research and education community. The NLR Board…
{Lambda} single-particle energies
Bodmer, A.R.; Usmani, Q.N.; Sami, M.
1995-08-01
We are continuing our work on the {Lambda} hyperon single-particle (s.p.) energies and their interpretation in terms of the basic {Lambda}-nuclear interactions. In particular we are interpreting the results obtained by S.C. Pieper, A. Usmani and Q.N. Usmani. We obtain about 30 MeV for the repulsive contribution of the three-body {Lambda}NN forces in nuclear matter. We are able to exclude purely {open_quotes}dispersive{close_quotes} {Lambda}NN forces. We are investigating the mix of dispersive and two-pion-exchange {Lambda}NN forces which provide a fit to the s.p. data. For interactions, which provide a fit to the s.p. data, the {Lambda} binding energy as a function of the nuclear matter density shows characteristic saturation features with a maximum at a density not very different from that of normal nuclear matter. We obtain a more precise measure of the space-exchange part of the {Lambda}-nuclear force than was previously available, corresponding to an exchange parameter {approx_equal} 0.32. The space-exchange force is rather directly related to the effective mass of a {Lambda} in the nuclear medium and turns out to be about 70% of its free mass. As a result, we also obtain a much better value for the p-state {Lambda}-nucleus potential which is about 40% of the s-state potential. The A binding to nuclear matter is determined to be {approx_equal} 28 MeV.
Solution of the symmetric eigenproblem AX=lambda BX by delayed division
NASA Technical Reports Server (NTRS)
Thurston, G. A.; Bains, N. J. C.
1986-01-01
Delayed division is an iterative method for solving the linear eigenvalue problem AX = lambda BX for a limited number of small eigenvalues and their corresponding eigenvectors. The distinctive feature of the method is the reduction of the problem to an approximate triangular form by systematically dropping quadratic terms in the eigenvalue lambda. The report describes the pivoting strategy in the reduction and the method for preserving symmetry in submatrices at each reduction step. Along with the approximate triangular reduction, the report extends some techniques used in the method of inverse subspace iteration. Examples are included for problems of varying complexity.
Radiative decays of the Sigma0(1385) and Lambda(1520) hyperons
Simon Taylor; Gordon Mutchler; CLAS Collaboration
2005-03-01
The electromagnetic decays of the {Sigma}{sup 0}(1385) and {Lambda}(1520) hyperons were studied in photon-induced reactions {gamma} p {yields} K{sup +} {Lambda}(1116){gamma} in the CLAS detector at the Thomas Jefferson National Accelerator Facility. We report the first observation of the radiative decay of the {Sigma}{sup 0}(1385) and a measurement of the {Lambda}(1520) radiative decay width. For the {Sigma}{sup 0}(1385) {yields} {Lambda}(1116){gamma} transition, we measured a partial width of 479 {+-} 120(stat){sub -100}{sup +81}(sys) keV, larger than all of the existing model predictions. For the {Lambda}(1520) {yields} {Lambda}(1116){gamma} transition, we obtained a partial width of 167 {+-} 43(stat){sub -12}{sup +26}(sys) keV.
Chromosomal orientation of the lambda light chain locus: V lambda is proximal to C lambda in 22q11.
Emanuel, B S; Cannizzaro, L A; Magrath, I; Tsujimoto, Y; Nowell, P C; Croce, C M
1985-01-01
We have demonstrated that the chromosomal breakpoint at 22q11 of a Burkitt lymphoma cell line (PA682) with an 8;22 translocation interrupts the variable region of the lambda light chain locus. In these cells, all of the C lambda and some V lambda sequences translocate to the 8q+ chromosome whereas some V lambda sequences remain on the 22q-. These results indicate that the lambda light chain locus on the long arm of chromosome 22 is oriented such that V lambda is proximal to C lambda. Images PMID:3923432
Observational constraints on late-time {lambda}(t) cosmology
Carneiro, S.; Pigozzo, C.; Dantas, M. A.; Alcaniz, J. S.
2008-04-15
The cosmological constant {lambda}, i.e., the energy density stored in the true vacuum state of all existing fields in the Universe, is the simplest and the most natural possibility to describe the current cosmic acceleration. However, despite its observational successes, such a possibility exacerbates the well-known {lambda} problem, requiring a natural explanation for its small, but nonzero, value. In this paper we study cosmological consequences of a scenario driven by a varying cosmological term, in which the vacuum energy density decays linearly with the Hubble parameter, {lambda}{proportional_to}H. We test the viability of this scenario and study a possible way to distinguish it from the current standard cosmological model by using recent observations of type Ia supernova (Supernova Legacy Survey Collaboration), measurements of the baryonic acoustic oscillation from the Sloan Digital Sky Survey, and the position of the first peak of the cosmic microwave background angular spectrum from the three-year Wilkinson Microwave Anisotropy Probe.
New concurrent iterative methods with monotonic convergence
Yao, Qingchuan
1996-12-31
This paper proposes the new concurrent iterative methods without using any derivatives for finding all zeros of polynomials simultaneously. The new methods are of monotonic convergence for both simple and multiple real-zeros of polynomials and are quadratically convergent. The corresponding accelerated concurrent iterative methods are obtained too. The new methods are good candidates for the application in solving symmetric eigenproblems.
Frangione, B; Moloshok, T; Prelli, F; Solomon, A
1985-01-01
Serologic, structural, and genetic analyses have shown that the constant (C) region of human kappa light chains is encoded by a single gene, whereas that of lambda chains is encoded by multiple genes. We have determined the complete C region amino acid sequence of two monoclonal lambda VI light chains, Bence Jones proteins Sut and Mor. The C region of lambda chains Sut and Mor consists of 105 residues, as is characteristic for human lambda light chains, of which 102 are identical in sequence. Protein Sut has the C region sequence associated with the C lambda isotype Mcg-, Kern-, Oz+ and represents a product of the C lambda 3 (Kern-, Oz+) gene. Protein Mor has a C region sequence associated with Mcg-, Kern-, and Oz- proteins but differs from protein Sut by the presence of three amino acid interchanges at positions 168, 176, and 194. These substitutions distinguish protein Mor from lambda chains encoded by the C lambda 1 (Mcg+), C lambda 2 (Kern-, Oz-), and C lambda 3 (Kern-, Oz+) genes and provide further evidence for polymorphism of the human C lambda genome. The gene encoding the C region sequence of lambda chain Mor is designated CMor lambda. PMID:3923477
Isolation and characterization of lambda pleu bacteriophages.
Davis, M G; Calvo, J M
1977-02-01
In the Escherichia coli lysogen HfrH73 described by Shimada et al. (1973), none of the enzymes coded for by the leucine operon is synthesized due to an insertion of phage lambda into cistron leuA. The orientation of lambda in the chromosome is ara leuDCB lambda JAN leuA. After heat induction of the lysogen, plaque-forming transducing phages of two types are formed at low frequency. One type (e.g., lambda pleu9) transduces leuD, leuC, and leuB strains to prototrophy. The other type (e.g., lambda pleu 13) transduces leuA strains to prototrophy. lambda pleu 13 forms lysogens at low frequency (about 0.2%) by integration into the leucine operon. These lysogens are unstable, segregating phage-sensitive clones at high frequency (about 1%). Phages carrying different portions of the leucine operon were formed by aberrant excision after heat induction of strain CV437 (leuA371 lambda pleu13). A phage carrying the entire leucine operon (lambda K2) was constructed by a cross between lambda pleu9 and lambda pleu13. An analysis of leucine-forming enzyme levels in strains lysogenized with lambdaK2 indicated that leuO and leuP are present and functional in lambda K2. leu-specific messenger ribonucleic acid from E. coli hybridizes to the heavy (r) strand of lambdaK2. The leucine operon of lambda G4 pleuABCD (an S7 derivative of lambda K2) exists intact on a 7.3 x 10(6)-dalton fragment (lambdaG4EcoRI-B) generated by cleavage with endonuclease EcoRI. Heteroduplexes formed between lambda G4 and lambda show a 5.4 x 10(6)-dalton piece of bacterial deoxyribonucleic acid (DNA) replacing a 4.5 x 10(6)-dalton piece of lambda DNA starting at 0.46 fractional unit on the map of lambda. Fragment lambda G4EcoRI-B has about 0.6 x 10(6) daltons of lambda DNA from the b2 region at one end and about 1.4 x 10(6) daltons of lambda DNA from the int region at the other end.
The ITER project construction status
NASA Astrophysics Data System (ADS)
Motojima, O.
2015-10-01
The pace of the ITER project in St Paul-lez-Durance, France is accelerating rapidly into its peak construction phase. With the completion of the B2 slab in August 2014, which will support about 400 000 metric tons of the tokamak complex structures and components, the construction is advancing on a daily basis. Magnet, vacuum vessel, cryostat, thermal shield, first wall and divertor structures are under construction or in prototype phase in the ITER member states of China, Europe, India, Japan, Korea, Russia, and the United States. Each of these member states has its own domestic agency (DA) to manage their procurements of components for ITER. Plant systems engineering is being transformed to fully integrate the tokamak and its auxiliary systems in preparation for the assembly and operations phase. CODAC, diagnostics, and the three main heating and current drive systems are also progressing, including the construction of the neutral beam test facility building in Padua, Italy. The conceptual design of the Chinese test blanket module system for ITER has been completed and those of the EU are well under way. Significant progress has been made addressing several outstanding physics issues including disruption load characterization, prediction, avoidance, and mitigation, first wall and divertor shaping, edge pedestal and SOL plasma stability, fuelling and plasma behaviour during confinement transients and W impurity transport. Further development of the ITER Research Plan has included a definition of the required plant configuration for 1st plasma and subsequent phases of ITER operation as well as the major plasma commissioning activities and the needs of the accompanying R&D program to ITER construction by the ITER parties.
{lambda}NN Three-Body Force due to Coherent {lambda}-{sigma} Coupling
Akaishi, Yoshinori; Myint, Khin Swe
2008-04-29
The overbinding problem of {sub {lambda}}{sup 5}He is solved by introducing a concept of coherent {lambda}-{sigma} coupling which is equivalent to a {lambda}NN three-body force. This three-body force is coherently enhanced in the 0{sup +} states of {sub {lambda}}{sup 4}H and {sub {lambda}}{sup 4}He. The 0{sup +}-1{sup +} splitting in these hypernuclei is mainly due to coherent {lambda}-{sigma} coupling and partly due to the {lambda}N spin-spin interaction. A {lambda}NN three-body potential is derived from the coupled-channel treatment. The origin of the repulsive and attractive nature of the three-body force is discussed. Coherent {lambda}-{sigma} coupling becomes more important in neutron-rich hypernuclei and especially in neutron-star matter at high densities. The possible existence of ''hyperheavy hydrogen'', {sub {lambda}}{sup 6}H, is suggested.
Photoproduction of the Lambda*(1520) Hyperon
Z. W. Zhao, H. Y. Lu, L. Graham, K. Park, R. W. Gothe
2010-08-01
The photoproduction of the Lambda*(1520) on both the proton and neutron have been studied by using the CLAS eg3 run data set. The reactions are gammad-->K+Lambda*(n) and gammad-->K0Lambda*(p) with Lambda*-->pK-. Preliminary total and differential cross sections have been extracted in the photon energy region 1.75 GeV
NASA Astrophysics Data System (ADS)
Boozer, Allen
2016-10-01
ITER planning for avoiding runaway damage depends on magnetic surface breakup in fast relaxations. These arise in thermal quenches and in the spreading of impurities from massive gas injection or shattered pellets. Surface breakup would prevent a runaway to relativistic energies were it not for non-intercepting flux tubes, which contain magnetic field lines that do not intercept the walls. Such tubes persist near the magnetic axis and in the cores of islands but must dissipate before any confining surfaces re-form. Otherwise, a highly dangerous situation arises. Electrons that were trapped and accelerated in these flux tubes can fill a large volume of stochastic field lines and serve as a seed for the transfer of the full plasma current to runaways. If the outer confining surfaces are punctured, as by a drift into the wall, then the full runaway inventory will be lost in a short pulse along a narrow flux tube. Although not part of ITER planning, currents induced in the walls by the fast magnetic relaxation could be used to passively prevent outer surfaces re-forming. If magnetic surface breakup can be avoided during impurity injection, the plasma current could be terminated in tens of milliseconds by plasma cooling with no danger of runaway. Support by DoE Office of Fusion Energy Science Grant De-FG02-03ER54696.
Measurement of the Lambda(b) lifetime in the exclusive decay Lambda(b) ---> J / psi Lambda
Abazov, V.M.; Abbott, B.; Abolins, M.; Acharya, B.S.; Adams, M.; Adams, T.; Aguilo, E.; Ahn, S.H.; Ahsan, M.; Alexeev, G.D.; Alkhazov, G.; /Buenos Aires U. /Rio de Janeiro, CBPF /Rio de Janeiro State U. /Sao Paulo, IFT /Alberta U. /Simon Fraser U. /York U., Canada /McGill U. /Hefei, CUST /Andes U., Bogota /Charles U.
2007-04-01
We have measured the {lambda}{sub b} lifetime using the exclusive decay {lambda}{sub b}{yields}J/{psi}{lambda}, based on 1.2 fb{sup -1} of data collected with the D0 detector during 2002-2006. From 171 reconstructed {lambda}{sub b} decays, where the J/{psi} and {lambda} are identified via the decays J/{psi}{yields}{mu}{sup +}{mu}{sup -} and {lambda}{yields}p{pi}, we measured the {lambda}{sub b} lifetime to be {tau}({lambda}{sub b})=1.218{sub -0.115}{sup +0.130}(stat){+-}0.042(syst) ps. We also measured the B{sup 0} lifetime in the decay B{sup 0}{yields}J/{psi}({mu}{sup +}{mu}{sup -})K{sub S}{sup 0}({pi}{sup +}{pi}{sup -}) to be {tau}(B{sup 0})=1.501{sub -0.074}{sup +0.078}(stat){+-}0.050(syst) ps, yielding a lifetime ratio of {tau}({lambda}{sub b})/{tau}(B{sup 0})=0.811{sub -0.087}{sup +0.096}(stat){+-}0.034(syst = )
Variational Monte Carlo calculations for the binding energy of sub. Lambda. Lambda. sup 31 Si
Ahsan, M.H. ); Kaykobad, M. ); Ali, S. )
1991-01-01
The binding energy of the {Lambda}{Lambda} hypernucleus {sub {Lambda}{Lambda}}{sup 31}Si has been calculated variationally with a {sup 28}Si+{ital n}+{Lambda}+{Lambda} four-body model. The integrations have been carried out with the help of a Monte Carlo technique. Three different types of {Lambda}-{Lambda} and {Lambda}-{ital N} potentials have been used. {ital n}-{sup 28}Si and {Lambda}-{sup 28}Si potentials have been generated by folding the {ital N}-{ital N} and {Lambda}-{ital N} potentials into the harmonic-oscillator shell-model density distribution of {sup 28}Si. The calculated values of the binding energy for the three different potentials are 40.19, 46.30, and 39.90 MeV. These values are compared with the reported experimental value of 38.2{plus minus}6.3 MeV. The dependence of the binding energy on the depth of the {Lambda}-{Lambda} interaction has also been investigated.
{lambda}{sup 0} Polarization in Exclusive pp Reactions From the FNAL e690 Experiment
Felix, J.; Berisso, M. C.; Christian, D. C.; Gottschalk, E. E.; Gutierrez, G.; Wang, M. H. L. S.; Wehmann, A.; Gara, A.; Hartouni, E. P.; Knapp, B. C.; Kreisler, M. N.; Lee, S.; Markianos, K.; Moreno, G.; Reyes, M. A.; Wesson, D.
2009-04-20
It is an experimental evidence that all baryons are created polarized from unpolarized p-nucleus collisions. So far, the origin of this polarization remains unexplained in spite of the experimental evidences accumulated in the past thirty years. Up to these days, {lambda}{sup 0} is the most studied baryon for polarization, for it is copiously produced in p--nucleus collisions at the energies of the principal high energy physics accelerators of the world. This paper is an overview of the experimental evidences accumulated on the polarization of {lambda}{sup 0} from unpolarized exclusive pp collisions as function of x{sub F}, P{sub T}, and M({lambda}{sup 0}K{sup +}) in the past fifteen years inside Fermilab e690 experiment, in the particular reactions pp{yields}p{lambda}{sup 0}K{sup 0}{pi}{sup +}, pp{yields}pp{lambda}{sup 0}{lambda}{sup -0}, pp{yields}p{lambda}{sup 0}K{sup +}, produced at 800 GeV.
Abazov, Victor Mukhamedovich
2016-02-09
Here, we study $\\Lambda$ and $\\bar{\\Lambda}$ production asymmetries in $p \\bar{p} \\rightarrow \\Lambda (\\bar{\\Lambda}) X$, $p \\bar{p} \\rightarrow J/\\psi \\Lambda (\\bar{\\Lambda}) X$, and $p \\bar{p} \\rightarrow \\mu^\\pm \\Lambda (\\bar{\\Lambda}) X$ events recorded by the D0 detector at the Fermilab Tevatron collider at $\\sqrt{s} = 1.96$ TeV. We find an excess of $\\Lambda$'s ($\\bar{\\Lambda}$'s) produced in the proton (antiproton) direction. This forward-backward asymmetry is measured as a function of rapidity. We confirm that the $\\bar{\\Lambda}/\\Lambda$ production ratio, measured by several experiments with various targets and a wide range of energies, is a universal function of "rapidity loss", i.e., the rapidity difference of the beam proton and the lambda.
Abazov, Victor Mukhamedovich
2016-02-09
Here, we studymore » $$\\Lambda$$ and $$\\bar{\\Lambda}$$ production asymmetries in $$p \\bar{p} \\rightarrow \\Lambda (\\bar{\\Lambda}) X$$, $$p \\bar{p} \\rightarrow J/\\psi \\Lambda (\\bar{\\Lambda}) X$$, and $$p \\bar{p} \\rightarrow \\mu^\\pm \\Lambda (\\bar{\\Lambda}) X$$ events recorded by the D0 detector at the Fermilab Tevatron collider at $$\\sqrt{s} = 1.96$$ TeV. We find an excess of $$\\Lambda$$'s ($$\\bar{\\Lambda}$$'s) produced in the proton (antiproton) direction. This forward-backward asymmetry is measured as a function of rapidity. We confirm that the $$\\bar{\\Lambda}/\\Lambda$$ production ratio, measured by several experiments with various targets and a wide range of energies, is a universal function of "rapidity loss", i.e., the rapidity difference of the beam proton and the lambda.« less
Study of Lambda+(c) Cabibbo favored decays containing a Lambda baryon in the final state
Link, J.M.; Yager, P.M.; Anjos, J.C.; Bediaga, I.; Castromonte, C.; Machado, A.A.; Magnin, J.; Massafferri, A.; de Miranda, J.M.; Pepe, I.M.; Polycarpo, E.; dos Reis, A.C.; Carrillo, S.; Casimiro, E.; Cuautle, E.; Sanchez-Hernandez, A.; Uribe, C.; Vazquez, F.; Agostino, L.; Cinquini, L.; Cumalat, J.P.; /Colorado U. /Fermilab /Frascati /Guanajuato U. /Illinois U., Urbana /Indiana U. /Korea U. /Kyungpook Natl. U. /INFN, Milan /Milan U. /North Carolina U. /Pavia U. /INFN, Pavia /Rio de Janeiro, Pont. U. Catol. /Puerto Rico U., Mayaguez /South Carolina U. /Tennessee U. /Vanderbilt U. /Wisconsin U., Madison
2005-05-01
Using data from the FOCUS experiment (FNAL-E831), they study the decay of {Lambda}{sub c}{sup +} baryons into final states contain a {Lambda} hyperon. The branching fractions of {Lambda}{sub c}{sup +} into {Lambda}{pi}{sup +}, {Lambda}{pi}{sup +}{pi}{sup +}{pi}{sup -} and {Lambda}{bar K}{sup 0}K{sup +} relative to that into pK{sup -} {pi}{sup +} are measured to be 0.217 {+-} 0.013 {+-} 0.020, 0.508 {+-} 0.024 {+-} 0.024 and 0.142 {+-} 0.018 {+-} 0.022, respectively. New measurements are also reported. Further, an analysis of the subresonant structure for the {Lambda}{sub c}{sup +} {yields} {Lambda}{pi}{sup +}{pi}{sup +}{pi}{sup -} decay mode is presented.
Electromagnetic Decay of the $\\Sigma^{0}(1385)$ to $\\Lambda\\gamma$
Keller, Dustin; Adhikari, Krishna; Adikaram-Mudiyanselage, Dasuni; Aghasyan, Mher; Amaryan, Moscov; Baghdasaryan, Hovhannes; Ball, J P; Ball, Jacques; Battaglieri, Marco; Batourine, V; Bedlinskiy, Ivan; Bennett, Robert; Biselli, Angela; Branford, Derek; Briscoe, Wilbert; Brooks, William; Burkert, Volker; Careccia, Sharon; Carman, Daniel; Casey, Liam; Cole, Philip; Contalbrigo, Marco; Crede, Volker; D'Angelo, Annalisa; Daniel, AJI; Dashyan, Natalya; De Vita, Raffaella; De Sanctis, Enzo; Deur, Alexandre; Dey, Biplap; Dickson, Richard; Djalali, Chaden; Doughty, David; Dupre, Raphael; Egiyan, Hovanes; El Alaoui, Ahmed; Elfassi, Lamiaa; Eugenio, Paul; Fedotov, Gleb; Fegan, Stuart; Forest, Tony; Gabrielyan, Marianna; Gavalian, Gagik; Gevorgyan, Nerses; Giovanetti, Kevin; Girod, Francois-Xavier; Gohn, Wesley; Golovach, Evgeny; Gothe, Ralf; Graham, Lewis; Guidal, Michel; Guegan, Baptiste; Hafidi, Kawtar; Hakobyan, Hayk; Hanretty, Charles; Holtrop, Maurik; Ilieva, Yordanka; Ireland, David; Isupov, Evgeny; Jawalkar, Sucheta; Jenkins, David; Jo, Hyon-Suk; Joo, Kyungseon; Khandaker, Mahbubul; Khetarpal, Puneet; Kim, Andrey; Kim, Wooyoung; Klein, Andreas; Klein, Franz; Konczykowski, Piotr; Kubarovsky, Valery; Kuleshov, Sergey; Kuznetsov, Viacheslav; Lu, Haiyun; MacGregor, Ian; Markov, Nikolai; McAndrew, Josephine; KcKinnon, Bryan; Meyer, Curtis; Micherdzinska, Anna; Mirazita, Marco; Mokeev, Viktor; Moreno, Brahim; Moriya, Kei; Morrison, Brian; Moutarde, Herve; Munevar Espitia, Edwin; Nadel-Turonski, Pawel; Ni, Andrey; Niccolai, Silvia; Niculescu, Gabriel; Niculescu, Maria-Ioana; Osipenko, Mikhail; Ostrovidov, Alexander; Paremuzyan, Rafayel; Park, Kijun; Park, Sungkyun; Pasyuk, Eugene; Pasyuk, Evgueni; Pereira, Sergio; Pappalardo, Luciano; Pisano, Silvia; Pogorelko, Oleg; Pozdnyakov, Sergey; Price, John; Procureur, Sebastien; Protopopescu, Dan; Raue, Brian; Ripani, Marco; Ritchie, Barry; Rosner, Guenther; Rossi, Patrizia; Sabatie, Franck; Saini, Mukesh; Salgado, Carlos; Schott, Diane; Schumacher, Reinhard; Seder, Erin; Seraydaryan, Heghine; Sharabian, Youri; Smith, Elton; Smith, Gregory; Sober, Daniel; Stepanyan, Stepan; Stoler, Paul; Strakovski, Igor; Strauch, Steffen; Taiuti, Mauro; Tang, Wei; Taylor, Charles; Vernarsky, Brian; Vineyard, Michael; Voutier, Eric; Weinstein, Lawrence; Watts, Daniel; Wood, Michael; Zachariou, Nicholas; Zana, Lorenzo; Zhao, Bo; Zhao, Zhiwen
2011-04-01
The electromagnetic decay $\\Sigma^0(1385) \\to \\Lambda \\gamma$ was studied using the CLAS detector at the Thomas Jefferson National Accelerator Facility. A real photon beam with a maximum energy of 3.8 GeV was incident on a proton target, producing an exclusive final state of $K^+\\Sigma^{*0}$. We report the decay widths ratio $\\Sigma^0(1385) \\to \\Lambda\\gamma$/ $\\Sigma^0(1385) \\to \\Lambda\\pi^0$ = $1.42 \\pm 0.12(\\text{stat})_{-0.07}^{+0.11}(\\text{sys})$%. This ratio is larger than most theoretical predictions by factors ranging from 1.5-3, but is consistent with the only other experimental measurement. From the reported ratio we calculate the partial width and electromagnetic transition magnetic moment for $\\Sigma^0(1385) \\to \\Lambda\\gamma$.
US ITER / ORNL
2016-07-12
US ITER Project Manager Ned Sauthoff, joined by Wayne Reiersen, Team Leader Magnet Systems, and Jan Berry, Team Leader Tokamak Cooling System, discuss the U.S.'s role in the ITER international collaboration.
Recent developments in Lambda networking
NASA Astrophysics Data System (ADS)
de Laat, C.; Grosso, P.
About 6 years ago the first baby-steps were made on opening up dark fiber and DWDM infrastructure for direct use by ISP's after the transformation of the old style Telecom sector into a market driven business. Since then Lambda workshops, community groups like GLIF and a number of experiments have led to many implementations of hybrid national research and education networks and lightpath-based circuit exchanges as pioneered by SURFnet in GigaPort and NetherLight in collaboration with StarLight in Chicago and Canarie in Canada. This article looks back on those developments, describes some current open issues and research developments and proposes a concept of terabit networking.
Perturbed Coulomb potentials in the Klein-Gordon equation via the asymptotic iteration method
Barakat, T.
2009-03-15
The asymptotic iteration method is used to construct the exact energy eigenvalues for a Lorentz vector or a Lorentz scalar, and an equally mixed Lorentz vector and Lorentz scalar Coulombic potentials. Highly accurate and rapidly converging ground-state energies for Lorentz vector Coulomb with a Lorentz vector or a Lorentz scalar linear potential, V(r)=-{lambda}{sub 1}/r+krandV(r)=-{lambda}{sub 1}/randW(r)=kr, respectively, are obtained.
NASA Astrophysics Data System (ADS)
Uckan, N. A.; Milora, S. L.
2004-11-01
ITER (means ``the way''), a tokamak burning plasma experiment, is the next step device toward making fusion energy a reality. The programmatic objective of ITER is to demonstrate the scientific and technological feasibility of fusion energy for peaceful purposes. ITER began in 1985 as collaboration between the Russian Federation (former Soviet Union), the USA, European Union, and Japan. ITER conceptual and engineering design activities led to a detailed design in 2001. The USA opted out of the project between 1999-2003, but rejoined in 2004 for site selection and construction negotiations. China and Korea joined the project in 2003. Negotiations are continuing and a decision on the site for ITER construction [France versus Japan] is pending. The ITER international undertaking is an unprecedented scale and the six ITER parties represent 40% of the world population. By 2018, ITER will produce a fusion power of 500 million Watts for time periods up to an hour with one-tenth of the power needed to sustain it. Steady state operation is also possible at lower power levels with higher fraction of circulated power. The ITER parties invested about $1 billion into the research and development (R) and related fusion experiments to establish the ITER's feasibility. ORNL has been a key player in the ITER project and contributed to its physics and engineering design and related R since its inception. Recently, the U.S. DOE selected the PPPL/ORNL partnership to lead the U.S. project office for ITER.
Bacteriophage lambda: early pioneer and still relevant
Casjens, Sherwood R.; Hendrix, Roger W.
2015-01-01
Molecular genetic research on bacteriophage lambda carried out during its golden age from the mid 1950's to mid 1980's was critically important in the attainment of our current understanding of the sophisticated and complex mechanisms by which the expression of genes is controlled, of DNA virus assembly and of the molecular nature of lysogeny. The development of molecular cloning techniques, ironically instigated largely by phage lambda researchers, allowed many phage workers to switch their efforts to other biological systems. Nonetheless, since that time the ongoing study of lambda and its relatives have continued to give important new insights. In this review we give some relevant early history and describe recent developments in understanding the molecular biology of lambda's life cycle. PMID:25742714
Bacteriophage lambda: Early pioneer and still relevant.
Casjens, Sherwood R; Hendrix, Roger W
2015-05-01
Molecular genetic research on bacteriophage lambda carried out during its golden age from the mid-1950s to mid-1980s was critically important in the attainment of our current understanding of the sophisticated and complex mechanisms by which the expression of genes is controlled, of DNA virus assembly and of the molecular nature of lysogeny. The development of molecular cloning techniques, ironically instigated largely by phage lambda researchers, allowed many phage workers to switch their efforts to other biological systems. Nonetheless, since that time the ongoing study of lambda and its relatives has continued to give important new insights. In this review we give some relevant early history and describe recent developments in understanding the molecular biology of lambda's life cycle.
Calculation of two-dimensional lambda modes
Belchior, A. Jr. ); Moreira, J.M.L. )
1991-01-01
A system for on-line monitoring of power distribution in small reactors (known as MAP) is under development at COPESP-IPEN. Signals of self-powered neutron detectors are input to a program that estimates the power distribution as an expansion of lambda modes. The modal coefficients are obtained from a least-mean-squares technique adequate for real-time analysis. Three-dimensional lambda modes are synthesized out of one- and two-dimensional lambda modes. As a part of this project, a modification of a computer code was carried out in order to obtain the lambda modes. The results of this effort are summarized. The lambda modes are the solutions of the time-independent multigroup neutron diffusion equation, an eigenvalue equation. Normally, the computer codes produce the fundamental mode corresponding to the largest eigenvalue; their respective interpretations are neutron flux distribution and effective multiplication factor. For calculating higher order lambda modes it is usually necessary to eliminate the contribution of the lower modes from the fission source.
ERIC Educational Resources Information Center
Dobbs, David E.
2009-01-01
The main purpose of this note is to present and justify proof via iteration as an intuitive, creative and empowering method that is often available and preferable as an alternative to proofs via either mathematical induction or the well-ordering principle. The method of iteration depends only on the fact that any strictly decreasing sequence of…
A quark model of {bar {Lambda}}{Lambda} production in {bar p}p interactions
Alberg, M.A. |; Henley, E.M.; Wilets, L.; Kunz, P.D.
1993-12-31
A quark model which includes both scalar and vector contributions to the reaction mechanism (SV quark model) is used in a DWBA calculation of {anti {Lambda}}{Lambda} production in {bar p}p interactions. Total and differential cross-sections, polarizations, depolarizations, and spin-correlation coefficients are computed for laboratory momenta from threshold to 1695 MeV/c. The free parameters of the calculation are the scalar and vector strengths, a quark cluster size parameter, and the parameters of the unknown {anti {Lambda}}{Lambda} potentials. Good agreement with experiment is found for constructive interference of the scalar and vector terms, and for {anti {Lambda}}{Lambda} potentials which differ from those suggested by several authors on the basis of SU(3) arguments. The fit to the data is better than that obtained by other quark models, which use only scalar or vector annihilation terms. The agreement with experiment is also better than that found in meson-exchange models. The recent suggestion [1] that measurement of the depolarization parameter D{sub nn} can be used to discriminate between meson-exchange and quark models is examined in detail. We conclude that a measurement of D{sub nn} will provide a test of which of these models, as presently constructed, is the more appropriate description of strangeness production in the {bar p}p {yields} {anti {Lambda}}{Lambda} reaction.
Hashimoto, O; Honda, D; Kaneta, M; Kato, F; Kawama, D; Maruyama, N; Matsumura, A; Nakamura, S N; Nomura, H; Nonaka, K; Ohtani, A; Okayasu, Y; Osaka, M; Oyamada, M; Sumihama, M; Tamura, H; Baker, O K; Cole, L; Christy, M; Gueye, P; Keppel, C; Tang, L; Yuan, L; Acha, A; Baturin, P; Boeglin, W; Kramer, L; Markowitz, P; Pamela, P; Perez, N; Raue, B; Reinhold, J; Rivera, R; Kato, S; Sato, Y; Takahashi, T; Daniel, A; Hungerford, Ed V; Ispiryan, M; Kalantarians, N; Lan, K J; Li, Y; Miyoshi, T; Randeniya, S; Rodriguez, V M; Bosted, P; Carlini, R; Ent, R; Fenker, H; Gaskell, D; Jones, M; Mack, D; Roche, J; Smith, G; Tvaskis, V; Vulcan, W; Wood, S; Yan, C; Asaturyan, A; Asaturyan, R; Egiyan, K; Mkrtchyan, H; Margaryan, A; Navasardyan, T; Tadevosyan, V; Zamkochian, S; Hu, B; Song, Y; Luo, W; Androic, D; Furic, M; Petkovic, T; Seva, T; Ahmidouch, A; Danagoulian, S; Gasparian, A; Halkyard, R; Johnson, K; Simicevic, N; Wells, S; Niculescu, G; Niculescu, M I; Gan, L; Benmokhtar, F; Horn, T; Elassar, M; Gibson, E F
2011-09-01
The binding energy of 7LambdaHe has been obtained for the first time with reaction spectroscopy using the (e, e'K+) reaction at Jefferson Lab's Hall C. A comparison among the binding energies of the A = 7 T = l iso-triplet hypernuclei, 7LambdaHe, 7LambdaLi*and 7LambdaBe, is made and possible charge symmetry breaking (CSB) in the LambdaN potential is discussed. For 7LambdaHe and 7LambdaBe, the shifts in binding energies are opposite to those predicted by a recent cluster model calculation, which assumes that the unexplained part of the binding energy difference between 4LambdaH and 4LambdaHe, is due to the CSB of the LambdaN potential. Further examination of CSB in light hypernuclear systems is required both experimentally and theoretically.
NASA Astrophysics Data System (ADS)
Aymar, R.; Barabaschi, P.; Shimomura, Y.
2002-05-01
In 1998, after six years of joint work originally foreseen under the ITER engineering design activities (EDA) agreement, a design for ITER had been developed fulfilling all objectives and the cost target adopted by the ITER parties in 1992 at the start of the EDA. While accepting this design, the ITER parties recognized the possibility that they might be unable, for financial reasons, to proceed to the construction of the then foreseen device. The focus of effort in the ITER EDA since 1998 has been the development of a new design to meet revised technical objectives and a cost reduction target of about 50% of the previously accepted cost estimate. The rationale for the choice of parameters of the design has been based largely on system analysis drawing on the design solutions already developed and using the latest physics results and outputs from technology R&D projects. In so doing the joint central team and home teams converge towards a new design which will allow the exploration of a range of burning plasma conditions. The new ITER design, whilst having reduced technical objectives from its predecessor, will nonetheless meet the programmatic objective of providing an integrated demonstration of the scientific and technological feasibility of fusion energy. Background, design features, performance, safety features, and R&D and future perspectives of the ITER design are discussed.
Preparation and assay of phage lambda.
Dale, J W; Greenaway, P J
1985-01-01
Lambda, a temperate bacteriophage of E. coli, has two alternative modes of replication in sensitive cells, known as the lytic and lysogenic cycles. In the lytic cycle, after the lambda DNA enters the cells, various phage functions are expressed that result in the production of a large number of mature phage particles and cell lysis. In the lysogenic mode, which normally occurs in only a small proportion of the infected cells, the phage forms a more or less stable relationship with the host bacterium; this stable state is known as lysogeny. In a lysogenic cell, phage DNA is normally incorporated into the chromosomal DNA via specific attachment sites on both the phage DNA and the host chromosome. Replication of lambda DNA then occurs only during replication of the host chromosome, and the phage genome is inherited by each daughter cell at cell division. The phage is maintained in this prophage state through the action of a repressor protein, coded for by the phage gene cl. This repressor protein turns off the expression of virtually the whole of the lambda genome. If the repressor is inactivated, the expression of phage genes is initiated. This leads to the excision of lambda DNA from the host chromosome and entry into the lytic cycle. The balance between the lytic and lysogenic modes of replication is a delicate and complex one in which a key factor is the concentration of the cl gene product. Some of the many sources of further information about the basic biology of lambda phage are listed in the references to this chapter.
Lambda Exonuclease Digestion of CGG Trinucleotide Repeats
Conroy, R.S.; Koretsky, A.P.; Moreland, J.
2011-01-01
Fragile X syndrome and other triplet repeat diseases are characterized by an elongation of a repeating DNA triplet. The ensemble-averaged lambda exonuclease digestion rate of different substrates, including one with an elongated FMR1 gene containing 120 CGG repeats, was measured using absorption and fluorescence spectroscopy. Using magnetic tweezers sequence-dependent digestion rates and pausing was measured for individual lambda exonucleases. Within the triplet repeats a lower average and narrower distribution of rates and a higher frequency of pausing was observed. PMID:19562332
Perl Modules for Constructing Iterators
NASA Technical Reports Server (NTRS)
Tilmes, Curt
2009-01-01
The Iterator Perl Module provides a general-purpose framework for constructing iterator objects within Perl, and a standard API for interacting with those objects. Iterators are an object-oriented design pattern where a description of a series of values is used in a constructor. Subsequent queries can request values in that series. These Perl modules build on the standard Iterator framework and provide iterators for some other types of values. Iterator::DateTime constructs iterators from DateTime objects or Date::Parse descriptions and ICal/RFC 2445 style re-currence descriptions. It supports a variety of input parameters, including a start to the sequence, an end to the sequence, an Ical/RFC 2445 recurrence describing the frequency of the values in the series, and a format description that can refine the presentation manner of the DateTime. Iterator::String constructs iterators from string representations. This module is useful in contexts where the API consists of supplying a string and getting back an iterator where the specific iteration desired is opaque to the caller. It is of particular value to the Iterator::Hash module which provides nested iterations. Iterator::Hash constructs iterators from Perl hashes that can include multiple iterators. The constructed iterators will return all the permutations of the iterations of the hash by nested iteration of embedded iterators. A hash simply includes a set of keys mapped to values. It is a very common data structure used throughout Perl programming. The Iterator:: Hash module allows a hash to include strings defining iterators (parsed and dispatched with Iterator::String) that are used to construct an overall series of hash values.
ITER Cryoplant Infrastructures
NASA Astrophysics Data System (ADS)
Fauve, E.; Monneret, E.; Voigt, T.; Vincent, G.; Forgeas, A.; Simon, M.
2017-02-01
The ITER Tokamak requires an average 75 kW of refrigeration power at 4.5 K and 600 kW of refrigeration Power at 80 K to maintain the nominal operation condition of the ITER thermal shields, superconducting magnets and cryopumps. This is produced by the ITER Cryoplant, a complex cluster of refrigeration systems including in particular three identical Liquid Helium Plants and two identical Liquid Nitrogen Plants. Beyond the equipment directly part of the Cryoplant, colossal infrastructures are required. These infrastructures account for a large part of the Cryoplants lay-out, budget and engineering efforts. It is ITER Organization responsibility to ensure that all infrastructures are adequately sized and designed to interface with the Cryoplant. This proceeding presents the overall architecture of the cryoplant. It provides order of magnitude related to the cryoplant building and utilities: electricity, cooling water, heating, ventilation and air conditioning (HVAC).
Donne, A. J. H.; Hellermann, M. G. von; Barnsley, R.
2008-10-22
After an introduction into the specific challenges in the field of diagnostics for ITER (specifically high level of nuclear radiation, long pulses, high fluxes of particles to plasma facing components, need for reliability and robustness), an overview will be given of the spectroscopic diagnostics foreseen for ITER. The paper will describe both active neutral-beam based diagnostics as well as passive spectroscopic diagnostics operating in the visible, ultra-violet and x-ray spectral regions.
The Lambda Orionis association. [star cluster anomalies
NASA Technical Reports Server (NTRS)
Murdin, P.; Penston, M. V.
1977-01-01
The Lambda Orionis association has the photometric properties of a typical young cluster with an age of about 4 million yr. Its distance is 400 + or - 40 pc. Attention is drawn to the lack of a dense molecular cloud and associated infrared sources in this young grouping
Three-dimensional implicit lambda methods
NASA Technical Reports Server (NTRS)
Napolitano, M.; Dadone, A.
1983-01-01
This paper derives the three dimensional lambda-formulation equations for a general orthogonal curvilinear coordinate system and provides various block-explicit and block-implicit methods for solving them, numerically. Three model problems, characterized by subsonic, supersonic and transonic flow conditions, are used to assess the reliability and compare the efficiency of the proposed methods.
Saadd, Y.
1994-12-31
In spite of the tremendous progress achieved in recent years in the general area of iterative solution techniques, there are still a few obstacles to the acceptance of iterative methods in a number of applications. These applications give rise to very indefinite or highly ill-conditioned non Hermitian matrices. Trying to solve these systems with the simple-minded standard preconditioned Krylov subspace methods can be a frustrating experience. With the mathematical and physical models becoming more sophisticated, the typical linear systems which we encounter today are far more difficult to solve than those of just a few years ago. This trend is likely to accentuate. This workshop will discuss (1) these applications and the types of problems that they give rise to; and (2) recent progress in solving these problems with iterative methods. The workshop will end with a hopefully stimulating panel discussion with the speakers.
The Hyperon {Lambda}(1405) in p+p reactions
Siebenson, Johannes
2011-10-21
We present an analysis of the hyperon {Lambda}(1405) for p+p reactions at 3.5 GeV kinetic beam energy. The data were taken with the High Acceptance Di-Electron Spectrometer (HADES). A {Lambda}(1405) signal could be reconstructed in both charged decay channels ({Lambda}(1405){yields}{Sigma}{sup {+-}}{pi}{sup {+-}}).
Measurement of the Branching Fraction and Lambda-bar Polarization in B0 -> Lambda-par p pi-
Aubert, B.; Karyotakis, Y.; Lees, J.P.; Poireau, V.; Prencipe, E.; Prudent, X.; Tisserand, V.; Garra Tico, J.; Grauges, E.; Martinelli, M.; Palano, A.; Pappagallo, M.; Eigen, G.; Stugu, B.; Sun, L.; Battaglia, M.; Brown, D.N.; Kerth, L.T.; Kolomensky, Yu.G.; Lynch, G.; Osipenkov, I.L.; /LBL, Berkeley /UC, Berkeley /Birmingham U. /Ruhr U., Bochum /British Columbia U. /Brunel U. /Novosibirsk, IYF /UC, Irvine /UC, Riverside /UC, San Diego /UC, Santa Barbara /UC, Santa Cruz /Caltech /Cincinnati U. /Colorado U. /Colorado State U. /Dortmund U. /Dresden, Tech. U. /Ecole Polytechnique /Edinburgh U. /INFN, Ferrara /Ferrara U. /INFN, Ferrara /INFN, Ferrara /Ferrara U. /INFN, Ferrara /INFN, Ferrara /Ferrara U. /Frascati /INFN, Genoa /Genoa U. /INFN, Genoa /INFN, Genoa /Genoa U. /INFN, Genoa /INFN, Genoa /Genoa U. /Harvard U. /Heidelberg U. /Humboldt U., Berlin /Imperial Coll., London /Iowa U. /Iowa State U. /Johns Hopkins U. /Orsay, LAL /LLNL, Livermore /Liverpool U. /Queen Mary, U. of London /Royal Holloway, U. of London /Louisville U. /Mainz U., Inst. Kernphys. /Manchester U. /Maryland U. /Massachusetts U., Amherst /MIT, LNS /McGill U. /INFN, Milan /Milan U. /INFN, Milan /INFN, Milan /Milan U. /Mississippi U. /Montreal U. /Mt. Holyoke Coll. /INFN, Naples /Naples U. /INFN, Naples /INFN, Naples /Naples U. /NIKHEF, Amsterdam /Notre Dame U. /Ohio State U. /Oregon U. /INFN, Padua /Padua U. /INFN, Padua /INFN, Padua /Padua U. /Paris U., VI-VII /Pennsylvania U. /INFN, Perugia /Perugia U. /INFN, Pisa /Pisa U. /INFN, Pisa /Pisa, Scuola Normale Superiore /INFN, Pisa /Pisa U. /INFN, Pisa /Princeton U. /INFN, Rome /INFN, Rome /Rome U. /INFN, Rome /INFN, Rome /Rome U. /INFN, Rome /INFN, Rome /Rome U. /INFN, Rome /INFN, Rome /Rome U. /INFN, Rome /Rostock U. /Rutherford /DAPNIA, Saclay /SLAC /South Carolina U. /Stanford U., Phys. Dept. /SUNY, Albany /Tel Aviv U. /Tennessee U. /Texas U. /Texas U., Dallas /INFN, Turin /Turin U. /INFN, Trieste /Trieste U. /Valencia U., IFIC /Victoria U. /Warwick U. /Wisconsin U., Madison
2009-08-03
We present a measurement of the B{sup 0} {yields} {bar {Lambda}}p{pi}{sup -} branching fraction performed using the BABAR detector at the PEP-II asymmetric e{sup +}e{sup -} collider. Based on a sample of 467 x 10{sup 6} B{bar B} pairs we measure {Beta}(B{sup 0} {yields} {bar {Lambda}}p{pi}{sup -}) [3.07 {+-} 0.31(stat.) {+-} 0.23(syst.)] x 10{sup -6}. The measured differential spectrum as a function of the dibaryon invariant mass m({bar {Lambda}}p) shows a near-threshold enhancement similar to that observed in other baryonic B decays. We study the {bar {Lambda}} polarization as a function of {bar {Lambda}} energy in the B{sup 0} rest frame (E*{sub {bar {Lambda}}}) and compare it with theoretical expectations of fully longitudinally right-polarized {bar {Lambda}} at large E*{sub {bar {Lambda}}}.
Link, J.M.; Yager, P.M.; Anjos, J.C.; Bediaga, I.; Castromonte, C.; Machado, A.A.; Magnin, J.; Massafferri, A.; de Miranda, J.M.; Pepe, I.M.; Polycarpo, E.; dos Reis, A.C.; Carrillo, S.; Casimiro, E.; Cuautle, E.; Sanchez-Hernandez, A.; Uribe, C.; Vazquez, F.; Agostino, L.; Cinquini, L.; Cumalat, J.P.; /Colorado U. /Fermilab /Frascati /Guanajuato U. /Illinois U., Urbana /Indiana U. /Korea U. /Kyungpook Natl. U. /INFN, Milan /Milan U. /North Carolina U. /Pavia U. /INFN, Pavia /Rio de Janeiro, Pont. U. Catol. /Puerto Rico U., Mayaguez /South Carolina U. /Tennessee U. /Vanderbilt U. /Wisconsin U., Madison
2005-09-01
Using data from the FOCUS (E831) experiment at Fermilab, we present a new measurement of the weak decay-asymmetry parameter a{sub {Lambda}{sub c}} in {Lambda}{sub c}{sup +} {yields} {Lambda}{pi}{sup +} decay. Comparing particle with antiparticle decays, we obtain the first measurement of the CP violation parameter {Alpha} {triple_bond} a{sub {Lambda}{sub c}} + a{sub {ovr {Lambda}{sub c}}}/a{sub {Lambda}{sub c}} - a{sub {ovr {Lambda}{sub c}}}. We obtain a{sub {Lambda}{sub c}} = -0.78 {+-} 0.16 {+-} 0.13 and {Alpha} = -0.07 {+-} 0.19 {+-} 0.12 where errors are statistical and systematic.
Rescheduling with iterative repair
NASA Technical Reports Server (NTRS)
Zweben, Monte; Davis, Eugene; Daun, Brian; Deale, Michael
1992-01-01
This paper presents a new approach to rescheduling called constraint-based iterative repair. This approach gives our system the ability to satisfy domain constraints, address optimization concerns, minimize perturbation to the original schedule, and produce modified schedules quickly. The system begins with an initial, flawed schedule and then iteratively repairs constraint violations until a conflict-free schedule is produced. In an empirical demonstration, we vary the importance of minimizing perturbation and report how fast the system is able to resolve conflicts in a given time bound. These experiments were performed within the domain of Space Shuttle ground processing.
Rescheduling with iterative repair
NASA Technical Reports Server (NTRS)
Zweben, Monte; Davis, Eugene; Daun, Brian; Deale, Michael
1992-01-01
This paper presents a new approach to rescheduling called constraint-based iterative repair. This approach gives our system the ability to satisfy domain constraints, address optimization concerns, minimize perturbation to the original schedule, produce modified schedules, quickly, and exhibits 'anytime' behavior. The system begins with an initial, flawed schedule and then iteratively repairs constraint violations until a conflict-free schedule is produced. In an empirical demonstration, we vary the importance of minimizing perturbation and report how fast the system is able to resolve conflicts in a given time bound. We also show the anytime characteristics of the system. These experiments were performed within the domain of Space Shuttle ground processing.
Iterated multidimensional wave conversion
Brizard, A. J.; Tracy, E. R.; Johnston, D.; Kaufman, A. N.; Richardson, A. S.; Zobin, N.
2011-12-23
Mode conversion can occur repeatedly in a two-dimensional cavity (e.g., the poloidal cross section of an axisymmetric tokamak). We report on two novel concepts that allow for a complete and global visualization of the ray evolution under iterated conversions. First, iterated conversion is discussed in terms of ray-induced maps from the two-dimensional conversion surface to itself (which can be visualized in terms of three-dimensional rooms). Second, the two-dimensional conversion surface is shown to possess a symplectic structure derived from Dirac constraints associated with the two dispersion surfaces of the interacting waves.
Fourier mode analysis of source iteration in spatially periodic media
Zika, M.R.; Larsen, E.W.
1998-12-31
The standard Fourier mode analysis is an indispensable tool when designing acceleration techniques for transport iterations; however, it requires the assumption of a homogeneous infinite medium. For problems of practical interest, material heterogeneities may significantly impact iterative performance. Recent work has applied a Fourier analysis to the discretized two-dimensional transport operator with heterogeneous material properties. The results of these analyses may be difficult to interpret because the heterogeneity effects are inherently coupled to the discretization effects. Here, the authors describe a Fourier analysis of source iteration (SI) that allows the calculation of the eigenvalue spectrum for the one-dimensional continuous transport operator with spatially periodic heterogeneous media.
The {Lambda}(1405) in Full QCD
Menadue, Benjamin J.; Kamleh, Waseem; Leinweber, Derek B.; Mahbub, M. Selim
2011-12-14
At 1405.1 MeV, the lowest-lying negative-parity state of the {Lambda} baryon lies surprising low. Indeed, this is lower than the lowest negative-parity state of the nucleon, even though the {Lambda}(1405) possesses a valence strange quark. However, previous Lattice QCD studies have been unable to identify such a low-lying state. Using the PACS-CS (2+1)-flavour full-QCD ensembles, available through the ILDG, we utilise a variational analysis with source and sink smearing to isolate this elusive state. We find three low-lying odd-parity states, and for the first time reproduce the correct level ordering with respect to the nearby scattering thresholds.
The lambda point experiment in microgravity
NASA Technical Reports Server (NTRS)
Lipa, J. A.
1988-01-01
The motivation and potential for performing very high resolution measurements of the heat capacity singularity at the lambda point of helium in microgravity conditions was briefly discussed. It is clear that tests extending deep into the asymptotic region can be performed, where the theoretical predictions take on their simplest form. This advantageous situation should lead to a major improvement in the understanding of the range of applicability of current theoretical ideas in this field. The lambda transition holds out the prospect of giving the maximum advance of any system, and with the application of cryogenic techniques, the potential of this system can be realized. The technology for the initial experiments is already developed, and results could be obtained in 1990.
Overview of the Lambda-* Performance Reasoning Frameworks
2009-02-01
to check the satisfaction of these kinds of quality requirements have existed for several years, they are still not widely used because typical...sporadic server algorithm [Sprunt 1989]. The Lambda-* reasoning frameworks make the use of existing and new analysis theories (e.g., GRMA and the theory...sink pins within the same response can be ready to execute at the same time, they must have different priorities. These constraints exist for very
Duff, I.
1994-12-31
This workshop focuses on kernels for iterative software packages. Specifically, the three speakers discuss various aspects of sparse BLAS kernels. Their topics are: `Current status of user lever sparse BLAS`; Current status of the sparse BLAS toolkit`; and `Adding matrix-matrix and matrix-matrix-matrix multiply to the sparse BLAS toolkit`.
Dr. Norbert Holtkamp
2016-07-12
ITER (in Latin âthe wayâ) is designed to demonstrate the scientific and technological feasibility of fusion energy. Fusion is the process by which two light atomic nuclei combine to form a heavier over one and thus release energy. In the fusion process two isotopes of hydrogen â deuterium and tritium â fuse together to form a helium atom and a neutron. Thus fusion could provide large scale energy production without greenhouse effects; essentially limitless fuel would be available all over the world. The principal goals of ITER are to generate 500 megawatts of fusion power for periods of 300 to 500 seconds with a fusion power multiplication factor, Q, of at least 10. Q ? 10 (input power 50 MW / output power 500 MW). The ITER Organization was officially established in Cadarache, France, on 24 October 2007. The seven members engaged in the project â China, the European Union, India, Japan, Korea, Russia and the United States â represent more than half the worldâs population. The costs for ITER are shared by the seven members. The cost for the construction will be approximately 5.5 billion Euros, a similar amount is foreseen for the twenty-year phase of operation and the subsequent decommissioning.
Bobyshev, A.; Crawford, M.; DeMar, P.; Grigaliunas, V.; Grigoriev, M.; Moibenko, A.; Petravick, D.; Rechenmacher, R.; Newman, H.; Bunn, J.; Van Lingen, F.; Nae, D.; Ravot, S.; Steenberg, C.; Su, X.; Thomas, M.; Xia, Y.; /Caltech
2006-08-01
Lambda Station is an ongoing project of Fermi National Accelerator Laboratory and the California Institute of Technology. The goal of this project is to design, develop and deploy network services for path selection, admission control and flow based forwarding of traffic among data-intensive Grid applications such as are used in High Energy Physics and other communities. Lambda Station deals with the last-mile problem in local area networks, connecting production clusters through a rich array of wide area networks. Selective forwarding of traffic is controlled dynamically at the demand of applications. This paper introduces the motivation of this project, design principles and current status. Integration of Lambda Station client API with the essential Grid middleware such as the dCache/SRM Storage Resource Manager is also described. Finally, the results of applying Lambda Station services to development and production clusters at Fermilab and Caltech over advanced networks such as DOE's UltraScience Net and NSF's UltraLight is covered.
Regulation of replication of lambda phage and lambda plasmid DNAs at low temperature.
Gabig, M; Obuchowski, M; Srutkowska, S; Wegrzyn, G
1998-06-01
It was previously demonstrated that while lysogenic development of bacteriophage lambda in Escherichia coli proceeds normally at low temperature (20-25 degrees C), lytic development is blocked under these conditions owing to the increased stability of the phage CII protein. This effect was proposed to be responsible for the increased stimulation of the pE promoter, which interferes with expression of the replication genes, leading to inhibition of phage DNA synthesis. Here we demonstrate that the burst size of phage lambda cIb2, which is incapable of lysogenic development, increases gradually over the temperature range from 20 to 37 degrees C, while no phage progeny are observed at 20 degrees C. Contrary to previous reports, it is possible to demonstrate that pE promoter activation by CII may be more efficient at lower temperature. Using density-shift experiments, we found that phage DNA replication is completely blocked at 20 degrees C. Phage growth was also inhibited in cells overexpressing cII, which confirms that CII is responsible for inhibition of phage DNA replication. Unexpectedly, we found that replication of plasmids derived from bacteriophage lambda is neither inhibited at 20 degrees C nor in cells overexpressing cII. We propose a model to explanation the differences in replication observed between lambda phage and lambda plasmid DNA at low temperature.
Differential Photoproduction Cross Sections of the Sigma0(1385), Lambda(1405), and Lambda(1520)
Moriya, Kei; Schumacher, Reinhard A.
2013-10-01
We report the exclusive photoproduction cross sections for the Sigma(1385), Lambda(1405), and Lambda(1520) in the reactions gamma + p -> K+ + Y* using the CLAS detector for energies from near the respective production thresholds up to a center-of-mass energy W of 2.85 GeV. The differential cross sections are integrated to give the total exclusive cross sections for each hyperon. Comparisons are made to current theoretical models based on the effective Lagrangian approach and fitted to previous data. The accuracy of these models is seen to vary widely. The cross sections for the Lambda(1405) region are strikingly different for the Sigma+pi-, Sigma0 pi0, and Sigma- pi+ decay channels, indicating the effect of isospin interference, especially at W values close to the threshold.
Iterative Brinkman penalization for remeshed vortex methods
NASA Astrophysics Data System (ADS)
Hejlesen, Mads Mølholm; Koumoutsakos, Petros; Leonard, Anthony; Walther, Jens Honoré
2015-01-01
We introduce an iterative Brinkman penalization method for the enforcement of the no-slip boundary condition in remeshed vortex methods. In the proposed method, the Brinkman penalization is applied iteratively only in the neighborhood of the body. This allows for using significantly larger time steps, than what is customary in the Brinkman penalization, thus reducing its computational cost while maintaining the capability of the method to handle complex geometries. We demonstrate the accuracy of our method by considering challenging benchmark problems such as flow past an impulsively started cylinder and normal to an impulsively started and accelerated flat plate. We find that the present method enhances significantly the accuracy of the Brinkman penalization technique for the simulations of highly unsteady flows past complex geometries.
1990-10-01
is probably a bad idea. A better versica would use a temporary: (defmacro sum-of-squares (expr) (let ((temp ( gensym ))) ’(lot (,temp ,expr)) (sum...val ( gensym )) (tempi ( gensym )) (temp2 ( gensym )) (winner (or var iterate::*result-var*))) ’(progn (with ,max-val - nil) (with ,winner = nil) (cond ((null...the elements of a vector (disregards fill-pointer)" (let ((vect ( gensym )) (end ( gensym )) (index ( gensym ))) ’(progn (with ,vect - v) (with ,end = (array
Barnes, C.W.; Loughlin, M.J.; Nishitani, Takeo
1996-04-29
There are three primary goals for the Neutron Activation system for ITER: maintain a robust relative measure of fusion power with stability and high dynamic range (7 orders of magnitude); allow an absolute calibration of fusion power (energy); and provide a flexible and reliable system for materials testing. The nature of the activation technique is such that stability and high dynamic range can be intrinsic properties of the system. It has also been the technique that demonstrated (on JET and TFTR) the highest accuracy neutron measurements in DT operation. Since the gamma-ray detectors are not located on the tokamak and are therefore amenable to accurate characterization, and if material foils are placed very close to the ITER plasma with minimum scattering or attenuation, high overall accuracy in the fusion energy production (7--10%) should be achievable on ITER. In the paper, a conceptual design is presented. A system is shown to be capable of meeting these three goals, also detailed design issues remain to be solved.
Johnson, L.C.; Barnes, C.W.; Batistoni, P.
1998-12-31
Neutron cameras with horizontal and vertical views have been designed for ITER, based on systems used on JET and TFTR. The cameras consist of fan-shaped arrays of collimated flight tubes, with suitably chosen detectors situated outside the biological shield. The sight lines view the ITER plasma through slots in the shield blanket and penetrate the vacuum vessel, cryostat, and biological shield through stainless steel windows. This paper analyzes the expected performance of several neutron camera arrangements for ITER. In addition to the reference designs, the authors examine proposed compact cameras, in which neutron fluxes are inferred from {sup 16}N decay gammas in dedicated flowing water loops, and conventional cameras with fewer sight lines and more limited fields of view than in the reference designs. It is shown that the spatial sampling provided by the reference designs is sufficient to satisfy target measurement requirements and that some reduction in field of view may be permissible. The accuracy of measurements with {sup 16}N-based compact cameras is not yet established, and they fail to satisfy requirements for parameter range and time resolution by large margins.
Measurement of the Lambda0b lifetime in the decay lambda0b--> J/psiLambda0 with the D0 detector.
Abazov, V M; Abbott, B; Abolins, M; Acharya, B S; Adams, M; Adams, T; Agelou, M; Agram, J-L; Ahn, S H; Ahsan, M; Alexeev, G D; Alkhazov, G; Alton, A; Alverson, G; Alves, G A; Anastasoaie, M; Anderson, S; Andrieu, B; Arnoud, Y; Askew, A; Asman, B; Atramentov, O; Autermann, C; Avila, C; Badaud, F; Baden, A; Baldin, B; Balm, P W; Banerjee, S; Barberis, E; Bargassa, P; Baringer, P; Barnes, C; Barreto, J; Bartlett, J F; Bassler, U; Bauer, D; Bean, A; Beauceron, S; Begel, M; Bellavance, A; Beri, S B; Bernardi, G; Bernhard, R; Bertram, I; Besançon, M; Beuselinck, R; Bezzubov, V A; Bhat, P C; Bhatnagar, V; Binder, M; Black, K M; Blackler, I; Blazey, G; Blekman, F; Blessing, S; Bloch, D; Blumenschein, U; Boehnlein, A; Boeriu, O; Bolton, T A; Borcherding, F; Borissov, G; Bos, K; Bose, T; Brandt, A; Brock, R; Brooijmans, G; Bross, A; Buchanan, N J; Buchholz, D; Buehler, M; Buescher, V; Burdin, S; Burnett, T H; Busato, E; Butler, J M; Bystricky, J; Carvalho, W; Casey, B C K; Cason, N M; Castilla-Valdez, H; Chakrabarti, S; Chakraborty, D; Chan, K M; Chandra, A; Chapin, D; Charles, F; Cheu, E; Chevalier, L; Cho, D K; Choi, S; Christiansen, T; Christofek, L; Claes, D; Clément, B; Clément, C; Coadou, Y; Cooke, M; Cooper, W E; Coppage, D; Corcoran, M; Coss, J; Cothenet, A; Cousinou, M-C; Crépé-Renaudin, S; Cristetiu, M; Cummings, M A C; Cutts, D; da Motta, H; Davies, B; Davies, G; Davis, G A; De, K; de Jong, P; de Jong, S J; De La Cruz-Burelo, E; De Oliveira Martins, C; Dean, S; Déliot, F; Delsart, P A; Demarteau, M; Demina, R; Demine, P; Denisov, D; Denisov, S P; Desai, S; Diehl, H T; Diesburg, M; Doidge, M; Dong, H; Doulas, S; Duflot, L; Dugad, S R; Duperrin, A; Dyer, J; Dyshkant, A; Eads, M; Edmunds, D; Edwards, T; Ellison, J; Elmsheuser, J; Eltzroth, J T; Elvira, V D; Eno, S; Ermolov, P; Eroshin, O V; Estrada, J; Evans, D; Evans, H; Evdokimov, A; Evdokimov, V N; Fast, J; Fatakia, S N; Feligioni, L; Ferbel, T; Fiedler, F; Filthaut, F; Fisher, W; Fisk, H E; Fortner, M; Fox, H; Freeman, W; Fu, S; Fuess, S; Gadfort, T; Galea, C F; Gallas, E; Galyaev, E; Garcia, C; Garcia-Bellido, A; Gardner, J; Gavrilov, V; Gay, P; Gelé, D; Gelhaus, R; Genser, K; Gerber, C E; Gershtein, Y; Ginther, G; Golling, T; Gómez, B; Gounder, K; Goussiou, A; Grannis, P D; Greder, S; Greenlee, H; Greenwood, Z D; Gregores, E M; Gris, Ph; Grivaz, J-F; Groer, L; Grünendahl, S; Grünewald, M W; Gurzhiev, S N; Gutierrez, G; Gutierrez, P; Haas, A; Hadley, N J; Hagopian, S; Hall, I; Hall, R E; Han, C; Han, L; Hanagaki, K; Harder, K; Harrington, R; Hauptman, J M; Hauser, R; Hays, J; Hebbeker, T; Hedin, D; Heinmiller, J M; Heinson, A P; Heintz, U; Hensel, C; Hesketh, G; Hildreth, M D; Hirosky, R; Hobbs, J D; Hoeneisen, B; Hohlfeld, M; Hong, S J; Hooper, R; Houben, P; Hu, Y; Huang, J; Iashvili, I; Illingworth, R; Ito, A S; Jabeen, S; Jaffré, M; Jain, S; Jain, V; Jakobs, K; Jenkins, A; Jesik, R; Johns, K; Johnson, M; Jonckheere, A; Jonsson, P; Jöstlein, H; Juste, A; Kado, M M; Käfer, D; Kahl, W; Kahn, S; Kajfasz, E; Kalinin, A M; Kalk, J; Karmanov, D; Kasper, J; Kau, D; Kehoe, R; Kermiche, S; Kesisoglou, S; Khanov, A; Kharchilava, A; Kharzheev, Y M; Kim, K H; Klima, B; Klute, M; Kohli, J M; Kopal, M; Korablev, V M; Kotcher, J; Kothari, B; Koubarovsky, A; Kozelov, A V; Kozminski, J; Krzywdzinski, S; Kuleshov, S; Kulik, Y; Kunori, S; Kupco, A; Kurca, T; Lager, S; Lahrichi, N; Landsberg, G; Lazoflores, J; Le Bihan, A-C; Lebrun, P; Lee, S W; Lee, W M; Leflat, A; Lehner, F; Leonidopoulos, C; Lewis, P; Li, J; Li, Q Z; Lima, J G R; Lincoln, D; Linn, S L; Linnemann, J; Lipaev, V V; Lipton, R; Lobo, L; Lobodenko, A; Lokajicek, M; Lounis, A; Lubatti, H J; Lueking, L; Lynker, M; Lyon, A L; Maciel, A K A; Madaras, R J; Mättig, P; Magerkurth, A; Magnan, A-M; Makovec, N; Mal, P K; Malik, S; Malyshev, V L; Mao, H S; Maravin, Y; Martens, M; Mattingly, S E K; Mayorov, A A; McCarthy, R; McCroskey, R; Meder, D; Melanson, H L; Melnitchouk, A; Merkin, M; Merritt, K W; Meyer, A; Miettinen, H; Mihalcea, D; Mitrevski, J; Mokhov, N; Molina, J; Mondal, N K; Montgomery, H E; Moore, R W; Muanza, G S; Mulders, M; Mutaf, Y D; Nagy, E; Narain, M; Naumann, N A; Neal, H A; Negret, J P; Nelson, S; Neustroev, P; Noeding, C; Nomerotski, A; Novaes, S F; Nunnemann, T; Nurse, E; O'dell, V; O'Neil, D C; Oguri, V; Oliveira, N; Oshima, N; Otero Y Garzón, G J; Padley, P; Parashar, N; Park, J; Park, S K; Parsons, J; Partridge, R; Parua, N; Patwa, A; Perea, P M; Perez, E; Peters, O; Pétroff, P; Petteni, M; Phaf, L; Piegaia, R; Podesta-Lerma, P L M; Podstavkov, V M; Pogorelov, Y; Pope, B G; da Silva, W L Prado; Prosper, H B; Protopopescu, S; Przybycien, M B; Qian, J; Quadt, A; Quinn, B; Rani, K J; Rapidis, P A; Ratoff, P N; Reay, N W; Reucroft, S; Rijssenbeek, M; Ripp-Baudot, I; Rizatdinova, F; Royon, C; Rubinov, P; Ruchti, R; Sajot, G; Sánchez-Hernández, A; Sanders, M P; Santoro, A; Savage, G; Sawyer, L; Scanlon, T; Schamberger, R D; Schellman, H; Schieferdecker, P; Schmitt, C; Schukin, A A; Schwartzman, A; Schwienhorst, R; Sengupta, S; Severini, H; Shabalina, E; Shamim, M; Shary, V; Shephard, W D; Shpakov, D; Sidwell, R A; Simak, V; Sirotenko, V; Skubic, P; Slattery, P; Smith, R P; Smolek, K; Snow, G R; Snow, J; Snyder, S; Söldner-Rembold, S; Song, X; Song, Y; Sonnenschein, L; Sopczak, A; Sosebee, M; Soustruznik, K; Souza, M; Spurlock, B; Stanton, N R; Stark, J; Steele, J; Steinbrück, G; Stevenson, K; Stolin, V; Stone, A; Stoyanova, D A; Strandberg, J; Strang, M A; Strauss, M; Ströhmer, R; Strovink, M; Stutte, L; Sumowidagdo, S; Sznajder, A; Talby, M; Tamburello, P; Taylor, W; Telford, P; Temple, J; Tentindo-Repond, S; Thomas, E; Thooris, B; Tomoto, M; Toole, T; Torborg, J; Towers, S; Trefzger, T; Trincaz-Duvoid, S; Tuchming, B; Tully, C; Turcot, A S; Tuts, P M; Uvarov, L; Uvarov, S; Uzunyan, S; Vachon, B; Van Kooten, R; van Leeuwen, W M; Varelas, N; Varnes, E W; Vasilyev, I A; Vaupel, M; Verdier, P; Vertogradov, L S; Verzocchi, M; Villeneuve-Seguier, F; Vlimant, J-R; Von Toerne, E; Vreeswijk, M; Vu Anh, T; Wahl, H D; Walker, R; Wang, L; Wang, Z-M; Warchol, J; Warsinsky, M; Watts, G; Wayne, M; Weber, M; Weerts, H; Wegner, M; Wermes, N; White, A; White, V; Whiteson, D; Wicke, D; Wijngaarden, D A; Wilson, G W; Wimpenny, S J; Wittlin, J; Wobisch, M; Womersley, J; Wood, D R; Wyatt, T R; Xu, Q; Xuan, N; Yamada, R; Yan, M; Yasuda, T; Yatsunenko, Y A; Yen, Y; Yip, K; Youn, S W; Yu, J; Yurkewicz, A; Zabi, A; Zatserklyaniy, A; Zdrazil, M; Zeitnitz, C; Zhang, D; Zhang, X; Zhao, T; Zhao, Z; Zhou, B; Zhu, J; Zielinski, M; Zieminska, D; Zieminski, A; Zitoun, R; Zutshi, V; Zverev, E G; Zylberstejn, A
2005-03-18
We present measurements of the Lambda(0)(b) lifetime in the exclusive decay channel Lambda(0)(b)--> J/psiLambda(0), with J/psi--> mu(+)mu(-) and Lambda(0)--> ppi(-), the B0 lifetime in the decay B0-->J/psiK(0)(S) with J/psi--> mu(+)mu(-) and K(0)(S)-->pi(+)pi(-), and the ratio of these lifetimes. The analysis is based on approximately 250 pb(-1) of data recorded with the D0 detector in pp collisions at sqrt[s] = 1.96 TeV. The Lambda(0)(b) lifetime is determined to be tau(Lambda(0)(b)) = 1.22(+0.22)(-0.18)(stat) +/- 0.04(syst) ps, the B0 lifetime tau(B0) = 1.40(+0.11)(-0.10)(stat) +/- 0.03(syst) ps, and the ratio tau(Lambda(0)(b))/tau(B0) = 0.87(+0.17)(-0.14)(stat) +/- 0.03(syst). In contrast with previous measurements using semileptonic decays, this is the first determination of the Lambda(0)(b) lifetime based on a fully reconstructed decay channel.
A Multi-Grid Iterative Method for Photoacoustic Tomography.
Javaherian, Ashkan; Holman, Sean
2016-11-04
Inspired by the recent advances on minimizing nonsmooth or bound-constrained convex functions on models using varying degrees of fidelity, we propose a line search multigrid (MG) method for full-wave iterative image reconstruction in photoacoustic tomography (PAT) in heterogeneous media. To compute the search direction at each iteration, we decide between the gradient at the target level, or alternatively an approximate error correction at a coarser level, relying on some predefined criteria. To incorporate absorption and dispersion, we derive the analytical adjoint directly from the first-order acoustic wave system. The effectiveness of the proposed method is tested on a total-variation penalized Iterative Shrinkage Thresholding algorithm (ISTA) and its accelerated variant (FISTA), which have been used in many studies of image reconstruction in PAT. The results show the great potential of the proposed method in improving speed of iterative image reconstruction.
Remarks on the generalized Tukey's lambda family of distributions
Lam, H.; Bowman, K.O.; Shenton, L.R.
1980-01-01
The family of curves generated by the mapping of the uniform density F/sup -1/(lambda) = ..cap alpha.. + ..beta..(lambda/sup ..gamma..delta/ - (1-lambda)/sup ..gamma../)/..gamma.., 0 < lambda < 1, is considered. Primary interest is the application of the above density to approximating theoretical distribution functions of test statistics such as S.D., skewness, and kurtosis under non-normality. Moments are straight forward to evaluate in terms of gamma functions, or polygamma functions in special cases. 1 figure, 8 tables. (RWR)
Charge-symmetry breaking {Lambda}-nucleon interaction
Bodmer, A.R.; Murali, M.; Usmani, Q.N.
1995-08-01
Some time ago we showed that the charge-symmetry-breaking interaction, as obtained from the mass four hypernuclei ({sub {Lambda}}{sup 4}H, {sub {Lambda}}{sup 4}He), was spin-independent; a result which cannot be understood with the conventional meson-exchange models. The calculations of ({sub {Lambda}}{sup 4}H, {sub {Lambda}}{sup 4}He) are currently being extended to include noncentral nuclear and hypernuclear forces which could modify this result. At a more fundamental level we intend to study quark-structure contributions to the charge-symmetry-breaking interaction.
Elser, V.; Rankenburg, I.; Thibault, P.
2007-01-01
In many problems that require extensive searching, the solution can be described as satisfying two competing constraints, where satisfying each independently does not pose a challenge. As an alternative to tree-based and stochastic searching, for these problems we propose using an iterated map built from the projections to the two constraint sets. Algorithms of this kind have been the method of choice in a large variety of signal-processing applications; we show here that the scope of these algorithms is surprisingly broad, with applications as diverse as protein folding and Sudoku. PMID:17202267
Iterative Magnetometer Calibration
NASA Technical Reports Server (NTRS)
Sedlak, Joseph
2006-01-01
This paper presents an iterative method for three-axis magnetometer (TAM) calibration that makes use of three existing utilities recently incorporated into the attitude ground support system used at NASA's Goddard Space Flight Center. The method combines attitude-independent and attitude-dependent calibration algorithms with a new spinning spacecraft Kalman filter to solve for biases, scale factors, nonorthogonal corrections to the alignment, and the orthogonal sensor alignment. The method is particularly well-suited to spin-stabilized spacecraft, but may also be useful for three-axis stabilized missions given sufficient data to provide observability.
NASA Astrophysics Data System (ADS)
Sidorin, Anatoly
2010-01-01
In linear accelerators the particles are accelerated by either electrostatic fields or oscillating Radio Frequency (RF) fields. Accordingly the linear accelerators are divided in three large groups: electrostatic, induction and RF accelerators. Overview of the different types of accelerators is given. Stability of longitudinal and transverse motion in the RF linear accelerators is briefly discussed. The methods of beam focusing in linacs are described.
Flame acceleration studies in the MINIFLAME facility
Tieszen, S.R.; Sherman, M.P.; Benedick, W.B.
1989-07-01
Flame acceleration and deflagration-to-detonation transition (DDT) studies have been conducted in a 19.4-cm high, 14.5-cm wide, and 2. 242-m long channel (MINIFLAME) that is a 1:12.6 scale model of the 136-m{sup 3} FLAME facility. Tests were conducted with two levels of hydrogen concentration -- 20% and 30%, with and without obstacles in the channel, and with three levels of transverse top venting -- 0%, 13%, and 50%. The flame acceleration results in MINIFLAME are qualitatively similar to those in FLAME; however, the small-scale results are more benign quantitatively. The results show that insufficient venting, 13% venting in this case, can promote flame acceleration due to turbulence produced by the flow through the vents in smooth channels. However, with obstacle-generated turbulence in the channel, 13% top venting was found to be beneficial. Flame acceleration resulting in DDT was shown to occur in as little as 35 liters of mixture. Comparison of the DDT data with obstacles in MINIFLAME and FLAME supports d/{lambda} scaling of DDT, where {lambda} is the detonation cell width of the mixture and d is the characteristic open diameter of the channel. In the MINIFLAME and FLAME tests, DDT occurred for d/{lambda} greater than approximately three. Comparison with other experiments shows that the value of d/{lambda} for DDT is not constant but depends on the obstacle type, spacing, and channel geometry. The comparison of MINIFLAME and FLAME experiments extends the use of d/{lambda} scaling to different geometries and larger scales than previous studies. Small-scale-model testing of flame acceleration and DDT with the same combustible mixture as the full-scale prototype underpredicts flame speeds, overpressures, and the possibility of DDT. 18 refs., 16 figs.
Microtearing instability in ITER*
NASA Astrophysics Data System (ADS)
Wong, King-Lap; Mikkelsen, David; Budny, Robert; Breslau, Joshua
2010-11-01
Microtearing modes are found to be unstable in some regions of a simulated ITER H-mode plasma [1] with the GS2 code [2]. Modes with kρs>1 are in the interior (r/a˜0.65-0.85) while longer wavelength modes are in the pedestal region. This instability may keep the pedestal within the peeling-ballooning stability boundary [3]. Microtearing modes can produce stochastic magnetic field similar to RMP coils; they may have similar effects on ELMs by increasing the pedestal width. The possibility of using this technique for ELM mitigation in ITER is explored. We propose to use a deuterium gas jet to control the microtearing instability and the Chirikov parameter at the edge. Preliminary evaluation of its effectiveness will be presented and the limitations of the GS2 code will be discussed based on our understanding from NSTX [4]. *This work is supported by USDoE contract DE-AC02-09CH11466. [4pt] [1] R. V. Budny, Nucl. Fusion (2009)[0pt] [2] W. Dorland et al., Phys. Rev. Lett. (2000).[0pt] [3] P. B. Snyder et al.,Nucl. Fusion (2009).[0pt] [4] K. L. Wong et al., Phys. Rev. Lett. (2007).
Microscopic theory of the lambda transition
Toyoda, T.
1982-06-01
Starting with a microscopic hamiltonian for a many-boson system with a hardcore interaction, the grand potential of the system, which contains the order-parameter of the lambda transition as one of the thermodynamical variables, is derived by making use of the finite temperature loop expansion. The divergence difficulty caused by the hardcore interaction is circumvented by the conventional field theoretic perturbation renormalization such that the chemical potential is renormalized instead of the conventional mass renormalization. The grand potential obtained consists of the superfluid part and the finite temperature elementary excitation part. The elementary excitation energy spectrum shows the Goldstone boson mode, namely, the photon, for the zero external field. A non-vanishing external field destroys such a Goldstone boson mode by causing an energy gap at zero momentum. The chemical potential and the critical temperature are also obtained for the weak coupling case. It is shown how the Bose-Einstein condensation is affected by the hardcore interaction.
Lambda-instability of Keplerian orbits
NASA Astrophysics Data System (ADS)
Dumin, Yurii
Although the Lambda-term is commonly recognized to be of crucial importance for the large-scale (cosmological) dynamics, its influence can be appreciable also at much less scales, particularly, for the long-term evolution of Keplerian orbits. Such effects were studied in the recent years in a number of papers, e.g. [1, 2]; however this was done only under the assumption of static de Sitter asymptotics at infinity. A more realistic treatment of this problem should be based, evidently, on the nonstationary Friedmann-Robertson-Walker asymptotics, which is commonly accepted in modern cosmology; and such an approach was outlined in our earlier paper [3]. The present report is devoted to the results of numerical integration of the equations of motion of a test particle experiencing a gravitational field of the massive central body against the Lambda-background. Apart from the tiny secular effect of Hubble type, which is naturally expected and was already discussed before [4], we have found a strong instability, which can develop at certain values of the orbital parameters. The growth rate of this instability is much larger than the typical Hubble velocity, and it can eventually lead to disruption of the Keplerian orbit and injection of the test particle with a considerable velocity. From our point of view, the revealed phenomenon may have important astrophysical applications, particularly, for explanation of the very fast proper motions of some stars, anomalous interstellar separation in multiple systems, etc. References: 1. A. Balaguera-Antolínez, C.G. Böhmer, M. Nowakowski. Class. Quant. Grav., v.23, p.485 (2006). 2. V. Kagramanova, J. Kunz, C Lämmerzahl. Phys. Lett. B, v.634, p.465 (2006). 3. Yu.V. Dumin. Phys. Rev. Lett., v.98, p.059001 (2007). 4. Yu.V. Dumin. Proc. 11th Marcel Grossmann Meeting on General Relativity (World Sci., Singapore, 2008), p.1752.
CHINA SPALLATION NEUTRON SOURCE PROJECT: DESIGN ITERATIONS AND R AND D STATUS.
WEI,J.
2006-09-21
The China Spallation Neutron Source (CSNS) is an accelerator based high power project currently under preparation in China. The accelerator complex is based on an H{sup -} linear accelerator and a rapid cycling proton synchrotron. During the past year, the design of most accelerator systems went through major iterations, and initial research and developments were started on the prototyping of several key components. This paper summarizes major activities of the past year.
Intense diagnostic neutral beam development for ITER
Rej, D.J.; Henins, I.; Fonck, R.J.; Kim, Y.J.
1992-05-01
For the next-generation, burning tokamak plasmas such as ITER, diagnostic neutral beams and beam spectroscopy will continue to be used to determine a variety of plasma parameters such as ion temperature, rotation, fluctuations, impurity content, current density profile, and confined alpha particle density and energy distribution. Present-day low-current, long-pulse beam technology will be unable to provide the required signal intensities because of higher beam attenuation and background bremsstrahlung radiation in these larger, higher-density plasmas. To address this problem, we are developing a short-pulse, intense diagnostic neutral beam. Protons or deuterons are accelerated using magnetic-insulated ion-diode technology, and neutralized in a transient gas cell. A prototype 25-kA, 100-kV, 1-{mu}s accelerator is under construction at Los Alamos. Initial experiments will focus on ITER-related issues of beam energy distribution, current density, pulse length, divergence, propagation, impurity content, reproducibility, and maintenance.
Intense diagnostic neutral beam development for ITER
Rej, D.J.; Henins, I. ); Fonck, R.J.; Kim, Y.J. . Dept. of Nuclear Engineering and Engineering Physics)
1992-01-01
For the next-generation, burning tokamak plasmas such as ITER, diagnostic neutral beams and beam spectroscopy will continue to be used to determine a variety of plasma parameters such as ion temperature, rotation, fluctuations, impurity content, current density profile, and confined alpha particle density and energy distribution. Present-day low-current, long-pulse beam technology will be unable to provide the required signal intensities because of higher beam attenuation and background bremsstrahlung radiation in these larger, higher-density plasmas. To address this problem, we are developing a short-pulse, intense diagnostic neutral beam. Protons or deuterons are accelerated using magnetic-insulated ion-diode technology, and neutralized in a transient gas cell. A prototype 25-kA, 100-kV, 1-{mu}s accelerator is under construction at Los Alamos. Initial experiments will focus on ITER-related issues of beam energy distribution, current density, pulse length, divergence, propagation, impurity content, reproducibility, and maintenance.
Baluch, J; Sussman, R
1978-01-01
Escherichia coli K-12 wild type and a uvrA mutant derivative were used to construct isogenic strains bearing one, two, three, or more phage lambda cI genomes and containing increasing concentration of lambda repressor as measured by in vitro operator DNA-binding assays. The survival and phage induction in response to UV irradiation were determined. In both strains, dose-response relationships were obtained as a function of the cellular repressor concentration. The uvrA lysogens required one-tenth the UV fluence of the wild-type counterparts for induction. Lysogenic strains containing plasmids that overproduce the lambdaind+ repressor and the same lysogens with plasmids overproducing the lambdaind- repressor displayed the same survival curves as the nonlysogenic parental strain; however, only the former produced infectious centers (at a frequency of 2 x 10(-3) to 5 x 10(-4) in response to radiation. PMID:353300
Iterated crowdsourcing dilemma game
Oishi, Koji; Cebrian, Manuel; Abeliuk, Andres; Masuda, Naoki
2014-01-01
The Internet has enabled the emergence of collective problem solving, also known as crowdsourcing, as a viable option for solving complex tasks. However, the openness of crowdsourcing presents a challenge because solutions obtained by it can be sabotaged, stolen, and manipulated at a low cost for the attacker. We extend a previously proposed crowdsourcing dilemma game to an iterated game to address this question. We enumerate pure evolutionarily stable strategies within the class of so-called reactive strategies, i.e., those depending on the last action of the opponent. Among the 4096 possible reactive strategies, we find 16 strategies each of which is stable in some parameter regions. Repeated encounters of the players can improve social welfare when the damage inflicted by an attack and the cost of attack are both small. Under the current framework, repeated interactions do not really ameliorate the crowdsourcing dilemma in a majority of the parameter space. PMID:24526244
Iterated crowdsourcing dilemma game
NASA Astrophysics Data System (ADS)
Oishi, Koji; Cebrian, Manuel; Abeliuk, Andres; Masuda, Naoki
2014-02-01
The Internet has enabled the emergence of collective problem solving, also known as crowdsourcing, as a viable option for solving complex tasks. However, the openness of crowdsourcing presents a challenge because solutions obtained by it can be sabotaged, stolen, and manipulated at a low cost for the attacker. We extend a previously proposed crowdsourcing dilemma game to an iterated game to address this question. We enumerate pure evolutionarily stable strategies within the class of so-called reactive strategies, i.e., those depending on the last action of the opponent. Among the 4096 possible reactive strategies, we find 16 strategies each of which is stable in some parameter regions. Repeated encounters of the players can improve social welfare when the damage inflicted by an attack and the cost of attack are both small. Under the current framework, repeated interactions do not really ameliorate the crowdsourcing dilemma in a majority of the parameter space.
High Resolution Spectroscopy of 16N_Lambda by Electroproduction
Cusanno, Francesco; Urciuoli, Guido; Acha Quimper, Armando; Ambrozewicz, Pawel; Aniol, Konrad; Baturin, Pavlo; Bertin, Pierre; Benaoum, Hachemi; Blomqvist, Ingvar; Boeglin, Werner; Breuer, Herbert; Brindza, Paul; Bydzovsky, Petr; Camsonne, Alexandre; Chang, C.; Chang, C.C.; Chang, C.; Chang, C.C.; Chang, C.; Chang, C.C.; Chang, C.; Chang, C.C.; Chen, Jian-Ping; Choi, Seonho; Chudakov, Eugene; Cisbani, Evaristo; Colilli, Stefano; Coman, Luminita; Craver, Brandon; de Cataldo, Giacinto; De Jager, Cornelis; De Leo, Raffaele; Deur, Alexandre; Ferdi, Catherine; Feuerbach, Robert; Folts, Edward; Frullani, Salvatore; Garibaldi, Franco; Gayou, Olivier; Giuliani, Fausto; Gomez, Javier; Gricia, Massimo; Hansen, Jens-Ole; Hayes, David; Higinbotham, Douglas; Holmstrom, Timothy; Hyde, Charles; Ibrahim, Hassan; Iodice, Mauro; Jiang, Xiaodong; Kaufman, Lisa; Kino, Kouichi; Kross, Brian; Lagamba, Luigi; LeRose, John; Lindgren, Richard; Lucentini, Maurizio; Margaziotis, Demetrius; Markowitz, Pete; Marrone, Stefano; Meziani, Zein-Eddine; McCormick, Kathy; Michaels, Robert; Millener, D.; Miyoshi, Toshinobu; Moffit, Bryan; Monaghan, Peter; Moteabbed, Maryam; Munoz Camacho, Carlos; Nanda, Sirish; Nappi, E.; Nelyubin, Vladimir; Norum, Blaine; Okasyasu, Y.; Paschke, Kent; Perdrisat, Charles; Piasetzky, Eliazer; Punjabi, Vina; Qiang, Yi; Raue, Brian; Reimer, Paul; Reinhold, Joerg; Reitz, Bodo; Roche, Rikki; Rodriguez, Victor; Saha, Arunava; Santavenere, Fabio; Sarty, Adam; Segal, John; Shahinyan, Albert; Singh, Jaideep; Sirca, Simon; Snyder, Ryan; Solvignon, Patricia; Sotona, M.; Sotona, Miloslav; Sotona, M.; Sotona, Miloslav; Sotona, M.; Sotona, Miloslav; Sotona, M.; Sotona, Miloslav; Subedi, Ramesh; Sulkosky, Vince; Sulkosky, Vincent; Sulkosky, Vince; Sulkosky, Vincent; Suzuki, Tomokazu; Ueno, Hiroaki; Ulmer, Paul; Veneroni, P.P.; Voutier, Eric; Wojtsekhowski, Bogdan; Zeng, X.; Zorn, Carl
2009-01-01
An experimental study of the 16O(e, e'K+)16N_Lambda reaction has been performed at Jefferson Lab. A thin film of falling water was used as a target. This permitted a simultaneous measurement of the p(e, e'K+)Lambda,Sigma_0 exclusive reactions and a precise calibration of the energy scale. A ground-state binding energy of 13.76 Â± 0.16 MeV was obtained for 16N_Lambda with better precision than previous measurements on the mirror hypernucleus 16O_Lambda. Precise energies have been determined for peaks arising from a Lambda in s and p orbits coupled to the p1/2 and p3/2 hole states of the 15N core nucleus.
Phillips' Lambda function: Data summary and physical model
NASA Astrophysics Data System (ADS)
Irisov, V.; Plant, W.
2016-03-01
Measurements of Phillips' Lambda function describing the average length of breakers on the ocean per unit area at speed cb are summarized. An expression is developed that fits these data within reasonable bounds. A physical model for the Lambda function is derived based on the assumption that breaking occurs when the surface steepness exceeds a threshold value. The energy contained in the breaking region is related to the fifth power of the breaker speed, as Phillips showed, and from this the probability of finding a breaker with a speed cb may be determined from a simulation of the long-wave surface based on a linear superposition of Fourier components. This probability is directly related to the Lambda function so that a form for this function can be determined. The Lambda function so determined agrees in both shape and intensity with the fit to the measured Lambda functions.
Tertiary structure of human {Lambda}6 light chains.
Pokkuluri, P. R.; Solomon, A.; Weiss, D. T.; Stevens, F. J.; Schiffer, M.; Center for Mechanistic Biology and Biotechnology; Univ. of Tennessee Medical Center /Graduate School of Medicine
1999-01-01
AL amyloidosis is a disease process characterized by the pathologic deposition of monoclonal light chains in tissue. To date, only limited information has been obtained on the molecular features that render such light chains amyloidogenic. Although protein products of the major human V kappa and V lambda gene families have been identified in AL deposits, one particular subgroup--lambda 6--has been found to be preferentially associated with this disease. Notably, the variable region of lambda 6 proteins (V lambda 6) has distinctive primary structural features including the presence in the third framework region (FR3) of two additional amino acid residues that distinguish members of this subgroup from other types of light chains. However, the structural consequences of these alterations have not been elucidated. To determine if lambda 6 proteins possess unique tertiary structural features, as compared to light chains of other V lambda subgroups, we have obtained x-ray diffraction data on crystals prepared from two recombinant V lambda 6 molecules. These components, isolated from a bacterial expression system, were generated from lambda 6-related cDNAs cloned from bone marrow-derived plasma cells from a patient (Wil) who had documented AL amyloidosis and another (Jto) with multiple myeloma and tubular cast nephropathy, but no evident fibrillar deposits. The x-ray crystallographic analyses revealed that the two-residue insertion located between positions 68 and 69 (not between 66 and 67 as previously surmised) extended an existing loop region that effectively increased the surface area adjacent to the first complementarity determining region (CDR1). Further, an unusual interaction between the Arg 25 and Phe 2 residues commonly found in lambda 6 molecules was noted. However, the structures of V lambda 6 Wil and Jto also differed from each other, as evidenced by the presence in the latter of certain ionic and hydrophobic interactions that we posit increased protein
Abazov, Victor Mukhamedovich; Abbott, Braden Keim; Acharya, Bannanje Sripath; Adams, Mark Raymond; Adams, Todd; Alexeev, Guennadi D.; Alkhazov, Georgiy D.; Alton, Andrew K.; Alverson, George O.; Alves, Gilvan Augusto; Ancu, Lucian Stefan; /Nijmegen U. /Fermilab
2011-05-01
The {Lambda}{sub b}(udb) baryon is observed in the decay {Lambda}{sub b} {yields} J/{psi}{Lambda} using 6.1 fb{sup -1} of p{bar p} collisions collected with the D0 detector at {radical}s = 1.96 TeV. The production fraction multiplied by the branching fraction for this decay relative to that for the decay B{sup 0} {yields} J/{psi}K{sub s}{sup 0} is measured to be 0.345 {+-} 0.034 (stat.) {+-} 0.033 (syst.) {+-} 0.003 (PDG). Using the world average value of f(b {yields} B{sup 0}) {center_dot} {Beta}(B{sup 0} {yields} J/{psi}K{sub s}{sup 0}) = (1.74 {+-} 0.08) x 10{sup -5}, they obtain f(b {yields} {Lambda}{sub b}) {center_dot} {Beta}({Lambda}{sub b} {yields} J/{psi}{Lambda}) = (6.01 {+-} 0.60 (stat.) {+-} 0.58 (syst.) {+-} 0.28 (PDG)) x 10{sup -5}. This measurement represents an improvement in precision by about a factor of three with respect to the current world average.
Can Accelerators Accelerate Learning?
NASA Astrophysics Data System (ADS)
Santos, A. C. F.; Fonseca, P.; Coelho, L. F. S.
2009-03-01
The 'Young Talented' education program developed by the Brazilian State Funding Agency (FAPERJ) [1] makes it possible for high-schools students from public high schools to perform activities in scientific laboratories. In the Atomic and Molecular Physics Laboratory at Federal University of Rio de Janeiro (UFRJ), the students are confronted with modern research tools like the 1.7 MV ion accelerator. Being a user-friendly machine, the accelerator is easily manageable by the students, who can perform simple hands-on activities, stimulating interest in physics, and getting the students close to modern laboratory techniques.
Teng, L.C.
1960-01-19
ABS>A combination of two accelerators, a cyclotron and a ring-shaped accelerator which has a portion disposed tangentially to the cyclotron, is described. Means are provided to transfer particles from the cyclotron to the ring accelerator including a magnetic deflector within the cyclotron, a magnetic shield between the ring accelerator and the cyclotron, and a magnetic inflector within the ring accelerator.
Asymptotic iteration method for spheroidal harmonics of higher-dimensional Kerr-(A)dS black holes
Cho, H. T.; Cornell, A. S.; Doukas, Jason; Naylor, Wade
2009-09-15
In this work we calculate the angular eigenvalues of the (n+4)-dimensional simply rotating Kerr-(A)dS spheroidal harmonics using the asymptotic iteration method. We make some comparisons between this method and that of the continued fraction method and use the latter to check our results. We also present analytic expressions for the small rotation limit up to O(c{sup 3}) with the coefficient of each power up to O({alpha}{sup 2}), where c=a{omega} and {alpha}=a{sup 2}{lambda} (a is the angular velocity, {omega} the frequency, and {lambda} the cosmological constant)
Diagnostics of the ITER neutral beam test facility
Pasqualotto, R.; Serianni, G.; Agostini, M.; Brombin, M.; Dalla Palma, M.; Gazza, E.; Pomaro, N.; Rizzolo, A.; Spolaore, M.; Zaniol, B.; Sonato, P.; De Muri, M.; Croci, G.; Gorini, G.
2012-02-15
The ITER heating neutral beam (HNB) injector, based on negative ions accelerated at 1 MV, will be tested and optimized in the SPIDER source and MITICA full injector prototypes, using a set of diagnostics not available on the ITER HNB. The RF source, where the H{sup -}/D{sup -} production is enhanced by cesium evaporation, will be monitored with thermocouples, electrostatic probes, optical emission spectroscopy, cavity ring down, and laser absorption spectroscopy. The beam is analyzed by cooling water calorimetry, a short pulse instrumented calorimeter, beam emission spectroscopy, visible tomography, and neutron imaging. Design of the diagnostic systems is presented.
Aslam, M. Jamil; Wang Yuming; Lue Caidian
2008-12-01
The weak decays of {lambda}{sub b}{yields}{lambda}l{sup +}l{sup -} (l=e, {mu}) are investigated in the minimal supersymmetric standard model (MSSM) and also in supersymmetric (SUSY) SO(10) grand unified models. In the MSSM special attention is paid to the neutral Higgs bosons (NHBs) as they make quite a large contribution in exclusive B{yields}X{sub s}l{sup +}l{sup -} decays at large tan{beta} regions of parameter space of SUSY models, since part of SUSY contributions is proportional to tan{sup 3}{beta}. The analysis of decay rate, forward-backward asymmetries, lepton polarization asymmetries, and the polarization asymmetries of the {lambda} baryon in {lambda}{sub b}{yields}{lambda}l{sup +}l{sup -} show that the values of these physical observables are greatly modified by the effects of NHBs. In the SUSY SO(10) grand unified theory model, the new physics contribution comes from the operators which are induced by the NHBs' penguins and also from the operators having chirality opposite to that of the corresponding standard model (SM) operators. SUSY SO(10) effects show up only in the decay {lambda}{sub b}{yields}{lambda}+{tau}{sup +}{tau}{sup -} where the longitudinal and transverse lepton polarization asymmetries deviate significantly from the SM value while the effects in the decay rate, forward-backward asymmetries, and polarization asymmetries of final state {lambda} baryon are very mild. The transverse lepton polarization asymmetry in {lambda}{sub b}{yields}{lambda}+{tau}{sup +}{tau}{sup -} is almost zero in the SM and in the MSSM model. However, it can reach to -0.1 in the SUSY SO(10) grand unified theory model and could be seen at the future colliders; hence this asymmetry observable will provide us useful information to probe new physics and discriminate between different models.
The Structure and Function of the DNA from Bacteriophage Lambda
Hogness, David S.
1966-01-01
The position and orientation of genes in lambda and lambda dg DNA are described. The position of six genes located in the right half of isolated lambda DNA was found to be -(N, iλ)--O-P---Q-R-(right end of DNA), which is their order on the genetic map of the vegetative phage. The order of the three genes of the galactose operon (k, t, and e) located in the left half of lambda dg DNA was found to be (left end of DNA)----k-t-e-, consistent with Campbell's model (5) for the formation of this variant. Gene orientation, defined as the direction of transcription along the DNA, is inferred to be from right to left for the galactose operon in lambda dg DNA. The strand of lambda DNA which functions as template in transcription of N, an "early" gene required for normal replication of lambda DNA, was determined as a first step in ascertaining the orientation of this gene. The method includes isolation of each strand, formation of each of two heteroduplex molecules consisting of one strand from wild-type and one from an N mutant) and comparison of their N activities. The second step, which consists of ascertaining the 5'-to-3' direction of each strand, is discussed, as is a determination of the orientation of gene R. PMID:5967430
Hepatopancreatic intoxication of lambda cyhalothrin insecticide on albino rats
Elhalwagy, Manal EA; Abd-Alrahman, Sherif H; Nahas, AA; Ziada, Reem M; Mohamady, Aziza H
2015-01-01
Background: Despite the known adverse effects of lambda cyhalothrin insecticide, little is known about its hepatopancreatic intoxication effects. The present study was carried out to elucidate sub-chronic effect of Karat 2.5% EC formulation of lambda cyhalothrin on male albino rats. Methods: To explore the effects of exposure to lambda cyhalothrin on rats and its mechanism, low (1/40 of LD50, 5 mg/kg/day) and high dose (1/4 of LD50, 50 mg/kg/day) lambda cyhalothrin were applied to rats via drinking water for 3 months. Blood samples were collected monthly, and the animals were dissected for liver and pancreas’s examination at the end of the experiment. Lambda cyhalothrin administration was associated with the elevation in lipid peroxidation marker, malondialdehyde (MDA), reduction in SH-protein a major marker for antioxidant, as well as basel paraoxonase (PON) in both treated groups throughout the experimental periods. Results: In addition, significant elevations in liver enzymes alanin amino transferase, (ALT), and aspartate amino transferase (AST), as well as plasma acetylcholinesterase (AChE) and glucose level. While, significant reduction in insulin level through the experimental periods. Results of histopathological and histochemical studies showed that lambda cyhalothrin exposure induces liver and pancreatic tissues damage and depletion in glycogen content was pronounced in liver of both treated groups. Conclusions: In conclusion subchronic intoxication with lambda cyhalothrin formulation induced remarkable changes in the examined parameters. PMID:26221269
Iterative marker excision system.
Myronovskyi, Maksym; Rosenkränzer, Birgit; Luzhetskyy, Andriy
2014-05-01
The deletions of large genomic DNA fragments and consecutive gene knockouts are prerequisites for the generation of organisms with improved properties. One of the key issues in this context is the removal of antibiotic resistance markers from engineered organisms without leaving an active recombinase recognition site. Here, we report the establishment of an iterative marker excision system (IMES) that solves this problem. Based on the phiC31 integrase and its mutant att sites, IMES can be used for highly effective deletion of DNA fragments between inversely oriented B-CC and P-GG sites. The B-CC and P-GG sites are derived from attB and attP by substitution of the central core TT dinucleotide with CC and GG, respectively. An unnatural RR site that resides in the chromosome following deletion is the joining product of the right shoulders of B-CC and P-GG. We show that the RR sites do not recombine with each other as well as the RR site recombines with B-CC. The recombination efficiencies between RR and P-GG or RR and LL are only 0.1 % and 1 %, respectively. Thus, IMES can be used for multistep genomic engineering without risking unwanted DNA recombination. The fabrication of multi-purpose antibiotic cassettes and examples of the utilisation of IMES are described.
NASA Astrophysics Data System (ADS)
Jaeger, E. F.; Berry, L. A.; Myra, J. R.
2006-10-01
Fast magnetosonic waves in the ion cyclotron range of frequencies (ICRF) can convert to much shorter wavelength modes such as ion Bernstein waves (IBW) and ion cyclotron waves (ICW) [1]. These modes are potentially useful for plasma control through the generation of localized currents and sheared flows. As part of the SciDAC Center for Simulation of Wave-Plasma Interactions project, the AORSA global-wave solver [2] has been ported to the new, dual-core Cray XT-3 (Jaguar) at ORNL where it demonstrates excellent scaling with the number of processors. Preliminary calculations using 4096 processors have allowed the first full-wave simulations of mode conversion in ITER. Mode conversion from the fast wave to the ICW is observed in mixtures of deuterium, tritium and helium3 at 53 MHz. The resulting flow velocity and electric field shear will be calculated. [1] F.W. Perkins, Nucl. Fusion 17, 1197 (1977). [2] E.F. Jaeger, L.A. Berry, J.R. Myra, et al., Phys. Rev. Lett. 90, 195001-1 (2003).
The control of lambda DNA terminase synthesis.
Murialdo, H; Davidson, A; Chow, S; Gold, M
1987-01-01
Nu1 and A, the genes coding for bacteriophage lambda DNA terminase, rank among the most poorly translated genes expressed in E. coli. To understand the reason for this low level of translation the genes were cloned into plasmids and their expression measured. In addition, the wild type DNA sequences immediately preceding the genes were reduced and modified. It was found that the elements that control translation are contained in the 100 base pairs upstream from the initiation codon. Interchanging these upstream sequences with those of an efficiently translated gene dramatically increased the translation of terminase subunits. It seems unlikely that the rare codons present in the genes, and any feature of their mRNA secondary structure play a role in the control of their translation. The elimination of cos from plasmids containing Nu1 and A also resulted in an increase in terminase production. This result suggests a role for cos in the control of late gene expression. The terminase subunit overproducer strains are potentially very useful for the design of improved DNA packaging and cosmid mapping techniques. Images PMID:3029667
Lambda Probe Measurements of Laboratory Spheromaks
NASA Astrophysics Data System (ADS)
Jorne, E.; Bellan, P. M.; Hsu, S. C.; Moynihan, C.
2003-10-01
A combined current and magnetic probe (lambda probe) has been constructed and is being tested for the purpose of investigating the behavior of spheromaks formed by the Caltech planar spheromak gun. The probe consists of a 1.5cm diameter, 52 turn Rogowski coil and a single loop magnetic coil, housed in a ceramic shell attached to a 95cm long hollow, steel shaft. A high voltage power supply was used to test the probe's ability to measure pulsed currents with submicrosecond rise times. A calibrated current pulse was provided by a 1μF capacitor discharged by a krytron switch to a low inductance circuit. Magnetic calibration was obtained by using the capacitor bank to power a 16cm diameter Helmholtz coil. Both magnetic and current calibration were in good agreement with estimates based on geometry. An existing steel shaft will be replaced by a ceramic shaft in order to minimize undesired effects on the plasma by a conductor. Once sealed with epoxy, the probe will be ready for insertion into the vacuum chamber and used to measure the magnetic field and parallel current during spheromak formation.
The First Generation of Stars in Lambda-CDM Cosmology
Gao, Liang; Abel, T.; Frenk, C.S.; Jenkins, A.; Springel, V.; Yoshida, N.; /Nagoya U.
2006-10-10
We have performed a large set of high-resolution cosmological simulations using smoothed particle hydrodynamics (SPH) to study the formation of the first luminous objects in the {Lambda}CDM cosmology. We follow the collapse of primordial gas clouds in eight early structures and document the scatter in the properties of the first star-forming clouds. Our first objects span formation redshifts from z {approx} 10 to z {approx} 50 and cover an order of magnitude in halo mass. We find that the physical properties of the central star-forming clouds are very similar in all of the simulated objects despite significant differences in formation redshift and environment. This suggests that the formation path of the first stars is largely independent of the collapse redshift; the physical properties of the clouds have little correlation with spin, mass, or assembly history of the host halo. The collapse of proto-stellar objects at higher redshifts progresses much more rapidly due to the higher densities, which accelerates the formation of molecular hydrogen, enhances initial cooling and shortens the dynamical timescales. The mass of the star-forming clouds cover a broad range, from a few hundred to a few thousand solar masses, and exhibit various morphologies: some have disk-like structures which are nearly rotational supported; others form flattened spheroids; still others form bars. All of them develop a single protostellar ''seed'' which does not fragment into multiple objects up to the moment that the central gas becomes optically thick to H{sub 2} cooling lines. At this time, the instantaneous mass accretion rate onto the centre varies significantly from object to object, with disk-like structures having the smallest mass accretion rates. The formation epoch and properties of the star-forming clouds are sensitive to the values of cosmological parameters.
Observation of the Baryonic B decay B0bar to Lambda_c^+ anti-Lambda K-
Lees, J.P.; Poireau, V.; Tisserand, V.; Garra Tico, J.; Grauges, E.; Martinelli, M.; Milanes, D.A.; Palano, A.; Pappagallo, M.; Eigen, G.; Stugu, B.; Sun, L.; Brown, D.N.; Kerth, L.T.; Kolomensky, Yu.G.; Lynch, G.; Koch, H.; Schroeder, T.; Asgeirsson, D.J.; Hearty, C.; Mattison, T.S.; /British Columbia U. /Brunel U. /Novosibirsk, IYF /UC, Irvine /UC, Riverside /UC, Santa Barbara /UC, Santa Cruz /Caltech /Cincinnati U. /Colorado U. /Colorado State U. /Dortmund U. /Dresden, Tech. U. /Ecole Polytechnique /Edinburgh U. /INFN, Ferrara /INFN, Ferrara /INFN, Ferrara /Ferrara U. /INFN, Ferrara /Ferrara U. /INFN, Ferrara /Ferrara U. /INFN, Ferrara /Ferrara U. /INFN, Ferrara /Ferrara U. /INFN, Ferrara /Ferrara U. /INFN, Ferrara /Ferrara U. /INFN, Ferrara /Frascati /INFN, Genoa /Genoa U. /INFN, Genoa /Genoa U. /INFN, Genoa /Genoa U. /INFN, Genoa /Genoa U. /INFN, Genoa /INFN, Genoa /Genoa U. /INFN, Genoa /Indian Inst. Tech., Guwahati /Harvard U. /Harvey Mudd Coll. /Heidelberg U. /Humboldt U., Berlin /Imperial Coll., London /Iowa State U. /Iowa State U. /Johns Hopkins U. /Orsay, LAL /LLNL, Livermore /Liverpool U. /Queen Mary, U. of London /Royal Holloway, U. of London /Louisville U. /Mainz U., Inst. Kernphys. /Manchester U., Comp. Sci. Dept. /Maryland U. /Massachusetts U., Amherst /MIT /McGill U. /INFN, Milan /Milan U. /INFN, Milan /Milan U. /INFN, Milan /INFN, Milan /Milan U. /INFN, Milan /Milan U. /INFN, Milan /Milan U. /Mississippi U. /Montreal U. /INFN, Naples /Naples U. /INFN, Naples /Naples U. /INFN, Naples /Naples U. /INFN, Naples /Naples U. /NIKHEF, Amsterdam /Notre Dame U. /Ohio State U. /Oregon U. /INFN, Padua /Padua U. /INFN, Padua /Padua U. /INFN, Padua /Padua U. /INFN, Padua /INFN, Padua /INFN, Padua /INFN, Padua /Padua U. /INFN, Padua /Padua U. /Paris U., VI-VII /INFN, Perugia /Perugia U. /INFN, Perugia /Perugia U. /INFN, Perugia /Perugia U. /INFN, Perugia /Perugia U. /INFN, Pisa /Pisa U. /INFN, Pisa /Pisa U. /INFN, Pisa /Pisa U. /INFN, Pisa /Pisa U. /Sassari U. /INFN, Pisa /Pisa U. /INFN, Pisa /Pisa U. /INFN, Pisa /Pisa U. /INFN, Pisa /Pisa U. /INFN, Pisa /Pisa, Scuola Normale Superiore /INFN, Pisa /Pisa U. /INFN, Pisa /Pisa U. /INFN, Pisa /INFN, Pisa /Pisa U. /INFN, Pisa /Princeton U. /INFN, Rome /INFN, Rome /INFN, Rome /Rome U. /INFN, Rome /INFN, Rome /Rome U. /INFN, Rome /Rome U. /INFN, Rome /INFN, Rome /INFN, Rome /Rostock U. /Rutherford /DAPNIA, Saclay /SLAC /South Carolina U. /Southern Methodist U. /Stanford U., Phys. Dept. /SUNY, Albany /Tel Aviv U. /Tennessee U. /Texas U. /Texas U., Dallas /INFN, Turin /Turin U. /INFN, Turin /Turin U. /INFN, Trieste /Trieste U. /INFN, Trieste /Trieste U. /Valencia U., IFIC /Victoria U. /Warwick U. /Wisconsin U., Madison
2011-11-08
The authors report the observation of the baryonic B decay {bar B}{sup 0} {yields} {Lambda}{sub c}{sup +} {bar {Lambda}}K{sup -} with a significance larger than 7 standard deviations based on 471 x 10{sup 6} B{bar B} pairs collected with the BABAR detector at the PEP-II storage ring at SLAC. They measure the branching fraction for the decay {bar B}{sup 0} {yields} {Lambda}{sub c}{sup +} {bar {Lambda}}K{sup -} to be (3.8 {+-} 0.8{sub stat} {+-} 0.2{sub sys} {+-} 1.0 {sub {Lambda}{sub c}{sup +}}) x 10{sup -5}. The uncertainties are statistical, systematic, and due to the uncertainty in the {Lambda}{sub c}{sup +} branching fraction. They find that the {Lambda}{sub c}{sup +} K{sup -} invariant mass distribution shows an enhancement above 3.5 GeV/c{sup 2}.
ITER neutral beam system US conceptual design
Purgalis, P.
1990-09-01
In this document we present the US conceptual design of a neutral beam system for International Thermonuclear Experimental Reactor (ITER). The design incorporates a barium surface conversion D{sup {minus}} source feeding a linear array of accelerator channels. The system uses a dc accelerator with electrostatic quadrupoles for strong focusing. A high voltage power supply that is integrated with the accelerator is presented as an attractive option. A gas neutralizer is used and residual ions exiting the neutralizer are deflected to water-cooled dumps. Cryopanels are located at the accelerator exit to pump excess gas from the source and the neutralizer, and in the ion dump cavity to pump re-neutralized ions and neutralizer gas. All the above components are packaged in compact identical, independent modules which can be removed for remote maintenance. The neutral beam system delivers 75 MW of DO at 1.3 MeV, into three ports with a total of 9 modules arranged in stacks of three modules per port . To increase reliability each module is designed to deliver up to 10 MW; this allows eight modules operating at partial capacity to deliver the required power in the event one module is out of service, and provides 20% excess capacity to improve availability. Radiation protection is provided by shielding and by locating critical components in the source and accelerator 46.5 m from the torus centerline. Neutron shielding in the drift duct and neutralizer provides the added feature of limiting conductance and thus reducing gas flow to and from the torus.
Electron capture acceleration channel in a slit laser beam
Wang, P. X.; Scheid, W.; Ho, Y. K.
2007-03-12
Using numerical simulations, the authors find that the electrons can be captured and accelerated to high energies (GeV) in a slit laser beam with an intensity of I{lambda}{sup 2}{approx}10{sup 20} W/cm{sup 2} {mu}m{sup 2}, where {lambda} is the laser wavelength in units of {mu}m. The range of the optimum incident energy is very wide, even up to GeV. These results are of interest for experiments because the relatively low intensity can be achieved with present chirped pulse amplification technique and a wide range of incident energies means that a multistage acceleration is possible.
The first fusion reactor: ITER
NASA Astrophysics Data System (ADS)
Campbell, D. J.
2016-11-01
Established by the signature of the ITER Agreement in November 2006 and currently under construction at St Paul-lez-Durance in southern France, the ITER project [1,2] involves the European Union (including Switzerland), China, India, Japan, the Russian Federation, South Korea and the United States. ITER (`the way' in Latin) is a critical step in the development of fusion energy. Its role is to provide an integrated demonstration of the physics and technology required for a fusion power plant based on magnetic confinement.
An Iterative Brinkman penalization for particle vortex methods
NASA Astrophysics Data System (ADS)
Walther, J. H.; Hejlesen, M. M.; Leonard, A.; Koumoutsakos, P.
2013-11-01
We present an iterative Brinkman penalization method for the enforcement of the no-slip boundary condition in vortex particle methods. This is achieved by implementing a penalization of the velocity field using iteration of the penalized vorticity. We show that using the conventional Brinkman penalization method can result in an insufficient enforcement of solid boundaries. The specific problems of the conventional penalization method is discussed and three examples are presented by which the method in its current form has shown to be insufficient to consistently enforce the no-slip boundary condition. These are: the impulsively started flow past a cylinder, the impulsively started flow normal to a flat plate, and the uniformly accelerated flow normal to a flat plate. The iterative penalization algorithm is shown to give significantly improved results compared to the conventional penalization method for each of the presented flow cases.
Suppression of the {Lambda}-{Sigma} coupling in nuclear matter
Bodmer, A.R.; Usmani, Q.N.
1995-08-01
We initiated a study of the modification of the coupling of the {Lambda}N to the {Sigma}N channel in nuclear matter with the Fermi hypernetted-chain variational approach. This modification of the {Lambda}N-{Sigma}N coupling is a central problem in hypernuclear physics and is related closely to the strongly repulsive three-body forces which are needed to account for hypernuclear binding energies. All earlier calculations have only considered this problem in the so-called G-matrix approximation which neglects important higher-order effects. An important result of this work will be a better understanding of the density dependence of {Lambda} binding in nuclear matter, which can then be tested in the calculation of the {Lambda} single-particle energies.
Iterative methods for symmetric ill-conditioned Toeplitz matrices
Huckle, T.
1996-12-31
We consider ill-conditioned symmetric positive definite, Toeplitz systems T{sub n}x = b. If we want to solve such a system iteratively with the conjugate gradient method, we can use band-Toeplitz-preconditioners or Sine-Transform-peconditioners M = S{sub n}{Lambda}S{sub n}, S{sub n} the Sine-Transform-matrix and {Lambda} a diagonal matrix. A Toeplitz matrix T{sub n} = (t{sub i-j)}{sub i}{sup n},{sub j=1} is often related to an underlying function f defined by the coefficients t{sub j}, j = -{infinity},..,-1,0, 1,.., {infinity}. There are four cases, for which we want to determine a preconditioner M: - T{sub n} is related to an underlying function which is given explicitly; - T{sub n} is related to an underlying function that is given by its Fourier coefficients; - T{sub n} is related to an underlying function that is unknown; - T{sub n} is not related to an underlying function. Especially for the first three cases we show how positive definite and effective preconditioners based on the Sine-Transform can be defined for general nonnegative underlying function f. To define M, we evaluate or estimate the values of f at certain positions, and build a Sine-transform matrix with these values as eigenvalues. Then, the spectrum of the preconditioned system is bounded from above and away from zero.
Probing the Lambda-DGP Braneworld model
NASA Astrophysics Data System (ADS)
Ravanpak, Arvin; Farajollahi, Hossein; Fadakar, Golnaz
2016-09-01
We study cosmic dynamics in the context of the normal branch of the DGP braneworld model. Using current Planck data, we find the best fitting model and associated cosmological parameters in non-flat ΛDGP. With the transition redshift as a basic variable and statefinder parameters, our result shows that the Universe starts its accelerated expansion phase slightly earlier than expected in ΛCDM cosmology. The result also alleviates the coincidence problem of the ΛCDM model.
Wegrzyn, A; Czyz, A; Gabig, M; Wegrzyn, G
2000-01-01
The O protein is a replication initiator that binds to the orilambda region and promotes assembly of the bacteriophage lambda replication complex. This protein, although protected from proteases by other elements of the replication complex, in a free form is rapidly degraded in the host, Escherichia coli, by the ClpP/ClpX protease. Nevertheless, the physiological role of this rapid degradation remains unclear. Here we demonstrate that the copy number of plasmids derived from bacteriophage lambda is significantly higher in wild-type cells growing in rich media than in slowly growing bacteria. However, lambda plasmid copy number in bacteria devoid of the ClpP/ClpX protease was not dependent on the bacterial growth rate and in all minimal media tested was comparable to that observed in wildtype cells growing in a rich medium. Contrary to lambda plasmid replication, the efficiency of lytic growth of bacteriophage lambda was found to be dependent on the host growth rate in both wild-type bacteria and clpP and clpX mutants. The activities of two major lambda promoters operating during the lytic development, p(R) and p(L), were found to be slightly dependent on the host growth rate. However, when p(R) activity was significantly decreased in the dnaA mutant, production of phage progeny was completely abolished at low growth rates. These results indicate that the O protein (whose level in E. coli cells depends on the activity of ClpP/ClpX protease) is a major limiting factor in the regulation of lambda plasmid replication at low bacterial growth rates. However, this protein seems to be only one of the limiting factors in the bacteriophage lambda lytic development under poor growth conditions of host cells. Therefore, it seems that the role of the rapid ClpP/ClpX-mediated proteolysis of the O protein is to decrease the efficiency of early DNA replication of the phage in slowly growing host cells.
Theis, Bastian; Burschka, Christian; Tacke, Reinhold
2008-01-01
The zwitterionic lambda(5)Si,lambda(5)Si'-disilicates 1-8 were synthesized and characterized by solid-state and solution NMR spectroscopy. In addition, compounds 26 H(2)O, 32 CH(3)CN, 45/2 CH(3)CN, 6CH(3)OH, 7, and 8CH(3)OHCH(3)CN were studied by single-crystal X-ray diffraction. The optically active (Delta,Delta,R,R,R,R)-configured compounds 1-8 contain two pentacoordinate (formally negatively charged) silicon atoms and two tetracoordinate (formally positively charged) nitrogen atoms. One (ammonio)alkyl group is bound to each of the two silicon centers, and two tetradentate (R,R)-tartrato(4-) ligands bridge the silicon atoms. Although these lambda(5)Si,lambda(5)Si'-disilicates contain SiO(4)C skeletons, some of them display a remarkable stability in aqueous solution as shown by NMR spectroscopy and ESI mass spectrometry.
Miwa, T; Matsubara, K
1983-01-01
Plasmids that carry cos lambda, the region necessary for lambda phage packaging and that are as small as four kilobases in size can be packaged into lambda phage heads in head-to-tail tandem oligomeric structures. Multimeric oligomers as large as undecamers have been detected. Oligomer formation depends upon the products of red and gam of lambda, and the general recombination occurs between different plasmids that share homologous DNA regions. The packaging efficiency of plasmids depends on its copy number in cells and its genome size. Upon injection into a cell, the DNA establishes itself as a plasmid in a tandem structure. When such a plasmid in a high oligomeric structure is used as the source of packaging DNA, the packaging efficiency of the plasmids is elevated. The oligomers are stable in recA cells, whereas they drift toward lower oligomers in recA+ cells. Images PMID:6217189
GPU implementation of simultaneous iterative reconstruction techniques for computed tomograpy
NASA Astrophysics Data System (ADS)
Xin, Junjun; Bardel, Chuck; Udpa, Lalita; Udpa, Satish
2013-01-01
This paper presents implementation of simultaneous iteration reconstruction techniques on GPU with parallel computing languages using CUDA and its intrinsic libraries on four different Graphic Processing (GPU) cards. GPUs are highly parallel computing structures that enable acceleration of scientific and engineering computations. The GPU implementations offer significant performance improvement in reconstruction times. Initial results on the Shepp-Logan phantom of size ranging from 16×16 to 256×256 pixels are presented.
A unified evaluation of iterative projection algorithms for phase retrieval
Marchesini, S
2006-03-08
Iterative projection algorithms are successfully being used as a substitute of lenses to recombine, numerically rather than optically, light scattered by illuminated objects. Images obtained computationally allow aberration-free diffraction-limited imaging and allow new types of imaging using radiation for which no lenses exist. The challenge of this imaging technique is transferred from the lenses to the algorithms. We evaluate these new computational ''instruments'' developed for the phase retrieval problem, and discuss acceleration strategies.
Somatic mutation in constant regions of mouse lambda 1 light chains.
Motoyama, N; Okada, H; Azuma, T
1991-01-01
To study the distribution of somatic mutation, we determined nucleotide sequences of rearranged lambda 1-chain genomic DNA from four hybridomas obtained from C57BL/6 mice that had been immunized with (4-hydroxy-3-nitrophenyl)acetyl-conjugated chicken gamma globulin. In total, 114 nucleotide substitutions were observed, with neither insertion nor deletion. Sixty-one mutations occurred in the variable-joining region genes (V lambda 1-J lambda 1) and 49 in joining-constant (J lambda 1-C lambda 1) introns. Although frequency decreased with distance from the V lambda 1-J lambda 1 coding region, somatic mutations occurred in the entire J lambda 1-C lambda 1 intron and even in the C lambda 1 region. We found four nucleotide substitutions in C lambda 1 genes, all of which were replacement mutations. Therefore, the mechanism responsible for somatic mutation is operative into the C lambda 1 exons. Nucleotide sequences of rearranged but inactive lambda 2-chain genes from two hybridomas were also examined and compared with those of lambda 1-chain genes. The clustering of replacement mutations in complementarity-determining regions in the inactive lambda 2-chain genes similar to the active lambda 1-chain genes suggested a mechanism that induces somatic mutation preferentially in this region even in the absence of antigenic selection. PMID:1910169
ITER Central Solenoid Module Fabrication
Smith, John
2016-09-23
The fabrication of the modules for the ITER Central Solenoid (CS) has started in a dedicated production facility located in Poway, California, USA. The necessary tools have been designed, built, installed, and tested in the facility to enable the start of production. The current schedule has first module fabrication completed in 2017, followed by testing and subsequent shipment to ITER. The Central Solenoid is a key component of the ITER tokamak providing the inductive voltage to initiate and sustain the plasma current and to position and shape the plasma. The design of the CS has been a collaborative effort between the US ITER Project Office (US ITER), the international ITER Organization (IO) and General Atomics (GA). GA’s responsibility includes: completing the fabrication design, developing and qualifying the fabrication processes and tools, and then completing the fabrication of the seven 110 tonne CS modules. The modules will be shipped separately to the ITER site, and then stacked and aligned in the Assembly Hall prior to insertion in the core of the ITER tokamak. A dedicated facility in Poway, California, USA has been established by GA to complete the fabrication of the seven modules. Infrastructure improvements included thick reinforced concrete floors, a diesel generator for backup power, along with, cranes for moving the tooling within the facility. The fabrication process for a single module requires approximately 22 months followed by five months of testing, which includes preliminary electrical testing followed by high current (48.5 kA) tests at 4.7K. The production of the seven modules is completed in a parallel fashion through ten process stations. The process stations have been designed and built with most stations having completed testing and qualification for carrying out the required fabrication processes. The final qualification step for each process station is achieved by the successful production of a prototype coil. Fabrication of the first
Interferon Lambda: Modulating Immunity in Infectious Diseases
Syedbasha, Mohammedyaseen; Egli, Adrian
2017-01-01
Interferon lambdas (IFN-λs; IFNL1-4) modulate immunity in the context of infections and autoimmune diseases, through a network of induced genes. IFN-λs act by binding to the heterodimeric IFN-λ receptor (IFNLR), activating a STAT phosphorylation-dependent signaling cascade. Thereby hundreds of IFN-stimulated genes are induced, which modulate various immune functions via complex forward and feedback loops. When compared to the well-characterized IFN-α signaling cascade, three important differences have been discovered. First, the IFNLR is not ubiquitously expressed: in particular, immune cells show significant variation in the expression levels of and susceptibilities to IFN-λs. Second, the binding affinities of individual IFN-λs to the IFNLR varies greatly and are generally lower compared to the binding affinities of IFN-α to its receptor. Finally, genetic variation in the form of a series of single-nucleotide polymorphisms (SNPs) linked to genes involved in the IFN-λ signaling cascade has been described and associated with the clinical course and treatment outcomes of hepatitis B and C virus infection. The clinical impact of IFN-λ signaling and the SNP variations may, however, reach far beyond viral hepatitis. Recent publications show important roles for IFN-λs in a broad range of viral infections such as human T-cell leukemia type-1 virus, rotaviruses, and influenza virus. IFN-λ also potentially modulates the course of bacterial colonization and infections as shown for Staphylococcus aureus and Mycobacterium tuberculosis. Although the immunological processes involved in controlling viral and bacterial infections are distinct, IFN-λs may interfere at various levels: as an innate immune cytokine with direct antiviral effects; or as a modulator of IFN-α-induced signaling via the suppressor of cytokine signaling 1 and the ubiquitin-specific peptidase 18 inhibitory feedback loops. In addition, the modulation of adaptive immune functions via macrophage and
[Study of the antigenic structure of human immunoglobulin lambda-chain using monoclonal antibodies].
Arsen'eva, E L; Bogacheva, G T; Solomon, A; Weiss, D; Ibragimov, A R; Rokhlin, O V
1990-01-01
Nine monoclonals against human Ig lambda chains were produced, 4 antibodies react with C-domain, 5--with V-domain of the lambda chain. Anti-C lambda domain antibodies recognize not less than 3 epitopes and one of them is expressed only on the isolated chain. Anti-V lambda antibodies bind both isolated lambda chain and intact IgG, IgM, IgA. Four epitopes are expressed by few lambda Bence Jones proteins of the III subgroup, the immunogen possessing the same isotype. The 4 mentioned epitopes represent private idiotypic determinants. The epitope 3E10 is characteristic of 50% Bence Jones proteins of the II and III V lambda-subgroups thus representing a common idiotypic determinant. Using anti-V lambda antibodies germ line variability of V lambda III proteins was analysed and the similarity of antigenic structure of normal and myeloma human Ig lambda chains was demonstrated.
ITER safety challenges and opportunities
Piet, S.J.
1991-01-01
Results of the Conceptual Design Activity (CDA) for the International Thermonuclear Experimental Reactor (ITER) suggest challenges and opportunities. ITER is capable of meeting anticipated regulatory dose limits,'' but proof is difficult because of large radioactive inventories needing stringent radioactivity confinement. We need much research and development (R D) and design analysis to establish that ITER meets regulatory requirements. We have a further opportunity to do more to prove more of fusion's potential safety and environmental advantages and maximize the amount of ITER technology on the path toward fusion power plants. To fulfill these tasks, we need to overcome three programmatic challenges and three technical challenges. The first programmatic challenge is to fund a comprehensive safety and environmental ITER R D plan. Second is to strengthen safety and environment work and personnel in the international team. Third is to establish an external consultant group to advise the ITER Joint Team on designing ITER to meet safety requirements for siting by any of the Parties. The first of the three key technical challenges is plasma engineering -- burn control, plasma shutdown, disruptions, tritium burn fraction, and steady state operation. The second is the divertor, including tritium inventory, activation hazards, chemical reactions, and coolant disturbances. The third technical challenge is optimization of design requirements considering safety risk, technical risk, and cost. Some design requirements are now too strict; some are too lax. Fuel cycle design requirements are presently too strict, mandating inappropriate T separation from H and D. Heat sink requirements are presently too lax; they should be strengthened to ensure that maximum loss of coolant accident temperatures drop.
John Womersley
2003-08-21
I describe the future accelerator facilities that are currently foreseen for electroweak scale physics, neutrino physics, and nuclear structure. I will explore the physics justification for these machines, and suggest how the case for future accelerators can be made.
Aaltonen, T.; Alvarez Gonzalez, B.; Amerio, S.; Amidei, D.; Anastassov, A.; Annovi, A.; Antos, J.; Apollinari, G.; Appel, J.A.; Arisawa, T.; Artikov, A.; /Dubna, JINR /Texas A-M
2011-12-01
We report an analysis of the {Lambda}{sub b}{sup 0} {yields} {Lambda}{sub c}{sup +}{pi}{sup -}{pi}{sup +}{pi}{sup -} decay in a data sample collected by the CDF II detector at the Fermilab Tevatron corresponding to 2.4 fb{sup -1} of integrated luminosity. We reconstruct the currently largest samples of the decay modes {Lambda}{sub b}{sup 0} {yields} {Lambda}{sub c}(2595){sup +}{pi}{sup -} (with {Lambda}{sub c}(2595){sup +} {yields} {Lambda}{sub c}{sup +}{pi}{sup +}{pi}{sup -}), {Lambda}{sub b}{sup 0} {yields} {Lambda}{sub c}(2625){sup +}{pi}{sup -} (with {Lambda}{sub c}(2625){sup +} {yields} {Lambda}{sub c}{sup +}{pi}{sup +}{pi}{sup -}), {Lambda}{sub b}{sup 0} {yields} {Sigma}{sub c}(2455){sup ++}{pi}{sup -}{pi}{sup -} (with {Sigma}{sub c}(2455){sup ++} {yields} {Lambda}{sub c}{sup +}{pi}{sup +}), and {Lambda}{sub b}{sup 0} {yields} {Sigma}{sub c}(2455)0{pi}{sup +}{pi}{sup -} (with {Sigma}{sub c}(2455)0 {yields} {Lambda}{sub c}{sup +}{pi}{sup -}) and measure the branching fractions relative to the {Lambda}{sub b}{sup 0} {yields} {Lambda}{sub c}{sup +}{pi}{sup -} branching fraction. We measure the ratio {Beta}({Lambda}{sub b}{sup 0} {yields} {Lambda}{sub c}{sup +}{pi}{sup -}{pi}{sup +}{pi}{sup -})/ {Beta}({Lambda}{sub b}{sup 0} {yields} {Lambda}{sub c}{sup +}{pi}{sup -})=3.04 {+-} 0.33(stat){sub -0.55}{sup +0.70}(syst) which is used to derive {Beta}({Lambda}{sub b}{sup 0} {yields} {Lambda}{sub c}{sup +}{pi}{sup -}{pi}{sup +}{pi}{sup -})=(26.8{sub -11.2}{sup +11.9}) x 10{sup -3}.
Status of PRIMA, the test facility for ITER neutral beam injectors
NASA Astrophysics Data System (ADS)
Sonato, P.; Antoni, V.; Bigi, M.; Chitarin, G.; Luchetta, A.; Marcuzzi, D.; Pasqualotto, R.; Pomaro, N.; Serianni, G.; Toigo, V.; Zaccaria, P.; ITER International Team
2013-02-01
The ITER project requires additional heating by two neutral beam injectors, each accelerating to 1MV a 40A beam of negative deuterons, delivering to the plasma about 17MW up to one hour. As these requirements have never been experimentally met, it was decided to build a test facility, PRIMA (Padova Research on ITER Megavolt Accelerator), in Italy, including a full-size negative ion source, SPIDER, and a prototype of the whole ITER injector, MITICA, aiming to develop the heating injectors to be installed in ITER. The Japan and the India Domestic Agencies participate in the PRIMA enterprise; European laboratories, such as KIT-Karlsruhe, IPP-Garching, CCFE-Culham, CEA-Cadarache and others are also cooperating. In the paper the main requirements are discussed and the design of the main components and systems are described.
Fusion Power measurement at ITER
Bertalot, L.; Barnsley, R.; Krasilnikov, V.; Stott, P.; Suarez, A.; Vayakis, G.; Walsh, M.
2015-07-01
Nuclear fusion research aims to provide energy for the future in a sustainable way and the ITER project scope is to demonstrate the feasibility of nuclear fusion energy. ITER is a nuclear experimental reactor based on a large scale fusion plasma (tokamak type) device generating Deuterium - Tritium (DT) fusion reactions with emission of 14 MeV neutrons producing up to 700 MW fusion power. The measurement of fusion power, i.e. total neutron emissivity, will play an important role for achieving ITER goals, in particular the fusion gain factor Q related to the reactor performance. Particular attention is given also to the development of the neutron calibration strategy whose main scope is to achieve the required accuracy of 10% for the measurement of fusion power. Neutron Flux Monitors located in diagnostic ports and inside the vacuum vessel will measure ITER total neutron emissivity, expected to range from 1014 n/s in Deuterium - Deuterium (DD) plasmas up to almost 10{sup 21} n/s in DT plasmas. The neutron detection systems as well all other ITER diagnostics have to withstand high nuclear radiation and electromagnetic fields as well ultrahigh vacuum and thermal loads. (authors)
Relaxation Criteria for Iterated Traffic Simulations
NASA Astrophysics Data System (ADS)
Kelly, Terence; Nagel, Kai
Iterative transportation microsimulations adjust traveler route plans by iterating between a microsimulation and a route planner. At each iteration, the route planner adjusts individuals' route choices based on the preceding microsimulations. Empirically, this process yields good results, but it is usually unclear when to stop the iterative process when modeling real-world traffic. This paper investigates several criteria to judge relaxation of the iterative process, emphasizing criteria related to traveler decision-making.
Abulencia, A; Adelman, J; Affolder, T; Akimoto, T; Albrow, M G; Ambrose, D; Amerio, S; Amidei, D; Anastassov, A; Anikeev, K; Annovi, A; Antos, J; Aoki, M; Apollinari, G; Arguin, J-F; Arisawa, T; Artikov, A; Ashmanskas, W; Attal, A; Azfar, F; Azzi-Bacchetta, P; Azzurri, P; Bacchetta, N; Badgett, W; Barbaro-Galtieri, A; Barnes, V E; Barnett, B A; Baroiant, S; Bartsch, V; Bauer, G; Bedeschi, F; Behari, S; Belforte, S; Bellettini, G; Bellinger, J; Belloni, A; Benjamin, D; Beretvas, A; Beringer, J; Berry, T; Bhatti, A; Binkley, M; Bisello, D; Blair, R E; Blocker, C; Blumenfeld, B; Bocci, A; Bodek, A; Boisvert, V; Bolla, G; Bolshov, A; Bortoletto, D; Boudreau, J; Boveia, A; Brau, B; Brigliadori, L; Bromberg, C; Brubaker, E; Budagov, J; Budd, H S; Budd, S; Budroni, S; Burkett, K; Busetto, G; Bussey, P; Byrum, K L; Cabrera, S; Campanelli, M; Campbell, M; Canelli, F; Canepa, A; Carrillo, S; Carlsmith, D; Carosi, R; Carron, S; Casarsa, M; Castro, A; Catastini, P; Cauz, D; Cavalli-Sforza, M; Cerri, A; Cerrito, L; Chang, S H; Chen, Y C; Chertok, M; Chiarelli, G; Chlachidze, G; Chlebana, F; Cho, I; Cho, K; Chokheli, D; Chou, J P; Choudalakis, G; Chuang, S H; Chung, K; Chung, W H; Chung, Y S; Ciljak, M; Ciobanu, C I; Ciocci, M A; Clark, A; Clark, D; Coca, M; Compostella, G; Convery, M E; Conway, J; Cooper, B; Copic, K; Cordelli, M; Cortiana, G; Crescioli, F; Cuenca Almenar, C; Cuevas, J; Culbertson, R; Cully, J C; Cyr, D; DaRonco, S; D'Auria, S; Davies, T; D'Onofrio, M; Dagenhart, D; de Barbaro, P; De Cecco, S; Deisher, A; De Lentdecker, G; Dell'Orso, M; Delli Paoli, F; Demortier, L; Deng, J; Deninno, M; De Pedis, D; Derwent, P F; Di Giovanni, G P; Dionisi, C; Di Ruzza, B; Dittmann, J R; DiTuro, P; Dörr, C; Donati, S; Donega, M; Dong, P; Donini, J; Dorigo, T; Dube, S; Efron, J; Erbacher, R; Errede, D; Errede, S; Eusebi, R; Fang, H C; Farrington, S; Fedorko, I; Fedorko, W T; Feild, R G; Feindt, M; Fernandez, J P; Field, R; Flanagan, G; Foland, A; Forrester, S; Foster, G W; Franklin, M; Freeman, J C; Furic, I; Gallinaro, M; Galyardt, J; Garcia, J E; Garberson, F; Garfinkel, A F; Gay, C; Gerberich, H; Gerdes, D; Giagu, S; Giannetti, P; Gibson, A; Gibson, K; Gimmell, J L; Ginsburg, C; Giokaris, N; Giordani, M; Giromini, P; Giunta, M; Giurgiu, G; Glagolev, V; Glenzinski, D; Gold, M; Goldschmidt, N; Goldstein, J; Gomez, G; Gomez-Ceballos, G; Goncharov, M; González, O; Gorelov, I; Goshaw, A T; Goulianos, K; Gresele, A; Griffiths, M; Grinstein, S; Grosso-Pilcher, C; Group, R C; Grundler, U; Guimaraes da Costa, J; Gunay-Unalan, Z; Haber, C; Hahn, K; Hahn, S R; Halkiadakis, E; Hamilton, A; Han, B-Y; Han, J Y; Handler, R; Happacher, F; Hara, K; Hare, M; Harper, S; Harr, R F; Harris, R M; Hartz, M; Hatakeyama, K; Hauser, J; Heijboer, A; Heinemann, B; Heinrich, J; Henderson, C; Herndon, M; Heuser, J; Hidas, D; Hill, C S; Hirschbuehl, D; Hocker, A; Holloway, A; Hou, S; Houlden, M; Hsu, S-C; Huffman, B T; Hughes, R E; Husemann, U; Huston, J; Incandela, J; Introzzi, G; Iori, M; Ishizawa, Y; Ivanov, A; Iyutin, B; James, E; Jang, D; Jayatilaka, B; Jeans, D; Jensen, H; Jeon, E J; Jindariani, S; Jones, M; Joo, K K; Jun, S Y; Jung, J E; Junk, T R; Kamon, T; Karchin, P E; Kato, Y; Kemp, Y; Kephart, R; Kerzel, U; Khotilovich, V; Kilminster, B; Kim, D H; Kim, H S; Kim, J E; Kim, M J; Kim, S B; Kim, S H; Kim, Y K; Kimura, N; Kirsch, L; Klimenko, S; Klute, M; Knuteson, B; Ko, B R; Kondo, K; Kong, D J; Konigsberg, J; Korytov, A; Kotwal, A V; Kovalev, A; Kraan, A C; Kraus, J; Kravchenko, I; Kreps, M; Kroll, J; Krumnack, N; Kruse, M; Krutelyov, V; Kubo, T; Kuhlmann, S E; Kuhr, T; Kusakabe, Y; Kwang, S; Laasanen, A T; Labarga, L; Lai, S; Lami, S; Lammel, S; Lancaster, M; Lander, R L; Lannon, K; Lath, A; Latino, G; Lazzizzera, I; LeCompte, T; Lee, J; Lee, J; Lee, Y J; Lee, S W; Lefèvre, R; Leonardo, N; Leone, S; Levy, S; Lewis, J D; Lin, C; Lin, C S; Lindgren, M; Lipeles, E; Liss, T M; Lister, A; Litvintsev, D O; Liu, T; Lockyer, N S; Loginov, A; Loreti, M; Loverre, P; Lu, R-S; Lucchesi, D; Lujan, P; Lukens, P; Lungu, G; Lyons, L; Lys, J; Lysak, R; Lytken, E; Mack, P; MacQueen, D; Madrak, R; Maeshima, K; Makhoul, K; Maki, T; Maksimovic, P; Malde, S; Manca, G; Margaroli, F; Marginean, R; Marino, C; Marino, C P; Martin, A; Martin, M; Martin, V; Martínez, M; Maruyama, T; Mastrandrea, P; Masubuchi, T; Matsunaga, H; Mattson, M E; Mazini, R; Mazzanti, P; McFarland, K S; McIntyre, P; McNulty, R; Mehta, A; Mehtala, P; Menzemer, S; Menzione, A; Merkel, P; Mesropian, C; Messina, A; Miao, T; Miladinovic, N; Miles, J; Miller, R; Mills, C; Milnik, M; Mitra, A; Mitselmakher, G; Miyamoto, A; Moed, S; Moggi, N; Mohr, B; Moore, R; Morello, M; Movilla Fernandez, P; Mülmenstädt, J; Mukherjee, A; Muller, Th; Mumford, R; Murat, P; Nachtman, J; Nagano, A; Naganoma, J; Nahn, S; Nakano, I; Napier, A; Necula, V; Neu, C; Neubauer, M S; Nielsen, J; Nigmanov, T; Nodulman, L; Norniella, O; Nurse, E; Oh, S H; Oh, Y D; Oksuzian, I; Okusawa, T; Oldeman, R; Orava, R; Osterberg, K; Pagliarone, C; Palencia, E; Papadimitriou, V; Paramonov, A A; Parks, B; Pashapour, S; Patrick, J; Pauletta, G; Paulini, M; Paus, C; Pellett, D E; Penzo, A; Phillips, T J; Piacentino, G; Piedra, J; Pinera, L; Pitts, K; Plager, C; Pondrom, L; Portell, X; Poukhov, O; Pounder, N; Prokoshin, F; Pronko, A; Proudfoot, J; Ptochos, F; Punzi, G; Pursley, J; Rademacker, J; Rahaman, A; Ranjan, N; Rappoccio, S; Reisert, B; Rekovic, V; Renton, P; Rescigno, M; Richter, S; Rimondi, F; Ristori, L; Robson, A; Rodrigo, T; Rogers, E; Rolli, S; Roser, R; Rossi, M; Rossin, R; Ruiz, A; Russ, J; Rusu, V; Saarikko, H; Sabik, S; Safonov, A; Sakumoto, W K; Salamanna, G; Saltó, O; Saltzberg, D; Sánchez, C; Santi, L; Sarkar, S; Sartori, L; Sato, K; Savard, P; Savoy-Navarro, A; Scheidle, T; Schlabach, P; Schmidt, E E; Schmidt, M P; Schmitt, M; Schwarz, T; Scodellaro, L; Scott, A L; Scribano, A; Scuri, F; Sedov, A; Seidel, S; Seiya, Y; Semenov, A; Sexton-Kennedy, L; Sfyrla, A; Shapiro, M D; Shears, T; Shepard, P F; Sherman, D; Shimojima, M; Shochet, M; Shon, Y; Shreyber, I; Sidoti, A; Sinervo, P; Sisakyan, A; Sjolin, J; Slaughter, A J; Slaunwhite, J; Sliwa, K; Smith, J R; Snider, F D; Snihur, R; Soderberg, M; Soha, A; Somalwar, S; Sorin, V; Spalding, J; Spinella, F; Spreitzer, T; Squillacioti, P; Stanitzki, M; Staveris-Polykalas, A; St Denis, R; Stelzer, B; Stelzer-Chilton, O; Stentz, D; Strologas, J; Stuart, D; Suh, J S; Sukhanov, A; Sun, H; Suzuki, T; Taffard, A; Takashima, R; Takeuchi, Y; Takikawa, K; Tanaka, M; Tanaka, R; Tecchio, M; Teng, P K; Terashi, K; Tesarek, R J; Thom, J; Thompson, A S; Thomson, E; Tipton, P; Tiwari, V; Tkaczyk, S; Toback, D; Tokar, S; Tollefson, K; Tomura, T; Tonelli, D; Torre, S; Torretta, D; Tourneur, S; Trischuk, W; Tsuchiya, R; Tsuno, S; Turini, N; Ukegawa, F; Unverhau, T; Uozumi, S; Usynin, D; Vallecorsa, S; van Remortel, N; Varganov, A; Vataga, E; Vázquez, F; Velev, G; Veramendi, G; Veszpremi, V; Vidal, R; Vila, I; Vilar, R; Vine, T; Vollrath, I; Volobouev, I; Volpi, G; Würthwein, F; Wagner, P; Wagner, R G; Wagner, R L; Wagner, J; Wagner, W; Wallny, R; Wang, S M; Warburton, A; Waschke, S; Waters, D; Weinberger, M; Wester, W C; Whitehouse, B; Whiteson, D; Wicklund, A B; Wicklund, E; Williams, G; Williams, H H; Wilson, P; Winer, B L; Wittich, P; Wolbers, S; Wolfe, C; Wright, T; Wu, X; Wynne, S M; Yagil, A; Yamamoto, K; Yamaoka, J; Yamashita, T; Yang, C; Yang, U K; Yang, Y C; Yao, W M; Yeh, G P; Yoh, J; Yorita, K; Yoshida, T; Yu, G B; Yu, I; Yu, S S; Yun, J C; Zanello, L; Zanetti, A; Zaw, I; Zhang, X; Zhou, J; Zucchelli, S
2007-03-23
We report a measurement of the Lambda b0 lifetime in the exclusive decay Lambda b0-->J/psi Lambda 0 in pp collisions at square root s=1.96 TeV using an integrated luminosity of 1.0 fb-1 of data collected by the CDF II detector at the Fermilab Tevatron. Using fully reconstructed decays, we measure tau(Lambda b0)=1.593(-0.078)(+0.083)(stat)+/-0.033(syst) ps. This is the single most precise measurement of tau(Lambda b0) and is 3.2sigma higher than the current world average.
Azzurri, P.; Barria, P.; Ciocci, M.A.; Donati, S.; Vataga, E.
2009-12-01
The authors present the first observation of the {Lambda}{sub b}{sup 0} {yields} {Lambda}{sub c}{sup +}{pi}{sup -}{pi}{sup +}{pi}{sup -} decay using data from an integrated luminosity of approximately 2.4 fb{sup -1} of p{bar p} collisions at {radical}s = 1.96 TeV, collected with the CDF II detector at the Fermilab Tevatron. They also present the first observation of the resonant decays {Lambda}{sub b}{sup 0} {yields} {Sigma}{sub c}(2455){sup 0} {pi}{sup +}{pi}{sup -} {yields} {Lambda}{sub c}{sup +}{pi}{sup -}{pi}{sup +}{pi}{sup -}, {Lambda}{sub b}{sup 0} {yields} {Sigma}{sub c}(2455){sup ++}{pi}{sup -}{pi}{sup -} {yields} {Lambda}{sub c}{sup +}{pi}{sup -}{pi}{sup +}{pi}{sup -}, {Lambda}{sub b}{sup 0} {yields} {Lambda}{sub c}(2595){sup +}{pi}{sup -} {yields} {Lambda}{sub c}{sup +}{pi}{sup -}{pi}{sup +}{pi}{sup -} and {Lambda}{sub b}{sup 0} {yields} {Lambda}{sub c}(2625){sup +}{pi}{sup -} {yields} {Lambda}{sub c}{sup +}{pi}{sup -}{pi}{sup +}{pi}{sup -}, and measure their relative branching ratios.
Construction Safety Forecast for ITER
cadwallader, lee charles
2006-11-01
The International Thermonuclear Experimental Reactor (ITER) project is poised to begin its construction activity. This paper gives an estimate of construction safety as if the experiment was being built in the United States. This estimate of construction injuries and potential fatalities serves as a useful forecast of what can be expected for construction of such a major facility in any country. These data should be considered by the ITER International Team as it plans for safety during the construction phase. Based on average U.S. construction rates, ITER may expect a lost workday case rate of < 4.0 and a fatality count of 0.5 to 0.9 persons per year.
Error Field Correction in ITER
Park, Jong-kyu; Boozer, Allen H.; Menard, Jonathan E.; Schaffer, Michael J.
2008-05-22
A new method for correcting magnetic field errors in the ITER tokamak is developed using the Ideal Perturbed Equilibrium Code (IPEC). The dominant external magnetic field for driving islands is shown to be localized to the outboard midplane for three ITER equilibria that represent the projected range of operational scenarios. The coupling matrices between the poloidal harmonics of the external magnetic perturbations and the resonant fields on the rational surfaces that drive islands are combined for different equilibria and used to determine an ordered list of the dominant errors in the external magnetic field. It is found that efficient and robust error field correction is possible with a fixed setting of the correction currents relative to the currents in the main coils across the range of ITER operating scenarios that was considered.
Convex Accelerated Maximum Entropy Reconstruction
Worley, Bradley
2016-01-01
Maximum entropy (MaxEnt) spectral reconstruction methods provide a powerful framework for spectral estimation of nonuniformly sampled datasets. Many methods exist within this framework, usually defined based on the magnitude of a Lagrange multiplier in the MaxEnt objective function. An algorithm is presented here that utilizes accelerated first-order convex optimization techniques to rapidly and reliably reconstruct nonuniformly sampled NMR datasets using the principle of maximum entropy. This algorithm – called CAMERA for Convex Accelerated Maximum Entropy Reconstruction Algorithm – is a new approach to spectral reconstruction that exhibits fast, tunable convergence in both constant-aim and constant-lambda modes. A high-performance, open source NMR data processing tool is described that implements CAMERA, and brief comparisons to existing reconstruction methods are made on several example spectra. PMID:26894476
Iterative Restoration Of Tomosynthetic Slices
NASA Astrophysics Data System (ADS)
Ruttimann, U. E.; Groenhuis, R. A.; Webber, R. L.
1984-08-01
Tomosynthetic reconstructions suffer from the disadvantage that blurred images of object detail lying outside the plane of interest are superimposed over the desired image of structures in the tomosynthetic plane. It is proposed to selectively reduce these undesired superimpositions by a constrained iterative restoration method. Sufficient conditions are derived ensuring the convergence of the iterations to the exact solution in the absence of noise and constraints. Although in practice the restoration process must be left incomplete because of noise and quantization artifacts, the experimental results demonstrate that for reasons of stability these convergence conditions must be satisfied.
Wurden, G A
2009-01-01
For future machines, the plasma stored energy is going up by factors of 20-40x, and plasma currents by 2-3x, while the surface to volume ratio is at the same time decreasing. Therefore the disruption forces, even for constant B, (which scale like IxB), and associated possible localized heating on machine components, are more severe. Notably, Tore Supra has demonstrated removal of more than 1 GJ of input energy, over nearly a 400 second period. However, the instantaneous stored energy in the Tore Supra system (which is most directly related to the potential for disruption damage) is quite small compared to other large tokamaks. The goal of ITER is routinely described as studying DT burning plasmas with a Q {approx} 10. In reality, ITER has a much more important first order mission. In fact, if it fails at this mission, the consequences are that ITER will never get to the eventual stated purpose of studying a burning plasma. The real mission of ITER is to study (and demonstrate successfully) plasma control with {approx}10-17 MA toroidal currents and {approx}100-400 MJ plasma stored energy levels in long-pulse scenarios. Before DT operation is ever given a go-ahead in ITER, the reality is that ITER must demonstrate routine and reliable control of high energy hydrogen (and deuterium) plasmas. The difficulty is that ITER must simultaneously deal with several technical problems: (1) heat removal at the plasma/wall interface, (2) protection of the wall components from off-normal events, and (3) generation of dust/redeposition of first wall materials. All previous tokamaks have encountered hundred's of major disruptions in the course of their operation. The consequences of a few MA of runaway electrons (at 20-50 MeV) being generated in ITER, and then being lost to the walls are simply catastrophic. They will not be deposited globally, but will drift out (up, down, whatever, depending on control system), and impact internal structures, unless 'ameliorated'. Basically, this
A comparative study of iterative solutions to linear systems arising in quantum mechanics
Jing Yanfei
2010-11-01
This study is mainly focused on iterative solutions with simple diagonal preconditioning to two complex-valued nonsymmetric systems of linear equations arising from a computational chemistry model problem proposed by Sherry Li of NERSC. Numerical experiments show the feasibility of iterative methods to some extent when applied to the problems and reveal the competitiveness of our recently proposed Lanczos biconjugate A-orthonormalization methods to other classic and popular iterative methods. By the way, experiment results also indicate that application specific preconditioners may be mandatory and required for accelerating convergence.
An inverse free electron laser accelerator experiment
Wernick, I.; Marshall, T.C.
1992-12-31
A free electron laser was configured as an autoaccelerator to test the principle of accelerating electrons by stimulated absorption of radiation ({lambda} = 1.65mm) by an electron beam (750kV) traversing an undulator. Radiation is produced in the first section of a constant period undulator (1{sub w1} = 1.43cm) and then absorbed ({approximately} 40%) in a second undulator, having a tapered period (1{sub w2} = 1.8 {minus} 2.25cm), which results in the acceleration of a subgroup ({approximately} 9%) of electrons to {approximately} 1MeV.
An inverse free electron laser accelerator experiment
Wernick, I.; Marshall, T.C.
1992-01-01
A free electron laser was configured as an autoaccelerator to test the principle of accelerating electrons by stimulated absorption of radiation ([lambda] = 1.65mm) by an electron beam (750kV) traversing an undulator. Radiation is produced in the first section of a constant period undulator (1[sub w1] = 1.43cm) and then absorbed ([approximately] 40%) in a second undulator, having a tapered period (1[sub w2] = 1.8 [minus] 2.25cm), which results in the acceleration of a subgroup ([approximately] 9%) of electrons to [approximately] 1MeV.
Characterization of a lymphoblastoid line deleted for lambda immunoglobulin genes
Hough, C.A., White, B.N., Holden, J.A.
1995-04-01
While characterizing the cat eye syndrome (CES) supernumerary chromosome for the presence of {lambda} immunoglobulin gene region sequences, a lymphoblastoid cell line from one CES patient was identified in which there was selection of cells deleted from some IGLC and IGLV genes. Two distinct deletions, one on each chromosome 22, were identified, presumably arising from independent somatic recombination events occurring during B-lymphocyte differentiation. The extent of the deleted regions was determined using probes from the various IGLV subgroups and they each covered at least 82 kilobases. The precise definition of the deletions was not possible because of conservation of some restriction sites in the IGLV region. The cell line was used to map putative IGLV genes within the recombinant phage {lambda}V{lambda}135 to the distal part of the IGLV gene region. 35 refs., 4 figs.
Prediction of narrow N* and {Lambda}* with hidden charm
Wu Jiajun; Molina, R.; Oset, E.; Zou, B. S.
2011-10-24
The interaction between various charmed mesons and charmed baryons, such as D-bar{Sigma}{sub c}-D-bar{Lambda}{sub c}, D-bar*{Sigma}{sub c}-D-bar*{Lambda}{sub c}, and related strangeness channels, are studied within the framework of the coupled channel unitary approach with the local hidden gauge formalism. Six narrow N* and {Lambda}* resonances are dynamically generated with mass above 4 GeV and width smaller than 100 MeV. These predicted new resonances definitely cannot be accommodated by quark models with three constituent quarks. We make estimates of production cross sections of these predicted resonances in p-barp collisions for PANDA at the forthcoming FAIR facility.
Persistence behaviour of thiamethoxam and lambda cyhalothrin in transplanted paddy.
Barik, Suhrid Ranjan; Ganguly, Pritam; Kunda, Samir Kumar; Kole, Ramen Kumar; Bhattacharyya, Anjan
2010-10-01
A field study was conducted in Pre-Kharif season 2007 on paddy to determine the persistence of thiamethoxam (12.6%) and lambda cyhalothrin (9.4%) [in a 'Readymix' formulation Alika 247 ZC], following the application of 33 g. a.i. ha⁻¹ (T₁) and 66 g. a.i. ha⁻¹ (T₂). Spraying of insecticide was done during milking stage of the crop (63 days after transplantation). Thiamethoxam and lambda cyhalothrin residues were estimated by HPLC and GLC respectively. The half-life values were 5.2-5.8 and 4.8 days for thiamethoxam and lambda cyhalothrin respectively. No residue was detected in the harvested paddy, straw, grain, and soil samples.
Acceleration of quantum optimal control theory algorithms with mixing strategies.
Castro, Alberto; Gross, E K U
2009-05-01
We propose the use of mixing strategies to accelerate the convergence of the common iterative algorithms utilized in quantum optimal control theory (QOCT). We show how the nonlinear equations of QOCT can be viewed as a "fixed-point" nonlinear problem. The iterative algorithms for this class of problems may benefit from mixing strategies, as it happens, e.g., in the quest for the ground-state density in Kohn-Sham density-functional theory. We demonstrate, with some numerical examples, how the same mixing schemes utilized in this latter nonlinear problem may significantly accelerate the QOCT iterative procedures.
About the scheme of the infrared FEL system for the accelerator based on HF wells
Kabanov, V.S.; Dzergach, A.I.
1995-12-31
Accelerators, based on localization of plasmoids in the HF wells (RF traps) of the axially-symmetric electromagnetic field E {sub omn} in an oversized (m,n>>1) resonant system, can give accelerating gradients {approximately}100 kV/{lambda}, e.g. 10 GV/m if {lambda}=10 {mu}m. One of possible variants of HF feeding for these accelerators is based on using the powerful infrared FEL System with 2 frequencies. The corresponding FEL`s may be similar to the Los Alamos compact Advanced FEL ({lambda}{sub 1,2}{approximately}10 pm, e-beam energy {approximately}15 MeV, e-beam current {approximately}100 A). Their power is defined mainly by the HF losses in the resonant system of the supposed accelerator.
Adcox, K; Adler, S S; Ajitanand, N N; Akiba, Y; Alexander, J; Aphecetche, L; Arai, Y; Aronson, S H; Averbeck, R; Awes, T C; Barish, K N; Barnes, P D; Barrette, J; Bassalleck, B; Bathe, S; Baublis, V; Bazilevsky, A; Belikov, S; Bellaiche, F G; Belyaev, S T; Bennett, M J; Berdnikov, Y; Botelho, S; Brooks, M L; Brown, D S; Bruner, N; Bucher, D; Buesching, H; Bumazhnov, V; Bunce, G; Burward-Hoy, J; Butsyk, S; Carey, T A; Chand, P; Chang, J; Chang, W C; Chavez, L L; Chernichenko, S; Chi, C Y; Chiba, J; Chiu, M; Choudhury, R K; Christ, T; Chujo, T; Chung, M S; Chung, P; Cianciolo, V; Cole, B A; D'Enterria, D G; David, G; Delagrange, H; Denisov, A; Deshpande, A; Desmond, E J; Dietzsch, O; Dinesh, B V; Drees, A; Durum, A; Dutta, D; Ebisu, K; Efremenko, Y V; el-Chenawi, K; En'yo, H; Esumi, S; Ewell, L; Ferdousi, T; Fields, D E; Fokin, S L; Fraenkel, Z; Franz, A; Frawley, A D; Fung, S-Y; Garpman, S; Ghosh, T K; Glenn, A; Godoi, A L; Goto, Y; Greene, S V; Grosse Perdekamp, M; Gupta, S K; Guryn, W; Gustafsson, H-A; Haggerty, J S; Hamagaki, H; Hansen, A G; Hara, H; Hartouni, E P; Hayano, R; Hayashi, N; He, X; Hemmick, T K; Heuser, J M; Hibino, M; Hill, J C; Ho, D S; Homma, K; Hong, B; Hoover, A; Ichihara, T; Imai, K; Ippolitov, M S; Ishihara, M; Jacak, B V; Jang, W Y; Jia, J; Johnson, B M; Johnson, S C; Joo, K S; Kametani, S; Kang, J H; Kann, M; Kapoor, S S; Kelly, S; Khachaturov, B; Khanzadeev, A; Kikuchi, J; Kim, D J; Kim, H J; Kim, S Y; Kim, Y G; Kinnison, W W; Kistenev, E; Kiyomichi, A; Klein-Boesing, C; Klinksiek, S; Kochenda, L; Kochetkov, V; Koehler, D; Kohama, T; Kotchetkov, D; Kozlov, A; Kroon, P J; Kurita, K; Kweon, M J; Kwon, Y; Kyle, G S; Lacey, R; Lajoie, J G; Lauret, J; Lebedev, A; Lee, D M; Leitch, M J; Li, X H; Li, Z; Lim, D J; Liu, M X; Liu, X; Liu, Z; Maguire, C F; Mahon, J; Makdisi, Y I; Manko, V I; Mao, Y; Mark, S K; Markacs, S; Martinez, G; Marx, M D; Masaike, A; Matathias, F; Matsumoto, T; McGaughey, P L; Melnikov, E; Merschmeyer, M; Messer, F; Messer, M; Miake, Y; Miller, T E; Milov, A; Mioduszewski, S; Mischke, R E; Mishra, G C; Mitchell, J T; Mohanty, A K; Morrison, D P; Moss, J M; Mühlbacher, F; Mukhopadhyay, D; Muniruzzaman, M; Murata, J; Nagamiya, S; Nagasaka, Y; Nagle, J L; Nakada, Y; Nandi, B K; Newby, J; Nikkinen, L; Nilsson, P; Nishimura, S; Nyanin, A S; Nystrand, J; O'Brien, E; Ogilvie, C A; Ohnishi, H; Ojha, I D; Ono, M; Onuchin, V; Oskarsson, A; Osterman, L; Otterlund, I; Oyama, K; Paffrath, L; Pal, D; Palounek, A P T; Pantuev, V S; Papavassiliou, V; Pate, S F; Peitzmann, T; Petridis, A N; Pinkenburg, C; Pisani, R P; Pitukhin, P; Plasil, F; Pollack, M; Pope, K; Purschke, M L; Ravinovich, I; Read, K F; Reygers, K; Riabov, V; Riabov, Y; Rosati, M; Rose, A A; Ryu, S S; Saito, N; Sakaguchi, A; Sakaguchi, T; Sako, H; Sakuma, T; Samsonov, V; Sangster, T C; Santo, R; Sato, H D; Sato, S; Sawada, S; Schlei, B R; Schutz, Y; Semenov, V; Seto, R; Shea, T K; Shein, I; Shibata, T-A; Shigaki, K; Shiina, T; Shin, Y H; Sibiriak, I G; Silvermyr, D; Sim, K S; Simon-Gillo, J; Singh, C P; Singh, V; Sivertz, M; Soldatov, A; Soltz, R A; Sorensen, S; Stankus, P W; Starinsky, N; Steinberg, P; Stenlund, E; Ster, A; Stoll, S P; Sugioka, M; Sugitate, T; Sullivan, J P; Sumi, Y; Sun, Z; Suzuki, M; Takagui, E M; Taketani, A; Tamai, M; Tanaka, K H; Tanaka, Y; Taniguchi, E; Tannenbaum, M J; Thomas, J; Thomas, J H; Thomas, T L; Tian, W; Tojo, J; Torii, H; Towell, R S; Tserruya, I; Tsuruoka, H; Tsvetkov, A A; Tuli, S K; Tydesjö, H; Tyurin, N; Ushiroda, T; Van Hecke, H W; Velissaris, C; Velkovska, J; Velkovsky, M; Vinogradov, A A; Volkov, M A; Vorobyov, A; Vznuzdaev, E; Wang, H; Watanabe, Y; White, S N; Witzig, C; Wohn, F K; Woody, C L; Xie, W; Yagi, K; Yokkaichi, S; Young, G R; Yushmanov, I E; Zajc, W A; Zhang, Z; Zhou, S; Zhou, S
2002-08-26
We present results on the measurement of Lambda and Lambda(macro) production in Au+Au collisions at square root of (S (NN) = 130 GeV with the PHENIX detector at the Relativistic Heavy Ion Collider. The transverse momentum spectra were measured for minimum bias and for the 5% most central events. The Lambda;/Lambda ratios are constant as a function of p(T) and the number of participants. The measured net Lambda density is significantly larger than predicted by models based on hadronic strings (e.g., HIJING) but in approximate agreement with models which include the gluon-junction mechanism.
Adler, C; Ahammed, Z; Allgower, C; Amonett, J; Anderson, B D; Anderson, M; Averichev, G S; Balewski, J; Barannikova, O; Barnby, L S; Baudot, J; Bekele, S; Belaga, V V; Bellwied, R; Berger, J; Bichsel, H; Billmeier, A; Bland, L C; Blyth, C O; Bonner, B E; Boucham, A; Brandin, A; Bravar, A; Cadman, R V; Caines, H; Calderón de la Barca Sánchez, M; Cardenas, A; Carroll, J; Castillo, J; Castro, M; Cebra, D; Chaloupka, P; Chattopadhyay, S; Chen, Y; Chernenko, S P; Cherney, M; Chikanian, A; Choi, B; Christie, W; Coffin, J P; Cormier, T M; Cramer, J G; Crawford, H J; Deng, W S; Derevschikov, A A; Didenko, L; Dietel, T; Draper, J E; Dunin, V B; Dunlop, J C; Eckardt, V; Efimov, L G; Emelianov, V; Engelage, J; Eppley, G; Erazmus, B; Fachini, P; Faine, V; Faivre, J; Filimonov, K; Finch, E; Fisyak, Y; Flierl, D; Foley, K J; Fu, J; Gagliardi, C A; Gagunashvili, N; Gans, J; Gaudichet, L; Germain, M; Geurts, F; Ghazikhanian, V; Grachov, O; Grigoriev, V; Guedon, M; Gushin, E; Hallman, T J; Hardtke, D; Harris, J W; Henry, T W; Heppelmann, S; Herston, T; Hippolyte, B; Hirsch, A; Hjort, E; Hoffmann, G W; Horsley, M; Huang, H Z; Humanic, T J; Igo, G; Ishihara, A; Ivanshin, Yu I; Jacobs, P; Jacobs, W W; Janik, M; Johnson, I; Jones, P G; Judd, E G; Kaneta, M; Kaplan, M; Keane, D; Kiryluk, J; Kisiel, A; Klay, J; Klein, S R; Klyachko, A; Konstantinov, A S; Kopytine, M; Kotchenda, L; Kovalenko, A D; Kramer, M; Kravtsov, P; Krueger, K; Kuhn, C; Kulikov, A I; Kunde, G J; Kunz, C L; Kutuev, R Kh; Kuznetsov, A A; Lakehal-Ayat, L; Lamont, M A C; Landgraf, J M; Lange, S; Lansdell, C P; Lasiuk, B; Laue, F; Lauret, J; Lebedev, A; Lednický, R; Leontiev, V M; LeVine, M J; Li, Q; Lindenbaum, S J; Lisa, M A; Liu, F; Liu, L; Liu, Z; Liu, Q J; Ljubicic, T; Llope, W J; LoCurto, G; Long, H; Longacre, R S; Lopez-Noriega, M; Love, W A; Ludlam, T; Lynn, D; Ma, J; Majka, R; Margetis, S; Markert, C; Martin, L; Marx, J; Matis, H S; Matulenko, Yu A; McShane, T S; Meissner, F; Melnick, Yu; Meschanin, A; Messer, M; Miller, M L; Milosevich, Z; Minaev, N G; Mitchell, J; Moiseenko, V A; Moore, C F; Morozov, V; de Moura, M M; Munhoz, M G; Nelson, J M; Nevski, P; Nikitin, V A; Nogach, L V; Norman, B; Nurushev, S B; Odyniec, G; Ogawa, A; Okorokov, V; Oldenburg, M; Olson, D; Paic, G; Pandey, S U; Panebratsev, Y; Panitkin, S Y; Pavlinov, A I; Pawlak, T; Perevoztchikov, V; Peryt, W; Petrov, V A; Planinic, M; Pluta, J; Porile, N; Porter, J; Poskanzer, A M; Potrebenikova, E; Prindle, D; Pruneau, C; Putschke, J; Rai, G; Rakness, G; Ravel, O; Ray, R L; Razin, S V; Reichhold, D; Reid, J G; Renault, G; Retiere, F; Ridiger, A; Ritter, H G; Roberts, J B; Rogachevski, O V; Romero, J L; Rose, A; Roy, C; Rykov, V; Sakrejda, I; Salur, S; Sandweiss, J; Saulys, A C; Savin, I; Schambach, J; Scharenberg, R P; Schmitz, N; Schroeder, L S; Schüttauf, A; Schweda, K; Seger, J; Seliverstov, D; Seyboth, P; Shahaliev, E; Shestermanov, K E; Shimanskii, S S; Shvetcov, V S; Skoro, G; Smirnov, N; Snellings, R; Sorensen, P; Sowinski, J; Spinka, H M; Srivastava, B; Stephenson, E J; Stock, R; Stolpovsky, A; Strikhanov, M; Stringfellow, B; Struck, C; Suaide, A A P; Sugarbaker, E; Suire, C; Sumbera, M; Surrow, B; Symons, T J M; de Toledo, A Szanto; Szarwas, P; Tai, A; Takahashi, J; Tang, A H; Thomas, J H; Thompson, M; Tikhomirov, V; Tokarev, M; Tonjes, M B; Trainor, T A; Trentalange, S; Tribble, R E; Trofimov, V; Tsai, O; Ullrich, T; Underwood, D G; Van Buren, G; VanderMolen, A M; Vasilevski, I M; Vasiliev, A N; Vigdor, S E; Voloshin, S A; Wang, F; Ward, H; Watson, J W; Wells, R; Westfall, G D; Whitten, C; Wieman, H; Willson, R; Wissink, S W; Witt, R; Wood, J; Xu, N; Xu, Z; Yakutin, A E; Yamamoto, E; Yang, J; Yepes, P; Yurevich, V I; Zanevski, Y V; Zborovský, I; Zhang, H; Zhang, W M; Zoulkarneev, R; Zubarev, A N
2002-08-26
We report the first measurement of strange (Lambda) and antistrange (Lambda macro) baryon production from square root of [s(NN)]=130 GeV Au+Au collisions at the Relativistic Heavy Ion Collider (RHIC). Rapidity density and transverse mass distributions at midrapidity are presented as a function of centrality. The yield of Lambda and Lambda; hyperons is found to be approximately proportional to the number of negative hadrons. The production of Lambda; hyperons relative to negative hadrons increases very rapidly with transverse momentum. The magnitude of the increase cannot be described by existing hadronic string fragmentation models alone.
The algebraic theory of latent projectors in lambda matrices
NASA Technical Reports Server (NTRS)
Denman, E. D.; Leyva-Ramos, J.; Jeon, G. J.
1981-01-01
Multivariable systems such as a finite-element model of vibrating structures, control systems, and large-scale systems are often formulated in terms of differential equations which give rise to lambda matrices. The present investigation is concerned with the formulation of the algebraic theory of lambda matrices and the relationship of latent roots, latent vectors, and latent projectors to the eigenvalues, eigenvectors, and eigenprojectors of the companion form. The chain rule for latent projectors and eigenprojectors for the repeated latent root or eigenvalues is given.
Properties of the Lambda(1670)(1-)/2 resonance.
Manley, D M; Abaev, V V; Allgower, C E; Bekrenev, V; Briscoe, W J; Clajus, M; Comfort, J R; Craig, K; Grosnick, D; Isenhower, D; Knecht, N; Koetke, D D; Kulbardis, A A; Kozlenko, N G; Kruglov, S; Lolos, G; Lopatin, I V; Manweiler, R; Marusić, A; McDonald, S; Nefkens, B M K; Olmsted, J; Papandreou, Z; Peaslee, D C; Phaisangittisakul, N; Prakhov, S; Price, J W; Ramirez, A F; Sadler, M; Shafi, A; Spinka, H; Stanislaus, T D S; Starostin, A; Staudenmaier, H M; Strakovsky, I I; Supek, I; Tippens, W B
2002-01-07
Recently the Crystal Ball Collaboration measured precise new data for the near-threshold reaction K(-)p-->etaLambda, which is dominated by formation of the Lambda(1670)1 / 2(-). In this Letter, we present results of a unitary, multichannel analysis that incorporates the new Crystal Ball data. For our preferred fit, we obtain mass M = 1673+/-2 MeV, width Gamma = 23+/-6 MeV, and elasticity x = 0.37+/-0.07. This elasticity is significantly larger than previously recognized. Resonance parameters of our preferred fit are in striking agreement with the quark-model predictions of Koniuk and Isgur.
Iterative method for interferogram processing
NASA Astrophysics Data System (ADS)
Kotlyar, Victor V.; Seraphimovich, P. G.; Zalyalov, Oleg K.
1994-12-01
We have developed and numerically evaluated an iterative algorithm for interferogram processing including the Fourier-transform method, the Gerchberg-Papoulis algorithm and Wiener's filter-based regularization used in combination. Using a signal-to-noise ratio not less than 1, it has been possible to reconstruct the phase of an object field with accuracy better than 5%.
Energetic ions in ITER plasmas
Pinches, S. D.; Chapman, I. T.; Sharapov, S. E.; Lauber, Ph. W.; Oliver, H. J. C.; Shinohara, K.; Tani, K.
2015-02-15
This paper discusses the behaviour and consequences of the expected populations of energetic ions in ITER plasmas. It begins with a careful analytic and numerical consideration of the stability of Alfvén Eigenmodes in the ITER 15 MA baseline scenario. The stability threshold is determined by balancing the energetic ion drive against the dominant damping mechanisms and it is found that only in the outer half of the plasma (r/a>0.5) can the fast ions overcome the thermal ion Landau damping. This is in spite of the reduced numbers of alpha-particles and beam ions in this region but means that any Alfvén Eigenmode-induced redistribution is not expected to influence the fusion burn process. The influence of energetic ions upon the main global MHD phenomena expected in ITER's primary operating scenarios, including sawteeth, neoclassical tearing modes and Resistive Wall Modes, is also reviewed. Fast ion losses due to the non-axisymmetric fields arising from the finite number of toroidal field coils, the inclusion of ferromagnetic inserts, the presence of test blanket modules containing ferromagnetic material, and the fields created by the Edge Localised Mode (ELM) control coils in ITER are discussed. The greatest losses and associated heat loads onto the plasma facing components arise due to the use of the ELM control coils and come from neutral beam ions that are ionised in the plasma edge.
Networking Theories by Iterative Unpacking
ERIC Educational Resources Information Center
Koichu, Boris
2014-01-01
An iterative unpacking strategy consists of sequencing empirically-based theoretical developments so that at each step of theorizing one theory serves as an overarching conceptual framework, in which another theory, either existing or emerging, is embedded in order to elaborate on the chosen element(s) of the overarching theory. The strategy is…
Development of RF Tools and Scenarios for ITER on JET
NASA Astrophysics Data System (ADS)
Noterdaeme, J.-M.; Mantsinen, M.; Bobkov, V.; Ekedahl, A.; Eriksson, L.-G.; Lamalle, P. U.; Lyssoivan, A.; Mailloux, J.; Mayoral, M.-L.; Meo, F.; Monakhov, I.; Rantamaki, K.; Salmi, A.; Santala, M.; Sharapov, S.; Jet-Efda Task Force H; Jet-Efda Contributors
2005-09-01
The improvement of LH coupling with local puffing of D2 gas, which made operation at ITER relevant distances (10 cm) and with ELMs a reality, has been extended to ITER- like plasma shapes with higher triangularity. With ICRF, we developed tools such as (1) localized direct electron heating using the 3He mode conversion scenario for electron heat transport studies, (2) the production of 4He ions with energies in the MeV range by 3 ωc acceleration of beam injected ions at 120 keV to investigate Alfven instabilities and test α diagnostics, (3) the stabilisation and destabilisation of sawteeth and (4) ICRF as as a wall conditioning. Several ITER relevant scenarios were tested. The (3He)H minority heating scenario, considered for the non-activated start-up phase of ITER, produces at very low concentration energetic 3He which heat the electrons indirectly. For n3He/ne > 2%, the scenario transforms to a mode conversion scenario where the electrons are heated directly. The (D)H minority heating is not accessible as the concentration of C6+ dominates the wave propagation and always leads to mode conversion. The minority heating of T in D is very effective heating for ions and producing neutrons. New results were obtained in several areas of ICRF physics. Experimental evidence confirmed the theoretical prediction that, as the larmor radius increases beyond 0.5 times the perpendicular wavelength of the wave, the second harmonic acceleration of the ions decreases to very small levels. An exotic fusion reaction (pT) must be taken into account when evaluating neutron rates. The contribution of fast particles accelerated by ICRF to the plasma rotation was clearly identified, but it is only part of an underlying, and not yet understood, co-current plasma rotation. Progress was made in the physics of ELMs while their effect on the ICRF coupling could be minimized with the conjugate-T matching scheme. The addition of 3 dB couplers is a step in increasing the power capability of
Approaching {lambda} without fine-tuning
Matarrese, Sabino; Baccigalupi, Carlo; Perrotta, Francesca
2004-09-15
We address the fine-tuning problem of dark energy cosmologies which arises when the dark energy density needs to initially lie in a narrow range in order for its present value to be consistent with observations. As recently noticed, this problem becomes particularly severe in canonical quintessence scenarios, when trying to reproduce the behavior of a cosmological constant, i.e., when the dark energy equation of state w{sub Q} approaches -1: these models may be reconciled with a large basin of attraction only by requiring a rapid evolution of w{sub Q} at low redshifts, which is in conflict with the most recent estimates from type Ia Supernovae discovered by Hubble space telescope. Next, we focus on scalar-tensor theories of gravity, discussing the implications of a coupling between the quintessence scalar field and the Ricci scalar ('extended quintessence'). We show that, even if the equation of state today is very close to -1, by virtue of the scalar-tensor coupling the quintessence trajectories still possess the attractive feature which allows to reach the present level of cosmic acceleration starting by a set of initial conditions which covers tens of orders of magnitude; this effect, entirely of gravitational origin, represents a new important consequence of the possible coupling between dark energy and gravity. We illustrate this effect in typical extended quintessence scenarios.
Analysis of the velocity law in the wind of the Be star Lambda Pavonis
NASA Technical Reports Server (NTRS)
Chen, Haiqi; Ringuelet, Adela; Sahade, Jorge; Kondo, Yoji
1989-01-01
This paper reanalyzes the IUE spectra of Lambda Pavonis secured in 1982 (Sahade et al.). It is found that the profiles of the broad UV lines are either rotationally broadened or nonrotationally broadened and that the rotationally broadened profiles can be sorted out in two groups characterized by rotational velocity values of 170 km/s and of 210 km/s, respectively. From the analysis of the rotational and of the radial velocities it is possible to distinguish two regions in the extended atmosphere of the star, namely, a region which is rotating and a region which is expanding. In the rotating region, the radial velocities are about zero, and the rotational velocity increases from 170 km/s to 250 km/s. In the expanding region, the rotational energy dissipates, the wind is accelerated to a maximum of -155 km/s, and farther out it decelerates.
Milner, E.C.
1985-12-01
The observation of ..lambda..-hypernuclear levels in /sub ..lambda..//sup 12/C by associated production through the (..pi../sup +/,K/sup +/) reaction is reported. Spectrometers used in the measurements are discussed. The /sub ..lambda..//sup 12/C excitation energy spectra were recorded at laboratory scattering angles of 5.6/sup 0/, 10.3/sup 0/, and 15.2/sup 0/. The spectra show two major peaks - one attributed to the ground state, and one about 11 MeV higher in excitation. The peak near 11 MeV excitation energy is believed to be almost entirely composed of a multiplet of three J/sup ..pi../ = 2/sup +/ states. Relativistic DWBA calculations imply support for the expectation that higher spin states are preferentially populated in the (..pi../sup +/,K/sup +/) reaction, compared to the (K/sup -/,..pi../sup -/) reaction in which lower spin states are excited. 29 refs., 40 figs.
Iterative wavelet thresholding for rapid MRI reconstruction
NASA Astrophysics Data System (ADS)
Kayvanrad, Mohammad H.; McKenzie, Charles A.; Peters, Terry M.
2011-03-01
According to the developments in the field of compressed sampling and and sparse recovery, one might take advantage of the sparsity of an object, as an additional a priori knowledge about the object, to reconstruct it from fewer samples than that needed by the traditional sampling strategies. Since most magnetic resonance (MR) images are sparse in some domain, in this work we consider the problem of MR reconstruction and how one could apply this idea to accelerate the process of MR image/map acquisition. In particular, based on the Paupolis-Gerchgerg algorithm, an iterative thresholding algorithm for reconstruction of MR images from limited k-space observations is proposed. The proposed method takes advantage of the sparsity of most MR images in the wavelet domain. Initializing with a minimum-energy reconstruction, the object of interest is reconstructed by going through a sequence of thresholding and recovery iterations. Furthermore, MR studies often involve acquisition of multiple images in time that are highly correlated. This correlation can be used as additional knowledge on the object beside the sparsity to further reduce the reconstruction time. The performance of the proposed algorithms is experimentally evaluated and compared to other state-of-the-art methods. In particular, we show that the quality of reconstruction is increased compared to total variation (TV) regularization, and the conventional Papoulis-Gerchberg algorithm both in the absence and in the presence of noise. Also, phantom experiments show good accuracy in the reconstruction of relaxation maps from a set of highly undersampled k-space observations.
X-Ray Flare Characteristics in lambda Eridani
NASA Technical Reports Server (NTRS)
Smith, Myron A.
1997-01-01
This proposal was for a joint X-ray/ultraviolet/ground-based study of the abnormal Be star lambda Eri, which has previously shown evidence of X-ray flaring from ROSAT observations in 1991. The X-ray component consisted of observations from both the ASCA and ROSAT satellites.
X-Ray Flare Characteristics in Lambda Eridani
NASA Technical Reports Server (NTRS)
Smith, Myron A.
1997-01-01
This proposal was for a joint X-ray/ultraviolet/ground-based study of the abnormal Be star lambda Eri, which has previously shown evidence of X-ray flaring from ROSAT observations in 1991. The X-ray component consisted of observations from both the ASCA and ROSAT satellites.
Application of nonlinear Krylov acceleration to radiative transfer problems
Till, A. T.; Adams, M. L.; Morel, J. E.
2013-07-01
The iterative solution technique used for radiative transfer is normally nested, with outer thermal iterations and inner transport iterations. We implement a nonlinear Krylov acceleration (NKA) method in the PDT code for radiative transfer problems that breaks nesting, resulting in more thermal iterations but significantly fewer total inner transport iterations. Using the metric of total inner transport iterations, we investigate a crooked-pipe-like problem and a pseudo-shock-tube problem. Using only sweep preconditioning, we compare NKA against a typical inner / outer method employing GMRES / Newton and find NKA to be comparable or superior. Finally, we demonstrate the efficacy of applying diffusion-based preconditioning to grey problems in conjunction with NKA. (authors)
Iterative procedures for wave propagation in the frequency domain
Kim, Seongjai; Symes, W.W.
1996-12-31
A parallelizable two-grid iterative algorithm incorporating a domain decomposition (DD) method is considered for solving the Helmholtz problem. Since a numerical method requires choosing at least 6 to 8 grid points per wavelength, the coarse-grid problem itself is not an easy task for high frequency applications. We solve the coarse-grid problem using a nonoverlapping DD method. To accelerate the convergence of the iteration, an artificial damping technique and relaxation parameters are introduced. Automatic strategies for finding efficient parameters are discussed. Numerical results are presented to show the effectiveness of the method. It is numerically verified that the rate of convergence of the algorithm depends on the wave number sub-linearly and does not deteriorate as the mesh size decreases.
Bioinspired iterative synthesis of polyketides
Zheng, Kuan; Xie, Changmin; Hong, Ran
2015-01-01
Diverse array of biopolymers and second metabolites (particularly polyketide natural products) has been manufactured in nature through an enzymatic iterative assembly of simple building blocks. Inspired by this strategy, molecules with inherent modularity can be efficiently synthesized by repeated succession of similar reaction sequences. This privileged strategy has been widely adopted in synthetic supramolecular chemistry. Its value also has been reorganized in natural product synthesis. A brief overview of this approach is given with a particular emphasis on the total synthesis of polyol-embedded polyketides, a class of vastly diverse structures and biologically significant natural products. This viewpoint also illustrates the limits of known individual modules in terms of diastereoselectivity and enantioselectivity. More efficient and practical iterative strategies are anticipated to emerge in the future development. PMID:26052510
NASA Astrophysics Data System (ADS)
Whyte, D. G.; Marmar, E.; Hubbard, A.; Hughes, J.; Dominguez, A.; Greenwald, M.
2011-10-01
I-mode is a recently explored confinement regime that features a temperature pedestal and H-mode energy confinement, yet with L-mode particle confinement and no density pedestal nor large ELMs. Experiments on Alcator C-Mod and ASDEX-Upgrade show this leads to a stationary collisionless pedestal that inherently does not require ELMs for core impurity and particle control, possibly making I-mode an attractive operating regime for ITER where ELM heat pulses are expected to surpass material limits. We speculate as to how I-mode could be obtained, maintained and exploited for the ITER burning plasma physics mission. Issues examined include I-mode topology and power threshold requirements, pedestal formation, density control, avoiding H-mode, and the response of I-mode to alpha self-heating. Key uncertainties requiring further investigation are identified. Supported by the US DOE Cooperative Agreement DE-FC02-99ER54512.
Spectroscopic problems in ITER diagnostics
NASA Astrophysics Data System (ADS)
Lisitsa, V. S.; Bureyeva, L. A.; Kukushkin, A. B.; Kadomtsev, M. B.; Krupin, V. A.; Levashova, M. G.; Medvedev, A. A.; Mukhin, E. E.; Shurygin, V. A.; Tugarinov, S. N.; Vukolov, K. Yu
2012-12-01
Problems of spectroscopic diagnostics of ITER plasma are under consideration. Three types of diagnostics are presented: 1) Balmer lines spectroscopy in the edge and divertor plasmas; 2) Thomson scattering, 3) charge exchange recombination spectroscopy. The Zeeman-Stark structure of line shapes is discussed. The overlapping of isotopes H-D-T spectral line shapes are presented for the SOL and divertor conditions. The polarization measurements of H-alpha spectral lines for H-D mixture on T-10 tokamak are shown in order to separate Zeeman splitting in more details. The problem of plasma background radiation emission for Thomson scattering in ITER is discussed in details. The line shape of P-7 hydrogen spectral line having a wave length close to laser one is presented together with continuum radiation. The charge exchange recombination spectroscopy (CXRS) is discussed in details. The data on Dα, HeII and CVI measurements in CXRS experiments on T-10 tokamak are presented.
NASA Astrophysics Data System (ADS)
Shah, N.; Choukekar, K.; Jadon, M.; Sarkar, B.; Joshi, B.; Kanzaria, H.; Gehani, V.; Vyas, H.; Pandya, U.; Panjwani, R.; Badgujar, S.; Monneret, E.
2017-02-01
The ITER Cryogenic system is one of the most complex cryogenic systems in the world. It includes roughly 5 km of cryogenic transfer line (cryolines) having large number of layout singularities in terms of bends at odd angles and branches. The relief lines are particularly important cryolines as they collect the helium from outlet of all process safety valves of the cryogenic clients and transfers it back to cryoplant. The total length of ITER relief lines is around 1.6 km with process pipe size varying from DN 50 to DN 200. While some part of relief lines carries warm helium for the recovery system, most part of the relief line is vacuum jacketed cryoline which carries cold helium from the clients. The final detailed design of relief lines has been completed. The paper describes the major input data and constraints for design of relief lines, design steps, flexibility and structural analysis approach and major design outcome.
Nichols, J.D.; Hines, J.E.
2002-01-01
We first consider the estimation of the finite rate of population increase or population growth rate, lambda sub i, using capture-recapture data from open populations. We review estimation and modelling of lambda sub i under three main approaches to modelling open-population data: the classic approach of Jolly (1965) and Seber (1965), the superpopulation approach of Crosbie & Manly (1985) and Schwarz & Arnason (1996), and the temporal symmetry approach of Pradel (1996). Next, we consider the contributions of different demographic components to lambda sub i using a probabilistic approach based on the composition of the population at time i + 1 (Nichols et al., 2000b). The parameters of interest are identical to the seniority parameters, gamma sub i, of Pradel (1996). We review estimation of gamma sub i under the classic, superpopulation, and temporal symmetry approaches. We then compare these direct estimation approaches for lambda sub i and gamma sub i with analogues computed using projection matrix asymptotics. We also discuss various extensions of the estimation approaches to multistate applications and to joint likelihoods involving multiple data types.
ITER Plasma Control System Development
NASA Astrophysics Data System (ADS)
Snipes, Joseph; ITER PCS Design Team
2015-11-01
The development of the ITER Plasma Control System (PCS) continues with the preliminary design phase for 1st plasma and early plasma operation in H/He up to Ip = 15 MA in L-mode. The design is being developed through a contract between the ITER Organization and a consortium of plasma control experts from EU and US fusion laboratories, which is expected to be completed in time for a design review at the end of 2016. This design phase concentrates on breakdown including early ECH power and magnetic control of the poloidal field null, plasma current, shape, and position. Basic kinetic control of the heating (ECH, ICH, NBI) and fueling systems is also included. Disruption prediction, mitigation, and maintaining stable operation are also included because of the high magnetic and kinetic stored energy present already for early plasma operation. Support functions for error field topology and equilibrium reconstruction are also required. All of the control functions also must be integrated into an architecture that will be capable of the required complexity of all ITER scenarios. A database is also being developed to collect and manage PCS functional requirements from operational scenarios that were defined in the Conceptual Design with links to proposed event handling strategies and control algorithms for initial basic control functions. A brief status of the PCS development will be presented together with a proposed schedule for design phases up to DT operation.
Compatibility of ITER scenarios with an all-W wall
NASA Astrophysics Data System (ADS)
Sips, A. C. C.; Gruber, O.; ASDEX Upgrade Team
2008-12-01
In 2008, ASDEX Upgrade has started its second experimental campaign with full tungsten coverage of the plasma facing components. In the transition from a partially W-coated device (69% tungsten coverage in 2004/2005) to a full tungsten device (since 2007), post campaign analyses show a reduction by an order of magnitude in both the carbon deposition and deuterium retention for the experimental campaigns. Spectroscopic measurements show that the outer divertor is by far the strongest tungsten source region. However, influxes from the outboard limiters are the most important source for the tungsten content in the plasma. The application of ICRH results in large W influxes due to sputtering from light impurities accelerated by electrical fields at the ICRH antennas. In H-mode discharges, ELMs reduce the inward transport of tungsten in the H-mode edge transport barrier. Central heating provided by neutral beams and the upgraded ECRH systems is used to avoid tungsten accumulation in the core of the plasma. Stationary, ITER relevant H-modes (H98 ~ 1, βN ~ 1.6-2), with W concentrations below 3 × 10-5, were routinely achieved. High performance H-modes have been obtained before the first boronization, achieving H98 = 1.1-1.2 and βN up to 2.6 as required for advanced scenarios in ITER. Specific ITER studies performed in 2008 include the demonstration of low voltage plasma start-up with ECRH and heating during the current rise to q95 = 3, to achieve a range of plasma inductance of 0.71-0.97. The new results reported here form the basis of further enhancing the operational space of ASDEX Upgrade with the full tungsten wall, preparing for ITER and the ITER-like wall project in JET.
ibr: Iterative bias reduction multivariate smoothing
Hengartner, Nicholas W; Cornillon, Pierre-andre; Matzner - Lober, Eric
2009-01-01
Regression is a fundamental data analysis tool for relating a univariate response variable Y to a multivariate predictor X {element_of} E R{sup d} from the observations (X{sub i}, Y{sub i}), i = 1,...,n. Traditional nonparametric regression use the assumption that the regression function varies smoothly in the independent variable x to locally estimate the conditional expectation m(x) = E[Y|X = x]. The resulting vector of predicted values {cflx Y}{sub i} at the observed covariates X{sub i} is called a regression smoother, or simply a smoother, because the predicted values {cflx Y}{sub i} are less variable than the original observations Y{sub i}. Linear smoothers are linear in the response variable Y and are operationally written as {cflx m} = X{sub {lambda}}Y, where S{sub {lambda}} is a n x n smoothing matrix. The smoothing matrix S{sub {lambda}} typically depends on a tuning parameter which we denote by {lambda}, and that governs the tradeoff between the smoothness of the estimate and the goodness-of-fit of the smoother to the data by controlling the effective size of the local neighborhood over which the responses are averaged. We parameterize the smoothing matrix such that large values of {lambda} are associated to smoothers that averages over larger neighborhood and produce very smooth curves, while small {lambda} are associated to smoothers that average over smaller neighborhood to produce a more wiggly curve that wants to interpolate the data. The parameter {lambda} is the bandwidth for kernel smoother, the span size for running-mean smoother, bin smoother, and the penalty factor {lambda} for spline smoother.
Colgate, S.A.
1958-05-27
An improvement is presented in linear accelerators for charged particles with respect to the stable focusing of the particle beam. The improvement consists of providing a radial electric field transverse to the accelerating electric fields and angularly introducing the beam of particles in the field. The results of the foregoing is to achieve a beam which spirals about the axis of the acceleration path. The combination of the electric fields and angular motion of the particles cooperate to provide a stable and focused particle beam.
Abbin, Jr., Joseph P.; Devaney, Howard F.; Hake, Lewis W.
1982-08-17
The disclosure relates to an improved integrating acceleration switch of the type having a mass suspended within a fluid filled chamber, with the motion of the mass initially opposed by a spring and subsequently not so opposed.
Abbin, J.P. Jr.; Devaney, H.F.; Hake, L.W.
1979-08-29
The disclosure relates to an improved integrating acceleration switch of the type having a mass suspended within a fluid filled chamber, with the motion of the mass initially opposed by a spring and subsequently not so opposed.
Bell, J.S.
1959-09-15
An arrangement for the drift tubes in a linear accelerator is described whereby each drift tube acts to shield the particles from the influence of the accelerating field and focuses the particles passing through the tube. In one embodiment the drift tube is splii longitudinally into quadrants supported along the axis of the accelerator by webs from a yoke, the quadrants. webs, and yoke being of magnetic material. A magnetic focusing action is produced by energizing a winding on each web to set up a magnetic field between adjacent quadrants. In the other embodiment the quadrants are electrically insulated from each other and have opposite polarity voltages on adjacent quadrants to provide an electric focusing fleld for the particles, with the quadrants spaced sufficienily close enough to shield the particles within the tube from the accelerating electric field.
Transport synthetic acceleration with opposing reflecting boundary conditions
Zika, M.R.; Adams, M.L.
2000-02-01
The transport synthetic acceleration (TSA) scheme is extended to problems with opposing reflecting boundary conditions. This synthetic method employs a simplified transport operator as its low-order approximation. A procedure is developed that allows the use of the conjugate gradient (CG) method to solve the resulting low-order system of equations. Several well-known transport iteration algorithms are cast in a linear algebraic form to show their equivalence to standard iterative techniques. Source iteration in the presence of opposing reflecting boundary conditions is shown to be equivalent to a (poorly) preconditioned stationary Richardson iteration, with the preconditioner defined by the method of iterating on the incident fluxes on the reflecting boundaries. The TSA method (and any synthetic method) amounts to a further preconditioning of the Richardson iteration. The presence of opposing reflecting boundary conditions requires special consideration when developing a procedure to realize the CG method for the proposed system of equations. The CG iteration may be applied only to symmetric positive definite matrices; this condition requires the algebraic elimination of the boundary angular corrections from the low-order equations. As a consequence of this elimination, evaluating the action of the resulting matrix on an arbitrary vector involves two transport sweeps and a transmission iteration. Results of applying the acceleration scheme to a simple test problem are presented.
Fourier mode analysis of slab-geometry transport iterations in spatially periodic media
Larsen, E; Zika, M
1999-04-01
We describe a Fourier analysis of the diffusion-synthetic acceleration (DSA) and transport-synthetic acceleration (TSA) iteration schemes for a spatially periodic, but otherwise arbitrarily heterogeneous, medium. Both DSA and TSA converge more slowly in a heterogeneous medium than in a homogeneous medium composed of the volume-averaged scattering ratio. In the limit of a homogeneous medium, our heterogeneous analysis contains eigenvalues of multiplicity two at ''resonant'' wave numbers. In the presence of material heterogeneities, error modes corresponding to these resonant wave numbers are ''excited'' more than other error modes. For DSA and TSA, the iteration spectral radius may occur at these resonant wave numbers, in which case the material heterogeneities most strongly affect iterative performance.
Fourier mode analysis of slab-geometry transport iterations in spatially periodic media
Larsen, E W; Zika, M R
1999-05-07
We describe a Fourier analysis of the diffusion-synthetic acceleration (DSA) and transport-synthetic acceleration (TSA) iteration schemes for a spatially periodic, but otherwise arbitrarily heterogeneous, medium. Both DSA and TSA converge more slowly in a heterogeneous medium than in a homogeneous medium composed of the volume-averaged scattering ratio. In the limit of a homogeneous medium, our heterogeneous analysis contains eigenvalues of multiplicity two at ''resonant'' wave numbers. In the presence of material heterogeneities, error modes corresponding to these resonant wave numbers are ''excited'' more than other error modes. For DSA and TSA, the iteration spectral radius may occur at these resonant wave numbers, in which case the material heterogeneities most strongly affect iterative performance.
Acceleration of tomographic hyperspectral restoration algorithms
NASA Astrophysics Data System (ADS)
Schau, Harvey C.
2006-05-01
Hyperspectral imaging spectrometers have proven to be both versatile and powerful instruments with applications in diverse areas such as medical diagnosis, land usage, military target detection, and art forgery. In many applications scanning systems cannot be effectively employed and true "flash" operation is necessary. Multiplex systems have been developed which can gather information in multispectral bands simultaneously, and then produce a datacube after mathematical restoration. Such system enjoy compact size, robust construction, inexpensive costs and zero moving parts at the cost of highly complex mathematical restoration operations. Currently the limiting feature of such tomographic hyperspectral imagers such as the FMDIS [1,2] is the speed of restoration. Due to the large sizes of the restoration kernel, restorations are typically recursive and require many iterations to achieve satisfactory results. Little can be done to make the systems smaller since the size is determined by the number of colors and pixel size of the focal plane arrays (FPA) employed. Thus, techniques must be investigated to speed up the restoration either by reducing the number of iterations or reducing the number of operations within an iteration. It is assumed that little can be done to reduce the number of operations in an iteration since the operations are done in sparse format, we therefore investigate reducing the number of iterations through mathematical accelerations. We assume this acceleration will work to advantage regardless of the mechanism (PC-based or dedicated processor such as a gate array) by which the restoration is implemented.
Christofilos, N.C.; Polk, I.J.
1959-02-17
Improvements in linear particle accelerators are described. A drift tube system for a linear ion accelerator reduces gap capacity between adjacent drift tube ends. This is accomplished by reducing the ratio of the diameter of the drift tube to the diameter of the resonant cavity. Concentration of magnetic field intensity at the longitudinal midpoint of the external sunface of each drift tube is reduced by increasing the external drift tube diameter at the longitudinal center region.
{lambda}{sup 0} Polarization in pp{yields}p{lambda}{sup 0}K{sup +} at 800 GeV/c
Valencia, E.; Felix, J.; Reyes, M. A.; Wang, M. H. L. S.; Berisso, M. C.; Kreisler, M. N.; Lee, S.; Markianos, K.; Wesson, D.; Christian, D. C.; Gottschalk, E.; Gutierrez, G.; Wehmann, A.; Gara, A.; Knapp, B. C.; Hartouni, E. P.
2008-07-02
We determined {lambda}{sup 0} polarization as function of X{sub F}, P{sub T}, M{sub X}, and E{sub {lambda}}, with respect to the normal of the following two different production planes: The first one defined by the momentum of the 800 GeV/c proton beam and the moment of {lambda}{sup 0}; the second one, by the momentum of the transferred object and the momentum of {lambda}{sup 0}, from the sample created in the FNAL E690 experiment. We present results, compare and discuss them.
The lambda-scheme method applied to Stirling engines
NASA Astrophysics Data System (ADS)
Franco, R.
1985-12-01
An integration method of the motion equations is the so-called 'lambda-scheme': such a method suggests that, in the numerical procedure of the approximation of the derivatives in space with finite differences, the physical domains of dependence have to be correctly taken into account, according to the wave propagation through the flow. In the lambda-scheme method, the codes are simple, the computing time is kept very low, while accuracy (second-order in space and time) of the results is very satisfactory. As a matter of fact, the simulation model here discussed leads to a deeper analysis and a closer prediction of Stirling engine performances. As a first approach, a feasibility analysis is carried out for an expansion space-heat exchanger flow duty simulation.
Efficient epitope mapping by bacteriophage {lambda} surface display
Kuwabara, I.; Maruyama, H.; Zuberi, R.I.
1997-01-01
A bacteriophage {lambda} surface expression system, {lambda}foo, was used for epitope mapping of human galectin-3. We constructed random epitope and peptide libraries and compared their efficiencies in the mapping. The galectin-3 cDNA was randomly digested by DNase I to make random epitope libraries. The libraries were screened by affinity selection using a microtiter plate coated with monoclonal antibodies. Direct DNA sequencing of the selected clones defined two distinct epitope sites consisting of nine and 11 amino-acid residues. Affinity selection of random peptide libraries recovered a number of sequences that were similar to each other but distinct from the galectin-3 sequence. These results demonstrate that a single affinity selection of epitope libraries with antibodies is able to define an epitope determinant as small as nine residues long and is more efficient in epitope mapping than random peptide libraries. 25 refs., 4 figs., 1 tab.
Cryogenic instrumentation for ITER magnets
NASA Astrophysics Data System (ADS)
Poncet, J.-M.; Manzagol, J.; Attard, A.; André, J.; Bizel-Bizellot, L.; Bonnay, P.; Ercolani, E.; Luchier, N.; Girard, A.; Clayton, N.; Devred, A.; Huygen, S.; Journeaux, J.-Y.
2017-02-01
Accurate measurements of the helium flowrate and of the temperature of the ITER magnets is of fundamental importance to make sure that the magnets operate under well controlled and reliable conditions, and to allow suitable helium flow distribution in the magnets through the helium piping. Therefore, the temperature and flow rate measurements shall be reliable and accurate. In this paper, we present the thermometric chains as well as the venturi flow meters installed in the ITER magnets and their helium piping. The presented thermometric block design is based on the design developed by CERN for the LHC, which has been further optimized via thermal simulations carried out by CEA. The electronic part of the thermometric chain was entirely developed by the CEA and will be presented in detail: it is based on a lock-in measurement and small signal amplification, and also provides a web interface and software to an industrial PLC. This measuring device provides a reliable, accurate, electromagnetically immune, and fast (up to 100 Hz bandwidth) system for resistive temperature sensors between a few ohms to 100 kΩ. The flowmeters (venturi type) which make up part of the helium mass flow measurement chain have been completely designed, and manufacturing is on-going. The behaviour of the helium gas has been studied in detailed thanks to ANSYS CFX software in order to obtain the same differential pressure for all types of flowmeters. Measurement uncertainties have been estimated and the influence of input parameters has been studied. Mechanical calculations have been performed to guarantee the mechanical strength of the venturis required for pressure equipment operating in nuclear environment. In order to complete the helium mass flow measurement chain, different technologies of absolute and differential pressure sensors have been tested in an applied magnetic field to identify equipment compatible with the ITER environment.
Characterization of SAL605 negative resist at {lambda}=13 nm
La Fontaine, B.; Ciarlo, D.; Gaines, D.P.; Kania, D.R.
1996-05-24
We have characterized the response of the negative resist SAL605 in the extreme ultraviolet ({lambda}=13 nm). The sensitivity was found to be {approx}1 mJ/cm{sup 3} for all conditions studied. We have identified processing conditions leading to high ({gamma}{gt}4) contrast. The resist response was modeled using Prolith/2 and the development parameters were obtained from the exposure curves.
Lambda modes of the neutron diffusion equation in hexagonal geometry
Barrachina, T.; Ginestar, D.; Verdu, G.
2006-07-01
A nodal collocation method is proposed to compute the dominant Lambda modes of nuclear reactor core with a hexagonal geometry. This method is based on a triangular mesh and assumes that the neutronic flux can be approximated as a finite expansion in terms of Dubiner's polynomials. The method transforms the initial differential eigenvalue problem into a generalized algebraic one, from which the dominant modes of the reactor can be computed. The performance of the method is tested with two benchmark problems. (authors)
Tayloe, R.; PS185 Collaboration
1995-12-31
Experiment PS 185 studies the production of antihyperon-hyperon pairs in antiproton-proton collisions at LEAR in the near-threshold energy region. The {ital {anti p} p} {r_arrow} {anti {Lambda}}{Lambda} reaction has been thoroughly studied by PS185 and many high-quality data have been reported. New results, including total and differential cross sections along with spin observables, are presented here for the channels {ital {anti p} p} {r_arrow} {anti {Lambda}}{Lambda} and {ital {anti p}p} {r_arrow} {anti {Sigma}}{sup 0}{Lambda} + c.c at incident lab antiproton momenta of 1.726 and 1. 771 GeV/c. The data from the relatively unstudied and complementary {ital {anti p}p} {r_arrow} {anti {Sigma}}{sup 0}{Lambda} + c.c channel is compared to that from {ital {anti p}p} {r_arrow} {anti {Lambda}}{Lambda} at similar energies above the reaction threshold.
Abulencia, A; Adelman, J; Affolder, T; Akimoto, T; Albrow, M G; Ambrose, D; Amerio, S; Amidei, D; Anastassov, A; Anikeev, K; Annovi, A; Antos, J; Aoki, M; Apollinari, G; Arguin, J-F; Arisawa, T; Artikov, A; Ashmanskas, W; Attal, A; Azfar, F; Azzi-Bacchetta, P; Azzurri, P; Bacchetta, N; Badgett, W; Barbaro-Galtieri, A; Barnes, V E; Barnett, B A; Baroiant, S; Bartsch, V; Bauer, G; Bedeschi, F; Behari, S; Belforte, S; Bellettini, G; Bellinger, J; Belloni, A; Benjamin, D; Beretvas, A; Beringer, J; Berry, T; Bhatti, A; Binkley, M; Bisello, D; Blair, R E; Blocker, C; Blumenfeld, B; Bocci, A; Bodek, A; Boisvert, V; Bolla, G; Bolshov, A; Bortoletto, D; Boudreau, J; Boveia, A; Brau, B; Brigliadori, L; Bromberg, C; Brubaker, E; Budagov, J; Budd, H S; Budd, S; Budroni, S; Burkett, K; Busetto, G; Bussey, P; Byrum, K L; Cabrera, S; Campanelli, M; Campbell, M; Canelli, F; Canepa, A; Carillo, S; Carlsmith, D; Carosi, R; Casarsa, M; Castro, A; Catastini, P; Cauz, D; Cavalli-Sforza, M; Cerri, A; Cerrito, L; Chang, S H; Chen, Y C; Chertok, M; Chiarelli, G; Chlachidze, G; Chlebana, F; Cho, I; Cho, K; Chokheli, D; Chou, J P; Choudalakis, G; Chuang, S H; Chung, K; Chung, W H; Chung, Y S; Ciljak, M; Ciobanu, C I; Ciocci, M A; Clark, A; Clark, D; Coca, M; Compostella, G; Convery, M E; Conway, J; Cooper, B; Copic, K; Cordelli, M; Cortiana, G; Crescioli, F; Cuenca Almenar, C; Cuevas, J; Culbertson, R; Cully, J C; Cyr, D; DaRonco, S; D'Auria, S; Davies, T; D'Onofrio, M; Dagenhart, D; de Barbaro, P; De Cecco, S; Deisher, A; De Lentdecker, G; Dell'Orso, M; Delli Paoli, F; Demortier, L; Deng, J; Deninno, M; De Pedis, D; Derwent, P F; Di Giovanni, G P; Dionisi, C; Di Ruzza, B; Dittmann, J R; DiTuro, P; Dörr, C; Donati, S; Donega, M; Dong, P; Donini, J; Dorigo, T; Dube, S; Efron, J; Erbacher, R; Errede, D; Errede, S; Eusebi, R; Fang, H C; Farrington, S; Fedorko, I; Fedorko, W T; Feild, R G; Feindt, M; Fernandez, J P; Field, R; Flanagan, G; Foland, A; Forrester, S; Foster, G W; Franklin, M; Freeman, J C; Furic, I; Gallinaro, M; Galyardt, J; Garcia, J E; Garberson, F; Garfinkel, A F; Gay, C; Gerberich, H; Gerdes, D; Giagu, S; Giannetti, P; Gibson, A; Gibson, K; Gimmell, J L; Ginsburg, C; Giokaris, N; Giordani, M; Giromini, P; Giunta, M; Giurgiu, G; Glagolev, V; Glenzinski, D; Gold, M; Goldschmidt, N; Goldstein, J; Gomez, G; Gomez-Ceballos, G; Goncharov, M; González, O; Gorelov, I; Goshaw, A T; Goulianos, K; Gresele, A; Griffiths, M; Grinstein, S; Grosso-Pilcher, C; Group, R C; Grundler, U; Guimaraes da Costa, J; Gunay-Unalan, Z; Haber, C; Hahn, K; Hahn, S R; Halkiadakis, E; Hamilton, A; Han, B-Y; Han, J Y; Handler, R; Happacher, F; Hara, K; Hare, M; Harper, S; Harr, R F; Harris, R M; Hartz, M; Hatakeyama, K; Hauser, J; Heijboer, A; Heinemann, B; Heinrich, J; Henderson, C; Herndon, M; Heuser, J; Hidas, D; Hill, C S; Hirschbuehl, D; Hocker, A; Holloway, A; Hou, S; Houlden, M; Hsu, S-C; Huffman, B T; Hughes, R E; Husemann, U; Huston, J; Incandela, J; Introzzi, G; Iori, M; Ishizawa, Y; Ivanov, A; Iyutin, B; James, E; Jang, D; Jayatilaka, B; Jeans, D; Jensen, H; Jeon, E J; Jindariani, S; Jones, M; Joo, K K; Jun, S Y; Jung, J E; Junk, T R; Kamon, T; Karchin, P E; Kato, Y; Kemp, Y; Kephart, R; Kerzel, U; Khotilovich, V; Kilminster, B; Kim, D H; Kim, H S; Kim, J E; Kim, M J; Kim, S B; Kim, S H; Kim, Y K; Kimura, N; Kirsch, L; Klimenko, S; Klute, M; Knuteson, B; Ko, B R; Kondo, K; Kong, D J; Konigsberg, J; Korytov, A; Kotwal, A V; Kovalev, A; Kraan, A C; Kraus, J; Kravchenko, I; Kreps, M; Kroll, J; Krumnack, N; Kruse, M; Krutelyov, V; Kubo, T; Kuhlmann, S E; Kuhr, T; Kusakabe, Y; Kwang, S; Laasanen, A T; Lai, S; Lami, S; Lammel, S; Lancaster, M; Lander, R L; Lannon, K; Lath, A; Latino, G; Lazzizzera, I; Le, Y; LeCompte, T; Lee, J; Lee, J; Lee, Y J; Lee, S W; Lefèvre, R; Leonardo, N; Leone, S; Levy, S; Lewis, J D; Lin, C; Lin, C S; Lindgren, M; Lipeles, E; Lister, A; Litvintsev, D O; Liu, T; Lockyer, N S; Loginov, A; Loreti, M; Loverre, P; Lu, R-S; Lucchesi, D; Lujan, P; Lukens, P; Lungu, G; Lyons, L; Lys, J; Lysak, R; Lytken, E; Mack, P; MacQueen, D; Madrak, R; Maeshima, K; Makhoul, K; Maki, T; Maksimovic, P; Malde, S; Manca, G; Margaroli, F; Marginean, R; Marino, C; Marino, C P; Martin, A; Martin, M; Martin, V; Martínez, M; Maruyama, T; Mastrandrea, P; Masubuchi, T; Matsunaga, H; Mattson, M E; Mazini, R; Mazzanti, P; McFarland, K S; McIntyre, P; McNulty, R; Mehta, A; Mehtala, P; Menzemer, S; Menzione, A; Merkel, P; Mesropian, C; Messina, A; Miao, T; Miladinovic, N; Miles, J; Miller, R; Mills, C; Milnik, M; Mitra, A; Mitselmakher, G; Miyamoto, A; Moed, S; Moggi, N; Mohr, B; Moore, R; Morello, M; Movilla Fernandez, P; Mülmenstädt, J; Mukherjee, A; Muller, Th; Mumford, R; Murat, P; Nachtman, J; Nagano, A; Naganoma, J; Nakano, I; Napier, A; Necula, V; Neu, C; Neubauer, M S; Nielsen, J; Nigmanov, T; Nodulman, L; Norniella, O; Nurse, E; Oh, S H; Oh, Y D; Oksuzian, I; Okusawa, T; Oldeman, R; Orava, R; Osterberg, K; Pagliarone, C; Palencia, E; Papadimitriou, V; Paramonov, A A; Parks, B; Pashapour, S; Patrick, J; Pauletta, G; Paulini, M; Paus, C; Pellett, D E; Penzo, A; Phillips, T J; Piacentino, G; Piedra, J; Pinera, L; Pitts, K; Plager, C; Pondrom, L; Portell, X; Poukhov, O; Pounder, N; Prakoshyn, F; Pronko, A; Proudfoot, J; Ptohos, F; Punzi, G; Pursley, J; Rademacker, J; Rahaman, A; Ranjan, N; Rappoccio, S; Reisert, B; Rekovic, V; Renton, P; Rescigno, M; Richter, S; Rimondi, F; Ristori, L; Robson, A; Rodrigo, T; Rogers, E; Rolli, S; Roser, R; Rossi, M; Rossin, R; Ruiz, A; Russ, J; Rusu, V; Saarikko, H; Sabik, S; Safonov, A; Sakumoto, W K; Salamanna, G; Saltó, O; Saltzberg, D; Sánchez, C; Santi, L; Sarkar, S; Sartori, L; Sato, K; Savard, P; Savoy-Navarro, A; Scheidle, T; Schlabach, P; Schmidt, E E; Schmidt, M P; Schmitt, M; Schwarz, T; Scodellaro, L; Scott, A L; Scribano, A; Scuri, F; Sedov, A; Seidel, S; Seiya, Y; Semenov, A; Sexton-Kennedy, L; Sfyrla, A; Shapiro, M D; Shears, T; Shepard, P F; Sherman, D; Shimojima, M; Shochet, M; Shon, Y; Shreyber, I; Sidoti, A; Sinervo, P; Sisakyan, A; Sjolin, J; Slaughter, A J; Slaunwhite, J; Sliwa, K; Smith, J R; Snider, F D; Snihur, R; Soderberg, M; Soha, A; Somalwar, S; Sorin, V; Spalding, J; Spinella, F; Spreitzer, T; Squillacioti, P; Stanitzki, M; Staveris-Polykalas, A; St Denis, R; Stelzer, B; Stelzer-Chilton, O; Stentz, D; Strologas, J; Stuart, D; Suh, J S; Sukhanov, A; Sun, H; Suzuki, T; Taffard, A; Takashima, R; Takeuchi, Y; Takikawa, K; Tanaka, M; Tanaka, R; Tecchio, M; Teng, P K; Terashi, K; Thom, J; Thompson, A S; Thomson, E; Tipton, P; Tiwari, V; Tkaczyk, S; Toback, D; Tokar, S; Tollefson, K; Tomura, T; Tonelli, D; Torre, S; Torretta, D; Tourneur, S; Trischuk, W; Tseng, J; Tsuchiya, R; Tsuno, S; Turini, N; Ukegawa, F; Unverhau, T; Uozumi, S; Usynin, D; Vallecorsa, S; van Remortel, N; Varganov, A; Vataga, E; Vázquez, F; Velev, G; Veramendi, G; Veszpremi, V; Vidal, R; Vila, I; Vilar, R; Vine, T; Vollrath, I; Volobouev, I; Volpi, G; Würthwein, F; Wagner, P; Wagner, R G; Wagner, R L; Wagner, J; Wagner, W; Wallny, R; Wang, S M; Warburton, A; Waschke, S; Waters, D; Wester, W C; Whitehouse, B; Whiteson, D; Wicklund, A B; Wicklund, E; Williams, G; Williams, H H; Wilson, P; Winer, B L; Wittich, P; Wolbers, S; Wolfe, C; Wright, T; Wu, X; Wynne, S M; Yagil, A; Yamamoto, K; Yamaoka, J; Yamashita, T; Yang, C; Yang, U K; Yang, Y C; Yao, W M; Yeh, G P; Yoh, J; Yorita, K; Yoshida, T; Yu, G B; Yu, I; Yu, S S; Yun, J C; Zanello, L; Zanetti, A; Zaw, I; Zhang, X; Zhou, J; Zucchelli, S
2007-03-23
We present the first observation of the baryon decay Lambda b0-->Lambda c+pi- followed by Lambda c+-->pK-pi+ in 106 pb-1 pp collisions at square root s=1.96 TeV in the CDF experiment. In order to reduce systematic error, the measured rate for Lambda b0 decay is normalized to the kinematically similar meson decay B0-->D+pi- followed by D+-->pi+K-pi+. We report the ratio of production cross sections (sigma) times the ratio of branching fractions (B) for the momentum region integrated above pT>6 GeV/c and pseudorapidity range |eta|<1.3: sigma(pp-->Lambda b0X)/sigma(pp-->B0X)xB(Lambda b0-->Lambda c+pi-)/B(B0-->D+pi-)=0.82+/-0.08(stat)+/-0.11(syst)+/-0.22[B(Lambda c+-->pK-pi+)].
({lambda}, p) Spectrum Analysis in p+A Interactions at 10 GeV/c
Aslanyan, P. Zh.; Emelyanenko, V. N.
2007-06-13
Experimental data from the 2m propane bubble chamber have been analyzed for exotic baryon states search. A number of peculiarities were found in the effective mass spectra of: {lambda}{pi}+({sigma}*+(1382),PDG), {lambda}p and {lambda}pp subsystems. A few events detected on the photographs of the propane bubble chamber exposed to a 10 GeV/c proton beam, were interpreted as S=-2 H0 light(
Iterates of maps with symmetry
NASA Technical Reports Server (NTRS)
Chossat, Pascal; Golubitsky, Martin
1988-01-01
Fixed-point bifurcation, period doubling, and Hopf bifurcation (HB) for iterates of equivariant mappings are investigated analytically, with a focus on HB in the presence of symmetry. An algebraic formulation for the hypotheses of the theorem of Ruelle (1973) is derived, and the case of standing waves in a system of ordinary differential equations with O(2) symmetry is considered in detail. In this case, it is shown that HB can lead directly to motion on an invariant 3-torus, with an unexpected third frequency due to drift of standing waves along the torus.
Abulencia, A.; Adelman, J.; Affolder, T.; Akimoto, T.; Albrow, M.G.; Ambrose, D.; Amerio, S.; Amidei, D.; Anastassov, A.; Anikeev, K.; Annovi, A.; /Taiwan, Inst. Phys. /Argonne /Barcelona, IFAE /Baylor U. /INFN, Bologna /Bologna U. /Brandeis U. /UC, Davis /UCLA /UC, San Diego /UC, Santa Barbara
2006-09-01
The authors report a measurement of the {Lambda}{sub b}{sup 0} lifetime in the exclusive decay {Lambda}{sub b}{sup 0} {yields} J/{psi}{Lambda}{sup 0} in p{bar p} collisions at {radical}s = 1.96 TeV using an integrated luminosity of 1.0 fb{sup -1} of data collected by the CDF II detector at the Fermilab Tevatron. Using fully reconstructed decays, they measure {tau}({Lambda}{sub b}{sup 0}) = 1.593{sub -0.078}{sup +0.083}(stat.) {+-} 0.033(syst.) ps. This is the single most precise measurement of {tau}({Lambda}{sub b}{sup 0}) and is 3.2 {sigma} higher than the current world average.
Overview of the design of the ITER heating neutral beam injectors
NASA Astrophysics Data System (ADS)
Hemsworth, R. S.; Boilson, D.; Blatchford, P.; Dalla Palma, M.; Chitarin, G.; de Esch, H. P. L.; Geli, F.; Dremel, M.; Graceffa, J.; Marcuzzi, D.; Serianni, G.; Shah, D.; Singh, M.; Urbani, M.; Zaccaria, P.
2017-02-01
The heating neutral beam injectors (HNBs) of ITER are designed to deliver 16.7 MW of 1 MeV D0 or 0.87 MeV H0 to the ITER plasma for up to 3600 s. They will be the most powerful neutral beam (NB) injectors ever, delivering higher energy NBs to the plasma in a tokamak for longer than any previous systems have done. The design of the HNBs is based on the acceleration and neutralisation of negative ions as the efficiency of conversion of accelerated positive ions is so low at the required energy that a realistic design is not possible, whereas the neutralisation of H‑ and D‑ remains acceptable (≈56%). The design of a long pulse negative ion based injector is inherently more complicated than that of short pulse positive ion based injectors because: • negative ions are harder to create so that they can be extracted and accelerated from the ion source; • electrons can be co-extracted from the ion source along with the negative ions, and their acceleration must be minimised to maintain an acceptable overall accelerator efficiency; • negative ions are easily lost by collisions with the background gas in the accelerator; • electrons created in the extractor and accelerator can impinge on the extraction and acceleration grids, leading to high power loads on the grids; • positive ions are created in the accelerator by ionisation of the background gas by the accelerated negative ions and the positive ions are back-accelerated into the ion source creating a massive power load to the ion source; • electrons that are co-accelerated with the negative ions can exit the accelerator and deposit power on various downstream beamline components. The design of the ITER HNBs is further complicated because ITER is a nuclear installation which will generate very large fluxes of neutrons and gamma rays. Consequently all the injector components have to survive in that harsh environment. Additionally the beamline components and the NB cell, where the beams are housed, will be
Study of inclusive. Lambda. production in e sup + e minus annihilations at 29 GeV
Geld, T.L.; Neal, H.; Akerlof, C.; Chapman, J.; Errede, D.; Ken, M.T.; Kesten, P.; Meyer, D.I.; Nitz, D.; Thun, R.; Tschirhart, R. ); Abachi, S.; Derrick, M.; Kooijman, P.; Musgrave, B.; Price, L.; Repond, J.; Sugano, K. ); Blockus, D.; Brabson, B.B.; Brom, J.; Jung, C.; Ogren, H.; Rust, D.R.; Snyder, A. ); Cork, B. ); Baringer, P.; Bylsma, B.G.; Debonte, R.; Low, E.H.; McIlwain, R.L.; Miller, D.H.; Ng, C.R.; Rangan, K.; Shibata, E. )
1992-06-01
Cross sections are presented for the inclusive production of {Lambda} hyperons in electron-positron annihilations at {radical}{ital s} =29 GeV based on the full 291-pb{sup {minus}1} sample of data taken in the High Resolution Spectrometer experiment at the SLAC {ital e}{sup +}{ital e}{minus} storage ring PEP. These results, and the associated correlation analyses, are consistent with the Lund model predictions with the strange diquark suppression ratio {delta} fixed at 0.59{plus minus}0.10{plus minus}0.18, as compared to the standard Lund value of 0.32. The {Lambda} multiplicity has been found to be 0.182{plus minus}0.020 per event. The opposite-strangeness multiplicity {l angle}{ital n}{sub {Lambda}}{Lambda}{bar a}{r angle} has been measured to be 0.046{plus minus}0.020, whereas the like-strangeness multiplicity {l angle}{ital n}{sub {Lambda}{Lambda}}+{bar {Lambda}}{bar {Lambda}}{r angle} is 0.009{plus minus}0.028. A strong correlation is found between {Lambda}'s and {bar {Lambda}} 's; when one is found in an event, the other is found in the same event with a probability that exceeds 50%.
Study of the ^7_{Lambda}He hypernucleus in formalism of the Faddeev equations
Igor Filikhin; Vladimir M. Suslov; Branislav Vlahovic
2006-02-01
P-shell A = 7 hypernuclei are considered in the cluster {sub {Lambda}}{sup 5}He + N + N model. The folding procedure are applied to construct the {sub {Lambda}}{sup 5}He-N interaction. We use the OBE simulating NSC97f potential for {Lambda}N interaction and various phenomenological potentials for {alpha}{Lambda} interaction. Configuration space Faddeev calculations are performed for hyperon binding energy of the {sub {Lambda}}{sup 7}He(1/2{sup +}) and {sub {lambda}}{sup 7}Li(1/2{sup +} and 3/2{sup +}, T=0) nuclei. Predicted value for B{sub {Lambda}}({sub {Lambda}}{sup 7}He) is 5.35 MeV. This value is obtained when the {sup {Lambda}}{sup 6}He(2{sup -}) excitation energy is equal 0.26 MeV by the adjustment of pair {sub {Lambda}}{sup 5}He-N effective potential to reproduce the experimental value of the {sub {Lambda}}{sup 7}Li(3/2{sup +}) excitation energy. Our results are compared with those of E. Hiyama et al.
The role of template superhelicity in the initiation of bacteriophage lambda DNA replication.
Alfano, C; McMacken, R
1988-01-01
The prepriming steps in the initiation of bacteriophage lambda DNA replication depend on the action of the lambda O and P proteins and on the DnaB helicase, single-stranded DNA binding protein (SSB), and DnaJ and DnaK heat shock proteins of the E. coli host. The binding of multiple copies of the lambda O protein to the phage replication origin (ori lambda) initiates the ordered assembly of a series of nucleoprotein structures that form at ori lambda prior to DNA unwinding, priming and DNA synthesis steps. Since the initiation of lambda DNA replication is known to occur only on supercoiled templates in vivo and in vitro, we examined how the early steps in lambda DNA replication are influenced by superhelical tension. All initiation complexes formed prior to helicase-mediated DNA-unwinding form with high efficiency on relaxed ori lambda DNA. Nonetheless, the DNA templates in these structures must be negatively supertwisted before they can be replicated. Once DNA helicase unwinding is initiated at ori lambda, however, later steps in lambda DNA replication proceed efficiently in the absence of superhelical tension. We conclude that supercoiling is required during the initiation of lambda DNA replication to facilitate entry of a DNA helicase, presumably the DnaB protein, between the DNA strands. Images PMID:2847118
Is cosmic acceleration slowing down?
Shafieloo, Arman; Sahni, Varun; Starobinsky, Alexei A.
2009-11-15
We investigate the course of cosmic expansion in its recent past using the Constitution SN Ia sample, along with baryon acoustic oscillations (BAO) and cosmic microwave background (CMB) data. Allowing the equation of state of dark energy (DE) to vary, we find that a coasting model of the universe (q{sub 0}=0) fits the data about as well as Lambda cold dark matter. This effect, which is most clearly seen using the recently introduced Om diagnostic, corresponds to an increase of Om and q at redshifts z < or approx. 0.3. This suggests that cosmic acceleration may have already peaked and that we are currently witnessing its slowing down. The case for evolving DE strengthens if a subsample of the Constitution set consisting of SNLS+ESSENCE+CfA SN Ia data is analyzed in combination with BAO+CMB data. The effect we observe could correspond to DE decaying into dark matter (or something else)
Search for CP violation in charged-Xi and Lambda hyperon decays
Holmstrom, T.; Leros, N.; Burnstein, R.A.; Chakravorty, A.; Chan, A.; Chen, Y.C.; Choong, W.S.; Clark, K.; Dukes, E.C.; Durandet, C.; Felix, J.; Fu, Y.; Gidal, G.; Gu, P.; Gustafson, H.R.; Ho, C.; Huang, M.; James, C.; Jenkins, C.M.; Jones, T.; Kaplan, D.M.; /Virginia U. /Lausanne U. /Taiwan, Inst. Phys. /UC, Berkeley /Fermilab /Guanajuato U. /IIT, Chicago /Lausanne U. /LBL, Berkeley /Michigan U. /South Alabama U. /Virginia U.
2004-12-01
The authors have compared the p and {bar p} angular distributions in 117 million {Xi}{sup -} {yields} {Lambda}{pi}{sup -} {yields} p{pi}{sup -}{pi}{sup -} and 41 million {Xi}{sup +} {yields} {bar {Lambda}}{pi}{sup +} {yields} {bar p}{pi}{sup +}{pi}{sup +} decays using a subset of the data from the HyperCP experiment (ES71) at Fermilab. They find no evidence of CP violation, with the direct-CP-violating parameter A{sub {Xi}{Lambda}} {triple_bond} (a{sub {Xi}}a{sub {Lambda}} - {bar a}{sub {Xi}}{bar a}{sub {Lambda}})/(a{sub {Xi}}a{sub {Lambda}} + {bar a}{sub {Xi}}{bar a}{sub {Lambda}}) = [0.0 {+-} 5.1(stat) {+-} 4.4(syst)] x 10{sup -4}.
An Effective CUDA Parallelization of Projection in Iterative Tomography Reconstruction
Xie, Lizhe; Hu, Yining; Yan, Bin; Wang, Lin; Yang, Benqiang; Liu, Wenyuan; Zhang, Libo; Luo, Limin; Shu, Huazhong; Chen, Yang
2015-01-01
Projection and back-projection are the most computationally intensive parts in Computed Tomography (CT) reconstruction, and are essential to acceleration of CT reconstruction algorithms. Compared to back-projection, parallelization efficiency in projection is highly limited by racing condition and thread unsynchronization. In this paper, a strategy of Fixed Sampling Number Projection (FSNP) is proposed to ensure the operation synchronization in the ray-driven projection with Graphical Processing Unit (GPU). Texture fetching is also used utilized to further accelerate the interpolations in both projection and back-projection. We validate the performance of this FSNP approach using both simulated and real cone-beam CT data. Experimental results show that compare to the conventional approach, the proposed FSNP method together with texture fetching is 10~16 times faster than the conventional approach based on global memory, and thus leads to more efficient iterative algorithm in CT reconstruction. PMID:26618857
An Effective CUDA Parallelization of Projection in Iterative Tomography Reconstruction.
Xie, Lizhe; Hu, Yining; Yan, Bin; Wang, Lin; Yang, Benqiang; Liu, Wenyuan; Zhang, Libo; Luo, Limin; Shu, Huazhong; Chen, Yang
2015-01-01
Projection and back-projection are the most computationally intensive parts in Computed Tomography (CT) reconstruction, and are essential to acceleration of CT reconstruction algorithms. Compared to back-projection, parallelization efficiency in projection is highly limited by racing condition and thread unsynchronization. In this paper, a strategy of Fixed Sampling Number Projection (FSNP) is proposed to ensure the operation synchronization in the ray-driven projection with Graphical Processing Unit (GPU). Texture fetching is also used utilized to further accelerate the interpolations in both projection and back-projection. We validate the performance of this FSNP approach using both simulated and real cone-beam CT data. Experimental results show that compare to the conventional approach, the proposed FSNP method together with texture fetching is 10~16 times faster than the conventional approach based on global memory, and thus leads to more efficient iterative algorithm in CT reconstruction.
Iterated Stretching of Viscoelastic Jets
NASA Technical Reports Server (NTRS)
Chang, Hsueh-Chia; Demekhin, Evgeny A.; Kalaidin, Evgeny
1999-01-01
We examine, with asymptotic analysis and numerical simulation, the iterated stretching dynamics of FENE and Oldroyd-B jets of initial radius r(sub 0), shear viscosity nu, Weissenberg number We, retardation number S, and capillary number Ca. The usual Rayleigh instability stretches the local uniaxial extensional flow region near a minimum in jet radius into a primary filament of radius [Ca(1 - S)/ We](sup 1/2)r(sub 0) between two beads. The strain-rate within the filament remains constant while its radius (elastic stress) decreases (increases) exponentially in time with a long elastic relaxation time 3We(r(sup 2, sub 0)/nu). Instabilities convected from the bead relieve the tension at the necks during this slow elastic drainage and trigger a filament recoil. Secondary filaments then form at the necks from the resulting stretching. This iterated stretching is predicted to occur successively to generate high-generation filaments of radius r(sub n), (r(sub n)/r(sub 0)) = square root of 2[r(sub n-1)/r(sub 0)](sup 3/2) until finite-extensibility effects set in.
Barr, W.L.; Bathke, C.G.; Brooks, J.N.; Bulmer, R.H.; Busigin, A.; DuBois, P.F.; Fenstermacher, M.E.; Fink, J.; Finn, P.A.; Galambos, J.D.; Gohar, Y.; Gorker, G.E.; Haines, J.R.; Hassanein, A.M.; Hicks, D.R.; Ho, S.K.; Kalsi, S.S.; Kalyanam, K.M.; Kerns, J.A.; Lee, J.D.; Miller, J.R.; Miller, R.L.; Myall, J.O.; Peng, Y-K.M.; Perkins, L.J.; Spampinato, P.T.; Strickler, D.J.; Thomson, S.L.; Wagner, C.E.; Willms, R.S.; Reid, R.L.
1988-04-01
A tokamak systems code capable of modeling experimental test reactors has been developed and is described in this document. The code, named TETRA (for Tokamak Engineering Test Reactor Analysis), consists of a series of modules, each describing a tokamak system or component, controlled by an optimizer/driver. This code development was a national effort in that the modules were contributed by members of the fusion community and integrated into a code by the Fusion Engineering Design Center. The code has been checked out on the Cray computers at the National Magnetic Fusion Energy Computing Center and has satisfactorily simulated the Tokamak Ignition/Burn Experimental Reactor II (TIBER) design. A feature of this code is the ability to perform optimization studies through the use of a numerical software package, which iterates prescribed variables to satisfy a set of prescribed equations or constraints. This code will be used to perform sensitivity studies for the proposed International Thermonuclear Experimental Reactor (ITER). 22 figs., 29 tabs.
NASA Astrophysics Data System (ADS)
Stratton, B.; Delgado-Aparicio, L.; Hill, K.; Johnson, D.; Pablant, N.; Barnsley, R.; Bertschinger, G.; de Bock, M. F. M.; Reichle, R.; Udintsev, V. S.; Watts, C.; Austin, M.; Phillips, P.; Beiersdorfer, P.; Biewer, T. M.; Hanson, G.; Klepper, C. C.; Carlstrom, T.; van Zeeland, M. A.; Brower, D.; Doyle, E.; Peebles, A.; Ellis, R.; Levinton, F.; Yuh, H.
2013-10-01
The US is providing 7 diagnostics to ITER: the Upper Visible/IR cameras, the Low Field Side Reflectometer, the Motional Stark Effect diagnostic, the Electron Cyclotron Emission diagnostic, the Toroidal Interferometer/Polarimeter, the Core Imaging X-Ray Spectrometer, and the Diagnostic Residual Gas Analyzer. The front-end components of these systems must operate with high reliability in conditions of long pulse operation, high neutron and gamma fluxes, very high neutron fluence, significant neutron heating (up to 7 MW/m3) , large radiant and charge exchange heat flux (0.35 MW/m2) , and high electromagnetic loads. Opportunities for repair and maintenance of these components will be limited. These conditions lead to significant challenges for the design of the diagnostics. Space constraints, provision of adequate radiation shielding, and development of repair and maintenance strategies are challenges for diagnostic integration into the port plugs that also affect diagnostic design. The current status of design of the US ITER diagnostics is presented and R&D needs are identified. Supported by DOE contracts DE-AC02-09CH11466 (PPPL) and DE-AC05-00OR22725 (UT-Battelle, LLC).
Challenges for Cryogenics at Iter
NASA Astrophysics Data System (ADS)
Serio, L.
2010-04-01
Nuclear fusion of light nuclei is a promising option to provide clean, safe and cost competitive energy in the future. The ITER experimental reactor being designed by seven partners representing more than half of the world population will be assembled at Cadarache, South of France in the next decade. It is a thermonuclear fusion Tokamak that requires high magnetic fields to confine and stabilize the plasma. Cryogenic technology is extensively employed to achieve low-temperature conditions for the magnet and vacuum pumping systems. Efficient and reliable continuous operation shall be achieved despite unprecedented dynamic heat loads due to magnetic field variations and neutron production from the fusion reaction. Constraints and requirements of the largest superconducting Tokamak machine have been analyzed. Safety and technical risks have been initially assessed and proposals to mitigate the consequences analyzed. Industrial standards and components are being investigated to anticipate the requirements of reliable and efficient large scale energy production. After describing the basic features of ITER and its cryogenic system, we shall present the key design requirements, improvements, optimizations and challenges.
ITER Port Interspace Pressure Calculations
Carbajo, Juan J; Van Hove, Walter A
2016-01-01
The ITER Vacuum Vessel (VV) is equipped with 54 access ports. Each of these ports has an opening in the bioshield that communicates with a dedicated port cell. During Tokamak operation, the bioshield opening must be closed with a concrete plug to shield the radiation coming from the plasma. This port plug separates the port cell into a Port Interspace (between VV closure lid and Port Plug) on the inner side and the Port Cell on the outer side. This paper presents calculations of pressures and temperatures in the ITER (Ref. 1) Port Interspace after a double-ended guillotine break (DEGB) of a pipe of the Tokamak Cooling Water System (TCWS) with high temperature water. It is assumed that this DEGB occurs during the worst possible conditions, which are during water baking operation, with water at a temperature of 523 K (250 C) and at a pressure of 4.4 MPa. These conditions are more severe than during normal Tokamak operation, with the water at 398 K (125 C) and 2 MPa. Two computer codes are employed in these calculations: RELAP5-3D Version 4.2.1 (Ref. 2) to calculate the blowdown releases from the pipe break, and MELCOR, Version 1.8.6 (Ref. 3) to calculate the pressures and temperatures in the Port Interspace. A sensitivity study has been performed to optimize some flow areas.
Communication-optimal iterative methods
NASA Astrophysics Data System (ADS)
Demmel, J.; Hoemmen, M.; Mohiyuddin, M.; Yelick, K.
2009-07-01
Data movement, both within the memory system of a single processor node and between multiple nodes in a system, limits the performance of many Krylov subspace methods that solve sparse linear systems and eigenvalue problems. Here, s iterations of algorithms such as CG, GMRES, Lanczos, and Arnoldi perform s sparse matrix-vector multiplications and Ω(s) vector reductions, resulting in a growth of Ω(s) in both single-node and network communication. By reorganizing the sparse matrix kernel to compute a set of matrix-vector products at once and reorganizing the rest of the algorithm accordingly, we can perform s iterations by sending O(log P) messages instead of Ω(s·log P) messages on a parallel machine, and reading the on-node components of the matrix A from DRAM to cache just once on a single node instead of s times. This reduces communication to the minimum possible. We discuss both algorithms and an implementation of GMRES on a single node of an 8-core Intel Clovertown. Our implementations achieve significant speedups over the conventional algorithms.
Improved criticality convergence via a modified Monte Carlo iteration method
Booth, Thomas E; Gubernatis, James E
2009-01-01
Nuclear criticality calculations with Monte Carlo codes are normally done using a power iteration method to obtain the dominant eigenfunction and eigenvalue. In the last few years it has been shown that the power iteration method can be modified to obtain the first two eigenfunctions. This modified power iteration method directly subtracts out the second eigenfunction and thus only powers out the third and higher eigenfunctions. The result is a convergence rate to the dominant eigenfunction being |k{sub 3}|/k{sub 1} instead of |k{sub 2}|/k{sub 1}. One difficulty is that the second eigenfunction contains particles of both positive and negative weights that must sum somehow to maintain the second eigenfunction. Summing negative and positive weights can be done using point detector mechanics, but this sometimes can be quite slow. We show that an approximate cancellation scheme is sufficient to accelerate the convergence to the dominant eigenfunction. A second difficulty is that for some problems the Monte Carlo implementation of the modified power method has some stability problems. We also show that a simple method deals with this in an effective, but ad hoc manner.
Iterative Beam Hardening Correction for Multi-Material Objects.
Zhao, Yunsong; Li, Mengfei
2015-01-01
In this paper, we propose an iterative beam hardening correction method that is applicable for the case with multiple materials. By assuming that the materials composing scanned object are known and that they are distinguishable by their linear attenuation coefficients at some given energy, the beam hardening correction problem is converted into a nonlinear system problem, which is then solved iteratively. The reconstructed image is the distribution of linear attenuation coefficient of the scanned object at a given energy. So there are no beam hardening artifacts in the image theoretically. The proposed iterative scheme combines an accurate polychromatic forward projection with a linearized backprojection. Both forward projection and backprojection have high degree of parallelism, and are suitable for acceleration on parallel systems. Numerical experiments with both simulated data and real data verifies the validity of the proposed method. The beam hardening artifacts are alleviated effectively. In addition, the proposed method has a good tolerance on the error of the estimated x-ray spectrum.
Utilizing Synthetic Spectra to Refine Lambda Boo Stars' UV Classification Criteria
NASA Astrophysics Data System (ADS)
Cheng, Kwang-Ping; Neff, James E.; Johnson, Dustin; Tarbell, Erik; Romo, Christopher; Steele, Patricia; Gray, Richard O.; Corbally, Christopher J.
2016-01-01
Lambda Boo-type stars are a group of late B to early F-type Population I dwarfs that show deficiencies of iron-peak elements (up to 2 dex), but their C, N, O, and S abundances are near solar. This stellar class has recently regained the spotlight because of the directly-imaged planets around a confirmed Lambda Boo star, HR 8799, and a suggested Lambda Boo star Beta Pictoris. The discovery of a giant asteroid belt around Vega, another possible Lambda Boo star, also suggests hidden planets. This possible link between Lambda Boo stars and planet-bearing stars motivates us to study Lambda Boo stars systematically. Since the peculiar nature of the prototype Lambda Bootis was first noticed in 1943, Lambda Boo candidates published in the literature have been selected using widely different criteria. The Lambda Boo label has been applied to almost any peculiar A-type stars that do not fit elsewhere. In order to determine the origin of Lambda Boo stars' unique abundance pattern and to better discriminate between theories explaining the Lambda Boo phenomenon, a consistent working definition of Lambda Boo stars is needed. We have re-evaluated all published Lambda Boo candidates and their available ultraviolet and visible spectra. Using observed and synthetic spectra, we explored the classification of Lambda Boo stars and developed quantitative criteria that discriminate metal-poor stars from bona fide Lambda Boo stars. With model spectra, we demonstrated that the (C I 1657 Angstrom)/ (Al II 1671 Angstrom) line ratio is the best single criterion to distinguish between Lambda Boo stars and metal weak stars, and that one cannot use a single C I/Al II cut-off value as a Lambda Boo classification criterion. The C I/Al II cut-off value is a function of a star's effective temperature and metallicity. Using these stricter Lambda Boo classification criteria, we concluded that neither Beta Pictoris nor Vega should be classified as Lambda Boo stars.
Preconditioned iterations to calculate extreme eigenvalues
Brand, C.W.; Petrova, S.
1994-12-31
Common iterative algorithms to calculate a few extreme eigenvalues of a large, sparse matrix are Lanczos methods or power iterations. They converge at a rate proportional to the separation of the extreme eigenvalues from the rest of the spectrum. Appropriate preconditioning improves the separation of the eigenvalues. Davidson`s method and its generalizations exploit this fact. The authors examine a preconditioned iteration that resembles a truncated version of Davidson`s method with a different preconditioning strategy.
NASA Technical Reports Server (NTRS)
Rogers, Melissa J. B.
1993-01-01
Work to support the NASA MSFC Acceleration Characterization and Analysis Project (ACAP) was performed. Four tasks (analysis development, analysis research, analysis documentation, and acceleration analysis) were addressed by parallel projects. Work concentrated on preparation for and implementation of near real-time SAMS data analysis during the USMP-1 mission. User support documents and case specific software documentation and tutorials were developed. Information and results were presented to microgravity users. ACAP computer facilities need to be fully implemented and networked, data resources must be cataloged and accessible, future microgravity missions must be coordinated, and continued Orbiter characterization is necessary.
NASA Astrophysics Data System (ADS)
Wesson, Dennis Keith
1990-01-01
The characteristics of Lambda and |Lambda production have been studied from data obtained from p p collisions at sqrt{rm s} = 1.8 TeV during the first running period of experiment E735 from January to May of 1987. The experiment was conducted at the Fermi National Laboratory Tevatron collider. Five million triggers from an integrated luminosity of about 1over 3 nb^{ -1} were written to tape during this initial run of E735. Using a magnetic spectrometer arm a sample of 413 Lambda's + = Lambda's were found in these events. The transverse momentum spectrum, the ratio Lambda/(all charged particles) and the ratio Lambda/proton were studied from this sample. These were compared to the findings at lower energies and also to the results of a Monte Carlo program from another experiment. The average transverse momentum was found to be 0.77 +/- 0.06 +/- 0.08, an increase of about 24% from the value found at sqrt{rm s} = 540 GeV (CERN SPS) and an increase of about 55% from sqrt{rm s} = 53 GeV (CERN ISR). The Lambda/(all charged particle) ratio was also found to increase from 0.009 +/- 0.001 at sqrt{rm s} = 53 GeV (CERN ISR) and 0.019 +/- 0.004 at sqrt{rm s} = 540 GeV (CERN SPS), to 0.026 +/- 0.002 +/- 0.004 at our energy of sqrt{rm s} = 1.8 TeV. The lambda/proton ratio was found to be 0.38 +/- 0.03 +/- 0.06. This ratio shows no increase from lower energies. The lambda/proton ratio was used to find the strangeness suppression factor (lambda) from the quark combinatoric model of hadron production. We obtain a value lambda = 0.34 +/- 0.05 in agreement with the values found at lower energies. The increase in the ratio lambda/all charged particles as a function of center of mass energy is not inconsistent with the formation of quark-gluon plasma. However, the constant ratio of lambda/proton production is not expected in quark-gluon plasma production. Moreover, our data seem to agree with the UA5 Monte Carlo data, which does not include quark-gluon plasma production. Based on Lambda
NASA Astrophysics Data System (ADS)
Cendejas, Ramon
Studies on the spin structure of the proton have been an active area of research; after the EMC experiment and subsequent experiments found that only about 30% of the total proton spin is carried by quark spins. The Relativistic Heavy Ion Collider (RHIC) is the world's first and only polarized proton collider. The Solenoidal Tracker At RHIC (STAR) has full azimuthal acceptance and is ideally suited to advance studies of the proton spin. The longitudinal spin transfer, DLL, of lambda and anti-lambda hyperons in longitudinally polarized proton-proton collisions is sensitive to quark and anti-quark polarization in the polarized proton; as well as to polarized fragmentation; and has been proposed as a possible probe of (anti-)strange quark polarization. The STAR collaboration has previously reported an initial proof-of-concept measurement of DLL of lambda and anti-lambda hyperons from a data sample obtained at sqr(s)=200 GeV in 2005. The data correspond to an integrated luminosity of 2 pb- with 50% beam polarization. Considerably larger data samples corresponding to 6.5 pb- and 25 pb- with beam polarizations of 57% at sqr(s)=200 GeV were obtained in 2006 and 2009 using an upgraded instrument. Improvements were made on the analysis procedure to reduce background contribution to the lambda + anti-lambda measurements. These new measurements of DLL form the main topic of this dissertation. The sample of hyperons residing within a jet that triggered the experiment are classified as near-side hyperons, and are analyzed separately from an away-side sample that has similar precision. In addition to DLL, the double longitudinal spin asymmetry, A LL, for the production of lambda and anti-lambda hyperons has been extracted. The dependences of DLL on pseudo-rapidity, pT , and the fragmentation ratio, z, are studied. The stated DLL from lambda and anti-lambda each disfavor one of the published model predictions for DLL for a combined lambda and anti-lambda sample, and are
Cheng, Kwang-Ping; Johnson, Dustin M.; Tarbell, Erik S.; Romo, Christopher A.; Prabhaker, Arvind; Neff, James E.; Steele, Patricia A.; Gray, Richard O.; Corbally, Christopher J.
2016-04-15
Lambda Boo-type stars are a group of late B to early F-type Population I dwarfs that show mild to extreme deficiencies of iron-peak elements (up to 2 dex), but their C, N, O, and S abundances are near solar. This intriguing stellar class has recently regained the spotlight because of the directly imaged planets around a confirmed Lambda Boo star, HR 8799, and a suggested Lambda Boo star, Beta Pictoris. The discovery of a giant asteroid belt around Vega, another possible Lambda Boo star, also suggests hidden planets. The possible link between Lambda Boo stars and planet-bearing stars motivates us to study Lambda Boo stars systematically. Since the peculiar nature of the prototype Lambda Boötis was first noticed in 1943, Lambda Boo candidates published in the literature have been selected using widely different criteria. In order to determine the origin of Lambda Boo stars’ unique abundance pattern and to better discriminate between theories explaining the Lambda Boo phenomenon, a consistent working definition of Lambda Boo stars is needed. We have re-evaluated all published Lambda Boo candidates and their available ultraviolet and visible spectra. In this paper, using observed and synthetic spectra, we explore the physical basis for the classification of Lambda Boo stars, and develop quantitative criteria that discriminate metal-poor stars from bona fide Lambda Boo stars. Based on these stricter Lambda Boo classification criteria, we conclude that neither Beta Pictoris nor Vega should be classified as Lambda Boo stars.
NASA Astrophysics Data System (ADS)
Cheng, Kwang-Ping; Neff, James E.; Johnson, Dustin M.; Tarbell, Erik S.; Romo, Christopher A.; Prabhaker, Arvind; Steele, Patricia A.; Gray, Richard O.; Corbally, Christopher J.
2016-04-01
Lambda Boo-type stars are a group of late B to early F-type Population I dwarfs that show mild to extreme deficiencies of iron-peak elements (up to 2 dex), but their C, N, O, and S abundances are near solar. This intriguing stellar class has recently regained the spotlight because of the directly imaged planets around a confirmed Lambda Boo star, HR 8799, and a suggested Lambda Boo star, Beta Pictoris. The discovery of a giant asteroid belt around Vega, another possible Lambda Boo star, also suggests hidden planets. The possible link between Lambda Boo stars and planet-bearing stars motivates us to study Lambda Boo stars systematically. Since the peculiar nature of the prototype Lambda Boötis was first noticed in 1943, Lambda Boo candidates published in the literature have been selected using widely different criteria. In order to determine the origin of Lambda Boo stars’ unique abundance pattern and to better discriminate between theories explaining the Lambda Boo phenomenon, a consistent working definition of Lambda Boo stars is needed. We have re-evaluated all published Lambda Boo candidates and their available ultraviolet and visible spectra. In this paper, using observed and synthetic spectra, we explore the physical basis for the classification of Lambda Boo stars, and develop quantitative criteria that discriminate metal-poor stars from bona fide Lambda Boo stars. Based on these stricter Lambda Boo classification criteria, we conclude that neither Beta Pictoris nor Vega should be classified as Lambda Boo stars.
Apparatus for neutralization of accelerated ions
Fink, Joel H.; Frank, Alan M.
1979-01-01
Apparatus for neutralization of a beam of accelerated ions, such as hydrogen negative ions (H.sup.-), using relatively efficient strip diode lasers which emit monochromatically at an appropriate wavelength (.lambda. = 8000 A for H.sup.- ions) to strip the excess electrons by photodetachment. A cavity, formed by two or more reflectors spaced apart, causes the laser beams to undergo multiple reflections within the cavity, thus increasing the efficiency and reducing the illumination required to obtain an acceptable percentage (.about. 85%) of neutralization.
Umene, K; Shimada, K; Tsuzuki, T; Mori, R; Takagi, Y
1979-01-01
An in vitro recombinant ColE1-cos lambda deoxyribonucleic acid (DNA) molecule, pKY96, has 70% of the length of lambda phage DNA. The process of lambda phage-mediated transduction of pKY96 generated a small amount of transducing phage particles containing ColE1-cos lambda DNA molecules of 80 or 101% of the length of lambda phage DNA, in addition to those containing original pKY96 DNA molecules. The newly isolated larger plasmid DNAs were transduced 100 times more efficiently than pKY96 DNA. Their structures were compared with that of a prototype pKY96 DNA, and the mechanism of the formation of these molecules is discussed. Images PMID:158007
New Kinematical Constraints on Cosmic Acceleration
Rapetti, David; Allen, Steve W.; Amin, Mustafa A.; Blandford, Roger; /-KIPAC, Menlo Park
2007-05-25
We present and employ a new kinematical approach to ''dark energy'' studies. We construct models in terms of the dimensionless second and third derivatives of the scale factor a(t) with respect to cosmic time t, namely the present-day value of the deceleration parameter q{sub 0} and the cosmic jerk parameter, j(t). An elegant feature of this parameterization is that all {Lambda}CDM models have j(t)=1 (constant), which facilitates simple tests for departures from the {Lambda}CDM paradigm. Applying our model to redshift-independent distance measurements, from type Ia supernovae and X-ray cluster gas mass fraction measurements, we obtain clear statistical evidence for a late time transition from a decelerating to an accelerating phase. For a flat model with constant jerk, j(t)=j, we measure q{sub 0}=-0.81 {+-} 0.14 and j=2.16 +0.81 -0.75, results that are consistent with {Lambda}CDM at about the 1{sigma} confidence level. In comparison to dynamical analyses, the kinematical approach uses a different model set and employs a minimum of prior information, being independent of any particular gravity theory. The results obtained with this new approach therefore provide important additional information and we argue that both kinematical and dynamical techniques should be employed in future dark energy studies, where possible.
NASA Technical Reports Server (NTRS)
Vlahos, L.; Machado, M. E.; Ramaty, R.; Murphy, R. J.; Alissandrakis, C.; Bai, T.; Batchelor, D.; Benz, A. O.; Chupp, E.; Ellison, D.
1986-01-01
Data is compiled from Solar Maximum Mission and Hinothori satellites, particle detectors in several satellites, ground based instruments, and balloon flights in order to answer fundamental questions relating to: (1) the requirements for the coronal magnetic field structure in the vicinity of the energization source; (2) the height (above the photosphere) of the energization source; (3) the time of energization; (4) transistion between coronal heating and flares; (5) evidence for purely thermal, purely nonthermal and hybrid type flares; (6) the time characteristics of the energization source; (7) whether every flare accelerates protons; (8) the location of the interaction site of the ions and relativistic electrons; (9) the energy spectra for ions and relativistic electrons; (10) the relationship between particles at the Sun and interplanetary space; (11) evidence for more than one acceleration mechanism; (12) whether there is single mechanism that will accelerate particles to all energies and also heat the plasma; and (13) how fast the existing mechanisms accelerate electrons up to several MeV and ions to 1 GeV.
Wang, Zhehui; Barnes, Cris W.
2002-01-01
There has been invented an apparatus for acceleration of a plasma having coaxially positioned, constant diameter, cylindrical electrodes which are modified to converge (for a positive polarity inner electrode and a negatively charged outer electrode) at the plasma output end of the annulus between the electrodes to achieve improved particle flux per unit of power.
ERIC Educational Resources Information Center
Ford, William J.
2010-01-01
This article focuses on the accelerated associate degree program at Ivy Tech Community College (Indiana) in which low-income students will receive an associate degree in one year. The three-year pilot program is funded by a $2.3 million grant from the Lumina Foundation for Education in Indianapolis and a $270,000 grant from the Indiana Commission…
Pope, K.E.
1958-01-01
This patent relates to an improved acceleration integrator and more particularly to apparatus of this nature which is gyrostabilized. The device may be used to sense the attainment by an airborne vehicle of a predetermined velocitv or distance along a given vector path. In its broad aspects, the acceleration integrator utilizes a magnetized element rotatable driven by a synchronous motor and having a cylin drical flux gap and a restrained eddy- current drag cap deposed to move into the gap. The angular velocity imparted to the rotatable cap shaft is transmitted in a positive manner to the magnetized element through a servo feedback loop. The resultant angular velocity of tae cap is proportional to the acceleration of the housing in this manner and means may be used to measure the velocity and operate switches at a pre-set magnitude. To make the above-described dcvice sensitive to acceleration in only one direction the magnetized element forms the spinning inertia element of a free gyroscope, and the outer housing functions as a gimbal of a gyroscope.
Iterative phase retrieval without support.
Wu, J S; Weierstall, U; Spence, J C H; Koch, C T
2004-12-01
An iterative phase retrieval method for nonperiodic objects has been developed from the charge-flipping algorithm proposed in crystallography. A combination of the hybrid input-output (HIO) algorithm and the flipping algorithm has greatly improved performance. In this combined algorithm the flipping algorithm serves to find the support (object boundary) dynamically, and the HIO part improves convergence and moves the algorithm out of local minima. It starts with a single intensity measurement in the Fourier domain and does not require a priori knowledge of the support in the image domain. This method is suitable for general image recovery from oversampled diffuse elastic x-ray and electron-diffraction intensities. The relationship between this algorithm and the output-output algorithm is elucidated.
Iterative phase retrieval without support
NASA Astrophysics Data System (ADS)
Wu, J. S.; Weierstall, U.; Spence, J. C. H.; Koch, C. T.
2004-12-01
An iterative phase retrieval method for nonperiodic objects has been developed from the charge-flipping algorithm proposed in crystallography. A combination of the hybrid input-output (HIO) algorithm and the flipping algorithm has greatly improved performance. In this combined algorithm the flipping algorithm serves to find the support (object boundary) dynamically, and the HIO part improves convergence and moves the algorithm out of local minima. It starts with a single intensity measurement in the Fourier domain and does not require a priori knowledge of the support in the image domain. This method is suitable for general image recovery from oversampled diffuse elastic x-ray and electron-diffraction intensities. The relationship between this algorithm and the output-output algorithm is elucidated.
Planning as an Iterative Process
NASA Technical Reports Server (NTRS)
Smith, David E.
2012-01-01
Activity planning for missions such as the Mars Exploration Rover mission presents many technical challenges, including oversubscription, consideration of time, concurrency, resources, preferences, and uncertainty. These challenges have all been addressed by the research community to varying degrees, but significant technical hurdles still remain. In addition, the integration of these capabilities into a single planning engine remains largely unaddressed. However, I argue that there is a deeper set of issues that needs to be considered namely the integration of planning into an iterative process that begins before the goals, objectives, and preferences are fully defined. This introduces a number of technical challenges for planning, including the ability to more naturally specify and utilize constraints on the planning process, the ability to generate multiple qualitatively different plans, and the ability to provide deep explanation of plans.
Benchmarking ICRF simulations for ITER
R. V. Budny, L. Berry, R. Bilato, P. Bonoli, M. Brambilla, R.J. Dumont, A. Fukuyama, R. Harvey, E.F. Jaeger, E. Lerche, C.K. Phillips, V. Vdovin, J. Wright, and members of the ITPA-IOS
2010-09-28
Abstract Benchmarking of full-wave solvers for ICRF simulations is performed using plasma profiles and equilibria obtained from integrated self-consistent modeling predictions of four ITER plasmas. One is for a high performance baseline (5.3 T, 15 MA) DT H-mode plasma. The others are for half-field, half-current plasmas of interest for the pre-activation phase with bulk plasma ion species being either hydrogen or He4. The predicted profiles are used by seven groups to predict the ICRF electromagnetic fields and heating profiles. Approximate agreement is achieved for the predicted heating power partitions for the DT and He4 cases. Profiles of the heating powers and electromagnetic fields are compared.
Inhibitory effect of tocotrienol on eukaryotic DNA polymerase {lambda} and angiogenesis
Mizushina, Yoshiyuki . E-mail: mizushin@nutr.kobegakuin.ac.jp; Nakagawa, Kiyotaka; Shibata, Akira; Awata, Yasutoshi; Kuriyama, Isoko; Shimazaki, Noriko; Koiwai, Osamu; Uchiyama, Yukinobu; Sakaguchi, Kengo; Miyazawa, Teruo; Yoshida, Hiromi
2006-01-20
Tocotrienols, vitamin E compounds that have an unsaturated side chain with three double bonds, selectively inhibited the activity of mammalian DNA polymerase {lambda} (pol {lambda}) in vitro. These compounds did not influence the activities of replicative pols such as {alpha}, {delta}, and {epsilon}, or even the activity of pol {beta} which is thought to have a very similar three-dimensional structure to the pol {beta}-like region of pol {lambda}. Since {delta}-tocotrienol had the strongest inhibitory effect among the four ({alpha}- to {delta}-) tocotrienols, the isomer's structure might be an important factor in the inhibition of pol {lambda}. The inhibitory effect of {delta}-tocotrienol on both intact pol {lambda} (residues 1-575) and a truncated pol {lambda} lacking the N-terminal BRCA1 C-terminus (BRCT) domain (residues 133-575, del-1 pol {lambda}) was dose-dependent, with 50% inhibition observed at a concentration of 18.4 and 90.1 {mu}M, respectively. However, del-2 pol {lambda} (residues 245-575) containing the C-terminal pol {beta}-like region was unaffected. Tocotrienols also inhibited the proliferation of and formation of tubes by bovine aortic endothelial cells, with {delta}-tocotrienol having the greatest effect. These results indicated that tocotrienols targeted both pol {lambda} and angiogenesis as anti-cancer agents. The relationship between the inhibition of pol {lambda} and anti-angiogenesis by {delta}-tocotrienol was discussed.
{Lambda}CDM universe in f(R) gravity
Dunsby, Peter K. S.; Elizalde, Emilio; Saez-Gomez, Diego; Goswami, Rituparno; Odintsov, Sergei
2010-07-15
Several different explicit reconstructions of f(R) gravity are obtained from the background Friedmann-Laimatre-Robertson-Walker expansion history. It is shown that the only theory whose Lagrangian is a simple function of the Ricci scalar R, that admits an exact {Lambda}CDM expansion history, is standard general relativity with a positive cosmological constant and the only way to obtain this behavior of the scale factor for more general functions of R is to add additional degrees of freedom to the matter sector.
Rater Variables Associated with ITER Ratings
ERIC Educational Resources Information Center
Paget, Michael; Wu, Caren; McIlwrick, Joann; Woloschuk, Wayne; Wright, Bruce; McLaughlin, Kevin
2013-01-01
Advocates of holistic assessment consider the ITER a more authentic way to assess performance. But this assessment format is subjective and, therefore, susceptible to rater bias. Here our objective was to study the association between rater variables and ITER ratings. In this observational study our participants were clerks at the University of…
Iterative methods for weighted least-squares
Bobrovnikova, E.Y.; Vavasis, S.A.
1996-12-31
A weighted least-squares problem with a very ill-conditioned weight matrix arises in many applications. Because of round-off errors, the standard conjugate gradient method for solving this system does not give the correct answer even after n iterations. In this paper we propose an iterative algorithm based on a new type of reorthogonalization that converges to the solution.
Numerical radiative transfer with state-of-the-art iterative methods made easy
NASA Astrophysics Data System (ADS)
Lambert, Julien; Paletou, Frédéric; Josselin, Eric; Glorian, Jean-Michel
2016-01-01
This article presents an on-line tool and its accompanying software resources for the numerical solution of basic radiation transfer out of local thermodynamic equilibrium (LTE). State-of-the-art stationary iterative methods such as Accelerated Λ-iteration and Gauss-Seidel schemes, using a short characteristics-based formal solver are used. We also comment on typical numerical experiments associated to the basic non-LTE radiation problem. These resources are intended for the largest use and benefit, in support to more classical radiation transfer lectures usually given at the Master level.
Particle Accelerators in China
NASA Astrophysics Data System (ADS)
Zhang, Chuang; Fang, Shouxian
As the special machines that can accelerate charged particle beams to high energy by using electromagnetic fields, particle accelerators have been widely applied in scientific research and various areas of society. The development of particle accelerators in China started in the early 1950s. After a brief review of the history of accelerators, this article describes in the following sections: particle colliders, heavy-ion accelerators, high-intensity proton accelerators, accelerator-based light sources, pulsed power accelerators, small scale accelerators, accelerators for applications, accelerator technology development and advanced accelerator concepts. The prospects of particle accelerators in China are also presented.
Caporaso, George J.; Sampayan, Stephen E.; Kirbie, Hugh C.
2007-02-06
A compact linear accelerator having at least one strip-shaped Blumlein module which guides a propagating wavefront between first and second ends and controls the output pulse at the second end. Each Blumlein module has first, second, and third planar conductor strips, with a first dielectric strip between the first and second conductor strips, and a second dielectric strip between the second and third conductor strips. Additionally, the compact linear accelerator includes a high voltage power supply connected to charge the second conductor strip to a high potential, and a switch for switching the high potential in the second conductor strip to at least one of the first and third conductor strips so as to initiate a propagating reverse polarity wavefront(s) in the corresponding dielectric strip(s).
NASA Astrophysics Data System (ADS)
Tajima, T.; Nakajima, K.; Mourou, G.
2017-02-01
The fundamental idea of Laser Wakefield Acceleration (LWFA) is reviewed. An ultrafast intense laser pulse drives coherent wakefield with a relativistic amplitude robustly supported by the plasma. While the large amplitude of wakefields involves collective resonant oscillations of the eigenmode of the entire plasma electrons, the wake phase velocity ˜ c and ultrafastness of the laser pulse introduce the wake stability and rigidity. A large number of worldwide experiments show a rapid progress of this concept realization toward both the high-energy accelerator prospect and broad applications. The strong interest in this has been spurring and stimulating novel laser technologies, including the Chirped Pulse Amplification, the Thin Film Compression, the Coherent Amplification Network, and the Relativistic Mirror Compression. These in turn have created a conglomerate of novel science and technology with LWFA to form a new genre of high field science with many parameters of merit in this field increasing exponentially lately. This science has triggered a number of worldwide research centers and initiatives. Associated physics of ion acceleration, X-ray generation, and astrophysical processes of ultrahigh energy cosmic rays are reviewed. Applications such as X-ray free electron laser, cancer therapy, and radioisotope production etc. are considered. A new avenue of LWFA using nanomaterials is also emerging.
Contaldi, Carlo R.
2014-10-01
The recent Bicep2 [1] detection of, what is claimed to be primordial B-modes, opens up the possibility of constraining not only the energy scale of inflation but also the detailed acceleration history that occurred during inflation. In turn this can be used to determine the shape of the inflaton potential V(φ) for the first time — if a single, scalar inflaton is assumed to be driving the acceleration. We carry out a Monte Carlo exploration of inflationary trajectories given the current data. Using this method we obtain a posterior distribution of possible acceleration profiles ε(N) as a function of e-fold N and derived posterior distributions of the primordial power spectrum P(k) and potential V(φ). We find that the Bicep2 result, in combination with Planck measurements of total intensity Cosmic Microwave Background (CMB) anisotropies, induces a significant feature in the scalar primordial spectrum at scales k∼ 10{sup -3} Mpc {sup -1}. This is in agreement with a previous detection of a suppression in the scalar power [2].
Accelerated nonlinear multichannel ultrasonic tomographic imaging using target sparseness.
Chengdong Dong; Yuanwei Jin; Enyue Lu
2014-03-01
This paper presents an accelerated iterative Landweber method for nonlinear ultrasonic tomographic imaging in a multiple-input multiple-output (MIMO) configuration under a sparsity constraint on the image. The proposed method introduces the emerging MIMO signal processing techniques and target sparseness constraints in the traditional computational imaging field, thus significantly improves the speed of image reconstruction compared with the conventional imaging method while producing high quality images. Using numerical examples, we demonstrate that incorporating prior knowledge about the imaging field such as target sparseness accelerates significantly the convergence of the iterative imaging method, which provides considerable benefits to real-time tomographic imaging applications.
ON THE COMPLETENESS AND QUASIPOWER BASIS PROPERTY OF SYSTEMS \\{z^nf(\\lambda_nz)\\}
NASA Astrophysics Data System (ADS)
Oskolkov, V. A.
1990-02-01
This paper discusses questions of completeness and the quasipower property in spaces A_R of systems of functions \\{z^nf(\\lambda_nz)\\} under some natural conditions on the Taylor coefficients of the function f(z), assumed regular in a disk \\vert z\\vert. The complex numbers \\lambda_n ( n=0,1,\\dots) are subject to the condition \\vert\\lambda_n\\vert\\leqslant1. Bibliography: 8 titles.
ASTEROSEISMOLOGICAL MODELING OF THE MULTIPERIODIC {lambda} BOOTIS STAR 29 CYGNI
Casas, R.; Moya, A.; Martin-Ruiz, S.; Amado, P. J.; Garrido, R.; Suarez, J. C.; Rodriguez-Lopez, C
2009-05-20
The present work focuses on the discussion of the {lambda} Bootis nature of the multiperiodic {delta} Scuti star HD 192640 (29 Cyg), through a comprehensive asteroseismic modeling. Some of the most recent asteroseismic tools are used to check whether the observed low metallicity is internal, i.e., intrinsic, present throughout the star, or due to superficial processes as accretion, diffusive settling, radiative levitation, mass loss, etc. The modeling method uses some of the most recent tools, including: (1) effects of rotation on equilibrium models, on the adiabatic oscillation spectrum, and its influence in multicolor observables, (2) nonadiabatic stability of radial and nonradial modes, (3) inclusion of the atmosphere-pulsation interaction for a more accurate multicolor mode identification, and (4) ratio between radial modes n = 4 and n = 5 in the framework of Petersen diagrams. The analysis performed reveals that the models fulfilling all the constraints are those in the middle of the main sequence (MS), with subsolar metallicity, except some other unlikely possibilities. Therefore, this study does not support the idea of the {lambda} Bootis stars being zero-age MS or pre-MS stars interacting with their primordial cloud of gas and dust, but suggest the explanation of their nature as submetallic MS objects. Nevertheless, more accurate multicolor photometric observations are required for a more conclusive study using the procedure presented here, since the observational errors are too large for a definitive rejection of any of the possible explanations.
Detection of single lambda DNA fragments by flow cytometry
Johnson, M.E.; Goodwin, P.M.; Ambrose, W.P.; Martin, J.C.; Marrone, B.L.; Keller, R.A. )
1993-01-01
The authors have demonstrated flow cytometric detection and sizing of single pieces of fluorescently stained lambda DNA (48.5 kb) and individual Kpn I restriction fragments of lambda DNA at 17.05 kb and 29.95 kb. DNA fragments were stained stoichiometrically with an intercalating dye such that the fluorescence from each fragment was directly proportional to fragment length. Laser powers range from 10 to 100 mW and transit times through the focused laser beam were several milliseconds. Measurements were made using time-resolved single photon counting of the detected fluorescence emission from individual stained DNA fragments. Samples were analyzed at rates of about 50 fragments per second. The measured fluorescence intensities are linearly correlated with DNA fragment length over the range measured. Detection sensitivity and resolution needed for analysis of small pieces of DNA are discussed and a comparison of single photon counting measurements of DNA fragments to measurements using more conventional flow cytometers is made. Applications of this methodology to DNA sizing and DNA fingerprinting are discussed.
Guibet, Marion; Colin, Sébastien; Barbeyron, Tristan; Genicot, Sabine; Kloareg, Bernard; Michel, Gurvan; Helbert, William
2007-05-15
Carrageenans are sulfated galactans found in the cell walls of red seaweeds. They are classified according to the number and the position of sulfate ester groups. lambda-Carrageenan is the most sulfated carrageenan and carries at least three sulfates per disaccharide unit. The sole known depolymerizing enzyme of lambda-carrageenan, the lambda-carrageenase from Pseudoalteromonas carrageenovora, has been purified, cloned and sequenced. Sequence analyses have revealed that the lambda-carrageenase, referred to as CglA, is the first member of a new family of GHs (glycoside hydrolases), which is unrelated to families GH16, that contains kappa-carrageenases, and GH82, that contains iota-carrageenases. This large enzyme (105 kDa) features a low-complexity region, suggesting the presence of a linker connecting at least two independent modules. The N-terminal region is predicted to fold as a beta-propeller. The main degradation products have been purified and characterized as neo-lambda-carratetraose [DP (degree of polymerization) 4] and neo-lambda-carrahexaose (DP6), indicating that CglA hydrolyses the beta-(1-->4) linkage of lambda-carrageenan. LC-MALLS (liquid chromatography-multi-angle laser light scattering) and (1)H-NMR monitoring of the enzymatic degradation of lambda-carrageenan indicate that CglA proceeds according to an endolytic mode of action and a mechanism of inversion of the anomeric configuration. Using 2-aminoacridone-labelled neo-lambda-carrabiose oligosaccharides, in the present study we demonstrate that the active site of CglA comprises at least 8 subsites (-4 to +4) and that a DP6 oligosaccharide binds in the subsites -4 to +2 and can be hydrolysed into DP4 and DP2.
Circular dimers of a lambda DNA in infected, nonlysogenic Escherichia coli.
Freifelder, D; Baran, N; Folkmanis, A; Freifelder, D L
1977-09-01
Covalently closed circular dimers of phage lambda DNA have been found in Escherichia coli infected with lambda. These dimers can be formed by either the lambda Red or Int systems, by a nonrecombinational replicative mechanism requiring the activity of the lambda O and P genes or by joining of the cohesive ends. Dimers mediated by the E. coli Rec system have not been observed. Those formed by the Int system often result from recombination between different DNA molecules; however, the Red-mediated dimers may be a result of replicative extension of a single DNA molecule. Trimers have also been observed but studied only briefly.
Direct and general selection for lysogens of Escherichia coli by phage lambda recombinant clones.
Henry, M F; Cronan, J E
1991-06-01
We report a simple in vivo technique for introducing an antibiotic resistance marker into phage lambda. This technique could be used for direct selection of lysogens harboring recombinant phages from the Kohara lambda bank (a collection of ordered lambda clones carrying Escherichia coli DNA segments). The two-step method uses homologous recombination and lambda DNA packaging to replace the nonessential lambda DNA lying between the lysis genes and the right cohesive (cos) end with the neomycin phosphotransferase (npt) gene from Tn903. This occurs during lytic growth of the phage on a plasmid-containing host strain. Neomycin-resistant (npt+) recombinant phages are then selected from the lysates containing the progeny phage by transduction of a polA1 lambda lysogenic host strain to neomycin resistance. We have tested this method with two different Kohara lambda phage clones; in both cases, neomycin resistance cotransduced with the auxotrophic marker carried by the lambda clone, indicating complete genetic linkage. Linkage was verified by restriction mapping of purified DNA from a recombinant phage clone. We also demonstrate that insertion of the npt+ recombinant phages into the lambda prophage can be readily distinguished from insertion into bacterial chromosomal sequences.
Time dependent discrete ordinates neutron transport using distribution iteration in XYZ geometry
NASA Astrophysics Data System (ADS)
Dishaw, James R.
The distribution iteration (DI) algorithm, developed by Wager [32] and Prins [28], for solving the Boltzmann Transport Equation (BTE) has proven, with further development, to be a robust alternative to von Neumann iteration on the scattering source, aka source iteration (SI). Previous work with DI was based on the time-independent form of the transport equation. In this research, the DI algorithm was (1) Improved to provide faster, more efficient, robust convergence; (2) Extended to XYZ geometry; (3) Extended to Multigroup Energy treatment; (4) Extended to solve the time-dependent form of the Boltzmann Transport Equation. The discrete ordinates equations for approximating the BTE have been solved using SI since the discrete ordinates method was developed at Los Alamos Scientific Laboratory by 1953. However, SI is often inefficient by itself and requires an accelerator in order to produce results efficiently and reliably. The acceleration schemes that are in use in production codes are Diffusion Synthetic Acceleration (DSA) and Transport Synthetic Acceleration (TSA). DSA is ineffective for some problems, and cannot be extended to high-performance spatial quadratures. TSA is less effective than DSA and fails for some problems. Krylov acceleration has been explored in recent years, but has many parameters that require problem-dependent tuning for efficiency and effectiveness. The DI algorithm is an alternative to source iteration that, in our testing, does not require an accelerator. I developed a formal verification plan and executed it to verify the results produced by my code that implemented DI with the above features. A new, matrix albedo, boundary condition treatment was developed and implemented so that infinite-medium benchmarks could be included in the verification test suite. The DI algorithm was modified for parallel efficiency and the prior instability of the refinement sweep was corrected. The testing revealed that DI performed as well or faster than
On the interplay between inner and outer iterations for a class of iterative methods
Giladi, E.
1994-12-31
Iterative algorithms for solving linear systems of equations often involve the solution of a subproblem at each step. This subproblem is usually another linear system of equations. For example, a preconditioned iteration involves the solution of a preconditioner at each step. In this paper, the author considers algorithms for which the subproblem is also solved iteratively. The subproblem is then said to be solved by {open_quotes}inner iterations{close_quotes} while the term {open_quotes}outer iteration{close_quotes} refers to a step of the basic algorithm. The cost of performing an outer iteration is dominated by the solution of the subproblem, and can be measured by the number of inner iterations. A good measure of the total amount of work needed to solve the original problem to some accuracy c is then, the total number of inner iterations. To lower the amount of work, one can consider solving the subproblems {open_quotes}inexactly{close_quotes} i.e. not to full accuracy. Although this diminishes the cost of solving each subproblem, it usually slows down the convergence of the outer iteration. It is therefore interesting to study the effect of solving each subproblem inexactly on the total amount of work. Specifically, the author considers strategies in which the accuracy to which the inner problem is solved, changes from one outer iteration to the other. The author seeks the `optimal strategy`, that is, the one that yields the lowest possible cost. Here, the author develops a methodology to find the optimal strategy, from the set of slowly varying strategies, for some iterative algorithms. This methodology is applied to the Chebychev iteration and it is shown that for Chebychev iteration, a strategy in which the inner-tolerance remains constant is optimal. The author also estimates this optimal constant. Then generalizations to other iterative procedures are discussed.
Iterants, Fermions and Majorana Operators
NASA Astrophysics Data System (ADS)
Kauffman, Louis H.
Beginning with an elementary, oscillatory discrete dynamical system associated with the square root of minus one, we study both the foundations of mathematics and physics. Position and momentum do not commute in our discrete physics. Their commutator is related to the diffusion constant for a Brownian process and to the Heisenberg commutator in quantum mechanics. We take John Wheeler's idea of It from Bit as an essential clue and we rework the structure of that bit to a logical particle that is its own anti-particle, a logical Marjorana particle. This is our key example of the amphibian nature of mathematics and the external world. We show how the dynamical system for the square root of minus one is essentially the dynamics of a distinction whose self-reference leads to both the fusion algebra and the operator algebra for the Majorana Fermion. In the course of this, we develop an iterant algebra that supports all of matrix algebra and we end the essay with a discussion of the Dirac equation based on these principles.
Progress on ITER Diagnostic Integration
NASA Astrophysics Data System (ADS)
Johnson, David; Feder, Russ; Klabacha, Jonathan; Loesser, Doug; Messineo, Mike; Stratton, Brentley; Wood, Rick; Zhai, Yuhu; Andrew, Phillip; Barnsley, Robin; Bertschinger, Guenter; Debock, Maarten; Reichle, Roger; Udintsev, Victor; Vayakis, George; Watts, Christopher; Walsh, Michael
2013-10-01
On ITER, front-end components must operate reliably in a hostile environment. Many will be housed in massive port plugs, which also shield the machine from radiation. Multiple diagnostics reside in a single plug, presenting new challenges for developers. Front-end components must tolerate thermally-induced stresses, disruption-induced mechanical loads, stray ECH radiation, displacement damage, and degradation due to plasma-induced coatings. The impact of failures is amplified due to the difficulty in performing robotic maintenance on these large structures. Motivated by needs to minimize disruption loads on the plugs, standardize the handling of shield modules, and decouple the parallel efforts of the many parties, the packaging strategy for diagnostics has recently focused on the use of 3 vertical shield modules inserted from the plasma side into each equatorial plug structure. At the front of each is a detachable first wall element with customized apertures. Progress on US equatorial and upper plugs will be used as examples, including the layout of components in the interspace and port cell regions. Supported by PPPL under contract DE-AC02-09CH11466 and UT-Battelle, LLC under contract DE-AC05-00OR22725 with the U.S. DOE.
Pawel Ambrozewicz; Daniel Carman; Rob Feuerbach; Mac Mestayer; Brian Raue; Reinhard Schumacher; Avtandil Tkabladze
2006-11-19
We report measurements of the exclusive electroproduction of K{sup +}{Lambda} and K{sup +}{Sigma}{sup 0} final states from a proton target using the CLAS detector at the Thomas Jefferson National Accelerator Facility. The separated structure functions {sigma}{sub T}, {sigma}{sub L},{sigma}{sub TT}, and {sigma}{sub LT} were extracted from the {Phi}- and {epsilon}-dependent differential cross sections taken with electron beam energies of 2.567, 4.056, and 4.247 GeV. This analysis represents the first {sigma}{sub L}/{sigma}{sub T} separation with the CLAS detector, and the first measurement of the kaon electroproduction structure functions away from parallel kinematics. The data span a broad range of momentum transfers from 0.5 {le} Q{sup 2} {le} 2.8 GeV{sup 2} and invariant energy from 1.6 {le} W {le} 2.4 GeV, while spanning nearly the full center-of-mass angular range of the kaon. The separated structure functions reveal clear differences between the production dynamics for the {Lambda} and {Sigma}{sup 0} hyperons. These results provide an unprecedented data sample with which to constrain current and future models for the associated production of strangeness, which will allow for a better understanding of the underlying resonant and non-resonant contributions to hyperon production.
Aaltonen, T.; Adelman, J.; Alvarez Gonzalez, B.; Amerio, S.; Amidei, D.; Anastassov, A.; Annovi, A.; Antos, J.; Apollinari, G.; Apresyan, A.; Arisawa, T.; /Waseda U. /Dubna, JINR
2009-12-01
We report a measurement of the lifetime of the {Lambda}{sub b}{sup 0} baryon in decays to the {Lambda}{sub c}{sup +} {pi}{sup -} final state in a sample corresponding to 1.1 fb{sup -1} collected in p{bar p} collisions at {radical}s = 1.96 TeV by the CDF II detector at the Tevatron collider. Using a sample of about 3000 fully reconstructed {Lambda}{sub b}{sup 0} events we measure {tau}({Lambda}{sub b}{sup 0}) = 1.401 {+-} 0.046 (stat) {+-} 0.035 (syst) ps (corresponding to c{tau}({Lambda}{sub b}{sup 0}) = 420.1 {+-} 13.7 (stat) {+-} 10.6 (syst) {micro}m, where c is the speed of light). The ratio of this result and the world average B{sup 0} lifetime yields {tau}({Lambda}{sub b}{sup 0})/{tau}(B{sup 0}) = 0.918 {+-} 0.038 (stat and syst), in good agreement with recent theoretical predictions.
Advanced concepts for acceleration
Keefe, D.
1986-07-01
Selected examples of advanced accelerator concepts are reviewed. Such plasma accelerators as plasma beat wave accelerator, plasma wake field accelerator, and plasma grating accelerator are discussed particularly as examples of concepts for accelerating relativistic electrons or positrons. Also covered are the pulsed electron-beam, pulsed laser accelerator, inverse Cherenkov accelerator, inverse free-electron laser, switched radial-line accelerators, and two-beam accelerator. Advanced concepts for ion acceleration discussed include the electron ring accelerator, excitation of waves on intense electron beams, and two-wave combinations. (LEW)
Accelerators and the Accelerator Community
Malamud, Ernest; Sessler, Andrew
2008-06-01
In this paper, standing back--looking from afar--and adopting a historical perspective, the field of accelerator science is examined. How it grew, what are the forces that made it what it is, where it is now, and what it is likely to be in the future are the subjects explored. Clearly, a great deal of personal opinion is invoked in this process.
First Measurement of Transferred Polarization in the Exclusive e p --> e' K+ Lambda Reaction
Daniel S. Carman; Et. Al.
2003-04-04
The first measurements of the transferred polarization for the exclusive {rvec e}p {yields} e{prime}K{sup +}{rvec {Lambda}} reaction have been performed in Hall B at the Thomas Jefferson National Accelerator Facility using the CLAS spectrometer. A 2.567 GeV electron beam was used to measure the hyperon polarization over a range of Q{sup 2} from 0.3 to 1.5 (GeV/c){sup 2}, W from 1.6 to 2.15 GeV, and over the full center-of-mass angular range of the K{sup +} meson. Comparison with predictions of hadrodynamic models indicates strong sensitivity to the underlying resonance contributions. A non-relativistic quark model interpretation of our data suggests that the s{bar s} quark pair is produced with spins predominantly anti-aligned. Implications for the validity of the widely used {sup 3}P{sub o} quark-pair creation operator are discussed.
Status of the BNL IFEL accelerator
Steenbergen, A. van; Gallardo, J.; Sandweiss, J.
1996-10-01
A 40 MeV electron beam, using the inverse free-electron laser interaction, has been accelerated by {Delta}E/E = 2.5% over a distance of 0.47 m. The electrons interact with a 1--2 GW CO{sub 2} laser beam bounded by a 2.8 mm ID sapphire circular waveguide in the presence of a tapered wiggler with Bmax {approx} 1 T and a period 2.89 cm {le} {lambda}{sub w} {le} 3.14 cm. The experimental results of {Delta}E/E as a function of electron energy E, peak magnetic field Bw and laser power W{sub 1} compare well with analytical and 1-D numerical simulations and permit scaling to higher laser power and electron energy. The present status of the IFEL accelerator and planned near term development are indicated.
Parametric approach to linear induction accelerator design
Bresie, D.A.; Andrews, J.A.; Ingram, S.W. . Center for Electromechanics)
1991-01-01
Past work on the design of linear induction accelerators has centered on the development of computer codes to analyze accelerator designs, using the current filament method. While these filament models are a very valuable tool for evaluating the performance of an induction launcher design, they provide little insight into the selection of dimensions, materials, and operation points for accelerators with interesting performance. Described in this paper is a parametric approach to defining effective accelerator designs. This method uses a computer optimization routine to iteratively seek out effective designs. The optimization routine is forced to search within a parameter space restricted to interesting and realistic parameters such as size, weight, voltage, and temperature rises. A filament model is used as the filter for the optimizer. Several linear induction accelerators have been designed using this method. The accelerators designed all used a switched capacitor power supply. While the run time of this code on The University of Texas' CRAY XMP-24 computer is moderately long, the resulting designs have good predicted performance. With realistic power supplies and materials, accelerator efficiencies in the 20 to 40% range were easily obtained. This paper describes the effect of armature diameter, length-to-diameter ratio, and weight, as well as other parameters, on the optimum accelerator design.
NASA Technical Reports Server (NTRS)
Vongierke, H. E.; Brinkley, J. W.
1975-01-01
The degree to which impact acceleration is an important factor in space flight environments depends primarily upon the technology of capsule landing deceleration and the weight permissible for the associated hardware: parachutes or deceleration rockets, inflatable air bags, or other impact attenuation systems. The problem most specific to space medicine is the potential change of impact tolerance due to reduced bone mass and muscle strength caused by prolonged weightlessness and physical inactivity. Impact hazards, tolerance limits, and human impact tolerance related to space missions are described.
ITER neutral beam system US conceptual design. Final vesion
Purgalis, P.
1990-09-01
In this document we present the US conceptual design of a neutral beam system for International Thermonuclear Experimental Reactor (ITER). The design incorporates a barium surface conversion D{sup {minus}} source feeding a linear array of accelerator channels. The system uses a dc accelerator with electrostatic quadrupoles for strong focusing. A high voltage power supply that is integrated with the accelerator is presented as an attractive option. A gas neutralizer is used and residual ions exiting the neutralizer are deflected to water-cooled dumps. Cryopanels are located at the accelerator exit to pump excess gas from the source and the neutralizer, and in the ion dump cavity to pump re-neutralized ions and neutralizer gas. All the above components are packaged in compact identical, independent modules which can be removed for remote maintenance. The neutral beam system delivers 75 MW of DO at 1.3 MeV, into three ports with a total of 9 modules arranged in stacks of three modules per port . To increase reliability each module is designed to deliver up to 10 MW; this allows eight modules operating at partial capacity to deliver the required power in the event one module is out of service, and provides 20% excess capacity to improve availability. Radiation protection is provided by shielding and by locating critical components in the source and accelerator 46.5 m from the torus centerline. Neutron shielding in the drift duct and neutralizer provides the added feature of limiting conductance and thus reducing gas flow to and from the torus.
Dark Energy Coupled with Relativistic Dark Matter in Accelerating Universe
NASA Astrophysics Data System (ADS)
Zhang, Yang
2003-10-01
Recent observations favour an accelerating Universe dominated by the dark energy. We take the effective Yang-Mills condensate as the dark energy and couple it to a relativistic matter which is created by the decaying condensate. The dynamic evolution has asymptotic behaviour with finite constant energy densities, and the fractional densities OmegaLambda~0.7 for dark energy and Omegam~0.3 for relativistic matter are achieved at proper values of the decay rate. The resulting expansion of the Universe is in the de Sitter acceleration.
New stopping criteria for iterative root finding
Nikolajsen, Jorgen L.
2014-01-01
A set of simple stopping criteria is presented, which improve the efficiency of iterative root finding by terminating the iterations immediately when no further improvement of the roots is possible. The criteria use only the function evaluations already needed by the root finding procedure to which they are applied. The improved efficiency is achieved by formulating the stopping criteria in terms of fractional significant digits. Test results show that the new stopping criteria reduce the iteration work load by about one-third compared with the most efficient stopping criteria currently available. This is achieved without compromising the accuracy of the extracted roots. PMID:26064544
Iterative restoration algorithms for nonlinear constraint computing
NASA Astrophysics Data System (ADS)
Szu, Harold
A general iterative-restoration principle is introduced to facilitate the implementation of nonlinear optical processors. The von Neumann convergence theorem is generalized to include nonorthogonal subspaces which can be reduced to a special orthogonal projection operator by applying an orthogonality condition. This principle is shown to permit derivation of the Jacobi algorithm, the recursive principle, the van Cittert (1931) deconvolution method, the iteration schemes of Gerchberg (1974) and Papoulis (1975), and iteration schemes using two Fourier conjugate domains (e.g., Fienup, 1981). Applications to restoring the image of a double star and division by hard and soft zeros are discussed, and sample results are presented graphically.
BSIRT: a block-iterative SIRT parallel algorithm using curvilinear projection model.
Zhang, Fa; Zhang, Jingrong; Lawrence, Albert; Ren, Fei; Wang, Xuan; Liu, Zhiyong; Wan, Xiaohua
2015-03-01
Large-field high-resolution electron tomography enables visualizing detailed mechanisms under global structure. As field enlarges, the distortions of reconstruction and processing time become more critical. Using the curvilinear projection model can improve the quality of large-field ET reconstruction, but its computational complexity further exacerbates the processing time. Moreover, there is no parallel strategy on GPU for iterative reconstruction method with curvilinear projection. Here we propose a new Block-iterative SIRT parallel algorithm with the curvilinear projection model (BSIRT) for large-field ET reconstruction, to improve the quality of reconstruction and accelerate the reconstruction process. We also develop some key techniques, including block-iterative method with the curvilinear projection, a scope-based data decomposition method and a page-based data transfer scheme to implement the parallelization of BSIRT on GPU platform. Experimental results show that BSIRT can improve the reconstruction quality as well as the speed of the reconstruction process.
Parallel computing for simultaneous iterative tomographic imaging by graphics processing units
NASA Astrophysics Data System (ADS)
Bello-Maldonado, Pedro D.; López, Ricardo; Rogers, Colleen; Jin, Yuanwei; Lu, Enyue
2016-05-01
In this paper, we address the problem of accelerating inversion algorithms for nonlinear acoustic tomographic imaging by parallel computing on graphics processing units (GPUs). Nonlinear inversion algorithms for tomographic imaging often rely on iterative algorithms for solving an inverse problem, thus computationally intensive. We study the simultaneous iterative reconstruction technique (SIRT) for the multiple-input-multiple-output (MIMO) tomography algorithm which enables parallel computations of the grid points as well as the parallel execution of multiple source excitation. Using graphics processing units (GPUs) and the Compute Unified Device Architecture (CUDA) programming model an overall improvement of 26.33x was achieved when combining both approaches compared with sequential algorithms. Furthermore we propose an adaptive iterative relaxation factor and the use of non-uniform weights to improve the overall convergence of the algorithm. Using these techniques, fast computations can be performed in parallel without the loss of image quality during the reconstruction process.
OT1_hmaness_1: Planets, Debris Disks, and the Lambda Bootis Stars
NASA Astrophysics Data System (ADS)
Maness, H.
2010-07-01
We propose to explore the link between lambda Bootis stars, debris disks, and planetesimal formation and evolution. The lambda Boo stars are a rare type of peculiar A star (2%), which are Population 1 and metal poor. Planet bearing systems and debris disk stars appear unusually well represented in the lambda Boo class: for example, beta Pic, Vega, and HR 8799 are all lambda Boo candidates. A small sample of 14 lambda Boo stars observed by Spitzer suggests an occurrence of infrared excess approaching 100%. Only two lambda Boo stars are included in the DEBRIS/DUNES Herschel key program debris disk surveys. We will use PACS/Herschel to make sensitive, high-resolution maps of 27 new lambda Boo stars. Like DEBRIS/DUNES, we will reach the stellar photosphere for all targets, enabling a measurement of the true rate of excess infrared emission among lambda Boo stars compared to normal A stars. The depletion pattern of heavy elements in the atmospheres of lambda Boo stars suggests they may have accreted gas from which dust grains have condensed and been removed: this gas may be circumstellar gas that has formed planetesimals or dusty interstellar gas. While the circumstellar disk scenario predicts sizes of a few hundred AU, the cloud accretion scenario predicts 1000-2000 AU bow structures oriented in the direction of the relative motion of the cloud and star. With target distances of < 140 pc, these bow structures are expected to be resolved for all targets. These will be the first mid-infrared observations of lambda Boo stars outside of the low density Local Bubble: if interstellar medium interactions dominate the lambda Boo phenomenon then systematic variations in excess strength and morphology may occur with distance.
STAR Collaboration; Abelev, Betty
2010-07-05
The longitudinal spin transfer, D{sub LL}, from high energy polarized protons to {Lambda} and {bar {Lambda}} hypersons has been measured for the first time in proton-proton collisions at {radical}s = 200 GeV with the STAR detector at RHIC. The measurements cover pseudorapidity, {eta}, in the range |{eta}| < 1.2 and transverse momenta, p{sub T}, up to 4 GeV/c. The longitudinal spin transfer is found to be D{sub LL} = -0.03{+-}0.13(stat){+-}0.04(syst) for inclusive {Lambda} and D{sub LL} = -0.12{+-}0.08(stat){+-}0.03(syst) for inclusive {bar {Lambda}} hyperons with <{eta}> = 0.5 and
= 3.7 GeV/c. The dependence on {eta} and p{sub T} is presented.
Oh, Hye Ryong; Lee, Mi Ja; Park, Geon; Moon, Dae Soo; Park, Young Jin; Jang, Sook Jin
2009-06-01
A 70-yr-old woman was hospitalized with a history of dry cough. Bronchial endoscopy and transbronchial lung biopsy were performed. However, the findings of histopathology and immunohistochemistry were not sufficient to decide whether the lesion was benign or malignant, because of the presence of crush artifacts in the biopsy specimens. We performed B-cell clonality studies using BIOMED-2 multiplex PCR (InVivoScribe Technologies, USA) to detect clonal rearrangements in the immunoglobulin gene. The results of multiplex PCR showed clonal rearrangements of both kappa and lambda immunoglobulin light chain genes. The findings of immunochemistry revealed that the lesion expressed lambda light chain, but not kappa light chain. Based on the clinical, pathologic, and molecular findings, this case was diagnosed as pulmonary MALT lymphoma. We report the first case in Korea of lambda-expressing MALT lymphoma that is shown to have dual clonal rearrangements of kappa and lambda immunoglobulin light chain gene by multiplex PCR.
Sakurai-Chin, Chanhyok; Ubara, Yoshifumi; Suwabe, Tatsuya; Hoshino, Junichi; Yonaha, Tomoki; Hasegawa, Eiko; Sumida, Keiichi; Hiramatsu, Rikako; Yamanouchi, Masayuki; Hayami, Noriko; Yamauchi, Junji; Tominaga, Naoyuki; Sawa, Naoki; Takemoto, Fumi; Masuoka, Kazuhiro; Takaichi, Kenmei; Oohashi, Kenichi
2010-10-01
A 45-year-old Japanese woman had been diagnosed with monoclonal gammopathy of undetermined significance (MGUS) featuring urinary Bence-Jones protein of the lambda type (BJP-lambda) for 11 years. She then developed eyelid purpura, dyspnea, and flank pain. Abdominal CT scans revealed renal infarction. Biopsy of the kidney, heart, jejunum, and skin demonstrated amyloid deposits in the vessel walls, but not in the glomeruli. She was diagnosed as having AL amyloidosis with IgD-lambda monoclonal gammopathy and BJP-lambda. Autologous stem cell transplantation (SCT) was done after chemotherapy with vincristine, daunorubicin, dexamethasone (VAD), and high-dose melphalan (HDM). This reduced the IgD level from 156 to 0.1 mg/dL, along with the disappearance of BJP, despite cerebral infarction during chemotherapy. We recommend SCT for patients with IgD-associated AL amyloidosis.
ITER CS Intermodule Support Structure
Myatt, R.; Freudenberg, Kevin D
2011-01-01
With five independently driven, bi-polarity power supplies, the modules of the ITER central solenoid (CS) can be energized in aligned or opposing field directions. This sets up the possibility for repelling modules, which indeed occurs, particularly between CS2L and CS3L around the End of Burn (EOB) time point. Light interface compression between these two modules at EOB and wide variations in these coil currents throughout the pulse produce a tendency for relative motion or slip. Ideally, the slip is purely radial as the modules breathe without any accumulative translational motion. In reality, however, asymmetries such as nonuniformity in intermodule friction, lateral loads from a plasma Vertical Disruption Event (VDE), magnetic forces from manufacturing and assembly tolerances, and earthquakes can all contribute to a combination of radial and lateral module motion. This paper presents 2D and 3D, nonlinear, ANSYS models which simulate these various asymmetries and determine the lateral forces which must be carried by the intermodule structure. Summing all of these asymmetric force contributions leads to a design-basis lateral load which is used in the design of various support concepts: the CS-CDR centering rings and a variation, the 2001 FDR baseline radial keys, and interlocking castles structures. Radial key-type intermodule structure interface slip and stresses are tracked through multiple 15 MA scenario current pulses to demonstrate stable motion following the first few cycles. Detractions and benefits of each candidate intermodule structure are discussed, leading to the simplest and most robust configuration which meets the design requirements: match-drilled radial holes and pin-shaped keys.
Development of a Tritium Extruder for ITER Pellet Injection
M.J. Gouge; P.W. Fisher
1998-09-01
As part of the International Thermonuclear Experimental Reactor (ITER) plasma fueling development program, Oak Ridge National Laboratory (ORNL) has fabricated a pellet injection system to test the mechanical and thermal properties of extruded tritium. Hydrogenic pellets will be used in ITER to sustain the fusion power in the plasma core and may be crucial in reducing first-wall tritium inventories by a process of "isotopic fueling" in which tritium-rich pellets fuel the burning plasma core and deuterium gas fuels the edge. This repeating single-stage pneumatic pellet injector, called the Tritium-Proof-of-Principle Phase II (TPOP-II) Pellet Injector, has a piston-driven mechanical extruder and is designed to extrude and accelerate hydrogenic pellets sized for the ITER device. The TPOP-II program has the following development goals: evaluate the feasibility of extruding tritium and deuterium-tritium (D-T) mixtures for use in future pellet injection systems; determine the mechanical and thermal properties of tritium and D-T extrusions; integrate, test, and evaluate the extruder in a repeating, single-stage light gas gun that is sized for the ITER application (pellet diameter -7 to 8 mm); evaluate options for recycling propellant and extruder exhaust gas; and evaluate operability and reliability of ITER prototypical fueling systems in an environment of significant tritium inventory that requires secondary and room containment systems. In tests with deuterium feed at ORNL, up to 13 pellets per extrusion have been extruded at rates up to 1 Hz and accelerated to speeds of 1.0 to 1.1 km/s, using hydrogen propellant gas at a supply pressure of 65 bar. Initially, deuterium pellets 7.5 mm in diameter and 11 mm in length were produced-the largest cryogenic pellets produced by the fusion program to date. These pellets represent about a 10% density perturbation to ITER. Subsequently, the extruder nozzle was modified to produce pellets that are almost 7.5-mm right circular
Iterative rate-distortion optimization of H.264 with constant bit rate constraint.
An, Cheolhong; Nguyen, Truong Q
2008-09-01
In this paper, we apply the primal-dual decomposition and subgradient projection methods to solve the rate-distortion optimization problem with the constant bit rate constraint. The primal decomposition method enables spatial or temporal prediction dependency within a group of picture (GOP) to be processed in the master primal problem. As a result, we can apply the dual decomposition to minimize independently the Lagrangian cost of all the MBs using the reference software model of H.264. Furthermore, the optimal Lagrange multiplier lambda* is iteratively derived from the solution of the dual problem. As an example, we derive the optimal bit allocation condition with the consideration of temporal prediction dependency among the pictures. Experimental results show that the proposed method achieves better performance than the reference software model of H.264 with rate control.
Vortex Loops at the Superfluid Lambda Transition: An Exact Theory?
NASA Technical Reports Server (NTRS)
Williams, Gary A.
2003-01-01
A vortex-loop theory of the superfluid lambda transition has been developed over the last decade, with many results in agreement with experiments. It is a very simple theory, consisting of just three basic equations. When it was first proposed the main uncertainty in the theory was the use Flory scaling to find the fractal dimension of the random-walking vortex loops. Recent developments in high-resolution Monte Carlo simulations have now made it possible to verify the accuracy of this Flory-scaling assumption. Although the loop theory is not yet rigorously proven to be exact, the Monte Carlo results show at the least that it is an extremely good approximation. Recent loop calculations of the critical Casimir effect in helium films in the superfluid phase T < Tc will be compared with similar perturbative RG calculations in the normal phase T > Tc; the two calculations are found to match very nicely right at Tc.
The Ba II [lambda]4554 resonance line and solar granulation
NASA Astrophysics Data System (ADS)
Olshevsky, V. L.; Shchukina, N. G.
We present the results of an investigation of the impact of NLTE effects and of granulation inhomogeneities on the solar Ba II [lambda]4554 Å line. Our analysis is based on both the classical one-dimensional (1D) solar atmosphere models and on the new generation of three-dimensional (3D) hydrodynamical models. We show that NLTE and 3D effects have to be taken into account for reliable diagnostics of the solar atmosphere using this line. We analyse the influence of different parameters on the line shape. It turns out to be most sensitive to collisional broadening and barium abundance. Uncertainties in the oscillator strength, micro- and macroturbulence (in 1D-case) have a secondary importance. We have derived the barium abundance assuming NLTE. We find ABa = 2.16 in good agreement with the recent result of Asplund et al. (2005).
Spectral diagnostics of high energy emission in lambda Eri
NASA Technical Reports Server (NTRS)
Smith, Myron
1995-01-01
Multi-line observations of the optical spectrum of lambda Eri demonstrates that rapidly varying, low-velocity emissions occur in several He I lines even when H alpha shows no emission. A peculiar aspect of the He I emissions is that the ratio 5876/6678 is = 1. A theory of helium line formation generally admits two common emission mechanisms. The first is recombination/cascades, which is well known to give a ratio of greater than or equal to 3. The second is a non-LTE effect that occurs in hot (O-type) photospheres when resonance He I 584 radiation becomes transparent and drives single lines along into the emission. To accommodate a ratio of 5876/6678 = 1 may require that both processes sometimes operate at the same time, presumably in separate localities near the surface of this star.
A Lambda 1400 spectrophotometric census of the Orion belt region
NASA Technical Reports Server (NTRS)
Brown, Douglas N.; Shore, Steven N.
1986-01-01
Low dispersion IUE spectrophotometry were used to generate a pair of photometric indices which measure the strength of the broad continuum absorption feature at 1400 A, likely an autoionizing transition of Si II. Calibration of the indices as identifiers of silicon overabundance is based on measurements of 25 IUE spectral standards and a sample of O8-A0 IV-V stars, 18 of them silicon stars. The correlations of delta alpha 1400 with delta alpha 5200 and delta (VI-G) support the association of the lambda 5200 feature with silicon. Using this technique, a magnitude limited survey of 28 B-stars in sub-groups b1, b2 and b3 of the Orion OB1 association was conducted. Two previously unrecognized candidate (perhaps weakly overabundant) silicon stars, HD 37187 and BD - 0 deg 984 are identified.
Directed evolution of nucleotide-based libraries using lambda exonuclease.
Lim, Bee Nar; Choong, Yee Siew; Ismail, Asma; Glökler, Jörn; Konthur, Zoltán; Lim, Theam Soon
2012-12-01
Directed evolution of nucleotide libraries using recombination or mutagenesis is an important technique for customizing catalytic or biophysical traits of proteins. Conventional directed evolution methods, however, suffer from cumbersome digestion and ligation steps. Here, we describe a simple method to increase nucleotide diversity using single-stranded DNA (ssDNA) as a starting template. An initial PCR amplification using phosphorylated primers with overlapping regions followed by treatment with lambda exonuclease generates ssDNA templates that can then be annealed via the overlap regions. Double-stranded DNA (dsDNA) is then generated through extension with Klenow fragment. To demonstrate the applicability of this methodology for directed evolution of nucleotide libraries, we generated both gene shuffled and regional mutagenesis synthetic antibody libraries with titers of 2×108 and 6×107, respectively. We conclude that our method is an efficient and convenient approach to generate diversity in nucleic acid based libraries, especially recombinant antibody libraries.
Formation and Acceleration Physics on Plasma Injector 1
NASA Astrophysics Data System (ADS)
Howard, Stephen
2012-10-01
Plasma Injector 1 (PI-1) is a two stage coaxial Marshal gun with conical accelerator electrodes, similar in shape to the MARAUDER device, with power input of the same topology as the RACE device. The goal of PI-1 research is to produce a self-confined compact toroid with high-flux (200 mWb), high-density (3x10^16 cm-3) and moderate initial temperature (100 eV) to be used as the target plasma in a MTF reactor. PI-1 is 5 meters long and 1.9 m in diameter at the expansion region where a high aspect ratio (4.4) spheromak is formed with a minimum lambda of 9 m-1. The acceleration stage is 4 m long and tapers to an outer diameter of 40 cm. The capacitor banks store 0.5 MJ for formation and 1.13 MJ for acceleration. Power is delivered via 62 independently controlled switch modules. Several geometries for formation bias field, inner electrodes and target chamber have been tested, and trends in accelerator efficiency and target lifetime have been observed. Thomson scattering and ion Doppler spectroscopy show significant heating (>100 eV) as the CT is compressed in the conical accelerator. B-dot probes show magnetic field structure consistent with Grad-Shafranov models and MHD simulations, and CT axial length depends strongly on the lambda profile.
Genomic variation in the porcine immunoglobulin lambda variable region.
Guo, Xi; Schwartz, John C; Murtaugh, Michael P
2016-04-01
Production of a vast antibody repertoire is essential for the protection against pathogens. Variable region germline complexity contributes to repertoire diversity and is a standard feature of mammalian immunoglobulin loci, but functional V region genes are limited in swine. For example, the porcine lambda light chain locus is composed of 23 variable (V) genes and 4 joining (J) genes, but only 10 or 11 V and 2 J genes are functional. Allelic variation in V and J may increase overall diversity within a population, yet lead to repertoire holes in individuals lacking key alleles. Previous studies focused on heavy chain genetic variation, thus light chain allelic diversity is not known. We characterized allelic variation of the porcine immunoglobulin lambda variable (IGLV) region genes. All intact IGLV genes in 81 pigs were amplified, sequenced, and analyzed to determine their allelic variation and functionality. We observed mutational variation across the entire length of the IGLV genes, in both framework and complementarity determining regions (CDRs). Three recombination hotspot motifs were also identified suggesting that non-allelic homologous recombination is an evolutionarily alternative mechanism for generating germline antibody diversity. Functional alleles were greatest in the most highly expressed families, IGLV3 and IGLV8. At the population level, allelic variation appears to help maintain the potential for broad antibody repertoire diversity in spite of reduced gene segment choices and limited germline sequence modification. The trade-off may be a reduction in repertoire diversity within individuals that could result in an increased variation in immunity to infectious disease and response to vaccination.
Genomic variation in the porcine immunoglobulin lambda variable region
Guo, Xi; Schwartz, John C.; Murtaugh, Michael P.
2016-01-01
Production of a vast antibody repertoire is essential for protection against pathogens. Variable region germline complexity contributes to repertoire diversity and is a standard feature of mammalian immunoglobulin loci, but functional V region genes are limited in swine. For example, the porcine lambda light chain locus is composed of 23 variable (V) genes and 4 joining (J) genes, but only 10 or 11 V and 2 J genes are functional. Allelic variation in V and J may increase overall diversity within a population, yet lead to repertoire holes in individuals lacking key alleles. Previous studies focused on heavy chain genetic variation, thus light chain allelic diversity is not known. We characterized allelic variation of the porcine immunoglobulin lambda variable (IGLV) region genes. All intact IGLV genes in 81 pigs were amplified, sequenced, and analyzed to determine their allelic variation and functionality. We observed mutational variation across the entire length of the IGLV genes, in both framework and complementarity determining regions (CDRs). Three recombination hotspots were also identified, suggesting that non-allelic homologous recombination is an evolutionarily alternative mechanism for generating germline antibody diversity. Functional alleles were greatest in the most highly expressed families, IGLV3 and IGLV8. At the population level, allelic variation appears to help maintain the potential for broad antibody repertoire diversity in spite of reduced gene segment choices and limited germline sequence modification. The trade-off may be a reduction in repertoire diversity within individuals that could result in increased variation in immunity to infectious disease and response to vaccination. PMID:26791019
The Physics Basis of ITER Confinement
Wagner, F.
2009-02-19
ITER will be the first fusion reactor and the 50 year old dream of fusion scientists will become reality. The quality of magnetic confinement will decide about the success of ITER, directly in the form of the confinement time and indirectly because it decides about the plasma parameters and the fluxes, which cross the separatrix and have to be handled externally by technical means. This lecture portrays some of the basic principles which govern plasma confinement, uses dimensionless scaling to set the limits for the predictions for ITER, an approach which also shows the limitations of the predictions, and describes briefly the major characteristics and physics behind the H-mode--the preferred confinement regime of ITER.
Archimedes' Pi--An Introduction to Iteration.
ERIC Educational Resources Information Center
Lotspeich, Richard
1988-01-01
One method (attributed to Archimedes) of approximating pi offers a simple yet interesting introduction to one of the basic ideas of numerical analysis, an iteration sequence. The method is described and elaborated. (PK)
ITER Magnet Feeder: Design, Manufacturing and Integration
NASA Astrophysics Data System (ADS)
CHEN, Yonghua; ILIN, Y.; M., SU; C., NICHOLAS; BAUER, P.; JAROMIR, F.; LU, Kun; CHENG, Yong; SONG, Yuntao; LIU, Chen; HUANG, Xiongyi; ZHOU, Tingzhi; SHEN, Guang; WANG, Zhongwei; FENG, Hansheng; SHEN, Junsong
2015-03-01
The International Thermonuclear Experimental Reactor (ITER) feeder procurement is now well underway. The feeder design has been improved by the feeder teams at the ITER Organization (IO) and the Institute of Plasma Physics, Chinese Academy of Sciences (ASIPP) in the last 2 years along with analyses and qualification activities. The feeder design is being progressively finalized. In addition, the preparation of qualification and manufacturing are well scheduled at ASIPP. This paper mainly presents the design, the overview of manufacturing and the status of integration on the ITER magnet feeders. supported by the National Special Support for R&D on Science and Technology for ITER (Ministry of Public Security of the People's Republic of China-MPS) (No. 2008GB102000)
Sanchez-Lopez, J.L.; Nelson, K.D.; Engelfried, J.; Akgun, U.; Alkhazov, G.; Amaro-Reyes, J.; Atamantchouk, A.G.; Ayan, A.S.; Balatz, M.Y.; Blanco-Covarrubias, A.; Bondar, N.F.; /Ball State U. /Bogazici U. /Carnegie Mellon U. /Rio de Janeiro, CBPF /Fermilab /Serpukhov, IHEP /Beijing, Inst. High Energy Phys. /Moscow, ITEP /Heidelberg, Max Planck Inst. /Moscow State U. /St. Petersburg, INP
2007-06-01
We have measured the polarization of {Lambda}{sup 0} and {bar {Lambda}{sup 0}} inclusively produced by 610 GeV/c {Sigma}{sup -} and 525 GeV/c proton beams in the experiment SELEX during the 1996/7 fixed target run at Fermilab. The polarization was measured as a function of the {Lambda} longitudinal momentum fraction x{sub F} and transverse momentum p{sub t}. For the {Lambda}{sup 0} produced by {Sigma}{sup -} the polarization is increasing with x{sub F} , from slightly negative at x{sub F} {approx} 0 to about 15% at large x{sub F} ; it shows a non-monotonic behavior as a function of p{sub t}. For the proton beam, the {Lambda}{sup 0} polarization is negative and decreasing as a function of x{sub F} and p{sub t}. The {bar {Lambda}{sup 0}} polarization is compatible with 0 for both beam particles over the full kinematic range. The target dependence was examined but no statistically significant difference was found.
Status of the ITER heating neutral beam system
NASA Astrophysics Data System (ADS)
Hemsworth, R.; Decamps, H.; Graceffa, J.; Schunke, B.; Tanaka, M.; Dremel, M.; Tanga, A.; DeEsch, H. P. L.; Geli, F.; Milnes, J.; Inoue, T.; Marcuzzi, D.; Sonato, P.; Zaccaria, P.
2009-04-01
The ITER neutral beam (NB) injectors are the first injectors that will have to operate under conditions and constraints similar to those that will be encountered in a fusion reactor. These injectors will have to operate in a hostile radiation environment and they will become highly radioactive due to the neutron flux from ITER. The injectors will use a single large ion source and accelerator that will produce 40 A 1 MeV D- beams for pulse lengths of up to 3600 s. Significant design changes have been made to the ITER heating NB (HNB) injector over the past 4 years. The main changes are: Modifications to allow installation and maintenance of the beamline components with an overhead crane. The beam source vessel shape has been changed and the beam source moved to allow more space for the connections between the 1 MV bushing and the beam source. The RF driven negative ion source has replaced the filamented ion source as the reference design. The ion source and extractor power supplies will be located in an air insulated high voltage (-1 MV) deck located outside the tokamak building instead of inside an SF6 insulated HV deck located above the injector. Introduction of an all metal absolute valve to prevent any tritium in the machine to escape into the NB cell during maintenance. This paper describes the status of the design as of December 2008 including the above mentioned changes. The very important power supply system of the neutral beam injectors is not described in any detail as that merits a paper beyond the competence of the present authors. The R&D required to realize the injectors described in this paper must be carried out on a dedicated neutral beam test facility, which is not described here.
LambdaStation: Exploiting Advance Networks In Data Intensive High Energy Physics Applications
Harvey B. Newman
2009-09-11
Lambda Station software implements selective, dynamic, secure path control between local storage & analysis facilities, and high bandwidth, wide-area networks (WANs). It is intended to facilitate use of desirable, alternate wide area network paths which may only be intermittently available, or subject to policies that restrict usage to specified traffic. Lambda Station clients gain awareness of potential alternate network paths via Clarens-based web services, including path characteristics such as bandwidth and availability. If alternate path setup is requested and granted, Lambda Station will configure the local network infrastructure to properly forward designated data flows via the alternate path. A fully functional implementation of Lambda Station, capable of dynamic alternate WAN path setup and teardown, has been successfully developed. A limited Lambda Station-awareness capability within the Storage Resource Manager (SRM) product has been developed. Lambda Station has been successfully tested in a number of venues, including Super Computing 2008. LambdaStation software, developed by the Fermilab team, enables dynamic allocation of alternate network paths for high impact traffic and to forward designated flows across LAN. It negotiates with reservation and provisioning systems of WAN control planes, be it based on SONET channels, demand tunnels, or dynamic circuit networks. It creates End-To-End circuit between single hosts, computer farms or networks with predictable performance characteristics, preserving QoS if supported in LAN and WAN and tied security policy allowing only specific traffic to be forwarded or received through created path. Lambda Station project also explores Network Awareness capabilities.
The risk of renal disease is increased in lambda myeloma with bone marrow amyloid deposits
Kozlowski, Piotr; Montgomery, Scott; Befekadu, Rahel; Hahn-Strömberg, Victoria
2017-01-01
Background Light chain amyloidosis (AL) is a rare deposition disease and is present in 10–15% of patients with myeloma (MM). In contrast to symptomatic AL in MM, presence of bone marrow (BM) amyloid deposits (AD) in MM is not connected to kidney damage. Renal AD but not BM-AD occur mostly in MM with lambda paraprotein (lambda MM). Methods We investigated amyloid presence in BM clots taken at diagnosis in 84 patients with symptomatic MM and compared disease characteristics in MM with kappa paraprotein (kappa MM)/lambda MM with and without BM-AD. Results Lambda MM with BM-AD was compared with kappa MM without BM-AD, kappa MM with BM-AD, and lambda MM without BM-AD: lambda MM with BM-AD patients had a significantly higher mean creatinine level (4.23 mg/dL vs 1.69, 1.14, and 1.28 mg/dL, respectively) and a higher proportion presented with severe kidney failure (6/11 [55%] vs 6/32 [19%], 1/22 [5%], and 3/19 [16%], respectively). Proteinuria was more common in lambda MM with BM-AD patients compared with kappa MM without BM-AD patients (8/11 [73%] vs 5/32 [16%], respectively). Conclusion Kidney damage was more common in lambda MM with BM-AD indicating presence of renal AD. PMID:28293126
Programmable Iterative Optical Image And Data Processing
NASA Technical Reports Server (NTRS)
Jackson, Deborah J.
1995-01-01
Proposed method of iterative optical image and data processing overcomes limitations imposed by loss of optical power after repeated passes through many optical elements - especially, beam splitters. Involves selective, timed combination of optical wavefront phase conjugation and amplification to regenerate images in real time to compensate for losses in optical iteration loops; timing such that amplification turned on to regenerate desired image, then turned off so as not to regenerate other, undesired images or spurious light propagating through loops from unwanted reflections.
Novel aspects of plasma control in ITER
NASA Astrophysics Data System (ADS)
Humphreys, D.; Ambrosino, G.; de Vries, P.; Felici, F.; Kim, S. H.; Jackson, G.; Kallenbach, A.; Kolemen, E.; Lister, J.; Moreau, D.; Pironti, A.; Raupp, G.; Sauter, O.; Schuster, E.; Snipes, J.; Treutterer, W.; Walker, M.; Welander, A.; Winter, A.; Zabeo, L.
2015-02-01
ITER plasma control design solutions and performance requirements are strongly driven by its nuclear mission, aggressive commissioning constraints, and limited number of operational discharges. In addition, high plasma energy content, heat fluxes, neutron fluxes, and very long pulse operation place novel demands on control performance in many areas ranging from plasma boundary and divertor regulation to plasma kinetics and stability control. Both commissioning and experimental operations schedules provide limited time for tuning of control algorithms relative to operating devices. Although many aspects of the control solutions required by ITER have been well-demonstrated in present devices and even designed satisfactorily for ITER application, many elements unique to ITER including various crucial integration issues are presently under development. We describe selected novel aspects of plasma control in ITER, identifying unique parts of the control problem and highlighting some key areas of research remaining. Novel control areas described include control physics understanding (e.g., current profile regulation, tearing mode (TM) suppression), control mathematics (e.g., algorithmic and simulation approaches to high confidence robust performance), and integration solutions (e.g., methods for management of highly subscribed control resources). We identify unique aspects of the ITER TM suppression scheme, which will pulse gyrotrons to drive current within a magnetic island, and turn the drive off following suppression in order to minimize use of auxiliary power and maximize fusion gain. The potential role of active current profile control and approaches to design in ITER are discussed. Issues and approaches to fault handling algorithms are described, along with novel aspects of actuator sharing in ITER.
Iterative methods for design sensitivity analysis
NASA Technical Reports Server (NTRS)
Belegundu, A. D.; Yoon, B. G.
1989-01-01
A numerical method is presented for design sensitivity analysis, using an iterative-method reanalysis of the structure generated by a small perturbation in the design variable; a forward-difference scheme is then employed to obtain the approximate sensitivity. Algorithms are developed for displacement and stress sensitivity, as well as for eignevalues and eigenvector sensitivity, and the iterative schemes are modified so that the coefficient matrices are constant and therefore decomposed only once.
Iterative consolidation of unorganized point clouds.
Liu, Shengjun; Chan, Kwan-Chung; Wang, Charlie C L
2012-01-01
Unorganized point clouds obtained from 3D shape acquisition devices usually present noise, outliers, and nonuniformities. The proposed framework consolidates unorganized points through an iterative procedure of interlaced downsampling and upsampling. Selection operations remove outliers while preserving geometric details. The framework improves the uniformity of points by moving the downsampled particles and refining point samples. Surface extrapolation fills missed regions. Moreover, an adaptive sampling strategy speeds up the iterations. Experimental results demonstrate the framework's effectiveness.
Novel aspects of plasma control in ITER
Humphreys, David; Ambrosino, G.; de Vries, Peter; ...
2015-02-12
ITER plasma control design solutions and performance requirements are strongly driven by its nuclear mission, aggressive commissioning constraints, and limited number of operational discharges. In addition, high plasma energy content, heat fluxes, neutron fluxes, and very long pulse operation place novel demands on control performance in many areas ranging from plasma boundary and divertor regulation to plasma kinetics and stability control. Both commissioning and experimental operations schedules provide limited time for tuning of control algorithms relative to operating devices. Although many aspects of the control solutions required by ITER have been well-demonstrated in present devices and even designed satisfactorily formore » ITER application, many elements unique to ITER including various crucial integration issues are presently under development. We describe selected novel aspects of plasma control in ITER, identifying unique parts of the control problem and highlighting some key areas of research remaining. Novel control areas described include control physics understanding (e.g. current profile regulation, tearing mode suppression (TM)), control mathematics (e.g. algorithmic and simulation approaches to high confidence robust performance), and integration solutions (e.g. methods for management of highly-subscribed control resources). We identify unique aspects of the ITER TM suppression scheme, which will pulse gyrotrons to drive current within a magnetic island, and turn the drive off following suppression in order to minimize use of auxiliary power and maximize fusion gain. The potential role of active current profile control and approaches to design in ITER are discussed. Finally, issues and approaches to fault handling algorithms are described, along with novel aspects of actuator sharing in ITER.« less
Iterative diagonalization in augmented plane wave based methods in electronic structure calculations
Blaha, P.; Laskowski, R.; Schwarz, K.
2010-01-20
Due to the increased computer power and advanced algorithms, quantum mechanical calculations based on Density Functional Theory are more and more widely used to solve real materials science problems. In this context large nonlinear generalized eigenvalue problems must be solved repeatedly to calculate the electronic ground state of a solid or molecule. Due to the nonlinear nature of this problem, an iterative solution of the eigenvalue problem can be more efficient provided it does not disturb the convergence of the self-consistent-field problem. The blocked Davidson method is one of the widely used and efficient schemes for that purpose, but its performance depends critically on the preconditioning, i.e. the procedure to improve the search space for an accurate solution. For more diagonally dominated problems, which appear typically for plane wave based pseudopotential calculations, the inverse of the diagonal of (H - ES) is used. However, for the more efficient 'augmented plane wave + local-orbitals' basis set this preconditioning is not sufficient due to large off-diagonal terms caused by the local orbitals. We propose a new preconditioner based on the inverse of (H - {lambda}S) and demonstrate its efficiency for real applications using both, a sequential and a parallel implementation of this algorithm into our WIEN2k code.
NASA Astrophysics Data System (ADS)
Walford, Natalie Kathleen
The search for undiscovered excited states of the nucleon continues to be a focus of experiments at the Thomas Jefferson National Accelerator Facility (JLab). A large effort has been launched using the CEBAF Large Acceptance Spectrometer (CLAS) detector to provide the database, which will allow nearly model-independent partial wave analyses (PWA) to be carried out in the search for such states. Polarization observables play a crucial role in the effort, as they are essential in disentangling the contributing resonant and non-resonant amplitudes. Recent coupled-channel analyses have found strong sensitivity of the K+ + Lambda channel to several higher mass nucleon resonances. In 2010, double-polarization data were taken at JLab using circularly and linearly polarized tagged photons incident on a transversely polarized frozen spin butanol target (FROST), operated at the temperature of 30 mK. The reaction products were detected in CLAS. This work is based on the analysis of FROST data and the extraction of the T, F, T x, and Tz asymmetries of the K+ Lambda and K+ Sigma 0 final states and their comparison to predictions of recent multipole analyses. There are very few published measurements of the T asymmetry and none for the F, Tx, and Tz asymmetries for the K+ Lambda final state. The K+ Sigma0 final state has no published measurements for these asymmetries. This work is the first of its kind and will significantly broaden the world database for these reactions.
Accelerator system and method of accelerating particles
NASA Technical Reports Server (NTRS)
Wirz, Richard E. (Inventor)
2010-01-01
An accelerator system and method that utilize dust as the primary mass flux for generating thrust are provided. The accelerator system can include an accelerator capable of operating in a self-neutralizing mode and having a discharge chamber and at least one ionizer capable of charging dust particles. The system can also include a dust particle feeder that is capable of introducing the dust particles into the accelerator. By applying a pulsed positive and negative charge voltage to the accelerator, the charged dust particles can be accelerated thereby generating thrust and neutralizing the accelerator system.
Iterative feature refinement for accurate undersampled MR image reconstruction
NASA Astrophysics Data System (ADS)
Wang, Shanshan; Liu, Jianbo; Liu, Qiegen; Ying, Leslie; Liu, Xin; Zheng, Hairong; Liang, Dong
2016-05-01
Accelerating MR scan is of great significance for clinical, research and advanced applications, and one main effort to achieve this is the utilization of compressed sensing (CS) theory. Nevertheless, the existing CSMRI approaches still have limitations such as fine structure loss or high computational complexity. This paper proposes a novel iterative feature refinement (IFR) module for accurate MR image reconstruction from undersampled K-space data. Integrating IFR with CSMRI which is equipped with fixed transforms, we develop an IFR-CS method to restore meaningful structures and details that are originally discarded without introducing too much additional complexity. Specifically, the proposed IFR-CS is realized with three iterative steps, namely sparsity-promoting denoising, feature refinement and Tikhonov regularization. Experimental results on both simulated and in vivo MR datasets have shown that the proposed module has a strong capability to capture image details, and that IFR-CS is comparable and even superior to other state-of-the-art reconstruction approaches.
Improved hybrid iterative optimization method for seismic full waveform inversion
NASA Astrophysics Data System (ADS)
Wang, Yi; Dong, Liang-Guo; Liu, Yu-Zhu
2013-06-01
In full waveform inversion (FWI), Hessian information of the misfit function is of vital importance for accelerating the convergence of the inversion; however, it usually is not feasible to directly calculate the Hessian matrix and its inverse. Although the limited memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) or Hessian-free inexact Newton (HFN) methods are able to use approximate Hessian information, the information they collect is limited. The two methods can be interlaced because they are able to provide Hessian information for each other; however, the performance of the hybrid iterative method is dependent on the effective switch between the two methods. We have designed a new scheme to realize the dynamic switch between the two methods based on the decrease ratio (DR) of the misfit function (objective function), and we propose a modified hybrid iterative optimization method. In the new scheme, we compare the DR of the two methods for a given computational cost, and choose the method with a faster DR. Using these steps, the modified method always implements the most efficient method. The results of Marmousi and over thrust model testings indicate that the convergence with our modified method is significantly faster than that in the L-BFGS method with no loss of inversion quality. Moreover, our modified outperforms the enriched method by a little speedup of the convergence. It also exhibits better efficiency than the HFN method.
Numerical Analysis on Neutron Shielding Structure of ITER Vacuum Vessel
NASA Astrophysics Data System (ADS)
Liu, Changle; Wu, Songtao; Yu, Jie; Sheng, Daolin
2008-06-01
The neutron shielding component of ITER (International Thermonuclear Experimental Reactor) vacuum vessel is a kind of structure resembling a wall in appearance. A FE (finite element) model is set up by using ANSYS code in terms of its structural features. Static analysis, thermal expansion analysis and dynamic analysis are performed. The static results show that the stress and displacement distribution are allowable, but the high stress appears in the junction between the upper and lower parts. The modal analysis indicates that the biggest deformation exists in the port area. Through modal superposition, the single-point response has been found with the lower rank frequency of the acceleration seismic response spectrum. But the deformation and the stress values are within the permissible limit. The analysis results would benefit the work in the next step and provide some reference for the implementation of the engineering plan in the future.
Measurement of the Branching Ratio Lambda_c+ -> p pi+ pi-
Lopez-Hinojosa, Guillermo; /San Luis Potosi U.
2008-03-01
The confirmation of the Cabibbo-suppressed charm baryon decay mode {Lambda}{sub c}{sup +} {yields} p{pi}{sup +}{pi}{sup -} is reported. All data analyzed are from SELEX, a fixed target experiment at Fermilab that took data during 1996 and 1997, mainly with a 600 GeV/c {Sigma}{sup -} beam. The branching ratio of the Cabibbo-suppressed decay mode {Lambda}{sub c}{sup +} {yields} p{pi}{sup +}{pi}{sup -} relative to the Cabibbo-favored mode {Lambda}{sub c}{sup +} {yields} pK{sup -}{pi}{sup +} is measured to be: {Gamma}({Lambda}{sub c}{sup +} {yields} p{pi}{sup +}{pi}{sup -})/{Gamma}({Lambda}{sub c}{sup +} {yields} pK{sup -}{pi}{sup +}) = 0.103 {+-} 0.022.
NASA Astrophysics Data System (ADS)
Quan, Haiyang; Wu, Fan; Hou, Xi
2015-10-01
New method for reconstructing rotationally asymmetric surface deviation with pixel-level spatial resolution is proposed. It is based on basic iterative scheme and accelerates the Gauss-Seidel method by introducing an acceleration parameter. This modified Successive Over-relaxation (SOR) is effective for solving the rotationally asymmetric components with pixel-level spatial resolution, without the usage of a fitting procedure. Compared to the Jacobi and Gauss-Seidel method, the modified SOR method with an optimal relaxation factor converges much faster and saves more computational costs and memory space without reducing accuracy. It has been proved by real experimental results.
Penetration depth lambda(T) of YBa2Cu3O(7-delta) films determined from the kinetic inductance
NASA Astrophysics Data System (ADS)
Lee, Juyoung; Lemberger, Thomas R.
1993-05-01
We examine the temperature dependence of the magnetic penetration depth lambda(T) of YBa2Cu3O(7-delta), determined from the kinetic inductance of a film patterned into a long meander line. This technique has sufficient sensitivity to study lambda(T) to lower temperatures than have been examined previously. A numerical model which includes both the magnetic and kinetic inductances of the samples extracts lambda(T) from the measured voltage. In reasonable agreement with other measurements, lambda(0) about 2100 A is deduced from fitting lambda(0)-squared/lambda(T)-squared to the function 1 - (T/Tc)-squared for T/Tc greater than 0.4. We find lambda(T)/lambda(0) - 1 is proportional to (T/Tc)-squared for T/Tc between 0.06 and 0.4.
CORSICA modelling of ITER hybrid operation scenarios
NASA Astrophysics Data System (ADS)
Kim, S. H.; Bulmer, R. H.; Campbell, D. J.; Casper, T. A.; LoDestro, L. L.; Meyer, W. H.; Pearlstein, L. D.; Snipes, J. A.
2016-12-01
The hybrid operating mode observed in several tokamaks is characterized by further enhancement over the high plasma confinement (H-mode) associated with reduced magneto-hydro-dynamic (MHD) instabilities linked to a stationary flat safety factor (q ) profile in the core region. The proposed ITER hybrid operation is currently aiming at operating for a long burn duration (>1000 s) with a moderate fusion power multiplication factor, Q , of at least 5. This paper presents candidate ITER hybrid operation scenarios developed using a free-boundary transport modelling code, CORSICA, taking all relevant physics and engineering constraints into account. The ITER hybrid operation scenarios have been developed by tailoring the 15 MA baseline ITER inductive H-mode scenario. Accessible operation conditions for ITER hybrid operation and achievable range of plasma parameters have been investigated considering uncertainties on the plasma confinement and transport. ITER operation capability for avoiding the poloidal field coil current, field and force limits has been examined by applying different current ramp rates, flat-top plasma currents and densities, and pre-magnetization of the poloidal field coils. Various combinations of heating and current drive (H&CD) schemes have been applied to study several physics issues, such as the plasma current density profile tailoring, enhancement of the plasma energy confinement and fusion power generation. A parameterized edge pedestal model based on EPED1 added to the CORSICA code has been applied to hybrid operation scenarios. Finally, fully self-consistent free-boundary transport simulations have been performed to provide information on the poloidal field coil voltage demands and to study the controllability with the ITER controllers. Extended from Proc. 24th Int. Conf. on Fusion Energy (San Diego, 2012) IT/P1-13.
Energetic particle physics issues for ITER
Cheng, C.Z.; Budny, R.; Fu, G.Y.
1996-12-31
This paper summarizes our present understanding of the following energetic/alpha particle physics issues for the 21 MA, 20 TF coil ITER Interim Design configuration and operational scenarios: (a) toroidal field ripple effects on alpha particle confinement, (b) energetic particle interaction with low frequency MHD modes, (c) energetic particle excitation of toroidal Alfven eigenmodes, and (d) energetic particle transport due to MHD modes. TF ripple effects on alpha loss in ITER under a number of different operating conditions are found to be small with a maximum loss of 1%. With careful plasma control in ITER reversed-shear operation, TF ripple induced alpha loss can be reduced to below the nominal ITER design limit of 5%. Fishbone modes are expected to be unstable for {beta}{sub {alpha}} > 1%, and sawtooth stabilization is lost if the ideal kink growth rate exceeds 10% of the deeply trapped alpha precessional drift frequency evaluated at the q = 1 surface. However, it is expected that the fishbone modes will lead only to a local flattening of the alpha profile due to small banana size. MHD modes observed during slow decrease of stored energy after fast partial electron temperature collapse in JT-60U reversed-shear experiments may be resonant type instabilities; they may have implications on the energetic particle confinement in ITER reversed-shear operation. From the results of various TAE stability code calculations, ITER equilibria appear to lie close to TAE linear stability thresholds. However, the prognosis depends strongly on q profile and profiles of alpha and other high energy particles species. If TAE modes are unstable in ITER, the stochastic diffusion is the main loss mechanism, which scales with ({delta}B{sub r}/B){sup 2}, because of the relatively small alpha particle banana orbit size. For isolated TAE modes the particle loss is very small, and TAE modes saturate via the resonant wave-particle trapping process at very small amplitude.
Acceleration modules in linear induction accelerators
NASA Astrophysics Data System (ADS)
Wang, Shao-Heng; Deng, Jian-Jun
2014-05-01
The Linear Induction Accelerator (LIA) is a unique type of accelerator that is capable of accelerating kilo-Ampere charged particle current to tens of MeV energy. The present development of LIA in MHz bursting mode and the successful application into a synchrotron have broadened LIA's usage scope. Although the transformer model is widely used to explain the acceleration mechanism of LIAs, it is not appropriate to consider the induction electric field as the field which accelerates charged particles for many modern LIAs. We have examined the transition of the magnetic cores' functions during the LIA acceleration modules' evolution, distinguished transformer type and transmission line type LIA acceleration modules, and re-considered several related issues based on transmission line type LIA acceleration module. This clarified understanding should help in the further development and design of LIA acceleration modules.
Comparison of Iterative and Non-Iterative Strain-Gage Balance Load Calculation Methods
NASA Technical Reports Server (NTRS)
Ulbrich, N.
2010-01-01
The accuracy of iterative and non-iterative strain-gage balance load calculation methods was compared using data from the calibration of a force balance. Two iterative and one non-iterative method were investigated. In addition, transformations were applied to balance loads in order to process the calibration data in both direct read and force balance format. NASA's regression model optimization tool BALFIT was used to generate optimized regression models of the calibration data for each of the three load calculation methods. This approach made sure that the selected regression models met strict statistical quality requirements. The comparison of the standard deviation of the load residuals showed that the first iterative method may be applied to data in both the direct read and force balance format. The second iterative method, on the other hand, implicitly assumes that the primary gage sensitivities of all balance gages exist. Therefore, the second iterative method only works if the given balance data is processed in force balance format. The calibration data set was also processed using the non-iterative method. Standard deviations of the load residuals for the three load calculation methods were compared. Overall, the standard deviations show very good agreement. The load prediction accuracies of the three methods appear to be compatible as long as regression models used to analyze the calibration data meet strict statistical quality requirements. Recent improvements of the regression model optimization tool BALFIT are also discussed in the paper.
del Amo Sanchez, P.; Lees, J.P.; Poireau, V.; Prencipe, E.; Tisserand, V.; Garra Tico, J.; Grauges, E.; Martinelli, M.; Milanes, D.A.; Palano, A.; Pappagallo, M.; Eigen, G.; Stugu, B.; Sun, L.; Brown, D.N.; Kerth, L.T.; Kolomensky, Yu.G.; Lynch, G.; Osipenkov, I.L.; Koch, H.; Schroeder, T.; /Ruhr U., Bochum /British Columbia U. /Brunel U. /Novosibirsk, IYF /UC, Irvine /UC, Riverside /UC, Santa Barbara /UC, Santa Cruz /Caltech /Cincinnati U. /Colorado U. /Colorado State U. /Dortmund U. /Dresden, Tech. U. /Ecole Polytechnique /Edinburgh U. /INFN, Ferrara /Ferrara U. /INFN, Ferrara /INFN, Ferrara /Ferrara U. /INFN, Ferrara /Frascati /INFN, Genoa /Genoa U. /INFN, Genoa /INFN, Genoa /Genoa U. /INFN, Genoa /Indian Inst. Tech., Guwahati /Harvard U. /Harvey Mudd Coll. /Heidelberg U. /Humboldt U., Berlin /Imperial Coll., London /Iowa State U. /Iowa State U. /Johns Hopkins U. /Paris U., VI-VII /LLNL, Livermore /Liverpool U. /Queen Mary, U. of London /Royal Holloway, U. of London /Royal Holloway, U. of London /Louisville U. /Mainz U., Inst. Kernphys. /Manchester U. /Maryland U. /Massachusetts U., Amherst /MIT /McGill U. /Milan U. /Milan U. /Milan U. /Milan U. /Milan U. /Mississippi U. /Montreal U. /INFN, Naples /Naples U. /NIKHEF, Amsterdam /NIKHEF, Amsterdam /Notre Dame U. /Ohio State U. /Oregon U. /INFN, Padua /Padua U. /INFN, Padua /INFN, Padua /Padua U. /Paris U., VI-VII /INFN, Perugia /Perugia U. /INFN, Pisa /Pisa U. /INFN, Pisa /Pisa, Scuola Normale Superiore /INFN, Pisa /Pisa U. /INFN, Pisa /Princeton U. /INFN, Rome /INFN, Rome /Rome U. /INFN, Rome /INFN, Rome /Rome U. /INFN, Rome /INFN, Rome /Rome U. /INFN, Rome /INFN, Rome /Rome U. /Rostock U. /Rutherford /DAPNIA, Saclay /SLAC /South Carolina U. /Southern Methodist U. /Stanford U., Phys. Dept. /SUNY, Albany /Tel Aviv U. /Tennessee U. /Texas Nuclear Corp., Austin /Texas U., Dallas /INFN, Turin /Turin U. /INFN, Trieste /Trieste U. /Valencia U. /Victoria U. /Warwick U. /Wisconsin U., Madison
2011-06-22
Searches for B mesons decaying to final states containing a baryon and a lepton are performed, where the baryon is either {Lambda}{sub c} or {Lambda} and the lepton is a muon or an electron. These decays violate both baryon and lepton number and would be a signature of physics beyond the standard model. No significant signal is observed in any of the decay modes, and upper limits in the range (3.2 - 520) x 10{sup -8} are set on the branching fractions at the 90% confidence level.
[The ideographic iteration mark in Senkinho].
Matsuoka, Takanori; Yamashita, Koichi; Murasaki, Toru
2006-06-01
In the 7th century, Senkinho was written by Sonshibaku in the Tang dynasty China. This book that was altered in 1066 in the north Sung dynasty China has become known in the world now. However four series of books remained intact, as they were not modified. The names of each book were Senkinho Kentoushi-syouraibon, the Shincho-sonshinjin senkinho, Stein book, and the Kozlov book. Senkinho Kentoushi-syouraibon and Shincho-sonshinjin Senkinho are in Japan, while Stein and the Kozlov books are in the United Kingdom and Russia respectively. We researched the ideographic iteration marks in these books. In Senkinho Kentoushi-syouraibon, several ideographic iteration marks were used. But in Shincho-sonshinjin senkinho and the Kozlov book, only one ideographic iteration mark was used. Furthermore, there were two types of ideographic iteration marks in the Chinese character text of Senkinho Kentoushi-syouraibon. We estimated that the ideographic iteration marks in the Katakana character were transcribed between the middle era of Kamakura Japan and the early era of Muromachi Japan.
Observation of the baryonic B-decay B0bar -> LambdaC antiproton K- pi
Aubert, B.; Karyotakis, Y.; Lees, J.P.; Poireau, V.; Prencipe, E.; Prudent, X.; Tisserand, V.; Garra Tico, J.; Grauges, E.; Martinelli, M.; Palano, A.; Pappagallo, M.; Eigen, G.; Stugu, B.; Sun, L.; Battaglia, M.; Brown, D.N.; Kerth, L.T.; Kolomensky, Yu.G.; Lynch, G.; Osipenkov, I.L.; /LBL, Berkeley /UC, Berkeley /Birmingham U. /Ruhr U., Bochum /British Columbia U. /Brunel U. /Novosibirsk, IYF /UC, Irvine /UC, Riverside /UC, San Diego /UC, Santa Barbara /UC, Santa Cruz /Caltech /Cincinnati U. /Colorado U. /Colorado State U. /Dortmund U. /Dresden, Tech. U. /Ecole Polytechnique /Edinburgh U. /INFN, Ferrara /Ferrara U. /INFN, Ferrara /INFN, Ferrara /Ferrara U. /INFN, Ferrara /INFN, Ferrara /Ferrara U. /Frascati /INFN, Genoa /Genoa U. /INFN, Genoa /INFN, Genoa /Genoa U. /INFN, Genoa /INFN, Genoa /Genoa U. /Harvard U. /Heidelberg U. /Humboldt U., Berlin /Imperial Coll., London /Iowa U. /Iowa State U. /Johns Hopkins U. /Orsay, LAL /LLNL, Livermore /Liverpool U. /Queen Mary, U. of London /Royal Holloway, U. of London /Louisville U. /Mainz U., Inst. Kernphys. /Manchester U. /Maryland U. /Massachusetts U., Amherst /MIT, LNS /McGill U. /INFN, Milan /Milan U. /INFN, Milan /INFN, Milan /Milan U. /Mississippi U. /Montreal U. /Mt. Holyoke Coll. /INFN, Naples /Naples U. /INFN, Naples /INFN, Naples /Naples U. /NIKHEF, Amsterdam /Notre Dame U. /Ohio State U. /Oregon U. /INFN, Padua /Padua U. /INFN, Padua /INFN, Padua /Padua U. /Paris U., VI-VII /Pennsylvania U. /INFN, Perugia /Perugia U. /INFN, Pisa /Pisa U. /INFN, Pisa /Pisa, Scuola Normale Superiore /INFN, Pisa /Pisa U. /INFN, Pisa /Princeton U. /INFN, Rome /INFN, Rome /Rome U. /INFN, Rome /INFN, Rome /Rome U. /INFN, Rome /INFN, Rome /Rome U. /INFN, Rome /INFN, Rome /Rome U. /INFN, Rome /Rostock U. /Rutherford /DAPNIA, Saclay /SLAC /South Carolina U. /Stanford U., Phys. Dept. /SUNY, Albany /Tel Aviv U. /Tennessee U. /Texas U. /Texas U., Dallas /INFN, Turin /Turin U. /INFN, Trieste /Trieste U. /Valencia U., IFIC /Victoria U. /Warwick U. /Wisconsin U., Madison
2009-10-20
The authors report the observation of the baryonic B-decay {bar B}{sup 0} {yields} {Lambda}{sub c}{sup +}{bar p}K{sup -}{pi}{sup +}, excluding contributions from the decay {bar B}{sup 0} {yields} {Lambda}{sub c}{sup +}{bar {Lambda}}K{sup -}. Using a data sample of 467 million B{bar B} pairs collected with the BABAR detector at the PEP-II storage ring at SLAC, the measured branching fraction is (4.33 {+-} 0.82){sub stat} {+-} 0.33{sub syst} {+-} 1.13{sub {Lambda}{sub c}{sup +}} x 10{sup -5}. In addition they find evidence for the resonant decay {bar B}{sup 0} {yields} {Sigma}{sub c}(2455){sup ++}{bar p}K{sup -} and determine its branching fraction to be (1.11 {+-} 0.30{sub stat} {+-} 0.09{sub syst} {+-} 0.29{sub {Lambda}{sub c}{sup +}}) x 10{sup -5}. The errors are statistical, systematic, and due to the uncertainty in the {Lambda}{sub c}{sup +} branching fraction. For the resonant decay {bar B}{sup 0} {yields} {Lambda}{sub c}{sup +}{bar p}{bar K}*{sup 0} we obtain an upper limit of 2.42 x 10{sup -5} at 90% confidence level.
Acceleration of Expectation-Maximization algorithm for length-biased right-censored data.
Chan, Kwun Chuen Gary
2017-01-01
Vardi's Expectation-Maximization (EM) algorithm is frequently used for computing the nonparametric maximum likelihood estimator of length-biased right-censored data, which does not admit a closed-form representation. The EM algorithm may converge slowly, particularly for heavily censored data. We studied two algorithms for accelerating the convergence of the EM algorithm, based on iterative convex minorant and Aitken's delta squared process. Numerical simulations demonstrate that the acceleration algorithms converge more rapidly than the EM algorithm in terms of number of iterations and actual timing. The acceleration method based on a modification of Aitken's delta squared performed the best under a variety of settings.
Laser-wakefield acceleration of monoenergetic electron beams in the first plasma-wave period.
Mangles, S P D; Thomas, A G R; Kaluza, M C; Lundh, O; Lindau, F; Persson, A; Tsung, F S; Najmudin, Z; Mori, W B; Wahlström, C-G; Krushelnick, K
2006-06-02
Beam profile measurements of laser-wakefield accelerated electron bunches reveal that in the monoenergetic regime the electrons are injected and accelerated at the back of the first period of the plasma wave. With pulse durations ctau >or= lambda(p), we observe an elliptical beam profile with the axis of the ellipse parallel to the axis of the laser polarization. This increase in divergence in the laser polarization direction indicates that the electrons are accelerated within the laser pulse. Reducing the plasma density (decreasing ctau/lambda(p)) leads to a beam profile with less ellipticity, implying that the self-injection occurs at the rear of the first period of the plasma wave. This also demonstrates that the electron bunches are less than a plasma wavelength long, i.e., have a duration <25 fs. This interpretation is supported by 3D particle-in-cell simulations.
Progress on plasma accelerators
Chen, P.
1986-05-01
Several plasma accelerator concepts are reviewed, with emphasis on the Plasma Beat Wave Accelerator (PBWA) and the Plasma Wake Field Accelerator (PWFA). Various accelerator physics issues regarding these schemes are discussed, and numerical examples on laboratory scale experiments are given. The efficiency of plasma accelerators is then revealed with suggestions on improvements. Sources that cause emittance growth are discussed briefly.
Characterization of a labile naloxone binding site (lambda site) in rat brain.
Grevel, J; Yu, V; Sadée, W
1985-05-01
A high-affinity binding site selective for naloxone and other 4,5-epoxymorphinans (lambda site) has been previously described in rat brain. Following homogenization of freshly dissected brain, the lambda sites convert from a high-affinity to a low-affinity state. When measured with [3H]naloxone, the decay is very rapid at 20 degrees C (t 1/2 less than 2 min), whereas it is progressively slowed at lower temperatures. Proteinase inhibitors, antoxidants, and sulfhydryl group-protecting agents failed to prevent this conversion. Kinetic measurements of mu and lambda binding at varying temperatures demonstrated that the decrease in lambda binding does not coincide with the concurrent increase in mu binding and that the loss of high-affinity lambda binding at 20 degrees C can be partially restored when the temperature is lowered to 0 degrees C. The low-affinity state of the lambda site is rather stable in the Tris buffer homogenates and is susceptible to digestion by a protease. The (-)-isomer of WIN 44,441, a benzomorphan drug, binds to lambda sites with moderate affinity (dissociation constant, KD = 63 nM), whereas the (+)-isomer does not (KD greater than 10,000 nM), thus establishing stereoselectivity of the binding process. Neither the high-affinity nor the low-affinity state of lambda binding is significantly affected by the presence of 100 mM sodium chloride or 50 microM Gpp(NH)p, (a GTP analog), which is in contrast to the dramatic effect of these agents on the established opioid receptor system. Naltrexone, naloxone, nalorphine, and morphine (in this order of decreasing potency) bind to the lambda site in vivo in intact rat brain over dosage ranges that are commonly employed in pharmacological studies.
Measurement of heat load density profile on acceleration grid in MeV-class negative ion accelerator
Hiratsuka, Junichi Hanada, Masaya; Kojima, Atsushi; Umeda, Naotaka; Kashiwagi, Mieko; Yoshida, Masafumi; Nishikiori, Ryo; Ichikawa, Masahiro; Watanabe, Kazuhiro; Tobari, Hiroyuki; Miyamoto, Kenji
2016-02-15
To understand the physics of the negative ion extraction/acceleration, the heat load density profile on the acceleration grid has been firstly measured in the ITER prototype accelerator where the negative ions are accelerated to 1 MeV with five acceleration stages. In order to clarify the profile, the peripheries around the apertures on the acceleration grid were separated into thermally insulated 34 blocks with thermocouples. The spatial resolution is as low as 3 mm and small enough to measure the tail of the beam profile with a beam diameter of ∼16 mm. It was found that there were two peaks of heat load density around the aperture. These two peaks were also clarified to be caused by the intercepted negative ions and secondary electrons from detailed investigation by changing the beam optics and gas density profile. This is the first experimental result, which is useful to understand the trajectories of these particles.
The holin of bacteriophage lambda forms rings with large diameter.
Savva, Christos G; Dewey, Jill S; Deaton, John; White, Rebecca L; Struck, Douglas K; Holzenburg, Andreas; Young, Rye
2008-08-01
Holins control the length of the infection cycle of tailed phages (the Caudovirales) by oligomerizing to form lethal holes in the cytoplasmic membrane at a time dictated by their primary structure. Nothing is currently known about the physical basis of their oligomerization or the structure of the oligomers formed by any known holin. Here we use electron microscopy and single-particle analysis to characterize structures formed by the bacteriophage lambda holin (S105) in vitro. In non-ionic or mild zwitterionic detergents, purified S105, but not the lysis-defective variant S105A52V, forms rings of at least two size classes, the most common having inner and outer diameters of 8.5 and 23 nm respectively, and containing approximately 72 S105 monomers. The height of these rings, 4 nm, closely matches the thickness of the lipid bilayer. The central channel is of unprecedented size for channels formed by integral membrane proteins, consistent with the non-specific nature of holin-mediated membrane permeabilization. S105 present in detergent-solubilized rings and in inverted membrane vesicles showed similar sensitivities to proteolysis and cysteine-specific modification, suggesting that the rings are representative of the lethal holes formed by S105 to terminate the infection cycle and initiate lysis.
Comparison of Cluster Lensing Profiles with Lambda CDM Predictions
Broadhurst, Tom; Umetsu, Keiichi; Medezinski, Elinor; Oguri, Masamune; Rephaeli, Yoel; /Tel Aviv U. /San Diego, CASS
2008-05-21
We derive lens distortion and magnification profiles of four well known clusters observed with Subaru. Each cluster is very well fitted by the general form predicted for Cold Dark Matter (CDM) dominated halos, with good consistency found between the independent distortion and magnification measurements. The inferred level of mass concentration is surprisingly high, 8 < c{sub vir} < 15 (
Iterative Reconstruction of Coded Source Neutron Radiographs
Santos-Villalobos, Hector J; Bingham, Philip R; Gregor, Jens
2013-01-01
Use of a coded source facilitates high-resolution neutron imaging through magnifications but requires that the radiographic data be deconvolved. A comparison of direct deconvolution with two different iterative algorithms has been performed. One iterative algorithm is based on a maximum likelihood estimation (MLE)-like framework and the second is based on a geometric model of the neutron beam within a least squares formulation of the inverse imaging problem. Simulated data for both uniform and Gaussian shaped source distributions was used for testing to understand the impact of non-uniformities present in neutron beam distributions on the reconstructed images. Results indicate that the model based reconstruction method will match resolution and improve on contrast over convolution methods in the presence of non-uniform sources. Additionally, the model based iterative algorithm provides direct calculation of quantitative transmission values while the convolution based methods must be normalized base on known values.
The Dynamics of Some Iterative Implicit Schemes
NASA Technical Reports Server (NTRS)
Yee, H. C.; Sweby, P. K.
1994-01-01
The global asymptotic nonlinear behavior of some standard iterative procedures in solving nonlinear systems of algebraic equations arising from four implicit linear multistep methods (LMMs) in discretizing 2 x 2 systems of first-order autonomous nonlinear ordinary differential equations is analyzed using the theory of dynamical systems. With the aid of parallel Connection Machines (CM-2 and CM-5), the associated bifurcation diagrams as a function of the time step, and the complex behavior of the associated 'numerical basins of attraction' of these iterative implicit schemes are revealed and compared. Studies showed that all of the four implicit LMMs exhibit a drastic distortion and segmentation but less shrinkage of the basin of attraction of the true solution than standard explicit methods. The numerical basins of attraction of a noniterative implicit procedure mimic more closely the basins of attraction of the differential equations than the iterative implicit procedures for the four implicit LMMs.
Lousteau, D.C.
1994-09-01
The overall programmatic objective, as defined in the ITER Engineering Design Activities (EDA) Agreement, is to demonstrate the scientific and technological feasibility of fusion energy for peaceful purposes. The ITER EDA Phase, due to last until July 1998, will encompass the design of the device and its auxiliary systems and facilities, including the preparation of engineering drawings. The EDA also incorporates validating research and development (R&D) work, including the development and testing of key components. The purpose of this paper is to review the status of the design, as it has been developed so far, emphasizing the design and integration of those components contained within the vacuum vessel of the ITER device. The components included in the in-vessel systems are divertor and first wall; blanket and shield; plasma heating, fueling, and vacuum pumping equipment; and remote handling equipment.
Re-starting an Arnoldi iteration
Lehoucq, R.B.
1996-12-31
The Arnoldi iteration is an efficient procedure for approximating a subset of the eigensystem of a large sparse n x n matrix A. The iteration produces a partial orthogonal reduction of A into an upper Hessenberg matrix H{sub m} of order m. The eigenvalues of this small matrix H{sub m} are used to approximate a subset of the eigenvalues of the large matrix A. The eigenvalues of H{sub m} improve as estimates to those of A as m increases. Unfortunately, so does the cost and storage of the reduction. The idea of re-starting the Arnoldi iteration is motivated by the prohibitive cost associated with building a large factorization.
Selection of plasma facing materials for ITER
Ulrickson, M.; Barabash, V.; Chiocchio, S.
1996-10-01
ITER will be the first tokamak having long pulse operation using deuterium-tritium fuel. The problem of designing heat removal structures for steady state in a neutron environment is a major technical goal for the ITER Engineering Design Activity (EDA). The steady state heat flux specified for divertor components is 5 MW/m{sup 2} for normal operation with transients to 15 MW/m{sup 2} for up to 10 s. The selection of materials for plasma facing components is one of the major research activities. Three materials are being considered for the divertor; carbon fiber composites, beryllium, and tungsten. This paper discusses the relative advantages and disadvantages of these materials. The final section of plasma facing materials for the ITER divertor will not be made until the end of the EDA.
NASA Technical Reports Server (NTRS)
Fairbanks, W. M.; Lipa, J. A.
1984-01-01
A measurement of the heat capacity singularity of helium at the lambda transition was performed with the aim of improving tests of the Renormalization Group (RG) predictions for the static thermodynamic behavior near the singularity. The goal was to approach as closely as possible to the lambda-point while making heat capacity measurements of high accuracy. To do this, a new temperature sensor capable of unprecedented resolution near the lambda-point, and two thermal control systems were used. A short description of the theoretical background and motivation is given. The initial apparatus and results are also described.
Ghost-gluon running coupling, power corrections, and the determination of {lambda}{sub MS}
Boucaud, Ph.; Leroy, J. P.; Le Yaouanc, A.; Micheli, J.; Pene, O.; De Soto, F.; Rodriguez-Quintero, J.
2009-01-01
We compute a formula including operator-product expansion power corrections to describe the running of a QCD coupling nonperturbatively defined through the ghost and gluon dressing functions. This turns out to be rather accurate. We propose the 'plateau' procedure to compute {lambda}{sub MS} from the lattice computation of the running coupling constant. We show a good agreement between the different methods which have been used to estimate {lambda}{sub MS}{sup N{sub f}}{sup =0}. We argue that {lambda}{sub MS} or the strong coupling constant computed with different lattice spacings may be used to estimate the lattice spacing ratio.
2006-03-01
58 Figure 39: Lambda UCAV Model and Wind Tunnel in Gridgen ..…… ………....……..60 Figure 40: Lambda UCAV Model’s...created in this study and converted it to an IGES file. The IGES file was then used in Gridgen to build a grid that was used in Fluent solver...and wind tunnel in Gridgen (28). Figure 39: Lambda UCAV model and windtunnel in Gridgen at 8 degrees AOA (28) The FLUENT solver’s resuting OGE CL
High Resolution Spectroscopy of {sub {lambda}}{sup 12}B by Electroproduction
Iodice, M.; Cusanno, F.; Urciuoli, G. M.; Acha, A.; Ambrozewicz, P.; Coman, L.; Markowitz, P.; Moteabbed, M.; Raue, B.; Reinhold, J.; Aniol, K. A.; Margaziotis, D. J.; Baturin, P.; Jiang, X.; McCormick, K.; Bertin, P. Y.; Camsonne, A.; Ferdi, C.; Blomqvist, K. I.
2007-08-03
An experiment measuring electroproduction of hypernuclei has been performed in hall A at Jefferson Lab on a {sup 12}C target. In order to increase counting rates and provide unambiguous kaon identification two superconducting septum magnets and a ring imaging Cherenkov detector were added to the hall A standard equipment. An unprecedented energy resolution of less than 700 keV FWHM has been achieved. Thus, the observed {sub {lambda}}{sup 12}B spectrum shows for the first time identifiable strength in the core-excited region between the ground-state s-wave {lambda} peak and the 11 MeV p-wave {lambda} peak.
Global Asymptotic Behavior of Iterative Implicit Schemes
NASA Technical Reports Server (NTRS)
Yee, H. C.; Sweby, P. K.
1994-01-01
The global asymptotic nonlinear behavior of some standard iterative procedures in solving nonlinear systems of algebraic equations arising from four implicit linear multistep methods (LMMs) in discretizing three models of 2 x 2 systems of first-order autonomous nonlinear ordinary differential equations (ODEs) is analyzed using the theory of dynamical systems. The iterative procedures include simple iteration and full and modified Newton iterations. The results are compared with standard Runge-Kutta explicit methods, a noniterative implicit procedure, and the Newton method of solving the steady part of the ODEs. Studies showed that aside from exhibiting spurious asymptotes, all of the four implicit LMMs can change the type and stability of the steady states of the differential equations (DEs). They also exhibit a drastic distortion but less shrinkage of the basin of attraction of the true solution than standard nonLMM explicit methods. The simple iteration procedure exhibits behavior which is similar to standard nonLMM explicit methods except that spurious steady-state numerical solutions cannot occur. The numerical basins of attraction of the noniterative implicit procedure mimic more closely the basins of attraction of the DEs and are more efficient than the three iterative implicit procedures for the four implicit LMMs. Contrary to popular belief, the initial data using the Newton method of solving the steady part of the DEs may not have to be close to the exact steady state for convergence. These results can be used as an explanation for possible causes and cures of slow convergence and nonconvergence of steady-state numerical solutions when using an implicit LMM time-dependent approach in computational fluid dynamics.
Iterative Vessel Segmentation of Fundus Images.
Roychowdhury, Sohini; Koozekanani, Dara D; Parhi, Keshab K
2015-07-01
This paper presents a novel unsupervised iterative blood vessel segmentation algorithm using fundus images. First, a vessel enhanced image is generated by tophat reconstruction of the negative green plane image. An initial estimate of the segmented vasculature is extracted by global thresholding the vessel enhanced image. Next, new vessel pixels are identified iteratively by adaptive thresholding of the residual image generated by masking out the existing segmented vessel estimate from the vessel enhanced image. The new vessel pixels are, then, region grown into the existing vessel, thereby resulting in an iterative enhancement of the segmented vessel structure. As the iterations progress, the number of false edge pixels identified as new vessel pixels increases compared to the number of actual vessel pixels. A key contribution of this paper is a novel stopping criterion that terminates the iterative process leading to higher vessel segmentation accuracy. This iterative algorithm is robust to the rate of new vessel pixel addition since it achieves 93.2-95.35% vessel segmentation accuracy with 0.9577-0.9638 area under ROC curve (AUC) on abnormal retinal images from the STARE dataset. The proposed algorithm is computationally efficient and consistent in vessel segmentation performance for retinal images with variations due to pathology, uneven illumination, pigmentation, and fields of view since it achieves a vessel segmentation accuracy of about 95% in an average time of 2.45, 3.95, and 8 s on images from three public datasets DRIVE, STARE, and CHASE_DB1, respectively. Additionally, the proposed algorithm has more than 90% segmentation accuracy for segmenting peripapillary blood vessels in the images from the DRIVE and CHASE_DB1 datasets.
Koenig, B.; Koerner, J.G.; Kraemer, M.
1994-03-01
We consider possibilities to determine the handedness of {ital b}{r_arrow}{ital c} current transitions using semileptonic baryonic {Lambda}{sub {ital b}}{r_arrow}{Lambda}{sub {ital c}} transitions. We propose to analyze the longitudinal polarization of the daughter baryon {Lambda}{sub {ital c}} by using momentum-spin correlation measurements in the form of forward-backward (FB) asymmetry measures involving its nonleptonic decay products. We use an explicit form factor model to determine the longitudinal polarization of {Lambda}{sub {ital c}} in the semileptonic decay {Lambda}{sub {ital b}}{r_arrow}{Lambda}{sub {ital c}}+{ital l}{sup {minus}}+{bar {nu}}{sub {ital l}}. The mean longitudinal polarization of {Lambda}{sub {ital c}} is negative (positive) for left-chiral (right-chiral) {ital b}{r_arrow}{ital c} current transitions. The frame-dependent longitudinal polarization of {Lambda}{sub {ital c}} is large ({congruent}80%) in the {Lambda}{sub {ital b}} rest frame and somewhat smaller (30%--40%) in the lab frame when the {Lambda}{sub {ital b}}`s are produced on the {ital Z}{sup 0} peak. We suggest to use nonleptonic decay modes of {Lambda}{sub {ital c}} to analyze its polarization and thereby to determine the chirality of the {ital b}{r_arrow}{ital c} transition. Since {Lambda}{sub {ital b}}`s produced on the {ital Z}{sup 0} are expected to be polarized we discuss issues of the polarization transfer in {Lambda}{sub {ital b}}{r_arrow}{Lambda}{sub {ital c}} transitions. We also investigate the {ital p}{sub {perpendicular}}- and {ital p}-cut sensitivity of our predictions for the polarization of {Lambda}{sub {ital c}}.
Iterated learning and the evolution of language.
Kirby, Simon; Griffiths, Tom; Smith, Kenny
2014-10-01
Iterated learning describes the process whereby an individual learns their behaviour by exposure to another individual's behaviour, who themselves learnt it in the same way. It can be seen as a key mechanism of cultural evolution. We review various methods for understanding how behaviour is shaped by the iterated learning process: computational agent-based simulations; mathematical modelling; and laboratory experiments in humans and non-human animals. We show how this framework has been used to explain the origins of structure in language, and argue that cultural evolution must be considered alongside biological evolution in explanations of language origins.
Iterative method for generating correlated binary sequences
NASA Astrophysics Data System (ADS)
Usatenko, O. V.; Melnik, S. S.; Apostolov, S. S.; Makarov, N. M.; Krokhin, A. A.
2014-11-01
We propose an efficient iterative method for generating random correlated binary sequences with a prescribed correlation function. The method is based on consecutive linear modulations of an initially uncorrelated sequence into a correlated one. Each step of modulation increases the correlations until the desired level has been reached. The robustness and efficiency of the proposed algorithm are tested by generating sequences with inverse power-law correlations. The substantial increase in the strength of correlation in the iterative method with respect to single-step filtering generation is shown for all studied correlation functions. Our results can be used for design of disordered superlattices, waveguides, and surfaces with selective transport properties.
Modified Iterative Extended Hueckel. 1: Theory
NASA Technical Reports Server (NTRS)
Aronowitz, S.
1980-01-01
Iterative Extended Huekel is modified by inclusion of explicit effective internuclear and electronic interactions. The one electron energies are shown to obey a variational principle because of the form of the effective electronic interactions. The modifications permit mimicking of aspects of valence bond theory with the additional feature that the energies associated with valence bond type structures are explicitly calculated. In turn, a hybrid molecular, orbital valence, bond scheme is introduced which incorporates variant total molecular electronic density distributions similar to the way that Iterative Extended Hueckel incorporates atoms.
Testing the renormalisation group theory of cooperative transitions at the lambda point of helium
NASA Technical Reports Server (NTRS)
Lipa, J. A.; Li, Q.; Chui, T. C. P.; Marek, D.
1988-01-01
The status of high resolution tests of the renormalization group theory of cooperative phase transitions performed near the lambda point of helium is described. The prospects for performing improved tests in space are discussed.
Evidence for B Semileptonic Decays into the Lambda_c Charm Baryon
Aubert, Bernard; Bona, M.; Karyotakis, Y.; Lees, J.P.; Poireau, V.; Prencipe, E.; Prudent, X.; Tisserand, V.; Garra Tico, J.; Grauges, E.; Lopez, L.; Palano, Antimo; Pappagallo, M.; Eigen, G.; Stugu, Bjarne; Sun, L.; Abrams, G.S.; Battaglia, M.; Brown, D.N.; Cahn, Robert N.; Jacobsen, R.G.; /LBL, Berkeley /Birmingham U. /Ruhr U., Bochum /Bristol U. /British Columbia U. /Brunel U. /Novosibirsk, IYF /UC, Irvine /UCLA /UC, Riverside /UC, San Diego /UC, Santa Barbara /UC, Santa Cruz /Caltech /Cincinnati U. /Colorado U. /Colorado State U. /Dortmund U. /Dresden, Tech. U. /Ecole Polytechnique /Edinburgh U. /Ferrara U. /INFN, Ferrara /Frascati /Genoa U. /INFN, Genoa /Harvard U. /Heidelberg U. /Humboldt U., Berlin /Imperial Coll., London /Iowa U. /Iowa State U. /Johns Hopkins U. /Orsay, LAL /LLNL, Livermore /Liverpool U. /Queen Mary, U. of London /Royal Holloway, U. of London /Louisville U. /Mainz U., Inst. Kernphys. /Manchester U. /Maryland U. /Massachusetts U., Amherst /MIT /McGill U. /Consorzio Milano Ricerche /INFN, Milan /Mississippi U. /Montreal U. /Mt. Holyoke Coll. /Napoli Seconda U. /INFN, Naples /NIKHEF, Amsterdam /Notre Dame U. /Ohio State U. /Oregon U. /Padua U. /INFN, Padua /Paris U., VI-VII /Pennsylvania U. /Perugia U. /INFN, Perugia /INFN, Pisa /Princeton U. /Banca di Roma /Frascati /Rostock U. /Rutherford /DAPNIA, Saclay /South Carolina U. /SLAC /Stanford U., Phys. Dept. /SUNY, Albany /Tennessee U. /Texas U. /Texas U., Dallas /Turin U. /INFN, Turin /Trieste U. /INFN, Trieste /Valencia U., IFIC /Victoria U. /Warwick U. /Wisconsin U., Madison
2008-11-05
We present the first evidence for B semileptonic decays into the charmed baryon {Lambda}{sub c}{sup +} based on 420 fb{sup -1} of data collected at the {Upsilon}(4S) resonance with the BABAR detector at the PEP-II e{sup +}e{sup -} storage rings. Events are tagged by fully reconstructing one of the B mesons in a hadronic decay mode. We measure the relative branching fraction {Beta}({bar B} {yields} {Lambda}{sub c}{sup +} X{ell}{sup -}{bar {nu}}{sub {ell}})/{Beta}({bar B} {yields} {Lambda}{sub c}{sup +}/{bar {Lambda}}{sub c}{sup -}X) = (3.2 {+-} 0.9{sub stat.} {+-} 0.9{sub syst.})%. The significance of the signal including the systematic uncertainty is 4.9 standard deviations.
Hough, C A; White, B N; Holden, J J
1995-09-11
The supernumerary bisatellited chromosome causing the "cat eye" syndrome (CES) is of chromosome 22 origin and consists of an inverted duplication of the 22pter-->22q11.2 region. To determine the extent of involvement of band q11.2 on the bisatellited chromosome, copy number assessment of sequences homologous to cloned lambda immunoglobulin (lambda Ig) gene region probes was carried out on DNA from individuals with CES using densitometric analysis of Southern blots. None of the 10 lambda Ig sequences studied was found in increased copy number in DNA from any of the 10 CES individuals tested, indicating that these sequences are not present on the supernumerary chromosome. The breakpoints involved in the generation of the bisatellited supernumerary chromosome associated with CES are therefore proximal to the lambda Ig gene region.
ITER Cryoplant Final Design and Construction
NASA Astrophysics Data System (ADS)
Monneret, E.; Benkheira, L.; Fauve, E.; Henry, D.; Voigt, T.; Badgujar, S.; Chang, H.-S.; Vincent, G.; Forgeas, A.; Navion-Maillot, N.
2017-02-01
The ITER Tokamak supraconducting magnets, thermal shields and cryopumps will require tremendous amount of cooling power. With an average need of 75 kW at 4.5 K and of 600 kW at 80 K, ITER requires a world class cryogenic complex. ITER then relies on a Cryoplant which consists in a cluster of systems dedicated to the management of all fluids required for the Tokamak operation. From storage and purification to liquefaction and refrigeration, the Cryoplant will supply to the distribution system, all fluids to be circulated in the Tokamak. It includes Liquid Helium Plants and Liquid Nitrogen Plants, which generate all of the refrigeration power, an 80 K helium loop capable to circulate large quantities of helium through thermal shields, and all the auxiliaries required for gas storage, purification, and onsite nitrogen production. From the conceptual phase, the design of the Cryoplant has evolved and is now nearing completion. This proceeding will present the final design of the Cryoplant and the organization for the construction phase. Also the latest status of the ITER Cryogenic System will be introduced.
Iteration and Anxiety in Mathematical Literature
ERIC Educational Resources Information Center
Capezzi, Rita; Kinsey, L. Christine
2016-01-01
We describe our experiences in team-teaching an honors seminar on mathematics and literature. We focus particularly on two of the texts we read: Georges Perec's "How to Ask Your Boss for a Raise" and Alain Robbe-Grillet's "Jealousy," both of which make use of iterative structures.
ITER faces further five-year delay
NASA Astrophysics Data System (ADS)
Clery, Daniel
2016-06-01
The €14bn ITER fusion reactor currently under construction in Cadarache, France, will require an additional cash injection of €4.6bn if it is to start up in 2025 - a target date that is already five years later than currently scheduled.
Microtearing Instability In The ITER Pedestal
Wong, K. L.; Mikkelsen, D. R.; Rewoldt, G. M.; Budny, R.
2010-12-01
Unstable microtearing modes are discovered by the GS2 gyrokinetic siimulation code, in the pedestal region of a simulated ITER H-mode plasma with approximately 400 WM DT fusion power. Existing nonlinear theory indicates that these instabilities should produce stochastic magnetic fields and broaden the pedestal. The resulted electron thermal conductivity is estimated and the implications of these findings are discussed.
Constructing Easily Iterated Functions with Interesting Properties
ERIC Educational Resources Information Center
Sprows, David J.
2009-01-01
A number of schools have recently introduced new courses dealing with various aspects of iteration theory or at least have found ways of including topics such as chaos and fractals in existing courses. In this note, we will consider a family of functions whose members are especially well suited to illustrate many of the concepts involved in these…
Matched filter based iterative adaptive approach
NASA Astrophysics Data System (ADS)
Nepal, Ramesh; Zhang, Yan Rockee; Li, Zhengzheng; Blake, William
2016-05-01
Matched Filter sidelobes from diversified LPI waveform design and sensor resolution are two important considerations in radars and active sensors in general. Matched Filter sidelobes can potentially mask weaker targets, and low sensor resolution not only causes a high margin of error but also limits sensing in target-rich environment/ sector. The improvement in those factors, in part, concern with the transmitted waveform and consequently pulse compression techniques. An adaptive pulse compression algorithm is hence desired that can mitigate the aforementioned limitations. A new Matched Filter based Iterative Adaptive Approach, MF-IAA, as an extension to traditional Iterative Adaptive Approach, IAA, has been developed. MF-IAA takes its input as the Matched Filter output. The motivation here is to facilitate implementation of Iterative Adaptive Approach without disrupting the processing chain of traditional Matched Filter. Similar to IAA, MF-IAA is a user parameter free, iterative, weighted least square based spectral identification algorithm. This work focuses on the implementation of MF-IAA. The feasibility of MF-IAA is studied using a realistic airborne radar simulator as well as actual measured airborne radar data. The performance of MF-IAA is measured with different test waveforms, and different Signal-to-Noise (SNR) levels. In addition, Range-Doppler super-resolution using MF-IAA is investigated. Sidelobe reduction as well as super-resolution enhancement is validated. The robustness of MF-IAA with respect to different LPI waveforms and SNR levels is also demonstrated.
Solving Differential Equations Using Modified Picard Iteration
ERIC Educational Resources Information Center
Robin, W. A.
2010-01-01
Many classes of differential equations are shown to be open to solution through a method involving a combination of a direct integration approach with suitably modified Picard iterative procedures. The classes of differential equations considered include typical initial value, boundary value and eigenvalue problems arising in physics and…
Iteration of Complex Functions and Newton's Method
ERIC Educational Resources Information Center
Dwyer, Jerry; Barnard, Roger; Cook, David; Corte, Jennifer
2009-01-01
This paper discusses some common iterations of complex functions. The presentation is such that similar processes can easily be implemented and understood by undergraduate students. The aim is to illustrate some of the beauty of complex dynamics in an informal setting, while providing a couple of results that are not otherwise readily available in…
Iterated rippled noise discrimination at long durations.
Yost, William A
2009-09-01
Iterated rippled noise (IRN) was used to study discrimination of IRN stimuli with a lower number of iterations from IRN stimuli with a higher number of iterations as a function of stimulus duration (100-2000 ms). Such IRN stimuli differ in the strength of the repetition pitch. In some cases, the gain used to generate IRN stimuli was adjusted so that both IRN stimuli in the discrimination task had the same height of the first peak in the autocorrelation function or autocorrelogram. In previous work involving short-duration IRN stimuli (<500 ms), listeners were not able to discriminate between IRN stimuli that had different numbers of iterations but the same height of the first peak in the autocorrelation function. In the current study, IRN discrimination performance improved with increases in duration, even in cases when the height of the first peak in the autocorrelation was the same for the two IRN stimuli. Thus, future studies involving discrimination of IRN stimuli may need to use longer durations (1 s or greater) than those that have been used in the past.
Iterative solution of the Helmholtz equation
Larsson, E.; Otto, K.
1996-12-31
We have shown that the numerical solution of the two-dimensional Helmholtz equation can be obtained in a very efficient way by using a preconditioned iterative method. We discretize the equation with second-order accurate finite difference operators and take special care to obtain non-reflecting boundary conditions. We solve the large, sparse system of equations that arises with the preconditioned restarted GMRES iteration. The preconditioner is of {open_quotes}fast Poisson type{close_quotes}, and is derived as a direct solver for a modified PDE problem.The arithmetic complexity for the preconditioner is O(n log{sub 2} n), where n is the number of grid points. As a test problem we use the propagation of sound waves in water in a duct with curved bottom. Numerical experiments show that the preconditioned iterative method is very efficient for this type of problem. The convergence rate does not decrease dramatically when the frequency increases. Compared to banded Gaussian elimination, which is a standard solution method for this type of problems, the iterative method shows significant gain in both storage requirement and arithmetic complexity. Furthermore, the relative gain increases when the frequency increases.
Analysis techniques for the {Lambda}(1405) in p+p reactions
Siebenson, Johannes
2010-12-28
We present an analysis of the {Lambda}(1405){yields}{Sigma}{sup {+-}}{pi}{sup {+-}} decay in p+p reactions at 3.5 GeV kinetic beam energy. The data were taken with the High Acceptance Di-Electron Spectrometer (HADES). The extraction of the {Lambda}(1405) signal was achieved by an effective background suppression combined with a quantitatively precise determination and identification of the remaining background sources. The different techniques, used for this analysis, are presented in this work.
FY04 IRAD-funded GSFC Lambda Network (L-Net) Web Pages and Related Presentations
NASA Technical Reports Server (NTRS)
Gary, J. Patrick
2005-01-01
This presentation discusses the advances in Networking Technology combining the Global Lambda Integrated Facility (GLIF) cooperation with the National Lambda Rail (NLR) implementation. It also focuses on New NASA science needing Gigbit per second networks (Gbps) with coordinated Earth Observing Program, hurricane predictions, global aerosols, remote viewing and manipulation of large Earth Science Data Sets, integration of laser and radar topographic data with land cover data.
An iterative approach of protein function prediction
2011-01-01
Background Current approaches of predicting protein functions from a protein-protein interaction (PPI) dataset are based on an assumption that the available functions of the proteins (a.k.a. annotated proteins) will determine the functions of the proteins whose functions are unknown yet at the moment (a.k.a. un-annotated proteins). Therefore, the protein function prediction is a mono-directed and one-off procedure, i.e. from annotated proteins to un-annotated proteins. However, the interactions between proteins are mutual rather than static and mono-directed, although functions of some proteins are unknown for some reasons at present. That means when we use the similarity-based approach to predict functions of un-annotated proteins, the un-annotated proteins, once their functions are predicted, will affect the similarities between proteins, which in turn will affect the prediction results. In other words, the function prediction is a dynamic and mutual procedure. This dynamic feature of protein interactions, however, was not considered in the existing prediction algorithms. Results In this paper, we propose a new prediction approach that predicts protein functions iteratively. This iterative approach incorporates the dynamic and mutual features of PPI interactions, as well as the local and global semantic influence of protein functions, into the prediction. To guarantee predicting functions iteratively, we propose a new protein similarity from protein functions. We adapt new evaluation metrics to evaluate the prediction quality of our algorithm and other similar algorithms. Experiments on real PPI datasets were conducted to evaluate the effectiveness of the proposed approach in predicting unknown protein functions. Conclusions The iterative approach is more likely to reflect the real biological nature between proteins when predicting functions. A proper definition of protein similarity from protein functions is the key to predicting functions iteratively. The
Isolation and characterization of mutations in the bacteriophage lambda terminase genes.
Davidson, A; Yau, P; Murialdo, H; Gold, M
1991-01-01
The terminase enzyme of bacteriophage lambda is a hetero-oligomeric protein which catalyzes the site-specific endonucleolytic cleavage of lambda DNA and its packaging into phage proheads; it is composed of the products of the lambda Nul and A genes. We have developed a simple method to select mutations in the terminase genes carried on a high-copy-number plasmid, based on the ability of wild-type terminase to kill recA strains of Escherichia coli. Sixty-three different spontaneous mutations and 13 linker insertion mutations were isolated by this method and analyzed. Extracts of cells transformed by mutant plasmids displayed variable degrees of reduction in the activity of one or both terminase subunits as assayed by in vitro lambda DNA packaging. A method of genetically mapping plasmid-borne mutations in the A gene by measuring their ability to rescue various lambda Aam phages showed that the A mutations were fairly evenly distributed across the gene. Mutant A genes were also subcloned into overproducing plasmid constructs, and it was determined that more than half of them directed the synthesis of normal amounts of full-length A protein. Three of the A gene mutants displayed dramatically reduced in vitro packaging activity only when immature (uncut) lambda DNA was used as the substrate; therefore, these mutations may lie in the endonuclease domain of terminase. Interestingly, the putative endonuclease mutations mapped in two distinct locations in the A gene separated by a least 400 bp. Images PMID:1830578
Modified van Vaals-Bergman coaxial cable coil (lambda coil) for high-field imaging.
Matsuzawa, H; Nakada, T
1996-03-01
An easily constructed, low-capacitive coupling volume coil based on the van Vaals-Bergman coaxial cable coil for high field imaging is described. The coil (designated "lambda coil") was constructed using two 5/4 length 50 omega coaxial cables matched to a 50 omega transmission line with LC bridge balun. The standing wave on the single 5/4 lambda length coaxial cable provides two points of current maxima in oppositional direction. Therefore, the four current elements necessary for effective B1 field generation can be obtained by two 5/4 lambda length coaxial cables arranged analogous to 1/2 lambda T-antenna. Capacitive coupling between the coil elements and conductive samples (i.e. animals) is minimized by simply retaining the shield of the coaxial cable for the area of voltage maxima. The lambda coil exhibited excellent performance as a volume coil with a high quality factor and highly homogeneous rf fields. Because of its dramatically simple architecture and excellent performance, the lambda coil configuration appears to be an economical alternative to the original van Vaals-Bergman design, especially for research facilities with a high field magnet and limited bore space.
Physics design of the injector source for ITER neutral beam injector (invited)
Antoni, V.; Agostinetti, P.; Aprile, D.; Chitarin, G.; Fonnesu, N.; Marconato, N.; Pilan, N.; Sartori, E.; Serianni, G. Veltri, P.; Cavenago, M.
2014-02-15
Two Neutral Beam Injectors (NBI) are foreseen to provide a substantial fraction of the heating power necessary to ignite thermonuclear fusion reactions in ITER. The development of the NBI system at unprecedented parameters (40 A of negative ion current accelerated up to 1 MV) requires the realization of a full scale prototype, to be tested and optimized at the Test Facility under construction in Padova (Italy). The beam source is the key component of the system and the design of the multi-grid accelerator is the goal of a multi-national collaborative effort. In particular, beam steering is a challenging aspect, being a tradeoff between requirements of the optics and real grids with finite thickness and thermo-mechanical constraints due to the cooling needs and the presence of permanent magnets. In the paper, a review of the accelerator physics and an overview of the whole R and D physics program aimed to the development of the injector source are presented.
Physics design of the injector source for ITER neutral beam injector (invited).
Antoni, V; Agostinetti, P; Aprile, D; Cavenago, M; Chitarin, G; Fonnesu, N; Marconato, N; Pilan, N; Sartori, E; Serianni, G; Veltri, P
2014-02-01
Two Neutral Beam Injectors (NBI) are foreseen to provide a substantial fraction of the heating power necessary to ignite thermonuclear fusion reactions in ITER. The development of the NBI system at unprecedented parameters (40 A of negative ion current accelerated up to 1 MV) requires the realization of a full scale prototype, to be tested and optimized at the Test Facility under construction in Padova (Italy). The beam source is the key component of the system and the design of the multi-grid accelerator is the goal of a multi-national collaborative effort. In particular, beam steering is a challenging aspect, being a tradeoff between requirements of the optics and real grids with finite thickness and thermo-mechanical constraints due to the cooling needs and the presence of permanent magnets. In the paper, a review of the accelerator physics and an overview of the whole R&D physics program aimed to the development of the injector source are presented.
Benchmark of numerical tools simulating beam propagation and secondary particles in ITER NBI
Sartori, E. Veltri, P.; Serianni, G.; Dlougach, E.; Hemsworth, R.; Singh, M.
2015-04-08
Injection of high energy beams of neutral particles is a method for plasma heating in fusion devices. The ITER injector, and its prototype MITICA (Megavolt ITER Injector and Concept Advancement), are large extrapolations from existing devices: therefore numerical modeling is needed to set thermo-mechanical requirements for all beam-facing components. As the power and charge deposition originates from several sources (primary beam, co-accelerated electrons, and secondary production by beam-gas, beam-surface, and electron-surface interaction), the beam propagation along the beam line is simulated by comprehensive 3D models. This paper presents a comparative study between two codes: BTR has been used for several years in the design of the ITER HNB/DNB components; SAMANTHA code was independently developed and includes additional phenomena, such as secondary particles generated by collision of beam particles with the background gas. The code comparison is valuable in the perspective of the upcoming experimental operations, in order to prepare a reliable numerical support to the interpretation of experimental measurements in the beam test facilities. The power density map calculated on the Electrostatic Residual Ion Dump (ERID) is the chosen benchmark, as it depends on the electric and magnetic fields as well as on the evolution of the beam species via interaction with the gas. Finally the paper shows additional results provided by SAMANTHA, like the secondary electrons produced by volume processes accelerated by the ERID fringe-field towards the Cryopumps.
Hesford, Andrew J.; Chew, Weng C.
2010-01-01
The distorted Born iterative method (DBIM) computes iterative solutions to nonlinear inverse scattering problems through successive linear approximations. By decomposing the scattered field into a superposition of scattering by an inhomogeneous background and by a material perturbation, large or high-contrast variations in medium properties can be imaged through iterations that are each subject to the distorted Born approximation. However, the need to repeatedly compute forward solutions still imposes a very heavy computational burden. To ameliorate this problem, the multilevel fast multipole algorithm (MLFMA) has been applied as a forward solver within the DBIM. The MLFMA computes forward solutions in linear time for volumetric scatterers. The typically regular distribution and shape of scattering elements in the inverse scattering problem allow the method to take advantage of data redundancy and reduce the computational demands of the normally expensive MLFMA setup. Additional benefits are gained by employing Kaczmarz-like iterations, where partial measurements are used to accelerate convergence. Numerical results demonstrate both the efficiency of the forward solver and the successful application of the inverse method to imaging problems with dimensions in the neighborhood of ten wavelengths. PMID:20707438
Hesford, Andrew J; Chew, Weng C
2010-08-01
The distorted Born iterative method (DBIM) computes iterative solutions to nonlinear inverse scattering problems through successive linear approximations. By decomposing the scattered field into a superposition of scattering by an inhomogeneous background and by a material perturbation, large or high-contrast variations in medium properties can be imaged through iterations that are each subject to the distorted Born approximation. However, the need to repeatedly compute forward solutions still imposes a very heavy computational burden. To ameliorate this problem, the multilevel fast multipole algorithm (MLFMA) has been applied as a forward solver within the DBIM. The MLFMA computes forward solutions in linear time for volumetric scatterers. The typically regular distribution and shape of scattering elements in the inverse scattering problem allow the method to take advantage of data redundancy and reduce the computational demands of the normally expensive MLFMA setup. Additional benefits are gained by employing Kaczmarz-like iterations, where partial measurements are used to accelerate convergence. Numerical results demonstrate both the efficiency of the forward solver and the successful application of the inverse method to imaging problems with dimensions in the neighborhood of ten wavelengths.
Monte Carlo simulation of ICRF discharge initiation in ITER
NASA Astrophysics Data System (ADS)
Tripský, M.; Wauters, T.; Lyssoivan, A.; Křivská, A.; Louche, F.; Van Schoor, M.; Noterdaeme, J.-M.
2015-12-01
Discharges produced and sustained by ion cyclotron range of frequency (ICRF) waves in absence of plasma current will be used on ITER for (ion cyclotron-) wall conditioning (ICWC). The here presented simulations aim at ensuring that the ITER ICRH&CD system can be safely employed for ICWC and at finding optimal parameters to initiate the plasma. The 1D Monte Carlo code RFdinity1D3V was developed to simulate ICRF discharge initiation. The code traces the electron motion along one toroidal magnetic field line, accelerated by the RF field in front of the ICRF antenna. Electron collisions in the calculations are handled by a Monte Carlo procedure taking into account their energies and the related electron collision cross sections for collisions with H2, H2+ and H+. The code also includes Coulomb collisions between electrons and ions (e - e, e - H2+ , e - H+). We study the electron multiplication rate as a function of the RF discharge parameters (i) antenna input power (0.1-5MW), and (ii) the neutral pressure (H2) for two antenna phasing (monopole [0000]-phasing and small dipole [0π0π]-phasing). Furthermore, we investigate the electron multiplication rate dependency on the distance from the antenna straps. This radial dependency results from the decreasing electric amplitude and field smoothening with increasing distance from the antenna straps. The numerical plasma breakdown definition used in the code corresponds to the moment when a critical electron density nec for the low hybrid resonance (ω = ωLHR) is reached. This numerical definition was previously found in qualitative agreement with experimental breakdown times obtained from the literature and from experiments on the ASDEX Upgrade and TEXTOR.
Testing Short Samples of ITER Conductors and Projection of Their Performance in ITER Magnets
Martovetsky, N N
2007-08-20
Qualification of the ITER conductor is absolutely necessary. Testing large scale conductors is expensive and time consuming. To test straight 3-4m long samples in a bore of a split solenoid is a relatively economical way in comparison with fabrication of a coil to be tested in a bore of a background field solenoid. However, testing short sample may give ambiguous results due to different constraints in current redistribution in the cable or other end effects which are not present in the large magnet. This paper discusses processes taking place in the ITER conductor, conditions when conductor performance could be distorted and possible signal processing to deduce behavior of ITER conductors in ITER magnets from the test data.
Cosmic acceleration and the helicity-0 graviton
Rham, Claudia de; Heisenberg, Lavinia; Gabadadze, Gregory; Pirtskhalava, David
2011-05-15
We explore cosmology in the decoupling limit of a nonlinear covariant extension of Fierz-Pauli massive gravity obtained recently in arXiv:1007.0443. In this limit the theory is a scalar-tensor model of a unique form defined by symmetries. We find that it admits a self-accelerated solution, with the Hubble parameter set by the graviton mass. The negative pressure causing the acceleration is due to a condensate of the helicity-0 component of the massive graviton, and the background evolution, in the approximation used, is indistinguishable from the {Lambda}CDM model. Fluctuations about the self-accelerated background are stable for a certain range of parameters involved. Most surprisingly, the fluctuation of the helicity-0 field above its background decouples from an arbitrary source in the linearized theory. We also show how massive gravity can remarkably screen an arbitrarily large cosmological constant in the decoupling limit, while evading issues with ghosts. The obtained static solution is stable against small perturbations, suggesting that the degravitation of the vacuum energy is possible in the full theory. Interestingly, however, this mechanism postpones the Vainshtein effect to shorter distance scales. Hence, fifth force measurements severely constrain the value of the cosmological constant that can be neutralized, making this scheme phenomenologically not viable for solving the old cosmological constant problem. We briefly speculate on a possible way out of this issue.
Reducing the latency of the Fractal Iterative Method to half an iteration
NASA Astrophysics Data System (ADS)
Béchet, Clémentine; Tallon, Michel
2013-12-01
The fractal iterative method for atmospheric tomography (FRiM-3D) has been introduced to solve the wavefront reconstruction at the dimensions of an ELT with a low-computational cost. Previous studies reported the requirement of only 3 iterations of the algorithm in order to provide the best adaptive optics (AO) performance. Nevertheless, any iterative method in adaptive optics suffer from the intrinsic latency induced by the fact that one iteration can start only once the previous one is completed. Iterations hardly match the low-latency requirement of the AO real-time computer. We present here a new approach to avoid iterations in the computation of the commands with FRiM-3D, thus allowing low-latency AO response even at the scale of the European ELT (E-ELT). The method highlights the importance of "warm-start" strategy in adaptive optics. To our knowledge, this particular way to use the "warm-start" has not been reported before. Futhermore, removing the requirement of iterating to compute the commands, the computational cost of the reconstruction with FRiM-3D can be simplified and at least reduced to half the computational cost of a classical iteration. Thanks to simulations of both single-conjugate and multi-conjugate AO for the E-ELT,with FRiM-3D on Octopus ESO simulator, we demonstrate the benefit of this approach. We finally enhance the robustness of this new implementation with respect to increasing measurement noise, wind speed and even modeling errors.
Sessler, A.M.
1986-05-01
A general discussion is presented of the acceleration of particles. Upon this foundation is built a categorization scheme into which all accelerators can be placed. Special attention is devoted to accelerators which employ a wake-field mechanism and a restricting theorem is examined. It is shown how the theorem may be circumvented. Comments are made on various acceleration schemes.
ERIC Educational Resources Information Center
GIBSON, ARTHUR R.; STEPHANS, THOMAS M.
ACCELERATION OF PUPILS AND SUBJECTS IS CONSIDERED A MEANS OF EDUCATING THE ACADEMICALLY GIFTED STUDENT. FIVE INTRODUCTORY ARTICLES PROVIDE A FRAMEWORK FOR THINKING ABOUT ACCELERATION. FIVE PROJECT REPORTS OF ACCELERATED PROGRAMS IN OHIO ARE INCLUDED. ACCELERATION IS NOW BEING REGARDED MORE FAVORABLY THAN FORMERLY, BECAUSE METHODS HAVE BEEN…
Tajima, Toshiki
2005-06-14
A system and method of accelerating ions in an accelerator to optimize the energy produced by a light source. Several parameters may be controlled in constructing a target used in the accelerator system to adjust performance of the accelerator system. These parameters include the material, thickness, geometry and surface of the target.
Tajima, Toshiki
2006-04-18
A system and method of accelerating ions in an accelerator to optimize the energy produced by a light source. Several parameters may be controlled in constructing a target used in the accelerator system to adjust performance of the accelerator system. These parameters include the material, thickness, geometry and surface of the target.
Overview on Experiments On ITER-like Antenna On JET And ICRF Antenna Design For ITER
Nightingale, M. P. S.; Blackman, T.; Edwards, D.; Fanthome, J.; Graham, M.; Hamlyn-Harris, C.; Hancock, D.; Jacquet, P.; Mayoral, M.-L.; Monakhov, I.; Nicholls, K.; Stork, D.; Whitehurst, A.; Wilson, D.; Wooldridge, E.
2009-11-26
Following an overview of the ITER Ion Cyclotron Resonance Frequency (ICRF) system, the JET ITER-like antenna (ILA) will be described. The ILA was designed to test the following ITER issues: (a) reliable operation at power densities of order 8 MW/m{sup 2} at voltages up to 45 kV using a close-packed array of straps; (b) powering through ELMs using an internal (in-vacuum) conjugate-T junction; (c) protection from arcing in a conjugate-T configuration, using both existing and novel systems; and (d) resilience to disruption forces. ITER-relevant results have been achieved: operation at high coupled power density; control of the antenna matching elements in the presence of high inter-strap coupling, use of four conjugate-T systems (as would be used in ITER, should a conjugate-T approach be used); operation with RF voltages on the antenna structures up to 42 kV; achievement of ELM tolerance with a conjugate-T configuration by operating at 3{omega} real impedance at the conjugate-T point; and validation of arc detection systems on conjugate-T configurations in ELMy H-mode plasmas. The impact of these results on the predicted performance and design of the ITER antenna will be reviewed. In particular, the implications of the RF coupling measured on JET will be discussed.
Model Based Iterative Reconstruction for Bright Field Electron Tomography (Postprint)
2013-02-01
Reconstruction Technique ( SIRT ) are applied to the data. Model based iterative reconstruction (MBIR) provides a powerful framework for tomographic...the reconstruction when the typical algorithms such as Filtered Back Projection (FBP) and Simultaneous Iterative Reconstruction Technique ( SIRT ) are
NASA Technical Reports Server (NTRS)
Martel, Hugo
1994-01-01
We study the effect of the cosmological constant Lambda on galaxy formation using a simple spherical top-hat overdensity model. We consider models with Omega(sub 0) = 0.2, lambda(sub 0) = 0, and Omega(sub 0) = 0.2, lambda(sub 0) = 0.8 (where Omega(sub 0) is the density parameter, and lambda(sub 0) identically equal Lambda/3 H(sub 0 exp 2) where H(sub 0) is the Hubble constant). We adjust the initial power spectrum amplitude so that both models reproduce the same large-scale structures. The galaxy formation era in the lambda(sub 0) = 0 model occurs early (z approximately 6) and is very short, whereas in the lambda(sub 0) = 0.8 model the galaxy formation era starts later (z approximately 4), and last much longer, possibly all the way to the present. Consequently, galaxies at low redshift (z less than 1) are significantly more evolved in the lambda(sub 0) = 0 model than in the lambda(sub 0) = 0.8 model. This result implies that previous attempts to determine Lambda using the number counts versus redshift test are probably unreliable.
Fattebert, J
2008-07-29
We describe an iterative algorithm to solve electronic structure problems in Density Functional Theory. The approach is presented as a Subspace Accelerated Inexact Newton (SAIN) solver for the non-linear Kohn-Sham equations. It is related to a class of iterative algorithms known as RMM-DIIS in the electronic structure community. The method is illustrated with examples of real applications using a finite difference discretization and multigrid preconditioning.
The Iterative Structure Analysis of Montgomery Modular Multiplication
NASA Astrophysics Data System (ADS)
Jinbo, Wang
2007-09-01
Montgomery modular multiplication (MMM) plays a crucial role in the implementation of modular exponentiations of public-key cryptography. In this paper, we discuss the iterative structure and extend the iterative bound condition of MMM. It can be applied to complicated modular exponentiations. Based on the iterative condition of MMM, we can directly use non-modular additions, subtractions and even simple multiplications instead of the modular forms, which make modular exponentiation operation very efficient but more importantly iterative applicability of MMM.
Iterative performance of various formulations of the SPN equations
NASA Astrophysics Data System (ADS)
Zhang, Yunhuang; Ragusa, Jean C.; Morel, Jim E.
2013-11-01
In this paper, the Standard, Composite, and Canonical forms of the Simplified PN (SPN) equations are reviewed and their corresponding iterative properties are compared. The Gauss-Seidel (FLIP), Explicit, and preconditioned Source Iteration iterative schemes have been analyzed for both isotropic and highly anisotropic (Fokker-Planck) scattering. The iterative performance of the various SPN forms is assessed using Fourier analysis, corroborated with numerical experiments.
Overview of the negative ion based neutral beam injectors for ITER
Schunke, B. Boilson, D.; Chareyre, J.; Choi, C.-H.; Decamps, H.; El-Ouazzani, A.; Geli, F.; Graceffa, J.; Hemsworth, R.; Kushwah, M.; Roux, K.; Shah, D.; Singh, M.; Svensson, L.; Urbani, M.
2016-02-15
The ITER baseline foresees 2 Heating Neutral Beams (HNB’s) based on 1 MeV 40 A D{sup −} negative ion accelerators, each capable of delivering 16.7 MW of deuterium atoms to the DT plasma, with an optional 3rd HNB injector foreseen as a possible upgrade. In addition, a dedicated diagnostic neutral beam will be injecting ≈22 A of H{sup 0} at 100 keV as the probe beam for charge exchange recombination spectroscopy. The integration of the injectors into the ITER plant is nearly finished necessitating only refinements. A large number of components have passed the final design stage, manufacturing has started, and the essential test beds—for the prototype route chosen—will soon be ready to start.
Cai, Yunfeng; Bai, Zhaojun; Pask, John E.; Sukumar, N.
2013-12-15
The iterative diagonalization of a sequence of large ill-conditioned generalized eigenvalue problems is a computational bottleneck in quantum mechanical methods employing a nonorthogonal basis for ab initio electronic structure calculations. We propose a hybrid preconditioning scheme to effectively combine global and locally accelerated preconditioners for rapid iterative diagonalization of such eigenvalue problems. In partition-of-unity finite-element (PUFE) pseudopotential density-functional calculations, employing a nonorthogonal basis, we show that the hybrid preconditioned block steepest descent method is a cost-effective eigensolver, outperforming current state-of-the-art global preconditioning schemes, and comparably efficient for the ill-conditioned generalized eigenvalue problems produced by PUFE as the locally optimal block preconditioned conjugate-gradient method for the well-conditioned standard eigenvalue problems produced by planewave methods.
An iterative analytic—numerical method for scattering from a target buried beneath a rough surface
NASA Astrophysics Data System (ADS)
Xu, Run-Wen; Guo, Li-Xin; Wang, Rui
2014-11-01
An efficiently iterative analytical—numerical method is proposed for two-dimensional (2D) electromagnetic scattering from a perfectly electric conducting (PEC) target buried under a dielectric rough surface. The basic idea is to employ the Kirchhoff approximation (KA) to accelerate the boundary integral method (BIM). Below the rough surface, an iterative system is designed between the rough surface and the target. The KA is used to simulate the initial field on the rough surface based on the Fresnel theory, while the target is analyzed by the boundary integral method to obtain a precise result. The fields between the rough surface and the target can be linked by the boundary integral equations below the rough surface. The technique presented here is highly efficient in terms of computational memory, time, and versatility. Numerical simulations of two typical models are carried out to validate the method.
NASA Astrophysics Data System (ADS)
Zhang, Zhuoqi; Wu, Su; Lee, Seungchul; Ni, Jun
2014-12-01
This paper studies maintenance policies for multi-component systems which have failure interaction among their components. Component failure might accelerate deterioration processes or induce instantaneous failures of the remaining components. We formulate this maintenance problem as a Markov decision process (MDP) with an objective of minimising a total discounted maintenance cost. However, the action set and state space in MDP exponentially grow as the number of components increases. This makes traditional approaches computationally intractable. To deal with this curse of dimensionality, a modified iterative aggregation procedure (MIAP) is proposed. We mathematically prove that iterations in MIAP guarantee the convergence and the policy obtained is optimal. Numerical case studies find that failure interaction should not be ignored in a maintenance policy decision making and the proposed MIAP is faster and requires less computational memory size than that of linear programming.
The fields of uniformly accelerated charges in de Sitter spacetime.
Bicák, Jirí; Krtous, Pavel
2002-05-27
The scalar and electromagnetic fields of charges uniformly accelerated in de Sitter spacetime are constructed. They represent the generalization of the Born solutions describing fields of two particles with hyperbolic motion in flat spacetime. In the limit Lambda-->0, the Born solutions are retrieved. Since in the de Sitter universe the infinities I+/- are spacelike, the radiative properties of the fields depend on the way in which a given point of I+/- is approached. The fields must involve both retarded and advanced effects: Purely retarded fields do not satisfy the constraints at the past infinity I-.
Townsend, Catherine L; Laffy, Julie M J; Wu, Yu-Chang Bryan; Silva O'Hare, Joselli; Martin, Victoria; Kipling, David; Fraternali, Franca; Dunn-Walters, Deborah K
2016-01-01
Antibody variable regions are composed of a heavy and a light chain, and in humans, there are two light chain isotypes: kappa and lambda. Despite their importance in receptor editing, the light chain is often overlooked in the antibody literature, with the focus being on the heavy chain complementarity-determining region (CDR)-H3 region. In this paper, we set out to investigate the physicochemical and structural differences between human kappa and lambda light chain CDR regions. We constructed a dataset containing over 29,000 light chain variable region sequences from IgM-transcribing, newly formed B cells isolated from human bone marrow and peripheral blood. We also used a published human naïve dataset to investigate the CDR-H3 properties of heavy chains paired with kappa and lambda light chains and probed the Protein Data Bank to investigate the structural differences between kappa and lambda antibody CDR regions. We found that kappa and lambda light chains have very different CDR physicochemical and structural properties, whereas the heavy chains with which they are paired do not differ significantly. We also observed that the mean CDR3 N nucleotide addition in the kappa, lambda, and heavy chain gene rearrangements are correlated within donors but can differ between donors. This indicates that terminal deoxynucleotidyl transferase may work with differing efficiencies between different people but the same efficiency in the different classes of immunoglobulin chain within one person. We have observed large differences in the physicochemical and structural properties of kappa and lambda light chain CDR regions. This may reflect different roles in the humoral immune response.
RAMAN SCATTERED He II {lambda}4332 IN THE SYMBIOTIC STAR V1016 CYGNI
Lee, Hee-Won
2012-05-10
Raman scattering of He II line photons with atomic hydrogen is important in studying the mass loss processes in many symbiotic stars and a number of young planetary nebulae. We calculate the scattering cross sections and branching ratios associated with the Raman scattered He II {lambda}4332 feature formed through inelastic scattering of He II {lambda}949 with a hydrogen atom. At the line center of He II {lambda}949, the total scattering cross section is computed to be {sigma}{sub tot} = 2.5 Multiplication-Sign 10{sup -22} cm{sup 2}, and the branching ratio into the level 2s is 0.12. We also present a high-resolution spectrum of the symbiotic star V1016 Cygni obtained with the 1.8 m telescope at Mt. Bohyun to investigate the Raman scattering origin of the broad feature blueward of He II {lambda}4338. Based on the atomic calculation, we perform Monte Carlo calculations for the line formation. The scattering region is assumed to be a part of a uniform spherical shell that subtends a solid angle {Delta}{Omega} = {pi} steradian with a neutral column density N{sub HI} = 1.0 x 10{sup 21} cm{sup -2}. By adding a far-UV continuum around He II {lambda}949 normalized by the equivalent width of He II {lambda}949 to be 2.3 Angstrom-Sign , we obtain a good fit for both the Raman scattered He II {lambda}4332 and the broad wings around H{gamma}. Our analysis of the Raman feature blueward of H{gamma} in V1016 Cyg is consistent with the previous study of the Raman features blueward of H{alpha} and H{beta} by Jung and Lee.
Regulation of the switch from early to late bacteriophage lambda DNA replication.
Baranska, S; Gabig, M; Wegrzyn, A; Konopa, G; Herman-Antosiewicz, A; Hernandez, P; Schvartzman, J B; Helinski, D R; Wegrzyn, G
2001-03-01
There are two modes of bacteriophage lambda DNA replication following infection of its host, Escherichia coli. Early after infection, replication occurs according to the theta (theta or circle-to-circle) mode, and is later switched to the sigma (sigma or rolling-circle) mode. It is not known how this switch, occurring at a specific time in the infection cycle, is regulated. Here it is demonstrated that in wild-type cells the replication starting from orilambda proceeds both bidirectionally and unidirectionally, whereas in bacteria devoid of a functional DnaA protein, replication from orilambda is predominantly unidirectional. The regulation of directionality of replication from orilambda is mediated by positive control of lambda p(R) promoter activity by DnaA, since the mode of replication of an artificial lambda replicon bearing the p(tet) promoter instead of p(R) was found to be independent of DnaA function. These findings and results of density-shift experiments suggest that in dnaA mutants infected with lambda, phage DNA replication proceeds predominantly according to the unidirectional theta mechanism and is switched early after infection to the sigma mode. It is proposed that in wild-type E. coli cells infected with lambda, phage DNA replication proceeds according to a bidirectional theta mechanism early after infection due to efficient transcriptional activation of orilambda, stimulated by the host DnaA protein. After a few rounds of this type of replication, the resulting increased copy number of lambda genomic DNA may cause a depletion of free DnaA protein because of its interaction with the multiple DnaA-binding sites in lambda DNA. It is proposed that this may lead to inefficient transcriptional activation of orilambda resulting in unidirectional theta replication followed by sigma type replication.
Townsend, Catherine L.; Laffy, Julie M. J.; Wu, Yu-Chang Bryan; Silva O’Hare, Joselli; Martin, Victoria; Kipling, David; Fraternali, Franca; Dunn-Walters, Deborah K.
2016-01-01
Antibody variable regions are composed of a heavy and a light chain, and in humans, there are two light chain isotypes: kappa and lambda. Despite their importance in receptor editing, the light chain is often overlooked in the antibody literature, with the focus being on the heavy chain complementarity-determining region (CDR)-H3 region. In this paper, we set out to investigate the physicochemical and structural differences between human kappa and lambda light chain CDR regions. We constructed a dataset containing over 29,000 light chain variable region sequences from IgM-transcribing, newly formed B cells isolated from human bone marrow and peripheral blood. We also used a published human naïve dataset to investigate the CDR-H3 properties of heavy chains paired with kappa and lambda light chains and probed the Protein Data Bank to investigate the structural differences between kappa and lambda antibody CDR regions. We found that kappa and lambda light chains have very different CDR physicochemical and structural properties, whereas the heavy chains with which they are paired do not differ significantly. We also observed that the mean CDR3 N nucleotide addition in the kappa, lambda, and heavy chain gene rearrangements are correlated within donors but can differ between donors. This indicates that terminal deoxynucleotidyl transferase may work with differing efficiencies between different people but the same efficiency in the different classes of immunoglobulin chain within one person. We have observed large differences in the physicochemical and structural properties of kappa and lambda light chain CDR regions. This may reflect different roles in the humoral immune response. PMID:27729912
Application Of Iterative Reconstruction Techniques To Conventional Circular Tomography
NASA Astrophysics Data System (ADS)
Ghosh Roy, D. N.; Kruger, R. A.; Yih, B. C.; Del Rio, S. P.; Power, R. L.
1985-06-01
Two "point-by-point" iteration procedures, namely, Iterative Least Square Technique (ILST) and Simultaneous Iterative Reconstructive Technique (SIRT) were applied to classical circular tomographic reconstruction. The technique of tomosynthetic DSA was used in forming the tomographic images. Reconstructions of a dog's renal and neck anatomy are presented.
New iterative solvers for the NAG Libraries
Salvini, S.; Shaw, G.
1996-12-31
The purpose of this paper is to introduce the work which has been carried out at NAG Ltd to update the iterative solvers for sparse systems of linear equations, both symmetric and unsymmetric, in the NAG Fortran 77 Library. Our current plans to extend this work and include it in our other numerical libraries in our range are also briefly mentioned. We have added to the Library the new Chapter F11, entirely dedicated to sparse linear algebra. At Mark 17, the F11 Chapter includes sparse iterative solvers, preconditioners, utilities and black-box routines for sparse symmetric (both positive-definite and indefinite) linear systems. Mark 18 will add solvers, preconditioners, utilities and black-boxes for sparse unsymmetric systems: the development of these has already been completed.
Linear iterative solvers for implicit ODE methods
NASA Technical Reports Server (NTRS)
Saylor, Paul E.; Skeel, Robert D.
1990-01-01
The numerical solution of stiff initial value problems, which lead to the problem of solving large systems of mildly nonlinear equations are considered. For many problems derived from engineering and science, a solution is possible only with methods derived from iterative linear equation solvers. A common approach to solving the nonlinear equations is to employ an approximate solution obtained from an explicit method. The error is examined to determine how it is distributed among the stiff and non-stiff components, which bears on the choice of an iterative method. The conclusion is that error is (roughly) uniformly distributed, a fact that suggests the Chebyshev method (and the accompanying Manteuffel adaptive parameter algorithm). This method is described, also commenting on Richardson's method and its advantages for large problems. Richardson's method and the Chebyshev method with the Mantueffel algorithm are applied to the solution of the nonlinear equations by Newton's method.
ITER Shape Controller and Transport Simulations
Casper, T A; Meyer, W H; Pearlstein, L D; Portone, A
2007-05-31
We currently use the CORSICA integrated modeling code for scenario studies for both the DIII-D and ITER experiments. In these simulations, free- or fixed-boundary equilibria are simultaneously converged with thermal evolution determined from transport models providing temperature and current density profiles. Using a combination of fixed boundary evolution followed by free-boundary calculation to determine the separatrix and coil currents. In the free-boundary calculation, we use the state-space controller representation with transport simulations to provide feedback modeling of shape, vertical stability and profile control. In addition to a tightly coupled calculation with simulator and controller imbedded inside CORSICA, we also use a remote procedure call interface to couple the CORSICA non-linear plasma simulations to the controller environments developed within the Mathworks Matlab/Simulink environment. We present transport simulations using full shape and vertical stability control with evolution of the temperature profiles to provide simulations of the ITER controller and plasma response.
Iterative Reconstruction of Coded Source Neutron Radiographs
Santos-Villalobos, Hector J; Bingham, Philip R; Gregor, Jens
2012-01-01
Use of a coded source facilitates high-resolution neutron imaging but requires that the radiographic data be deconvolved. In this paper, we compare direct deconvolution with two different iterative algorithms, namely, one based on direct deconvolution embedded in an MLE-like framework and one based on a geometric model of the neutron beam and a least squares formulation of the inverse imaging problem.
Iterative solution of high order compact systems
Spotz, W.F.; Carey, G.F.
1996-12-31
We have recently developed a class of finite difference methods which provide higher accuracy and greater stability than standard central or upwind difference methods, but still reside on a compact patch of grid cells. In the present study we investigate the performance of several gradient-type iterative methods for solving the associated sparse systems. Both serial and parallel performance studies have been made. Representative examples are taken from elliptic PDE`s for diffusion, convection-diffusion, and viscous flow applications.
Disruptions, loads, and dynamic response of ITER
Nelson, B.; Riemer, B.; Sayer, R.; Strickler, D.; Barabaschi, P.; Ioki, K.; Johnson, G.; Shimizu, K.; Williamson, D.
1995-12-31
Plasma disruptions and the resulting electromagnetic loads are critical to the design of the vacuum vessel and in-vessel components of the International Thermonuclear Experimental Reactor (ITER). This paper describes the status of plasma disruption simulations and related analysis, including the dynamic response of the vacuum vessel and in-vessel components, stresses and deflections in the vacuum vessel, and reaction loads in the support structures.
Iterates of a Berezin-type transform
NASA Astrophysics Data System (ADS)
Liu, Congwen
2007-05-01
Let be the open unit ball of and dV denote the Lebesgue measure on normalized so that the measure of equals 1. Suppose . The Berezin-type transform of f is defined by We prove that if then the iterates converge to the Poisson extension of the boundary values of f, as k-->[infinity]. This can be viewed as a higher dimensional generalization of a previous result obtained independently by Englis and Zhu.
Iterative solution of the supereigenvalue model
NASA Astrophysics Data System (ADS)
Plefka, Jan C.
1995-02-01
An integral form of the discrete superloop equations for the supereigenvalue model of Alvarez-Gaumé, Itoyama, Mañes and Zadra is given. By a change of variables from coupling constants to moments we find a compact form of the planar solution for general potentials. In this framework an iterative scheme for the calculation of higher genera contributions to the free energy and the multi-loop correlators is developed. We present explicit results for genus one.
Fourier analysis of the SOR iteration
NASA Technical Reports Server (NTRS)
Leveque, R. J.; Trefethen, L. N.
1986-01-01
The SOR iteration for solving linear systems of equations depends upon an overrelaxation factor omega. It is shown that for the standard model problem of Poisson's equation on a rectangle, the optimal omega and corresponding convergence rate can be rigorously obtained by Fourier analysis. The trick is to tilt the space-time grid so that the SOR stencil becomes symmetrical. The tilted grid also gives insight into the relation between convergence rates of several variants.
ICRF Review: From ERASMUS To ITER
Weynants, R. R.
2009-11-26
This is a personal account of how I saw ICRF evolve since 1974, with a presentation that is ordered according to the topics: heating, antenna coupling, impurity generation/mitigation and system technology. The nature of the main issues is each time reviewed, recent findings are incorporated, and it is shown how the ICRF community has been able to react to sometimes rapidly changing demands and is indeed resolutely preparing ITER.
Analysis of drift effects on the tokamak power scrape-off width using SOLPS-ITER
Meier, E. T.; Goldston, R. J.; Kaveeva, E. G.; Makowski, M. A.; Mordijck, S.; Rozhansky, V. A.; Senichenkov, I. Yu; Voskoboynikov, S. P.
2016-11-02
SOLPS-ITER, a comprehensive 2D scrape-off layer modeling package, is used to examine the physical mechanisms that set the scrape-off width (${{\\lambda}_{q}}$ ) for inter-ELM power exhaust. Guided by Goldston's heuristic drift (HD) model, which shows remarkable quantitative agreement with experimental data, this research examines drift effects on ${{\\lambda}_{q}}$ in a DIII-D H-mode magnetic equilibrium. As a numerical expedient, a low target recycling coefficient of 0.9 is used in the simulations, resulting in outer target plasma that is sheath limited instead of conduction limited as in the experiment. Scrape-off layer (SOL) particle diffusivity (D_{SOL}) is scanned from 1 to 0.1 m2 s^{–1}. Across this diffusivity range, outer divertor heat flux is dominated by a narrow (~3–4mm when mapped to the outer midplane) electron convection channel associated with thermoelectric current through the SOL from outer to inner divertor. An order-unity up–down ion pressure asymmetry allows net ion drift flux across the separatrix, facilitated by an artificial mechanism that mimics the anomalous electron transport required for overall ambipolarity in the HD model. At ${{D}_{\\text{SOL}}}=0.1$ m2 s^{–1}, the density fall-off length is similar to the electron temperature fall-off length, as predicted by the HD model and as seen experimentally. Furthermore, this research represents a step toward a deeper understanding of the power scrape-off width, and serves as a basis for extending fluid modeling to more experimentally relevant, high-collisionality regimes.
Analysis of drift effects on the tokamak power scrape-off width using SOLPS-ITER
Meier, E. T.; Goldston, R. J.; Kaveeva, E. G.; ...
2016-11-02
SOLPS-ITER, a comprehensive 2D scrape-off layer modeling package, is used to examine the physical mechanisms that set the scrape-off width (more » $${{\\lambda}_{q}}$$ ) for inter-ELM power exhaust. Guided by Goldston's heuristic drift (HD) model, which shows remarkable quantitative agreement with experimental data, this research examines drift effects on $${{\\lambda}_{q}}$$ in a DIII-D H-mode magnetic equilibrium. As a numerical expedient, a low target recycling coefficient of 0.9 is used in the simulations, resulting in outer target plasma that is sheath limited instead of conduction limited as in the experiment. Scrape-off layer (SOL) particle diffusivity (DSOL) is scanned from 1 to 0.1 m2 s–1. Across this diffusivity range, outer divertor heat flux is dominated by a narrow (~3–4mm when mapped to the outer midplane) electron convection channel associated with thermoelectric current through the SOL from outer to inner divertor. An order-unity up–down ion pressure asymmetry allows net ion drift flux across the separatrix, facilitated by an artificial mechanism that mimics the anomalous electron transport required for overall ambipolarity in the HD model. At $${{D}_{\\text{SOL}}}=0.1$$ m2 s–1, the density fall-off length is similar to the electron temperature fall-off length, as predicted by the HD model and as seen experimentally. Furthermore, this research represents a step toward a deeper understanding of the power scrape-off width, and serves as a basis for extending fluid modeling to more experimentally relevant, high-collisionality regimes.« less
The dynamics of iterated transportation simulations
Nagel, K.; Rickert, M.; Simon, P.M.
1998-12-01
Transportation-related decisions of people often depend on what everybody else is doing. For example, decisions about mode choice, route choice, activity scheduling, etc., can depend on congestion, caused by the aggregated behavior of others. From a conceptual viewpoint, this consistency problem causes a deadlock, since nobody can start planning because they do not know what everybody else is doing. It is the process of iterations that is examined in this paper as a method for solving the problem. In this paper, the authors concentrate on the aspect of the iterative process that is probably the most important one from a practical viewpoint, and that is the ``uniqueness`` or ``robustness`` of the results. Also, they define robustness more in terms of common sense than in terms of a mathematical formalism. For this, they do not only want a single iterative process to converge, but they want the result to be independent of any particular implementation. The authors run many computational experiments, sometimes with variations of the same code, sometimes with totally different code, in order to see if any of the results are robust against these changes.
Conformal mapping and convergence of Krylov iterations
Driscoll, T.A.; Trefethen, L.N.
1994-12-31
Connections between conformal mapping and matrix iterations have been known for many years. The idea underlying these connections is as follows. Suppose the spectrum of a matrix or operator A is contained in a Jordan region E in the complex plane with 0 not an element of E. Let {phi}(z) denote a conformal map of the exterior of E onto the exterior of the unit disk, with {phi}{infinity} = {infinity}. Then 1/{vert_bar}{phi}(0){vert_bar} is an upper bound for the optimal asymptotic convergence factor of any Krylov subspace iteration. This idea can be made precise in various ways, depending on the matrix iterations, on whether A is finite or infinite dimensional, and on what bounds are assumed on the non-normality of A. This paper explores these connections for a variety of matrix examples, making use of a new MATLAB Schwarz-Christoffel Mapping Toolbox developed by the first author. Unlike the earlier Fortran Schwarz-Christoffel package SCPACK, the new toolbox computes exterior as well as interior Schwarz-Christoffel maps, making it easy to experiment with spectra that are not necessarily symmetric about an axis.
Iterative pass optimization of sequence data
NASA Technical Reports Server (NTRS)
Wheeler, Ward C.
2003-01-01
The problem of determining the minimum-cost hypothetical ancestral sequences for a given cladogram is known to be NP-complete. This "tree alignment" problem has motivated the considerable effort placed in multiple sequence alignment procedures. Wheeler in 1996 proposed a heuristic method, direct optimization, to calculate cladogram costs without the intervention of multiple sequence alignment. This method, though more efficient in time and more effective in cladogram length than many alignment-based procedures, greedily optimizes nodes based on descendent information only. In their proposal of an exact multiple alignment solution, Sankoff et al. in 1976 described a heuristic procedure--the iterative improvement method--to create alignments at internal nodes by solving a series of median problems. The combination of a three-sequence direct optimization with iterative improvement and a branch-length-based cladogram cost procedure, provides an algorithm that frequently results in superior (i.e., lower) cladogram costs. This iterative pass optimization is both computation and memory intensive, but economies can be made to reduce this burden. An example in arthropod systematics is discussed. c2003 The Willi Hennig Society. Published by Elsevier Science (USA). All rights reserved.
Iterative pass optimization of sequence data.
Wheeler, Ward C
2003-06-01
The problem of determining the minimum-cost hypothetical ancestral sequences for a given cladogram is known to be NP-complete. This "tree alignment" problem has motivated the considerable effort placed in multiple sequence alignment procedures. Wheeler in 1996 proposed a heuristic method, direct optimization, to calculate cladogram costs without the intervention of multiple sequence alignment. This method, though more efficient in time and more effective in cladogram length than many alignment-based procedures, greedily optimizes nodes based on descendent information only. In their proposal of an exact multiple alignment solution, Sankoff et al. in 1976 described a heuristic procedure--the iterative improvement method--to create alignments at internal nodes by solving a series of median problems. The combination of a three-sequence direct optimization with iterative improvement and a branch-length-based cladogram cost procedure, provides an algorithm that frequently results in superior (i.e., lower) cladogram costs. This iterative pass optimization is both computation and memory intensive, but economies can be made to reduce this burden. An example in arthropod systematics is discussed.
Iterative solution of the semiconductor device equations
Bova, S.W.; Carey, G.F.
1996-12-31
Most semiconductor device models can be described by a nonlinear Poisson equation for the electrostatic potential coupled to a system of convection-reaction-diffusion equations for the transport of charge and energy. These equations are typically solved in a decoupled fashion and e.g. Newton`s method is used to obtain the resulting sequences of linear systems. The Poisson problem leads to a symmetric, positive definite system which we solve iteratively using conjugate gradient. The transport equations lead to nonsymmetric, indefinite systems, thereby complicating the selection of an appropriate iterative method. Moreover, their solutions exhibit steep layers and are subject to numerical oscillations and instabilities if standard Galerkin-type discretization strategies are used. In the present study, we use an upwind finite element technique for the transport equations. We also evaluate the performance of different iterative methods for the transport equations and investigate various preconditioners for a few generalized gradient methods. Numerical examples are given for a representative two-dimensional depletion MOSFET.
Recent ADI iteration analysis and results
Wachspress, E.L.
1994-12-31
Some recent ADI iteration analysis and results are discussed. Discovery that the Lyapunov and Sylvester matrix equations are model ADI problems stimulated much research on ADI iteration with complex spectra. The ADI rational Chebyshev analysis parallels the classical linear Chebyshev theory. Two distinct approaches have been applied to these problems. First, parameters which were optimal for real spectra were shown to be nearly optimal for certain families of complex spectra. In the linear case these were spectra bounded by ellipses in the complex plane. In the ADI rational case these were spectra bounded by {open_quotes}elliptic-function regions{close_quotes}. The logarithms of the latter appear like ellipses, and the logarithms of the optimal ADI parameters for these regions are similar to the optimal parameters for linear Chebyshev approximation over superimposed ellipses. W.B. Jordan`s bilinear transformation of real variables to reduce the two-variable problem to one variable was generalized into the complex plane. This was needed for ADI iterative solution of the Sylvester equation.
Iteration of ultrasound aberration correction methods
NASA Astrophysics Data System (ADS)
Maasoey, Svein-Erik; Angelsen, Bjoern; Varslot, Trond
2004-05-01
Aberration in ultrasound medical imaging is usually modeled by time-delay and amplitude variations concentrated on the transmitting/receiving array. This filter process is here denoted a TDA filter. The TDA filter is an approximation to the physical aberration process, which occurs over an extended part of the human body wall. Estimation of the TDA filter, and performing correction on transmit and receive, has proven difficult. It has yet to be shown that this method works adequately for severe aberration. Estimation of the TDA filter can be iterated by retransmitting a corrected signal and re-estimate until a convergence criterion is fulfilled (adaptive imaging). Two methods for estimating time-delay and amplitude variations in receive signals from random scatterers have been developed. One method correlates each element signal with a reference signal. The other method use eigenvalue decomposition of the receive cross-spectrum matrix, based upon a receive energy-maximizing criterion. Simulations of iterating aberration correction with a TDA filter have been investigated to study its convergence properties. A weak and strong human-body wall model generated aberration. Both emulated the human abdominal wall. Results after iteration improve aberration correction substantially, and both estimation methods converge, even for the case of strong aberration.
Iterative Decoding of Concatenated Codes: A Tutorial
NASA Astrophysics Data System (ADS)
Regalia, Phillip A.
2005-12-01
The turbo decoding algorithm of a decade ago constituted a milestone in error-correction coding for digital communications, and has inspired extensions to generalized receiver topologies, including turbo equalization, turbo synchronization, and turbo CDMA, among others. Despite an accrued understanding of iterative decoding over the years, the "turbo principle" remains elusive to master analytically, thereby inciting interest from researchers outside the communications domain. In this spirit, we develop a tutorial presentation of iterative decoding for parallel and serial concatenated codes, in terms hopefully accessible to a broader audience. We motivate iterative decoding as a computationally tractable attempt to approach maximum-likelihood decoding, and characterize fixed points in terms of a "consensus" property between constituent decoders. We review how the decoding algorithm for both parallel and serial concatenated codes coincides with an alternating projection algorithm, which allows one to identify conditions under which the algorithm indeed converges to a maximum-likelihood solution, in terms of particular likelihood functions factoring into the product of their marginals. The presentation emphasizes a common framework applicable to both parallel and serial concatenated codes.
ITER Creation Safety File Expertise Results
NASA Astrophysics Data System (ADS)
Perrault, D.
2013-06-01
In March 2010, the ITER operator delivered the facility safety file to the French "Autorité de Sûreté Nucléaire" (ASN) as part of its request for the creation decree, legally necessary before building works can begin on the site. The French "Institut de Radioprotection et de Sûreté Nucléaire" (IRSN), in support to the ASN, recently completed its expertise of the safety measures proposed for ITER, on the basis of this file and of additional technical documents from the operator. This paper presents the IRSN's main conclusions. In particular, they focus on the radioactive materials involved, the safety and radiation protection demonstration (suitability of risk management measures…), foreseeable accidents, building and safety important component design and, finally, wastes and effluents to be produced. This assessment was just the first legally-required step in on-going safety monitoring of the ITER project, which will include other complete regulatory re-evaluations.
Progress in long-pulse production of powerful negative ion beams for JT-60SA and ITER
NASA Astrophysics Data System (ADS)
Kojima, A.; Umeda, N.; Hanada, M.; Yoshida, M.; Kashiwagi, M.; Tobari, H.; Watanabe, K.; Akino, N.; Komata, M.; Mogaki, K.; Sasaki, S.; Seki, N.; Nemoto, S.; Shimizu, T.; Endo, Y.; Ohasa, K.; Dairaku, M.; Yamanaka, H.; Grisham, L. R.
2015-06-01
Significant progress in the extension of pulse durations of powerful negative ion beams has been made to realize the neutral beam injectors for JT-60SA and ITER. In order to overcome common issues of the long-pulse production/acceleration of negative ion beams in JT-60SA and ITER, new technologies have been developed in the JT-60SA ion source and the MeV accelerator in Japan Atomic Energy Agency. As for the long-pulse production of high-current negative ions for the JT-60SA ion source, the pulse durations have been successfully increased from 30 s at 13 A on JT-60U to 100 s at 15 A by modifying the JT-60SA ion source, which satisfies the required pulse duration of 100 s and 70% of the rated beam current for JT-60SA. This progress was based on the R&D efforts for the temperature control of the plasma grid and uniform negative ion productions with the modified tent-shaped filter field configuration. Moreover, each parameter of the required beam energy, current and pulse has been achieved individually by these R&D efforts. The developed techniques are useful to design the ITER ion source because the sustainment of the caesium coverage in the large extraction area is one of the common issues between JT-60SA and ITER. As for the long-pulse acceleration of high power density beams in the MeV accelerator for ITER, the pulse duration of MeV-class negative ion beams has been extended by more than 2 orders of magnitude by modifying the extraction grid with a high cooling capability and a high transmission of negative ions. A long-pulse acceleration of 60 s has been achieved at 70 MW m-2 (683 keV, 100 A m-2) which has reached the power density of JT-60SA level of 65 MW m-2. No degradations of the voltage holding capability of the acceleration voltage and the beam optics due to the distortion of the acceleration grids have been observed in this power density level. These results are the longest pulse durations of high-current and high-power-density negative ion beams in the
Progress and challenges in predictive modeling of runaway electron generation in ITER
NASA Astrophysics Data System (ADS)
Brennan, Dylan; Hirvijoki, Eero; Liu, Chang; Bhattacharjee, Amitava; Boozer, Allen
2016-10-01
Among the most important questions given a thermal collapse event in ITER is that of how many seed electrons are available for runaway acceleration and the avalanche process, how collisional and radiative mechanisms will affect the electron acceleration, and what mitigation techniques will be effective. In this study, we use the kinetic equation for electrons and ions to investigate how different cooling scenarios lead to different seed distributions. Given any initial distribution, we study their subsequent avalanche and acceleration to runaway with Adjoint and test particle methods. This method gives an accurate calculation of the runaway threshold by including the collisional drag of background electrons (assuming they are Maxwellian), pitch angle scattering, and synchrotron and Bremsstrahlung radiation. This effort is part of a new large collaboration in the US which promises to contribute substantially to our understanding of these issues. This talk will briefly review how this work contributes to this collaboration, and in particular discuss the technical challenges and open questions that stand in the way of quantitative, predictive modeling of runaway generation in ITER, and how we plan to address them.
Rifampin-stimulated uv resistance of phage lambda on Escherichia coli K12
Bronner, C.E.; Fluke, D.J.; Pollard, E.C.
1983-01-01
The plaque survival of uv-irradiated phage lambda on excision-proficient E.coli strain AB1157 is greater if the host cells are exposed to rifampin for 10 minutes prior to infection. This repair is accompanied by little or no clear-plaque mutagenesis. Host cells uv-irradiated and incubated for 30 minutes in growth medium prior to treatment with rifampin show some Weigle-reactivation in addition to the repair stimulated by rifampin. Some clear-plaque Weigle-mutagenesis is also observed in the presence of rifampin: however, the amount is less than that seen in the absence of rifampin treatment. In contrast, the uv sensitivity of lambda on strain AB1886, an excision-repair deficient mutant, is unchanged by pre-treating the cells with rifampin, and no Weigle-reactivation is observed. These results suggest that repair of lambda on unirradiated cells in the presence of rifampin is an excision-dependent, error-free phenomenon. Since initiation of replication of lambda DNA requires RNA polymerase, and since rifampin blocks transcription by that polymerase, the effect of rifampin on the survival of lambda may be to delay phage replication, thereby allowing more time for excision repair to operate. 6 figures.
The Protein Interaction Network of Bacteriophage Lambda with Its Host, Escherichia coli
Blasche, Sonja; Wuchty, Stefan; Rajagopala, Seesandra V.
2013-01-01
Although most of the 73 open reading frames (ORFs) in bacteriophage λ have been investigated intensively, the function of many genes in host-phage interactions remains poorly understood. Using yeast two-hybrid screens of all lambda ORFs for interactions with its host Escherichia coli, we determined a raw data set of 631 host-phage interactions resulting in a set of 62 high-confidence interactions after multiple rounds of retesting. These links suggest novel regulatory interactions between the E. coli transcriptional network and lambda proteins. Targeted host proteins and genes required for lambda infection are enriched among highly connected proteins, suggesting that bacteriophages resemble interaction patterns of human viruses. Lambda tail proteins interact with both bacterial fimbrial proteins and E. coli proteins homologous to other phage proteins. Lambda appears to dramatically differ from other phages, such as T7, because of its unusually large number of modified and processed proteins, which reduces the number of host-virus interactions detectable by yeast two-hybrid screens. PMID:24049175
Lambda Station: Alternate network path forwarding for production SciDAC applications
Grigoriev, Maxim; Bobyshev, Andrey; Crawford, Matt; DeMar, Phil; Grigaliunas, Vyto; Moibenko, Alexander; Petravick, Don; Newman, Harvey; Steenberg, Conrad; Thomas, Michael; /Caltech
2007-09-01
The LHC era will start very soon, creating immense data volumes capable of demanding allocation of an entire network circuit for task-driven applications. Circuit-based alternate network paths are one solution to meeting the LHC high bandwidth network requirements. The Lambda Station project is aimed at addressing growing requirements for dynamic allocation of alternate network paths. Lambda Station facilitates the rerouting of designated traffic through site LAN infrastructure onto so-called 'high-impact' wide-area networks. The prototype Lambda Station developed with Service Oriented Architecture (SOA) approach in mind will be presented. Lambda Station has been successfully integrated into the production version of the Storage Resource Manager (SRM), and deployed at US CMS Tier1 center at Fermilab, as well as at US-CMS Tier-2 site at Caltech. This paper will discuss experiences using the prototype system with production SciDAC applications for data movement between Fermilab and Caltech. The architecture and design principles of the production version Lambda Station software, currently being implemented as Java based web services, will also be presented in this paper.
The role of ITER in the US MFE Program Strategy
Glass, A.J.
1992-07-01
I want to discuss the role of ITER in the US MFE Program Strategy. I should stress that any opinions I present are purely my own. I`m not speaking ex cathedra, I`m not speaking for the ITER Home Team, and I`m not speaking for the Lawrence Livermore National Laboratory. I`m giving my own personal opinions. In discussing the role of ITER, we have to recognize that ITER plays several roles, and I want to identify how ITER influences MFE program strategy through each of its roles.
The role of ITER in the US MFE Program Strategy
Glass, A.J.
1992-07-01
I want to discuss the role of ITER in the US MFE Program Strategy. I should stress that any opinions I present are purely my own. I'm not speaking ex cathedra, I'm not speaking for the ITER Home Team, and I'm not speaking for the Lawrence Livermore National Laboratory. I'm giving my own personal opinions. In discussing the role of ITER, we have to recognize that ITER plays several roles, and I want to identify how ITER influences MFE program strategy through each of its roles.
Speeding up Newton-type iterations for stiff problems
NASA Astrophysics Data System (ADS)
Gonzalez-Pinto, S.; Rojas-Bello, R.
2005-09-01
Iterative schemes based on the Cooper and Butcher iteration [5] are considered, in order to implement highly implicit Runge-Kutta methods on stiff problems. By introducing two appropriate parameters in the scheme, a new iteration making use of the last two iterates, is proposed. Specific schemes of this type for the Gauss, Radau IA-IIA and Lobatto IIIA-B-C processes are developed. It is also shown that in many situations the new iteration presents a faster convergence than the original.
Evaluation of ITER MSE Viewing Optics
Allen, S; Lerner, S; Morris, K; Jayakumar, J; Holcomb, C; Makowski, M; Latkowski, J; Chipman, R
2007-03-26
The Motional Stark Effect (MSE) diagnostic on ITER determines the local plasma current density by measuring the polarization angle of light resulting from the interaction of a high energy neutral heating beam and the tokamak plasma. This light signal has to be transmitted from the edge and core of the plasma to a polarization analyzer located in the port plug. The optical system should either preserve the polarization information, or it should be possible to reliably calibrate any changes induced by the optics. This LLNL Work for Others project for the US ITER Project Office (USIPO) is focused on the design of the viewing optics for both the edge and core MSE systems. Several design constraints were considered, including: image quality, lack of polarization aberrations, ease of construction and cost of mirrors, neutron shielding, and geometric layout in the equatorial port plugs. The edge MSE optics are located in ITER equatorial port 3 and view Heating Beam 5, and the core system is located in equatorial port 1 viewing heating beam 4. The current work is an extension of previous preliminary design work completed by the ITER central team (ITER resources were not available to complete a detailed optimization of this system, and then the MSE was assigned to the US). The optimization of the optical systems at this level was done with the ZEMAX optical ray tracing code. The final LLNL designs decreased the ''blur'' in the optical system by nearly an order of magnitude, and the polarization blur was reduced by a factor of 3. The mirror sizes were reduced with an estimated cost savings of a factor of 3. The throughput of the system was greater than or equal to the previous ITER design. It was found that optical ray tracing was necessary to accurately measure the throughput. Metal mirrors, while they can introduce polarization aberrations, were used close to the plasma because of the anticipated high heat, particle, and neutron loads. These mirrors formed an intermediate
Yan, X Q; Lin, C; Sheng, Z M; Guo, Z Y; Liu, B C; Lu, Y R; Fang, J X; Chen, J E
2008-04-04
A new ion acceleration method, namely, phase-stable acceleration, using circularly-polarized laser pulses is proposed. When the initial target density n(0) and thickness D satisfy a(L) approximately (n(0)/n(c))D/lambda(L) and D>l(s) with a(L), lambda(L), l(s), and n(c) the normalized laser amplitude, the laser wavelength in vacuum, the plasma skin depth, and the critical density of the incident laser pulse, respectively, a quasiequilibrium for the electrons is established by the light pressure and the space charge electrostatic field at the interacting front of the laser pulse. The ions within the skin depth of the laser pulse are synchronously accelerated and bunched by the electrostatic field, and thereby a high-intensity monoenergetic proton beam can be generated. The proton dynamics is investigated analytically and the results are verified by one- and two-dimensional particle-in-cell simulations.
Non-diffusive resonant acceleration of electrons in the radiation belts
Artemyev, A. V.; Krasnoselskikh, V. V.; Agapitov, O. V.; Rolland, G.
2012-12-15
We describe a mechanism of resonant electron acceleration by oblique high-amplitude whistler waves under conditions typical for the Earth radiation belts. We use statistics of spacecraft observations of whistlers in the Earth radiation belts to obtain the dependence of the angle {theta} between the wave-normal and the background magnetic field on magnetic latitude {lambda}. According to this statistics, the angle {theta} already approaches the resonance cone at {lambda}{approx}15 Degree-Sign and remains close to it up to {lambda}{approx}30 Degree-Sign -40 Degree-Sign on the dayside. The parallel component of the electrostatic field of whistler waves often increases around {lambda}{approx}15 Degree-Sign up to one hundred of mV/m. We show that due to this increase of the electric field, the whistler waves can trap electrons into the potential well via wave particle resonant interaction corresponding to Landau resonance. Trapped electrons then move with the wave to higher latitudes where they escape from the resonance. Strong acceleration is favored by adiabatic invariance along the increasing magnetic field, which continuously transfers the parallel energy gained to perpendicular energy, allowing resonance to be reached and maintained. The concomitant increase of the wave phase velocity allows for even stronger relative acceleration at low energy <50keV. Each trapping-escape event of electrons of {approx}10keV to 100 keV results in an energy gain of up to 100 keV in the inhomogeneous magnetic field of the Earth dipole. For electrons with initial energy below 100 keV, such rapid acceleration should hasten their drop into the loss-cone and their precipitation into the atmosphere. We discuss the role of the considered mechanism in the eventual formation of a trapped distribution of relativistic electrons for initial energies larger than 100 keV and in microbursts precipitations of lower energy particles.
The influence of initial temperature on flame acceleration and deflagration-to-detonation transition
Ciccarelli, G.; Boccio, J.L.; Ginsberg, T.
1996-07-01
The influence of initial mixture temperature on deflagration-to-detonation transition (DDT) has been investigated experimentally. The experiments were carried out in a 27-cm-inner diameter, 21.3-meter-long heated detonation tube, which was equipped with periodic orifice plates to promote flame acceleration. Hydrogen-air-steam mixtures were tested at a range of temperatures up to 650K and at an initial pressure of 0.1 MPa. In most cases, the limiting hydrogen mole fraction which resulted in transition to detonation corresponded to the mixture whose detonation cell size, {lambda}, was approximately equal to the inner diameter of the orifice plate, d (e.g., d/{lambda}{approximately}1). The only exception was in dry hydrogen-air mixtures at 650K where the DDT limit was observed to be 11 percent hydrogen, corresponding to a value of d/{lambda} equal to 5.5. For a 10.5 percent hydrogen mixture at 650K, the flame accelerated to a maximum velocity of about 120 m/s and then decelerated to below 2 m/s. This observation indicates that the d/{lambda} = 1 DDT limit criterion provides a necessary condition but not a sufficient one for the onset of DDT in obstacle-laden ducts. In this particular case, the mixture initial condition (i.e., temperature) resulted in the inability of the mixture to sustain flame acceleration to the point where DDT could occur. It was also observed that the distance required for the flame to accelerate to the onset of detonation was a function of both the hydrogen mole fraction and the mixture initial temperature. For example, decreasing the hydrogen mole fraction or increasing the initial mixture temperature resulted in longer transition distances.
Tang, Liguang; Chen, Chunhua; Gogami, Toshiyuki; Kawama, Daisuke; Han, Yuncheng; Yuan, Lulin; Matsumura, Akihiko; Okayasu, Yuichi; Seva, Tomislav; Rodriguez, Victor; Baturin, Pavlo; Acha Quimper, Armando; Achenbach, Carsten; Ahmidouch, Abdellah; Albayrak, Ibrahim; Androic, Darko; Asaturyan, Arshak; Asaturyan, Razmik; Ates, Ozgur; Badui, Rafael; Baker, Oliver; Benmokhtar, Fatiha; Boeglin, Werner; Bono, Jason; Bosted, Peter; Brash, Edward; Carter, Philip; Carlini, Roger; Chiba, Atsushi; Christy, Michael; Cole, Leon; Dalton, Mark; Danagoulian, Samuel; Daniel, Aji; De Leo, Raffaele; Dharmawardane, Kahanawita; Doi, Daisuke; Egiyan, Kim; Elaasar, Mostafa; Ent, Rolf; Fenker, Howard; Fujii, Yu; Furic, Miroslav; Gabrielyan, Marianna; Gan, Liping; Garibaldi, Franco; Gaskell, David; Gasparian, Ashot; Gibson, Edward; Gueye, Paul; Hashimoto, Osamu; Honda, D; Horn, Tanja; Hu, Bitao; Hungerford, Ed; Jayalath, Chandana; Jones, Mark; Johnston, Kathleen; Kalantarians, Narbe; Kanda, Hiroki; Kaneta, M; Kato, F; Kato, Seigo; Kawai, Masaharu; Keppel, Cynthia; Khanal, Hari; Kohl, M; Kramer, Laird; Lan, Kejian; Li, Ya; Habarakada Liyanage, Anusha; Luo, Wei; Mack, David; Maeda, Kazushige; Malace, Simona; Margaryan, Amur; Marikyan, Gagik; Markowitz, Pete; Maruta, Tomofumi; Maruyama, Nayuta; Maxwell, Victor; Millener, David; Miyoshi, Toshinobu; Mkrtchyan, Arthur; Mkrtchyan, Hamlet; Motoba, Toshio; Nagao, Sho; Nakamura, Satoshi; Narayan, Amrendra; Neville, Casey; Niculescu, Gabriel; Niculescu, Maria; Nunez, Angel; Nuruzzaman, nfn; Nomura, Hiroshi; Nonaka, Kenichi; Ohtani, Atsushi; Oyamada, Masamichi; Perez, Naipy; Petkovic, Tomislav; Pochodzalla, J; Qiu, Xiyu; Randeniya, Kapugodage; Raue, Brian; Reinhold, Joerg; Rivera, R; Roche, Julie; Samanta, Chhanda; Sato, Yoshinori; Sawatzky, Bradley; Segbefia, Edwin; Schott, Diane; Shichijo, Ayako; Simicevic, Neven; Smith, Gregory; Song, Yushou; Sumihama, Mizuki; Tadevosyan, Vardan; Takahashi, Toshiyuki; Taniya, Naotaka; Tsukada, Kyo; Tvaskis, Vladas; Veilleux, Micah; Vulcan, William; Wells, Steven; Wesselmann, Frank; Wood, Stephen; Yamamoto, Taku; Yan, Chen; Ye, Z; Yokota, Kosuke; Zhamkochyan, Simon; Zhu, Lingyan
2014-09-01
Since the pioneering experiment, E89-009 studying hypernuclear spectroscopy using the $(e,e^{\\prime}K^+)$ reaction was completed, two additional experiments, E01-011 and E05-115, were performed at Jefferson Lab. These later experiments used a modified experimental design, the "Tilt Method", to dramatically suppress the large electromagnetic background, and allowed for a substantial increase in luminosity. Additionally, a new kaon spectrometer, HKS (E01-011), a new electron spectrometer, HES, and a new splitting magnet were added to produce precision, high-resolution hypernuclear spectroscopy. These two experiments, E01-011 and E05-115, resulted in two new data sets, producing sub-MeV energy resolution in the spectra of ${}^{7}_{\\Lambda}\\text{He}$, ${}^{12}_{\\Lambda}\\text{B}$ and ${}^{28}_{\\Lambda} \\text{Al}$ and ${}^{7}_{\\Lambda}\\text{He}$, ${}^{10}_{\\Lambda}\\text{Be}$, ${}^{12}_{\\Lambda}\\text{B}$ and ${}^{52}_{\\Lambda}\\text{V}$. All three experiments obtained a ${}^{12}_{\\Lambda}\\text{B}$, spectrum, which is the most characteristic $p$-shell hypernucleus and is commonly used for calibration. Independent analyses of these different experiments demonstrate excellent consistency and provide the clearest level structure to date of this hypernucleus as produced by the $(e,e^{\\prime}K^+)$ reaction. This paper presents details of these experiments, and the extraction and analysis of the observed ${}^{12}_{\\Lambda}\\text{B}$ spectrum.
Charged particle acceleration in nonuniform plasmas
Bulanov, S.V.; Naumova, N.M.; Dudnikova, G.I.; Vshivkov, V.A.; Pegoraro, F.; Pogorelsky, I.V.
1996-11-01
The high-gradient electron acceleration schemes that have been demonstrated using LWFA appear promising for the development of plasma-based laser accelerators into practical devices. However, a question still exists: how to avoid the wake field deterioration and the loss of the phase synchronism between the plasma wave and the electrons that prevent them from being accelerated up to the theoretical limit. In order to obtain the highest possible values of the wake electric field one must use as intense laser pulses as possible i.e., pulses with dimensionless amplitudes a {much_gt} 1. Pulses that have a dimensionless amplitude larger than one tend to be subject to a host of instabilities, such as relativistic self-focusing, self modulation and stimulated Raman scattering, that affect their propagation in the plasma. Such processes could be beneficial, in so far as they increase the pulse energy density, enhance the wake field generation, and provide the mechanism for transporting the laser radiation over several Rayleigh lengths without diffraction spreading. However, it is still far from certain that these processes can be exploited in a controlled form and can lead to regular, stationary wake fields. It is known that, in order to create good quality wake fields, it would be preferable to use laser pulses with steep fronts of order {lambda}{sub p}. The present paper aims at analyzing the influence of the laser pulse shape and of the plasma nonuniformity on the charged particle acceleration. This study is based on the results obtained with one dimensional PIC simulations.
Accelerating Particles with Plasma
Litos, Michael; Hogan, Mark
2016-07-12
Researchers at SLAC explain how they use plasma wakefields to accelerate bunches of electrons to very high energies over only a short distance. Their experiments offer a possible path for the future of particle accelerators.
NASA Technical Reports Server (NTRS)
Chapman, C. P.
1972-01-01
Device is described that limits accelerations by shutting off shaker table power very rapidly in acceleration tests. Absolute value of accelerometer signal is used to trigger electronic switch which terminates test and sounds alarm.
... equipment? How is safety ensured? What is this equipment used for? A linear accelerator (LINAC) is the ... Therapy (SBRT) . top of page How does the equipment work? The linear accelerator uses microwave technology (similar ...
Accelerating Particles with Plasma
Litos, Michael; Hogan, Mark
2014-11-05
Researchers at SLAC explain how they use plasma wakefields to accelerate bunches of electrons to very high energies over only a short distance. Their experiments offer a possible path for the future of particle accelerators.
NASA Technical Reports Server (NTRS)
Cheng, D. Y.
1971-01-01
Converging, coaxial accelerator electrode configuration operates in vacuum as plasma gun. Plasma forms by periodic injections of high pressure gas that is ionized by electrical discharges. Deflagration mode of discharge provides acceleration, and converging contours of plasma gun provide focusing.
Accelerator Technology Division
NASA Astrophysics Data System (ADS)
1992-04-01
In fiscal year (FY) 1991, the Accelerator Technology (AT) division continued fulfilling its mission to pursue accelerator science and technology and to develop new accelerator concepts for application to research, defense, energy, industry, and other areas of national interest. This report discusses the following programs: The Ground Test Accelerator Program; APLE Free-Electron Laser Program; Accelerator Transmutation of Waste; JAERI, OMEGA Project, and Intense Neutron Source for Materials Testing; Advanced Free-Electron Laser Initiative; Superconducting Super Collider; The High-Power Microwave Program; (Phi) Factory Collaboration; Neutral Particle Beam Power System Highlights; Accelerator Physics and Special Projects; Magnetic Optics and Beam Diagnostics; Accelerator Design and Engineering; Radio-Frequency Technology; Free-Electron Laser Technology; Accelerator Controls and Automation; Very High-Power Microwave Sources and Effects; and GTA Installation, Commissioning, and Operations.
NASA Astrophysics Data System (ADS)
Yu, Zong-Han; Wu, Chun-Ming; Lin, Yo-Wei; Chuang, Ming-Lung; Tsai, Jui-che; Sun, Chia-Wei
2008-02-01
Diffuse optical tomography (DOT) is an emerging technique for biomedical imaging. The imaging quality of the DOT strongly depends on the reconstruction algorithm. In this paper, four inhomogeneities with various shapes of absorption distributions are simulated by a continues-wave DOT system. The DOT images are obtained based on the simultaneous iterative reconstruction technique (SIRT) method. To solve the trade-off problem between time consumption of reconstruction process and accuracy of reconstructed image, the iteration process needs a optimization criterion in algorithm. In this paper, the comparison between the root mean square error (RMSE) and the convergence rate (CR) in SIRT algorithm are demonstrated. From the simulation results, the CR reveals the information of global minimum in the iteration process. Based on the CR calculation, the SIRT can offer higher efficient image reconstructing in DOT system.
FASART: An iterative reconstruction algorithm with inter-iteration adaptive NAD filter.
Zhou, Ziying; Li, Yugang; Zhang, Fa; Wan, Xiaohua
2015-01-01
Electron tomography (ET) is an essential imaging technique for studying structures of large biological specimens. These structures are reconstructed from a set of projections obtained at different sample orientations by tilting the specimen. However, most of existing reconstruction methods are not appropriate when the data are extremely noisy and incomplete. A new iterative method has been proposed: adaptive simultaneous algebraic reconstruction with inter-iteration adaptive non-linear anisotropic diffusion (NAD) filter (FASART). We also adopted an adaptive parameter and discussed the step for the filter in this reconstruction method. Experimental results show that FASART can restrain the noise generated in the process of iterative reconstruction and still preserve the more details of the structure edges.
NASA Astrophysics Data System (ADS)
Xie, Huiqing
2015-12-01
In this paper, a new iterative method is proposed to calculate a few eigenpair derivatives of damped systems. The proposed method simultaneously computes the derivatives of several simple eigenvalues and their corresponding eigenvectors. Eigenpair derivatives are directly determined in n-space. Moreover, our method does not require the left eigenvectors. Convergence theory of the proposed method is given. On these grounds, using vector ɛ-algorithm, acceleration techniques for our method are provided and analyzed. Finally some numerical experiments are reported to show the efficiency of the proposed methods.
Realization of Comfortable Massage by Using Iterative Learning Control Based on EEG
NASA Astrophysics Data System (ADS)
Teramae, Tatsuya; Kushida, Daisuke; Takemori, Fumiaki; Kitamura, Akira
Recently the massage chair is used by a lot of people because they are able to use it easily at home. However a present massage chair only realizes the massage motion. Moreover the massage chair can not consider the user’s condition and massage force. On the other hand, the professional masseur is according to presume the mental condition by patient’s reaction. Then this paper proposes the method of applying masseur’s procedure for the massage chair using iterative learning control based on EEG. And massage force is estimated by acceleration sensor. The realizability of the proposed method is verified by the experimental works using the massage chair.
Quartz Microbalance Study of 400-angstrom Thick Films near the lambda Point
NASA Technical Reports Server (NTRS)
Chan, Moses H. W.
2003-01-01
In a recent measurement we observed the thinning of an adsorbed helium film induced by the confinement of critical fluctuations a few millikelvin below the lambda point. A capacitor set-up was used to measure this Casimir effect. In this poster we will present our measurement of an adsorbed helium film of 400 angstroms near the lambda point with a quartz microbalance. For films this thick, we must take into account the non-linear dynamics of the shear waves in the fluid. In spite of the added complications, we were able to confirm the thinning of the film due to the Casimir effect and the onset of the superfluid transition. In addition, we observe a sharp anomaly at the bulk lambda point, most likely related to critical dissipation of the first sound. This work is carried out in collaboration with Rafael Garcia, Stephen Jordon and John Lazzaretti. This work is funded by NASA's Office of Biological and Physical Research under grant.
The experimental determination of C lambda using an absorbed dose calorimeter.
Williams, P C
1980-01-01
The absorbed dose conversion factors, C lambda, were introduced, by Greene and Massey, as an interim measure until a primary standard for high energy photon dosimetry could be established. The theoretical basis of these factors has been discussed extensively and a more rigorous definition has emerged. Experiments have been carried out to determine the values of C lambda, for a Tufnol walled, Baldwin-Farmer ionisation chamber over a range of energies from cobalt-60 to 12 MV. The experimental results, based on measurements with a calorimeter, presented here support the more rigorous definition but it is shown that the values obtained depend, to a small extent, on the assumptions made about the detailed construction of the ionisation chamber for which C lambda is measured.
Observation of the Helium 7 {Lambda} hypernucleus by the (e,e'K+) reaction
Nakamura, Satoshi; Okayasu, Yuichi; Seva, Tomislav; Rodriguez, Victor; Baturin, Pavlo; Yuan, Lulin; Acha Quimper, Armando; Ahmidouch, Abdellah; Androic, Darko; Asaturyan, Arshak; Asaturyan, Razmik; Baker, Oliver; Benmokhtar, Fatiha; Boeglin, Wener; Bosted, Peter; Carlini, Roger; Chen, Chunhua; Christy, Michael; Cole, Leon; Danagoulian, Samuel; Daniel, Aji; Dharmawardane, Kahanawita; Egiyan, Kim; Elaasar, Mostafa; Ent, Rolf; Fenker, Howard; Fujii, Yu; Furic, Miroslav; Gan, Liping; Gaskell, David; Gasparian, Ashot; Gibson, Edward; Toshiyuki, Gogami; Gueye, Paul; Han, Yuncheng; Hashimoto, Osamu; Hiyama, E; Honda, D; Horn, Tanja; Hu, Bitao; Hungerford, Ed; Jayalath, Chandana; Jones, Mark; Johnston, Kathleen; Kalantarians, Narbe; Kanda, Hiroki; Kaneta, M; Kato, Seigo; Kato, Shigeki; Kawama, Daisuke; Keppel, Cynthia; Kramer, Laird; Lan, Kejian; Luo, Wei; Mack, David; Maeda, Kazushige; Malace, Simona; Margaryan, Amur; Marikyan, Gagik; Markowitz, Pete; Maruta, Tomofumi; Maruyama, Nayuta; Miyoshi, Toshinuobu; Mkrtchyan, Arthur; Mkrtchyan, Hamlet; Nagao, Sho; Navasardyan, Tigran; Niculescu, Gabriel; Niculescu, Maria-Ioana; Nonaka, Kenichi; Ohtani, Atsushi; Oyamada, Masamichi; Perez, Naipy; Petkovic, Tomislav; Randeniya, Kapugodage; Raue, Brian; Reinhold, Joerg; Rivera Castillo, Roberto; Roche, Julie; Sato, Yoshinori; Segbefia, Edwin; Simicevic, Neven; Smith, Gregory; Song, Yushou; Sumihama, Mizuki; Tadevosyan, Vardan; Takahashi, Toshiyuki; Tang, Liguang; Tsukada, Kyo; Tvaskis, Vladas; Vulcan, William; Wells, Steven; Wood, Stephen; Yan, Chen; Zhamkochyan, Simon
2013-01-01
An experiment with a newly developed high-resolution kaon spectrometer (HKS) and a scattered electron spectrometer with a novel configuration was performed in Hall C at Jefferson Lab (JLab). The ground state of a neutron-rich hypernucleus, He 7 {Lambda}, was observed for the first time with the (e,e'K+) reaction with an energy resolution of ~0.6 MeV. This resolution is the best reported to date for hypernuclear reaction spectroscopy. The He 7 {Lambda} binding energy supplies the last missing information of the A=7, T=1 hypernuclear iso-triplet, providing a new input for the charge symmetry breaking (CSB) effect of {Lambda} N potential.
{lambda}NN and {sigma}NN systems at threshold. II. The effect of D waves
Garcilazo, H.; Valcarce, A.; Fernandez-Carames, T.
2007-09-15
Using the two-body interactions obtained from a chiral constituent quark model, we study all {lambda}NN and {sigma}NN states with I=0,1,2 and J=1/2,3/2 at threshold, taking into account all three-body configurations with S and D wave components. We constrain further the limits for the {lambda}N spin-triplet scattering length a{sub 1/2,1}. Using the hypertriton binding energy, we find a narrow interval for the possible values of the {lambda}N spin-singlet scattering length a{sub 1/2,0}. We find that the {sigma}NN system has a quasibound state in the (I,J)=(1,1/2) channel very near threshold with a width of about 2.1 MeV.
Demons deformable registration of CT and cone-beam CT using an iterative intensity matching approach
Nithiananthan, Sajendra; Schafer, Sebastian; Uneri, Ali; and others
2011-04-15
Purpose: A method of intensity-based deformable registration of CT and cone-beam CT (CBCT) images is described, in which intensity correction occurs simultaneously within the iterative registration process. The method preserves the speed and simplicity of the popular Demons algorithm while providing robustness and accuracy in the presence of large mismatch between CT and CBCT voxel values (''intensity''). Methods: A variant of the Demons algorithm was developed in which an estimate of the relationship between CT and CBCT intensity values for specific materials in the image is computed at each iteration based on the set of currently overlapping voxels. This tissue-specific intensity correction is then used to estimate the registration output for that iteration and the process is repeated. The robustness of the method was tested in CBCT images of a cadaveric head exhibiting a broad range of simulated intensity variations associated with x-ray scatter, object truncation, and/or errors in the reconstruction algorithm. The accuracy of CT-CBCT registration was also measured in six real cases, exhibiting deformations ranging from simple to complex during surgery or radiotherapy guided by a CBCT-capable C-arm or linear accelerator, respectively. Results: The iterative intensity matching approach was robust against all levels of intensity variation examined, including spatially varying errors in voxel value of a factor of 2 or more, as can be encountered in cases of high x-ray scatter. Registration accuracy without intensity matching degraded severely with increasing magnitude of intensity error and introduced image distortion. A single histogram match performed prior to registration alleviated some of these effects but was also prone to image distortion and was quantifiably less robust and accurate than the iterative approach. Within the six case registration accuracy study, iterative intensity matching Demons reduced mean TRE to (2.5{+-}2.8) mm compared to (3.5{+-}3.0) mm
Accelerators, Colliders, and Snakes
NASA Astrophysics Data System (ADS)
Courant, Ernest D.
2003-12-01
The author traces his involvement in the evolution of particle accelerators over the past 50 years. He participated in building the first billion-volt accelerator, the Brookhaven Cosmotron, which led to the introduction of the "strong-focusing" method that has in turn led to the very large accelerators and colliders of the present day. The problems of acceleration of spin-polarized protons are also addressed, with discussions of depolarizing resonances and "Siberian snakes" as a technique for mitigating these resonances.
Correlated Leading Baryon-antibaryon Production in e+e- to ccbar to Lambda_c+ antiLambda_c- X
Aubert, B.; Karyotakis, Y.; Lees, J.P.; Poireau, V.; Prencipe, E.; Prudent, X.; Tisserand, V.; Garra Tico, J.; Grauges, E.; Martinelli, M.; Palano, A.; Pappagallo, M.; Eigen, G.; Stugu, B.; Sun, L.; Battaglia, M.; Brown, D.N.; Hooberman, B.; Kerth, L.T.; Kolomensky, Yu.G.; Lynch, G. /UC, Berkeley /Birmingham U. /Ruhr U., Bochum /British Columbia U. /Brunel U. /Novosibirsk, IYF /UC, Irvine /UCLA /UC, Riverside /UC, San Diego /UC, Santa Barbara /UC, Santa Cruz /Caltech /Cincinnati U. /Colorado U. /Colorado State U. /Dortmund U. /Dresden, Tech. U. /Ecole Polytechnique /Edinburgh U. /INFN, Ferrara /Ferrara U. /INFN, Ferrara /INFN, Ferrara /Ferrara U. /INFN, Ferrara /INFN, Ferrara /Ferrara U. /Frascati /INFN, Genoa /Genoa U. /INFN, Genoa /INFN, Genoa /Genoa U. /INFN, Genoa /INFN, Genoa /Genoa U. /Harvard U. /Heidelberg U. /Humboldt U., Berlin /Imperial Coll., London /Iowa State U. /Iowa State U. /Johns Hopkins U. /Orsay, LAL /LLNL, Livermore /Liverpool U. /Queen Mary, U. of London /Royal Holloway, U. of London /Louisville U. /Mainz U., Inst. Kernphys. /Manchester U. /Maryland U. /Massachusetts U., Amherst /MIT /McGill U. /INFN, Milan /Milan U. /INFN, Milan /INFN, Milan /Milan U. /Mississippi U. /Montreal U. /Mt. Holyoke Coll. /INFN, Naples /Naples U. /INFN, Naples /INFN, Naples /Naples U. /NIKHEF, Amsterdam /Notre Dame U. /Ohio State U. /Oregon U. /INFN, Padua /Padua U. /INFN, Padua /INFN, Padua /Padua U. /Paris U., VI-VII /Pennsylvania U. /INFN, Perugia /Perugia U. /INFN, Pisa /Pisa U. /INFN, Pisa /Pisa, Scuola Normale Superiore /INFN, Pisa /Pisa U. /INFN, Pisa /Princeton U. /INFN, Rome /INFN, Rome /Rome U. /INFN, Rome /INFN, Rome /Rome U. /INFN, Rome /INFN, Rome /Rome U. /INFN, Rome /INFN, Rome /Rome U. /INFN, Rome /Rostock U. /Rutherford /DAPNIA, Saclay /SLAC /South Carolina U. /Stanford U., Phys. Dept. /SUNY, Albany /Tel Aviv U. /Tennessee U. /Texas U. /Texas U., Dallas /INFN, Turin /Turin U. /INFN, Trieste /Trieste U. /Valencia U. /Victoria U. /Warwick U. /Wisconsin U., Madison
2011-08-22
We present a study of 649 {+-} 35 e{sup +}e{sup -} {yields} c{bar c} events produced at {radical}s {approx} 10.6 GeV containing both a {Lambda}{sub c}{sup +} baryon and a {bar {Lambda}}{sub c}{sup -} antibaryon. The number observed is roughly four times that expected if the leading charmed hadron types are uncorrelated, confirming an observation by the CLEO Collaboration. We find a 2-jet topology in these events but very few additional baryons, demonstrating that the primary c and {bar c} are predominantly contained in a correlated baryon-antibaryon system. In addition to the charmed baryons we observe on average 2.6 {+-} 0.2 charged intermediate mesons, predominantly pions, carrying 65% of the remaining energy.
Adler, C; Ahammed, Z; Allgower, C; Amonett, J; Anderson, B D; Anderson, M; Averichev, G S; Balewski, J; Barannikova, O; Barnby, L S; Baudot, J; Bekele, S; Belaga, V V; Bellwied, R; Berger, J; Bichsel, H; Billmeier, A; Bland, L C; Blyth, C O; Bonner, B E; Boucham, A; Brandin, A; Bravar, A; Cadman, R V; Caines, H; Calderón de la Barca Sánchez, M; Cardenas, A; Carroll, J; Castillo, J; Castro, M; Cebra, D; Chaloupka, P; Chattopadhyay, S; Chen, Y; Chernenko, S P; Cherney, M; Chikanian, A; Choi, B; Christie, W; Coffin, J P; Cormier, T M; Cramer, J G; Crawford, H J; Deng, W S; Derevschikov, A A; Didenko, L; Dietel, T; Draper, J E; Dunin, V B; Dunlop, J C; Eckardt, V; Efimov, L G; Emelianov, V; Engelage, J; Eppley, G; Erazmus, B; Fachini, P; Faine, V; Filimonov, K; Finch, E; Fisyak, Y; Flierl, D; Foley, K J; Fu, J; Gagliardi, C A; Gagunashvili, N; Gans, J; Gaudichet, L; Germain, M; Geurts, F; Ghazikhanian, V; Grachov, O; Grigoriev, V; Guedon, M; Gushin, E; Hallman, T J; Hardtke, D; Harris, J W; Henry, T W; Heppelmann, S; Herston, T; Hippolyte, B; Hirsch, A; Hjort, E; Hoffmann, G W; Horsley, M; Huang, H Z; Humanic, T J; Igo, G; Ishihara, A; Ivanshin, Yu I; Jacobs, P; Jacobs, W W; Janik, M; Johnson, I; Jones, P G; Judd, E G; Kaneta, M; Kaplan, M; Keane, D; Kiryluk, J; Kisiel, A; Klay, J; Klein, S R; Klyachko, A; Konstantinov, A S; Kopytine, M; Kotchenda, L; Kovalenko, A D; Kramer, M; Kravtsov, P; Krueger, K; Kuhn, C; Kulikov, A I; Kunde, G J; Kunz, C L; Kutuev, R Kh; Kuznetsov, A A; Lakehal-Ayat, L; Lamont, M A C; Landgraf, J M; Lange, S; Lansdell, C P; Lasiuk, B; Laue, F; Lebedev, A; Lednický, R; Leontiev, V M; LeVine, M J; Li, Q; Lindenbaum, S J; Lisa, M A; Liu, F; Liu, L; Liu, Z; Liu, Q J; Ljubicic, T; Llope, W J; LoCurto, G; Long, H; Longacre, R S; Lopez-Noriega, M; Love, W A; Ludlam, T; Lynn, D; Ma, J; Majka, R; Margetis, S; Markert, C; Martin, L; Marx, J; Matis, H S; Matulenko, Yu A; McShane, T S; Meissner, F; Melnick, Yu; Meschanin, A; Messer, M; Miller, M L; Milosevich, Z; Minaev, N G; Mitchell, J; Moiseenko, V A; Moore, C F; Morozov, V; de Moura, M M; Munhoz, M G; Nelson, J M; Nevski, P; Nikitin, V A; Nogach, L V; Norman, B; Nurushev, S B; Odyniec, G; Ogawa, A; Okorokov, V; Oldenburg, M; Olson, D; Paic, G; Pandey, S U; Panebratsev, Y; Panitkin, S Y; Pavlinov, A I; Pawlak, T; Perevoztchikov, V; Peryt, W; Petrov, V A; Planinic, M; Pluta, J; Porile, N; Porter, J; Poskanzer, A M; Potrebenikova, E; Prindle, D; Pruneau, C; Putschke, J; Rai, G; Rakness, G; Ravel, O; Ray, R L; Razin, S V; Reichhold, D; Reid, J G; Retiere, F; Ridiger, A; Ritter, H G; Roberts, J B; Rogachevski, O V; Romero, J L; Rose, A; Roy, C; Rykov, V; Sakrejda, I; Salur, S; Sandweiss, J; Saulys, A C; Savin, I; Schambach, J; Scharenberg, R P; Schmitz, N; Schroeder, L S; Schüttauf, A; Schweda, K; Seger, J; Seliverstov, D; Seyboth, P; Shahaliev, E; Shestermanov, K E; Shimanskii, S S; Shvetcov, V S; Skoro, G; Smirnov, N; Snellings, R; Sorensen, P; Sowinski, J; Spinka, H M; Srivastava, B; Stephenson, E J; Stock, R; Stolpovsky, A; Strikhanov, M; Stringfellow, B; Struck, C; Suaide, A A P; Sugarbaker, E; Suire, C; Sumbera, M; Surrow, B; Symons, T J M; Szanto de Toledo, A; Szarwas, P; Tai, A; Takahashi, J; Tang, A H; Thomas, J H; Thompson, M; Tikhomirov, V; Tokarev, M; Tonjes, M B; Trainor, T A; Trentalange, S; Tribble, R E; Trofimov, V; Tsai, O; Ullrich, T; Underwood, D G; Van Buren, G; VanderMolen, A M; Vasilevski, I M; Vasiliev, A N; Vigdor, S E; Voloshin, S A; Wang, F; Ward, H; Watson, J W; Wells, R; Westfall, G D; Whitten, C; Wieman, H; Willson, R; Wissink, S W; Witt, R; Wood, J; Xu, N; Xu, Z; Yakutin, A E; Yamamoto, E; Yang, J; Yepes, P; Yurevich, V I; Zanevski, Y V; Zborovský, I; Zhang, H; Zhang, W M; Zoulkarneev, R; Zubarev, A N
2002-09-23
We report STAR results on the azimuthal anisotropy parameter v(2) for strange particles K(0)(S), Lambda, and Lambda at midrapidity in Au+Au collisions at sqrt[s(NN)]=130 GeV at the Relativistic Heavy Ion Collider. The value of v(2) as a function of transverse momentum, p(t), of the produced particle and collision centrality is presented for both particles up to p(t) approximately 3.0 GeV/c. A strong p(t) dependence in v(2) is observed up to 2.0 GeV/c. The v(2) measurement is compared with hydrodynamic model calculations. The physics implications of the p(t) integrated v(2) magnitude as a function of particle mass are also discussed.
ERIC Educational Resources Information Center
Willis, Mariam
2012-01-01
Acceleration is one tool for providing high-ability students the opportunity to learn something new every day. Some people talk about acceleration as taking a student out of step. In actuality, what one is doing is putting a student in step with the right curriculum. Whole-grade acceleration, also called grade-skipping, usually happens between…
Angular Acceleration without Torque?
ERIC Educational Resources Information Center
Kaufman, Richard D.
2012-01-01
Hardly. Just as Robert Johns qualitatively describes angular acceleration by an internal force in his article "Acceleration Without Force?" here we will extend the discussion to consider angular acceleration by an internal torque. As we will see, this internal torque is due to an internal force acting at a distance from an instantaneous center.
NASA Technical Reports Server (NTRS)
Mcdermott, P. P.
1980-01-01
The design of an accelerated life test program for electric batteries is discussed. A number of observations and suggestions on the procedures and objectives for conducting an accelerated life test program are presented. Equations based on nonlinear regression analysis for predicting the accelerated life test parameters are discussed.
Barnidge, David R; Dasari, Surendra; Ramirez-Alvarado, Marina; Fontan, Adrian; Willrich, Maria A V; Tschumper, Renee C; Jelinek, Diane F; Snyder, Melissa R; Dispenzieri, Angela; Katzmann, Jerry A; Murray, David L
2014-11-07
We previously described a microLC-ESI-Q-TOF MS method for identifying monoclonal immunoglobulins in serum and then tracking them over time using their accurate molecular mass. Here we demonstrate how the same methodology can be used to identify and characterize polyclonal immunoglobulins in serum. We establish that two molecular mass distributions observed by microLC-ESI-Q-TOF MS are from polyclonal kappa and lambda light chains using a combination of theoretical molecular masses from gene sequence data and the analysis of commercially available purified polyclonal IgG kappa and IgG lambda from normal human serum. A linear regression comparison of kappa/lambda ratios for 74 serum samples (25 hypergammaglobulinemia, 24 hypogammaglobulinemia, 25 normal) determined by microflowLC-ESI-Q-TOF MS and immunonephelometry had a slope of 1.37 and a correlation coefficient of 0.639. In addition to providing kappa/lambda ratios, the same microLC-ESI-Q-TOF MS analysis can determine the molecular mass for oligoclonal light chains observed above the polyclonal background in patient samples. In 2 patients with immune disorders and hypergammaglobulinemia, we observed a skewed polyclonal molecular mass distribution which translated into biased kappa/lambda ratios. Mass spectrometry provides a rapid and simple way to combine the polyclonal kappa/lambda light chain abundance ratios with the identification of dominant monoclonal as well as oligoclonal light chain immunoglobulins. We anticipate that this approach to evaluating immunoglobulin light chains will lead to improved understanding of immune deficiencies, autoimmune diseases, and antibody responses.
George, Thomas; Beevi, S Naseema; Xavier, George; Kumar, N Pratheesh; George, Jayesh
2013-06-01
The dissipation kinetics and method for estimation of residues of chlorpyrifos and lambda-cyhalothrin in cardamom were studied and developed. The limit of detection and limit of quantitation arrived for the compounds were 0.01 and 0.025 μg g(-1), respectively. Gas chromatographic response of chlorpyrifos and lambda-cyhalothrin residues was linear in the range of 0.01-0.50 μg g(-1) and the mean recovery obtained was 97.3 % for chlorpyrifos and 98.9 % for lambda-cyhalothrin with satisfactory relative standard deviation values. The mean initial residues of chlorpyrifos applied at a concentration of 0.05 % in cardamom was 2.5 μg g(-1) and the residue was 8.1 μg g(-1) after processing, with a processing factor of 3.24, while lambda-cyhalothrin when applied at 0.0025 % resulted in initial residues of 1.63 μg g(-1) that magnified to 4.86 μg g(-1) on curing, with a processing factor of 2.98. The half-life of chlorpyrifos was in the range of 5.1-5.24 days while that of lambda-cyhalothrin was in the range of 4.40-4.55 days. The processing factor arrived at in the above experiment lead to the conclusion that the residues of chlorpyrifos got magnified to 3.24-3.68 times and that of lambda-cyhalothrin got magnified to 2.98-3.46 times of initial residues, consequent to loss of weight due to dehydration during curing.
Fate of the insecticide lambda-cyhalothrin in ditch enclosures differing in vegetation density.
Leistra, Minze; Zweers, Anton J; Warinton, Jacqui S; Crum, Steven J H; Hand, Laurence H; Beltman, Wim H J; Maund, Stephen J
2004-01-01
Use of the insecticide lambda-cyhalothrin in agriculture may result in the contamination of water bodies, for example by spray drift. Therefore, the possible exposure of aquatic organisms to this insecticide needs to be evaluated. The exposure of the organisms may be reduced by the strong sorption of the insecticide to organic materials and its susceptibility to hydrolysis at the high pH values in the natural range. In experiments done in May and August, formulated lambda-cyhalothrin was mixed with the water body of enclosures in experimental ditches containing a bottom layer and macrophytes (at different densities) or phytoplankton. Concentrations of lambda-cyhalothrin in the water body and in the sediment layer, and contents in the plant compartment, were measured by gas-liquid chromatography at various times up to 1 week after application. Various water quality parameters were also measured. Concentrations of lambda-cyhalothrin decreased rapidly in the water column: 1 day after application, 24-40% of the dose remained in the water, and by 3 days it had declined to 1.8-6.5%. At the highest plant density, lambda-cyhalothrin residue in the plant compartment reached a maximum of 50% of the dose after 1 day; at intermediate and low plant densities, this maximum was only 3-11% of the dose (after 1-2 days). The percentage of the insecticide in the ditch sediment was 12% or less of the dose and tended to be lower at higher plant densities. Alkaline hydrolysis in the water near the surface of macrophytes and phytoplankton is considered to be the main dissipation process for lambda-cyhalothrin.
Gabig, M; Obuchowski, M; Wegrzyn, A; Szalewska-Pałasz, A; Thomas, M S; Wegrzyn, G
1998-08-01
Bacteriophage lambda is unable to lysogenize Escherichia coli hosts harbouring the rpoA341 mutation due to a drastic reduction in transcription from CII-activated lysogenic promoters (pE, pI and paQ). In addition, the level of early transcripts involved in the lytic pathway of lambda development is also decreased in this genetic background due to impaired N-dependent antitermination. Here, it is demonstrated that despite the reduced level of early lytic pL- and pR-derived transcripts, lytic growth of bacteriophage lambda is not affected in rich media. The level of the late lytic, pR-derived transcripts also remains unaffected by the rpoA341 mutation under these conditions. However, it was found that whilst there is no significant difference in the phage burst size in rpoA+ and rpoA341 hosts growing in rich media, phage lambda is not able to produce progeny in the rpoA341 mutant growing in minimal medium, in contrast to otherwise isogenic rpoA+ bacteria. Provision of an excess of the phage replication proteins O and P in trans or overproduction of the antitermination protein N restore the ability of phage lambda to produce progeny in the rpoA341 mutant under the latter conditions. These results suggest that in rich media phage lambda produces some early proteins in excess of that needed for its effective propagation and indicate that replication proteins may be limiting factors for phage lytic growth in poor media.
Accelerated augmented Lagrangian method for few-view CT reconstruction
NASA Astrophysics Data System (ADS)
Wu, Junfeng; Mou, Xuanqin
2012-03-01
Recently iterative reconstruction algorithms with total variation (TV) regularization have shown its tremendous power in image reconstruction from few-view projection data, but it is much more demanding in computation. In this paper, we propose an accelerated augmented Lagrangian method (ALM) for few-view CT reconstruction with total variation regularization. Experimental phantom results demonstrate that the proposed method not only reconstruct high quality image from few-view projection data but also converge fast to the optimal solution.
Dust Accelerators And Their Applications In High-Temperature Plasmas
Ticos, Catalin M.; Wang Zhehui
2011-06-01
The perennial presence of dust in high-temperature plasma and fusion devices has been firmly established. Dust inventory must be controlled, in particular in the next-generation steady-state fusion machines like ITER, as it can pose significant safety hazards and potentially interfere with fusion energy production. Although much effort has been devoted to getting rid of the dust nuisance, there are instances where a controlled use of dust can be beneficial. We have recognized a number of dust-accelerators applications in magnetic fusion, including in plasma diagnostics, in studying dust-plasma interactions, and more recently in edge localized mode (ELM)'s pacing. With the applications in mind, we will compare various acceleration methods, including electrostatic, gas-drag, and plasma-drag acceleration. We will also describe laboratory experiments and results on dust acceleration.
Dust accelerators and their applications in high-temperature plasmas
Wang, Zhehui; Ticos, Catakin M
2010-01-01
The perennial presence of dust in high-temperature plasma and fusion devices has been firmly established. Dust inventory must be controlled, in particular in the next-generation steady-state fusion machines like ITER, as it can pose significant safety hazards and potentially interfere with fusion energy production. Much effort has been devoted to gening rid of the dust nuisance. We have recognized a number of dust-accelerators applications in magnetic fusion, including in plasma diagnostics, in studying dust-plasma interactions, and more recently in edge localized mode (ELM)'s pacing. With the applications in mind, we will compare various acceleration methods, including electrostatic, gas-drag, and plasma-drag acceleration. We will also describe laboratory experiments and results on dust acceleration.
Specific Heat of Helium at Constant Volume along the Lambda Line
Lipa, J. A.; Nissen, J. A.; Avaloff, D.; Wang, Suwen
2006-09-07
We report new measurements of the constant-volume specific heat of helium along the lambda line from 0.15 to 24.4 bars. The pressure in the cell was also recorded as a function of temperature using a gauge with a superconducting readout. This data can be used to convert the results to the constant-pressure specific heat along isobars. The constant-volume data compare well with earlier results and extend the temperature range of the measurements much closer to the lambda line. A preliminary conversion to Cp(T,P) indicates good agreement with universality.
Structure of Lambda(1405) and threshold behavior of pi Sigma scattering
Yoichi Ikeda, Tesuo Hyodo, Daisuke Jido, Hiroyuki Kamano, Toru Sato, Koichi Yazaki
2011-01-01
The scattering length and effective range of the pi-Sigma channel are studied in order to characterize the strangeness S = -1 meson-baryon scattering and the Lambda (1405) resonance. We examine various off-shell dependence of the amplitude in dynamical chiral models to evaluate the threshold quantities with the constraint at the KN threshold. We find that the pi-Sigma threshold parameters are important to the structure of the Lambda (1405) resonance and provide further constraints on the subthreshold extrapolation of the KN interaction.
Branching ratios from B{sub s} and {Lambda}{sub b}{sup 0}
Matthew S. Martin
2004-05-28
CDF Run II relative branching ratio measurements for 65 pb{sup -1} of data in the channels B{sub s} {yields} D{sub s}{sup {-+}}{pi}{sup {-+}}, {Lambda} {sub b}{sup 0} {yields} {Lambda}{sub c}{sup {+-}}{pi}{sup {-+}} and B {yields} h{sup +}h{sup -} are presented. Further, an observation of B{sub s} {yields} K{sup {+-}} K{sup {-+}} and a measurement of A{sub CP} are presented.
Corneal topography matching by iterative registration.
Wang, Junjie; Elsheikh, Ahmed; Davey, Pinakin G; Wang, Weizhuo; Bao, Fangjun; Mottershead, John E
2014-11-01
Videokeratography is used for the measurement of corneal topography in overlapping portions (or maps) which must later be joined together to form the overall topography of the cornea. The separate portions are measured from different viewpoints and therefore must be brought together by registration of measurement points in the regions of overlap. The central map is generally the most accurate, but all maps are measured with uncertainty that increases towards the periphery. It becomes the reference (or static) map, and the peripheral (or dynamic) maps must then be transformed by rotation and translation so that the overlapping portions are matched. The process known as registration, of determining the necessary transformation, is a well-understood procedure in image analysis and has been applied in several areas of science and engineering. In this article, direct search optimisation using the Nelder-Mead algorithm and several variants of the iterative closest/corresponding point routine are explained and applied to simulated and real clinical data. The measurement points on the static and dynamic maps are generally different so that it becomes necessary to interpolate, which is done using a truncated series of Zernike polynomials. The point-to-plane iterative closest/corresponding point variant has the advantage of releasing certain optimisation constraints that lead to persistent registration and alignment errors when other approaches are used. The point-to-plane iterative closest/corresponding point routine is found to be robust to measurement noise, insensitive to starting values of the transformation parameters and produces high-quality results when using real clinical data.
Half-range acceleration for one-dimensional transport problems
Zika, M.R.; Larsen, E.W.
1998-12-31
Researchers have devoted considerable effort to developing acceleration techniques for transport iterations in highly diffusive problems. The advantages and disadvantages of source iteration, rebalance, diffusion synthetic acceleration (DSA), transport synthetic acceleration (TSA), and projection acceleration methods are documented in the literature and will not be discussed here except to note that no single method has proven to be applicable to all situations. Here, the authors describe a new acceleration method that is based solely on transport sweeps, is algebraically linear (and is therefore amenable to a Fourier analysis), and yields a theoretical spectral radius bounded by one-third for all cases. This method does not introduce spatial differencing difficulties (as is the case for DSA) nor does its theoretical performance degrade as a function of mesh and material properties (as is the case for TSA). Practical simulations of the new method agree with the theoretical predictions, except for scattering ratios very close to unity. At this time, they believe that the discrepancy is due to the effect of boundary conditions. This is discussed further.
Formation of Primordial Stars in a Lambda-CDM Universe
Yoshida, Naoki; Omukai, Kazuyuki; Hernquist, Lars; Abel, Tom; /KIPAC, Menlo Park
2006-06-09
Primordial stars are formed from a chemically pristine gas consisting of hydrogen and helium. They are believed to have been born at some early epoch in the history of the Universe and to have enriched the interstellar medium with synthesized heavy elements before the emergence of ordinary stellar populations. We study the formation of the first generation of stars in the standard cold dark matter model. We follow the gravitational collapse and thermal evolution of primordial gas clouds within early cosmic structures using very high-resolution, cosmological hydrodynamic simulations. Our simulation achieves a dynamic range of {approx} 10{sup 10} in length scale. With accurate treatment of atomic and molecular physics, it allows us to study the chemo-thermal evolution of primordial gas clouds to densities up to {rho} {approx} 2 x 10{sup -8}g cm{sup -3} (n{sub H} {approx} 10{sup 16}cm{sup -3}) without assuming any a priori equation of state; a six orders of magnitudes improvement over previous three-dimensional calculations. We implement an extensive chemistry network for hydrogen, helium and deuterium. All the relevant atomic and molecular cooling and heating processes, including cooling by collision-induced continuum emission, are implemented. For calculating optically thick H{sub 2} cooling at high densities, we use the Sobolev method (Sobolev 1960) and evaluate the molecular line opacities for a few hundred lines. We validate the accuracy of the method by performing a spherical collapse test and comparing the results with those of accurate one-dimensional calculations that treat the line radiative transfer problem in a fully self-consistent manner. We then perform a cosmological simulation adopting the standard {Lambda}CDM model. Dense gas clumps are formed at the centers of low mass ({approx} 10{sup 5-6}M{sub {circle_dot}}) dark matter halos at redshifts z {approx} 20, and they collapse gravitationally when the cloud mass exceeds a few hundred solar masses. To
Adaptable Iterative and Recursive Kalman Filter Schemes
NASA Technical Reports Server (NTRS)
Zanetti, Renato
2014-01-01
Nonlinear filters are often very computationally expensive and usually not suitable for real-time applications. Real-time navigation algorithms are typically based on linear estimators, such as the extended Kalman filter (EKF) and, to a much lesser extent, the unscented Kalman filter. The Iterated Kalman filter (IKF) and the Recursive Update Filter (RUF) are two algorithms that reduce the consequences of the linearization assumption of the EKF by performing N updates for each new measurement, where N is the number of recursions, a tuning parameter. This paper introduces an adaptable RUF algorithm to calculate N on the go, a similar technique can be used for the IKF as well.
Iterative repair for scheduling and rescheduling
NASA Technical Reports Server (NTRS)
Zweben, Monte; Davis, Eugene; Deale, Michael
1991-01-01
An iterative repair search method is described called constraint based simulated annealing. Simulated annealing is a hill climbing search technique capable of escaping local minima. The utility of the constraint based framework is shown by comparing search performance with and without the constraint framework on a suite of randomly generated problems. Results are also shown of applying the technique to the NASA Space Shuttle ground processing problem. These experiments show that the search methods scales to complex, real world problems and reflects interesting anytime behavior.
Unifying iteration rule for fractal objects
NASA Astrophysics Data System (ADS)
Kittel, A.; Parisi, J.; Peinke, J.; Baier, G.; Klein, M.; Rössler, O. E.
1997-03-01
We introduce an iteration rule for real numbers capable to generate attractors with dragon-, snowflake-, sponge-, or Swiss-flag-like cross sections. The idea behind it is the mapping of a torus into two (or more) shrunken and twisted tori located inside the previous one. Three distinct parameters define the symmetry, the dimension, and the connectedness or disconnectedness of the fractal object. For some selected triples of parameter values, a couple of well known fractal geometries (e.g. the Cantor set, the Sierpinski gasket, or the Swiss flag) can be gained as special cases.
Design of the ITER ICRF Antenna
Hancock, D.; Nightingale, M.; Bamber, R.; Dalton, N.; Lister, J.; Porton, M.; Shannon, M.; Wilson, D.; Wooldridge, E.; Winkler, K.
2011-12-23
The CYCLE consortium has been designing the ITER ICRF antenna since March 2010, supported by an F4E grant. Following a brief introduction to the consortium, this paper: describes the present status and layout of the design; highlights the key mechanical engineering features; shows the expected impact of cooling and radiation issues on the design and outlines the need for future R and D to support the design process. A key design requirement is the need for the mechanical design and analysis to be consistent with all requirements following from the RF physics and antenna layout optimisation. As such, this paper complements that of Durodie et al.
Final Report on ITER Task Agreement 81-08
Richard L. Moore
2008-03-01
As part of an ITER Implementing Task Agreement (ITA) between the ITER US Participant Team (PT) and the ITER International Team (IT), the INL Fusion Safety Program was tasked to provide the ITER IT with upgrades to the fusion version of the MELCOR 1.8.5 code including a beryllium dust oxidation model. The purpose of this model is to allow the ITER IT to investigate hydrogen production from beryllium dust layers on hot surfaces inside the ITER vacuum vessel (VV) during in-vessel loss-of-cooling accidents (LOCAs). Also included in the ITER ITA was a task to construct a RELAP5/ATHENA model of the ITER divertor cooling loop to model the draining of the loop during a large ex-vessel pipe break followed by an in-vessel divertor break and compare the results to a simular MELCOR model developed by the ITER IT. This report, which is the final report for this agreement, documents the completion of the work scope under this ITER TA, designated as TA 81-08.
Badziak, J.; Jablonski, S.
2011-08-15
It is shown by means of particle-in-cell simulations that a high-fluence ({>=}1 GJ/cm{sup 2}) solid-density plasma projectile can be accelerated up to sub-relativistic velocities by radiation pressure of an ultraviolet (UV) picosecond laser pulse of moderate values of dimensionless laser amplitude a{sub 0}{approx}10. The efficiency of acceleration by the UV laser is significantly higher than in the case of long-wavelength ({lambda} {approx} 1 {mu}m) driver of a comparable value of a{sub 0}, and the motion of the projectile is fairly well described by the ''Light Sail'' acceleration model.
Hammond, Andrew P.; /Reed Coll. /SLAC
2010-08-25
One of the options for future particle accelerators are photonic band gap (PBG) fiber accelerators. PBG fibers are specially designed optical fibers that use lasers to excite an electric field that is used to accelerate electrons. To improve PBG accelerators, the basic parameters of the fiber were tested to maximize defect size and acceleration. Using the program CUDOS, several accelerating modes were found that maximized these parameters for several wavelengths. The design of multiple defects, similar to having closely bound fibers, was studied to find possible coupling or the change of modes. The amount of coupling was found to be dependent on distance separated. For certain distances accelerating coupled modes were found and examined. In addition, several non-periodic fiber structures were examined using CUDOS. The non-periodic fibers produced several interesting results and promised more modes given time to study them in more detail.
High brightness electron accelerator
Sheffield, Richard L.; Carlsten, Bruce E.; Young, Lloyd M.
1994-01-01
A compact high brightness linear accelerator is provided for use, e.g., in a free electron laser. The accelerator has a first plurality of acclerating cavities having end walls with four coupling slots for accelerating electrons to high velocities in the absence of quadrupole fields. A second plurality of cavities receives the high velocity electrons for further acceleration, where each of the second cavities has end walls with two coupling slots for acceleration in the absence of dipole fields. The accelerator also includes a first cavity with an extended length to provide for phase matching the electron beam along the accelerating cavities. A solenoid is provided about the photocathode that emits the electons, where the solenoid is configured to provide a substantially uniform magnetic field over the photocathode surface to minimize emittance of the electons as the electrons enter the first cavity.
Electron bunch profile reconstruction based on phase-constrained iterative algorithm
NASA Astrophysics Data System (ADS)
Bakkali Taheri, F.; Konoplev, I. V.; Doucas, G.; Baddoo, P.; Bartolini, R.; Cowley, J.; Hooker, S. M.
2016-03-01
The phase retrieval problem occurs in a number of areas in physics and is the subject of continuing investigation. The one-dimensional case, e.g., the reconstruction of the temporal profile of a charged particle bunch, is particularly challenging and important for particle accelerators. Accurate knowledge of the longitudinal (time) profile of the bunch is important in the context of linear colliders, wakefield accelerators and for the next generation of light sources, including x-ray SASE FELs. Frequently applied methods, e.g., minimal phase retrieval or other iterative algorithms, are reliable if the Blaschke phase contribution is negligible. This, however, is neither known a priori nor can it be assumed to apply to an arbitrary bunch profile. We present a novel approach which gives reproducible, most-probable and stable reconstructions for bunch profiles (both artificial and experimental) that would otherwise remain unresolved by the existing techniques.
Colgate, S.A.
1993-12-31
The origin of cosmic rays and applicable laboratory experiments are discussed. Some of the problems of shock acceleration for the production of cosmic rays are discussed in the context of astrophysical conditions. These are: The presumed unique explanation of the power law spectrum is shown instead to be a universal property of all lossy accelerators; the extraordinary isotropy of cosmic rays and the limited diffusion distances implied by supernova induced shock acceleration requires a more frequent and space-filling source than supernovae; the near perfect adiabaticity of strong hydromagnetic turbulence necessary for reflecting the accelerated particles each doubling in energy roughly 10{sup 5} to {sup 6} scatterings with negligible energy loss seems most unlikely; the evidence for acceleration due to quasi-parallel heliosphere shocks is weak. There is small evidence for the expected strong hydromagnetic turbulence, and instead, only a small number of particles accelerate after only a few shock traversals; the acceleration of electrons in the same collisionless shock that accelerates ions is difficult to reconcile with the theoretical picture of strong hydromagnetic turbulence that reflects the ions. The hydromagnetic turbulence will appear adiabatic to the electrons at their much higher Larmor frequency and so the electrons should not be scattered incoherently as they must be for acceleration. Therefore the electrons must be accelerated by a different mechanism. This is unsatisfactory, because wherever electrons are accelerated these sites, observed in radio emission, may accelerate ions more favorably. The acceleration is coherent provided the reconnection is coherent, in which case the total flux, as for example of collimated radio sources, predicts single charge accelerated energies much greater than observed.
Iterative image reconstruction in spectral CT
NASA Astrophysics Data System (ADS)
Hernandez, Daniel; Michel, Eric; Kim, Hye S.; Kim, Jae G.; Han, Byung H.; Cho, Min H.; Lee, Soo Y.
2012-03-01
Scan time of spectral-CTs is much longer than conventional CTs due to limited number of x-ray photons detectable by photon-counting detectors. However, the spectral pixel information in spectral-CT has much richer information on physiological and pathological status of the tissues than the CT-number in conventional CT, which makes the spectral- CT one of the promising future imaging modalities. One simple way to reduce the scan time in spectral-CT imaging is to reduce the number of views in the acquisition of projection data. But, this may result in poorer SNR and strong streak artifacts which can severely compromise the image quality. In this work, spectral-CT projection data were obtained from a lab-built spectral-CT consisting of a single CdTe photon counting detector, a micro-focus x-ray tube and scan mechanics. For the image reconstruction, we used two iterative image reconstruction methods, the simultaneous iterative reconstruction technique (SIRT) and the total variation minimization based on conjugate gradient method (CG-TV), along with the filtered back-projection (FBP) to compare the image quality. From the imaging of the iodine containing phantoms, we have observed that SIRT and CG-TV are superior to the FBP method in terms of SNR and streak artifacts.
ITER Central Solenoid support structure analysis
Freudenberg, Kevin D; Myatt, R.
2011-01-01
The ITER Central Solenoid (CS) is comprised of six independent coils held together by a pre-compression support structure. This structure must provide enough preload to maintain sufficient coil-to-coil contact and interface load throughout the current pulse. End of burn (EOB) represents one of the most extreme time-points doing the reference scenario when the currents in the CS3 coils oppose those of CS1 & CS2. The CS structure is performance limited by the room temperature static yield requirements needed to support the roughly 180 MN preload to resist coil separation during operation. This preload is applied by inner and external tie plates along the length of the coil stack by mechanical fastening methods utilizing Superbolt technology. The preloading structure satisfies the magnet structural design criteria of ITER and will be verified during mockup studies. The solenoid is supported from the bottom of the toroidal field (TF) coil casing in both the vertical radial directions. The upper support of the CS coil structure maintains radial registration with the TF coil in the event of vertical disruptions (VDE) loads and earthquakes. All of these structure systems are analyzed via a global finite element analysis (FEA). The model includes a complete sector of the TF coil and the CS coil/structure in one self-consistent analysis. The corresponding results and design descriptions are described in this report.
ITER plant layout and site services
NASA Astrophysics Data System (ADS)
Chuyanov, V. A.
2000-03-01
The ITER site has not yet been determined. Nevertheless, to develop a construction plan and a cost estimate, it is necessary to have a detailed layout of the buildings, structures and outdoor equipment integrated with the balance of plant service systems prototypical of large fusion power plants. These services include electrical power for magnet feeds and plasma heating systems, cryogenic and conventional cooling systems, compressed air, gas supplies, demineralized water, steam and drainage. Nuclear grade facilities are provided to handle tritium fuel and activated waste, as well as to prevent radiation exposure of workers and the public. To prevent interference between services of different types and for efficient arrangement of buildings, structures and equipment within the site area, a plan was developed which segregated different classes of services to four quadrants surrounding the tokamak building, placed at the approximate geographical centre of the site. The locations of the buildings on the generic site were selected to meet all design requirements at minimum total project cost. A similar approach was used to determine the locations of services above, at and below grade. The generic site plan can be adapted to the site selected for ITER without significant changes to the buildings or equipment. Some rearrangements may be required by site topography, resulting primarily in changes to the length of services that link the buildings and equipment.
Iterative deconvolution methods for ghost imaging
NASA Astrophysics Data System (ADS)
Wang, Wei; Situ, Guohai
2016-10-01
Ghost imaging (GI) is an important technique in single-pixel imaging. It has been demonstrated that GI has applications in various areas such as imaging through harsh environments and optical encryption. Correlation is widely used to reconstruct the object image in GI. But it only offers the signal-to-noise ratios (SNR) of the reconstructed image linearly proportional to the number of measurements. Here, we develop a kind of iterative deconvolution methods for GI. With the known image transmission matrix in GI, the first one uses an iterative algorithm to decrease the error between the reconstructed image and the ground-truth image. Ideally, the error converges to a minimum for speckle patterns when the number of measurements is larger than the number of resolution cells. The second technique, Gerchberg-Saxton (GS) like GI, takes the advantage of the integral property of the Fourier transform, and treats the captured data as constraints for image reconstruction. According to this property, we can regard the data recorded by the bucket detector as the Fourier transform of the object image evaluated at the origin. Each of the speckle patterns randomly selects certain spectral components of the object and shift them to the origin in the Fourier space. One can use these constraints to reconstruct the image with the GS algorithm. This deconvolution method is suitable for any single pixel imaging models. Compared to conventional GI, both techniques offer a nonlinear growth of the SNR value with respect to the number of measurements.
Iterative Mechanism Solutions with Scenario and ADAMS
NASA Technical Reports Server (NTRS)
Rhoades, Daren
2006-01-01
This slide presentation reviews the use of iterative solutions using Scenario for Motion (UG NX 2 Motion) to assist in designing the Mars Science Laboratory (MSL). The MSL will have very unique design requirements, and in order to meet these requirements the system must have the ability to design for static stability, simulate mechanism kinematics, simulate dynamic behaviour and be capable of reconfiguration, and iterations as designed. The legacy process used on the Mars Exploration rovers worked, but it was cumbersome using multiple tools, limited configuration control, with manual process and communication, and multiple steps. The aim is to develop a mechanism that would reduce turn around time, and make more reiterations possible, to improve the quality and quantity of data, and to enhance configuration control. Currently for NX Scenario for Motion uses are in the articulation studies, the simulations of traverse motions,and subsystem simulations. The design of the Rover landing model requires accurate results, flexible elements, such as beams, and the use of the full ADAMS solver has been used. In order to achieve this, when required, there has been a direct translation from Scenario to ADAMS, with additional data in ascii format. The process that has been designed to move from Scenario to ADAMS is reviewed.
Transport analysis of tungsten impurity in ITER
NASA Astrophysics Data System (ADS)
Murakami, Y.; Amano, T.; Shimizu, K.; Shimada, M.
2003-03-01
The radial distribution of tungsten impurity in ITER is calculated by using the 1.5D transport code TOTAL coupled with NCLASS, which can solve the neo-classical impurity flux considering arbitrary aspect ratio and collisionality. An impurity screening effect is observed when the density profile is flat and the line radiation power is smaller than in the case without impurity transport by a factor of 2. It is shown that 90 MW of line radiation power is possible without significant degradation of plasma performance ( HH98( y,2) ˜1) when the fusion power is 700 MW (fusion gain Q=10). The allowable tungsten density is about 7×10 15/m 3, which is 0.01% of the electron density and the increase of the effective ionic charge Zeff is about 0.39. In this case, the total radiation power is more than half of the total heating power 210 MW, and power to the divertor region is less than 100 MW. This operation regime gives an opportunity for high fusion power operation in ITER with acceptable divertor conditions. Simulations for the case with an internal transport barrier (ITB) are also performed and it is found that impurity shielding by an ITB is possible with density profile control.
Diverse Power Iteration Embeddings and Its Applications
Huang H.; Yoo S.; Yu, D.; Qin, H.
2014-12-14
Abstract—Spectral Embedding is one of the most effective dimension reduction algorithms in data mining. However, its computation complexity has to be mitigated in order to apply it for real-world large scale data analysis. Many researches have been focusing on developing approximate spectral embeddings which are more efficient, but meanwhile far less effective. This paper proposes Diverse Power Iteration Embeddings (DPIE), which not only retains the similar efficiency of power iteration methods but also produces a series of diverse and more effective embedding vectors. We test this novel method by applying it to various data mining applications (e.g. clustering, anomaly detection and feature selection) and evaluating their performance improvements. The experimental results show our proposed DPIE is more effective than popular spectral approximation methods, and obtains the similar quality of classic spectral embedding derived from eigen-decompositions. Moreover it is extremely fast on big data applications. For example in terms of clustering result, DPIE achieves as good as 95% of classic spectral clustering on the complex datasets but 4000+ times faster in limited memory environment.
Pedestal stability comparison and ITER pedestal prediction
NASA Astrophysics Data System (ADS)
Snyder, P. B.; Aiba, N.; Beurskens, M.; Groebner, R. J.; Horton, L. D.; Hubbard, A. E.; Hughes, J. W.; Huysmans, G. T. A.; Kamada, Y.; Kirk, A.; Konz, C.; Leonard, A. W.; Lönnroth, J.; Maggi, C. F.; Maingi, R.; Osborne, T. H.; Oyama, N.; Pankin, A.; Saarelma, S.; Saibene, G.; Terry, J. L.; Urano, H.; Wilson, H. R.
2009-08-01
The pressure at the top of the edge transport barrier (or 'pedestal height') strongly impacts fusion performance, while large edge localized modes (ELMs), driven by the free energy in the pedestal region, can constrain material lifetimes. Accurately predicting the pedestal height and ELM behavior in ITER is an essential element of prediction and optimization of fusion performance. Investigation of intermediate wavelength MHD modes (or 'peeling-ballooning' modes) has led to an improved understanding of important constraints on the pedestal height and the mechanism for ELMs. The combination of high-resolution pedestal diagnostics, including substantial recent improvements, and a suite of highly efficient stability codes, has made edge stability analysis routine on several major tokamaks, contributing both to understanding, and to experimental planning and performance optimization. Here we present extensive comparisons of observations to predicted edge stability boundaries on several tokamaks, both for the standard (Type I) ELM regime, and for small ELM and ELM-free regimes. We further discuss a new predictive model for the pedestal height and width (EPED1), developed by self-consistently combining a simple width model with peeling-ballooning stability calculations. This model is tested against experimental measurements, and used in initial predictions of the pedestal height for ITER.
Suboptimal fractal coding scheme using iterative transformation
NASA Astrophysics Data System (ADS)
Kang, Hyun-Soo; Chung, Jae-won
2001-05-01
This paper presents a new fractal coding scheme to find a suboptimal transformation by performing an iterative encoding process. The optimal transformation can be defined as the transformation generating the closest attractor to an original image. Unfortunately, it is impossible in practice to find the optimal transformation, due to the heavy computational burden. In this paper, however, by means of some new theorems related with contractive transformations and attractors. It is shown that for some specific cases the optimal or suboptimal transformations can be obtained. The proposed method obtains a suboptimal transformation by performing iterative processes as is done in decoding. Thus, it requires more computation than the conventional method, but it improves the image quality. For a simple case where the optimal transformation can actually be found, the proposed method is experimentally evaluated against both the optimal method and the conventional method. For a general case where the optimal transformation in unavailable due to heavy computational complexity, the proposed method is also evaluated in comparison with the conventional method.
The ITER Radial Neutron Camera Detection System
Marocco, D.; Belli, F.; Esposito, B.; Petrizzi, L.; Riva, M.; Bonheure, G.; Kaschuck, Y.
2008-03-12
A multichannel neutron detection system (Radial Neutron Camera, RNC) will be installed on the ITER equatorial port plug 1 for total neutron source strength, neutron emissivity/ion temperature profiles and n{sub t}/n{sub d} ratio measurements [1]. The system is composed by two fan shaped collimating structures: an ex-vessel structure, looking at the plasma core, containing tree sets of 12 collimators (each set lying on a different toroidal plane), and an in-vessel structure, containing 9 collimators, for plasma edge coverage. The RNC detecting system will work in a harsh environment (neutron fiux up to 10{sup 8}-10{sup 9} n/cm{sup 2} s, magnetic field >0.5 T or in-vessel detectors), should provide both counting and spectrometric information and should be flexible enough to cover the high neutron flux dynamic range expected during the different ITER operation phases. ENEA has been involved in several activities related to RNC design and optimization [2,3]. In the present paper the up-to-date design and the neutron emissivity reconstruction capabilities of the RNC will be described. Different options for detectors suitable for spectrometry and counting (e.g. scintillators and diamonds) focusing on the implications in terms of overall RNC performance will be discussed. The increase of the RNC capabilities offered by the use of new digital data acquisition systems will be also addressed.
Laser cleaning of ITER's diagnostic mirrors
NASA Astrophysics Data System (ADS)
Skinner, C. H.; Gentile, C. A.; Doerner, R.
2012-10-01
Practical methods to clean ITER's diagnostic mirrors and restore reflectivity will be critical to ITER's plasma operations. We report on laser cleaning of single crystal molybdenum mirrors coated with either carbon or beryllium films 150 - 420 nm thick. A 1.06 μm Nd laser system provided 220 ns pulses at 8 kHz with typical power densities of 1-2 J/cm^2. The laser beam was fiber optically coupled to a scanner suitable for tokamak applications. The efficacy of mirror cleaning was assessed with a new technique that combines microscopic imaging and reflectivity measurements [1]. The method is suitable for hazardous materials such as beryllium as the mirrors remain sealed in a vacuum chamber. Excellent restoration of reflectivity for the carbon coated Mo mirrors was observed after laser scanning under vacuum conditions. For the beryllium coated mirrors restoration of reflectivity has so far been incomplete and modeling indicates that a shorter duration laser pulse is needed. No damage of the molybdenum mirror substrates was observed.[4pt][1] C.H. Skinner et al., Rev. Sci. Instrum. at press.
Convergence of Defect-Correction and Multigrid Iterations for Inviscid Flows
NASA Technical Reports Server (NTRS)
Diskin, Boris; Thomas, James L.
2011-01-01
Convergence of multigrid and defect-correction iterations is comprehensively studied within different incompressible and compressible inviscid regimes on high-density grids. Good smoothing properties of the defect-correction relaxation have been shown using both a modified Fourier analysis and a more general idealized-coarse-grid analysis. Single-grid defect correction alone has some slowly converging iterations on grids of medium density. The convergence is especially slow for near-sonic flows and for very low compressible Mach numbers. Additionally, the fast asymptotic convergence seen on medium density grids deteriorates on high-density grids. Certain downstream-boundary modes are very slowly damped on high-density grids. Multigrid scheme accelerates convergence of the slow defect-correction iterations to the extent determined by the coarse-grid correction. The two-level asymptotic convergence rates are stable and significantly below one in most of the regions but slow convergence is noted for near-sonic and very low-Mach compressible flows. Multigrid solver has been applied to the NACA 0012 airfoil and to different flow regimes, such as near-tangency and stagnation. Certain convergence difficulties have been encountered within stagnation regions. Nonetheless, for the airfoil flow, with a sharp trailing-edge, residuals were fast converging for a subcritical flow on a sequence of grids. For supercritical flow, residuals converged slower on some intermediate grids than on the finest grid or the two coarsest grids.
NASA Technical Reports Server (NTRS)
Zirin, H.
1975-01-01
Measurements of the lambda 1030 He line in 198 stars are given along with data on other features in that spectral range. Nearly 80% of all G and K stars show some lambda 10830; of these, half are variable and 1/4 show emission. It was confirmed that lambda 10830 is not found in M stars, is weak in F stars, and is particularly strong in close binaries. The line is found in emission in extremely late M and S stars, along with P gamma, but P gamma is not in emission in G and K stars with lambda 10830 emissions. Variable He emission and Ti I emission are found in the RV Tauri variables R Scuti and U Mon. In R Aqr the Fe XIII coronal line lambda 10747 and a line at lambda 11012 which may be singlet He or La II are found, as well as lambda 10830 and P gamma. The nature of coronas or hot chromospheres in the various stars is discussed. It was concluded that the lambda 10830 intensity must be more or less proportional to the energy deposited in the chromosphere corona by non-thermal processes.
A unified noise analysis for iterative image estimation
Qi, Jinyi
2003-07-03
Iterative image estimation methods have been widely used in emission tomography. Accurate estimate of the uncertainty of the reconstructed images is essential for quantitative applications. While theoretical approach has been developed to analyze the noise propagation from iteration to iteration, the current results are limited to only a few iterative algorithms that have an explicit multiplicative update equation. This paper presents a theoretical noise analysis that is applicable to a wide range of preconditioned gradient type algorithms. One advantage is that proposed method does not require an explicit expression of the preconditioner and hence it is applicable to some algorithms that involve line searches. By deriving fixed point expression from the iteration based results, we show that the iteration based noise analysis is consistent with the xed point based analysis. Examples in emission tomography and transmission tomography are shown.
Convergence Results on Iteration Algorithms to Linear Systems
Wang, Zhuande; Yang, Chuansheng; Yuan, Yubo
2014-01-01
In order to solve the large scale linear systems, backward and Jacobi iteration algorithms are employed. The convergence is the most important issue. In this paper, a unified backward iterative matrix is proposed. It shows that some well-known iterative algorithms can be deduced with it. The most important result is that the convergence results have been proved. Firstly, the spectral radius of the Jacobi iterative matrix is positive and the one of backward iterative matrix is strongly positive (lager than a positive constant). Secondly, the mentioned two iterations have the same convergence results (convergence or divergence simultaneously). Finally, some numerical experiments show that the proposed algorithms are correct and have the merit of backward methods. PMID:24991640
Tsuzuki, T; Rancourt, D E
1998-01-01
Targeted mutagenesis is an extremely useful experimental approach in molecular medicine, allowing the generation of specialized animals that are mutant for any gene of interest. Currently the rate determining step in any gene targeting experiment is construction of the targeting vector (TV). In order to streamline gene targeting methods and avoid problems encountered with plasmid TVs, we describe the direct application of lambda phage in targeted mutagenesis. The recombination-proficient phage vector lambda2TK permits generation of TVs by conventional restriction-ligation or recombination-mediated methods. The resulting lambdaTV DNA can then be cleaved with restriction endonucleases to release the bacteriophage arms and can subsequently be electroporated directly into ES cells to yield gene targets. We demonstrate that in vivo phage-plasmid recombination can be used to introduce neo and lacZ - neo mutations into precise positions within a lambda2TK subclone via double crossover recombination. We describe two methods for eliminating single crossover recombinants, spi selection and size restriction, both of which result in phage TVs bearing double crossover insertions. Thus TVs can be easily and quickly generated in bacteriophage without plasmid subcloning and with little genomic sequence or restriction site information. PMID:9461458