Science.gov

Sample records for accelerated leaf senescence

  1. Growth under elevated atmospheric CO(2) concentration accelerates leaf senescence in sunflower (Helianthus annuus L.) plants.

    PubMed

    de la Mata, Lourdes; Cabello, Purificación; de la Haba, Purificación; Agüera, Eloísa

    2012-09-15

    Some morphogenetic and metabolic processes were sensitive to a high atmospheric CO(2) concentration during sunflower primary leaf ontogeny. Young leaves of sunflower plants growing under elevated CO(2) concentration exhibited increased growth, as reflected by the high specific leaf mass referred to as dry weight in young leaves (16 days). The content of photosynthetic pigments decreased with leaf development, especially in plants grown under elevated CO(2) concentrations, suggesting that high CO(2) accelerates chlorophyll degradation, and also possibly leaf senescence. Elevated CO(2) concentration increased the oxidative stress in sunflower plants by increasing H(2)O(2) levels and decreasing activity of antioxidant enzymes such as catalase and ascorbate peroxidase. The loss of plant defenses probably increases the concentration of reactive oxygen species in the chloroplast, decreasing the photosynthetic pigment content as a result. Elevated CO(2) concentration was found to boost photosynthetic CO(2) fixation, especially in young leaves. High CO(2) also increased the starch and soluble sugar contents (glucose and fructose) and the C/N ratio during sunflower primary leaf development. At the beginning of senescence, we observed a strong increase in the hexoses to sucrose ratio that was especially marked at high CO(2) concentration. These results indicate that elevated CO(2) concentration could promote leaf senescence in sunflower plants by affecting the soluble sugar levels, the C/N ratio and the oxidative status during leaf ontogeny. It is likely that systemic signals produced in plants grown with elevated CO(2), lead to early senescence and a higher oxidation state of the cells of these plant leaves.

  2. Possible Roles of Strigolactones during Leaf Senescence.

    PubMed

    Yamada, Yusuke; Umehara, Mikihisa

    2015-09-11

    Leaf senescence is a complicated developmental process that involves degenerative changes and nutrient recycling. The progress of leaf senescence is controlled by various environmental cues and plant hormones, including ethylene, jasmonic acid, salicylic acid, abscisic acid, cytokinins, and strigolactones. The production of strigolactones is induced in response to nitrogen and phosphorous deficiency. Strigolactones also accelerate leaf senescence and regulate shoot branching and root architecture. Leaf senescence is actively promoted in a nutrient-poor soil environment, and nutrients are transported from old leaves to young tissues and seeds. Strigolactones might act as important signals in response to nutrient levels in the rhizosphere. In this review, we discuss the possible roles of strigolactones during leaf senescence.

  3. Fusaric acid accelerates the senescence of leaf in banana when infected by Fusarium.

    PubMed

    Dong, Xian; Xiong, Yinfeng; Ling, Ning; Shen, Qirong; Guo, Shiwei

    2014-04-01

    Fusarium oxysporum f.sp. cubense (FOC) is a causal agent of vascular wilt and leaf chlorosis of banana plants. Chloroses resulting from FOC occur first in the lowest leaves of banana seedlings and gradually progress upward. To investigate the responses of different leaf positions to FOC infection, hydroponic experiments with FOC inoculation were conducted in a greenhouse. Fusarium-infected seedlings exhibited a decrease in net photosynthesis rate, stomatal conductance, and transpiration rate of all leaves. The wilting process in Fusarium-infected seedlings varied with leaf position. Measurements of the maximum photochemical efficiency of photosystem II (F(V)/F(max) and visualization with transmission electron microscopy showed a positive correlation between chloroplast impairment and severity of disease symptoms. Furthermore, results of malondialdehyde content and relative membrane conductivity measurements demonstrated that the membrane system was damaged in infected leaves. Additionally, the activities of phenylalanine ammonia-lyase, peroxidase and polyphenol oxidase were increased and total soluble phenolic compounds were significantly accumulated in the leaves of infected plants. The structural and biochemical changes of infected plants was consistent with plant senescence. As the FOC was not detected in infected leaves, we proposed that the chloroplast and membrane could be damaged by fusaric acid produced by Fusarium. During the infection, fusaric acid was first accumulated in the lower leaves and water-soluble substances in the lower leaves could dramatically enhance fusaric acid production. Taken together, the senescence of infected banana plants was induced by Fusarium infection with fusaric acid production and the composition of different leaf positions largely contribute to the particular senescence process.

  4. Transcriptional networks in leaf senescence.

    PubMed

    Schippers, Jos H M

    2015-10-01

    Plant senescence is a natural phenomenon known for the appearance of beautiful autumn colors and the ripening of cereals in the field. Senescence is a controlled process that plants utilize to remobilize nutrients from source leaves to developing tissues. While during the past decades, molecular components underlying the onset of senescence have been intensively studied, knowledge remains scarce on the age-dependent mechanisms that control the onset of senescence. Recent advances have uncovered transcriptional networks regulating the competence to senesce. Here, gene regulatory networks acting as internal timing mechanisms for the onset of senescence are highlighted, illustrating that early and late leaf developmental phases are highly connected.

  5. Nitric Oxide Deficiency Accelerates Chlorophyll Breakdown and Stability Loss of Thylakoid Membranes during Dark-Induced Leaf Senescence in Arabidopsis

    PubMed Central

    Liu, Fang; Guo, Fang-Qing

    2013-01-01

    Nitric oxide (NO) has been known to preserve the level of chlorophyll (Chl) during leaf senescence. However, the mechanism by which NO regulates Chl breakdown remains unknown. Here we report that NO negatively regulates the activities of Chl catabolic enzymes during dark-induced leaf senescence. The transcriptional levels of the major enzyme genes involving Chl breakdown pathway except for RED CHL CATABOLITE REDUCTASE (RCCR) were dramatically up-regulated during dark-induced Chl degradation in the leaves of Arabidopsis NO-deficient mutant nos1/noa1 that exhibited an early-senescence phenotype. The activity of pheide a oxygenase (PAO) was higher in the dark-induced senescent leaves of nos1/noa1 compared with wild type. Furthermore, the knockout of PAO in nos1/noa1 background led to pheide a accumulation in the double mutant pao1 nos1/noa1, which retained the level of Chl during dark-induced leaf senescence. The accumulated pheide a in darkened leaves of pao1 nos1/noa1 was likely to inhibit the senescence-activated transcriptional levels of Chl catabolic genes as a feed-back inhibitory effect. We also found that NO deficiency led to decrease in the stability of photosynthetic complexes in thylakoid membranes. Importantly, the accumulation of pheide a caused by PAO mutations in combination with NO deficiency had a synergistic effect on the stability loss of thylakoid membrane complexes in the double mutant pao1 nos1/noa1 during dark-induced leaf senescence. Taken together, our findings have demonstrated that NO is a novel negative regulator of Chl catabolic pathway and positively functions in maintaining the stability of thylakoid membranes during leaf senescence. PMID:23418559

  6. Hormonal regulation of leaf senescence in Lilium.

    PubMed

    Arrom, Laia; Munné-Bosch, Sergi

    2012-10-15

    In addition to floral senescence and longevity, the control of leaf senescence is a major factor determining the quality of several cut flowers, including Lilium, in the commercial market. To better understand the physiological process underlying leaf senescence in this species, we evaluated: (i) endogenous variation in the levels of phytohormones during leaf senescence, (ii) the effects of leaf darkening in senescence and associated changes in phytohormones, and (iii) the effects of spray applications of abscisic acid (ABA) and pyrabactin on leaf senescence. Results showed that while gibberellin 4 (GA(4)) and salicylic acid (SA) contents decreased, that of ABA increased during the progression of leaf senescence. However, dark-induced senescence increased ABA levels, but did not affect GA(4) and SA levels, which appeared to correlate more with changes in air temperature and/or photoperiod than with the induction of leaf senescence. Furthermore, spray applications of pyrabactin delayed the progression of leaf senescence in cut flowers. Thus, we conclude that (i) ABA plays a major role in the regulation of leaf senescence in Lilium, (ii) darkness promotes leaf senescence and increases ABA levels, and (iii) exogenous applications of pyrabactin inhibit leaf senescence in Lilium, therefore suggesting that it acts as an antagonist of ABA in senescing leaves of cut lily flowers.

  7. Leaf Senescence by Magnesium Deficiency

    PubMed Central

    Tanoi, Keitaro; Kobayashi, Natsuko I.

    2015-01-01

    Magnesium ions (Mg2+) are the second most abundant cations in living plant cells, and they are involved in various functions, including photosynthesis, enzyme catalysis, and nucleic acid synthesis. Low availability of Mg2+ in an agricultural field leads to a decrease in yield, which follows the appearance of Mg-deficient symptoms such as chlorosis, necrotic spots on the leaves, and droop. During the last decade, a variety of physiological and molecular responses to Mg2+ deficiency that potentially link to leaf senescence have been recognized, allowing us to reconsider the mechanisms of Mg2+ deficiency. This review focuses on the current knowledge about the physiological responses to Mg2+ deficiency including a decline in transpiration, accumulation of sugars and starch in source leaves, change in redox states, increased oxidative stress, metabolite alterations, and a decline in photosynthetic activity. In addition, we refer to the molecular responses that are thought to be related to leaf senescence. With these current data, we give an overview of leaf senescence induced by Mg deficiency. PMID:27135350

  8. Strigolactone Regulates Leaf Senescence in Concert with Ethylene in Arabidopsis.

    PubMed

    Ueda, Hiroaki; Kusaba, Makoto

    2015-09-01

    Leaf senescence is not a passive degenerative process; it represents a process of nutrient relocation, in which materials are salvaged for growth at a later stage or to produce the next generation. Leaf senescence is regulated by various factors, such as darkness, stress, aging, and phytohormones. Strigolactone is a recently identified phytohormone, and it has multiple functions in plant development, including repression of branching. Although strigolactone is implicated in the regulation of leaf senescence, little is known about its molecular mechanism of action. In this study, strigolactone biosynthesis mutant strains of Arabidopsis (Arabidopsis thaliana) showed a delayed senescence phenotype during dark incubation. The strigolactone biosynthesis genes MORE AXIALLY GROWTH3 (MAX3) and MAX4 were drastically induced during dark incubation and treatment with the senescence-promoting phytohormone ethylene, suggesting that strigolactone is synthesized in the leaf during leaf senescence. This hypothesis was confirmed by a grafting experiment using max4 as the stock and Columbia-0 as the scion, in which the leaves from the Columbia-0 scion senesced earlier than max4 stock leaves. Dark incubation induced the synthesis of ethylene independent of strigolactone. Strigolactone biosynthesis mutants showed a delayed senescence phenotype during ethylene treatment in the light. Furthermore, leaf senescence was strongly accelerated by the application of strigolactone in the presence of ethylene and not by strigolactone alone. These observations suggest that strigolactone promotes leaf senescence by enhancing the action of ethylene. Thus, dark-induced senescence is regulated by a two-step mechanism: induction of ethylene synthesis and consequent induction of strigolactone synthesis in the leaf.

  9. Characterization of senescence-associated protease activities involved in the efficient protein remobilization during leaf senescence of winter oilseed rape.

    PubMed

    Poret, Marine; Chandrasekar, Balakumaran; van der Hoorn, Renier A L; Avice, Jean-Christophe

    2016-05-01

    Oilseed rape (Brassica napus L.) is a crop plant characterized by a poor nitrogen (N) use efficiency that is mainly due to low N remobilization efficiency during the sequential leaf senescence of the vegetative stage. As a high leaf N remobilization efficiency was strongly linked to a high remobilization of proteins during leaf senescence of rapeseed, our objective was to identify senescence-associated protease activities implicated in the protein degradation. To reach this goal, leaf senescence processes and protease activities were investigated in a mature leaf becoming senescent in plants subjected to ample or low nitrate supply. The characterization of protease activities was performed by using in vitro analysis of RuBisCO degradation with or without inhibitors of specific protease classes followed by a protease activity profiling using activity-dependent probes. As expected, the mature leaf became senescent regardless of the nitrate treatment, and nitrate limitation enhanced the senescence processes associated with an enhanced degradation of soluble proteins. The characterization of protease activities revealed that: (i) aspartic proteases and the proteasome were active during senescence regardless of nitrate supply, and (ii) the activities of serine proteases and particularly cysteine proteases (Papain-like Cys proteases and vacuolar processing enzymes) increased when protein remobilization associated with senescence was accelerated by nitrate limitation. Short statement: Serine and particularly cysteine proteases (both PLCPs and VPEs) seem to play a crucial role in the efficient protein remobilization when leaf senescence of oilseed rape was accelerated by nitrate limitation.

  10. Cytokinin inhibition of leaf senescence

    PubMed Central

    Zwack, Paul J.; Rashotte, Aaron M.

    2013-01-01

    The senescence delaying effect of cytokinin is well known, however, the details behind how this process occurs remain unclear. Efforts to improve understanding of this phenomenon have led to the identification in Arabidopsis of specific cytokinin signaling components through which senescence signal responses are regulated. These include the cytokinin receptor (AHK3), the type-B response regulator (ARR2) and the recently identified cytokinin response factor (CRF6). At the mechanistic end of this process, it was found that increased cell-wall invertase activity which occurs in response to cytokinin is both necessary and sufficient for the inhibition of senescence. Yet, a direct link between the signaling and mechanistic steps of a cytokinin regulated senescence process has yet to be demonstrated. This may be in part because the relationship between senescence and primary metabolism implied by the key role of cell-wall invertase is the subject of two apparently opposing bodies of evidence. Here we briefly summarize and propose a model in which cytokinin mediated changes in sink/source relationships leads to delayed senescence which is consistent with existing evidence both for and against sugars as a trigger for developmental senescence. PMID:23656876

  11. Modelling transcriptional networks in leaf senescence.

    PubMed

    Penfold, Christopher A; Buchanan-Wollaston, Vicky

    2014-07-01

    The process of leaf senescence is induced by an extensive range of developmental and environmental signals and controlled by multiple, cross-linking pathways, many of which overlap with plant stress-response signals. Elucidation of this complex regulation requires a step beyond a traditional one-gene-at-a-time analysis. Application of a more global analysis using statistical and mathematical tools of systems biology is an approach that is being applied to address this problem. A variety of modelling methods applicable to the analysis of current and future senescence data are reviewed and discussed using some senescence-specific examples. Network modelling with a senescence transcriptome time course followed by testing predictions with gene-expression data illustrates the application of systems biology tools.

  12. Use of NAP gene to manipulate leaf senescence in plants

    DOEpatents

    Gan, Susheng; Guo, Yongfeng

    2013-04-16

    The present invention discloses transgenic plants having an altered level of NAP protein compared to that of a non-transgenic plant, where the transgenic plants display an altered leaf senescence phenotype relative to a non-transgenic plant, as well as mutant plants comprising an inactivated NAP gene, where mutant plants display a delayed leaf senescence phenotype compared to that of a non-mutant plant. The present invention also discloses methods for delaying leaf senescence in a plant, as well as methods of making a mutant plant having a decreased level of NAP protein compared to that of a non-mutant plant, where the mutant plant displays a delayed leaf senescence phenotype relative to a non-mutant plant. Methods for causing precocious leaf senescence or promoting leaf senescence in a plant are also disclosed. Also disclosed are methods of identifying a candidate plant suitable for breeding that displays a delayed leaf senescence and/or enhanced yield phenotype.

  13. EIN3 and ORE1 Accelerate Degreening during Ethylene-Mediated Leaf Senescence by Directly Activating Chlorophyll Catabolic Genes in Arabidopsis.

    PubMed

    Qiu, Kai; Li, Zhongpeng; Yang, Zhen; Chen, Junyi; Wu, Shouxin; Zhu, Xiaoyu; Gao, Shan; Gao, Jiong; Ren, Guodong; Kuai, Benke; Zhou, Xin

    2015-07-01

    Degreening, caused by chlorophyll degradation, is the most obvious symptom of senescing leaves. Chlorophyll degradation can be triggered by endogenous and environmental cues, and ethylene is one of the major inducers. ETHYLENE INSENSITIVE3 (EIN3) is a key transcription factor in the ethylene signaling pathway. It was previously reported that EIN3, miR164, and a NAC (NAM, ATAF, and CUC) transcription factor ORE1/NAC2 constitute a regulatory network mediating leaf senescence. However, how this network regulates chlorophyll degradation at molecular level is not yet elucidated. Here we report a feed-forward regulation of chlorophyll degradation that involves EIN3, ORE1, and chlorophyll catabolic genes (CCGs). Gene expression analysis showed that the induction of three major CCGs, NYE1, NYC1 and PAO, by ethylene was largely repressed in ein3 eil1 double mutant. Dual-luciferase assay revealed that EIN3 significantly enhanced the promoter activity of NYE1, NYC1 and PAO in Arabidopsis protoplasts. Furthermore, Electrophoretic mobility shift assay (EMSA) indicated that EIN3 could directly bind to NYE1, NYC1 and PAO promoters. These results reveal that EIN3 functions as a positive regulator of CCG expression during ethylene-mediated chlorophyll degradation. Interestingly, ORE1, a senescence regulator which is a downstream target of EIN3, could also activate the expression of NYE1, NYC1 and PAO by directly binding to their promoters in EMSA and chromatin immunoprecipitation (ChIP) assays. In addition, EIN3 and ORE1 promoted NYE1 and NYC1 transcriptions in an additive manner. These results suggest that ORE1 is also involved in the direct regulation of CCG transcription. Moreover, ORE1 activated the expression of ACS2, a major ethylene biosynthesis gene, and subsequently promoted ethylene production. Collectively, our work reveals that EIN3, ORE1 and CCGs constitute a coherent feed-forward loop involving in the robust regulation of ethylene-mediated chlorophyll degradation

  14. From Accumulation to Degradation: Reprogramming Polyamine Metabolism Facilitates Dark-Induced Senescence in Barley Leaf Cells

    PubMed Central

    Sobieszczuk-Nowicka, Ewa; Kubala, Szymon; Zmienko, Agnieszka; Małecka, Arleta; Legocka, Jolanta

    2016-01-01

    The aim of this study was to analyze whether polyamine (PA) metabolism is involved in dark-induced Hordeum vulgare L. ‘Nagrad’ leaf senescence. In the cell, the titer of PAs is relatively constant and is carefully controlled. Senescence-dependent increases in the titer of the free PAs putrescine, spermidine, and spermine occurred when the process was induced, accompanied by the formation of putrescine conjugates. The addition of the anti-senescing agent cytokinin, which delays senescence, to dark-incubated leaves slowed the senescence-dependent PA accumulation. A feature of the senescence process was initial accumulation of PAs at the beginning of the process and their subsequent decrease during the later stages. Indeed, the process was accompanied by both enhanced expression of PA biosynthesis and catabolism genes and an increase in the activity of enzymes involved in the two metabolic pathways. To confirm whether the capacity of the plant to control senescence might be linked to PA, chlorophyll fluorescence parameters, and leaf nitrogen status in senescing barley leaves were measured after PA catabolism inhibition and exogenously applied γ-aminobutyric acid (GABA). The results obtained by blocking putrescine oxidation showed that the senescence process was accelerated. However, when the inhibitor was applied together with GABA, senescence continued without disruption. On the other hand, inhibition of spermidine and spermine oxidation delayed the process. It could be concluded that in dark-induced leaf senescence, the initial accumulation of PAs leads to facilitating their catabolism. Putrescine supports senescence through GABA production and spermidine/spermine supports senescence-dependent degradation processes, is verified by H2O2 generation. PMID:26779231

  15. ABA receptor PYL9 promotes drought resistance and leaf senescence.

    PubMed

    Zhao, Yang; Chan, Zhulong; Gao, Jinghui; Xing, Lu; Cao, Minjie; Yu, Chunmei; Hu, Yuanlei; You, Jun; Shi, Haitao; Zhu, Yingfang; Gong, Yuehua; Mu, Zixin; Wang, Haiqing; Deng, Xin; Wang, Pengcheng; Bressan, Ray A; Zhu, Jian-Kang

    2016-02-16

    Drought stress is an important environmental factor limiting plant productivity. In this study, we screened drought-resistant transgenic plants from 65 promoter-pyrabactin resistance 1-like (PYL) abscisic acid (ABA) receptor gene combinations and discovered that pRD29A::PYL9 transgenic lines showed dramatically increased drought resistance and drought-induced leaf senescence in both Arabidopsis and rice. Previous studies suggested that ABA promotes senescence by causing ethylene production. However, we found that ABA promotes leaf senescence in an ethylene-independent manner by activating sucrose nonfermenting 1-related protein kinase 2s (SnRK2s), which subsequently phosphorylate ABA-responsive element-binding factors (ABFs) and Related to ABA-Insensitive 3/VP1 (RAV1) transcription factors. The phosphorylated ABFs and RAV1 up-regulate the expression of senescence-associated genes, partly by up-regulating the expression of Oresara 1. The pyl9 and ABA-insensitive 1-1 single mutants, pyl8-1pyl9 double mutant, and snrk2.2/3/6 triple mutant showed reduced ABA-induced leaf senescence relative to the WT, whereas pRD29A::PYL9 transgenic plants showed enhanced ABA-induced leaf senescence. We found that leaf senescence may benefit drought resistance by helping to generate an osmotic potential gradient, which is increased in pRD29A::PYL9 transgenic plants and causes water to preferentially flow to developing tissues. Our results uncover the molecular mechanism of ABA-induced leaf senescence and suggest an important role of PYL9 and leaf senescence in promoting resistance to extreme drought stress.

  16. Mitochondria change dynamics and morphology during grapevine leaf senescence.

    PubMed

    Ruberti, Cristina; Barizza, Elisabetta; Bodner, Martina; La Rocca, Nicoletta; De Michele, Roberto; Carimi, Francesco; Lo Schiavo, Fiorella; Zottini, Michela

    2014-01-01

    Leaf senescence is the last stage of development of an organ and is aimed to its ordered disassembly and nutrient reallocation. Whereas chlorophyll gradually degrades during senescence in leaves, mitochondria need to maintain active to sustain the energy demands of senescing cells. Here we analysed the motility and morphology of mitochondria in different stages of senescence in leaves of grapevine (Vitis vinifera), by stably expressing a GFP (green fluorescent protein) reporter targeted to these organelles. Results show that mitochondria were less dynamic and markedly changed morphology during senescence, passing from the elongated, branched structures found in mature leaves to enlarged and sparse organelles in senescent leaves. Progression of senescence in leaves was not synchronous, since changes in mitochondria from stomata were delayed. Mitochondrial morphology was also analysed in grapevine cell cultures. Mitochondria from cells at the end of their growth curve resembled those from senescing leaves, suggesting that cell cultures might represent a useful model system for senescence. Additionally, senescence-associated mitochondrial changes were observed in plants treated with high concentrations of cytokinins. Overall, morphology and dynamics of mitochondria might represent a reliable senescence marker for plant cells.

  17. Mitochondria Change Dynamics and Morphology during Grapevine Leaf Senescence

    PubMed Central

    Bodner, Martina; La Rocca, Nicoletta; De Michele, Roberto; Carimi, Francesco; Schiavo, Fiorella Lo; Zottini, Michela

    2014-01-01

    Leaf senescence is the last stage of development of an organ and is aimed to its ordered disassembly and nutrient reallocation. Whereas chlorophyll gradually degrades during senescence in leaves, mitochondria need to maintain active to sustain the energy demands of senescing cells. Here we analysed the motility and morphology of mitochondria in different stages of senescence in leaves of grapevine (Vitis vinifera), by stably expressing a GFP (green fluorescent protein) reporter targeted to these organelles. Results show that mitochondria were less dynamic and markedly changed morphology during senescence, passing from the elongated, branched structures found in mature leaves to enlarged and sparse organelles in senescent leaves. Progression of senescence in leaves was not synchronous, since changes in mitochondria from stomata were delayed. Mitochondrial morphology was also analysed in grapevine cell cultures. Mitochondria from cells at the end of their growth curve resembled those from senescing leaves, suggesting that cell cultures might represent a useful model system for senescence. Additionally, senescence-associated mitochondrial changes were observed in plants treated with high concentrations of cytokinins. Overall, morphology and dynamics of mitochondria might represent a reliable senescence marker for plant cells. PMID:25009991

  18. Cellular and molecular aspects of quinoa leaf senescence.

    PubMed

    López-Fernández, María Paula; Burrieza, Hernán Pablo; Rizzo, Axel Joel; Martínez-Tosar, Leandro Julián; Maldonado, Sara

    2015-09-01

    During leaf senescence, degradation of chloroplasts precede to changes in nuclei and other cytoplasmic organelles, RuBisCO stability is progressively lost, grana lose their structure, plastidial DNA becomes distorted and degraded, the number of plastoglobuli increases and abundant senescence-associated vesicles containing electronically dense particles emerge from chloroplasts pouring their content into the central vacuole. This study examines quinoa leaf tissues during development and senescence using a range of well-established markers of programmed cell death (PCD), including: morphological changes in nuclei and chloroplasts, degradation of RuBisCO, changes in chlorophyll content, DNA degradation, variations in ploidy levels, and changes in nuclease profiles. TUNEL reaction and DNA electrophoresis demonstrated that DNA fragmentation in nuclei occurs at early senescence, which correlates with induction of specific nucleases. During senescence, metabolic activity is high and nuclei endoreduplicate, peaking at 4C. At this time, TEM images showed some healthy nuclei with condensed chromatin and nucleoli. We have found that DNA fragmentation, induction of senescence-associated nucleases and endoreduplication take place during leaf senescence. This provides a starting point for further research aiming to identify key genes involved in the senescence of quinoa leaves.

  19. Senescence of attached bean leaves accelerated by sprays of silicone oil antitranspirants.

    PubMed

    Neumann, P M

    1974-04-01

    During an investigation into the use of oil emulsions in foliar sprays, it was found that silicone oil emulsions accelerated the senescence of the primary leaves of bean (Phaseolus vulgaris) plants. It was shown that accelerated senescence was not a result of the reduced transpiration rates found in silicone-sprayed leaves. Furthermore, the silicone oil emulsions did not induce leakiness in plant cell membranes. The senescence-enhancing effect seems to be connected with the ability of the silicone oil emulsions to penetrate into the leaf interior.

  20. Expression of the inactive ZmMEK1 induces salicylic acid accumulation and salicylic acid-dependent leaf senescence.

    PubMed

    Li, Yuan; Chang, Ying; Zhao, Chongchong; Yang, Hailian; Ren, Dongtao

    2016-08-01

    Leaf senescence is the final leaf developmental process that is regulated by both intracellular factors and environmental conditions. The mitogen-activated protein kinase (MAPK) signaling cascades have been shown to play important roles in regulating leaf senescence; however, the component(s) downstream of the MAPK cascades in regulating leaf senescence are not fully understood. Here we showed that the transcriptions of ZmMEK1, ZmSIMK1, and ZmMPK3 were induced during dark-induced maize leaf senescence. Furthermore, in-gel kinase analysis revealed the 42 kDa MAPK was activated. ZmMEK1 interacted with ZmSIMK1 in yeast and maize mesophyll protoplasts and ZmSIMK1 was activated by ZmMEK1 in vitro. Expression of a dominant negative mutant of ZmMEK1 in Arabidopsis transgenic plants induced salicylic acid (SA) accumulation and SA-dependent leaf senescence. ZmMEK1 interacted with Arabidopsis MPK4 in yeast and activated MPK4 in vitro. SA treatment accelerated dark-induced maize leaf senescence. Moreover, blockage of MAPK signaling increased endogenous SA accumulation in maize leaves. These findings suggest that ZmMEK1-ZmSIMK1 cascade and its modulating SA levels play important roles in regulating leaf senescence.

  1. Molecular Mechanisms of Phosphorus Metabolism and Transport during Leaf Senescence

    PubMed Central

    Stigter, Kyla A.; Plaxton, William C.

    2015-01-01

    Leaf senescence, being the final developmental stage of the leaf, signifies the transition from a mature, photosynthetically active organ to the attenuation of said function and eventual death of the leaf. During senescence, essential nutrients sequestered in the leaf, such as phosphorus (P), are mobilized and transported to sink tissues, particularly expanding leaves and developing seeds. Phosphorus recycling is crucial, as it helps to ensure that previously acquired P is not lost to the environment, particularly under the naturally occurring condition where most unfertilized soils contain low levels of soluble orthophosphate (Pi), the only form of P that roots can directly assimilate from the soil. Piecing together the molecular mechanisms that underpin the highly variable efficiencies of P remobilization from senescing leaves by different plant species may be critical for devising effective strategies for improving overall crop P-use efficiency. Maximizing Pi remobilization from senescing leaves using selective breeding and/or biotechnological strategies will help to generate P-efficient crops that would minimize the use of unsustainable and polluting Pi-containing fertilizers in agriculture. This review focuses on the molecular mechanisms whereby P is remobilized from senescing leaves and transported to sink tissues, which encompasses the action of hormones, transcription factors, Pi-scavenging enzymes, and Pi transporters. PMID:27135351

  2. QTL analysis for sugar-regulated leaf senescence supports flowering-dependent and -independent senescence pathways.

    PubMed

    Wingler, Astrid; Purdy, Sarah Jane; Edwards, Sally-Anne; Chardon, Fabien; Masclaux-Daubresse, Céline

    2010-01-01

    *The aim of this work was to determine the genetic basis of sugar-regulated senescence and to explore the relationship with other traits, including flowering and nitrogen-use efficiency. *Quantitative trait loci (QTLs) for senescence were mapped in the Arabidopsis Bay-0 x Shahdara recombinant-inbred line (RIL) population after growth on glucose-containing medium, which accelerates senescence. The extent of whole-rosette senescence was determined by imaging the maximum quantum yield of photosystem II (F(v)/F(m)). *A major QTL on the top of chromosome 4 colocalized with FRI, a major determinant of flowering. This QTL interacted epistatically with a QTL on chromosome 5, where the floral repressor FLC localizes. Vernalization accelerated senescence in late-flowering lines with functional FRI and FLC alleles. Comparison with previous results using the Bay-0 x Shahdara population showed that rapid rosette senescence on glucose-containing medium was correlated with early flowering and high sugar content in compost-grown plants. In addition, correlation was found between the expression of flowering and senescence-associated genes in Arabidopsis accessions. However, an additional QTL on chromosome 3 was not linked to flowering, but to nitrogen-use efficiency. *The results show that whole-rosette senescence is genetically linked to the vernalization-dependent control of flowering, but is also controlled by flowering-independent pathways.

  3. SENESCENCE-SUPPRESSED PROTEIN PHOSPHATASE Directly Interacts with the Cytoplasmic Domain of SENESCENCE-ASSOCIATED RECEPTOR-LIKE KINASE and Negatively Regulates Leaf Senescence in Arabidopsis1[OPEN

    PubMed Central

    Xiao, Dong; Cui, Yanjiao; Xu, Fan; Xu, Xinxin; Gao, Guanxiao; Wang, Yaxin; Guo, Zhaoxia; Wang, Dan; Wang, Ning Ning

    2015-01-01

    Reversible protein phosphorylation mediated by protein kinases and phosphatases plays an important role in the regulation of leaf senescence. We previously reported that the leucine-rich repeat receptor-like kinase SENESCENCE-ASSOCIATED RECEPTOR-LIKE KINASE (AtSARK) positively regulates leaf senescence in Arabidopsis (Arabidopsis thaliana). Here, we report the involvement of a protein serine/threonine phosphatase 2C-type protein phosphatase, SENESCENCE-SUPPRESSED PROTEIN PHOSPHATASE (SSPP), in the negative regulation of Arabidopsis leaf senescence. SSPP transcript levels decreased greatly during both natural senescence and SARK-induced precocious senescence. Overexpression of SSPP significantly delayed leaf senescence in Arabidopsis. Protein pull-down and bimolecular fluorescence complementation assays demonstrated that the cytosol-localized SSPP could interact with the cytoplasmic domain of the plasma membrane-localized AtSARK. In vitro assays showed that SSPP has protein phosphatase function and can dephosphorylate the cytosolic domain of AtSARK. Consistent with these observations, overexpression of SSPP effectively rescued AtSARK-induced precocious leaf senescence and changes in hormonal responses. All our results suggested that SSPP functions in sustaining proper leaf longevity and preventing early senescence by suppressing or perturbing SARK-mediated senescence signal transduction. PMID:26304848

  4. Phosphatidylinositol 3-Kinase Promotes Activation and Vacuolar Acidification and Delays Methyl Jasmonate-Induced Leaf Senescence.

    PubMed

    Liu, Jian; Ji, Yingbin; Zhou, Jun; Xing, Da

    2016-03-01

    PI3K and its product PI3P are both involved in plant development and stress responses. In this study, the down-regulation of PI3K activity accelerated leaf senescence induced by methyl jasmonate (MeJA) and suppressed the activation of vacuolar H(+)-ATPase (V-ATPase). Yeast two-hybrid analyses indicated that PI3K bound to the V-ATPase B subunit (VHA-B). Analysis of bimolecular fluorescence complementation in tobacco guard cells showed that PI3K interacted with VHA-B2 in the tonoplasts. Through the use of pharmacological and genetic tools, we found that PI3K and V-ATPase promoted vacuolar acidification and stomatal closure during leaf senescence. Vacuolar acidification was suppressed by the PIKfyve inhibitor in 35S:AtVPS34-YFP Arabidopsis during MeJA-induced leaf senescence, but the decrease was lower than that in YFP-labeled Arabidopsis. These results suggest that PI3K promotes V-ATPase activation and consequently induces vacuolar acidification and stomatal closure, thereby delaying MeJA-induced leaf senescence.

  5. Gene Expression Profiles Deciphering Leaf Senescence Variation between Early- and Late-Senescence Cotton Lines

    PubMed Central

    Kong, Xiangqiang; Luo, Zhen; Dong, Hezhong; Eneji, A. Egrinya; Li, Weijiang; Lu, Hequan

    2013-01-01

    Leaf senescence varies greatly among genotypes of cotton (Gossypium hirsutium L), possibly due to the different expression of senescence-related genes. To determine genes involved in leaf senescence, we performed genome-wide transcriptional profiling of the main-stem leaves of an early- (K1) and a late-senescence (K2) cotton line at 110 day after planting (DAP) using the Solexa technology. The profiling analysis indicated that 1132 genes were up-regulated and 455 genes down-regulated in K1 compared with K2 at 110 DAP. The Solexa data were highly consistent with, and thus were validated by those from real-time quantitative PCR (RT-PCR). Most of the genes related to photosynthesis, anabolism of carbohydrates and other biomolecules were down-regulated, but those for catabolism of proteins, nucleic acids, lipids and nutrient recycling were mostly up-regulated in K1 compared with K2. Fifty-one differently expressed hormone-related genes were identified, of which 5 ethylene, 3 brassinosteroid (BR), 5 JA, 18 auxin, 8 GA and 1 ABA related genes were up-regulated in K1 compared with K2, indicating that these hormone-related genes might play crucial roles in early senescence of K1 leaves. Many differently expressed transcription factor (TF) genes were identified and 11 NAC and 8 WRKY TF genes were up-regulated in K1 compared with K2, suggesting that TF genes, especially NAC and WRKY genes were involved in early senescence of K1 leaves. Genotypic variation in leaf senescence was attributed to differently expressed genes, particularly hormone-related and TF genes. PMID:23922821

  6. Reflectance measurements of cotton leaf senescence altered by mepiquat chloride

    NASA Technical Reports Server (NTRS)

    Gausman, H. W.; Escobar, D. E.; Rodriguez, R. R. (Principal Investigator)

    1982-01-01

    Spectrophotometric reflectance measurements were made on plant-attached leaves to evaluate growth chamber-grown cotton leaf (Gossypium hirsutum L.) senescence (chlorophyll degradation as criterion) that was delayed by mepiquat chloride (1,1-dimethylpiperidinium chloride) rates of 0, 10, 40, 70, and 100 g a.i./ha. Mepiquat chloride (MC increased both chlorophyll and leaf water contents as compared with that of untreated leaves. Reflectance was inversely and linearly correlated (r = -0.873**) with eater content at the 1.65 micrometer wavelength and was inversely correlated (r = -0.812**) with chlorophyll concentration at the 0.55 micrometer wavelength but best fit a quadratic equation. Either wavelength measurement might be useful to remotely detect cotton leaf senescence or fields of MC-treated cotton plants.

  7. Multiple climate drivers accelerate Arctic plant community senescence

    NASA Astrophysics Data System (ADS)

    Livensperger, C.; Steltzer, H.; Wallenstein, M. D.; Weintraub, M. N.

    2015-12-01

    Alteration of seasonal phenology cues due to climate change has led to changes in the onset and duration of the growing season. While photoperiod often acts as an ultimate control on phenological events, recent studies have shown that environmental cues such as temperature and soil water content can modify the direction and rate of senescence processes. Warmer temperatures have resulted in an observed trend towards delayed senescence across temperate latitudes. However, Arctic regions are characterized by extreme seasonality and rapidly decreasing photoperiod, and consequently senescence may not shift as climate warms. We monitored the timing of Arctic plant community senescence for three years under the framework of an experimental manipulation that altered seasonal phenological cues through warming and earlier snowmelt. Alternative models of senescence were tested to determine if microclimate (air temperature, soil temperature, and soil moisture) or start of season phenology affect the timing and rate of community senescence. We found that all three microclimate predictors contributed to explaining variation in timing of senescence, suggesting that photoperiod is not the sole control on timing of senescence in Arctic plant communities. Rather, increased air and soil temperatures along with drier soil conditions, led to acceleration in the onset of senescence at a community level. Our data suggest that (1) multiple climate drivers predict timing of plant community senescence, and (2) climate change could result in a shorter peak season due to earlier onset of senescence, which would decrease the potential carbon uptake in moist acidic tundra.

  8. Translational researches on leaf senescence for enhancing plant productivity and quality.

    PubMed

    Guo, Yongfeng; Gan, Su-Sheng

    2014-07-01

    Leaf senescence is a very important trait that limits yield and biomass accumulation of agronomic crops and reduces post-harvest performance and the nutritional value of horticultural crops. Significant advance in physiological and molecular understanding of leaf senescence has made it possible to devise ways of manipulating leaf senescence for agricultural improvement. There are three major strategies in this regard: (i) plant hormone biology-based leaf senescence manipulation technology, the senescence-specific gene promoter-directed IPT system in particular; (ii) leaf senescence-specific transcription factor biology-based technology; and (iii) translation initiation factor biology-based technology. Among the first strategy, the P SAG12 -IPT autoregulatory senescence inhibition system has been widely explored and successfully used in a variety of plant species for manipulating senescence. The vast majority of the related research articles (more than 2000) showed that crops harbouring the autoregulatory system displayed a significant delay in leaf senescence without any abnormalities in growth and development, a marked increase in grain yield and biomass, dramatic improvement in horticultural performance, and/or enhanced tolerance to drought stress. This technology is approaching commercialization. The transcription factor biology-based and translation initiation factor biology-based technologies have also been shown to be very promising and have great potentials for manipulating leaf senescence in crops. Finally, it is speculated that technologies based on the molecular understanding of nutrient recycling during leaf senescence are highly desirable and are expected to be developed in future translational leaf senescence research.

  9. Delayed leaf senescence induces extreme drought tolerance in a flowering plant.

    PubMed

    Rivero, Rosa M; Kojima, Mikiko; Gepstein, Amira; Sakakibara, Hitoshi; Mittler, Ron; Gepstein, Shimon; Blumwald, Eduardo

    2007-12-04

    Drought, the most prominent threat to agricultural production worldwide, accelerates leaf senescence, leading to a decrease in canopy size, loss in photosynthesis and reduced yields. On the basis of the assumption that senescence is a type of cell death program that could be inappropriately activated during drought, we hypothesized that it may be possible to enhance drought tolerance by delaying drought-induced leaf senescence. We generated transgenic plants expressing an isopentenyltransferase gene driven by a stress- and maturation-induced promoter. Remarkably, the suppression of drought-induced leaf senescence resulted in outstanding drought tolerance as shown by, among other responses, vigorous growth after a long drought period that killed the control plants. The transgenic plants maintained high water contents and retained photosynthetic activity (albeit at a reduced level) during the drought. Moreover, the transgenic plants displayed minimal yield loss when watered with only 30% of the amount of water used under control conditions. The production of drought-tolerant crops able to grow under restricted water regimes without diminution of yield would minimize drought-related losses and ensure food production in water-limited lands.

  10. The Stress-Induced Soybean NAC Transcription Factor GmNAC81 Plays a Positive Role in Developmentally Programmed Leaf Senescence.

    PubMed

    Pimenta, Maiana Reis; Silva, Priscila Alves; Mendes, Giselle Camargo; Alves, Janaína Roberta; Caetano, Hanna Durso Neves; Machado, Joao Paulo Batista; Brustolini, Otavio José Bernardes; Carpinetti, Paola Avelar; Melo, Bruno Paes; Silva, José Cleydson Ferreira; Rosado, Gustavo Leão; Ferreira, Márcia Flores Silva; Dal-Bianco, Maximillir; Picoli, Edgard Augusto de Toledo; Aragao, Francisco José Lima; Ramos, Humberto Josué Oliveira; Fontes, Elizabeth Pacheco Batista

    2016-05-01

    The onset of leaf senescence is a highly regulated developmental change that is controlled by both genetics and the environment. Senescence is triggered by massive transcriptional reprogramming, but functional information about its underlying regulatory mechanisms is limited. In the current investigation, we performed a functional analysis of the soybean (Glycine max) osmotic stress- and endoplasmic reticulum (ER) stress-induced NAC transcription factor GmNAC81 during natural leaf senescence using overexpression studies and reverse genetics. GmNAC81-overexpressing lines displayed accelerated flowering and leaf senescence but otherwise developed normally. The precocious leaf senescence of GmNAC81-overexpressing lines was associated with greater Chl loss, faster photosynthetic decay and higher expression of hydrolytic enzyme-encoding GmNAC81 target genes, including the vacuolar processing enzyme (VPE), an executioner of vacuole-triggered programmed cell death (PCD). Conversely, virus-induced gene silencing-mediated silencing of GmNAC81 delayed leaf senescence and was associated with reductions in Chl loss, lipid peroxidation and the expression of GmNAC81 direct targets. Promoter-reporter studies revealed that the expression pattern of GmNAC81 was associated with senescence in soybean leaves. Our data indicate that GmNAC81 is a positive regulator of age-dependent senescence and may integrate osmotic stress- and ER stress-induced PCD responses with natural leaf senescence through the GmNAC81/VPE regulatory circuit.

  11. [Infrared spectroscopic study on leaf senescence of evergreen tree].

    PubMed

    Li, Lun; Zhou, Xiang-Ping; Liu, Gang; Zhang, Li; Ou, Quan-Hong; Hao, Jian-Ming

    2013-02-01

    In order to investigate plant physiological process of leaf senescence and aging, Fourier transform infrared (FTIR) spectroscopy was used to study the young, mature, and old yellow leaves from seven species of evergreen trees. The spectra of the leaves from different growing period are different in the region of 1 800-700 cm(-1). The absorption ratios A1 070/A2 927, A1 070/A1 160 were used to evaluate the relative changes of polysaccharides, and A1 318/A2 922 was used to estimate the change of calcium oxalate during leaf senescence. Decomposition and curve-fitting analysis was performed in the region of 1 800 -1 500 cm(-1). The sub-band absorption ratio H1 650/H1 740 was used to evaluate the relative changes of protein in the leaves. The results show that the accumulation and mobilization of polysaccharides, protein, and calcium oxalate during leaf growing period were different in different plant species. This study demonstrates the potential of mid-infrared spectroscopy for investigation of plants senescence, as well as physiological and biochemical changes of plants.

  12. Living to Die and Dying to Live: The Survival Strategy behind Leaf Senescence1

    PubMed Central

    Schippers, Jos H.M.; Schmidt, Romy; Wagstaff, Carol; Jing, Hai-Chun

    2015-01-01

    Senescence represents the final developmental act of the leaf, during which the leaf cell is dismantled in a coordinated manner to remobilize nutrients and to secure reproductive success. The process of senescence provides the plant with phenotypic plasticity to help it adapt to adverse environmental conditions. Here, we provide a comprehensive overview of the factors and mechanisms that control the onset of senescence. We explain how the competence to senesce is established during leaf development, as depicted by the senescence window model. We also discuss the mechanisms by which phytohormones and environmental stresses control senescence as well as the impact of source-sink relationships on plant yield and stress tolerance. In addition, we discuss the role of senescence as a strategy for stress adaptation and how crop production and food quality could benefit from engineering or breeding crops with altered onset of senescence. PMID:26276844

  13. Rice Phytochrome B (OsPhyB) Negatively Regulates Dark- and Starvation-Induced Leaf Senescence

    PubMed Central

    Piao, Weilan; Kim, Eun-Young; Han, Su-Hyun; Sakuraba, Yasuhito; Paek, Nam-Chon

    2015-01-01

    Light regulates leaf senescence and light deprivation causes large-scale transcriptional reprogramming to dismantle cellular components and remobilize nutrients to sink organs, such as seeds and storage tissue. We recently reported that in Arabidopsis (Arabidopsis thaliana), Phytochrome-Interacting Factor4 (PIF4) and PIF5 promote dark-induced senescence and natural senescence by directly activating the expression of typical senescence-associated genes (SAGs), including ORESARA1 (ORE1) and ETHYLENE INSENSITIVE3 (EIN3). In contrast, phytochrome B (PhyB) inhibits leaf senescence by repressing PIF4 and PIF5 at the post-translational level. Although we found how red light signaling represses leaf senescence in Arabidopsis, it remains unknown whether PhyB and/or PhyA are involved in leaf senescence in rice (Oryza sativa). Here we show that rice phyB knockout mutants (osphyB-1, -2, and -3) exhibited an early senescence phenotype during dark-induced senescence, but an osphyA knockout mutant (osphyA-3) senesced normally. The RT-qPCR analysis revealed that several senescence-associated genes, including OsORE1 and OsEIN3, were significantly up-regulated in osphyB-2 mutants, indicating that OsPhyB also inhibits leaf senescence, like Arabidopsis PhyB. We also found that leaf segments of osphyB-2 senesced faster even under light conditions. Supplementation with nitrogen compounds, such as KNO3 and NH4NO3, rescued the early senescence phenotype of osphyB-2, indicating that starvation is one of the major signaling factors in the OsPhyB-dependent leaf senescence pathway. PMID:27135344

  14. Suppressor of Overexpression of CO 1 Negatively Regulates Dark-Induced Leaf Degreening and Senescence by Directly Repressing Pheophytinase and Other Senescence-Associated Genes in Arabidopsis.

    PubMed

    Chen, Junyi; Zhu, Xiaoyu; Ren, Jun; Qiu, Kai; Li, Zhongpeng; Xie, Zuokun; Gao, Jiong; Zhou, Xin; Kuai, Benke

    2017-03-01

    Although the biochemical pathway of chlorophyll (Chl) degradation has been largely elucidated, how Chl is rapidly yet coordinately degraded during leaf senescence remains elusive. Pheophytinase (PPH) is the enzyme for catalyzing the removal of the phytol group from pheophytin a, and PPH expression is significantly induced during leaf senescence. To elucidate the transcriptional regulation of PPH, we used a yeast (Saccharomyces cerevisiae) one-hybrid system to screen for its trans-regulators. SUPPRESSOR OF OVEREXPRESSION OF CO 1 (SOC1), a key flowering pathway integrator, was initially identified as one of the putative trans-regulators of PPH After dark treatment, leaves of an SOC1 knockdown mutant (soc1-6) showed an accelerated yellowing phenotype, whereas those of SOC1-overexpressing lines exhibited a partial stay-green phenotype. SOC1 and PPH expression showed a negative correlation during leaf senescence. Substantially, SOC1 protein could bind specifically to the CArG box of the PPH promoter in vitro and in vivo, and overexpression of SOC1 significantly inhibited the transcriptional activity of the PPH promoter in Arabidopsis (Arabidopsis thaliana) protoplasts. Importantly, soc1-6 pph-1 (a PPH knockout mutant) double mutant displayed a stay-green phenotype similar to that of pph-1 during dark treatment. These results demonstrated that SOC1 inhibits Chl degradation via negatively regulating PPH expression. In addition, measurement of the Chl content and the maximum photochemical efficiency of photosystem II of soc1-6 and SOC1-OE leaves after dark treatment suggested that SOC1 also negatively regulates the general senescence process. Seven SENESCENCE-ASSOCIATED GENES (SAGs) were thereafter identified as its potential target genes, and NONYELLOWING1 and SAG113 were experimentally confirmed. Together, we reveal that SOC1 represses dark-induced leaf Chl degradation and senescence in general in Arabidopsis.

  15. Transcriptional profile of genes involved in ascorbate glutathione cycle in senescing leaves for an early senescence leaf (esl) rice mutant.

    PubMed

    Li, Zhaowei; Su, Da; Lei, Bingting; Wang, Fubiao; Geng, Wei; Pan, Gang; Cheng, Fangmin

    2015-03-15

    To clarify the complex relationship between ascorbate-glutathione (AsA-GSH) cycle and H2O2-induced leaf senescence, the genotype-dependent difference in some senescence-related physiological parameters and the transcript levels and the temporal patterns of genes involved in the AsA-GSH cycle during leaf senescence were investigated using two rice genotypes, namely, the early senescence leaf (esl) mutant and its wild type. Meanwhile, the triggering effect of exogenous H2O2 on the expression of OsAPX genes was examined using detached leaves. The results showed that the esl mutant had higher H2O2 level than its wild type at the initial stage of leaf senescence. At transcriptional level, the association of expression of various genes involved in the AsA-GSH cycle with leaf senescence was isoform dependent. For OsAPXs, the transcripts of two cytosolic OsAPX genes (OsAPX1 and OsAPX2), thylakoid-bound OsAPX8, chloroplastic OsAPX7 and peroxisomal OsAPX4 exhibited remarkable genotype-dependent variation in their expression levels and temporal patterns during leaf senescence, there were significantly increasing transcripts of OsAXP1 and OsAPX7, severely repressed transcripts of OsAPX4 and OsAPX8 for the esl rice at the initial leaf senescence. In contrast, the repressing transcript of OsAPX8 was highly sensitive to the increasing H2O2 level in the senescing rice leaves, while higher H2O2 concentration resulted in the enhancing transcripts of two cytosolic OsAPX genes, OsAPX7 transcript was greatly variable with different H2O2 concentrations and incubating duration, suggesting that the different OsAPXs isoforms played a complementary role in perceiving and scavenging H2O2 accumulation at various H2O2 concentrations during leaf senescence. Higher H2O2 level, increased AsA level, higher activities of APX and glutathione reductase (GR), and relatively stable GSH content during the entire sampling period in the leaves of esl mutant implied that a close interrelationship existed

  16. Sink Removal and Leaf Senescence in Soybean 1

    PubMed Central

    Crafts-Brandner, Steven J.; Egli, Dennis B.

    1987-01-01

    Three cultivars of soybean (Glycine max [L.] Merr. cvs Harper, McCall, and Maple Amber) were grown in the field and kept continuously deflowered throughout the normal seedfill period. For all cultivars, deflowering led to delayed leaf abscission and a slower rate of chlorophyll loss. Compared to control plants, photosynthesis and ribulose 1,5-bis-phosphate carboxylase/oxygenase (Rubisco) level declined slightly faster for deflowered Harper, but for both McCall and Maple Amber, leaves of deflowered plants maintained approximately 20% of maximum photosynthesis and Rubisco level 1 month after control plants had senesced. Deflowering led to decreased leaf N remobilization and increased starch accumulation for all cultivars, but cultivars differed in that for McCall and Maple Amber, N and starch concentrations slowly but steadily declined over time whereas for Harper, N and starch concentrations remained essentially constant over time. SDS-PAGE of leaf proteins indicated that for all cultivars, deflowering led to accumulation of four polypeptides (80, 54, 29, and 27 kilodaltons). Western analysis using antisera prepared against the 29 and 27 kilodalton polypeptides verified that these polypeptides were the glycoproteins previously reported to accumulate in vacuoles of paraveinal mesophyll cells of depodded soybean plants. The results indicated that depending on the cultivar, sink removal can lead to either slightly faster or markedly slower loss of photosynthesis and Rubisco. This difference, however, was not associated with the ability to synthesize leaf storage proteins. For any particular cultivar, declines in chlorophyll, photosynthesis, and Rubisco were initiated at approximately the same time for control and deflowered plants. Thus, even though cultivars differed in rate of decay of photosynthetic rate and Rubisco level in response to sink removal, the initiation of leaf senescence was not influenced by presence or absence of developing fruits. Images Fig. 4 Fig

  17. Mitogen-activated protein kinase 6 mediates nuclear translocation of ORE3 to promote ORE9 gene expression in methyl jasmonate-induced leaf senescence.

    PubMed

    Zhang, Yushan; Liu, Jian; Chai, Jinyu; Xing, Da

    2016-01-01

    Methyl jasmonate (MeJA) is a potent promoter of plant senescence. ORESARA3 (ORE3)/ETHYLENE INSENSITIVE2 (EIN2), a protein similar to the members of the disease-related Nramp metal transporter family, is involved in cross-talk among several senescence processes related to abscisic acid, ethylene, MeJA, age and darkness. Nevertheless, the mechanism involved in the regulation of ORE3/EIN2 in exogenous MeJA-induced leaf senescence remains unclear. The C-terminal end of ORE3/EIN2 (CEND) was cleaved from ORE3/EIN2 located in the endoplasmic reticulum and then transferred to the nucleus during MeJA-induced senescence. Further analyses showed that mitogen-activated protein kinase 6 (MPK6) promoted CEND cleavage and nuclear translocation. Nuclear CEND accumulated ETHYLENE INSENSITIVE3 (EIN3), a transcription factor that accelerates MeJA-induced leaf senescence wherein ORESARA9 (ORE9) expression was suppressed in ein3, ore3, and mpk6 mutant plants. ChIP experiments revealed that EIN3 bound directly to the ORE9 promoter and this binding was enhanced in MeJA-induced leaf senescence. This study revealed the effect of the signalling pathway involving MPK6-ORE3-EIN3-ORE9 on regulating leaf senescence and provided insights into the mechanism of MeJA in promoting leaf senescence in Arabidopsis thaliana.

  18. Losses of leaf area owing to herbivory and early senescence in three tree species along a winter temperature gradient

    NASA Astrophysics Data System (ADS)

    González-Zurdo, P.; Escudero, A.; Nuñez, R.; Mediavilla, S.

    2016-11-01

    In temperate climates, evergreen leaves have to survive throughout low temperature winter periods. Freezing and chilling injuries can lead to accelerated senescence of part of the leaf surface, which contributes to a reduction of the lifespan of the photosynthetic machinery and of leaf lifetime carbon gain. Low temperatures are also associated with changes in foliar chemistry and morphology that affect consumption by herbivores. Therefore, the severity of foliar area losses caused by accelerated senescence and herbivory can change along winter temperature gradients. The aim of this study is to analyse such responses in the leaves of three evergreen species ( Quercus ilex, Q. suber and Pinus pinaster) along a climatic gradient. The leaves of all three species presented increased leaf mass per area (LMA) and higher concentrations of structural carbohydrates in cooler areas. Only the two oak species showed visible symptoms of damage caused by herbivory, this being less intense at the coldest sites. The leaves of all three species presented chlorotic and necrotic spots that increased in size with leaf age. The foliar surface affected by chlorosis and necrosis was larger at the sites with the coldest winters. Therefore, the effects of the winter cold on the lifespan of the photosynthetic machinery were contradictory: losses of leaf area due to accelerated senescence increased, but there was a decrease in losses caused by herbivory. The final consequences for carbon assimilation strongly depend on the exact timing of the appearance of the damage resulting from low temperature and grazing by herbivores.

  19. The Submergence Tolerance Gene SUB1A Delays Leaf Senescence under Prolonged Darkness through Hormonal Regulation in Rice1[W][OA

    PubMed Central

    Fukao, Takeshi; Yeung, Elaine; Bailey-Serres, Julia

    2012-01-01

    Leaf senescence is a natural age-dependent process that is induced prematurely by various environmental stresses. Typical alterations during leaf senescence include breakdown of chlorophyll, a shift to catabolism of energy reserves, and induction of senescence-associated genes, all of which can occur during submergence, drought, and constant darkness. Here, we evaluated the influence of the submergence tolerance regulator, SUBMERGENCE1A (SUB1A), in the acclimation responses during leaf senescence caused by prolonged darkness in rice (Oryza sativa). SUB1A messenger RNA was highly induced by prolonged darkness in a near-isogenic line containing SUB1A. Genotypes with conditional and ectopic overexpression of SUB1A significantly delayed loss of leaf color and enhanced recovery from dark stress. Physiological analysis revealed that SUB1A postpones dark-induced senescence through the maintenance of chlorophyll and carbohydrate reserves in photosynthetic tissue. This delay allowed leaves of SUB1A genotypes to recover photosynthetic activity more quickly upon reexposure to light. SUB1A also restricted the transcript accumulation of representative senescence-associated genes. Jasmonate and salicylic acid are positive regulators of leaf senescence, but ectopic overexpression of SUB1A dampened responsiveness to both hormones in the context of senescence. We found that ethylene accelerated senescence stimulated by darkness and jasmonate, although SUB1A significantly restrained dark-induced ethylene accumulation. Overall, SUB1A genotypes displayed altered responses to prolonged darkness by limiting ethylene production and responsiveness to jasmonate and salicylic acid, thereby dampening the breakdown of chlorophyll, carbohydrates, and the accumulation of senescence-associated messenger RNAs. A delay of leaf senescence conferred by SUB1A can contribute to the enhancement of tolerance to submergence, drought, and oxidative stress. PMID:23073696

  20. Functional characterization and hormonal regulation of the PHEOPHYTINASE gene LpPPH controlling leaf senescence in perennial ryegrass

    PubMed Central

    Zhang, Jing; Yu, Guohui; Wen, Wuwu; Ma, Xiqing; Xu, Bin; Huang, Bingru

    2016-01-01

    Chlorophyll (Chl) degradation occurs naturally during leaf maturation and senescence, and can be induced by stresses, both processes involving the regulation of plant hormones. The objective of this study was to determine the functional roles and hormonal regulation of a gene encoding pheophytin pheophorbide hydrolyase (PPH) that catabolizes Chl degradation during leaf senescence in perennial grass species. A PPH gene, LpPPH, was cloned from perennial ryegrass (Lolium perenne L.). LpPPH was localized in the chloroplast. Overexpressing LpPPH accelerated Chl degradation in wild tobacco, and rescued the stay-green phenotype of the Arabidopsis pph null mutant. The expression level of LpPPH was positively related to the extent of leaf senescence. Exogenous application of abscisic acid (ABA) and ethephon (an ethylene-releasing agent) accelerated the decline in Chl content in leaves of perennial ryegrass, whereas cytokinin (CK) and aminoethoxyvinylglycine (AVG; an ethylene biosynthesis inhibitor) treatments suppressed leaf senescence, corresponding to the up- or down-regulation of LpPPH expression. The promoters of five orthologous PPH genes were predicted to share conserved cis-elements potentially recognized by transcription factors in the ABA and CK pathways. Taken together, the results suggested that LpPPH-mediated Chl breakdown could be regulated positively by ABA and ethylene, and negatively by CK, and LpPPH could be a direct downstream target gene of transcription factors in the ABA and CK signaling pathways. PMID:26643195

  1. Early Autumn Senescence in Red Maple (Acer rubrum L.) Is Associated with High Leaf Anthocyanin Content

    PubMed Central

    Anderson, Rachel; Ryser, Peter

    2015-01-01

    Several theories exist about the role of anthocyanins in senescing leaves. To elucidate factors contributing to variation in autumn leaf anthocyanin contents among individual trees, we analysed anthocyanins and other leaf traits in 27 individuals of red maple (Acer rubrum L.) over two growing seasons in the context of timing of leaf senescence. Red maple usually turns bright red in the autumn, but there is considerable variation among the trees. Leaf autumn anthocyanin contents were consistent between the two years of investigation. Autumn anthocyanin content strongly correlated with degree of chlorophyll degradation mid to late September, early senescing leaves having the highest concentrations of anthocyanins. It also correlated positively with leaf summer chlorophyll content and dry matter content, and negatively with specific leaf area. Time of leaf senescence and anthocyanin contents correlated with soil pH and with canopy openness. We conclude that the importance of anthocyanins in protection of leaf processes during senescence depends on the time of senescence. Rather than prolonging the growing season by enabling a delayed senescence, autumn anthocyanins in red maple in Ontario are important when senescence happens early, possibly due to the higher irradiance and greater danger of oxidative damage early in the season. PMID:27135339

  2. Early Autumn Senescence in Red Maple (Acer rubrum L.) Is Associated with High Leaf Anthocyanin Content.

    PubMed

    Anderson, Rachel; Ryser, Peter

    2015-08-05

    Several theories exist about the role of anthocyanins in senescing leaves. To elucidate factors contributing to variation in autumn leaf anthocyanin contents among individual trees, we analysed anthocyanins and other leaf traits in 27 individuals of red maple (Acer rubrum L.) over two growing seasons in the context of timing of leaf senescence. Red maple usually turns bright red in the autumn, but there is considerable variation among the trees. Leaf autumn anthocyanin contents were consistent between the two years of investigation. Autumn anthocyanin content strongly correlated with degree of chlorophyll degradation mid to late September, early senescing leaves having the highest concentrations of anthocyanins. It also correlated positively with leaf summer chlorophyll content and dry matter content, and negatively with specific leaf area. Time of leaf senescence and anthocyanin contents correlated with soil pH and with canopy openness. We conclude that the importance of anthocyanins in protection of leaf processes during senescence depends on the time of senescence. Rather than prolonging the growing season by enabling a delayed senescence, autumn anthocyanins in red maple in Ontario are important when senescence happens early, possibly due to the higher irradiance and greater danger of oxidative damage early in the season.

  3. High-Throughput and Computational Study of Leaf Senescence through a Phenomic Approach

    PubMed Central

    Lyu, Jae IL; Baek, Seung Hee; Jung, Sukjoon; Chu, Hyosub; Nam, Hong Gil; Kim, Jeongsik; Lim, Pyung Ok

    2017-01-01

    Leaf senescence is influenced by its life history, comprising a series of developmental and physiological experiences. Exploration of the biological principles underlying leaf lifespan and senescence requires a schema to trace leaf phenotypes, based on the interaction of genetic and environmental factors. We developed a new approach and concept that will facilitate systemic biological understanding of leaf lifespan and senescence, utilizing the phenome high-throughput investigator (PHI) with a single-leaf-basis phenotyping platform. Our pilot tests showed empirical evidence for the feasibility of PHI for quantitative measurement of leaf senescence responses and improved performance in order to dissect the progression of senescence triggered by different senescence-inducing factors as well as genetic mutations. Such an establishment enables new perspectives to be proposed, which will be challenged for enhancing our fundamental understanding on the complex process of leaf senescence. We further envision that integration of phenomic data with other multi-omics data obtained from transcriptomic, proteomic, and metabolic studies will enable us to address the underlying principles of senescence, passing through different layers of information from molecule to organism. PMID:28280501

  4. Characterization of markers to determine the extent and variability of leaf senescence in Arabidopsis. A metabolic profiling approach.

    PubMed

    Diaz, Céline; Purdy, Sarah; Christ, Aurélie; Morot-Gaudry, Jean-Francois; Wingler, Astrid; Masclaux-Daubresse, Céline

    2005-06-01

    Comparison of the extent of leaf senescence depending on the genetic background of different recombinant inbred lines (RILs) of Arabidopsis (Arabidopsis thaliana) is described. Five RILs of the Bay-0 x Shahdara population showing differential leaf senescence phenotypes (from early senescing to late senescing) were selected to determine metabolic markers to discriminate Arabidopsis lines on the basis of senescence-dependent changes in metabolism. The proportion of gamma-aminobutyric acid, leucine, isoleucine, aspartate, and glutamate correlated with (1) the age and (2) the senescence phenotype of the RILs. Differences were observed in the glycine/serine ratio even before any senescence symptoms could be detected in the rosettes. This could be used as predictive indicator for plant senescence behavior. Surprisingly, late-senescing lines appeared to mobilize glutamine, asparagine, and sulfate more efficiently than early-senescing lines. The physiological basis of the relationship between leaf senescence and flowering time was analyzed.

  5. Decreased glutathione reductase2 leads to early leaf senescence in Arabidopsis

    PubMed Central

    Ding, Shunhua; Wang, Liang; Yang, Zhipan; Lu, Qingtao; Wen, Xiaogang

    2015-01-01

    Abstract Glutathione reductase (GR) catalyzes the reduction of glutathione disulfide (GSSG) to reduced glutathione (GSH) and participates in the ascorbate‐glutathione cycle, which scavenges H2O2. Here, we report that chloroplastic/mitochondrial GR2 is an important regulator of leaf senescence. Seed development of the homozygous gr2 knockout mutant was blocked at the globular stage. Therefore, to investigate the function of GR2 in leaf senescence, we generated transgenic Arabidopsis plants with decreased GR2 using RNAi. The GR2 RNAi plants displayed early onset of age‐dependent and dark‐ and H2O2‐induced leaf senescence, which was accompanied by the induction of the senescence‐related marker genes SAG12 and SAG13. Furthermore, transcriptome analysis revealed that genes related to leaf senescence, oxidative stress, and phytohormone pathways were upregulated directly before senescence in RNAi plants. In addition, H2O2 accumulated to higher levels in RNAi plants than in wild‐type plants and the levels of H2O2 peaked in RNAi plants directly before the early onset of leaf senescence. RNAi plants showed a greater decrease in GSH/GSSG levels than wild‐type plants during leaf development. Our results suggest that GR2 plays an important role in leaf senescence by modulating H2O2 and glutathione signaling in Arabidopsis. PMID:26031939

  6. Epigenetic programming via histone methylation at WRKY53 controls leaf senescence in Arabidopsis thaliana.

    PubMed

    Ay, Nicole; Irmler, Kristina; Fischer, Andreas; Uhlemann, Ria; Reuter, Gunter; Humbeck, Klaus

    2009-04-01

    Leaf senescence, the final step of leaf development, involves extensive reprogramming of gene expression. Here, we show that these processes include discrete changes of epigenetic indexing, as well as global alterations in chromatin organization. During leaf senescence, the interphase nuclei show a decondensation of chromocenter heterochromatin, and changes in the nuclear distribution of the H3K4me2, H3K4me3, and the H3K27me2 and H3K27me3 histone modification marks that index active and inactive chromatin, respectively. Locus-specific epigenetic indexing was studied at the WRKY53 key regulator of leaf senescence. During senescence, when the locus becomes activated, H3K4me2 and H3K4me3 are significantly increased at the 5' end and at coding regions. Impairment of these processes is observed in plants overexpressing the SUVH2 histone methyltransferase, which causes ectopic heterochromatization. In these plants the transcriptional initiation of WRKY53 and of the senescence-associated genes SIRK, SAG101, ANAC083, SAG12 and SAG24 is inhibited, resulting in a delay of leaf senescence. In SUVH2 overexpression plants, significant levels of H3K27me2 and H3K27me3 are detected at the 5'-end region of WRKY53, resulting in its transcriptional repression. Furthermore, SUVH2 overexpression inhibits senescence-associated global changes in chromatin organization. Our data suggest that complex epigenetic processes control the senescence-specific gene expression pattern.

  7. Protein carbonylation during natural leaf senescence in winter wheat, as probed by fluorescein-5-thiosemicarbazide.

    PubMed

    Havé, M; Leitao, L; Bagard, M; Castell, J-F; Repellin, A

    2015-09-01

    Leaf senescence is characterised by a massive degradation of proteins in order to recycle nitrogen to other parts of the plant, such as younger leaves or developing grain/seed. Protein degradation during leaf senescence is a highly regulated process and it is suggested that proteins to be degraded are marked by an oxidative modification (carbonylation) that makes them more susceptible to proteolysis. However, there is as yet no evidence of an increase in protein carbonylation level during natural leaf senescence. The aim of our study was thus to monitor protein carbonylation level during the process of natural senescence in the flag leaf of field-grown winter wheat plants. For this purpose, we adapted a fluorescence-based method using fluorescein-5-thiosemicarbazide (FTC) as a probe for detecting protein carbonyl derivatives. As used for the first time on plant material, this method allowed the detection of both quantitative and qualitative modifications in protein carbonyl levels during the last stages of wheat flag leaf development. The method described herein represents a convenient, sensitive and reproducible alternative to the commonly used 2,4-dinitrophenylhydrazine (DNPH)-based method. In addition, our analysis revealed changes in protein carbonylation level during leaf development that were associated with qualitative changes in protein abundance and carbonylation profiles. In the senescing flag leaf, protein carbonylation increased concomitantly with a stimulation of endoproteolytic activity and a decrease in protein content, which supports the suggested relationship between protein oxidation and proteolysis during natural leaf senescence.

  8. Genetic variation suggests interaction between cold acclimation and metabolic regulation of leaf senescence.

    PubMed

    Masclaux-Daubresse, Céline; Purdy, Sarah; Lemaitre, Thomas; Pourtau, Nathalie; Taconnat, Ludivine; Renou, Jean-Pierre; Wingler, Astrid

    2007-01-01

    The extent to which leaf senescence is induced by nitrogen deficiency or by sugar accumulation varies between natural accessions of Arabidopsis (Arabidopsis thaliana). Analysis of senescence in plants of the Bay-0 x Shahdara recombinant inbred line (RIL) population revealed a large variation in developmental senescence of the whole leaf rosette, which was in agreement with the extent to which glucose (Glc) induced senescence in the different lines. To determine the regulatory basis of genetic differences in the Glc response, we investigated changes in gene expression using Complete Arabidopsis Transcriptome MicroArray (CATMA) analysis. Genes whose regulation did not depend on the genetic background, as well as genes whose regulation was specific to individual RILs, were identified. In RIL 310, a line that does not show the typical senescence response to Glc, stress response genes, especially those responding to cold stress, were induced by Glc. We therefore tested whether cold acclimation delays senescence by reducing sugar sensitivity. In cold-acclimated plants, leaf senescence was severely delayed and Glc did not induce the typical senescence response. Together, our results suggest that cold acclimation extends rosette longevity by affecting metabolic regulation of senescence, thereby allowing vernalization-dependent plants to survive the winter period. The role of functional chloroplasts and of nitrogen and phosphate availability in this regulation is discussed.

  9. Characterization of Photosynthetic Performance during Senescence in Stay-Green and Quick-Leaf-Senescence Zea mays L. Inbred Lines

    PubMed Central

    Gao, Huiyuan; Zhang, Litao; Yang, Cheng; Liu, Peng; Meng, Qingwei

    2012-01-01

    The net photosynthetic rate, chlorophyll content, chlorophyll fluorescence and 820 nm transmission were investigated to explore the behavior of the photosynthetic apparatus, including light absorption, energy transformation and the photoactivities of photosystem II (PSII) and photosystem I (PSI) during senescence in the stay-green inbred line of maize (Zea mays) Q319 and the quick-leaf-senescence inbred line of maize HZ4. The relationship between the photosynthetic performance and the decrease in chlorophyll content in the two inbred lines was also studied. Both the field and laboratory data indicated that the chlorophyll content, net photosynthetic rate, and the photoactivities of PSII and PSI decreased later and slower in Q319 than in HZ4, indicating that Q319 is a functional stay-green inbred line. In order to avoid the influence of different development stages and environmental factors on senescence, age-matched detached leaf segments from the two inbred lines were treated with ethephon under controlled conditions to induce senescence. The net photosynthetic rate, light absorption, energy transformation, the activities of PSII acceptor side and donor side and the PSI activities decreased much slower in Q319 than in HZ4 during the ethephon-induced senescence. These results suggest that the retention of light absorption, energy transformation and activity of electron transfer contribute to the extended duration of active photosynthesis in Q319. Although the chlorophyll content decreased faster in HZ4, with decrease of chlorophyll content induced by ethephon, photosynthetic performance of Q319 deteriorated much more severely than that of HZ4, indicating that, compared with Q319, HZ4 has an advantage at maintaining higher photosynthetic activity with decrease of chlorophyll although HZ4 is a quick-leaf-senescence inbred line. We conclude that attention should be paid to two favorable characteristics in breeding long duration of active photosynthesis hybrids: 1

  10. Characterization of photosynthetic performance during senescence in stay-green and quick-leaf-senescence Zea mays L. inbred lines.

    PubMed

    Zhang, Zishan; Li, Geng; Gao, Huiyuan; Zhang, Litao; Yang, Cheng; Liu, Peng; Meng, Qingwei

    2012-01-01

    The net photosynthetic rate, chlorophyll content, chlorophyll fluorescence and 820 nm transmission were investigated to explore the behavior of the photosynthetic apparatus, including light absorption, energy transformation and the photoactivities of photosystem II (PSII) and photosystem I (PSI) during senescence in the stay-green inbred line of maize (Zea mays) Q319 and the quick-leaf-senescence inbred line of maize HZ4. The relationship between the photosynthetic performance and the decrease in chlorophyll content in the two inbred lines was also studied. Both the field and laboratory data indicated that the chlorophyll content, net photosynthetic rate, and the photoactivities of PSII and PSI decreased later and slower in Q319 than in HZ4, indicating that Q319 is a functional stay-green inbred line. In order to avoid the influence of different development stages and environmental factors on senescence, age-matched detached leaf segments from the two inbred lines were treated with ethephon under controlled conditions to induce senescence. The net photosynthetic rate, light absorption, energy transformation, the activities of PSII acceptor side and donor side and the PSI activities decreased much slower in Q319 than in HZ4 during the ethephon-induced senescence. These results suggest that the retention of light absorption, energy transformation and activity of electron transfer contribute to the extended duration of active photosynthesis in Q319. Although the chlorophyll content decreased faster in HZ4, with decrease of chlorophyll content induced by ethephon, photosynthetic performance of Q319 deteriorated much more severely than that of HZ4, indicating that, compared with Q319, HZ4 has an advantage at maintaining higher photosynthetic activity with decrease of chlorophyll although HZ4 is a quick-leaf-senescence inbred line. We conclude that attention should be paid to two favorable characteristics in breeding long duration of active photosynthesis hybrids: 1

  11. Substantial variation in leaf senescence times among 1360 temperate woody plant species: implications for phenology and ecosystem processes

    PubMed Central

    Panchen, Zoe A.; Primack, Richard B.; Gallinat, Amanda S.; Nordt, Birgit; Stevens, Albert-Dieter; Du, Yanjun; Fahey, Robert

    2015-01-01

    Background and Aims Autumn leaf senescence marks the end of the growing season in temperate ecosystems. Its timing influences a number of ecosystem processes, including carbon, water and nutrient cycling. Climate change is altering leaf senescence phenology and, as those changes continue, it will affect individual woody plants, species and ecosystems. In contrast to spring leaf out times, however, leaf senescence times remain relatively understudied. Variation in the phenology of leaf senescence among species and locations is still poorly understood. Methods Leaf senescence phenology of 1360 deciduous plant species at six temperate botanical gardens in Asia, North America and Europe was recorded in 2012 and 2013. This large data set was used to explore ecological and phylogenetic factors associated with variation in leaf senescence. Key Results Leaf senescence dates among species varied by 3 months on average across the six locations. Plant species tended to undergo leaf senescence in the same order in the autumns of both years at each location, but the order of senescence was only weakly correlated across sites. Leaf senescence times were not related to spring leaf out times, were not evolutionarily conserved and were only minimally influenced by growth habit, wood anatomy and percentage colour change or leaf drop. These weak patterns of leaf senescence timing contrast with much stronger leaf out patterns from a previous study. Conclusions The results suggest that, in contrast to the broader temperature effects that determine leaf out times, leaf senescence times are probably determined by a larger or different suite of local environmental effects, including temperature, soil moisture, frost and wind. Determining the importance of these factors for a wide range of species represents the next challenge for understanding how climate change is affecting the end of the growing season and associated ecosystem processes. PMID:25808654

  12. Melatonin delays leaf senescence and enhances salt stress tolerance in rice.

    PubMed

    Liang, Chengzhen; Zheng, Guangyong; Li, Wenzhen; Wang, Yiqin; Hu, Bin; Wang, Hongru; Wu, Hongkai; Qian, Yangwen; Zhu, Xin-Guang; Tan, Dun-Xian; Chen, Shou-Yi; Chu, Chengcai

    2015-08-01

    Melatonin, an antioxidant in both animals and plants, has been reported to have beneficial effects on the aging process. It was also suggested to play a role in extending longevity and enhancing abiotic stress resistance in plant. In this study, we demonstrate that melatonin acts as a potent agent to delay leaf senescence and cell death in rice. Treatments with melatonin significantly reduced chlorophyll degradation, suppressed the transcripts of senescence-associated genes, delayed the leaf senescence, and enhanced salt stress tolerance. Genome-wide expression profiling by RNA sequencing reveals that melatonin is a potent free radical scavenger, and its exogenous application results in enhanced antioxidant protection. Leaf cell death in noe1, a mutant with over-produced H2O2, can be relieved by exogenous application of melatonin. These data demonstrate that melatonin delays the leaf senescence and cell death and also enhances abiotic stress tolerance via directly or indirectly counteracting the cellular accumulation of H2O2.

  13. The impact of light intensity on shade-induced leaf senescence.

    PubMed

    Brouwer, Bastiaan; Ziolkowska, Agnieszka; Bagard, Matthieu; Keech, Olivier; Gardeström, Per

    2012-06-01

    Plants often have to cope with altered light conditions, which in leaves induce various physiological responses ranging from photosynthetic acclimation to leaf senescence. However, our knowledge of the regulatory pathways by which shade and darkness induce leaf senescence remains incomplete. To determine to what extent reduced light intensities regulate the induction of leaf senescence, we performed a functional comparison between Arabidopsis leaves subjected to a range of shading treatments. Individually covered leaves, which remained attached to the plant, were compared with respect to chlorophyll, protein, histology, expression of senescence-associated genes, capacity for photosynthesis and respiration, and light compensation point (LCP). Mild shading induced photosynthetic acclimation and resource partitioning, which, together with a decreased respiration, lowered the LCP. Leaf senescence was induced only under strong shade, coinciding with a negative carbon balance and independent of the red/far-red ratio. Interestingly, while senescence was significantly delayed at very low light compared with darkness, phytochrome A mutant plants showed enhanced chlorophyll degradation under all shading treatments except complete darkness. Taken together, our results suggest that the induction of leaf senescence during shading depends on the efficiency of carbon fixation, which in turn appears to be modulated via light receptors such as phytochrome A.

  14. Leaf senescence is accompanied by an early disruption of the microtubule network in Arabidopsis.

    PubMed

    Keech, Olivier; Pesquet, Edouard; Gutierrez, Laurent; Ahad, Abdul; Bellini, Catherine; Smith, Steven M; Gardeström, Per

    2010-12-01

    The dynamic assembly and disassembly of microtubules (MTs) is essential for cell function. Although leaf senescence is a well-documented process, the role of the MT cytoskeleton during senescence in plants remains unknown. Here, we show that both natural leaf senescence and senescence of individually darkened Arabidopsis (Arabidopsis thaliana) leaves are accompanied by early degradation of the MT network in epidermis and mesophyll cells, whereas guard cells, which do not senesce, retain their MT network. Similarly, entirely darkened plants, which do not senesce, retain their MT network. While genes encoding the tubulin subunits and the bundling/stabilizing MT-associated proteins (MAPs) MAP65 and MAP70-1 were repressed in both natural senescence and dark-induced senescence, we found strong induction of the gene encoding the MT-destabilizing protein MAP18. However, induction of MAP18 gene expression was also observed in leaves from entirely darkened plants, showing that its expression is not sufficient to induce MT disassembly and is more likely to be part of a Ca(2+)-dependent signaling mechanism. Similarly, genes encoding the MT-severing protein katanin p60 and two of the four putative regulatory katanin p80s were repressed in the dark, but their expression did not correlate with degradation of the MT network during leaf senescence. Taken together, these results highlight the earliness of the degradation of the cortical MT array during leaf senescence and lead us to propose a model in which suppression of tubulin and MAP genes together with induction of MAP18 play key roles in MT disassembly during senescence.

  15. Western diet consumption promotes vascular remodeling in non-senescent mice consistent with accelerated senescence, but does not modify vascular morphology in senescent ones.

    PubMed

    Dantas, Ana Paula; Onetti, Yara; Oliveira, María Aparecida; Carvalho, Maria Helena; Heras, Magda; Vila, Elisabet; Jiménez-Altayó, Francesc

    2014-07-01

    Senescence accelerated mice (SAM) are susceptible to developing vascular dysfunction and remodeling. Food intake and type of diet have also been identified as determining factors in vascular remodeling. However, the interplay between senescence and diet in vascular remodeling is largely unknown. We aimed to analyze structure of large (aorta) and small (mesenteric; MA) arteries from seven-month-old SAM prone (SAMP8) and resistant (SAMR1) mice that received a Western-type high-fat diet (WD; 8weeks). Aortic structure was assessed by morphometric analysis of hematoxylin and eosin-stained cross sections, and collagen content by qRT-PCR, immunofluorescence and picrosirius red. In MAs, structural and mechanical properties were measured by pressure myography; elastin and collagen content by qRT-PCR and immunofluorescence; nuclei distribution by confocal microscopy; and apoptosis by qRT-PCR and TUNEL assay. In aorta, wall thickness (WT), but not cross-sectional area (CSA), was increased by senescence, and WD only increased WT in SAMR1. WD intake, but not senescence, was associated with increased collagen deposition. In MAs, senescence diminished WT and CSA, without altering collagen and elastin deposition, reduced the number of MA wall cells, and increased pro apoptotic activation. WD consumption promoted in SAMR1 the same remodeling observed with senescence, while in SAMP8 the senescence-associated changes remained unaffected. The mechanisms involved in WD-induced MA remodeling in SAMR1 mimicked those observed in senescence per se. Our study reveals qualitatively different remodeling in aortas and MAs from senescent mice. Consumption of a WD induced remodeling of the SAMR1 vasculature similar to that induced by senescence, while it did not promote any further alteration in the latter. Therefore, we propose that increased consumption of fat-enriched diets could promote accelerated senescence of the non-senescent vasculature, although it does not exacerbate vascular

  16. Do initial S reserves and mineral S availability alter leaf S-N mobilization and leaf senescence in oilseed rape?

    PubMed

    Abdallah, M; Etienne, P; Ourry, A; Meuriot, F

    2011-03-01

    Winter oilseed rape is sensitive to S limitation, however few studies have clearly assessed the impact of initial S reserves on the remobilization of leaf N-S compounds and senescence dynamics within the leaves in S limited plants. As a consequence, the impacts of high or low initial S reserves on these parameters, further cross-combined with either high or low S availabilities, were examined using a ¹⁵N and ³⁴S double-labelling method associated with a study of gene expression of relevant tonoplastic sulphate transporters (BnSultr4;1 and BnSultr4;2) and a molecular indicator of leaf senescence (BnSAG12/BnCab). Plants with high initial S status and S limitation showed an optimal growth comparable to control plants. Moreover, in response to S limitation, leaf soluble protein content, total S, recently assimilated S (i.e., ³⁴S) and the sulphate content in the oldest leaves declined, and the expression of genes encoding tonoplastic sulphate transporters were up-regulated. However, compared to control plants, S limitation delayed leaf senescence. These data suggested that in response to S limitation, plants with high initial S were able to sustain optimized leaf growth by increasing endogenous N and S remobilization independently of the leaf senescence process. In contrast, if these low S plants had no initial S reserves, leaf N-S remobilization was not sufficient to allow optimal growth. As a conclusion, our study supports a model where oilseed rape is able to compensate transiently for S limitation through a fine management of leaf N-S remobilization and a delayed leaf senescence dynamics.

  17. 17AAG Treatment Accelerates Doxorubicin Induced Cellular Senescence: Hsp90 Interferes with Enforced Senescence of Tumor Cells

    PubMed Central

    Sarangi, Upasana; Paithankar, Khande Rao; Kumar, Jonnala Ujwal; Subramaniam, Vaidyanathan; Sreedhar, Amere Subbarao

    2012-01-01

    Hsp90 chaperone has been identified as an attractive pharmacological target to combat cancer. However, some metastatic tumors either fail to respond to Hsp90 inhibition or show recovery necessitating irreversible therapeutic strategies. In response to this enforced senescence has been proposed as an alternate strategy. Here, we demonstrate that inhibiting Hsp90 with 17AAG sensitizes human neuroblastoma to DNA damage response mediated cellular senescence. Among individual and combination drug treatments, 17AAG pre-treatment followed by doxorubicin treatment exhibited senescence-like characteristics such as increased nucleus to cytoplasm ratio, cell cycle arrest, SA-β-gal staining and the perpetual increase in SAHF. Doxorubicin induced senescence signaling was mediated by p53-p21CIP/WAF-1 and was accelerated in the absence of functional Hsp90. Sustained p16INK4a and H3K4me3 expressions correlating with unaffected telomerase activation annulled replicative senescence and appraised stress induced senescence. Despite increases in [(ROS)i] and [(Ca2+)i], a concomitant increase in cellular antioxidant defense system suggested oxidation independent senescence activation. Sustained activation of survival (Akt) and proliferative (ERK1/2) kinases fosters robustness of cells. Invigorating senescent cells with growth factor or snooping with mTOR or PI3 kinase inhibitors compromised cell survival but not senescence. Intriguingly, senescence-associated secretory factors from the senescence cells manifested established senescence in neuroblastoma, which offers clinical advantage to our approach. Our study discusses tumor selective functions of Hsp90 and discusses irrefutable strategies of Hsp90 inhibition in anticancer treatments. PMID:22915839

  18. Alteration of the phenology of leaf senescence and fall in winter deciduous species by climate change: effects on nutrient proficiency.

    PubMed

    Estiarte, Marc; Peñuelas, Josep

    2015-03-01

    Leaf senescence in winter deciduous species signals the transition from the active to the dormant stage. The purpose of leaf senescence is the recovery of nutrients before the leaves fall. Photoperiod and temperature are the main cues controlling leaf senescence in winter deciduous species, with water stress imposing an additional influence. Photoperiod exerts a strict control on leaf senescence at latitudes where winters are severe and temperature gains importance in the regulation as winters become less severe. On average, climatic warming will delay and drought will advance leaf senescence, but at varying degrees depending on the species. Warming and drought thus have opposite effects on the phenology of leaf senescence, and the impact of climate change will therefore depend on the relative importance of each factor in specific regions. Warming is not expected to have a strong impact on nutrient proficiency although a slower speed of leaf senescence induced by warming could facilitate a more efficient nutrient resorption. Nutrient resorption is less efficient when the leaves senesce prematurely as a consequence of water stress. The overall effects of climate change on nutrient resorption will depend on the contrasting effects of warming and drought. Changes in nutrient resorption and proficiency will impact production in the following year, at least in early spring, because the construction of new foliage relies almost exclusively on nutrients resorbed from foliage during the preceding leaf fall. Changes in the phenology of leaf senescence will thus impact carbon uptake, but also ecosystem nutrient cycling, especially if the changes are consequence of water stress.

  19. Leaf senescence and nitrogen remobilization efficiency in oilseed rape (Brassica napus L.).

    PubMed

    Avice, Jean-Christophe; Etienne, Philippe

    2014-07-01

    Despite its worldwide economic importance for food (oil, meal) and non-food (green energy and chemistry) uses, oilseed rape has a low nitrogen (N) use efficiency (NUE), mainly due to the low N remobilization efficiency (NRE) observed during the vegetative phase when sequential leaf senescence occurs. Assuming that improvement of NRE is the main lever for NUE optimization, unravelling the cellular mechanisms responsible for the recycling of proteins (the main N source in leaf) during sequential senescence is a prerequisite for identifying the physiological and molecular determinants that are associated with high NRE. The development of a relevant molecular indicator (SAG12/Cab) of leaf senescence progression in combination with a (15)N-labelling method were used to decipher the N remobilization associated with sequential senescence and to determine modulation of this process by abiotic factors especially N deficiency. Interestingly, in young leaves, N starvation delayed senescence and induced BnD22, a water-soluble chlorophyll-binding protein that acts against oxidative alterations of chlorophylls and exhibits a protease inhibitor activity. Through its dual function, BnD22 may help to sustain sink growth of stressed plants and contribute to a better utilization of N recycled from senescent leaves, a physiological trait that could improve NUE. Proteomics approaches have revealed that proteolysis involves chloroplastic FtsH protease in the early stages of senescence, aspartic protease during the course of leaf senescence, and the proteasome β1 subunit, mitochondria processing protease and SAG12 (cysteine protease) during the later senescence phases. Overall, the results constitute interesting pathways for screening genotypes with high NRE and NUE.

  20. Leaf mineral nutrient remobilization during leaf senescence and modulation by nutrient deficiency

    PubMed Central

    Maillard, Anne; Diquélou, Sylvain; Billard, Vincent; Laîné, Philippe; Garnica, Maria; Prudent, Marion; Garcia-Mina, José-Maria; Yvin, Jean-Claude; Ourry, Alain

    2015-01-01

    Higher plants have to cope with fluctuating mineral resource availability. However, strategies such as stimulation of root growth, increased transporter activities, and nutrient storage and remobilization have been mostly studied for only a few macronutrients. Leaves of cultivated crops (Zea mays, Brassica napus, Pisum sativum, Triticum aestivum, Hordeum vulgare) and tree species (Quercus robur, Populus nigra, Alnus glutinosa) grown under field conditions were harvested regularly during their life span and analyzed to evaluate the net mobilization of 13 nutrients during leaf senescence. While N was remobilized in all plant species with different efficiencies ranging from 40% (maize) to 90% (wheat), other macronutrients (K–P–S–Mg) were mobilized in most species. Ca and Mn, usually considered as having low phloem mobility were remobilized from leaves in wheat and barley. Leaf content of Cu–Mo–Ni–B–Fe–Zn decreased in some species, as a result of remobilization. Overall, wheat, barley and oak appeared to be the most efficient at remobilization while poplar and maize were the least efficient. Further experiments were performed with rapeseed plants subjected to individual nutrient deficiencies. Compared to field conditions, remobilization from leaves was similar (N–S–Cu) or increased by nutrient deficiency (K–P–Mg) while nutrient deficiency had no effect on Mo–Zn–B–Ca–Mn, which seemed to be non-mobile during leaf senescence under field conditions. However, Ca and Mn were largely mobilized from roots (-97 and -86% of their initial root contents, respectively) to shoots. Differences in remobilization between species and between nutrients are then discussed in relation to a range of putative mechanisms. PMID:26029223

  1. Leaf mineral nutrient remobilization during leaf senescence and modulation by nutrient deficiency.

    PubMed

    Maillard, Anne; Diquélou, Sylvain; Billard, Vincent; Laîné, Philippe; Garnica, Maria; Prudent, Marion; Garcia-Mina, José-Maria; Yvin, Jean-Claude; Ourry, Alain

    2015-01-01

    Higher plants have to cope with fluctuating mineral resource availability. However, strategies such as stimulation of root growth, increased transporter activities, and nutrient storage and remobilization have been mostly studied for only a few macronutrients. Leaves of cultivated crops (Zea mays, Brassica napus, Pisum sativum, Triticum aestivum, Hordeum vulgare) and tree species (Quercus robur, Populus nigra, Alnus glutinosa) grown under field conditions were harvested regularly during their life span and analyzed to evaluate the net mobilization of 13 nutrients during leaf senescence. While N was remobilized in all plant species with different efficiencies ranging from 40% (maize) to 90% (wheat), other macronutrients (K-P-S-Mg) were mobilized in most species. Ca and Mn, usually considered as having low phloem mobility were remobilized from leaves in wheat and barley. Leaf content of Cu-Mo-Ni-B-Fe-Zn decreased in some species, as a result of remobilization. Overall, wheat, barley and oak appeared to be the most efficient at remobilization while poplar and maize were the least efficient. Further experiments were performed with rapeseed plants subjected to individual nutrient deficiencies. Compared to field conditions, remobilization from leaves was similar (N-S-Cu) or increased by nutrient deficiency (K-P-Mg) while nutrient deficiency had no effect on Mo-Zn-B-Ca-Mn, which seemed to be non-mobile during leaf senescence under field conditions. However, Ca and Mn were largely mobilized from roots (-97 and -86% of their initial root contents, respectively) to shoots. Differences in remobilization between species and between nutrients are then discussed in relation to a range of putative mechanisms.

  2. Isolation and characterization of a spotted leaf 32 mutant with early leaf senescence and enhanced defense response in rice

    PubMed Central

    Sun, Liting; Wang, Yihua; Liu, Ling-long; Wang, Chunming; Gan, Ting; Zhang, Zhengyao; Wang, Yunlong; Wang, Di; Niu, Mei; Long, Wuhua; Li, Xiaohui; Zheng, Ming; Jiang, Ling; Wan, Jianmin

    2017-01-01

    Leaf senescence is a complex biological process and defense responses play vital role for rice development, their molecular mechanisms, however, remain elusive in rice. We herein reported a rice mutant spotted leaf 32 (spl32) derived from a rice cultivar 9311 by radiation. The spl32 plants displayed early leaf senescence, identified by disintegration of chloroplasts as cellular evidence, dramatically decreased contents of chlorophyll, up-regulation of superoxide dismutase enzyme activity and malondialdehyde, as physiological characteristic, and both up-regulation of senescence-induced STAY GREEN gene and senescence-associated transcription factors, and down-regulation of photosynthesis-associated genes, as molecular indicators. Positional cloning revealed that SPL32 encodes a ferredoxin-dependent glutamate synthase (Fd-GOGAT). Compared to wild type, enzyme activity of GOGAT was significantly decreased, and free amino acid contents, particularly for glutamate and glutamine, were altered in spl32 leaves. Moreover, the mutant was subjected to uncontrolled oxidative stress due to over-produced reactive oxygen species and damaged scavenging pathways, in accordance with decreased photorespiration rate. Besides, the mutant showed higher resistance to Xanthomonas oryzae pv. Oryzae than its wild type, coupled with up-regulation of four pathogenesis-related marker genes. Taken together, our results highlight Fd-GOGAT is associated with the regulation of leaf senescence and defense responses in rice. PMID:28139777

  3. Dominant gene cpls(r)1 corresponding to premature leaf senescence resistance in cotton (Gossypium hirsutum L.).

    PubMed

    Zhao, Jingqing; Jiang, Tengfei; Liu, Zhi; Zhang, Wenwei; Jian, Guiliang; Qi, Fangjun

    2012-08-01

    Cotton (Gossypium hirsutum L.) premature leaf senescence-resistant inbred XLZ33 and senescence-susceptible inbred lines XLZ13 were selected and crossed to produce F(1), F(1)-reciprocal, F(2) and BC(1) generations for evaluation of leaf senescence process and inheritance. The results showed that leaf senescence processes for XLZ13 and XLZ33 were obviously different and leaf senescence traits could be distinguished between the two parents at particular periods of cotton growth. Inheritance anlysis for the cotton premature leaf senescence resistant trait further showed that the segregation in the F(2) fit a 3:1 ratio inheritance pattern, with resistance being dominant. The backcross of F(1) to the susceptible parent produced a 1:1 ratio, confirming that cotton premature leaf senescence resistant trait was from a single gene. The single dominant gene controlling cotton premature leaf senescence resistance in XLZ33 was named as cotton premature leaf senescence resistance 1, with the symbol cpls(r)1.

  4. Mechanisms of aging in senescence-accelerated mice

    PubMed Central

    Carter, Todd A; Greenhall, Jennifer A; Yoshida, Shigeo; Fuchs, Sebastian; Helton, Robert; Swaroop, Anand; Lockhart, David J; Barlow, Carrolee

    2005-01-01

    Background Progressive neurological dysfunction is a key aspect of human aging. Because of underlying differences in the aging of mice and humans, useful mouse models have been difficult to obtain and study. We have used gene-expression analysis and polymorphism screening to study molecular senescence of the retina and hippocampus in two rare inbred mouse models of accelerated neurological senescence (SAMP8 and SAMP10) that closely mimic human neurological aging, and in a related normal strain (SAMR1) and an unrelated normal strain (C57BL/6J). Results The majority of age-related gene expression changes were strain-specific, with only a few common pathways found for normal and accelerated neurological aging. Polymorphism screening led to the identification of mutations that could have a direct impact on important disease processes, including a mutation in a fibroblast growth factor gene, Fgf1, and a mutation in and ectopic expression of the gene for the chemokine CCL19, which is involved in the inflammatory response. Conclusion We show that combining the study of inbred mouse strains with interesting traits and gene-expression profiling can lead to the discovery of genes important for complex phenotypes. Furthermore, full-genome polymorphism detection, sequencing and gene-expression profiling of inbred mouse strains with interesting phenotypic differences may provide unique insights into the molecular genetics of late-manifesting complex diseases. PMID:15960800

  5. Rice ONAC106 Inhibits Leaf Senescence and Increases Salt Tolerance and Tiller Angle.

    PubMed

    Sakuraba, Yasuhito; Piao, Weilan; Lim, Jung-Hyun; Han, Su-Hyun; Kim, Ye-Sol; An, Gynheung; Paek, Nam-Chon

    2015-12-01

    NAM/ATAF1/ATAF2/CUC2 (NAC) is a plant-specific transcription factor (TF) family, and NACs participate in many diverse processes during the plant life cycle. Several Arabidopsis thaliana NACs have important roles in positively or negatively regulating leaf senescence, but in other plant species, including rice, the senescence-associated NACs (senNACs) remain largely unknown. Here we show that the rice senNAC TF ONAC106 negatively regulates leaf senescence. Leaves of onac106-1D (insertion of the 35S enhancer in the promoter region of the ONAC106 gene) mutants retained their green color under natural senescence and dark-induced senescence conditions. Genome-wide transcriptome analysis revealed that key senescence-associated genes (SGR, NYC1, OsNAC5, OsNAP, OsEIN3 and OsS3H) were differentially expressed in onac106-1D during dark-induced senescence. In addition to delayed senescence, onac106-1D also showed a salt stress-tolerant phenotype; key genes that down-regulate salt response signaling (OsNAC5, OsDREB2A, OsLEA3 and OsbZIP23) were rapidly up-regulated in onac106-1D under salt stress. Interestingly, onac106-1D also exhibited a wide tiller angle phenotype throughout development, and the tiller angle-related gene LPA1 was down-regulated in onac106-1D. Using yeast one-hybrid assays, we found that ONAC106 binds to the promoter regions of SGR, NYC1, OsNAC5 and LPA1. Taking these results together, we propose that ONAC106 functions in leaf senescence, salt stress tolerance and plant architecture by modulating the expression of its target genes that function in each signaling pathway.

  6. A VAMP-associated protein, PVA31 is involved in leaf senescence in Arabidopsis

    PubMed Central

    Ichikawa, Mie; Nakai, Yusuke; Arima, Keita; Nishiyama, Sayo; Hirano, Tomoko; Sato, Masa H

    2015-01-01

    VAMP-associated proteins (VAPs) are highly conserved among eukaryotes. Here, we report a functional analysis of one of the VAPs, PVA31, and demonstrate its novel function on leaf senescence in Arabidopsis. The expression of PVA31 is highly induced in senescence leaves, and localizes to the plasma membrane as well as the ARA7-positive endosomes. Yeast two-hybrid analysis demonstrates that PVA31 is interacted with the plasma membrane localized-VAMP proteins, VAMP721/722/724 but not with the endosome-localized VAMPs, VAMP711 and VAMP727, indicating that PVA31 is associated with VAMP721/722/724 on the plasma membrane. Strong constitutive expression of PVA31 under the control of the Cauliflower mosaic virus 35S promoter induces the typical symptom of leaf senescence earlier than WT in normal growth and an artificially induced senescence conditions. In addition, the marker genes for the SA-mediated signaling pathways, PR-1, is promptly expressed with elicitor application. These data indicate that PVA31-overexpressing plants exhibit the early senescence phenotype in their leaves, and suggest that PVA31 is involved in the SA-mediated programmed cell death process during leaf senescence and PR-protein secretion during pathogen infection in Arabidopsis. PMID:25897470

  7. Programming of Plant Leaf Senescence with Temporal and Inter-Organellar Coordination of Transcriptome in Arabidopsis.

    PubMed

    Woo, Hye Ryun; Koo, Hee Jung; Kim, Jeongsik; Jeong, Hyobin; Yang, Jin Ok; Lee, Il Hwan; Jun, Ji Hyung; Choi, Seung Hee; Park, Su Jin; Kang, Byeongsoo; Kim, You Wang; Phee, Bong-Kwan; Kim, Jin Hee; Seo, Chaehwa; Park, Charny; Kim, Sang Cheol; Park, Seongjin; Lee, Byungwook; Lee, Sanghyuk; Hwang, Daehee; Nam, Hong Gil; Lim, Pyung Ok

    2016-05-01

    Plant leaves, harvesting light energy and fixing CO2, are a major source of foods on the earth. Leaves undergo developmental and physiological shifts during their lifespan, ending with senescence and death. We characterized the key regulatory features of the leaf transcriptome during aging by analyzing total- and small-RNA transcriptomes throughout the lifespan of Arabidopsis (Arabidopsis thaliana) leaves at multidimensions, including age, RNA-type, and organelle. Intriguingly, senescing leaves showed more coordinated temporal changes in transcriptomes than growing leaves, with sophisticated regulatory networks comprising transcription factors and diverse small regulatory RNAs. The chloroplast transcriptome, but not the mitochondrial transcriptome, showed major changes during leaf aging, with a strongly shared expression pattern of nuclear transcripts encoding chloroplast-targeted proteins. Thus, unlike animal aging, leaf senescence proceeds with tight temporal and distinct interorganellar coordination of various transcriptomes that would be critical for the highly regulated degeneration and nutrient recycling contributing to plant fitness and productivity.

  8. Mechanism of Isoflavone Aglycone's Effect on Cognitive Performance of Senescence-Accelerated Mice

    ERIC Educational Resources Information Center

    Yang, Hong; Jin, Guifang; Ren, Dongdong; Luo, Sijing; Zhou, Tianhong

    2011-01-01

    This study investigated the effect of isoflavone aglycone (IA) on the learning and memory performance of senescence-accelerated mice, and explored its neural protective mechanism. Results showed that SAM-P/8 senescence-accelerated mice treated with IA performed significantly better in the Y-maze cognitive test than the no treatment control (P less…

  9. Molecular characterization of a novel senescence-associated gene SPA15 induced during leaf senescence in sweet potato.

    PubMed

    Yap, Mee-Ngan; Lee, Ruey-Hua; Huang, Yih-Jong; Liao, Chao-Jan; Chen, Shu-Chen Grace

    2003-03-01

    The structure and expression of a novel senescence-associated gene (SPA15) of sweet potato were characterized. The protein coding region of the gene consists of 13 exons encoding 420 amino acids. Apparent homologues of this sweet potato gene are found in a variety of dicot and monocot plants, but not in animals or microorganisms. Examination of the expression patterns of the SPA15 gene in sweet potato reveals that the transcripts of SPA15 are specifically induced in the senescing leaves, and the temporal profile of SPA15 protein accumulation is correlated with that of SPA15 transcripts. Studies on the distribution of SPA15 homologue in rice plants also indicate that SPA15 homologue is up-regulated specifically in senescing rice leaves. Treatment of detached sweet potato leaves with phytohormones including ethylene, methyl jasmonate, salicylic acid and abscisic acid resulted in a high-level induction of SPA15. Immunoelectron microscopic analysis demonstrates that SPA15 is specifically associated with the cell wall. The potential role for SPA15 during leaf senescence is discussed.

  10. A Potential Role of Flag Leaf Potassium in Conferring Tolerance to Drought-Induced Leaf Senescence in Barley

    PubMed Central

    Hosseini, Seyed A.; Hajirezaei, Mohammad R.; Seiler, Christiane; Sreenivasulu, Nese; von Wirén, Nicolaus

    2016-01-01

    Terminal drought stress decreases crop yields by inducing abscisic acid (ABA) and premature leaf senescence. As potassium (K) is known to interfere with ABA homeostasis we addressed the question whether there is genetic variability regarding the role of K nutrition in ABA homeostasis and drought tolerance. To compare their response to drought stress, two barley lines contrasting in drought-induced leaf senescence were grown in a pot experiment under high and low K supply for the analysis of flag leaves from the same developmental stage. Relative to the drought-sensitive line LPR, the line HPR retained more K in its flag leaves under low K supply and showed delayed flag leaf senescence under terminal drought stress. High K retention was further associated with a higher leaf water status, a higher concentration of starch and other primary carbon metabolites. With regard to ABA homeostasis, HPR accumulated less ABA but higher levels of the ABA degradation products phaseic acid (PA) and dehydro-PA. Under K deficiency this went along with higher transcript levels of ABA8′-HYDROXYLASE, encoding a key enzyme in ABA degradation. The present study provides evidence for a positive impact of the K nutritional status on ABA homeostasis and carbohydrate metabolism under drought stress. We conclude that genotypes with a high K nutritional status in the flag leaf show superior drought tolerance by promoting ABA degradation but attenuating starch degradation which delays flag leaf senescence. Flag leaf K levels may thus represent a useful trait for the selection of drought-tolerant barley cultivars. PMID:26955376

  11. An ABA-regulated and Golgi-localized protein phosphatase controls water loss during leaf senescence in Arabidopsis.

    PubMed

    Zhang, Kewei; Xia, Xiuying; Zhang, Yanyan; Gan, Su-Sheng

    2012-02-01

    It is known that a senescing leaf loses water faster than a non-senescing leaf and that ABA has an important role in promoting leaf senescence. However, questions such as why water loss is faster, how water loss is regulated, and how ABA functions in leaf senescence are not well understood. Here we report on the identification and functional analysis of a leaf senescence associated gene called SAG113. The RNA blot and GUS reporter analyses all show that SAG113 is expressed in senescing leaves and is induced by ABA in Arabidopsis. The SAG113 expression levels are significantly reduced in aba2 and abi4 mutants. A GFP fusion protein analysis revealed that SAG113 protein is localized in the Golgi apparatus. SAG113 encodes a protein phosphatase that belongs to the PP2C family and is able to functionally complement a yeast PP2C-deficient mutant TM126 (ptc1Δ). Leaf senescence is delayed in the SAG113 knockout mutant compared with that in the wild type, stomatal movement in the senescing leaves of SAG113 knockouts is more sensitive to ABA than that of the wild type, and the rate of water loss in senescing leaves of SAG113 knockouts is significantly reduced. In contrast, inducible over-expression of SAG113 results in a lower sensitivity of stomatal movement to ABA treatment, more rapid water loss, and precocious leaf senescence. No other aspects of growth and development, including seed germination, were observed. These findings suggest that SAG113, a negative regulator of ABA signal transduction, is specifically involved in the control of water loss during leaf senescence.

  12. Regulation of senescence in bean leaf discs by light and chemical growth regulators.

    PubMed

    Goldthwaite, J J; Laetsch, W M

    1967-12-01

    The senescence of excised discs of primary leaves of Phaseolus vulgaris, L., var. Red Kidney was followed by measuring the net breakdown of protein and chlorophyll. The chemical growth regulators indoleacetic acid, 2,4-dichlorophenoxy-acetic acid, gibberellic acid, kinetin, and 6-benzylaminopurine were relatively ineffective in retarding senescence in this tissue. White light, on the other hand, was very effective in senescence retardation. The response to light did not have the characteristics of a low energy (phytochrome) response and was blocked by concentrations of 3-(3,4-dichlorophenyl)-1, 1-dimethylurea which inhibited photosynthesis in the leaf discs. The light-induced retardation of senescence was concluded to be dependent on photosynthesis.

  13. Programmed chloroplast destruction during leaf senescence involves 13-lipoxygenase (13-LOX)

    PubMed Central

    Springer, Armin; Kang, ChulHee; Rustgi, Sachin; von Wettstein, Diter; Reinbothe, Christiane; Pollmann, Stephan; Reinbothe, Steffen

    2016-01-01

    Leaf senescence is the terminal stage in the development of perennial plants. Massive physiological changes occur that lead to the shut down of photosynthesis and a cessation of growth. Leaf senescence involves the selective destruction of the chloroplast as the site of photosynthesis. Here, we show that 13-lipoxygenase (13-LOX) accomplishes a key role in the destruction of chloroplasts in senescing plants and propose a critical role of its NH2-terminal chloroplast transit peptide. The 13-LOX enzyme identified here accumulated in the plastid envelope and catalyzed the dioxygenation of unsaturated membrane fatty acids, leading to a selective destruction of the chloroplast and the release of stromal constituents. Because 13-LOX pathway products comprise compounds involved in insect deterrence and pathogen defense (volatile aldehydes and oxylipins), a mechanism of unmolested nitrogen and carbon relocation is suggested that occurs from leaves to seeds and roots during fall. PMID:26969728

  14. Leaf senescence under various gravity conditions: relevance to the dynamics of plant hormones

    NASA Astrophysics Data System (ADS)

    Miyamoto, K.; Yuda, T.; Shimazu, T.; Ueda, J.

    Effects of simulated microgravity and hypergravity on the senescence of oat leaf segments excised from the primary leaves of 8-d-old green seedlings were studied using a 3-dimensional (D) clinostat as a simulator of weightlessness and a centrifuge, respectively. During the incubation with water under 1-g conditions at 25 °C in the dark, the loss of chlorophyll of the segments was found dramatically immediately after leaf excision, and leaf color completely turned to yellow after 3-d to 4-d incubation. In this case kinetin (10 μM) was effective in retarding senescence. The application of simulated microgravity conditions on a 3-D clinostat enhanced chlorophyll loss in the presence or absence of kinetin. The loss of chlorophyll was also enhanced by hypergravity conditions (ca. 8 to 16 g), but the effect was smaller than that of simulated microgravity conditions on the clinostat. Jasmonates (JAs) and abscisic acid (ABA) promoted senescence under simulated microgravity conditions on the clinostat as well as under 1-g conditions. After 2-d incubation with water or 5-d incubation with kinetin, the endogenous levels of JAs and ABA of the segments kept under simulated microgravity conditions on the clinostat remained higher than those kept under 1-g conditions. These findings suggest that physiological processes of leaf senescence and the dynamics of endogenous plant hormone levels are substantially affected by gravity.

  15. [Effects of tillage pattern on the flag leaf senescence and grain yield of winter wheat under dry farming].

    PubMed

    Huang, Ming; Wu, Jin-Zhi; Li, You-Jun; Yao, Yu-Qing; Zhang, Can-Jun; Cai, Dian-Xiong; Jin, Ke

    2009-06-01

    A field experiment was conducted to study the effects of different tillage patterns, i.e., deep plowing once, no-tillage, subsoiling, and conventional tillage, on the flag leaf senescence and grain yield of winter wheat, as well as the soil moisture and nutrient status under dry farming. No-tillage and subsoiling increased the SOD and POD activities and the chlorophyll and soluble protein contents, decreased the MDA and O2(-.) contents, and postponed the senescence of flag leaf. Under non-tillage and subsoiling, the moisture content in 0-40 cm soil layer at anthesis and grain-filling stages was decreased by 4.13% and 6.23% and by 5.50% and 9.27%, respectively, and the contents of alkali-hydrolysable N, available P, and available K in this soil layer also increased significantly, compared with those under conventional tillage. Deep plowing once decreased the moisture content and increased the nutrients contents in 0-40 cm soil layer, but the decrement and increment were not significant. The post-anthesis biomass, post-anthesis dry matter translocation rate, and grain yield under no-tillage and subsoiling were 4.34% and 4.76%, 15.56% and 13.51%, and 10.22% and 9.26% higher than those under conventional tillage, respectively. It could be concluded that no-tillage and subsoiling provided better soil conditions for the post-anthesis growth of winter wheat, under which, the flag leaf senescence postponed, post-anthesis dry matter accumulation and translocation accelerated, and grain yield increased significantly, being the feasible tillage practices in dry farming winter wheat areas.

  16. Ubiquinol-10 Supplementation Activates Mitochondria Functions to Decelerate Senescence in Senescence-Accelerated Mice

    PubMed Central

    Tian, Geng; Sawashita, Jinko; Kubo, Hiroshi; Nishio, Shin-ya; Hashimoto, Shigenari; Suzuki, Nobuyoshi; Yoshimura, Hidekane; Tsuruoka, Mineko; Wang, Yaoyong; Liu, Yingye; Luo, Hongming; Xu, Zhe; Mori, Masayuki; Kitano, Mitsuaki; Hosoe, Kazunori; Takeda, Toshio; Usami, Shin-ichi

    2014-01-01

    Abstract Aim: The present study was conducted to define the relationship between the anti-aging effect of ubiquinol-10 supplementation and mitochondrial activation in senescence-accelerated mouse prone 1 (SAMP1) mice. Results: Here, we report that dietary supplementation with ubiquinol-10 prevents age-related decreases in the expression of sirtuin gene family members, which results in the activation of peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α), a major factor that controls mitochondrial biogenesis and respiration, as well as superoxide dismutase 2 (SOD2) and isocitrate dehydrogenase 2 (IDH2), which are major mitochondrial antioxidant enzymes. Ubiquinol-10 supplementation can also increase mitochondrial complex I activity and decrease levels of oxidative stress markers, including protein carbonyls, apurinic/apyrimidinic sites, malondialdehydes, and increase the reduced glutathione/oxidized glutathione ratio. Furthermore, ubiquinol-10 may activate Sirt1 and PGC-1α by increasing cyclic adenosine monophosphate (cAMP) levels that, in turn, activate cAMP response element-binding protein (CREB) and AMP-activated protein kinase (AMPK). Innovation and Conclusion: These results show that ubiquinol-10 may enhance mitochondrial activity by increasing levels of SIRT1, PGC-1α, and SIRT3 that slow the rate of age-related hearing loss and protect against the progression of aging and symptoms of age-related diseases. Antioxid. Redox Signal. 20, 2606–2620 PMID:24124769

  17. Biochemistry and cell ultrastructure changes during senescence of Beta vulgaris L. leaf.

    PubMed

    Romanova, Alla K; Semenova, Galina A; Ignat'ev, Alexander R; Novichkova, Natalia S; Fomina, Irina R

    2016-05-01

    The comparative study of biochemical and ultrastructure features in senescing sugar beet (Beta vulgaris L.) leaves was carried out. One group of plants was grown under normal conditions in washed river sand and poured in turn with nitrate-containing mineral solution or water (N plants). Another group of plants, after 1 month of normal growth, was further grown with nitrate omitted in the nutritive solution (defN plants). The starting point of normal leaf senescence in N plants was identified by the maximal content of soluble protein. Soluble carbohydrate pools were statistically constant in senescing N plants, whereas glucose pools varied noticeably. A decrease in the contents of soluble protein and chlorophyll (a + b) in the course of senescing was typical for N plant leaves. The cell membrane in N plant leaves remained mostly intact; the central vacuoles in the leaf cells were large, and their membranes remained intact. The chloroplasts and mitochondria in senescing N plant leaves became swollen. The vesicles that were present in the cytoplasm of N plant leaves were especially large in the oldest leaves. It was concluded that senescing of sugar beet leaves at sufficient nitrate nutrition occurs according to a "vacuolar" scenario. In the case of nitrate deficiency, the content of soluble carbohydrates in defN leaves first reached maximum and then decreased in older leaves; the protein and chlorophyll (a + b) contents were totally lower than those in normal leaves and continuously decreased during the experiments. Chloroplasts in mesophyll cells of defN plant leaves became more rounded; starch grains in chloroplasts degraded and the number and size of lipid globules increased. The multitude of membrane impairments and lots of large vesicles-"crystals" appeared during the experiment. The results showed the controlling action of nitrogen nutrition in the senescing of sugar beet leaves.

  18. Identification of candidate genes associated with leaf senescence in cultivated sunflower (Helianthus annuus L.).

    PubMed

    Moschen, Sebastian; Bengoa Luoni, Sofia; Paniego, Norma B; Hopp, H Esteban; Dosio, Guillermo A A; Fernandez, Paula; Heinz, Ruth A

    2014-01-01

    Cultivated sunflower (Helianthus annuus L.), an important source of edible vegetable oil, shows rapid onset of senescence, which limits production by reducing photosynthetic capacity under specific growing conditions. Carbon for grain filling depends strongly on light interception by green leaf area, which diminishes during grain filling due to leaf senescence. Transcription factors (TFs) regulate the progression of leaf senescence in plants and have been well explored in model systems, but information for many agronomic crops remains limited. Here, we characterize the expression profiles of a set of putative senescence associated genes (SAGs) identified by a candidate gene approach and sunflower microarray expression studies. We examined a time course of sunflower leaves undergoing natural senescence and used quantitative PCR (qPCR) to measure the expression of 11 candidate genes representing the NAC, WRKY, MYB and NF-Y TF families. In addition, we measured physiological parameters such as chlorophyll, total soluble sugars and nitrogen content. The expression of Ha-NAC01, Ha-NAC03, Ha-NAC04, Ha-NAC05 and Ha-MYB01 TFs increased before the remobilization rate increased and therefore, before the appearance of the first physiological symptoms of senescence, whereas Ha-NAC02 expression decreased. In addition, we also examined the trifurcate feed-forward pathway (involving ORE1, miR164, and ethylene insensitive 2) previously reported for Arabidopsis. We measured transcription of Ha-NAC01 (the sunflower homolog of ORE1) and Ha-EIN2, along with the levels of miR164, in two leaves from different stem positions, and identified differences in transcription between basal and upper leaves. Interestingly, Ha-NAC01 and Ha-EIN2 transcription profiles showed an earlier up-regulation in upper leaves of plants close to maturity, compared with basal leaves of plants at pre-anthesis stages. These results suggest that the H. annuus TFs characterized in this work could play important

  19. Identification of Candidate Genes Associated with Leaf Senescence in Cultivated Sunflower (Helianthus annuus L.)

    PubMed Central

    Moschen, Sebastian; Bengoa Luoni, Sofia; Paniego, Norma B.; Hopp, H. Esteban; Dosio, Guillermo A. A.

    2014-01-01

    Cultivated sunflower (Helianthus annuus L.), an important source of edible vegetable oil, shows rapid onset of senescence, which limits production by reducing photosynthetic capacity under specific growing conditions. Carbon for grain filling depends strongly on light interception by green leaf area, which diminishes during grain filling due to leaf senescence. Transcription factors (TFs) regulate the progression of leaf senescence in plants and have been well explored in model systems, but information for many agronomic crops remains limited. Here, we characterize the expression profiles of a set of putative senescence associated genes (SAGs) identified by a candidate gene approach and sunflower microarray expression studies. We examined a time course of sunflower leaves undergoing natural senescence and used quantitative PCR (qPCR) to measure the expression of 11 candidate genes representing the NAC, WRKY, MYB and NF-Y TF families. In addition, we measured physiological parameters such as chlorophyll, total soluble sugars and nitrogen content. The expression of Ha-NAC01, Ha-NAC03, Ha-NAC04, Ha-NAC05 and Ha-MYB01 TFs increased before the remobilization rate increased and therefore, before the appearance of the first physiological symptoms of senescence, whereas Ha-NAC02 expression decreased. In addition, we also examined the trifurcate feed-forward pathway (involving ORE1, miR164, and ETHYLENE INSENSITIVE 2) previously reported for Arabidopsis. We measured transcription of Ha-NAC01 (the sunflower homolog of ORE1) and Ha-EIN2, along with the levels of miR164, in two leaves from different stem positions, and identified differences in transcription between basal and upper leaves. Interestingly, Ha-NAC01 and Ha-EIN2 transcription profiles showed an earlier up-regulation in upper leaves of plants close to maturity, compared with basal leaves of plants at pre-anthesis stages. These results suggest that the H. annuus TFs characterized in this work could play important

  20. Urea retranslocation from senescing Arabidopsis leaves is promoted by DUR3-mediated urea retrieval from leaf apoplast.

    PubMed

    Bohner, Anne; Kojima, Soichi; Hajirezaei, Mohammad; Melzer, Michael; von Wirén, Nicolaus

    2015-02-01

    In plants, urea derives either from root uptake or protein degradation. Although large quantities of urea are released during senescence, urea is mainly seen as a short-lived nitrogen (N) catabolite serving urease-mediated hydrolysis to ammonium. Here, we investigated the roles of DUR3 and of urea in N remobilization. During natural leaf senescence urea concentrations and DUR3 transcript levels showed a parallel increase with senescence markers like ORE1 in a plant age- and leaf age-dependent manner. Deletion of DUR3 decreased urea accumulation in leaves, whereas the fraction of urea lost to the leaf apoplast was enhanced. Under natural and N deficiency-induced senescence DUR3 promoter activity was highest in the vasculature, but was also found in surrounding bundle sheath and mesophyll cells. An analysis of petiole exudates from wild-type leaves revealed that N from urea accounted for >13% of amino acid N. Urea export from senescent leaves further increased in ureG-2 deletion mutants lacking urease activity. In the dur3 ureG double insertion line the absence of DUR3 reduced urea export from leaf petioles. These results indicate that urea can serve as an early metabolic marker for leaf senescence, and that DUR3-mediated urea retrieval contributes to the retranslocation of N from urea during leaf senescence.

  1. Cytokinin Biochemistry in Relation to Leaf Senescence 1

    PubMed Central

    Zhang, Ren; Letham, David S.; Wong, O. Choon; Noodén, Larry D.; Parker, Charles W.

    1987-01-01

    The metabolism of [3H]6-benzylamino purine was studied in presenescent and early senescent soybean (Glycine max [L.] Merr.) leaves. In both types of leaves, the metabolism was essentially the same. The principal metabolite was identified as β-(6-benzylaminopurin-9-yl)alanine by mass spectral studies, which included discharge ionization-secondary ion mass spectrometry and pulsed positive ion-negative ion-chemical ionization mass spectrometry. Conversion to this alanine conjugate was found to be inhibited 2,4-dichlorophenoxyacetic acid and 5,7-dichloroindoleacetic acid. PMID:16665246

  2. Moxidectin toxicity in senescence-accelerated prone and resistant mice.

    PubMed

    Lee, Vanessa K; Tiwary, Asheesh K; Sharma-Reddy, Prachi; Lieber, Karen A; Taylor, Douglas K; Mook, Deborah M

    2009-06-01

    Moxidectin has been used safely as an antiparasitic in many animal species, including for the eradication of the mouse fur mite, Mycoptes musculinus. Although no side effects of moxidectin have previously been reported to occur in mice, 2 strains of the senescence-accelerated mouse (SAMP8 and SAMR1) sustained considerable mortality after routine prophylactic treatment. To investigate the mechanism underlying this effect, moxidectin toxicosis in these mice was evaluated in a controlled study. Moxidectin was applied topically (0.015 mg), and drug concentrations in both brain and serum were analyzed by using HPLC coupled with mass spectrometry. The moxidectin concentration in brain of SAMP8 mice was 18 times that in controls, and that in brain of SAMR1 mice was 14 times higher than in controls, whereas serum moxidectin concentrations did not differ significantly among the 3 strains. Because deficiency of the blood-brain barrier protein P-glycoprotein leads to sensitivity to this class of drugs in other SAM mice, Pgp immunohistochemistry of brain sections from a subset of mice was performed to determine whether this commercially available analysis could predict sensitivity to this class of drug. The staining analysis showed no difference among the strains of mice, indicating that this test does not correlate with sensitivity. In addition, no gross or histologic evidence of organ toxicity was found in brain, liver, lung, or kidney. This report shows that topically applied moxidectin at a standard dose accumulates in the CNS causing toxicosis in both SAMP8 and SAMR1 mice.

  3. Nitrogen recycling and remobilization are differentially controlled by leaf senescence and development stage in Arabidopsis under low nitrogen nutrition.

    PubMed

    Diaz, Céline; Lemaître, Thomas; Christ, Aurélie; Azzopardi, Marianne; Kato, Yusuke; Sato, Fumihiko; Morot-Gaudry, Jean-François; Le Dily, Frédérik; Masclaux-Daubresse, Céline

    2008-07-01

    Five recombinant inbred lines (RILs) of Arabidopsis (Arabidopsis thaliana), previously selected from the Bay-0 x Shahdara RIL population on the basis of differential leaf senescence phenotypes (from early senescing to late senescing) when cultivated under nitrogen (N)-limiting conditions, were analyzed to monitor metabolic markers related to N assimilation and N remobilization pathways. In each RIL, a decrease of total N, free amino acid, and soluble protein contents with leaf aging was observed. In parallel, the expression of markers for N remobilization such as cytosolic glutamine synthetase, glutamate dehydrogenase, and CND41-like protease was increased. This increase occurred earlier and more rapidly in early-senescing lines than in late-senescing lines. We measured the partitioning of (15)N between sink and source leaves during the vegetative stage of development using (15)N tracing and showed that N remobilization from the source leaves to the sink leaves was more efficient in the early-senescing lines. The N remobilization rate was correlated with leaf senescence severity at the vegetative stage. Experiments of (15)N tracing at the reproductive stage showed, however, that the rate of N remobilization from the rosettes to the flowering organs and to the seeds was similar in early- and late-senescing lines. At the reproductive stage, N remobilization efficiency did not depend on senescence phenotypes but was related to the ratio between the biomasses of the sink and the source organs.

  4. Nitrogen Recycling and Remobilization Are Differentially Controlled by Leaf Senescence and Development Stage in Arabidopsis under Low Nitrogen Nutrition1

    PubMed Central

    Diaz, Céline; Lemaître, Thomas; Christ, Aurélie; Azzopardi, Marianne; Kato, Yusuke; Sato, Fumihiko; Morot-Gaudry, Jean-François; Le Dily, Frédérik; Masclaux-Daubresse, Céline

    2008-01-01

    Five recombinant inbred lines (RILs) of Arabidopsis (Arabidopsis thaliana), previously selected from the Bay-0 × Shahdara RIL population on the basis of differential leaf senescence phenotypes (from early senescing to late senescing) when cultivated under nitrogen (N)-limiting conditions, were analyzed to monitor metabolic markers related to N assimilation and N remobilization pathways. In each RIL, a decrease of total N, free amino acid, and soluble protein contents with leaf aging was observed. In parallel, the expression of markers for N remobilization such as cytosolic glutamine synthetase, glutamate dehydrogenase, and CND41-like protease was increased. This increase occurred earlier and more rapidly in early-senescing lines than in late-senescing lines. We measured the partitioning of 15N between sink and source leaves during the vegetative stage of development using 15N tracing and showed that N remobilization from the source leaves to the sink leaves was more efficient in the early-senescing lines. The N remobilization rate was correlated with leaf senescence severity at the vegetative stage. Experiments of 15N tracing at the reproductive stage showed, however, that the rate of N remobilization from the rosettes to the flowering organs and to the seeds was similar in early- and late-senescing lines. At the reproductive stage, N remobilization efficiency did not depend on senescence phenotypes but was related to the ratio between the biomasses of the sink and the source organs. PMID:18467460

  5. The senescence of oat leaf segments is promoted under simulated microgravity condition on a three-dimensional clinostat.

    PubMed

    Miyamoto, K; Oka, M; Ueda, J; Hoson, T; Kamisaka, S

    1995-12-01

    Plants have evolved on the earth, indicating the morphology, growth and development, and life cycle of plants are highly influenced by gravity as well as other environmental stimuli. Indeed, simulated microgravity on a clinostat or hypergravity on a centrifuge has recently been reported to change the growth and development of plants (Hoson et al. 1992, 1993, 1995, Rasmussen et al. 1994, Kasahara et al. 1995). Senescence is a final drastic phenomenon in life cycle of plants, which is characterized by the loss of total chlorophyll and protein, and/or the formation of the abscission (Osborne 1973, Thimann 1977, Addicott 1982). Many environmental stimuli as well as the qualitative and quantitative changes of plant hormones have been reported to affect plant senescence. Among those stimuli, light is the most important factor to regulate plant senescence (Leopold 1964). Dark condition promotes leaf senescence due to the decrease in endogenous level of cytokinin and/or the increase in that of abscisic acid or ethylene (Tetley and Thimann 1974, Gepstein and Thimann 1980). However, there are few reports concerning the effect of gravity on leaf senescence. Strenuous effort to learn leaf senescence under microgravity condition has been done using a three-dimensional (3-D) clinostat. In this paper, we report that simulated microgravity condition on a 3-D clinostat promoted the senescence of oat leaf segments in the dark. A possible mechanism of microgravity condition on promoting the senescence is also discussed.

  6. Arabidopsis NRT1.5 Mediates the Suppression of Nitrate Starvation-Induced Leaf Senescence by Modulating Foliar Potassium Level.

    PubMed

    Meng, Shuan; Peng, Jia-Shi; He, Ya-Ni; Zhang, Guo-Bin; Yi, Hong-Ying; Fu, Yan-Lei; Gong, Ji-Ming

    2016-03-07

    Nitrogen deficiency induces leaf senescence. However, whether or how nitrate might affect this process remains to be investigated. Here, we report an interesting finding that nitrate-instead of nitrogen-starvation induced early leaf senescence in nrt1.5 mutant, and present genetic and physiological data demonstrating that nitrate starvation-induced leaf senescence is suppressed by NRT1.5. NRT1.5 suppresses the senescence process dependent on its function from roots, but not the nitrate transport function. Further analyses using nrt1.5 single and nia1 nia2 nrt1.5-4 triple mutant showed a negative correlation between nitrate concentration and senescence rate in leaves. Moreover, when exposed to nitrate starvation, foliar potassium level decreased in nrt1.5, but adding potassium could essentially restore the early leaf senescence phenotype of nrt1.5 plants. Nitrate starvation also downregulated the expression of HAK5, RAP2.11, and ANN1 in nrt1.5 roots, and appeared to alter potassium level in xylem sap from nrt1.5. These data suggest that NRT1.5 likely perceives nitrate starvation-derived signals to prevent leaf senescence by facilitating foliar potassium accumulation.

  7. Delayed Leaf Senescence in Tobacco Plants Transformed with tmr, a Gene for Cytokinin Production in Agrobacterium.

    PubMed Central

    Smart, CM; Scofield, SR; Bevan, MW; Dyer, TA

    1991-01-01

    The aim of this study was to investigate whether enhanced levels of endogenous cytokinins could influence plant development, particularly leaf senescence. Tobacco plants were transformed with the Agrobacterium tumefaciens gene tmr, under the control of the soybean heat shock promoter HS6871. This gene encodes the enzyme isopentenyl transferase, which catalyzes the initial step in cytokinin biosynthesis. After heat shock, the cytokinin level increased greatly and the level of tmr mRNA, undetectable at 20[deg]C, rose and remained high for up to 8 hours. The levels of cytokinin and tmr mRNA were substantially lower by 24 hours. Transformed plants grown at 20[deg]C were shorter, had larger side shoots, and remained green for longer than untransformed plants. The differences were more pronounced after several heat shocks of whole plants or defined areas of leaves. Our results demonstrated that plant morphology and leaf senescence can be manipulated by changing the endogenous level of cytokinins. PMID:12324608

  8. Pheophytin pheophorbide hydrolase (pheophytinase) is involved in chlorophyll breakdown during leaf senescence in Arabidopsis.

    PubMed

    Schelbert, Silvia; Aubry, Sylvain; Burla, Bo; Agne, Birgit; Kessler, Felix; Krupinska, Karin; Hörtensteiner, Stefan

    2009-03-01

    During leaf senescence, chlorophyll is removed from thylakoid membranes and converted in a multistep pathway to colorless breakdown products that are stored in vacuoles. Dephytylation, an early step of this pathway, increases water solubility of the breakdown products. It is widely accepted that chlorophyll is converted into pheophorbide via chlorophyllide. However, chlorophyllase, which converts chlorophyll to chlorophyllide, was found not to be essential for dephytylation in Arabidopsis thaliana. Here, we identify pheophytinase (PPH), a chloroplast-located and senescence-induced hydrolase widely distributed in algae and land plants. In vitro, Arabidopsis PPH specifically dephytylates the Mg-free chlorophyll pigment, pheophytin (phein), yielding pheophorbide. An Arabidopsis mutant deficient in PPH (pph-1) is unable to degrade chlorophyll during senescence and therefore exhibits a stay-green phenotype. Furthermore, pph-1 accumulates phein during senescence. Therefore, PPH is an important component of the chlorophyll breakdown machinery of senescent leaves, and we propose that the sequence of early chlorophyll catabolic reactions be revised. Removal of Mg most likely precedes dephytylation, resulting in the following order of early breakdown intermediates: chlorophyll --> pheophytin --> pheophorbide. Chlorophyllide, the last precursor of chlorophyll biosynthesis, is most likely not an intermediate of breakdown. Thus, chlorophyll anabolic and catabolic reactions are metabolically separated.

  9. Leaf Senescence Is Accompanied by an Early Disruption of the Microtubule Network in Arabidopsis1[C][W

    PubMed Central

    Keech, Olivier; Pesquet, Edouard; Gutierrez, Laurent; Ahad, Abdul; Bellini, Catherine; Smith, Steven M.; Gardeström, Per

    2010-01-01

    The dynamic assembly and disassembly of microtubules (MTs) is essential for cell function. Although leaf senescence is a well-documented process, the role of the MT cytoskeleton during senescence in plants remains unknown. Here, we show that both natural leaf senescence and senescence of individually darkened Arabidopsis (Arabidopsis thaliana) leaves are accompanied by early degradation of the MT network in epidermis and mesophyll cells, whereas guard cells, which do not senesce, retain their MT network. Similarly, entirely darkened plants, which do not senesce, retain their MT network. While genes encoding the tubulin subunits and the bundling/stabilizing MT-associated proteins (MAPs) MAP65 and MAP70-1 were repressed in both natural senescence and dark-induced senescence, we found strong induction of the gene encoding the MT-destabilizing protein MAP18. However, induction of MAP18 gene expression was also observed in leaves from entirely darkened plants, showing that its expression is not sufficient to induce MT disassembly and is more likely to be part of a Ca2+-dependent signaling mechanism. Similarly, genes encoding the MT-severing protein katanin p60 and two of the four putative regulatory katanin p80s were repressed in the dark, but their expression did not correlate with degradation of the MT network during leaf senescence. Taken together, these results highlight the earliness of the degradation of the cortical MT array during leaf senescence and lead us to propose a model in which suppression of tubulin and MAP genes together with induction of MAP18 play key roles in MT disassembly during senescence. PMID:20966154

  10. Leaf Senescence Signaling: The Ca2+-Conducting Arabidopsis Cyclic Nucleotide Gated Channel2 Acts through Nitric Oxide to Repress Senescence Programming1[W][OA

    PubMed Central

    Ma, Wei; Smigel, Andries; Walker, Robin K.; Moeder, Wolfgang; Yoshioka, Keiko; Berkowitz, Gerald A.

    2010-01-01

    Ca2+ and nitric oxide (NO) are essential components involved in plant senescence signaling cascades. In other signaling pathways, NO generation can be dependent on cytosolic Ca2+. The Arabidopsis (Arabidopsis thaliana) mutant dnd1 lacks a plasma membrane-localized cation channel (CNGC2). We recently demonstrated that this channel affects plant response to pathogens through a signaling cascade involving Ca2+ modulation of NO generation; the pathogen response phenotype of dnd1 can be complemented by application of a NO donor. At present, the interrelationship between Ca2+ and NO generation in plant cells during leaf senescence remains unclear. Here, we use dnd1 plants to present genetic evidence consistent with the hypothesis that Ca2+ uptake and NO production play pivotal roles in plant leaf senescence. Leaf Ca2+ accumulation is reduced in dnd1 leaves compared to the wild type. Early senescence-associated phenotypes (such as loss of chlorophyll, expression level of senescence-associated genes, H2O2 generation, lipid peroxidation, tissue necrosis, and increased salicylic acid levels) were more prominent in dnd1 leaves compared to the wild type. Application of a Ca2+ channel blocker hastened senescence of detached wild-type leaves maintained in the dark, increasing the rate of chlorophyll loss, expression of a senescence-associated gene, and lipid peroxidation. Pharmacological manipulation of Ca2+ signaling provides evidence consistent with genetic studies of the relationship between Ca2+ signaling and senescence with the dnd1 mutant. Basal levels of NO in dnd1 leaf tissue were lower than that in leaves of wild-type plants. Application of a NO donor effectively rescues many dnd1 senescence-related phenotypes. Our work demonstrates that the CNGC2 channel is involved in Ca2+ uptake during plant development beyond its role in pathogen defense response signaling. Work presented here suggests that this function of CNGC2 may impact downstream basal NO production in addition

  11. Leaf senescence signaling: the Ca2+-conducting Arabidopsis cyclic nucleotide gated channel2 acts through nitric oxide to repress senescence programming.

    PubMed

    Ma, Wei; Smigel, Andries; Walker, Robin K; Moeder, Wolfgang; Yoshioka, Keiko; Berkowitz, Gerald A

    2010-10-01

    Ca(2+) and nitric oxide (NO) are essential components involved in plant senescence signaling cascades. In other signaling pathways, NO generation can be dependent on cytosolic Ca(2+). The Arabidopsis (Arabidopsis thaliana) mutant dnd1 lacks a plasma membrane-localized cation channel (CNGC2). We recently demonstrated that this channel affects plant response to pathogens through a signaling cascade involving Ca(2+) modulation of NO generation; the pathogen response phenotype of dnd1 can be complemented by application of a NO donor. At present, the interrelationship between Ca(2+) and NO generation in plant cells during leaf senescence remains unclear. Here, we use dnd1 plants to present genetic evidence consistent with the hypothesis that Ca(2+) uptake and NO production play pivotal roles in plant leaf senescence. Leaf Ca(2+) accumulation is reduced in dnd1 leaves compared to the wild type. Early senescence-associated phenotypes (such as loss of chlorophyll, expression level of senescence-associated genes, H(2)O(2) generation, lipid peroxidation, tissue necrosis, and increased salicylic acid levels) were more prominent in dnd1 leaves compared to the wild type. Application of a Ca(2+) channel blocker hastened senescence of detached wild-type leaves maintained in the dark, increasing the rate of chlorophyll loss, expression of a senescence-associated gene, and lipid peroxidation. Pharmacological manipulation of Ca(2+) signaling provides evidence consistent with genetic studies of the relationship between Ca(2+) signaling and senescence with the dnd1 mutant. Basal levels of NO in dnd1 leaf tissue were lower than that in leaves of wild-type plants. Application of a NO donor effectively rescues many dnd1 senescence-related phenotypes. Our work demonstrates that the CNGC2 channel is involved in Ca(2+) uptake during plant development beyond its role in pathogen defense response signaling. Work presented here suggests that this function of CNGC2 may impact downstream basal

  12. Functional inactivation of UDP-N-acetylglucosamine pyrophosphorylase 1 (UAP1) induces early leaf senescence and defence responses in rice.

    PubMed

    Wang, Zhaohai; Wang, Ya; Hong, Xiao; Hu, Daoheng; Liu, Caixiang; Yang, Jing; Li, Yang; Huang, Yunqing; Feng, Yuqi; Gong, Hanyu; Li, Yang; Fang, Gen; Tang, Huiru; Li, Yangsheng

    2015-02-01

    Plant leaf senescence and defence responses are important biological processes, but the molecular mechanisms involved are not well understood. This study identified a new rice mutant, spotted leaf 29 (spl29). The SPL29 gene was identified by map-based cloning, and SPL29 was confirmed as UDP-N-acetylglucosamine pyrophosphorylase 1 (UAP1) by enzymatic analysis. The mutant spl29 lacks UAP activity. The biological phenotypes for which UAP is responsible have not previously been reported in plants. The spl29 mutant displayed early leaf senescence, confirmed by chlorophyll loss and photosystem II decline as physiological indicators, chloroplast degradation as a cellular characteristic, and both upregulation of senescence transcription factors and senescence-associated genes, and downregulation of photosynthesis-related genes, as molecular evidence. Defence responses were induced in the spl29 mutant, shown by enhanced resistance to bacterial blight inoculation and upregulation of defence response genes. Reactive oxygen species, including O2 (-) and H2O2, accumulated in spl29 plants; there was also increased malondialdehyde content. Enhanced superoxide dismutase activity combined with normal catalase activity in spl29 could be responsible for H2O2 accumulation. The plant hormones jasmonic acid and abscisic acid also accumulated in spl29 plants. ROS and plant hormones probably play important roles in early leaf senescence and defence responses in the spl29 mutant. Based on these findings, it is suggested that UAP1 is involved in regulating leaf senescence and defence responses in rice.

  13. Functional inactivation of UDP-N-acetylglucosamine pyrophosphorylase 1 (UAP1) induces early leaf senescence and defence responses in rice

    PubMed Central

    Wang, Zhaohai; Wang, Ya; Hong, Xiao; Hu, Daoheng; Liu, Caixiang; Yang, Jing; Li, Yang; Huang, Yunqing; Feng, Yuqi; Gong, Hanyu; Li, Yang; Fang, Gen; Tang, Huiru; Li, Yangsheng

    2015-01-01

    Plant leaf senescence and defence responses are important biological processes, but the molecular mechanisms involved are not well understood. This study identified a new rice mutant, spotted leaf 29 (spl29). The SPL29 gene was identified by map-based cloning, and SPL29 was confirmed as UDP-N-acetylglucosamine pyrophosphorylase 1 (UAP1) by enzymatic analysis. The mutant spl29 lacks UAP activity. The biological phenotypes for which UAP is responsible have not previously been reported in plants. The spl29 mutant displayed early leaf senescence, confirmed by chlorophyll loss and photosystem II decline as physiological indicators, chloroplast degradation as a cellular characteristic, and both upregulation of senescence transcription factors and senescence-associated genes, and downregulation of photosynthesis-related genes, as molecular evidence. Defence responses were induced in the spl29 mutant, shown by enhanced resistance to bacterial blight inoculation and upregulation of defence response genes. Reactive oxygen species, including O2 – and H2O2, accumulated in spl29 plants; there was also increased malondialdehyde content. Enhanced superoxide dismutase activity combined with normal catalase activity in spl29 could be responsible for H2O2 accumulation. The plant hormones jasmonic acid and abscisic acid also accumulated in spl29 plants. ROS and plant hormones probably play important roles in early leaf senescence and defence responses in the spl29 mutant. Based on these findings, it is suggested that UAP1 is involved in regulating leaf senescence and defence responses in rice. PMID:25399020

  14. Plant leaf senescence and death - regulation by multiple layers of control and implications for aging in general.

    PubMed

    Woo, Hye Ryun; Kim, Hyo Jung; Nam, Hong Gil; Lim, Pyung Ok

    2013-11-01

    How do organisms, organs, tissues and cells change their fate when they age towards senescence and death? Plant leaves provide a unique window to explore this question because they show reproducible life history and are readily accessible for experimental assays. Throughout their lifespan, leaves undergo a series of developmental, physiological and metabolic transitions that culminate in senescence and death. Leaf senescence is an 'altruistic death' that allows for the degradation of the nutrients that are produced during the growth phase of the leaf and their redistribution to developing seeds or other parts of the plant, and thus is a strategy that has evolved to maximize the fitness of the plant. During the past decade, there has been significant progress towards understanding the key molecular principles of leaf senescence using genetic and molecular studies, as well as 'omics' analyses. It is now apparent that leaf senescence is a highly complex genetic program that is tightly controlled by multiple layers of regulation, including at the level of chromatin and transcription, as well as by post-transcriptional, translational and post-translational regulation. This Commentary discusses the latest understandings and insights into the underlying molecular mechanisms, and presents the perspectives necessary to enable our system-level understanding of leaf senescence, together with their possible implications for aging in general.

  15. Supplemental Upward Lighting from Underneath to Obtain Higher Marketable Lettuce (Lactuca sativa) Leaf Fresh Weight by Retarding Senescence of Outer Leaves

    PubMed Central

    Zhang, Geng; Shen, Shanqi; Takagaki, Michiko; Kozai, Toyoki; Yamori, Wataru

    2015-01-01

    Recently, the so-called “plant factory with artificial lighting” (PFAL) approach has been developed to provide safe and steady food production. Although PFALs can produce high-yielding and high-quality plants, the high plant density in these systems accelerates leaf senescence in the bottom (or outer) leaves owing to shading by the upper (or inner) leaves and by neighboring plants. This decreases yield and increases labor costs for trimming. Thus, the establishment of cultivation methods to retard senescence of outer leaves is an important research goal to improve PFAL yield and profitability. In the present study, we developed an LED lighting apparatus that would optimize light conditions for PFAL cultivation of a leafy vegetable. Lettuce (Lactuca sativa L.) was hydroponically grown under white, red, or blue LEDs, with light provided from above (downward), with or without supplemental upward lighting from underneath the plant. White LEDs proved more appropriate for lettuce growth than red or blue LEDs, and the supplemental lighting retarded the senescence of outer leaves and decreased waste (i.e., dead or low-quality senescent leaves), leading to an improvement of the marketable leaf fresh weight. PMID:26697055

  16. Supplemental Upward Lighting from Underneath to Obtain Higher Marketable Lettuce (Lactuca sativa) Leaf Fresh Weight by Retarding Senescence of Outer Leaves.

    PubMed

    Zhang, Geng; Shen, Shanqi; Takagaki, Michiko; Kozai, Toyoki; Yamori, Wataru

    2015-01-01

    Recently, the so-called "plant factory with artificial lighting" (PFAL) approach has been developed to provide safe and steady food production. Although PFALs can produce high-yielding and high-quality plants, the high plant density in these systems accelerates leaf senescence in the bottom (or outer) leaves owing to shading by the upper (or inner) leaves and by neighboring plants. This decreases yield and increases labor costs for trimming. Thus, the establishment of cultivation methods to retard senescence of outer leaves is an important research goal to improve PFAL yield and profitability. In the present study, we developed an LED lighting apparatus that would optimize light conditions for PFAL cultivation of a leafy vegetable. Lettuce (Lactuca sativa L.) was hydroponically grown under white, red, or blue LEDs, with light provided from above (downward), with or without supplemental upward lighting from underneath the plant. White LEDs proved more appropriate for lettuce growth than red or blue LEDs, and the supplemental lighting retarded the senescence of outer leaves and decreased waste (i.e., dead or low-quality senescent leaves), leading to an improvement of the marketable leaf fresh weight.

  17. WRKY22 Transcription Factor Mediates Dark-Induced Leaf Senescence in Arabidopsis

    PubMed Central

    Zhou, Xiang; Jiang, Zhou; Yu, Diqiu

    2011-01-01

    Arabidopsis WRKY proteins are plant-specific transcrip-tion factors, encoded by a large gene family, which contain the highly conserved amino acid sequence WRKYGQK and the zinc-finger-like motifs, Cys2His2 or Cys2HisCys. They can recognize and bind the TTGAC(C/T) W-box cis-elements found in the promoters of target genes, and are involved in the regulation of gene expression during pathogen defense, wounding, trichome development, and senescence. Here we investigated the physiological function of the Arabidopsis WRKY22 transcription factor during dark-induced senescence. WRKY22 transcription was suppressed by light and promoted by darkness. In addi-tion, AtWRKY22 expression was markedly induced by H2O2. These results indicated that AtWRKY22 was involved in signal pathways in response to abiotic stress. Dark-treated AtWRKY22 over-expression and knockout lines showed accelerated and delayed senescence phenotypes, respectively, and senescence-associated genes exhibited increased and decreased expression levels. Mutual regulation existed between AtWRKY22 and AtWRKY6, AtWR-KY53, and AtWRKY70, respectively. Moreover, AtWRKY22 could influence their relative expression levels by feedback regulation or by other, as yet unknown mechanisms in response to dark. These results prove that AtWRKY22 participates in the dark-induced senescence signal transduction pathway. PMID:21359674

  18. Photo- and antioxidative protection during summer leaf senescence in Pistacia lentiscus L. grown under Mediterranean field conditions.

    PubMed

    Munné-Bosch, S; Peñuelas, J

    2003-09-01

    Summer leaf senescence in Pistacia lentiscus L. plants serves to remobilize nutrients from the oldest leaves to the youngest ones, and therefore contributes to plant survival during the adverse climatic conditions typical of Mediterranean summers, i.e. water deficit superimposed on high solar radiation and high temperatures. To evaluate the extent of photo- and antioxidative protection during leaf senescence of this species, changes in carotenoids, including xanthophyll cycle pigments, and in the levels of ascorbate and alpha-tocopherol were measured prior to and during summer leaf senescence in 3-year-old plants grown under Mediterranean field conditions. Although a chlorophyll loss of approx. 20% was observed during the first stages of leaf senescence, no damage to the photosynthetic apparatus occurred as indicated by constant maximum efficiencies of photosystem II photochemistry. During this period the de-epoxidation state of the xanthophyll cycle, and lutein, neoxanthin and ascorbate levels were kept constant. At the same time beta-carotene and alpha-tocopherol levels increased by approx. 9 and 70%, respectively, presumably conferring photo- and antioxidative protection to the photosynthetic apparatus. By contrast, during the later stages of leaf senescence, characterized by severe chlorophyll loss, carotenoids were moderately degraded (neoxanthin by approx. 20%, and both lutein and beta-carotene by approx. 35%), ascorbate decreased by approx. 80% and alpha-tocopherol was not detected in senescing leaves. This study demonstrates that mechanisms of photo- and antioxidative protection may play a major role in maintaining chloroplast function during the first stages of leaf senescence, while antioxidant defences are lost during the latest stages of senescence.

  19. CaM/BAG5/Hsc70 signaling complex dynamically regulates leaf senescence

    PubMed Central

    Li, Luhua; Xing, Yangfei; Chang, Dong; Fang, Shasha; Cui, Boyang; Li, Qi; Wang, Xuejie; Guo, Shang; Yang, Xue; Men, Shuzhen; Shen, Yuequan

    2016-01-01

    Calcium signaling plays an essential role in plant cell physiology, and chaperone-mediated protein folding directly regulates plant programmed cell death. The Arabidopsis thaliana protein AtBAG5 (Bcl-2-associated athanogene 5) is unique in that it contains both a BAG domain capable of binding Hsc70 (Heat shock cognate protein 70) and a characteristic IQ motif that is specific for Ca2+-free CaM (Calmodulin) binding and hence acts as a hub linking calcium signaling and the chaperone system. Here, we determined crystal structures of AtBAG5 alone and in complex with Ca2+-free CaM. Structural and biochemical studies revealed that Ca2+-free CaM and Hsc70 bind AtBAG5 independently, whereas Ca2+-saturated CaM and Hsc70 bind AtBAG5 with negative cooperativity. Further in vivo studies confirmed that AtBAG5 localizes to mitochondria and that its overexpression leads to leaf senescence symptoms including decreased chlorophyll retention and massive ROS production in dark-induced plants. Mutants interfering the CaM/AtBAG5/Hsc70 complex formation leads to different phenotype of leaf senescence. Collectively, we propose that the CaM/AtBAG5/Hsc70 signaling complex plays an important role in regulating plant senescence. PMID:27539741

  20. [FTIR study of the influence of leaf senescence on magnoliaceae cluster analysis].

    PubMed

    Li, Lun; Liu, Gang; Ou, Quan-hong; Zhang, Li; Liu, Jian-hong; Sun, Shi-zhong

    2013-09-01

    Fourier transform infrared (FTIR) spectroscopy combined with hierarchical cluster analysis was used to study the influence of leaf senescence on magnoliaceae cluster. FTIR spectra of young, mature and old yellow leaves were obtained from 14 species trees belonging to the three magnoliaceae subtribes. Results showed that the infrared spectra of the three subtribes plant leaves were similar, only with minor differences in the absorption intensity of several peaks. Hierarchical cluster analysis was performed on the second derivative infrared spectra in the range 1800-700 cm(-1). The HCA results showed that the cluster based on mature leaves is better than that based on young and old yellow leaves. Our study suggests that it should be cautious to select leaf sample while using leaf spectra for classification.

  1. Differences between winter oilseed rape (Brassica napus L.) cultivars in nitrogen starvation-induced leaf senescence are governed by leaf-inherent rather than root-derived signals.

    PubMed

    Koeslin-Findeklee, Fabian; Becker, Martin A; van der Graaff, Eric; Roitsch, Thomas; Horst, Walter J

    2015-07-01

    Nitrogen (N) efficiency of winter oilseed rape (Brassica napus L.) line-cultivars (cvs.), defined as high grain yield under N limitation, has been primarily attributed to maintained N uptake during reproductive growth (N uptake efficiency) in combination with delayed senescence of the older leaves accompanied with maintained photosynthetic capacity (functional stay-green). However, it is not clear whether genotypic variation in N starvation-induced leaf senescence is due to leaf-inherent factors and/or governed by root-mediated signals. Therefore, the N-efficient and stay-green cvs. NPZ-1 and Apex were reciprocally grafted with the N-inefficient and early-senescing cvs. NPZ-2 and Capitol, respectively and grown in hydroponics. The senescence status of older leaves after 12 days of N starvation assessed by SPAD, photosynthesis and the expression of the senescence-specific cysteine protease gene SAG12-1 revealed that the stay-green phenotype of the cvs. NPZ-1 and Apex under N starvation was primarily under the control of leaf-inherent factors. The same four cultivars were submitted to N starvation for up to 12 days in a time-course experiment. The specific leaf contents of biologically active and inactive cytokinins (CKs) and the expression of genes involved in CK homeostasis revealed that under N starvation leaves of early-senescing cultivars were characterized by inactivation of biologically active CKs, whereas in stay-green cultivars synthesis, activation, binding of and response to biologically active CKs were favoured. These results suggest that the homeostasis of biologically active CKs was the predominant leaf-inherent factor for cultivar differences in N starvation-induced leaf senescence and thus N efficiency.

  2. Differences between winter oilseed rape (Brassica napus L.) cultivars in nitrogen starvation-induced leaf senescence are governed by leaf-inherent rather than root-derived signals

    PubMed Central

    Koeslin-Findeklee, Fabian; Becker, Martin A.; van der Graaff, Eric; Roitsch, Thomas; Horst, Walter J.

    2015-01-01

    Nitrogen (N) efficiency of winter oilseed rape (Brassica napus L.) line-cultivars (cvs.), defined as high grain yield under N limitation, has been primarily attributed to maintained N uptake during reproductive growth (N uptake efficiency) in combination with delayed senescence of the older leaves accompanied with maintained photosynthetic capacity (functional stay-green). However, it is not clear whether genotypic variation in N starvation-induced leaf senescence is due to leaf-inherent factors and/or governed by root-mediated signals. Therefore, the N-efficient and stay-green cvs. NPZ-1 and Apex were reciprocally grafted with the N-inefficient and early-senescing cvs. NPZ-2 and Capitol, respectively and grown in hydroponics. The senescence status of older leaves after 12 days of N starvation assessed by SPAD, photosynthesis and the expression of the senescence-specific cysteine protease gene SAG12-1 revealed that the stay-green phenotype of the cvs. NPZ-1 and Apex under N starvation was primarily under the control of leaf-inherent factors. The same four cultivars were submitted to N starvation for up to 12 days in a time-course experiment. The specific leaf contents of biologically active and inactive cytokinins (CKs) and the expression of genes involved in CK homeostasis revealed that under N starvation leaves of early-senescing cultivars were characterized by inactivation of biologically active CKs, whereas in stay-green cultivars synthesis, activation, binding of and response to biologically active CKs were favoured. These results suggest that the homeostasis of biologically active CKs was the predominant leaf-inherent factor for cultivar differences in N starvation-induced leaf senescence and thus N efficiency. PMID:25944925

  3. Transcription Analysis of Arabidopsis Membrane Transporters and Hormone Pathways during Developmental and Induced Leaf Senescence1[W

    PubMed Central

    van der Graaff, Eric; Schwacke, Rainer; Schneider, Anja; Desimone, Marcelo; Flügge, Ulf-Ingo; Kunze, Reinhard

    2006-01-01

    A comparative transcriptome analysis for successive stages of Arabidopsis (Arabidopsis thaliana) developmental leaf senescence (NS), darkening-induced senescence of individual leaves attached to the plant (DIS), and senescence in dark-incubated detached leaves (DET) revealed many novel senescence-associated genes with distinct expression profiles. The three senescence processes share a high number of regulated genes, although the overall number of regulated genes during DIS and DET is about 2 times lower than during NS. Consequently, the number of NS-specific genes is much higher than the number of DIS- or DET-specific genes. The expression profiles of transporters (TPs), receptor-like kinases, autophagy genes, and hormone pathways were analyzed in detail. The Arabidopsis TPs and other integral membrane proteins were systematically reclassified based on the Transporter Classification system. Coordinate activation or inactivation of several genes is observed in some TP families in all three or only in individual senescence types, indicating differences in the genetic programs for remobilization of catabolites. Characteristic senescence type-specific differences were also apparent in the expression profiles of (putative) signaling kinases. For eight hormones, the expression of biosynthesis, metabolism, signaling, and (partially) response genes was investigated. In most pathways, novel senescence-associated genes were identified. The expression profiles of hormone homeostasis and signaling genes reveal additional players in the senescence regulatory network. PMID:16603661

  4. Absence of AMPKα2 accelerates cellular senescence via p16 induction in mouse embryonic fibroblasts.

    PubMed

    Ding, Ye; Chen, Jie; Okon, Imoh Sunday; Zou, Ming-Hui; Song, Ping

    2016-02-01

    Emerging evidence suggests that activation of adenosine monophosphate-activated protein kinase (AMPK), an energy gauge and redox sensor, delays aging process. However, the molecular mechanisms by which AMPKα isoform regulates cellular senescence remain largely unknown. The aim of this study was to determine if AMPKα deletion contributes to the accelerated cell senescence by inducing p16(INK4A) (p16) expression thereby arresting cell cycle. The markers of cellular senescence, cell cycle proteins, and reactive oxygen species (ROS) were monitored in cultured mouse embryonic fibroblasts (MEFs) isolated from wild type (WT, C57BL/6J), AMPKα1, or AMPKα2 homozygous deficient (AMPKα1(-/-), AMPKα2(-/-)) mice by Western blot and cellular immunofluorescence staining, as well as immunohistochemistry (IHC) in skin tissue of young and aged mice. Deletion of AMPKα2, the minor isoform of AMPKα, but not AMPKα1 in high-passaged MEFs led to spontaneous cell senescence demonstrated by accumulation of senescence-associated-β-galactosidase (SA-β-gal) staining and foci formation of heterochromatin protein 1 homolog gamma (HP1γ). It was shown here that AMPKα2 deletion upregulates cyclin-dependent kinase (CDK) inhibitor, p16, which arrests cell cycle. Furthermore, AMPKα2 null cells exhibited elevated ROS production. Interestingly, knockdown of HMG box-containing protein 1 (HBP1) partially blocked the cellular senescence of AMPKα2-deleted MEFs via the reduction of p16. Finally, dermal cells senescence, including fibroblasts senescence evidenced by the staining of p16, HBP1, and Ki-67, in the skin of aged AMPKα2(-/-) mice was enhanced when compared with that in wild type mice. Taken together, our results suggest that AMPKα2 isoform plays a fundamental role in anti-oxidant stress and anti-senescence.

  5. The conserved mobility of mitochondria during leaf senescence reflects differential regulation of the cytoskeletal components in Arabidopsis thaliana

    PubMed Central

    2011-01-01

    Leaf senescence is an organized process, which requires fine tuning between nuclear gene expression, activity of proteases and the maintenance of primary metabolism. Recently, we reported that leaf senescence was accompanied by an early degradation of the microtubule cytoskeleton in Arabidopsis thaliana. As the cytoskeleton is essential for cell stability, vesicle shuttling and organelle mobility, it might be asked how the regulation of these cell functions occurs with such drastic modifications of the cytoskeleton. Based on confocal laser microscopy observations and a micro-array analysis, the following addendum shows that mitochondrial mobility is conserved until the late stages of leaf senescence and provides evidences that the actin-cytoskeleton is maintained longer than the microtubule network. This conservation of actin-filaments is discussed with regards to energy metabolism as well as calcium signaling during programmed cell death. PMID:21270537

  6. Programming of Plant Leaf Senescence with Temporal and Inter-Organellar Coordination of Transcriptome in Arabidopsis1[OPEN

    PubMed Central

    Koo, Hee Jung; Kim, Jeongsik; Jeong, Hyobin; Yang, Jin Ok; Lee, Il Hwan; Jun, Ji Hyung; Choi, Seung Hee; Park, Su Jin; Kang, Byeongsoo; Kim, You Wang; Phee, Bong-Kwan; Kim, Jin Hee; Seo, Chaehwa; Park, Charny; Kim, Sang Cheol; Park, Seongjin; Lee, Byungwook; Lee, Sanghyuk; Hwang, Daehee; Lim, Pyung Ok

    2016-01-01

    Plant leaves, harvesting light energy and fixing CO2, are a major source of foods on the earth. Leaves undergo developmental and physiological shifts during their lifespan, ending with senescence and death. We characterized the key regulatory features of the leaf transcriptome during aging by analyzing total- and small-RNA transcriptomes throughout the lifespan of Arabidopsis (Arabidopsis thaliana) leaves at multidimensions, including age, RNA-type, and organelle. Intriguingly, senescing leaves showed more coordinated temporal changes in transcriptomes than growing leaves, with sophisticated regulatory networks comprising transcription factors and diverse small regulatory RNAs. The chloroplast transcriptome, but not the mitochondrial transcriptome, showed major changes during leaf aging, with a strongly shared expression pattern of nuclear transcripts encoding chloroplast-targeted proteins. Thus, unlike animal aging, leaf senescence proceeds with tight temporal and distinct interorganellar coordination of various transcriptomes that would be critical for the highly regulated degeneration and nutrient recycling contributing to plant fitness and productivity. PMID:26966169

  7. Accelerated cellular senescence phenotype of GAPDH-depleted human lung carcinoma cells

    SciTech Connect

    Phadke, Manali; Krynetskaia, Natalia; Mishra, Anurag; Krynetskiy, Evgeny

    2011-07-29

    Highlights: {yields} We examined the effect of glyceraldehyde 3-phosphate (GAPDH) depletion on proliferation of human carcinoma A549 cells. {yields} GAPDH depletion induces accelerated senescence in tumor cells via AMPK network, in the absence of DNA damage. {yields} Metabolic and genetic rescue experiments indicate that GAPDH has regulatory functions linking energy metabolism and cell cycle. {yields} Induction of senescence in LKB1-deficient lung cancer cells via GAPDH depletion suggests a novel strategy to control tumor cell proliferation. -- Abstract: Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) is a pivotal glycolytic enzyme, and a signaling molecule which acts at the interface between stress factors and the cellular apoptotic machinery. Earlier, we found that knockdown of GAPDH in human carcinoma cell lines resulted in cell proliferation arrest and chemoresistance to S phase-specific cytotoxic agents. To elucidate the mechanism by which GAPDH depletion arrests cell proliferation, we examined the effect of GAPDH knockdown on human carcinoma cells A549. Our results show that GAPDH-depleted cells establish senescence phenotype, as revealed by proliferation arrest, changes in morphology, SA-{beta}-galactosidase staining, and more than 2-fold up-regulation of senescence-associated genes DEC1 and GLB1. Accelerated senescence following GAPDH depletion results from compromised glycolysis and energy crisis leading to the sustained AMPK activation via phosphorylation of {alpha} subunit at Thr172. Our findings demonstrate that GAPDH depletion switches human tumor cells to senescent phenotype via AMPK network, in the absence of DNA damage. Rescue experiments using metabolic and genetic models confirmed that GAPDH has important regulatory functions linking the energy metabolism and the cell cycle networks. Induction of senescence in LKB1-deficient non-small cell lung cancer cells via GAPDH depletion suggests a novel strategy to control tumor cell proliferation.

  8. Elevated CO2 enhances leaf senescence during extreme heat and drought in a temperate forest

    SciTech Connect

    Warren, Jeffrey; Norby, Richard J; Wullschleger, Stan D

    2011-01-01

    In 2007, an extreme drought and acute heat wave damaged ecosystems across the southeastern US, including a 19-year-old Liquidambar styraciflua L. (sweetgum) tree plantation exposed to long-term elevated CO2 treatments. Stem sap velocities in trees exposed to ambient (A) or elevated (E) CO2 were analyzed to assess potential interactions between CO2 and these weather extremes. Leaf temperature (Tleaf) and net carbon uptake (GPP) were modeled based on patterns of sap velocity to estimate indirect impacts of CO2-reduced transpiration on premature leaf senescence. Elevated CO2 reduced sap flow by 28% during early summer, and by up to 45% late in the drought during record-setting high air temperatures. Canopy transpiration and conductance declined more rapidly in ECO2 plots, resulting in ECO2 Tleaf up to 45 C, which was 1-2 C greater than ACO2 Tleaf. Pre-drought GPP was ~7% greater in ECO2 plots, then declined to 30% less than ACO2 GPP as the drought progressed. Leaf abscission peaked during this period, and was 30% greater for ECO2 trees. While ECO2 can reduce leaf-level water use under droughty conditions, acute drought or heat conditions may induce excessive stomatal closure that could offset benefits of ECO2 to temperate forest species during extreme weather events.

  9. Mutation of SPOTTED LEAF3 (SPL3) impairs abscisic acid-responsive signalling and delays leaf senescence in rice

    PubMed Central

    Wang, Seung-Hyun; Lim, Jung-Hyun; Kim, Sang-Sook; Cho, Sung-Hwan; Yoo, Soo-Cheul; Koh, Hee-Jong; Sakuraba, Yasuhito; Paek, Nam-Chon

    2015-01-01

    Lesion mimic mutants commonly display spontaneous cell death in pre-senescent green leaves under normal conditions, without pathogen attack. Despite molecular and phenotypic characterization of several lesion mimic mutants, the mechanisms of the spontaneous formation of cell death lesions remain largely unknown. Here, the rice lesion mimic mutant spotted leaf3 (spl3) was examined. When grown under a light/dark cycle, the spl3 mutant appeared similar to wild-type at early developmental stages, but lesions gradually appeared in the mature leaves close to heading stage. By contrast, in spl3 mutants grown under continuous light, severe cell death lesions formed in developing leaves, even at the seedling stage. Histochemical analysis showed that hydrogen peroxide accumulated in the mutant, likely causing the cell death phenotype. By map-based cloning and complementation, it was shown that a 1-bp deletion in the first exon of Oryza sativa Mitogen-Activated Protein Kinase Kinase Kinase1 (OsMAPKKK1)/OsEDR1/OsACDR1 causes the spl3 mutant phenotype. The spl3 mutant was found to be insensitive to abscisic acid (ABA), showing normal root growth in ABA-containing media and delayed leaf yellowing during dark-induced and natural senescence. Expression of ABA signalling-associated genes was also less responsive to ABA treatment in the mutant. Furthermore, the spl3 mutant had lower transcript levels and activities of catalases, which scavenge hydrogen peroxide, probably due to impairment of ABA-responsive signalling. Finally, a possible molecular mechanism of lesion formation in the mature leaves of spl3 mutant is discussed. PMID:26276867

  10. Identification and characterization of contrasting sunflower genotypes to early leaf senescence process combining molecular and physiological studies (Helianthus annuus L.).

    PubMed

    López Gialdi, A I; Moschen, S; Villán, C S; López Fernández, M P; Maldonado, S; Paniego, N; Heinz, R A; Fernandez, P

    2016-09-01

    Leaf senescence is a complex mechanism ruled by multiple genetic and environmental variables that affect crop yields. It is the last stage in leaf development, is characterized by an active decline in photosynthetic rate, nutrients recycling and cell death. The aim of this work was to identify contrasting sunflower inbred lines differing in leaf senescence and to deepen the study of this process in sunflower. Ten sunflower genotypes, previously selected by physiological analysis from 150 inbred genotypes, were evaluated under field conditions through physiological, cytological and molecular analysis. The physiological measurement allowed the identification of two contrasting senescence inbred lines, R453 and B481-6, with an increase in yield in the senescence delayed genotype. These findings were confirmed by cytological and molecular analysis using TUNEL, genomic DNA gel electrophoresis, flow sorting and gene expression analysis by qPCR. These results allowed the selection of the two most promising contrasting genotypes, which enables future studies and the identification of new biomarkers associated to early senescence in sunflower. In addition, they allowed the tuning of cytological techniques for a non-model species and its integration with molecular variables.

  11. Production and Scavenging of Reactive Oxygen Species and Redox Signaling during Leaf and Flower Senescence: Similar But Different1[OPEN

    PubMed Central

    2016-01-01

    Reactive oxygen species (ROS) play a key role in the regulation of many developmental processes, including senescence, and in plant responses to biotic and abiotic stresses. Several mechanisms of ROS generation and scavenging are similar, but others differ between senescing leaves and petals, despite these organs sharing a common evolutionary origin. Photosynthesis-derived ROS, nutrient remobilization, and reversibility of senescence are necessarily distinct features of the progression of senescence in the two organs. Furthermore, recent studies have revealed specific redox signaling processes that act in concert with phytohormones and transcription factors to regulate senescence-associated genes in leaves and petals. Here, we review some of the recent advances in our understanding of the mechanisms underpinning the production and elimination of ROS in these two organs. We focus on unveiling common and differential aspects of redox signaling in leaf and petal senescence, with the aim of linking physiological, biochemical, and molecular processes. We conclude that the spatiotemporal impact of ROS in senescing tissues differs between leaves and flowers, mainly due to the specific functionalities of these organs. PMID:27208233

  12. Transcriptomic analysis of nitrogen starvation- and cultivar-specific leaf senescence in winter oilseed rape (Brassica napus L.).

    PubMed

    Koeslin-Findeklee, Fabian; Rizi, Vajiheh Safavi; Becker, Martin A; Parra-Londono, Sebastian; Arif, Muhammad; Balazadeh, Salma; Mueller-Roeber, Bernd; Kunze, Reinhard; Horst, Walter J

    2015-04-01

    High nitrogen (N) efficiency, characterized by high grain yield under N limitation, is an important agricultural trait in Brassica napus L. cultivars related to delayed senescence of older leaves during reproductive growth (a syndrome called stay-green). The aim of this study was thus to identify genes whose expression is specifically altered during N starvation-induced leaf senescence and that can be used as markers to distinguish cultivars at early stages of senescence prior to chlorophyll loss. To this end, the transcriptomes of leaves of two B. napus cultivars differing in stay-green characteristics and N efficiency were analyzed 4 days after the induction of senescence by either N starvation, leaf shading or detaching. In addition to N metabolism genes, N starvation mostly (and specifically) repressed genes related to photosynthesis, photorespiration and cell-wall structure, while genes related to mitochondrial electron transport and flavonoid biosynthesis were predominately up-regulated. A kinetic study over a period of 12 days with four B. napus cultivars differing in their stay-green characteristics confirmed the cultivar-specific regulation of six genes in agreement with their senescence behavior: the senescence regulator ANAC029, the anthocyanin synthesis-related genes ANS and DFR-like1, the ammonium transporter AMT1;4, the ureide transporter UPS5, and SPS1 involved in sucrose biosynthesis. The identified genes represent markers for the detection of cultivar-specific differences in N starvation-induced leaf senescence and can thus be employed as valuable tools in B. napus breeding.

  13. Chilling stress--the key predisposing factor for causing Alternaria alternata infection and leading to cotton (Gossypium hirsutum L.) leaf senescence.

    PubMed

    Zhao, Jingqing; Li, Sha; Jiang, Tengfei; Liu, Zhi; Zhang, Wenwei; Jian, Guiliang; Qi, Fangjun

    2012-01-01

    Leaf senescence plays a vital role in nutrient recycling and overall capacity to assimilate carbon dioxide. Cotton premature leaf senescence, often accompanied with unexpected short-term low temperature, has been occurring with an increasing frequency in many cotton-growing areas and causes serious reduction in yield and quality of cotton. The key factors for causing and promoting cotton premature leaf senescence are still unclear. In this case, the relationship between the pre-chilling stress and Alternaria alternata infection for causing cotton leaf senescence was investigated under precisely controlled laboratory conditions with four to five leaves stage cotton plants. The results showed short-term chilling stress could cause a certain degree of physiological impairment to cotton leaves, which could be recovered to normal levels in 2-4 days when the chilling stresses were removed. When these chilling stress injured leaves were further inoculated with A. alternata, the pronounced appearance and development of leaf spot disease, and eventually the pronounced symptoms of leaf senescence, occurred on these cotton leaves. The onset of cotton leaf senescence at this condition was also reflected in various physiological indexes such as irreversible increase in malondialdehyde (MDA) content and electrolyte leakage, irreversible decrease in soluble protein content and chlorophyll content, and irreversible damage in leaves' photosynthesis ability. The presented results demonstrated that chilling stress acted as the key predisposing factor for causing A. alternata infection and leading to cotton leaf senescence. It could be expected that the understanding of the key factors causing and promoting cotton leaf senescence would be helpful for taking appropriate management steps to prevent cotton premature leaf senescence.

  14. Remobilization of leaf S compounds and senescence in response to restricted sulphate supply during the vegetative stage of oilseed rape are affected by mineral N availability.

    PubMed

    Dubousset, L; Abdallah, M; Desfeux, A S; Etienne, P; Meuriot, F; Hawkesford, M J; Gombert, J; Ségura, R; Bataillé, M-P; Rezé, S; Bonnefoy, J; Ameline, A F; Ourry, A; Le Dily, F; Avice, J C

    2009-01-01

    The impact of sulphur limitation on the remobilization of endogenous S compounds during the rosette stage of oilseed rape, and the interactions with N availability on these processes, were examined using a long-term (34)SO(4)(2-) labelling method combined with a study of leaf senescence progression (using SAG12/Cab as a molecular indicator) and gene expression of the transporters, BnSultr4;1 and BnSultr4;2, involved in vacuolar sulphate efflux. After 51 d on hydroponic culture at 0.3 mM (34)SO(4)(2-) (1 atom% excess), the labelling was stopped and plants were subject for 28 d to High S-High N (HS-HN, control), Low S-High N (LS-HN) or Low S-Low N (LS-LN) conditions. Compared with the control, LS-HN plants showed delayed leaf senescence and, whilst the shoot growth and the foliar soluble protein amounts were not affected, S, (34)S, and SO(4)(2-) amounts in the old leaves declined rapidly and were associated with the up-regulation of BnSultr4;1. In LS-LN plants, shoot growth was reduced, leaf senescence was accelerated, and the rapid S mobilization in old leaves was accompanied by decreased (34)S and SO(4)(2-), higher protein mobilization, and up-regulation of BnSultr4;2, but without any change of expression of BnSultr4;1. The data suggest that to sustain the S demand for growth under S restriction (i) vacuolar SO(4)(2-) is specifically remobilized in LS-HN conditions without any acceleration of leaf senescence, (ii) SO(4)(2-) mobilization is related to an up-regulation of BnSultr4;1 and/or BnSultr4;2 expression, and (iii) the relationship between sulphate mobilization and up-regulation of expression of BnSultr4 genes is specifically dependent on the N availability.

  15. Remobilization of leaf S compounds and senescence in response to restricted sulphate supply during the vegetative stage of oilseed rape are affected by mineral N availability

    PubMed Central

    Dubousset, L.; Abdallah, M.; Desfeux, A. S.; Etienne, P.; Meuriot, F.; Hawkesford, M. J.; Gombert, J.; Ségura, R.; Bataillé, M-P.; Rezé, S.; Bonnefoy, J.; Ameline, A. F.; Ourry, A.; Dily, F. Le; Avice, J. C.

    2009-01-01

    The impact of sulphur limitation on the remobilization of endogenous S compounds during the rosette stage of oilseed rape, and the interactions with N availability on these processes, were examined using a long-term 34SO42− labelling method combined with a study of leaf senescence progression (using SAG12/Cab as a molecular indicator) and gene expression of the transporters, BnSultr4;1 and BnSultr4;2, involved in vacuolar sulphate efflux. After 51 d on hydroponic culture at 0.3 mM 34SO42− (1 atom% excess), the labelling was stopped and plants were subject for 28 d to High S-High N (HS-HN, control), Low S-High N (LS-HN) or Low S-Low N (LS-LN) conditions. Compared with the control, LS-HN plants showed delayed leaf senescence and, whilst the shoot growth and the foliar soluble protein amounts were not affected, S, 34S, and SO42− amounts in the old leaves declined rapidly and were associated with the up-regulation of BnSultr4;1. In LS-LN plants, shoot growth was reduced, leaf senescence was accelerated, and the rapid S mobilization in old leaves was accompanied by decreased 34S and SO42−, higher protein mobilization, and up-regulation of BnSultr4;2, but without any change of expression of BnSultr4;1. The data suggest that to sustain the S demand for growth under S restriction (i) vacuolar SO42− is specifically remobilized in LS-HN conditions without any acceleration of leaf senescence, (ii) SO42− mobilization is related to an up-regulation of BnSultr4;1 and/or BnSultr4;2 expression, and (iii) the relationship between sulphate mobilization and up-regulation of expression of BnSultr4 genes is specifically dependent on the N availability. PMID:19553370

  16. Tumor growth accelerated by chemotherapy-induced senescent cells is suppressed by treatment with IL-12 producing cellular vaccines

    PubMed Central

    Simova, Jana; Sapega, Olena; Imrichova, Terezie; Stepanek, Ivan; Kyjacova, Lenka; Mikyskova, Romana; Indrova, Marie; Bieblova, Jana; Bubenik, Jan; Bartek, Jiri; Hodny, Zdenek; Reinis, Milan

    2016-01-01

    Standard-of-care chemo- or radio-therapy can induce, besides tumor cell death, also tumor cell senescence. While senescence is considered to be a principal barrier against tumorigenesis, senescent cells can survive in the organism for protracted periods of time and they can promote tumor development. Based on this emerging concept, we hypothesized that elimination of such potentially cancer-promoting senescent cells could offer a therapeutic benefit. To assess this possibility, here we first show that tumor growth of proliferating mouse TC-1 HPV-16-associated cancer cells in syngeneic mice becomes accelerated by co-administration of TC-1 or TRAMP-C2 prostate cancer cells made senescent by pre-treatment with the anti-cancer drug docetaxel, or lethally irradiated. Phenotypic analyses of tumor-explanted cells indicated that the observed acceleration of tumor growth was attributable to a protumorigenic environment created by the co-injected senescent and proliferating cancer cells rather than to escape of the docetaxel-treated cells from senescence. Notably, accelerated tumor growth was effectively inhibited by cell immunotherapy using irradiated TC-1 cells engineered to produce interleukin IL-12. Collectively, our data document that immunotherapy, such as the IL-12 treatment, can provide an effective strategy for elimination of the detrimental effects caused by bystander senescent tumor cells in vivo. PMID:27448982

  17. Ethylene response pathway is essential for ARABIDOPSIS A-FIFTEEN function in floral induction and leaf senescence.

    PubMed

    Chen, Guan-Hong; Chan, Yuan-Li; Liu, Chia-Ping; Wang, Long-Chi

    2012-04-01

    ARABIDOPSIS A-FIFTEEN (AAF) encodes a plastid protein and was originally identified as a SENESCENCE-ASSOCIATED GENE. Previously, we found that overexpression of AAF (AAF-OX) in Arabidopsis led to accumulated reactive oxygen species and promoted leaf senescence induced by oxidative stress, which was suppressed by a null mutant, ein2-5, in ethylene response pathway. Whether AAF function is involved in ethylene biosynthesis and/or the response pathway remained unknown. Here we show that neither overexpression (AAF-OX) nor a null mutant (aaf-KO) of AAF generates a higher level of ethylene than the wild type and display a typical triple-response phenotype in etiolated seedlings treated with 1-aminocyclopropane-1-carboxylic acid (ACC). Nevertheless, ein2-5 suppresses the phenotypes of early flowering and age-dependent leaf senescence in AAF-OX plants. We reveal that a functional ethylene response is essential for AAF function in leaf senescence and floral induction, but AAF is unlikely a regulatory component integral to the ethylene pathway.

  18. Genome-Wide Analysis of MicroRNAs and Their Target Genes Related to Leaf Senescence of Rice

    PubMed Central

    Liu, Chaoping; Chen, Eryong; Chen, Qifeng; Zhuang, Jieyun; Shen, Bo

    2014-01-01

    Grain production of rice (Oryza sativa L.) is a top priority in ensuring food security for human beings. One of the approaches to increase yield is to delay leaf senescence and to extend the available time for photosynthesis. MicroRNAs (miRNAs) are key regulators of aging and cellular senescence in eukaryotes. Here, to help understand their biological role in rice leaf senescence, we report identification of miRNAs and their putative target genes by deep sequencing of six small RNA libraries, six RNA-seq libraries and two degradome libraries from the leaves of two super hybrid rice, Nei-2-You 6 (N2Y6, age-resistant rice) and Liang-You-Pei 9 (LYP9, age-sensitive rice). In total 372 known miRNAs, 162 miRNA candidates and 1145 targets were identified. Compared with the expression of miRNAs in the leaves of LYP9, the numbers of miRNAs up-regulated and down-regulated in the leaves of N2Y6 were 47 and 30 at early stage of grain-filling, 21 and 17 at the middle stage, and 11 and 37 at the late stage, respectively. Six miRNA families, osa-miR159, osa-miR160 osa-miR164, osa-miR167, osa-miR172 and osa-miR1848, targeting the genes encoding APETALA2 (AP2), zinc finger proteins, salicylic acid-induced protein 19 (SIP19), auxin response factors (ARF) and NAC transcription factors, respectively, were found to be involved in leaf senescence through phytohormone signaling pathways. These results provided valuable information for understanding the miRNA-mediated leaf senescence of rice, and offered an important foundation for rice breeding. PMID:25479006

  19. Expression of IPT in Asakura-sanshoo (Zanthoxylum piperitum (L.) DC. f. inerme Makino) Alters Tree Architecture, Delays Leaf Senescence, and Changes Leaf Essential Oil Composition.

    PubMed

    Zeng, Xiao-Fang; Zhao, De-Gang

    The IPT gene encodes isopentenyl pyrophosphate transferase, a key enzyme in cytokinin biosynthesis. We introduced IPT under the control of the CaMV35S promoter into Asakura-sanshoo (Zanthoxylum piperitum (L.) DC. f. inerme Makino) via stable Agrobacterium tumefaciens-mediated transformation. Three of 3-year-old transgenic Asakura-sanshoo lines Y5, Y16, and Y17 were used to evaluate the effects of IPT expression on the morphological characteristics, leaf senescence, and essential oil composition. Introduced IPT into Asakura-sanshoo stimulated an increase in cytokinin content and a decrease in auxin level. The increase in the cytokinin/auxin ratio affected the tree architecture in 3-year-old transgenic lines. The phenotypes of transgenic lines included reduced stem elongation, decreased leaf surface area, increased branching, and delayed leaf senescence. The expression of IPT in Asakura-sanshoo also affected the leaf essential oil composition. The amount of oxygenated sesquiterpenoid compounds in Y5 and Y16 was 21.1 and 15.8 % higher, respectively, than that in wild type (WT). The amount of aromatic compounds in Y5 and Y16 was 2.9 and 24.6 % lower, respectively, than that in WT. These results show that ipt expression in Asakura-sanshoo conferred desirable traits, including a dwarf growth habit, delayed senescence, and increased concentrations of some sesquiterpenoid compounds.

  20. Variation in leaf flushing date influences autumnal senescence and next year's flushing date in two temperate tree species.

    PubMed

    Fu, Yongshuo S H; Campioli, Matteo; Vitasse, Yann; De Boeck, Hans J; Van den Berge, Joke; AbdElgawad, Hamada; Asard, Han; Piao, Shilong; Deckmyn, Gaby; Janssens, Ivan A

    2014-05-20

    Recent temperature increases have elicited strong phenological shifts in temperate tree species, with subsequent effects on photosynthesis. Here, we assess the impact of advanced leaf flushing in a winter warming experiment on the current year's senescence and next year's leaf flushing dates in two common tree species: Quercus robur L. and Fagus sylvatica L. Results suggest that earlier leaf flushing translated into earlier senescence, thereby partially offsetting the lengthening of the growing season. Moreover, saplings that were warmed in winter-spring 2009-2010 still exhibited earlier leaf flushing in 2011, even though the saplings had been exposed to similar ambient conditions for almost 1 y. Interestingly, for both species similar trends were found in mature trees using a long-term series of phenological records gathered from various locations in Europe. We hypothesize that this long-term legacy effect is related to an advancement of the endormancy phase (chilling phase) in response to the earlier autumnal senescence. Given the importance of phenology in plant and ecosystem functioning, and the prediction of more frequent extremely warm winters, our observations and postulated underlying mechanisms should be tested in other species.

  1. Variation in leaf flushing date influences autumnal senescence and next year’s flushing date in two temperate tree species

    PubMed Central

    Fu, Yongshuo S. H.; Campioli, Matteo; Vitasse, Yann; De Boeck, Hans J.; Van den Berge, Joke; AbdElgawad, Hamada; Asard, Han; Piao, Shilong; Deckmyn, Gaby; Janssens, Ivan A.

    2014-01-01

    Recent temperature increases have elicited strong phenological shifts in temperate tree species, with subsequent effects on photosynthesis. Here, we assess the impact of advanced leaf flushing in a winter warming experiment on the current year’s senescence and next year’s leaf flushing dates in two common tree species: Quercus robur L. and Fagus sylvatica L. Results suggest that earlier leaf flushing translated into earlier senescence, thereby partially offsetting the lengthening of the growing season. Moreover, saplings that were warmed in winter–spring 2009–2010 still exhibited earlier leaf flushing in 2011, even though the saplings had been exposed to similar ambient conditions for almost 1 y. Interestingly, for both species similar trends were found in mature trees using a long-term series of phenological records gathered from various locations in Europe. We hypothesize that this long-term legacy effect is related to an advancement of the endormancy phase (chilling phase) in response to the earlier autumnal senescence. Given the importance of phenology in plant and ecosystem functioning, and the prediction of more frequent extremely warm winters, our observations and postulated underlying mechanisms should be tested in other species. PMID:24799708

  2. Expression of isopentenyl transferase gene (ipt) in leaf and stem delayed leaf senescence without affecting root growth.

    PubMed

    Ma, Qing-Hu; Liu, Yun-Chao

    2009-11-01

    A cytokinin biosynthetic gene encoding isopentenyl transferase (ipt) was cloned with its native promoter from Agrobacterium tumefaciens and introduced into tobacco plants. Indolebutyric acid was applied in rooting medium and morphologically normal transgenic tobacco plants were regenerated. Genetic analysis of self-fertilized progeny showed that a single copy of intact ipt gene had been integrated, and T(2) progeny had become homozygous for the transgene. Stable inheritance of the intact ipt gene in T(2) progeny was verified by Southern hybridization. Northern blot hybridization revealed that the expression of this ipt gene was confined in leaves and stems but undetectable in roots of the transgenic plants. Endogenous cytokinin levels in the leaves and stems of the transgenic tobaccos were two to threefold higher than that of control, but in roots, both the transgenic and control tobaccos had similar cytokinin levels. The elevated cytokinin levels in the transgenic tobacco leaves resulted in delayed leaf senescence in terms of chlorophyll content without affecting the net photosynthetic rate. The root growth and morphology of the plant were not affected in the transgenic tobacco.

  3. The expression patterns of SAG12/Cab genes reveal the spatial and temporal progression of leaf senescence in Brassica napus L. with sensitivity to the environment.

    PubMed

    Gombert, Julie; Etienne, Philippe; Ourry, Alain; Le Dily, Frédérik

    2006-01-01

    Despite a high nitrate uptake capacity, the nitrogen use efficiency (NUE) of oilseed rape is weak due to a relatively low N remobilization from vegetative (mostly leaves) to growing parts of the plant. Thus, this crop requires a high rate of N fertilization and leaves fall with a high N content. In order to reduce the rate of N fertilization and to improve the environmental impact of oilseed rape, new genotypes could be selected on their capacity to mobilize the foliar N. Various indicators of leaf senescence in oilseed rape were analysed during plant growth, as well as during senescence induced by N deprivation. Metabolic changes in leaves of increasing age were followed in N-supplied and N-deprived rosettes by measuring chlorophyll, total N, and soluble protein contents. Similarly, the expression of genes known to be up-regulated (SAG12) or down-regulated (Cab) during leaf senescence was monitored. The amount of soluble proteins per leaf was a better indicator of leaf senescence than chlorophyll or total N content, but was not evaluated as an accurate indicator under conditions of N deprivation. On the other hand, up-regulation of SAG12 concomitantly with down-regulation of Cab in the leaf revealed the spatial and temporal progression of leaf senescence in oilseed rape. This study shows, for the first time at the whole plant level, that the SAG12/Cab gene expressions match the sink/source transition for N during both developmental and nutrient stress-induced leaf senescence.

  4. DkXTH8, a novel xyloglucan endotransglucosylase/hydrolase in persimmon, alters cell wall structure and promotes leaf senescence and fruit postharvest softening

    PubMed Central

    Han, Ye; Ban, Qiuyan; Li, Hua; Hou, Yali; Jin, Mijing; Han, Shoukun; Rao, Jingping

    2016-01-01

    Fruit softening is mainly associated with cell wall structural modifications, and members of the xyloglucan endotransglucosylase/hydrolase (XTH) family are key enzymes involved in cleaving and re-joining xyloglucan in the cell wall. In this work, we isolated a new XTH gene, DkXTH8, from persimmon fruit. Transcriptional profiling revealed that DkXTH8 peaked during dramatic fruit softening, and expression of DkXTH8 was stimulated by propylene and abscisic acid but suppressed by gibberellic acid and 1-MCP. Transient expression assays in onion epidermal cells indicated direct localization of DkXTH8 to the cell wall via its signal peptide. When expressed in vitro, the recombinant DkXTH8 protein exhibited strict xyloglucan endotransglycosylase activity, whereas no xyloglucan endohydrolase activity was observed. Furthermore, overexpression of DkXTH8 resulted in increased leaf senescence coupled with higher electrolyte leakage in Arabidopsis and faster fruit ripening and softening rates in tomato. Most importantly, transgenic plants overexpressing DkXTH8 displayed more irregular and twisted cells due to cell wall restructuring, resulting in wider interstitial spaces with less compact cells. We suggest that DkXTH8 expression causes cells to be easily destroyed, increases membrane permeability and cell peroxidation, and accelerates leaf senescence and fruit softening in transgenic plants. PMID:27966647

  5. Mechanism of phytohormone involvement in feedback regulation of cotton leaf senescence induced by potassium deficiency

    PubMed Central

    Tian, Xiaoli

    2012-01-01

    To elucidate the phytohormonal basis of the feedback regulation of leaf senescence induced by potassium (K) deficiency in cotton (Gossypium hirsutum L.), two cultivars contrasting in sensitivity to K deficiency were self- and reciprocally grafted hypocotyl-to-hypocotyl, using standard grafting (one scion grafted onto one rootstock), Y grafting (two scions grafted onto one rootstock), and inverted Y grafting (one scion grafted onto two rootstocks) at the seedling stage. K deficiency (0.03mM for standard and Y grafting, and 0.01mM for inverted Y grafting) increased the root abscisic acid (ABA) concentration by 1.6- to 3.1-fold and xylem ABA delivery rates by 1.8- to 4.6-fold. The K deficiency also decreased the delivery rates of xylem cytokinins [CKs; including the zeatin riboside (ZR) and isopentenyl adenosine (iPA) type] by 29–65% and leaf CK concentration by 16–57%. The leaf ABA concentration and xylem ABA deliveries were consistently greater in CCRI41 (more sensitive to K deficiency) than in SCRC22 (less sensitive to K deficiency) scions under K deficiency, and ZR- and iPA-type levels were consistently lower in the former than in the latter, irrespective of rootstock cultivar or grafting type, indicating that cotton shoot influences the levels of ABA and CKs in leaves and xylem sap. Because the scions had little influence on phytohormone levels in the roots (rootstocks) of all three types of grafts and rootstock xylem sap (collected below the graft union) of Y and inverted Y grafts, it appears that the site for basipetal feedback signal(s) involved in the regulation of xylem phytohormones is the hypocotyl of cotton seedlings. Also, the target of this feedback signal(s) is more likely to be the changes in xylem phytohormones within tissues of the hypocotyl rather than the export of phytohormones from the roots. PMID:22962680

  6. Precocious leaf senescence by functional loss of PROTEIN S-ACYL TRANSFERASE14 involves the NPR1-dependent salicylic acid signaling.

    PubMed

    Zhao, Xin-Ying; Wang, Jia-Gang; Song, Shi-Jian; Wang, Qun; Kang, Hui; Zhang, Yan; Li, Sha

    2016-02-04

    We report here that Arabidopsis PROTEIN S-ACYL TRANSFERASE14 (PAT14), through its palmitate transferase activity, acts at the vacuolar trafficking route to repress salicylic acid (SA) signaling, thus mediating age-dependent but not carbon starvation-induced leaf senescence. Functional loss of PAT14 resulted in precocious leaf senescence and its transcriptomic analysis revealed that senescence was dependent on salicylic acid. Overexpressing PAT14 suppressed the expression of SA responsive genes. Introducing the SA deficient mutants, npr1-5 and NahG, but not other hormonal mutants, completely suppressed the precocious leaf senescence of PAT14 loss-of-function, further supporting the epistatic relation between PAT14 and the SA pathway. By confocal fluorescence microscopy, we showed that PAT14 is localized at the Golgi, the trans-Golg network/early endosome, and prevacuolar compartments, indicating its roles through vacuolar trafficking. By reporter analysis and real time PCRs, we showed that the expression PAT14, unlike most of the senescence associated genes, is not developmentally regulated, suggesting post-transcriptional regulatory mechanisms on its functionality. We further showed that the maize and wheat homologs of PAT14 fully rescued the precocious leaf senescence of pat14-2, demonstrating that the role of PAT14 in suppressing SA signaling during age-dependent leaf senescence is evolutionarily conserved between dicots and monocots.

  7. Accelerated Bone Mass Senescence After Hematopoietic Stem Cell Transplantation

    PubMed Central

    Serio, B; Pezzullo, L; Fontana, R; Annunziata, S; Rosamilio, R; Sessa, M; Giudice, V; Ferrara, I; Rocco, M; De Rosa, G; Ricci, P; Tauchmanovà, L; Montuori, N; Selleri, C.

    2013-01-01

    Osteoporosis and avascular necrosis (AVN) are long-lasting and debilitating complications of hematopoietic stem cell transplantation (HSCT). We describe the magnitude of bone loss, AVN and impairment in osteogenic cell compartment following autologous (auto) and allogeneic (allo) HSCT, through the retrospective bone damage revaluation of 100 (50 auto- and 50 allo-HSCT) long-term survivors up to 15 years after transplant. Current treatment options for the management of these complications are also outlined. We found that auto- and allo-HSCT recipients show accelerated bone mineral loss and micro-architectural deterioration during the first years after transplant. Bone mass density (BMD) at the lumbar spine, but not at the femur neck, may improve in some patients after HSCT, suggesting more prolonged bone damage in cortical bone. Phalangeal BMD values remained low for even more years, suggesting persistent bone micro-architectural alterations after transplant. The incidence of AVN was higher in allo-HSCT recipients compared to auto-HSCT recipients. Steroid treatment length, but not its cumulative dose was associated with a higher incidence of bone loss. Allo-HSCT recipients affected by chronic graft versus host disease seem to be at greater risk of continuous bone loss and AVN development. Reduced BMD and higher incidence of AVN was partly related to a reduced regenerating capacity of the normal marrow osteogenic cell compartment. Our results suggest that all patients after auto-HSCT and allo-HSCT should be evaluated for their bone status and treated with anti-resorptive therapy as soon as abnormalities are detected. PMID:23905076

  8. Reproductive effort accelerates actuarial senescence in wild birds: an experimental study.

    PubMed

    Boonekamp, Jelle J; Salomons, Martijn; Bouwhuis, Sandra; Dijkstra, Cor; Verhulst, Simon

    2014-05-01

    Optimality theories of ageing predict that the balance between reproductive effort and somatic maintenance determines the rate of ageing. Laboratory studies find that increased reproductive effort shortens lifespan, but through increased short-term mortality rather than ageing. In contrast, high fecundity in early life is associated with accelerated senescence in free-living vertebrates, but these studies are non-experimental. We performed lifelong brood size manipulation in free-living jackdaws. Actuarial senescence--the increase in mortality rate with age--was threefold higher in birds rearing enlarged- compared to reduced broods, confirming a key prediction of the optimality theory of ageing. Our findings contrast with the results of single-year brood size manipulation studies carried out in many species, in which there was no overall discernible manipulation effect on mortality. We suggest that our and previous findings are in agreement with predictions based on the reliability theory of ageing and propose further tests of this proposition.

  9. Melatonin improves inflammation processes in liver of senescence-accelerated prone male mice (SAMP8).

    PubMed

    Cuesta, Sara; Kireev, Roman; Forman, Katherine; García, Cruz; Escames, Germaine; Ariznavarreta, Carmen; Vara, Elena; Tresguerres, Jesús A F

    2010-12-01

    Aging is associated with an increase in oxidative stress and inflammation. The aim of this study was to investigate the effect of aging on various physiological parameters related to inflammation in livers obtained from two types of male mice models: Senescence-accelerated prone (SAMP8) and senescence-accelerated-resistant (SAMR1) mice, and to study the influence of the administration of melatonin (1mg/kg/day) for one month on old SAMP8 mice on these parameters. The parameters studied have been the mRNA expression of TNF-α, iNOS, IL-1β, HO-1, HO-2, MCP1, NFkB1, NFkB2, NFkB protein or NKAP and IL-10. All have been measured by real-time reverse transcription polymerase chain reaction RT-PCR. Furthermore we analyzed the protein expression of TNF-α, iNOS, IL-1β, HO-1, HO-2, and IL-10 by Western-blot. Aging increased oxidative stress and inflammation especially in the liver of SAMP8 mice. Treatment with melatonin decreased the mRNA expression of TNF-α, IL-1β, HO (HO-1 and HO-2), iNOS, MCP1, NFκB1, NFκB2 and NKAP in old male mice. The protein expression of TNF-α, IL-1β was also decreased and IL-10 increased with melatonin treatment and no significant differences were observed in the rest of parameters analyzed. The present study showed that aging was related to inflammation in livers obtained from old male senescence prone mice (SAMP8) and old male senescence resistant mice (SAMR1) being the alterations more evident in the former. Exogenous administration of melatonin was able to reduce inflammation.

  10. Effect of second-leaf removal or kinetin treatment on the nucleic acid metabolism of senescing first seedling leaf of barley

    PubMed Central

    Srivastava, B. I. Sahai; Atkin, Roger K.

    1968-01-01

    1. Changes in nucleic acid metabolism in first seedling leaves of barley plants during aging (from 7 to 27 days) were followed, and the effect of continual removal of the second leaf and basal meristem or of treating the first leaf with 20p.p.m. kinetin on these changes was examined. During aging of the first seedling leaves the ribosomal RNA, DNA and soluble RNA declined, with ribosomal RNA showing the most rapid fall. This was, however, accompanied by increased incorporation of 32P into RNA, which reached its peak on the fifteenth day. 2. Second-leaf removal partially suppressed first-leaf senescence as judged by retarded chlorophyll and nucleic acid decline and by a decreased extent of RNA labelling. Treatment with kinetin, however, did not prove effective. 3. No significant differences in the sucrose-gradient pattern of 32P-labelled nucleic acids or in the 32P-labelled nucleotide composition of RNA fractions during aging or during the two treatments were noted, except for a decrease in CMP content of soluble RNA during aging. 4. The results demonstrate that important changes in RNA metabolism are associated with leaf senescence. PMID:5650363

  11. Involvement of the Phospholipid Sterol Acyltransferase1 in Plant Sterol Homeostasis and Leaf Senescence1[W

    PubMed Central

    Bouvier-Navé, Pierrette; Berna, Anne; Noiriel, Alexandre; Compagnon, Vincent; Carlsson, Anders S.; Banas, Antoni; Stymne, Sten; Schaller, Hubert

    2010-01-01

    Genes encoding sterol ester-forming enzymes were recently identified in the Arabidopsis (Arabidopsis thaliana) genome. One belongs to a family of six members presenting homologies with the mammalian Lecithin Cholesterol Acyltransferases. The other one belongs to the superfamily of Membrane-Bound O-Acyltransferases. The physiological functions of these genes, Phospholipid Sterol Acyltransferase1 (PSAT1) and Acyl-CoA Sterol Acyltransferase1 (ASAT1), respectively, were investigated using Arabidopsis mutants. Sterol ester content decreased in leaves of all mutants and was strongly reduced in seeds from plants carrying a PSAT1-deficient mutation. The amount of sterol esters in flowers was very close to that of the wild type for all lines studied. This indicated further functional redundancy of sterol acylation in Arabidopsis. We performed feeding experiments in which we supplied sterol precursors to psat1-1, psat1-2, and asat1-1 mutants. This triggered the accumulation of sterol esters (stored in cytosolic lipid droplets) in the wild type and the asat1-1 lines but not in the psat1-1 and psat1-2 lines, indicating a major contribution of the PSAT1 in maintaining free sterol homeostasis in plant cell membranes. A clear biological effect associated with the lack of sterol ester formation in the psat1-1 and psat1-2 mutants was an early leaf senescence phenotype. Double mutants lacking PSAT1 and ASAT1 had identical phenotypes to psat1 mutants. The results presented here suggest that PSAT1 plays a role in lipid catabolism as part of the intracellular processes at play in the maintenance of leaf viability during developmental aging. PMID:19923239

  12. Identification and Characterization of a Biodegradative Form of Threonine Dehydratase in Senescing Tomato (Lycopersicon esculentum) Leaf.

    PubMed Central

    Szamosi, I.; Shaner, D. L.; Singh, B. K.

    1993-01-01

    Threonine dehydratase (TD; EC.4.2.1.16) is a key enzyme involved in the biosynthesis of isoleucine. Inhibition of TD by isoleucine regulates the flow of carbon to isoleucine. We have identified two different forms of TD in tomato (Lycopersicon esculentum) leaves. One form, present predominantly in younger leaves, is inhibited by isoleucine. The other form of TD, present primarily in older leaves, is insensitive to inhibition by isoleucine. Expression of the latter enzyme increases as the leaf ages and the highest enzyme activity is present in the old, chlorotic leaves. The specific activity of the enzyme present in older leaves is much higher than the one present in younger leaves. Both forms can use threonine and serine as substrates. Whereas TD from the older leaves had the same Km (0.25 mM) for both substrates, the enzyme from the young leaves preferred threonine (Km = 0.25 mM) over serine (Km = 1.7 mM). The molecular masses of TD from the young and the old leaves were 370,000 and 200,000 D, respectively. High levels of the isoleucine-insensitive form of threonine dehydratase in the older leaves suggests an important role of threonine dehydratase in nitrogen remobilization in senescing leaves. PMID:12231753

  13. Senescence-accelerated Mice (SAMs) as a Model for Brain Aging and Immunosenescence

    PubMed Central

    Shimada, Atsuyoshi; Hasegawa-Ishii, Sanae

    2011-01-01

    The Senescence-Accelerated Mouse (SAM) represents a group of inbred mouse strains developed as a model for the study of human aging and age-related diseases. Senescence-prone (SAMP) strains exhibit an early onset of age-related decline in the peripheral immunity such as thymic involution, loss of CD4+ T cells, impaired helper T cell function, decreased antibody-forming capacity, dysfunction of antigen-presenting cells, decreased natural killer activity, increased auto-antibodies, and susceptibility to virus infection. Senescence-prone SAMP10 mice undergo age-related changes in the brain such as brain atrophy, shrinkage and loss of cortical neurons, retraction of cortical neuronal dendrites, loss of dendritic spines, loss of synapses, impaired learning and memory, depressive behavior, accumulation of neuronal DNA damage, neuronal ubiquitinated inclusions, reduced hippocampal cholinergic receptors, decreased neurotrophic factors, decreased hippocampal zinc and zinc transporters, increased sphyngomyelinase, and elevated oxidative-nitrative stress. Recent data indicating increased pro-inflammatory cytokines in the brain of SAMP10 mice are directing investigators toward an integration of immune and neural abnormalities to enhance understanding of the principles of brain aging. We highlight how mouse brain cells adopt cytokine-mediated responses and how SAMP10 mice are defective in these responses. SAMP10 model would be useful to study how age-related disturbances in peripheral immunity have an impact on dysregulation of brain tissue homeostasis, resulting in age-related neurodegeneration. PMID:22396891

  14. Chronic stress impairs learning and hippocampal cell proliferation in senescence-accelerated prone mice.

    PubMed

    Yan, Weihong; Zhang, Ting; Jia, Weiping; Sun, Xiaojiang; Liu, Xueyuan

    2011-02-25

    Chronic stress can induce cognitive impairment. It is unclear whether a higher susceptibility to chronic stress is associated with the progression of pathological brain aging. Senescence-accelerated prone mouse 8 (SAMP8) is a naturally occurring animal model of accelerated brain aging. Senescence-accelerated resistant mouse 1 (SAMR1) is usually used as the normal control. In this study, we examined the effects of chronic restraint stress (CRS) on learning in the Y-maze, hippocampal cell proliferation, and the expression of brain-derived neurotrophic factor (BDNF) in the hippocampus of 4-month-old SAMP8 and SAMR1. The results showed that exposure to CRS impaired learning and hippocampal cell proliferation in SAMP8 and SAMR1 but to a much greater extent in SAMP8. Furthermore, CRS significantly decreased the expression of BDNF protein and mRNA in the hippocampus of SAMP8 and SAMR1. These data indicated that SAMP8 is more sensitive to the deleterious effects of CRS on learning than SAMR1. A greater decrease in hippocampal cell proliferation caused by chronic stress may be part of the underlying mechanism for the more severe learning deficit observed in SAMP8. In addition, our findings suggested a role of BDNF in the stress-induced impairment of learning and hippocampal cell proliferation in both strains.

  15. The Thiol Reductase Activity of YUCCA6 Mediates Delayed Leaf Senescence by Regulating Genes Involved in Auxin Redistribution

    PubMed Central

    Cha, Joon-Yung; Kim, Mi R.; Jung, In J.; Kang, Sun B.; Park, Hee J.; Kim, Min G.; Yun, Dae-Jin; Kim, Woe-Yeon

    2016-01-01

    Auxin, a phytohormone that affects almost every aspect of plant growth and development, is biosynthesized from tryptophan via the tryptamine, indole-3-acetamide, indole-3-pyruvic acid, and indole-3-acetaldoxime pathways. YUCCAs (YUCs), flavin monooxygenase enzymes, catalyze the conversion of indole-3-pyruvic acid (IPA) to the auxin (indole acetic acid). Arabidopsis thaliana YUC6 also exhibits thiol-reductase and chaperone activity in vitro; these activities require the highly conserved Cys-85 and are essential for scavenging of toxic reactive oxygen species (ROS) in the drought tolerance response. Here, we examined whether the YUC6 thiol reductase activity also participates in the delay in senescence observed in YUC6-overexpressing (YUC6-OX) plants. YUC6 overexpression delays leaf senescence in natural and dark-induced senescence conditions by reducing the expression of SENESCENCE-ASSOCIATED GENE 12 (SAG12). ROS accumulation normally occurs during senescence, but was not observed in the leaves of YUC6-OX plants; however, ROS accumulation was observed in YUC6-OXC85S plants, which overexpress a mutant YUC6 that lacks thiol reductase activity. We also found that YUC6-OX plants, but not YUC6-OXC85S plants, show upregulation of three genes encoding NADPH-dependent thioredoxin reductases (NTRA, NTRB, and NTRC), and GAMMA-GLUTAMYLCYSTEINE SYNTHETASE 1 (GSH1), encoding an enzyme involved in redox signaling. We further determined that excess ROS accumulation caused by methyl viologen treatment or decreased glutathione levels caused by buthionine sulfoximine treatment can decrease the levels of auxin efflux proteins such as PIN2-4. The expression of PINs is also reduced in YUC6-OX plants. These findings suggest that the thiol reductase activity of YUC6 may play an essential role in delaying senescence via the activation of genes involved in redox signaling and auxin availability. PMID:27242830

  16. Accelerated senescence in skin in a murine model of radiation-induced multi-organ injury.

    PubMed

    McCart, Elizabeth A; Thangapazham, Rajesh L; Lombardini, Eric D; Mog, Steven R; Panganiban, Ronald Allan M; Dickson, Kelley M; Mansur, Rihab A; Nagy, Vitaly; Kim, Sung-Yop; Selwyn, Reed; Landauer, Michael R; Darling, Thomas N; Day, Regina M

    2017-03-18

    Accidental high-dose radiation exposures can lead to multi-organ injuries, including radiation dermatitis. The types of cellular damage leading to radiation dermatitis are not completely understood. To identify the cellular mechanisms that underlie radiation-induced skin injury in vivo, we evaluated the time-course of cellular effects of radiation (14, 16 or 17 Gy X-rays; 0.5 Gy/min) in the skin of C57BL/6 mice. Irradiation of 14 Gy induced mild inflammation, observed histologically, but no visible hair loss or erythema. However, 16 or 17 Gy radiation induced dry desquamation, erythema and mild ulceration, detectable within 14 days post-irradiation. Histological evaluation revealed inflammation with mast cell infiltration within 14 days. Fibrosis occurred 80 days following 17 Gy irradiation, with collagen deposition, admixed with neutrophilic dermatitis, and necrotic debris. We found that in cultures of normal human keratinocytes, exposure to 17.9 Gy irradiation caused the upregulation of p21/waf1, a marker of senescence. Using western blot analysis of 17.9 Gy-irradiated mice skin samples, we also detected a marker of accelerated senescence (p21/waf1) 7 days post-irradiation, and a marker of cellular apoptosis (activated caspase-3) at 30 days, both preceding histological evidence of inflammatory infiltrates. Immunohistochemistry revealed reduced epithelial stem cells from hair follicles 14-30 days post-irradiation. Furthermore, p21/waf1 expression was increased in the region of the hair follicle stem cells at 14 days post 17 Gy irradiation. These data indicate that radiation induces accelerated cellular senescence in the region of the stem cell population of the skin.

  17. Loss of stress-induced expression of catalase3 during leaf senescence in Arabidopsis thaliana is restricted to oxidative stress.

    PubMed

    Orendi, G; Zimmermann, P; Baar, C; Zentgraf, U

    2001-07-01

    Different stress conditions can induce changes in the activity of the antioxidant enzymes superoxide dismutase (SOD, EC 1.15.1.1), ascorbate peroxidase (APX, EC 1.11.1.11) and catalase (CAT, EC 1.11.1.6). The enzyme activities of all SOD and APX isoforms detected in young Arabidopsis leaves remained unaffected or slightly decreased after moderate paraquat treatment. While CAT2 activity also remained unaffected under these conditions, CAT3 enzyme activity was enhanced. In contrast to the enzyme activities, mRNA levels of both cat2 and cat3 were enhanced under oxidative stress induced by either paraquat or the fungal toxin cercosporin. This indicates that, with respect to enzyme activity level, CAT3 is the enzyme which is most sensitive to oxidative stress in this developmental stage and that the enzyme activity of CAT2 is possibly regulated at the post-transcriptional level. Interestingly, cat3 mRNA level and CAT3 activity are not elevated by paraquat treatment in senescing leaves. In contrast, the response to other stress conditions, such as water stress induced by flooding of detached leaves and heat stress, is maintained in senescing leaves. Since changes in stress response are not a general phenomenon in leaf senescence but appear to be restricted to oxidative stress, this might be a specific mechanism to promote senescence in Arabidopsis thaliana.

  18. Antisense Inhibition of the 2-Oxoglutarate Dehydrogenase Complex in Tomato Demonstrates Its Importance for Plant Respiration and during Leaf Senescence and Fruit Maturation[W][OA

    PubMed Central

    Araújo, Wagner L.; Tohge, Takayuki; Osorio, Sonia; Lohse, Marc; Balbo, Ilse; Krahnert, Ina; Sienkiewicz-Porzucek, Agata; Usadel, Björn; Nunes-Nesi, Adriano; Fernie, Alisdair R.

    2012-01-01

    Transgenic tomato (Solanum lycopersicum) plants expressing a fragment of the gene encoding the E1 subunit of the 2-oxoglutarate dehydrogenase complex in the antisense orientation and exhibiting substantial reductions in the activity of this enzyme exhibit a considerably reduced rate of respiration. They were, however, characterized by largely unaltered photosynthetic rates and fruit yields but restricted leaf, stem, and root growth. These lines displayed markedly altered metabolic profiles, including changes in tricarboxylic acid cycle intermediates and in the majority of the amino acids but unaltered pyridine nucleotide content both in leaves and during the progression of fruit ripening. Moreover, they displayed a generally accelerated development exhibiting early flowering, accelerated fruit ripening, and a markedly earlier onset of leaf senescence. In addition, transcript and selective hormone profiling of gibberellins and abscisic acid revealed changes only in the former coupled to changes in transcripts encoding enzymes of gibberellin biosynthesis. The data obtained are discussed in the context of the importance of this enzyme in both photosynthetic and respiratory metabolism as well as in programs of plant development connected to carbon–nitrogen interactions. PMID:22751214

  19. Pod development and depodding produce parallel effects on xylem sap cytokinin levels and monocarpic leaf senescence in soybean

    SciTech Connect

    Nooden, L.D. ); Singh, S.; Letham, D.S. )

    1989-04-01

    Depodding at full pod extension (prepodfill) prevents the rapid leaf yellowing and death of the soybean plant, whereas pod removal in late podfill does not. Xylem sap was collected from rootstocks under pressure over 50 min, and after purification, the sap CKS were measured by radioimmunoassay. The major CKs (DZR, ZR, DZ and Z) drop from 229 nM to 15 during pod extension. Removal of pods reaching full extension causes a large increase in DZR and ZR levels, less increase in Z and no increase in DZ, DZMP or the O-glucosides. Depodding at the late podfill does not increase the CKs significantly. CKs change independently in response to senescence and pod removal suggesting differences in their metabolism and perhaps their functions. A decline in CK production by the roots and in CK flux into the shoot system appears to be an important factor in monocarpic senescence of soybean.

  20. Swedish spring wheat varieties with the rare high grain protein allele of NAM-B1 differ in leaf senescence and grain mineral content.

    PubMed

    Asplund, Linnéa; Bergkvist, Göran; Leino, Matti W; Westerbergh, Anna; Weih, Martin

    2013-01-01

    Some Swedish spring wheat varieties have recently been shown to carry a rare wildtype (wt) allele of the gene NAM-B1, known to affect leaf senescence and nutrient retranslocation to the grain. The wt allele is believed to increase grain protein concentration and has attracted interest from breeders since it could contribute to higher grain quality and more nitrogen-efficient varieties. This study investigated whether Swedish varieties with the wt allele differ from varieties with one of the more common, non-functional alleles in order to examine the effect of the gene in a wide genetic background, and possibly explain why the allele has been retained in Swedish varieties. Forty varieties of spring wheat differing in NAM-B1 allele type were cultivated under controlled conditions. Senescence was monitored and grains were harvested and analyzed for mineral nutrient concentration. Varieties with the wt allele reached anthesis earlier and completed senescence faster than varieties with the non-functional allele. The wt varieties also had more ears, lighter grains and higher yields of P and K. Contrary to previous information on effects of the wt allele, our wt varieties did not have increased grain N concentration or grain N yield. In addition, temporal studies showed that straw length has decreased but grain N yield has remained unaffected over a century of Swedish spring wheat breeding. The faster development of wt varieties supports the hypothesis of NAM-B1 being preserved in Fennoscandia, with its short growing season, because of accelerated development conferred by the NAM-B1 wt allele. Although the possible effects of other gene actions were impossible to distinguish, the genetic resource of Fennoscandian spring wheats with the wt NAM-B1 allele is interesting to investigate further for breeding purposes.

  1. Carbamylated low-density lipoprotein induces oxidative stress and accelerated senescence in human endothelial progenitor cells.

    PubMed

    Carracedo, Julia; Merino, Ana; Briceño, Carolina; Soriano, Sagrario; Buendía, Paula; Calleros, Laura; Rodriguez, Mariano; Martín-Malo, Alejandro; Aljama, Pedro; Ramírez, Rafael

    2011-04-01

    Carbamylated low-density lipoprotein (cLDL) plays a role in atherosclerosis. In this study we evaluate the effect of uremia on LDL carbamylation and the effect of cLDL and oxidized LDL (oxLDL; 200 μg/ml) on number, function, and genomic stability of endothelial progenitor cells (EPCs) obtained from healthy volunteers. cLDL was generated after incubation of native LDL (nLDL) with uremic serum from patients with chronic kidney disease (CKD) stages 2-4. Oxidative stress was measured by flow cytometry and fluorescent microscopy, mitochondrial depolarization by flow cytometry, senescence by β-galactosidase activity and telomere length, and DNA damage by phosphorylated histone H2AX (γH2AX). The percentage of cLDL by uremic serum was related to the severity of CKD. Compared with nLDL, cLDL induced an increase in oxidative stress (62±5 vs. 8±3%, P<0.001) and cells with mitochondrial depolarization (73±7 vs. 9±5%, P<0.001), and a decrease in EPC proliferation and angiogenesis. cLDL also induced accelerated senescence (73±16 vs. 12±9%, P<0.001), which was associated with a decrease in the expression of γH2AX (62±9 vs. 5±3%, P<0.001). The degree of injury induced by cLDL was comparable to that observed with oxLDL. This study supports the hypothesis that cLDL triggers genomic damage in EPCs, resulting in premature senescence. We can, therefore, hypothesize that EPCs injury by cLDL contributes to an increase in atherosclerotic disease in CKD.

  2. Accelerated Telomere Shortening and Replicative Senescence in Human Fibroblasts Overexpressing Mutant and Wild Type Lamin A

    PubMed Central

    Huang, Shurong; Risques, Rosa Ana; Martin, George M.; Rabinovitch, Peter S.; Oshima, Junko

    2008-01-01

    LMNA mutations are responsible for a variety of genetic disorders, including muscular dystrophy, lipodystrophy, and certain progeroid syndromes, notably Hutchinson-Gilford Progeria. Although a number of clinical features of these disorders are suggestive of accelerated aging, it is not known whether cells derived from these patients exhibit cellular phenotypes associated with accelerated aging. We examined a series of isogenic skin fibroblast lines transfected with LMNA constructs bearing known pathogenic point mutations or deletion mutations found in progeroid syndromes. Fibroblasts overexpressing mutant lamin A exhibited accelerated rates of loss of telomeres and shortened replicative lifespans, in addition to abnormal nuclear morphology. To our surprise, these abnormalities were also observed in lines overexpressing wild-type lamin A. Copy number variants are common in human populations; those involving LMNA, whether arising meiotically or mitotically, might lead to progeroid phenotypes. In an initial pilot study of 23 progeroid cases without detectible WRN or LMNA mutations, however, no cases of altered LMNA copy number were detected. Nevertheless, our findings raise a hypothesis that changes in lamina organization may cause accelerated telomere attrition, with different kinetics for overexpession of wild-type and mutant lamin A, which leads to rapid replicative senescence and progroid phenotypes. PMID:17870066

  3. Methamphetamine Accelerates Cellular Senescence through Stimulation of De Novo Ceramide Biosynthesis

    PubMed Central

    Astarita, Giuseppe; Avanesian, Agnesa; Grimaldi, Benedetto; Realini, Natalia; Justinova, Zuzana; Panlilio, Leight V.; Basit, Abdul; Piomelli, Daniele

    2015-01-01

    Methamphetamine is a highly addictive psychostimulant that causes profound damage to the brain and other body organs. Post mortem studies of human tissues have linked the use of this drug to diseases associated with aging, such as coronary atherosclerosis and pulmonary fibrosis, but the molecular mechanism underlying these findings remains unknown. Here we used functional lipidomics and transcriptomics experiments to study abnormalities in lipid metabolism in select regions of the brain and, to a greater extent, peripheral organs and tissues of rats that self-administered methamphetamine. Experiments in various cellular models (primary mouse fibroblasts and myotubes) allowed us to investigate the molecular mechanisms of systemic inflammation and cellular aging related to methamphetamine abuse. We report now that methamphetamine accelerates cellular senescence and activates transcription of genes involved in cell-cycle control and inflammation by stimulating production of the sphingolipid messenger ceramide. This pathogenic cascade is triggered by reactive oxygen species, likely generated through methamphetamine metabolism via cytochrome P450, and involves the recruitment of nuclear factor-κB (NF-κB) to induce expression of enzymes in the de novo pathway of ceramide biosynthesis. Inhibitors of NF-κB signaling and ceramide formation prevent methamphetamine-induced senescence and systemic inflammation in rats self-administering the drug, attenuating their health deterioration. The results suggest new therapeutic strategies to reduce the adverse consequences of methamphetamine abuse and improve effectiveness of abstinence treatments. PMID:25671639

  4. Methamphetamine accelerates cellular senescence through stimulation of de novo ceramide biosynthesis.

    PubMed

    Astarita, Giuseppe; Avanesian, Agnesa; Grimaldi, Benedetto; Realini, Natalia; Justinova, Zuzana; Panlilio, Leight V; Basit, Abdul; Goldberg, Steven R; Piomelli, Daniele

    2015-01-01

    Methamphetamine is a highly addictive psychostimulant that causes profound damage to the brain and other body organs. Post mortem studies of human tissues have linked the use of this drug to diseases associated with aging, such as coronary atherosclerosis and pulmonary fibrosis, but the molecular mechanism underlying these findings remains unknown. Here we used functional lipidomics and transcriptomics experiments to study abnormalities in lipid metabolism in select regions of the brain and, to a greater extent, peripheral organs and tissues of rats that self-administered methamphetamine. Experiments in various cellular models (primary mouse fibroblasts and myotubes) allowed us to investigate the molecular mechanisms of systemic inflammation and cellular aging related to methamphetamine abuse. We report now that methamphetamine accelerates cellular senescence and activates transcription of genes involved in cell-cycle control and inflammation by stimulating production of the sphingolipid messenger ceramide. This pathogenic cascade is triggered by reactive oxygen species, likely generated through methamphetamine metabolism via cytochrome P450, and involves the recruitment of nuclear factor-κB (NF-κB) to induce expression of enzymes in the de novo pathway of ceramide biosynthesis. Inhibitors of NF-κB signaling and ceramide formation prevent methamphetamine-induced senescence and systemic inflammation in rats self-administering the drug, attenuating their health deterioration. The results suggest new therapeutic strategies to reduce the adverse consequences of methamphetamine abuse and improve effectiveness of abstinence treatments.

  5. In response to partial plant shading, the lack of phytochrome A does not directly induce leaf senescence but alters the fine-tuning of chlorophyll biosynthesis.

    PubMed

    Brouwer, Bastiaan; Gardeström, Per; Keech, Olivier

    2014-07-01

    Phytochrome is thought to control the induction of leaf senescence directly, however, the signalling and molecular mechanisms remain unclear. In the present study, an ecophysiological approach was used to establish a functional connection between phytochrome signalling and the physiological processes underlying the induction of leaf senescence in response to shade. With shade it is important to distinguish between complete and partial shading, during which either the whole or only a part of the plant is shaded, respectively. It is first shown here that, while PHYB is required to maintain chlorophyll content in a completely shaded plant, only PHYA is involved in maintaining the leaf chlorophyll content in response to partial plant shading. Second, it is shown that leaf yellowing associated with strong partial shading in phyA-mutant plants actually correlates to a decreased biosynthesis of chlorophyll rather than to an increase of its degradation. Third, it is shown that the physiological impact of this decreased biosynthesis of chlorophyll in strongly shaded phyA-mutant leaves is accompanied by a decreased capacity to adjust the Light Compensation Point. However, the increased leaf yellowing in phyA-mutant plants is not accompanied by an increase of senescence-specific molecular markers, which argues against a direct role of PHYA in inducing leaf senescence in response to partial shade. In conclusion, it is proposed that PHYA, but not PHYB, is essential for fine-tuning the chlorophyll biosynthetic pathway in response to partial shading. In turn, this mechanism allows the shaded leaf to adjust its photosynthetic machinery to very low irradiances, thus maintaining a positive carbon balance and repressing the induction of leaf senescence, which can occur under prolonged periods of shade.

  6. Isolation and expression profiling of GhNAC transcription factor genes in cotton (Gossypium hirsutum L.) during leaf senescence and in response to stresses.

    PubMed

    Shah, Syed Tariq; Pang, Chaoyou; Fan, Shuli; Song, Meizhen; Arain, Saima; Yu, Shuxun

    2013-12-01

    NAC (NAM, ATAF, and CUC) is a plant-specific transcription factor family with diverse roles in plant development and stress regulation. In this report, stress-responsive NAC genes (GhNAC8-GhNAC17) isolated from cotton (Gossypium hirsutum L.) were characterised in the context of leaf senescence and stress tolerance. The characterisation of NAC genes during leaf senescence has not yet been reported for cotton. Based on the sequence characterisation, these GhNACs could be classified into three groups belonging to three known NAC sub-families. Their predicted amino acid sequences exhibited similarities to NAC genes from other plant species. Senescent leaves were the sites of maximum expression for all GhNAC genes except GhNAC10 and GhNAC13, which showed maximum expression in fibres, collected from 25 days post anthesis (DPA) plants. The ten GhNAC genes displayed differential expression patterns and levels during natural and induced leaf senescence. Quantitative RT-PCR and promoter analyses suggest that these genes are induced by ABA, ethylene, drought, salinity, cold, heat, and other hormonal treatments. These results support a role for cotton GhNAC genes in transcriptional regulation of leaf senescence, stress tolerance and other developmental stages of cotton.

  7. Tissue depletion of taurine accelerates skeletal muscle senescence and leads to early death in mice.

    PubMed

    Ito, Takashi; Yoshikawa, Natsumi; Inui, Takaaki; Miyazaki, Natsuko; Schaffer, Stephen W; Azuma, Junichi

    2014-01-01

    Taurine (2-aminoethanesulfonic acid) is found in milimolar concentrations in mammalian tissues. One of its main functions is osmoregulation; however, it also exhibits cytoprotective activity by diminishing injury caused by stress and disease. Taurine depletion is associated with several defects, many of which are found in the aging animal, suggesting that taurine might exert anti-aging actions. Therefore, in the present study, we examined the hypothesis that taurine depletion accelerates aging by reducing longevity and accelerating aging-associated tissue damage. Tissue taurine depletion in taurine transporter knockout (TauTKO) mouse was found to shorten lifespan and accelerate skeletal muscle histological and functional defects, including an increase in central nuclei containing myotubes, a reduction in mitochondrial complex 1 activity and an induction in an aging biomarker, Cyclin-dependent kinase 4 inhibitor A (p16INK4a). Tissue taurine depletion also enhances unfolded protein response (UPR), which may be associated with an improvement in protein folding by taurine. Our data reveal that tissue taurine depletion affects longevity and cellular senescence; an effect possibly linked to a disturbance in protein folding.

  8. A Comparison of Leaf and Petal Senescence in Wallflower Reveals Common and Distinct Patterns of Gene Expression and Physiology1[W

    PubMed Central

    Price, Anna Marie; Aros Orellana, Danilo F.; Salleh, Faezah Mohd; Stevens, Ryan; Acock, Rosemary; Buchanan-Wollaston, Vicky; Stead, Anthony D.; Rogers, Hilary J.

    2008-01-01

    Petals and leaves share common evolutionary origins but perform very different functions. However, few studies have compared leaf and petal senescence within the same species. Wallflower (Erysimum linifolium), an ornamental species closely related to Arabidopsis (Arabidopsis thaliana), provide a good species in which to study these processes. Physiological parameters were used to define stages of development and senescence in leaves and petals and to align these stages in the two organs. Treatment with silver thiosulfate confirmed that petal senescence in wallflower is ethylene dependent, and treatment with exogenous cytokinin and 6-methyl purine, an inhibitor of cytokinin oxidase, suggests a role for cytokinins in this process. Subtractive libraries were created, enriched for wallflower genes whose expression is up-regulated during leaf or petal senescence, and used to create a microarray, together with 91 senescence-related Arabidopsis probes. Several microarray hybridization classes were observed demonstrating similarities and differences in gene expression profiles of these two organs. Putative functions were ascribed to 170 sequenced DNA fragments from the libraries. Notable similarities between leaf and petal senescence include a large proportion of remobilization-related genes, such as the cysteine protease gene SENESCENCE-ASSOCIATED GENE12 that was up-regulated in both tissues with age. Interesting differences included the up-regulation of chitinase and glutathione S-transferase genes in senescing petals while their expression remained constant or fell with age in leaves. Semiquantitative reverse transcription-polymerase chain reaction of selected genes from the suppression subtractive hybridization libraries revealed more complex patterns of expression compared with the array data. PMID:18539778

  9. The identification of new cytosolic glutamine synthetase and asparagine synthetase genes in barley (Hordeum vulgare L.), and their expression during leaf senescence.

    PubMed

    Avila-Ospina, Liliana; Marmagne, Anne; Talbotec, Joël; Krupinska, Karin; Masclaux-Daubresse, Céline

    2015-04-01

    Glutamine synthetase and asparagine synthetase are two master enzymes involved in ammonium assimilation in plants. Their roles in nitrogen remobilization and nitrogen use efficiency have been proposed. In this report, the genes coding for the cytosolic glutamine synthetases (HvGS1) and asparagine synthetases (HvASN) in barley were identified. In addition to the three HvGS1 and two HvASN sequences previously reported, two prokaryotic-like HvGS1 and three HvASN cDNA sequences were identified. Gene structures were then characterized, obtaining full genomic sequences. The response of the five HvGS1 and five HvASN genes to leaf senescence was then studied. Developmental senescence was studied using primary and flag leaves. Dark-exposure or low-nitrate conditions were also used to trigger stress-induced senescence. Well-known senescence markers such as the chlorophyll and Rubisco contents were monitored in order to characterize senescence levels in the different leaves. The three eukaryotic-like HvGS1_1, HvGS1_2, and HvGS1_3 sequences showed the typical senescence-induced reduction in gene expression described in many plant species. By contrast, the two prokaryotic-like HvGS1_4 and HvGS1_5 sequences were repressed by leaf senescence, similar to the HvGS2 gene, which encodes the chloroplast glutamine synthetase isoenzyme. There was a greater contrast in the responses of the five HvASN and this suggested that these genes are needed for N remobilization in senescing leaves only when plants are well fertilized with nitrate. Responses of the HvASN sequences to dark-induced senescence showed that there are two categories of asparagine synthetases, one induced in the dark and the other repressed by the same conditions.

  10. Global Transcriptional Analysis Reveals the Complex Relationship between Tea Quality, Leaf Senescence and the Responses to Cold-Drought Combined Stress in Camellia sinensis

    PubMed Central

    Zheng, Chao; Wang, Yu; Ding, Zhaotang; Zhao, Lei

    2016-01-01

    In field conditions, especially in arid and semi-arid areas, tea plants are often simultaneously exposed to various abiotic stresses such as cold and drought, which have profound effects on leaf senescence process and tea quality. However, most studies of gene expression in stress responses focus on a single inciting agent, and the confounding effect of multiple stresses on crop quality and leaf senescence remain unearthed. Here, global transcriptome profiles of tea leaves under separately cold and drought stress were compared with their combination using RNA-Seq technology. This revealed that tea plants shared a large overlap in unigenes displayed “similar” (26%) expression pattern and avoid antagonistic responses (lowest level of “prioritized” mode: 0%) to exhibit very congruent responses to co-occurring cold and drought stress; 31.5% differential expressed genes and 38% of the transcriptome changes in response to combined stresses were unpredictable from cold or drought single-case studies. We also identified 319 candidate genes for enhancing plant resistance to combined stress. We then investigated the combined effect of cold and drought on tea quality and leaf senescence. Our results showed that drought-induced leaf senescence were severely delayed by (i) modulation of a number of senescence-associated genes and cold responsive genes, (ii) enhancement of antioxidant capacity, (iii) attenuation of lipid degradation, (iv) maintenance of cell wall and photosynthetic system, (v) alteration of senescence-induced sugar effect/sensitivity, as well as (vi) regulation of secondary metabolism pathways that significantly influence the quality of tea during combined stress. Therefore, care should be taken when utilizing a set of stresses to try and maximize leaf longevity and tea quality. PMID:28018394

  11. [Accelerated senescence of fresh-cut Chinese water chestnut tissues in relation to hydrogen peroxide accumulation].

    PubMed

    Peng, Li-Tao; Jiang, Yue-Ming; Yang, Shu-Zhen; Pan, Si-Yi

    2005-10-01

    Accelerated senescence of fresh-cut Chinese water chestnut (CWC) tissues in relation to active oxygen species (AOS) metabolism was investigated. Fresh-cut CWC (2 mm thick) and intact CWC were stored at 4 degrees C in trays wrapped with plastic films. Changes in superoxide anion production rate, activities of superoxide dismutase (SOD), catalase (CAT) and ascorbate peroxidase (APX) were monitored, while contents of hydrogen peroxide, ascorbic acid, MDA as well as electrolyte leakage were measured. Fresh-cutting of CWC induced activities of SOD, CAT and APX to a certain extent (Fig. 2B and Fig. 3), but simultaneously stimulated superoxide anion production markedly (Fig. 2A), enhanced hydrogen peroxide accumulation and accelerated loss in ascorbic acid (Figs. 4 and 5), which resulted in increased lipid peroxidation indicated by malondialdehyde (MDA) content and electrolyte leakage (Fig. 1). Statistics analysis indicated that there was a significantly positive correlation among hydrogen peroxide accumulation, MDA content and electrolyte leakage (Table 1). Histochemical detection with 3, 3'-diaminobenzidine further demonstrated that hydrogen peroxide accumulation increased in fresh-cut CWC during storage (Fig. 5). AOS production rate and activities of SOD, CAT and APX changed little while no obvious hydrogen peroxide accumulation was observed, in intact CWC during storage.

  12. The Arabidopsis Mitochondrial Protease FtSH4 Is Involved in Leaf Senescence via Regulation of WRKY-Dependent Salicylic Acid Accumulation and Signaling.

    PubMed

    Zhang, Shengchun; Li, Cui; Wang, Rui; Chen, Yaxue; Shu, Si; Huang, Ruihua; Zhang, Daowei; Li, Jian; Xiao, Shi; Yao, Nan; Yang, Chengwei

    2017-04-01

    Mitochondria and autophagy play important roles in the networks that regulate plant leaf senescence and cell death. However, the molecular mechanisms underlying the interactions between mitochondrial signaling and autophagy are currently not well understood. This study characterized the function of the Arabidopsis (Arabidopsis thaliana) mitochondrial AAA-protease gene FtSH4 in regulating autophagy and senescence, finding that FtSH4 mediates WRKY-dependent salicylic acid (SA) accumulation and signaling. Knockout of FtSH4 in the ftsh4-4 mutant resulted in severe leaf senescence, cell death, and high autophagy levels. The level of SA increased dramatically in the ftsh4-4 mutant. Expression of nahG in the ftsh4-4 mutant led to decreased SA levels and suppressed the leaf senescence and cell death phenotypes. The transcript levels of several SA synthesis and signaling genes, including SALICYLIC ACIDINDUCTION DEFICIENT2 (SID2), NON-RACE-SPECIFIC DISEASE RESISTANCE1 (NDR1), and NONEXPRESSOR OF PATHOGENESIS-RELATED PROTEINS1 (NPR1), increased significantly in the ftsh4-4 mutants compared with the wild type. Loss of function of SID2, NDR1, or NPR1 in the ftsh4-4 mutant reversed the ftsh4-4 senescence and autophagy phenotypes. Furthermore, ftsh4-4 mutants had elevated levels of transcripts of several WRKY genes, including WRKY40, WRKY46, WRKY51, WRKY60, WRKY63, and WRKY75; all of these WRKY proteins can bind to the promoter of SID2 Loss of function of WRKY75 in the ftsh4-4 mutants decreased the levels of SA and reversed the senescence phenotype. Taken together, these results suggest that the mitochondrial ATP-dependent protease FtSH4 may regulate the expression of WRKY genes by modifying the level of reactive oxygen species and the WRKY transcription factors that control SA synthesis and signaling in autophagy and senescence.

  13. Regulated expression of a cytokinin biosynthesis gene IPT delays leaf senescence and improves yield under rainfed and irrigated conditions in canola (Brassica napus L.).

    PubMed

    Kant, Surya; Burch, David; Badenhorst, Pieter; Palanisamy, Rajasekaran; Mason, John; Spangenberg, German

    2015-01-01

    Delay of leaf senescence through genetic modification can potentially improve crop yield, through maintenance of photosynthetically active leaves for a longer period. Plant growth hormones such as cytokinin regulate and delay leaf senescence. Here, the structural gene (IPT) encoding the cytokinin biosynthetic enzyme isopentenyltransferase was fused to a functionally active fragment of the AtMYB32 promoter and was transformed into canola plants. Expression of the AtMYB32xs::IPT gene cassette delayed the leaf senescence in transgenic plants grown under controlled environment conditions and field experiments conducted for a single season at two geographic locations. The transgenic canola plants retained higher chlorophyll levels for an extended period and produced significantly higher seed yield with similar growth and phenology compared to wild type and null control plants under rainfed and irrigated treatments. The yield increase in transgenic plants was in the range of 16% to 23% and 7% to 16% under rainfed and irrigated conditions, respectively, compared to control plants. Most of the seed quality parameters in transgenic plants were similar, and with elevated oleic acid content in all transgenic lines and higher oil content and lower glucosinolate content in one specific transgenic line as compared to control plants. The results suggest that by delaying leaf senescence using the AtMYB32xs::IPT technology, productivity in crop plants can be improved under water stress and well-watered conditions.

  14. Gene expression responses of paper birch (Betula papyrifera) to elevated CO2 and O3 during leaf maturation and senescence.

    PubMed

    Kontunen-Soppela, Sari; Parviainen, Juha; Ruhanen, Hanna; Brosché, Mikael; Keinänen, Markku; Thakur, Ramesh C; Kolehmainen, Mikko; Kangasjärvi, Jaakko; Oksanen, Elina; Karnosky, David F; Vapaavuori, Elina

    2010-04-01

    Gene expression responses of paper birch (Betula papyrifera) leaves to elevated concentrations of CO(2) and O(3) were studied with microarray analyses from three time points during the summer of 2004 at Aspen FACE. Microarray data were analyzed with clustering techniques, self-organizing maps, K-means clustering and Sammon's mappings, to detect similar gene expression patterns within sampling times and treatments. Most of the alterations in gene expression were caused by O(3), alone or in combination with CO(2). O(3) induced defensive reactions to oxidative stress and earlier leaf senescence, seen as decreased expression of photosynthesis- and carbon fixation-related genes, and increased expression of senescence-associated genes. The effects of elevated CO(2) reflected surplus of carbon that was directed to synthesis of secondary compounds. The combined CO(2)+O(3) treatment resulted in differential gene expression than with individual gas treatments or in changes similar to O(3) treatment, indicating that CO(2) cannot totally alleviate the harmful effects of O(3).

  15. PGL, encoding chlorophyllide a oxygenase 1, impacts leaf senescence and indirectly affects grain yield and quality in rice.

    PubMed

    Yang, Yaolong; Xu, Jie; Huang, Lichao; Leng, Yujia; Dai, Liping; Rao, Yuchun; Chen, Long; Wang, Yuqiong; Tu, Zhengjun; Hu, Jiang; Ren, Deyong; Zhang, Guangheng; Zhu, Li; Guo, Longbiao; Qian, Qian; Zeng, Dali

    2016-03-01

    Chlorophyll (Chl) b is a ubiquitous accessory pigment in land plants, green algae, and prochlorophytes. This pigment is synthesized from Chl a by chlorophyllide a oxygenase and plays a key role in adaptation to various environments. This study characterizes a rice mutant, pale green leaf (pgl), and isolates the gene PGL by using a map-based cloning approach. PGL, encoding chlorophyllide a oxygenase 1, is mainly expressed in the chlorenchyma and activated in the light-dependent Chl synthesis process. Compared with wild-type plants, pgl exhibits a lower Chl content with a reduced and disorderly thylakoid ultrastructure, which decreases the photosynthesis rate and results in reduced grain yield and quality. In addition, pgl exhibits premature senescence in both natural and dark-induced conditions and more severe Chl degradation and reactive oxygen species accumulation than does the wild-type. Moreover, pgl is sensitive to heat stress.

  16. PGL, encoding chlorophyllide a oxygenase 1, impacts leaf senescence and indirectly affects grain yield and quality in rice

    PubMed Central

    Yang, Yaolong; Xu, Jie; Huang, Lichao; Leng, Yujia; Dai, Liping; Rao, Yuchun; Chen, Long; Wang, Yuqiong; Tu, Zhengjun; Hu, Jiang; Ren, Deyong; Zhang, Guangheng; Zhu, Li; Guo, Longbiao; Qian, Qian; Zeng, Dali

    2016-01-01

    Chlorophyll (Chl) b is a ubiquitous accessory pigment in land plants, green algae, and prochlorophytes. This pigment is synthesized from Chl a by chlorophyllide a oxygenase and plays a key role in adaptation to various environments. This study characterizes a rice mutant, pale green leaf (pgl), and isolates the gene PGL by using a map-based cloning approach. PGL, encoding chlorophyllide a oxygenase 1, is mainly expressed in the chlorenchyma and activated in the light-dependent Chl synthesis process. Compared with wild-type plants, pgl exhibits a lower Chl content with a reduced and disorderly thylakoid ultrastructure, which decreases the photosynthesis rate and results in reduced grain yield and quality. In addition, pgl exhibits premature senescence in both natural and dark-induced conditions and more severe Chl degradation and reactive oxygen species accumulation than does the wild-type. Moreover, pgl is sensitive to heat stress. PMID:26709310

  17. Neuroprotective role of intermittent fasting in senescence-accelerated mice P8 (SAMP8).

    PubMed

    Tajes, M; Gutierrez-Cuesta, J; Folch, J; Ortuño-Sahagun, D; Verdaguer, E; Jiménez, A; Junyent, F; Lau, A; Camins, A; Pallàs, M

    2010-09-01

    Dietary interventions have been proposed as a way to increase lifespan and improve health. The senescence-accelerated prone 8 (SAMP8) mice have a shorter lifespan and show alterations in the central nervous system. Moreover, this mouse strain shows decreased sirtuin 1 protein expression and elevated expression of the acetylated targets NFkappaB and FoxO1, which are implicated in transcriptional control of key genes in cell proliferation and cell survival, in reference to control strain, SAMR1. After eight weeks of intermittent fasting, sirtuin 1 protein expression was recovered in SAMP8. This recovery was accompanied by a reduction in the two acetylated targets. Furthermore, SAMP8 showed a lower protein expression of BDNF and HSP70 while intermittent fasting re-established normal values. The activation of JNK and FoxO1 was also reduced in SAMP8 mice subjected to an IF regimen, compared with control SAMP8. Our findings provide new insights into the participation of sirtuin 1 in ageing and point to a potential novel application of this enzyme to prevent frailty due to ageing processes in the brain.

  18. Creatine supplementation augments skeletal muscle carnosine content in senescence-accelerated mice (SAMP8).

    PubMed

    Derave, Wim; Jones, Glenys; Hespel, Peter; Harris, Roger C

    2008-06-01

    The histidine-containing dipeptides (HCD) carnosine and anserine are found in high concentrations in mammalian skeletal muscle. Given its versatile biologic properties, such as antioxidative, antiglycation, and pH buffering capacity, carnosine has been implicated as a protective factor in the aging process. The present study aimed to systematically explore age-related changes in skeletal muscles HCD content in a murine model of accelerated aging. Additionally, we investigated the effect of lifelong creatine supplementation on muscle HCD content and contractile fatiguability. Male senescence-accelerated mice (SAMP8) were fed control or creatine-supplemented (2% of food intake) diet from the age of 10 to 60 weeks. At week 10, 25, and 60, tibialis anterior muscles were dissected and analysed for HCD and taurine content by HPLC. Soleus and EDL muscles were tested for in vitro contractile fatigue and recovery. From 10 to 60 weeks of age, muscular carnosine (-45%), taurine (-24%), and total creatine (-42%) concentrations gradually and significantly decreased. At 25 but not at 60 weeks, oral creatine supplementation significantly increased carnosine (+88%) and anserine (+40%) content compared to age-matched control-fed animals. Taurine and total creatine content were not affected by creatine supplementation at any age. Creatine-treated mice showed attenuated muscle fatigue (soleus) and enhanced force recovery (m. extensor digitorum longus [EDL]) compared to controls at 25 weeks, but not at 60 weeks. From the present study, we can conclude that skeletal muscle tissue exhibits a significant decline in HCD content at old age. Oral creatine supplementation is able to transiently but potently increase muscle carnosine and anserine content, which coincides with improved resistance to contractile fatigue.

  19. Switchgrass (Panicum virgatum L) flag leaf transcriptomes reveal molecular signatures of leaf development, senescence, and mineral dynamics

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We provide the first comprehensive transcriptomic inspection of switchgrass flag leaf development. Flag leaves were collected from field grown switchgrass plants at five plant developmental stages: heading, anthesis, early and late seed development, and at physiological maturity and analyzed by RNA...

  20. Involvement of a Putative Bipartite Transit Peptide in Targeting Rice Pheophorbide a Oxygenase into Chloroplasts for Chlorophyll Degradation during Leaf Senescence.

    PubMed

    Xie, Qingjun; Liang, Yan; Zhang, Jian; Zheng, Huakun; Dong, Guojun; Qian, Qian; Zuo, Jianru

    2016-03-20

    Leaf senescence is one of the major factors contributing to the productivity and the grain quality in crops. The regulatory mechanism of leaf senescence remains largely unknown. Here, we report the identification and characterization of a rice early senescence 1 (eas1) mutant, which displayed an early leaf senescence phenotype, accompanying by dwarfism and reduced tiller number, eventually leading to the reduction of grain yield. Map-based cloning revealed that the nuclear gene EAS1 encodes a pheophorbide a oxygenase (PaO), a key enzyme for chlorophyll breakdown. A highly conserved Thr residue of PaO was mutated into Ile in the eas1 mutant. Phylogenetic analysis indicates that PaO is an evolutionarily conserved protein, and EAS1 is 68% identical to the Arabidopsis ACCERLERATED CELL DEATH (ACD1) protein. Unlike ACD1 that contains a single transit peptide, EAS1 contains two putative transit peptides at its N-terminus, which are essential for its functionality, suggesting that targeting of EAS1 to the chloroplast is likely mediated by a putative bipartite transit peptide. Consistently, only a short version of EAS1 lacking the first putative transit peptide, but not the full-length EAS1, was capable of rescuing the Arabidopsis acd1 mutant phenotype. These results suggest that rice EAS1 represents a functional PaO, which is involved in chlorophyll degradation and may utilize a unique mechanism for its import into the chloroplast.

  1. Anti-ageing effects of Sonchus oleraceus L. (pūhā) leaf extracts on H₂O₂-induced cell senescence.

    PubMed

    Ou, Zong-Quan; Rades, Thomas; McDowell, Arlene

    2015-03-12

    Antioxidants protect against damage from free radicals and are believed to slow the ageing process. Previously, we have reported the high antioxidant activity of 70% methanolic Sonchus oleraceus L. (Asteraceae) leaf extracts. We hypothesize that S. oleraceus extracts protect cells against H2O2-induced senescence by mediating oxidative stress. Premature senescence of young WI-38 cells was induced by application of H2O2. Cells were treated with S. oleraceus extracts before or after H2O2 stress. The senescence- associated β-galactosidase (SA-β-gal) activity was used to indicate cell senescence. S. oleraceus extracts showed higher cellular antioxidant activity than chlorogenic acid in WI-38 cells. S. oleraceus extracts suppressed H2O2 stress-induced premature senescence in a concentration-dependent manner. At 5 and 20 mg/mL, S. oleraceus extracts showed better or equivalent effects of reducing stress-induced premature senescence than the corresponding ascorbic acid treatments. These findings indicate the potential of S. oleraceus extracts to be formulated as an anti-ageing agent.

  2. Chlorophyll loss associated with heat-induced senescence in bentgrass.

    PubMed

    Jespersen, David; Zhang, Jing; Huang, Bingru

    2016-08-01

    Heat stress-induced leaf senescence is characterized by the loss of chlorophyll from leaf tissues. The objectives of this study were to examine genetic variations in the level of heat-induced leaf senescence in hybrids of colonial (Agrostis capillaris)×creeping bentgrass (Agrostis stolonifera) contrasting in heat tolerance, and determine whether loss of leaf chlorophyll during heat-induced leaf senescence was due to suppressed chlorophyll synthesis and/or accelerated chlorophyll degradation in the cool-season perennial grass species. Plants of two hybrid backcross genotypes ('ColxCB169' and 'ColxCB190') were exposed to heat stress (38/33°C, day/night) for 28 d in growth chambers. The analysis of turf quality, membrane stability, photochemical efficiency, and chlorophyll content demonstrated significant variations in the level of leaf senescence induced by heat stress between the two genotypes, with ColXCB169 exhibiting a lesser degree of decline in chlorophyll content, photochemical efficiency and membrane stability than ColXCB190. The assays of enzymatic activity or gene expression of several major chlorophyll-synthesizing (porphobilinogen deaminase, Mg-chelatase, protochlorophyllide-reductase) and chlorophyll-degrading enzymes (chlorophyllase, pheophytinase, and chlorophyll-degrading peroxidase) indicated heat-induced decline in leaf chlorophyll content was mainly due to accelerated chlorophyll degradation, as manifested by increased gene expression levels of chlorophyllase and pheophytinase, and the activity of pheophytinase (PPH), while chlorophyll-synthesizing genes and enzymatic activities were not differentially altered by heat stress in the two genotypes. The analysis of heat-induced leaf senescence of pph mutants of Arabidopsis further confirmed that PPH could be one enzymes that plays key roles in regulating heat-accelerated chlorophyll degradation. Further research on enzymes responsible in part for the loss of chlorophyll during heat

  3. A specific group of genes respond to cold dehydration stress in cut Alstroemeria flowers whereas ambient dehydration stress accelerates developmental senescence expression patterns.

    PubMed

    Wagstaff, Carol; Bramke, Irene; Breeze, Emily; Thornber, Sarah; Harrison, Elizabeth; Thomas, Brian; Buchanan-Wollaston, Vicky; Stead, Tony; Rogers, Hilary

    2010-06-01

    Petal development and senescence entails a normally irreversible process. It starts with petal expansion and pigment production, and ends with nutrient remobilization and ultimately cell death. In many species this is accompanied by petal abscission. Post-harvest stress is an important factor in limiting petal longevity in cut flowers and accelerates some of the processes of senescence such as petal wilting and abscission. However, some of the effects of moderate stress in young flowers are reversible with appropriate treatments. Transcriptomic studies have shown that distinct gene sets are expressed during petal development and senescence. Despite this, the overlap in gene expression between developmental and stress-induced senescence in petals has not been fully investigated in any species. Here a custom-made cDNA microarray from Alstroemeria petals was used to investigate the overlap in gene expression between developmental changes (bud to first sign of senescence) and typical post-harvest stress treatments. Young flowers were stressed by cold or ambient temperatures without water followed by a recovery and rehydration period. Stressed flowers were still at the bud stage after stress treatments. Microarray analysis showed that ambient dehydration stress accelerates many of the changes in gene expression patterns that would normally occur during developmental senescence. However, a higher proportion of gene expression changes in response to cold stress were specific to this stimulus and not senescence related. The expression of 21 transcription factors was characterized, showing that overlapping sets of regulatory genes are activated during developmental senescence and by different stresses.

  4. Senescence-induced ectopic expression of the A. tumefaciens ipt gene in wheat delays leaf senescence, increases cytokinin content, nitrate influx, and nitrate reductase activity, but does not affect grain yield.

    PubMed

    Sykorová, Blanka; Kuresová, Gabriela; Daskalova, Sasha; Trcková, Marie; Hoyerová, Klára; Raimanová, Ivana; Motyka, Václav; Trávnícková, Alena; Elliott, Malcolm C; Kamínek, Miroslav

    2008-01-01

    The manipulation of cytokinin levels by senescence-regulated expression of the Agrobacterium tumefaciens ipt gene through its control by the Arabidopsis SAG12 (senescence-associated gene 12) promoter is an efficient tool for the prolongation of leaf photosynthetic activity which potentially can affect plant productivity. In the present study, the efficiency of this approach was tested on wheat (Triticum aestivum L.)-a monocarpic plant characterized by a fast switch from vegetative to reproductive growth, and rapid translocation of metabolites from leaves to developing grains after anthesis. When compared with the wild-type (WT) control plants, the SAG12::ipt wheat plants exhibited delayed chlorophyll degradation only when grown under limited nitrogen (N) supply. Ten days after anthesis the content of chlorophyll and bioactive cytokinins of the first (flag) leaf of the transgenic plants was 32% and 65% higher, respectively, than that of the control. There was a progressive increase in nitrate influx and nitrate reductase activity. However, the SAG12::ipt and the WT plants did not show differences in yield-related parameters including number of grains and grain weight. These results suggest that the delay of leaf senescence in wheat also delays the translocation of metabolites from leaves to developing grains, as indicated by higher accumulation of ((15)N-labelled) N in spikes of control compared with transgenic plants prior to anthesis. This delay interferes with the wheat reproductive strategy that is based on a fast programmed translocation of metabolites from the senescing leaves to the reproductive sinks shortly after anthesis.

  5. A combined 15N tracing/proteomics study in Brassica napus reveals the chronology of proteomics events associated with N remobilisation during leaf senescence induced by nitrate limitation or starvation.

    PubMed

    Desclos, Marie; Etienne, Philippe; Coquet, Laurent; Jouenne, Thierry; Bonnefoy, Josette; Segura, Raphaël; Reze, Sandrine; Ourry, Alain; Avice, Jean-Christophe

    2009-07-01

    Our goal was to identify the leaf proteomic changes which appeared during N remobilisation that were associated or not associated with senescence of oilseed rape in response to contrasting nitrate availability. Remobilisation of N and leaf senescence status were followed using (15)N tracing, patterns of chlorophyll level, total protein content and a molecular indicator based on expression of senescence-associated gene 12/Cab genes. Three phases associated with N remobilisation were distinguished. Proteomics revealed that 55 proteins involved in metabolism, energy, detoxification, stress response, proteolysis and protein folding, were significantly induced during N remobilisation. Four proteases were specifically identified. FtsH, a chloroplastic protease, was induced transiently during the early stages of N remobilisation. Considering the dynamics of N remobilisation, chlorophyll and protein content, the pattern of FtsH expression indicated that this protease could be involved in the degradation of chloroplastic proteins. Aspartic protease increased at the beginning of senescence and was maintained at a high level, implicating this protease in proteolysis during the course of leaf senescence. Two proteases, proteasome beta subunit A1 and senescence-associated gene 12, were induced and continued to increase during the later phase of senescence, suggesting that these proteases are more specifically involved in the proteolysis processes occurring at the final stages of leaf senescence.

  6. Cloning and Characterization of a Receptor-Like Protein Kinase Gene Associated with Senescence

    PubMed Central

    Hajouj, Taleb; Michelis, Regina; Gepstein, Shimon

    2000-01-01

    Senescence-associated genes are up-regulated during plant senescence and many have been implicated in encoding enzymes involved in the metabolism of senescing tissues. Using the differential display technique, we identified a SAG in bean (Phaseolus vulgaris) leaf that was exclusively expressed during senescence and was designated senescence-associated receptor-like kinase (SARK). The deduced SARK polypeptide consists of a signal peptide, a leucine-rich repeat in the extracellular region, a single membrane-spanning domain, and the characteristic serine/threonine protein kinase domain. The mRNA level for SARK increased prior to the loss of chlorophyll and the decrease of chlorophyll a/b-binding protein mRNA. Detached mature bean leaves, which senesce at an accelerated rate compared with leaves on intact plants, showed a similar temporal pattern of SARK message accumulation. Light and cytokinin, which delayed the initiation of leaf senescence, also delayed SARK gene expression; in contrast, darkness and ethylene, which accelerated senescence, advanced the initial appearance of the SARK transcript. SARK protein accumulation exhibited a temporal pattern similar to that of its mRNA. A possible role for SARK in the regulation of leaf senescence was considered. PMID:11080306

  7. Expression of a cloned sweet potato catalase SPCAT1 alleviates ethephon-mediated leaf senescence and H₂O₂ elevation.

    PubMed

    Chen, Hsien-Jung; Wu, Sin-Dai; Huang, Guan-Jhong; Shen, Che-Yu; Afiyanti, Mufidah; Li, Wei-Jhen; Lin, Yaw-Huei

    2012-01-01

    In this report a full-length cDNA, SPCAT1, was isolated from ethephon-treated mature L3 leaves of sweet potato. SPCAT1 contained 1479 nucleotides (492 amino acids) in its open reading frame, and exhibited high amino acid sequence identities (ca. 71.2-80.9%) with several plant catalases, including Arabidopsis, eggplant, grey mangrove, pea, potato, tobacco and tomato. Gene structural analysis showed that SPCAT1 encoded a catalase and contained a putative conserved internal peroxisomal targeting signal PTS1 motif and calmodulin binding domain around its C-terminus. RT-PCR showed that SPCAT1 gene expression was enhanced significantly in mature L3 and early senescent L4 leaves and was much reduced in immature L1, L2 and completely yellowing senescent L5 leaves. In dark- and ethephon-treated L3 leaves, SPCAT1 expression was significantly enhanced temporarily from 0 to 24h, then decreased gradually until 72h after treatment. SPCAT1 gene expression levels also exhibited approximately inverse correlation with the qualitative and quantitative H(2)O(2) amounts. Effector treatment showed that ethephon-enhanced SPCAT1 expression was repressed by antioxidant reduced glutathione, NADPH oxidase inhibitor diphenylene iodonium (DPI), calcium ion chelator EGTA and de novo protein synthesis inhibitor cycloheximide. These data suggest that elevated reactive oxygen species H(2)O(2), NADPH oxidase, external calcium influx and de novo synthesized proteins are required and associated with ethephon-mediated enhancement of sweet potato catalase SPCAT1 expression. Exogenous application of expressed catalase SPCAT1 fusion protein delayed or alleviated ethephon-mediated leaf senescence and H(2)O(2) elevation. Based on these data we conclude that sweet potato SPCAT1 is an ethephon-inducible peroxisomal catalase, and its expression is regulated by reduced glutathione, DPI, EGTA and cycloheximide. Sweet potato catalase SPCAT1 may play a physiological role or function in cope with H(2)O(2

  8. Systematic Analysis of Long Noncoding RNAs in the Senescence-accelerated Mouse Prone 8 Brain Using RNA Sequencing

    PubMed Central

    Zhang, Shuai; Qin, Chunxia; Cao, Guoqiong; Xin, Wenfeng; Feng, Chengqiang; Zhang, Wensheng

    2016-01-01

    Long noncoding RNAs (lncRNAs) may play an important role in Alzheimer's disease (AD) pathogenesis. However, despite considerable research in this area, the comprehensive and systematic understanding of lncRNAs in AD is still limited. The emergence of RNA sequencing provides a predictor and has incomparable advantage compared with other methods, including microarray. In this study, we identified lncRNAs in a 7-month-old mouse brain through deep RNA sequencing using the senescence-accelerated mouse prone 8 (SAMP8) and senescence-accelerated mouse resistant 1 (SAMR1) models. A total of 599,985,802 clean reads and 23,334 lncRNA transcripts were obtained. Then, we identified 97 significantly upregulated and 114 significantly downregulated lncRNA transcripts from all cases in SAMP8 mice relative to SAMR1 mice. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes analyses revealed that these significantly dysregulated lncRNAs were involved in regulating the development of AD from various angles, such as nerve growth factor term (GO: 1990089), mitogen-activated protein kinase signaling pathway, and AD pathway. Furthermore, the most probable AD-associated lncRNAs were predicted and listed in detail. Our study provided the systematic dissection of lncRNA profiling in SAMP8 mouse brain and accelerated the development of lncRNA biomarkers in AD. These attracting biomarkers could provide significant insights into AD therapy in the future. PMID:27483026

  9. Leaf senescence in rice due to magnesium deficiency mediated defect in transpiration rate before sugar accumulation and chlorosis.

    PubMed

    Kobayashi, Natsuko I; Saito, Takayuki; Iwata, Naoko; Ohmae, Yoshimi; Iwata, Ren; Tanoi, Keitaro; Nakanishi, Tomoko M

    2013-08-01

    Magnesium (Mg) is an essential macronutrient supporting various functions, including photosynthesis. However, the specific physiological responses to Mg deficiency remain elusive. In this study, 2-week-old rice seedlings (Oryza sativa. cv. Nipponbare) with three expanded leaves (L2-L4) were transferred to Mg-free nutrient solution for 8 days. In the absence of Mg, on day 8, L5 and L6 were completely developed, while L7 just emerged. We also studied several mineral deficiencies to identify specific responses to Mg deficiency. Each leaf was analyzed in terms of chlorophyll, starch, anthocyanin and carbohydrate metabolites, and only absence of Mg was found to cause irreversible senescence of L5. Resupply of Mg at various time points confirmed that the borderline of L5 death was between days 6 and 7 of Mg deficiency treatment. Decrease in chlorophyll concentration and starch accumulation occurred simultaneously in L5 and L6 blades on day 8. However, nutrient transport drastically decreased in L5 as early as day 6. These data suggest that the predominant response to Mg deficiency is a defect in transpiration flow. Furthermore, changes in myo-inositol and citrate concentrations were detected only in L5 when transpiration decreased, suggesting that they may constitute new biological markers of Mg deficiency.

  10. Proteins associated with heat-induced leaf senescence in creeping bentgrass as affected by foliar application of nitrogen, cytokinins, and an ethylene inhibitor.

    PubMed

    Jespersen, David; Huang, Bingru

    2015-02-01

    Heat stress causes premature leaf senescence in cool-season grass species. The objective of this study was to identify proteins regulated by nitrogen, cytokinins, and ethylene inhibitor in relation to heat-induced leaf senescence in creeping bentgrass (Agrostis stolonifera). Plants (cv. Penncross) were foliar sprayed with 18 mM carbonyldiamide (N source), 25 μM aminoethoxyvinylglycine (AVG, ethylene inhibitor), 25 μM zeatin riboside (ZR, cytokinin), or a water control, and then exposed to 20/15°C (day/night) or 35/30°C (heat stress) in growth chambers. All treatments suppressed heat-induced leaf senescence, as shown by higher turf quality and chlorophyll content, and lower electrolyte leakage in treated plants compared to the untreated control. A total of 49 proteins were responsive to N, AVG, or ZR under heat stress. The abundance of proteins in photosynthesis increased, with ribulose-1,5-bisphosphate carboxylase/oxygenase affected by all three treatments, chlorophyll a/b-binding protein by AVG and N or Rubisco activase by AVG. Proteins for amino acid metabolism were upregulated, including alanine aminotransferase by three treatments and ferredoxin-dependent glutamate synthase by AVG and N. Upregulated proteins also included catalase by AVG and N and heat shock protein by ZR. Exogenous applications of AVG, ZR, or N downregulated proteins in respiration (enolase, glyceraldehyde 3-phosphate dehydrogenase, and succinate dehygrogenase) under heat stress. Alleviation of heat-induced senescence by N, AVG, or ZR was associated with enhanced protein abundance in photosynthesis and amino acid metabolism and stress defense systems (heat shock protection and antioxidants), as well as suppression of those imparting respiration metabolism.

  11. Mutagenic safety and fatty liver improvement of nanonized black soybeans in senescence-accelerated prone-8 mice.

    PubMed

    Liao, J-W; Hong, L-Z; Wang, M-F; Tsai, S-C; Lin, Y-J; Chan, Y-C

    2010-06-01

    Nanotechnology, as a new enabling technology, has the potential to revolutionize food systems. However, much attention has been focused on nanoparticle foods due to their potential physiological properties. This study was aimed to evaluate the mutagenic safety and fatty liver improvement of black soybean in senescence-accelerated mice (SAMP8). The mutagenic activity of black soybeans was investigated using the Ames test (Salmonella Typhimurium TA98, 100, 102, and 1535). Furthermore, senescence-accelerated prone-8 mice (SAMP8) have been reported to display spontaneous fatty liver. Male SAMP8 mice were divided into control and supplemented with 10% micronized or nanonized black soybeans diet and fed for 12 wk. The results revealed that the Ames test of micronized and nanonized black soybeans exhibited no mutagenicity. Administration of black soybeans to mice showed no effects on food intake and body and organ weights. The nanonized black soybean group had a lower degree of spontaneous fatty liver, alanine aminotransferase, and thiobarbituric acid-reactive substance concentrations, and had enhanced superoxide dismutase, catalase, and glutathione peroxidase activities of livers when compared with the SAMP8 control and micronized black soybean groups. The mice fed with black soybeans had significantly lower triglyceride concentrations than the SAMP8 control group. The results of this study suggest that nanonized black soybeans have no side effects and, moreover, may minimize liver lesions in SAMP8 mice.

  12. L-Lysine suppresses myofibrillar protein degradation and autophagy in skeletal muscles of senescence-accelerated mouse prone 8.

    PubMed

    Sato, Tomonori; Ito, Yoshiaki; Nagasawa, Takashi

    2017-02-01

    Sarcopenia is a condition of the loss of muscle mass that is associated with aging and that increases the risk for bedridden state, thereby warranting studies of interventions that attenuate sarcopenia. Here the effects of 2-month dietary L-lysine (Lys) supplementation (1.5-3.0 %) on myofibrillar protein degradation and major proteolytic systems were investigated in senescence-accelerated mouse prone 8 (SAMP8). At 36 weeks of age, skeletal muscle and lean body mass was reduced in SAMP8 when compared with control senescence-accelerated mouse resistant 1 (SAMR1). The myofibrillar protein degradation, which was evaluated by the release of 3-methylhistidine, was stimulated in SAMP8, and the autophagy activity, which was evaluated by light chain 3-II, was stimulated in the skeletal muscle of SAMP8. The activation of ubiquitin-proteasome system was not observed in the muscles of SAMP8. However, myofibrillar protein degradation and autophagic activity in skeletal muscles of SAMP8 were suppressed by dietary intake of 3.0 % Lys. The present data indicate that myofibrillar protein degradation by bulk autophagy is stimulated in the skeletal muscles of SAMP8 and that dietary Lys supplementation attenuates sarcopenia in SAMP8 by suppressing autophagic proteolysis.

  13. Spirulina prevents memory dysfunction, reduces oxidative stress damage and augments antioxidant activity in senescence-accelerated mice.

    PubMed

    Hwang, Juen-Haur; Lee, I-Te; Jeng, Kee-Ching; Wang, Ming-Fu; Hou, Rolis Chien-Wei; Wu, Su-Mei; Chan, Yin-Ching

    2011-01-01

    Spirulina has proven to be effective in treating certain cancers, hyperlipidemia, immunodeficiency, and inflammatory processes. In this study, we aimed to investigate the effects of Spirulina on memory dysfunction, oxidative stress damage and antioxidant enzyme activity. Three-month-old male senescence-accelerated prone-8 (SAMP8) mice were randomly assigned to either a control group or to one of two experimental groups (one receiving daily dietary supplementation with 50 mg/kg BW and one with 200 mg/kg BW of Spirulina platensis water extract). Senescence-accelerated-resistant (SAMR1) mice were used as the external control. Results showed that the Spirulina-treated groups had better passive and avoidance scores than the control group. The amyloid β-protein (Aβ) deposition was significantly reduced at the hippocampus and whole brain in both Spirulina groups. The levels of lipid peroxidation were significantly reduced at the hippocampus, striatum, and cortex in both Spirulina groups, while catalase activity was significantly higher only in the 200 mg/kg BW Spirulina group than in the control group. Glutathione peroxidase activity was significantly higher only in the cortex of the 200 mg/kg group than in that of the SAMP8 control group. However, superoxide dismutase activity in all parts of the brain did not significantly differ among all groups. In conclusion, Spirulina platensis may prevent the loss of memory possibly by lessening Aβ protein accumulation, reducing oxidative damage and mainly augmenting the catalase activity.

  14. [Morphological changes of neurons and neuroglial cells in the brain of senescence-accelerated prone 1 (SAMP1) mice].

    PubMed

    Khudoerkov, R M; Sal'kov, V N; Sal'nikova, O V; Sobolev, V B

    2014-01-01

    Computerized morphometry was used to examine the sizes of neuronal bodies and the compactness of arrangement of neurons and neuroglial cells in layers III and V of the sensorimotor cortex in senescence-accelerated prone 1 (SAMP1) mice (an experimental group) and senescence-accelerated-resistant strain 1 (SAMR1) ones (a control group). In the SAMP1 mice as compared to the SAMR1 ones, the neuronal body sizes were significantly unchanged; the compactness of their arrangement decreased by 17 and 20% in layers III and V, respectively; that of neuroglial cells significantly increased by 14% in layer III only. In the SAMP1 mice versus the SAMR1 ones, the glial index rose by 36% in layer III and by 24% in layer V. During simulation of physiological aging, the sizes of neuronal bodies were shown to be virtually unchanged in the cerebral cortex; the compactness of their arrangement (cell counts) moderately reduced and that of neuroglial cells increased, which caused a rise in the glioneuronal index that was indicative of the enhanced supporting function of neuroglial cells during the physiological aging of brain structures.

  15. Neuroprotective effect of the Chinese medicine Tiantai No. 1 and its molecular mechanism in the senescence-accelerated mouse prone 8

    PubMed Central

    Li, Ying-hong; Wang, Xu-sheng; Chen, Xiao-lin; Jin, Yu; Chen, Hong-bo; Jia, Xiu-qin; Zhang, Yong-feng; Wu, Zheng-zhi

    2017-01-01

    Tiantai No. 1, a Chinese medicine predominantly composed of powdered Rhizoma Gastrodiae, Radix Ginseng, and Ginkgo leaf at a ratio of 2:1:2 and dissolved in pure water, is neuroprotective in animal models of various cognitive disorders, but its molecular mechanism remains unclear. We administered Tiantai No. 1 intragastrically to senescence-accelerated mouse prone 8 (SAMP8) mice (a model of Alzheimer's disease) at doses of 50, 100 or 150 mg/kg per day for 8 weeks and evaluated their behavior in the Morris water maze and expression of Alzheimer's disease-related proteins in the brain. Tiantai No. 1 shortened the escape latency in the water maze training trials, and increased swimming time in the target quadrant during the spatial probe test, indicating that Tiantai No. 1 improved learning and memory in SAMP8 mice. Immunohistochemistry revealed that Tiantai No. 1 restored the proliferation potential of Ki67-positive cells in the hippocampus. In addition, mice that had received Tiantai No. 1 had fewer astrocytes, and less accumulation of amyloid-beta and phosphorylated tau. These results suggest that Tiantai No. 1 is neuroprotective in the SAMP8 mouse model of Alzheimer's disease and acts by restoring neuronal number and proliferation potential in the hippocampus, decreasing astrocyte infiltration, and reducing the accumulation of amyloid-beta and phosphorylated tau.

  16. The ER luminal binding protein (BiP) mediates an increase in drought tolerance in soybean and delays drought-induced leaf senescence in soybean and tobacco.

    PubMed

    Valente, Maria Anete S; Faria, Jerusa A Q A; Soares-Ramos, Juliana R L; Reis, Pedro A B; Pinheiro, Guilherme L; Piovesan, Newton D; Morais, Angélica T; Menezes, Carlos C; Cano, Marco A O; Fietto, Luciano G; Loureiro, Marcelo E; Aragão, Francisco J L; Fontes, Elizabeth P B

    2009-01-01

    The ER-resident molecular chaperone BiP (binding protein) was overexpressed in soybean. When plants growing in soil were exposed to drought (by reducing or completely withholding watering) the wild-type lines showed a large decrease in leaf water potential and leaf wilting, but the leaves in the transgenic lines did not wilt and exhibited only a small decrease in water potential. During exposure to drought the stomata of the transgenic lines did not close as much as in the wild type, and the rates of photosynthesis and transpiration became less inhibited than in the wild type. These parameters of drought resistance in the BiP overexpressing lines were not associated with a higher level of the osmolytes proline, sucrose, and glucose. It was also not associated with the typical drought-induced increase in root dry weight. Rather, at the end of the drought period, the BiP overexpressing lines had a lower level of the osmolytes and root weight than the wild type. The mRNA abundance of several typical drought-induced genes [NAC2, a seed maturation protein (SMP), a glutathione-S-transferase (GST), antiquitin, and protein disulphide isomerase 3 (PDI-3)] increased in the drought-stressed wild-type plants. Compared with the wild type, the increase in mRNA abundance of these genes was less (in some genes much less) in the BiP overexpressing lines that were exposed to drought. The effect of drought on leaf senescence was investigated in soybean and tobacco. It had previously been reported that tobacco BiP overexpression or repression reduced or accentuated the effects of drought. BiP overexpressing tobacco and soybean showed delayed leaf senescence during drought. BiP antisense tobacco plants, conversely, showed advanced leaf senescence. It is concluded that BiP overexpression confers resistance to drought, through an as yet unknown mechanism that is related to ER functioning. The delay in leaf senescence by BiP overexpression might relate to the absence of the response to

  17. Retardation of Senescence in Red Clover Leaf Discs by a New Antiozonant, N-[2-(2-Oxo-1-imidazolidinyl)ethyl]-N′-phenylurea 1

    PubMed Central

    Lee, Edward H.; Bennett, Jesse H.; Heggestad, Howard E.

    1981-01-01

    Dark-induced senescence in leaf discs from O3-sensitive red clover trifoliates (Trifolium pratense L. cv. `Pennscott') was markedly retarded by treatment with N-[2-(2-oxo-1-imidazolidinyl)ethyl-N′-phenylurea (EDU). EDU also protects against acute and chronic foliar O3 injury when sprayed on intact leaves or supplied to the plants through soil application. Senescence retardation was measured by time-dependent analyses of chlorophyll, protein, and RNA in discs floated on aqueous EDU solutions ranging from 0 to 500 micrograms per milliliter EDU. Chlorophyll degradation, total protein, and nucleic acids were followed over 10-day test periods. EDU at 500 micrograms per milliliter (50 milligrams per pot), a concentration known to provide optimal protection to intact leaves against O3 injury, was most effective in preventing chlorosis and in maintaining high concentrations of protein and RNA in the discs. In discs treated with 500 micrograms per milliliter EDU 90% of the chlorophyll was retained after 10 days in the dark. In contrast, lower concentrations (0, 125, and 250 micrograms per milliliter) showed the complete loss of chlorophyll or an intermediate retardation. The intermediate concentrations were similarly less effective in maintaining protein and RNA levels in the dark stressed leaf discs. It is suggested that EDU retards senescence and mitigates O3 injury through the induction of specific free radical scavenging enzymes and in sustaining RNA and protein synthesis. Images PMID:16661672

  18. Accelerated Telomere Shortening in Acromegaly; IGF-I Induces Telomere Shortening and Cellular Senescence

    PubMed Central

    Matsumoto, Ryusaku; Fukuoka, Hidenori; Iguchi, Genzo; Odake, Yukiko; Yoshida, Kenichi; Bando, Hironori; Suda, Kentaro; Nishizawa, Hitoshi; Takahashi, Michiko; Yamada, Shozo; Ogawa, Wataru; Takahashi, Yutaka

    2015-01-01

    Objective Patients with acromegaly exhibit reduced life expectancy and increased prevalence of age-related diseases, such as diabetes, hypertension, and cardiovascular disease. However, the underlying mechanism has not been fully elucidated. Telomere shortening is reportedly associated with reduced life expectancy and increased prevalence of these age-related diseases. Methods We measured telomere length in patients with acromegaly using quantitative PCR method. The effect of GH and IGF-I on telomere length and cellular senescence was examined in human skin fibroblasts. Results Patients with acromegaly exhibited shorter telomere length than age-, sex-, smoking-, and diabetes-matched control patients with non-functioning pituitary adenoma (0.62 ± 0.23 vs. 0.75 ± 0.35, respectively, P = 0.047). In addition, telomere length in acromegaly was negatively correlated with the disease duration (R2 = 0.210, P = 0.003). In vitro analysis revealed that not GH but IGF-I induced telomere shortening in human skin fibroblasts. Furthermore, IGF-I-treated cells showed increased senescence-associated β-galactosidase activity and expression of p53 and p21 protein. IGF-I-treated cells reached the Hayflick limit earlier than GH- or vehicle-treated cells, indicating that IGF-I induces cellular senescence. Conclusion Shortened telomeres in acromegaly and cellular senescence induced by IGF-I can explain, in part, the underlying mechanisms by which acromegaly exhibits an increased morbidity and mortality in association with the excess secretion of IGF-I. PMID:26448623

  19. Accelerated telomere shortening and replicative senescence in human fibroblasts overexpressing mutant and wild-type lamin A

    SciTech Connect

    Huang Shurong; Risques, Rosa Ana; Martin, George M.; Rabinovitch, Peter S.; Oshima, Junko

    2008-01-01

    LMNA mutations are responsible for a variety of genetic disorders, including muscular dystrophy, lipodystrophy, and certain progeroid syndromes, notably Hutchinson-Gilford Progeria. Although a number of clinical features of these disorders are suggestive of accelerated aging, it is not known whether cells derived from these patients exhibit cellular phenotypes associated with accelerated aging. We examined a series of isogenic skin fibroblast lines transfected with LMNA constructs bearing known pathogenic point mutations or deletion mutations found in progeroid syndromes. Fibroblasts overexpressing mutant lamin A exhibited accelerated rates of loss of telomeres and shortened replicative lifespans, in addition to abnormal nuclear morphology. To our surprise, these abnormalities were also observed in lines overexpressing wild-type lamin A. Copy number variants are common in human populations; those involving LMNA, whether arising meiotically or mitotically, might lead to progeroid phenotypes. In an initial pilot study of 23 progeroid cases without detectable WRN or LMNA mutations, however, no cases of altered LMNA copy number were detected. Nevertheless, our findings raise a hypothesis that changes in lamina organization may cause accelerated telomere attrition, with different kinetics for overexpession of wild-type and mutant lamin A, which leads to rapid replicative senescence and progroid phenotypes.

  20. Delayed Senescence

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Researcher Dr. Yi Li developed a technique to manipulate certain characteristics of plant growth such as anit-senescence. For example, the tobacco leaf was clipped from a transgenic plant (right), and a wildtype plant (left). During ground-based laboratory studies, both leaves were left in a darkened area for 4 months. When retrieved, the wildtype plant leaf was dried-out and the transgenic leaf remained fresh and green. A variation of this technology that involves manipulating plant hormones has been conducted in space-based studies on tomato plants through BioServe Space Technologies. The transport and distribution of auxin, an important plant hormone has shown to be influenced by microgravity, which could lead to improving the quality of fruits and vegetables grown on Earth.

  1. RCC1-dependent activation of Ran accelerates cell cycle and DNA repair, inhibiting DNA damage–induced cell senescence

    PubMed Central

    Cekan, Pavol; Hasegawa, Keisuke; Pan, Yu; Tubman, Emily; Odde, David; Chen, Jin-Qiu; Herrmann, Michelle A.; Kumar, Sheetal; Kalab, Petr

    2016-01-01

    The coordination of cell cycle progression with the repair of DNA damage supports the genomic integrity of dividing cells. The function of many factors involved in DNA damage response (DDR) and the cell cycle depends on their Ran GTPase–regulated nuclear–cytoplasmic transport (NCT). The loading of Ran with GTP, which is mediated by RCC1, the guanine nucleotide exchange factor for Ran, is critical for NCT activity. However, the role of RCC1 or Ran⋅GTP in promoting cell proliferation or DDR is not clear. We show that RCC1 overexpression in normal cells increased cellular Ran⋅GTP levels and accelerated the cell cycle and DNA damage repair. As a result, normal cells overexpressing RCC1 evaded DNA damage–induced cell cycle arrest and senescence, mimicking colorectal carcinoma cells with high endogenous RCC1 levels. The RCC1-induced inhibition of senescence required Ran and exportin 1 and involved the activation of importin β–dependent nuclear import of 53BP1, a large NCT cargo. Our results indicate that changes in the activity of the Ran⋅GTP–regulated NCT modulate the rate of the cell cycle and the efficiency of DNA repair. Through the essential role of RCC1 in regulation of cellular Ran⋅GTP levels and NCT, RCC1 expression enables the proliferation of cells that sustain DNA damage. PMID:26864624

  2. Senescence Meets Dedifferentiation

    PubMed Central

    Givaty Rapp, Yemima; Ransbotyn, Vanessa; Grafi, Gideon

    2015-01-01

    Senescence represents the final stage of leaf development but is often induced prematurely following exposure to biotic and abiotic stresses. Leaf senescence is manifested by color change from green to yellow (due to chlorophyll degradation) or to red (due to de novo synthesis of anthocyanins coupled with chlorophyll degradation) and frequently culminates in programmed death of leaves. However, the breakdown of chlorophyll and macromolecules such as proteins and RNAs that occurs during leaf senescence does not necessarily represent a one-way road to death but rather a reversible process whereby senescing leaves can, under certain conditions, re-green and regain their photosynthetic capacity. This phenomenon essentially distinguishes senescence from programmed cell death, leading researchers to hypothesize that changes occurring during senescence might represent a process of trans-differentiation, that is the conversion of one cell type to another. In this review, we highlight attributes common to senescence and dedifferentiation including chromatin structure and activation of transposable elements and provide further support to the notion that senescence is not merely a deterioration process leading to death but rather a unique developmental state resembling dedifferentiation. PMID:27135333

  3. Beneficial effect of melatonin treatment on inflammation, apoptosis and oxidative stress on pancreas of a senescence accelerated mice model.

    PubMed

    Cuesta, Sara; Kireev, Roman; García, Cruz; Forman, Katherine; Escames, Germaine; Vara, Elena; Tresguerres, Jesús A F

    2011-01-01

    This study has investigated the effect of aging on parameters of inflammation, oxidative stress and apoptosis in pancreas obtained from two types of male mice models: senescence-accelerated prone (SAMP8) and resistant mice (SAMR1). Animals of 2 (young) and 10 months of age (old) were used (n = 64). The influence of the administration of melatonin in the drinking water for one month at two different dosages (1 and 10mg/(kg day) on old SAMP8 mice on these parameters was also studied. SAMP8 mice showed with age a significant increase in the relative expression of pancreatic genes involved in inflammation, oxidative stress and apoptosis. Furthermore the protein expression of several NFκB subunits was also enhanced. On the contrary aged SAMR1 mice did not show significant increases in these parameters. Melatonin administration to SAMP8 mice was able to reduce these age related alterations at the two used dosages.

  4. Melatonin can improve insulin resistance and aging-induced pancreas alterations in senescence-accelerated prone male mice (SAMP8).

    PubMed

    Cuesta, Sara; Kireev, Roman; García, Cruz; Rancan, Lisa; Vara, Elena; Tresguerres, Jesús A F

    2013-06-01

    The aim of the present study was to investigate the effect of aging on several parameters related to glucose homeostasis and insulin resistance in pancreas and how melatonin administration could affect these parameters. Pancreas samples were obtained from two types of male mice models: senescence-accelerated prone (SAMP8) and senescence-accelerated-resistant mice (SAMR1). Insulin levels in plasma were increased with aging in both SAMP8 and SAMR1 mice, whereas insulin content in pancreas was decreased with aging in SAMP8 and increased in SAMR1 mice. Expressions of glucagon and GLUT2 messenger RNAs (mRNAs) were increased with aging in SAMP8 mice, and no differences were observed in somatostatin and insulin mRNA expressions. Furthermore, aging decreased also the expressions of Pdx-1, FoxO 1, FoxO 3A and Sirt1 in pancreatic SAMP8 samples. Pdx-1 was decreased in SAMR1 mice, but no differences were observed in the rest of parameters on these mice strains. Treatment with melatonin was able to decrease plasma insulin levels and to increase its pancreatic content in SAMP8 mice. In SAMR1, insulin pancreatic content and plasma levels were decreased. HOMA-IR was decreased with melatonin treatment in both strains of animals. On the other hand, in SAMP8 mice, treatment decreased the expression of glucagon, GLUT2, somatostatin and insulin mRNA. Furthermore, it was also able to increase the expression of Sirt1, Pdx-1 and FoxO 3A. According to these results, aging is associated with significant alterations in the relative expression of pancreatic genes associated to glucose metabolism. This has been especially observed in SAMP8 mice. Melatonin administration was able to improve pancreatic function in old SAMP8 mice and to reduce HOMA-IR improving their insulin physiology and glucose metabolism.

  5. Defects in cytokine-mediated neuroprotective glial responses to excitotoxic hippocampal injury in senescence-accelerated mouse.

    PubMed

    Hasegawa-Ishii, Sanae; Takei, Shiro; Inaba, Muneo; Umegaki, Hiroyuki; Chiba, Yoichi; Furukawa, Ayako; Kawamura, Noriko; Hosokawa, Masanori; Shimada, Atsuyoshi

    2011-01-01

    Aging is a result of damage accumulation, and understanding of the mechanisms of aging requires exploration of the cellular and molecular systems functioning to control damage. Senescence-accelerated mouse prone 10 (SAMP10) has been established as an inbred strain exhibiting accelerated aging with an earlier onset of cognitive impairment due to neurodegeneration than the senescence-resistant control (SAMR1) strain. We hypothesized that tissue-protective responses of glial cells are impaired in SAMP10 mice. We injected kainic acid (KA) to induce hippocampal injury and studied how cytokines were upregulated on Day 3 using 3-month-old SAMP10 and SAMR1 mice. Following microarray-based screening for upregulated genes, we performed real-time RT-PCR and immunohistochemistry. Results indicated well-orchestrated cytokine-mediated glial interactions in the injured hippocampus of SAMR1 mice, in which microglia-derived interferon (IFN)-γ stimulated astrocytes via IFN-γ receptor and thereby induced expression of CXCL10 and macrophage inflammatory protein (MIP)-1α, and activated microglia produced granulocyte-macrophage colony-stimulating factor (GM-CSF) and osteopontin (OPN). OPN was the most strongly upregulated cytokine. CD44, an OPN receptor, was also strongly upregulated in the neuropil, especially on neurons and astrocytes. KA-induced hippocampal upregulation of these cytokines was strikingly reduced in SAMP10 mice compared to SAMR1 mice. On Day 30 after KA injection, SAMP10 but not SAMR1 mice exhibited hippocampal layer atrophy. Since the OPN-CD44 system is essential for neuroprotection and remodeling, these findings highlight the defects of SAMP10 mice in cytokine-mediated neuroprotective glia-neuron interactions, which may be associated with the mechanism underlying the vulnerability of SAMP10 mice to age-related neurodegeneration.

  6. A Comparative Study of Proteolytic Mechanisms during Leaf Senescence of Four Genotypes of Winter Oilseed Rape Highlighted Relevant Physiological and Molecular Traits for NRE Improvement

    PubMed Central

    Girondé, Alexandra; Poret, Marine; Etienne, Philippe; Trouverie, Jacques; Bouchereau, Alain; Le Cahérec, Françoise; Leport, Laurent; Niogret, Marie-Françoise; Avice, Jean-Christophe

    2015-01-01

    Winter oilseed rape is characterized by a low N use efficiency related to a weak leaf N remobilization efficiency (NRE) at vegetative stages. By investigating the natural genotypic variability of leaf NRE, our goal was to characterize the relevant physiological traits and the main protease classes associated with an efficient proteolysis and high leaf NRE in response to ample or restricted nitrate supply. The degradation rate of soluble proteins and D1 protein (a thylakoid-bound protein) were correlated to N remobilization, except for the genotype Samouraï which showed a low NRE despite high levels of proteolysis. Under restricted nitrate conditions, high levels of soluble protein degradation were associated with serine, cysteine and aspartic proteases at acidic pH. Low leaf NRE was related to a weak proteolysis of both soluble and thylakoid-bound proteins. The results obtained on the genotype Samouraï suggest that the timing between the onset of proteolysis and abscission could be a determinant. The specific involvement of acidic proteases suggests that autophagy and/or senescence-associated vacuoles are implicated in N remobilization under low N conditions. The data revealed that the rate of D1 degradation could be a relevant indicator of leaf NRE and might be used as a tool for plant breeding. PMID:27135221

  7. A Comparative Study of Proteolytic Mechanisms during Leaf Senescence of Four Genotypes of Winter Oilseed Rape Highlighted Relevant Physiological and Molecular Traits for NRE Improvement.

    PubMed

    Girondé, Alexandra; Poret, Marine; Etienne, Philippe; Trouverie, Jacques; Bouchereau, Alain; Le Cahérec, Françoise; Leport, Laurent; Niogret, Marie-Françoise; Avice, Jean-Christophe

    2015-12-22

    Winter oilseed rape is characterized by a low N use efficiency related to a weak leaf N remobilization efficiency (NRE) at vegetative stages. By investigating the natural genotypic variability of leaf NRE, our goal was to characterize the relevant physiological traits and the main protease classes associated with an efficient proteolysis and high leaf NRE in response to ample or restricted nitrate supply. The degradation rate of soluble proteins and D1 protein (a thylakoid-bound protein) were correlated to N remobilization, except for the genotype Samouraï which showed a low NRE despite high levels of proteolysis. Under restricted nitrate conditions, high levels of soluble protein degradation were associated with serine, cysteine and aspartic proteases at acidic pH. Low leaf NRE was related to a weak proteolysis of both soluble and thylakoid-bound proteins. The results obtained on the genotype Samouraï suggest that the timing between the onset of proteolysis and abscission could be a determinant. The specific involvement of acidic proteases suggests that autophagy and/or senescence-associated vacuoles are implicated in N remobilization under low N conditions. The data revealed that the rate of D1 degradation could be a relevant indicator of leaf NRE and might be used as a tool for plant breeding.

  8. Effects of cor15a-IPT gene expression on leaf senescence in transgenic Petunia x hybrida and Dendranthema x grandiflorum.

    PubMed

    Khodakovskaya, Mariya; Li, Yi; Li, Jisheng; Vanková, Radomíra; Malbeck, Jirí; McAvoy, Richard

    2005-04-01

    To prevent leaf senescence of young transplants or excised shoots during storage under dark and cold conditions, the cytokinin biosynthetic gene isopentenyl transferase (ipt) was placed under the control of a cold-inducible promoter cor15a from Arabidopsis thaliana and introduced into Petunia x hybrida 'Marco Polo Odyssey' and Dendranthema x grandiflorum (chrysanthemum) 'Iridon'. Transgenic cor15a-ipt petunia and chrysanthemum plants and excised leaves remained green and healthy during prolonged dark storage (4 weeks at 25 degrees C) after an initial exposure to a brief cold-induction period (4 degrees C for 72 h). However, cor15a-ipt chrysanthemum plants and excised leaves that were not exposed to a cold-induction period, senesced under the same dark storage conditions. Regardless of cold-induction treatment, leaves and plants of non-transformed plants senesced under prolonged dark storage. Analysis of ipt expression indicated a marked increase in gene expression in intact transgenic plants as well as in isolated transgenic leaves exposed to a short cold-induction treatment prior to dark storage. These changes correlated with elevated concentrations of cytokinins in transgenic leaves after cold treatment. Cor15a-ipt transgenic plants showed a normal phenotype when grown at 25 degrees C.

  9. Delay in leaf senescence of Malus hupehensis by long-term melatonin application is associated with its regulation of metabolic status and protein degradation.

    PubMed

    Wang, Ping; Sun, Xun; Chang, Cong; Feng, Fengjuan; Liang, Dong; Cheng, Lailiang; Ma, Fengwang

    2013-11-01

    Melatonin has an important anti-aging role in plant physiology. We tested the effects of long-term melatonin exposure on metabolic status and protein degradation during natural leaf senescence in trees of Malus hupehensis Rehd. The 2-month regular supplement of 100 μm melatonin to the soil once every 6 days altered the metabolic status and delayed protein degradation. For example, leaves from treated plants had significantly higher photosynthetic activity, chlorophyll concentrations, and levels of three photosynthetic end products (sorbitol, sucrose, and starch) when compared with the control. The significant inhibition of hexose (fructose and glucose) accumulation possibly regulated the signaling of MdHXK1, a gene for which expression was also repressed by melatonin during senescence. The plants also exhibited better preservation of their nitrogen, total soluble protein, and Rubisco protein concentrations than the control. The slower process of protein degradation might be a result of melatonin-linked inhibition on the expression of apple autophagy-related genes (ATGs). Our results are the first to provide evidence for this delay in senescence based on the metabolic alteration and protein degradation.

  10. Co-targeting Deoxyribonucleic Acid–Dependent Protein Kinase and Poly(Adenosine Diphosphate-Ribose) Polymerase-1 Promotes Accelerated Senescence of Irradiated Cancer Cells

    SciTech Connect

    Azad, Arun; Bukczynska, Patricia; Jackson, Susan; Haput, Ygal; Cullinane, Carleen; McArthur, Grant A.; Solomon, Benjamin

    2014-02-01

    Purpose: To examine the effects of combined blockade of DNA-dependent protein kinase (DNA-PK) and poly(adenosine diphosphate-ribose) polymerase-1 (PARP-1) on accelerated senescence in irradiated H460 and A549 non-small cell lung cancer cells. Methods and Materials: The effects of KU5788 and AG014699 (inhibitors of DNA-PK and PARP-1, respectively) on clonogenic survival, DNA double-strand breaks (DSBs), apoptosis, mitotic catastrophe, and accelerated senescence in irradiated cells were examined in vitro. For in vivo experiments, H460 xenografts established in athymic nude mice were treated with BEZ235 (a DNA-PK, ATM, and phosphatidylinositol 3-kinase/mammalian target of rapamycin inhibitor) and AG014699 to determine effects on proliferation, DNA DSBs, and accelerated senescence after radiation. Results: Compared with either inhibitor alone, combination treatment with KU57788 and AG014699 reduced postradiation clonogenic survival and significantly increased persistence of Gamma-H2AX (γH2AX) foci in irradiated H460 and A549 cells. Notably, these effects coincided with the induction of accelerated senescence in irradiated cells as reflected by positive β-galactosidase staining, G2-M cell-cycle arrest, enlarged and flattened cellular morphology, increased p21 expression, and senescence-associated cytokine secretion. In irradiated H460 xenografts, concurrent therapy with BEZ235 and AG014699 resulted in sustained Gamma-H2AX (γH2AX) staining and prominent β-galactosidase activity. Conclusion: Combined DNA-PK and PARP-1 blockade increased tumor cell radiosensitivity and enhanced the prosenescent properties of ionizing radiation in vitro and in vivo. These data provide a rationale for further preclinical and clinical testing of this therapeutic combination.

  11. Ozone-induced ethylene emission accelerates the loss of ribulose-1,5-bisphosphate carboxylase/oxygenase and nuclear-encoded mRNAs in senescing potato leaves

    SciTech Connect

    Glick, R.E.; Schlagnhaufer, C.D.; Arteca, R.N.

    1995-11-01

    The relationships among O{sub 3}-induced accelerated senescence, induction of ethylene, and changes in specific mRNA and protein levels were investigated in potato (Solanum tuberosum L. cv Norland) plants. When plants were exposed to 0.08 {mu}L L{sup -1} O{sub 3} for 5 h d{sup -1}, steady-state levels of rbcS mRNA declined at least 5-fold in expanding leaves after 3 d of O{sub 3} exposure and ethylene levels increased 6- to 10-fold. The expression of OIP-1, a 1-aminocyclo-propane-1-carboxylate synthase cDNA from potato, correlated with increased production of ethylene and decreased levels of rbcS mRNA in foliage of plants treated with O{sub 3}. In plants exposed to 0.30 {mu}L L{sup -1} O{sub 3} for 4 h, rbcS transcript levels were reduced 4-fold, whereas nuclear run-on experiments revealed that rbcS mRNA may be due, in part, to posttranscriptional regulation. The levels of transcripts for other chloroplast proteins, glyceraldehyde-3-phosphate dehydrogenase, and a photosystem II chlorophyll a/b-binding protein decreased in O{sub 3}-treated plants, in parallel with the decrease in rbcS mRNA. The steady-state mRNA level of a cytosolic glyceraldehyde-3-phosphate dehydrogenase increased in O{sub 3}-treated plants. The induction of ethylene and changes in transcript levels preceded visible leaf damage and decreases in ribulose-1,5-biphosphate carboxylase/oxygenase protein levels. 40 refs., 6 figs.

  12. Western-style diet modulates contractile responses to phenylephrine differently in mesenteric arteries from senescence-accelerated prone (SAMP8) and resistant (SAMR1) mice.

    PubMed

    Jiménez-Altayó, Francesc; Onetti, Yara; Heras, Magda; Dantas, Ana P; Vila, Elisabet

    2013-08-01

    The influence of two known cardiovascular risk factors, aging and consumption of a high-fat diet, on vascular mesenteric artery reactivity was examined in a mouse model of accelerated senescence (SAM). Five-month-old SAM prone (SAMP8) and resistant (SAMR1) female mice were fed a Western-type high-fat diet (WD; 8 weeks). Mesenteric arteries were dissected, and vascular reactivity, protein and messenger RNA expression, superoxide anion (O 2 (·-) ) and hydrogen peroxide formation were evaluated by wire myography, immunofluorescence, RT-qPCR, ethidium fluorescence and ferric-xylenol orange, respectively. Contraction to KCl and relaxation to acetylcholine remained unchanged irrespective of senescence and diet. Although similar contractions to phenylephrine were observed in SAMR1 and SAMP8, accelerated senescence was associated with decreased eNOS and nNOS and increased O 2 (·-) synthesis. Senescence-related alterations were compensated, at least partly, by the contribution of NO derived from iNOS and the enhanced endogenous antioxidant capacity of superoxide dismutase 1 to maintain vasoconstriction. Administration of a WD induced qualitatively different alterations in phenylephrine contractions of mesenteric arteries from SAMR1 and SAMP8. SAMR1 showed increased contractions partly as a result of decreased NO availability generated by decreased eNOS and nNOS and enhanced O 2 (·-) formation. In contrast, WD feeding in SAMP8 resulted in reduced contractions due to, at least in part, the increased functional participation of iNOS-derived NO. In conclusion, senescence-dependent intrinsic alterations during early stages of vascular senescence may promote vascular adaptation and predispose to further changes in response to high-fat intake, which may lead to the progression of aging-related cardiovascular disease, whereas young subjects lack the capacity for this adaptation.

  13. Accelerated onset of senescence of endothelial progenitor cells in patients with type 2 diabetes mellitus: role of dimethylarginine dimethylaminohydrolase 2 and asymmetric dimethylarginine.

    PubMed

    Yuan, Qiong; Hu, Chang-Ping; Gong, Zhi-Cheng; Bai, Yong-Ping; Liu, Si-Yu; Li, Yuan-Jian; Jiang, Jun-Lin

    2015-03-20

    The risk of cardiovascular complications in diabetic patients is mainly associated with endothelial dysfunction. Reduced number of EPCs and impaired function of EPCs in diabetes result in imbalance of endothelial homeostasis and dysfunction of vessels. In patients with diabetes mellitus, plasma levels of asymmetric dimethylarginine (ADMA) were elevated, while the expression and activity of dimethylarginine dimethylaminohydrolase (DDAH) were reduced. In the present study, we investigated the role of the DDAH2/ADMA pathway in the senescence of EPCs in type 2 diabetic patients and cultured EPCs treated with high glucose. The results showed that the percentage of senescent EPCs increased while the expression of DDAH2 decreased concomitantly with an increase in the plasma levels of ADMA in patients with type 2 diabetes mellitus (T2DM). Similar results were seen in cultured EPCs treated with high glucose. Exogenous application of ADMA accelerated the senescence of EPCs in a dose-dependent manner, and overexpression of DDAH2 inhibited high glucose-induced EPCs senescence. In addition, it has also been reported that DDAH/ADMA pathway is regulated by silent information regulator 1 (SIRT1) in endothelial cell. In the present study, we found decreased expression of SIRT1 both in T2DM patients and EPCs pretreated with high glucose. And resveratrol (activating SIRT1) inhibited high glucose-induced EPCs senescence by upregulating the expression of DDAH2 and decreasing the levels of ADMA. Taken together, we concluded that DDAH2/ADMA is involved in the accelerated senescence of EPCs in diabetes, which is associated with the activation of SIRT1.

  14. Defects in subventricular zone pigmented epithelium-derived factor niche signaling in the senescence-accelerated mouse prone-8.

    PubMed

    Castro-Garcia, Paola; Díaz-Moreno, María; Gil-Gas, Carmen; Fernández-Gómez, Francisco J; Honrubia-Gómez, Paloma; Álvarez-Simón, Carmen Belén; Sánchez-Sánchez, Francisco; Cano, Juan Carlos Castillo; Almeida, Francisco; Blanco, Vicente; Jordán, Joaquín; Mira, Helena; Ramírez-Castillejo, Carmen

    2015-04-01

    We studied potential changes in the subventricular zone (SVZ) stem cell niche of the senescence-accelerated mouse prone-8 (SAM-P8) aging model. Bromodeoxyuridine (BrdU) assays with longtime survival revealed a lower number of label-retaining stem cells in the SAM-P8 SVZ compared with the SAM-Resistant 1 (SAM-R1) control strain. We also found that in SAM-P8 niche signaling is attenuated and the stem cell pool is less responsive to the self-renewal niche factor pigmented epithelium-derived factor (PEDF). Protein analysis demonstrated stable amounts of the PEDF ligand in the SAM-P8 SVZ niche; however, SAM-P8 stem cells present a significant expression decrease of patatin-like phospholipase domain containing 2, a receptor for PEDF (PNPLA2-PEDF) receptor, but not of laminin receptor (LR), a receptor for PEDF (LR-PEDF) receptor. We observed changes in self-renewal related genes (hairy and enhancer of split 1 (Hes1), hairy and enhancer of split 1 (Hes5), Sox2] and report that although these genes are down-regulated in SAM-P8, differentiation genes (Pax6) are up-regulated and neurogenesis is increased. Finally, sheltering mammalian telomere complexes might be also involved given a down-regulation of telomeric repeat binding factor 1 (Terf1) expression was observed in SAM-P8 at young age periods. Differences between these 2 models, SAM-P8 and SAM-R1 controls, have been previously detected at more advanced ages. We now describe alterations in the PEDF signaling pathway and stem cell self-renewal at a very young age, which could be involved in the premature senescence observed in the SAM-P8 model.

  15. Melatonin decreases the expression of inflammation and apoptosis markers in the lung of a senescence-accelerated mice model.

    PubMed

    Puig, Ángela; Rancan, Lisa; Paredes, Sergio D; Carrasco, Adrián; Escames, Germaine; Vara, Elena; Tresguerres, Jesús A F

    2016-03-01

    Aging is associated with an increase in oxidative stress and inflammation. The aging lung is particularly affected since it is continuously exposed to environmental oxidants while antioxidant machinery weakens with age. Melatonin, a free radical scavenger, counteracts inflammation and apoptosis in healthy cells from several tissues. Its effects on the aging lung are, however, not yet fully understood. This study aimed to investigate the effect of chronic administration of melatonin on the expression of inflammation markers (TNF-α, IL-1β, NFκB2, HO-1) and apoptosis parameters (BAD, BAX, AIF) in the lung tissue of male senescence-accelerated prone mice (SAMP8). In addition, RNA oxidative damage, as the formation of 8-hydroxyguanosine (8-OHG), was also evaluated. Young and old animals, aged 2 and 10 months respectively, were divided into 4 groups: untreated young, untreated old, old mice treated with 1mg/kg/day melatonin, and old animals treated with 10mg/kg/day melatonin. Untreated young and old male senescence accelerated resistant mice (SAMR1) were used as controls. After 30 days of treatment, animals were sacrificed. Lungs were collected and immediately frozen in liquid nitrogen. mRNA and protein expressions were measured by RT-PCR and Western blotting, respectively. Levels of 8-OHG were quantified by ELISA. Mean values were analyzed using ANOVA. Old nontreated SAMP8 animals showed increased (p<0.05) mRNA and protein levels of TNF-α, IL-1β, NFκB2, and HO-1 compared to young mice and SAMR1 mice. Melatonin treatment with either dose reversed the aging-derived inflammation (p<0.05). BAD, BAX and AIF expressions also rose with aging, the effect being counteracted with melatonin (p<0.05). Aging also caused a significant elevation (p<0.05) in SAMP8 8-OHG values. This increase was not observed in animals treated with melatonin (p<0.05). In conclusion, melatonin treatment was able to modulate the inflammatory and apoptosis status of the aging lungs, exerting a

  16. Application of quantitative trait locus mapping and transcriptomics to studies of the senescence-accelerated phenotype in rats

    PubMed Central

    2014-01-01

    Background Etiology of complex disorders, such as cataract and neurodegenerative diseases including age-related macular degeneration (AMD), remains poorly understood due to the paucity of animal models, fully replicating the human disease. Previously, two quantitative trait loci (QTLs) associated with early cataract, AMD-like retinopathy, and some behavioral aberrations in senescence-accelerated OXYS rats were uncovered on chromosome 1 in a cross between OXYS and WAG rats. To confirm the findings, we generated interval-specific congenic strains, WAG/OXYS-1.1 and WAG/OXYS-1.2, carrying OXYS-derived loci of chromosome 1 in the WAG strain. Both congenic strains displayed early cataract and retinopathy but differed clinically from OXYS rats. Here we applied a high-throughput RNA sequencing (RNA-Seq) strategy to facilitate nomination of the candidate genes and functional pathways that may be responsible for these differences and can contribute to the development of the senescence-accelerated phenotype of OXYS rats. Results First, the size and map position of QTL-derived congenic segments were determined by comparative analysis of coding single-nucleotide polymorphisms (SNPs), which were identified for OXYS, WAG, and congenic retinal RNAs after sequencing. The transferred locus was not what we expected in WAG/OXYS-1.1 rats. In rat retina, 15442 genes were expressed. Coherent sets of differentially expressed genes were identified when we compared RNA-Seq retinal profiles of 20-day-old WAG/OXYS-1.1, WAG/OXYS-1.2, and OXYS rats. The genes most different in the average expression level between the congenic strains included those generally associated with the Wnt, integrin, and TGF-β signaling pathways, widely involved in neurodegenerative processes. Several candidate genes (including Arhgap33, Cebpg, Gtf3c1, Snurf, Tnfaip3, Yme1l1, Cbs, Car9 and Fn1) were found to be either polymorphic in the congenic loci or differentially expressed between the strains. These genes may

  17. Metformin and the ATM DNA damage response (DDR): accelerating the onset of stress-induced senescence to boost protection against cancer.

    PubMed

    Menendez, Javier A; Cufí, Sílvia; Oliveras-Ferraros, Cristina; Martin-Castillo, Begoña; Joven, Jorge; Vellon, Luciano; Vazquez-Martin, Alejandro

    2011-11-01

    By activating the ataxia telangiectasia mutated (ATM)-mediated DNA Damage Response (DDR), the AMPK agonist metformin might sensitize cells against further damage, thus mimicking the precancerous stimulus that induces an intrinsic barrier against carcinogenesis. Herein, we present the new hypothesis that metformin might function as a tissue sweeper of pre-malignant cells before they gain stem cell/tumor initiating properties. Because enhanced glycolysis (the Warburg effect) plays a causal role in the gain of stem-like properties of tumor-initiating cells by protecting them from the pro-senescent effects of mitochondrial respiration-induced oxidative stress, metformin's ability to disrupt the glycolytic metabotype may generate a cellular phenotype that is metabolically protected against immortalization. The bioenergetic crisis imposed by metformin, which may involve enhanced mitochondrial biogenesis and oxidative stress, can lower the threshold for cellular senescence by pre-activating an ATM-dependent pseudo-DDR. This allows an accelerated onset of cellular senescence in response to additional oncogenic stresses. By pushing cancer cells to use oxidative phosphorylation instead of glycolysis, metformin can rescue cell surface major histocompatibility complex class I (MHC-I) expression that is downregulated by oncogenic transformation, a crucial adaptation of tumor cells to avoid the adaptive immune response by cytotoxic T-lymphocytes (CTLs). Aside from restoration of tumor immunosurveillance at the cell-autonomous level, metformin can activate a senescence-associated secretory phenotype (SASP) to reinforce senescence growth arrest, which might trigger an immune-mediated clearance of the senescent cells in a non-cell-autonomous manner. By diminishing the probability of escape from the senescence anti-tumor barrier, the net effect of metformin should be a significant decrease in the accumulation of dysfunctional, pre-malignant cells in tissues, including those with the

  18. Overexpression of PDH45 or SUV3 helicases in rice leads to delayed leaf senescence-associated events.

    PubMed

    Macovei, Anca; Sahoo, Ranjan K; Faè, Matteo; Balestrazzi, Alma; Carbonera, Daniela; Tuteja, Narendra

    2017-03-01

    Senescence is a very complex process characterized by a highly regulated series of degenerative events which include changes in cell structure, metabolism and gene expression. In animals, one of the indicators of senescence is telomere shortening. In plants, this aspect is more puzzling because telomere shortening is not always correlated with senescence. In some cases, there were no differences in telomere length during plant developmental stages while in other cases both shortening and lengthening have been observed. Several genes involved in telomere homeostasis have been identified in plants, including some helicases. In the present study, the salinity stress-tolerant transgenic IR64 rice plants overexpressing the PDH45 (Pea DNA Helicase 45) or SUV3 (Suppressor of Var1-3) genes were used to test their performance during natural senescence at flowering (S2) and seed maturation (S4) developmental stages. Our results reveal that both PDH45 and SUV3 transgenic rice lines present decreased levels of necrosis/apoptosis as compared to wild type plants. Additionally, in these plants, some senescence-associated genes (SAGs) were downregulated at S2 and S4 stages, while genes involved in the maintenance of genome stability and DNA repair were upregulated. More interestingly, the telomeres were up to 3.8-fold longer in the SUV3 overexpressing lines as compared to wild type plants. This was associated with an increase (2.5-fold) in telomerase (OsTERT) transcript level. This is an interesting result reporting a possible involvement of SUV3 in telomere homeostasis in plants.

  19. The F-Box Protein OsFBK12 Targets OsSAMS1 for Degradation and Affects Pleiotropic Phenotypes, Including Leaf Senescence, in Rice1[W][OPEN

    PubMed Central

    Chen, Yuan; Xu, Yunyuan; Luo, Wei; Li, Wenxuan; Chen, Na; Zhang, Dajian; Chong, Kang

    2013-01-01

    Leaf senescence is related to the grain-filling rate and grain weight in cereals. Many components involved in senescence regulation at either the genetic or physiological level are known. However, less is known about molecular regulation mechanisms. Here, we report that OsFBK12 (an F-box protein containing a Kelch repeat motif) interacts with S-ADENOSYL-l-METHIONINE SYNTHETASE1 (SAMS1) to regulate leaf senescence and seed size as well as grain number in rice (Oryza sativa). Yeast two-hybrid, pull-down, and bimolecular fluorescence complementation assays indicate that OsFBK12 interacts with Oryza sativa S-PHASE KINASE-ASSOCIATED PROTEIN1-LIKE PROTEIN and with OsSAMS1. Biochemical and physiological data showed that OsFBK12 targets OsSAMS1 for degradation. OsFBK12-RNA interference lines and OsSAMS1 overexpression lines showed increased ethylene levels, while OsFBK12-OX lines and OsSAMS1-RNA interference plants exhibited decreased ethylene. Phenotypically, overexpression of OsFBK12 led to a delay in leaf senescence and germination and increased seed size, whereas knockdown lines of either OsFBK12 or OsSAMS1 promoted the senescence program. Our results suggest that OsFBK12 is involved in the 26S proteasome pathway by interacting with Oryza sativa S-PHASE KINASE-ASSOCIATED PROTEIN1-LIKE PROTEIN and that it targets the substrate OsSAMS1 for degradation, triggering changes in ethylene levels for the regulation of leaf senescence and grain size. These data have potential applications in the molecular breeding of rice. PMID:24144792

  20. Enzyme-treated Asparagus officinalis extract shows neuroprotective effects and attenuates cognitive impairment in senescence-accelerated mice.

    PubMed

    Sakurai, Takuya; Ito, Tomohiro; Wakame, Koji; Kitadate, Kentaro; Arai, Takashi; Ogasawara, Junetsu; Kizaki, Takako; Sato, Shogo; Ishibashi, Yoshinaga; Fujiwara, Tomonori; Akagawa, Kimio; Ishida, Hitoshi; Ohno, Hideki

    2014-01-01

    Increases in the number of patients with dementia involving Alzheimer's disease (AD) are seen as a grave public health problem. In neurodegenerative disorders involving AD, biological stresses, such as oxidative and inflammatory stress, induce neural cell damage. Asparagus (Asparagus officinalis) is a popular vegetable, and an extract prepared from this reportedly possesses various beneficial biological activities. In the present study, we investigated the effects of enzyme-treated asparagus extract (ETAS) on neuronal cells and early cognitive impairment of senescence-accelerated mouse prone 8 (SAMP8) mice. The expression of mRNAs for factors that exert cytoprotective and anti-apoptotic functions, such as heat-shock protein 70 and heme oxygenase-1, was upregulated in NG108-15 neuronal cells by treatment with ETAS. Moreover, when release of lactate dehydrogenase from damaged NG108-15 cells was increased for cells cultured in medium containing either the nitric oxide donor sodium nitroprusside or the hypoxia mimic reagent cobalt chloride, ETAS significantly attenuated this cell damage. Also, when contextual fear memory, which is considered to be a hippocampus-dependent memory, was significantly impaired in SAMP8 mice, ETAS attenuated the cognitive impairment. These results suggest that ETAS produces cytoprotective effects in neuronal cells and attenuates the effects on the cognitive impairment of SAMP8 mice.

  1. Accelerated Senescence and Enhanced Disease Resistance in Hybrid Chlorosis Lines Derived from Interspecific Crosses between Tetraploid Wheat and Aegilops tauschii

    PubMed Central

    Tosa, Yukio; Yoshida, Kentaro; Park, Pyoyun; Takumi, Shigeo

    2015-01-01

    Hybrid chlorosis, a type of hybrid incompatibility, has frequently been reported in inter- and intraspecific crosses of allopolyploid wheat. In a previous study, we reported some types of growth abnormalities such as hybrid necrosis and observed hybrid chlorosis with mild or severe abnormalities in wheat triploids obtained in crosses between tetraploid wheat cultivar Langdon and four Ae. tauschii accessions and in their derived synthetic hexaploids. However, the molecular mechanisms underlying hybrid chlorosis are not well understood. Here, we compared cytology and gene expression in leaves to characterize the abnormal growth in wheat synthetics showing mild and severe chlorosis. In addition, we compared disease resistance to wheat blast fungus. In total 55 and 105 genes related to carbohydrate metabolism and 53 and 89 genes for defense responses were markedly up-regulated in the mild and severe chlorosis lines, respectively. Abnormal chloroplasts formed in the mesophyll cells before the leaves yellowed in the hybrid chlorosis lines. The plants with mild chlorosis showed increased resistance to wheat blast and powdery mildew fungi, although significant differences only in two, third internode length and maturation time, out of the examined agricultural traits were found between the wild type and plants showing mild chlorosis. These observations suggest that senescence might be accelerated in hybrid chlorosis lines of wheat synthetics. Moreover, in wheat synthetics showing mild chlorosis, the negative effects on biomass can be minimized, and they may show substantial fitness under pathogen-polluted conditions. PMID:25806790

  2. Relationship of nuclease activity and synthesis to senescence of corn (Zea mays L.) stalk pith, cob parenchyma and first developed leaf tissues.

    PubMed

    BeMiller, J N; Liu TU, Y S; Liu, C R; Pappelis, A J

    1976-01-01

    An increase in total RNase activity was associated with three patterns of cell senescence in corn (Zea mays L.) (cv. WF9 X 38-11) cob parenchyma during the first two weeks following silking, stalk pith tissue after internode elongation and the first developed leaf of seedlings. Stalk pith tissue had two RNase activities, one inhibited by EDTA and one not. Both remained in approximately equal amounts in young to old pith tissue. In the first developed leaf of seedlings, the activity not inhibited by EDTA remained at a constant low level during the period studied, while the other activity varied. No inhibition by EDTA was found in cob parenchyma tissue. Incubation of sections of cob parenchyma and stalk pith tissues suggested that the total RNase activity of cob parenchyma is very stable and that of stalk pith tissue is relatively stable. An age-related increase in DNase activity was found in stalk pith tissue and in the first developed leaf of seedlings, but not in cob parenchyma tissue.

  3. Posttranslational elevation of cell wall invertase activity by silencing its inhibitor in tomato delays leaf senescence and increases seed weight and fruit hexose level.

    PubMed

    Jin, Ye; Ni, Di-An; Ruan, Yong-Ling

    2009-07-01

    Invertase plays multiple pivotal roles in plant development. Thus, its activity must be tightly regulated in vivo. Emerging evidence suggests that a group of small proteins that inhibit invertase activity in vitro appears to exist in a wide variety of plants. However, little is known regarding their roles in planta. Here, we examined the function of INVINH1, a putative invertase inhibitor, in tomato (Solanum lycopersicum). Expression of a INVINH1:green fluorescent protein fusion revealed its apoplasmic localization. Ectopic overexpression of INVINH1 in Arabidopsis thaliana specifically reduced cell wall invertase activity. By contrast, silencing its expression in tomato significantly increased the activity of cell wall invertase without altering activities of cytoplasmic and vacuolar invertases. Elevation of cell wall invertase activity in RNA interference transgenic tomato led to (1) a prolonged leaf life span involving in a blockage of abscisic acid-induced senescence and (2) an increase in seed weight and fruit hexose level, which is likely achieved through enhanced sucrose hydrolysis in the apoplasm of the fruit vasculature. This assertion is based on (1) coexpression of INVINH1 and a fruit-specific cell wall invertase Lin5 in phloem parenchyma cells of young fruit, including the placenta regions connecting developing seeds; (2) a physical interaction between INVINH1 and Lin5 in vivo; and (3) a symplasmic discontinuity at the interface between placenta and seeds. Together, the results demonstrate that INVINH1 encodes a protein that specifically inhibits the activity of cell wall invertase and regulates leaf senescence and seed and fruit development in tomato by limiting the invertase activity in planta.

  4. Sixteen cytosolic glutamine synthetase genes identified in the Brassica napus L. genome are differentially regulated depending on nitrogen regimes and leaf senescence.

    PubMed

    Orsel, Mathilde; Moison, Michaël; Clouet, Vanessa; Thomas, Justine; Leprince, Françoise; Canoy, Anne-Sophie; Just, Jérémy; Chalhoub, Boulos; Masclaux-Daubresse, Céline

    2014-07-01

    A total of 16 BnaGLN1 genes coding for cytosolic glutamine synthetase isoforms (EC 6.3.1.2.) were found in the Brassica napus genome. The total number of BnaGLN1 genes, their phylogenetic relationships, and genetic locations are in agreement with the evolutionary history of Brassica species. Two BnaGLN1.1, two BnaGLN1.2, six BnaGLN1.3, four BnaGLN1.4, and two BnaGLN1.5 genes were found and named according to the standardized nomenclature for the Brassica genus. Gene expression showed conserved responses to nitrogen availability and leaf senescence among the Brassiceae tribe. The BnaGLN1.1 and BnaGLN1.4 families are overexpressed during leaf senescence and in response to nitrogen limitation. The BnaGLN1.2 family is up-regulated under high nitrogen regimes. The members of the BnaGLN1.3 family are not affected by nitrogen availability and are more expressed in stems than in leaves. Expression of the two BnaGLN1.5 genes is almost undetectable in vegetative tissues. Regulations arising from plant interactions with their environment (such as nitrogen resources), final architecture, and therefore sink-source relations in planta, seem to be globally conserved between Arabidopsis and B. napus. Similarities of the coding sequence (CDS) and protein sequences, expression profiles, response to nitrogen availability, and ageing suggest that the roles of the different GLN1 families have been conserved among the Brassiceae tribe. These findings are encouraging the transfer of knowledge from the Arabidopsis model plant to the B. napus crop plant. They are of special interest when considering the role of glutamine synthetase in crop yield and grain quality in maize and wheat.

  5. Sixteen cytosolic glutamine synthetase genes identified in the Brassica napus L. genome are differentially regulated depending on nitrogen regimes and leaf senescence

    PubMed Central

    Orsel, Mathilde; Moison, Michaël; Clouet, Vanessa; Thomas, Justine; Leprince, Françoise; Canoy, Anne-Sophie; Just, Jérémy; Chalhoub, Boulos; Masclaux-Daubresse, Céline

    2014-01-01

    A total of 16 BnaGLN1 genes coding for cytosolic glutamine synthetase isoforms (EC 6.3.1.2.) were found in the Brassica napus genome. The total number of BnaGLN1 genes, their phylogenetic relationships, and genetic locations are in agreement with the evolutionary history of Brassica species. Two BnaGLN1.1, two BnaGLN1.2, six BnaGLN1.3, four BnaGLN1.4, and two BnaGLN1.5 genes were found and named according to the standardized nomenclature for the Brassica genus. Gene expression showed conserved responses to nitrogen availability and leaf senescence among the Brassiceae tribe. The BnaGLN1.1 and BnaGLN1.4 families are overexpressed during leaf senescence and in response to nitrogen limitation. The BnaGLN1.2 family is up-regulated under high nitrogen regimes. The members of the BnaGLN1.3 family are not affected by nitrogen availability and are more expressed in stems than in leaves. Expression of the two BnaGLN1.5 genes is almost undetectable in vegetative tissues. Regulations arising from plant interactions with their environment (such as nitrogen resources), final architecture, and therefore sink–source relations in planta, seem to be globally conserved between Arabidopsis and B. napus. Similarities of the coding sequence (CDS) and protein sequences, expression profiles, response to nitrogen availability, and ageing suggest that the roles of the different GLN1 families have been conserved among the Brassiceae tribe. These findings are encouraging the transfer of knowledge from the Arabidopsis model plant to the B. napus crop plant. They are of special interest when considering the role of glutamine synthetase in crop yield and grain quality in maize and wheat. PMID:24567494

  6. Determination of maximum leaf velocity and acceleration of a dynamic multileaf collimator: implications for 4D radiotherapy.

    PubMed

    Wijesooriya, K; Bartee, C; Siebers, J V; Vedam, S S; Keall, P J

    2005-04-01

    The dynamic multileaf collimator (MLC) can be used for four-dimensional (4D), or tumor tracking radiotherapy. However, the leaf velocity and acceleration limitations become a crucial factor as the MLC leaves need to respond in near real time to the incoming respiration signal. The aims of this paper are to measure maximum leaf velocity, acceleration, and deceleration to obtain the mechanical response times for the MLC, and determine whether the MLC is suitable for 4D radiotherapy. MLC leaf sequence files, requiring the leaves to reach maximum acceleration and velocity during motion, were written. The leaf positions were recorded every 50 ms, from which the maximum leaf velocity, acceleration, and deceleration were derived. The dependence on the velocity and acceleration of the following variables were studied: leaf banks, inner and outer leaves, MLC-MLC variations, gravity, friction, and the stability of measurements over time. Measurement results show that the two leaf banks of a MLC behave similarly, while the inner and outer leaves have significantly different maximum leaf velocities. The MLC-MLC variations and the dependence of gravity on maximum leaf velocity are statistically significant. The average maximum leaf velocity at the isocenter plane of the MLC ranged from 3.3 to 3.9 cm/s. The acceleration and deceleration at the isocenter plane of the MLC ranged from 50 to 69 cm/s2 and 46 to 52 cm/s2, respectively. Interleaf friction had a negligible effect on the results, and the MLC parameters remained stable with time. Equations of motion were derived to determine the ability of the MLC response to fluoroscopymeasured diaphragm motion. Given the present MLC mechanical characteristics, 4D radiotherapy is feasible for up to 97% of respiratory motion. For the largest respiratory motion velocities observed, beam delivery should be temporarily stopped (beam hold).

  7. Determination of maximum leaf velocity and acceleration of a dynamic multileaf collimator: Implications for 4D radiotherapy

    SciTech Connect

    Wijesooriya, K.; Bartee, C.; Siebers, J.V.; Vedam, S.S.; Keall, P.J.

    2005-04-01

    The dynamic multileaf collimator (MLC) can be used for four-dimensional (4D), or tumor tracking radiotherapy. However, the leaf velocity and acceleration limitations become a crucial factor as the MLC leaves need to respond in near real time to the incoming respiration signal. The aims of this paper are to measure maximum leaf velocity, acceleration, and deceleration to obtain the mechanical response times for the MLC, and determine whether the MLC is suitable for 4D radiotherapy. MLC leaf sequence files, requiring the leaves to reach maximum acceleration and velocity during motion, were written. The leaf positions were recorded every 50 ms, from which the maximum leaf velocity, acceleration, and deceleration were derived. The dependence on the velocity and acceleration of the following variables were studied: leaf banks, inner and outer leaves, MLC-MLC variations, gravity, friction, and the stability of measurements over time. Measurement results show that the two leaf banks of a MLC behave similarly, while the inner and outer leaves have significantly different maximum leaf velocities. The MLC-MLC variations and the dependence of gravity on maximum leaf velocity are statistically significant. The average maximum leaf velocity at the isocenter plane of the MLC ranged from 3.3 to 3.9 cm/s. The acceleration and deceleration at the isocenter plane of the MLC ranged from 50 to 69 cm/s{sup 2} and 46 to 52 cm/s{sup 2}, respectively. Interleaf friction had a negligible effect on the results, and the MLC parameters remained stable with time. Equations of motion were derived to determine the ability of the MLC response to fluoroscopy-measured diaphragm motion. Given the present MLC mechanical characteristics, 4D radiotherapy is feasible for up to 97% of respiratory motion. For the largest respiratory motion velocities observed, beam delivery should be temporarily stopped (beam hold)

  8. Expression of potato RNA-binding proteins StUBA2a/b and StUBA2c induces hypersensitive-like cell death and early leaf senescence in Arabidopsis

    PubMed Central

    Na, Jong-Kuk; Kim, Jae-Kwang; Kim, Dool-Yi; Assmann, Sarah M.

    2015-01-01

    The Arabidopsis thaliana genome encodes three RNA-binding proteins (RBPs), UBP1-associated protein 2a (UBA2a), UBA2b, and UBA2c, that contain two RNA-recognition motif (RRM) domains. They play important roles in wounding response and leaf senescence, and are homologs of Vicia faba abscisic-acid-activated protein kinase-interacting protein 1 (VfAKIP1). The potato (Solanum tuberosum) genome encodes at least seven AKIP1-like RBPs. Here, two potato RBPs have been characterized, StUBA2a/b and StUBA2c, that are homologous to VfAKIP1 and Arabidopsis UBA2s. Transient expression of StUBA2s induced a hypersensitive-like cell death phenotype in tobacco leaves, and an RRM-domain deletion assay of StUBA2s revealed that the first RRM domain is crucial for the phenotype. Unlike overexpression of Arabidopsis UBA2s, constitutive expression of StUBA2a/b in Arabidopsis did not cause growth arrest and lethality at the young seedling stage, but induced early leaf senescence. This phenotype was associated with increased expression of defence- and senescence-associated genes, including pathogen-related genes (PR) and a senescence-associated gene (SAG13), and it was aggravated upon flowering and ultimately resulted in a shortened life cycle. Leaf senescence of StUBA2a/b Arabidopsis plants was enhanced under darkness and was accompanied by H2O2 accumulation and altered expression of autophagy-associated genes, which likely cause cellular damage and are proximate causes of the early leaf senescence. Expression of salicylic acid signalling and biosynthetic genes was also upregulated in StUBA2a/b plants. Consistent with the localization of UBA2s-GFPs and VfAKIP1-GFP, soluble-modified GFP-StUBA2s localized in the nucleus within nuclear speckles. StUBA2s potentially can be considered for transgenic approaches to induce potato shoot senescence, which is desirable at harvest. PMID:25944928

  9. Natural leaf senescence: probed by chlorophyll fluorescence, CO2 photosynthetic rate and antioxidant enzyme activities during grain filling in different rice cultivars.

    PubMed

    Panda, Debabrata; Sarkar, Ramani Kumar

    2013-01-01

    Natural leaf senescence was investigated in four rainfed lowland rice cultivars, FR 13A (tolerant to submergence), Sabita and Sarala (adapted to medium depth, 0-50 cm stagnant flooding) and Dengi (conventional farmers' cultivar). Changes in the levels of pigment content, CO2 photosynthetic rate, photosystem II photochemistry and anti-oxidant enzyme activities of flag leaves during grain-filling stage were investigated. Chlorophyll content, photochemical efficiency of photosystem II and CO2 photosynthetic rate decreased significantly with the progress of grain-filling. Likely, the activities of antioxidant enzymes namely, superoxide dismutase, catalase, guaiacol peroxidase and ascorbate peroxidase decreased with progress of grain-filling. A substantial difference was observed among the four cultivars for the sustainability index (SI) of different photosynthetic parameters and antioxidant enzyme activities; SIs of those parameters, in general, were lower in low yielding cultivar FR 13A compared to the other three cultivars. Among the four cultivars Sabita gave maximum grain yield. Yet, SI of Pn was greater in Sarala and Dengi compared to the Sabita. SIs of electron transport (ETo/CS), maximal photochemical efficiency (Fv/Fm), area above Fo and Fm, catalase and ascorbate peroxidase were also greater in Sarala and Dengi. The data showed that among the different Chl a fluorescence parameters, PI could be used with greater accuracy to distinguish slow and fast senescence rice cultivars during grain-filling period. It was concluded that maintaining the vitality of rice plants during grain-filling gave guarantee to synthesize carbohydrate, however greater yield could be realized provided superior yield attributing parameters are present.

  10. Defective ATM-Kap-1-mediated chromatin remodeling impairs DNA repair and accelerates senescence in progeria mouse model.

    PubMed

    Liu, Baohua; Wang, Zimei; Ghosh, Shrestha; Zhou, Zhongjun

    2013-04-01

    ATM-mediated phosphorylation of KAP-1 triggers chromatin remodeling and facilitates the loading and retention of repair proteins at DNA lesions. Mouse embryonic fibroblasts (MEFs) derived from Zmpste24(-/-) mice undergo early senescence, attributable to delayed recruitment of DNA repair proteins. Here, we show that ATM-Kap-1 signaling is compromised in Zmpste24(-/-) MEFs, leading to defective DNA damage-induced chromatin remodeling. Knocking down Kap-1 rescues impaired chromatin remodeling, defective DNA repair and early senescence in Zmpste24(-/-) MEFs. Thus, ATM-Kap-1-mediated chromatin remodeling plays a critical role in premature aging, carrying significant implications for progeria therapy.

  11. Overexpression of Medicago sativa TMT elevates the α-tocopherol content in Arabidopsis seeds, alfalfa leaves, and delays dark-induced leaf senescence.

    PubMed

    Jiang, Jishan; Jia, Huili; Feng, Guangyan; Wang, Zan; Li, Jun; Gao, Hongwen; Wang, Xuemin

    2016-08-01

    Alfalfa (Medicago sativa L.) is a major forage legume for livestock and a target for improving their dietary quality. Vitamin E is an essential vitamin that animals must obtain from their diet for proper growth and development. γ-tocopherol methyltransferase (γ-TMT), which catalyzes the conversion of δ- and γ-tocopherols (or tocotrienols) to β- and α-tocopherols (or tocotrienols), respectively, is the final enzyme involved in the vitamin E biosynthetic pathway. The overexpression of M. sativa L.'s γ-TMT (MsTMT) increased the α-tocopherol content 10-15 fold above that of wild type Arabidopsis seeds without altering the total content of vitamin E. Additionally, in response to osmotic stress, the biomass and the expression levels of several osmotic marker genes were significantly higher in the transgenic lines compared with wild type. Overexpression of MsTMT in alfalfa led to a modest, albeit significant, increase in α-tocopherol in leaves and was also responsible for a delayed leaf senescence phenotype. Additionally, the crude protein content was increased, while the acid and neutral detergent fiber contents were unchanged in these transgenic lines. Thus, increased α-tocopherol content occurred in transgenic alfalfa without compromising the nutritional qualities. The targeted metabolic engineering of vitamin E biosynthesis through MsTMT overexpression provides a promising approach to improve the α-tocopherol content of forage crops.

  12. Combined administration of oseltamivir and hochu-ekki-to (TJ-41) dramatically decreases the viral load in lungs of senescence-accelerated mice during influenza virus infection.

    PubMed

    Ohgitani, Eriko; Kita, Masakazu; Mazda, Osam; Imanishi, Jiro

    2014-02-01

    To enhance the effect of anti-influenza-virus agent treatment, the effect of combined administration of oseltamivir phosphate and hochu-ekki-to (Japanese traditional herbal medicine, HET) on early viral clearance was examined. Senescence-accelerated mice were given HET in drinking water for 2 weeks, followed by intranasal infection with influenza A virus strain PR8. After 4 hours of infection, oseltamivir was administered orally for 5 days. The viral loads in the lungs of the group receiving combined treatment were dramatically lower when compared with the viral loads in the lungs of the group receiving oseltamivir alone. HET significantly increased the induction of IL-1β and TNF-α in the lungs of PR8-infected mice and stimulated alveolar macrophage phagocytosis. From these results, we conclude that these functions may be responsible the increased effect on viral load reduction. Here, we show that the combined administration of oseltamivir and HET is very useful for influenza treatment in senescence-accelerated mice.

  13. Ethylene and the Regulation of Senescence Processes in Transgenic Nicotiana sylvestris Plants

    PubMed Central

    Yang, Thomas F.; Gonzalez-Carranza, Zinnia H.; Maunders, Martin J.; Roberts, Jeremy A.

    2008-01-01

    Background and Aims Exposure of plants to ethylene can influence a spectrum of developmental processes including organ senescence and abscission. The aim of this study was to examine the role of the gaseous regulator in Nicotiana sylvestris plants exhibiting a silenced or constitutive ethylene response. Methods Transgenic N. sylvestris plants were generated that either ectopically expressed the Arabidopsis mutant ethylene receptor ETR1-1 or the tomato EIN3-like (LeEIL1) gene. Highly expressing homozygous lines were selected and the time-course of development, from germination to organ senescence, was studied. Key Results Fifty percent of the homozygous Pro35S:ETR1-1 lines examined showed a high susceptibility to collapse prior to flowering, with plant death occurring within a few days of leaf wilting. The time-course of leaf senescence in the remaining Pro35S:ETR1-1 lines was visibly arrested compared to wild type (negative segregant) plants and this observation was reaffirmed by chlorophyll and protein analysis. Petal necrosis was also delayed in Pro35S:ETR1-1 lines and corolla abscission did not take place. When senescence of Pro35S:ETR1-1 plants did take place this was accompanied by leaf bleaching, but tissues remained fully turgid and showed no signs of collapse. A single Pro35S:LeEIL1 line was found to exhibit consistently accelerated leaf and flower senescence and precocious flower bud shedding. Conclusions These observations support a role for ethylene in regulating a spectrum of developmental events associated with organ senescence and tissue necrosis. Furthermore, the transgenic lines generated during this study may provide a valuable resource for exploring how senescence processes are regulated in plants. PMID:17901061

  14. Exogenous Melatonin Suppresses Dark-Induced Leaf Senescence by Activating the Superoxide Dismutase-Catalase Antioxidant Pathway and Down-Regulating Chlorophyll Degradation in Excised Leaves of Perennial Ryegrass (Lolium perenne L.)

    PubMed Central

    Zhang, Jing; Li, Huibin; Xu, Bin; Li, Jing; Huang, Bingru

    2016-01-01

    Leaf senescence is a typical symptom in plants exposed to dark and may be regulated by plant growth regulators. The objective of this study was to determine whether exogenous application of melatonin (N-acetyl-5-methoxytryptamine) suppresses dark-induced leaf senescence and the effects of melatonin on reactive oxygen species (ROS) scavenging system and chlorophyll degradation pathway in perennial grass species. Mature perennial ryegrass (Lolium perenne L. cv. ‘Pinnacle’) leaves were excised and incubated in 3 mM 2-(N-morpholino) ethanesulfonic buffer (pH 5.8) supplemented with melatonin or water (control) and exposed to dark treatment for 8 days. Leaves treated with melatonin maintained significantly higher endogenous melatonin level, chlorophyll content, photochemical efficiency, and cell membrane stability expressed by lower electrolyte leakage and malondialdehyde (MDA) content compared to the control. Exogenous melatonin treatment also reduced the transcript level of chlorophyll degradation-associated genes and senescence marker genes (LpSAG12.1, Lph36, and Lpl69) during the dark treatment. The endogenous O2- production rate and H2O2 content were significantly lower in these excised leaves treated with melatonin compared to the water control. Exogenous melatonin treatment caused increases in enzymatic activity and transcript levels of superoxide dismutase and catalase but had no significant effects on ascorbate peroxidase, glutathione reductase, dehydroascorbate reductase, and monohydroascorbate reductase. The content of non-enzymatic antioxidants, such as ascorbate and dehydroascorbate, were decreased by melatonin treatment, while the content of glutathione and oxidized glutathione was not affected by melatonin. These results suggest that the suppression of dark-induced leaf senescence by exogenous melatonin may be associated with its roles in regulating ROS scavenging through activating the superoxide dismutase-catalase enzymatic antioxidant pathway and

  15. Nitric oxide induces cotyledon senescence involving co-operation of the NES1/MAD1 and EIN2-associated ORE1 signalling pathways in Arabidopsis

    PubMed Central

    Du, Jing; Li, Manli; Kong, Dongdong; Wang, Lei; Lv, Qiang; Wang, Jinzheng; Bao, Fang; Gong, Qingqiu; Xia, Jinchan; He, Yikun

    2014-01-01

    After germination, cotyledons undertake the major role in supplying nutrients to the pre-photoautorophy angiosperm seedlings until they senesce. Like other senescence processes, cotyledon senescence is a programmed degenerative process. Nitric oxide can induce premature cotyledon senescence in Arabidopsis thaliana, yet the underlying mechanism remains elusive. A screen for genetic mutants identified the nes1 mutant, in which cotyledon senescence was accelerated by nitric oxide. Map-based cloning revealed that NES1 is allelic to a previously reported mitotic checkpoint family gene, MAD1. The nes1/mad1 mutants were restored to the wild type, in response to nitric oxide, by transforming them with pNES1::NES1. Ectopic expression of NES1 in the wild type delayed nitric oxide-mediated cotyledon senescence, confirming the repressive role of NES1. Moreover, two positive regulators of leaf senescence, the ethylene signalling component EIN2 and the transcription factor ORE1/AtNAC2/ANAC092, were found to function during nitric oxide-induced senescence in cotyledons. The block of ORE1 function delayed senescence and ectopic expression induced the process, revealing the positive role of ORE1. EIN2 was required to induce ORE1. Furthermore, the genetic interaction analysis between NES1 and ORE1 showed that the ore1 loss-of-function mutants were epistatic to nes1, suggesting the dominant role of ORE1 and the antagonistic role of NES1 during nitric oxide-induced cotyledon senescence in Arabidopsis. PMID:24336389

  16. Ghd2, a CONSTANS-like gene, confers drought sensitivity through regulation of senescence in rice

    PubMed Central

    Liu, Juhong; Shen, Jianqiang; Xu, Yan; Li, Xianghua; Xiao, Jinghua; Xiong, Lizhong

    2016-01-01

    CONSTANS (CO)-like genes have been intensively investigated for their roles in the regulation of photoperiodic flowering, but very limited information has been reported on their functions in other biological processes. Here, we found that a CO-like gene, Ghd2 (Grain number, plant height, and heading date2), which can increase the yield potential under normal growth condition just like its homologue Ghd7, is involved in the regulation of leaf senescence and drought resistance. Ghd2 is expressed mainly in the rice (Oryza sativa) leaf with the highest level detected at the grain-filling stage, and it is down-regulated by drought stress conditions. Overexpression of Ghd2 resulted in significantly reduced drought resistance, while its knockout mutant showed the opposite phenotype. The earlier senescence symptoms and the transcript up-regulation of many senescence-associated genes (SAGs) in Ghd2-overexpressing transgenic rice plants under drought stress conditions indicate that Ghd2 plays essential roles in accelerating drought-induced leaf senescence in rice. Moreover, developmental and dark-induced leaf senescence was accelerated in the Ghd2-overexpressing rice and delayed in the ghd2 mutant. Several SAGs were confirmed to be regulated by Ghd2 using a transient expression system in rice protoplasts. Ghd2 interacted with several regulatory proteins, including OsARID3, OsPURα, and three 14-3-3 proteins. OsARID3 and OsPURα showed expression patterns similar to Ghd2 in rice leaves, with the highest levels at the grain-filling stage, whereas OsARID3 and the 14-3-3 genes responded differently to drought stress conditions. These results indicate that Ghd2 functions as a regulator by integrating environmental signals with the senescence process into a developmental programme through interaction with different proteins. PMID:27638689

  17. The anti-aging effects of LW-AFC via correcting immune dysfunctions in senescence accelerated mouse resistant 1 (SAMR1) strain

    PubMed Central

    Wang, Jianhui; Cheng, Xiaorui; Zhang, Xiaorui; Cheng, Junping; Xu, Yiran; Zeng, Ju; Zhou, Wenxia; Zhang, Yongxiang

    2016-01-01

    Although there were considerable advances in the anti-aging medical field, it is short of therapeutic drug for anti-aging. Mounting evidence indicates that the immunosenescence is the key physiopathological mechanism of aging. This study showed the treatment of LW-AFC, an herbal medicine, decreased the grading score of senescence, increased weight, prolonged average life span and ameliorated spatial memory impairment in 12- and 24-month-old senescence accelerated mouse resistant 1 (SAMR1) strain. And these anti-aging effects of LW-AFC were more excellent than melatonin. The administration of LW-AFC enhanced ConA- and LPS-induced splenocyte proliferation in aged SAMR1 mice. The treatment of LW-AFC not only reversed the decreased the proportions of helper T cells, suppressor T cells and B cells, the increased regulatory T cells in the peripheral blood of old SAMR1 mice, but also could modulate the abnormal secretion of IL-1β, IL-2, IL-6, IL-17, IL-23, GM-CSF, IFN-γ, TNF-α, TNF-β, RANTES, eotaxin, MCP-1, IL-4, IL-5, IL-10 and G-CSF. These data indicated that LW-AFC reversed the immunosenescence status by restoring immunodeficiency and decreasing chronic inflammation and suggested LW-AFC may be an effective anti-aging agent. PMID:27105505

  18. The anti-aging effects of LW-AFC via correcting immune dysfunctions in senescence accelerated mouse resistant 1 (SAMR1) strain.

    PubMed

    Wang, Jianhui; Cheng, Xiaorui; Zhang, Xiaorui; Cheng, Junping; Xu, Yiran; Zeng, Ju; Zhou, Wenxia; Zhang, Yongxiang

    2016-05-10

    Although there were considerable advances in the anti-aging medical field, it is short of therapeutic drug for anti-aging. Mounting evidence indicates that the immunosenescence is the key physiopathological mechanism of aging. This study showed the treatment of LW-AFC, an herbal medicine, decreased the grading score of senescence, increased weight, prolonged average life span and ameliorated spatial memory impairment in 12- and 24-month-old senescence accelerated mouse resistant 1 (SAMR1) strain. And these anti-aging effects of LW-AFC were more excellent than melatonin. The administration of LW-AFC enhanced ConA- and LPS-induced splenocyte proliferation in aged SAMR1 mice. The treatment of LW-AFC not only reversed the decreased the proportions of helper T cells, suppressor T cells and B cells, the increased regulatory T cells in the peripheral blood of old SAMR1 mice, but also could modulate the abnormal secretion of IL-1β, IL-2, IL-6, IL-17, IL-23, GM-CSF, IFN-γ, TNF-α, TNF-β, RANTES, eotaxin, MCP-1, IL-4, IL-5, IL-10 and G-CSF. These data indicated that LW-AFC reversed the immunosenescence status by restoring immunodeficiency and decreasing chronic inflammation and suggested LW-AFC may be an effective anti-aging agent.

  19. The Decreased apical dominance1/Petunia hybrida CAROTENOID CLEAVAGE DIOXYGENASE8 gene affects branch production and plays a role in leaf senescence, root growth, and flower development.

    PubMed

    Snowden, Kimberley C; Simkin, Andrew J; Janssen, Bart J; Templeton, Kerry R; Loucas, Holly M; Simons, Joanne L; Karunairetnam, Sakuntala; Gleave, Andrew P; Clark, David G; Klee, Harry J

    2005-03-01

    Carotenoids and carotenoid cleavage products play an important and integral role in plant development. The Decreased apical dominance1 (Dad1)/PhCCD8 gene of petunia (Petunia hybrida) encodes a hypothetical carotenoid cleavage dioxygenase (CCD) and ortholog of the MORE AXILLARY GROWTH4 (MAX4)/AtCCD8 gene. The dad1-1 mutant allele was inactivated by insertion of an unusual transposon (Dad-one transposon), and the dad1-3 allele is a revertant allele of dad1-1. Consistent with its role in producing a graft-transmissible compound that can alter branching, the Dad1/PhCCD8 gene is expressed in root and shoot tissue. This expression is upregulated in the stems of the dad1-1, dad2, and dad3 increased branching mutants, indicating feedback regulation of the gene in this tissue. However, this feedback regulation does not affect the root expression of Dad1/PhCCD8. Overexpression of Dad1/PhCCD8 in the dad1-1 mutant complemented the mutant phenotype, and RNA interference in the wild type resulted in an increased branching phenotype. Other differences in phenotype associated with the loss of Dad1/PhCCD8 function included altered timing of axillary meristem development, delayed leaf senescence, smaller flowers, reduced internode length, and reduced root growth. These data indicate that the substrate(s) and/or product(s) of the Dad1/PhCCD8 enzyme are mobile signal molecules with diverse roles in plant development.

  20. The Decreased apical dominance1/Petunia hybrida CAROTENOID CLEAVAGE DIOXYGENASE8 Gene Affects Branch Production and Plays a Role in Leaf Senescence, Root Growth, and Flower Development

    PubMed Central

    Snowden, Kimberley C.; Simkin, Andrew J.; Janssen, Bart J.; Templeton, Kerry R.; Loucas, Holly M.; Simons, Joanne L.; Karunairetnam, Sakuntala; Gleave, Andrew P.; Clark, David G.; Klee, Harry J.

    2005-01-01

    Carotenoids and carotenoid cleavage products play an important and integral role in plant development. The Decreased apical dominance1 (Dad1)/PhCCD8 gene of petunia (Petunia hybrida) encodes a hypothetical carotenoid cleavage dioxygenase (CCD) and ortholog of the MORE AXILLARY GROWTH4 (MAX4)/AtCCD8 gene. The dad1-1 mutant allele was inactivated by insertion of an unusual transposon (Dad-one transposon), and the dad1-3 allele is a revertant allele of dad1-1. Consistent with its role in producing a graft-transmissible compound that can alter branching, the Dad1/PhCCD8 gene is expressed in root and shoot tissue. This expression is upregulated in the stems of the dad1-1, dad2, and dad3 increased branching mutants, indicating feedback regulation of the gene in this tissue. However, this feedback regulation does not affect the root expression of Dad1/PhCCD8. Overexpression of Dad1/PhCCD8 in the dad1-1 mutant complemented the mutant phenotype, and RNA interference in the wild type resulted in an increased branching phenotype. Other differences in phenotype associated with the loss of Dad1/PhCCD8 function included altered timing of axillary meristem development, delayed leaf senescence, smaller flowers, reduced internode length, and reduced root growth. These data indicate that the substrate(s) and/or product(s) of the Dad1/PhCCD8 enzyme are mobile signal molecules with diverse roles in plant development. PMID:15705953

  1. Functional and RNA-Sequencing Analysis Revealed Expression of a Novel Stay-Green Gene from Zoysia japonica (ZjSGR) Caused Chlorophyll Degradation and Accelerated Senescence in Arabidopsis

    PubMed Central

    Teng, Ke; Chang, Zhihui; Li, Xiao; Sun, Xinbo; Liang, Xiaohong; Xu, Lixin; Chao, Yuehui; Han, Liebao

    2016-01-01

    Senescence is not only an important developmental process, but also a responsive regulation to abiotic and biotic stress for plants. Stay-green protein plays crucial roles in plant senescence and chlorophyll degradation. However, the underlying mechanisms were not well-studied, particularly in non-model plants. In this study, a novel stay-green gene, ZjSGR, was isolated from Zoysia japonica. Subcellular localization result demonstrated that ZjSGR was localized in the chloroplasts. Quantitative real-time PCR results together with promoter activity determination using transgenic Arabidopsis confirmed that ZjSGR could be induced by darkness, ABA and MeJA. Its expression levels could also be up-regulated by natural senescence, but suppressed by SA treatments. Overexpression of ZjSGR in Arabidopsis resulted in a rapid yellowing phenotype; complementary experiments proved that ZjSGR was a functional homolog of AtNYE1 from Arabidopsis thaliana. Over expression of ZjSGR accelerated chlorophyll degradation and impaired photosynthesis in Arabidopsis. Transmission electron microscopy observation revealed that overexpression of ZjSGR decomposed the chloroplasts structure. RNA sequencing analysis showed that ZjSGR could play multiple roles in senescence and chlorophyll degradation by regulating hormone signal transduction and the expression of a large number of senescence and environmental stress related genes. Our study provides a better understanding of the roles of SGRs, and new insight into the senescence and chlorophyll degradation mechanisms in plants. PMID:28018416

  2. Modulation of infection-induced inflammation and locomotive deficit and longevity in senescence-accelerated mice-prone (SAMP8) model by the oligomerized polyphenol Oligonol.

    PubMed

    Tomobe, Koji; Fujii, Hajime; Sun, Buxiang; Nishioka, Hiroshi; Aruoma, Okezie I

    2007-08-01

    Oligonol is produced from the oligomerization of polyphenols (typically proanthocyanidin from a variety of fruits such as lychees, grapes, apples, persimmons, etc.) and contains catechin-type monomers and oligomers of proanthocyanidins. The ability of Oligonol to affect infection-dependent eye inflammation, locomotion and longevity in senescence-accelerated prone mice (SAMP8) (a model of senescence acceleration and geriatric disorders with increased oxidative stress and neuronal deficit) was investigated. Oligonol (60mg/kg) significantly modulated the extent of inflammation scores in the eye of SAMP8 mice. Examination of the mice indicated infection with mouse hepatitis virus and pinworm (Syphacia obvelata) in both males and females and with the intestinal protozoa (trichomonad) in males. A comparison of the two groups (using log-rank test) and the difference in the mean life span between groups (using Student's t-test) indicated significant differences in survival (p=0.043) and the mean life span (p=0.033) in male SAMP8 mice. Oligonol increased the mean life span and this was statistically significant. In the open-field locomotive test, the 7-week-old SAMP8 mice crossed more than 40 partitioned lines in 1min. At 48-week-old control untreated male SAMP8 crossed 2 lines. The Oligonol-treated 48-week-old male SAMP8 mice crossed 17 lines however. The improved locomotive activity was statistically significant even after 36weeks in the Oligonol-treated male SAMP8 but this was not the case throughout the time course of the study in the Oligonol-treated female SAMP8. Thus Oligonol treatment to SAMP8 mice modulated the severity of infection-dependent inflammation, prolonged life-span and significantly improved locomotive activity indicating potential benefit to aging-associated diseases such as Alzheimer's or Parkinson's diseases. This presents potential for further research to define infection-dependent inflammation associated with degenerative conditions and the

  3. LW-AFC Effects on N-glycan Profile in Senescence-Accelerated Mouse Prone 8 Strain, a Mouse Model of Alzheimer’s Disease

    PubMed Central

    Wang, Jianhui; Cheng, Xiaorui; Zeng, Ju; Yuan, Jiangbei; Wang, Zhongfu; Zhou, Wenxia; Zhang, Yongxiang

    2017-01-01

    Glycosylation is one of the most common eukaryotic post-translational modifications, and aberrant glycosylation has been linked to many diseases. However, glycosylation and glycome analysis is a significantly challenging task. Although several lines of evidence have indicated that protein glycosylation is defective in Alzheimer’s disease (AD), only a few studies have focused on AD glycomics. The etiology of AD is unclear and there are no effective disease-modifying treatments for AD. In this study, we found that the object recognition memory, passive avoidance, and spatial learning and memory of senescence-accelerated mouse prone 8 (SAMP8) strain, an AD animal model, were deficient, and LW-AFC, which was prepared from the traditional Chinese medicine prescription Liuwei Dihuang decoction, showed beneficial effects on the deterioration of cognitive capability in SAMP8 mice. Forty-three and 56 N-glycan were identified in the cerebral cortex and serum of SAMP8 mice, respectively. The N-glycan profile in SAMP8 mice was significantly different from that of senescence accelerated mouse resistant 1 (SAMR1) strains, the control of SAMP8 mice. Treatment with LW-AFC modulated the abundance of 21 and 6 N-glycan in the cerebral cortex and serum of SAMP8 mice, respectively. The abundance of (Hex)3(HexNAc)5(Fuc)1(Neu5Ac)1 and (Hex)2(HexNAc)4 decreased in the cerebral cortex and serum of SAMP8 mice compared with SAMR1 mice, decreases that were significantly correlated with learning and memory measures. The administration of LW-AFC could reverse or increase these levels in SAMP8 mice. These results indicated that the effects of LW-AFC on cognitive impairments in SAMP8 mice might be through modulation of N-glycan patterns, and LW-AFC may be a potential anti-AD agent. PMID:28203484

  4. Oligomerised lychee fruit-derived polyphenol attenuates cognitive impairment in senescence-accelerated mice and endoplasmic reticulum stress in neuronal cells.

    PubMed

    Sakurai, Takuya; Kitadate, Kentaro; Nishioka, Hiroshi; Fujii, Hajime; Ogasawara, Junetsu; Kizaki, Takako; Sato, Shogo; Fujiwara, Tomonori; Akagawa, Kimio; Izawa, Tetsuya; Ohno, Hideki

    2013-11-14

    Recently, the ability of polyphenols to reduce the risk of dementia and Alzheimer's disease (AD) has attracted a great deal of interest. In the present study, we investigated the attenuating effects of oligomerised lychee fruit-derived polyphenol (OLFP, also called Oligonol) on early cognitive impairment. Male senescence-accelerated mouse prone 8 (SAMP8) mice (4 months old) were given OLFP (100 mg/kg per d) for 2 months, and then conditioned fear memory testing was conducted. Contextual fear memory, which is considered hippocampus-dependent memory, was significantly impaired in SAMP8 mice compared with non-senescence-accelerated mice. OLFP attenuated cognitive impairment in SAMP8 mice. Moreover, the results of real-time PCR analysis that followed DNA array analysis in the hippocampus revealed that, compared with SAMP8 mice, the mRNA expression of Wolfram syndrome 1 (Wfs1) was significantly higher in SAMP8 mice administered with OLFP. Wfs1 reportedly helps to protect against endoplasmic reticulum (ER) stress, which is thought to be one of the causes for AD. The expression of Wfs1 was significantly up-regulated in NG108-15 neuronal cells by the treatment with OLFP, and the up-regulation was inhibited by the treatment of the cells with a c-Jun N-terminal kinase-specific inhibitor rather than with an extracellular signal-regulated kinase inhibitor. Moreover, OLFP significantly attenuated the tunicamycin-induced expression of the ER stress marker BiP (immunoglobulin heavy chain-binding protein) in the cells. These results suggest that OLFP has an attenuating effect on early cognitive impairment in SAMP8 mice, and diminishes ER stress in neuronal cells.

  5. STIM1 accelerates cell senescence in a remodeled microenvironment but enhances the epithelial-to-mesenchymal transition in prostate cancer

    PubMed Central

    Xu, Yingxi; Zhang, Shu; Niu, Haiying; Ye, Yujie; Hu, Fen; Chen, Si; Li, Xuefei; Luo, Xiaohe; Jiang, Shan; Liu, Yanhua; Chen, Yanan; Li, Junying; Xiang, Rong; Li, Na

    2015-01-01

    The importance of store-operated Ca2+ entry (SOCE) and the role of its key molecular regulators, STIM1 and ORAI1, in the development of cancer are emerging. Here, we report an unexpected dual function of SOCE in prostate cancer progression by revealing a decrease in the expression of STIM1 in human hyperplasia and tumor tissues of high histological grade and by demonstrating that STIM1 and ORAI1 inhibit cell growth by arresting the G0/G1 phase and enhancing cell senescence in human prostate cancer cells. In addition, STIM1 and ORAI1 inhibited NF-κB signaling and remodeled the tumor microenvironment by reducing the formation of M2 phenotype macrophages, possibly creating an unfavorable tumor microenvironment and inhibiting cancer development. However, STIM1 also promoted cell migration and the epithelial-to-mesenchymal transition by activating TGF-β, Snail and Wnt/β-Catenin pathways. Thus, our study revealed novel regulatory effects and the mechanisms by which STIM1 affects cell senescence, tumor migration and the tumor microenvironment, revealing that STIM1 has multiple functions in prostate cancer cells. PMID:26257076

  6. Effect of an Enhanced Nose-to-Brain Delivery of Insulin on Mild and Progressive Memory Loss in the Senescence-Accelerated Mouse.

    PubMed

    Kamei, Noriyasu; Tanaka, Misa; Choi, Hayoung; Okada, Nobuyuki; Ikeda, Takamasa; Itokazu, Rei; Takeda-Morishita, Mariko

    2017-03-06

    Insulin is now considered to be a new drug candidate for treating dementias, such as Alzheimer's disease, whose pathologies are linked to insulin resistance in the brain. Our recent work has clarified that a noncovalent strategy involving cell-penetrating peptides (CPPs) can increase the direct transport of insulin from the nasal cavity into the brain parenchyma. The present study aimed to determine whether the brain insulin level increased by intranasal coadministration of insulin with the CPP penetratin has potential for treating dementia. The pharmacological actions of insulin were investigated at different stages of memory impairment using a senescence-accelerated mouse-prone 8 (SAMP8) model. The results of spatial learning tests suggested that chronic intranasal administration of insulin with l-penetratin to SAMP8 slowed the progression of memory loss in the early stage of memory impairment. However, contrary to expectations, this strategy using penetratin was ineffective in recovering the severe cognitive dysfunction in the progressive stage, which involves brain accumulation of amyloid β (Aβ). Immunohistological examination of hippocampal regions of samples from SAMP8 in the progressive stage suggested that accelerated nose-to-brain insulin delivery had a partial neuroprotective function but unexpectedly increased Aβ plaque deposition in the hippocampus. These findings suggest that the efficient nose-to-brain delivery of insulin combined with noncovalent CPP strategy has different effects on dementia during the mild and progressive stages of cognitive dysfunction.

  7. Changes in expressions of proinflammatory cytokines IL-1beta, TNF-alpha and IL-6 in the brain of senescence accelerated mouse (SAM) P8.

    PubMed

    Tha, K K; Okuma, Y; Miyazaki, H; Murayama, T; Uehara, T; Hatakeyama, R; Hayashi, Y; Nomura, Y

    2000-12-01

    The senescence-accelerated mouse (SAM) is known to be a murine model for accelerated aging. The SAMP8 strain shows age-related deterioration of learning and memory at an earlier age than control mice (SAMR1). In the present study, we investigated the changes in expressions of interleukin-1beta (IL-1beta), tumor necrosis factor-alpha (TNF-alpha) and interleukin-6 (IL-6) in the brain of SAMP8. In the hippocampus of 10 months old SAMP8, the expression of IL-1 mRNA was significantly elevated in comparison with that of SAMR1. In both strains of SAMs, increases in IL-1beta protein in the brain were observed at 10 months of age compared with 2 and 5 months. The only differences found between the strain in protein levels were at 10 months and were elevations in IL-1beta in the hippocampus and hypothalamus, and in TNF-alpha and IL-6 in the cerebral cortex and the hippocampus in SAMP8 as compared with SAMR1. However, lipopolysaccharide-induced increases in the expression of these cytokines in brain did not differ between SAMP8 and SAMR1. Increases in expression of proinflammatory cytokines in the brain may be involved in the age-related neural dysfunction and/or learning deficiency in SAMP8.

  8. The behavioral, pathological and therapeutic features of the senescence-accelerated mouse prone 8 strain as an Alzheimer's disease animal model.

    PubMed

    Cheng, Xiao-rui; Zhou, Wen-xia; Zhang, Yong-xiang

    2014-01-01

    Alzheimer's disease (AD) is a widespread and devastating progressive neurodegenerative disease. Disease-modifying treatments remain beyond reach, and the etiology of the disease is uncertain. Animal model are essential for identifying disease mechanisms and developing effective therapeutic strategies. Research on AD is currently being carried out in rodent models. The most common transgenic mouse model mimics familial AD, which accounts for a small percentage of cases. The senescence-accelerated mouse prone 8 (SAMP8) strain is a spontaneous animal model of accelerated aging. Many studies indicate that SAMP8 mice harbor the behavioral and histopathological signatures of AD, namely AD-like cognitive and behavioral alterations, neuropathological phenotypes (neuron and dendrite spine loss, spongiosis, gliosis and cholinergic deficits in the forebrain), β-amyloid deposits resembling senile plaques, and aberrant hyperphosphorylation of Tau-like neurofibrillary tangles. SAMP8 mice are useful in the development of novel therapies, and many pharmacological agents and approaches are effective in SAMP8 mice. SAMP8 mice are considered a robust model for exploring the etiopathogenesis of sporadic AD and a plausible experimental model for developing preventative and therapeutic treatments for late-onset/age-related AD, which accounts for the vast majority of cases.

  9. Age-related alterations in the expression of glial cell line-derived neurotrophic factor in the senescence-accelerated mouse brain.

    PubMed

    Miyazaki, Hiroyuki; Okuma, Yasunobu; Nomura, Jun; Nagashima, Kazuo; Nomura, Yasuyuki

    2003-05-01

    Senescence-accelerated mouse prone 8 (SAMP8) and prone 10 (SAMP10) are useful murine model of accelerated aging. SAMP8 shows marked impairment of learning and memory, whereas SAMP10 shows brain atrophy and aging-associated depressive behavior. This study examined the expression of glial cell line-derived neurotrophic factor (GDNF) in SAMP8 and SAMP10 brains, relative to that in SAM resistant 1 (SAMR1) controls, which age normally. Hippocampal GDNF mRNA expression decreased in an age-dependent manner (10- vs 2-month-old animals) in the SAMR1, but not in the SAMP8 or SAMP10 strains. Furthermore, GDNF mRNA expression in 2-month-old SAMP8 and SAMP10 strains was less than in SAMR1 specimens of the same age. The number of surviving neurons in the CA1 region decreased with age in SAMP8 and SAMP10, and also decreased relative to the number of neurons in 10-month-old SAMR1 controls. Immunohistochemistry revealed that cells that were positive for GDNF-like activity in 10-month-old SAMP8 and SAMP10 were diffusely distributed, in part, around the pyramidal cell layer in the hippocampus. These findings suggest that low GDNF expression in young SAMP8 and SAMP10 may be involved in hippocampal dysfunctions, such as age-related learning impairment and neuronal death.

  10. Novel frame-shift mutation in Slc5a2 encoding SGLT2 in a strain of senescence-accelerated mouse SAMP10.

    PubMed

    Unno, Keiko; Yamamoto, Hiroyuki; Toda, Masateru; Hagiwara, Shiori; Iguchi, Kazuaki; Hoshino, Minoru; Takabayashi, Fumiyo; Hasegawa-Ishii, Sanae; Shimada, Atsuyoshi; Hosokawa, Masanori; Higuchi, Keiichi; Mori, Masayuki

    2014-11-07

    The senescence-accelerated mouse prone10 (SAMP10) strain, a model of aging, exhibits cognitive impairments and cerebral atrophy. We noticed that SAMP10/TaSlc mice, a SAMP10 substrain, have developed persistent glucosuria over the past few years. In the present study, we characterized SAMP10/TaSlc mice and further identified a spontaneous mutation in the Slc5a2 gene encoding sodium-glucose co-transporter (SGLT) 2. The mean concentration of urine glucose was high in SAMP10/TaSlc mice and increased further with advancing age, whereas other strains of senescence-accelerated mice, including SAMP1/SkuSlc, SAMP6/TaSlc and SAMP8/TaSlc or normal aging control SAMR1/TaSlc mice, exhibited no detectable glucose in urine. SAMP10/TaSlc mice consumed increasing amounts of food and water compared to SAMR1/TaSlc mice, suggesting the compensation of polyuria and the loss of glucose. Oral glucose tolerance tests showed decreased glucose reabsorption in the kidney of SAMP10/TaSlc mice. In addition, blood glucose levels decreased in an age-dependent fashion. The kidney was innately larger than that of control mice with no histological alterations. We examined the expression levels of glucose transporters in the kidney. Among SGLT1, SGLT2, glucose transporter (GLUT) 1 and GLUT2, we found a significant decrease only in the level of SGLT2. DNA sequencing of SGLT2 in SAMP10/TaSlc mice revealed a single nucleotide deletion of guanine at 1236, which resulted in a frameshift mutation that produced a truncated protein. We designate this strain as SAMP10/TaSlc-Slc5a2(slc) (SAMP10-ΔSglt2). Recently, SGLT2 inhibitors have been demonstrated to be effective for the treatment of patients with type 2 diabetes (T2D). SAMP10-ΔSglt2 mice may serve as a unique preclinical model to study the link between aging-related neurodegenerative disorders and T2D.

  11. EARLY SENESCENCE1 Encodes a SCAR-LIKE PROTEIN2 That Affects Water Loss in Rice1[OPEN

    PubMed Central

    Rao, Yuchun; Yang, Yaolong; Xu, Jie; Li, Xiaojing; Leng, Yujia; Dai, Liping; Huang, Lichao; Shao, Guosheng; Ren, Deyong; Hu, Jiang; Guo, Longbiao; Pan, Jianwei; Zeng, Dali

    2015-01-01

    The global problem of drought threatens agricultural production and constrains the development of sustainable agricultural practices. In plants, excessive water loss causes drought stress and induces early senescence. In this study, we isolated a rice (Oryza sativa) mutant, designated as early senescence1 (es1), which exhibits early leaf senescence. The es1-1 leaves undergo water loss at the seedling stage (as reflected by whitening of the leaf margin and wilting) and display early senescence at the three-leaf stage. We used map-based cloning to identify ES1, which encodes a SCAR-LIKE PROTEIN2, a component of the suppressor of cAMP receptor/Wiskott-Aldrich syndrome protein family verprolin-homologous complex involved in actin polymerization and function. The es1-1 mutants exhibited significantly higher stomatal density. This resulted in excessive water loss and accelerated water flow in es1-1, also enhancing the water absorption capacity of the roots and the water transport capacity of the stems as well as promoting the in vivo enrichment of metal ions cotransported with water. The expression of ES1 is higher in the leaves and leaf sheaths than in other tissues, consistent with its role in controlling water loss from leaves. GREEN FLUORESCENT PROTEIN-ES1 fusion proteins were ubiquitously distributed in the cytoplasm of plant cells. Collectively, our data suggest that ES1 is important for regulating water loss in rice. PMID:26243619

  12. Age-Related Alterations in the Metabolic Profile in the Hippocampus of the Senescence-Accelerated Mouse Prone 8: A Spontaneous Alzheimer's Disease Mouse Model

    PubMed Central

    Wang, Hualong; Lian, Kaoqi; Han, Bing; Wang, Yanyong; Kuo, Sheng-Han; Geng, Yuan; Qiang, Jing; Sun, Meiyu; Wang, Mingwei

    2015-01-01

    Alzheimer's disease (AD), the most common age-dependent neurodegenerative disorder, produces a progressive decline in cognitive function. The metabolic mechanism of AD has emerged in recent years. In this study, we used multivariate analyses of gas chromatography-mass spectrometry measurements to determine that learning and retention-related metabolic profiles are altered during aging in the hippocampus of the senescence-accelerated mouse prone 8 (SAMP8). Alterations in 17 metabolites were detected in mature and aged mice compared to young mice (13 decreased and 4 increased metabolites), including metabolites related to dysfunctional lipid metabolism (significantly increased cholesterol, oleic acid, and phosphoglyceride levels), decreased amino acid (alanine, serine, glycine, aspartic acid, glutamate, and gamma-aminobutyric acid), and energy-related metabolite levels (malic acid, butanedioic acid, fumaric acid, and citric acid), and other altered metabolites (increased N-acetyl-aspartic acid and decreased pyroglutamic acid, urea, and lactic acid) in the hippocampus. All of these alterations indicated that the metabolic mechanisms of age-related cognitive impairment in SAMP8 mice were related to multiple pathways and networks. Lipid metabolism, especially cholesterol metabolism, appears to play a distinct role in the hippocampus in AD. PMID:24284365

  13. Alzheimer's disease-like pathology in senescence-accelerated OXYS rats can be partially retarded with mitochondria-targeted antioxidant SkQ1.

    PubMed

    Stefanova, Natalia A; Muraleva, Natalia A; Skulachev, Vladimir P; Kolosova, Nataliya G

    2014-01-01

    We previously showed that mitochondria-targeted antioxidant SkQ1 (plastoquinonyl-decyltriphenylphosphonium) at nanomolar concentrations is capable of preventing and slowing down some cerebral dysfunctions in accelerated-senescence OXYS rats. Here we demonstrate that OXYS rats develop behavior, learning, and memory deficits against a background of neurodegeneration signs detected by magnetic resonance tomography and amyloid-β (Aβ) pathology similar to those seen in Alzheimer's disease (AD). Long-term treatment with SkQ1 (250 nmol/kg body weight daily from the age of 1.5 to 23 months) reduced the age-related alterations in behavior and spatial memory deficit in Morris water maze in OXYS and Wistar rats. Furthermore, this is the first report that SkQ1 treatment slows down pathological accumulation of AβPP, Aβ, and hyperphosphorylation of tau-protein in OXYS rats, as well as age-dependent changes in healthy Wistar rats. Our results support the possibility of using the OXYS strain as a rat model of AD-like pathology. It seems probable that the mitochondria-targeted antioxidant SkQ1 can be a good prophylactic strategy to maintain brain health and to treat AD.

  14. Suppression of the aging-associated decline in physical performance by a combination of resveratrol intake and habitual exercise in senescence-accelerated mice.

    PubMed

    Murase, Takatoshi; Haramizu, Satoshi; Ota, Noriyasu; Hase, Tadashi

    2009-08-01

    The decline in physical performance with increasing age is a crucial problem in our aging society. We examined the effects of resveratrol, a natural polyphenolic compound present in grapes, in combination with habitual exercise on the aging-associated decline in physical performance in senescence-accelerated prone mice (SAMP1). The endurance capacity of SAMP1 mice undergoing an exercise regimen (SAMP1-Ex) decreased over 12 weeks whereas that of SAMP1 mice fed 0.2% (w/w) resveratrol along with exercise (SAMP1-ExRes) remained significantly higher. In the SAMP1-ExRes group, there was a significant increase in oxygen consumption and skeletal muscle mRNA levels of mitochondrial function-related enzymes. These results suggest that the intake of resveratrol, together with habitual exercise, is beneficial for suppressing the aging-related decline in physical performance and that these effects are attributable, at least in part, to improved mitochondrial function in skeletal muscle.

  15. Modification of nitrogen remobilization, grain fill and leaf senescence in maize (Zea mays) by transposon insertional mutagenesis in a protease gene.

    PubMed

    Donnison, Iain S; Gay, Alan P; Thomas, Howard; Edwards, Keith J; Edwards, David; James, Caron L; Thomas, Ann M; Ougham, Helen J

    2007-01-01

    A maize (Zea mays) senescence-associated legumain gene, See2beta, was characterized at the physiological and molecular levels to determine its role in senescence and resource allocation. A reverse-genetics screen of a maize Mutator (Mu) population identified a Mu insertion in See2beta. Maize plants homozygous for the insertion were produced. These See2 mutant and sibling wild-type plants were grown under high or low quantities of nitrogen (N). The early development of both genotypes was similar; however, tassel tip and collar emergence occurred earlier in the mutant. Senescence of the mutant leaves followed a similar pattern to that of wild-type leaves, but at later sampling points mutant plants contained more chlorophyll than wild-type plants and showed a small extension in photosynthetic activity. Total plant weight was higher in the wild-type than in the mutant, and there was a genotype x N interaction. Mutant plants under low N maintained cob weight, in contrast to wild-type plants under the same treatment. It is concluded, on the basis of transposon mutagenesis, that See2beta has an important role in N-use and resource allocation under N-limited conditions, and a minor but significant function in the later stages of senescence.

  16. Increased recruitment of bone marrow-derived cells into the brain associated with altered brain cytokine profile in senescence-accelerated mice.

    PubMed

    Hasegawa-Ishii, Sanae; Inaba, Muneo; Li, Ming; Shi, Ming; Umegaki, Hiroyuki; Ikehara, Susumu; Shimada, Atsuyoshi

    2016-04-01

    Bone marrow-derived cells enter the brain in a non-inflammatory condition through the attachments of choroid plexus and differentiate into ramified myeloid cells. Neurodegenerative conditions may be associated with altered immune-brain interaction. The senescence-accelerated mouse prone 10 (SAMP10) undergoes earlier onset neurodegeneration than C57BL/6 (B6) strain. We hypothesized that the dynamics of immune cells migrating from the bone marrow to the brain is perturbed in SAMP10 mice. We created 4 groups of radiation chimeras by intra-bone marrow-bone marrow transplantation using 2-month-old (2 mo) and 10 mo SAMP10 and B6 mice as recipients with GFP transgenic B6 mice as donors, and analyzed histologically 4 months later. In the [B6 → 10 mo SAMP10] chimeras, more ramified marrow-derived cells populated a larger number of discrete brain regions than the other chimeras, especially in the diencephalon. Multiplex cytokine assays of the diencephalon prepared from non-treated 3 mo and 12 mo SAMP10 and B6 mice revealed that 12 mo SAMP10 mice exhibited higher tissue concentrations of CXCL1, CCL11, G-CSF, CXCL10 and IL-6 than the other groups. Immunohistologically, choroid plexus epithelium and ependyma produced CXCL1, while astrocytic processes in the attachments of choroid plexus expressed CCL11 and G-CSF. The median eminence produced CXCL10, hypothalamic neurons G-CSF and tanycytes CCL11 and G-CSF. These brain cytokine profile changes in 12 mo SAMP10 mice were likely to contribute to acceleration of the dynamics of marrow-derived cells to the diencephalon. Further studies on the functions of ramified marrow-derived myeloid cells would enhance our understanding of the brain-bone marrow interaction.

  17. Cell cycle of primitive hematopoietic progenitors decelerated in senescent mice is reactively accelerated after 2-Gy whole-body irradiation.

    PubMed

    Hirabayashi, Yoko; Tsuboi, Isao; Kuramoto, Kazunao; Kusunoki, Yoichiro; Inoue, Tohru

    2016-03-01

    Aging is considered to be a functional retardation of continuous xenobiotic responses over a lifetime after the developmental period; thus, the effects of ionizing radiation over a lifetime may be somewhat accounted for by a modifier of aging effects. This study was conducted to evaluate the possible/synergic effects of radiation during aging by determining cell-cycle parameters of hematopoietic stem cells/hematopoietic progenitor cells (HSCs/HPCs), such as the percent of cells in cycling, the generation doubling time, and the cumulative cycling-cell fraction, by bromodeoxyuridine-ultraviolet assay, which enables the determination of their cycling capacity in vivo. Colony-forming progenitor cells, such as colony-forming unit (CFU)-granulocyte/macrophage (GM), CFU in the spleen on day 9 (CFU-S9), and CFU-S on day 13 (CFU-S13) for mature, less mature, and immature HPCs, respectively, were evaluated in young and old mice (6 weeks and 21 months of age, respectively) with or without 2-Gy whole-body irradiation and a 4-week recovery period. Then, cell-cycle parameters were evaluated and compared. As a result, the generation doubling time of all types of HPC was prolonged by the irradiation in both young and old mouse groups, except that of CFU-S13 in old mice, which showed acceleration of the cell cycle following the irradiation. In addition, only CFU-S13 in irradiated old mice showed a significant increase in the cumulative cycling-cell-fraction ratio. Significant changes due to the effects of aging and irradiation on HPCs were observed only in the immature HPCs, i.e., the cell cycle of immature HPCs was suppressed by aging without irradiation and was, in contrast, accelerated as the cells recovered from radiation-induced damage. This suggests that the mechanisms of peripheral blood recovery after 2-Gy whole-body irradiation are markedly different between young and old mice, although 21-month-old mice showed almost the same level of recovery as the young mice.

  18. The GLP-1 Receptor Agonist Liraglutide Improves Memory Function and Increases Hippocampal CA1 Neuronal Numbers in a Senescence-Accelerated Mouse Model of Alzheimer's Disease.

    PubMed

    Hansen, Henrik H; Fabricius, Katrine; Barkholt, Pernille; Niehoff, Michael L; Morley, John E; Jelsing, Jacob; Pyke, Charles; Knudsen, Lotte Bjerre; Farr, Susan A; Vrang, Niels

    2015-01-01

    Recent studies indicate that glucagon-like peptide 1 (GLP-1) receptor agonists, currently used in the management of type 2 diabetes, exhibit neurotrophic and neuroprotective effects in amyloid-β (Aβ) toxicity models of Alzheimer's disease (AD). We investigated the potential pro-cognitive and neuroprotective effects of the once-daily GLP-1 receptor agonist liraglutide in senescence-accelerated mouse prone 8 (SAMP8) mice, a model of age-related sporadic AD not dominated by amyloid plaques. Six-month-old SAMP8 mice received liraglutide (100 or 500 μg/kg/day, s.c.) or vehicle once daily for 4 months. Vehicle-dosed age-matched 50% back-crossed as well as untreated young (4-month-old) SAMP8 mice were used as control groups for normal memory function. Vehicle-dosed 10-month-old SAMP8 mice showed significant learning and memory retention deficits in an active-avoidance T-maze, as compared to both control groups. Also, 10-month-old SAMP8 mice displayed no immunohistological signatures of amyloid-β plaques or hyperphosphorylated tau, indicating the onset of cognitive deficits prior to deposition of amyloid plaques and neurofibrillary tangles in this AD model. Liraglutide significantly increased memory retention and total hippocampal CA1 pyramidal neuron numbers in SAMP8 mice, as compared to age-matched vehicle-dosed SAMP8 mice. In conclusion, liraglutide delayed or partially halted the progressive decline in memory function associated with hippocampal neuronal loss in a mouse model of pathological aging with characteristics of neurobehavioral and neuropathological impairments observed in early-stage sporadic AD.

  19. Antisense directed against PS-1 gene decreases brain oxidative markers in aged senescence accelerated mice (SAMP8) and reverses learning and memory impairment: a proteomics study.

    PubMed

    Fiorini, Ada; Sultana, Rukhsana; Förster, Sarah; Perluigi, Marzia; Cenini, Giovanna; Cini, Chiara; Cai, Jian; Klein, Jon B; Farr, Susan A; Niehoff, Michael L; Morley, John E; Kumar, Vijaya B; Allan Butterfield, D

    2013-12-01

    Amyloid β-peptide (Aβ) plays a central role in the pathophysiology of Alzheimer's disease (AD) through the induction of oxidative stress. This peptide is produced by proteolytic cleavage of amyloid precursor protein (APP) by the action of β- and γ-secretases. Previous studies demonstrated that reduction of Aβ, using an antisense oligonucleotide (AO) directed against the Aβ region of APP, reduced oxidative stress-mediated damage and prevented or reverted cognitive deficits in senescence-accelerated prone mice (SAMP8), a useful animal model for investigating the events related to Aβ pathology and possibly to the early phase of AD. In the current study, aged SAMP8 were treated by AO directed against PS-1, a component of the γ-secretase complex, and tested for learning and memory in T-maze foot shock avoidance and novel object recognition. Brain tissue was collected to identify the decrease of oxidative stress and to evaluate the proteins that are differently expressed and oxidized after the reduction in free radical levels induced by Aβ. We used both expression proteomics and redox proteomics approaches. In brain of AO-treated mice a decrease of oxidative stress markers was found, and the proteins identified by proteomics as expressed differently or nitrated are involved in processes known to be impaired in AD. Our results suggest that the treatment with AO directed against PS-1 in old SAMP8 mice reverses learning and memory deficits and reduces Aβ-mediated oxidative stress with restoration to the normal condition and identifies possible pharmacological targets to combat this devastating dementing disease.

  20. Effect of vitamin K2 on the development of stress-induced osteopenia in a growing senescence-accelerated mouse prone 6 strain

    PubMed Central

    KATSUYAMA, HIRONOBU; FUSHIMI, SHIGEKO; YAMANE, KUNIKAZU; WATANABE, YOKO; SHIMOYA, KOICHIRO; OKUYAMA, TOSHIKO; KATSUYAMA, MIDORI; SAIJOH, KIYOFUMI; TOMITA, MASAFUMI

    2015-01-01

    Vitamin K2 (VK2) has been used as a therapeutic agent for osteoporosis, since it has been suggested to be able to reduce the frequency of fractures by improving bone quality; however, bone turnover is strictly regulated by various cytokines and hormones. In the present study, the effect of menaquinone-4 (MK-4) on bone turnover was investigated using the senescence-accelerated mouse prone 6 (SAMP6) strain. Since water-immersion restraint stress (WRS) causes a significant decrease in bone mineral density (BMD), WRS was used as the bone resorption model in the SAMP6 strain. Six-week-old SAMP6 male mice were divided into the following three groups: Control, WRS and WRS + MK-4. WRS was performed for 6 h per day, 5 times a week, for 4 weeks. Following WRS, MK-4 (30 mg/kg) was injected subcutaneously 3 times a week for 4 weeks. No growth retardation was observed in the WRS groups as compared with the control group. In the WRS groups, the BMD was significantly lower than that in the control group. The levels of bone formation and resorption markers were increased in the WRS groups, indicating that WRS reduced the BMD by promoting high bone turnover. A bone histomorphometrical examination showed that the trabecular (Tb) bone mass in the secondary spongiosa at the distal femur was significantly reduced in the WRS mice, and this reduction was abrogated by MK-4 treatment. Specifically, the Tb bone reduction was caused by the activation of osteoclasts (Ocs), and Oc activity was suppressed by MK-4. The number of osteoblasts and the mineral apposition rate were significantly increased in the WRS and WRS + MK-4 mice, suggesting that WRS triggered a significantly higher mineral apposition rate. These results indicate that MK-4 can induce recovery from the bone mineral loss caused by WRS treatment. Further studies are required to clarify the association between bone quality and MK-4. PMID:26622403

  1. Effect of Low-Magnitude, High-Frequency Vibration Treatment on Retardation of Sarcopenia: Senescence-Accelerated Mouse-P8 Model.

    PubMed

    Guo, An-Yun; Leung, Kwok-Sui; Qin, Jiang-Hui; Chow, Simon Kwoon-Ho; Cheung, Wing-Hoi

    2016-08-01

    Sarcopenia-related falls and fall-related injuries in community-dwelling elderly people garnered more and more interest in recent years. Low-magnitude high-frequency vibration (LMHFV) was proven beneficial to musculoskeletal system and recommended for sarcopenia treatment. This study aimed to evaluate the effects of LMHFV on the sarcopenic animals and explore the mechanism of the stimulatory effects. Senescence-accelerated mouse P8 (SAMP8) mice at month 6 were randomized into control (Ctrl) and vibration (Vib) groups and the mice in the Vib group were given LMHFV (0.3 g, 20 min/day, 5 days/week) treatment. At months 0, 1, 2, 3, and 4 post-treatment, muscle mass, structure, and function were assessed. The potential proliferation capacity of the muscle was also evaluated by investigating satellite cells (SCs) pool and serum myostatin expression. At late stage, the mice in the Vib group showed higher muscle strength (month 4, p = 0.028). Generally, contractibility was significantly improved by LMHFV (contraction time [CT], p = 0.000; half-relaxation time [RT50], p = 0.000). Enlarged cross-sectional area of fiber type IIA was observed in the Vib group when compared with Ctrl group (p = 0.000). No significant difference of muscle mass was observed. The promotive effect of LMHFV on myoregeneration was reflected by suppressed SC pool reduction (month 3, p = 0.000; month 4, p = 0.000) and low myostatin expression (p = 0.052). LMHFV significantly improved the structural and functional outcomes of the skeletal muscle, hence retarding the progress of sarcopenia in SAMP8. It would be a good recommendation for prevention of the diseases related to skeletal muscle atrophy.

  2. Early senescence of the oldest leaves of Fe-deficient barley plants may contribute to phytosiderophore release from the roots.

    PubMed

    Higuchi, Kyoko; Iwase, Jun; Tsukiori, Yoshifumi; Nakura, Daiki; Kobayashi, Nahoko; Ohashi, Hidenori; Saito, Akihiro; Miwa, Eitaro

    2014-07-01

    Barley (Hordeum vulgare), which tolerates iron (Fe) deficiency, secretes a large amount of phytosiderophores from its roots. However, how barley is able to allocate resources for phytosiderophore synthesis when the carbon assimilation rate is reduced by Fe deficiency is unknown. We previously suggested that the acceleration of senescence in older leaves triggered by Fe deficiency may allow the recycling of assimilates to contribute to phytosiderophore synthesis. In this work, we show the relationship between an increase in the C/N ratio in older leaves and Fe-deficiency tolerance among three barley cultivars. The increase in the C/N ratio suggests an enhanced capacity for the retranslocation of carbohydrates or amino acids from older leaves to the sink organs. An increase in the sucrose concentration in Fe-deficient barley also suggests active redistribution of assimilates. This metabolic modulation may be supported by accelerated senescence of older leaves, as Fe deficiency increased the expression of senescence-associated genes. The older leaves of Fe-deficient barley maintained CO2 assimilation under Fe deficiency. Barley that had been Fe-deficient for 3 days preferentially allocated newly assimilated (13) C to the roots and nutrient solution. Interestingly, the oldest leaf of Fe-deficient barley released more (13) C into the nutrient solution than the second oldest leaf. Thus, the balance between anabolism and catabolism in older leaves, supported by highly regulated senescence, plays a key role in metabolic adaptation in Fe-deficient barley.

  3. Differences in Sugar Accumulation and Mobilization between Sequential and Non-Sequential Senescence Wheat Cultivars under Natural and Drought Conditions

    PubMed Central

    Shi, Huarong; Wang, Bin; Yang, Piaojuan; Li, Yibo; Miao, Fang

    2016-01-01

    Wheat leaf non-sequential senescence at the late grain-filling stage involves the early senescence of younger flag leaves compared to that observed in older second leaves. On the other hand, sequential senescence involves leaf senescence that follows an age-related pattern, in which flag leaves are the latest to undergo senescence. The characteristics of sugar metabolism in two sequential senescence cultivars and two non-sequential senescence cultivars under both natural and drought conditions were studied to elucidate the underlying mechanism of drought tolerance in two different senescence modes. The results showed that compared to sequential senescence wheat cultivars, under natural and drought conditions, non-sequential senescence wheat cultivars showed a higher leaf net photosynthetic rate, higher soluble sugar levels in leaves, leaf sheaths, and internodes, higher leaf sucrose synthase (SS) and sucrose phosphate synthase (SPS) activity, and higher grain SS activity, thereby suggesting that non-sequential senescence wheat cultivars had stronger source activity. Spike weight, grain weight per spike, and 100-grain weight of non-sequential senescence cultivars at maturity were significantly higher than those of sequential senescence cultivars under both natural and drought conditions. These findings indicate that the higher rate of accumulation and the higher mobilization of soluble sugar in the leaves, leaf sheaths and internodes of non-sequential senescence cultivars improve grain weight and drought tolerance. At the late grain-filling stage, drought conditions adversely affected leaf chlorophyll content, net photosynthetic rate, soluble sugar and sucrose content, SS and SPS activity, gain SS activity, and weight. This study showed that higher rates of soluble sugar accumulation in the source was one of the reasons of triggering leaf non-sequential senescence, and higher rates of soluble sugar mobilization during leaf non-sequential senescence promoted high and

  4. Eldecalcitol improves mechanical strength of cortical bones by stimulating the periosteal bone formation in the senescence-accelerated SAM/P6 mice - a comparison with alfacalcidol.

    PubMed

    Shiraishi, Ayako; Sakai, Sadaoki; Saito, Hitoshi; Takahashi, Fumiaki

    2014-10-01

    Eldecalcitol (ELD), a 2β-hydroxypropyloxy derivative of 1α,25(OH)2D3, is a potent inhibitor of bone resorption that has demonstrated a greater effect at reducing the risk of fracture in osteoporotic patients than alfacalcidol (ALF). In the present study, we used the senescence-accelerated mouse strain P6 (SAM/P6), which has low bone mass caused by osteoblast dysfunction, to evaluate the effect of ELD on cortical bone in comparison with ALF. Four-month-old SAM/P6 mice were given either ELD (0.025 or 0.05μg/kg) or ALF (0.2 or 0.4μg/kg) by oral gavage 5 times/week for 6 weeks. Both ELD and ALF increased serum calcium (Ca) in a dose-dependent manner. Serum Ca levels in the ELD 0.05μg/kg group were comparable to those of the ALF 0.2μg/kg group. ELD 0.05μg/kg significantly improved the bone biomechanical properties of the femur compared with the vehicle control group (p<0.001) and the ALF 0.2μg/kg group (p<0.05) evaluated by 3-point bending test. The cortical area of the mid-femur in the ELD 0.05μg/kg group but not the ALF 0.2μg/kg group was significantly higher than those of the vehicle control group (p<0.001). Bone histomorphometry revealed that in the femoral endocortical surface, the suppression of bone resorption parameters (N.Oc/BS) and bone formation parameters (MS/BS) by ELD (0.05μg/kg) was greater than that by ALF (0.2μg/kg). In contrast, in the femoral periosteal surface, ELD 0.05μg/kg significantly increased bone formation parameters (BFR/BS, MS/BS) compared with the vehicle control group (p<0.05, p<0.01, respectively), whereas ALF 0.2μg/kg did not alter these parameters. These results indicate that ELD improved the biomechanical properties of femoral cortical bone not only by inhibiting endocortical bone resorption but also by stimulating the periosteal bone formation in SAM/P6 mice. This article is part of a Special Issue entitled '16th Vitamin D Workshop'.

  5. Rice grain element concentration predictions based on leaf concentrations: accelerating improvement of nutritional quality

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The genetic improvement of rice grain element composition traditionally requires taking numerous plants to maturity before analyzing their grain element concentrations for making selections. This study evaluated if vegetative-leaf concentrations of elements could be used to predict grain concentrati...

  6. Expression of flowering locus T2 transgene from Pyrus communis L. delays dormancy and leaf senescence in Malus×domestica Borkh, and causes early flowering in tobacco.

    PubMed

    Freiman, Aviad; Golobovitch, Sara; Yablovitz, Zeev; Belausov, Eduard; Dahan, Yardena; Peer, Reut; Avraham, Lior; Freiman, Zohar; Evenor, Dalia; Reuveni, Moshe; Sobolev, Vladimir; Edelman, Marvin; Shahak, Yosepha; Samach, Alon; Flaishman, Moshe A

    2015-12-01

    Annual and perennial plants represent two different evolutionary strategies based on differential synchronization of their reproductive development. The mobile signal protein FLOWERING LOCUS T (FT) plays a central role in mediating the onset of reproduction in both plant types. Two novel FT-like genes from pear (Pyrus communis)-PcFT1 and PcFT2-were isolated, and their expression profiles were determined for one annual cycle. The effects of PcFT2 on flowering were investigated in annual (tobacco) and perennial (apple) plants by means of grafting and generating transgenic plants. Long-distance graft transmission of PcFT2 in both annual and perennial plants was confirmed using a 35S::PcFT2-YFP construct. Ectopic overexpression of PcFT2 caused early flowering in tobacco but not in apple. Transgenic apples were less sensitive to short-day-induced dormancy, and this phenotype was also observed in wild-type apples grafted onto the transgenic plants. Comparison of PcFT2 protein structure to the paralogous FT proteins from apple and pear showed alterations that could influence protein structure and thus the florigen-activation complex. PcFT2 protein seems to function by promoting flowering as all other FT proteins in the annual plant tobacco while in the perennial plant apple PcFT2 does not promote flowering but delays senescence. This observation may hint to a modified function of FT2 in perennial plants.

  7. Transformation of miniature potted rose (Rosa hybrida cv. Linda) with P( SAG12 )-ipt gene delays leaf senescence and enhances resistance to exogenous ethylene.

    PubMed

    Zakizadeh, Hedayat; Lütken, Henrik; Sriskandarajah, Sridevy; Serek, Margrethe; Müller, Renate

    2013-02-01

    KEY MESSAGE : The P ( SAG12 ) -ipt gene was transferred to miniature rose, as the first woody species, resulting in increased ethylene resistance due to specific up-regulation of the ipt gene under senescence promoting conditions. Transgenic plants of Rosa hybrida 'Linda' were obtained via transformation with Agrobacterium tumefaciens strain harboring the binary vector pSG529(+) containing the P( SAG12 )-ipt construct. A. tumefaciens strains AGL1, GV3850 and LBA4404 (containing P(35S)-INTGUS gene) were used for transformation of embryogenic callus, but transgenic shoots were obtained only when AGL1 was applied. The highest transformation frequency was 10 % and it was achieved when half MS medium was used for the dilution of overnight culture of Agrobacterium. Southern blot confirmed integration of 1-6 copies of the nptII gene into the rose genome in the tested lines. Four transgenic lines were obtained which were morphologically true-to-type and indistinguishable from Wt shoots while they were in in vitro cultures. Adventitious root induction was more difficult in transgenic shoots compared to the Wt shoots, however, one of the transgenic lines (line 6) was rooted and subsequently analyzed phenotypically. The ipt expression levels were determined in this line after exposure to exogenous ethylene (3.5 μl l(-1)) and/or darkness. Darkness resulted in twofold up-regulation of ipt expression, whereas darkness combined with ethylene caused eightfold up-regulation in line 6 compared to Wt plants. The transgenic line had significantly higher content of chlorophyll at the end of the treatment period compared to Wt plants.

  8. The effect of lunisolar tidal acceleration on stem elongation growth, nutations and leaf movements in peppermint (Mentha × piperita L.).

    PubMed

    Zajączkowska, U; Barlow, P W

    2017-03-03

    Orbital movement of the Moon generates a system of gravitational fields that periodically alter the gravitational force on Earth. This lunar tidal acceleration (Etide) is known to act as an external environmental factor affecting many growth and developmental phenomena in plants. Our study focused on the lunar tidal influence on stem elongation growth, nutations and leaf movements of peppermint. Plants were continuously recorded with time-lapse photography under constant illumination as well in constant illumination following 5 days of alternating dark-light cycles. Time courses of shoot movements were correlated with contemporaneous time courses of the Etide estimates. Optical microscopy and SEM were used in anatomical studies. All plant shoot movements were synchronised with changes in the lunisolar acceleration. Using a periodogram, wavelet analysis and local correlation index, a convergence was found between the rhythms of lunisolar acceleration and the rhythms of shoot growth. Also observed were cyclical changes in the direction of rotation of stem apices when gravitational dynamics were at their greatest. After contrasting dark-light cycle experiments, nutational rhythms converged to an identical phase relationship with the Etide and almost immediately their renewed movements commenced. Amplitudes of leaf movements decreased during leaf growth up to the stage when the leaf was fully developed; the periodicity of leaf movements correlated with the Etide rhythms. For the fist time, it was documented that lunisolar acceleration is an independent rhythmic environmental signal capable of influencing the dynamics of plant stem elongation. This phenomenon is synchronised with the known effects of Etide on nutations and leaf movements.

  9. Dosimetry and evaluating the effect of treatment parameters on the leakage of multi leaf collimators in ONCOR linear accelerators

    PubMed Central

    Jabbari, Keyvan; Akbari, Muhaddeseh; Tavakoli, Mohamad Bagher; Amouheidari, Alireza

    2016-01-01

    Background: One of the standard equipment in medical linear accelerators is multi-leaf collimators (MLCs); which is used as a replacement for lead shielding. MLC's advantages are a reduction of the treatment time, the simplicity of treatment, and better dose distribution. The main disadvantage of MLC is the radiation leakages from the edges and between the leaves. The purpose of this study was to determine the effect of various treatment parameters in the magnitude of MLC leakage in linear accelerators. Materials and Methods: This project was performed with ONCOR Siemens linear accelerators. The amount of radiation leakage was determined by film dosimetry method. The films were Kodak-extended dose range-2, and the beams were 6 MV and 18 MV photons. In another part of the experiment, the fluctuation of the leakage was measured at various depths and fields. Results: The amount of leakage was generally up to 1.5 ± 0.2% for both energies. The results showed that the level of the leakage and the amount of dose fluctuation depends on the field size and depth of measurement. The amount of the leakage fluctuations in all energies was decreased with increasing of field size. The variation of the leakage versus field size was similar to the inverse of scattering collimator factor. Conclusions: The amount of leakage was more for 18 MV compare to 6 MV The percentage of the leakage for both energies is less than the 5% value which is recommended by protocols. The fluctuation of the MLC leakage reduced by increasing the field size and depth. PMID:28217631

  10. Cardiac Hegemony of Senescence

    PubMed Central

    Siddiqi, Sailay; Sussman, Mark A.

    2013-01-01

    Cardiac senescence and age-related disease development have gained general attention and recognition in the past decades due to increased accessibility and quality of health care. The advancement in global civilization is complementary to concerns regarding population aging and development of chronic degenerative diseases. Cardiac degeneration has been rigorously studied. The molecular mechanisms of cardiac senescence are on multiple cellular levels and hold a multilayer complexity level, thereby hampering development of unambiguous treatment protocols. In particular, the synergistic exchange of the senescence phenotype through a senescence secretome between myocytes and stem cells appears complicated and is of great future therapeutic value. The current review article will highlight hallmarks of senescence, cardiac myocyte and stem cell senescence, and the mutual exchange of senescent secretome. Future cardiac cell therapy approaches require a comprehensive understanding of myocardial senescence to improve therapeutic efficiency as well as efficacy. PMID:24349878

  11. A steroid like phytochemical Antcin M is an anti-aging reagent that eliminates hyperglycemia-accelerated premature senescence in dermal fibroblasts by direct activation of Nrf2 and SIRT-1

    PubMed Central

    Senthil, Kumar K.J.; Gokila, Vani M.; Mau, Jeng-Leun; Lin, Chin-Chung; Chu, Fang-Hua; Wei, Chia-Cheng; Liao, Vivian Hsiu-Chuan; Wang, Sheng-Yang

    2016-01-01

    The present study revealed the anti-aging properties of antcin M (ANM) and elucidated the molecular mechanism underlying the effects. We found that exposure of human normal dermal fibroblasts (HNDFs) to high-glucose (HG, 30 mM) for 3 days, accelerated G0/G1 phase arrest and senescence. Indeed, co-treatment with ANM (10 μM) significantly attenuated HG-induced growth arrest and promoted cell proliferation. Further molecular analysis revealed that ANM blocked the HG-induced reduction in G1-S transition regulatory proteins such as cyclin D, cyclin E, CDK4, CDK6, CDK2 and protein retinoblastoma (pRb). In addition, treatment with ANM eliminated HG-induced reactive oxygen species (ROS) through the induction of anti-oxidant genes, HO-1 and NQO-1 via transcriptional activation of Nrf2. Moreover, treatment with ANM abolished HG-induced SIPS as evidenced by reduced senescence-associated β-galactosidase (SA-β-gal) activity. This effect was further confirmed by reduction in senescence-associated marker proteins including, p21CIP1, p16INK4A, and p53/FoxO1 acetylation. Also, the HG-induced decline in aging-related marker protein SMP30 was rescued by ANM. Furthermore, treatment with ANM increased SIRT-1 expression, and prevented SIRT-1 depletion. This protection was consistent with inhibition of SIRT-1 phosphorylation at Ser47 followed by blocking its upstream kinases, p38 MAPK and JNK/SAPK. Further analysis revealed that ANM partially protected HG-induced senescence in SIRT-1 silenced cells. A similar effect was also observed in Nrf2 silenced cells. However, a complete loss of protection was observed in both Nrf2 and SIRT-1 knockdown cells suggesting that both induction of Nrf2-mediated anti-oxidant defense and SIRT-1-mediated deacetylation activity contribute to the anti-aging properties of ANM in vitro. Result of in vivo studies shows that ANM-treated C. elegens exhibits an increased survival rate during HG-induced oxidative stress insult. Furthermore, ANM significantly

  12. A steroid like phytochemical Antcin M is an anti-aging reagent that eliminates hyperglycemia-accelerated premature senescence in dermal fibroblasts by direct activation of Nrf2 and SIRT-1.

    PubMed

    Senthil, Kumar K J; Gokila, Vani M; Mau, Jeng-Leun; Lin, Chin-Chung; Chu, Fang-Hua; Wei, Chia-Cheng; Liao, Vivian Hsiu-Chuan; Wang, Sheng-Yang

    2016-09-27

    The present study revealed the anti-aging properties of antcin M (ANM) and elucidated the molecular mechanism underlying the effects. We found that exposure of human normal dermal fibroblasts (HNDFs) to high-glucose (HG, 30 mM) for 3 days, accelerated G0/G1 phase arrest and senescence. Indeed, co-treatment with ANM (10 µM) significantly attenuated HG-induced growth arrest and promoted cell proliferation. Further molecular analysis revealed that ANM blocked the HG-induced reduction in G1-S transition regulatory proteins such as cyclin D, cyclin E, CDK4, CDK6, CDK2 and protein retinoblastoma (pRb). In addition, treatment with ANM eliminated HG-induced reactive oxygen species (ROS) through the induction of anti-oxidant genes, HO-1 and NQO-1 via transcriptional activation of Nrf2. Moreover, treatment with ANM abolished HG-induced SIPS as evidenced by reduced senescence-associated β-galactosidase (SA-β-gal) activity. This effect was further confirmed by reduction in senescence-associated marker proteins including, p21CIP1, p16INK4A, and p53/FoxO1 acetylation. Also, the HG-induced decline in aging-related marker protein SMP30 was rescued by ANM. Furthermore, treatment with ANM increased SIRT-1 expression, and prevented SIRT-1 depletion. This protection was consistent with inhibition of SIRT-1 phosphorylation at Ser47 followed by blocking its upstream kinases, p38 MAPK and JNK/SAPK. Further analysis revealed that ANM partially protected HG-induced senescence in SIRT-1 silenced cells. A similar effect was also observed in Nrf2 silenced cells. However, a complete loss of protection was observed in both Nrf2 and SIRT-1 knockdown cells suggesting that both induction of Nrf2-mediated anti-oxidant defense and SIRT-1-mediated deacetylation activity contribute to the anti-aging properties of ANM in vitro. Result of in vivo studies shows that ANM-treated C. elegens exhibits an increased survival rate during HG-induced oxidative stress insult. Furthermore, ANM significantly

  13. Jasmonates during senescence

    PubMed Central

    Seltmann, Martin A; Hussels, Wiebke

    2010-01-01

    Jasmonic acid and derivatives are oxylipin signaling compounds derived from linolenic acid. Jasmonates accumulate during natural and dark-induced senescence but the increase in these compounds is not essential for the initiation or progression of these senescence processes. Here we report that during natural and dark-induced senescence the increase in jasmonate levels does not trigger jasmonate signaling. Furthermore we provide evidence that jasmonate production might result from membrane turnover during dark-induced senescence. PMID:21057217

  14. Senescence responsive transcriptional element

    DOEpatents

    Campisi, Judith; Testori, Alessandro

    1999-01-01

    Recombinant polynucleotides have expression control sequences that have a senescence responsive element and a minimal promoter, and which are operatively linked to a heterologous nucleotide sequence. The molecules are useful for achieving high levels of expression of genes in senescent cells. Methods of inhibiting expression of genes in senescent cells also are provided.

  15. Drying without senescence in resurrection plants

    PubMed Central

    Griffiths, Cara A.; Gaff, Donald F.; Neale, Alan D.

    2014-01-01

    Research into extreme drought tolerance in resurrection plants using species such as Craterostigma plantagineum, C. wilmsii, Xerophyta humilis, Tortula ruralis, and Sporobolus stapfianus has provided some insight into the desiccation tolerance mechanisms utilized by these plants to allow them to persist under extremely adverse environmental conditions. Some of the mechanisms used to ensure cellular preservation during severe dehydration appear to be peculiar to resurrection plants. Apart from the ability to preserve vital cellular components during drying and rehydration, such mechanisms include the ability to down-regulate growth-related metabolism rapidly in response to changes in water availability, and the ability to inhibit dehydration-induced senescence programs enabling reconstitution of photosynthetic capacity quickly following a rainfall event. Extensive research on the molecular mechanism of leaf senescence in non-resurrection plants has revealed a multi-layered regulatory network operates to control programed cell death pathways. However, very little is known about the molecular mechanisms that resurrection plants employ to avoid undergoing drought-related senescence during the desiccation process. To survive desiccation, dehydration in the perennial resurrection grass S. stapfianus must proceed slowly over a period of 7 days or more. Leaves detached from the plant before 60% relative water content (RWC) is attained are desiccation-sensitive indicating that desiccation tolerance is conferred in vegetative tissue of S. stapfianus when the leaf RWC has declined to 60%. Whilst some older leaves remaining attached to the plant during dehydration will senesce, suggesting dehydration-induced senescence may be influenced by leaf age or the rate of dehydration in individual leaves, the majority of leaves do not senesce. Rather these leaves dehydrate to air-dryness and revive fully following rehydration. Hence it seems likely that there are genes expressed in

  16. Drying without senescence in resurrection plants.

    PubMed

    Griffiths, Cara A; Gaff, Donald F; Neale, Alan D

    2014-01-01

    Research into extreme drought tolerance in resurrection plants using species such as Craterostigma plantagineum, C. wilmsii, Xerophyta humilis, Tortula ruralis, and Sporobolus stapfianus has provided some insight into the desiccation tolerance mechanisms utilized by these plants to allow them to persist under extremely adverse environmental conditions. Some of the mechanisms used to ensure cellular preservation during severe dehydration appear to be peculiar to resurrection plants. Apart from the ability to preserve vital cellular components during drying and rehydration, such mechanisms include the ability to down-regulate growth-related metabolism rapidly in response to changes in water availability, and the ability to inhibit dehydration-induced senescence programs enabling reconstitution of photosynthetic capacity quickly following a rainfall event. Extensive research on the molecular mechanism of leaf senescence in non-resurrection plants has revealed a multi-layered regulatory network operates to control programed cell death pathways. However, very little is known about the molecular mechanisms that resurrection plants employ to avoid undergoing drought-related senescence during the desiccation process. To survive desiccation, dehydration in the perennial resurrection grass S. stapfianus must proceed slowly over a period of 7 days or more. Leaves detached from the plant before 60% relative water content (RWC) is attained are desiccation-sensitive indicating that desiccation tolerance is conferred in vegetative tissue of S. stapfianus when the leaf RWC has declined to 60%. Whilst some older leaves remaining attached to the plant during dehydration will senesce, suggesting dehydration-induced senescence may be influenced by leaf age or the rate of dehydration in individual leaves, the majority of leaves do not senesce. Rather these leaves dehydrate to air-dryness and revive fully following rehydration. Hence it seems likely that there are genes expressed in

  17. Geroconversion: irreversible step to cellular senescence

    PubMed Central

    Blagosklonny, Mikhail V

    2014-01-01

    Cellular senescence happens in 2 steps: cell cycle arrest followed, or sometimes preceded, by gerogenic conversion (geroconversion). Geroconvesrion is a form of growth, a futile growth during cell cycle arrest. It converts reversible arrest to irreversible senescence. Geroconversion is driven by growth-promoting, mitogen-/nutrient-sensing pathways such as mTOR. Geroconversion leads to hyper-secretory, hypertrophic and pro-inflammatory cellular phenotypes, hyperfunctions and malfunctions. On organismal level, geroconversion leads to age-related diseases and death. Rapamycin, a gerosuppressant, extends life span in diverse species from yeast to mammals. Stress–and oncogene-induced accelerated senescence, replicative senescence in vitro and life-long cellular aging in vivo all can be described by 2-step model. PMID:25483060

  18. Is senescence-associated β-galactosidase a marker of neuronal senescence?

    PubMed Central

    Wysocka, Adrianna; Nalberczak, Maria; Sliwinska, Malgorzata A.; Radwanska, Kasia; Sikora, Ewa

    2016-01-01

    One of the features of cellular senescence is the activity of senescence-associated- β-galactosidase (SA-β-gal). The main purpose of this study was to evaluate this marker of senescence in aging neurons. We found that cortical neurons exhibited noticeable SA-β-gal activity quite early in culture. Many SA-β-gal-positive neurons were negative for another canonical marker of senescence, namely, double-strand DNA breaks (DSBs). Moreover, DDR signalling triggered by low doses of doxorubicin did not accelerate the appearance of neuronal SA-β-gal. In vivo, we observed pronounced induction of SA-β-gal activity in the hippocampus of 24-month-old mice, which is consistent with previous findings and supports the view that at this advanced age neurons developed a senescence-like phenotype. Surprisingly however, relatively high SA-β-gal activity, probably unrelated to the senescence process, was also observed in much younger, 3-month-old mice. In conclusion, we propose that SA-β-gal activity in neurons cannot be attributed uniquely to cell senescence either in vitro or in vivo. Additionally, we showed induction of REST protein in aging neurons in long-term culture and we propose that REST could be a marker of neuronal senescence in vitro. PMID:27768595

  19. The Lr34 adult plant rust resistance gene provides seedling resistance in durum wheat without senescence.

    PubMed

    Rinaldo, Amy; Gilbert, Brian; Boni, Rainer; Krattinger, Simon G; Singh, Davinder; Park, Robert F; Lagudah, Evans; Ayliffe, Michael

    2016-12-22

    The hexaploid wheat (Triticum aestivum) adult plant resistance gene, Lr34/Yr18/Sr57/Pm38/Ltn1, provides broad-spectrum resistance to wheat leaf rust (Lr34), stripe rust (Yr18), stem rust (Sr57) and powdery mildew (Pm38) pathogens, and has remained effective in wheat crops for many decades. The partial resistance provided by this gene is only apparent in adult plants and not effective in field-grown seedlings. Lr34 also causes leaf tip necrosis (Ltn1) in mature adult plant leaves when grown under field conditions. This D genome-encoded bread wheat gene was transferred to tetraploid durum wheat (T. turgidum) cultivar Stewart by transformation. Transgenic durum lines were produced with elevated gene expression levels when compared with the endogenous hexaploid gene. Unlike nontransgenic hexaploid and durum control lines, these transgenic plants showed robust seedling resistance to pathogens causing wheat leaf rust, stripe rust and powdery mildew disease. The effectiveness of seedling resistance against each pathogen correlated with the level of transgene expression. No evidence of accelerated leaf necrosis or up-regulation of senescence gene markers was apparent in these seedlings, suggesting senescence is not required for Lr34 resistance, although leaf tip necrosis occurred in mature plant flag leaves. Several abiotic stress-response genes were up-regulated in these seedlings in the absence of rust infection as previously observed in adult plant flag leaves of hexaploid wheat. Increasing day length significantly increased Lr34 seedling resistance. These data demonstrate that expression of a highly durable, broad-spectrum adult plant resistance gene can be modified to provide seedling resistance in durum wheat.

  20. [Senescence and cellular immortality].

    PubMed

    Trentesaux, C; Riou, J-F

    2010-11-01

    Senescence was originally described from the observation of the limited ability of normal cells to grow in culture, and may be generated by telomere erosion, accumulation of DNA damages, oxidative stress and modulation of oncogenes or tumor suppressor genes. Senescence corresponds to a cellular response aiming to control tumor progression by limiting cell proliferation and thus constitutes an anticancer barrier. Senescence is observed in pre-malignant tumor stages and disappears from malignant tumors. Agents used in standard chemotherapy also have the potential to induce senescence, which may partly explain their therapeutic activities. It is possible to restore senescence in tumors using targeted therapies that triggers telomere dysfunction or reactivates suppressor genes functions, which are essential for the onset of senescence.

  1. Increased phytotoxic O3 dose accelerates autumn senescence in an O3-sensitive beech forest even under the present-level O3

    NASA Astrophysics Data System (ADS)

    Kitao, Mitsutoshi; Yasuda, Yukio; Kominami, Yuji; Yamanoi, Katsumi; Komatsu, Masabumi; Miyama, Takafumi; Mizoguchi, Yasuko; Kitaoka, Satoshi; Yazaki, Kenichi; Tobita, Hiroyuki; Yoshimura, Kenichi; Koike, Takayoshi; Izuta, Takeshi

    2016-09-01

    Ground-level ozone (O3) concentrations are expected to increase over the 21st century, especially in East Asia. However, the impact of O3 has not been directly assessed at the forest level in this region. We performed O3 flux-based risk assessments of carbon sequestration capacity in an old cool temperate deciduous forest, consisting of O3-sensitive Japanese beech (Fagus crenata), and in a warm temperate deciduous and evergreen forest dominated by O3-tolerant Konara oak (Quercus serrata) based on long-term CO2 flux observations. On the basis of a practical approach for a continuous estimation of canopy-level stomatal conductance (Gs), higher phytotoxic ozone dose above a threshold of 0 uptake (POD0) with higher Gs was observed in the beech forest than that in the oak forest. Light-saturated gross primary production, as a measure of carbon sequestration capacity of forest ecosystem, declined earlier in the late growth season with increasing POD0, suggesting an earlier autumn senescence, especially in the O3-sensitive beech forest, but not in the O3-tolerant oak forest.

  2. Increased phytotoxic O3 dose accelerates autumn senescence in an O3-sensitive beech forest even under the present-level O3

    PubMed Central

    Kitao, Mitsutoshi; Yasuda, Yukio; Kominami, Yuji; Yamanoi, Katsumi; Komatsu, Masabumi; Miyama, Takafumi; Mizoguchi, Yasuko; Kitaoka, Satoshi; Yazaki, Kenichi; Tobita, Hiroyuki; Yoshimura, Kenichi; Koike, Takayoshi; Izuta, Takeshi

    2016-01-01

    Ground-level ozone (O3) concentrations are expected to increase over the 21st century, especially in East Asia. However, the impact of O3 has not been directly assessed at the forest level in this region. We performed O3 flux-based risk assessments of carbon sequestration capacity in an old cool temperate deciduous forest, consisting of O3-sensitive Japanese beech (Fagus crenata), and in a warm temperate deciduous and evergreen forest dominated by O3-tolerant Konara oak (Quercus serrata) based on long-term CO2 flux observations. On the basis of a practical approach for a continuous estimation of canopy-level stomatal conductance (Gs), higher phytotoxic ozone dose above a threshold of 0 uptake (POD0) with higher Gs was observed in the beech forest than that in the oak forest. Light-saturated gross primary production, as a measure of carbon sequestration capacity of forest ecosystem, declined earlier in the late growth season with increasing POD0, suggesting an earlier autumn senescence, especially in the O3-sensitive beech forest, but not in the O3-tolerant oak forest. PMID:27601188

  3. Biomarkers of cell senescence

    DOEpatents

    Dirmi, G.P.; Campisi, J.; Peacocke, M.

    1996-02-13

    The present invention provides a biomarker system for the in vivo and in vitro assessment of cell senescence. In the method of the present invention, {beta}-galactosidase activity is utilized as a means by which cell senescence may be assessed either in in vitro cell cultures or in vivo. 1 fig.

  4. Biomarkers of cell senescence

    DOEpatents

    Dimri, G.P.; Campisi, J.; Peacocke, M.

    1998-08-18

    The present invention provides a biomarker system for the in vivo and in vitro assessment of cell senescence. In the method of the present invention, {beta}-galactosidase activity is utilized as a means by which cell senescence may be assessed either in vitro cell cultures or in vivo. 1 fig.

  5. Biomarkers of cell senescence

    DOEpatents

    Dirmi, Goberdhan P.; Campisi, Judith; Peacocke, Monica

    1996-01-01

    The present invention provides a biomarker system for the in vivo and in vitro assessment of cell senescence. In the method of the present invention, .beta.-galactosidase activity is utilized as a means by which cell senescence may be assessed either in in vitro cell cultures or in vivo.

  6. Biomarkers of cell senescence

    DOEpatents

    Dimri, Goberdhan P.; Campisi, Judith; Peacocke, Monica

    1998-01-01

    The present invention provides a biomarker system for the in vivo and in vitro assessment of cell senescence. In the method of the present invention, .beta.-galactosidase activity is utilized as a means by which cell senescence may be assessed either in vitro cell cultures or in vivo.

  7. Evolution of plant senescence

    PubMed Central

    Thomas, Howard; Huang, Lin; Young, Mike; Ougham, Helen

    2009-01-01

    Background Senescence is integral to the flowering plant life-cycle. Senescence-like processes occur also in non-angiosperm land plants, algae and photosynthetic prokaryotes. Increasing numbers of genes have been assigned functions in the regulation and execution of angiosperm senescence. At the same time there has been a large expansion in the number and taxonomic spread of plant sequences in the genome databases. The present paper uses these resources to make a study of the evolutionary origins of angiosperm senescence based on a survey of the distribution, across plant and microbial taxa, and expression of senescence-related genes. Results Phylogeny analyses were carried out on protein sequences corresponding to genes with demonstrated functions in angiosperm senescence. They include proteins involved in chlorophyll catabolism and its control, homeoprotein transcription factors, metabolite transporters, enzymes and regulators of carotenoid metabolism and of anthocyanin biosynthesis. Evolutionary timelines for the origins and functions of particular genes were inferred from the taxonomic distribution of sequences homologous to those of angiosperm senescence-related proteins. Turnover of the light energy transduction apparatus is the most ancient element in the senescence syndrome. By contrast, the association of phenylpropanoid metabolism with senescence, and integration of senescence with development and adaptation mediated by transcription factors, are relatively recent innovations of land plants. An extended range of senescence-related genes of Arabidopsis was profiled for coexpression patterns and developmental relationships and revealed a clear carotenoid metabolism grouping, coordinated expression of genes for anthocyanin and flavonoid enzymes and regulators and a cluster pattern of genes for chlorophyll catabolism consistent with functional and evolutionary features of the pathway. Conclusion The expression and phylogenetic characteristics of senescence

  8. Photobiomodulation on senescence

    NASA Astrophysics Data System (ADS)

    Liu, Timon Cheng-Yi; Cheng, Lei; Rong, Dong-Liang; Xu, Xiao-Yang; Cui, Li-Ping; Lu, Jian; Deng, Xiao-Yuan; Liu, Song-Hao

    2006-09-01

    Photobiomodulation (PBM) is an effect oflow intensity monochromatic light or laser irradiation (LIL) on biological systems. which stimulates or inhibits biological functions but does not result in irreducible damage. It has been observed that PBM can suppress cellular senescence, reverse skin photoageing and improve fibromyalgia. In this paper, the biological information model of photobiomodulation (BIMP) is used to discuss its mechanism. Cellular senescence can result from short, dysfunctional telomeres, oxidative stress, or oncogene expression, and may contribute to aging so that it can be seen as a decline of cellular function in which cAMP plays an important role, which provide a foundation for PBM on senescence since cellular senescence is a reasonable model of senescence and PBM is a cellular rehabilitation in which cAMP also plays an important role according to BIMP. The PBM in reversing skin photoageing and improving fibromyalgia are then discussed in detail.

  9. In vivo inhibition of cysteine proteases provides evidence for the involvement of 'senescence-associated vacuoles' in chloroplast protein degradation during dark-induced senescence of tobacco leaves.

    PubMed

    Carrión, Cristian A; Costa, María Lorenza; Martínez, Dana E; Mohr, Christina; Humbeck, Klaus; Guiamet, Juan J

    2013-11-01

    Breakdown of leaf proteins, particularly chloroplast proteins, is a massive process in senescing leaves. In spite of its importance in internal N recycling, the mechanism(s) and the enzymes involved are largely unknown. Senescence-associated vacuoles (SAVs) are small, acidic vacuoles with high cysteine peptidase activity. Chloroplast-targeted proteins re-localize to SAVs during senescence, suggesting that SAVs might be involved in chloroplast protein degradation. SAVs were undetectable in mature, non-senescent tobacco leaves. Their abundance, visualized either with the acidotropic marker Lysotracker Red or by green fluorescent protein (GFP) fluorescence in a line expressing the senescence-associated cysteine protease SAG12 fused to GFP, increased during senescence induction in darkness, and peaked after 2-4 d, when chloroplast dismantling was most intense. Increased abundance of SAVs correlated with higher levels of SAG12 mRNA. Activity labelling with a biotinylated derivative of the cysteine protease inhibitor E-64 was used to detect active cysteine proteases. The two apparently most abundant cysteine proteases of senescing leaves, of 40kDa and 33kDa were detected in isolated SAVs. Rubisco degradation in isolated SAVs was completely blocked by E-64. Treatment of leaf disks with E-64 in vivo substantially reduced degradation of Rubisco and leaf proteins. Overall, these results indicate that SAVs contain most of the cysteine protease activity of senescing cells, and that SAV cysteine proteases are at least partly responsible for the degradation of stromal proteins of the chloroplast.

  10. Long-term cilostazol administration ameliorates memory decline in senescence-accelerated mouse prone 8 (SAMP8) through a dual effect on cAMP and blood-brain barrier.

    PubMed

    Yanai, Shuichi; Toyohara, Jun; Ishiwata, Kiichi; Ito, Hideki; Endo, Shogo

    2017-04-01

    Phosphodiesterases (PDEs), which hydrolyze and inactivate 3', 5'-cyclic adenosine monophosphate (cAMP) and 3', 5'-cyclic guanosine monophosphate (cGMP), play an important role in synaptic plasticity that underlies memory. Recently, several PDE inhibitors were assessed for their possible therapeutic efficacy in treating cognitive disorders. Here, we examined how cilostazol, a selective PDE3 inhibitor, affects brain functions in senescence-accelerated mouse prone 8 (SAMP8), an animal model of age-related cognitive impairment. Long-term administration of cilostazol restored the impaired context-dependent conditioned fear memory of SAMP8 to match that in normal aging control substrain SAMR1. Cilostazol also increased the number of cells containing phosphorylated cAMP-responsive element binding protein (CREB), a downstream component of the cAMP pathway. Finally, cilostazol improves blood-brain barrier (BBB) integrity, demonstrated by reduced extravasation of 2-deoxy-2-(18)F-fluoro-d-glucose and Evans Blue dye in the brains of SAMP8. This improvement in BBB integrity was associated with an increased amount of zona occludens protein 1 (ZO-1) and occludin proteins, components of tight junctions integral to the BBB. The results suggest that long-term administration of cilostazol exerts its beneficial effects on age-related cognitive impairment through a dual mechanism: by enhancing the cAMP system in the brain and by maintaining or improving BBB integrity.

  11. The Lr34 adult plant rust resistance gene provides seedling resistance in durum wheat without senescence.

    PubMed

    Rinaldo, Amy; Gilbert, Brian; Boni, Rainer; Krattinger, Simon G; Singh, Davinder; Park, Robert F; Lagudah, Evans; Ayliffe, Michael

    2016-09-29

    The hexaploid wheat (Triticum aestivum) adult plant resistance gene, Lr34/Yr18/Sr57/Pm38/Ltn1, provides broad spectrum resistance to wheat leaf rust (Lr34), stripe rust (Yr18), stem rust (Sr57) and powdery mildew (Pm38) pathogens, and has remained effective in wheat crops for many decades. The partial resistance provided by this gene is only apparent in adult plants and not effective in seedlings under standard growth conditions. Lr34 also causes leaf tip necrosis (Ltn1) in mature adult plant leaves when grown under field conditions. This D genome encoded bread wheat gene was transferred to tetraploid durum wheat (T. turgidum) cultivar Stewart by transformation. Transgenic durum lines were produced with elevated gene expression levels when compared with the endogenous hexaploid gene. Unlike nontransgenic hexaploid and durum control lines, these transgenic plants showed robust seedling resistance to pathogens causing wheat leaf rust, stripe rust and powdery mildew disease. The effectiveness of seedling resistance against each pathogen correlated with the level of transgene expression. No evidence of accelerated leaf necrosis or upregulation of senescence gene markers was apparent in these seedlings suggesting senescence is not required for Lr34 resistance. Several abiotic stress response genes were upregulated in these seedling in the absence of rust infection as previously observed in adult plant flag leaves of hexaploid wheat. Photoperiod and light intensity had significant effects on Lr34 phenotypes. These data demonstrate that expression of a highly durable, broad spectrum adult plant resistance gene can be modified to provide seedling resistance in durum wheat. This article is protected by copyright. All rights reserved.

  12. The senescence-induced staygreen protein regulates chlorophyll degradation.

    PubMed

    Park, So-Yon; Yu, Jae-Woong; Park, Jong-Sung; Li, Jinjie; Yoo, Soo-Cheul; Lee, Na-Yeoun; Lee, Sang-Kyu; Jeong, Seok-Won; Seo, Hak Soo; Koh, Hee-Jong; Jeon, Jong-Seong; Park, Youn-Il; Paek, Nam-Chon

    2007-05-01

    Loss of green color in leaves results from chlorophyll (Chl) degradation in chloroplasts, but little is known about how Chl catabolism is regulated throughout leaf development. Using the staygreen (sgr) mutant in rice (Oryza sativa), which maintains greenness during leaf senescence, we identified Sgr, a senescence-associated gene encoding a novel chloroplast protein. Transgenic rice overexpressing Sgr produces yellowish-brown leaves, and Arabidopsis thaliana pheophorbide a oxygenase-impaired mutants exhibiting a stay-green phenotype during dark-induced senescence have reduced expression of Sgr homologs, indicating that Sgr regulates Chl degradation at the transcriptional level. We show that the leaf stay-greenness of the sgr mutant is associated with a failure in the destabilization of the light-harvesting chlorophyll binding protein (LHCP) complexes of the thylakoid membranes, which is a prerequisite event for the degradation of Chls and LHCPs during senescence. Transient overexpression of Sgr in Nicotiana benthamiana and an in vivo pull-down assay show that Sgr interacts with LHCPII, indicating that the Sgr-LHCPII complexes are formed in the thylakoid membranes. Thus, we propose that in senescing leaves, Sgr regulates Chl degradation by inducing LHCPII disassembly through direct interaction, leading to the degradation of Chls and Chl-free LHCPII by catabolic enzymes and proteases, respectively.

  13. Senescence, nutrient remobilization, and yield in wheat and barley.

    PubMed

    Distelfeld, Assaf; Avni, Raz; Fischer, Andreas M

    2014-07-01

    Cereals including wheat and barley are of primary importance to ensure food security for the 21st century. A combination of lab- and field-based approaches has led to a considerably improved understanding of the importance of organ and particularly of whole-plant (monocarpic) senescence for wheat and barley yield and quality. A delicate balance between senescence timing, grain nutrient content, nutrient-use efficiency, and yield needs to be considered to (further) improve cereal varieties for a given environment and end use. The recent characterization of the Gpc-1 (NAM-1) genes in wheat and barley demonstrates the interdependence of these traits. Lines or varieties with functional Gpc-1 genes demonstrate earlier senescence and enhanced grain protein and micronutrient content but, depending on the environment, somewhat reduced yields. A major effort is needed to dissect regulatory networks centred on additional wheat and barley transcription factors and signalling pathways influencing the senescence process. Similarly, while important molecular details of nutrient (particularly nitrogen) remobilization from senescing organs to developing grains have been identified, important knowledge gaps remain. The genes coding for the major proteases involved in senescence-associated plastidial protein degradation are largely unknown. Membrane transport proteins involved in the different transport steps occurring between senescing organ (such as leaf mesophyll) cells and protein bodies in the endosperm of developing grains remain to be identified or further characterized. Existing data suggest that an improved understanding of all these steps will reveal additional, important targets for continued cereal improvement.

  14. Modulation of therapy-induced senescence by reactive lipid aldehydes

    PubMed Central

    Flor, A C; Doshi, A P; Kron, S J

    2016-01-01

    Current understanding points to unrepairable chromosomal damage as the critical determinant of accelerated senescence in cancer cells treated with radiation or chemotherapy. Nonetheless, the potent senescence inducer etoposide not only targets topoisomerase II to induce DNA damage but also produces abundant free radicals, increasing cellular reactive oxygen species (ROS). Toward examining roles for DNA damage and oxidative stress in therapy-induced senescence, we developed a quantitative flow cytometric senescence assay and screened 36 redox-active agents as enhancers of an otherwise ineffective dose of radiation. While senescence failed to correlate with total ROS, the radiation enhancers, etoposide and the other effective topoisomerase inhibitors each produced high levels of lipid peroxidation. The reactive aldehyde 4-hydroxy-2-nonenal, a lipid peroxidation end product, was sufficient to induce senescence in irradiated cells. In turn, sequestering aldehydes with hydralazine blocked effects of etoposide and other senescence inducers. These results suggest that lipid peroxidation potentiates DNA damage from radiation and chemotherapy to drive therapy-induced senescence. PMID:27453792

  15. Purification, characterization and identification of a senescence related serine protease in dark-induced senescent wheat leaves.

    PubMed

    Wang, Renxian; Liu, Shaowei; Wang, Jin; Dong, Qiang; Xu, Langlai; Rui, Qi

    2013-11-01

    Senescence-related proteases play important roles in leaf senescence by regulating protein degradation and nutrient recycling. A 98.9kDa senescence-related protease EP3 in wheat leaves was purified by ammonium sulfate precipitation, Q-Sepharose fast flow anion exchange chromatography and gel slicing after gel electrophoresis. Due to its relatively high thermal stability, its protease activity did not decrease after incubation at 40°C for 1-h. EP3 protease was suggested to be a metal-dependent serine protease, because its activity was inhibited by serine protease inhibitors PMSF and AEBSF and metal related protease inhibitor EGTA. It was identified as a subtilisin-like serine protease of the S8A family based on data from both mass spectrometry and the cloned cDNA sequence. Therefore, these data suggest that a serine protease of the S8A subfamily with specific biochemical properties is involved in senescence-associated protein degradation.

  16. Bangle (Zingiber purpureum) Improves Spatial Learning, Reduces Deficits in Memory, and Promotes Neurogenesis in the Dentate Gyrus of Senescence-Accelerated Mouse P8.

    PubMed

    Nakai, Megumi; Iizuka, Michiro; Matsui, Nobuaki; Hosogi, Kazuko; Imai, Akiko; Abe, Noriaki; Shiraishi, Hisashi; Hirata, Ayumu; Yagi, Yusuke; Jobu, Kohei; Yokota, Junko; Kato, Eishin; Hosoda, Shinya; Yoshioka, Saburo; Harada, Kenichi; Kubo, Miwa; Fukuyama, Yoshiyasu; Miyamura, Mitsuhiko

    2016-05-01

    Bangle (Zingiber purpureum) is a tropical ginger that is used as a spice in Southeast Asia. Phenylbutenoid dimers isolated from Bangle have exhibited neurotrophic effects in primary cultured rat cortical neurons and PC12 cells. Furthermore, chronic treatment with phenylbutenoid dimers enhances hippocampal neurogenesis in olfactory bulbectomized mice. In this study, we investigated the effects of Bangle extract on behavior and hippocampal neurogenesis in vivo. SAMP8 mice, which are an established model for accelerated aging, with age-related learning and memory impairments, were given a Bangle-containing diet for 1 month, and subsequent behavioral tests and immunohistochemistry for Ki67, a proliferating cell marker, were performed. We found that the Bangle-containing diet improved spatial learning and memory deficits in the Morris water maze and significantly increased the numbers of Ki67-positive cells in the dentate gyrus of the SAMP8 mice. In addition, the Bangle extract exhibited a neurotrophin-like activity as indicated by the induction of neurite sprouting in PC12 cells. Our results suggest that Bangle is beneficial for the prevention of age-related progression of cognitive impairment.

  17. [Ameliorating effects of dan-shen and its major ingredient calcium/magnesium lithospermate B on cognitive deficiencies in senescence-accelerated mouse].

    PubMed

    Nomura, Y; Arima, T; Namba, T; Hattori, M; Kadota, S

    1997-10-01

    Effect of the long-term treatment with a Dan-Shen (Salviae miltiorrhizae radix) methanol extract (DME) or its major ingredient lithospermate B (LSB) on memory and learning in scenescence-accelerated mouse (SAM) was investigated by means of Morris's water maze task. DME or LSB treatment significantly decreased the escape latency in the P8 strain of SAM (SAMP8), which strain spontaneously develops learning deficits. These results suggest that DME and LSB treatment improved spacial learning. Neurochemical investigations indicated that both drugs did not affect the cholinergic system, but enhanced functions of the glutamate-PKC system in hippocampus, since the increases in [3H]MK-801 ((+)-5-methyl-10,11-dihydro-5H-dibenzo[a,b]-cyclohepten-5,10-imine maleate) binding in cortex and [3H]PDBu (phorbol 12,13-dibutyrate) binding in hippocampus were observed in DME and LSB treatments. Our previous studies indicate the decrease in PDBu binding and NMDA receptor-mediated functions in SAMP8 brain. Thus, it is suggested that 1) Methanol extract of Dan-Shen is effective for prevention of spacial learning deficit caused with aging, 2) lithospermate B is one of the active ingredients, 3) SAMP8 is useful model animal to investigate drugs for anti-aging or anti-dementia.

  18. Changes in autumn senescence in northern hemisphere deciduous trees: a meta-analysis of autumn phenology studies

    PubMed Central

    Gill, Allison L.; Gallinat, Amanda S.; Sanders-DeMott, Rebecca; Rigden, Angela J.; Short Gianotti, Daniel J.; Mantooth, Joshua A.; Templer, Pamela H.

    2015-01-01

    Background and Aims Many individual studies have shown that the timing of leaf senescence in boreal and temperate deciduous forests in the northern hemisphere is influenced by rising temperatures, but there is limited consensus on the magnitude, direction and spatial extent of this relationship. Methods A meta-analysis was conducted of published studies from the peer-reviewed literature that reported autumn senescence dates for deciduous trees in the northern hemisphere, encompassing 64 publications with observations ranging from 1931 to 2010. Key Results Among the meteorological measurements examined, October temperatures were the strongest predictors of date of senescence, followed by cooling degree-days, latitude, photoperiod and, lastly, total monthly precipitation, although the strength of the relationships differed between high- and low-latitude sites. Autumn leaf senescence has been significantly more delayed at low (25° to 49°N) than high (50° to 70°N) latitudes across the northern hemisphere, with senescence across high-latitude sites more sensitive to the effects of photoperiod and low-latitude sites more sensitive to the effects of temperature. Delays in leaf senescence over time were stronger in North America compared with Europe and Asia. Conclusions The results indicate that leaf senescence has been delayed over time and in response to temperature, although low-latitude sites show significantly stronger delays in senescence over time than high-latitude sites. While temperature alone may be a reasonable predictor of the date of leaf senescence when examining a broad suite of sites, it is important to consider that temperature-induced changes in senescence at high-latitude sites are likely to be constrained by the influence of photoperiod. Ecosystem-level differences in the mechanisms that control the timing of leaf senescence may affect both plant community interactions and ecosystem carbon storage as global temperatures increase over the next

  19. Soil and water warming accelerates phenology and down-regulation of leaf photosynthesis of rice plants grown under free-air CO2 enrichment (FACE).

    PubMed

    Adachi, Minaco; Hasegawa, Toshihiro; Fukayama, Hiroshi; Tokida, Takeshi; Sakai, Hidemitsu; Matsunami, Toshinori; Nakamura, Hirofumi; Sameshima, Ryoji; Okada, Masumi

    2014-02-01

    To enable prediction of future rice production in a changing climate, we need to understand the interactive effects of temperature and elevated [CO2] (E[CO2]). We therefore examined if the effect of E[CO2] on the light-saturated leaf photosynthetic rate (Asat) was affected by soil and water temperature (NT, normal; ET, elevated) under open-field conditions at the rice free-air CO2 enrichment (FACE) facility in Shizukuishi, Japan, in 2007 and 2008. Season-long E[CO2] (+200 µmol mol(-1)) increased Asat by 26%, when averaged over two years, temperature regimes and growth stages. The effect of ET (+2°C) on Asat was not significant at active tillering and heading, but became negative and significant at mid-grain filling; Asat in E[CO2]-ET was higher than in ambient [CO2] (A[CO2])-NT by only 4%. Photosynthetic down-regulation at E[CO2] also became apparent at mid-grain filling; Asat compared at the same [CO2] in the leaf cuvette was significantly lower in plants grown in E[CO2] than in those grown in A[CO2]. The additive effects of E[CO2] and ET decreased Asat by 23% compared with that of A[CO2]-NT plants. Although total crop nitrogen (N) uptake was increased by ET, N allocation to the leaves and to Rubisco was reduced under ET and E[CO2] at mid-grain filling, which resulted in a significant decrease (32%) in the maximum rate of ribulose-1,5-bisphosphate carboxylation on a leaf area basis. Because the change in N allocation was associated with the accelerated phenology in E[CO2]-ET plants, we conclude that soil and water warming accelerates photosynthetic down-regulation at E[CO2].

  20. Shortened estrous cycle length, increased FSH levels, FSH variance, oocyte spindle aberrations, and early declining fertility in aging senescence-accelerated mouse prone-8 (SAMP8) mice: concomitant characteristics of human midlife female reproductive aging.

    PubMed

    Bernstein, Lori R; Mackenzie, Amelia C L; Kraemer, Duane C; Morley, John E; Farr, Susan; Chaffin, Charles L; Merchenthaler, István

    2014-06-01

    Women experience a series of specific transitions in their reproductive function with age. Shortening of the menstrual cycle begins in the mid to late 30s and is regarded as the first sign of reproductive aging. Other early changes include elevation and increased variance of serum FSH levels, increased incidences of oocyte spindle aberrations and aneuploidy, and declining fertility. The goal of this study was to investigate whether the mouse strain senescence-accelerated mouse-prone-8 (SAMP8) is a suitable model for the study of these midlife reproductive aging characteristics. Midlife SAMP8 mice aged 6.5-7.85 months (midlife SAMP8) exhibited shortened estrous cycles compared with SAMP8 mice aged 2-3 months (young SAMP8, P = .0040). Midlife SAMP8 mice had high FSH levels compared with young SAMP8 mice, and mice with a single day of high FSH exhibited statistically elevated FSH throughout the cycle, ranging from 1.8- to 3.6-fold elevation on the days of proestrus, estrus, metestrus, and diestrus (P < .05). Midlife SAMP8 mice displayed more variance in FSH than young SAMP8 mice (P = .01). Midlife SAMP8 ovulated fewer oocytes (P = .0155). SAMP8 oocytes stained with fluorescently labeled antitubulin antibodies and scored in fluorescence microscopy exhibited increased incidence of meiotic spindle aberrations with age, from 2/126 (1.59%) in young SAMP8 to 38/139 (27.3%) in midlife SAMP8 (17.2-fold increase, P < .0001). Finally, SAMP8 exhibited declining fertility from 8.9 pups/litter in young SAMP8 to 3.5 pups/litter in midlife SAMP8 mice (P < .0001). The age at which these changes occur is younger than for most mouse strains, and their simultaneous occurrence within a single strain has not been described previously. We propose that SAMP8 mice are a model of midlife human female reproductive aging.

  1. An Essential Role for Senescent Cells in Optimal Wound Healing through Secretion of PDGF-AA

    PubMed Central

    Demaria, Marco; Ohtani, Naoko; Youssef, Sameh A.; Rodier, Francis; Toussaint, Wendy; Mitchell, James R.; Laberge, Remi-Martin; Vijg, Jan; Van Steeg, Harry; Dollé, Martijn E.T.; Hoeijmakers, Jan H.J.; de Bruin, Alain; Hara, Eiji; Campisi, Judith

    2015-01-01

    SUMMARY Cellular senescence suppresses cancer by halting the growth of premalignant cells, yet the accumulation of senescent cells is thought to drive age-related pathology through a senescence-associated secretory phenotype (SASP), the function of which is unclear. To understand the physiological role(s) of the complex senescent phenotype, we generated a mouse model in which senescent cells can be visualized and eliminated in living animals. We show that senescent fibroblasts and endothelial cells appear very early in response to a cutaneous wound, where they accelerate wound closure by inducing myofibroblast differentiation through the secretion of platelet-derived growth factor AA (PDGF-AA). In two mouse models, topical treatment of senescence-free wounds with recombinant PDGF-AA rescued the delayed wound closure and lack of myofibroblast differentiation. These findings define a beneficial role for the SASP in tissue repair and help to explain why the SASP evolved. PMID:25499914

  2. An essential role for senescent cells in optimal wound healing through secretion of PDGF-AA.

    PubMed

    Demaria, Marco; Ohtani, Naoko; Youssef, Sameh A; Rodier, Francis; Toussaint, Wendy; Mitchell, James R; Laberge, Remi-Martin; Vijg, Jan; Van Steeg, Harry; Dollé, Martijn E T; Hoeijmakers, Jan H J; de Bruin, Alain; Hara, Eiji; Campisi, Judith

    2014-12-22

    Cellular senescence suppresses cancer by halting the growth of premalignant cells, yet the accumulation of senescent cells is thought to drive age-related pathology through a senescence-associated secretory phenotype (SASP), the function of which is unclear. To understand the physiological role(s) of the complex senescent phenotype, we generated a mouse model in which senescent cells can be visualized and eliminated in living animals. We show that senescent fibroblasts and endothelial cells appear very early in response to a cutaneous wound, where they accelerate wound closure by inducing myofibroblast differentiation through the secretion of platelet-derived growth factor AA (PDGF-AA). In two mouse models, topical treatment of senescence-free wounds with recombinant PDGF-AA rescued the delayed wound closure and lack of myofibroblast differentiation. These findings define a beneficial role for the SASP in tissue repair and help to explain why the SASP evolved.

  3. Senescence, aging, and disease.

    PubMed

    Crews, Douglas E

    2007-05-01

    All over the world people are surviving into their seventh and later decades of life more frequently today than ever before in human history. Some remain in good health, while others show chronic degenerative conditions (CDCs), frailty, and relatively rapid mortality. Thereafter, multiple factors promoting health and well-being become ever more complex as we age. After attainment of reproductive maturation, many physiological decrements occurring in concert with age reflect both senescent and disease processes, not simply the passage of time. Senescence is a process that begins with DNA, molecules and cells and ultimately terminates in cellular death, loss of organ function, and somatic frailty. These changes are different from benign changes with age that do not alter function. Both differ from the pathological processes represented by disease. Either disease or senescence may be age-related, but neither is age-determined. Disease results from pathological alterations and it affects all age groups. Diseases need not be related to senescence, which includes alterations due to inherent aspects of organismal biology. Distinctions among senescence, aging, and disease blur for the late-life CDCs because, in addition to disease processes, many CDCs are phenotypic manifestations of senescing DNA, organelles, cells, and organs. During earlier epochs of human evolution, greater environmental exposures and fewer cultural buffers likely lead to greater frailty and mortality before senescence progressed greatly, as they still do for most animals. In modern-day settings, culturally patterned behaviors have allowed human frailty to become disconnected somewhat from mortality, unlike non-human species.

  4. Responses of leafing phenology and photosynthesis to soil warming in forest-floor plants

    NASA Astrophysics Data System (ADS)

    Ishioka, Ryo; Muller, Onno; Hiura, Tsutom; Kudo, Gaku

    2013-08-01

    Phenological and physiological responses of plants to climate change are key issues to understand the global change impact on ecosystems. To evaluate the species-specific responses, a soil-warming experiment was conducted for seven understory species having various leaf habits in a deciduous forest, northern Japan; one evergreen shrub, one semi-evergreen fern, one summer-deciduous shrub, and four summer-green herbs. Soil temperature in the warming plots was electrically maintained 5 °C higher than control plots. Responses of leafing phenology highly varied among species: new leaf emergence of the evergreen shrub was delayed; senescence of overwintering leaves of the semi-evergreen fern was accelerated resulting in the shift to deciduousness; leaf shedding of the summer-deciduous shrub was accelerated. Among four summer-green species, only an earliest leaf-out species advanced growth initiation, but the period of growth season was not changed. Physiological responses to soil warming were also highly species-specific: the warming treatment increased the photosynthetic activity of the summer-deciduous shrub and one summer-green species, decreased that of the semi-evergreen fern, while other species did not show any changes in photosynthetic traits. Totally, the soil warming impacts on understory plants was apparent in spring. It was suggested that modification of snow conditions is important issue especially for plants with overwintering leaves. Responses of understory vegetation to climate change may highly vary depending on the composition of leaf habits in the cool-temperate forests.

  5. Strategies to ameliorate abiotic stress-induced plant senescence.

    PubMed

    Gepstein, Shimon; Glick, Bernard R

    2013-08-01

    The plant senescence syndrome resembles, in many molecular and phenotypic aspects, plant responses to abiotic stresses. Both processes have an enormous negative global agro-economic impact and endanger food security worldwide. Premature plant senescence is the main cause of losses in grain filling and biomass yield due to leaf yellowing and deteriorated photosynthesis, and is also responsible for the losses resulting from the short shelf life of many vegetables and fruits. Under abiotic stress conditions the yield losses are often even greater. The primary challenge in agricultural sciences today is to develop technologies that will increase food production and sustainability of agriculture especially under environmentally limiting conditions. In this chapter, some of the mechanisms involved in abiotic stress-induced plant senescence are discussed. Recent studies have shown that crop yield and nutritional values can be altered as well as plant stress tolerance through manipulating the timing of senescence. It is often difficult to separate the effects of age-dependent senescence from stress-induced senescence since both share many biochemical processes and ultimately result in plant death. The focus of this review is on abiotic stress-induced senescence. Here, a number of the major approaches that have been developed to ameliorate some of the effects of abiotic stress-induced plant senescence are considered and discussed. Some approaches mimic the mechanisms already used by some plants and soil bacteria whereas others are based on development of new improved transgenic plants. While there may not be one simple strategy that can effectively decrease all losses of crop yield that accrue as a consequence of abiotic stress-induced plant senescence, some of the strategies that are discussed already show great promise.

  6. Expression of senescence-associated genes in the leaves of silver birch (Betula pendula).

    PubMed

    Sillanpää, Maarit; Kontunen-Soppela, Sari; Luomala, Eeva-Maria; Sutinen, Sirkka; Kangasjärvi, Jaakko; Häggman, Hely; Vapaavuori, Elina

    2005-09-01

    Development was monitored throughout the entire life span of silver birch (Betula pendula Roth.) leaves. The focus was on senescence-related changes in photosynthesis and gene expression. The youngest fully developed leaves were compared with older senescing leaves in two silver birch lines: the wild-type line R and a late-senescing line R3.1. Line R3.1 was found among transgenic lines produced with a plasmid containing sense-RbcS and nptII under the control of the 35S CaMV promoter. Compared with the wild type, line R3.1 showed no general change in the mRNA levels of RbcS or Rubisco protein; therefore, it can be considered a line whose phenotype is due to insertional mutagenesis. Leaf senescence started earlier in line R than in line R3.1. Senescence was characterized by declining photosynthesis as indicated by decreases in chlorophyll fluorescence, the amount and activity of Rubisco, and the level of the ribulose-1,5-bisphosphate carboxylase/oxygenase small subunit (RbcS1) mRNA. Some well-known senescence-associated genes (SAGs) encoding cysteine proteinases (Cyp1, Cyp2) and a pathogenesis-related gene (Pr1) were associated with leaf senescence. The expression pattern of Cyp1 indicated that it could serve as a molecular marker of leaf senescence in silver birch. Several genes related to energy metabolism, antioxidants and phenylpropanoid biosynthesis showed enhanced expression during leaf senescence. A distinct pattern in transcript abundance during leaf development was revealed for some of the identified SAGs.

  7. Salt stress and senescence: identification of cross-talk regulatory components.

    PubMed

    Allu, Annapurna Devi; Soja, Aleksandra Maria; Wu, Anhui; Szymanski, Jedrzej; Balazadeh, Salma

    2014-07-01

    Leaf senescence is an active process with a pivotal impact on plant productivity. It results from extensive signalling cross-talk coordinating environmental factors with intrinsic age-related mechanisms. Although many studies have shown that leaf senescence is affected by a range of external parameters, knowledge about the regulatory systems that govern the interplay between developmental programmes and environmental stress is still vague. Salinity is one of the most important environmental stresses that promote leaf senescence and thus affect crop yield. Improving salt tolerance by avoiding or delaying senescence under stress will therefore play an important role in maintaining high agricultural productivity. Experimental evidence suggests that hydrogen peroxide (H2O2) functions as a common signalling molecule in both developmental and salt-induced leaf senescence. In this study, microarray-based gene expression profiling on Arabidopsis thaliana plants subjected to long-term salinity stress to induce leaf senescence was performed, together with co-expression network analysis for H2O2-responsive genes that are mutually up-regulated by salt induced- and developmental leaf senescence. Promoter analysis of tightly co-expressed genes led to the identification of seven cis-regulatory motifs, three of which were known previously, namely CACGTGT and AAGTCAA, which are associated with reactive oxygen species (ROS)-responsive genes, and CCGCGT, described as a stress-responsive regulatory motif, while the others, namely ACGCGGT, AGCMGNC, GMCACGT, and TCSTYGACG were not characterized previously. These motifs are proposed to be novel elements involved in the H2O2-mediated control of gene expression during salinity stress-triggered and developmental senescence, acting through upstream transcription factors that bind to these sites.

  8. Transcriptional and Metabolic Analysis of Senescence Induced by Preventing Pollination in Maize1[W][OA

    PubMed Central

    Sekhon, Rajandeep S.; Childs, Kevin L.; Santoro, Nicholas; Foster, Cliff E.; Buell, C. Robin; de Leon, Natalia; Kaeppler, Shawn M.

    2012-01-01

    Transcriptional and metabolic changes were evaluated during senescence induced by preventing pollination in the B73 genotype of maize (Zea mays). Accumulation of free glucose and starch and loss of chlorophyll in leaf was manifested early at 12 d after anthesis (DAA), while global transcriptional and phenotypic changes were evident only at 24 DAA. Internodes exhibited major transcriptomic changes only at 30 DAA. Overlaying expression data onto metabolic pathways revealed involvement of many novel pathways, including those involved in cell wall biosynthesis. To investigate the overlap between induced and natural senescence, transcriptional data from induced senescence in maize was compared with that reported for Arabidopsis (Arabidopsis thaliana) undergoing natural and sugar-induced senescence. Notable similarities with natural senescence in Arabidopsis included up-regulation of senescence-associated genes (SAGs), ethylene and jasmonic acid biosynthetic genes, APETALA2, ethylene-responsive element binding protein, and no apical meristem transcription factors. However, differences from natural senescence were highlighted by unaltered expression of a subset of the SAGs, and cytokinin, abscisic acid, and salicylic acid biosynthesis genes. Key genes up-regulated during sugar-induced senescence in Arabidopsis, including a cysteine protease (SAG12) and three flavonoid biosynthesis genes (PRODUCTION OF ANTHOCYANIN PIGMENT1 (PAP1), PAP2, and LEUCOANTHOCYANIDIN DIOXYGENASE), were also induced, suggesting similarities in senescence induced by pollination prevention and sugar application. Coexpression analysis revealed networks involving known senescence-related genes and novel candidates; 82 of these were shared between leaf and internode networks, highlighting similarities in induced senescence in these tissues. Insights from this study will be valuable in systems biology of senescence in maize and other grasses. PMID:22732243

  9. Transcriptional and metabolic analysis of senescence induced by preventing pollination in maize.

    PubMed

    Sekhon, Rajandeep S; Childs, Kevin L; Santoro, Nicholas; Foster, Cliff E; Buell, C Robin; de Leon, Natalia; Kaeppler, Shawn M

    2012-08-01

    Transcriptional and metabolic changes were evaluated during senescence induced by preventing pollination in the B73 genotype of maize (Zea mays). Accumulation of free glucose and starch and loss of chlorophyll in leaf was manifested early at 12 d after anthesis (DAA), while global transcriptional and phenotypic changes were evident only at 24 DAA. Internodes exhibited major transcriptomic changes only at 30 DAA. Overlaying expression data onto metabolic pathways revealed involvement of many novel pathways, including those involved in cell wall biosynthesis. To investigate the overlap between induced and natural senescence, transcriptional data from induced senescence in maize was compared with that reported for Arabidopsis (Arabidopsis thaliana) undergoing natural and sugar-induced senescence. Notable similarities with natural senescence in Arabidopsis included up-regulation of senescence-associated genes (SAGs), ethylene and jasmonic acid biosynthetic genes, APETALA2, ethylene-responsive element binding protein, and no apical meristem transcription factors. However, differences from natural senescence were highlighted by unaltered expression of a subset of the SAGs, and cytokinin, abscisic acid, and salicylic acid biosynthesis genes. Key genes up-regulated during sugar-induced senescence in Arabidopsis, including a cysteine protease (SAG12) and three flavonoid biosynthesis genes (PRODUCTION OF ANTHOCYANIN PIGMENT1 (PAP1), PAP2, and LEUCOANTHOCYANIDIN DIOXYGENASE), were also induced, suggesting similarities in senescence induced by pollination prevention and sugar application. Coexpression analysis revealed networks involving known senescence-related genes and novel candidates; 82 of these were shared between leaf and internode networks, highlighting similarities in induced senescence in these tissues. Insights from this study will be valuable in systems biology of senescence in maize and other grasses.

  10. Connecting proline metabolism and signaling pathways in plant senescence

    PubMed Central

    Zhang, Lu; Becker, Donald F.

    2015-01-01

    The amino acid proline has a unique biological role in stress adaptation. Proline metabolism is manipulated under stress by multiple and complex regulatory pathways and can profoundly influence cell death and survival in microorganisms, plants, and animals. Though the effects of proline are mediated by diverse signaling pathways, a common theme appears to be the generation of reactive oxygen species (ROS) due to proline oxidation being coupled to the respiratory electron transport chain. Considerable research has been devoted to understand how plants exploit proline metabolism in response to abiotic and biotic stress. Here, we review potential mechanisms by which proline metabolism influences plant senescence, namely in the petal and leaf. Recent studies of petal senescence suggest proline content is manipulated to meet energy demands of senescing cells. In the flower and leaf, proline metabolism may influence ROS signaling pathways that delay senescence progression. Future studies focusing on the mechanisms by which proline metabolic shifts occur during senescence may lead to novel methods to rescue crops under stress and to preserve post-harvest agricultural products. PMID:26347750

  11. Characterization of Abscisic Acid-Induced Ethylene Production in Citrus Leaf and Tomato Fruit Tissues 1

    PubMed Central

    Riov, Joseph; Dagan, Eliahu; Goren, Raphael; Yang, Shang Fa

    1990-01-01

    Abscisic acid (ABA) significantly stimulated ethylene production in citrus (Citrus sinensis [L.] Osbeck, cv Shamouti orange) leaf discs. The extent of stimulation was dependent upon the concentration of ABA (0.1-1 milimolar) and the duration of treatment (15-300 minutes). Aging the discs before applying ABA increased ABA-induced ethylene production due to enhancement of both ethylene-forming enzyme activity and the responsiveness of ABA. Discs excised from mature leaves were much more responsive to ABA than discs excised from young or senescing leaves. ABA stimulated ethylene production shortly after application, suggesting that ABA does not enhance ethylene production via the acceleration of senescence. The stimulating effect of ABA on ethylene production resulted mainly from the enhancement of 1-aminocylopropane-1-carboxylic acid synthesis. Stimulation of ethylene production by ABA in intact citrus leaves and tomato (Lycopersicon esculentum Mill., cv Castlemart) fruit was small but could be increased by various forms of wounding. PMID:16667264

  12. From Leaf Synthesis to Senescence: n-Alkyl Lipid Abundance and D/H Composition Among Plant Species in a Temperate Deciduous Forest at Brown's Lake Bog, Ohio, USA

    NASA Astrophysics Data System (ADS)

    Freimuth, E. J.; Diefendorf, A. F.; Lowell, T. V.

    2014-12-01

    The hydrogen isotope composition (D/H, δD) of terrestrial plant leaf waxes is a promising paleohydrology proxy because meteoric water (e.g., precipitation) is the primary hydrogen source for wax synthesis. However, secondary environmental and biological factors modify the net apparent fractionation between precipitation δD and leaf wax δD, limiting quantitative reconstruction of paleohydrology. These secondary factors include soil evaporation, leaf transpiration, biosynthetic fractionation, and the seasonal timing of lipid synthesis. Here, we investigate the influence of each of these factors on n-alkyl lipid δD in five dominant deciduous angiosperm tree species as well as shrubs, ferns and grasses in the watershed surrounding Brown's Lake Bog, Ohio, USA. We quantified n-alkane and n-alkanoic acid concentrations and δD in replicate individuals of each species at weekly to monthly intervals from March to October 2014 to assess inter- and intraspecific isotope variability throughout the growing season. We present soil, xylem and leaf water δD from each individual, and precipitation and atmospheric water vapor δD throughout the season to directly examine the relationship between source water and lipid isotope composition. These data allow us to assess the relative influence of soil evaporation and leaf transpiration among plant types, within species, and along a soil moisture gradient throughout the catchment. We use leaf water δD to approximate biosynthetic fractionation for each individual and test whether this is a species-specific and seasonal constant, and to evaluate variation among plant types with identical growth conditions. Our high frequency sampling approach provides new insights into the seasonal timing of n-alkane and n-alkanoic acid synthesis and subsequent fluctuations in concentration and δD in a temperate deciduous forest. These results will advance understanding of the magnitude and timing of secondary influences on the modern leaf wax

  13. Spatial patterns of senescence and development-dependent distribution of reactive oxygen species in tobacco (Nicotiana tabacum) leaves.

    PubMed

    Niewiadomska, Ewa; Polzien, Lisa; Desel, Christine; Rozpadek, Piotr; Miszalski, Zbigniew; Krupinska, Karin

    2009-07-01

    Senescence of tobacco leaves is distributed non-uniformly over a leaf blade. While photosynthetic competence and expression of photosynthesis-associated genes decline in interveinal areas of the leaf lamina with advancing age of the leaf, they are maintained at high levels in the tissue surrounding the veins. In contrast, expression of senescence-associated genes (SAG) was enhanced in both areas of the leaf blade. Accumulation of hydrogen peroxide was shown to precede the phase of senescence initiation in the veinal tissue. In the interveinal tissue, the level of hydrogen peroxide was increased with senescence progression and paralleled by an increase in the level of superoxide anions. It is hypothesized that the spatial differences in superoxide anions are important for the non-uniform down-regulation of photosynthesis-associated genes (PAG), while hydrogen peroxide is responsible for up-regulation of SAG.

  14. Effects of warming on chlorophyll degradation and carbohydrate accumulation of Alpine herbaceous species during plant senescence on the Tibetan Plateau.

    PubMed

    Shi, Changguang; Sun, Geng; Zhang, Hongxuan; Xiao, Bingxue; Ze, Bai; Zhang, Nannan; Wu, Ning

    2014-01-01

    Plant senescence is a critical life history process accompanied by chlorophyll degradation and has large implications for nutrient resorption and carbohydrate storage. Although photoperiod governs much of seasonal leaf senescence in many plant species, temperature has also been shown to modulate this process. Therefore, we hypothesized that climate warming would significantly impact the length of the plant growing season and ultimate productivity. To test this assumption, we measured the effects of simulated autumn climate warming paradigms on four native herbaceous species that represent distinct life forms of alpine meadow plants on the Tibetan Plateau. Conditions were simulated in open-top chambers (OTCs) and the effects on the degradation of chlorophyll, nitrogen (N) concentration in leaves and culms, total non-structural carbohydrate (TNC) in roots, growth and phenology were assessed during one year following treatment. The results showed that climate warming in autumn changed the senescence process only for perennials by slowing chlorophyll degradation at the beginning of senescence and accelerating it in the following phases. Warming also increased root TNC storage as a result of higher N concentrations retained in leaves; however, this effect was species dependent and did not alter the growing and flowering phenology in the following seasons. Our results indicated that autumn warming increases carbohydrate accumulation, not only by enhancing activities of photosynthetic enzymes (a mechanism proposed in previous studies), but also by affecting chlorophyll degradation and preferential allocation of resources to different plant compartments. The different responses to warming can be explained by inherently different growth and phenology patterns observed among the studied species. The results implied that warming leads to changes in the competitive balance among life forms, an effect that can subsequently shift vegetation distribution and species composition

  15. Litter mixture dominated by leaf litter of the invasive species, Flaveria bidentis, accelerates decomposition and favors nitrogen release.

    PubMed

    Li, Huiyan; Wei, Zishang; Huangfu, Chaohe; Chen, Xinwei; Yang, Dianlin

    2017-01-01

    In natural ecosystems, invasive plant litter is often mixed with that of native species, yet few studies have examined the decomposition dynamics of such mixtures, especially across different degrees of invasion. We conducted a 1-year litterbag experiment using leaf litters from the invasive species Flaveria bidentis (L.) and the dominant co-occurring native species, Setaria viridis (L.). Litters were allowed to decompose either separately or together at different ratios in a mothproof screen house. The mass loss of all litter mixtures was non-additive, and the direction and strength of effects varied with species ratio and decomposition stage. During the initial stages of decomposition, all mixtures had a neutral effect on the mass loss; however, at later stages of decomposition, mixtures containing more invasive litter had synergistic effects on mass loss. Importantly, an increase in F. bidentis litter with a lower C:N ratio in mixtures led to greater net release of N over time. These results highlight the importance of trait dissimilarity in determining the decomposition rates of litter mixtures and suggest that F. bidentis could further synchronize N release from litter as an invasion proceeds, potentially creating a positive feedback linked through invasion as the invader outcompetes the natives for nutrients. Our findings also demonstrate the importance of species composition as well as the identity of dominant species when considering how changes in plant community structure influence plant invasion.

  16. Density dependence triggers runaway selection of reduced senescence.

    PubMed

    Seymour, Robert M; Doncaster, C Patrick

    2007-12-01

    In the presence of exogenous mortality risks, future reproduction by an individual is worth less than present reproduction to its fitness. Senescent aging thus results inevitably from transferring net fertility into younger ages. Some long-lived organisms appear to defy theory, however, presenting negligible senescence (e.g., hydra) and extended lifespans (e.g., Bristlecone Pine). Here, we investigate the possibility that the onset of vitality loss can be delayed indefinitely, even accepting the abundant evidence that reproduction is intrinsically costly to survival. For an environment with constant hazard, we establish that natural selection itself contributes to increasing density-dependent recruitment losses. We then develop a generalized model of accelerating vitality loss for analyzing fitness optima as a tradeoff between compression and spread in the age profile of net fertility. Across a realistic spectrum of senescent age profiles, density regulation of recruitment can trigger runaway selection for ever-reducing senescence. This novel prediction applies without requirement for special life-history characteristics such as indeterminate somatic growth or increasing fecundity with age. The evolution of nonsenescence from senescence is robust to the presence of exogenous adult mortality, which tends instead to increase the age-independent component of vitality loss. We simulate examples of runaway selection leading to negligible senescence and even intrinsic immortality.

  17. Members of the barley NAC transcription factor gene family show differential co-regulation with senescence-associated genes during senescence of flag leaves.

    PubMed

    Christiansen, Michael W; Gregersen, Per L

    2014-07-01

    The senescence process of plants is important for the completion of their life cycle, particularly for crop plants, it is essential for efficient nutrient remobilization during seed filling. It is a highly regulated process, and in order to address the regulatory aspect, the role of genes in the NAC transcription factor family during senescence of barley flag leaves was studied. Several members of the NAC transcription factor gene family were up-regulated during senescence in a microarray experiment, together with a large range of senescence-associated genes, reflecting the coordinated activation of degradation processes in senescing barley leaf tissues. This picture was confirmed in a detailed quantitative reverse transcription-PCR (qRT-PCR) experiment, which also showed distinct gene expression patterns for different members of the NAC gene family, suggesting a group of ~15 out of the 47 studied NAC genes to be important for signalling processes and for the execution of degradation processes during leaf senescence in barley. Seven models for DNA-binding motifs for NAC transcription factors were designed based on published motifs, and available promoter sequences of barley genes were screened for the motifs. Genes up-regulated during senescence showed a significant over-representation of the motifs, suggesting regulation by the NAC transcription factors. Furthermore, co-regulation studies showed that genes possessing the motifs in the promoter in general were highly co-expressed with members of the NAC gene family. In conclusion, a list of up to 15 NAC genes from barley that are strong candidates for being regulatory factors of importance for senescence and biotic stress-related traits affecting the productivity of cereal crop plants has been generated. Furthermore, a list of 71 senescence-associated genes that are potential target genes for these NAC transcription factors is presented.

  18. Responses of herbaceous plants to urban air pollution: effects on growth, phenology and leaf surface characteristics.

    PubMed

    Honour, Sarah L; Bell, J Nigel B; Ashenden, Trevor W; Cape, J Neil; Power, Sally A

    2009-04-01

    Vehicle exhaust emissions are a dominant feature of urban environments and are widely believed to have detrimental effects on plants. The effects of diesel exhaust emissions on 12 herbaceous species were studied with respect to growth, flower development, leaf senescence and leaf surface wax characteristics. A diesel generator was used to produce concentrations of nitrogen oxides (NO(x)) representative of urban conditions, in solardome chambers. Annual mean NO(x) concentrations ranged from 77 nl l(-l) to 98 nl l(-1), with NO:NO(2) ratios of 1.4-2.2, providing a good experimental simulation of polluted roadside environments. Pollutant exposure resulted in species-specific changes in growth and phenology, with a consistent trend for accelerated senescence and delayed flowering. Leaf surface characteristics were also affected; contact angle measurements indicated changes in surface wax structure following pollutant exposure. The study demonstrated clearly the potential for realistic levels of vehicle exhaust pollution to have direct adverse effects on urban vegetation.

  19. Senescence in COPD and Its Comorbidities.

    PubMed

    Barnes, Peter J

    2017-02-10

    Chronic obstructive pulmonary disease (COPD) is regarded as a disease of accelerated lung aging. This affliction shows all of the hallmarks of aging, including telomere shortening, cellular senescence, activation of PI3 kinase-mTOR signaling, impaired autophagy, mitochondrial dysfunction, stem cell exhaustion, epigenetic changes, abnormal microRNA profiles, immunosenescence, and a low-grade chronic inflammation (inflammaging). Many of these pathways are driven by chronic exogenous and endogenous oxidative stress. There is also a reduction in antiaging molecules, such as sirtuins and Klotho, which further accelerate the aging process. COPD is associated with several comorbidities (multimorbidity), such as cardiovascular and metabolic diseases, that share the same pathways of accelerated aging. Understanding these mechanisms has helped identify several novel therapeutic targets, and several drugs and dietary interventions are now in development to treat multimorbidity.

  20. Plant senescence and proteolysis: two processes with one destiny

    PubMed Central

    Diaz-Mendoza, Mercedes; Velasco-Arroyo, Blanca; Santamaria, M. Estrella; González-Melendi, Pablo; Martinez, Manuel; Diaz, Isabel

    2016-01-01

    Abstract Senescence-associated proteolysis in plants is a complex and controlled process, essential for mobilization of nutrients from old or stressed tissues, mainly leaves, to growing or sink organs. Protein breakdown in senescing leaves involves many plastidial and nuclear proteases, regulators, different subcellular locations and dynamic protein traffic to ensure the complete transformation of proteins of high molecular weight into transportable and useful hydrolysed products. Protease activities are strictly regulated by specific inhibitors and through the activation of zymogens to develop their proteolytic activity at the right place and at the proper time. All these events associated with senescence have deep effects on the relocation of nutrients and as a consequence, on grain quality and crop yield. Thus, it can be considered that nutrient recycling is the common destiny of two processes, plant senescence and, proteolysis. This review article covers the most recent findings about leaf senescence features mediated by abiotic and biotic stresses as well as the participants and steps required in this physiological process, paying special attention to C1A cysteine proteases, their specific inhibitors, known as cystatins, and their potential targets, particularly the chloroplastic proteins as source for nitrogen recycling. PMID:27505308

  1. Four faces of cellular senescence

    PubMed Central

    Rodier, Francis

    2011-01-01

    Cellular senescence is an important mechanism for preventing the proliferation of potential cancer cells. Recently, however, it has become apparent that this process entails more than a simple cessation of cell growth. In addition to suppressing tumorigenesis, cellular senescence might also promote tissue repair and fuel inflammation associated with aging and cancer progression. Thus, cellular senescence might participate in four complex biological processes (tumor suppression, tumor promotion, aging, and tissue repair), some of which have apparently opposing effects. The challenge now is to understand the senescence response well enough to harness its benefits while suppressing its drawbacks. PMID:21321098

  2. Western-type diet induces senescence, modifies vascular function in non-senescence mice and triggers adaptive mechanisms in senescent ones.

    PubMed

    Onetti, Yara; Jiménez-Altayó, Francesc; Heras, Magda; Vila, Elisabet; Dantas, Ana Paula

    2013-12-01

    The effects of high-fat diet ingestion on senescence-induced modulation of contractile responses to phenylephrine (Phe) were determined in aortas of senescence-accelerated (SAMP8) and non-senescent (SAMR1) mice fed (8weeks) a Western-type high-fat diet (WD). Increased levels of senescence-associated β-galactosidase staining were found in aortas of SAMP8 and SAMR1 with WD. In SAMR1, WD did not modify Phe contraction in spite of inducing major changes in the mechanisms of regulation of contractile responses. Although WD increased NAD(P)H-oxidase-derived O2(-) and augmented peroxynitrite formation, we found an increase of inducible NOS (iNOS)-derived NO production which may contribute to maintain Phe contraction in SAMR1 WD. On SAMP8, WD significantly decreased Phe-induced contractions when compared with SAMP8 under normal chow. This response was not dependent on changes of NOS expression, but rather as consequence of increased antioxidant capacity by superoxide dismutase (SOD1). A similar constrictor influence from cyclooxygenase (COX) pathway on Phe responses was found in SAMR1 and SAMP8 ND. However, WD removed that influence on SAMR1, and produced a switch in the balance from a vasoconstrictor to a vasodilator component in SAMP8. These results were associated to the increased COX-2 expression, suggesting that a COX-2-derived vasodilator prostaglandin may contribute to the vascular adaptations after WD intake. Taken together, our data suggest that WD plays a detrimental role in the vasculature of non-senescent mice by increasing pro-inflammatory (iNOS) and pro-oxidative signaling pathways and may contribute to increase vascular senescence. In senescent vessels, however, WD triggers different intrinsic compensatory alterations which include increase of antioxidant activity by SOD1 and vasodilator prostaglandin production via COX-2.

  3. Senescence-Induced Serotonin Biosynthesis and Its Role in Delaying Senescence in Rice Leaves1[C][W][OA

    PubMed Central

    Kang, Kiyoon; Kim, Young-Soon; Park, Sangkyu; Back, Kyoungwhan

    2009-01-01

    Serotonin, which is well known as a pineal hormone in mammals, plays a key role in conditions such as mood, eating disorders, and alcoholism. In plants, although serotonin has been suggested to be involved in several physiological roles, including flowering, morphogenesis, and adaptation to environmental changes, its regulation and functional roles are as yet not characterized at the molecular level. In this study, we found that serotonin is greatly accumulated in rice (Oryza sativa) leaves undergoing senescence induced by either nutrient deprivation or detachment, and its synthesis is closely coupled with transcriptional and enzymatic induction of the tryptophan biosynthetic genes as well as tryptophan decarboxylase (TDC). Transgenic rice plants that overexpressed TDC accumulated higher levels of serotonin than the wild type and showed delayed senescence of rice leaves. However, transgenic rice plants, in which expression of TDC was suppressed through an RNA interference (RNAi) system, produced less serotonin and senesced faster than the wild type, suggesting that serotonin is involved in attenuating leaf senescence. The senescence-retarding activity of serotonin is associated with its high antioxidant activity compared to either tryptophan or chlorogenic acid. Results of TDC overexpression and TDC RNAi plants suggest that TDC plays a rate-limiting role for serotonin accumulation, but the synthesis of serotonin depends on an absolute amount of tryptophan accumulation by the coordinate induction of the tryptophan biosynthetic genes. In addition, immunolocalization analysis revealed that serotonin was abundant in the vascular parenchyma cells, including companion cells and xylem-parenchyma cells, suggestive of its involvement in maintaining the cellular integrity of these cells for facilitating efficient nutrient recycling from senescing leaves to sink tissues during senescence. PMID:19439571

  4. Accelerated and Synchronized Oviposition Induced by Flight of Young Females May Intensify Larval Outbreaks of the Rice Leaf Roller

    PubMed Central

    Zhang, Lei; Pan, Pan; Sappington, Thomas W.; Lu, Weixiang; Luo, Lizhi; Jiang, Xingfu

    2015-01-01

    Physiological management of migration-reproduction trade-offs in energy allocation often includes a package of adaptions referred to as the oogenesis-flight syndrome. In some species, this trade-off may be overestimated, because factors like flight behavior and environmental conditions may mitigate it. In this study, we examined the reproductive consequences induced by different flight scenarios in an economically-important Asian migrant insect, Cnaphalocrocis medinalis. We found that the influences of flight on reproduction are not absolutely positive or negative, but instead depend on the age at which the moth begins flight, flight duration, and how many consecutive nights they are flown. Adult flight on the 1st or 2nd night after emergence, flight for 6 h or 12 h nightly, and flight on the first two consecutive nights after emergence significantly accelerated onset of oviposition or enhanced synchrony of egg-laying. The latter can contribute to subsequent larval outbreaks. However, flight after the 3rd night, flight for 18 h at any age, or flight on more than 3 consecutive nights after adult emergence did not promote reproductive development, and in some scenarios even constrained adult reproduction. These results indicate that there is a migration/reproduction trade-off in C.medinalis, but that it is mitigated or eliminated by flight under appropriate conditions. The strategy of advanced and synchronized oviposition triggered by migratory flight of young females may be common in other migratory insect pests. PMID:25815767

  5. Management of multicellular senescence and oxidative stress

    PubMed Central

    Haines, David D; Juhasz, Bela; Tosaki, Arpad

    2013-01-01

    Progressively sophisticated understanding of cellular and molecular processes that contribute to age-related physical deterioration is being gained from ongoing research into cancer, chronic inflammatory syndromes and other serious disorders that increase with age. Particularly valuable insight has resulted from characterization of how senescent cells affect the tissues in which they form in ways that decrease an organism's overall viability. Increasingly, the underlying pathophysiology of ageing is recognized as a consequence of oxidative damage. This leads to hyperactivity of cell growth pathways, prominently including mTOR (mammalian target of rapamycin), that contribute to a build-up in cells of toxic aggregates such as progerin (a mutant nuclear cytoskeletal protein), lipofuscin and other cellular debris, triggering formation of senescent cellular phenotypes, which interact destructively with surrounding tissue. Indeed, senescent cell ablation dramatically inhibits physical deterioration in progeroid (age-accelerated) mice. This review explores ways in which oxidative stress creates ageing-associated cellular damage and triggers induction of the cell death/survival programs’ apoptosis, necrosis, autophagy and ‘necroapoptophagy’. The concept of ‘necroapoptophagy’ is presented here as a strategy for varying tissue oxidative stress intensity in ways that induce differential activation of death versus survival programs, resulting in enhanced and sustained representation of healthy functional cells. These strategies are discussed in the context of specialized mesenchymal stromal cells with the potential to synergize with telocytes in stabilizing engrafted progenitor cells, thereby extending periods of healthy life. Information and concepts are summarized in a hypothetical approach to suppressing whole-organism senescence, with methods drawn from emerging understandings of ageing, gained from Cnidarians (jellyfish, corals and anemones) that undergo a

  6. Proteomic Responses of Switchgrass and Prairie Cordgrass to Senescence.

    PubMed

    Paudel, Bimal; Das, Aayudh; Tran, Michaellong; Boe, Arvid; Palmer, Nathan A; Sarath, Gautam; Gonzalez-Hernandez, Jose L; Rushton, Paul J; Rohila, Jai S

    2016-01-01

    Senescence in biofuel grasses is a critical issue because early senescence decreases potential biomass production by limiting aerial growth and development. 2-Dimensional, differential in-gel electrophoresis (2D-DIGE) followed by mass spectrometry of selected protein spots was used to evaluate differences between leaf proteomes of early (ES)- and late- senescing (LS) genotypes of Prairie cordgrass (ES/LS PCG) and switchgrass (ES/LS SG), just before and after senescence was initiated. Analysis of the manually filtered and statistically evaluated data indicated that 69 proteins were significantly differentially abundant across all comparisons, and a majority (41%) were associated with photosynthetic processes as determined by gene ontology analysis. Ten proteins were found in common between PCG and SG, and nine and 18 proteins were unique to PCG and SG respectively. Five of the 10 differentially abundant spots common to both species were increased in abundance, and five were decreased in abundance. Leaf proteomes of the LS genotypes of both grasses analyzed before senescence contained significantly higher abundances of a 14-3-3 like protein and a glutathione-S-transferase protein when compared to the ES genotypes, suggesting differential cellular metabolism in the LS vs. the ES genotypes. The higher abundance of 14-3-3 like proteins may be one factor that impacts the senescence process in both LS PCG and LS SG. Aconitase dehydratase was found in greater abundance in all four genotypes after the onset of senescence, consistent with literature reports from genetic and transcriptomic studies. A Rab protein of the Ras family of G proteins and an s-adenosylmethionine synthase were more abundant in ES PCG when compared with the LS PCG. In contrast, several proteins associated with photosynthesis and carbon assimilation were detected in greater abundance in LS PCG when compared to ES PCG, suggesting that a loss of these proteins potentially contributed to the ES phenotype

  7. Proteomic Responses of Switchgrass and Prairie Cordgrass to Senescence

    PubMed Central

    Paudel, Bimal; Das, Aayudh; Tran, Michaellong; Boe, Arvid; Palmer, Nathan A.; Sarath, Gautam; Gonzalez-Hernandez, Jose L.; Rushton, Paul J.; Rohila, Jai S.

    2016-01-01

    Senescence in biofuel grasses is a critical issue because early senescence decreases potential biomass production by limiting aerial growth and development. 2-Dimensional, differential in-gel electrophoresis (2D-DIGE) followed by mass spectrometry of selected protein spots was used to evaluate differences between leaf proteomes of early (ES)- and late- senescing (LS) genotypes of Prairie cordgrass (ES/LS PCG) and switchgrass (ES/LS SG), just before and after senescence was initiated. Analysis of the manually filtered and statistically evaluated data indicated that 69 proteins were significantly differentially abundant across all comparisons, and a majority (41%) were associated with photosynthetic processes as determined by gene ontology analysis. Ten proteins were found in common between PCG and SG, and nine and 18 proteins were unique to PCG and SG respectively. Five of the 10 differentially abundant spots common to both species were increased in abundance, and five were decreased in abundance. Leaf proteomes of the LS genotypes of both grasses analyzed before senescence contained significantly higher abundances of a 14-3-3 like protein and a glutathione-S-transferase protein when compared to the ES genotypes, suggesting differential cellular metabolism in the LS vs. the ES genotypes. The higher abundance of 14-3-3 like proteins may be one factor that impacts the senescence process in both LS PCG and LS SG. Aconitase dehydratase was found in greater abundance in all four genotypes after the onset of senescence, consistent with literature reports from genetic and transcriptomic studies. A Rab protein of the Ras family of G proteins and an s-adenosylmethionine synthase were more abundant in ES PCG when compared with the LS PCG. In contrast, several proteins associated with photosynthesis and carbon assimilation were detected in greater abundance in LS PCG when compared to ES PCG, suggesting that a loss of these proteins potentially contributed to the ES phenotype

  8. Quantifying the Onset and Progression of Plant Senescence by Color Image Analysis for High Throughput Applications

    PubMed Central

    Cai, Jinhai; Okamoto, Mamoru; Atieno, Judith; Sutton, Tim; Li, Yongle; Miklavcic, Stanley J.

    2016-01-01

    Leaf senescence, an indicator of plant age and ill health, is an important phenotypic trait for the assessment of a plant’s response to stress. Manual inspection of senescence, however, is time consuming, inaccurate and subjective. In this paper we propose an objective evaluation of plant senescence by color image analysis for use in a high throughput plant phenotyping pipeline. As high throughput phenotyping platforms are designed to capture whole-of-plant features, camera lenses and camera settings are inappropriate for the capture of fine detail. Specifically, plant colors in images may not represent true plant colors, leading to errors in senescence estimation. Our algorithm features a color distortion correction and image restoration step prior to a senescence analysis. We apply our algorithm to two time series of images of wheat and chickpea plants to quantify the onset and progression of senescence. We compare our results with senescence scores resulting from manual inspection. We demonstrate that our procedure is able to process images in an automated way for an accurate estimation of plant senescence even from color distorted and blurred images obtained under high throughput conditions. PMID:27348807

  9. The Autophagy-Senescence Connection in Chemotherapy: Must Tumor Cells (Self) Eat Before They Sleep?

    PubMed Central

    Goehe, Rachel W.; Di, Xu; Sharma, Khushboo; Bristol, Molly L.; Henderson, Scott C.; Valerie, Kristoffer; Rodier, Francis; Davalos, Albert R.

    2012-01-01

    Exposure of MCF-7 breast tumor cells or HCT-116 colon carcinoma cells to clinically relevant concentrations of doxorubicin (Adriamycin; Farmitalia Research Laboratories, Milan, Italy) or camptothecin results in both autophagy and senescence. To determine whether autophagy is required for chemotherapy-induced senescence, reactive oxygen generation induced by Adriamycin was suppressed by N-acetyl cysteine and glutathione, and the induction of ataxia telangiectasia mutated, p53, and p21 was modulated pharmacologically and/or genetically. In all cases, autophagy and senescence were collaterally suppressed. The close association between autophagy and senescence indicated by these experiments reflects their collateral regulation via common signaling pathways. The potential relationship between autophagy and senescence was further examined through pharmacologic inhibition of autophagy with chloroquine and 3-methyl-adenine and genetic ablation of the autophagy-related genes ATG5 and ATG7. However, inhibition of autophagy by pharmacological and genetic approaches could not entirely abrogate the senescence response, which was only reduced and/or delayed. Taken together, our findings suggest that autophagy and senescence tend to occur in parallel, and furthermore that autophagy accelerates the development of the senescent phenotype. However, these responses are not inexorably linked or interdependent, as senescence can occur when autophagy is abrogated. PMID:22927544

  10. The autophagy-senescence connection in chemotherapy: must tumor cells (self) eat before they sleep?

    PubMed

    Goehe, Rachel W; Di, Xu; Sharma, Khushboo; Bristol, Molly L; Henderson, Scott C; Valerie, Kristoffer; Rodier, Francis; Davalos, Albert R; Gewirtz, David A

    2012-12-01

    Exposure of MCF-7 breast tumor cells or HCT-116 colon carcinoma cells to clinically relevant concentrations of doxorubicin (Adriamycin; Farmitalia Research Laboratories, Milan, Italy) or camptothecin results in both autophagy and senescence. To determine whether autophagy is required for chemotherapy-induced senescence, reactive oxygen generation induced by Adriamycin was suppressed by N-acetyl cysteine and glutathione, and the induction of ataxia telangiectasia mutated, p53, and p21 was modulated pharmacologically and/or genetically. In all cases, autophagy and senescence were collaterally suppressed. The close association between autophagy and senescence indicated by these experiments reflects their collateral regulation via common signaling pathways. The potential relationship between autophagy and senescence was further examined through pharmacologic inhibition of autophagy with chloroquine and 3-methyl-adenine and genetic ablation of the autophagy-related genes ATG5 and ATG7. However, inhibition of autophagy by pharmacological and genetic approaches could not entirely abrogate the senescence response, which was only reduced and/or delayed. Taken together, our findings suggest that autophagy and senescence tend to occur in parallel, and furthermore that autophagy accelerates the development of the senescent phenotype. However, these responses are not inexorably linked or interdependent, as senescence can occur when autophagy is abrogated.

  11. Phosphorylation Affects DNA-Binding of the Senescence-Regulating bZIP Transcription Factor GBF1

    PubMed Central

    Smykowski, Anja; Fischer, Stefan M.; Zentgraf, Ulrike

    2015-01-01

    Massive changes in the transcriptome of Arabidopsis thaliana during onset and progression of leaf senescence imply a central role for transcription factors. While many transcription factors are themselves up- or down-regulated during senescence, the bZIP transcription factor G-box-binding factor 1 (GBF1/bZIP41) is constitutively expressed in Arabidopsis leaf tissue but at the same time triggers the onset of leaf senescence, suggesting posttranscriptional mechanisms for senescence-specific GBF1 activation. Here we show that GBF1 is phosphorylated by the threonine/serine CASEIN KINASE II (CKII) in vitro and that CKII phosphorylation had a negative effect on GBF1 DNA-binding to G-boxes of two direct target genes, CATALASE2 and RBSCS1a. Phosphorylation mimicry at three serine positions in the basic region of GBF1 also had a negative effect on DNA-binding. Kinase assays revealed that CKII phosphorylates at least one serine in the basic domain but has additional phosphorylation sites outside this domain. Two different ckII α subunit1 and one α subunit2 T-DNA insertion lines showed no visible senescence phenotype, but in all lines the expression of the senescence marker gene SAG12 was remarkably diminished. A model is presented suggesting that senescence-specific GBF1 activation might be achieved by lowering the phosphorylation of GBF1 by CKII. PMID:27135347

  12. Why leaves turn red in autumn. The role of anthocyanins in senescing leaves of red-osier dogwood.

    PubMed

    Feild, T S; Lee, D W; Holbrook, N M

    2001-10-01

    Why the leaves of many woody species accumulate anthocyanins prior to being shed has long puzzled biologists because it is unclear what effects anthocyanins may have on leaf function. Here, we provide evidence for red-osier dogwood (Cornus stolonifera) that anthocyanins form a pigment layer in the palisade mesophyll layer that decreases light capture by chloroplasts. Measurements of leaf absorbance demonstrated that red-senescing leaves absorbed more light of blue-green to orange wavelengths (495-644 nm) compared with yellow-senescing leaves. Using chlorophyll a fluorescence measurements, we observed that maximum photosystem II (PSII) photon yield of red-senescing leaves recovered from a high-light stress treatment, whereas yellow-senescing leaves failed to recover after 6 h of dark adaptation, which suggests photo-oxidative damage. Because no differences were observed in light response curves of effective PSII photon yield for red- and yellow-senescing leaves, differences between red- and yellow-senescing cannot be explained by differences in the capacities for photochemical and non-photochemical light energy dissipation. A role of anthocyanins as screening pigments was explored further by measuring the responses PSII photon yield to blue light, which is preferentially absorbed by anthocyanins, versus red light, which is poorly absorbed. We found that dark-adapted PSII photon yield of red-senescing leaves recovered rapidly following illumination with blue light. However, red light induced a similar, prolonged decrease in PSII photon yield in both red- and yellow-senescing leaves. We suggest that optical masking of chlorophyll by anthocyanins reduces risk of photo-oxidative damage to leaf cells as they senesce, which otherwise may lower the efficiency of nutrient retrieval from senescing autumn leaves.

  13. Markers of cellular senescence. Telomere shortening as a marker of cellular senescence

    PubMed Central

    2016-01-01

    The cellular senescence definition comes to the fact of cells irreversible proliferation disability. Besides the cell cycle arrest, senescent cells go through some morphological, biochemical, and functional changes which are the signs of cellular senescence. The senescent cells (including replicative senescence and stress-induced premature senescence) of all the tissues look alike. They are metabolically active and possess the set of characteristics in vitro and in vivo, which are known as biomarkers of aging and cellular senescence. Among biomarkers of cellular senescence telomere shortening is a rather elegant frequently used biomarker. Validity of telomere shortening as a marker for cellular senescence is based on theoretical and experimental data. PMID:26805432

  14. Markers of cellular senescence. Telomere shortening as a marker of cellular senescence.

    PubMed

    Bernadotte, Alexandra; Mikhelson, Victor M; Spivak, Irina M

    2016-01-01

    The cellular senescence definition comes to the fact of cells irreversible proliferation disability. Besides the cell cycle arrest, senescent cells go through some morphological, biochemical, and functional changes which are the signs of cellular senescence. The senescent cells (including replicative senescence and stress-induced premature senescence) of all the tissues look alike. They are metabolically active and possess the set of characteristics in vitro and in vivo, which are known as biomarkers of aging and cellular senescence. Among biomarkers of cellular senescence telomere shortening is a rather elegant frequently used biomarker. Validity of telomere shortening as a marker for cellular senescence is based on theoretical and experimental data.

  15. Senescent cells expose and secrete an oxidized form of membrane-bound vimentin as revealed by a natural polyreactive antibody

    PubMed Central

    Frescas, David; Roux, Christelle M.; Aygun-Sunar, Semra; Gleiberman, Anatoli S.; Krasnov, Peter; Kurnasov, Oleg V.; Strom, Evguenia; Virtuoso, Lauren P.; Wrobel, Michelle; Osterman, Andrei L.; Antoch, Marina P.; Mett, Vadim; Chernova, Olga B.; Gudkov, Andrei V.

    2017-01-01

    Studying the phenomenon of cellular senescence has been hindered by the lack of senescence-specific markers. As such, detection of proteins informally associated with senescence accompanies the use of senescence-associated β-galactosidase as a collection of semiselective markers to monitor the presence of senescent cells. To identify novel biomarkers of senescence, we immunized BALB/c mice with senescent mouse lung fibroblasts and screened for antibodies that recognized senescence-associated cell-surface antigens by FACS analysis and a newly developed cell-based ELISA. The majority of antibodies that we isolated, cloned, and sequenced belonged to the IgM isotype of the innate immune system. In-depth characterization of one of these monoclonal, polyreactive natural antibodies, the IgM clone 9H4, revealed its ability to recognize the intermediate filament vimentin. By using 9H4, we observed that senescent primary human fibroblasts express vimentin on their cell surface, and MS analysis revealed a posttranslational modification on cysteine 328 (C328) by the oxidative adduct malondialdehyde (MDA). Moreover, elevated levels of secreted MDA-modified vimentin were detected in the plasma of aged senescence-accelerated mouse prone 8 mice, which are known to have deregulated reactive oxygen species metabolism and accelerated aging. Based on these findings, we hypothesize that humoral innate immunity may recognize senescent cells by the presence of membrane-bound MDA-vimentin, presumably as part of a senescence eradication mechanism that may become impaired with age and result in senescent cell accumulation. PMID:28193858

  16. Inhibitory role of peroxiredoxin II (Prx II) on cellular senescence.

    PubMed

    Han, Ying-Hao; Kim, Hyun-Sun; Kim, Jin-Man; Kim, Sang-Keun; Yu, Dae-Yeul; Moon, Eun-Yi

    2005-08-29

    Reactive oxygen species (ROS) were generated in all oxygen-utilizing organisms. Peroxiredoxin II (Prx II) as one of antioxidant enzymes may play a protective role against the oxidative damage caused by ROS. In order to define the role of Prx II in organismal aging, we evaluated cellular senescence in Prx II(-/-) mouse embryonic fibroblast (MEF). As compared to wild type MEF, cellular senescence was accelerated in Prx II(-/-) MEF. Senescence-associated (SA)-beta-galactosidase (Gal)-positive cell formation was about 30% higher in Prx II(-/-) MEF. N-Acetyl-l-cysteine (NAC) treatment attenuated SA-beta-Gal-positive cell formation. Prx II(-/-) MEF exhibited the higher G2/M (41%) and lower S (1.6%) phase cells as compared to 24% and 7.3% [corrected] in wild type MEF, respectively. A high increase in the p16 and a slight increase in the p21 and p53 levels were detected in PrxII(-/-) MEF cells. The cellular senescence of Prx II(-/-) MEF was correlated with the organismal aging of Prx II(-/-) mouse skin. While extracellular signal-regulated kinase (ERK) and p38 activation was detected in Prx II(-/-) MEF, ERK and c-Jun N-terminal kinase (JNK) activation was detected in Prx II(-/-) skin. These results suggest that Prx II may function as an enzymatic antioxidant to prevent cellular senescence and skin aging.

  17. Flower senescence: some molecular aspects.

    PubMed

    Shahri, Waseem; Tahir, Inayatullah

    2014-02-01

    Some molecular aspects of flower senescence have been reviewed. The isolation, identification and characterization of different genes from various flowers (mainly from petals) associated with senescence have been discussed. The isolated genes were divided into different groups. A large proportion of genes have been found to be upregulated during flower senescence while some genes were also found to be downregulated indicating that there exists a complex interplay between the expression patterns of various genes. The genes involved in petal expansion are found to be upregulated during normal flower development from anthesis to open flower stage, but XTH (Xyloglucan endotransglucosylase hydrolase) is found to be involved in petal expansion as well as abscission. Cysteine proteases or the genes encoding cysteine proteases (assigned a central role in protein degradation) have been identified from various flower systems, but no cysteine protease has been identified from senescing Mirabilis jalapa flowers. In addition to proteases, the genes encoding ubiquitin (exhibiting proteasomal degradation by 26S proteasomes) have also been identified suggesting the two alternate pathways for protein degradation. Genes encoding specific nucleases have also been identified, but they displayed an early increase in transcript abundance before the senescence symptoms become evident and characterize the involvement of PCD during flower senescence. A range of transcription factors are described and their possible role in flower senescence has been discussed. A detailed description of genes involved in ethylene synthesis and the components involved in ethylene signaling have been presented.

  18. Redox markers for drought-induced nodule senescence, a process occurring after drought-induced senescence of the lowest leaves in soybean (Glycine max)

    PubMed Central

    Marquez-Garcia, Belén; Shaw, Daniel; Cooper, James William; Karpinska, Barbara; Quain, Marian Dorcas; Makgopa, Eugene Matome; Kunert, Karl; Foyer, Christine Helen

    2015-01-01

    Background and Aims Water is an increasingly scarce resource that limits crop productivity in many parts of the world, and the frequency and severity of drought are predicted to increase as a result of climate change. Improving tolerance to drought stress is therefore important for maximizing future crop yields. The aim of this study was to compare the effects of drought on soybean (Glycine max) leaves and nodules in order to define phenotypic markers and changes in cellular redox state that characterize the stress response in different organs, and to characterize the relationships between leaf and nodule senescence during drought. Methods Leaf and crown nodule metabolite pools were measured together with leaf and soil water contents, and leaf chlorophyll, total protein contents and chlorophyll a fluorescence quenching parameters in nodulated soybeans that were grown under either well-watered conditions or deprived of water for up to 21 d. Key Results Ureides, ascorbate, protein, chlorophyll and the ratios of variable chlorophyll a fluorescence (Fv′) to maximal chlorophyll a fluorescence (Fm′) fell to levels below detection in the oldest leaves after 21 d of drought. While these drought-induced responses were not observed in the youngest leaf ranks, the Fv′/Fm′ ratios, pyridine nucleotide levels and the reduction state of the ascorbate pool were lower in all leaf ranks after 21 d of drought. In contrast to leaves, total nodule protein, pyridine nucleotides, ureides, ascorbate and glutathione contents increased as a result of the drought treatment. However, the nodule ascorbate pool was significantly less reduced as a result of drought. Higher levels of transcripts encoding two peroxiredoxins were detected in nodules exposed to drought stress but senescence-associated transcripts and other mRNAs encoding redox-related proteins were similar under both conditions. Conclusions While the physiological impact of the drought was perceived throughout the

  19. The transcriptome of Populus in elevated CO2 reveals increased anthocyanin biosynthesis during delayed autumnal senescence

    SciTech Connect

    Tallis, M.J.; Rogers, A.; Lin, Y.; Zhang, J.; Street, N. R.; Miglietta, F.; Karnosky, D. F.; Angelis, P. D.; Calfapietra, C.; Taylor, G.

    2010-03-01

    The delay in autumnal senescence that has occurred in recent decades has been linked to rising temperatures. Here, we suggest that increasing atmospheric CO{sub 2} may partly account for delayed autumnal senescence and for the first time, through transcriptome analysis, identify gene expression changes associated with this delay. Using a plantation of Populus x euramericana grown in elevated [CO{sub 2}] (e[CO{sub 2}]) with free-air CO{sub 2} enrichment (FACE) technology, we investigated the molecular and biochemical basis of this response. A Populus cDNA microarray was used to identify genes representing multiple biochemical pathways influenced by e[CO{sub 2}] during senescence. Gene expression changes were confirmed through real-time quantitative PCR, and leaf biochemical assays. Pathways for secondary metabolism and glycolysis were significantly up-regulated by e[CO{sub 2}] during senescence, in particular, those related to anthocyanin biosynthesis. Expressed sequence tags (ESTs) representing the two most significantly up-regulated transcripts in e[CO{sub 2}], LDOX (leucoanthocyanidin dioxgenase) and DFR (dihydroflavonol reductase), gave (e[CO{sub 2}]/ambient CO{sub 2} (a[CO{sub 2}])) expression ratios of 39.6 and 19.3, respectively. We showed that in e[CO{sub 2}] there was increased autumnal leaf sugar accumulation and up-regulation of genes determining anthocyanin biosynthesis which, we propose, prolongs leaf longevity during natural autumnal senescence.

  20. Effects of estrogen on growth plate senescence and epiphyseal fusion.

    PubMed

    Weise, M; De-Levi, S; Barnes, K M; Gafni, R I; Abad, V; Baron, J

    2001-06-05

    Estrogen is critical for epiphyseal fusion in both young men and women. In this study, we explored the cellular mechanisms by which estrogen causes this phenomenon. Juvenile ovariectomized female rabbits received either 70 microg/kg estradiol cypionate or vehicle i.m. once a week. Growth plates from the proximal tibia, distal tibia, and distal femur were analyzed after 2, 4, 6, or 8 weeks of treatment. In vehicle-treated animals, there was a gradual senescent decline in tibial growth rate, rate of chondrocyte proliferation, growth plate height, number of proliferative chondrocytes, number of hypertrophic chondrocytes, size of terminal hypertrophic chondrocytes, and column density. Estrogen treatment accelerated the senescent decline in all of these parameters. In senescent growth plates, epiphyseal fusion was observed to be an abrupt event in which all remaining chondrocytes were rapidly replaced by bone elements. Fusion occurred when the rate of chondrocyte proliferation approached zero. Estrogen caused this proliferative exhaustion and fusion to occur earlier. Our data suggest that (i) epiphyseal fusion is triggered when the proliferative potential of growth plate chondrocytes is exhausted; and (ii) estrogen does not induce growth plate ossification directly; instead, estrogen accelerates the programmed senescence of the growth plate, thus causing earlier proliferative exhaustion and consequently earlier fusion.

  1. Role of the Ascorbate-Glutathione Cycle of Mitochondria and Peroxisomes in the Senescence of Pea Leaves1

    PubMed Central

    Jiménez, Ana; Hernández, José A.; Pastori, Gabriela; del Río, Luis A.; Sevilla, Francisca

    1998-01-01

    We investigated the relationship between H2O2 metabolism and the senescence process using soluble fractions, mitochondria, and peroxisomes from senescent pea (Pisum sativum L.) leaves. After 11 d of senescence the activities of Mn-superoxide dismutase, dehydroascorbate reductase (DHAR), and glutathione reductase (GR) present in the matrix, and ascorbate peroxidase (APX) and monodehydroascorbate reductase (MDHAR) activities localized in the mitochondrial membrane, were all substantially decreased in mitochondria. The mitochondrial ascorbate and dehydroascorbate pools were reduced, whereas the oxidized glutathione levels were maintained. In senescent leaves the H2O2 content in isolated mitochondria and the NADH- and succinate-dependent production of superoxide (O2·−) radicals by submitochondrial particles increased significantly. However, in peroxisomes from senescent leaves both membrane-bound APX and MDHAR activities were reduced. In the matrix the DHAR activity was enhanced and the GR activity remained unchanged. As a result of senescence, the reduced and the oxidized glutathione pools were considerably increased in peroxisomes. A large increase in the glutathione pool and DHAR activity were also found in soluble fractions of senescent pea leaves, together with a decrease in GR, APX, and MDHAR activities. The differential response to senescence of the mitochondrial and peroxisomal ascorbate-glutathione cycle suggests that mitochondria could be affected by oxidative damage earlier than peroxisomes, which may participate in the cellular oxidative mechanism of leaf senescence longer than mitochondria. PMID:9847106

  2. Senescence-Associated Vacuoles, a Specific Lytic Compartment for Degradation of Chloroplast Proteins?

    PubMed

    Carrión, Cristian A; Martínez, Dana E; Costa, M Lorenza; Guiamet, Juan José

    2014-11-11

    Degradation of chloroplasts and chloroplast components is a distinctive feature of leaf senescence. In spite of its importance in the nutrient economy of plants, knowledge about the mechanism(s) involved in the breakdown of chloroplast proteins is incomplete. A novel class of vacuoles, "senescence-associated vacuoles" (SAVs), characterized by intense proteolytic activity appear during senescence in chloroplast-containing cells of leaves. Since SAVs contain some chloroplast proteins, they are candidate organelles to participate in chloroplast breakdown. In this review we discuss the characteristics of SAVs, and their possible involvement in the degradation of Rubisco, the most abundant chloroplast protein. Finally, SAVs are compared with other extra-plastidial protein degradation pathways operating in senescing leaves.

  3. Senescence-Associated Vacuoles, a Specific Lytic Compartment for Degradation of Chloroplast Proteins?

    PubMed Central

    Carrión, Cristian A.; Martínez, Dana E.; Costa, M. Lorenza; Guiamet, Juan José

    2014-01-01

    Degradation of chloroplasts and chloroplast components is a distinctive feature of leaf senescence. In spite of its importance in the nutrient economy of plants, knowledge about the mechanism(s) involved in the breakdown of chloroplast proteins is incomplete. A novel class of vacuoles, “senescence-associated vacuoles” (SAVs), characterized by intense proteolytic activity appear during senescence in chloroplast-containing cells of leaves. Since SAVs contain some chloroplast proteins, they are candidate organelles to participate in chloroplast breakdown. In this review we discuss the characteristics of SAVs, and their possible involvement in the degradation of Rubisco, the most abundant chloroplast protein. Finally, SAVs are compared with other extra-plastidial protein degradation pathways operating in senescing leaves. PMID:27135516

  4. Delayed animal aging through the recovery of stem cell senescence by platelet rich plasma.

    PubMed

    Liu, Hen-Yu; Huang, Chiung-Fang; Lin, Tzu-Chieh; Tsai, Ching-Yu; Tina Chen, Szu-Yu; Liu, Alice; Chen, Wei-Hong; Wei, Hong-Jian; Wang, Ming-Fu; Williams, David F; Deng, Win-Ping

    2014-12-01

    Aging is related to loss of functional stem cell accompanying loss of tissue and organ regeneration potentials. Previously, we demonstrated that the life span of ovariectomy-senescence accelerated mice (OVX-SAMP8) was significantly prolonged and similar to that of the congenic senescence-resistant strain of mice after platelet rich plasma (PRP)/embryonic fibroblast transplantation. The aim of this study is to investigate the potential of PRP for recovering cellular potential from senescence and then delaying animal aging. We first examined whether stem cells would be senescent in aged mice compared to young mice. Primary adipose derived stem cells (ADSCs) and bone marrow derived stem cells (BMSCs) were harvested from young and aged mice, and found that cell senescence was strongly correlated to animal aging. Subsequently, we demonstrated that PRP could recover cell potential from senescence, such as promote cell growth (cell proliferation and colony formation), increase osteogenesis, decrease adipogenesis, restore cell senescence related markers and resist the oxidative stress in stem cells from aged mice. The results also showed that PRP treatment in aged mice could delay mice aging as indicated by survival, body weight and aging phenotypes (behavior and gross morphology) in term of recovering the cellular potential of their stem cells compared to the results on aged control mice. In conclusion these findings showed that PRP has potential to delay aging through the recovery of stem cell senescence and could be used as an alternative medicine for tissue regeneration and future rejuvenation.

  5. Involvement of Abscisic Acid in PSII Photodamage and D1 Protein Turnover for Light-Induced Premature Senescence of Rice Flag Leaves

    PubMed Central

    Wang, Fubiao; Liu, Jianchao; Chen, Minxue; Zhou, Lujian; Li, Zhaowei; Zhao, Qian; Pan, Gang; Zaidi, Syed-Hassan-Raza; Cheng, Fangmin

    2016-01-01

    D1 protein in the PSII reaction center is the major target of photodamage, and it exhibits the highest turnover rate among all the thylakoid proteins. In this paper, rice psf (premature senescence of flag leaves) mutant and its wild type were used to investigate the genotype-dependent alteration in PSII photo-damage and D1 protein turnover during leaf senescence and its relation to ABA accumulation in senescent leaves. The symptom and extent of leaf senescence of the psf mutant appeared to be sunlight-dependent under natural field condition. The psf also displayed significantly higher levels of ABA accumulation in senescent leaves than the wild type. However, the premature senescence lesion of psf leaves could be alleviated by shaded treatment, concomitantly with the strikingly suppressed ABA level in the shaded areas of flag leaves. The change in ABA concentration contributed to the regulation of shade-delayed leaf senescence. The participation of ABA in the timing of senescence initiation and in the subsequent rate of leaf senescence was closely associated with PSII photodamage and D1 protein turnover during leaf senescence, in which the transcriptional expression of several key genes (psbA, psbB, psbC and OsFtsH2) involved in D1 protein biosynthesis and PSII repair cycle was seriously suppressed by the significantly increased ABA level. This response resulted in the low rate of D1 protein synthesis and impaired repair recovery in the presence of ABA. The psf showed evidently decreased D1 protein amount in the senescent leaves. Both the inhibition of de novo synthesized D1 protein and the slow rate of proteolytic removal for the photodamaged D1 protein was among the most crucial steps for the linkage between light-dependent leaf senescence and the varying ABA concentration in psf mutant leaves. OsFtsH2 transcriptional expression possibly played an important role in the regulation of D1 protein turnover and PSII repair cycle in relation to ABA mediated leaf

  6. Phenotyping jasmonate regulation of senescence.

    PubMed

    Seltmann, Martin A; Berger, Susanne

    2013-01-01

    Osmotic stress induces several senescence-like processes in leaves, such as specific changes in gene expression and yellowing. These processes are dependent on the accumulation of jasmonates and on intact jasmonate signaling. This chapter describes the treatment of Arabidopsis thaliana leaves with sorbitol as an osmotic stress agent and the determination of the elicited phenotypes encompassing chlorophyll loss, degradation of plastidial membrane lipids, and induction of genes regulated by senescence and jasmonate.

  7. Noncoding RNA Control of Cellular Senescence

    PubMed Central

    Abdelmohsen, Kotb; Gorospe, Myriam

    2015-01-01

    Senescent cells accumulate in normal tissues with advancing age and arise by long-term culture of primary cells. Senescence develops following exposure to a range of stress-causing agents and broadly influences the physiology and pathology of tissues, organs, and systems in the body. While many proteins are known to control senescence, numerous noncoding (nc)RNAs are also found to promote or repress the senescent phenotype. Here, we review the regulatory ncRNAs (primarily microRNAs and lncRNAs) identified to-date as key modulators of senescence. We highlight the major senescent pathways (p53/p21 and pRB/p16), as well as the senescence-associated secretory phenotype (SASP) and other senescence-associated events governed by ncRNAs, and discuss the importance of understanding comprehensively the ncRNAs implicated in cell senescence. PMID:26331977

  8. Esophageal cancer-related gene 4 is a secreted inducer of cell senescence expressed by aged CNS precursor cells.

    PubMed

    Kujuro, Yuki; Suzuki, Norihiro; Kondo, Toru

    2010-05-04

    Mammalian aging is thought to be partially caused by the diminished capacity of stem/precursor cells to undergo self-renewing divisions. Although many cell-cycle regulators are involved in this process, it is unknown to what extent cell senescence, first identified as irreversible growth arrest in vitro, contributes to the aging process. Here, using a serum-induced mouse oligodendrocyte precursor cell (mOPC) senescence model, we identified esophageal cancer-related gene 4 (Ecrg4) as a senescence inducer with implications for the senescence-like state of postmitotic cells in the aging brain. Although mOPCs could proliferate indefinitely when cultured using the appropriate medium (OPC medium), they became senescent in the presence of serum and maintained their senescent phenotype even when the serum was subsequently replaced by OPC medium. We show that Ecrg4 was up-regulated in the senescent OPCs, its overexpression in OPCs induced senescence by accelerating the proteasome-dependent degradation of cyclins D1 and D3, and that its knockdown by a specific short hairpin RNA prevented these phenotypes. We also show that senescent OPCs secreted Ecrg4 and that recombinant Ecrg4 induced OPC senescence in culture. Moreover, increased Ecrg4 expression was observed in the OPCs and neural precursor cells in the aged mouse brain; this was accompanied by the expression of senescence-associated beta-galactosidase activity, indicating the cells' entrance into senescence. These results suggest that Ecrg4 is a factor linking neural-cell senescence and aging.

  9. Stem cells, senescence, neosis and self-renewal in cancer

    PubMed Central

    Rajaraman, Rengaswami; Guernsey, Duane L; Rajaraman, Murali M; Rajaraman, Selva R

    2006-01-01

    We describe the basic tenets of the current concepts of cancer biology, and review the recent advances on the suppressor role of senescence in tumor growth and the breakdown of this barrier during the origin of tumor growth. Senescence phenotype can be induced by (1) telomere attrition-induced senescence at the end of the cellular mitotic life span (MLS*) and (2) also by replication history-independent, accelerated senescence due to inadvertent activation of oncogenes or by exposure of cells to genotoxins. Tumor suppressor genes p53/pRB/p16INK4A and related senescence checkpoints are involved in effecting the onset of senescence. However, senescence as a tumor suppressor mechanism is a leaky process and senescent cells with mutations or epimutations in these genes escape mitotic catastrophe-induced cell death by becoming polyploid cells. These polyploid giant cells, before they die, give rise to several cells with viable genomes via nuclear budding and asymmetric cytokinesis. This mode of cell division has been termed neosis and the immediate neotic offspring the Raju cells. The latter inherit genomic instability and transiently display stem cell properties in that they differentiate into tumor cells and display extended, but, limited MLS, at the end of which they enter senescent phase and can undergo secondary/tertiary neosis to produce the next generation of Raju cells. Neosis is repeated several times during tumor growth in a non-synchronized fashion, is the mode of origin of resistant tumor growth and contributes to tumor cell heterogeneity and continuity. The main event during neosis appears to be the production of mitotically viable daughter genome after epigenetic modulation from the non-viable polyploid genome of neosis mother cell (NMC). This leads to the growth of resistant tumor cells. Since during neosis, spindle checkpoint is not activated, this may give rise to aneuploidy. Thus, tumor cells also are destined to die due to senescence, but may escape

  10. Vacuolar Localization of Proteases and Degradation of Chloroplasts in Mesophyll Protoplasts from Senescing Primary Wheat Leaves 1

    PubMed Central

    Wittenbach, Vernon A.; Lin, Willy; Hebert, Richard R.

    1982-01-01

    Mesophyll protoplasts isolated from primary leaves of wheat seedlings were used to follow the localization of proteases and the breakdown of chloroplasts during dark-induced senescence. Protoplasts were readily obtained from leaf tissue, even after 80% of the chlorophyll and protein had been lost. Intact chloroplasts and vacuoles could be isolated from the protoplasts at all stages of senescence. All the proteolytic activity associated with the degradation of ribulose bisphosphate carboxylase in the protoplasts could be accounted for by that localized within the vacuole. Moreover, this localization was retained late into senescence. Protoplasts isolated during leaf senescence first showed a decline in photosynthesis, then a decline in ribulose bisphosphate carboxylase activity, followed by a decline in chloroplast number. There was a close correlation between the decline in chloroplast number and the loss of chlorophyll and soluble protein per protoplast, suggesting a sequential degradation of chloroplasts during senescence. Ultrastructural studies indicated a movement of chloroplasts in toward the center of the protoplasts during senescence. Thus, within senescing protoplasts, chloroplasts appeared either to move into invaginations of the vacuole or to be taken up into the vacuole. Images PMID:16662193

  11. Rejuvenating the senescent heart

    PubMed Central

    Nguyen, Nathalie; Sussman, Mark A.

    2015-01-01

    Purpose of review The purpose of this review is to provide an update on the cardiac stem cell field with an emphasis on aging and to suggest some relevant strategies directed toward rejuvenation of the senescent heart. Recent findings Stem cells were long considered as a fountain of youth and were assumed to be equipped against any form of aging effect. However, it is now clear that stem cells suffer the consequences of aging as well. With the discovery that cardiac stem cells reside in the heart comes the question whether these cells are also impaired upon aging. As cardiac stem cell properties are also altered with age, autologous stem cell-based therapy to treat heart failure will benefit from new improved strategies. Summary With the goal to improve stem cell properties that are impaired upon aging, some strategies are highlighted. Genetic modification of adult human cardiac progenitor cells prior to autologous stem cell-based therapy, delivery of the next generation of stem cells such as CardioChimeras and CardioClusters, and improvement of the myocardial environment with rejuvenating factors constitute some of the possibilities and are discussed in more detail in this review. PMID:25760821

  12. Mineral nutrient remobilization during corolla senescence in ethylene-sensitive and -insensitive flowers

    PubMed Central

    Jones, Michelle L.

    2013-01-01

    The flower has a finite lifespan that is controlled largely by its role in sexual reproduction. Once the flower has been pollinated or is no longer receptive to pollination, the petals are programmed to senesce. A majority of the genes that are up-regulated during petal senescence, in both ethylene-sensitive and -insensitive flowers, encode proteins involved in the degradation of nucleic acids, proteins, lipids, fatty acids, and cell wall and membrane components. A smaller subset of these genes has a putative role in remobilizing nutrients, and only a few of these have been studied in detail. During senescence, carbohydrates (primarily sucrose) are transported from petals, and the degradation of macromolecules and organelles also allows the plant to salvage mineral nutrients from the petals before cell death. The remobilization of mineral nutrients from a few species has been investigated and will be reviewed in this article. Ethylene's role in nutrient remobilization is discussed by comparing nutrient changes during the senescence of ethylene-sensitive and -insensitive flowers, and by studies in transgenic petunias (Petunia × hybrida) that are insensitive to ethylene. Gene expression studies indicate that remobilization is a key feature of senescence, but some senescence-associated genes have different expression in leaves and petals. These gene expression patterns, along with differences in the nutrient content of leaves and petals, suggest that there are differences in the mechanisms of cellular degradation and nutrient transport in vegetative and floral organs. Autophagy may be the mechanism for large-scale degradation that allows for recycling during senescence, but it is unclear if this causes cell death. Future research should focus on autophagy and the regulation of ATG genes by ethylene during both leaf and petal senescence. We must identify the mechanisms by which individual mineral nutrients are transported out of senescing corollas in both ethylene

  13. Evolution of maternal effect senescence

    PubMed Central

    Moorad, Jacob A.; Nussey, Daniel H.

    2016-01-01

    Increased maternal age at reproduction is often associated with decreased offspring performance in numerous species of plants and animals (including humans). Current evolutionary theory considers such maternal effect senescence as part of a unified process of reproductive senescence, which is under identical age-specific selective pressures to fertility. We offer a novel theoretical perspective by combining William Hamilton’s evolutionary model for aging with a quantitative genetic model of indirect genetic effects. We demonstrate that fertility and maternal effect senescence are likely to experience different patterns of age-specific selection and thus can evolve to take divergent forms. Applied to neonatal survival, we find that selection for maternal effects is the product of age-specific fertility and Hamilton’s age-specific force of selection for fertility. Population genetic models show that senescence for these maternal effects can evolve in the absence of reproductive or actuarial senescence; this implies that maternal effect aging is a fundamentally distinct demographic manifestation of the evolution of aging. However, brief periods of increasingly beneficial maternal effects can evolve when fertility increases with age faster than cumulative survival declines. This is most likely to occur early in life. Our integration of theory provides a general framework with which to model, measure, and compare the evolutionary determinants of the social manifestations of aging. Extension of our maternal effects model to other ecological and social contexts could provide important insights into the drivers of the astonishing diversity of lifespans and aging patterns observed among species. PMID:26715745

  14. Chloroplast DNA in Mature and Senescing Leaves: A Reappraisal[W][OPEN

    PubMed Central

    Golczyk, Hieronim; Greiner, Stephan; Wanner, Gerhard; Weihe, Andreas; Bock, Ralph; Börner, Thomas; Herrmann, Reinhold G.

    2014-01-01

    The fate of plastid DNA (ptDNA) during leaf development has become a matter of contention. Reports on little change in ptDNA copy number per cell contrast with claims of complete or nearly complete DNA loss already in mature leaves. We employed high-resolution fluorescence microscopy, transmission electron microscopy, semithin sectioning of leaf tissue, and real-time quantitative PCR to study structural and quantitative aspects of ptDNA during leaf development in four higher plant species (Arabidopsis thaliana, sugar beet [Beta vulgaris], tobacco [Nicotiana tabacum], and maize [Zea mays]) for which controversial findings have been reported. Our data demonstrate the retention of substantial amounts of ptDNA in mesophyll cells until leaf necrosis. In ageing and senescent leaves of Arabidopsis, tobacco, and maize, ptDNA amounts remain largely unchanged and nucleoids visible, in spite of marked structural changes during chloroplast-to-gerontoplast transition. This excludes the possibility that ptDNA degradation triggers senescence. In senescent sugar beet leaves, reduction of ptDNA per cell to ∼30% was observed reflecting primarily a decrease in plastid number per cell rather than a decline in DNA per organelle, as reported previously. Our findings are at variance with reports claiming loss of ptDNA at or after leaf maturation. PMID:24668747

  15. Role of galactose in cellular senescence.

    PubMed

    Elzi, David J; Song, Meihua; Shiio, Yuzuru

    2016-01-01

    Cellular senescence has been proposed to play critical roles in tumor suppression and organismal aging, but the molecular mechanism of senescence remains incompletely understood. Here we report that a putative lysosomal carbohydrate efflux transporter, Spinster, induces cellular senescence in human primary fibroblasts. Administration of d-galactose synergistically enhanced Spinster-induced senescence and this synergism required the transporter activity of Spinster. Intracellular d-galactose is metabolized to galactose-1-phosphate by galactokinase. Galactokinase-deficient fibroblasts, which accumulate intracellular d-galactose, displayed increased baseline senescence. Senescence of galactokinase-deficient fibroblasts was further enhanced by d-galactose administration and was diminished by restoration of wild-type galactokinase expression. Silencing galactokinase in normal fibroblasts also induced senescence. These results suggest a role for intracellular galactose in the induction of cellular senescence.

  16. Crocins transport in Crocus sativus: the long road from a senescent stigma to a newborn corm.

    PubMed

    Rubio-Moraga, Angela; Trapero, Almudena; Ahrazem, Oussama; Gómez-Gómez, Lourdes

    2010-09-01

    Saffron, the desiccated stigmas of Crocus sativus, is highly appreciated by its peculiar colour, flavour and aroma. The main compounds that accumulated throughout stigma development in C. sativus are crocetin, its glucoside derivatives, crocins, and picrocrocin, all of which increased as stigmas reached a fully developed stage. After anthesis, and in the absence of fertilization, the flower enters in a senescence programme, which represents the ultimate stage of floral development and results in wilting of whole flower. The programmed senescence of flowers allows the removal of a metabolically active tissue. We studied the composition of saffron apocarotenoids during the senescence of C. sativus flowers, and observed that changes in crocins were due to their transport from the senescent stigma to the ovaries and the developing corm. Afterwards, deglucosylation of crocins in these tissues results in crocetin accumulation. This mobilization mimics the export to storage cells (resorbed) of different compounds during leaf senescence avoiding loss of nutrients in leaves that would otherwise be cycled back into the soil system through leaf litter decomposition. In C. sativus, the resorbed apocarotenoids are stored within the developing corm, where they are not further detected in the advanced stages of development, suggesting that they are metabolized during the early and active phases of corm development, where the glucose molecules from crocins might contribute to cell initiation and elongation.

  17. Green Leaf Volatile Emissions during High Temperature and Drought Stress in a Central Amazon Rainforest.

    PubMed

    Jardine, Kolby J; Chambers, Jeffrey Q; Holm, Jennifer; Jardine, Angela B; Fontes, Clarissa G; Zorzanelli, Raquel F; Meyers, Kimberly T; de Souza, Vinicius Fernadez; Garcia, Sabrina; Gimenez, Bruno O; Piva, Luani R de O; Higuchi, Niro; Artaxo, Paulo; Martin, Scot; Manzi, Antônio O

    2015-09-15

    Prolonged drought stress combined with high leaf temperatures can induce programmed leaf senescence involving lipid peroxidation, and the loss of net carbon assimilation during early stages of tree mortality. Periodic droughts are known to induce widespread tree mortality in the Amazon rainforest, but little is known about the role of lipid peroxidation during drought-induced leaf senescence. In this study, we present observations of green leaf volatile (GLV) emissions during membrane peroxidation processes associated with the combined effects of high leaf temperatures and drought-induced leaf senescence from individual detached leaves and a rainforest ecosystem in the central Amazon. Temperature-dependent leaf emissions of volatile terpenoids were observed during the morning, and together with transpiration and net photosynthesis, showed a post-midday depression. This post-midday depression was associated with a stimulation of C₅ and C₆ GLV emissions, which continued to increase throughout the late afternoon in a temperature-independent fashion. During the 2010 drought in the Amazon Basin, which resulted in widespread tree mortality, green leaf volatile emissions (C₆ GLVs) were observed to build up within the forest canopy atmosphere, likely associated with high leaf temperatures and enhanced drought-induced leaf senescence processes. The results suggest that observations of GLVs in the tropical boundary layer could be used as a chemical sensor of reduced ecosystem productivity associated with drought stress.

  18. Green Leaf Volatile Emissions during High Temperature and Drought Stress in a Central Amazon Rainforest

    PubMed Central

    Jardine, Kolby J.; Chambers, Jeffrey Q.; Holm, Jennifer; Jardine, Angela B.; Fontes, Clarissa G.; Zorzanelli, Raquel F.; Meyers, Kimberly T.; de Souza, Vinicius Fernadez; Garcia, Sabrina; Gimenez, Bruno O.; de O. Piva, Luani R.; Higuchi, Niro; Artaxo, Paulo; Martin, Scot; Manzi, Antônio O.

    2015-01-01

    Prolonged drought stress combined with high leaf temperatures can induce programmed leaf senescence involving lipid peroxidation, and the loss of net carbon assimilation during early stages of tree mortality. Periodic droughts are known to induce widespread tree mortality in the Amazon rainforest, but little is known about the role of lipid peroxidation during drought-induced leaf senescence. In this study, we present observations of green leaf volatile (GLV) emissions during membrane peroxidation processes associated with the combined effects of high leaf temperatures and drought-induced leaf senescence from individual detached leaves and a rainforest ecosystem in the central Amazon. Temperature-dependent leaf emissions of volatile terpenoids were observed during the morning, and together with transpiration and net photosynthesis, showed a post-midday depression. This post-midday depression was associated with a stimulation of C5 and C6 GLV emissions, which continued to increase throughout the late afternoon in a temperature-independent fashion. During the 2010 drought in the Amazon Basin, which resulted in widespread tree mortality, green leaf volatile emissions (C6 GLVs) were observed to build up within the forest canopy atmosphere, likely associated with high leaf temperatures and enhanced drought-induced leaf senescence processes. The results suggest that observations of GLVs in the tropical boundary layer could be used as a chemical sensor of reduced ecosystem productivity associated with drought stress. PMID:27135346

  19. Functional age as an indicator of reservoir senescence

    USGS Publications Warehouse

    Miranda, Leandro E.; Krogman, R. M.

    2015-01-01

    It has been conjectured that reservoirs differ in the rate at which they manifest senescence, but no attempt has been made to find an indicator of senescence that performs better than chronological age. We assembled an indicator of functional age by creating a multimetric scale consisting of 10 metrics descriptive of reservoir environments that were expected to change directionally with reservoir senescence. In a sample of 1,022 U.S. reservoirs, chronological age was not correlated with functional age. Functional age was directly related to percentage of cultivated land in the catchment and inversely related to reservoir depth. Moreover, aspects of reservoir fishing quality and fish population characteristics were related to functional age. A multimetric scale to indicate reservoir functional age presents the possibility for management intervention from multiple angles. If a reservoir is functionally aging at an accelerated rate, action may be taken to remedy the conditions contributing most to functional age. Intervention to reduce scores of selected metrics in the scale can potentially reduce the rate of senescence and increase the life expectancy of the reservoir. This leads to the intriguing implication that steps can be taken to reduce functional age and actually make the reservoir grow younger.

  20. Predatory senescence in ageing wolves

    USGS Publications Warehouse

    MacNulty, D.R.; Smith, D.W.; Vucetich, J.A.; Mech, L.D.; Stahler, D.R.; Packer, C.

    2009-01-01

    It is well established that ageing handicaps the ability of prey to escape predators, yet surprisingly little is known about how ageing affects the ability of predators to catch prey. Research into long-lived predators has assumed that adults have uniform impacts on prey regardless of age. Here we use longitudinal data from repeated observations of individually-known wolves (Canis lupus) hunting elk (Cervus elaphus) in Yellowstone National Park to demonstrate that adult predatory performance declines with age and that an increasing ratio of senescent individuals in the wolf population depresses the rate of prey offtake. Because this ratio fluctuates independently of population size, predatory senescence may cause wolf populations of equal size but different age structure to have different impacts on prey populations. These findings suggest that predatory senescence is an important, though overlooked, factor affecting predator-prey dynamics. ?? 2009 Blackwell Publishing Ltd/CNRS.

  1. Predatory senescence in aging wolves

    USGS Publications Warehouse

    MacNulty, Daniel R.; Smith, Douglas W.; Vucetich, John A.; Mech, L. David; Stahler, Daniel R.; Packer, Craig

    2009-01-01

    It is well established that ageing handicaps the ability of prey to escape predators, yet surprisingly little is known about how ageing affects the ability of predators to catch prey. Research into long-lived predators has assumed that adults have uniform impacts on prey regardless of age. Here we use longitudinal data from repeated observations of individually-known wolves (Canis lupus) hunting elk (Cervus elaphus) in Yellowstone National Park to demonstrate that adult predatory performance declines with age and that an increasing ratio of senescent individuals in the wolf population depresses the rate of prey offtake. Because this ratio fluctuates independently of population size, predatory senescence may cause wolf populations of equal size but different age structure to have different impacts on prey populations. These findings suggest that predatory senescence is an important, though overlooked, factor affecting predator-prey dynamics.

  2. Predatory senescence in ageing wolves.

    PubMed

    MacNulty, Daniel R; Smith, Douglas W; Vucetich, John A; Mech, L David; Stahler, Daniel R; Packer, Craig

    2009-12-01

    It is well established that ageing handicaps the ability of prey to escape predators, yet surprisingly little is known about how ageing affects the ability of predators to catch prey. Research into long-lived predators has assumed that adults have uniform impacts on prey regardless of age. Here we use longitudinal data from repeated observations of individually-known wolves (Canis lupus) hunting elk (Cervus elaphus) in Yellowstone National Park to demonstrate that adult predatory performance declines with age and that an increasing ratio of senescent individuals in the wolf population depresses the rate of prey offtake. Because this ratio fluctuates independently of population size, predatory senescence may cause wolf populations of equal size but different age structure to have different impacts on prey populations. These findings suggest that predatory senescence is an important, though overlooked, factor affecting predator-prey dynamics.

  3. Senescence hypothesis for the pathogenetic mechanism of chronic obstructive pulmonary disease.

    PubMed

    Aoshiba, Kazutetsu; Nagai, Atsushi

    2009-12-01

    We report herein that pulmonary emphysematous lesions appear to be a dynamic phenomenon that involves not only the gradual loss of alveolar structure but also apoptosis, cellular proliferation, and cellular senescence. Cellular proliferation compensates for increased alveolar cell apoptosis in patients with chronic obstructive pulmonary disease (COPD). However, smoking, age, and the increased cell cycle turnover that compensates for apoptosis accelerate alveolar cell senescence, thereby halting cellular proliferation and tipping the balance toward apoptosis, which, in turn, promotes the formation of emphysematous lesions. As a result, alveolar cells disappear and the emphysematous lesions progress. At the same time, cellular senescence is believed to induce inflammation. More specifically, senescent alveolar cells induce inflammation by producing various inflammatory cytokines in tissue. Lymphocytes and Clara cells may also age more rapidly in the lungs of patients with COPD. Lymphocyte senescence may induce an autoimmune reaction and increase susceptibility to infection, and Clara cell senescence may impair airway regeneration as well as sustain airway inflammation. Thus, cellular senescence may be involved in arrested tissue repair, chronic inflammation, and increased susceptibility to infection, which are the typical features of COPD.

  4. Lamin B1 depletion in senescent cells triggers large-scale changes in gene expression and the chromatin landscape

    PubMed Central

    Shah, Parisha P.; Donahue, Greg; Otte, Gabriel L.; Capell, Brian C.; Nelson, David M.; Cao, Kajia; Aggarwala, Varun; Cruickshanks, Hazel A.; Rai, Taranjit Singh; McBryan, Tony; Gregory, Brian D.; Adams, Peter D.; Berger, Shelley L.

    2013-01-01

    Senescence is a stable proliferation arrest, associated with an altered secretory pathway, thought to promote tumor suppression and tissue aging. While chromatin regulation and lamin B1 down-regulation have been implicated as senescence effectors, functional interactions between them are poorly understood. We compared genome-wide Lys4 trimethylation on histone H3 (H3K4me3) and H3K27me3 distributions between proliferating and senescent human cells and found dramatic differences in senescence, including large-scale domains of H3K4me3- and H3K27me3-enriched “mesas” and H3K27me3-depleted “canyons.” Mesas form at lamin B1-associated domains (LADs) in replicative senescence and oncogene-induced senescence and overlap DNA hypomethylation regions in cancer, suggesting that pre-malignant senescent chromatin changes foreshadow epigenetic cancer changes. Hutchinson-Gilford progeria syndrome fibroblasts (mutant lamin A) also show evidence of H3K4me3 mesas, suggesting a link between premature chromatin changes and accelerated cell senescence. Canyons mostly form between LADs and are enriched in genes and enhancers. H3K27me3 loss is correlated with up-regulation of key senescence genes, indicating a link between global chromatin changes and local gene expression regulation. Lamin B1 reduction in proliferating cells triggers senescence and formation of mesas and canyons. Our data illustrate profound chromatin reorganization during senescence and suggest that lamin B1 down-regulation in senescence is a key trigger of global and local chromatin changes that impact gene expression, aging, and cancer. PMID:23934658

  5. Transgenic plants with altered senescence characteristics

    DOEpatents

    Amasino, Richard M.; Gan, Susheng; Noh, Yoo-Sun

    2002-03-19

    The identification of senescence-specific promoters from plants is described. Using information from the first senescence-specific promoter, SAG12 from Arabidopsis, other homologous promoters from another plant have been identified. Such promoters may be used to delay senescence in commercially important plants.

  6. Selective insulin resistance in hepatocyte senescence

    SciTech Connect

    Aravinthan, Aloysious; Challis, Benjamin; Shannon, Nicholas; Hoare, Matthew; Heaney, Judith; Alexander, Graeme J.M.

    2015-02-01

    Insulin resistance has been described in association with chronic liver disease for decades. Hepatocyte senescence has been demonstrated in chronic liver disease and as many as 80% of hepatocytes show a senescent phenotype in advanced liver disease. The aim of this study was to understand the role of hepatocyte senescence in the development of insulin resistance. Senescence was induced in HepG2 cells via oxidative stress. The insulin metabolic pathway was studied in control and senescent cells following insulin stimulation. GLUT2 and GLUT4 expressions were studied in HepG2 cells and human liver tissue. Further, GLUT2 and GLUT4 expressions were studied in three independent chronic liver disease cohorts. Signalling impairment distal to Akt in phosphorylation of AS160 and FoxO1 was evident in senescent HepG2 cells. Persistent nuclear localisation of FoxO1 was demonstrated in senescent cells despite insulin stimulation. Increased GLUT4 and decreased GLUT2 expressions were evident in senescent cells, human cirrhotic liver tissue and publically available liver disease datasets. Changes in GLUT expressions were associated with a poor clinical prognosis. In conclusion, selective insulin resistance is evident in senescent HepG2 cells and changes in GLUT expressions can be used as surrogate markers of hepatocyte senescence. - Highlights: • Senescent hepatocytes demonstrate selective insulin resistance. • GLUT changes act as markers of hepatocyte senescence and have prognostic value. • Study offers insight into long noticed intimacy of cirrhosis and insulin resistance.

  7. Senescence-induced iron mobilization in source leaves of barley (Hordeum vulgare) plants.

    PubMed

    Shi, Rongli; Weber, Günther; Köster, Jessica; Reza-Hajirezaei, Mohammad; Zou, Chunqin; Zhang, Fusuo; von Wirén, Nicolaus

    2012-07-01

    • Retranslocation of iron (Fe) from source leaves to sinks requires soluble Fe binding forms. As much of the Fe is protein-bound and associated with the leaf nitrogen (N) status, we investigated the role of N in Fe mobilization and retranslocation under N deficiency- vs dark-induced leaf senescence. • By excluding Fe retranslocation from the apoplastic root pool, Fe concentrations in source and sink leaves from hydroponically grown barley (Hordeum vulgare) plants were determined in parallel with the concentrations of potential Fe chelators and the expression of genes involved in phytosiderophore biosynthesis. • N supply showed opposing effects on Fe pools in source leaves, inhibiting Fe export out of source leaves under N sufficiency but stimulating Fe export from source leaves under N deficiency, which partially alleviated Fe deficiency-induced chlorosis. Both triggers of leaf senescence, shading and N deficiency, enhanced NICOTIANAMINE SYNTHASE2 gene expression, soluble Fe pools in source leaves, and phytosiderophore and citrate rather than nicotianamine concentrations. • These results indicate that Fe mobilization within senescing leaves is independent of a concomitant N sink in young leaves and that phytosiderophores enhance Fe solubility in senescing source leaves, favoring subsequent Fe retranslocation.

  8. Leaf area dynamics of conifer forests

    SciTech Connect

    Margolis, H.; Oren, R.; Whitehead, D.; Kaufmann, M.R.

    1995-07-01

    Estimating the surface area of foliage supported by a coniferous forest canopy is critical for modeling its biological properties. Leaf area represents the surface area available for the interception of energy, the absorption of carbon dioxide, and the diffusion of water from the leaf to the atmosphere. The concept of leaf area is pertinent to the physiological and ecological dynamics of conifers at a wide range of spatial scales, from individual leaves to entire biomes. In fact, the leaf area of vegetation at a global level can be thought of as a carbon-absorbing, water-emitting membrane of variable thickness, which can have an important influence on the dynamics and chemistry of the Earth`s atmosphere over both the short and the long term. Unless otherwise specified, references to leaf area herein refer to projected leaf area, i.e., the vertical projection of needles placed on a flat plane. Total leaf surface area is generally from 2.0 to 3.14 times that of projected leaf area for conifers. It has recently been suggested that hemisurface leaf area, i.e., one-half of the total surface area of a leaf, a more useful basis for expressing leaf area than is projected area. This chapter is concerned with the dynamics of coniferous forest leaf area at different spatial and temporal scales. In the first part, we consider various hypotheses related to the control of leaf area development, ranging from simple allometric relations with tree size to more complex mechanistic models that consider the movement of water and nutrients to tree canopies. In the second part, we consider various aspects of leaf area dynamics at varying spatial and temporal scales, including responses to perturbation, seasonal dynamics, genetic variation in crown architecture, the responses to silvicultural treatments, the causes and consequences of senescence, and the direct measurement of coniferous leaf area at large spatial scales using remote sensing.

  9. Ageing induced vascular smooth muscle cell senescence in atherosclerosis.

    PubMed

    Uryga, Anna K; Bennett, Martin R

    2016-04-15

    Atherosclerosis is a disease of ageing in that its incidence and prevalence increase with age. However, atherosclerosis is also associated with biological ageing, manifest by a number of typical hallmarks of ageing in the atherosclerotic plaque. Thus, accelerated biological ageing may be superimposed on the effects of chronological ageing in atherosclerosis. Tissue ageing is seen in all cells that comprise the plaque, but particularly in vascular smooth muscle cells (VSMCs). Hallmarks of ageing include evidence of cell senescence, DNA damage (including telomere attrition), mitochondrial dysfunction, a pro-inflammatory secretory phenotype, defects in proteostasis, epigenetic changes, deregulated nutrient sensing, and exhaustion of progenitor cells. In this model, initial damage to DNA (genomic, telomeric, mitochondrial and epigenetic changes) results in a number of cellular responses (cellular senescence, deregulated nutrient sensing and defects in proteostasis). Ultimately, ongoing damage and attempts at repair by continued proliferation overwhelm reparative capacity, causing loss of specialised cell functions, cell death and inflammation. This review summarises the evidence for accelerated biological ageing in atherosclerosis, the functional consequences of cell ageing on cells comprising the plaque, and the causal role that VSMC senescence plays in atherogenesis.

  10. Cellular senescence and protein degradation

    PubMed Central

    Deschênes-Simard, Xavier; Lessard, Frédéric; Gaumont-Leclerc, Marie-France; Bardeesy, Nabeel; Ferbeyre, Gerardo

    2014-01-01

    Autophagy and the ubiquitin–proteasome pathway (UPP) are the major protein degradation systems in eukaryotic cells. Whereas the former mediate a bulk nonspecific degradation, the UPP allows a rapid degradation of specific proteins. Both systems have been shown to play a role in tumorigenesis, and the interest in developing therapeutic agents inhibiting protein degradation is steadily growing. However, emerging data point to a critical role for autophagy in cellular senescence, an established tumor suppressor mechanism. Recently, a selective protein degradation process mediated by the UPP was also shown to contribute to the senescence phenotype. This process is tightly regulated by E3 ubiquitin ligases, deubiquitinases, and several post-translational modifications of target proteins. Illustrating the complexity of UPP, more than 600 human genes have been shown to encode E3 ubiquitin ligases, a number which exceeds that of the protein kinases. Nevertheless, our knowledge of proteasome-dependent protein degradation as a regulated process in cellular contexts such as cancer and senescence remains very limited. Here we discuss the implications of protein degradation in senescence and attempt to relate this function to the protein degradation pattern observed in cancer cells. PMID:24866342

  11. An Ethylene-Induced Regulatory Module Delays Flower Senescence by Regulating Cytokinin Content1[OPEN

    PubMed Central

    Wu, Lin; Ma, Nan; Zhang, Yi; Feng, Ming

    2017-01-01

    In many plant species, including rose (Rosa hybrida), flower senescence is promoted by the gaseous hormone ethylene and inhibited by the cytokinin (CTK) class of hormones. However, the molecular mechanisms underlying these antagonistic effects are not well understood. In this study, we characterized the association between a pathogenesis-related PR-10 family gene from rose (RhPR10.1) and the hormonal regulation of flower senescence. Quantitative reverse transcription PCR analysis showed that RhPR10.1 was expressed at high levels during senescence in different floral organs, including petal, sepal, receptacle, stamen, and pistil, and that expression was induced by ethylene treatment. Silencing of RhPR10.1 expression in rose plants by virus-induced gene silencing accelerated flower senescence, which was accompanied by a higher ion leakage rate in the petals, as well as increased expression of the senescence marker gene RhSAG12. CTK content and the expression of three CTK signaling pathway genes were reduced in RhPR10.1-silenced plants, and the accelerated rate of petal senescence that was apparent in the RhPR10.1-silenced plants was restored to normal levels by CTK treatment. Finally, RhHB6, a homeodomain-Leu zipper I transcription factor, was observed to bind to the RhPR10.1 promoter, and silencing of its expression also promoted flower senescence. Our results reveal an ethylene-induced RhHB6-RhPR10.1 regulatory module that functions as a brake of ethylene-promoted senescence through increasing the CTK content. PMID:27879388

  12. Ejaculate components delay reproductive senescence while elevating female reproductive rate in an insect.

    PubMed

    Reinhardt, Klaus; Naylor, Richard A; Siva-Jothy, Michael T

    2009-12-22

    Increased female reproductive rates usually result in accelerated senescence. This correlation provides a link between the evolutionary conflict of the sexes and aging when ejaculate components elevate female reproductive rates at the cost of future reproduction. It is not clear whether this female cost is manifest as shorter lifespan or an earlier onset or a steeper rate of reproductive senescence. It also is unclear whether beneficial ejaculates release females from reproductive trade-offs and, if so, which senescence parameters are affected. We examined these issues in the bedbug, Cimex lectularius, a long-lived insect that shows reduced female lifespan as well as female reproductive senescence at the male-determined mating frequency. We demonstrate experimentally that, independently of the mating frequency, females receiving more ejaculate show increased reproductive rates and enter reproductive senescence later than females receiving less ejaculate. The rate of reproductive senescence did not differ between treatments, and reproductive rates did not predict mortality. The ejaculate effects were consistent in inter- and intra-population crosses, suggesting they have not evolved recently and are not caused by inbreeding. Our results suggest that ejaculate components compensate for the costs of elevated female reproductive rates in bedbugs by delaying the onset of reproductive senescence. Ejaculate components that are beneficial to polyandrous females could have arisen because male traits that protect the ejaculate have positive pleiotropic effects and/or because female counteradaptations to antagonistic male traits exceed the neutralization of those traits. That males influence female reproductive senescence has important consequences for trade-offs between reproduction and longevity and for studies of somatic senescence.

  13. Cell senescence is an antiviral defense mechanism

    PubMed Central

    Baz-Martínez, Maite; Da Silva-Álvarez, Sabela; Rodríguez, Estefanía; Guerra, Jorge; El Motiam, Ahmed; Vidal, Anxo; García-Caballero, Tomás; González-Barcia, Miguel; Sánchez, Laura; Muñoz-Fontela, César; Collado, Manuel; Rivas, Carmen

    2016-01-01

    Cellular senescence is often considered a protection mechanism triggered by conditions that impose cellular stress. Continuous proliferation, DNA damaging agents or activated oncogenes are well-known activators of cell senescence. Apart from a characteristic stable cell cycle arrest, this response also involves a proinflammatory phenotype known as senescence-associated secretory phenotype (SASP). This, together with the widely known interference with senescence pathways by some oncoviruses, had led to the hypothesis that senescence may also be part of the host cell response to fight virus. Here, we evaluate this hypothesis using vesicular stomatitis virus (VSV) as a model. Our results show that VSV replication is significantly impaired in both primary and tumor senescent cells in comparison with non-senescent cells, and independently of the stimulus used to trigger senescence. Importantly, we also demonstrate a protective effect of senescence against VSV in vivo. Finally, our results identify the SASP as the major contributor to the antiviral defense exerted by cell senescence in vitro, and points to a role activating and recruiting the immune system to clear out the infection. Thus, our study indicates that cell senescence has also a role as a natural antiviral defense mechanism. PMID:27849057

  14. Enhanced Viral Replication by Cellular Replicative Senescence

    PubMed Central

    Kim, Ji-Ae; Seong, Rak-Kyun

    2016-01-01

    Cellular replicative senescence is a major contributing factor to aging and to the development and progression of aging-associated diseases. In this study, we sought to determine viral replication efficiency of influenza virus (IFV) and Varicella Zoster Virus (VZV) infection in senescent cells. Primary human bronchial epithelial cells (HBE) or human dermal fibroblasts (HDF) were allowed to undergo numbers of passages to induce replicative senescence. Induction of replicative senescence in cells was validated by positive senescence-associated β-galactosidase staining. Increased susceptibility to both IFV and VZV infection was observed in senescent HBE and HDF cells, respectively, resulting in higher numbers of plaque formation, along with the upregulation of major viral antigen expression than that in the non-senescent cells. Interestingly, mRNA fold induction level of virus-induced type I interferon (IFN) was attenuated by senescence, whereas IFN-mediated antiviral effect remained robust and potent in virus-infected senescent cells. Additionally, we show that a longevity-promoting gene, sirtuin 1 (SIRT1), has antiviral role against influenza virus infection. In conclusion, our data indicate that enhanced viral replication by cellular senescence could be due to senescence-mediated reduction of virus-induced type I IFN expression. PMID:27799874

  15. Cellular senescence mediates fibrotic pulmonary disease

    PubMed Central

    Schafer, Marissa J.; White, Thomas A.; Iijima, Koji; Haak, Andrew J.; Ligresti, Giovanni; Atkinson, Elizabeth J.; Oberg, Ann L.; Birch, Jodie; Salmonowicz, Hanna; Zhu, Yi; Mazula, Daniel L.; Brooks, Robert W.; Fuhrmann-Stroissnigg, Heike; Pirtskhalava, Tamar; Prakash, Y. S.; Tchkonia, Tamara; Robbins, Paul D.; Aubry, Marie Christine; Passos, João F.; Kirkland, James L.; Tschumperlin, Daniel J.; Kita, Hirohito; LeBrasseur, Nathan K.

    2017-01-01

    Idiopathic pulmonary fibrosis (IPF) is a fatal disease characterized by interstitial remodelling, leading to compromised lung function. Cellular senescence markers are detectable within IPF lung tissue and senescent cell deletion rejuvenates pulmonary health in aged mice. Whether and how senescent cells regulate IPF or if their removal may be an efficacious intervention strategy is unknown. Here we demonstrate elevated abundance of senescence biomarkers in IPF lung, with p16 expression increasing with disease severity. We show that the secretome of senescent fibroblasts, which are selectively killed by a senolytic cocktail, dasatinib plus quercetin (DQ), is fibrogenic. Leveraging the bleomycin-injury IPF model, we demonstrate that early-intervention suicide-gene-mediated senescent cell ablation improves pulmonary function and physical health, although lung fibrosis is visibly unaltered. DQ treatment replicates benefits of transgenic clearance. Thus, our findings establish that fibrotic lung disease is mediated, in part, by senescent cells, which can be targeted to improve health and function. PMID:28230051

  16. Cellular senescence mediates fibrotic pulmonary disease.

    PubMed

    Schafer, Marissa J; White, Thomas A; Iijima, Koji; Haak, Andrew J; Ligresti, Giovanni; Atkinson, Elizabeth J; Oberg, Ann L; Birch, Jodie; Salmonowicz, Hanna; Zhu, Yi; Mazula, Daniel L; Brooks, Robert W; Fuhrmann-Stroissnigg, Heike; Pirtskhalava, Tamar; Prakash, Y S; Tchkonia, Tamara; Robbins, Paul D; Aubry, Marie Christine; Passos, João F; Kirkland, James L; Tschumperlin, Daniel J; Kita, Hirohito; LeBrasseur, Nathan K

    2017-02-23

    Idiopathic pulmonary fibrosis (IPF) is a fatal disease characterized by interstitial remodelling, leading to compromised lung function. Cellular senescence markers are detectable within IPF lung tissue and senescent cell deletion rejuvenates pulmonary health in aged mice. Whether and how senescent cells regulate IPF or if their removal may be an efficacious intervention strategy is unknown. Here we demonstrate elevated abundance of senescence biomarkers in IPF lung, with p16 expression increasing with disease severity. We show that the secretome of senescent fibroblasts, which are selectively killed by a senolytic cocktail, dasatinib plus quercetin (DQ), is fibrogenic. Leveraging the bleomycin-injury IPF model, we demonstrate that early-intervention suicide-gene-mediated senescent cell ablation improves pulmonary function and physical health, although lung fibrosis is visibly unaltered. DQ treatment replicates benefits of transgenic clearance. Thus, our findings establish that fibrotic lung disease is mediated, in part, by senescent cells, which can be targeted to improve health and function.

  17. Amyloid β Protein Aggravates Neuronal Senescence and Cognitive Deficits in 5XFAD Mouse Model of Alzheimer's Disease

    PubMed Central

    Wei, Zhen; Chen, Xiao-Chun; Song, Yue; Pan, Xiao-Dong; Dai, Xiao-Man; Zhang, Jing; Cui, Xiao-Li; Wu, Xi-Lin; Zhu, Yuan-Gui

    2016-01-01

    Background: Amyloid β (Aβ) has been established as a key factor for the pathological changes in the brains of patients with Alzheimer's disease (AD), and cellular senescence is closely associated with aging and cognitive impairment. However, it remains blurred whether, in the AD brains, Aβ accelerates the neuronal senescence and whether this senescence, in turn, impairs the cognitive function. This study aimed to explore the expression of senescence-associated genes in the hippocampal tissue from young to aged 5XFAD mice and their age-matched wild type (WT) mice to determine whether senescent neurons are present in the transgenic AD mouse model. Methods: The 5XFAD mice and age-matched wild type mice, both raised from 1 to 18 months, were enrolled in the study. The senescence-associated genes in the hippocampus were analyzed and differentially expressed genes (DEGs) were screened by quantitative real-time polymerase chain reaction. Cognitive performance of the mice was evaluated by Y-maze and Morris water maze tests. Oligomeric Aβ (oAβ) (1–42) was applied to culture primary neurons to simulate the in vivo manifestation. Aging-related proteins were detected by Western blotting analysis and immunofluorescence. Results: In 5XFAD mice, of all the DEGs, the senescence-associated marker p16 was most significantly increased, even at the early age. It was mainly localized in neurons, with a marginal expression in astrocytes (labeled as glutamine synthetase), nil expression in activated microglia (labeled as Iba1), and negatively correlated with the spatial cognitive impairments of 5XFAD mice. oAβ (1–42) induced the production of senescence-related protein p16, but not p53 in vitro, which was in line with the in vivo manifestation. Conclusions: oAβ-accelerated neuronal senescence may be associated with the cognitive impairment in 5XFAD mice. Senescence-associated marker p16 can serve as an indicator to estimate the cognitive prognosis for AD population. PMID

  18. Biochemical and physiological studies on the effects of senescence leaves of Populus deltoides on Triticum vulgare.

    PubMed

    Khaket, Tejinder Pal; Kumar, Viney; Singh, Jasbir; Dhanda, Suman

    2014-01-01

    Triticum vulgare (Wheat) based products are the major dietary source of food in developing countries. In India, it grows in association with boundary plantations of Populus deltoids (poplar). During winter, poplar enters in dormancy which cause a heavy leaf fall at the time of wheat seed germination. Large number of poplar senescence leaves may adversely affect the wheat. Therefore, the present study was performed to examine the effect of senescence poplar leaves on wheat germ and some other biochemical parameters. Seed's germination rate was determined by measuring root and shoot lengths, percent germination, germination index, and inhibition percentage. Biochemical parameters, namely, pigment, carbohydrate, protein, and phenol content, were estimated. Activities of catalase and polyphenol oxidase which are stress marker enzymes were also measured. Results revealed that germination and other biochemical parameters of wheat were severely affected by senescence poplar leaves even at very low concentration. So, intercropping of poplar along with wheat may be chosen carefully as wheat is the major dietary staple.

  19. Catabolites of chlorophyll in senescing barley leaves are localized in the vacuoles of mesophyll cells

    PubMed Central

    Matile, Philippe; Ginsburg, Stefan; Schellenberg, Maja; Thomas, Howard

    1988-01-01

    Senescing barley leaves accumulate a series of pink pigments with the chemical properties of catabolites derived from chlorophyll. Levels of the major component of this group of pigments were quantified by HPLC and shown to be maximal in tissues exhibiting maximal rates of chlorophyll degradation. Protoplasts were isolated from senescent leaf tissue and fractionated to yield intact vacuoles and plastids. Although small but significant proportions both of total catabolites and of the dominant component of the series were recovered from the plastid fraction, the vast bulk of these compounds could be assigned to the vacuole. These observations suggest a role for the vacuole in the later stages of chlorophyll breakdown during senescence. PMID:16594008

  20. Chronic treatment with N-acetyl-cystein delays cellular senescence in endothelial cells isolated from a subgroup of atherosclerotic patients.

    PubMed

    Voghel, Guillaume; Thorin-Trescases, Nathalie; Farhat, Nada; Mamarbachi, Aida M; Villeneuve, Louis; Fortier, Annik; Perrault, Louis P; Carrier, Michel; Thorin, Eric

    2008-05-01

    Endothelial senescence may contribute to the pathogenesis of age-related vascular disorders. Furthermore, chronic exposure to risk factors for cardiovascular disease (CVD) accelerates the effects of chronological aging by generating stress-dependent damages, including oxidative stress, therefore promoting stress-induced premature senescence. Our objective was to determine whether a chronic treatment with an antioxidant (N-acetyl-cystein, NAC) could delay senescence of endothelial cells (EC) isolated and cultured from arterial segments of patients with severe coronary artery disease. If EC were considered as one population (n=26), chronic NAC treatment slightly shortened telomere attrition rate associated with senescence but did not significantly delay the onset of endothelial senescence. However, in a subgroup of NAC-treated EC (n=15) cellular senescence was significantly delayed, NAC decreased lipid peroxidation (HNE), activated the catalytic subunit of telomerase (hTERT) and inhibited telomere attrition. In contrast, in another subgroup of EC (n=11) characterized by initial short telomeres, no effect of NAC on HNE and high levels of DNA damages, the antioxidant was not beneficial on senescence, suggesting an irreversible stress-dependent damage. In conclusion, chronic exposure to NAC can delay senescence of diseased EC via hTERT activation and transient telomere stabilization, unless oxidative stress-associated cell damage has become irreversible.

  1. Senescence-like Phenotypes in Human Nevi

    PubMed Central

    Joselow, Andrew; Lynn, Darren; Terzian, Tamara; Box, Neil F.

    2016-01-01

    Summary Cellular senescence is an irreversible arrest of cell proliferation at the G1 stage of the cell cycle in which cells become refractory to growth stimuli. Senescence is a critical and potent defense mechanism that mammalian cells have to suppress tumors. While there are many ways to induce a senescence response, oncogene-induced senescence (OIS) remains key to inhibiting progression of cells that have acquired oncogenic mutations. In primary cells in culture, OIS induces a set of measurable phenotypic and behavioral changes, in addition to cell cycle exit. Senescence-associated β-Galactosidase (SA-β-Gal) activity is a main hallmark of senescent cells, along with morphological changes that may depend on the oncogene that is activated, or on the primary cell type. Characteristic cellular changes of senescence include increased size, flattening, multi-nucleation, and extensive vacuolation. At the molecular level, tumor suppressor genes such as p53 and p16INK4a may play a role in initiation or maintenance of OIS. Activation of a DNA damage response and a senescence-associated secretory phenotype could delineate the onset of senescence. Despite advances in our understanding of how OIS suppresses some tumor types, the in vivo role of OIS in melanocytic nevi and melanoma remains poorly understood and not validated. In an effort to stimulate research in this field, we review in this chapter the known markers of senescence and provide experimental protocols for their identification by immunofluorescent staining in melanocytic nevi and malignant melanoma. PMID:27812879

  2. A Clade-Specific Arabidopsis Gene Connects Primary Metabolism and Senescence

    PubMed Central

    Jones, Dallas C.; Zheng, Wenguang; Huang, Sheng; Du, Chuanlong; Zhao, Xuefeng; Yennamalli, Ragothaman M.; Sen, Taner Z.; Nettleton, Dan; Wurtele, Eve S.; Li, Ling

    2016-01-01

    Nearly immobile, plants have evolved new components to be able to respond to changing environments. One example is Qua Quine Starch (QQS, AT3G30720), an Arabidopsis thaliana-specific orphan gene that integrates primary metabolism with adaptation to environment changes. SAQR (Senescence-Associated and QQS-Related, AT1G64360), is unique to a clade within the family Brassicaceae; as such, the gene may have arisen about 20 million years ago. SAQR is up-regulated in QQS RNAi mutant and in the apx1 mutant under light-induced oxidative stress. SAQR plays a role in carbon allocation: overexpression lines of SAQR have significantly decreased starch content; conversely, in a saqr T-DNA knockout (KO) line, starch accumulation is increased. Meta-analysis of public microarray data indicates that SAQR expression is correlated with expression of a subset of genes involved in senescence, defense, and stress responses. SAQR promoter::GUS expression analysis reveals that SAQR expression increases after leaf expansion and photosynthetic capacity have peaked, just prior to visible natural senescence. SAQR is expressed predominantly within leaf and cotyledon vasculature, increasing in intensity as natural senescence continues, and then decreasing prior to death. In contrast, under experimentally induced senescence, SAQR expression increases in vasculature of cotyledons but not in true leaves. In SAQR KO line, the transcript level of the dirigent-like disease resistance gene (AT1G22900) is increased, while that of the Early Light Induced Protein 1 gene (ELIP1, AT3G22840) is decreased. Taken together, these data indicate that SAQR may function in the QQS network, playing a role in integration of primary metabolism with adaptation to internal and environmental changes, specifically those that affect the process of senescence. PMID:27462324

  3. Limited Role of Murine ATM in Oncogene-Induced Senescence and p53-Dependent Tumor Suppression

    PubMed Central

    Martinez-Pastor, Barbara; Ortega-Molina, Ana; Soria, Rebeca; Collado, Manuel; Fernandez-Capetillo, Oscar; Serrano, Manuel

    2009-01-01

    Recent studies in human fibroblasts have provided a new general paradigm of tumor suppression according to which oncogenic signaling produces DNA damage and this, in turn, results in ATM/p53-dependent cellular senescence. Here, we have tested this model in a variety of murine experimental systems. Overexpression of oncogenic Ras in murine fibroblasts efficiently induced senescence but this occurred in the absence of detectable DNA damage signaling, thus suggesting a fundamental difference between human and murine cells. Moreover, lung adenomas initiated by endogenous levels of oncogenic K-Ras presented abundant senescent cells, but undetectable DNA damage signaling. Accordingly, K-Ras-driven adenomas were also senescent in Atm-null mice, and the tumorigenic progression of these lesions was only modestly accelerated by Atm-deficiency. Finally, we have examined chemically-induced fibrosarcomas, which possess a persistently activated DNA damage response and are highly sensitive to the activity of p53. We found that the absence of Atm favored genomic instability in the resulting tumors, but did not affect the persistent DNA damage response and did not impair p53-dependent tumor suppression. All together, we conclude that oncogene-induced senescence in mice may occur in the absence of a detectable DNA damage response. Regarding murine Atm, our data suggest that it plays a minor role in oncogene-induced senescence or in p53-dependent tumor suppression, being its tumor suppressive activity probably limited to the maintenance of genomic stability. PMID:19421407

  4. Cellular senescence and the aging brain

    PubMed Central

    Chinta, Shankar J.; Woods, Georgia; Rane, Anand; Demaria, Marco; Campisi, Judith; Andersen, Julie K

    2014-01-01

    Cellular senescence is a potent anti-cancer mechanism that arrests the proliferation of mitotically competent cells to prevent malignant transformation. Senescent cells accumulate with age in a variety of human and mouse tissues where they express a complex ‘senescence-associated secretory phenotype’ (SASP). The SASP includes many pro-inflammatory cytokines, chemokines, growth factors and proteases that have the potential to cause or exacerbate age-related pathology, both degenerative and hyperplastic. While cellular senescence in peripheral tissues has recently been linked to a number of age-related pathologies, its involvement in brain aging is just beginning to be explored. Recent data generated by several laboratories suggest both aging and age-related neurodegenerative diseases are accompanied by an increase in SASP-expressing senescent cells of non-neuronal origin in the brain. Moreover, this increase correlates with neurodegeneration. Senescent cells in the brain could therefore constitute novel therapeutic targets for treating age-related neuropathologies. PMID:25281806

  5. Increased water salinity applied to tomato plants accelerates the development of the leaf miner Tuta absoluta through bottom-up effects.

    PubMed

    Han, Peng; Wang, Zhi-Jian; Lavoir, Anne-Violette; Michel, Thomas; Seassau, Aurélie; Zheng, Wen-Yan; Niu, Chang-Ying; Desneux, Nicolas

    2016-09-13

    Variation in resource inputs to plants may trigger bottom-up effects on herbivorous insects. We examined the effects of water input: optimal water vs. limited water; water salinity: with vs. without addition of 100 mM NaCl; and their interactions on tomato plants (Solanum lycopersicum), and consequently, the bottom-up effects on the tomato leaf miner, Tuta absoluta (Meytick) (Lepidoptera: Gelechiidae). Plant growth was significantly impeded by limited water input and NaCl addition. In terms of leaf chemical defense, the production of tomatidine significantly increased with limited water and NaCl addition, and a similar but non-significant trend was observed for the other glycoalkaloids. Tuta absoluta survival did not vary with the water and salinity treatments, but the treatment "optimal water-high salinity" increased the development rate without lowering pupal mass. Our results suggest that caution should be used in the IPM program against T. absoluta when irrigating tomato crops with saline water.

  6. Increased water salinity applied to tomato plants accelerates the development of the leaf miner Tuta absoluta through bottom-up effects

    PubMed Central

    Han, Peng; Wang, Zhi-jian; Lavoir, Anne-Violette; Michel, Thomas; Seassau, Aurélie; Zheng, Wen-yan; Niu, Chang-ying; Desneux, Nicolas

    2016-01-01

    Variation in resource inputs to plants may trigger bottom-up effects on herbivorous insects. We examined the effects of water input: optimal water vs. limited water; water salinity: with vs. without addition of 100 mM NaCl; and their interactions on tomato plants (Solanum lycopersicum), and consequently, the bottom-up effects on the tomato leaf miner, Tuta absoluta (Meytick) (Lepidoptera: Gelechiidae). Plant growth was significantly impeded by limited water input and NaCl addition. In terms of leaf chemical defense, the production of tomatidine significantly increased with limited water and NaCl addition, and a similar but non-significant trend was observed for the other glycoalkaloids. Tuta absoluta survival did not vary with the water and salinity treatments, but the treatment “optimal water-high salinity” increased the development rate without lowering pupal mass. Our results suggest that caution should be used in the IPM program against T. absoluta when irrigating tomato crops with saline water. PMID:27619473

  7. Turnover of Fatty Acids during Natural Senescence of Arabidopsis, Brachypodium, and Switchgrass and in Arabidopsis β-Oxidation Mutants1[C][W][OA

    PubMed Central

    Yang, Zhenle; Ohlrogge, John B.

    2009-01-01

    During leaf senescence, macromolecule breakdown occurs and nutrients are translocated to support growth of new vegetative tissues, seeds, or other storage organs. In this study, we determined the fatty acid levels and profiles in Arabidopsis (Arabidopsis thaliana), Brachypodium distachyon, and switchgrass (Panicum virgatum) leaves during natural senescence. In young leaves, fatty acids represent 4% to 5% of dry weight and approximately 10% of the chemical energy content of the leaf tissues. In all three species, fatty acid levels in leaves began to decline at the onset of leaf senescence and progressively decreased as senescence advanced, resulting in a greater than 80% decline in fatty acids on a dry weight basis. During senescence, Arabidopsis leaves lost 1.6% of fatty acids per day at a rate of 2.1 μg per leaf (0.6 μg mg−1 dry weight). Triacylglycerol levels remained less than 1% of total lipids at all stages. In contrast to glycerolipids, aliphatic surface waxes of Arabidopsis leaves were much more stable, showing only minor reduction during senescence. We also examined three Arabidopsis mutants, acx1acx2, lacs6lacs7, and kat2, which are blocked in enzyme activities of β-oxidation and are defective in lipid mobilization during seed germination. In each case, no major differences in the fatty acid contents of leaves were observed between these mutants and the wild type, indicating that several mutations in β-oxidation that cause reduced breakdown of reserve oil in seeds do not substantially reduce the degradation of fatty acids during leaf senescence. PMID:19561121

  8. Identification of predominant genes involved in regulation and execution of senescence-associated nitrogen remobilization in flag leaves of field grown barley.

    PubMed

    Hollmann, Julien; Gregersen, Per L; Krupinska, Karin

    2014-07-01

    The transcriptomes of senescing flag leaves collected from barley field plots with standard or high nitrogen supply were compared to identify genes specifically associated with nitrogen remobilization during leaf senescence under agronomically relevant conditions. In flag leaves collected in field plots with high nitrogen supply, the decline in chlorophyll content was delayed. By comparing changes in gene expression for the two nitrogen levels, it was possible to discriminate genes related to nitrogen remobilization during senescence and genes involved in other processes associated with the late development of leaves under field conditions. Predominant genes that were more strongly upregulated during senescence of flag leaves from plants with standard nitrogen supply included genes encoding the transcription factor HvNAC026, serine type protease SCPL51, and the autophagy factors APG7 and ATG18F. Elevated expression of these genes in senescing leaves from plants with standard nitrogen supply indicates important roles of the corresponding proteins in nitrogen remobilization. In comparison, the genes upregulated in both flag leaf samples might have roles in general senescence processes associated with late leaf development. Among these genes were the transcription factor genes HvNAC001, HvNAC005, HvNAC013, HvWRKY12 and MYB, genes encoding the papain-like cysteine peptidases HvPAP14 and HvPAP20, as well as a subtilase gene.

  9. Oxidative stress induces senescence in human mesenchymal stem cells

    SciTech Connect

    Brandl, Anita; Meyer, Matthias; Bechmann, Volker; Nerlich, Michael; Angele, Peter

    2011-07-01

    Mesenchymal stem cells (MSCs) contribute to tissue repair in vivo and form an attractive cell source for tissue engineering. Their regenerative potential is impaired by cellular senescence. The effects of oxidative stress on MSCs are still unknown. Our studies were to investigate into the proliferation potential, cytological features and the telomere linked stress response system of MSCs, subject to acute or prolonged oxidant challenge with hydrogen peroxide. Telomere length was measured using the telomere restriction fragment assay, gene expression was determined by rtPCR. Sub-lethal doses of oxidative stress reduced proliferation rates and induced senescent-morphological features and senescence-associated {beta}-galactosidase positivity. Prolonged low dose treatment with hydrogen peroxide had no effects on cell proliferation or morphology. Sub-lethal and prolonged low doses of oxidative stress considerably accelerated telomere attrition. Following acute oxidant insult p21 was up-regulated prior to returning to initial levels. TRF1 was significantly reduced, TRF2 showed a slight up-regulation. SIRT1 and XRCC5 were up-regulated after oxidant insult and expression levels increased in aging cells. Compared to fibroblasts and chondrocytes, MSCs showed an increased tolerance to oxidative stress regarding proliferation, telomere biology and gene expression with an impaired stress tolerance in aged cells.

  10. Determining Phenological Patterns Associated with the Onset of Senescence in a Wheat MAGIC Mapping Population.

    PubMed

    Camargo, Anyela V; Mott, Richard; Gardner, Keith A; Mackay, Ian J; Corke, Fiona; Doonan, John H; Kim, Jan T; Bentley, Alison R

    2016-01-01

    The appropriate timing of developmental transitions is critical for adapting many crops to their local climatic conditions. Therefore, understanding the genetic basis of different aspects of phenology could be useful in highlighting mechanisms underpinning adaptation, with implications in breeding for climate change. For bread wheat (Triticum aestivum), the transition from vegetative to reproductive growth, the start and rate of leaf senescence and the relative timing of different stages of flowering and grain filling all contribute to plant performance. In this study we screened under Smart house conditions a large, multi-founder "NIAB elite MAGIC" wheat population, to evaluate the genetic elements that influence the timing of developmental stages in European elite varieties. This panel of recombinant inbred lines was derived from eight parents that are or recently have been grown commercially in the UK and Northern Europe. We undertook a detailed temporal phenotypic analysis under Smart house conditions of the population and its parents, to try to identify known or novel Quantitative Trait Loci associated with variation in the timing of key phenological stages in senescence. This analysis resulted in the detection of QTL interactions with novel traits such the time between "half of ear emergence above flag leaf ligule" and the onset of senescence at the flag leaf as well as traits associated with plant morphology such as stem height. In addition, strong correlations between several traits and the onset of senescence of the flag leaf were identified. This work establishes the value of systematically phenotyping genetically unstructured populations to reveal the genetic architecture underlying morphological variation in commercial wheat.

  11. Determining Phenological Patterns Associated with the Onset of Senescence in a Wheat MAGIC Mapping Population

    PubMed Central

    Camargo, Anyela V.; Mott, Richard; Gardner, Keith A.; Mackay, Ian J.; Corke, Fiona; Doonan, John H.; Kim, Jan T.; Bentley, Alison R.

    2016-01-01

    The appropriate timing of developmental transitions is critical for adapting many crops to their local climatic conditions. Therefore, understanding the genetic basis of different aspects of phenology could be useful in highlighting mechanisms underpinning adaptation, with implications in breeding for climate change. For bread wheat (Triticum aestivum), the transition from vegetative to reproductive growth, the start and rate of leaf senescence and the relative timing of different stages of flowering and grain filling all contribute to plant performance. In this study we screened under Smart house conditions a large, multi-founder “NIAB elite MAGIC” wheat population, to evaluate the genetic elements that influence the timing of developmental stages in European elite varieties. This panel of recombinant inbred lines was derived from eight parents that are or recently have been grown commercially in the UK and Northern Europe. We undertook a detailed temporal phenotypic analysis under Smart house conditions of the population and its parents, to try to identify known or novel Quantitative Trait Loci associated with variation in the timing of key phenological stages in senescence. This analysis resulted in the detection of QTL interactions with novel traits such the time between “half of ear emergence above flag leaf ligule” and the onset of senescence at the flag leaf as well as traits associated with plant morphology such as stem height. In addition, strong correlations between several traits and the onset of senescence of the flag leaf were identified. This work establishes the value of systematically phenotyping genetically unstructured populations to reveal the genetic architecture underlying morphological variation in commercial wheat. PMID:27822218

  12. RhHB1 mediates the antagonism of gibberellins to ABA and ethylene during rose (Rosa hybrida) petal senescence.

    PubMed

    Lü, Peitao; Zhang, Changqing; Liu, Jitao; Liu, Xiaowei; Jiang, Guimei; Jiang, Xinqiang; Khan, Muhammad Ali; Wang, Liangsheng; Hong, Bo; Gao, Junping

    2014-05-01

    Rose (Rosa hybrida) is one of the most important ornamental plants worldwide; however, senescence of its petals terminates the ornamental value of the flower, resulting in major economic loss. It is known that the hormones abscisic acid (ABA) and ethylene promote petal senescence, while gibberellins (GAs) delay the process. However, the molecular mechanisms underlying the antagonistic effects amongst plant hormones during petal senescence are still unclear. Here we isolated RhHB1, a homeodomain-leucine zipper I transcription factor gene, from rose flowers. Quantitative RT-PCR and GUS reporter analyses showed that RhHB1 was strongly expressed in senescing petals, and its expression was induced by ABA or ethylene in petals. ABA or ethylene treatment clearly accelerated rose petal senescence, while application of the gibberellin GA3 delayed the process. However, silencing of RhHB1 delayed the ABA- or ethylene-mediated senescence, and resulted in higher petal anthocyanin levels and lower expression of RhSAG12. Moreover, treatment with paclobutrazol, an inhibitor of GA biosynthesis, repressed these delays. In addition, silencing of RhHB1 blocked the ABA- or ethylene-induced reduction in expression of the GA20 oxidase encoded by RhGA20ox1, a gene in the GA biosynthetic pathway. Furthermore, RhHB1 directly binds to the RhGA20ox1 promoter, and silencing of RhGA20ox1 promoted petal senescence. Eight senescence-related genes showed substantial differences in expression in petals after treatment with GA3 or paclobutrazol. These results suggest that RhHB1 mediates the antagonistic effect of GAs on ABA and ethylene during rose petal senescence, and that the promotion of petal senescence by ABA or ethylene operates through an RhHB1-RhGA20ox1 regulatory checkpoint.

  13. Influence of aging and growth hormone on different members of the NFkB family and IkB expression in the heart from a murine model of senescence-accelerated aging.

    PubMed

    Forman, K; Vara, E; García, C; Kireev, R; Cuesta, S; Acuña-Castroviejo, D; Tresguerres, J A F

    2016-01-01

    Inflammation is related to several pathological processes. The aim of this study was to investigate the protein expression of the different subunits of the nuclear factor Kappa b (NFkBp65, p50, p105, p52, p100) and the protein expressions of IkB beta and alpha in the hearts from a murine model of accelerated aging (SAM model) by Western blot. In addition, the translocation of some isoforms of NFkB from cytosol to nuclei (NFkBp65, p50, p52) and ATP level content was studied. In addition we investigated the effect of the chronic administration of growth hormone (GH) on these age-related parameters. SAMP8 and SAMR1 mice of 2 and 10 months of age were used (n = 30). Animals were divided into five experimental groups: 2 old untreated (SAMP8/SAMR1), 2 young control (SAMP8/SAMR1) and one GH treated-old groups (SAMP8). Age-related changes were found in the studied parameters. We were able to see decreases of ATP level contents and the translocation of the nuclear factor kappa B p50, p52 and p65 from cytosol to nuclei in old SAMP8 mice together with a decrease of IKB proteins. However p100 and p105 did not show differences with aging. No significant changes were recorded in SAMR1 animals. GH treatment showed beneficial effects in old SAMP8 mice inducing an increase in ATP levels and inhibiting the translocation of some NFkB subunits such as p52. Our results supported the relation of NFkB activation with enhanced apoptosis and pro-inflammatory status in old SAMP8 mice and suggested a selective beneficial effect of the GH treatment, which was able to partially reduce the incidence of some deleterious changes in the heart of those mice.

  14. Gα modulates salt-induced cellular senescence and cell division in rice and maize.

    PubMed

    Urano, Daisuke; Colaneri, Alejandro; Jones, Alan M

    2014-12-01

    The plant G-protein network, comprising Gα, Gβ, and Gγ core subunits, regulates development, senses sugar, and mediates biotic and abiotic stress responses. Here, we report G-protein signalling in the salt stress response using two crop models, rice and maize. Loss-of-function mutations in the corresponding genes encoding the Gα subunit attenuate growth inhibition and cellular senescence caused by sodium chloride (NaCl). Gα null mutations conferred reduced leaf senescence, chlorophyll degradation, and cytoplasm electrolyte leakage under NaCl stress. Sodium accumulated in both wild-type and Gα-mutant shoots to the same levels, suggesting that Gα signalling controls cell death in leaves rather than sodium exclusion in roots. Growth inhibition is probably initiated by osmotic change around root cells, because KCl and MgSO4 also suppressed seedling growth equally as well as NaCl. NaCl lowered rates of cell division and elongation in the wild-type leaf sheath to the level of the Gα-null mutants; however there was no NaCl-induced decrease in cell division in the Gα mutant, implying that the osmotic phase of salt stress suppresses cell proliferation through the inhibition of Gα-coupled signalling. These results reveal two distinct functions of Gα in NaCl stress in these grasses: attenuation of leaf senescence caused by sodium toxicity in leaves, and cell cycle regulation by osmotic/ionic stress.

  15. Gα modulates salt-induced cellular senescence and cell division in rice and maize

    DOE PAGES

    Urano, Daisuke; Colaneri, Alejandro; Jones, Alan M.

    2014-09-16

    The plant G-protein network, comprising Gα, Gβ, and Gγ core subunits, regulates development, senses sugar, and mediates biotic and abiotic stress responses. Here in this paper, we report G-protein signalling in the salt stress response using two crop models, rice and maize. Loss-of-function mutations in the corresponding genes encoding the Gα subunit attenuate growth inhibition and cellular senescence caused by sodium chloride (NaCl). Gα null mutations conferred reduced leaf senescence, chlorophyll degradation, and cytoplasm electrolyte leakage under NaCl stress. Sodium accumulated in both wild-type and Gα-mutant shoots to the same levels, suggesting that Gα signalling controls cell death in leavesmore » rather than sodium exclusion in roots. Growth inhibition is probably initiated by osmotic change around root cells, because KCl and MgSO4 also suppressed seedling growth equally as well as NaCl. NaCl lowered rates of cell division and elongation in the wild-type leaf sheath to the level of the Gα-null mutants; however there was no NaCl-induced decrease in cell division in the Gα mutant, implying that the osmotic phase of salt stress suppresses cell proliferation through the inhibition of Gα-coupled signalling. These results reveal two distinct functions of Gα in NaCl stress in these grasses: attenuation of leaf senescence caused by sodium toxicity in leaves, and cell cycle regulation by osmotic/ionic stress.« less

  16. Gα modulates salt-induced cellular senescence and cell division in rice and maize

    SciTech Connect

    Urano, Daisuke; Colaneri, Alejandro; Jones, Alan M.

    2014-09-16

    The plant G-protein network, comprising Gα, Gβ, and Gγ core subunits, regulates development, senses sugar, and mediates biotic and abiotic stress responses. Here in this paper, we report G-protein signalling in the salt stress response using two crop models, rice and maize. Loss-of-function mutations in the corresponding genes encoding the Gα subunit attenuate growth inhibition and cellular senescence caused by sodium chloride (NaCl). Gα null mutations conferred reduced leaf senescence, chlorophyll degradation, and cytoplasm electrolyte leakage under NaCl stress. Sodium accumulated in both wild-type and Gα-mutant shoots to the same levels, suggesting that Gα signalling controls cell death in leaves rather than sodium exclusion in roots. Growth inhibition is probably initiated by osmotic change around root cells, because KCl and MgSO4 also suppressed seedling growth equally as well as NaCl. NaCl lowered rates of cell division and elongation in the wild-type leaf sheath to the level of the Gα-null mutants; however there was no NaCl-induced decrease in cell division in the Gα mutant, implying that the osmotic phase of salt stress suppresses cell proliferation through the inhibition of Gα-coupled signalling. These results reveal two distinct functions of Gα in NaCl stress in these grasses: attenuation of leaf senescence caused by sodium toxicity in leaves, and cell cycle regulation by osmotic/ionic stress.

  17. Gα modulates salt-induced cellular senescence and cell division in rice and maize

    PubMed Central

    Urano, Daisuke; Colaneri, Alejandro; Jones, Alan M.

    2014-01-01

    The plant G-protein network, comprising Gα, Gβ, and Gγ core subunits, regulates development, senses sugar, and mediates biotic and abiotic stress responses. Here, we report G-protein signalling in the salt stress response using two crop models, rice and maize. Loss-of-function mutations in the corresponding genes encoding the Gα subunit attenuate growth inhibition and cellular senescence caused by sodium chloride (NaCl). Gα null mutations conferred reduced leaf senescence, chlorophyll degradation, and cytoplasm electrolyte leakage under NaCl stress. Sodium accumulated in both wild-type and Gα-mutant shoots to the same levels, suggesting that Gα signalling controls cell death in leaves rather than sodium exclusion in roots. Growth inhibition is probably initiated by osmotic change around root cells, because KCl and MgSO4 also suppressed seedling growth equally as well as NaCl. NaCl lowered rates of cell division and elongation in the wild-type leaf sheath to the level of the Gα-null mutants; however there was no NaCl-induced decrease in cell division in the Gα mutant, implying that the osmotic phase of salt stress suppresses cell proliferation through the inhibition of Gα-coupled signalling. These results reveal two distinct functions of Gα in NaCl stress in these grasses: attenuation of leaf senescence caused by sodium toxicity in leaves, and cell cycle regulation by osmotic/ionic stress. PMID:25227951

  18. Dandelion Extracts Protect Human Skin Fibroblasts from UVB Damage and Cellular Senescence

    PubMed Central

    Yang, Yafan; Li, Shuangshuang

    2015-01-01

    Ultraviolet (UV) irradiation causes damage in skin by generating excessive reactive oxygen species (ROS) and induction of matrix metalloproteinases (MMPs), leading to skin photoageing. Dandelion extracts have long been used for traditional Chinese medicine and native American medicine to treat cancers, hepatitis, and digestive diseases; however, less is known on the effects of dandelion extracts in skin photoageing. Here we found that dandelion leaf and flower extracts significantly protect UVB irradiation-inhibited cell viability when added before UVB irradiation or promptly after irradiation. Dandelion leaf and flower extracts inhibited UVB irradiation-stimulated MMP activity and ROS generation. Dandelion root extracts showed less action on protecting HDFs from UVB irradiation-induced MMP activity, ROS generation, and cell death. Furthermore, dandelion leaf and flower but not root extracts stimulated glutathione generation and glutathione reductase mRNA expression in the presence or absence of UVB irradiation. We also found that dandelion leaf and flower extracts help absorb UVB irradiation. In addition, dandelion extracts significantly protected HDFs from H2O2-induced cellular senescence. In conclusion, dandelion extracts especially leaf and flower extracts are potent protective agents against UVB damage and H2O2-induced cellular senescence in HDFs by suppressing ROS generation and MMP activities and helping UVB absorption. PMID:26576225

  19. Dandelion Extracts Protect Human Skin Fibroblasts from UVB Damage and Cellular Senescence.

    PubMed

    Yang, Yafan; Li, Shuangshuang

    2015-01-01

    Ultraviolet (UV) irradiation causes damage in skin by generating excessive reactive oxygen species (ROS) and induction of matrix metalloproteinases (MMPs), leading to skin photoageing. Dandelion extracts have long been used for traditional Chinese medicine and native American medicine to treat cancers, hepatitis, and digestive diseases; however, less is known on the effects of dandelion extracts in skin photoageing. Here we found that dandelion leaf and flower extracts significantly protect UVB irradiation-inhibited cell viability when added before UVB irradiation or promptly after irradiation. Dandelion leaf and flower extracts inhibited UVB irradiation-stimulated MMP activity and ROS generation. Dandelion root extracts showed less action on protecting HDFs from UVB irradiation-induced MMP activity, ROS generation, and cell death. Furthermore, dandelion leaf and flower but not root extracts stimulated glutathione generation and glutathione reductase mRNA expression in the presence or absence of UVB irradiation. We also found that dandelion leaf and flower extracts help absorb UVB irradiation. In addition, dandelion extracts significantly protected HDFs from H2O2-induced cellular senescence. In conclusion, dandelion extracts especially leaf and flower extracts are potent protective agents against UVB damage and H2O2-induced cellular senescence in HDFs by suppressing ROS generation and MMP activities and helping UVB absorption.

  20. Leaf Activities.

    ERIC Educational Resources Information Center

    Mingie, Walter

    Leaf activities can provide a means of using basic concepts of outdoor education to learn in elementary level subject areas. Equipment needed includes leaves, a clipboard with paper, and a pencil. A bag of leaves may be brought into the classroom if weather conditions or time do not permit going outdoors. Each student should pick a leaf, examine…

  1. Nutritional enhancement of leaves by a psyllid through senescence-like processes: insect manipulation or plant defence?

    PubMed

    Steinbauer, M J; Burns, A E; Hall, A; Riegler, M; Taylor, G S

    2014-12-01

    Some herbivores can modify the physiology of plant modules to meet their nutritional requirements. Induction of premature leaf senescence could benefit herbivores since it is associated with the mobilisation of nutrients. We compared the effects of nymphal feeding by Cardiaspina near densitexta on Eucalyptus moluccana with endogenous processes associated with senescence to assess the relative merits of an insect manipulation or plant defence interpretation of responses. Evidence supporting insect manipulation included increased size of fourth and fifth instar nymphs (in the latter the effect was restricted to forewing pad length of females) on leaves supporting high numbers of conspecifics and feeding preventing leaf necrosis. Intra-specific competition negated greater performance at very high densities. High and very high abundances of nymphs were associated with increased concentrations of amino acid N but only very high abundances of nymphs tended to be associated with increased concentrations of six essential amino acids. Contrary to the insect manipulation interpretation, feeding by very high abundances of nymphs was associated with significant reductions in chlorophyll, carotenoids and anthocyanins. Evidence supporting plant defence included the severity of chlorosis increasing with the abundance of nymphs. Leaf reddening did not develop because ambient conditions associated with photoinhibition (high irradiance and low temperature) were not experienced by leaves with chlorotic lesions. Leaf reddening (from anthocyanins) alone is not expected to adversely affect nymphal survival; only leaf necrosis would kill nymphs. For senescence-inducing psyllids, nutritional enhancement does not fit neatly into either an insect manipulation or plant defence interpretation.

  2. Dehydration induced loss of photosynthesis in Arabidopsis leaves during senescence is accompanied by the reversible enhancement in the activity of cell wall β-glucosidase.

    PubMed

    Patro, Lichita; Mohapatra, Pranab Kishor; Biswal, Udaya Chand; Biswal, Basanti

    2014-08-01

    The physiology of loss of photosynthetic production of sugar and the consequent cellular sugar reprogramming during senescence of leaves experiencing environmental stress largely remains unclear. We have shown that leaf senescence in Arabidopsis thaliana causes a significant reduction in the rate of oxygen evolution and net photosynthetic rate (Pn). The decline in photosynthesis is further aggravated by dehydration. During dehydration, primary photochemical reaction of thylakoids and net photosynthesis decrease in parallel with the increase in water deficit. Senescence induced loss in photosynthesis is accompanied by a significant increase in the activity of cell wall hydrolyzing enzyme such as β-glucosidase associated with cell wall catabolism. The activity of this enzyme is further enhanced when the senescing leaves experience dehydration stress. It is possible that both senescence and stress separately or in combination result in the loss in photosynthesis which could be a signal for an enhancement in the activity of β-glucosidase that breaks down cell wall polysaccharides to sugar to sustain respiration for metabolic activities of plants experiencing stress. Thus dehydration response of cell wall hydrolases of senescing leaves is considered as plants' strategy to have cell wall polysaccharides as an alternative energy source for completion of energy requiring senescence process, stress survival and maintenance of recovery potential of energy deficit cells in the background of loss in photosynthesis. Withdrawal of stress (rehydration) distinctly exhibits recovery of photosynthesis and suppression of enzyme activity. Retention of the signaling for sugar reprogramming through breakdown of cell wall polysaccharides in the senescing leaves exposed to severe drought stress suggests that senescing leaves like mature ones possess potential for stress recovery. The precise mechanism of stress adaptation of senescing leaves is yet to be known. A significant

  3. Senescent cells communicate via intercellular protein transfer

    PubMed Central

    Biran, Anat; Perelmutter, Meirav; Gal, Hilah; Burton, Dominick G.A.; Ovadya, Yossi; Vadai, Ezra; Geiger, Tamar

    2015-01-01

    Mammalian cells mostly rely on extracellular molecules to transfer signals to other cells. However, in stress conditions, more robust mechanisms might be necessary to facilitate cell–cell communications. Cellular senescence, a stress response associated with permanent exit from the cell cycle and the development of an immunogenic phenotype, limits both tumorigenesis and tissue damage. Paradoxically, the long-term presence of senescent cells can promote tissue damage and aging within their microenvironment. Soluble factors secreted from senescent cells mediate some of these cell-nonautonomous effects. However, it is unknown whether senescent cells impact neighboring cells by other mechanisms. Here we show that senescent cells directly transfer proteins to neighboring cells and that this process facilitates immune surveillance of senescent cells by natural killer (NK) cells. We found that transfer of proteins to NK and T cells is increased in the murine preneoplastic pancreas, a site where senescent cells are present in vivo. Proteomic analysis and functional studies of the transferred proteins revealed that the transfer is strictly dependent on cell–cell contact and CDC42-regulated actin polymerization and is mediated at least partially by cytoplasmic bridges. These findings reveal a novel mode of intercellular communication by which senescent cells regulate their immune surveillance and might impact tumorigenesis and tissue aging. PMID:25854920

  4. Senescence-Associated Secretory Phenotypes Reveal Cell-Nonautonomous Functions of Oncogenic RAS and the p53 Tumor Suppressor

    SciTech Connect

    Coppé, Jean-Philippe; Patil, Christopher; Rodier, Francis; Sun, Yu; Munoz, Denise; Goldstein, Joshua; Nelson, Peter; Desprez, Pierre-Yves; Campisi, Judith

    2008-10-24

    Cellular senescence suppresses cancer by arresting cell proliferation, essentially permanently, in response to oncogenic stimuli, including genotoxic stress. We modified the use of antibody arrays to provide a quantitative assessment of factors secreted by senescent cells. We show that human cells induced to senesce by genotoxic stress secrete myriad factors associated with inflammation and malignancy. This senescence-associated secretory phenotype (SASP) developed slowly over several days and only after DNA damage of sufficient magnitude to induce senescence. Remarkably similar SASPs developed in normal fibroblasts, normal epithelial cells, and epithelial tumor cells after genotoxic stress in culture, and in epithelial tumor cells in vivo after treatment of prostate cancer patients with DNA-damaging chemotherapy. In cultured premalignant epithelial cells, SASPs induced an epithelial-mesenchyme transition and invasiveness, hallmarks of malignancy, by a paracrine mechanism that depended largely on the SASP factors interleukin (IL)-6 and IL-8. Strikingly, two manipulations markedly amplified, and accelerated development of, the SASPs: oncogenic RAS expression, which causes genotoxic stress and senescence in normal cells, and functional loss of the p53 tumor suppressor protein. Both loss of p53 and gain of oncogenic RAS also exacerbated the promalignant paracrine activities of the SASPs. Our findings define a central feature of genotoxic stress-induced senescence. Moreover, they suggest a cell-nonautonomous mechanism by which p53 can restrain, and oncogenic RAS can promote, the development of age-related cancer by altering the tissue microenvironment.

  5. AMPK activation protects cells from oxidative stress-induced senescence via autophagic flux restoration and intracellular NAD(+) elevation.

    PubMed

    Han, Xiaojuan; Tai, Haoran; Wang, Xiaobo; Wang, Zhe; Zhou, Jiao; Wei, Xiawei; Ding, Yi; Gong, Hui; Mo, Chunfen; Zhang, Jie; Qin, Jianqiong; Ma, Yuanji; Huang, Ning; Xiang, Rong; Xiao, Hengyi

    2016-06-01

    AMPK activation is beneficial for cellular homeostasis and senescence prevention. However, the molecular events involved in AMPK activation are not well defined. In this study, we addressed the mechanism underlying the protective effect of AMPK on oxidative stress-induced senescence. The results showed that AMPK was inactivated in senescent cells. However, pharmacological activation of AMPK by metformin and berberine significantly prevented the development of senescence and, accordingly, inhibition of AMPK by Compound C was accelerated. Importantly, AMPK activation prevented hydrogen peroxide-induced impairment of the autophagic flux in senescent cells, evidenced by the decreased p62 degradation, GFP-RFP-LC3 cancellation, and activity of lysosomal hydrolases. We also found that AMPK activation restored the NAD(+) levels in the senescent cells via a mechanism involving mostly the salvage pathway for NAD(+) synthesis. In addition, the mechanistic relationship of autophagic flux and NAD(+) synthesis and the involvement of mTOR and Sirt1 activities were assessed. In summary, our results suggest that AMPK prevents oxidative stress-induced senescence by improving autophagic flux and NAD(+) homeostasis. This study provides a new insight for exploring the mechanisms of aging, autophagy and NAD(+) homeostasis, and it is also valuable in the development of innovative strategies to combat aging.

  6. Senescence-Associated Secretory Phenotypes Reveal Cell-Nonautonomous Functions of Oncogenic RAS and the p53 Tumor Suppressor

    PubMed Central

    Coppé, Jean-Philippe; Sun, Yu; Muñoz, Denise P; Goldstein, Joshua; Nelson, Peter S; Desprez, Pierre-Yves; Campisi, Judith

    2008-01-01

    Cellular senescence suppresses cancer by arresting cell proliferation, essentially permanently, in response to oncogenic stimuli, including genotoxic stress. We modified the use of antibody arrays to provide a quantitative assessment of factors secreted by senescent cells. We show that human cells induced to senesce by genotoxic stress secrete myriad factors associated with inflammation and malignancy. This senescence-associated secretory phenotype (SASP) developed slowly over several days and only after DNA damage of sufficient magnitude to induce senescence. Remarkably similar SASPs developed in normal fibroblasts, normal epithelial cells, and epithelial tumor cells after genotoxic stress in culture, and in epithelial tumor cells in vivo after treatment of prostate cancer patients with DNA-damaging chemotherapy. In cultured premalignant epithelial cells, SASPs induced an epithelial–mesenchyme transition and invasiveness, hallmarks of malignancy, by a paracrine mechanism that depended largely on the SASP factors interleukin (IL)-6 and IL-8. Strikingly, two manipulations markedly amplified, and accelerated development of, the SASPs: oncogenic RAS expression, which causes genotoxic stress and senescence in normal cells, and functional loss of the p53 tumor suppressor protein. Both loss of p53 and gain of oncogenic RAS also exacerbated the promalignant paracrine activities of the SASPs. Our findings define a central feature of genotoxic stress-induced senescence. Moreover, they suggest a cell-nonautonomous mechanism by which p53 can restrain, and oncogenic RAS can promote, the development of age-related cancer by altering the tissue microenvironment. PMID:19053174

  7. Differential gene expression in senescing leaves of two silver birch genotypes in response to elevated CO2 and tropospheric ozone.

    PubMed

    Kontunen-Soppela, Sari; Riikonen, Johanna; Ruhanen, Hanna; Brosché, Mikael; Somervuo, Panu; Peltonen, Petri; Kangasjärvi, Jaakko; Auvinen, Petri; Paulin, Lars; Keinänen, Markku; Oksanen, Elina; Vapaavuori, Elina

    2010-06-01

    Long-term effects of elevated CO(2) and O(3) concentrations on gene expression in silver birch (Betula pendula Roth) leaves were studied during the end of the growing season. Two birch genotypes, clones 4 and 80, with different ozone growth responses, were exposed to 2x ambient CO(2) and/or O(3) in open-top chambers (OTCs). Microarray analyses were performed after 2 years of exposure, and the transcriptional profiles were compared to key physiological characteristics during leaf senescence. There were genotypic differences in the responses to CO(2) and O(3). Clone 80 exhibited greater transcriptional response and capacity to alter metabolism, resulting in better stress tolerance. The gene expression patterns of birch leaves indicated contrasting responses of senescence-related genes to elevated CO(2) and O(3). Elevated CO(2) delayed leaf senescence and reduced associated transcriptional changes, whereas elevated O(3) advanced leaf senescence because of increased oxidative stress. The combined treatment demonstrated that elevated CO(2) only temporarily alleviated the negative effects of O(3). Gene expression data alone were insufficient to explain the O(3) response in birch, and additional physiological and biochemical data were required to understand the true O(3) sensitivity of these clones.

  8. Leaf lifetime photosynthetic rate and leaf demography in whole plants of Ipomoea pes-caprae growing with a low supply of calcium, a 'non-mobile' nutrient.

    PubMed

    Suárez, N

    2010-03-01

    The adaptive significance of leaf longevity has been established in relation to restrictive nutrients that can be retranslocated within the plant. However, the effect of deficiencies in 'non-mobile' nutrients on leaf lifespan and photosynthetic carbon gain is uncertain. Calcium is frequently given as an example of an essential nutrient with low phloem mobility that may alter the leaf senescence process. This study has been designed to estimate leaf lifespan, leaf production (L(p)) and leaf death (L(d)) rates, the age structure of leaves, and the decline in maximum photosynthetic rate (A(max)) with age in plants of Ipomoea pes-caprae growing with a full supply of nutrients and with a low Ca supply. The Ca deficiency produced reductions in L(p) and leaf lifespan compared with control plants. In spite of the differences in the demographic parameters between treatments in control and low-Ca plants, the percentage of leaves of a given leaf age class is maintained in such a way that the number of leaves per plant continues to increase. No relationship was found between Ca supply and A(max). However, the decline in A(max) with leaf senescence was rather sudden in control plants compared with plants growing with a low Ca supply. The importance of simultaneously using the total leaf demographic census and the assimilation rate along with leaf lifespan data in order to understand the performance of whole plants under constrained conditions is discussed.

  9. Radiation-inducible immunotherapy for cancer: senescent tumor cells as a cancer vaccine.

    PubMed

    Meng, Yuru; Efimova, Elena V; Hamzeh, Khaled W; Darga, Thomas E; Mauceri, Helena J; Fu, Yang-Xin; Kron, Stephen J; Weichselbaum, Ralph R

    2012-05-01

    Radiotherapy offers an effective treatment for advanced cancer but local and distant failures remain a significant challenge. Here, we treated melanoma and pancreatic carcinoma in syngeneic mice with ionizing radiation (IR) combined with the poly(ADP-ribose) polymerase inhibitor (PARPi) veliparib to inhibit DNA repair and promote accelerated senescence. Based on prior work implicating cytotoxic T lymphocytes (CTLs) as key mediators of radiation effects, we discovered that senescent tumor cells induced by radiation and veliparib express immunostimulatory cytokines to activate CTLs that mediate an effective antitumor response. When these senescent tumor cells were injected into tumor-bearing mice, an antitumor CTL response was induced which potentiated the effects of radiation, resulting in elimination of established tumors. Applied to human cancers, radiation-inducible immunotherapy may enhance radiotherapy responses to prevent local recurrence and distant metastasis.

  10. Cellular senescence-like features of lung fibroblasts derived from idiopathic pulmonary fibrosis patients

    PubMed Central

    Porat, Ziv; Budovsky, Arie; Braiman, Alex; Zeische, Rolf; Fraifeld, Vadim E.

    2015-01-01

    Idiopathic pulmonary fibrosis (IPF) is an age-related fatal disease with unknown etiology and no effective treatment. In this study, we show that primary cultures of fibroblasts derived from lung biopsies of IPF patients exhibited (i) accelerated replicative cellular senescence (CS); (ii) high resistance to oxidative-stress-induced cytotoxicity or CS; (iii) a CS-like morphology (even at the proliferative phase); and (iv) rapid accumulation of senescent cells expressing the myofibroblast marker α-SMA. Our findings suggest that CS could serve as a bridge connecting lung aging and its quite frequent outcome -- pulmonary fibrosis, and be an important player in the disease progression. Consequently, targeting senescent cells offers the potential of being a promising therapeutic approach. PMID:26399448

  11. Effect of herbivore damage on broad leaf motion in wind

    NASA Astrophysics Data System (ADS)

    Burnett, Nicholas; Kothari, Adit

    2015-11-01

    Terrestrial plants regularly experience wind that imposes aerodynamic forces on the plants' leaves. Passive leaf motion (e.g. fluttering) and reconfiguration (e.g. rolling into a cone shape) in wind can affect the drag on the leaf. In the study of passive leaf motion in wind, little attention has been given to the effect of herbivory. Herbivores may alter leaf motion in wind by making holes in the leaf. Also, a small herbivore (e.g. snail) on a leaf can act as a point mass, thereby affecting the leaf's motion in wind. Conversely, accelerations imposed on an herbivore sitting on a leaf by the moving leaf may serve as a defense by dislodging the herbivore. In the present study, we investigated how point masses (>1 g) and holes in leaves of the tuliptree affected passive leaf motion in turbulent winds of 1 and 5 m s-1. Leaf motion was unaffected by holes in the leaf surface (about 10% of leaf area), but an herbivore's mass significantly damped the accelerations of fluttering leaves. These results suggest that an herbivore's mass, but not the damage it inflicts, can affect leaf motion in the wind. Furthermore, the damping of leaf fluttering from an herbivore's mass may prevent passive leaf motions from being an effective herbivore defense.

  12. Project LEAF

    EPA Pesticide Factsheets

    Project LEAF has a goal of educating farmworkers about how to reduce pesticide exposure to their families from pesticide residues they may be inadvertently taking home on their clothing, etc. Find outreach materials.

  13. Ethylene and flower longevity in Alstroemeria: relationship between tepal senescence, abscission and ethylene biosynthesis.

    PubMed

    Wagstaff, Carol; Chanasut, Usawadee; Harren, Frans J M; Laarhoven, Luc-Jan; Thomas, Brian; Rogers, Hilary J; Stead, Anthony D

    2005-03-01

    Senescence of floral organs is broadly divided into two groups: those that exhibit sensitivity to exogenous ethylene and those that do not. Endogenous ethylene production from the former group is via a well-characterized biochemical pathway and is either due to developmental or pollination-induced senescence. Many flowers from the order Liliales are characterized as ethylene-insensitive since they do not appear to produce endogenous ethylene, or respond to exogenous ethylene treatments, however, the majority of cases studied are wilting flowers, rather than those where life is terminated by perianth abscission. The role of ethylene in the senescence and abscission of Alstroemeria peruviana cv. Rebecca and cv. Samora tepals was previously unclear, with silver treatments recommended for delaying leaf rather than flower senescence. In the present paper the effects of exogenous ethylene, 2-chloroethylphosphonic acid (CEPA) and silver thiosulphate (STS) treatments on tepal senescence and abscission have been investigated. Results indicate that sensitivity to ethylene develops several days after flower opening such that STS only has a limited ability to delay tepal abscission. Detachment force measurements indicate that cell separation events are initiated after anthesis. Endogenous ethylene production was measured using laser photoacoustics and showed that Alstroemeria senesce independently of ethylene production, but that an extremely small amount of ethylene (0.15 nl flower(-1) h(-1)) is produced immediately prior to abscission. Investigation of the expression of genes involved in ethylene biosysnthesis by semi-quantitative RT-PCR indicated that transcriptional regulation is likely to be at the level of ACC oxidase, and that the timing of ACC oxidase gene expression is coincident with development of sensitivity to exogenous ethylene.

  14. Resource partitioning to male and female flowers of Spinacia oleracea L. in relation to whole-plant monocarpic senescence.

    PubMed

    Sklensky, Diane E; Davies, Peter J

    2011-08-01

    Male plants of spinach (Spinacea oleracea L.) senesce following flowering. It has been suggested that nutrient drain by male flowers is insufficient to trigger senescence. The partitioning of radiolabelled photosynthate between vegetative and reproductive tissue was compared in male (staminate) versus female (pistillate) plants. After the start of flowering staminate plants senesce 3 weeks earlier than pistillate plants. Soon after the start of flowering, staminate plants allocated several times as much photosynthate to flowering structures as did pistillate plants. The buds of staminate flowers with developing pollen had the greatest draw of photosynthate. When the staminate plants begin to show senescence 68% of fixed C was allocated to the staminate reproductive structures. In the pistillate plants, export to the developing fruits and young flowers remained near 10% until mid-reproductive development, when it increased to 40%, declining to 27% as the plants started to senesce. These differences were also present on a sink-mass corrected basis. Flowers on staminate spinach plants develop faster than pistillate flowers and have a greater draw of photosynthate than do pistillate flowers and fruits, although for a shorter period. Pistillate plants also produce more leaf area within the inflorescence to sustain the developing fruits. The (14)C in the staminate flowers declined due to respiration, especially during pollen maturation; no such loss occurred in pistillate reproductive structures. The partitioning to the reproductive structures correlates with the greater production of floral versus vegetative tissue in staminate plants and their more rapid senescence. As at senescence the leaves still had adequate carbohydrate, the resources are clearly phloem-transported compounds other than carbohydrates. The extent of the resource redistribution to reproductive structures and away from the development of new vegetative sinks, starting very early in the reproductive

  15. Current ambient concentrations of ozone in Panama modulate the leaf chemistry of the tropical tree Ficus insipida.

    PubMed

    Schneider, Gerald F; Cheesman, Alexander W; Winter, Klaus; Turner, Benjamin L; Sitch, Stephen; Kursar, Thomas A

    2017-04-01

    Tropospheric ozone (O3) is a major air pollutant and greenhouse gas, affecting carbon dynamics, ecological interactions, and agricultural productivity across continents and biomes. Elevated [O3] has been documented in tropical evergreen forests, the epicenters of terrestrial primary productivity and plant-consumer interactions. However, the effects of O3 on vegetation have not previously been studied in these forests. In this study, we quantified ambient O3 in a region shared by forests and urban/commercial zones in Panama and found levels two to three times greater than in remote tropical sites. We examined the effects of these ambient O3 levels on the growth and chemistry of seedlings of Ficus insipida, a regionally widespread tree with high stomatal conductance, using open-top chambers supplied with ozone-free or ambient air. We evaluated the differences across treatments in biomass and, using UPLC-MS-MS, leaf secondary metabolites and membrane lipids. Mean [O3] in ambient air was below the levels that induce chronic stress in temperate broadleaved trees, and biomass did not differ across treatments. However, leaf secondary metabolites - including phenolics and a terpenoid - were significantly downregulated in the ambient air treatment. Membrane lipids were present at lower concentrations in older leaves grown in ambient air, suggesting accelerated senescence. Thus, in a tree species with high O3 uptake via high stomatal conductance, current ambient [O3] in Panamanian forests are sufficient to induce chronic effects on leaf chemistry.

  16. Salicylic acid 3-hydroxylase regulates Arabidopsis leaf longevity by mediating salicylic acid catabolism

    PubMed Central

    Zhang, Kewei; Halitschke, Rayko; Yin, Changxi; Liu, Chang-Jun; Gan, Su-Sheng

    2013-01-01

    The plant hormone salicylic acid (SA) plays critical roles in plant defense, stress responses, and senescence. Although SA biosynthesis is well understood, the pathways by which SA is catabolized remain elusive. Here we report the identification and characterization of an SA 3-hydroxylase (S3H) involved in SA catabolism during leaf senescence. S3H is associated with senescence and is inducible by SA and is thus a key part of a negative feedback regulation system of SA levels during senescence. The enzyme converts SA (with a Km of 58.29 µM) to both 2,3-dihydroxybenzoic acid (2,3-DHBA) and 2,5-DHBA in vitro but only 2,3-DHBA in vivo. The s3h knockout mutants fail to produce 2,3-DHBA sugar conjugates, accumulate very high levels of SA and its sugar conjugates, and exhibit a precocious senescence phenotype. Conversely, the gain-of-function lines contain high levels of 2,3-DHBA sugar conjugates and extremely low levels of SA and its sugar conjugates and display a significantly extended leaf longevity. This research reveals an elegant SA catabolic mechanism by which plants regulate SA levels by converting it to 2,3-DHBA to prevent SA overaccumulation. The research also provides strong molecular genetic evidence for an important role of SA in regulating the onset and rate of leaf senescence. PMID:23959884

  17. Salicylic acid 3-hydroxylase regulates Arabidopsis leaf longevity by mediating salicylic acid catabolism.

    PubMed

    Zhang, Kewei; Halitschke, Rayko; Yin, Changxi; Liu, Chang-Jun; Gan, Su-Sheng

    2013-09-03

    The plant hormone salicylic acid (SA) plays critical roles in plant defense, stress responses, and senescence. Although SA biosynthesis is well understood, the pathways by which SA is catabolized remain elusive. Here we report the identification and characterization of an SA 3-hydroxylase (S3H) involved in SA catabolism during leaf senescence. S3H is associated with senescence and is inducible by SA and is thus a key part of a negative feedback regulation system of SA levels during senescence. The enzyme converts SA (with a Km of 58.29 µM) to both 2,3-dihydroxybenzoic acid (2,3-DHBA) and 2,5-DHBA in vitro but only 2,3-DHBA in vivo. The s3h knockout mutants fail to produce 2,3-DHBA sugar conjugates, accumulate very high levels of SA and its sugar conjugates, and exhibit a precocious senescence phenotype. Conversely, the gain-of-function lines contain high levels of 2,3-DHBA sugar conjugates and extremely low levels of SA and its sugar conjugates and display a significantly extended leaf longevity. This research reveals an elegant SA catabolic mechanism by which plants regulate SA levels by converting it to 2,3-DHBA to prevent SA overaccumulation. The research also provides strong molecular genetic evidence for an important role of SA in regulating the onset and rate of leaf senescence.

  18. Premature aging and immune senescence in HIV-infected children

    PubMed Central

    Gianesin, Ketty; Noguera-Julian, Antoni; Zanchetta, Marisa; Del Bianco, Paola; Petrara, Maria Raffaella; Freguja, Riccardo; Rampon, Osvalda; Fortuny, Clàudia; Camós, Mireia; Mozzo, Elena; Giaquinto, Carlo; De Rossi, Anita

    2016-01-01

    Objective: Several pieces of evidence indicate that HIV-infected adults undergo premature aging. The effect of HIV and antiretroviral therapy (ART) exposure on the aging process of HIV-infected children may be more deleterious since their immune system coevolves from birth with HIV. Design: Seventy-one HIV-infected (HIV+), 65 HIV-exposed-uninfected (HEU), and 56 HIV-unexposed-uninfected (HUU) children, all aged 0–5 years, were studied for biological aging and immune senescence. Methods: Telomere length and T-cell receptor rearrangement excision circle levels were quantified in peripheral blood cells by real-time PCR. CD4+ and CD8+ cells were analysed for differentiation, senescence, and activation/exhaustion markers by flow cytometry. Results: Telomere lengths were significantly shorter in HIV+ than in HEU and HUU children (overall, P < 0.001 adjusted for age); HIV+ ART-naive (42%) children had shorter telomere length compared with children on ART (P = 0.003 adjusted for age). T-cell receptor rearrangement excision circle levels and CD8+ recent thymic emigrant cells (CD45RA+CD31+) were significantly lower in the HIV+ than in control groups (overall, P = 0.025 and P = 0.005, respectively). Percentages of senescent (CD28−CD57+), activated (CD38+HLA-DR+), and exhausted (PD1+) CD8+ cells were significantly higher in HIV+ than in HEU and HUU children (P = 0.004, P < 0.001, and P < 0.001, respectively). Within the CD4+ cell subset, the percentage of senescent cells did not differ between HIV+ and controls, but programmed cell death receptor-1 expression was upregulated in the former. Conclusions: HIV-infected children exhibit premature biological aging with accelerated immune senescence, which particularly affects the CD8+ cell subset. HIV infection per se seems to influence the aging process, rather than exposure to ART for prophylaxis or treatment. PMID:26990630

  19. Role of the gynoecium in natural senescence of carnation (Dianthus caryophyllus L.) flowers.

    PubMed

    Shibuya, K; Yoshioka, T; Hashiba, T; Satoh, S

    2000-12-01

    Although the role of the gynoecium in natural senescence of the carnation flower has long been suggested, it has remained a matter of dispute because petal senescence in the cut carnation flower was not delayed by the removal of gynoecium. In this study, the gynoecium was snapped off by hand, in contrast to previous investigations where removal was achieved by forceps or scissors. The removal of the gynoecium by hand prevented the onset of ethylene production and prolonged the vase life of the flower, demonstrating a decisive role of the gynoecium in controlling natural senescence of the carnation flower. Abscisic acid (ABA) and indole-3-acetic acid (IAA), which induced ethylene production and accelerated petal senescence in carnation flowers, did not stimulate ethylene production in the flowers with gynoecia removed (-Gyn flowers). Application of 1-aminocyclopropane-1-carboxylate (ACC), the ethylene precursor, induced substantial ethylene production and petal wilting in the flowers with gynoecia left intact, but was less effective at stimulating ethylene production in the -Gyn flowers and negligible petal in-rolling was observed. Exogenous ethylene induced autocatalytic production of the gas and petal wilting in the -Gyn flowers. These results indicated that ethylene generated in the gynoecium triggers the onset of ethylene production in the petals of carnation during natural senescence.

  20. Plant senescence: Its biochemistry and physiology

    SciTech Connect

    Thomson, W.W.; Nothnagel, E.A.; Huffaker, R.C. )

    1987-01-01

    Considering the early phylogenetic appearance of functional xylem and phloem elements and the range of senescent processes expressed onto genetically, it becomes apparent that such processes are inextricably linked to the evolution, development, reproduction, form, and function of higher plants. The importance of these senescent processes to man are patently obvious since, in one form or another, these processes provide major sources of wood, fiber, and fuel, and are involved in seed development and grain and fruit ripening. To many, the results of senescent processes also have esthetic value including, for example, the grandeur of a Sequoia, the blaze of colors across a desert landscape covered in the spring by ephermal flowers, or the rich tones and panoramic splendor of a deciduous forest in autumn. Senescent processes are widespread, but varied in kind and degree, ranging from whole plants to individual tissues and cells. This symposium was organized primarily around cellular and biochemical aspects of senescence. A major emphasis was the view that senescent processes, and those which developmentally lead to senescence, are highly regulated with an underlying genetic component. Individual papers were processed separately for the database.

  1. Autocrine IL-6 mediates pituitary tumor senescence.

    PubMed

    Sapochnik, Melanie; Haedo, Mariana R; Fuertes, Mariana; Ajler, Pablo; Carrizo, Guillermo; Cervio, Andrés; Sevlever, Gustavo; Stalla, Günter K; Arzt, Eduardo

    2017-01-17

    Cellular senescence is a stable proliferative arrest state. Pituitary adenomas are frequent and mostly benign, but the mechanism for this remains unknown. IL-6 is involved in pituitary tumor progression and is produced by the tumoral cells. In a cell autonomous fashion, IL-6 participates in oncogene-induced senescence in transduced human melanocytes. Here we prove that autocrine IL-6 participates in pituitary tumor senescence. Endogenous IL-6 inhibition in somatotroph MtT/S shRNA stable clones results in decreased SA-β-gal activity and p16INK4a but increased pRb, proliferation and invasion. Nude mice injected with IL-6 silenced clones develop tumors contrary to MtT/S wild type that do not, demonstrating that clones that escape senescence are capable of becoming tumorigenic. When endogenous IL-6 is silenced, cell cultures derived from positive SA-β-gal human tumor samples decrease the expression of the senescence marker. Our results establish that IL-6 contributes to maintain senescence by its autocrine action, providing a natural model of IL-6 mediated benign adenoma senescence.

  2. The Persimmon 9-lipoxygenase Gene DkLOX3 Plays Positive Roles in Both Promoting Senescence and Enhancing Tolerance to Abiotic Stress.

    PubMed

    Hou, Yali; Meng, Kun; Han, Ye; Ban, Qiuyan; Wang, Biao; Suo, Jiangtao; Lv, Jingyi; Rao, Jingping

    2015-01-01

    The lipoxygenase (LOX) pathway is a key regulator for lipid peroxidation, which is crucial for plant senescence and defense pathways. In this study, the transcriptional expression patterns of three persimmon (Diospyros kaki L. 'Fupingjianshi') 9-lipoxygenase genes (DkLOX1, DkLOX3, and DkLOX4) were investigated. DkLOX1 was specifically expressed in fruit, particularly in young fruit, and showed little response to the postharvest environments. DkLOX4 was expressed in all tissues and slightly stimulated by mechanical damage and low temperature. DkLOX3 was expressed mainly in mature fruit, and the expression was extremely high throughout the storage period, apparently up-regulated by mechanical damage and high carbon dioxide treatments. Further functional analysis showed that overexpression of DkLOX3 in tomato (Solanum lycopersicum cv. Micro-Tom) accelerated fruit ripening and softening. This was accompanied by higher malondialdehyde (MDA) content and lycopene accumulation, advanced ethylene release peak and elevated expression of ethylene synthesis genes, including ACS2, ACO1, and ACO3. In addition, DkLOX3 overexpression promoted dark induced transgenic Arabidopsis leaf senescence with more chlorophyll loss, increased electrolyte leakage and MDA content. Furthermore, the functions of DkLOX3 in response to abiotic stresses, including osmotic stress, high salinity and drought were investigated. Arabidopsis DkLOX3 overexpression (DkLOX3-OX) transgenic lines were found to be more tolerant to osmotic stress with higher germination rate and root growth than wild-type. Moreover, DkLOX3-OX Arabidopsis plants also exhibited enhanced resistance to high salinity and drought, with similar decreased O2 (-) and H2O2 accumulation and upregulation of stress-responsive genes expression, including RD22, RD29A, RD29B, and NCED3, except for FRY1, which plays a negative role in stress response. Overall, these results suggested that DkLOX3 plays positive roles both in promoting ripening

  3. The Persimmon 9-lipoxygenase Gene DkLOX3 Plays Positive Roles in Both Promoting Senescence and Enhancing Tolerance to Abiotic Stress

    PubMed Central

    Hou, Yali; Meng, Kun; Han, Ye; Ban, Qiuyan; Wang, Biao; Suo, Jiangtao; Lv, Jingyi; Rao, Jingping

    2015-01-01

    The lipoxygenase (LOX) pathway is a key regulator for lipid peroxidation, which is crucial for plant senescence and defense pathways. In this study, the transcriptional expression patterns of three persimmon (Diospyros kaki L. ‘Fupingjianshi’) 9-lipoxygenase genes (DkLOX1, DkLOX3, and DkLOX4) were investigated. DkLOX1 was specifically expressed in fruit, particularly in young fruit, and showed little response to the postharvest environments. DkLOX4 was expressed in all tissues and slightly stimulated by mechanical damage and low temperature. DkLOX3 was expressed mainly in mature fruit, and the expression was extremely high throughout the storage period, apparently up-regulated by mechanical damage and high carbon dioxide treatments. Further functional analysis showed that overexpression of DkLOX3 in tomato (Solanum lycopersicum cv. Micro-Tom) accelerated fruit ripening and softening. This was accompanied by higher malondialdehyde (MDA) content and lycopene accumulation, advanced ethylene release peak and elevated expression of ethylene synthesis genes, including ACS2, ACO1, and ACO3. In addition, DkLOX3 overexpression promoted dark induced transgenic Arabidopsis leaf senescence with more chlorophyll loss, increased electrolyte leakage and MDA content. Furthermore, the functions of DkLOX3 in response to abiotic stresses, including osmotic stress, high salinity and drought were investigated. Arabidopsis DkLOX3 overexpression (DkLOX3-OX) transgenic lines were found to be more tolerant to osmotic stress with higher germination rate and root growth than wild-type. Moreover, DkLOX3-OX Arabidopsis plants also exhibited enhanced resistance to high salinity and drought, with similar decreased O2- and H2O2 accumulation and upregulation of stress-responsive genes expression, including RD22, RD29A, RD29B, and NCED3, except for FRY1, which plays a negative role in stress response. Overall, these results suggested that DkLOX3 plays positive roles both in promoting ripening

  4. Microwave Accelerated Green Synthesis of Stable Silver Nanoparticles with Eucalyptus globulus Leaf Extract and Their Antibacterial and Antibiofilm Activity on Clinical Isolates

    PubMed Central

    Ali, Khursheed; Ahmed, Bilal; Dwivedi, Sourabh; Saquib, Quaiser; Al-Khedhairy, Abdulaziz A.; Musarrat, Javed

    2015-01-01

    A simple and rapid microwave assisted method of green synthesis of silver nanoparticles (AgNPs) was developed using aqueous leaf extract of Eucalyptus globulus(ELE), and their antibacterial and antibiofilm potential investigated. With this aim, the aqueous solutions of ELE and AgNO3(1 mM) were mixed (1:4 v/v), and microwave irradiated at 2450 Mhz, for 30 sec. The instant color change of the ELE-AgNO3 mixture from pale yellow to dark brown indicated ELE-AgNPs synthesis. The intensity of peak at 428 nm in UV-Vis spectra, due to the surface plasmon resonance of AgNPs, varied with the amount of ELE, AgNO3 concentration, pH and time of incubation. The biosynthesized ELE-AgNPs were characterized by UV-visible spectroscopy, XRD, TEM, SEM-EDX, FTIR and TGA analyses. The size of ELE-AgNPs was determined to be in range of 1.9–4.3 nm and 5-25 nm, with and without microwave treatment, respectively. SEM exhibited the capping of AgNPs with the ELE constituents, and validated by FTIR analysis. The FTIR data revealed the presence of plant organic constituents and metabolites bound to ELE-AgNPs, which contributes for their stability. The antimicrobial activity of ELE-AgNPs was assessed by growth and biofilm inhibition of extended spectrum β-lactamase (ESBL) producing Pseudomonas aeruginosa, Escherichia coli and methicillin-resistant Staphylococcus aureus (MRSA) and methicillin-sensitive Staphylococcus aureus (MSSA) clinical bacterial isolates. The results demonstrated that S. aureus were more sensitive to ELE-AgNPs than E. coli and P. aeruginosa. MRSA exhibited higher sensitive than MSSA, whereas P. aeruginosa were more sensitive than E. coli to ELE-AgNPs treatment. Also, significant (83 ± 3% and 84 ± 5%) biofilm inhibition was observed in case of S. aureus and P. aeruginosa, respectively. The results elucidated environmentally friendly, economical and quick method for production of colloidal bio-functionalized ELE-AgNPs, for effectual clinical applications, as broad spectrum

  5. Microwave Accelerated Green Synthesis of Stable Silver Nanoparticles with Eucalyptus globulus Leaf Extract and Their Antibacterial and Antibiofilm Activity on Clinical Isolates.

    PubMed

    Ali, Khursheed; Ahmed, Bilal; Dwivedi, Sourabh; Saquib, Quaiser; Al-Khedhairy, Abdulaziz A; Musarrat, Javed

    2015-01-01

    A simple and rapid microwave assisted method of green synthesis of silver nanoparticles (AgNPs) was developed using aqueous leaf extract of Eucalyptus globulus(ELE), and their antibacterial and antibiofilm potential investigated. With this aim, the aqueous solutions of ELE and AgNO3(1 mM) were mixed (1:4 v/v), and microwave irradiated at 2450 Mhz, for 30 sec. The instant color change of the ELE-AgNO3 mixture from pale yellow to dark brown indicated ELE-AgNPs synthesis. The intensity of peak at 428 nm in UV-Vis spectra, due to the surface plasmon resonance of AgNPs, varied with the amount of ELE, AgNO3 concentration, pH and time of incubation. The biosynthesized ELE-AgNPs were characterized by UV-visible spectroscopy, XRD, TEM, SEM-EDX, FTIR and TGA analyses. The size of ELE-AgNPs was determined to be in range of 1.9-4.3 nm and 5-25 nm, with and without microwave treatment, respectively. SEM exhibited the capping of AgNPs with the ELE constituents, and validated by FTIR analysis. The FTIR data revealed the presence of plant organic constituents and metabolites bound to ELE-AgNPs, which contributes for their stability. The antimicrobial activity of ELE-AgNPs was assessed by growth and biofilm inhibition of extended spectrum β-lactamase (ESBL) producing Pseudomonas aeruginosa, Escherichia coli and methicillin-resistant Staphylococcus aureus (MRSA) and methicillin-sensitive Staphylococcus aureus (MSSA) clinical bacterial isolates. The results demonstrated that S. aureus were more sensitive to ELE-AgNPs than E. coli and P. aeruginosa. MRSA exhibited higher sensitive than MSSA, whereas P. aeruginosa were more sensitive than E. coli to ELE-AgNPs treatment. Also, significant (83 ± 3% and 84 ± 5%) biofilm inhibition was observed in case of S. aureus and P. aeruginosa, respectively. The results elucidated environmentally friendly, economical and quick method for production of colloidal bio-functionalized ELE-AgNPs, for effectual clinical applications, as broad spectrum

  6. Leaf Development

    PubMed Central

    Tsukaya, Hirokazu

    2002-01-01

    The shoot system is the basic unit of development of seed plants and is composed of a leaf, a stem, and a lateral bud that differentiates into a lateral shoot. The most specialized organ in angiosperms, the flower, can be considered to be part of the same shoot system since floral organs, such as the sepal, petal, stamen, and carpel, are all modified leaves. Scales, bracts, and certain kinds of needle are also derived from leaves. Thus, an understanding of leaf development is critical to an understanding of shoot development. Moreover, leaves play important roles in photosynthesis, respiration and photoperception. Thus, a full understanding of leaves is directly related to a full understanding of seed plants. The details of leaf development remain unclear. The difficulties encountered in studies of leaf development, in particular in dicotyledonous plants such as Arabidopsis thaliana (L.) Henyn., are derived from the complex process of leaf development, during which the division and elongation of cells occur at the same time and in the same region of the leaf primordium (Maksymowych, 1963; Poethig and Sussex, 1985). Thus, we cannot divide the entire process into unit processes in accordance with the tenets of classical anatomy. Genetic approaches in Arabidopsis, a model plant (Meyerowitz and Pruitt, 1985), have provided a powerful tool for studies of mechanisms of leaf development in dicotyledonous plants, and various aspects of the mechanisms that control leaf development have been revealed in recent developmental and molecular genetic studies of Arabidopsis (for reviews, see Tsukaya, 1995 and 1998; Van Lijsebettens and Clarke, 1998; Sinha, 1999; Van Volkenburgh, 1999; Tsukaya, 2000; Byrne et al., 2001; Dengler and Kang, 2001; Dengler and Tsukaya, 2001; Tsukaya, 2001). In this review, we shall examine the information that is currently available about various mechanisms of leaf development in Arabidopsis. Vascular patterning is also an important factor in the

  7. Senescence-inducible cell wall and intracellular purple acid phosphatases: implications for phosphorus remobilization in Hakea prostrata (Proteaceae) and Arabidopsis thaliana (Brassicaceae).

    PubMed

    Shane, Michael W; Stigter, Kyla; Fedosejevs, Eric T; Plaxton, William C

    2014-11-01

    Despite its agronomic importance, the metabolic networks mediating phosphorus (P) remobilization during plant senescence are poorly understood. Highly efficient P remobilization (~85%) from senescing leaves and proteoid roots of harsh hakea (Hakea prostrata), a native 'extremophile' plant of south-western Australia, was linked with striking up-regulation of cell wall-localized and intracellular acid phosphatase (APase) and RNase activities. Non-denaturing PAGE followed by in-gel APase activity staining revealed senescence-inducible 120kDa and 60kDa intracellular APase isoforms, whereas only the 120kDa isoform was detected in corresponding cell wall fractions. Kinetic and immunological properties of the 120kDa and 60kDa APases partially purified from senescing leaves indicated that they are purple acid phosphatases (PAPs). Results obtained with cell wall-targeted hydrolases of harsh hakea were corroborated using Arabidopsis thaliana in which an ~200% increase in cell wall APase activity during leaf senescence was paralleled by accumulation of immunoreactive 55kDa AtPAP26 polypeptides. Senescing leaves of an atpap26 T-DNA insertion mutant displayed a >90% decrease in cell wall APase activity. Previous research established that senescing leaves of atpap26 plants exhibited a similar reduction in intracellular (vacuolar) APase activity, while displaying markedly impaired P remobilization efficiency and delayed senescence. It is hypothesized that up-regulation and dual targeting of PAPs and RNases to the cell wall and vacuolar compartments make a crucial contribution to highly efficient P remobilization that dominates the P metabolism of senescing tissues of harsh hakea and Arabidopsis. To the best of the authors' knowledge, the apparent contribution of cell wall-targeted hydrolases to remobilizing key macronutrients such as P during senescence has not been previously suggested.

  8. Senescence-inducible cell wall and intracellular purple acid phosphatases: implications for phosphorus remobilization in Hakea prostrata (Proteaceae) and Arabidopsis thaliana (Brassicaceae)

    PubMed Central

    Shane, Michael W.; Stigter, Kyla; Fedosejevs, Eric T.; Plaxton, William C.

    2014-01-01

    Despite its agronomic importance, the metabolic networks mediating phosphorus (P) remobilization during plant senescence are poorly understood. Highly efficient P remobilization (~85%) from senescing leaves and proteoid roots of harsh hakea (Hakea prostrata), a native ‘extremophile’ plant of south-western Australia, was linked with striking up-regulation of cell wall-localized and intracellular acid phosphatase (APase) and RNase activities. Non-denaturing PAGE followed by in-gel APase activity staining revealed senescence-inducible 120kDa and 60kDa intracellular APase isoforms, whereas only the 120kDa isoform was detected in corresponding cell wall fractions. Kinetic and immunological properties of the 120kDa and 60kDa APases partially purified from senescing leaves indicated that they are purple acid phosphatases (PAPs). Results obtained with cell wall-targeted hydrolases of harsh hakea were corroborated using Arabidopsis thaliana in which an ~200% increase in cell wall APase activity during leaf senescence was paralleled by accumulation of immunoreactive 55kDa AtPAP26 polypeptides. Senescing leaves of an atpap26 T-DNA insertion mutant displayed a >90% decrease in cell wall APase activity. Previous research established that senescing leaves of atpap26 plants exhibited a similar reduction in intracellular (vacuolar) APase activity, while displaying markedly impaired P remobilization efficiency and delayed senescence. It is hypothesized that up-regulation and dual targeting of PAPs and RNases to the cell wall and vacuolar compartments make a crucial contribution to highly efficient P remobilization that dominates the P metabolism of senescing tissues of harsh hakea and Arabidopsis. To the best of the authors’ knowledge, the apparent contribution of cell wall-targeted hydrolases to remobilizing key macronutrients such as P during senescence has not been previously suggested. PMID:25170100

  9. Regulation of photosynthesis and transcription factor expression by leaf shading and re-illumination in Arabidopsis thaliana leaves.

    PubMed

    Parlitz, Steffi; Kunze, Reinhard; Mueller-Roeber, Bernd; Balazadeh, Salma

    2011-08-15

    Leaf senescence of annual plants is a genetically programmed developmental phase. The onset of leaf senescence is however not exclusively determined by tissue age but is modulated by various environmental factors. Shading of individual attached leaves evokes dark-induced senescence. The initiation and progression of dark-induced senescence depend on the plant and the age of the affected leaf, however. In several plant species dark-induced senescence is fully reversible upon re-illumination and the leaves can regreen, but the regreening ability depends on the duration of dark incubation. We studied the ability of Arabidopsis thaliana leaves to regreen after dark-incubation with the aim to identify transcription factors (TFs) that are involved in the regulation of early dark-induced senescence and regreening. Two days shading of individual attached leaves triggers the transition into a pre-senescence state from which the leaves can largely recover. Longer periods of darkness result in irreversible senescence. Large scale qRT-PCR analysis of 1872 TF genes revealed that 649 of them are regulated in leaves during normal development, upon shading or re-illumination. Leaf shading triggered upregulation of 150 TF genes, some of which are involved in controlling senescence. Of those, 39 TF genes were upregulated after two days in the dark and regained pre-shading expression level after two days of re-illumination. Furthermore, a larger number of 422 TF genes were down regulated upon shading. In TF gene clusters with different expression patterns certain TF families are over-represented.

  10. Rapamycin suppresses brain aging in senescence-accelerated OXYS rats.

    PubMed

    Kolosova, Nataliya G; Vitovtov, Anton O; Muraleva, Natalia A; Akulov, Andrey E; Stefanova, Natalia A; Blagosklonny, Mikhail V

    2013-06-01

    Cellular and organismal aging are driven in part by the MTOR (mechanistic target of rapamycin) pathway and rapamycin extends life span inC elegans, Drosophila and mice. Herein, we investigated effects of rapamycin on brain aging in OXYS rats. Previously we found, in OXYS rats, an early development of age-associated pathological phenotypes similar to several geriatric disorders in humans, including cerebral dysfunctions. Behavioral alterations as well as learning and memory deficits develop by 3 months. Here we show that rapamycin treatment (0.1 or 0.5 mg/kg as a food mixture daily from the age of 1.5 to 3.5 months) decreased anxiety and improved locomotor and exploratory behavior in OXYS rats. In untreated OXYS rats, MRI revealed an increase of the area of hippocampus, substantial hydrocephalus and 2-fold increased area of the lateral ventricles. Rapamycin treatment prevented these abnormalities, erasing the difference between OXYS and Wister rats (used as control). All untreated OXYS rats showed signs of neurodegeneration, manifested by loci of demyelination. Rapamycin decreased the percentage of animals with demyelination and the number of loci. Levels of Tau and phospho-Tau (T181) were increased in OXYS rats (compared with Wistar). Rapamycin significantly decreased Tau and inhibited its phosphorylation in the hippocampus of OXYS and Wistar rats. Importantly, rapamycin treatment caused a compensatory increase in levels of S6 and correspondingly levels of phospo-S6 in the frontal cortex, indicating that some downstream events were compensatory preserved, explaining the lack of toxicity. We conclude that rapamycin in low chronic doses can suppress brain aging.

  11. Effects of Nitrogen Application Rate and Leaf Age on the Distribution Pattern of Leaf SPAD Readings in the Rice Canopy

    PubMed Central

    Yang, Jingping; Wang, Hua; Zou, Junliang; He, Junjun

    2014-01-01

    A Soil-Plant Analysis Development (SPAD) chlorophyll meter can be used as a simple tool for evaluating N concentration of the leaf and investigating the combined effects of nitrogen rate and leaf age on N distribution. We conducted experiments in a paddy field over two consecutive years (2008–2009) using rice plants treated with six different N application levels. N distribution pattern was determined by SPAD readings based on the temporal dynamics of N concentrations in individual leaves. At 62 days after transplantation (DAT) in 2008 and DAT 60 in 2009, leaf SPAD readings increased from the upper to lower in the rice canopy that received N levels of 150 to 375 kg ha−1The differences in SPAD readings between the upper and lower leaf were larger under higher N application rates. However, as plants grew, this atypical distribution of SPAD readings in canopy leaf quickly reversed to the general order. In addition, temporal dynamics of the leaf SPAD readings (N concentrations) were fitted to a piecewise function. In our model, changes in leaf SPAD readings were divided into three stages: growth, functioning, and senescence periods. The leaf growth period lasted approximately 6 days, and cumulative growing days were not affected by N application rates. The leaf functioning period was represented with a relatively stable SPAD reading related to N application rate, and cumulative growing days were extended with increasing N application rates. A quadratic equation was utilized to describe the relationship between SPAD readings and leaf age during the leaf senescence period. The rate of decrease in SPAD readings increased with the age of leaves, but the rate was slowed by N application. As leaves in the lower canopy were physiologically older than leaves in the upper canopy, the rate of decrease in SPAD readings was faster in the lower leaves. PMID:24520386

  12. Cellular and subcellular localization of endogenous nitric oxide in young and senescent pea plants.

    PubMed

    Corpas, Francisco J; Barroso, Juan B; Carreras, Alfonso; Quirós, Miguel; León, Ana M; Romero-Puertas, María C; Esteban, Francisco J; Valderrama, Raquel; Palma, José M; Sandalio, Luisa M; Gómez, Manuel; del Río, Luis A

    2004-09-01

    The cellular and subcellular localization of endogenous nitric oxide (NO.) in leaves from young and senescent pea (Pisum sativum) plants was studied. Confocal laser scanning microscopy analysis of pea leaf sections with the fluorescent probe 4,5-diaminofluorescein diacetate revealed that endogenous NO. was mainly present in vascular tissues (xylem and phloem). Green fluorescence spots were also detected in the epidermal cells, palisade and spongy mesophyll cells, and guard cells. In senescent leaves, NO. generation was clearly reduced in the vascular tissues. At the subcellular level, by electron paramagnetic resonance spectroscopy with the spin trap Fe(MGD)(2) and fluorometric analysis with 4,5-diaminofluorescein diacetate, NO. was found to be an endogenous metabolite of peroxisomes. The characteristic three-line electron paramagnetic resonance spectrum of NO., with g = 2.05 and a(N) = 12.8 G, was detected in peroxisomes. By fluorometry, NO. was also found in these organelles, and the level measured of NO. was linearly dependent on the amount of peroxisomal protein. The enzymatic production of NO. from l-Arg (nitric oxide synthase [NOS]-like activity) was measured by ozone chemiluminiscence. The specific activity of peroxisomal NOS was 4.9 nmol NO. mg(-1) protein min(-1); was strictly dependent on NADPH, calmodulin, and BH(4); and required calcium. In senescent pea leaves, the NOS-like activity of peroxisomes was down-regulated by 72%. It is proposed that peroxisomal NO. could be involved in the process of senescence of pea leaves.

  13. Differential impact of lipoxygenase 2 and jasmonates on natural and stress-induced senescence in Arabidopsis.

    PubMed

    Seltmann, Martin A; Stingl, Nadja E; Lautenschlaeger, Jens K; Krischke, Markus; Mueller, Martin J; Berger, Susanne

    2010-04-01

    Jasmonic acid and related oxylipins are controversially discussed to be involved in regulating the initiation and progression of leaf senescence. To this end, we analyzed profiles of free and esterified oxylipins during natural senescence and upon induction of senescence-like phenotypes by dark treatment and flotation on sorbitol in Arabidopsis (Arabidopsis thaliana). Jasmonic acid and free 12-oxo-phytodienoic acid increased during all three processes, with the strongest increase of jasmonic acid after dark treatment. Arabidopside content only increased considerably in response to sorbitol treatment. Monogalactosyldiacylglycerols and digalactosyldiacylglycerols decreased during these treatments and aging. Lipoxygenase 2-RNA interference (RNAi) plants were generated, which constitutively produce jasmonic acid and 12-oxo-phytodienoic acid but do not exhibit accumulation during natural senescence or upon stress treatment. Chlorophyll loss during aging and upon dark incubation was not altered, suggesting that these oxylipins are not involved in these processes. In contrast, lipoxygenase 2-RNAi lines and the allene oxid synthase-deficient mutant dde2 were less sensitive to sorbitol than the wild type, indicating that oxylipins contribute to the response to sorbitol stress.

  14. 2, 3, 7, 8-Tetrachlorodibenzo-P-dioxin (TCDD) induces premature senescence in human and rodent neuronal cells via ROS-dependent mechanisms.

    PubMed

    Wan, Chunhua; Liu, Jiao; Nie, Xiaoke; Zhao, Jianya; Zhou, Songlin; Duan, Zhiqing; Tang, Cuiying; Liang, Lingwei; Xu, Guangfei

    2014-01-01

    The widespread environmental pollutant 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) is a potent toxicant that causes significant neurotoxicity. However, the biological events that participate in this process remain largely elusive. In the present study, we demonstrated that TCDD exposure triggered apparent premature senescence in rat pheochromocytoma (PC12) and human neuroblastoma SH-SY5Y cells. Senescence-associated β-galactosidase (SA-β-Gal) assay revealed that TCDD induced senescence in PC12 neuronal cells at doses as low as 10 nM. TCDD led to F-actin reorganization and the appearance of an alternative senescence marker, γ-H2AX foci, both of which are important features of cellular senescence. In addition, TCDD exposure altered the expression of senescence marker proteins, such as p16, p21 and p-Rb, in both dose- and time-dependent manners. Furthermore, we demonstrated that TCDD promotes mitochondrial dysfunction and the accumulation of cellular reactive oxygen species (ROS) in PC12 cells, leading to the activation of signaling pathways that are involved in ROS metabolism and senescence. TCDD-induced ROS generation promoted significant oxidative DNA damage and lipid peroxidation. Notably, treatment with the ROS scavenger N-acetylcysteine (NAC) markedly attenuated TCDD-induced ROS production, cellular oxidative damage and neuronal senescence. Moreover, we found that TCDD induced a similar ROS-mediated senescence response in human neuroblastoma SH-SY5Y cells. In sum, these results demonstrate for the first time that TCDD induces premature senescence in neuronal cells by promoting intracellular ROS production, supporting the idea that accelerating the onset of ne