Sample records for accelerated method degradation

  1. Statistical Bayesian method for reliability evaluation based on ADT data

    NASA Astrophysics Data System (ADS)

    Lu, Dawei; Wang, Lizhi; Sun, Yusheng; Wang, Xiaohong

    2018-05-01

    Accelerated degradation testing (ADT) is frequently conducted in the laboratory to predict the products’ reliability under normal operating conditions. Two kinds of methods, degradation path models and stochastic process models, are utilized to analyze degradation data and the latter one is the most popular method. However, some limitations like imprecise solution process and estimation result of degradation ratio still exist, which may affect the accuracy of the acceleration model and the extrapolation value. Moreover, the conducted solution of this problem, Bayesian method, lose key information when unifying the degradation data. In this paper, a new data processing and parameter inference method based on Bayesian method is proposed to handle degradation data and solve the problems above. First, Wiener process and acceleration model is chosen; Second, the initial values of degradation model and parameters of prior and posterior distribution under each level is calculated with updating and iteration of estimation values; Third, the lifetime and reliability values are estimated on the basis of the estimation parameters; Finally, a case study is provided to demonstrate the validity of the proposed method. The results illustrate that the proposed method is quite effective and accuracy in estimating the lifetime and reliability of a product.

  2. A General Accelerated Degradation Model Based on the Wiener Process.

    PubMed

    Liu, Le; Li, Xiaoyang; Sun, Fuqiang; Wang, Ning

    2016-12-06

    Accelerated degradation testing (ADT) is an efficient tool to conduct material service reliability and safety evaluations by analyzing performance degradation data. Traditional stochastic process models are mainly for linear or linearization degradation paths. However, those methods are not applicable for the situations where the degradation processes cannot be linearized. Hence, in this paper, a general ADT model based on the Wiener process is proposed to solve the problem for accelerated degradation data analysis. The general model can consider the unit-to-unit variation and temporal variation of the degradation process, and is suitable for both linear and nonlinear ADT analyses with single or multiple acceleration variables. The statistical inference is given to estimate the unknown parameters in both constant stress and step stress ADT. The simulation example and two real applications demonstrate that the proposed method can yield reliable lifetime evaluation results compared with the existing linear and time-scale transformation Wiener processes in both linear and nonlinear ADT analyses.

  3. A General Accelerated Degradation Model Based on the Wiener Process

    PubMed Central

    Liu, Le; Li, Xiaoyang; Sun, Fuqiang; Wang, Ning

    2016-01-01

    Accelerated degradation testing (ADT) is an efficient tool to conduct material service reliability and safety evaluations by analyzing performance degradation data. Traditional stochastic process models are mainly for linear or linearization degradation paths. However, those methods are not applicable for the situations where the degradation processes cannot be linearized. Hence, in this paper, a general ADT model based on the Wiener process is proposed to solve the problem for accelerated degradation data analysis. The general model can consider the unit-to-unit variation and temporal variation of the degradation process, and is suitable for both linear and nonlinear ADT analyses with single or multiple acceleration variables. The statistical inference is given to estimate the unknown parameters in both constant stress and step stress ADT. The simulation example and two real applications demonstrate that the proposed method can yield reliable lifetime evaluation results compared with the existing linear and time-scale transformation Wiener processes in both linear and nonlinear ADT analyses. PMID:28774107

  4. A new approach to accelerated drug-excipient compatibility testing.

    PubMed

    Sims, Jonathan L; Carreira, Judith A; Carrier, Daniel J; Crabtree, Simon R; Easton, Lynne; Hancock, Stephen A; Simcox, Carol E

    2003-01-01

    The purpose of this study was to develop a method of qualitatively predicting the most likely degradants in a formulation or probing specific drug-excipient interactions in a significantly shorter time frame than the typical 1 month storage testing. In the example studied, accelerated storage testing of a solid dosage form at 50 degrees C, the drug substance SB-243213-A degraded via the formation of two oxidative impurities. These impurities reached a level of 1% PAR after 3 months. Various stressing methods were examined to try to recreate this degradation and in doing so provide a practical and reliable method capable of predicting drug-excipient interactions. The technique developed was able to mimic the 1-month's accelerated degradation in just 1 hr. The method was suitable for automated analysis, capable of multisample stressing, and ideal for use in drug-excipient compatibility screening.

  5. Modelling accelerated degradation data using Wiener diffusion with a time scale transformation.

    PubMed

    Whitmore, G A; Schenkelberg, F

    1997-01-01

    Engineering degradation tests allow industry to assess the potential life span of long-life products that do not fail readily under accelerated conditions in life tests. A general statistical model is presented here for performance degradation of an item of equipment. The degradation process in the model is taken to be a Wiener diffusion process with a time scale transformation. The model incorporates Arrhenius extrapolation for high stress testing. The lifetime of an item is defined as the time until performance deteriorates to a specified failure threshold. The model can be used to predict the lifetime of an item or the extent of degradation of an item at a specified future time. Inference methods for the model parameters, based on accelerated degradation test data, are presented. The model and inference methods are illustrated with a case application involving self-regulating heating cables. The paper also discusses a number of practical issues encountered in applications.

  6. Lifetime Prediction for Degradation of Solar Mirrors using Step-Stress Accelerated Testing (Presentation)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, J.; Elmore, R.; Kennedy, C.

    This research is to illustrate the use of statistical inference techniques in order to quantify the uncertainty surrounding reliability estimates in a step-stress accelerated degradation testing (SSADT) scenario. SSADT can be used when a researcher is faced with a resource-constrained environment, e.g., limits on chamber time or on the number of units to test. We apply the SSADT methodology to a degradation experiment involving concentrated solar power (CSP) mirrors and compare the results to a more traditional multiple accelerated testing paradigm. Specifically, our work includes: (1) designing a durability testing plan for solar mirrors (3M's new improved silvered acrylic "Solarmore » Reflector Film (SFM) 1100") through the ultra-accelerated weathering system (UAWS), (2) defining degradation paths of optical performance based on the SSADT model which is accelerated by high UV-radiant exposure, and (3) developing service lifetime prediction models for solar mirrors using advanced statistical inference. We use the method of least squares to estimate the model parameters and this serves as the basis for the statistical inference in SSADT. Several quantities of interest can be estimated from this procedure, e.g., mean-time-to-failure (MTTF) and warranty time. The methods allow for the estimation of quantities that may be of interest to the domain scientists.« less

  7. Accelerated Aging Experiments for Capacitor Health Monitoring and Prognostics

    NASA Technical Reports Server (NTRS)

    Kulkarni, Chetan S.; Celaya, Jose Ramon; Biswas, Gautam; Goebel, Kai

    2012-01-01

    This paper discusses experimental setups for health monitoring and prognostics of electrolytic capacitors under nominal operation and accelerated aging conditions. Electrolytic capacitors have higher failure rates than other components in electronic systems like power drives, power converters etc. Our current work focuses on developing first-principles-based degradation models for electrolytic capacitors under varying electrical and thermal stress conditions. Prognostics and health management for electronic systems aims to predict the onset of faults, study causes for system degradation, and accurately compute remaining useful life. Accelerated life test methods are often used in prognostics research as a way to model multiple causes and assess the effects of the degradation process through time. It also allows for the identification and study of different failure mechanisms and their relationships under different operating conditions. Experiments are designed for aging of the capacitors such that the degradation pattern induced by the aging can be monitored and analyzed. Experimental setups and data collection methods are presented to demonstrate this approach.

  8. Stochastic Modeling and Analysis of Multiple Nonlinear Accelerated Degradation Processes through Information Fusion

    PubMed Central

    Sun, Fuqiang; Liu, Le; Li, Xiaoyang; Liao, Haitao

    2016-01-01

    Accelerated degradation testing (ADT) is an efficient technique for evaluating the lifetime of a highly reliable product whose underlying failure process may be traced by the degradation of the product’s performance parameters with time. However, most research on ADT mainly focuses on a single performance parameter. In reality, the performance of a modern product is usually characterized by multiple parameters, and the degradation paths are usually nonlinear. To address such problems, this paper develops a new s-dependent nonlinear ADT model for products with multiple performance parameters using a general Wiener process and copulas. The general Wiener process models the nonlinear ADT data, and the dependency among different degradation measures is analyzed using the copula method. An engineering case study on a tuner’s ADT data is conducted to demonstrate the effectiveness of the proposed method. The results illustrate that the proposed method is quite effective in estimating the lifetime of a product with s-dependent performance parameters. PMID:27509499

  9. Stochastic Modeling and Analysis of Multiple Nonlinear Accelerated Degradation Processes through Information Fusion.

    PubMed

    Sun, Fuqiang; Liu, Le; Li, Xiaoyang; Liao, Haitao

    2016-08-06

    Accelerated degradation testing (ADT) is an efficient technique for evaluating the lifetime of a highly reliable product whose underlying failure process may be traced by the degradation of the product's performance parameters with time. However, most research on ADT mainly focuses on a single performance parameter. In reality, the performance of a modern product is usually characterized by multiple parameters, and the degradation paths are usually nonlinear. To address such problems, this paper develops a new s-dependent nonlinear ADT model for products with multiple performance parameters using a general Wiener process and copulas. The general Wiener process models the nonlinear ADT data, and the dependency among different degradation measures is analyzed using the copula method. An engineering case study on a tuner's ADT data is conducted to demonstrate the effectiveness of the proposed method. The results illustrate that the proposed method is quite effective in estimating the lifetime of a product with s-dependent performance parameters.

  10. The cell-in-series method: A technique for accelerated electrode degradation in redox flow batteries

    DOE PAGES

    Pezeshki, Alan M.; Sacci, Robert L.; Veith, Gabriel M.; ...

    2015-11-21

    Here, we demonstrate a novel method to accelerate electrode degradation in redox flow batteries and apply this method to the all-vanadium chemistry. Electrode performance degradation occurred seven times faster than in a typical cycling experiment, enabling rapid evaluation of materials. This method also enables the steady-state study of electrodes. In this manner, it is possible to delineate whether specific operating conditions induce performance degradation; we found that both aggressively charging and discharging result in performance loss. Post-mortem x-ray photoelectron spectroscopy of the degraded electrodes was used to resolve the effects of state of charge (SoC) and current on the electrodemore » surface chemistry. For the electrode material tested in this work, we found evidence that a loss of oxygen content on the negative electrode cannot explain decreased cell performance. Furthermore, the effects of decreased electrode and membrane performance on capacity fade in a typical cycling battery were decoupled from crossover; electrode and membrane performance decay were responsible for a 22% fade in capacity, while crossover caused a 12% fade.« less

  11. Accelerated aging: prediction of chemical stability of pharmaceuticals.

    PubMed

    Waterman, Kenneth C; Adami, Roger C

    2005-04-11

    Methods of rapidly and accurately assessing the chemical stability of pharmaceutical dosage forms are reviewed with respect to the major degradation mechanisms generally observed in pharmaceutical development. Methods are discussed, with the appropriate caveats, for accelerated aging of liquid and solid dosage forms, including small and large molecule active pharmaceutical ingredients. In particular, this review covers general thermal methods, as well as accelerated aging methods appropriate to oxidation, hydrolysis, reaction with reactive excipient impurities, photolysis and protein denaturation.

  12. Limitations of predicting in vivo biostability of multiphase polyurethane elastomers using temperature-accelerated degradation testing.

    PubMed

    Padsalgikar, Ajay; Cosgriff-Hernandez, Elizabeth; Gallagher, Genevieve; Touchet, Tyler; Iacob, Ciprian; Mellin, Lisa; Norlin-Weissenrieder, Anna; Runt, James

    2015-01-01

    Polyurethane biostability has been the subject of intense research since the failure of polyether polyurethane pacemaker leads in the 1980s. Accelerated in vitro testing has been used to isolate degradation mechanisms and predict clinical performance of biomaterials. However, validation that in vitro methods reproduce in vivo degradation is critical to the selection of appropriate tests. High temperature has been proposed as a method to accelerate degradation. However, correlation of such data to in vivo performance is poor for polyurethanes due to the impact of temperature on microstructure. In this study, we characterize the lack of correlation between hydrolytic degradation predicted using a high temperature aging model of a polydimethylsiloxane-based polyurethane and its in vivo performance. Most notably, the predicted molecular weight and tensile property changes from the accelerated aging study did not correlate with clinical explants subjected to human biological stresses in real time through 5 years. Further, DMTA, ATR-FTIR, and SAXS experiments on samples aged for 2 weeks in PBS indicated greater phase separation in samples aged at 85°C compared to those aged at 37°C and unaged controls. These results confirm that microstructural changes occur at high temperatures that do not occur at in vivo temperatures. In addition, water absorption studies demonstrated that water saturation levels increased significantly with temperature. This study highlights that the multiphase morphology of polyurethane precludes the use of temperature accelerated biodegradation for the prediction of clinical performance and provides critical information in designing appropriate in vitro tests for this class of materials. © 2014 Wiley Periodicals, Inc.

  13. A scientific and statistical analysis of accelerated aging for pharmaceuticals. Part 1: accuracy of fitting methods.

    PubMed

    Waterman, Kenneth C; Swanson, Jon T; Lippold, Blake L

    2014-10-01

    Three competing mathematical fitting models (a point-by-point estimation method, a linear fit method, and an isoconversion method) of chemical stability (related substance growth) when using high temperature data to predict room temperature shelf-life were employed in a detailed comparison. In each case, complex degradant formation behavior was analyzed by both exponential and linear forms of the Arrhenius equation. A hypothetical reaction was used where a drug (A) degrades to a primary degradant (B), which in turn degrades to a secondary degradation product (C). Calculated data with the fitting models were compared with the projected room-temperature shelf-lives of B and C, using one to four time points (in addition to the origin) for each of three accelerated temperatures. Isoconversion methods were found to provide more accurate estimates of shelf-life at ambient conditions. Of the methods for estimating isoconversion, bracketing the specification limit at each condition produced the best estimates and was considerably more accurate than when extrapolation was required. Good estimates of isoconversion produced similar shelf-life estimates fitting either linear or nonlinear forms of the Arrhenius equation, whereas poor isoconversion estimates favored one method or the other depending on which condition was most in error. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.

  14. A reproducible accelerated in vitro release testing method for PLGA microspheres.

    PubMed

    Shen, Jie; Lee, Kyulim; Choi, Stephanie; Qu, Wen; Wang, Yan; Burgess, Diane J

    2016-02-10

    The objective of the present study was to develop a discriminatory and reproducible accelerated in vitro release method for long-acting PLGA microspheres with inner structure/porosity differences. Risperidone was chosen as a model drug. Qualitatively and quantitatively equivalent PLGA microspheres with different inner structure/porosity were obtained using different manufacturing processes. Physicochemical properties as well as degradation profiles of the prepared microspheres were investigated. Furthermore, in vitro release testing of the prepared risperidone microspheres was performed using the most common in vitro release methods (i.e., sample-and-separate and flow through) for this type of product. The obtained compositionally equivalent risperidone microspheres had similar drug loading but different inner structure/porosity. When microsphere particle size appeared similar, porous risperidone microspheres showed faster microsphere degradation and drug release compared with less porous microspheres. Both in vitro release methods investigated were able to differentiate risperidone microsphere formulations with differences in porosity under real-time (37 °C) and accelerated (45 °C) testing conditions. Notably, only the accelerated USP apparatus 4 method showed good reproducibility for highly porous risperidone microspheres. These results indicated that the accelerated USP apparatus 4 method is an appropriate fast quality control tool for long-acting PLGA microspheres (even with porous structures). Copyright © 2015 Elsevier B.V. All rights reserved.

  15. A review of polymer electrolyte membrane fuel cell durability test protocols

    NASA Astrophysics Data System (ADS)

    Yuan, Xiao-Zi; Li, Hui; Zhang, Shengsheng; Martin, Jonathan; Wang, Haijiang

    Durability is one of the major barriers to polymer electrolyte membrane fuel cells (PEMFCs) being accepted as a commercially viable product. It is therefore important to understand their degradation phenomena and analyze degradation mechanisms from the component level to the cell and stack level so that novel component materials can be developed and novel designs for cells/stacks can be achieved to mitigate insufficient fuel cell durability. It is generally impractical and costly to operate a fuel cell under its normal conditions for several thousand hours, so accelerated test methods are preferred to facilitate rapid learning about key durability issues. Based on the US Department of Energy (DOE) and US Fuel Cell Council (USFCC) accelerated test protocols, as well as degradation tests performed by researchers and published in the literature, we review degradation test protocols at both component and cell/stack levels (driving cycles), aiming to gather the available information on accelerated test methods and degradation test protocols for PEMFCs, and thereby provide practitioners with a useful toolbox to study durability issues. These protocols help prevent the prolonged test periods and high costs associated with real lifetime tests, assess the performance and durability of PEMFC components, and ensure that the generated data can be compared.

  16. The application of electrochemistry to pharmaceutical stability testing--comparison with in silico prediction and chemical forced degradation approaches.

    PubMed

    Torres, Susana; Brown, Roland; Szucs, Roman; Hawkins, Joel M; Zelesky, Todd; Scrivens, Garry; Pettman, Alan; Taylor, Mark R

    2015-11-10

    The aim of this study was to evaluate the use of electrochemistry to generate oxidative degradation products of a model pharmaceutical compound. The compound was oxidized at different potentials using an electrochemical flow-cell fitted with a glassy carbon working electrode, a Pd/H2 reference electrode and a titanium auxiliary electrode. The oxidative products formed were identified and structurally characterized by LC-ESI-MS/MS using a high resolution Q-TOF mass spectrometer. Results from electrochemical oxidation using electrolytes of different pH were compared to those from chemical oxidation and from accelerated stability studies. Additionally, oxidative degradation products predicted using an in silico commercially available software were compared to those obtained from the various experimental methods. The electrochemical approach proved to be useful as an oxidative stress test as all of the final oxidation products observed under accelerated stability studies could be generated; previously reported reactive intermediate species were not observed most likely because the electrochemical mechanism differs from the oxidative pathway followed under accelerated stability conditions. In comparison to chemical degradation tests electrochemical degradation has the advantage of being much faster and does not require the use of strong oxidizing agents. Moreover, it enables the study of different operating parameters in short periods of time and optimisation of the reaction conditions (pH and applied potential) to achieve different oxidative products mixtures. This technique may prove useful as a stress test condition for the generation of oxidative degradation products and may help accelerate structure elucidation and development of stability indicating analytical methods. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. SMART empirical approaches for predicting field performance of PV modules from results of reliability tests

    NASA Astrophysics Data System (ADS)

    Hardikar, Kedar Y.; Liu, Bill J. J.; Bheemreddy, Venkata

    2016-09-01

    Gaining an understanding of degradation mechanisms and their characterization are critical in developing relevant accelerated tests to ensure PV module performance warranty over a typical lifetime of 25 years. As newer technologies are adapted for PV, including new PV cell technologies, new packaging materials, and newer product designs, the availability of field data over extended periods of time for product performance assessment cannot be expected within the typical timeframe for business decisions. In this work, to enable product design decisions and product performance assessment for PV modules utilizing newer technologies, Simulation and Mechanism based Accelerated Reliability Testing (SMART) methodology and empirical approaches to predict field performance from accelerated test results are presented. The method is demonstrated for field life assessment of flexible PV modules based on degradation mechanisms observed in two accelerated tests, namely, Damp Heat and Thermal Cycling. The method is based on design of accelerated testing scheme with the intent to develop relevant acceleration factor models. The acceleration factor model is validated by extensive reliability testing under different conditions going beyond the established certification standards. Once the acceleration factor model is validated for the test matrix a modeling scheme is developed to predict field performance from results of accelerated testing for particular failure modes of interest. Further refinement of the model can continue as more field data becomes available. While the demonstration of the method in this work is for thin film flexible PV modules, the framework and methodology can be adapted to other PV products.

  18. Challenges of accelerated aging techniques for elastomer lifetime predictions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gillen, Kenneth T.; Bernstein, R.; Celina, M.

    Elastomers are often degraded when exposed to air or high humidity for extended times (years to decades). Lifetime estimates normally involve extrapolating accelerated aging results made at higher than ambient environments. Several potential problems associated with such studies are reviewed, and experimental and theoretical methods to address them are provided. The importance of verifying time–temperature superposition of degradation data is emphasized as evidence that the overall nature of the degradation process remains unchanged versus acceleration temperature. The confounding effects that occur when diffusion-limited oxidation (DLO) contributes under accelerated conditions are described, and it is shown that the DLO magnitude canmore » be modeled by measurements or estimates of the oxygen permeability coefficient (P Ox) and oxygen consumption rate (Φ). P Ox and Φ measurements can be influenced by DLO, and it is demonstrated how confident values can be derived. In addition, several experimental profiling techniques that screen for DLO effects are discussed. Values of Φ taken from high temperature to temperatures approaching ambient can be used to more confidently extrapolate accelerated aging results for air-aged materials, and many studies now show that Arrhenius extrapolations bend to lower activation energies as aging temperatures are lowered. Furthermore, best approaches for accelerated aging extrapolations of humidity-exposed materials are also offered.« less

  19. Challenges of accelerated aging techniques for elastomer lifetime predictions

    DOE PAGES

    Gillen, Kenneth T.; Bernstein, R.; Celina, M.

    2015-03-01

    Elastomers are often degraded when exposed to air or high humidity for extended times (years to decades). Lifetime estimates normally involve extrapolating accelerated aging results made at higher than ambient environments. Several potential problems associated with such studies are reviewed, and experimental and theoretical methods to address them are provided. The importance of verifying time–temperature superposition of degradation data is emphasized as evidence that the overall nature of the degradation process remains unchanged versus acceleration temperature. The confounding effects that occur when diffusion-limited oxidation (DLO) contributes under accelerated conditions are described, and it is shown that the DLO magnitude canmore » be modeled by measurements or estimates of the oxygen permeability coefficient (P Ox) and oxygen consumption rate (Φ). P Ox and Φ measurements can be influenced by DLO, and it is demonstrated how confident values can be derived. In addition, several experimental profiling techniques that screen for DLO effects are discussed. Values of Φ taken from high temperature to temperatures approaching ambient can be used to more confidently extrapolate accelerated aging results for air-aged materials, and many studies now show that Arrhenius extrapolations bend to lower activation energies as aging temperatures are lowered. Furthermore, best approaches for accelerated aging extrapolations of humidity-exposed materials are also offered.« less

  20. Coupling and decoupling of the accelerating units for pulsed synchronous linear accelerator

    NASA Astrophysics Data System (ADS)

    Shen, Yi; Liu, Yi; Ye, Mao; Zhang, Huang; Wang, Wei; Xia, Liansheng; Wang, Zhiwen; Yang, Chao; Shi, Jinshui; Zhang, Linwen; Deng, Jianjun

    2017-12-01

    A pulsed synchronous linear accelerator (PSLA), based on the solid-state pulse forming line, photoconductive semiconductor switch, and high gradient insulator technologies, is a novel linear accelerator. During the prototype PSLA commissioning, the energy gain of proton beams was found to be much lower than expected. In this paper, the degradation of the energy gain is explained by the circuit and cavity coupling effect of the accelerating units. The coupling effects of accelerating units are studied, and the circuit topologies of these two kinds of coupling effects are presented. Two methods utilizing inductance and membrane isolations, respectively, are proposed to reduce the circuit coupling effects. The effectiveness of the membrane isolation method is also supported by simulations. The decoupling efficiency of the metal drift tube is also researched. We carried out the experiments on circuit decoupling of the multiple accelerating cavity. The result shows that both circuit decoupling methods could increase the normalized voltage.

  1. Lifetime prediction and reliability estimation methodology for Stirling-type pulse tube refrigerators by gaseous contamination accelerated degradation testing

    NASA Astrophysics Data System (ADS)

    Wan, Fubin; Tan, Yuanyuan; Jiang, Zhenhua; Chen, Xun; Wu, Yinong; Zhao, Peng

    2017-12-01

    Lifetime and reliability are the two performance parameters of premium importance for modern space Stirling-type pulse tube refrigerators (SPTRs), which are required to operate in excess of 10 years. Demonstration of these parameters provides a significant challenge. This paper proposes a lifetime prediction and reliability estimation method that utilizes accelerated degradation testing (ADT) for SPTRs related to gaseous contamination failure. The method was experimentally validated via three groups of gaseous contamination ADT. First, the performance degradation model based on mechanism of contamination failure and material outgassing characteristics of SPTRs was established. Next, a preliminary test was performed to determine whether the mechanism of contamination failure of the SPTRs during ADT is consistent with normal life testing. Subsequently, the experimental program of ADT was designed for SPTRs. Then, three groups of gaseous contamination ADT were performed at elevated ambient temperatures of 40 °C, 50 °C, and 60 °C, respectively and the estimated lifetimes of the SPTRs under normal condition were obtained through acceleration model (Arrhenius model). The results show good fitting of the degradation model with the experimental data. Finally, we obtained the reliability estimation of SPTRs through using the Weibull distribution. The proposed novel methodology enables us to take less than one year time to estimate the reliability of the SPTRs designed for more than 10 years.

  2. Abrasive blast cleaning method for the renewal of worn-out acceleration tubes

    NASA Astrophysics Data System (ADS)

    Bartha, L.; Koltay, E.; Mórik, Gy.

    1996-04-01

    The degradation of the electrical properties of acceleration tubes emerging with performance time is known to be assigned mainly to impurities and surface breakdown tracks appearing on the inner surface of the insulators. Consequently, a radical treatment for removing the surface layer may result in a renewal of the tube. An abrasive blast cleaning procedure has been used on a set of worn-out acceleration tube units. The cleaned tube exhibited its original electrical characteristics and it has been used for more than 4000 h of operation up to the maximum rated voltage of our 5 MV electrostatic accelerator without any observable degradation. XRF and PIXE analytical measurements performed on used and blast-treated insulators as well as on electrode and pump oil samples reveal the contribution of elementary processes in the acceleration tube to the ageing of the tube and indicate the effectness of the blasting process used for the re-establishment of clean surface conditions.

  3. High-power UV-LED degradation: Continuous and cycled working condition influence

    NASA Astrophysics Data System (ADS)

    Arques-Orobon, F. J.; Nuñez, N.; Vazquez, M.; Segura-Antunez, C.; González-Posadas, V.

    2015-09-01

    High-power (HP) UV-LEDs can replace UV lamps for real-time fluoro-sensing applications by allowing portable and autonomous systems. However, HP UV-LEDs are not a mature technology, and there are still open issues regarding their performance evolution over time. This paper presents a reliability study of 3 W UV-LEDs, with special focus on LED degradation for two working conditions: continuous and cycled (30 s ON and 30 s OFF). Accelerated life tests are developed to evaluate the influence of temperature and electrical working conditions in high-power LEDs degradation, being the predominant failure mechanism the degradation of the package. An analysis that includes dynamic thermal and optical HP UV-LED measurements has been performed. Static thermal and stress simulation analysis with the finite element method (FEM) identifies the causes of package degradation. Accelerated life test results prove that HP UV-LEDs working in cycled condition have a better performance than those working in continuous condition.

  4. Accelerated Stress-Corrosion Testing

    NASA Technical Reports Server (NTRS)

    1986-01-01

    Test procedures for accelerated stress-corrosion testing of high-strength aluminum alloys faster and provide more quantitative information than traditional pass/fail tests. Method uses data from tests on specimen sets exposed to corrosive environment at several levels of applied static tensile stress for selected exposure times then subsequently tensile tested to failure. Method potentially applicable to other degrading phenomena (such as fatigue, corrosion fatigue, fretting, wear, and creep) that promote development and growth of cracklike flaws within material.

  5. Effect of actinobacteria agent inoculation methods on cellulose degradation during composting based on redundancy analysis.

    PubMed

    Zhao, Yue; Lu, Qian; Wei, Yuquan; Cui, Hongyang; Zhang, Xu; Wang, Xueqin; Shan, Si; Wei, Zimin

    2016-11-01

    In this study, actinobacteria agent including Streptomyces sp. and Micromonospora sp. were inoculated during chicken manure composting by different inoculation methods. The effect of different treatments on cellulose degradation and the relationship between inoculants and indigenous actinobacteria were investigated during composting. The results showed that inoculation in different stages of composting all improved the actinobacteria community diversity particularly in the cooling stage of composting (M3). Moreover, inoculation could distinctly accelerate the degradation of organic matters (OM) especially celluloses. Redundancy analysis indicated that the correlation between indigenous actinobacteria and degradation of OM and cellulose were regulated by inoculants and there were significant differences between different inoculation methods. Furthermore, synergy between indigenous actinobacteria and inoculants for degradation of OM and cellulose in M3 was better than other treatments. Conclusively, we suggested an inoculation method to regulate the indigenous actinobacteria based on the relationship between inoculants and indigenous actinobacteria and degradation content. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Degradation of components in drug formulations: a comparison between HPLC and DSC methods.

    PubMed

    Ceschel, G C; Badiello, R; Ronchi, C; Maffei, P

    2003-08-08

    Information about the stability of drug components and drug formulations is needed to predict the shelf-life of the final products. The studies on the interaction between the drug and the excipients may be carried out by means of accelerated stability tests followed by analytical determination of the active principle (HPLC and other methods) and by means of the differential scanning calorimetry (DSC). This research has been focused to the acetyl salicylic acid (ASA) physical-chemical characterisation by using DSC method in order to evaluate its compatibility with some of the most used excipients. It was possible to show, with the DSC method, the incompatibility of magnesium stearate with ASA; the HPLC data confirm the reduction of ASA concentration in the presence of magnesium stearate. With the other excipients the characteristic endotherms of the drug were always present and no or little degradation was observed with the accelerated stability tests. Therefore, the results with the DSC method are comparable and in good agreement with the results obtained with other methods.

  7. Photometric and Colorimetric Assessment of LED Chip Scale Packages by Using a Step-Stress Accelerated Degradation Test (SSADT) Method.

    PubMed

    Qian, Cheng; Fan, Jiajie; Fang, Jiayi; Yu, Chaohua; Ren, Yi; Fan, Xuejun; Zhang, Guoqi

    2017-10-16

    By solving the problem of very long test time on reliability qualification for Light-emitting Diode (LED) products, the accelerated degradation test with a thermal overstress at a proper range is regarded as a promising and effective approach. For a comprehensive survey of the application of step-stress accelerated degradation test (SSADT) in LEDs, the thermal, photometric, and colorimetric properties of two types of LED chip scale packages (CSPs), i.e., 4000 °K and 5000 °K samples each of which was driven by two different levels of currents (i.e., 120 mA and 350 mA, respectively), were investigated under an increasing temperature from 55 °C to 150 °C and a systemic study of driving current effect on the SSADT results were also reported in this paper. During SSADT, junction temperatures of the test samples have a positive relationship with their driving currents. However, the temperature-voltage curve, which represents the thermal resistance property of the test samples, does not show significant variance as long as the driving current is no more than the sample's rated current. But when the test sample is tested under an overdrive current, its temperature-voltage curve is observed as obviously shifted to the left when compared to that before SSADT. Similar overdrive current affected the degradation scenario is also found in the attenuation of Spectral Power Distributions (SPDs) of the test samples. As used in the reliability qualification, SSADT provides explicit scenes on color shift and correlated color temperature (CCT) depreciation of the test samples, but not on lumen maintenance depreciation. It is also proved that the varying rates of the color shift and CCT depreciation failures can be effectively accelerated with an increase of the driving current, for instance, from 120 mA to 350 mA. For these reasons, SSADT is considered as a suitable accelerated test method for qualifying these two failure modes of LED CSPs.

  8. Photometric and Colorimetric Assessment of LED Chip Scale Packages by Using a Step-Stress Accelerated Degradation Test (SSADT) Method

    PubMed Central

    Yu, Chaohua; Fan, Xuejun; Zhang, Guoqi

    2017-01-01

    By solving the problem of very long test time on reliability qualification for Light-emitting Diode (LED) products, the accelerated degradation test with a thermal overstress at a proper range is regarded as a promising and effective approach. For a comprehensive survey of the application of step-stress accelerated degradation test (SSADT) in LEDs, the thermal, photometric, and colorimetric properties of two types of LED chip scale packages (CSPs), i.e., 4000 °K and 5000 °K samples each of which was driven by two different levels of currents (i.e., 120 mA and 350 mA, respectively), were investigated under an increasing temperature from 55 °C to 150 °C and a systemic study of driving current effect on the SSADT results were also reported in this paper. During SSADT, junction temperatures of the test samples have a positive relationship with their driving currents. However, the temperature-voltage curve, which represents the thermal resistance property of the test samples, does not show significant variance as long as the driving current is no more than the sample’s rated current. But when the test sample is tested under an overdrive current, its temperature-voltage curve is observed as obviously shifted to the left when compared to that before SSADT. Similar overdrive current affected the degradation scenario is also found in the attenuation of Spectral Power Distributions (SPDs) of the test samples. As used in the reliability qualification, SSADT provides explicit scenes on color shift and correlated color temperature (CCT) depreciation of the test samples, but not on lumen maintenance depreciation. It is also proved that the varying rates of the color shift and CCT depreciation failures can be effectively accelerated with an increase of the driving current, for instance, from 120 mA to 350 mA. For these reasons, SSADT is considered as a suitable accelerated test method for qualifying these two failure modes of LED CSPs. PMID:29035300

  9. Degradation of biodegradable plastic mulch films in soil environment by phylloplane fungi isolated from gramineous plants.

    PubMed

    Koitabashi, Motoo; Noguchi, Masako T; Sameshima-Yamashita, Yuka; Hiradate, Syuntaro; Suzuki, Ken; Yoshida, Shigenobu; Watanabe, Takashi; Shinozaki, Yukiko; Tsushima, Seiya; Kitamoto, Hiroko K

    2012-08-02

    To improve the biodegradation of biodegradable plastic (BP) mulch films, 1227 fungal strains were isolated from plant surface (phylloplane) and evaluated for BP-degrading ability. Among them, B47-9 a strain isolated from the leaf surface of barley showed the strongest ability to degrade poly-(butylene succinate-co-butylene adipate) (PBSA) and poly-(butylene succinate) (PBS) films. The strain grew on the surface of soil-mounted BP films, produced breaks along the direction of hyphal growth indicated that it secreted a BP-degrading enzyme, and has directly contributing to accelerating the degradation of film. Treatment with the culture filtrate decomposed 91.2 wt%, 23.7 wt%, and 14.6 wt% of PBSA, PBS, and commercially available BP polymer blended mulch film, respectively, on unsterlized soil within 6 days. The PCR-DGGE analysis of the transition of soil microbial community during film degradation revealed that the process was accompanied with drastic changes in the population of soil fungi and Acantamoeba spp., as well as the growth of inoculated strain B47-9. It has a potential for application in the development of an effective method for accelerating degradation of used plastics under actual field conditions.

  10. Poly(fumaric-co-sebacic anhydride). A degradation study as evaluated by FTIR, DSC, GPC and X-ray diffraction.

    PubMed

    Santos, C A; Freedman, B D; Leach, K J; Press, D L; Scarpulla, M; Mathiowitz, E

    1999-06-28

    The degradation of three poly(fumaric-co-sebacic anhydride) [P(FA:SA)] copolymers is examined in a composition of microspheres made by the hot melt encapsulation process. The emergence of low molecular weight oligomers occurs during degradation of the copolymer microspheres, as evidenced by a variety of characterization methods. Characterization was conducted to determine the extent of degradation of the polyanhydride microspheres using Fourier-transform infrared spectroscopy (FTIR), gel permeation chromatography (GPC), differential scanning calorimetry (DSC) and X-ray diffraction. It is demonstrated that degradation of P(FA:SA) is greatly accelerated at basic pH, yet there is little difference between degradation in neutral and acidic buffers. A good correlation exists between the results of each characterization method, which allows a better understanding of the degradation process and the resulting formation of low molecular weight oligomers in poly(fumaric-co-sebacic anhydride).

  11. Comparing joint kinematics and center of mass acceleration as feedback for control of standing balance by functional neuromuscular stimulation

    PubMed Central

    2012-01-01

    Background The purpose of this study was to determine the comparative effectiveness of feedback control systems for maintaining standing balance based on joint kinematics or total body center of mass (COM) acceleration, and assess their clinical practicality for standing neuroprostheses after spinal cord injury (SCI). Methods In simulation, controller performance was measured according to the upper extremity effort required to stabilize a three-dimensional model of bipedal standing against a variety of postural disturbances. Three cases were investigated: proportional-derivative control based on joint kinematics alone, COM acceleration feedback alone, and combined joint kinematics and COM acceleration feedback. Additionally, pilot data was collected during external perturbations of an individual with SCI standing with functional neuromuscular stimulation (FNS), and the resulting joint kinematics and COM acceleration data was analyzed. Results Compared to the baseline case of maximal constant muscle excitations, the three control systems reduced the mean upper extremity loading by 51%, 43% and 56%, respectively against external force-pulse perturbations. Controller robustness was defined as the degradation in performance with increasing levels of input errors expected with clinical deployment of sensor-based feedback. At error levels typical for body-mounted inertial sensors, performance degradation due to sensor noise and placement were negligible. However, at typical tracking error levels, performance could degrade as much as 86% for joint kinematics feedback and 35% for COM acceleration feedback. Pilot data indicated that COM acceleration could be estimated with a few well-placed sensors and efficiently captures information related to movement synergies observed during perturbed bipedal standing following SCI. Conclusions Overall, COM acceleration feedback may be a more feasible solution for control of standing with FNS given its superior robustness and small number of inputs required. PMID:22559852

  12. Tailoring the degradation rates of thermally responsive hydrogels designed for soft tissue injection by varying the autocatalytic potential.

    PubMed

    Zhu, Yang; Jiang, Hongbin; Ye, Sang-Ho; Yoshizumi, Tomo; Wagner, William R

    2015-01-01

    The ability to modulate the degradation properties of biomaterials such as thermally responsive hydrogels is desirable when exploring new therapeutic strategies that rely on the temporary presence of a placed scaffold or gel. Here we report a method of manipulating the absorption rate of a poly(N-isopropylacrylamide) ((poly(NIPAAm)) based hydrogel across a wide range (from 1 d to 5 mo) by small alterations in the composition. Relying upon the autocatalytic effect, the degradation of poly(NIPAAm-co-HEMA-co-MAPLA), (HEMA = 2-hydroxyethyl methacrylate; MAPLA = methacrylate-polylactide) was greatly accelerated by adding a fourth monomer methacrylic acid (MAA) at no more than 2 mol% to obtain poly(NIPAAm-co-HEMA-co-MAPLA-co-MAA) (pNHMMj) where j reflects the MAA molar % in the reactant mixture. MAA residue introduction decreased the pH inside the hydrogels and in surrounding buffered solutions. Accelerated degradation positively correlated with MAA content in pNHMMj polymers, putatively by the accelerated cleavage of MAPLA residues to raise the transition temperature of the polymer above body temperature. Physical properties including thermal transition behavior and initial mechanical strength did not vary significantly with MAA content. A rat hindlimb injection model generally reflected the in vitro observation that higher MAA content resulted in more rapid degradation and cellular infiltration. The strategy of tuning the degradation of thermally responsive hydrogels where degradation or solubilization is determined by their polyester components might be applied to other tissue engineering and regenerative medicine applications where designed biomaterial degradation behavior is needed. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. INTERNATIONAL CONFERENCE ON SEMICONDUCTOR INJECTION LASERS SELCO-87: Degradation phenomena in laser diodes

    NASA Astrophysics Data System (ADS)

    Beister, G.; Krispin, P.; Maege, J.; Richter, G.; Weber, H.; Rechenberg, I.

    1988-11-01

    Accelerated tests on GaAlAs/GaAs double heterostructure laser diodes showed, in agreement with earlier results on light-emitting diodes, that ageing appeared in three distinct forms: initial and slow degradation stages, both obeying a logarithmic time dependence, and a superimposed "gradation" (enhancement of the output power). Measurements made by the method of deep level transient spectroscopy during the accelerated tests on these lasers, operated as light-emitting diodes, revealed the appearance right from the beginning of B levels attributed to the antisite GaAs defects. The B levels appeared again in diodes tested in the lasing mode. In the case of a group of 21 laser diodes the mean time-to-failure was 9000 h at 70°C for 5 mW (in accordance with the Weibull statistics of degradation rates).

  14. Rapid and accurate prediction of degradant formation rates in pharmaceutical formulations using high-performance liquid chromatography-mass spectrometry.

    PubMed

    Darrington, Richard T; Jiao, Jim

    2004-04-01

    Rapid and accurate stability prediction is essential to pharmaceutical formulation development. Commonly used stability prediction methods include monitoring parent drug loss at intended storage conditions or initial rate determination of degradants under accelerated conditions. Monitoring parent drug loss at the intended storage condition does not provide a rapid and accurate stability assessment because often <0.5% drug loss is all that can be observed in a realistic time frame, while the accelerated initial rate method in conjunction with extrapolation of rate constants using the Arrhenius or Eyring equations often introduces large errors in shelf-life prediction. In this study, the shelf life prediction of a model pharmaceutical preparation utilizing sensitive high-performance liquid chromatography-mass spectrometry (LC/MS) to directly quantitate degradant formation rates at the intended storage condition is proposed. This method was compared to traditional shelf life prediction approaches in terms of time required to predict shelf life and associated error in shelf life estimation. Results demonstrated that the proposed LC/MS method using initial rates analysis provided significantly improved confidence intervals for the predicted shelf life and required less overall time and effort to obtain the stability estimation compared to the other methods evaluated. Copyright 2004 Wiley-Liss, Inc. and the American Pharmacists Association.

  15. Determination of LEDs degradation with entropy generation rate

    NASA Astrophysics Data System (ADS)

    Cuadras, Angel; Yao, Jiaqiang; Quilez, Marcos

    2017-10-01

    We propose a method to assess the degradation and aging of light emitting diodes (LEDs) based on irreversible entropy generation rate. We degraded several LEDs and monitored their entropy generation rate ( S ˙ ) in accelerated tests. We compared the thermoelectrical results with the optical light emission evolution during degradation. We find a good relationship between aging and S ˙ (t), because S ˙ is both related to device parameters and optical performance. We propose a threshold of S ˙ (t) as a reliable damage indicator of LED end-of-life that can avoid the need to perform optical measurements to assess optical aging. The method lays beyond the typical statistical laws for lifetime prediction provided by manufacturers. We tested different LED colors and electrical stresses to validate the electrical LED model and we analyzed the degradation mechanisms of the devices.

  16. Accelerated aging tests on ENEA-ASE solar coating for receiver tube suitable to operate up to 550 °C

    NASA Astrophysics Data System (ADS)

    Antonaia, A.; D'Angelo, A.; Esposito, S.; Addonizio, M. L.; Castaldo, A.; Ferrara, M.; Guglielmo, A.; Maccari, A.

    2016-05-01

    A patented solar coating for evacuated receiver, based on innovative graded WN-AlN cermet layer, has been optically designed and optimized to operate at high temperature with high performance and high thermal stability. This solar coating, being designed to operate in solar field with molten salt as heat transfer fluid, has to be thermally stable up to the maximum temperature of 550 °C. With the aim of determining degradation behaviour and lifetime prediction of the solar coating, we chose to monitor the variation of the solar absorptance αs after each thermal annealing cycle carried out at accelerated temperatures under vacuum. This prediction method was coupled with a preliminary Differential Thermal Analysis (DTA) in order to give evidence for any chemical-physical coating modification in the temperature range of interest before performing accelerated aging tests. In the accelerated aging tests we assumed that the temperature dependence of the degradation processes could be described by Arrhenius behaviour and we hypothesized that a linear correlation occurs between optical parameter variation rate (specifically, Δαs/Δt) and degradation process rate. Starting from Δαs/Δt values evaluated at 650 and 690 °C, Arrhenius plot gave an activation energy of 325 kJ mol-1 for the degradation phenomenon, where the prediction on the coating degradation gave a solar absorptance decrease of only 1.65 % after 25 years at 550 °C. This very low αs decrease gave evidence for an excellent stability of our solar coating, also when employed at the maximum temperature (550 °C) of a solar field operating with molten salt as heat transfer fluid.

  17. Fate of the chemical warfare agent O-ethyl S-2-diisopropylaminoethyl methylphosphonothiolate (VX) on soil following accelerant-based fire and liquid decontamination.

    PubMed

    Gravett, M R; Hopkins, F B; Self, A J; Webb, A J; Timperley, C M; Riches, J R

    2014-08-01

    In the event of alleged use of organophosphorus nerve agents, all kinds of environmental samples can be received for analysis. These might include decontaminated and charred matter collected from the site of a suspected chemical attack. In other scenarios, such matter might be sampled to confirm the site of a chemical weapon test or clandestine laboratory decontaminated and burned to prevent discovery. To provide an analytical capability for these contingencies, we present a preliminary investigation of the effect of accelerant-based fire and liquid decontamination on soil contaminated with the nerve agent O-ethyl S-2-diisopropylaminoethyl methylphosphonothiolate (VX). The objectives were (a) to determine if VX or its degradation products were detectable in soil after an accelerant-based fire promoted by aviation fuel, including following decontamination with Decontamination Solution 2 (DS2) or aqueous sodium hypochlorite, (b) to develop analytical methods to support forensic analysis of accelerant-soaked, decontaminated and charred soil and (c) to inform the design of future experiments of this type to improve analytical fidelity. Our results show for the first time that modern analytical techniques can be used to identify residual VX and its degradation products in contaminated soil after an accelerant-based fire and after chemical decontamination and then fire. Comparison of the gas chromatography-mass spectrometry (GC-MS) profiles of VX and its impurities/degradation products from contaminated burnt soil, and burnt soil spiked with VX, indicated that the fire resulted in the production of diethyl methylphosphonate and O,S-diethyl methylphosphonothiolate (by an unknown mechanism). Other products identified were indicative of chemical decontamination, and some of these provided evidence of the decontaminant used, for example, ethyl 2-methoxyethyl methylphosphonate and bis(2-methoxyethyl) methylphosphonate following decontamination with DS2. Sample preparation procedures and analytical methods suitable for investigating accelerant and decontaminant-soaked soil samples are presented. VX and its degradation products and/or impurities were detected under all the conditions studied, demonstrating that accelerant-based fire and liquid-based decontamination and then fire are unlikely to prevent the retrieval of evidence of chemical warfare agent (CWA) testing. This is the first published study of the effects of an accelerant-based fire on a CWA in environmental samples. The results will inform defence and security-based organisations worldwide and support the verification activities of the Organisation for the Prohibition of Chemical Weapons (OPCW), winner of the 2013 Nobel Peace Prize for its extensive efforts to eliminate chemical weapons.

  18. Degradation of biodegradable plastic mulch films in soil environment by phylloplane fungi isolated from gramineous plants

    PubMed Central

    2012-01-01

    To improve the biodegradation of biodegradable plastic (BP) mulch films, 1227 fungal strains were isolated from plant surface (phylloplane) and evaluated for BP-degrading ability. Among them, B47-9 a strain isolated from the leaf surface of barley showed the strongest ability to degrade poly-(butylene succinate-co-butylene adipate) (PBSA) and poly-(butylene succinate) (PBS) films. The strain grew on the surface of soil-mounted BP films, produced breaks along the direction of hyphal growth indicated that it secreted a BP-degrading enzyme, and has directly contributing to accelerating the degradation of film. Treatment with the culture filtrate decomposed 91.2 wt%, 23.7 wt%, and 14.6 wt% of PBSA, PBS, and commercially available BP polymer blended mulch film, respectively, on unsterlized soil within 6 days. The PCR-DGGE analysis of the transition of soil microbial community during film degradation revealed that the process was accompanied with drastic changes in the population of soil fungi and Acantamoeba spp., as well as the growth of inoculated strain B47-9. It has a potential for application in the development of an effective method for accelerating degradation of used plastics under actual field conditions. PMID:22856640

  19. Flow accelerated organic coating degradation

    NASA Astrophysics Data System (ADS)

    Zhou, Qixin

    Applying organic coatings is a common and the most cost effective way to protect metallic objects and structures from corrosion. Water entry into coating-metal interface is usually the main cause for the deterioration of organic coatings, which leads to coating delamination and underfilm corrosion. Recently, flowing fluids over sample surface have received attention due to their capability to accelerate material degradation. A plethora of works has focused on the flow induced metal corrosion, while few studies have investigated the flow accelerated organic coating degradation. Flowing fluids above coating surface affect corrosion by enhancing the water transport and abrading the surface due to fluid shear. Hence, it is of great importance to understand the influence of flowing fluids on the degradation of corrosion protective organic coatings. In this study, a pigmented marine coating and several clear coatings were exposed to the laminar flow and stationary immersion. The laminar flow was pressure driven and confined in a flow channel. A 3.5 wt% sodium chloride solution and pure water was employed as the working fluid with a variety of flow rates. The corrosion protective properties of organic coatings were monitored inline by Electrochemical Impedance Spectroscopy (EIS) measurement. Equivalent circuit models were employed to interpret the EIS spectra. The time evolution of coating resistance and capacitance obtained from the model was studied to demonstrate the coating degradation. Thickness, gloss, and other topography characterizations were conducted to facilitate the assessment of the corrosion. The working fluids were characterized by Fourier Transform Infrared Spectrometer (FTIR) and conductivity measurement. The influence of flow rate, fluid shear, fluid composition, and other effects in the coating degradation were investigated. We conclude that flowing fluid on the coating surface accelerates the transport of water, oxygen, and ions into the coating, as well as promotes the migration of coating materials from the coating into the working fluid, where coatings experience more severe deterioration in their barrier property under flowing conditions. Pure water has shown to be a much more aggressive working fluid than electrolyte solutions. The flowing fluid over the coating surface could be used as an effective acceleration method.

  20. Accelerated in vitro release testing method for naltrexone loaded PLGA microspheres.

    PubMed

    Andhariya, Janki V; Choi, Stephanie; Wang, Yan; Zou, Yuan; Burgess, Diane J; Shen, Jie

    2017-03-30

    The objective of the present study was to develop a discriminatory and reproducible accelerated release testing method for naltrexone loaded parenteral polymeric microspheres. The commercially available naltrexone microsphere product (Vivitrol ® ) was used as the testing formulation in the in vitro release method development, and both sample-and-separate and USP apparatus 4 methods were investigated. Following an in vitro drug stability study, frequent media replacement and addition of anti-oxidant in the release medium were used to prevent degradation of naltrexone during release testing at "real-time" (37°C) and "accelerated" (45°C), respectively. The USP apparatus 4 method was more reproducible than the sample-and-separate method. In addition, the accelerated release profile obtained using USP apparatus 4 had a shortened release duration (within seven days), and good correlation with the "real-time" release profile. Lastly, the discriminatory ability of the developed accelerated release method was assessed using compositionally equivalent naltrexone microspheres with different release characteristics. The developed accelerated USP apparatus 4 release method was able to detect differences in the release characteristics of the prepared naltrexone microspheres. Moreover, a linear correlation was observed between the "real-time" and accelerated release profiles of all the formulations investigated, suggesting that the release mechanism(s) may be similar under both conditions. These results indicate that the developed accelerated USP apparatus 4 method has the potential to be an appropriate fast quality control tool for long-acting naltrexone PLGA microspheres. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Effect of TiO2-Crystal Forms on the Photo-Degradation of EVA/PLA Blend Under Accelerated Weather Testing

    NASA Astrophysics Data System (ADS)

    Van Cong, Do; Trang, Nguyen Thi Thu; Giang, Nguyen Vu; Lam, Tran Dai; Hoang, Thai

    2016-05-01

    Photo-degradation of poly (ethylene-co-vinyl acetate) (EVA)/poly (lactic acid) (PLA) blend and EVA/PLA/TiO2 nanocomposites was carried out under accelerated weather testing conditions by alternating cycles of ultraviolet (UV) light and moisture at controlled and elevated temperatures. The characters, properties, and morphology of these materials before and after accelerated weather testing were determined by Fourier transform infrared spectroscopy, colour changes, viscosity, tensile test, thermogravimetric analysis, and field emission scanning electron microscopy. The increases in the content of oxygen-containing groups, colour changes; the decreases in viscosity, tensile properties, and thermal stability of these materials after accelerated weather testing are the evidence for the photo-degradation of the blend and nanocomposites. After accelerated weather testing, the appearance of many micro-holes and micro-pores on the surface of the collected samples was observed. The photo-degradation degree of the nanocomposites depended on the TiO2-crystal form. Rutile TiO2 do not enhance the degradation, but anatase and mixed crystals TiO2 nanoparticles promoted the degradation of the nanocomposites. Particularly, the mixed crystals TiO2 nanoparticles showed the highest photo-catalytic activity of the nanocomposites.

  2. An accelerated stress testing program for determining the reliability sensitivity of silicon solar cells to encapsulation and metallization systems

    NASA Technical Reports Server (NTRS)

    Lathrop, J. W.; Davis, C. W.; Royal, E.

    1982-01-01

    The use of accelerated testing methods in a program to determine the reliability attributes of terrestrial silicon solar cells is discussed. Different failure modes are to be expected when cells with and without encapsulation are subjected to accelerated testing and separate test schedules for each are described. Unencapsulated test cells having slight variations in metallization are used to illustrate how accelerated testing can highlight different diffusion related failure mechanisms. The usefulness of accelerated testing when applied to encapsulated cells is illustrated by results showing that moisture related degradation may be many times worse with some forms of encapsulation than with no encapsulation at all.

  3. Accelerated Testing Of Photothermal Degradation Of Polymers

    NASA Technical Reports Server (NTRS)

    Kim, Soon Sam; Liang, Ranty Hing; Tsay, Fun-Dow

    1989-01-01

    Electron-spin-resonance (ESR) spectroscopy and Arrhenius plots used to determine maximum safe temperature for accelerated testing of photothermal degradation of polymers. Aging accelerated by increasing illumination, temperature, or both. Results of aging tests at temperatures higher than those encountered in normal use valid as long as mechanism of degradation same throughout range of temperatures. Transition between different mechanisms at some temperature identified via transition between activation energies, manifesting itself as change in slope of Arrhenius plot at that temperature.

  4. Prognostics of Power Electronics, Methods and Validation Experiments

    NASA Technical Reports Server (NTRS)

    Kulkarni, Chetan S.; Celaya, Jose R.; Biswas, Gautam; Goebel, Kai

    2012-01-01

    Abstract Failure of electronic devices is a concern for future electric aircrafts that will see an increase of electronics to drive and control safety-critical equipment throughout the aircraft. As a result, investigation of precursors to failure in electronics and prediction of remaining life of electronic components is of key importance. DC-DC power converters are power electronics systems employed typically as sourcing elements for avionics equipment. Current research efforts in prognostics for these power systems focuses on the identification of failure mechanisms and the development of accelerated aging methodologies and systems to accelerate the aging process of test devices, while continuously measuring key electrical and thermal parameters. Preliminary model-based prognostics algorithms have been developed making use of empirical degradation models and physics-inspired degradation model with focus on key components like electrolytic capacitors and power MOSFETs (metal-oxide-semiconductor-field-effect-transistor). This paper presents current results on the development of validation methods for prognostics algorithms of power electrolytic capacitors. Particularly, in the use of accelerated aging systems for algorithm validation. Validation of prognostics algorithms present difficulties in practice due to the lack of run-to-failure experiments in deployed systems. By using accelerated experiments, we circumvent this problem in order to define initial validation activities.

  5. NOTE: Acceleration of Monte Carlo-based scatter compensation for cardiac SPECT

    NASA Astrophysics Data System (ADS)

    Sohlberg, A.; Watabe, H.; Iida, H.

    2008-07-01

    Single proton emission computed tomography (SPECT) images are degraded by photon scatter making scatter compensation essential for accurate reconstruction. Reconstruction-based scatter compensation with Monte Carlo (MC) modelling of scatter shows promise for accurate scatter correction, but it is normally hampered by long computation times. The aim of this work was to accelerate the MC-based scatter compensation using coarse grid and intermittent scatter modelling. The acceleration methods were compared to un-accelerated implementation using MC-simulated projection data of the mathematical cardiac torso (MCAT) phantom modelling 99mTc uptake and clinical myocardial perfusion studies. The results showed that when combined the acceleration methods reduced the reconstruction time for 10 ordered subset expectation maximization (OS-EM) iterations from 56 to 11 min without a significant reduction in image quality indicating that the coarse grid and intermittent scatter modelling are suitable for MC-based scatter compensation in cardiac SPECT.

  6. The methodology study of time accelerated irradiation of elastomers

    NASA Astrophysics Data System (ADS)

    Ito, Masayuki

    2005-07-01

    The article studied the methods how to shorten the irradiation time by increasing dose rate without changing the relationship between dose versus properties of degraded samples. The samples used were nine kinds of EPDM which have different compounding formula. The different dose of Co-γ ray was exposed to the samples. The maximum dose was 2 MGy. The reference condition to be compared with two short time test conditions is irradiation of 0.33 kGy/h at room temperature. Two methods shown below were studied as the time-accelerate irradiation conditions.

  7. Non-Maximal Tripartite Entanglement Degradation of Dirac and Scalar Fields in Non-Inertial Frames

    NASA Astrophysics Data System (ADS)

    Salman, Khan; Niaz, Ali Khan; M. K., Khan

    2014-03-01

    The π-tangle is used to study the behavior of entanglement of a nonmaximal tripartite state of both Dirac and scalar fields in accelerated frame. For Dirac fields, the degree of degradation with acceleration of both one-tangle of accelerated observer and π-tangle, for the same initial entanglement, is different by just interchanging the values of probability amplitudes. A fraction of both one-tangles and the π-tangle always survives for any choice of acceleration and the degree of initial entanglement. For scalar field, the one-tangle of accelerated observer depends on the choice of values of probability amplitudes and it vanishes in the range of infinite acceleration, whereas for π-tangle this is not always true. The dependence of π-tangle on probability amplitudes varies with acceleration. In the lower range of acceleration, its behavior changes by switching between the values of probability amplitudes and for larger values of acceleration this dependence on probability amplitudes vanishes. Interestingly, unlike bipartite entanglement, the degradation of π-tangle against acceleration in the case of scalar fields is slower than for Dirac fields.

  8. Accelerated In Vitro Degradation of Optically Clear Low β-Sheet Silk Films by Enzyme-Mediated Pretreatment

    PubMed Central

    Shang, Ke; Rnjak-Kovacina, Jelena; Lin, Yinan; Hayden, Rebecca S.; Tao, Hu; Kaplan, David L.

    2013-01-01

    Purpose: To design patterned, transparent silk films with fast degradation rates for the purpose of tissue engineering corneal stroma. Methods: β-sheet (crystalline) content of silk films was decreased significantly by using a short water annealing time. Additionally, a protocol combining short water annealing time with enzymatic pretreatment of silk films with protease XIV was developed. Results: Low β-sheet content (17%–18%) and enzymatic pretreatment provided film stability in aqueous environments and accelerated degradation of the silk films in the presence of human corneal fibroblasts in vitro. The results demonstrate a direct relationship between reduced β-sheet content and enzymatic pretreatment, and overall degradation rate of the protein films. Conclusions: The novel protocol developed here provides new approaches to modulate the regeneration rate of silk biomaterials for corneal tissue regeneration needs. Translational Relevance: Patterned silk protein films possess desirable characteristics for corneal tissue engineering, including optical transparency, biocompatibility, cell alignment, and tunable mechanical properties, but current fabrication protocols do not provide adequate degradation rates to match the regeneration properties of the human cornea. This novel processing protocol makes silk films more suitable for the construction of human corneal stroma tissue and a promising way to tune silk film degradation properties to match corneal tissue regeneration. PMID:24049717

  9. Accelerated in vitro Degradation of Optically Clear Low β-sheet Silk Films by Enzyme-Mediated Pretreatment

    PubMed Central

    Shang, Ke; Rnjak-Kovacina, Jelena; Lin, Yinan; Hayden, Rebecca S.; Hu, Tao; Kaplan, David L.

    2013-01-01

    Purpose To design patterned, transparent silk films with fast degradation rates for the purpose of tissue engineering corneal stroma, Methods β-sheet (crystalline) content of silk films was decreased significantly by using a short water annealing time. Additionally, a protocol combining short water annealing time with enzymatic pretreatment of silk films with protease XIV was developed. Results Low β-sheet content (17–18%) and enzymatic pre-treatment provided film stability in aqueous environments and accelerated degradation of the silk films in the presence of human corneal fibroblasts in vitro. The results demonstrate a direct relationship between reduced β-sheet content and enzymatic pre-treatment and overall degradation rate of the protein films. Conclusions The novel protocol developed here provides new approaches to modulate the regeneration rate of silk biomaterials for corneal tissue regeneration needs. Translational relevance Patterned silk protein films possess desirable characteristics for corneal tissue engineering, including optical transparency, biocompatibility, cell alignment and tunable mechanical properties, but current fabrication protocols do not provide adequate degradation rates to match the regeneration properties of the human cornea. This novel processing protocol makes silk films more suitable for the construction of human corneal stroma tissue and a promising way to tune silk film degradation properties to match corneal tissue regeneration. PMID:23579493

  10. A Model-based Prognostics Methodology for Electrolytic Capacitors Based on Electrical Overstress Accelerated Aging

    NASA Technical Reports Server (NTRS)

    Celaya, Jose; Kulkarni, Chetan; Biswas, Gautam; Saha, Sankalita; Goebel, Kai

    2011-01-01

    A remaining useful life prediction methodology for electrolytic capacitors is presented. This methodology is based on the Kalman filter framework and an empirical degradation model. Electrolytic capacitors are used in several applications ranging from power supplies on critical avionics equipment to power drivers for electro-mechanical actuators. These devices are known for their comparatively low reliability and given their criticality in electronics subsystems they are a good candidate for component level prognostics and health management. Prognostics provides a way to assess remaining useful life of a capacitor based on its current state of health and its anticipated future usage and operational conditions. We present here also, experimental results of an accelerated aging test under electrical stresses. The data obtained in this test form the basis for a remaining life prediction algorithm where a model of the degradation process is suggested. This preliminary remaining life prediction algorithm serves as a demonstration of how prognostics methodologies could be used for electrolytic capacitors. In addition, the use degradation progression data from accelerated aging, provides an avenue for validation of applications of the Kalman filter based prognostics methods typically used for remaining useful life predictions in other applications.

  11. Towards A Model-Based Prognostics Methodology for Electrolytic Capacitors: A Case Study Based on Electrical Overstress Accelerated Aging

    NASA Technical Reports Server (NTRS)

    Celaya, Jose R.; Kulkarni, Chetan S.; Biswas, Gautam; Goebel, Kai

    2012-01-01

    A remaining useful life prediction methodology for electrolytic capacitors is presented. This methodology is based on the Kalman filter framework and an empirical degradation model. Electrolytic capacitors are used in several applications ranging from power supplies on critical avionics equipment to power drivers for electro-mechanical actuators. These devices are known for their comparatively low reliability and given their criticality in electronics subsystems they are a good candidate for component level prognostics and health management. Prognostics provides a way to assess remaining useful life of a capacitor based on its current state of health and its anticipated future usage and operational conditions. We present here also, experimental results of an accelerated aging test under electrical stresses. The data obtained in this test form the basis for a remaining life prediction algorithm where a model of the degradation process is suggested. This preliminary remaining life prediction algorithm serves as a demonstration of how prognostics methodologies could be used for electrolytic capacitors. In addition, the use degradation progression data from accelerated aging, provides an avenue for validation of applications of the Kalman filter based prognostics methods typically used for remaining useful life predictions in other applications.

  12. Multistage degradation modeling for BLDC motor based on Wiener process

    NASA Astrophysics Data System (ADS)

    Yuan, Qingyang; Li, Xiaogang; Gao, Yuankai

    2018-05-01

    Brushless DC motors are widely used, and their working temperatures, regarding as degradation processes, are nonlinear and multistage. It is necessary to establish a nonlinear degradation model. In this research, our study was based on accelerated degradation data of motors, which are their working temperatures. A multistage Wiener model was established by using the transition function to modify linear model. The normal weighted average filter (Gauss filter) was used to improve the results of estimation for the model parameters. Then, to maximize likelihood function for parameter estimation, we used numerical optimization method- the simplex method for cycle calculation. Finally, the modeling results show that the degradation mechanism changes during the degradation of the motor with high speed. The effectiveness and rationality of model are verified by comparison of the life distribution with widely used nonlinear Wiener model, as well as a comparison of QQ plots for residual. Finally, predictions for motor life are gained by life distributions in different times calculated by multistage model.

  13. A novel approach on accelerated ageing towards reliability optimization of high concentration photovoltaic cells

    NASA Astrophysics Data System (ADS)

    Tsanakas, John A.; Jaffre, Damien; Sicre, Mathieu; Elouamari, Rachid; Vossier, Alexis; de Salins, Jean-Edouard; Bechou, Laurent; Levrier, Bruno; Perona, Arnaud; Dollet, Alain

    2014-09-01

    This paper presents a preliminary study upon a novel approach proposed for highly accelerated ageing and reliability optimization of high concentrating photovoltaic (HCPV) cells and assemblies. The intended approach aims to overcome several limitations of some current accelerated ageing tests (AAT) adopted up today, proposing the use of an alternative experimental set-up for performing faster and more realistic thermal cycles, under real sun, without the involvement of environmental chamber. The study also includes specific characterization techniques, before and after each AAT sequence, which respectively provide the initial and final diagnosis on the condition of the tested sample. The acquired data from these diagnostic/characterization methods are then used as indices to determine both quantitatively and qualitatively the severity of degradation and, thus, the ageing level for each tested HCPV assembly or cell sample. Ultimate goal of such "initial diagnosis - AAT - final diagnosis" sequences is to provide the basis for a future work on the reliability analysis of the main degradation mechanisms and confident prediction of failure propagation in HCPV cells, by means of acceleration factor (AF) and mean-time-to-failure (MTTF) estimations.

  14. Toward a method of collaborative, evidence-based response to desertification

    USDA-ARS?s Scientific Manuscript database

    Overgeneralized narratives about how desertified ecosystems will respond to restoration actions may result in wasted resources, missed opportunities, or accelerated degradation. Evidence-based collaborative adaptive management (CAM) could solve this problem by providing site-specific information tha...

  15. Activation of persulfate/copper by hydroxylamine via accelerating the cupric/cuprous redox couple.

    PubMed

    Zhou, Peng; Zhang, Jing; Liang, Juan; Zhang, Yongli; Liu, Ya; Liu, Bei

    2016-01-01

    Cuprous copper [Cu(I)] reacts with sodium persulfate (PDS) to generate sulfate radical SO4(-)•, but it has been seldom investigated owing to its instability and difficulty in dissolving it. This study proposes a new method to regenerate Cu(I) from cupric copper [Cu(II)] by addition of hydroxylamine (HA) to induce the continuous production of radicals through active PDS, and investigates the resulting enhanced methyl orange (MO) degradation efficiency and mechanism in the new system. HA accelerated the degradation of MO markedly in the pH range from 6.0 to 8.0 in the HA/Cu(II)/PDS process. Both SO4(-)• and hydroxyl radicals (•OH) were considered as the primary reactive radicals in the process. The MO degradation in the HA/Cu(II)/PDS process can be divided into three stages: the fast stage, the transitory stage, and the low stage. MO degradation was enhanced with increased dosage of PDS. Although high dosage of HA could accelerate the transformation of the Cu(II)/Cu(I) cycle to produce more reactive radicals, excess HA can quench the reactive radicals. This study indicates that through a copper-redox cycling mechanism by HA, the production of SO4(-)• and •OH can be strongly enhanced, and the effective pH range can be expanded to neutral conditions.

  16. The effect of accelerated aging on the wear of UHMWPE.

    PubMed

    Sakoda, H; Fisher, J; Lu, S; Buchanan, F

    2001-01-01

    Oxidative degradation of UHMWPE has been found to be a cause of elevated wear rate of the polymer in total joint replacement leading to failure of these devices. In order to evaluate long term stability of polymers, various accelerated aging methods have been developed. In this study, wear rates of shelf aged UHMWPE and "accelerated aged" UHMWPE were compared using a multi-directional pin-on-plate wear test machine in order to evaluate the effect of the accelerated aging on wear. Wear factors of the aged materials were found to depend on their density, which is a measure of oxidation level. Finally, accelerated aging was calibrated against shelf aging in terms of wear rate. Copyright 2001 Kluwer Academic Publishers

  17. Accelerated Testing of UH-60 Viscous Bearings for Degraded Grease Fault

    NASA Technical Reports Server (NTRS)

    Dykas, Brian; Hood, Adrian; Krantz, Timothy; Klemmer, Marko

    2015-01-01

    An accelerated aging investigation of critical aviation bearings lubricated with MIL-PRF- 81322 grease was conducted to derive an understanding of the mechanisms of grease degradation and loss of lubrication over time. The current study focuses on UH-60 Black Hawk viscous damper bearings supporting the tail rotor driveshaft, which were subjected to more than 5800 hours of testing in a heated environment to accelerate the deterioration of the grease. The mechanism of grease degradation is a reduction in the oil/thickener ratio rather than the expected chemical degradation of grease constituents. Over the course of testing, vibration and temperature monitoring of bearings was conducted and trends for failing bearings are presented.

  18. Differential cDNA cloning by enzymatic degrading subtraction (EDS).

    PubMed Central

    Zeng, J; Gorski, R A; Hamer, D

    1994-01-01

    We describe a new method, called enzymatic degrading subtraction (EDS), for the construction of subtractive libraries from PCR amplified cDNA. The novel features of this method are that i) the tester DNA is blocked by thionucleotide incorporation; ii) the rate of hybridization is accelerated by phenol-emulsion reassociation; and iii) the driver cDNA and hybrid molecules are enzymatically removed by digestion with exonucleases III and VII rather than by physical partitioning. We demonstrate the utility of EDS by constructing a subtractive library enriched for cDNAs expressed in adult but not in embryonic rat brains. Images PMID:7971268

  19. Shelf-life of a 2.5% sodium hypochlorite solution as determined by Arrhenius equation.

    PubMed

    Nicoletti, Maria Aparecida; Siqueira, Evandro Luiz; Bombana, Antonio Carlos; Oliveira, Gabriella Guimarães de

    2009-01-01

    Accelerated stability tests are indicated to assess, within a short time, the degree of chemical degradation that may affect an active substance, either alone or in a formula, under normal storage conditions. This method is based on increased stress conditions to accelerate the rate of chemical degradation. Based on the equation of the straight line obtained as a function of the reaction order (at 50 and 70 degrees C) and using Arrhenius equation, the speed of the reaction was calculated for the temperature of 20 degrees C (normal storage conditions). This model of accelerated stability test makes it possible to predict the chemical stability of any active substance at any given moment, as long as the method to quantify the chemical substance is available. As an example of the applicability of Arrhenius equation in accelerated stability tests, a 2.5% sodium hypochlorite solution was analyzed due to its chemical instability. Iodometric titration was used to quantify free residual chlorine in the solutions. Based on data obtained keeping this solution at 50 and 70 degrees C, using Arrhenius equation and considering 2.0% of free residual chlorine as the minimum acceptable threshold, the shelf-life was equal to 166 days at 20 degrees C. This model, however, makes it possible to calculate shelf-life at any other given temperature.

  20. Effect of Halide Composition on the Photochemical Stability of Perovskite Photovoltaic Materials.

    PubMed

    Misra, Ravi K; Ciammaruchi, Laura; Aharon, Sigalit; Mogilyansky, Dmitry; Etgar, Lioz; Visoly-Fisher, Iris; Katz, Eugene A

    2016-09-22

    The photochemical stability of encapsulated films of mixed halide perovskites with a range of MAPb(I 1-x Br x ) 3 (MA=methylammonium) compositions (solid solutions) was investigated under accelerated stressing using concentrated sunlight. The relevance of accelerated testing to standard operational conditions of solar cells was confirmed by comparison to degradation experiments under outdoor sunlight exposure. We found that MAPbBr 3 films exhibited no degradation, while MAPbI 3 and mixed halide MAPb(I 1-x Br x ) 3 films decomposed yielding crystallization of inorganic PbI 2 accompanied by degradation of the perovskite solar light absorption, with faster absorption degradation in mixed halide films. The crystal coherence length was found to correlate with the stability of the films. We postulate that the introduction of Br into the mixed halide solid solution stressed its structure and induced more structural defects and/or grain boundaries compared to pure halide perovskites, which might be responsible for the accelerated degradation. Hence, the cause for accelerated degradation may be the increased defect density rather than the chemical composition of the perovskite materials. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Influence of the formation- and passivation rate of boron-oxygen defects for mitigating carrier-induced degradation in silicon within a hydrogen-based model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hallam, Brett, E-mail: brett.hallam@unsw.edu.au; Abbott, Malcolm; Nampalli, Nitin

    2016-02-14

    A three-state model is used to explore the influence of defect formation- and passivation rates of carrier-induced degradation related to boron-oxygen complexes in boron-doped p-type silicon solar cells within a hydrogen-based model. The model highlights that the inability to effectively mitigate carrier-induced degradation at elevated temperatures in previous studies is due to the limited availability of defects for hydrogen passivation, rather than being limited by the defect passivation rate. An acceleration of the defect formation rate is also observed to increase both the effectiveness and speed of carrier-induced degradation mitigation, whereas increases in the passivation rate do not lead tomore » a substantial acceleration of the hydrogen passivation process. For high-throughput mitigation of such carrier-induced degradation on finished solar cell devices, two key factors were found to be required, high-injection conditions (such as by using high intensity illumination) to enable an acceleration of defect formation whilst simultaneously enabling a rapid passivation of the formed defects, and a high temperature to accelerate both defect formation and defect passivation whilst still ensuring an effective mitigation of carrier-induced degradation.« less

  2. Accelerated Aging in Electrolytic Capacitors for Prognostics

    NASA Technical Reports Server (NTRS)

    Celaya, Jose R.; Kulkarni, Chetan; Saha, Sankalita; Biswas, Gautam; Goebel, Kai Frank

    2012-01-01

    The focus of this work is the analysis of different degradation phenomena based on thermal overstress and electrical overstress accelerated aging systems and the use of accelerated aging techniques for prognostics algorithm development. Results on thermal overstress and electrical overstress experiments are presented. In addition, preliminary results toward the development of physics-based degradation models are presented focusing on the electrolyte evaporation failure mechanism. An empirical degradation model based on percentage capacitance loss under electrical overstress is presented and used in: (i) a Bayesian-based implementation of model-based prognostics using a discrete Kalman filter for health state estimation, and (ii) a dynamic system representation of the degradation model for forecasting and remaining useful life (RUL) estimation. A leave-one-out validation methodology is used to assess the validity of the methodology under the small sample size constrain. The results observed on the RUL estimation are consistent through the validation tests comparing relative accuracy and prediction error. It has been observed that the inaccuracy of the model to represent the change in degradation behavior observed at the end of the test data is consistent throughout the validation tests, indicating the need of a more detailed degradation model or the use of an algorithm that could estimate model parameters on-line. Based on the observed degradation process under different stress intensity with rest periods, the need for more sophisticated degradation models is further supported. The current degradation model does not represent the capacitance recovery over rest periods following an accelerated aging stress period.

  3. [Effects of Oil Pollutants on the Performance of Marine Benthonic Microbial Fuel Cells and Its Acceleration of Degradation].

    PubMed

    Meng, Yao; Fu, Yu-bin; Liang, Sheng-kang; Chen, Wei; Liu, Zhao-hui

    2015-08-01

    Degradation of oil pollutants under the sea is slow for its oxygen-free environment which has caused long-term harm to ocean environment. This paper attempts to accelerate the degradation of the sea oil pollutants through electro catalysis by using the principle of marine benthonic microbial fuel cells (BMFCs). The influence of oil pollutants on the battery performance is innovatively explored by comparing the marine benthonic microbial fuel cells ( BMFCs-A) containing oil and oil-free microbial fuel cells (BMFCs-B). The acceleration effect of BMFCs is investigated by the comparison between the oil-degrading rate and the number of heterotrophic bacteria of the BMFCs-A and BMFCs-B on their anodes. The results show that the exchange current densities in the anode of the BMFCs-A and BMFCs-B are 1. 37 x 10(-2) A x m(-2) and 1.50 x 10(-3) A x m(-2) respectively and the maximum output power densities are 105.79 mW x m(-2) and 83.60 mW x m(-2) respectively. The exchange current densities have increased 9 times and the maximum output power density increased 1. 27 times. The anti-polarization ability of BMFCs-A is improved. The heterotrophic bacteria numbers of BMFCs-A and BMFCs-C on their anodes are (66 +/- 3.61) x 10(7) CFU x g(-1) and (7.3 +/- 2.08) x 10(7) CFU x g(-1) respectively and the former total number has increased 8 times, which accelerates the oil-degrading rate. The degrading rate of the oil in the BMFCs-A is 18.7 times higher than that in its natural conditions. The BMFCs can improve its electrochemical performance, meanwhile, the degradation of oil pollutants can also be accelerated. A new model of the marine benthonic microbial fuel cells on its acceleration of oil degradation is proposed in this article.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pezeshki, Alan M.; Sacci, Robert L.; Veith, Gabriel M.

    Here, we demonstrate a novel method to accelerate electrode degradation in redox flow batteries and apply this method to the all-vanadium chemistry. Electrode performance degradation occurred seven times faster than in a typical cycling experiment, enabling rapid evaluation of materials. This method also enables the steady-state study of electrodes. In this manner, it is possible to delineate whether specific operating conditions induce performance degradation; we found that both aggressively charging and discharging result in performance loss. Post-mortem x-ray photoelectron spectroscopy of the degraded electrodes was used to resolve the effects of state of charge (SoC) and current on the electrodemore » surface chemistry. For the electrode material tested in this work, we found evidence that a loss of oxygen content on the negative electrode cannot explain decreased cell performance. Furthermore, the effects of decreased electrode and membrane performance on capacity fade in a typical cycling battery were decoupled from crossover; electrode and membrane performance decay were responsible for a 22% fade in capacity, while crossover caused a 12% fade.« less

  5. Evaluating paper degradation progress. Cross-linking between chromatographic, spectroscopic and chemical results

    NASA Astrophysics Data System (ADS)

    Łojewski, Tomasz; Zięba, Katarzyna; Knapik, Arkadiusz; Bagniuk, Jacek; Lubańska, Anna; Łojewska, Joanna

    2010-09-01

    The study presents an overview of the chromatographic (SEC), spectroscopic (FTIR, UV/VIS), viscometric (DP) and chemical methods (titration, pH) used for the evaluation of the degradation progress of various kinds of paper under various conditions. The methods were chosen to follow different routes of paper degradation. Model paper samples represented boundary paper types from pure cellulose cotton paper, through softwood to low quality acidic, sized groundwood paper The accelerated ageing conditions were adjusted to achieve maximum effect (climatic chamber RH 59%, 90oC) and also to mimic the environment inside books (closed vials). The results were settled on the literature data on the degradation mechanisms and compared in terms of the paper types and ageing conditions. The estimators of coupled de-polymerisation and oxidation have been proposed based on the correlation between SEC, UV/VIS and titrative coppper number determination. The overall oxidation index derived from FTIR results was shown to correlate with the summary -CHO and -COOH concentration determined by titrative methods.

  6. Lifetime Extension Report: Progress on the SAVY-4000 Lifetime Extension Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Welch, Cynthia F.; Smith, Paul Herrick; Weis, Eric M.

    The 3-year accelerated aging study of the SAVY-4000 O-ring shows very little evidence of significant degradation to samples subjected to aggressive elevated temperature and radiation conditions. Whole container thermal aging studies followed by helium leakage testing and compression set measurements were used to establish an estimate for a failure criterion for O-ring compression set of ≥65 %. The whole container aging studies further show that the air flow and efficiency functions of the filter do not degrade significantly after thermal aging. However, the degradation of the water-resistant function leads to water penetration failure after four months at 210°C, but doesmore » not cause failure after 10 months at 120°C (130°C is the maximum operating temperature for the PTFE membrane). The thermal aging data for O-ring compression set do not meet the assumptions of standard time-temperature superposition analysis for accelerated aging studies. Instead, the data suggest that multiple degradation mechanisms are operative, with a reversible mechanism operative at low aging temperatures and an irreversible mechanism dominating at high aging temperatures. To distinguish between these mechanisms, we have measured compression set after allowing the sample to physically relax, thereby minimizing the effect of the reversible mechanism. The resulting data were analyzed using two distinct mathematical methods to obtain a lifetime estimate based on chemical degradation alone. Both methods support a lifetime estimate of greater than 150 years at 80°C. Although the role of the reversible mechanism is not fully understood, it is clear that the contribution to the total compression set is small in comparison to that due to the chemical degradation mechanism. To better understand the chemical degradation mechanism, thermally aged O-ring samples have been characterized by Fourier Transform Infrared (FTIR), Electron Paramagnetic Resonance (EPR), Gel Permeation Chromatography (GPC), and Differential Scanning Calorimetry (DSC). These experiments detect no significant O-ring degradation below 80°C. Furthermore, durometer measurements indicate that there is no significant change in O-ring hardness at all aging conditions examined. Therefore, our current conservative lifetime estimate for the O-ring and the filter is 10 years at 80°C. In FY17, we will continue to probe the chemical degradation mechanism using oxygen consumption measurements under accelerated aging conditions to reveal temperatures at which oxidation occurs, along with any differences in oxidation rate at the low vs. high aging temperatures. We will also refine the failure criteria and finalize the radiation/thermal synergistic studies to determine a final design lifetime.« less

  7. The Effect of Different Delivery Conditions on the Accelerated Degradation of Structural Steel in the Coal Mine Environment / Wpływ Różnego Stanu Dostawy Na Przyspieszoną Degradację Stali Konstrukcyjnej W Środowisku Kopalnianym

    NASA Astrophysics Data System (ADS)

    Pawłowski, Bogdan; Bała, Piotr

    2012-12-01

    The main objective of this work was to determine the effect of different delivery conditions on the accelerated degradation of structural steels used for lifting beams (rails) of the monorail transport systems. Some of these rails, made of the same steel grade as others, undergoes accelerated corrosion in the coal mine environment. Corrosion degradation occurs much faster (more than two times faster), comparing to the same steel grade rails operated under the same conditions but with different microstructures. However, all the provided rails meet the requirements of appropriate standards for steel on the lifting beams of the monorail transport systems. The investigations were carried out on rails made of the same steel grade but with different microstructures and showed that the main factor influencing the accelerated corrosion degradation of tested steels is the delivery condition, so-called "as rolled" condition. The greatest resistance to the accelerated corrosion showed rails in the normalized or normalizing rolling condition.

  8. Accelerated aging studies of UHMWPE. I. Effect of resin, processing, and radiation environment on resistance to mechanical degradation.

    PubMed

    Edidin, A A; Herr, M P; Villarraga, M L; Muth, J; Yau, S S; Kurtz, S M

    2002-08-01

    The resin and processing route have been identified as potential variables influencing the mechanical behavior, and hence the clinical performance, of ultra-high molecular weight polyethylene (UHMWPE) orthopedic components. Researchers have reported that components fabricated from 1900 resin may oxidize to a lesser extent than components fabricated from GUR resin during shelf aging after gamma sterilization in air. Conflicting reports on the oxidation resistance for 1900 raise the question of whether resin or manufacturing method, or an interaction between resin and manufacturing method, influences the mechanical behavior of UHMWPE. We conducted a series of accelerated aging studies (no aging, aging in oxygen or in nitrogen) to systematically examine the influence of resin (GUR or 1900), manufacturing method (bulk compression molding or extrusion), and sterilization method (none, in air, or in nitrogen) on the mechanical behavior of UHMWPE. The small punch testing technique was used to evaluate the mechanical behavior of the materials, and Fourier transform infrared spectroscopy was used to characterize the oxidation in selected samples. Our study showed that the sterilization environment, aging condition, and specimen location (surface or subsurface) significantly affected the mechanical behavior of UHMWPE. Each of the three polyethylenes evaluated seem to degrade according to a similar pathway after artificial aging in oxygen and gamma irradiation in air. The initial ability of the materials to exhibit post-yield strain hardening was significantly compromised by degradation. In general, there were only minor differences in the aging behavior of molded and extruded GUR 1050, whereas the molded 1900 material seemed to degrade slightly faster than either of the 1050 materials. Copyright 2002 Wiley Periodicals, Inc.

  9. Reliability assessment of multiple quantum well avalanche photodiodes

    NASA Technical Reports Server (NTRS)

    Yun, Ilgu; Menkara, Hicham M.; Wang, Yang; Oguzman, Isamil H.; Kolnik, Jan; Brennan, Kevin F.; May, Gray S.; Wagner, Brent K.; Summers, Christopher J.

    1995-01-01

    The reliability of doped-barrier AlGaAs/GsAs multi-quantum well avalanche photodiodes fabricated by molecular beam epitaxy is investigated via accelerated life tests. Dark current and breakdown voltage were the parameters monitored. The activation energy of the degradation mechanism and median device lifetime were determined. Device failure probability as a function of time was computed using the lognormal model. Analysis using the electron beam induced current method revealed the degradation to be caused by ionic impurities or contamination in the passivation layer.

  10. Kinetic approach to degradation mechanisms in polymer solar cells and their accurate lifetime predictions

    NASA Astrophysics Data System (ADS)

    Arshad, Muhammad Azeem; Maaroufi, AbdelKrim

    2018-07-01

    A beginning has been made in the present study regarding the accurate lifetime predictions of polymer solar cells. Certain reservations about the conventionally employed temperature accelerated lifetime measurements test for its unworthiness of predicting reliable lifetimes of polymer solar cells are brought into light. Critical issues concerning the accelerated lifetime testing include, assuming reaction mechanism instead of determining it, and relying solely on the temperature acceleration of a single property of material. An advanced approach comprising a set of theoretical models to estimate the accurate lifetimes of polymer solar cells is therefore suggested in order to suitably alternate the accelerated lifetime testing. This approach takes into account systematic kinetic modeling of various possible polymer degradation mechanisms under natural weathering conditions. The proposed kinetic approach is substantiated by its applications on experimental aging data-sets of polymer solar materials/solar cells including, P3HT polymer film, bulk heterojunction (MDMO-PPV:PCBM) and dye-sensitized solar cells. Based on the suggested approach, an efficacious lifetime determination formula for polymer solar cells is derived and tested on dye-sensitized solar cells. Some important merits of the proposed method are also pointed out and its prospective applications are discussed.

  11. Degradation modeling of high temperature proton exchange membrane fuel cells using dual time scale simulation

    NASA Astrophysics Data System (ADS)

    Pohl, E.; Maximini, M.; Bauschulte, A.; vom Schloß, J.; Hermanns, R. T. E.

    2015-02-01

    HT-PEM fuel cells suffer from performance losses due to degradation effects. Therefore, the durability of HT-PEM is currently an important factor of research and development. In this paper a novel approach is presented for an integrated short term and long term simulation of HT-PEM accelerated lifetime testing. The physical phenomena of short term and long term effects are commonly modeled separately due to the different time scales. However, in accelerated lifetime testing, long term degradation effects have a crucial impact on the short term dynamics. Our approach addresses this problem by applying a novel method for dual time scale simulation. A transient system simulation is performed for an open voltage cycle test on a HT-PEM fuel cell for a physical time of 35 days. The analysis describes the system dynamics by numerical electrochemical impedance spectroscopy. Furthermore, a performance assessment is performed in order to demonstrate the efficiency of the approach. The presented approach reduces the simulation time by approximately 73% compared to conventional simulation approach without losing too much accuracy. The approach promises a comprehensive perspective considering short term dynamic behavior and long term degradation effects.

  12. VUV/UV light inducing accelerated phenol degradation with a low electric input.

    PubMed

    Li, Mengkai; Wen, Dong; Qiang, Zhimin; Kiwi, John

    2017-01-23

    This study presents the first evidence for the accelerated degradation of phenol by Fenton's reagent in a mini-fluidic VUV/UV photoreaction system (MVPS). A low-pressure mercury lamp used in the MVPS led to a complete degradation of phenol within 4-6 min. The HO˙ and HO 2 ˙ originating from both Fenton's reagent and VUV photolysis of water were identified with suitable radical scavengers. The effects of initial concentrations of phenol, H 2 O 2 and Fe 3+ as well as solution pH on phenol degradation kinetics were examined. Increasing the initial phenol concentration slowed down the phenol degradation, whereas increasing the initial H 2 O 2 or Fe 3+ concentration accelerated the phenol degradation. The optimal solution pH was 3.7. At both 254 and 185 nm, increasing phenol concentration enhanced its absorption for the incident photons. The reaction mechanism for the degradation of phenol was suggested consistent with the results obtained. This study indicates that the VUV/UV photo-Fenton process has potential applications in the treatment of industrial wastewater containing phenol and related aromatic pollutants.

  13. A validated stability-indicating RP-HPLC method for levofloxacin in the presence of degradation products, its process related impurities and identification of oxidative degradant.

    PubMed

    Lalitha Devi, M; Chandrasekhar, K B

    2009-12-05

    The objective of current study was to develop a validated specific stability indicating reversed-phase liquid chromatographic method for the quantitative determination of levofloxacin as well as its related substances determination in bulk samples, pharmaceutical dosage forms in the presence of degradation products and its process related impurities. Forced degradation studies were performed on bulk sample of levofloxacin as per ICH prescribed stress conditions using acid, base, oxidative, water hydrolysis, thermal stress and photolytic degradation to show the stability indicating power of the method. Significant degradation was observed during oxidative stress and the degradation product formed was identified by LCMS/MS, slight degradation in acidic stress and no degradation was observed in other stress conditions. The chromatographic method was optimized using the samples generated from forced degradation studies and the impurity spiked solution. Good resolution between the peaks corresponds to process related impurities and degradation products from the analyte were achieved on ACE C18 column using the mobile phase consists a mixture of 0.5% (v/v) triethyl amine in sodium dihydrogen orthophosphate dihydrate (25 mM; pH 6.0) and methanol using a simple linear gradient. The detection was carried out at 294 nm. The limit of detection and the limit of quantitation for the levofloxacin and its process related impurities were established. The stressed test solutions were assayed against the qualified working standard of levofloxacin and the mass balance in each case was in between 99.4 and 99.8% indicating that the developed LC method was stability indicating. Validation of the developed LC method was carried out as per ICH requirements. The developed LC method was found to be suitable to check the quality of bulk samples of levofloxacin at the time of batch release and also during its stability studies (long term and accelerated stability).

  14. A novel accelerated oxidative stability screening method for pharmaceutical solids.

    PubMed

    Zhu, Donghua Alan; Zhang, Geoff G Z; George, Karen L S T; Zhou, Deliang

    2011-08-01

    Despite the fact that oxidation is the second most frequent degradation pathway for pharmaceuticals, means of evaluating the oxidative stability of pharmaceutical solids, especially effective stress testing, are still lacking. This paper describes a novel experimental method for peroxide-mediated oxidative stress testing on pharmaceutical solids. The method utilizes urea-hydrogen peroxide, a molecular complex that undergoes solid-state decomposition and releases hydrogen peroxide vapor at elevated temperatures (e.g., 30°C), as a source of peroxide. The experimental setting for this method is simple, convenient, and can be operated routinely in most laboratories. The fundamental parameter of the system, that is, hydrogen peroxide vapor pressure, was determined using a modified spectrophotometric method. The feasibility and utility of the proposed method in solid form selection have been demonstrated using various solid forms of ephedrine. No degradation was detected for ephedrine hydrochloride after exposure to the hydrogen peroxide vapor for 2 weeks, whereas both anhydrate and hemihydrate free base forms degraded rapidly under the test conditions. In addition, both the anhydrate and the hemihydrate free base degraded faster when exposed to hydrogen peroxide vapor at 30°C under dry condition than at 30°C/75% relative humidity (RH). A new degradation product was also observed under the drier condition. The proposed method provides more relevant screening conditions for solid dosage forms, and is useful in selecting optimal solid form(s), determining potential degradation products, and formulation screening during development. Copyright © 2011 Wiley-Liss, Inc.

  15. Uniform and accelerated degradation of pure iron patterned by Pt disc arrays

    PubMed Central

    Huang, Tao; Zheng, Yufeng

    2016-01-01

    Pure iron has been confirmed as a promising biodegradable metal. However, the degradation rate of pure iron should be accelerated to meet the clinical requirements. In this work, two different designs of platinum disc arrays, including sizes of Φ20 μm × S5 μm and Φ4 μm × S4 μm, have been coated on the surface of pure iron. Corrosion tests showed the platinum discs formed plenty of galvanic cells with the iron matrix which significantly accelerated the degradation of pure iron. Simultaneously, due to the designability of the shape, size as well as distribution of Pt discs, the degradation rate as well as degradation uniformity of pure iron can be effectively controlled by coating with platinum discs. The cytotoxicity test results unveiled that Pt discs patterned pure iron exhibited almost no toxicity to human umbilical vein endothelial cells, but a significant inhibition on proliferation of vascular smooth muscle cells. In addition, the hemolysis rate of Pt discs patterned pure iron was lower than 1%. Moreover, Pt discs also effectively reduced the number of adhered platelets. All these results indicated that Pt discs patterning is an effective way to accelerate degradation and improve biocompatibility of pure iron. PMID:27033380

  16. Microtopography recreation benefits ecosystem restoration

    Treesearch

    Wei Wei; Liding Chen; Lei Yang; F. Fred Samadani; Ge Sun

    2012-01-01

    Within the context of global warming and accelerated human activities, the surrounding environments of many terrestrial ecosystems worldwide have become increasingly deteriorated, such that finding suitable methods and effective environmental technology to confront climate change and prevent land degradation is critical to the health and sustainability of the earth. In...

  17. Temperature Effects of Ultraviolet Irradiation on Material Degradation

    NASA Astrophysics Data System (ADS)

    Mori, Kazuyuki; Ishizawa, Junichiro

    Ultraviolet rays (UV) cause organic materials to deteriorate. UV irradiation ground testing is therefore important to understand the “adequate lifetime assessment” and the “end-of-life (EOL) characteristic” of materials used in space. In previous experiments, high temperatures were found to accelerate the UV degradation of cross-linked ethylene tetrafluoroethylene (X-ETFE). This causes concern of potentially similar effects in other materials. In this study, we evaluated UV degradation at high temperatures and subsequently determined materials usable in space that had shown accelerated degradation due to UV irradiation at high temperatures.

  18. Characterization of a low-level unknown isomeric degradation product using an integrated online-offline top-down tandem mass spectrometry platform.

    PubMed

    Yu, Xiang; Warme, Christopher; Lee, Dinah; Zhang, Jing; Zhong, Wendy

    2013-10-01

    An integrated online-offline platform was developed combining automated online LC-MS fraction collection, continuous accumulation of selected ions (CASI), and offline top-down electron capture dissociation (ECD) tandem mass spectrometry experiments to identify a low-level, unknown isomeric degradant in a formulated drug product during an accelerated stability study. By identifying the diagnostic ions of the isoaspartic acid (isoAsp), the top-down ECD experiment showed that the Asp9 in exenatide was converted to isoAsp9 to form the unknown isomeric degradant. The platform described here provides an accurate, straightforward, and low limit of detection method for the analysis of Asp isomerization as well as other potential low-level degradants in therapeutic polypeptides and proteins. It is especially useful for unstable and time-sensitive degradants and impurities.

  19. Arrhenius time-scaled least squares: a simple, robust approach to accelerated stability data analysis for bioproducts.

    PubMed

    Rauk, Adam P; Guo, Kevin; Hu, Yanling; Cahya, Suntara; Weiss, William F

    2014-08-01

    Defining a suitable product presentation with an acceptable stability profile over its intended shelf-life is one of the principal challenges in bioproduct development. Accelerated stability studies are routinely used as a tool to better understand long-term stability. Data analysis often employs an overall mass action kinetics description for the degradation and the Arrhenius relationship to capture the temperature dependence of the observed rate constant. To improve predictive accuracy and precision, the current work proposes a least-squares estimation approach with a single nonlinear covariate and uses a polynomial to describe the change in a product attribute with respect to time. The approach, which will be referred to as Arrhenius time-scaled (ATS) least squares, enables accurate, precise predictions to be achieved for degradation profiles commonly encountered during bioproduct development. A Monte Carlo study is conducted to compare the proposed approach with the common method of least-squares estimation on the logarithmic form of the Arrhenius equation and nonlinear estimation of a first-order model. The ATS least squares method accommodates a range of degradation profiles, provides a simple and intuitive approach for data presentation, and can be implemented with ease. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.

  20. Advances in simultaneous DSC-FTIR microspectroscopy for rapid solid-state chemical stability studies: some dipeptide drugs as examples.

    PubMed

    Lin, Shan-Yang; Wang, Shun-Li

    2012-04-01

    The solid-state chemistry of drugs has seen growing importance in the pharmaceutical industry for the development of useful API (active pharmaceutical ingredients) of drugs and stable dosage forms. The stability of drugs in various solid dosage forms is an important issue because solid dosage forms are the most common pharmaceutical formulation in clinical use. In solid-state stability studies of drugs, an ideal accelerated method must not only be selected by different complicated methods, but must also detect the formation of degraded product. In this review article, an analytical technique combining differential scanning calorimetry and Fourier-transform infrared (DSC-FTIR) microspectroscopy simulates the accelerated stability test, and simultaneously detects the decomposed products in real time. The pharmaceutical dipeptides aspartame hemihydrate, lisinopril dihydrate, and enalapril maleate either with or without Eudragit E were used as testing examples. This one-step simultaneous DSC-FTIR technique for real-time detection of diketopiperazine (DKP) directly evidenced the dehydration process and DKP formation as an impurity common in pharmaceutical dipeptides. DKP formation in various dipeptides determined by different analytical methods had been collected and compiled. Although many analytical methods have been applied, the combined DSC-FTIR technique is an easy and fast analytical method which not only can simulate the accelerated drug stability testing but also at the same time enable to explore phase transformation as well as degradation due to thermal-related reactions. This technique offers quick and proper interpretations. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. Peter Hacke | NREL

    Science.gov Websites

    photovoltaic (PV) modules, inspections for root cause of module failures in the field, and accelerated lifetime delamination. His research interests are in modeling of degradation processes of PV modules, module integrated analysis of PV degradation data. He also explores accelerated multi-stress and combined stress testing to

  2. Development of an Accelerated Test Design for Predicting the Service Life of the Solar Array at Mead, Nebraska

    NASA Technical Reports Server (NTRS)

    Gaines, G. B.; Thomas, R. E.; Noel, G. T.; Shilliday, T. S.; Wood, V. E.; Carmichael, D. C.

    1979-01-01

    Potential long-term degradation modes for the two types of modules in the Mead array were determined and judgments were made as to those environmental stresses and combinations of stresses which accelerate the degradation of the power output. Hierarchical trees representing the severity of effects of stresses (test conditions) on eleven individual degradation modes were constructed and were pruned of tests judged to be nonessential. Composites of those trees were developed so that there is now one pruned tree covering eight degradation modes, another covering two degradation modes, and a third covering one degradation mode. These three composite trees form the basis for selection of test conditions in the final test plan which is now being prepared.

  3. Accelerated in vitro release testing of implantable PLGA microsphere/PVA hydrogel composite coatings

    PubMed Central

    Shen, Jie; Burgess, Diane J.

    2011-01-01

    Dexamethasone loaded poly(lactic-co-glycolic acid) (PLGA) microsphere/PVA hydrogel composites have been investigated as an outer drug-eluting coating for implantable devices such as glucose sensors to counter negative tissue responses to implants. The objective of this study was to develop a discriminatory, accelerated in vitro release testing method for this drug-eluting coating using United States Pharmacopeia (USP) apparatus 4. Polymer degradation and drug release kinetics were investigated under “real-time” and accelerated conditions (i.e. extreme pH, hydro-alcoholic solutions and elevated temperatures). Compared to “real-time” conditions, the initial burst and lag phases were similar using hydro-alcoholic solutions and extreme pH conditions, while the secondary apparent zero-order release phase was slightly accelerated. Elevated temperatures resulted in a significant acceleration of dexamethasone release. The accelerated release data were able to predict “real-time” release when applying the Arrhenius equation. Microsphere batches with faster and slower release profiles were investigated under “real-time” and elevated temperature (60°C) conditions to determine the discriminatory ability of the method. The results demonstrated both the feasibility and the discriminatory ability of this USP apparatus 4 method for in vitro release testing of drug loaded PLGA microsphere/PVA hydrogel composites. This method may be appropriate for similar drug/device combination products and drug delivery systems. PMID:22016033

  4. Accelerated in vitro release testing of implantable PLGA microsphere/PVA hydrogel composite coatings.

    PubMed

    Shen, Jie; Burgess, Diane J

    2012-01-17

    Dexamethasone loaded poly(lactic-co-glycolic acid) (PLGA) microsphere/PVA hydrogel composites have been investigated as an outer drug-eluting coating for implantable devices such as glucose sensors to counter negative tissue responses to implants. The objective of this study was to develop a discriminatory, accelerated in vitro release testing method for this drug-eluting coating using United States Pharmacopeia (USP) apparatus 4. Polymer degradation and drug release kinetics were investigated under "real-time" and accelerated conditions (i.e. extreme pH, hydro-alcoholic solutions and elevated temperatures). Compared to "real-time" conditions, the initial burst and lag phases were similar using hydro-alcoholic solutions and extreme pH conditions, while the secondary apparent zero-order release phase was slightly accelerated. Elevated temperatures resulted in a significant acceleration of dexamethasone release. The accelerated release data were able to predict "real-time" release when applying the Arrhenius equation. Microsphere batches with faster and slower release profiles were investigated under "real-time" and elevated temperature (60°C) conditions to determine the discriminatory ability of the method. The results demonstrated both the feasibility and the discriminatory ability of this USP apparatus 4 method for in vitro release testing of drug loaded PLGA microsphere/PVA hydrogel composites. This method may be appropriate for similar drug/device combination products and drug delivery systems. Copyright © 2011 Elsevier B.V. All rights reserved.

  5. Correlation between mechanical and chemical degradation after outdoor and accelerated laboratory aging for multilayer photovoltaic backsheets

    NASA Astrophysics Data System (ADS)

    Lin, Chiao-Chi; Lyu, Yadong; Yu, Li-Chieh; Gu, Xiaohong

    2016-09-01

    Channel cracking fragmentation testing and attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy were utilized to study mechanical and chemical degradation of a multilayered backsheet after outdoor and accelerated laboratory aging. A model sample of commercial PPE backsheet, namely polyethylene terephthalate/polyethylene terephthalate/ethylene vinyl acetate (PET/PET/EVA) was investigated. Outdoor aging was performed in Gaithersburg, Maryland, USA for up to 510 days, and complementary accelerated laboratory aging was conducted on the NIST (National Institute of Standards and Technology) SPHERE (Simulated Photodegradation via High Energy Radiant Exposure). Fracture energy, mode I stress intensity factor and film strength were analyzed using an analytical model based on channel cracking fragmentation testing results. The correlation between mechanical and chemical degradation was discussed for both outdoor and accelerated laboratory aging. The results of this work provide preliminary understanding on failure mechanism of backsheets after weathering, laying the groundwork for linking outdoor and indoor accelerated laboratory testing for multilayer photovoltaic backsheets.

  6. Estimating degradation in real time and accelerated stability tests with random lot-to-lot variation: a simulation study.

    PubMed

    Magari, Robert T

    2002-03-01

    The effect of different lot-to-lot variability levels on the prediction of stability are studied based on two statistical models for estimating degradation in real time and accelerated stability tests. Lot-to-lot variability is considered as random in both models, and is attributed to two sources-variability at time zero, and variability of degradation rate. Real-time stability tests are modeled as a function of time while accelerated stability tests as a function of time and temperatures. Several data sets were simulated, and a maximum likelihood approach was used for estimation. The 95% confidence intervals for the degradation rate depend on the amount of lot-to-lot variability. When lot-to-lot degradation rate variability is relatively large (CV > or = 8%) the estimated confidence intervals do not represent the trend for individual lots. In such cases it is recommended to analyze each lot individually. Copyright 2002 Wiley-Liss, Inc. and the American Pharmaceutical Association J Pharm Sci 91: 893-899, 2002

  7. Non-destructive evaluation of specialty coating degradation using terahertz time-domain spectroscopy

    NASA Astrophysics Data System (ADS)

    Nicoletti, Carley R.; Cramer, Laura; Fletcher, Alan; Zimdars, David; Iqbal, Zafar; Federici, John F.

    2017-05-01

    The Terahertz Time Domain Reflection Spectroscopy (THz-TDS) method of paint layer diagnostics is a non-contact electromagnetic technique analogous to pulsed-ultrasound with the added capability of spectroscopic characterization. The THz-TDS sensor emits a near-single cycle electromagnetic pulse with a bandwidth from 0.1 to 3 THz. This wide bandwidth pulse is focused on the coating, and echo pulses are generated from each interface (air-coating, layer-layer, coating-substrate). In this paper, the THz-TDS method is applied to specialty aircraft coatings. The THz-TDS method is able to penetrate the whole coating stack and sample the properties of each layer. Because the reflected pulses from individual layers typically overlap in time, the complex permittivity function and thickness of each layer is determined by a best fit of the measured reflection (either in time or frequency domain) to a layered model of the paint. The THz- TDS method is applied to specialty coatings prior to and during accelerated aging on a series of test coupons. The coupons are also examined during aging using ATR (attenuated total reflectance)-FTIR spectroscopy, Raman scattering spectroscopy, and Scanning Electron Microscopy (SEM) to ascertain, quantify, and understand the breakdown mechanisms of the coatings. In addition, the same samples are characterized using THz-TDS techniques to determine if the THz-TDS method can be utilized as a non-destructive evaluation technique to sense degradation of the coatings. Our results suggest that the degradation mechanism begins in the top coat layer. In this layer, 254 nm UV illumination in combination with the presence of moisture works partially with oxides as catalysts to decompose the polymer matrix thereby creating porosity in the top coat layer. Since the catalytic effect is partial, loss of the oxides by chemical reaction can also occur. As the topcoat layer becomes more porous, it allows water vapor to permeate the topcoat layer and interact with the rain erosion layer via carbonization of the polymer matrix in the rain erosion layer. The presence of the salt accelerates the pitting degradation. The goal of this paper is to determine if THz-TDS can be used to sense degradation of the coating.

  8. Quantum correlations in non-inertial cavity systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harsij, Zeynab, E-mail: z.harsij@ph.iut.ac.ir; Mirza, Behrouz, E-mail: b.mirza@cc.iut.ac.ir

    2016-10-15

    Non-inertial cavities are utilized to store and send Quantum Information between mode pairs. A two-cavity system is considered where one is inertial and the other accelerated in a finite time. Maclaurian series are applied to expand the related Bogoliubov coefficients and the problem is treated perturbatively. It is shown that Quantum Discord, which is a measure of quantumness of correlations, is degraded periodically. This is almost in agreement with previous results reached in accelerated systems where increment of acceleration decreases the degree of quantum correlations. As another finding of the study, it is explicitly shown that degradation of Quantum Discordmore » disappears when the state is in a single cavity which is accelerated for a finite time. This feature makes accelerating cavities useful instruments in Quantum Information Theory. - Highlights: • Non-inertial cavities are utilized to store and send information in Quantum Information Theory. • Cavities include boundary conditions which will protect the entanglement once it has been created. • The problem is treated perturbatively and the maclaurian series are applied to expand the related Bogoliubov coefficients. • When two cavities are considered degradation in the degree of quantum correlation happens and it appears periodically. • The interesting issue is when a single cavity is studied and the degradation in quantum correlations disappears.« less

  9. Light-current-induced acceleration of degradation of methylammonium lead iodide perovskite solar cells

    NASA Astrophysics Data System (ADS)

    Xiang, Yuren; Zhang, Fan; He, Junjie; Lian, Jiarong; Zeng, Pengju; Song, Jun; Qu, Junle

    2018-04-01

    The photo-conversion efficiency of perovskite solar cells (PSCs) has been improved considerably in recent years, but the poor stability of PSCs still prevents their commercialization. In this report, we use the rate of the integrated short-circuit current change (Drate) to investigate the performance degradation kinetics and identify the degradation of PSCs that is accelerated by the light current. The value of Drate increases by an order of magnitude from about 0.02 to 0.35 mA cm-2·min-1 after light-IV testing. The accelerated degradation progress is proven to be dominated by the hydration process and the migration of the iodine ions of the light current. The migration of the iodine ions enhances the hydration process through a chain reaction, enabling the formation of fast diffusion channels for both H2O and O2, which induce the rapid decomposition of the perovskite film and increase the density of the trap state. The X-ray photoelectron spectroscopy measurement data also indicate that the super oxygen may be formed due to the PCBM damage caused by the migration iodine ions. An understanding of the degradation acceleration mechanism would provide an insight into the effect of ion migration on the stability of PSCs.

  10. Combined ultraviolet and water exposure as a preconditioning method in laboratory fungal durability testing

    Treesearch

    Rebecca E. Ibach; Craig M. Clemons; Nicole M. Stark

    2003-01-01

    During outdoor exposure, woodfiber-plastic composites (WPC) are subject to biological, moisture, and ultraviolet (UV) degradation. The purpose of laboratory evaluations is to simulate outdoor conditions and accelerate the testing for quicker results. Traditionally, biological, moisture, and W laboratory tests are done separately, and only combined in outdoor field...

  11. Durability of adhesives in plywood

    Treesearch

    Robert H. Gillespie; Bryan H. River

    1976-01-01

    Seven different adhesives were evaluated for durability as plywood adhesives by exposing panels and shear-test specimens to weathering at the Madison exposure site for nearly 8 years. Wet-strength loss and wood-failure changes were measured as a function of exposure time. The method of exposure accelerated the degradation that would have resulted from exposure in most...

  12. Estimating the remaining useful life of bearings using a neuro-local linear estimator-based method.

    PubMed

    Ahmad, Wasim; Ali Khan, Sheraz; Kim, Jong-Myon

    2017-05-01

    Estimating the remaining useful life (RUL) of a bearing is required for maintenance scheduling. While the degradation behavior of a bearing changes during its lifetime, it is usually assumed to follow a single model. In this letter, bearing degradation is modeled by a monotonically increasing function that is globally non-linear and locally linearized. The model is generated using historical data that is smoothed with a local linear estimator. A neural network learns this model and then predicts future levels of vibration acceleration to estimate the RUL of a bearing. The proposed method yields reasonably accurate estimates of the RUL of a bearing at different points during its operational life.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khan, Salman, E-mail: sksafi@comsats.edu.pk

    The dynamics of tripartite entanglement of fermionic system in noninertial frames through linear contraction criterion when one or two observers are accelerated is investigated. In one observer accelerated case the entanglement measurement is not invariant with respect to the partial realignment of different subsystems and for two observers accelerated case it is invariant. It is shown that the acceleration of the frame does not generate entanglement in any bipartite subsystems. Unlike the bipartite states, the genuine tripartite entanglement does not completely vanish in both one observer accelerated and two observers accelerated cases even in the limit of infinite acceleration. Themore » degradation of tripartite entanglement is fast when two observers are accelerated than when one observer is accelerated. It is shown that tripartite entanglement is a better resource for quantum information processing than the bipartite entanglement in noninertial frames. - Highlights: • Tripartite entanglement of fermionic system in noninertial frames is studied. • Linear contraction criterion for quantifying tripartite entanglement is used. • Acceleration does not produce any bipartite entanglement. • The invariance of entanglement quantifier depends on accelerated observers. • The tripartite entanglement degrades against the acceleration, it never vanishes.« less

  14. VUV/UV light inducing accelerated phenol degradation with a low electric input† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c6ra26043h Click here for additional data file.

    PubMed Central

    Li, Mengkai; Wen, Dong

    2017-01-01

    This study presents the first evidence for the accelerated degradation of phenol by Fenton's reagent in a mini-fluidic VUV/UV photoreaction system (MVPS). A low-pressure mercury lamp used in the MVPS led to a complete degradation of phenol within 4–6 min. The HO˙ and HO2˙ originating from both Fenton's reagent and VUV photolysis of water were identified with suitable radical scavengers. The effects of initial concentrations of phenol, H2O2 and Fe3+ as well as solution pH on phenol degradation kinetics were examined. Increasing the initial phenol concentration slowed down the phenol degradation, whereas increasing the initial H2O2 or Fe3+ concentration accelerated the phenol degradation. The optimal solution pH was 3.7. At both 254 and 185 nm, increasing phenol concentration enhanced its absorption for the incident photons. The reaction mechanism for the degradation of phenol was suggested consistent with the results obtained. This study indicates that the VUV/UV photo-Fenton process has potential applications in the treatment of industrial wastewater containing phenol and related aromatic pollutants. PMID:28496972

  15. Study of degradation behaviour of montelukast sodium and its marketed formulation in oxidative and accelerated test conditions and prediction of physicochemical and ADMET properties of its degradation products using ADMET Predictor™.

    PubMed

    Tiwari, Shobhit Kumar; Singh, Dilip Kumar; Ladumor, Mayurbhai Kathadbhai; Chakraborti, Asit K; Singh, Saranjit

    2018-05-26

    Study of oxidative stability of pharmaceutical actives and formulations is important as oxidation pathway is the second most significant route for the decay of pharmaceuticals. Montelukast sodium, a leukotriene receptor antagonist, is prone to oxidation reactions owing to sensitive moieties in its structure. It is also known to be light sensitive. This study was aimed to understand the degradation behaviour of the drug in different oxidative media containing hydrogen peroxide, AIBN, Fe 3+ , Fenton's reagent and O 2 environment under normal laboratory light conditions. The degradation behaviour of the drug was also evaluated in solid sate under ICH recommended accelerated stability condition of 40 °C/75% RH to correlate with the degradation products (DPs) formed in a solid oral formulation. A total of nine DPs (MTK 1 to MTK 9) were formed from both the drug substance and the marketed tablet formulation on storage under controlled oxygen environment in normal laboratory light and temperature conditions. These DPs were well separated on a C-18 column using a gradient HPLC method. The characterization of DPs was done based on HRMS and multi-stage tandem mass spectrometric (MS n ) data. The knowledge of the structure of DPs helped in laying down degradation pathway of the drug. Also, mechanism for the formation of each DP was postulated. Finally, physicochemical as well as absorption, distribution, metabolism, excretion and toxicity (ADMET) properties of the DPs were predicted by ADMET Predictor™ software. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Failure analysis of InGaN/GaN high power light-emitting diodes fabricated with ITO transparent p-type electrode during accelerated electro-thermal stress.

    PubMed

    Moon, Seong Min; Kim, Y D; Oh, S K; Park, M J; Kwak, Joon Seop

    2012-05-01

    We have investigated the high-temperature degradation of optical power as well as electrical properties of InGaN/GaN light-emitting diodes (LEDs) fabricated with ITO transparent p-electrode during accelerated electro-thermal stress. As the thermal stress increased from 150 degrees C to 250 degrees C at a electrical stress of 200 mA, the optical power of the LEDs was significantly reduced. Degradation of the optical power was thermally activated, with the activation of 0.9 eV. In addition, the activation energy of the degradation of optical power was fairly similar to that of the degradation of series resistance of the LEDs, 1.0 eV, which implies that the increase in the series resistance may result in the severe degradation of optical power. We also showed that the increase in the series resistance of the LEDs during the accelerated electro-thermal stress can be attributed to reduction of the active acceptor concentration in the p-type semiconductor layers and local joule heating due to the current crowding.

  17. Accelerated collagen turnover in women with angina pectoris without obstructive coronary artery disease: An iPOWER substudy.

    PubMed

    Nielsen, Signe H; Mygind, Naja D; Michelsen, Marie M; Bechsgaard, Daria F; Suhrs, Hannah E; Genovese, Federica; Nielsen, Henning B; Brix, Susanne; Karsdal, Morten; Prescott, Eva; Kastrup, Jens

    2018-05-01

    Aim Collagens are major cardiac extracellular matrix components, known to be actively remodelled and accumulated during diffuse myocardial fibrosis. We evaluated whether accelerated collagen turnover described by neo-epitope biomarkers reflecting collagen formation and degradation separates patients with diffuse myocardial fibrosis from asymptomatic controls. Methods and results Seventy-one women with angina pectoris without significant coronary artery disease assessed by invasive coronary angiogram were included. Competitive enzyme-linked immunosorbent assays (ELISAs) measuring circulating protein fragments in serum assessed the formation and degradation of collagen type III (Pro-C3, C3M and C3C), IV (P4NP7S and C4M), V (Pro-C5 and C5M) and VI (Pro-C6 and C6M), and degradation of collagen type I (C1M). Serum samples from 32 age-matched asymptomatic women were included as controls. Symptomatic women presented significantly elevated levels of Pro-C6, C3C, C3M, C4M and C8-C ( p < 0.0001-0.0058) and significantly decreased levels of Pro-C3, C5M and C6M ( p < 0.0001-0.041), reflecting accelerated collagen turnover and an imbalanced collagen formation and degradation compared to controls. Cardiac magnetic resonance T1 mapping was performed to determine extracellular volume fraction and thus diffuse myocardial fibrosis. A significant association was identified between C5M and extracellular volume fraction by cardiac magnetic resonance ( p = 0.01). Conclusion Women with angina pectoris, but without significant obstructive coronary artery disease, showed an imbalanced collagen turnover compared to asymptomatic controls. The examined biomarkers are tools to monitor active collagen remodelling in patients with angina pectoris, in risk of developing myocardial fibrosis.

  18. Evaluation of HDPE and LDPE degradation by fungus, implemented by statistical optimization

    NASA Astrophysics Data System (ADS)

    Ojha, Nupur; Pradhan, Neha; Singh, Surjit; Barla, Anil; Shrivastava, Anamika; Khatua, Pradip; Rai, Vivek; Bose, Sutapa

    2017-01-01

    Plastic in any form is a nuisance to the well-being of the environment. The ‘pestilence’ caused by it is mainly due to its non-degradable nature. With the industrial boom and the population explosion, the usage of plastic products has increased. A steady increase has been observed in the use of plastic products, and this has accelerated the pollution. Several attempts have been made to curb the problem at large by resorting to both chemical and biological methods. Chemical methods have only resulted in furthering the pollution by releasing toxic gases into the atmosphere; whereas; biological methods have been found to be eco-friendly however they are not cost effective. This paves the way for the current study where fungal isolates have been used to degrade polyethylene sheets (HDPE, LDPE). Two potential fungal strains, namely, Penicillium oxalicum NS4 (KU559906) and Penicillium chrysogenum NS10 (KU559907) had been isolated and identified to have plastic degrading abilities. Further, the growth medium for the strains was optimized with the help of RSM. The plastic sheets were subjected to treatment with microbial culture for 90 days. The extent of degradation was analyzed by, FE-SEM, AFM and FTIR. Morphological changes in the plastic sheet were determined.

  19. Evaluation of HDPE and LDPE degradation by fungus, implemented by statistical optimization.

    PubMed

    Ojha, Nupur; Pradhan, Neha; Singh, Surjit; Barla, Anil; Shrivastava, Anamika; Khatua, Pradip; Rai, Vivek; Bose, Sutapa

    2017-01-04

    Plastic in any form is a nuisance to the well-being of the environment. The 'pestilence' caused by it is mainly due to its non-degradable nature. With the industrial boom and the population explosion, the usage of plastic products has increased. A steady increase has been observed in the use of plastic products, and this has accelerated the pollution. Several attempts have been made to curb the problem at large by resorting to both chemical and biological methods. Chemical methods have only resulted in furthering the pollution by releasing toxic gases into the atmosphere; whereas; biological methods have been found to be eco-friendly however they are not cost effective. This paves the way for the current study where fungal isolates have been used to degrade polyethylene sheets (HDPE, LDPE). Two potential fungal strains, namely, Penicillium oxalicum NS4 (KU559906) and Penicillium chrysogenum NS10 (KU559907) had been isolated and identified to have plastic degrading abilities. Further, the growth medium for the strains was optimized with the help of RSM. The plastic sheets were subjected to treatment with microbial culture for 90 days. The extent of degradation was analyzed by, FE-SEM, AFM and FTIR. Morphological changes in the plastic sheet were determined.

  20. High temperature polymer degradation: Rapid IR flow-through method for volatile quantification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Giron, Nicholas H.; Celina, Mathew C.

    Accelerated aging of polymers at elevated temperatures often involves the generation of volatiles. These can be formed as the products of oxidative degradation reactions or intrinsic pyrolytic decomposition as part of polymer scission reactions. A simple analytical method for the quantification of water, CO 2, and CO as fundamental signatures of degradation kinetics is required. Here, we describe an analytical framework and develops a rapid mid-IR based gas analysis methodology to quantify volatiles that are contained in small ampoules after aging exposures. The approach requires identification of unique spectral signatures, systematic calibration with known concentrations of volatiles, and a rapidmore » acquisition FTIR spectrometer for time resolved successive spectra. Furthermore, the volatiles are flushed out from the ampoule with dry N2 carrier gas and are then quantified through spectral and time integration. This method is sufficiently sensitive to determine absolute yields of ~50 μg water or CO 2, which relates to probing mass losses of less than 0.01% for a 1 g sample, i.e. the early stages in the degradation process. Such quantitative gas analysis is not easily achieved with other approaches. Our approach opens up the possibility of quantitative monitoring of volatile evolution as an avenue to explore polymer degradation kinetics and its dependence on time and temperature.« less

  1. High temperature polymer degradation: Rapid IR flow-through method for volatile quantification

    DOE PAGES

    Giron, Nicholas H.; Celina, Mathew C.

    2017-05-19

    Accelerated aging of polymers at elevated temperatures often involves the generation of volatiles. These can be formed as the products of oxidative degradation reactions or intrinsic pyrolytic decomposition as part of polymer scission reactions. A simple analytical method for the quantification of water, CO 2, and CO as fundamental signatures of degradation kinetics is required. Here, we describe an analytical framework and develops a rapid mid-IR based gas analysis methodology to quantify volatiles that are contained in small ampoules after aging exposures. The approach requires identification of unique spectral signatures, systematic calibration with known concentrations of volatiles, and a rapidmore » acquisition FTIR spectrometer for time resolved successive spectra. Furthermore, the volatiles are flushed out from the ampoule with dry N2 carrier gas and are then quantified through spectral and time integration. This method is sufficiently sensitive to determine absolute yields of ~50 μg water or CO 2, which relates to probing mass losses of less than 0.01% for a 1 g sample, i.e. the early stages in the degradation process. Such quantitative gas analysis is not easily achieved with other approaches. Our approach opens up the possibility of quantitative monitoring of volatile evolution as an avenue to explore polymer degradation kinetics and its dependence on time and temperature.« less

  2. Evaluation of HDPE and LDPE degradation by fungus, implemented by statistical optimization

    PubMed Central

    Ojha, Nupur; Pradhan, Neha; Singh, Surjit; Barla, Anil; Shrivastava, Anamika; Khatua, Pradip; Rai, Vivek; Bose, Sutapa

    2017-01-01

    Plastic in any form is a nuisance to the well-being of the environment. The ‘pestilence’ caused by it is mainly due to its non-degradable nature. With the industrial boom and the population explosion, the usage of plastic products has increased. A steady increase has been observed in the use of plastic products, and this has accelerated the pollution. Several attempts have been made to curb the problem at large by resorting to both chemical and biological methods. Chemical methods have only resulted in furthering the pollution by releasing toxic gases into the atmosphere; whereas; biological methods have been found to be eco-friendly however they are not cost effective. This paves the way for the current study where fungal isolates have been used to degrade polyethylene sheets (HDPE, LDPE). Two potential fungal strains, namely, Penicillium oxalicum NS4 (KU559906) and Penicillium chrysogenum NS10 (KU559907) had been isolated and identified to have plastic degrading abilities. Further, the growth medium for the strains was optimized with the help of RSM. The plastic sheets were subjected to treatment with microbial culture for 90 days. The extent of degradation was analyzed by, FE-SEM, AFM and FTIR. Morphological changes in the plastic sheet were determined. PMID:28051105

  3. Motion-compensated compressed sensing for dynamic contrast-enhanced MRI using regional spatiotemporal sparsity and region tracking: Block LOw-rank Sparsity with Motion-guidance (BLOSM)

    PubMed Central

    Chen, Xiao; Salerno, Michael; Yang, Yang; Epstein, Frederick H.

    2014-01-01

    Purpose Dynamic contrast-enhanced MRI of the heart is well-suited for acceleration with compressed sensing (CS) due to its spatiotemporal sparsity; however, respiratory motion can degrade sparsity and lead to image artifacts. We sought to develop a motion-compensated CS method for this application. Methods A new method, Block LOw-rank Sparsity with Motion-guidance (BLOSM), was developed to accelerate first-pass cardiac MRI, even in the presence of respiratory motion. This method divides the images into regions, tracks the regions through time, and applies matrix low-rank sparsity to the tracked regions. BLOSM was evaluated using computer simulations and first-pass cardiac datasets from human subjects. Using rate-4 acceleration, BLOSM was compared to other CS methods such as k-t SLR that employs matrix low-rank sparsity applied to the whole image dataset, with and without motion tracking, and to k-t FOCUSS with motion estimation and compensation that employs spatial and temporal-frequency sparsity. Results BLOSM was qualitatively shown to reduce respiratory artifact compared to other methods. Quantitatively, using root mean squared error and the structural similarity index, BLOSM was superior to other methods. Conclusion BLOSM, which exploits regional low rank structure and uses region tracking for motion compensation, provides improved image quality for CS-accelerated first-pass cardiac MRI. PMID:24243528

  4. Introduction of atrazine degrader to enhance rhizodegradation of atrazine

    USDA-ARS?s Scientific Manuscript database

    Introducing atrazine (ATR) degraders into riparian vegetative buffer strips (VBS) can be a promising bioremediation approach to accelerate the degradation of ATR and its degradation products deposited into VBS by surface runoff. A growth chamber study was conducted to investigated the synergistic ef...

  5. Study of stability of methotrexate in acidic solution spectrofluorimetric determination of methotrexate in pharmaceutical preparations through acid-catalyzed degradation reaction.

    PubMed

    Sabry, Suzy M; Abdel-Hady, M; Elsayed, M; Fahmy, Osama T; Maher, Hadir M

    2003-07-14

    Study of the degradation reaction of methotrexate (MTX) in acidic solution was carried out. Optimization of the experimental parameters of MTX acid hydrolysis was investigated. Spectrofluorimetric method for determination of MTX through measurement of its acid-degradation product, 4-amino-4-deoxy-10-methylpteroic acid (AMP), was developed. Stability of the standard solution of MTX prepared in sulfuric acid was discussed in the view of accelerated stability analysis. Two other comparative spectroflourimetric methods based on measuring the fluorescence intensities from either a condensation reaction with acetylacetone-formaldehyde (Hantzsch reaction) or a reaction with fluorescamine were also described. Beer's law validation, accuracy, precision, limits of detection, limits of quantification, and other aspects of analytical merit are presented in the text. The proposed methods were successfully applied for the analysis of MTX in pure drug and tablets dosage form. The sensitivity of the developed methods was favorable, so it was possible to be adopted for determination of MTX in plasma samples for routine use in high-dose MTX therapy.

  6. Electron Beam Materials Irradiators

    NASA Astrophysics Data System (ADS)

    Cleland, Marshall R.

    2012-06-01

    Radiation processing is a well established method for enhancing the properties of materials and commercial products by treating them with ionizing energy in the form of high-energy electrons, X-rays, and gamma rays. Beneficial effects include polymerizing, cross-linking, grafting and degrading plastics, sterilizing single-use medical devices, disinfecting and disinfesting fresh foods, purifying drinking water, treating wastewater and other toxic waste materials that harm the environment, and many other applications that are still being evaluated. Industrial electron accelerators of several types have been developed and are being used for these applications. More than 1800 electron accelerators are presently installed in facilities worldwide for these purposes.

  7. Accelerated lifetime test of vibration isolator made of Metal Rubber material

    NASA Astrophysics Data System (ADS)

    Ao, Hongrui; Ma, Yong; Wang, Xianbiao; Chen, Jianye; Jiang, Hongyuan

    2017-01-01

    The Metal Rubber material (MR) is a kind of material with nonlinear damping characteristics for its application in the field of aerospace, petrochemical industry and so on. The study on the lifetime of MR material is impendent to its application in engineering. Based on the dynamic characteristic of MR, the accelerated lifetime experiments of vibration isolators made of MR working under random vibration load were conducted. The effects of structural parameters of MR components on the lifetime of isolators were studied and modelled with the fitting curves of degradation data. The lifetime prediction methods were proposed based on the models.

  8. Prognostics of Power Mosfets Under Thermal Stress Accelerated Aging Using Data-Driven and Model-Based Methodologies

    NASA Technical Reports Server (NTRS)

    Celaya, Jose; Saxena, Abhinav; Saha, Sankalita; Goebel, Kai F.

    2011-01-01

    An approach for predicting remaining useful life of power MOSFETs (metal oxide field effect transistor) devices has been developed. Power MOSFETs are semiconductor switching devices that are instrumental in electronics equipment such as those used in operation and control of modern aircraft and spacecraft. The MOSFETs examined here were aged under thermal overstress in a controlled experiment and continuous performance degradation data were collected from the accelerated aging experiment. Dieattach degradation was determined to be the primary failure mode. The collected run-to-failure data were analyzed and it was revealed that ON-state resistance increased as die-attach degraded under high thermal stresses. Results from finite element simulation analysis support the observations from the experimental data. Data-driven and model based prognostics algorithms were investigated where ON-state resistance was used as the primary precursor of failure feature. A Gaussian process regression algorithm was explored as an example for a data-driven technique and an extended Kalman filter and a particle filter were used as examples for model-based techniques. Both methods were able to provide valid results. Prognostic performance metrics were employed to evaluate and compare the algorithms.

  9. Electrodeless plasma acceleration system using rotating magnetic field method

    NASA Astrophysics Data System (ADS)

    Furukawa, T.; Takizawa, K.; Kuwahara, D.; Shinohara, S.

    2017-11-01

    We have proposed Rotating Magnetic Field (RMF) acceleration method as one of electrodeless plasma accelerations. In our experimental scheme, plasma generated by an rf (radio frequency) antenna, is accelerated by RMF antennas, which consist of two-pair, opposed, facing coils, and these antennas are outside of a discharge tube. Therefore, there is no wear of electrodes, degrading the propulsion performance. Here, we will introduce our RMF acceleration system developed, including the experimental device, e.g., external antennas, a tapered quartz tube, a vacuum chamber, external magnets, and a pumping system. In addition, we can change RMF operation parameters (RMF applied current IRMF and RMF current phase difference ϕ, focusing on RMF current frequency fRMF) by adjusting matching conditions of RMF, and investigate the dependencies on plasma parameters (electron density ne and ion velocity vi); e.g., higher increases of ne and vi (˜360 % and 55 %, respectively) than previous experimental results were obtained by decreasing fRMF from 5 MHz to 0.7 MHz, whose RMF penetration condition was better according to Milroy's expression. Moreover, time-varying component of RMF has been measured directly to survey the penetration condition experimentally.

  10. Comparative study of active plasma lenses in high-quality electron accelerator transport lines

    NASA Astrophysics Data System (ADS)

    van Tilborg, J.; Barber, S. K.; Benedetti, C.; Schroeder, C. B.; Isono, F.; Tsai, H.-E.; Geddes, C. G. R.; Leemans, W. P.

    2018-05-01

    Electrically discharged active plasma lenses (APLs) are actively pursued in compact high-brightness plasma-based accelerators due to their high-gradient, tunable, and radially symmetric focusing properties. In this manuscript, the APL is experimentally compared with a conventional quadrupole triplet, highlighting the favorable reduction in the energy dependence (chromaticity) in the transport line. Through transport simulations, it is explored how the non-uniform radial discharge current distribution leads to beam-integrated emittance degradation and a charge density reduction at focus. However, positioning an aperture at the APL entrance will significantly reduce emittance degradation without additional loss of charge in the high-quality core of the beam. An analytical model is presented that estimates the emittance degradation from a short beam driving a longitudinally varying wakefield in the APL. Optimizing laser plasma accelerator operation is discussed where emittance degradation from the non-uniform discharge current (favoring small beams inside the APL) and wakefield effects (favoring larger beam sizes) is minimized.

  11. Comparative study of active plasma lenses in high-quality electron accelerator transport lines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    van Tilborg, J.; Barber, S. K.; Benedetti, C.

    Electrically discharged active plasma lenses (APLs) are actively pursued in compact high-brightness plasma-based accelerators due to their high-gradient, tunable, and radially symmetric focusing properties. In this paper, the APL is experimentally compared with a conventional quadrupole triplet, highlighting the favorable reduction in the energy dependence (chromaticity) in the transport line. Through transport simulations, it is explored how the non-uniform radial discharge current distribution leads to beam-integrated emittance degradation and a charge density reduction at focus. However, positioning an aperture at the APL entrance will significantly reduce emittance degradation without additional loss of charge in the high-quality core of the beam.more » An analytical model is presented that estimates the emittance degradation from a short beam driving a longitudinally varying wakefield in the APL. Finally, optimizing laser plasma accelerator operation is discussed where emittance degradation from the non-uniform discharge current (favoring small beams inside the APL) and wakefield effects (favoring larger beam sizes) is minimized.« less

  12. Comparative study of active plasma lenses in high-quality electron accelerator transport lines

    DOE PAGES

    van Tilborg, J.; Barber, S. K.; Benedetti, C.; ...

    2018-03-13

    Electrically discharged active plasma lenses (APLs) are actively pursued in compact high-brightness plasma-based accelerators due to their high-gradient, tunable, and radially symmetric focusing properties. In this paper, the APL is experimentally compared with a conventional quadrupole triplet, highlighting the favorable reduction in the energy dependence (chromaticity) in the transport line. Through transport simulations, it is explored how the non-uniform radial discharge current distribution leads to beam-integrated emittance degradation and a charge density reduction at focus. However, positioning an aperture at the APL entrance will significantly reduce emittance degradation without additional loss of charge in the high-quality core of the beam.more » An analytical model is presented that estimates the emittance degradation from a short beam driving a longitudinally varying wakefield in the APL. Finally, optimizing laser plasma accelerator operation is discussed where emittance degradation from the non-uniform discharge current (favoring small beams inside the APL) and wakefield effects (favoring larger beam sizes) is minimized.« less

  13. Sonodegradation of cyanidin-3-glucosylrutinoside: degradation kinetic analysis and its impact on antioxidant capacity in vitro.

    PubMed

    Sun, Jianxia; Li, Xinghua; Lin, Xinyu; Mei, Zhouxiong; Li, Yitao; Ding, Lijun; Bai, Weibin

    2017-03-01

    As an alternative preservation method for thermal treatment, ultrasound comprises a novel non-thermal processing technology that can significantly avoid undesirable nutritional changes. However, the recent literature indicates that anthocyanin degradation occurs when ultrasound is applied in juice at high amplitude parameters. Such work has mainly focussed on the effect of ultrasound on stability, the antioxidant capacity of cyanidin-3-glucosylrutinoside (Cy-3-glc-rut) and the correlation between anthocyanin degradation and ·OH generation in a simulated system. The spectral intensities of Cy-3-glc-rut at 518 and 282 nm decreased with increasing ultrasound power and treatment time. The degradation of Cy-3-glc-rut was consistent with first-order reaction kinetics (r 2  > 0.9000) and there was a good linear correlation between anthocyanin degradation and hydroxyl radical formation induced by ultrasound (r 2  = 0.9258). Moreover, a decrease in the antioxidant activity of Cy-3-glc-rut after ultrasound evaluated by the 1,1-diphenyl-2-picrylhydrazyl and ferric reducing antioxidant power methods was observed. Overall, the results of the present study show that ultrasound will accelerate the degradation of Cy-3-glc-rut with the growth of power over time. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  14. HPLC and HPLC/MS/MS Studies on Stress, Accelerated and Intermediate Degradation Tests of Antivirally Active Tricyclic Analog of Acyclovir.

    PubMed

    Lesniewska, Monika A; Dereziński, Paweł; Klupczyńska, Agnieszka; Kokot, Zenon J; Ostrowski, Tomasz; Zeidler, Joanna; Muszalska, Izabela

    2015-01-01

    The degradation behavior of a tricyclic analog of acyclovir [6-(4-MeOPh)-TACV] was determined in accordance with International Conference on Harmonization guidelines for good clinical practice under different stress conditions (neutral hydrolysis, strong acid/base degradation, oxidative decomposition, photodegradation, and thermal degradation). Accelerated [40±2°C/75%±5% relative humidity (RH)] and intermediate (30±2°C/65%±5% RH) stability tests were also performed. For observation of the degradation of the tested compound the RP-HPLC was used, whereas for the analysis of its degradation products HPLC/MS/MS was used. Degradation of the tested substance allowed its classification as unstable in neutral environment, acidic/alkaline medium, and in the presence of oxidizing agent. The tested compound was also light sensitive and was classified as photolabile both in solution and in the solid phase. However, the observed photodegradation in the solid phase was at a much lower level than in the case of photodegradation in solution. The study showed that both air temperature and RH had no significant effect on the stability of the tested substance during storage for 1 month at 100°C (dry heat) as well as during accelerated and intermediate tests. Based on the HPLC/MS/MS analysis, it can be concluded that acyclovir was formed as a degradation product of 6-(4-MeOPh)-TACV.

  15. Accelerated testing for synchronous orbits

    NASA Technical Reports Server (NTRS)

    Mcdermott, P.

    1981-01-01

    Degradation of batteries during synchronous orbits is analyzed. Discharge and recharge rates are evaluated. The functional relationship between charge rate and degradation is mathematically determined.

  16. A validated specific stability-indicating RP-HPLC assay method for Ambrisentan and its related substances.

    PubMed

    Narayana, M B V; Chandrasekhar, K B; Rao, B M

    2014-09-01

    A validated specific stability-indicating reverse-phase liquid chromatographic method was developed for the quantitative determination of Ambrisentan as well as its related substances in bulk samples, pharmaceutical dosage forms in the presence of degradation products and its related impurities. Forced degradation studies were performed on bulk samples of Ambrisentan as per the ICH-prescribed stress conditions using acid, base, oxidative, thermal stress and photolytic degradation to show the stability-indicating power of the LC method. Significant degradation in acidic, basic stress conditions was observed and no degradation was observed in other stress conditions. The chromatographic method was optimized using the samples generated from the forced degradation studies and the impurity-spiked solution. Good resolution between the peaks corresponds to Ambrisentan-related impurities and degradation products from the analyte were achieved on a SunFire C18 column using a mobile phase consisting of a mixture of potassium dihydrogen orthophosphate at a pH adjusted to 2.5 with ortho-phosphoric acid in water and a mixture of acetonitrile:methanol using a simple linear gradient. The detection was carried out at 225 nm. The limit of detection and the limit of quantification for the Ambrisentan and its related impurities were established. The stressed test solutions were assayed against the qualified working standard of Ambrisentan and the mass balance in each case was between 98.9 and 100.3%, indicating that the developed LC method was stability indicating. Validation of the developed LC method was carried out as per the ICH requirements. The developed method was found to be suitable to check the quality of bulk samples of Ambrisentan at the time of batch release and also during its storage (long-term and accelerated stability). © The Author [2013]. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  17. Accelerated degradation and durability of concrete in cold climates.

    DOT National Transportation Integrated Search

    2011-08-01

    Degradation of aggregate in concrete can be caused by erosion or fracture, and both cementitious materials and aggregate age over time. : The specification requirements for the degradation of aggregates have been established for hot mix asphalt and f...

  18. Accurate modeling of plasma acceleration with arbitrary order pseudo-spectral particle-in-cell methods

    DOE PAGES

    Jalas, S.; Dornmair, I.; Lehe, R.; ...

    2017-03-20

    Particle in Cell (PIC) simulations are a widely used tool for the investigation of both laser- and beam-driven plasma acceleration. It is a known issue that the beam quality can be artificially degraded by numerical Cherenkov radiation (NCR) resulting primarily from an incorrectly modeled dispersion relation. Pseudo-spectral solvers featuring infinite order stencils can strongly reduce NCR - or even suppress it - and are therefore well suited to correctly model the beam properties. For efficient parallelization of the PIC algorithm, however, localized solvers are inevitable. Arbitrary order pseudo-spectral methods provide this needed locality. Yet, these methods can again be pronemore » to NCR. Here in this paper, we show that acceptably low solver orders are sufficient to correctly model the physics of interest, while allowing for parallel computation by domain decomposition.« less

  19. Porosity estimation of aged mortar using a micromechanical model.

    PubMed

    Hernández, M G; Anaya, J J; Sanchez, T; Segura, I

    2006-12-22

    Degradation of concrete structures located in high humidity atmospheres or under flowing water is a very important problem. In this study, a method for ultrasonic non-destructive characterization in aged mortar is presented. The proposed method makes a prediction of the behaviour of aged mortar accomplished with a three phase micromechanical model using ultrasonic measurements. Aging mortar was accelerated by immersing the probes in ammonium nitrate solution. Both destructive and non-destructive characterization of mortar was performed. Destructive tests of porosity were performed using a vacuum saturation method and non-destructive characterization was carried out using ultrasonic velocities. Aging experiments show that mortar degradation not only involves a porosity increase, but also microstructural changes in the cement matrix. Experimental results show that the estimated porosity using the proposed non-destructive methodology had a comparable performance to classical destructive techniques.

  20. How copper corrosion can be retarded--New ways investigating a chronic problem for cellulose in paper.

    PubMed

    Ahn, Kyujin; Hofmann, Christa; Horsky, Monika; Potthast, Antje

    2015-12-10

    To better assess the stabilization effects of chemical treatments on Cu(II)-catalyzed cellulose degradation, we developed Cu(II)-containing model rag paper with typical copper corrosion characteristics using e-beam radiation. The paper can be prepared homogeneously and quickly compared to tedious pre-aging methods. Using the Cu(II)-containing model rag paper, the stabilization effects of various chemicals on Cu(II)-catalyzed degradation of cellulose were tested. Benzotriazol was highly effective in retarding the degradation of the Cu(II)-containing model rag paper under hot and humid aging condition, as well as under photo-oxidative stress. Tetrabutylammonium bromide reduced Cu(II)-catalyzed degradation of cellulose, but its efficacy was dependent on the accelerated aging conditions. The results with the alkaline treatments and gelatin treatment suggested that their roles in the degradation mechanisms of cellulose in the presence of Cu(II) differ from those of benzotriazol and tetrabutylammonium bromide. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Preparation and physicochemical characteristics of polylactide microspheres of emamectin benzoate by modified solvent evaporation/extraction method.

    PubMed

    Zhang, Shao Fei; Chen, Peng Hao; Zhang, Fei; Yang, Yan Fang; Liu, De Kun; Wu, Gang

    2013-12-18

    Emamectin benzoate is highly effective against insect pests and widely used in the world. However, its biological activity is limited because of high resistance of target insects and rapid degradation speed in fields. Preparation and physicochemical characterization of degradable microcapsules of emamectin benzoate were studied by modified solvent evaporation/extraction method using polylactide (PLA) as wall material. The influence of different compositions of the solvent in internal organic phase and external aqueous phase on diameter, span, pesticide loading, and entrapment rate of the microspheres was investigated. The results indicated that the process of solvent extraction and the formation of the microcapsules would be accelerated by adding water-miscible organic solvents such as ethyl ether, acetone, ethyl acetate, or n-butanol into internal organic phase and external aqueous phase. Accelerated formation of the microcapsules would result in entrapment rates of emamectin benzoate increased to as high as 97%. In addition, by adding ethanol into the external aqueous phase, diameters would reduce to 6.28 μm, whereas the loading efficiency of emamectin benzoate did not increase. The PLA microspheres prepared under optimum conditions were smoother and more spherical. The degradation rate in PLA microspheres of emamectin benzoate on the 10th day was 4.29 ± 0.74%, whereas the degradation rates of emamectin benzoate in methanol solution and solid technical material were 46.3 ± 2.11 and 22.7 ± 1.51%, respectively. The PLA skeleton had combined with emamectin benzoate in an amorphous or molecular state by using differential scanning calorimetry (DSC) determination. The results indicated that PLA microspheres of emamectin benzoate with high entrapment rate, loading efficiency, and physicochemical characteristics could be obtained by adding water-miscible organic solvents into the internal organic phase and external aqueous phase.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lall, Pradeep; Wei, Junchao; Sakalaukus, Peter

    A new method has been developed for assessment of the onset of degradation in solid state luminaires to classify failure mechanisms by using metrics beyond lumen degradation that are currently used for identification of failure. Luminous Flux output, Correlated Color Temperature Data on Philips LED Lamps has been gathered under 85°C/85%RH till lamp failure. Failure modes of the test population of the lamps have been studied to understand the failure mechanisms in 85°C/85%RH accelerated test. Results indicate that the dominant failure mechanism is the discoloration of the LED encapsulant inside the lamps which is the likely cause for the luminousmore » flux degradation and the color shift. The acquired data has been used in conjunction with Bayesian Probabilistic Models to identify luminaires with onset of degradation much prior to failure through identification of decision boundaries between lamps with accrued damage and lamps beyond the failure threshold in the feature space. In addition luminaires with different failure modes have been classified separately from healthy pristine luminaires. The α-λ plots have been used to evaluate the robustness of the proposed methodology. Results show that the predicted degradation for the lamps tracks the true degradation observed during 85°C/85%RH during accelerated life test fairly closely within the ±20% confidence bounds. Correlation of model prediction with experimental results indicates that the presented methodology allows the early identification of the onset of failure much prior to development of complete failure distributions and can be used for assessing the damage state of SSLs in fairly large deployments. It is expected that, the new prediction technique will allow the development of failure distributions without testing till L70 life for the manifestation of failure.« less

  3. Topics in electrochemical degradation of photovoltaic modules

    NASA Technical Reports Server (NTRS)

    Mon, G. R.

    1984-01-01

    Electrochemical degradation of photovoltaic modules was examined. It is found that the extent of electrochemical damage is dependent on the integrated leakage current. The PV electrochemical degradation mechanisms in the two polarities are different: (1) degradation rates in the two polarities are of the same order of magnitude; (2) center tapped grounded arrays are a preferred system configuration to minimize electrochemical degradation. The use of thicker pottant layers and polymer substrate films to reduce equilibrium leakage current values is suggested. A metallized substrate layer, if used, should be isolated from the pottant and the frame by polyester layers, and EVA modules appear to be consistent with 30 year life allocation levels for electrochemical damage. Temperature acceleration factors are well behaved and moderately well understood; humidity acceleration factors vary radically with module construction and materials and require additional research.

  4. Lifetime prediction for organic coating under alternating hydrostatic pressure by artificial neural network

    PubMed Central

    Tian, Wenliang; Meng, Fandi; Liu, Li; Li, Ying; Wang, Fuhui

    2017-01-01

    A concept for prediction of organic coatings, based on the alternating hydrostatic pressure (AHP) accelerated tests, has been presented. An AHP accelerated test with different pressure values has been employed to evaluate coating degradation. And a back-propagation artificial neural network (BP-ANN) has been established to predict the service property and the service lifetime of coatings. The pressure value (P), immersion time (t) and service property (impedance modulus |Z|) are utilized as the parameters of the network. The average accuracies of the predicted service property and immersion time by the established network are 98.6% and 84.8%, respectively. The combination of accelerated test and prediction method by BP-ANN is promising to evaluate and predict coating property used in deep sea. PMID:28094340

  5. Electrochemically modified dissolved organic matter accelerates the combining photodegradation and biodegradation of 17α-ethinylestradiol in natural aquatic environment.

    PubMed

    He, Huan; Huang, Bin; Fu, Gen; Xiong, Dan; Xu, Zhixiang; Wu, Xinhao; Pan, Xuejun

    2018-06-15

    The photochemical conversion and microbial transformation of pollutants mediated by dissolved organic matter (DOM), including 17α-ethinylestradiol (EE2), are often accompanied in natural water. However, there are few studies to explore the connection and mechanism between the two processes. This research aims to investigate the mechanism of DOM after electrochemically modification mediated EE2 combining photodegradation and biodegradation in the environment and it want to explain the natural phenomena of DOM after electrochemical advanced treatment entering the water environment mediated EE2 natural degradation. The results showed that combining photodegradation with biodegradation rates of EE2 mediated by DOM and electrochemically modified DOM (E-DOM) were promoted obviously. The efficiency of EE2 biodegradation was shown to be strongly correlated with electron accepting capacity (EAC) of DOM. Electrochemical modification can increase the EAC of DOM leading to EE2 biodegradation accelerated, and it also can form more triplet-state DOM moieties to promote the EE2 photodegradation in irradiation conditions, due to the increasing of quinone-type structures in DOM. Moreover, cell polymeric secretion (CPS) secreted from the microorganism could be stimulated to an excited state by irradiation, and that also accelerated EE2 degradation. Photolysis combined with biochemical degradation yielded less toxic degradation products. This study shows that the emission of DOM in wastewater after electrochemical treatment could accelerate estrogen degradation and play a positive role on the pollutant transformation in the environment. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Triggerable Degradation of Polyurethanes for Tissue Engineering Applications.

    PubMed

    Xu, Cancan; Huang, Yihui; Wu, Jinglei; Tang, Liping; Hong, Yi

    2015-09-16

    Tissue engineered and bioactive scaffolds with different degradation rates are required for the regeneration of diverse tissues/organs. To optimize tissue regeneration in different tissues, it is desirable that the degradation rate of scaffolds can be manipulated to comply with various stages of tissue regeneration. Unfortunately, the degradation of most degradable polymers relies solely on passive controlled degradation mechanisms. To overcome this challenge, we report a new family of reduction-sensitive biodegradable elastomeric polyurethanes containing various amounts of disulfide bonds (PU-SS), in which degradation can be initiated and accelerated with the supplement of a biological product: antioxidant-glutathione (GSH). The polyurethanes can be processed into films and electrospun fibrous scaffolds. Synthesized materials exhibited robust mechanical properties and high elasticity. Accelerated degradation of the materials was observed in the presence of GSH, and the rate of such degradation depends on the amount of disulfide present in the polymer backbone. The polymers and their degradation products exhibited no apparent cell toxicity while the electrospun scaffolds supported fibroblast growth in vitro. The in vivo subcutaneous implantation model showed that the polymers prompt minimal inflammatory responses, and as anticipated, the polymer with the higher disulfide bond amount had faster degradation in vivo. This new family of polyurethanes offers tremendous potential for directed scaffold degradation to promote maximal tissue regeneration.

  7. A short term quality control tool for biodegradable microspheres.

    PubMed

    D'Souza, Susan; Faraj, Jabar A; Dorati, Rossella; DeLuca, Patrick P

    2014-06-01

    Accelerated in vitro release testing methodology has been developed as an indicator of product performance to be used as a discriminatory quality control (QC) technique for the release of clinical and commercial batches of biodegradable microspheres. While product performance of biodegradable microspheres can be verified by in vivo and/or in vitro experiments, such evaluation can be particularly challenging because of slow polymer degradation, resulting in extended study times, labor, and expense. Three batches of Leuprolide poly(lactic-co-glycolic acid) (PLGA) microspheres having varying morphology (process variants having different particle size and specific surface area) were manufactured by the solvent extraction/evaporation technique. Tests involving in vitro release, polymer degradation and hydration of the microspheres were performed on the three batches at 55°C. In vitro peptide release at 55°C was analyzed using a previously derived modification of the Weibull function termed the modified Weibull equation (MWE). Experimental observations and data analysis confirm excellent reproducibility studies within and between batches of the microsphere formulations demonstrating the predictability of the accelerated experiments at 55°C. The accelerated test method was also successfully able to distinguish the in vitro product performance between the three batches having varying morphology (process variants), indicating that it is a suitable QC tool to discriminate product or process variants in clinical or commercial batches of microspheres. Additionally, data analysis utilized the MWE to further quantify the differences obtained from the accelerated in vitro product performance test between process variants, thereby enhancing the discriminatory power of the accelerated methodology at 55°C.

  8. Durability tests of a fiber optic corrosion sensor.

    PubMed

    Wan, Kai Tai; Leung, Christopher K Y

    2012-01-01

    Steel corrosion is a major cause of degradation in reinforced concrete structures, and there is a need to develop cost-effective methods to detect the initiation of corrosion in such structures. This paper presents a low cost, easy to use fiber optic corrosion sensor for practical application. Thin iron film is deposited on the end surface of a cleaved optical fiber by sputtering. When light is sent into the fiber, most of it is reflected by the coating. If the surrounding environment is corrosive, the film is corroded and the intensity of the reflected signal drops significantly. In previous work, the sensing principle was verified by various experiments in laboratory and a packaging method was introduced. In this paper, the method of multiplexing several sensors by optical time domain reflectometer (OTDR) and optical splitter is introduced, together with the interpretation of OTDR results. The practical applicability of the proposed sensors is demonstrated in a three-year field trial with the sensors installed in an aggressive marine environment. The durability of the sensor against chemical degradation and physical degradation is also verified by accelerated life test and freeze-thaw cycling test, respectively.

  9. Elevated Temperature Crack Growth Behavior in HSCT Structural Materials

    NASA Technical Reports Server (NTRS)

    Saxena, Ashok

    1998-01-01

    Structures in super-sonic aircraft are subjected to conditions of high temperature and cyclic and sustained loading for extended periods of time. The durability of structures fabricated from aluminum and certain titanium alloys in such demanding conditions is of primary concern to the designers and manufacturers of futuristic transport aircraft. Accordingly, the major goal of this project was to evaluate the performance and durability of high temperature aluminum and titanium alloys for use in high speed civil transport (HSCT) structures. Additional goals were to develop time-dependent fracture mechanics methodology and test methods for characterizing and predicting elevated temperature crack growth behavior in creep-brittle materials such as ones being considered for use in HSCT structures and to explore accelerated methods of simulating microstructural degradation during service and measuring degraded properties in these materials.

  10. Effects of alkyl polyglycoside (APG) on composting of agricultural wastes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang Fabao; Gu Wenjie, E-mail: guwenjie1982@yahoo.cn; Xu Peizhi

    2011-06-15

    Composting is the biological degradation and transformation of organic materials under controlled conditions to promote aerobic decomposition. To find effective ways to accelerate composting and improve compost quality, numerous methods including additive addition, inoculation of microorganisms, and the use of biosurfactants have been explored. Studies have shown that biosurfactant addition provides more favorable conditions for microorganism growth, thereby accelerating the composting process. However, biosurfactants have limited applications because they are expensive and their use in composting and microbial fertilizers is prohibited. Meanwhile, alkyl polyglycoside (APG) is considered a 'green' surfactant. This study aims to determine whether APG addition into amore » compost reaction vessel during 28-day composting can enhance the organic matter degradation and composting process of dairy manure. Samples were periodically taken from different reactor depths at 0, 3, 5, 7, 14, 21, and 28 days. pH levels, electrical conductivity (EC), ammonium and nitrate nitrogen, seed germination indices, and microbial population were determined. Organic matter and total nitrogen were also measured. Compared with the untreated control, the sample with APG exhibited slightly increased microbial populations, such as bacteria, fungi, and actinomycetes. APG addition increased temperatures without substantially affecting compost pH and EC throughout the process. After 28 days, APG addition increased nitrate nitrogen concentrations, promoted matter degradation, and increased seed germination indices. The results of this study suggest that the addition of APG provides more favorable conditions for microorganism growth, slightly enhancing organic matter decomposition and accelerating the composting process, improving the compost quality to a certain extent.« less

  11. Effects of alkyl polyglycoside (APG) on composting of agricultural wastes.

    PubMed

    Zhang, Fabao; Gu, Wenjie; Xu, Peizhi; Tang, Shuanhu; Xie, Kaizhi; Huang, Xu; Huang, Qiaoyi

    2011-06-01

    Composting is the biological degradation and transformation of organic materials under controlled conditions to promote aerobic decomposition. To find effective ways to accelerate composting and improve compost quality, numerous methods including additive addition, inoculation of microorganisms, and the use of biosurfactants have been explored. Studies have shown that biosurfactant addition provides more favorable conditions for microorganism growth, thereby accelerating the composting process. However, biosurfactants have limited applications because they are expensive and their use in composting and microbial fertilizers is prohibited. Meanwhile, alkyl polyglycoside (APG) is considered a "green" surfactant. This study aims to determine whether APG addition into a compost reaction vessel during 28-day composting can enhance the organic matter degradation and composting process of dairy manure. Samples were periodically taken from different reactor depths at 0, 3, 5, 7, 14, 21, and 28 days. pH levels, electrical conductivity (EC), ammonium and nitrate nitrogen, seed germination indices, and microbial population were determined. Organic matter and total nitrogen were also measured. Compared with the untreated control, the sample with APG exhibited slightly increased microbial populations, such as bacteria, fungi, and actinomycetes. APG addition increased temperatures without substantially affecting compost pH and EC throughout the process. After 28 days, APG addition increased nitrate nitrogen concentrations, promoted matter degradation, and increased seed germination indices. The results of this study suggest that the addition of APG provides more favorable conditions for microorganism growth, slightly enhancing organic matter decomposition and accelerating the composting process, improving the compost quality to a certain extent. Copyright © 2011 Elsevier Ltd. All rights reserved.

  12. Degradation and biocompatibility of multi-stage nanovectors in physiological systems

    PubMed Central

    Martinez, Jonathan O.; Evangelopoulos, Michael; Chiappini, Ciro; Liu, Xuewu; Ferrari, Mauro; Tasciotti, Ennio

    2014-01-01

    The careful scrutiny of drug delivery systems is essential to evaluate and justify their potential for the clinic. Among the various studies necessary for pre-clinical testing, the impact of degradation is commonly overlooked. In this paper, we investigate the effect of fabrication (porosity and nucleation layer) and environment (buffer and pH) factors on the degradation kinetics of multi-stage nanovectors (MSV) composed of porous silicon. The degradation by-products of MSV were exposed to endothelial cells and analyzed for detrimental effects on cellular internalization, architecture, proliferation, and cell cycle. Increases in porosity resulted in accelerated degradation exhibiting smaller sized particles at comparable times. Removal of the nucleation layer (thin layer of small pores formed during the initial steps of etching) triggered a premature collapse of the entire central porous region of MSV. Variations in buffers prompted a faster degradation rate yielding smaller MSV within faster time frames while increases in pH stimulated erosion of MSV and thus faster degradation. In addition, exposure to these degradation by-products provoked negligible impact on the proliferation and cell cycle phases on primary endothelial cells. Here, we propose methods that lay the foundation for future investigations towards understanding the impact of the degradation of drug delivery platforms. PMID:25269799

  13. Lumen degradation analysis of LED lamps based on the subsystem isolation method.

    PubMed

    Ke, Hong-Liang; Hao, Jian; Tu, Jian-Hui; Miao, Pei-Xian; Wang, Chao-Quan; Cui, Jing-Zhong; Sun, Qiang; Sun, Ren-Tao

    2018-02-01

    The lumen degradation of LED lamps undergoing an accelerated aging test is investigated. The entire LED lamp is divided into three subsystems, namely, driver, lampshade, and LED light source. The parameters of output power [Watts (W)], transmittance (%), and lumen flux (lm) are adopted in the analysis of the degradation of the driver, lampshade, and LED light source, respectively. Two groups of LED lamps are aged under the ambient temperatures of 25°C and 85°C, respectively, with the aging time of 2000 h. The lumen degradation of the lamps is from 3.8% to 4.9% for the group under a temperature of 25°C and from 10.6% to 12.7% for the group under a temperature of 85°C. The LED light source is the most aggressive part of the three subsystems, which accounts for 70.5% of the lumen degradation of the LED lamp on average. The lampshade is the second degradation source, which causes 21.5% of the total amount on average. The driver is the third degradation source, which causes 6.5% under 25°C and 2.8% under 85°C of the total amount on average.

  14. Prognostics Approach for Power MOSFET Under Thermal-Stress

    NASA Technical Reports Server (NTRS)

    Galvan, Jose Ramon Celaya; Saxena, Abhinav; Kulkarni, Chetan S.; Saha, Sankalita; Goebel, Kai

    2012-01-01

    The prognostic technique for a power MOSFET presented in this paper is based on accelerated aging of MOSFET IRF520Npbf in a TO-220 package. The methodology utilizes thermal and power cycling to accelerate the life of the devices. The major failure mechanism for the stress conditions is dieattachment degradation, typical for discrete devices with leadfree solder die attachment. It has been determined that dieattach degradation results in an increase in ON-state resistance due to its dependence on junction temperature. Increasing resistance, thus, can be used as a precursor of failure for the die-attach failure mechanism under thermal stress. A feature based on normalized ON-resistance is computed from in-situ measurements of the electro-thermal response. An Extended Kalman filter is used as a model-based prognostics techniques based on the Bayesian tracking framework. The proposed prognostics technique reports on preliminary work that serves as a case study on the prediction of remaining life of power MOSFETs and builds upon the work presented in [1]. The algorithm considered in this study had been used as prognostics algorithm in different applications and is regarded as suitable candidate for component level prognostics. This work attempts to further the validation of such algorithm by presenting it with real degradation data including measurements from real sensors, which include all the complications (noise, bias, etc.) that are regularly not captured on simulated degradation data. The algorithm is developed and tested on the accelerated aging test timescale. In real world operation, the timescale of the degradation process and therefore the RUL predictions will be considerable larger. It is hypothesized that even though the timescale will be larger, it remains constant through the degradation process and the algorithm and model would still apply under the slower degradation process. By using accelerated aging data with actual device measurements and real sensors (no simulated behavior), we are attempting to assess how such algorithm behaves under realistic conditions.

  15. Furfural as a marker of cellulose degradation. A quantitative approach

    NASA Astrophysics Data System (ADS)

    Łojewski, Tomasz; Sawoszczuk, Tomasz; Łagan, Janusz Marek; Zięba, Katarzyna; Barański, Andrzej; Łojewska, Joanna

    2010-09-01

    Non-destructive methods of sampling during the physicochemical studies of historical objects such as old books and manuscripts seem to be an obvious choice. Since furfural has been shown to be one of the most abundant gaseous products of cellulose degradation, it can be considered as a convenient marker of degradation progress. The number of quantitative data concerning correlations between the emission of furfural and physicochemical and mechanical properties of paper is rather scarce in the literature. In the present studies, a model paper containing more than 99% of cellulose was aged inside closed vials at 90°C. Gaseous products of paper degradation were measured using sorption tubes filled with Tenax TA sorbent and GC-MS. The method has proved to be sufficiently sensitive for measuring furfural emission not only in accelerated degradation at 90°C but also during natural ageing of paper at room temperature even in relatively short time intervals of 2-28 days. The correlations between furfural emission and polymerization degree, pH, color, tear index, number of double folds and breaking length have been statistically confirmed at confidence level α=0.001. Basing on them it was possible to estimate the number of broken glycosidic bonds per one molecule of furfural formed during degradation—we found a value equal to 9.2.

  16. Durability of Cement Composites Reinforced with Sisal Fiber

    NASA Astrophysics Data System (ADS)

    Wei, Jianqiang

    This dissertation focuses mainly on investigating the aging mechanisms and degradation kinetics of sisal fiber, as well as the approaches to mitigate its degradation in the matrix of cement composites. In contrast to previous works reported in the literature, a novel approach is proposed in this study to directly determine the fiber's degradation rate by separately studying the composition changes, mechanical and physical properties of the embedded sisal fibers. Cement hydration is presented to be a crucial factor in understanding fiber degradation behavior. The degradation mechanisms of natural fiber consist of mineralization of cell walls, alkali hydrolysis of lignin and hemicellulose, as well as the cellulose decomposition which includes stripping of cellulose microfibrils and alkaline hydrolysis of amorphous regions in cellulose chains. Two mineralization mechanisms, CH-mineralization and self-mineralization, are proposed. The degradation kinetics of sisal fiber in the cement matrix are also analyzed and a model to predict the degradation rate of cellulose for natural fiber embedded in cement is outlined. The results indicate that the time needed to completely degrade the cellulose in the matrix with cement replacement by 30wt.% metakaolin is 13 times longer than that in pure cement. A novel and scientific method is presented to determine accelerated aging conditions, and to evaluating sisal fiber's degradation rate and durability of natural fiber-reinforced cement composites. Among the static aggressive environments, the most effective approach for accelerating the degradation of natural fiber in cement composites is to soak the samples or change the humidity at 70 °C and higher temperature. However, the dynamic wetting and drying cycling treatment has a more accelerating effect on the alkali hydrolysis of fiber's amorphous components evidenced by the highest crystallinity indices, minimum content of holocellulose, and lowest tensile strength. Based on the understanding of degradation mechanisms, two approaches are proposed to mitigate the degradation of sisal fiber in the cement matrix. In order to relieve the aggressive environment of hydrated cement, cement substitution by a combination of metakaolin and nanoclay, and a combination of rice husk ash and limestone are studied. Both metakaolin and nanoclay significantly optimize the cement hydration, while the combination of these two supplementary cementitious materials validates their complementary and synergistic effect at different stages of aging. The presented approaches effectively reduce the calcium hydroxide content and the alkalinity of the pore solution, thereby mitigating the fiber degradation and improving both the initial mechanical properties and durability of the fiber-cement composites. The role of rice husk ash in cement modification is mainly as the active cementitious supplementary material. In order to improve the degradation resistance of sisal fiber itself, two novel, simple, and economical pretreatments of the fibers (thermal and sodium carbonate treatment) are investigated. Both thermal treatment and Na 2CO3 treatment effectively improve the durability of sisal fiber-reinforced concrete. The thermal treatment achieves improvement of cellulose's crystallization, which ensures the initial strength and improved durability of sisal fiber. A layer consisting of calcium carbonate sediments, which protects the internals of a fiber from the strong alkali pore solution, is formed and filled in pits and cavities on the Na2CO3 treated sisal fiber's surface.

  17. [Photocatalytic Degradation of Perfluorooctanoic Acid by Pd-TiO2 Photocatalyst].

    PubMed

    Liu, Qing; Yu, Ze-bin; Zhang, Rui-han; Li, Ming-jie; Chen, Ying; Wang, Li; Kuang, Yu; Zhang, Bo; Zhu, You-hui

    2015-06-01

    Perfluorooctanoic acid (PFOA) is a new persistent organic pollutant which has got global concern for its wide distribution, high bioaccumulation and strong biological toxicity. In present study, the photocatalytic degradation of PFOA using palladium doped TiO2 (Pd-TiO2) prepared by chemical reduction method was investigated. The photocatalysts were characterized by XRD, FESEM and UV-vis DRS and were used for PFOA degradation under 365 nm UV irradiation. The results indicated that the grain size of TiO2 was smaller while the specific surface area increased and the absorption of ultraviolet light also enhanced after using chemical reduction method, but all these changes had no influence on PFOA degradation. However, the degradation was significantly enhanced because of the deposition of Pd, the fluoride concentration of PFOA was 6.62 mg x L(-1) after 7 h irradiation which was 7.3 times higher than that of TiO2 (P25). Experiments with the addition of trapping agent and nitrogen indicated that *OH played an important role in PFOA degradation while the presence of O2 accelerated the degradation. The main intermediate products of photocatalytic degradation of PFOA were authenticated by an ultra-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry systems (UPLC-QTOF-MS). The probable photocatalytic degradation mechanism involves h+ attacking the carboxyl of PFOA and resulting in decarboxylation. The produced *CnF(2n +1) was oxidized by *OH underwent defluorinetion to form shorter-chain perfluorinated carboxylic acids. The significant enhancement of PFOA degradation can be ascribed to the palladium deposits, acting as electron traps on the Pd-TiO2 surface, which facilitated the transfer of photogenerated electrons and retarded the accumulation of electrons.

  18. Introduction of biological agents into vegetative buffer to enhance rhizodegradation of atrazine

    USDA-ARS?s Scientific Manuscript database

    Introducing atrazine (ATR) degraders into riparian vegetative buffer strips (VBS) can be a promising bioremediation approach to accelerate the degradation of ATR and its degradation products deposited into VBS by surface runoff. A growth chamber study was conducted to investigated the synergistic ef...

  19. L-Lysine suppresses myofibrillar protein degradation and autophagy in skeletal muscles of senescence-accelerated mouse prone 8.

    PubMed

    Sato, Tomonori; Ito, Yoshiaki; Nagasawa, Takashi

    2017-02-01

    Sarcopenia is a condition of the loss of muscle mass that is associated with aging and that increases the risk for bedridden state, thereby warranting studies of interventions that attenuate sarcopenia. Here the effects of 2-month dietary L-lysine (Lys) supplementation (1.5-3.0 %) on myofibrillar protein degradation and major proteolytic systems were investigated in senescence-accelerated mouse prone 8 (SAMP8). At 36 weeks of age, skeletal muscle and lean body mass was reduced in SAMP8 when compared with control senescence-accelerated mouse resistant 1 (SAMR1). The myofibrillar protein degradation, which was evaluated by the release of 3-methylhistidine, was stimulated in SAMP8, and the autophagy activity, which was evaluated by light chain 3-II, was stimulated in the skeletal muscle of SAMP8. The activation of ubiquitin-proteasome system was not observed in the muscles of SAMP8. However, myofibrillar protein degradation and autophagic activity in skeletal muscles of SAMP8 were suppressed by dietary intake of 3.0 % Lys. The present data indicate that myofibrillar protein degradation by bulk autophagy is stimulated in the skeletal muscles of SAMP8 and that dietary Lys supplementation attenuates sarcopenia in SAMP8 by suppressing autophagic proteolysis.

  20. Investigation of degradation processes in IgG1 monoclonal antibodies by limited proteolysis coupled with weak cation-exchange HPLC.

    PubMed

    Lau, Hollis; Pace, Danielle; Yan, Boxu; McGrath, Theresa; Smallwood, Scott; Patel, Ketaki; Park, Jihea; Park, Sungae S; Latypov, Ramil F

    2010-04-01

    A new cation-exchange high-performance liquid chromatography (HPLC) method that separates fragment antigen-binding (Fab) and fragment crystallizable (Fc) domains generated by the limited proteolysis of monoclonal antibodies (mAbs) was developed. This assay has proven to be suitable for studying complex degradation processes involving various immunoglobulin G1 (IgG1) molecules. Assignment of covalent degradations to specific regions of mAbs was facilitated by using Lys-C and papain to generate Fab and Fc fragments with unique, protease-dependent elution times. In particular, this method was useful for characterizing protein variants formed in the presence of salt under accelerated storage conditions. Two isoforms that accumulated during storage were readily identified as Fab-related species prior to mass-spectrometric analysis. Both showed reduced biological activity likely resulting from modifications within or in proximity of the complementarity-determining regions (CDRs). Utility of this assay was further illustrated in the work to characterize light-induced degradations in mAb formulations. In this case, a previously unknown Fab-related species which populated upon light exposure was observed. This species was well resolved from unmodified Fab, allowing for direct and high-purity fractionation. Mass-spectrometric analysis subsequently identified a histidine-related degradation product associated with the CDR2 of the heavy chain. In addition, the method was applied to assess the structural organization of a noncovalent IgG1 dimer. A new species corresponding to a Fab-Fab complex was found, implying that interactions between Fab domains were responsible for dimerization. Overall, the data presented demonstrate the suitability of this cation-exchange HPLC method for studying a wide range of covalent and noncovalent degradations in IgG1 mAbs. 2010 Elsevier B.V. All rights reserved.

  1. Native Cellulose: Structure, Characterization and Thermal Properties

    PubMed Central

    Poletto, Matheus; Ornaghi Júnior, Heitor L.; Zattera, Ademir J.

    2014-01-01

    In this work, the relationship between cellulose crystallinity, the influence of extractive content on lignocellulosic fiber degradation, the correlation between chemical composition and the physical properties of ten types of natural fibers were investigated by FTIR spectroscopy, X-ray diffraction and thermogravimetry techniques. The results showed that higher extractive contents associated with lower crystallinity and lower cellulose crystallite size can accelerate the degradation process and reduce the thermal stability of the lignocellulosic fibers studied. On the other hand, the thermal decomposition of natural fibers is shifted to higher temperatures with increasing the cellulose crystallinity and crystallite size. These results indicated that the cellulose crystallite size affects the thermal degradation temperature of natural fibers. This study showed that through the methods used, previous information about the structure and properties of lignocellulosic fibers can be obtained before use in composite formulations. PMID:28788179

  2. Metabolic adaptation via regulated enzyme degradation in the pathogenic yeast Candida albicans.

    PubMed

    Ting, S Y; Ishola, O A; Ahmed, M A; Tabana, Y M; Dahham, S; Agha, M T; Musa, S F; Muhammed, R; Than, L T L; Sandai, D

    2017-03-01

    The virulence of Candida albicans is dependent upon fitness attributes as well as virulence factors. These attributes include robust stress responses and metabolic flexibility. The assimilation of carbon sources is important for growth and essential for the establishment of infections by C. albicans. Previous studies showed that the C. albicans ICL1 genes, which encode the glyoxylate cycle enzymes isocitratelyase are required for growth on non-fermentable carbon sources such as lactate and oleic acid and were repressed by 2% glucose. In contrast to S. cerevsiae, the enzyme CaIcl1 was not destabilised by glucose, resulting with its metabolite remaining at high levels. Further glucose addition has caused CaIcl1 to lose its signal and mechanisms that trigger destabilization in response to glucose. Another purpose of this study was to test the stability of the Icl1 enzyme in response to the dietary sugars, fructose, and galactose. In the present study, the ICL1 mRNAs expression was quantified using Quantitative Real Time PCR, whereby the stability of protein was measured and quantified using Western blot and phosphoimager, and the replacing and cloning of ICL1 ORF by gene recombination and ubiquitin binding was conducted via co-immuno-precipitation. Following an analogous experimental approach, the analysis was repeated using S. cerevisiaeas a control. Both galactose and fructose were found to trigger the degradation of the ICL1 transcript in C. albicans. The Icl1 enzyme was stable following galactose addition but was degraded in response to fructose. C. albicans Icl1 (CaIcl1) was also subjected to fructose-accelerated degradation when expressed in S. cerevisiae, indicating that, although it lacks a ubiquitination site, CaIcl1 is sensitive to fructose-accelerated protein degradation. The addition of an ubiquitination site to CaIcl1 resulted in this enzyme becoming sensitive to galactose-accelerated degradation and increases its rate of degradation in the presence of fructose. It can be concluded that ubiquitin-independent pathways of fructose-accelerated enzyme degradation exist in C. albicans. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  3. Comparing joint kinematics and center of mass acceleration as feedback for control of standing balance by functional neuromuscular stimulation.

    PubMed

    Nataraj, Raviraj; Audu, Musa L; Triolo, Ronald J

    2012-05-06

    The purpose of this study was to determine the comparative effectiveness of feedback control systems for maintaining standing balance based on joint kinematics or total body center of mass (COM) acceleration, and assess their clinical practicality for standing neuroprostheses after spinal cord injury (SCI). In simulation, controller performance was measured according to the upper extremity effort required to stabilize a three-dimensional model of bipedal standing against a variety of postural disturbances. Three cases were investigated: proportional-derivative control based on joint kinematics alone, COM acceleration feedback alone, and combined joint kinematics and COM acceleration feedback. Additionally, pilot data was collected during external perturbations of an individual with SCI standing with functional neuromuscular stimulation (FNS), and the resulting joint kinematics and COM acceleration data was analyzed. Compared to the baseline case of maximal constant muscle excitations, the three control systems reduced the mean upper extremity loading by 51%, 43% and 56%, respectively against external force-pulse perturbations. Controller robustness was defined as the degradation in performance with increasing levels of input errors expected with clinical deployment of sensor-based feedback. At error levels typical for body-mounted inertial sensors, performance degradation due to sensor noise and placement were negligible. However, at typical tracking error levels, performance could degrade as much as 86% for joint kinematics feedback and 35% for COM acceleration feedback. Pilot data indicated that COM acceleration could be estimated with a few well-placed sensors and efficiently captures information related to movement synergies observed during perturbed bipedal standing following SCI. Overall, COM acceleration feedback may be a more feasible solution for control of standing with FNS given its superior robustness and small number of inputs required.

  4. A Monotonic Degradation Assessment Index of Rolling Bearings Using Fuzzy Support Vector Data Description and Running Time

    PubMed Central

    Shen, Zhongjie; He, Zhengjia; Chen, Xuefeng; Sun, Chuang; Liu, Zhiwen

    2012-01-01

    Performance degradation assessment based on condition monitoring plays an important role in ensuring reliable operation of equipment, reducing production downtime and saving maintenance costs, yet performance degradation has strong fuzziness, and the dynamic information is random and fuzzy, making it a challenge how to assess the fuzzy bearing performance degradation. This study proposes a monotonic degradation assessment index of rolling bearings using fuzzy support vector data description (FSVDD) and running time. FSVDD constructs the fuzzy-monitoring coefficient ε̄ which is sensitive to the initial defect and stably increases as faults develop. Moreover, the parameter ε̄ describes the accelerating relationships between the damage development and running time. However, the index ε̄ with an oscillating trend disagrees with the irreversible damage development. The running time is introduced to form a monotonic index, namely damage severity index (DSI). DSI inherits all advantages of ε̄ and overcomes its disadvantage. A run-to-failure test is carried out to validate the performance of the proposed method. The results show that DSI reflects the growth of the damages with running time perfectly. PMID:23112591

  5. A monotonic degradation assessment index of rolling bearings using fuzzy support vector data description and running time.

    PubMed

    Shen, Zhongjie; He, Zhengjia; Chen, Xuefeng; Sun, Chuang; Liu, Zhiwen

    2012-01-01

    Performance degradation assessment based on condition monitoring plays an important role in ensuring reliable operation of equipment, reducing production downtime and saving maintenance costs, yet performance degradation has strong fuzziness, and the dynamic information is random and fuzzy, making it a challenge how to assess the fuzzy bearing performance degradation. This study proposes a monotonic degradation assessment index of rolling bearings using fuzzy support vector data description (FSVDD) and running time. FSVDD constructs the fuzzy-monitoring coefficient ε⁻ which is sensitive to the initial defect and stably increases as faults develop. Moreover, the parameter ε⁻ describes the accelerating relationships between the damage development and running time. However, the index ε⁻ with an oscillating trend disagrees with the irreversible damage development. The running time is introduced to form a monotonic index, namely damage severity index (DSI). DSI inherits all advantages of ε⁻ and overcomes its disadvantage. A run-to-failure test is carried out to validate the performance of the proposed method. The results show that DSI reflects the growth of the damages with running time perfectly.

  6. Chromatic stability of acrylic resins of artificial eyes submitted to accelerated aging and polishing.

    PubMed

    Goiato, Marcelo Coelho; Santos, Daniela Micheline dos; Souza, Josiene Firmino; Moreno, Amália; Pesqueira, Aldiéris Alves

    2010-12-01

    Esthetics and durability of materials used to fabricate artificial eyes has been an important issue since artificial eyes are essential to restore esthetics and function, protect the remaining tissues and help with patients' psychological therapy. However, these materials are submitted to degrading effects of environmental agents on the physical properties of the acrylic resin. This study assessed the color stability of acrylic resins used to fabricate sclera in three basic shades (N1, N2 and N3) when subjected to accelerated aging, mechanical and chemical polishing. Specimens of each resin were fabricated and submitted to mechanical and chemical polishing. Chromatic analysis was performed before and after accelerated aging through ultraviolet reflection spectrophotometry. All specimens revealed color alteration following polishing and accelerated aging. The resins presented statistically significant chromatic alteration (p<0.01) between the periods of 252 and 1008 h. Both polishing methods presented no significant difference between the values of color derivatives of resins.

  7. Validation of Finite-Element Models of Persistent-Current Effects in Nb 3Sn Accelerator Magnets

    DOE PAGES

    Wang, X.; Ambrosio, G.; Chlachidze, G.; ...

    2015-01-06

    Persistent magnetization currents are induced in superconducting filaments during the current ramping in magnets. The resulting perturbation to the design magnetic field leads to field quality degradation, in particular at low field where the effect is stronger relative to the main field. The effects observed in NbTi accelerator magnets were reproduced well with the critical-state model. However, this approach becomes less accurate for the calculation of the persistent-current effects observed in Nb 3Sn accelerator magnets. Here a finite-element method based on the measured strand magnetization is validated against three state-of-art Nb3Sn accelerator magnets featuring different subelement diameters, critical currents, magnetmore » designs and measurement temperatures. The temperature dependence of the persistent-current effects is reproduced. Based on the validated model, the impact of conductor design on the persistent current effects is discussed. The performance, limitations and possible improvements of the approach are also discussed.« less

  8. Durability of De-Alloyed Platinum-Nickel Cathode Catalyst in Low Platinum Loading Membrane-Electrode Assemblies Subjected to Accelerated Stress Tests

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahluwalia, R. K.; Wang, X.; Peng, J. -K.

    Here, the durability of de-alloyed platinum-nickel catalysts supported on high-surface area carbon (d-PtNi/C) in optimized electrodes and membrane electrode assemblies (MEAs) under an accelerated stress test (AST) protocol is investigated with the objective of developing a quantitative understanding of the degradation mechanisms and their relationship to the electrode structure, pre-conditioning, and operating conditions. It is found that the cell degradation can be mitigated by controlling the voltage cycle, acid washing the MEA to remove Ni contaminants that enter the electrode and membrane during fabrication, and monitoring the operating conditions. For example, the electrochemical surface area (ECSA) loss is <25% aftermore » 30,000 triangle cycles with 0.925 V upper potential limit if the MEA is acid washed and extensive diagnostics are avoided. The parameters that exacerbate the cell degradation also accelerate the rate at which Ni leaches out from the catalyst. A mechanistic model is presented for the degradation in performance of d-PtNi/C electrodes. The model correlates a) the degradation in ORR mass and specific activities with ECSA and Ni losses, b) the decrease in limiting current density ( iL), which is inversely proportional to the O 2 mass transport resistance, with the degradation in catalyst roughness factor, and c) the increase in mass transfer overpotentials with the reduced current density, i/iL .« less

  9. Durability of De-Alloyed Platinum-Nickel Cathode Catalyst in Low Platinum Loading Membrane-Electrode Assemblies Subjected to Accelerated Stress Tests

    DOE PAGES

    Ahluwalia, R. K.; Wang, X.; Peng, J. -K.; ...

    2018-04-25

    Here, the durability of de-alloyed platinum-nickel catalysts supported on high-surface area carbon (d-PtNi/C) in optimized electrodes and membrane electrode assemblies (MEAs) under an accelerated stress test (AST) protocol is investigated with the objective of developing a quantitative understanding of the degradation mechanisms and their relationship to the electrode structure, pre-conditioning, and operating conditions. It is found that the cell degradation can be mitigated by controlling the voltage cycle, acid washing the MEA to remove Ni contaminants that enter the electrode and membrane during fabrication, and monitoring the operating conditions. For example, the electrochemical surface area (ECSA) loss is <25% aftermore » 30,000 triangle cycles with 0.925 V upper potential limit if the MEA is acid washed and extensive diagnostics are avoided. The parameters that exacerbate the cell degradation also accelerate the rate at which Ni leaches out from the catalyst. A mechanistic model is presented for the degradation in performance of d-PtNi/C electrodes. The model correlates a) the degradation in ORR mass and specific activities with ECSA and Ni losses, b) the decrease in limiting current density ( iL), which is inversely proportional to the O 2 mass transport resistance, with the degradation in catalyst roughness factor, and c) the increase in mass transfer overpotentials with the reduced current density, i/iL .« less

  10. Suspended sediment in tidal currents: an often-neglected pollutant that aggravates mangrove degradation.

    PubMed

    Fu, Weiguo; Liu, Daomin; Yin, Qilin; Wu, Yanyou; Li, Pingping

    2014-07-15

    In this study, the influence of sediments deposited on the leaves of different mangrove species due to tidal movements on photosynthetic characteristics and chlorophyll fluorescence of the species was explored. The degree of accelerated degradation among different mangrove species was also obtained. Results show that the leaves of mangrove species have varying degrees of sediment deposition. Sediment deposition leads to photosynthetic reduction and physiological stress among Kandelia candel, Aegiceras corniculatum, and Avicennia marina in the Quanzhou Bay. Thus, the deposition of suspended sediments from tidal currents is an important environmental factor that accelerates the degradation of some mangrove species. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Accelerated Degradation Behavior and Cytocompatibility of Pure Iron Treated with Sandblasting.

    PubMed

    Zhou, Juncen; Yang, Yuyun; Alonso Frank, Micael; Detsch, Rainer; Boccaccini, Aldo R; Virtanen, Sannakaisa

    2016-10-12

    Fe-based materials are of interest for use in biodegradable implants. However, their corrosion rate in the biological environment may be too slow for the targeted applications. In this work, sandblasting is applied as a successful surface treatment for increasing the degradation rate of pure iron in simulated body fluid. Two sandblasting surfaces with different roughness present various surface morphologies but similar degradation products. Electrochemistry tests revealed that sandblasted samples have a higher corrosion rate compared to that of bare iron, and even more noteworthy, the degradation rate of sandblasted samples remains significantly higher during long-term immersion tests. On the basis of our experimental results, the most plausible reasons behind the fast degradation rate are the special properties of sandblasted surfaces, including the change of surface composition (for the early stage), high roughness (occluded surface sites), and high density of dislocations. Furthermore, the cytocompatibility was studied on sandblasting surfaces using human osteoblast-like cells (MG-63) by indirect and direct contact methods. Results revealed that sandblasting treatment brings no adverse effect to the growth of MG-63 cells. This work demonstrates the significant potential of sandblasting for controlling the degradation behavior of iron-based materials for biomedical applications.

  12. Photo-oxidative degradation of TiO{sub 2}/polypropylene films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    García-Montelongo, X.L.; Martínez-de la Cruz, A., E-mail: azael70@yahoo.com.mx; Vázquez-Rodríguez, S.

    Graphical abstract: - Highlights: • Photo-oxidative degradation of polypropylene is accelerated by TiO{sub 2} incorporation. • Weight loss, FTIR, SEM and GPC shown high degree of degradation of polypropylene. • A mechanism of the photo-degradation of polypropylene by TiO{sub 2} is proposed. - Abstract: Photo-oxidative degradation of polypropylene films with TiO{sub 2} nanoparticles incorporated was studied in a chamber of weathering with Xenon lamps as irradiation source. TiO{sub 2} powder with crystalline structure of anatase was synthesized by thermal treatments at 400 and 500 °C starting from a precursor material obtained by sol–gel method. Composites of TiO{sub 2}/polypropylene were preparedmore » with 0.1, 0.5 and 1.0 wt% of TiO{sub 2}. The mixture of components was performed using a twin screw extruder, the resulting material was pelletized by mechanical fragmenting and then hot-pressed in order to form polypropylene films with TiO{sub 2} dispersed homogeneously. Photo-oxidative degradation process was followed by visual inspection, weight loss of films, scanning electron microscopy (SEM), infrared spectroscopy with Fourier transformed (FTIR), and gel permeation chromatography (GPC)« less

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liuyun, Jiang, E-mail: jlytxg@163.com; Chengdong, Xiong; Lixin, Jiang

    Graphical abstract: In this manuscript, we initiated a systematic study to investigate the effect of HA on thermal properties, inner structure, reduction of mechanical strength, surface morphology and the surface deposit of n-HA/PLGA composite with respect to the soaking time. The results showed that n-HA played an important role in improving the degradation behavior of n-HA/PLGA composite, which can accelerate the degradation of n-HA/PLGA composite and endow it with bioactivity, after n-HA was detached from PLGA during the degradation, so that n-HA/PLGA composite may have a more promising prospect of the clinical application than pure PLGA as bone fracture internalmore » fixation materials, and the results would be of reference significance to predict the in vivo degradation and biological properties. - Highlights: • Effect of n-HA on degradation behavior of n-HA/PLGA composite was investigated. • Degradation behaviors of n-HA/PLGA and PLGA were carried out in SBF for 6 months. • Viscosity, thermal properties, inner structure and bending strength were tested. • n-HA can accelerate the degradation and endows it with bioactivity. - Abstract: To investigate the effect of hydroxyapatite(HA) on the degradation behavior of hydroxyapatite/poly(lactic-co-glycolic) acid (HA/PLGA) nanocomposite, the degradation experiment of n-HA/PLGA composite and pure PLGA were carried out by soaking in simulated body fluid(SBF) at 37 °C for 1, 2, 4 and 6 months. The change of intrinsic viscosity, thermal properties, inner structure, bending strength reduction, surface morphology and the surface deposit of n-HA/PLGA composite and pure PLGA with respect to the soaking time were investigated by means of UbbeloHde Viscometer, differential scanning calorimeter (DSC), scanning electron microscope(SEM), electromechanical universal tester, a conventional camera and X-ray diffraction (XRD). The results showed that n-HA played an important role in improving the degradation behavior of n-HA/PLGA composite, which can accelerate the degradation PLGA and endow it with bioactivity, after n-HA was detached from PLGA during the degradation, so that n-HA/PLGA composite may have a more promising prospect of the clinical application than pure PLGA as bone fracture internal fixation materials.« less

  14. Capillary electrophoresis with electrospray ionisation-mass spectrometry for the characterisation of degradation products in aged papers.

    PubMed

    Dupont, Anne-Laurence; Seemann, Agathe; Lavédrine, Bertrand

    2012-01-30

    A methodology for capillary electrophoresis/electrospray ionisation mass spectrometry (CE/ESI-MS) was developed for the simultaneous analysis of degradation products from paper among two families of compounds: low molar mass aliphatic organic acids, and aromatic (phenolic and furanic) compounds. The work comprises the optimisation of the CE separation and the ESI-MS parameters for improved sensitivity with model compounds using two successive designs of experiments. The method was applied to the analysis of lignocellulosic paper at different stages of accelerated hygrothermal ageing. The compounds of interest were identified. Most of them could be quantified and several additional analytes were separated. Copyright © 2011 Elsevier B.V. All rights reserved.

  15. Study of jojoba oil aging by FTIR.

    PubMed

    Le Dréau, Y; Dupuy, N; Gaydou, V; Joachim, J; Kister, J

    2009-05-29

    As the jojoba oil was used in cosmetic, pharmaceutical, dietetic food, animal feeding, lubrication, polishing and bio-diesel fields, it was important to study its aging at high temperature by oxidative process. In this work a FT-MIR methodology was developed for monitoring accelerate oxidative degradation of jojoba oils. Principal component analysis (PCA) was used to differentiate various samples according to their origin and obtaining process, and to differentiate oxidative conditions applied on oils. Two spectroscopic indices were calculated to report simply the oxidation phenomenon. Results were confirmed and deepened by multivariate curve resolution-alternative least square method (MCR-ALS). It allowed identifying chemical species produced or degraded during the thermal treatment according to a SIMPLISMA pretreatment.

  16. Production of isometric forces during sustained acceleration.

    PubMed

    Sand, D P; Girgenrath, M; Bock, O; Pongratz, H

    2003-06-01

    The operation of high-performance aircraft requires pilots to apply finely graded forces on controls. Since they are often exposed to high levels of acceleration in flight, we investigated to what extent this ability is degraded in such an environment. Twelve healthy non-pilot volunteers were seated in the gondola of a centrifuge and their performance was tested at normal gravity (1 G) and while exposed to sustained forces of 1.5 G and 3 G oriented from head to foot (+Gz). Using an isometric joystick, they attempted to produce force vectors with specific lengths and directions commanded in random order by a visual display. Acceleration had substantial effects on the magnitude of produced force. Compared with 1 G, maximum produced force was about 2 N higher at 1.5 G and about 10 N higher at 3 G. The size of this effect was constant across the different magnitudes, but varied with the direction of the prescribed force. Acceleration degrades control of force production. This finding may indicate that the motor system misinterprets the unusual gravitoinertial environment and/or that proprioceptive feedback is degraded due to increased muscle tone. The production of excessive isometric force could affect the safe operation of high-performance aircraft.

  17. Accelerated Degradation Test and Predictive Failure Analysis of B10 Copper-Nickel Alloy under Marine Environmental Conditions

    PubMed Central

    Sun, Bo; Ye, Tianyuan; Feng, Qiang; Yao, Jinghua; Wei, Mumeng

    2015-01-01

    This paper studies the corrosion behavior of B10 copper-nickel alloy in marine environment. Accelerated degradation test under marine environmental conditions was designed and performed based on the accelerated testing principle and the corrosion degradation mechanism. With the prolongation of marine corrosion time, the thickness of Cu2O film increased gradually. Its corrosion product was Cu2(OH)3Cl, which increased in quantity over time. Cl− was the major factor responsible for the marine corrosion of copper and copper alloy. Through the nonlinear fitting of corrosion rate and corrosion quantity (corrosion weight loss), degradation data of different corrosion cycles, the quantitative effects of two major factors, i.e., dissolved oxygen (DO) and corrosion medium temperature, on corrosion behavior of copper alloy were analyzed. The corrosion failure prediction models under different ambient conditions were built. One-day corrosion weight loss under oxygenated stirring conditions was equivalent to 1.31-day weight loss under stationary conditions, and the corrosion rate under oxygenated conditions was 1.31 times higher than that under stationary conditions. In addition, corrosion medium temperature had a significant effect on the corrosion of B10 copper sheet. PMID:28793549

  18. Accelerated Degradation Test and Predictive Failure Analysis of B10 Copper-Nickel Alloy under Marine Environmental Conditions.

    PubMed

    Sun, Bo; Ye, Tianyuan; Feng, Qiang; Yao, Jinghua; Wei, Mumeng

    2015-09-10

    This paper studies the corrosion behavior of B10 copper-nickel alloy in marine environment. Accelerated degradation test under marine environmental conditions was designed and performed based on the accelerated testing principle and the corrosion degradation mechanism. With the prolongation of marine corrosion time, the thickness of Cu₂O film increased gradually. Its corrosion product was Cu₂(OH)₃Cl, which increased in quantity over time. Cl - was the major factor responsible for the marine corrosion of copper and copper alloy. Through the nonlinear fitting of corrosion rate and corrosion quantity (corrosion weight loss), degradation data of different corrosion cycles, the quantitative effects of two major factors, i.e. , dissolved oxygen (DO) and corrosion medium temperature, on corrosion behavior of copper alloy were analyzed. The corrosion failure prediction models under different ambient conditions were built. One-day corrosion weight loss under oxygenated stirring conditions was equivalent to 1.31-day weight loss under stationary conditions, and the corrosion rate under oxygenated conditions was 1.31 times higher than that under stationary conditions. In addition, corrosion medium temperature had a significant effect on the corrosion of B10 copper sheet.

  19. Accelerated Testing and Modeling of Potential-Induced Degradation as a Function of Temperature and Relative Humidity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hacke, Peter; Spataru, Sergiu; Terwilliger, Kent

    2015-06-14

    An acceleration model based on the Peck equation was applied to power performance of crystalline silicon cell modules as a function of time and of temperature and humidity, the two main environmental stress factors that promote potential-induced degradation. This model was derived from module power degradation data obtained semi-continuously and statistically by in-situ dark current-voltage measurements in an environmental chamber. The modeling enables prediction of degradation rates and times as functions of temperature and humidity. Power degradation could be modeled linearly as a function of time to the second power; additionally, we found that coulombs transferred from the active cellmore » circuit to ground during the stress test is approximately linear with time. Therefore, the power loss could be linearized as a function of coulombs squared. With this result, we observed that when the module face was completely grounded with a condensed phase conductor, leakage current exceeded the anticipated corresponding degradation rate relative to the other tests performed in damp heat.« less

  20. Concerns of Hydrothermal Degradation in CAD/CAM Zirconia

    PubMed Central

    Kim, J.-W.; Covel, N.S.; Guess, P.C.; Rekow, E.D.; Zhang, Y.

    2010-01-01

    Zirconia-based restorations are widely used in prosthetic dentistry; however, their susceptibility to hydrothermal degradation remains elusive. We hypothesized that CAD/CAM machining and subsequent surface treatments, i.e., grinding and/or grit-blasting, have marked effects on the hydrothermal degradation behavior of Y-TZP. CAD/CAM-machined Y-TZP plates (0.5 mm thick), both with and without subsequent grinding with various grit sizes or grit-blasting with airborne alumina particles, were subjected to accelerated aging tests in a steam autoclave. Results showed that the CAD/CAM-machined surfaces initially exhibited superior hydrothermal degradation resistance, but deteriorated at a faster rate upon prolonged autoclave treatment compared with ground and grit-blasted surfaces. The accelerated hydrothermal degradation of CAD/CAM surfaces is attributed to the CAD/CAM machining damage and the absence of surface compressive stresses in the fully sintered material. Clinical relevance for surface treatments of zirconia frameworks in terms of hydrothermal and structural stabilities is addressed. PMID:19966039

  1. Inoculation of Pichia kudriavzevii RB1 degrades the organic acids present in raw compost material and accelerates composting.

    PubMed

    Nakasaki, Kiyohiko; Araya, Shogo; Mimoto, Hiroshi

    2013-09-01

    In this study, the yeast strain Pichia kudriavzevii RB1 was used as an inoculum to accelerate organic matter degradation of rabbit food with added organic acids, which was used as a model food waste for composting. The RB1 strain rapidly degraded the organic acids present in the raw compost material, leading to an increase in pH beyond the neutral level, within 2 days. Both mesophilic and thermophilic bacteria proliferated faster in the compost with RB1 inoculation than in that without inoculation. Although the yeast died with the increase in compost temperature, it affected the early stages of composting prior to the thermophilic stage and accelerated the composting process by 2 days by eliminating the initial lag phase seen in the growth of other microorganisms. Moreover, populations of Bacillus thermoamylovorans, Bacillus foraminis, and Bacillus coagulans became dominant during the thermophilic stages of both composting with and without RB1 inoculation. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Acceleration of the herbicide isoproturon degradation in wheat by glycosyltransferases and salicylic acid.

    PubMed

    Lu, Yi Chen; Zhang, Shuang; Yang, Hong

    2015-01-01

    Isoproturon (IPU) is a herbicide widely used to prevent weeds in cereal production. Due to its extensive use in agriculture, residues of IPU are often detected in soils and crops. Overload of IPU to crops is associated with human health risks. Hence, there is an urgent need to develop an approach to mitigate its accumulation in crops. In this study, the IPU residues and its degradation products in wheat were characterized using ultra performance liquid chromatography-time of fight tandem-mass spectrometer/mass spectrometer (UPLC-TOF-MS/MS). Most detected IPU-derivatives were sugar-conjugated. Degradation and glycosylation of IPU-derivatives could be enhanced by applying salicylic acid (SA). While more sugar-conjugated IPU-derivatives were identified in wheat with SA application, lower levels of IPU were detected, indicating that SA is able to accelerate intracellular IPU catabolism. All structures of IPU-derivatives and sugar-conjugated products were characterized. Comparative data were provided with specific activities and gene expression of certain glucosyltransferases. A pathway with IPU degradation and glucosylation was discussed. Our work indicates that SA-accelerated degradation is practically useful for wheat crops growing in IPU-contaminated soils because such crops with SA application can potentially lower or minimize IPU accumulation in levels below the threshold for adverse effects. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. High Modulus Biodegradable Polyurethanes for Vascular Stents: Evaluation of Accelerated in vitro Degradation and Cell Viability of Degradation Products

    PubMed Central

    Sgarioto, Melissa; Adhikari, Raju; Gunatillake, Pathiraja A.; Moore, Tim; Patterson, John; Nagel, Marie-Danielle; Malherbe, François

    2015-01-01

    We have recently reported the mechanical properties and hydrolytic degradation behavior of a series of NovoSorb™ biodegradable polyurethanes (PUs) prepared by varying the hard segment (HS) weight percentage from 60 to 100. In this study, the in vitro degradation behavior of these PUs with and without extracellular matrix (ECM) coating was investigated under accelerated hydrolytic degradation (phosphate buffer saline; PBS/70°C) conditions. The mass loss at different time intervals and the effect of aqueous degradation products on the viability and growth of human umbilical vein endothelial cells (HUVEC) were examined. The results showed that PUs with HS 80% and below completely disintegrated leaving no visual polymer residue at 18 weeks and the degradation medium turned acidic due to the accumulation of products from the soft segment (SS) degradation. As expected the PU with the lowest HS was the fastest to degrade. The accumulated degradation products, when tested undiluted, showed viability of about 40% for HUVEC cells. However, the viability was over 80% when the solution was diluted to 50% and below. The growth of HUVEC cells is similar to but not identical to that observed with tissue culture polystyrene standard (TCPS). The results from this in vitro study suggested that the PUs in the series degraded primarily due to the SS degradation and the cell viability of the accumulated acidic degradation products showed poor viability to HUVEC cells when tested undiluted, however particles released to the degradation medium showed cell viability over 80%. PMID:26000274

  4. Enhanced photocatalytic degradation of norfloxacin in aqueous Bi2WO6 dispersions containing nonionic surfactant under visible light irradiation.

    PubMed

    Tang, Lin; Wang, Jiajia; Zeng, Guangming; Liu, Yani; Deng, Yaocheng; Zhou, Yaoyu; Tang, Jing; Wang, Jingjing; Guo, Zhi

    2016-04-05

    Photocatalytic degradation is an alternative method to remove pharmaceutical compounds in water, however it is hard to achieve efficient rate because of the poor solubility of pharmaceutical compounds in water. This study investigated the photodegradation of norfloxacin in a nonionic surfactant Triton-X100 (TX100)/Bi2WO6 dispersion under visible light irradiation (400-750nm). It was found that the degradation of poorly soluble NOF can be strongly enhanced with the addition of TX100. TX100 was adsorbed strongly on Bi2WO6 surface and accelerated NOF photodegradation at the critical micelle concentration (CMC=0.25mM). Higher TX100 concentration (>0.25mM) lowered the degradation rate. In the presence of TX100, the degradation rate reached the maximum value when the pH value was 8.06. FTIR analyses demonstrated that the adsorbed NOF on the catalyst was completely degraded after 2h irradiation. According to the intermediates identified by HPLC/MS/MS, three possible degradation pathways were proposed to include addition of hydroxyl radical to quinolone ring, elimination of piperazynilic ring in fluoroquinolone molecules, and replacement of F atoms on the aromatic ring by hydroxyl radicals. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Compatibility study of a parenteral microdose polyethylene glycol formulation in medical devices and identification of degradation impurity by 2D-LC/MS.

    PubMed

    Dai, Lulu; Yeh, Geoffrey K; Ran, Yingqing; Yehl, Peter; Zhang, Kelly

    2017-04-15

    Polyethylene glycol (PEG) based formulation and polyvinylchloride (PVC) tubing are frequently used for drug delivery and administration. The compatibility of a parenteral drug microdose formulation in intravenous infusion (IV) devices was studied to support the clinical determination of absolute bioavailability by the microdosing method. The investigational microdose formulation containing PEG was found prone to significant loss of potency within hours of storage in the PVC IV tubing due to degradation. Degradation occurred only when both PEG and PVC tubing were present. The degradation product could not be detected by LC/MS due to the significant interference from the high concentration of PEG (4%) matrix and the extremely low level of drug (0.6ppm). To obtain structural information of the degradation impurity and understand the cause of the degradation, a simple heart-cutting 2D-LC/MS approach was utilized to effectively separate the impurity from the complex PEG oligomers and overcome the matrix interference, enabling mass spectrometric analysis of the impurity. An oxidation- dominated mechanism was proposed in which the combination of PEG auto-oxidation and dehydrochlorination of the PVC tubing yielded an oxidative environment that enhanced radical propagation and accelerated degradation of the investigational parent drug. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Investigation of reliability attributes and accelerated stress factors on terrestrial solar cells

    NASA Technical Reports Server (NTRS)

    Lathrop, J. W.

    1982-01-01

    The accelerated stress test results obtained on all terrestrial solar cells since the inception of the program are summarized. Tested cells were grouped according to the method used to form the conductive metallization layer: solder dipped, vacuum deposited, screen printed, and copper plated. Although metallization systems within each group were quite similar, they differed in numerous details according to the procedures employed by each manufacturer. Test results were summarized for all cells according to both electrical degradation and catastrophic mechanical changes. These results indicated a variability within each metallization category which was dependent on the manufacturer. Only one manufacturer was represented in the copper plated category and, although these showed no signs of detrimental copper diffusion during high temperature testing, their metallization was removed easily during high humidity pressure cooker testing. Preliminary testing of encapsulated cells showed no major differences between encapsulated and unencapsulated cells when subjected to accelerated testing.

  7. An AgI@g-C3N4 hybrid core@shell structure: Stable and enhanced photocatalytic degradation

    NASA Astrophysics Data System (ADS)

    Liu, Li; Qi, Yuehong; Yang, Jinyi; Cui, Wenquan; Li, Xingang; Zhang, Zisheng

    2015-12-01

    A novel visible-light-active material AgI@g-C3N4 was prepared by ultrasonication/chemisorption method. The core@shell structure AgI@g-C3N4 catalyst showed high efficiency for the degradation of MB under visible light irradiation (λ > 420 nm). Nearly 96.5% of MB was degraded after 120 min of irradiation in the presence of the AgI@g-C3N4 photocatalyst. Superior stability was also observed in the cyclic runs indicating that the as prepared hybrid composite is highly desirable for the remediation of organic contaminated wastewaters. The improved photocatalytic performance is due to synergistic effects at the interface of AgI and g-C3N4 which can effectively accelerate the charge separation and reinforce the photostability of hybrid composite. The possible mechanism for the photocatalytic activity of AgI@g-C3N4 was tentatively proposed.

  8. Investigation of accelerated stress factors and failure/degradation mechanisms in terrestrial solar cells

    NASA Technical Reports Server (NTRS)

    Lathrop, J. W.

    1983-01-01

    Results of an ongoing research program into the reliability of terrestrial solar cells are presented. Laboratory accelerated testing procedures are used to identify failure/degradation modes which are then related to basic physical, chemical, and metallurgical phenomena. In the most recent tests, ten different types of production cells, both with and without encapsulation, from eight different manufacturers were subjected to a variety of accelerated tests. Results indicated the presence of a number of hitherto undetected failure mechanisms, including Schottky barrier formation at back contacts and loss of adhesion of grid metallization. The mechanism of Schottky barrier formation is explained by hydrogen, formed by the dissociation of water molecules at the contact surface, diffusing to the metal semiconductor interface. This same mechanism accounts for the surprising increase in sensitivity to accelerated stress conditions that was observed in some cells when encapsulated.

  9. Accelerated stress testing of terrestrial solar cells

    NASA Technical Reports Server (NTRS)

    Lathrop, J. W.; Hawkins, D. C.; Prince, J. L.; Walker, H. A.

    1982-01-01

    The development of an accelerated test schedule for terrestrial solar cells is described. This schedule, based on anticipated failure modes deduced from a consideration of IC failure mechanisms, involves bias-temperature testing, humidity testing (including both 85-85 and pressure cooker stress), and thermal-cycle thermal-shock testing. Results are described for 12 different unencapsulated cell types. Both gradual electrical degradation and sudden catastrophic mechanical change were observed. These effects can be used to discriminate between cell types and technologies relative to their reliability attributes. Consideration is given to identifying laboratory failure modes which might lead to severe degradation in the field through second quadrant operation. Test results indicate that the ability of most cell types to withstand accelerated stress testing depends more on the manufacturer's design, processing, and worksmanship than on the particular metallization system. Preliminary tests comparing accelerated test results on encapsulated and unencapsulated cells are described.

  10. Trace concentrations of vitamin E protect radiation crosslinked UHMWPE from oxidative degradation.

    PubMed

    Kurtz, S M; Dumbleton, J; Siskey, R S; Wang, A; Manley, M

    2009-08-01

    The effect of very low concentrations of Vitamin E on the stability and mechanical behavior of UHMWPE remains unknown. We tested the hypothesis that the oxidation resistance of Vitamin E-blended UHMWPE would be influenced by trace doses of antioxidant, resin, and radiation treatment. Trace concentrations (< or =500 ppm w/w%) of alpha-tocopherol (Vitamin E) were blended separately with GUR 1020 and 1050 resins and molded into disks. From each disk, three groups of 10 mm thick blocks were machined: (1) no irradiation (control); (2) 30 kGy of gamma irradiation in nitrogen; and (3) 75 kGy of gamma irradiation in air. Specimens were subjected to three aging protocols: (a) no aging (control); (b) two weeks and (c) four weeks of accelerated aging in accordance with ASTM F 2003 (i.e., 70 degrees C and 5 atm oxygen). The minimum concentration of Vitamin E needed to stabilize UHMWPE during our accelerated tests depended upon the method of radiation processing. For the 30 and 75 kGy irradiated materials, the addition of 125 ppm or more Vitamin E was sufficient to maintain baseline mechanical and chemical properties through two weeks of accelerated aging. For these groups, the addition of 375 ppm or 500 ppm, respectively, was necessary to maintain baseline mechanical and chemical properties throughout the four-week accelerated aging period. UHMWPE resin molecular weight did not have an effect on oxidation behavior. The results of this experiment therefore supported our hypotheses that trace concentrations of Vitamin E, coupled with radiation treatment-but not resin grade-influence the mechanical and oxidative degradation behavior of UHMWPE.

  11. Strongly enhanced Fenton degradation of organic pollutants by cysteine: An aliphatic amino acid accelerator outweighs hydroquinone analogues.

    PubMed

    Li, Tuo; Zhao, Zhenwen; Wang, Quan; Xie, Pengfei; Ma, Jiahai

    2016-11-15

    Quinone-hydroquinone analogues have been proven to be efficient promoters of Fenton reactions by accelerating the Fe(III)/Fe(II) redox cycle along with self-destruction. However, so far there is little information on non-quinone-hydroquinone cocatalyst for Fenton reactions. This study found that cysteine, a common aliphatic amino acid, can strongly enhance Fenton degradation of organic pollutants by accelerating Fe(III)/Fe(II) redox cycle, as quinone-hydroquinone analogues do. Further, cysteine is superior to quinone-hydroquinone analogues in catalytic activity, H 2 O 2 utilization and atmospheric limits. The cocatalysis mechanism based on the cycle of cysteine/cystine was proposed. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Secondary forest regeneration on degraded tropical lands: the role of plantations as ‘foster ecosystems’

    Treesearch

    John A. Parrotta

    1993-01-01

    Forest plantations established on degraded sites can accelerate natural succession through their effects on vegetation structure, microclimate, and soils. Spatial and temporal patterns of secondary forest species regeneration were studied in permanent quadrats in Albizia lebbek planta1ion plots and control areas at a degraded coastal pasture in...

  13. Evaluation of Cepstrum Algorithm with Impact Seeded Fault Data of Helicopter Oil Cooler Fan Bearings and Machine Fault Simulator Data

    DTIC Science & Technology

    2013-02-01

    of a bearing must be put into practice. There are many potential methods, the most traditional being the use of statistical time-domain features...accelerate degradation to test multiples bearings to gain statistical relevance and extrapolate results to scale for field conditions. Temperature...as time statistics , frequency estimation to improve the fault frequency detection. For future investigations, one can further explore the

  14. First muon acceleration using a radio-frequency accelerator

    NASA Astrophysics Data System (ADS)

    Bae, S.; Choi, H.; Choi, S.; Fukao, Y.; Futatsukawa, K.; Hasegawa, K.; Iijima, T.; Iinuma, H.; Ishida, K.; Kawamura, N.; Kim, B.; Kitamura, R.; Ko, H. S.; Kondo, Y.; Li, S.; Mibe, T.; Miyake, Y.; Morishita, T.; Nakazawa, Y.; Otani, M.; Razuvaev, G. P.; Saito, N.; Shimomura, K.; Sue, Y.; Won, E.; Yamazaki, T.

    2018-05-01

    Muons have been accelerated by using a radio-frequency accelerator for the first time. Negative muonium atoms (Mu- ), which are bound states of positive muons (μ+) and two electrons, are generated from μ+'s through the electron capture process in an aluminum degrader. The generated Mu- 's are initially electrostatically accelerated and injected into a radio-frequency quadrupole linac (RFQ). In the RFQ, the Mu- 's are accelerated to 89 keV. The accelerated Mu- 's are identified by momentum measurement and time of flight. This compact muon linac opens the door to various muon accelerator applications including particle physics measurements and the construction of a transmission muon microscope.

  15. New Avenue for Limiting Degradation in NanoLi4Ti5O12 for Ultrafast-Charge Lithium-Ion Batteries: Hybrid Polymer-Inorganic Particles.

    PubMed

    Daigle, Jean-Christophe; Asakawa, Yuichiro; Beaupré, Mélanie; Vieillette, René; Laul, Dharminder; Trudeau, Michel; Zaghib, Karim

    2017-12-13

    Lithium titanium oxide (Li 4 Ti 5 O 12 )-based cells are a very promising battery technology for ultrafast-charge-discharge and long-cycle-life batteries. However, the surface reactivity of lithium titanium oxide in the presence of organic electrolytes continues to be a problem that may cause expansion of pouch cells. In this study, we report on the development of a simple and economical grafting method for forming hybrid polymer-Li 4 Ti 15 O 12 nanoparticles, which can be successfully applied in lithium-ion batteries. This method utilizes a low-cost and scalable hydrophobic polymer that is applicable in industrial processes. The hybrid materials demonstrated exceptional capability for preventing the degradation of cells in accelerated aging and operating over 150 cycles at 1C and 45 °C.

  16. Accelerated reliability testing of highly aligned single-walled carbon nanotube networks subjected to DC electrical stressing.

    PubMed

    Strus, Mark C; Chiaramonti, Ann N; Kim, Young Lae; Jung, Yung Joon; Keller, Robert R

    2011-07-01

    We investigate the electrical reliability of nanoscale lines of highly aligned, networked, metallic/semiconducting single-walled carbon nanotubes (SWCNTs) fabricated through a template-based fluidic assembly process. We find that these SWCNT networks can withstand DC current densities larger than 10 MA cm(-2) for several hours and, in some cases, several days. We develop test methods that show that the degradation rate, failure predictability and total device lifetime can be linked to the initial resistance. Scanning electron and transmission electron microscopy suggest that fabrication variability plays a critical role in the rate of degradation, and we offer an empirical method of quickly determining the long-term performance of a network. We find that well-fabricated lines subject to constant electrical stress show a linear accumulation of damage reminiscent of electromigration in metallic interconnects, and we explore the underlying physical mechanisms that could cause such behavior.

  17. Nondestructive Examination (NDE) Detection and Characterization of Degradation Precursors, Technical Progress Report for FY 2012

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ramuhalli, P.; Meyer, R.M.; Fricke, J.M.

    2012-09-01

    The overall objective of this project was to investigate the effectiveness of nondestructive examination (NDE) technology in detecting material degradation precursors by initiating and growing cracks in selected materials and using NDE methods to measure crack precursors prior to the onset of cracking. Nuclear reactor components are subject to stresses over time that are not precisely known and that make the life expectancy of components difficult to determine. To prevent future issues with the operation of these plants because of unforeseen failure of components, NDE technology is needed that can be used to identify and quantify precursors to macroscopic degradationmore » of materials. Some of the NDE methods being researched as possible solutions to the precursor detection problem are magnetic Barkhausen noise, nonlinear ultrasonics, acoustic emission, eddy current measurements, and guided wave technology. In FY12, the objective was to complete preliminary assessment of advanced NDE techniques for sensitivity to degradation precursors, using prototypical degradation mechanisms in laboratory-scale measurements. This present document reports on the deliverable that meets the following milestone: M3LW-12OR0402143 – Report detailing an initial demonstration on samples from the crack-initiation tests will be provided (demonstrating acceleration of the work).« less

  18. Environmental aging in polycrystalline-Si photovoltaic modules: comparison of chamber-based accelerated degradation studies with field-test data

    NASA Astrophysics Data System (ADS)

    Lai, T.; Biggie, R.; Brooks, A.; Potter, B. G.; Simmons-Potter, K.

    2015-09-01

    Lifecycle degradation testing of photovoltaic (PV) modules in accelerated-degradation chambers can enable the prediction both of PV performance lifetimes and of return-on-investment for installations of PV systems. With degradation results strongly dependent on chamber test parameters, the validity of such studies relative to fielded, installed PV systems must be determined. In the present work, accelerated aging of a 250 W polycrystalline silicon module is compared to real-time performance degradation in a similar polycrystalline-silicon, fielded, PV technology that has been operating since October 2013. Investigation of environmental aging effects are performed in a full-scale, industrial-standard environmental chamber equipped with single-sun irradiance capability providing illumination uniformity of 98% over a 2 x 1.6 m area. Time-dependent, photovoltaic performance (J-V) is evaluated over a recurring, compressed night-day cycle providing representative local daily solar insolation for the southwestern United States, followed by dark (night) cycling. This cycle is synchronized with thermal and humidity environmental variations that are designed to mimic, as closely as possible, test-yard conditions specific to a 12 month weather profile for a fielded system in Tucson, AZ. Results confirm the impact of environmental conditions on the module long-term performance. While the effects of temperature de-rating can be clearly seen in the data, removal of these effects enables the clear interpretation of module efficiency degradation with time and environmental exposure. With the temperature-dependent effect removed, the normalized efficiency is computed and compared to performance results from another panel of similar technology that has previously experienced identical climate changes in the test yard. Analysis of relative PV module efficiency degradation for the chamber-tested system shows good comparison to the field-tested system with ~2.5% degradation following an equivalent year of testing.

  19. Ozonation of oil sands process-affected water accelerates microbial bioremediation.

    PubMed

    Martin, Jonathan W; Barri, Thaer; Han, Xiumei; Fedorak, Phillip M; El-Din, Mohamed Gamal; Perez, Leonidas; Scott, Angela C; Jiang, Jason Tiange

    2010-11-01

    Ozonation can degrade toxic naphthenic acids (NAs) in oil sands process-affected water (OSPW), but even after extensive treatment a residual NA fraction remains. Here we hypothesized that mild ozonation would selectively oxidize the most biopersistent NA fraction, thereby accelerating subsequent NA biodegradation and toxicity removal by indigenous microbes. OSPW was ozonated to achieve approximately 50% and 75% NA degradation, and the major ozonation byproducts included oxidized NAs (i.e., hydroxy- or keto-NAs). However, oxidized NAs are already present in untreated OSPW and were shown to be formed during the microbial biodegradation of NAs. Ozonation alone did not affect OSPW toxicity, based on Microtox; however, there was a significant acceleration of toxicity removal in ozonated OSPW following inoculation with native microbes. Furthermore, all residual NAs biodegraded significantly faster in ozonated OSPW. The opposite trend was found for ozonated commercial NAs, which are known to contain no significant biopersistent fraction. Thus, we suggest that ozonation preferentially degraded the most biopersistent OSPW NA fraction, and that ozonation is complementary to the biodegradation capacity of microbial populations in OSPW. The toxicity of ozonated OSPW to higher organisms needs to be assessed, but there is promise that this technique could be applied to accelerate the bioremediation of large volumes of OSPW in Northern Alberta, Canada.

  20. Matlab fractal techniques used to study the structural degradation caused by alpha radiation to laser mirrors

    NASA Astrophysics Data System (ADS)

    Ioan, M.-R.

    2018-01-01

    Almost all optical diagnostic systems associated with classical particle accelerators or with new state-of-the-art particle accelerators, such as those developed within the European Collaboration ELI-NP (Extreme Light Infrastructure-Nuclear Physics) (involving extreme power laser beams), contain in their infrastructure high quality laser mirrors, used for their reflectivity and/or their partial transmittance. These high quality mirrors facilitate the extraction and handling of optical signals. When optical mirrors are exposed to high energy ionizing radiation fields, their optical and structural properties will change over time and their functionality will be affected, meaning that they will provide imprecise information. In some experiments, being exposed to mixed laser and accelerated particle beams, the deterioration of laser mirrors is even more acute, since the destruction mechanisms of both types of beams are cumulated. The main task of the work described in this paper was to find a novel specific method to analyse and highlight such degradation processes. By using complex fractal techniques integrated in a MATLAB code, the effects induced by alpha radiation to laser mirrors were studied. The fractal analysis technique represents an alternative approach to the classical Euclidean one. It can be applied for the characterization of the defects occurred in mirrors structure due to their exposure to high energy alpha particle beams. The proposed method may be further integrated into mirrors manufacturing process, as a testing instrument, to obtain better quality mirrors (enhanced resistance to high energy ionizing beams) by using different types of reflective coating materials and different deposition techniques. Moreover, the effect of high energy alpha ionizing particles on the optical properties of the exposed laser mirrors was studied by using spectrophotometric techniques.

  1. Kinetics of drug decomposition. Part XXXVI. Stability of 10-(1'-methyl-4'-piperazinylpropyl)-phenothiazine derivatives on the grounds of kinetics of thermal degradation and Hammett equation.

    PubMed

    Pawelczyk, E; Marciniec, B; Matlak, B

    1975-01-01

    Thermal degradation of aqueous and buffered solutions of perazine, prochlorperazine, trifluoperazine, thioproperazine, thiethylperazine and butaperazine salts was examined by kinetic method using an accelerated testing of pharmaceutical preparations. The order, rate constants and activation parameters (Q100, E, delta H not equal to, delta S not equal to, delta G not equal to ) of the reaction given were discussed. The predicted stability of the examined derivatives was compared on the grounds of a calculated time t10% and K293 kappa. A dependence between the stability and kind of substituent in the C2 positions was discussed in terms of the Hammett equation.

  2. Early detection of materials degradation

    NASA Astrophysics Data System (ADS)

    Meyendorf, Norbert

    2017-02-01

    Lightweight components for transportation and aerospace applications are designed for an estimated lifecycle, taking expected mechanical and environmental loads into account. The main reason for catastrophic failure of components within the expected lifecycle are material inhomogeneities, like pores and inclusions as origin for fatigue cracks, that have not been detected by NDE. However, material degradation by designed or unexpected loading conditions or environmental impacts can accelerate the crack initiation or growth. Conventional NDE methods are usually able to detect cracks that are formed at the end of the degradation process, but methods for early detection of fatigue, creep, and corrosion are still a matter of research. For conventional materials ultrasonic, electromagnetic, or thermographic methods have been demonstrated as promising. Other approaches are focused to surface damage by using optical methods or characterization of the residual surface stresses that can significantly affect the creation of fatigue cracks. For conventional metallic materials, material models for nucleation and propagation of damage have been successfully applied for several years. Material microstructure/property relations are well established and the effect of loading conditions on the component life can be simulated. For advanced materials, for example carbon matrix composites or ceramic matrix composites, the processes of nucleation and propagation of damage is still not fully understood. For these materials NDE methods can not only be used for the periodic inspections, but can significantly contribute to the material scientific knowledge to understand and model the behavior of composite materials.

  3. An investigation of the mechanism of release of the amphoteric drug amoxycillin from poly(D,L-lactide-co-glycolide) matrices.

    PubMed

    Mollo, A Rosario; Corrigan, Owen I

    2002-01-01

    Amoxycillin-poly (D,L-lactide-co-glycolide) (PLGA) compacts were prepared by direct compression of both powder mixtures or films in a pre-heated press. Release profiles generally showed two phases separated by an induction period. Thus, both diffusion and polymer degradation mechanisms were involved in drug release, the relative importance of each depending on processing type and drug loading. Drug release parameters for each phase were determined. The fraction of total drug released, in the initial release phase, increased with drug loading and was much larger for compressed physical mixtures than for compressed composites prepared from co-evaporate films. Comparison of the polymer mass loss profiles of drug-loaded and drug-free discs indicated that the presence of the amphoteric drug amoxycillin had little impact on the polymer degradation rate, in contrast to the marked acceleration previously reported for basic drugs. Significant drug degradation occurred and was associated with release at later times. Release data was fitted to an equation accounting for degradation of the drug on release and suggested accelerated amoxycillin degradation during the polymer degradation controlled release phase, consistent with changes in pH in the microenvironment of the eroding compact.

  4. Accelerated DNA Methylation Age: Associations with PTSD and Neural Integrity

    PubMed Central

    Wolf, Erika J.; Logue, Mark W.; Hayes, Jasmeet P.; Sadeh, Naomi; Schichman, Steven A.; Stone, Annjanette; Salat, David H.; Milberg, William; McGlinchey, Regina; Miller, Mark W.

    2015-01-01

    Background Accumulating evidence suggests that post traumatic stress disorder (PTSD) may accelerate cellular aging and lead to premature morbidity and neurocognitive decline. Methods This study evaluated associations between PTSD and DNA methylation (DNAm) age using recently developed algorithms of cellular age by Horvath (2013) and Hannum et al. (2013). These estimates reflect accelerated aging when they exceed chronological age. We also examined if accelerated cellular age manifested in degraded neural integrity, indexed via diffusion tensor imaging. Results Among 281 male and female veterans of the conflicts in Iraq and Afghanistan, DNAm age was strongly related to chronological age (rs ~.88). Lifetime PTSD severity was associated with Hannum DNAm age estimates residualized for chronological age (β = .13, p= .032). Advanced DNAm age was associated with reduced integrity in the genu of the corpus callosum (β = −.17, p= .009) and indirectly linked to poorer working memory performance via this region (indirect β = − .05, p= .029). Horvath DNAm age estimates were not associated with PTSD or neural integrity. Conclusions Results provide novel support for PTSD-related accelerated aging in DNAm and extend the evidence base of known DNAm age correlates to the domains of neural integrity and cognition. PMID:26447678

  5. Rate of antioxidant degradation and color variations in dehydrated apples as related to water activity.

    PubMed

    Lavelli, Vera; Vantaggi, Claudia

    2009-06-10

    Dehydrated apples were studied to evaluate the effects of water activity on the stability of their antioxidants and color. Apples were freeze-dried, ground, then equilibrated, and stored at eight water activity levels, ranging from 0.058 to 0.747, at 40 degrees C. Their contents of hydroxycinnamic acids, dihydrochalcones, catechin, epicatechin, polymeric flavan-3-ols, and hydroxymethylfurfural, their antioxidant activity values, and their Hunter colorimetric parameters were analyzed at different storage times. Antioxidant degradation followed pseudo-first-order kinetics and was accelerated by increasing the water activity. The order of antioxidant stability in the products at water activity levels below 0.316 was catechin, epicatechin, and ascorbic acid < total procyanidins < dihydrochalcones and p-coumaric acid < chlorogenic acid; however, in the products at water activity levels above 0.316, the degradation of all antioxidants was very fast. The hydroxymethylfurfural formation rate increased exponentially during storage, especially at high water activity levels. The antioxidant activity of the dehydrated apples decreased during storage, consistent with antioxidant loss. The variations of the colorimetric parameters, namely, lightness (L*), redness (a*), and yellowness (b*), followed pseudo-zero-order kinetics and were accelerated by increasing water activity. All analytical indices indicated that the dehydrated apples were stable at water activity levels below 0.316, with the degradation rate accelerating upon exposure to higher relative humidities. Above 0.316, a small increase in water activity of the product would sharply increase the degradation rate constants for both antioxidant and color variations.

  6. 4D in situ visualization of electrode morphology changes during accelerated degradation in fuel cells by X-ray computed tomography

    NASA Astrophysics Data System (ADS)

    White, Robin T.; Wu, Alex; Najm, Marina; Orfino, Francesco P.; Dutta, Monica; Kjeang, Erik

    2017-05-01

    A four-dimensional visualization approach, featuring three dimensions in space and one dimension in time, is proposed to study local electrode degradation effects during voltage cycling in fuel cells. Non-invasive in situ micro X-ray computed tomography (XCT) with a custom fuel cell fixture is utilized to track the same cathode catalyst layer domain throughout various degradation times from beginning-of-life (BOL) to end-of-life (EOL). With this unique approach, new information regarding damage features and trends are revealed, including crack propagation and catalyst layer thinning being quantified by means of image processing and analysis methods. Degradation heterogeneities as a result of local environmental variations under land and channel are also explored, with a higher structural degradation rate under channels being observed. Density and compositional changes resulting from carbon corrosion and catalyst layer collapse and thinning are observed by changes in relative X-ray attenuation from BOL to EOL, which also indicate possible vulnerable regions where crack initiation and propagation may occur. Electrochemical diagnostics and morphological features observed by micro-XCT are correlated by additionally collecting effective catalyst surface area, double layer capacitance, and polarization curves prior to imaging at various stages of degradation.

  7. Accelerated azo dye degradation and concurrent hydrogen production in the single-chamber photocatalytic microbial electrolysis cell.

    PubMed

    Hou, Yanping; Zhang, Renduo; Yu, Zebin; Huang, Lirong; Liu, Yuxin; Zhou, Zili

    2017-01-01

    The single-chamber microbial electrolysis cell constructed with a TiO 2 -coated photocathode, termed photocatalytic microbial electrolysis cell (PMEC), was developed to accelerate methyl orange (MO) degradation and concurrent hydrogen (H 2 ) recovery under UV irradiation. Results showed that faster MO decolorization rates were achieved from the PMEC compared with those without UV irradiation or with open circuit. With increase of MO concentrations (acetate as co-substrate) from 50 to 300mg/L at an applied voltage of 0.8V, decolorization efficiencies decreased from 98% to 76% within 12h, and cyclic H 2 production declined from 113 to 68mL. As the possible mechanism of MO degradation, bioelectrochemical reduction, co-metabolism reduction, and photocatalysis were involved; and degradation intermediates (mainly sulfanilic acid and N,N-dimethylaniline) were further degraded by OH generated from photocatalysis. This makes MO mineralization be possible in the single-chamber PMEC. Hence, the PMEC is a promising system for dyeing wastewater treatment and simultaneous H 2 production. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Fructose as a novel photosensitizer: Characterization of reactive oxygen species and an application in degradation of diuron and chlorpyrifos.

    PubMed

    Nayak, Shaila; Muniz, Juan; Sales, Christopher M; Tikekar, Rohan V

    2016-02-01

    The objective of this study was to identify reactive oxygen species (ROS) generated from the exposure of fructose solution to the 254 nm ultraviolet (UV) light and evaluate whether fructose can be used as a photosensitizer for accelerated photo-degradation of diuron and chlorpyrifos. We demonstrated that hydrogen peroxide, singlet oxygen ((1)O2) and acidic photolysis products were generated upon UV exposure of fructose. Consistent with these findings, UV induced degradation of chlorpyrifos and diuron was accelerated by the presence of 500 mM fructose. The average first order photo-degradation rate constants in the absence and presence of 500 mM fructose were 0.92 and 2.07 min(-1) respectively for diuron and 0.04 and 0.07 min(-1) for chlorpyrifos. The quantum yields (ɸ) for direct photo-degradation of diuron and chlorpyrifos were 0.003 and 0.001 respectively. In the presence of 500 mM fructose, these values increased to 0.006 and 0.002 respectively. Thus, fructose may be an effective photosensitizer. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Investigation of accelerated stress factors and failure/degradation mechanisms in terrestrial solar cells

    NASA Technical Reports Server (NTRS)

    Lathrop, J. W.

    1984-01-01

    Research on the reliability of terrestrial solar cells was performed to identify failure/degradation modes affecting solar cells and to relate these to basic physical, chemical, and metallurgical phenomena. Particular concerns addressed were the reliability attributes of individual single crystalline, polycrystalline, and amorphous thin film silicon cells. Results of subjecting different types of crystalline cells to the Clemson accelerated test schedule are given. Preliminary step stress results on one type of thin film amorphous silicon (a:Si) cell indicated that extraneous degradation modes were introduced above 140 C. Also described is development of measurement procedures which are applicable to the reliability testing of a:Si solar cells as well as an approach to achieving the necessary repeatability of fabricating a simulated a:Si reference cell from crystalline silicon photodiodes.

  10. Degradation of Leakage Currents and Reliability Prediction for Tantalum Capacitors

    NASA Technical Reports Server (NTRS)

    Teverovsky, Alexander

    2016-01-01

    Two types of failures in solid tantalum capacitors, catastrophic and parametric, and their mechanisms are described. Analysis of voltage and temperature reliability acceleration factors reported in literature shows a wide spread of results and requires more investigation. In this work, leakage currents in two types of chip tantalum capacitors were monitored during highly accelerated life testing (HALT) at different temperatures and voltages. Distributions of degradation rates were approximated using a general log-linear Weibull model and yielded voltage acceleration constants B = 9.8 +/- 0.5 and 5.5. The activation energies were Ea = 1.65 eV and 1.42 eV. The model allows for conservative estimations of times to failure and was validated by long-term life test data. Parametric degradation and failures are reversible and can be annealed at high temperatures. The process is attributed to migration of charged oxygen vacancies that reduce the barrier height at the MnO2/Ta2O5 interface and increase injection of electrons from the MnO2 cathode. Analysis showed that the activation energy of the vacancies' migration is 1.1 eV.

  11. Long-term stability of amorphous-silicon modules

    NASA Technical Reports Server (NTRS)

    Ross, R. G., Jr.

    1986-01-01

    The Jet Propulsion Laboratory (JPL) program of developing qualification tests necessary for amorphous silicon modules, including appropriate accelerated environmental tests reveal degradation due to illumination. Data were given which showed the results of temperature-controlled field tests and accelerated tests in an environmental chamber.

  12. Development of a standard accelerated weathering test for aggregates using dimethyl sulfoxide (DMSO) : final report.

    DOT National Transportation Integrated Search

    1986-09-01

    A standard accelerated weathering test using Dimethyl Sulfoxide (DMSO) was developed to simulate the chemical degradation of basaltic rocks. After a thorough study of the parameters affecting the current procedure, such as container geometry, aggrega...

  13. Photothermal Stability of an E-Beam Pre-Crosslinked EVA Encapsulant and Its Performance Degradation on a-Si Submodules: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pern, F. J.; Watson, G. L.; Glick, S. H.

    2001-10-01

    Presented at the 2001 NCPV Program Review Meeting: Study of photothermal stability of special EVA encapsulant by accelerated exposure testing and analysis of causes of performance degradation on a-Si modules.

  14. Encapsulation of alpha-amylase into starch-based biomaterials: an enzymatic approach to tailor their degradation rate.

    PubMed

    Azevedo, Helena S; Reis, Rui L

    2009-10-01

    This paper reports the effect of alpha-amylase encapsulation on the degradation rate of a starch-based biomaterial. The encapsulation method consisted in mixing a thermostable alpha-amylase with a blend of corn starch and polycaprolactone (SPCL), which were processed by compression moulding to produce circular disks. The presence of water was avoided to keep the water activity low and consequently to minimize the enzyme activity during the encapsulation process. No degradation of the starch matrix occurred during processing and storage (the encapsulated enzyme remained inactive due to the absence of water), since no significant amount of reducing sugars was detected in solution. After the encapsulation process, the released enzyme activity from the SPCL disks after 28days was found to be 40% comparatively to the free enzyme (unprocessed). Degradation studies on SPCL disks, with alpha-amylase encapsulated or free in solution, showed no significant differences on the degradation behaviour between both conditions. This indicates that alpha-amylase enzyme was successfully encapsulated with almost full retention of its enzymatic activity and the encapsulation of alpha-amylase clearly accelerates the degradation rate of the SPCL disks, when compared with the enzyme-free disks. The results obtained in this work show that degradation kinetics of the starch polymer can be controlled by the amount of encapsulated alpha-amylase into the matrix.

  15. Stability of CIGS Solar Cells and Component Materials Evaluated by a Step-Stress Accelerated Degradation Test Method: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pern, F. J.; Noufi, R.

    A step-stress accelerated degradation testing (SSADT) method was employed for the first time to evaluate the stability of CuInGaSe2 (CIGS) solar cells and device component materials in four Al-framed test structures encapsulated with an edge sealant and three kinds of backsheet or moisture barrier film for moisture ingress control. The SSADT exposure used a 15oC and then a 15% relative humidity (RH) increment step, beginning from 40oC/40%RH (T/RH = 40/40) to 85oC/70%RH (85/70) as of the moment. The voluminous data acquired and processed as of total DH = 3956 h with 85/70 = 704 h produced the following results. Themore » best CIGS solar cells in sample Set-1 with a moisture-permeable TPT backsheet showed essentially identical I-V degradation trend regardless of the Al-doped ZnO (AZO) layer thickness ranging from standard 0.12 μm to 0.50 μm on the cells. No clear 'stepwise' feature in the I-V parameter degradation curves corresponding to the SSADT T/RH/time profile was observed. Irregularity in I-V performance degradation pattern was observed with some cells showing early degradation at low T/RH < 55/55 and some showing large Voc, FF, and efficiency degradation due to increased series Rs (ohm-cm2) at T/RH ≥ 70/70. Results of (electrochemical) impedance spectroscopy (ECIS) analysis indicate degradation of the CIGS solar cells corresponded to increased series resistance Rs (ohm) and degraded parallel (minority carrier diffusion/recombination) resistance Rp, capacitance C, overall time constant Rp*C, and 'capacitor quality' factor (CPE-P), which were related to the cells? p-n junction properties. Heating at 85/70 appeared to benefit the CIGS solar cells as indicated by the largely recovered CPE-P factor. Device component materials, Mo on soda lime glass (Mo/SLG), bilayer ZnO (BZO), AlNi grid contact, and CdS/CIGS/Mo/SLG in test structures with TPT showed notable to significant degradation at T/RH ≥ 70/70. At T/RH = 85/70, substantial blistering of BZO layers on CIGS cell pieces was observed that was not seen on BZO/glass, and a CdS/CIGS sample displayed a small darkening and then flaking feature. Additionally, standard AlNi grid contact was less stable than thin Ni grid contact at T/RH ≥ 70/70. The edge sealant and moisture-blocking films were effective to block moisture ingress, as evidenced by the good stability of most CIGS solar cells and device components at T/RH = 85/70 for 704 h, and by preservation of the initial blue color on the RH indicator strips. The SSADT experiment is ongoing to be completed at T/RH = 85/85.« less

  16. The Role of Monoubiquitination in Endocytic Degradation of Human Ether-a-go-go-related Gene (hERG) Channels under Low K+ Conditions*

    PubMed Central

    Sun, Tao; Guo, Jun; Shallow, Heidi; Yang, Tonghua; Xu, Jianmin; Li, Wentao; Hanson, Christian; Wu, James G.; Li, Xian; Massaeli, Hamid; Zhang, Shetuan

    2011-01-01

    A reduction in extracellular K+ concentration ([K+]o) causes cardiac arrhythmias and triggers internalization of the cardiac rapidly activating delayed rectifier potassium channel (IKr) encoded by the human ether-a-go-go-related gene (hERG). We investigated the role of ubiquitin (Ub) in endocytic degradation of hERG channels stably expressed in HEK cells. Under low K+ conditions, UbKO, a lysine-less mutant Ub that only supports monoubiquitination, preferentially interacted and selectively enhanced degradation of the mature hERG channels. Overexpression of Vps24 protein, also known as charged multivesicular body protein 3, significantly accelerated degradation of mature hERG channels, whereas knockdown of Vps24 impeded this process. Moreover, the lysosomal inhibitor bafilomycin A1 inhibited degradation of the internalized mature hERG channels. Thus, monoubiquitination directs mature hERG channels to degrade through the multivesicular body/lysosome pathway. Interestingly, the protease inhibitor lactacystin inhibited the low K+-induced hERG endocytosis and concomitantly led to an accumulation of monoubiquitinated mature hERG channels, suggesting that deubiquitination is also required for the endocytic degradation. Consistently, overexpression of the endosomal deubiquitinating enzyme signal transducing adaptor molecule-binding protein significantly accelerated whereas knockdown of endogenous signal transducing adaptor molecule-binding protein impeded degradation of the mature hERG channels under low K+ conditions. Thus, monoubiquitin dynamically mediates endocytic degradation of mature hERG channels under low K+ conditions. PMID:21177251

  17. Accelerated Compressed Sensing Based CT Image Reconstruction.

    PubMed

    Hashemi, SayedMasoud; Beheshti, Soosan; Gill, Patrick R; Paul, Narinder S; Cobbold, Richard S C

    2015-01-01

    In X-ray computed tomography (CT) an important objective is to reduce the radiation dose without significantly degrading the image quality. Compressed sensing (CS) enables the radiation dose to be reduced by producing diagnostic images from a limited number of projections. However, conventional CS-based algorithms are computationally intensive and time-consuming. We propose a new algorithm that accelerates the CS-based reconstruction by using a fast pseudopolar Fourier based Radon transform and rebinning the diverging fan beams to parallel beams. The reconstruction process is analyzed using a maximum-a-posterior approach, which is transformed into a weighted CS problem. The weights involved in the proposed model are calculated based on the statistical characteristics of the reconstruction process, which is formulated in terms of the measurement noise and rebinning interpolation error. Therefore, the proposed method not only accelerates the reconstruction, but also removes the rebinning and interpolation errors. Simulation results are shown for phantoms and a patient. For example, a 512 × 512 Shepp-Logan phantom when reconstructed from 128 rebinned projections using a conventional CS method had 10% error, whereas with the proposed method the reconstruction error was less than 1%. Moreover, computation times of less than 30 sec were obtained using a standard desktop computer without numerical optimization.

  18. Accelerated Compressed Sensing Based CT Image Reconstruction

    PubMed Central

    Hashemi, SayedMasoud; Beheshti, Soosan; Gill, Patrick R.; Paul, Narinder S.; Cobbold, Richard S. C.

    2015-01-01

    In X-ray computed tomography (CT) an important objective is to reduce the radiation dose without significantly degrading the image quality. Compressed sensing (CS) enables the radiation dose to be reduced by producing diagnostic images from a limited number of projections. However, conventional CS-based algorithms are computationally intensive and time-consuming. We propose a new algorithm that accelerates the CS-based reconstruction by using a fast pseudopolar Fourier based Radon transform and rebinning the diverging fan beams to parallel beams. The reconstruction process is analyzed using a maximum-a-posterior approach, which is transformed into a weighted CS problem. The weights involved in the proposed model are calculated based on the statistical characteristics of the reconstruction process, which is formulated in terms of the measurement noise and rebinning interpolation error. Therefore, the proposed method not only accelerates the reconstruction, but also removes the rebinning and interpolation errors. Simulation results are shown for phantoms and a patient. For example, a 512 × 512 Shepp-Logan phantom when reconstructed from 128 rebinned projections using a conventional CS method had 10% error, whereas with the proposed method the reconstruction error was less than 1%. Moreover, computation times of less than 30 sec were obtained using a standard desktop computer without numerical optimization. PMID:26167200

  19. Methods to Prove 20+ Year Life of CPV Products (in less than 20 Years)

    NASA Astrophysics Data System (ADS)

    Bowman, John; Spencer, Mark

    2011-12-01

    Due to the long term life expectations of photovoltaic products and the short duration of most introduced CPV technologies, it is critical for CPV companies to carefully construct field trials to prove product life. Because of the complicated geometric, thermal, and spectral characteristics of CPV systems, conducting very precise power output measurements reproducibly over many months is very difficult. Robust normalization methods specific to the exact optical system and PV cell type must be developed. Once the performance over a specific duration, e.g. one year, is established, then some justification is required to extrapolate to future performance. Comparisons to accelerated test results provide this justification. SolFocus has been conducting field trials of the SF-1100S CPV system for over two years. These field trials consist of controlled populations of SF-1100P modules, operating in grid-tied systems, which have been repeatedly measured at the individual module level over the duration of the trials. In this paper, field data will be presented along with normalization methodology and statistical methods for determining power degradation slope distributions for populations of individual modules. These results will be correlated with accelerated field tests which have been ongoing for 1.5 years and are estimated to be equivalent to 10 to 15 years of non-accelerated operation.

  20. Thalidomide Accelerates the Degradation of Extracellular Matrix in Rat Hepatic Cirrhosis via Down-Regulation of Transforming Growth Factor-β1

    PubMed Central

    Meng, Qingshun; Liu, Jie; Wang, Chuanfang

    2015-01-01

    Purpose The degradation of the extracellular matrix has been shown to play an important role in the treatment of hepatic cirrhosis. In this study, the effect of thalidomide on the degradation of extracellular matrix was evaluated in a rat model of hepatic cirrhosis. Materials and Methods Cirrhosis was induced in Wistar rats by intraperitoneal injection of carbon tetrachloride (CCl4) three times weekly for 8 weeks. Then CCl4 was discontinued and thalidomide (100 mg/kg) or its vehicle was administered daily by gavage for 6 weeks. Serum hyaluronic acid, laminin, procollagen type III, and collagen type IV were examined by using a radioimmunoassay. Matrix metalloproteinase-13 (MMP-13), tissue inhibitor of metalloproteinase-1 (TIMP-1), and α-smooth muscle actin (α-SMA) protein in the liver, transforming growth factor β1 (TGF-β1) protein in cytoplasm by using immunohistochemistry and Western blot analysis, and MMP-13, TIMP-1, and TGF-β1 mRNA levels in the liver were studied using reverse transcriptase polymerase chain reaction. Results Liver histopathology was significantly better in rats given thalidomide than in the untreated model group. The levels of TIMP-1 and TGF-β1 mRNA and protein expressions were decreased significantly and MMP-13 mRNA and protein in the liver were significantly elevated in the thalidomide-treated group. Conclusion Thalidomide may exert its effects on the regulation of MMP-13 and TIMP-1 via inhibition of the TGF-β1 signaling pathway, which enhances the degradation of extracellular matrix and accelerates the regression of hepatic cirrhosis in rats. PMID:26446639

  1. Developing radiation tolerant polymer nanocomposites using C 60 as an additive

    DOE PAGES

    Christian, Jonathan H.; Wilson, Jason; Nicholson, James C.; ...

    2016-04-13

    In nuclear facilities utilizing plutonium, polymeric materials are subjected to long-term, close-contact, and continuous α radiation exposure, which can lead to compounding material degradation and eventual failure. Herein we model the attenuation of α particles by linear-low-density polyethylene (LLDPE), polyvinyl alcohol (PVA) thin films, and C 60 using Monte Carlo N-Particle Extended (MCNPX) software. The degradation of these materials was investigated experimentally by irradiating them with a beam of α particles of 5.8 MeV energy at a tandem Van de Graaff accelerator delivering a dose rate of 2.95 × 10 6 rad s –1 over a 7.1 mm 2 samplemore » area. Our development of a method to test α particle-induced material degradation using a tandem accelerator is significant as degradation from naturally occurring α sources (i.e. Pu, Am) occurs too slowly for these sources to be used in practical experiments. Our results show that PVA nanocomposites containing 5 wt% C 60 were found to withstand about 7 times the α dose of undoped PVA films before a puncture in the film was detected. When these films were adhered to a LLDPE sheet the dual layer polymer was capable of withstanding about 13 times the dose of LLDPE and nearly twice the dose of the doped PVA thin film alone. Doping polymers with C 60 is an attractive way to generate more durable, radiation tolerant materials without increasing the thickness of the material which would lead to greater waste for disposal. Furthermore, the results herein help to resolve a prevalent technical challenge faced in nuclear facilities that utilize polymeric materials for nuclear processing and disposal.« less

  2. Coupling of Groundwater Recharge and Biodegradation of Subsurface Crude-Oil Contamination (Invited)

    NASA Astrophysics Data System (ADS)

    Bekins, B. A.; Hostettler, F. D.; Delin, G. N.; Herkelrath, W. N.; Warren, E.; Campbell, P.; Rosenbauer, R. J.; Cozzarelli, I.

    2010-12-01

    Surface hydrologic properties controlling groundwater recharge can have a large effect on biodegradation rates in the subsurface. Two studies of crude oil contamination show that degradation rates are dramatically increased where recharge rates are enhanced. The first site, located near Bemidji, Minnesota, was contaminated in August, 1979 when oil from a pipeline rupture infiltrated into a surficial glacial outwash aquifer. Discrete oil phases form three separate pools at the water table, the largest of which is 25x75 m at a depth of 6-8 m. Gas and water concentrations and microbial community data show that methanogenic conditions prevail in this oil pool. There is extreme spatial dependence in the degradation rates such that most of the n-alkanes have been degraded in the upgradient end, but in the downgradient end n-alkane concentrations are nearly unaltered from the original spill. Recharge rates through the two ends of the oil body were estimated using a water table fluctuation method. In 2002, the more degraded end received 15.2 cm of recharge contrasted to 10.7 cm at the less degraded end. The enhanced recharge is caused by topographic focusing of runoff toward a local depression. Microbial data using the Most Probable Number method show that the methanogen concentrations are 10-100 times greater in the more degraded end of the oil body suggesting that a growth nutrient is supplied by recharge. A decrease in partial pressure of N2 compared to Ar in the soil gas indicates nitrogen fixation probably meets N requirements (Amos et al., 2005, WRR, doi:10.1029/2004WR003433). Organic phosphorus is the main form of P in infiltrating pore water and concentration decreases with depth. The second site is located 40 km southeast of the Bemidji site at an oil pipeline pumping station near Cass Lake, Minnesota. This site was contaminated by oil leaking from a pipe coupling for an unknown duration of time between 1971 and 2002. The oil body at this site lies under a fenced area of the pumping station and is comparable in size to the largest Bemidji site oil pool. The oil is heavily degraded with complete loss of the n-alkane fraction suggesting that degradation is accelerated at this site. The pumping station is flat, gravel-covered, devoid of vegetation, and surrounded by a berm. Thus, the combined effects of no runoff, rapid infiltration, and zero transpiration all enhance recharge to the oil body. Recharge rates through the gravel yard and the adjacent forested area were estimated using a water table fluctuation method. Data for the first six months of 2010 showed that recharge below the gravel yard was 40% greater than below the forested area. Groundwater ammonia concentrations increase from 0.02 to 0.5 mmol/L under the oil body, while background NO3 is only 0.01 mmol/L and there is negligible N in the oil, again suggesting that N fixation meets N requirements. Combined, these studies suggest that enhanced transport of a limiting nutrient other than N from the surface may accelerate degradation of subsurface contamination.

  3. Mass spectrometric comparison of swift heavy ion-induced and anaerobic thermal degradation of polymers

    NASA Astrophysics Data System (ADS)

    Lima, V.; Hossain, U. H.; Walbert, T.; Seidl, T.; Ensinger, W.

    2018-03-01

    The study of polymers irradiated by highly energetic ions and the resulting radiation-induced degradation is of major importance for space and particle accelerator applications. The mechanism of ion-induced molecular fragmentation of polyethylene, polyethyleneimine and polyamide was investigated by means of mass spectrometry and infrared spectroscopy. The results show that the introduction of nitrogen and oxygen into the polymer influences the stability rendering aliphatic polymers with heteroatoms less stable. A comparison to thermal decomposition data from literature reveals that ion-induced degradation is different in its bond fracture mechanism. While thermal degradation starts at the weakest bond, which is usually the carbon-heteroatom bond, energetic ion irradiation leads in the first step to scission of all types of bonds creating smaller molecular fragments. This is due to the localized extreme energy input under non-equilibrium conditions when the ions transfer kinetic energy onto electrons. These findings are of relevance for the choice of polymers for long-term application in both space and accelerator facilities.

  4. pH-insusceptible cobalt-manganese immobilizing mesoporous siliceous MCM-41 catalyst for ozonation of dimethyl phthalate.

    PubMed

    Tang, Yiming; Pan, Zhaoqi; Li, Laisheng

    2017-12-15

    Mesoporous siliceous MCM-41 immobilized with Co and Mn metal ions (Co-Mn-MCM-41) was synthesized using a hydrothermal method. The structural regularity and the valence states of the metal species were measured by X-ray diffractometer and X-ray photoelectron spectrometer. The resultant bimetallic Co-Mn-MCM-41 catalyst was tested for the degradation of dimethyl phthalate (DMP) via a catalytic ozonation mechanism, demonstrating that the catalytic properties of Co-Mn-MCM-41 catalyst significantly accelerated the ozonation process. Total organic carbon (TOC) and DMP removal efficiency reached 94% and 99.7% at 15min under the optimal conditions. The oxidation pathways were proposed after identifying the intermediate products from ozonation using a gas chromatography-mass spectrometer. The enhanced catalytic reactivity was attributed to the highly-dispersive cobalt and manganese species in MCM-41 scaffolds, which promoted the ozone decomposition and hydroxyl radicals' generation in catalytic ozonation and accelerated the degradation of DMP. Bimetallic Co-Mn-MCM-41 catalyst remained stable in mild acidic conditions and continued to show high activity after repeated runs. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Degradation mechanisms and accelerated testing in PEM fuel cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Borup, Rodney L; Mukundan, Rangachary

    2010-01-01

    The durability of PEM fuel cells is a major barrier to the commercialization of these systems for stationary and transportation power applications. Although there has been recent progress in improving durability, further improvements are needed to meet the commercialization targets. Past improvements have largely been made possible because of the fundamental understanding of the underlying degradation mechanisms. By investigating component and cell degradation modes; defining the fundamental degradation mechanisms of components and component interactions new materials can be designed to improve durability. Various factors have been shown to affect the useful life of PEM fuel cells. Other issues arise frommore » component optimization. Operational conditions (such as impurities in either the fuel and oxidant stream), cell environment, temperature (including subfreezing exposure), pressure, current, voltage, etc.; or transient versus continuous operation, including start-up and shutdown procedures, represent other factors that can affect cell performance and durability. The need for Accelerated Stress Tests (ASTs) can be quickly understood given the target lives for fuel cell systems: 5000 hours ({approx} 7 months) for automotive, and 40,000 hrs ({approx} 4.6 years) for stationary systems. Thus testing methods that enable more rapid screening of individual components to determine their durability characteristics, such as off-line environmental testing, are needed for evaluating new component durability in a reasonable turn-around time. This allows proposed improvements in a component to be evaluated rapidly and independently, subsequently allowing rapid advancement in PEM fuel cell durability. These tests are also crucial to developers in order to make sure that they do not sacrifice durability while making improvements in costs (e.g. lower platinum group metal [PGM] loading) and performance (e.g. thinner membrane or a GDL with better water management properties). To achieve a deeper understanding and improve PEM fuel cell durability LANL is conducting research to better define fuel cell component degradation mechanisms and correlate AST measurements to component in 'real-world' situations.« less

  6. Towards Accelerated Aging Methodologies and Health Management of Power MOSFETs (Technical Brief)

    NASA Technical Reports Server (NTRS)

    Celaya, Jose R.; Patil, Nishad; Saha, Sankalita; Wysocki, Phil; Goebel, Kai

    2009-01-01

    Understanding aging mechanisms of electronic components is of extreme importance in the aerospace domain where they are part of numerous critical subsystems including avionics. In particular, power MOSFETs are of special interest as they are involved in high voltage switching circuits such as drivers for electrical motors. With increased use of electronics in aircraft control, it becomes more important to understand the degradation of these components in aircraft specific environments. In this paper, we present an accelerated aging methodology for power MOSFETs that subject the devices to indirect thermal overstress during high voltage switching. During this accelerated aging process, two major modes of failure were observed - latch-up and die attach degradation. In this paper we present the details of our aging methodology along with details of experiments and analysis of the results.

  7. Novel durable bio-photocatalyst purifiers, a non-heterogeneous mechanism: accelerated entrapped dye degradation into structural polysiloxane-shield nano-reactors.

    PubMed

    Dastjerdi, Roya; Montazer, Majid; Shahsavan, Shadi; Böttcher, Horst; Moghadam, M B; Sarsour, Jamal

    2013-01-01

    This research has designed innovative Ag/TiO(2) polysiloxane-shield nano-reactors on the PET fabric to develop novel durable bio-photocatalyst purifiers. To create these very fine nano-reactors, oppositely surface charged multiple size nanoparticles have been applied accompanied with a crosslinkable amino-functionalized polysiloxane (XPs) emulsion. Investigation of photocatalytic dye decolorization efficiency revealed a non-heterogeneous mechanism including an accelerated degradation of entrapped dye molecules into the structural polysiloxane-shield nano-reactors. In fact, dye molecules can be adsorbed by both Ag and XPs due to their electrostatic interactions and/or even via forming a complex with them especially with silver NPs. The absorbed dye and active oxygen species generated by TiO(2) were entrapped by polysiloxane shelter and the presence of silver nanoparticles further attract the negative oxygen species closer to the adsorbed dye molecules. In this way, the dye molecules are in close contact with concentrated active oxygen species into the created nano-reactors. This provides an accelerated degradation of dye molecules. This non-heterogeneous mechanism has been detected on the sample containing all of the three components. Increasing the concentration of Ag and XPs accelerated the second step beginning with an enhanced rate. Further, the treated samples also showed an excellent antibacterial activity. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. Ultra-High Accelerating Gradients in Radio-Frequency Cryogenic Copper Structures

    NASA Astrophysics Data System (ADS)

    Cahill, Alexander David

    Normal conducting radio-frequency (rf) particle accelerators have many applications, including colliders for high energy physics, high-intensity synchrotron light sources, non-destructive testing for security, and medical radiation therapy. In these applications, the accelerating gradient is an important parameter. Specifically for high energy physics, increasing the accelerating gradient extends the potential energy reach and is viewed as a way to mitigate their considerable cost. Furthermore, a gradient increase will enable for more compact and thus accessible free electron lasers (FELs). The major factor limiting larger accelerating gradients is vacuum rf breakdown. Basic physics of this phenomenon has been extensively studied over the last few decades. During which, the occurrence of rf breakdowns was shown to be probabilistic, and can be characterized by a breakdown rate. The current consensus is that vacuum rf breakdowns are caused by movements of crystal defects induced by periodic mechanical stress. The stress may be caused by pulsed surface heating and large electric fields. A compelling piece of evidence that supports this hypothesis is that accelerating structures constructed from harder materials exhibit larger accelerating gradients for similar breakdown rates. One possible method to increase sustained electric fields in copper cavities is to cool them to temperatures below 77 K, where the rf surface resistance and coefficient of thermal expansion decrease, while the yield strength (which correlates with hardness) and thermal conductivity increase. These changes in material properties at low temperature increases metal hardness and decreases the mechanical stress from exposure to rf electromagnetic fields. To test the validity of the improvement in breakdown rate, experiments were conducted with cryogenic accelerating cavities in the Accelerator Structure Test Area (ASTA) at SLAC National Accelerator Laboratory. A short 11.4 GHz standing wave accelerating structure was conditioned to an accelerating gradient of 250 MV/m at 45 K with 108 rf pulses. At gradients greater than 150 MV/m I observed a degradation in the intrinsic quality factor of the cavity, Q0. I developed a model for the change in Q0 using measured field emission currents and rf signals. I found that the Q 0 degradation is consistent with the rf power being absorbed by strong field emission currents accelerated inside the cavity. I measured rf breakdown rates for 45 K and found 2*10-4/pulse/meter when accounting for any change in Q0. These are the largest accelerating gradients for a structure with similar breakdown rates. The final chapter presents the design of an rf photoinjector electron source that uses the cryogenic normal conducting accelerator technology: the TOPGUN. With this cryogenic rf photoinjector, the beam brightness will increase by over an order of a magnitude when compared to the current photoinjector for the Linac Coherent Light Source (LCLS). When using the TOPGUN as the source for an X-ray Free Electron Laser, the higher brightness would allow for a decrease in the required length of the LCLS undulator by more than a factor of two.

  9. Degradation Analysis of NBR and Epichlorohydrin Rubber by New Micro Analysis Method

    NASA Astrophysics Data System (ADS)

    Katoh, Hisao; Kamoto, Ritsu; Murata, Jun

    The degradation analysis of NBR and Epichlorohydrin rubber was carried out by infrared micro spectroscopy (μ-IR) and micro sampling mass spectrometry (μ-MS) which gives information on the scission and crosslinking of rubber molecules. Samples were prepared by three different treatments, heat as well as ultra violet (UV) and electron beam (EB) irradiations. It was found for NBR vulcanizates that the heat treatment induced the oxidation, scission and crosslinking of rubber molecules. By the UV treatment, chain scission and crosslinking accompanied by a slight oxidation were induced. The EB treatment enhanced the crosslinking, however, the extent of oxidation was negligible. For Epichlorohydrin rubber vulcanizates, the heat treatment accelerated chain scission rather than crosslinking. On the other hand, the oxidation and crosslinking were induced by the UV and EB treatments.

  10. Sequential replication-coupled destruction at G1/S ensures genome stability

    PubMed Central

    Coleman, Kate E.; Grant, Gavin D.; Haggerty, Rachel A.; Brantley, Kristen; Shibata, Etsuko; Workman, Benjamin D.; Dutta, Anindya; Varma, Dileep; Purvis, Jeremy E.; Cook, Jeanette Gowen

    2015-01-01

    Timely ubiquitin-mediated protein degradation is fundamental to cell cycle control, but the precise degradation order at each cell cycle phase transition is still unclear. We investigated the degradation order among substrates of a single human E3 ubiquitin ligase, CRL4Cdt2, which mediates the S-phase degradation of key cell cycle proteins, including Cdt1, PR-Set7, and p21. Our analysis of synchronized cells and asynchronously proliferating live single cells revealed a consistent order of replication-coupled destruction during both S-phase entry and DNA repair; Cdt1 is destroyed first, whereas p21 destruction is always substantially later than that of Cdt1. These differences are attributable to the CRL4Cdt2 targeting motif known as the PIP degron, which binds DNA-loaded proliferating cell nuclear antigen (PCNADNA) and recruits CRL4Cdt2. Fusing Cdt1's PIP degron to p21 causes p21 to be destroyed nearly concurrently with Cdt1 rather than consecutively. This accelerated degradation conferred by the Cdt1 PIP degron is accompanied by more effective Cdt2 recruitment by Cdt1 even though p21 has higher affinity for PCNADNA. Importantly, cells with artificially accelerated p21 degradation display evidence of stalled replication in mid-S phase and sensitivity to replication arrest. We therefore propose that sequential degradation ensures orderly S-phase progression to avoid replication stress and genome instability. PMID:26272819

  11. Accelerated degradation of silicon metallization systems

    NASA Technical Reports Server (NTRS)

    Lathrop, J. W.

    1983-01-01

    Clemson University has been engaged for the past five years in a program to determine the reliability attributes of solar cells by means of accelerated test procedures. The cells are electrically measured and visually inspected and then subjected for a period of time to stress in excess of that normally encountered in use, and then they are reinspected. Changes are noted and the process repeated. This testing has thus far involved 23 different unencapsulated cell types from 12 different manufacturers, and 10 different encapsulated cell types from 9 different manufacturers. Reliability attributes of metallization systems can be classified as major or minor, depending on the severity of the effects observed. As a result of the accelerated testing conducted under the Clemson program, major effects have been observed related to contact resistance and to mechanical adherence and solderability. This paper does not attempt a generalized survey of accelerated test results, but rather concentrates on one particular attribute of metallization that has been observed to cause electrical degradation - increased contact resistance due to Schottky barrier formation. In this example basic semiconductor theory was able to provide an understanding of the electrical effects observed during accelerated stress testing.

  12. Health assessment of cooling fan bearings using wavelet-based filtering.

    PubMed

    Miao, Qiang; Tang, Chao; Liang, Wei; Pecht, Michael

    2012-12-24

    As commonly used forced convection air cooling devices in electronics, cooling fans are crucial for guaranteeing the reliability of electronic systems. In a cooling fan assembly, fan bearing failure is a major failure mode that causes excessive vibration, noise, reduction in rotation speed, locked rotor, failure to start, and other problems; therefore, it is necessary to conduct research on the health assessment of cooling fan bearings. This paper presents a vibration-based fan bearing health evaluation method using comblet filtering and exponentially weighted moving average. A new health condition indicator (HCI) for fan bearing degradation assessment is proposed. In order to collect the vibration data for validation of the proposed method, a cooling fan accelerated life test was conducted to simulate the lubricant starvation of fan bearings. A comparison between the proposed method and methods in previous studies (i.e., root mean square, kurtosis, and fault growth parameter) was carried out to assess the performance of the HCI. The analysis results suggest that the HCI can identify incipient fan bearing failures and describe the bearing degradation process. Overall, the work presented in this paper provides a promising method for fan bearing health evaluation and prognosis.

  13. Health Assessment of Cooling Fan Bearings Using Wavelet-Based Filtering

    PubMed Central

    Miao, Qiang; Tang, Chao; Liang, Wei; Pecht, Michael

    2013-01-01

    As commonly used forced convection air cooling devices in electronics, cooling fans are crucial for guaranteeing the reliability of electronic systems. In a cooling fan assembly, fan bearing failure is a major failure mode that causes excessive vibration, noise, reduction in rotation speed, locked rotor, failure to start, and other problems; therefore, it is necessary to conduct research on the health assessment of cooling fan bearings. This paper presents a vibration-based fan bearing health evaluation method using comblet filtering and exponentially weighted moving average. A new health condition indicator (HCI) for fan bearing degradation assessment is proposed. In order to collect the vibration data for validation of the proposed method, a cooling fan accelerated life test was conducted to simulate the lubricant starvation of fan bearings. A comparison between the proposed method and methods in previous studies (i.e., root mean square, kurtosis, and fault growth parameter) was carried out to assess the performance of the HCI. The analysis results suggest that the HCI can identify incipient fan bearing failures and describe the bearing degradation process. Overall, the work presented in this paper provides a promising method for fan bearing health evaluation and prognosis. PMID:23262486

  14. The Electrolytic Effect on the Catalytic Degradation of Dye and Nitrate Ion by New Ceramic Beads of Natural Minerals and TiO2

    NASA Astrophysics Data System (ADS)

    Sata, Akiyoshi; Sakai, Takako; Goto, Yusuke; Ohta, Toshiyuki; Hayakawa, Katumitu

    2007-05-01

    We have developed a new hybrid ceramic material "Taiyo" as a water processing catalyst. The porous ceramic has a core-shell structure. It decolorized completely the dye solutions as well as the wastewater output after primary water processing by microorganism in a pig farm. This new material showed the acceleration of water purification by applying electric voltage. The degradation of dyes and pig urine output from the primary treatments was accelerated by applying voltage. Nitrate in underground water was also decomposed only by applying voltage, while it was not decomposed without voltage.

  15. Disparity between online and offline tests in accelerated aging tests of LED lamps under electric stress.

    PubMed

    Wang, Yao; Jing, Lei; Ke, Hong-Liang; Hao, Jian; Gao, Qun; Wang, Xiao-Xun; Sun, Qiang; Xu, Zhi-Jun

    2016-09-20

    The accelerated aging tests under electric stress for one type of LED lamp are conducted, and the differences between online and offline tests of the degradation of luminous flux are studied in this paper. The transformation of the two test modes is achieved with an adjustable AC voltage stabilized power source. Experimental results show that the exponential fitting of the luminous flux degradation in online tests possesses a higher fitting degree for most lamps, and the degradation rate of the luminous flux by online tests is always lower than that by offline tests. Bayes estimation and Weibull distribution are used to calculate the failure probabilities under the accelerated voltages, and then the reliability of the lamps under rated voltage of 220 V is estimated by use of the inverse power law model. Results show that the relative error of the lifetime estimation by offline tests increases as the failure probability decreases, and it cannot be neglected when the failure probability is less than 1%. The relative errors of lifetime estimation are 7.9%, 5.8%, 4.2%, and 3.5%, at the failure probabilities of 0.1%, 1%, 5%, and 10%, respectively.

  16. Chiral separation and enantioselective degradation of vinclozolin in soils.

    PubMed

    Liu, Hui; Liu, Donghui; Shen, Zhigang; Sun, Mingjing; Zhou, Zhiqiang; Wang, Peng

    2014-03-01

    Vinclozolin is a chiral fungicide with potential environmental problems. The chiral separation of the enantiomers and enantioselective degradation in soil were investigated in this work. The enantiomers were separated by high-performance liquid chromatography (HPLC) on Chiralpak IA, IB, and AZ-H chiral columns under normal phase and the influence of the mobile phase composition on the separation was also studied. Complete resolutions were obtained on all three chiral columns under optimized conditions with the same elution order of (+)/(-). The residual analysis of the enantiomers in soil was conducted using accelerate solvent extraction followed by HPLC determination. The recoveries of the enantiomers ranged from 85.7-105.7% with relative standard deviation (SD) of 0.12-3.83%, and the limit of detection (LOD) of the method was 0.013 µg/g. The results showed that the degradations of vinclozolin enantiomers in the soils followed first-order kinetics. Preferential degradation of the (-)-enantiomer was observed only in one soil with the largest |ES| value of 0.047, and no obvious enantioselective degradation was observed in other soils. It was found that the persistence of vinclozolin in soil was related to pH values based on the half-lives. The two enantiomers disappeared about 8 times faster in basic soils than that in neutral or acidic soils. © 2014 Wiley Periodicals, Inc.

  17. Development of non-thermal plasma jet and its potential application for color degradation of organic pollutant in wastewater treatment

    NASA Astrophysics Data System (ADS)

    Pirdo Kasih, Tota; Kharisma, Angel; Perdana, Muhammad Kevin; Murphiyanto, Richard Dimas Julian

    2017-12-01

    This paper presents the development of non-thermal plasma-based AOPs for color degradation in wastewater treatment. The plasma itself was generated by an in-house high voltage power supply (HVPS). Instead of gas-phase plasma system, we applied plasma jet system underwater during wastewater treatment without additional any chemicals (chemical-free processing). The method is thought to maximize the energy transfer and increase the efficient interaction between plasma and solution during the process. Our plasma jet system could proceed either by using helium (He), argon (Ar) and air as the medium in an open air atmosphere. Exploring the developed plasma to be applied in organic wastewater treatment, we demonstrated that the plasma jet could be generated underwater and yields in color degradation of methylene blue (MB) wastewater model. When using Ar gas as a medium, the color degradation of MB could be achieved within 90 minutes. Whereas, by using Ar with an admixing of oxygen (O2) gas, the similar result could be accomplished within 60 minutes. Additional O2 gas in the latter might produce more hydroxyl radicals and oxygen-based species which speed up the oxidative reaction with organic pollutants, and hence accelerate the process of color degradation.

  18. Ozone/graphene oxide catalytic oxidation: a novel method to degrade emerging organic contaminant N, N-diethyl-m-toluamide (DEET).

    PubMed

    Liu, Jia-Nan; Chen, Zhuo; Wu, Qian-Yuan; Li, Ang; Hu, Hong-Ying; Yang, Cheng

    2016-08-11

    N, N-diethyl-m-toluamide (DEET) is one of the important emerging contaminants that are being increasingly detected in reclaimed water as well as in drinking water sources. However, DEET is refractory to conventional biological treatment and pure ozone which is absent of hydroxyl radical. Current researches on the efficient removal of DEET are still quite limited. This study utilizes a novel method, namely ozone/graphene oxide (O3/GO), to investigate the effects on DEET removal in aqueous systems, especially in reclaimed water. The results indicate that the DEET degradation rate was significantly accelerated through the combined effect of GO and ozonation which can yield abundant hydroxyl radical, compared to pure ozone condition. According to hydroxyl radical scavenging experiments, hydroxyl radical was found to play a dominant role in synergistic removal of DEET. These findings can offer sound suggestions for future research on the removal of emerging organic contaminants. The information could also be beneficial to reclaimed water safety and sustainable management.

  19. A Systems Biology Approach Reveals Differences in the Dynamics of Colonization and Degradation of Grass vs. Hay by Rumen Microbes with Minor Effects of Vitamin E Supplementation

    PubMed Central

    Belanche, Alejandro; Newbold, Charles J.; Lin, Wanchang; Rees Stevens, Pauline; Kingston-Smith, Alison H.

    2017-01-01

    Increasing the efficiency of utilization of fresh and preserved forage is a key target for ruminant science. Vitamin E is often used as additive to improve product quality but its impact of the rumen function is unknown. This study investigated the successional microbial colonization of ryegrass (GRA) vs. ryegrass hay (HAY) in presence of zero or 50 IU/d supplementary vitamin E, using a rumen simulation technique. A holistic approach was used to link the dynamics of feed degradation with the structure of the liquid-associated (LAB) and solid-associated bacteria (SAB). Results showed that forage colonization by SAB was a tri-phasic process highly affected by the forage conservation method: Early colonization (0–2 h after feeding) by rumen microbes was 2× faster for GRA than HAY diets and dominated by Lactobacillus and Prevotella which promoted increased levels of lactate (+56%) and ammonia (+18%). HAY diets had lower DM degradation (-72%) during this interval being Streptococcus particularly abundant. During secondary colonization (4–8 h) the SAB community increased in size and decreased in diversity as the secondary colonizers took over (Pseudobutyrivibrio) promoting the biggest differences in the metabolomics profile between diets. Secondary colonization was 3× slower for HAY vs. GRA diets, but this delay was compensated by a greater bacterial diversity (+197 OTUs) and network complexity resulting in similar feed degradations. Tertiary colonization (>8 h) consisted of a slowdown in the colonization process and simplification of the bacterial network. This slowdown was less evident for HAY diets which had higher levels of tertiary colonizers (Butyrivibrio and Ruminococcus) and may explain the higher DM degradation (+52%) during this interval. The LAB community was particularly active during the early fermentation of GRA and during the late fermentation for HAY diets indicating that the availability of nutrients in the liquid phase reflects the dynamics of feed degradation. Vitamin E supplementation had minor effects but promoted a simplification of the LAB community and a slight acceleration in the SAB colonization sequence which could explain the higher DM degradation during the secondary colonization. Our findings suggest that when possible, grass should be fed instead of hay, in order to accelerate feed utilization by rumen microbes. PMID:28824585

  20. Gelatin Methacrylate Microspheres for Growth Factor Controlled Release

    PubMed Central

    Nguyen, Anh H.; McKinney, Jay; Miller, Tobias; Bongiorno, Tom; McDevitt, Todd C.

    2014-01-01

    Gelatin has been commonly used as a delivery vehicle for various biomolecules for tissue engineering and regenerative medicine applications due to its simple fabrication methods, inherent electrostatic binding properties, and proteolytic degradability. Compared to traditional chemical cross-linking methods, such as the use of glutaraldehyde (GA), methacrylate modification of gelatin offers an alternative method to better control the extent of hydrogel cross-linking. Here we examined the physical properties and growth factor delivery of gelatin methacrylate (GMA) microparticles formulated with a wide range of different cross-linking densities (15–90%). Less methacrylated MPs had decreased elastic moduli and larger mesh sizes compared to GA MPs, with increasing methacrylation correlating to greater moduli and smaller mesh sizes. As expected, an inverse correlation between microparticle cross-linking density and degradation was observed, with the lowest cross-linked GMA MPs degrading at the fastest rate, comparable to GA MPs. Interestingly, GMA MPs at lower cross-linking densities could be loaded with up to a 10-fold higher relative amount of growth factor over conventional GA cross-linked MPs, despite an order of magnitude greater gelatin content of GA MPs. Moreover, a reduced GMA cross-linking density resulted in more complete release of bone morphogenic protein 4 (BMP4) and basic fibroblast growth factor (bFGF) and accelerated release rate with collagenase treatment. These studies demonstrate that GMA MPs provide a more flexible platform for growth factor delivery by enhancing the relative binding capacity and permitting proteolytic degradation tunability, thereby offering a more potent controlled release system for growth factor delivery. PMID:25463489

  1. GPS vertical axis performance enhancement for helicopter precision landing approach

    NASA Technical Reports Server (NTRS)

    Denaro, Robert P.; Beser, Jacques

    1986-01-01

    Several areas were investigated for improving vertical accuracy for a rotorcraft using the differential Global Positioning System (GPS) during a landing approach. Continuous deltaranging was studied and the potential improvement achieved by estimating acceleration was studied by comparing the performance on a constant acceleration turn and a rough landing profile of several filters: a position-velocity (PV) filter, a position-velocity-constant acceleration (PVAC) filter, and a position-velocity-turning acceleration (PVAT) filter. In overall statistics, the PVAC filter was found to be most efficient with the more complex PVAT performing equally well. Vertical performance was not significantly different among the filters. Satellite selection algorithms based on vertical errors only (vertical dilution of precision or VDOP) and even-weighted cross-track and vertical errors (XVDOP) were tested. The inclusion of an altimeter was studied by modifying the PVAC filter to include a baro bias estimate. Improved vertical accuracy during degraded DOP conditions resulted. Flight test results for raw differential results excluding filter effects indicated that the differential performance significantly improved overall navigation accuracy. A landing glidepath steering algorithm was devised which exploits the flexibility of GPS in determining precise relative position. A method for propagating the steering command over the GPS update interval was implemented.

  2. Accelerated stability studies of Sufoofe Sailan: A Unani formulation

    PubMed Central

    Rani, Seema; Rahman, Khaleequr; Younis, Peerzada Mohammad

    2015-01-01

    Introduction: Sufoofe Sailan (SS) is a polyherbal powder preparation used in Unani medicine to treat gynecological diseases. It is observed that SS degrade early as it is in the form of powder; however, the stability study of SS was not carried out till date. Aim: To evaluate the accelerated stability of SS. Materials and Methods: Finished formulation of SS was packed in three airtight transparent polyethylene terephthalate containers. One pack was analyzed just after manufacturing and remaining two packs were kept in stability chamber at 40°C ± 2°C/75% ± 5% RH, of which one pack was analyzed after the completion of three and another after 6 months. Organoleptic, physico-chemical, microbiological parameters along with high-performance thin layer chromatography (HPTLC) fingerprinting were carried out. Results: Organoleptic characters showed no significant change in accelerated stability condition. All physico-chemical parameters showed changes <5%, HPTLC fingerprinting showed minimum changes and microbial studies were in confirmation to the World Health Organization guidelines. Conclusion: SS confirmed to the International Conference on Harmonization Guideline for accelerated testing of the pharmaceutical product on said parameters and as per the Grimm's statement the shelf life of SS may last 20 months. PMID:26730145

  3. Comparison of cable ageing

    NASA Astrophysics Data System (ADS)

    Plaček, Vít; Kohout, Tomáš

    2010-03-01

    Two cable types, which currently are used in nuclear power plants (NPP) and which are composed by jacket/insulation materials, i.e. PVC/PVC and PVC/PE, were exposed to accelerated ageing conditions, in order to simulate their behavior after 10 years in service. The cables were aged under two different test conditions: With relatively high accelerating ageing speed:Radiation ageing was carried out at room temperature at a dose rate of 2900 Gy/h, followed by thermal ageing at 100 °C. This accelerated ageing condition was fairly fast, but still in compliance with the standards. With moderate ageing speed:The radiation and thermal ageing was performed simultaneously (superimposed) at a dose rate of 2.7-3.7Gy/h and a temperature of 68-70 °C. Such a test condition seems to be very close to the radiation and temperature impact onto the cables in the real NPP service. Finally, mechanical properties were measured to characterize the ageing status of the cables. The purpose of this study was to compare degradation effects, derived from both ageing methods, and to demonstrate that results obtained from high values of accelerating parameters and from fast ageing simulation can be very different from reality. The observed results corroborated this assumption.

  4. A novel approach for supercapacitors degradation characterization

    NASA Astrophysics Data System (ADS)

    Oz, Alon; Gelman, Danny; Goren, Emanuelle; Shomrat, Neta; Baltianski, Sioma; Tsur, Yoed

    2017-07-01

    A novel approach to analyze electrochemical impedance spectroscopy (EIS), based on evolutionary programming, has been utilized to characterize supercapacitors operation mechanism and degradation processes. This approach poses the ability of achieving a comprehensive study of supercapacitors via solely AC measurements. Commercial supercapacitors were examined during accelerated degradation. The microstructure of the electrode-electrolyte interface changes upon degradation; electrolyte parasitic reactions yield the formation of precipitates on the porous surface, which limit the access of the electrolyte ions to the active area and thus reduces performance. EIS analysis using Impedance Spectroscopy Genetic Programming (ISGP) technique enables identifying how the changing microstructure is affecting the operation mechanism of supercapacitors, in terms of each process effective capacitance and time constant. The most affected process is the transport of electrolyte ions at the porous electrode. Their access to the whole active area is hindered, which is shown in our analysis by the decrease of the capacitance gained in the transport and the longer time it takes to penetrate the entire pores depth. Early failure detection is also demonstrated, in a way not readily possible via conventional indicators. ISGP advanced analysis method has been verified using conventional and proven techniques: cyclic voltammetry and post mortem measurements.

  5. Accelerated life testing and reliability of high K multilayer ceramic capacitors

    NASA Technical Reports Server (NTRS)

    Minford, W. J.

    1981-01-01

    The reliability of one lot of high K multilayer ceramic capacitors was evaluated using accelerated life testing. The degradation in insulation resistance was characterized as a function of voltage and temperature. The times to failure at a voltage-temperature stress conformed to a lognormal distribution with a standard deviation approximately 0.5.

  6. Accelerated aging of preservative-treated structural plywood

    Treesearch

    C. Adam Senalik; Robert J. Ross; Samuel L. Zelinka; Stan T. Lebow; Zhiyong Cai

    2017-01-01

    In this study, the changes in physical properties and preservative retention of high-grade plywood when subjected to artificial aging processes were examined. The plywood was 15/32-in.-thick panels manufactured from southern yellow pine A and C grades of veneer. The artificial aging processes consisted of three primary mechanisms of degradation: thermal degradation,...

  7. Effect of accelerated environmental aging on tensile properties of oil palm/jute hybrid composites

    NASA Astrophysics Data System (ADS)

    Jawaid, M.; Saba, N.; Alothman, O.; Paridah, M. T.

    2016-11-01

    Recently natural fibre based hybrid composites are receiving growing consideration due to environmental and biodegradability properties. In order to look behaviour of hybrid composites in outdoor applications, its environmental degradation properties such as UV accelerated weathering properties need to analyze. In this study oil palm empty fruit bunch (EFB) and jute fibres reinforced hybrid composites, pure EFB, pure jute and epoxy composites were fabricated through hand lay-up techniques. Hybrid composites with different layering pattern (EFB/jute/EFB and Jute/EFB/jute) while maintaining 40 wt. % total fibre loading were fabricates to compared with EFB and jute composites. Effect of UV accelerated environmental aging on tensile properties of epoxy, pure EFB, pure jute, and hybrid composites were assessed and evaluate under UV exposure. Tensile samples of all composites were subjected to accelerated weathering for 100h, at temperature (75°C), relative humidity (35%), Light (125 W/m2), and water spray off. Obtained results indicated that there is reduction in tensile strength, modulus and elongation at break values of hybrid and pure composites due to degradation of lignin and fibre-matrix interfacial bonding.

  8. Salt Stress–Induced Disassembly of Arabidopsis Cortical Microtubule Arrays Involves 26S Proteasome–Dependent Degradation of SPIRAL1[C][W

    PubMed Central

    Wang, Songhu; Kurepa, Jasmina; Hashimoto, Takashi; Smalle, Jan A.

    2011-01-01

    The dynamic instability of cortical microtubules (MTs) (i.e., their ability to rapidly alternate between phases of growth and shrinkage) plays an essential role in plant growth and development. In addition, recent studies have revealed a pivotal role for dynamic instability in the response to salt stress conditions. The salt stress response includes a rapid depolymerization of MTs followed by the formation of a new MT network that is believed to be better suited for surviving high salinity. Although this initial depolymerization response is essential for the adaptation to salt stress, the underlying molecular mechanism has remained largely unknown. Here, we show that the MT-associated protein SPIRAL1 (SPR1) plays a key role in salt stress–induced MT disassembly. SPR1, a microtubule stabilizing protein, is degraded by the 26S proteasome, and its degradation rate is accelerated in response to high salinity. We show that accelerated SPR1 degradation is required for a fast MT disassembly response to salt stress and for salt stress tolerance. PMID:21954463

  9. An AAA Motor-Driven Mechanical Switch in Rpn11 Controls Deubiquitination at the 26S Proteasome.

    PubMed

    Worden, Evan J; Dong, Ken C; Martin, Andreas

    2017-09-07

    Poly-ubiquitin chains direct protein substrates to the 26S proteasome, where they are removed by the deubiquitinase Rpn11 during ATP-dependent substrate degradation. Rapid deubiquitination is required for efficient degradation but must be restricted to committed substrates that are engaged with the ATPase motor to prevent premature ubiquitin chain removal and substrate escape. Here we reveal the ubiquitin-bound structure of Rpn11 from S. cerevisiae and the mechanisms for mechanochemical coupling of substrate degradation and deubiquitination. Ubiquitin binding induces a conformational switch of Rpn11's Insert-1 loop from an inactive closed state to an active β hairpin. This switch is rate-limiting for deubiquitination and strongly accelerated by mechanical substrate translocation into the AAA+ motor. Deubiquitination by Rpn11 and ubiquitin unfolding by the ATPases are in direct competition. The AAA+ motor-driven acceleration of Rpn11 is therefore important to ensure that poly-ubiquitin chains are removed only from committed substrates and fast enough to prevent their co-degradation. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Characteristics of a 30-cm thruster operated with small hole accelerator grid ion optics

    NASA Technical Reports Server (NTRS)

    Vahrenkamp, R. P.

    1976-01-01

    Small hole accelerator grid ion optical systems have been tested as a possible means of improving 30-cm ion thruster performance. The effects of small hole grids on the critical aspects of thruster operation including discharge chamber performance, doubly-charged ion concentration, effluent beam characteristics, and plasma properties have been evaluated. In general, small hole accelerator grids are beneficial in improving thruster performance while maintaining low double ion ratios. However, extremely small accelerator aperture diameters tend to degrade beam divergence characteristics. A quantitative discussion of these advantages and disadvantages of small hole accelerator grids, as well as resulting variations in thruster operation characteristics, is presented.

  11. Chemical evolution of RNA under hydrothermal conditions and the role of thermal copolymers of amino acids for the prebiotic degradation and formation of RNA

    NASA Technical Reports Server (NTRS)

    Kawamura, K.; Nagahama, M.; Kuranoue, K.

    2005-01-01

    The roles of thermal copolymers of amino acids (TCAA) were studied for the prebiotic degradation of RNA. A weak catalytic ability of TCAA consisted of Glu, L-Ala, L-Val, L-Glu, L-Asp, and optionally L-His was detected for the cleavage of the ribose phosphodiester bond of a tetranucleotide (5'-dCrCdGdG) in aqueous solution at 80 degees C. The rate constants of the disappearance of 5'-dCrCdGdG were determined in aqueous solutions using different pH buffer and TCAA. The degradation rates were enhanced 1.3-3.0 times in the presence of TCAA at pH 7.5 and 8.0 at 80 degrees C, while the hydrolysis of oligoguanylate (oligo(G)) was accelerated about 1.6 times at pH 8.0. A weak inhibitory activity for the cleavage of oligo(G) was detected in the presence of 0.055 M TCAA-Std. On the other hand, our recent study on the influences of TCAA for the template-directed reaction of oligo(G) on a polycytidylic acid template showed that TCAA has an acceleration activity for the degradation of the activated nucleotide monomer and an acceleration activity for the formation of G5' ppG capped oligo(G). This series of studies suggest that efficient and selective catalytic or inhibitory activities for either the degradation or formation of RNA under hydrothermal conditions could have hardly emerged from the simple thermal condensation products of amino acids. A scenario is going to be deduced on the chemical evolution of enzymatic activities and RNA molecules concerning hydrothermal earth conditions. c2005 COSPAR. Published by Elsevier Ltd. All rights reserved.

  12. Possibility for ultra-bright electron beam acceleration in dielectric wakefield accelerators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simakov, Evgenya I.; Carlsten, Bruce E.; Shchegolkov, Dmitry Yu.

    2012-12-21

    We describe a conceptual proposal to combine the Dielectric Wakefield Accelerator (DWA) with the Emittance Exchanger (EEX) to demonstrate a high-brightness DWA with a gradient of above 100 MV/m and less than 0.1% induced energy spread in the accelerated beam. We currently evaluate the DWA concept as a performance upgrade for the future LANL signature facility MaRIE with the goal of significantly reducing the electron beam energy spread. The preconceptual design for MaRIE is underway at LANL, with the design of the electron linear accelerator being one of the main research goals. Although generally the baseline design needs to bemore » conservative and rely on existing technology, any future upgrade would immediately call for looking into the advanced accelerator concepts capable of boosting the electron beam energy up by a few GeV in a very short distance without degrading the beam's quality. Scoping studies have identified large induced energy spreads as the major cause of beam quality degradation in high-gradient advanced accelerators for free-electron lasers. We describe simulations demonstrating that trapezoidal bunch shapes can be used in a DWA to greatly reduce the induced beam energy spread, and, in doing so, also preserve the beam brightness at levels never previously achieved. This concept has the potential to advance DWA technology to a level that would make it suitable for the upgrades of the proposed Los Alamos MaRIE signature facility.« less

  13. Three-dimensional Simulation and Prediction of Solenoid Valve Failure Mechanism Based on Finite Element Model

    NASA Astrophysics Data System (ADS)

    Li, Jianfeng; Xiao, Mingqing; Liang, Yajun; Tang, Xilang; Li, Chao

    2018-01-01

    The solenoid valve is a kind of basic automation component applied widely. It’s significant to analyze and predict its degradation failure mechanism to improve the reliability of solenoid valve and do research on prolonging life. In this paper, a three-dimensional finite element analysis model of solenoid valve is established based on ANSYS Workbench software. A sequential coupling method used to calculate temperature filed and mechanical stress field of solenoid valve is put forward. The simulation result shows the sequential coupling method can calculate and analyze temperature and stress distribution of solenoid valve accurately, which has been verified through the accelerated life test. Kalman filtering algorithm is introduced to the data processing, which can effectively reduce measuring deviation and restore more accurate data information. Based on different driving current, a kind of failure mechanism which can easily cause the degradation of coils is obtained and an optimization design scheme of electro-insulating rubbers is also proposed. The high temperature generated by driving current and the thermal stress resulting from thermal expansion can easily cause the degradation of coil wires, which will decline the electrical resistance of coils and result in the eventual failure of solenoid valve. The method of finite element analysis can be applied to fault diagnosis and prognostic of various solenoid valves and improve the reliability of solenoid valve’s health management.

  14. Evaluation and modeling of the potential effects of a module manufacturing anomaly

    DOE PAGES

    Kempe, Michael D.; Jordan, Dirk C.

    2017-07-13

    Photovoltaic lifetime predictions are in great demand, but are exceedingly difficult to achieve with uncertainties small enough to be useful. During the construction of photovoltaic modules, small unplanned variability in materials or processes can have profound effects on module durability. Thus, continual monitoring of production quality is needed. In the subject production run, module quality, as monitored by damp heat testing, revealed a subset of modules that were prone to higher degradation rates. An assessment of the potential long-term power loss and mitigation strategies was needed. To do this, modules were exposed to variable levels of humidity and temperature withmore » periodic monitoring. The analysis takes into account the kinetics of the degradation and the spatially and temporally varying humidity content within the module during accelerated stress testing. This is an important aspect for extrapolating laboratory results to field exposure because moisture ingress is diffusion limited in most laboratory module tests but not limited in these fielded modules. This analysis predicted that although a solder flux induce degradation mechanism is significant in accelerated stress test, this is probably an artifact of a process with a very large acceleration factor that is not likely to be significant for deployed modules. The degradation mechanism affected a limited area around the tabbing helping to minimize the effect. Furthermore, three years after the system was commissioned, the fielded modules indeed show no significant power loss.« less

  15. Evaluation and modeling of the potential effects of a module manufacturing anomaly

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kempe, Michael D.; Jordan, Dirk C.

    Photovoltaic lifetime predictions are in great demand, but are exceedingly difficult to achieve with uncertainties small enough to be useful. During the construction of photovoltaic modules, small unplanned variability in materials or processes can have profound effects on module durability. Thus, continual monitoring of production quality is needed. In the subject production run, module quality, as monitored by damp heat testing, revealed a subset of modules that were prone to higher degradation rates. An assessment of the potential long-term power loss and mitigation strategies was needed. To do this, modules were exposed to variable levels of humidity and temperature withmore » periodic monitoring. The analysis takes into account the kinetics of the degradation and the spatially and temporally varying humidity content within the module during accelerated stress testing. This is an important aspect for extrapolating laboratory results to field exposure because moisture ingress is diffusion limited in most laboratory module tests but not limited in these fielded modules. This analysis predicted that although a solder flux induce degradation mechanism is significant in accelerated stress test, this is probably an artifact of a process with a very large acceleration factor that is not likely to be significant for deployed modules. The degradation mechanism affected a limited area around the tabbing helping to minimize the effect. Furthermore, three years after the system was commissioned, the fielded modules indeed show no significant power loss.« less

  16. A novel protein RLS1 with NB-ARM domains is involved in chloroplast degradation during leaf senescence in rice.

    PubMed

    Jiao, Bin-Bin; Wang, Jian-Jun; Zhu, Xu-Dong; Zeng, Long-Jun; Li, Qun; He, Zu-Hua

    2012-01-01

    Leaf senescence, a type of programmed cell death (PCD) characterized by chlorophyll degradation, is important to plant growth and crop productivity. It emerges that autophagy is involved in chloroplast degradation during leaf senescence. However, the molecular mechanism(s) involved in the process is not well understood. In this study, the genetic and physiological characteristics of the rice rls1 (rapid leaf senescence 1) mutant were identified. The rls1 mutant developed small, yellow-brown lesions resembling disease scattered over the whole surfaces of leaves that displayed earlier senescence than those of wild-type plants. The rapid loss of chlorophyll content during senescence was the main cause of accelerated leaf senescence in rls1. Microscopic observation indicated that PCD was misregulated, probably resulting in the accelerated degradation of chloroplasts in rls1 leaves. Map-based cloning of the RLS1 gene revealed that it encodes a previously uncharacterized NB (nucleotide-binding site)-containing protein with an ARM (armadillo) domain at the carboxyl terminus. Consistent with its involvement in leaf senescence, RLS1 was up-regulated during dark-induced leaf senescence and down-regulated by cytokinin. Intriguingly, constitutive expression of RLS1 also slightly accelerated leaf senescence with decreased chlorophyll content in transgenic rice plants. Our study identified a previously uncharacterized NB-ARM protein involved in PCD during plant growth and development, providing a unique tool for dissecting possible autophagy-mediated PCD during senescence in plants.

  17. Characteristics of proton beams and secondary neutrons arising from two different beam nozzles

    NASA Astrophysics Data System (ADS)

    Choi, Yeon-Gyeong; Kim, Yu-Seok

    2015-10-01

    A tandem or a Van de Graaff accelerator with an energy of 3 MeV is typically used for Proton Induced X-ray Emission (PIXE) analysis. In this study, the beam line design used in the PIXE analysis, instead of the typical low-energy accelerator, was used to increase the production of isotopes from a 13-MeV cyclotron. For the PIXE analysis, the proton beam should be focused at the target through a nozzle after degrading the proton beams energy from 13 MeV to 3 MeV by using an energy degrader. Previous studies have been conducted to determine the most appropriate material for and the thickness of the energy degrader. From the energy distribution of the degraded proton beam and the neutron occurrence rate at the degrader, an aluminum nozzle of X thickness was determined to be the most appropriate nozzle construction. Neutrons are created by the collision of 3-MeV protons in the nozzle after passage through the energy degrader. In addition, a proton beam of sufficient intensity is required for a non-destructive PIXE analysis. Therefore, if nozzle design is to be optimized, the number of neutrons that arise from the collision of protons inside the nozzle, as well as the track direction of the generated secondary neutrons, must be considered, with the primary aim of ensuring that a sufficient number of protons pass through the nozzle as a direct beam. A number of laboratories are currently conducting research related to the design of nozzles used in accelerator fields, mostly medical fields. This paper presents a comparative analysis of two typical nozzle shapes in order to minimize the loss of protons and the generation of secondary neutrons. The neutron occurrence rate and the number of protons that pass through the nozzle were analyzed by using a Particle and Heavy Ion Transport code System (PHITS) program in order to identify the nozzle that generated the strongest proton beam.

  18. Simulation of municipal solid waste degradation in aerobic and anaerobic bioreactor landfills.

    PubMed

    Patil, Bhagwan Shamrao; C, Agnes Anto; Singh, Devendra Narain

    2017-03-01

    Municipal solid waste generation is huge in growing cities of developing nations such as India, owing to the rapid industrial and population growth. In addition to various methods for treatment and disposal of municipal solid waste (landfills, composting, bio-methanation, incineration and pyrolysis), aerobic/anaerobic bioreactor landfills are gaining popularity for economical and effective disposal of municipal solid waste. However, efficiency of municipal solid waste bioreactor landfills primarily depends on the municipal solid waste decomposition rate, which can be accelerated through monitoring moisture content and temperature by using the frequency domain reflectometry probe and thermocouples, respectively. The present study demonstrates that these landfill physical properties of the heterogeneous municipal solid waste mass can be monitored using these instruments, which facilitates proper scheduling of the leachate recirculation for accelerating the decomposition rate of municipal solid waste.

  19. Atomic oxygen effects on spacecraft materials: The state of the art of our knowledge

    NASA Technical Reports Server (NTRS)

    Koontz, Steven L.

    1989-01-01

    In the flight materials exposure data base extensive quantitative data is available from limited exposures in a narrow range of orbital environments. More data is needed in a wider range of environments as well as longer exposure times. Synergistic effects with other environmental factors; polar orbit and higher altitude environments; and real time materials degradation data is needed to understand degradation kinetics and mechanism. Almost no laboratory data exists from high fidelity simulations of the LEO environment. Simulation and test system are under development, and the data base is scanty. Theoretical understanding of hyperthermal atom surface reactions in the LEO environment is not good enough to support development of reliable accelerated test methods. The laser sustained discharge, atom beam sources are the most promising high fidelity simulation-test systems at this time.

  20. One- and two-stage Arrhenius models for pharmaceutical shelf life prediction.

    PubMed

    Fan, Zhewen; Zhang, Lanju

    2015-01-01

    One of the most challenging aspects of the pharmaceutical development is the demonstration and estimation of chemical stability. It is imperative that pharmaceutical products be stable for two or more years. Long-term stability studies are required to support such shelf life claim at registration. However, during drug development to facilitate formulation and dosage form selection, an accelerated stability study with stressed storage condition is preferred to quickly obtain a good prediction of shelf life under ambient storage conditions. Such a prediction typically uses Arrhenius equation that describes relationship between degradation rate and temperature (and humidity). Existing methods usually rely on the assumption of normality of the errors. In addition, shelf life projection is usually based on confidence band of a regression line. However, the coverage probability of a method is often overlooked or under-reported. In this paper, we introduce two nonparametric bootstrap procedures for shelf life estimation based on accelerated stability testing, and compare them with a one-stage nonlinear Arrhenius prediction model. Our simulation results demonstrate that one-stage nonlinear Arrhenius method has significant lower coverage than nominal levels. Our bootstrap method gave better coverage and led to a shelf life prediction closer to that based on long-term stability data.

  1. [Evaluation of the influence of sterilization method on the stability of carboxymethyl cellulose wound dressing].

    PubMed

    Muselík, Jan; Wojnarová, Lenka; Masteiková, Ruta; Sopuch, Tomáš

    2013-04-01

    Carboxymethyl cellulose, especially its sodium salt, is a versatile pharmaceutical excipient. From a therapeutic point of view, sodium salt of carboxymethyl cellulose is used in the production of modern wound dressings to allow moist wound healing. Wound dressings must be sterile and stable throughout their shelf life and have to be able to withstand different temperature conditions. At the present time, a number of sterilization methods are available. In the case of polymeric materials, the selected sterilization process must not induce any changes in the polymer structure, such as polymer chains cleavage, changes in cross-linking, etc. This paper evaluates the influence of different sterilization methods (γ-radiation, β-radiation, ethylene oxide) on the stability of carboxymethyl cellulose and the results of long-term and accelerated stability testing. Evaluation of samples was performed using size-exclusion chromatography. The obtained results showed that ethylene oxide sterilization was the least aggressive variant of the sterilization methods tested. When the γ-radiation sterilization was used, the changes in the size of the carboxymethyl cellulose molecule occurred. In the course of accelerated and long term stability studies, no further degradation changes were observed, and thus sterilized samples are suitable for long term storage.

  2. Mechanical and Chemical Properties of Harvested Hypalon Cable Jacket Subjected to Accelerated Thermal Aging

    DOE PAGES

    Duckworth, Robert C.; Kidder, Michelle K.; Aytug, Tolga; ...

    2018-02-27

    We report that for nuclear power plants (NPPs) considering second license renewal for operation beyond 60 years, knowledge of long-term operation, condition monitoring, and viability for the reactor components including reactor pressure vessel, concrete structures, and cable systems is essential. Such knowledge will provide NPP owners/operators with a basis for predicting performance and estimating the costs associated with monitoring or replacement programs for the affected systems. For cable systems that encompass a wide variety of materials, manufacturers, and in-plant locations, accelerated aging of harvested cable jacket and insulation can provide insight into a remaining useful life and methods for monitoring.more » Accelerated thermal aging in air at temperatures between 80°C and 120°C was conducted on a multiconductor control rod drive mechanism cable manufactured by Boston Insulated Wire (BIW). The cable, which had been in service for over 30 years, was jacketed with Hypalon and insulated with ethylene propylene rubber. From elongation at break (EAB) measurements and supporting Arrhenius analysis of the jacket material, an activation energy of 97.84 kJ/mol was estimated, and the time to degradation, as represented by 50% EAB at the expected maximum operating temperature of 45°C, was estimated to be 80 years. These values were slightly below previous measurements on similar BIW Hypalon cable jacket and could be attributed to either in-service degradation or variations in material properties from production variations. Lastly, results from indenter modulus measurements and Fourier transform infrared spectroscopy suggest possible markers that could be beneficial in monitoring cable conditions.« less

  3. Mechanical and Chemical Properties of Harvested Hypalon Cable Jacket Subjected to Accelerated Thermal Aging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duckworth, Robert C.; Kidder, Michelle K.; Aytug, Tolga

    We report that for nuclear power plants (NPPs) considering second license renewal for operation beyond 60 years, knowledge of long-term operation, condition monitoring, and viability for the reactor components including reactor pressure vessel, concrete structures, and cable systems is essential. Such knowledge will provide NPP owners/operators with a basis for predicting performance and estimating the costs associated with monitoring or replacement programs for the affected systems. For cable systems that encompass a wide variety of materials, manufacturers, and in-plant locations, accelerated aging of harvested cable jacket and insulation can provide insight into a remaining useful life and methods for monitoring.more » Accelerated thermal aging in air at temperatures between 80°C and 120°C was conducted on a multiconductor control rod drive mechanism cable manufactured by Boston Insulated Wire (BIW). The cable, which had been in service for over 30 years, was jacketed with Hypalon and insulated with ethylene propylene rubber. From elongation at break (EAB) measurements and supporting Arrhenius analysis of the jacket material, an activation energy of 97.84 kJ/mol was estimated, and the time to degradation, as represented by 50% EAB at the expected maximum operating temperature of 45°C, was estimated to be 80 years. These values were slightly below previous measurements on similar BIW Hypalon cable jacket and could be attributed to either in-service degradation or variations in material properties from production variations. Lastly, results from indenter modulus measurements and Fourier transform infrared spectroscopy suggest possible markers that could be beneficial in monitoring cable conditions.« less

  4. TU-H-BRA-01: The Physics of High Power Radiofrequency Isolation in a Novel Compact Linear Accelerator Based MRI Guided Radiation Therapy System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lamb, J; Low, D; Mutic, S

    Purpose: To develop a method for isolating the radiofrequency waves emanating from linear accelerator components from the magnetic resonance imaging (MRI) system of an integrated MRI-linac. Methods: An MRI-guided radiation therapy system has been designed that integrates a linear accelerator with simultaneous MR imaging. The radiofrequency waves created by the accelerating process would degrade MR image quality, so a method for containing the radiofrequency waves and isolating the MR imager from them was developed. The linear accelerator radiofrequency modulator was placed outside the room, so a filter was designed to eliminate the radiofrequency corresponding to the proton Larmour frequency ofmore » 14.7 MHz. Placing the radiofrequency emitting components in a typical Faraday cage would have reduced the radiofrequency emissions, but the design would be susceptible to small gaps in the shield due to the efficiency of the Faraday cage reflecting internal radiofrequency emissions. To reduce internal radiofrequency reflections, the Faraday cage was lined with carbon fiber sheets. Carbon fiber has the property of attenuating the radiofrequency energy so that the overall radiofrequency field inside the Faraday cage is reduced, decreasing any radiofrequency energy emitted from small gaps in the cage walls. Results: Within a 1.2 MHz band centered on the Larmor frequency, the radiofrequency (RF) leakage from the Faraday cage was measured to be −90 dB with no RF on, −40 dB with the RF on and no shield, returning to −90 dB with the RF on and shields in place. The radiofrequency filter attenuated the linear accelerator modulator emissions in the 14.7 MHz band by 70 dB. Conclusions: One of the major challenges in designing a compact linear accelerator based MRI-guided radiation therapy system, that of isolating the high power RF system from the MRI, has been solved. The measured radiofrequency emissions are sufficiently small to enable system integration. This research was funded by ViewRay, Inc., Oakwood, OH.« less

  5. Physics of Limiting Phenomena in Superconducting Microwave Resonators: Vortex Dissipation, Ultimate Quench and Quality Factor Degradation Mechanisms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Checchin, Mattia

    Superconducting niobium accelerating cavities are devices operating in radio-frequency and able to accelerate charged particles up to energy of tera-electron-volts. Such accelerating structures are though limited in terms of quality factor and accelerating gradient, that translates--in some cases--in higher capital costs of construction and operation of superconducting rf accelerators. Looking forward for a new generation of more affordable accelerators, the physical description of limiting mechanisms in superconducting microwave resonators is discussed. In particular, the physics behind the dissipation introduced by vortices in the superconductor, the ultimate quench limitations and the quality factor degradation mechanism after a quench are described inmore » detail. One of the limiting factor of the quality factor is the dissipation introduced by trapped magnetic flux vortices. The radio-frequency complex response of trapped vortices in superconductors is derived by solving the motion equation for a magnetic flux line, assuming a bi-dimensional and mean free path-dependent Lorentzian-shaped pinning potential. The resulting surface resistance shows the bell-shaped trend as a function of the mean free path, in agreement with the experimental data observed. Such bell-shaped trend of the surface resistance is described in terms of the interplay of the two limiting regimes identified as pinning and flux flow regimes, for low and large mean free path values respectively. The model predicts that the dissipation regime--pinning- or flux-flow-dominated--can be tuned either by acting on the frequency or on the electron mean free path value. The effect of different configurations of pinning sites and strength on the vortex surface resistance are also discussed. Accelerating cavities are also limited by the quench of the superconductive state, which limits the maximum accelerating gradient achievable. The accelerating field limiting factor is usually associate d to the superheating field, which is intimately correlated to the penetration of magnetic flux vortices in the material. Experimental data for N-doped cavities suggest that uniform Ginzburg-Landau parameter cavities are statistically limited by the lower critical field, in terms of accelerating gradient. By introducing a Ginzburg-Landau parameter profile at the cavity rf surface--dirty layer--the accelerating gradient of superconducting resonators can be enhanced. The description of the physics behind the accelerating gradient enhancement as a consequence of the dirty layer is carried out by solving numerically the Ginzburg-Landau equations for the layered system. The enhancement is showed to be promoted by the higher energy barrier to vortex penetration, and by the enhanced lower critical field. Another serious threat to the quality factor during the cavity operation is the extra dissipation introduced by the quench. Such quality factor degradation mechanism due to the quench, is generated by the trapping of external magnetic flux at quench spot. The purely extrinsic origin of such extra dissipation is proven by the impossibility of decrease the quality factor by quenching in a magnetic field-free environment. Also, a clear relation of the dissipation introduced by quenching to the orientation of the applied magnetic field is observed. The full recover of the quality factor by re-quenching in compensated field is possible when the trapped flux at the quench spot is modest. On the contrary, when the trapped magnetic flux is too large, the quality factor degradation may become irreversible by this technique, likely due to the outward flux migration beyond the normal zone opening during the quench.« less

  6. Physics of limiting phenomena in superconducting microwave resonators: Vortex dissipation, ultimate quench and quality factor degradation mechanisms

    NASA Astrophysics Data System (ADS)

    Checchin, Mattia

    Superconducting niobium accelerating cavities are devices operating in radiofrequency and able to accelerate charged particles up to energy of tera-electron-volts. Such accelerating structures are though limited in terms of quality factor and accelerating gradient, that translates--in some cases--in higher capital costs of construction and operation of superconducting rf accelerators. Looking forward for a new generation of more affordable accelerators, the physical description of limiting mechanisms in superconducting microwave resonators is discussed. In particular, the physics behind the dissipation introduced by vortices in the superconductor, the ultimate quench limitations and the quality factor degradation mechanism after a quench are described in detail. One of the limiting factor of the quality factor is the dissipation introduced by trapped magnetic flux vortices. The radio-frequency complex response of trapped vortices in superconductors is derived by solving the motion equation for a magnetic flux line, assuming a bi-dimensional and mean free path-dependent Lorentzian-shaped pinning potential. The resulting surface resistance shows the bell-shaped trend as a function of the mean free path, in agreement with the experimental data observed. Such bell-shaped trend of the surface resistance is described in terms of the interplay of the two limiting regimes identified as pinning and flux flow regimes, for low and large mean free path values respectively. The model predicts that the dissipation regime--pinning- or flux-flow-dominated--can be tuned either by acting on the frequency or on the electron mean free path value. The effect of different configurations of pinning sites and strength on the vortex surface resistance are also discussed. Accelerating cavities are also limited by the quench of the superconductive state, which limits the maximum accelerating gradient achievable. The accelerating field limiting factor is usually associated to the superheating field, which is intimately correlated to the penetration of magnetic flux vortices in the material. Experimental data for N-doped cavities suggest that uniform Ginzburg-Landau parameter cavities are statistically limited by the lower critical field, in terms of accelerating gradient. By introducing a Ginzburg-Landau parameter profile at the cavity rf surface--dirty layer--the accelerating gradient of superconducting resonators can be enhanced. The description of the physics behind the accelerating gradient enhancement as a consequence of the dirty layer is carried out by solving numerically the Ginzburg-Landau equations for the layered system. The enhancement is showed to be promoted by the higher energy barrier to vortex penetration, and by the enhanced lower critical field. Another serious threat to the quality factor during the cavity operation is the extra dissipation introduced by the quench. Such quality factor degradation mechanism due to the quench, is generated by the trapping of external magnetic flux at the quench spot. The purely extrinsic origin of such extra dissipation is proven by the impossibility of decrease the quality factor by quenching in a magnetic field-free environment. Also, a clear relation of the dissipation introduced by quenching to the orientation of the applied magnetic field is observed. The full recover of the quality factor by re-quenching in compensated field is possible when the trapped flux at the quench spot is modest. On the contrary, when the trapped magnetic flux is too large, the quality factor degradation may become irreversible by this technique, likely due to the outward flux migration beyond the normal zone opening during the quench.

  7. Temperature control strategy to enhance the activity of yeast inoculated into compost raw material for accelerated composting.

    PubMed

    Nakasaki, Kiyohiko; Hirai, Hidehira

    2017-07-01

    The effects of inoculating the mesophilic yeast Pichia kudriavzevii RB1, which is able to degrade organic acids, on organic matter degradation in composting were elucidated. When model food waste with high carbohydrate content (C/N=22.3) was used, fluctuation in the inoculated yeast cell density was observed, as well as fluctuation in the composting temperature until day 5 when the temperature rose to 60°C, which is lethal for the yeast. After the decrease in yeast, acetic acid accumulated to levels as high as 20mg/g-ds in the composting material and vigorous organic matter degradation was inhibited. However, by maintaining the temperature at 40°C for 2days during the heating phase in the early stage of composting, both the organic acids originally contained in the raw material and acetic acid produced during the heating phase were degraded by the yeast. The concentration of acetic acid was kept at a relatively low level (10.1mg/g-ds at the highest), thereby promoting the degradation of organic matter by other microorganisms and accelerating the composting process. These results indicate that temperature control enhances the effects of microbial inoculation into composts. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Stability of benzocaine formulated in commercial oral disintegrating tablet platforms.

    PubMed

    Köllmer, Melanie; Popescu, Carmen; Manda, Prashanth; Zhou, Leon; Gemeinhart, Richard A

    2013-12-01

    Pharmaceutical excipients contain reactive groups and impurities due to manufacturing processes that can cause decomposition of active drug compounds. The aim of this investigation was to determine if commercially available oral disintegrating tablet (ODT) platforms induce active pharmaceutical ingredient (API) degradation. Benzocaine was selected as the model API due to known degradation through ester and primary amino groups. Benzocaine was either compressed at a constant pressure, 20 kN, or at pressure necessary to produce a set hardness, i.e., where a series of tablets were produced at different compression forces until an average hardness of approximately 100 N was achieved. Tablets were then stored for 6 months under International Conference on Harmonization recommended conditions, 25°C and 60% relative humidity (RH), or under accelerated conditions, 40°C and 75% RH. Benzocaine degradation was monitored by liquid chromatography-mass spectrometry. Regardless of the ODT platform, no degradation of benzocaine was observed in tablets that were kept for 6 months at 25°C and 60% RH. After storage for 30 days under accelerated conditions, benzocaine degradation was observed in a single platform. Qualitative differences in ODT platform behavior were observed in physical appearance of the tablets after storage under different temperature and humidity conditions.

  9. Reliability of vibration energy harvesters of metal-based PZT thin films

    NASA Astrophysics Data System (ADS)

    Tsujiura, Y.; Suwa, E.; Kurokawa, F.; Hida, H.; Kanno, I.

    2014-11-01

    This paper describes the reliability of piezoelectric vibration energy harvesters (PVEHs) of Pb(Zr,Ti)O3 (PZT) thin films on metal foil cantilevers. The PZT thin films were directly deposited onto the Pt-coated stainless-steel (SS430) cantilevers by rf-magnetron sputtering, and we observed their aging behavior of power generation characteristics under the resonance vibration condition for three days. During the aging measurement, there was neither fatigue failure nor degradation of dielectric properties in our PVEHs (length: 13 mm, width: 5.0 mm, thickness: 104 μm) even under a large excitation acceleration of 25 m/s2. However, we observed clear degradation of the generated electric voltage depending on excitation acceleration. The decay rate of the output voltage was 5% from the start of the measurement at 25 m/s2. The transverse piezoelectric coefficient (e31,f) also degraded with almost the same decay rate as that of the output voltage; this indicates that the degradation of output voltage was mainly caused by that of piezoelectric properties. From the decay curves, the output powers are estimated to degrade 7% at 15 m/s2 and 36% at 25 m/s2 if we continue to excite the PVEHs for 30 years.

  10. Enhanced Photocatalytic Property of Cu Doped Sodium Niobate

    DOE PAGES

    Xu, Jianbin; Zhang, Feng; Sun, Bingyang; ...

    2015-01-01

    Here, we investigate the photocatalytic activity of Cu doped NaNbO 3 powder sample prepared by the modified polymer complex method. The photocatalytic activity of hydrogen evolution from methanol aqueous solution was improved by Cu 2.6 at% doping. The photocatalytic degradation of rhodamine B (RhB) under visible light irradiation was enhanced in comparison with pristine NaNbO 3. Cu introduction improved the adsorption property of NaNbO 3, judging from the Fourier transform infrared spectra. Moreover, the ultraviolet light excitation in Cu doped sample would accelerate the mineralized process.

  11. Method and apparatus for generating low energy nuclear particles

    DOEpatents

    Powell, J.R.; Reich, M.; Ludewig, H.; Todosow, M.

    1999-02-09

    A particle accelerator generates an input particle beam having an initial energy level above a threshold for generating secondary nuclear particles. A thin target is rotated in the path of the input beam for undergoing nuclear reactions to generate the secondary particles and correspondingly decrease energy of the input beam to about the threshold. The target produces low energy secondary particles and is effectively cooled by radiation and conduction. A neutron scatterer and a neutron filter are also used for preferentially degrading the secondary particles into a lower energy range if desired. 18 figs.

  12. Accelerating pathway evolution by increasing the gene dosage of chromosomal segments.

    PubMed

    Tumen-Velasquez, Melissa; Johnson, Christopher W; Ahmed, Alaa; Dominick, Graham; Fulk, Emily M; Khanna, Payal; Lee, Sarah A; Schmidt, Alicia L; Linger, Jeffrey G; Eiteman, Mark A; Beckham, Gregg T; Neidle, Ellen L

    2018-06-18

    Experimental evolution is a critical tool in many disciplines, including metabolic engineering and synthetic biology. However, current methods rely on the chance occurrence of a key step that can dramatically accelerate evolution in natural systems, namely increased gene dosage. Our studies sought to induce the targeted amplification of chromosomal segments to facilitate rapid evolution. Since increased gene dosage confers novel phenotypes and genetic redundancy, we developed a method, Evolution by Amplification and Synthetic Biology (EASy), to create tandem arrays of chromosomal regions. In Acinetobacter baylyi , EASy was demonstrated on an important bioenergy problem, the catabolism of lignin-derived aromatic compounds. The initial focus on guaiacol (2-methoxyphenol), a common lignin degradation product, led to the discovery of Amycolatopsis genes ( gcoAB ) encoding a cytochrome P450 enzyme that converts guaiacol to catechol. However, chromosomal integration of gcoAB in Pseudomonas putida or A. baylyi did not enable guaiacol to be used as the sole carbon source despite catechol being a growth substrate. In ∼1,000 generations, EASy yielded alleles that in single chromosomal copy confer growth on guaiacol. Different variants emerged, including fusions between GcoA and CatA (catechol 1,2-dioxygenase). This study illustrates the power of harnessing chromosomal gene amplification to accelerate the evolution of desirable traits.

  13. Reliability enhancement of Navier-Stokes codes through convergence acceleration

    NASA Technical Reports Server (NTRS)

    Merkle, Charles L.; Dulikravich, George S.

    1995-01-01

    Methods for enhancing the reliability of Navier-Stokes computer codes through improving convergence characteristics are presented. The improving of these characteristics decreases the likelihood of code unreliability and user interventions in a design environment. The problem referred to as a 'stiffness' in the governing equations for propulsion-related flowfields is investigated, particularly in regard to common sources of equation stiffness that lead to convergence degradation of CFD algorithms. Von Neumann stability theory is employed as a tool to study the convergence difficulties involved. Based on the stability results, improved algorithms are devised to ensure efficient convergence in different situations. A number of test cases are considered to confirm a correlation between stability theory and numerical convergence. The examples of turbulent and reacting flow are presented, and a generalized form of the preconditioning matrix is derived to handle these problems, i.e., the problems involving additional differential equations for describing the transport of turbulent kinetic energy, dissipation rate and chemical species. Algorithms for unsteady computations are considered. The extension of the preconditioning techniques and algorithms derived for Navier-Stokes computations to three-dimensional flow problems is discussed. New methods to accelerate the convergence of iterative schemes for the numerical integration of systems of partial differential equtions are developed, with a special emphasis on the acceleration of convergence on highly clustered grids.

  14. The role of animal seed dispersal in accelerating native forest regeneration on degraded tropical lands.

    Treesearch

    J.M. Wunderle Jr.

    1997-01-01

    this paper reviews the characteristicas of animal seed dispersal. relevant to tropical forest restoration efforts and discusses their managment implication. In many tropical regions seed dispersal by animals is the predominant form of dissemination of propagules and has a potential to facilitate recolonization of native vegetation on degraded sites.

  15. Critical analysis of industrial electron accelerators

    NASA Astrophysics Data System (ADS)

    Korenev, S.

    2004-09-01

    The critical analysis of electron linacs for industrial applications (degradation of PTFE, curing of composites, modification of materials, sterlization and others) is considered in this report. Main physical requirements for industrial electron accelerators consist in the variations of beam parameters, such as kinetic energy and beam power. Questions for regulation of these beam parameters are considered. The level of absorbed dose in the irradiated product and throughput determines the main parameters of electron accelerator. The type of ideal electron linac for industrial applications is discussed.

  16. Space simulation test for thermal control materials

    NASA Technical Reports Server (NTRS)

    Hardgrove, W. R.

    1990-01-01

    Tests were run in TRW's Combined Environment Facility to examine the degradation of thermal control materials in a simulated space environment. Thermal control materials selected for the test were those presently being used on spacecraft or predicted to be used within the next few years. The geosynchronous orbit environment was selected as the most interesting. One of the goals was to match degradation of those materials with available flight data. Another aim was to determine if degradation can adequately be determined with accelerated or short term ground tests.

  17. Evaluating Weathering of Food Packaging Polyethylene-Nano-clay Composites: Release of Nanoparticles and their Impacts.

    PubMed

    Han, Changseok; Zhao, Amy; Varughese, Eunice; Sahle-Demessie, E

    2018-01-01

    Nano-fillers are increasingly incorporated into polymeric materials to improve the mechanical, barrier or other matrix properties of nanocomposites used for consumer and industrial applications. However, over the life cycle, these nanocomposites could degrade due to exposure to environmental conditions, resulting in the release of embedded nanomaterials from the polymer matrix into the environment. This paper presents a rigorous study on the degradation and the release of nanomaterials from food packaging composites. Films of nano-clay-loaded low-density polyethylene (LDPE) composite for food packaging applications were prepared with the spherilene technology and exposed to accelerated weathering of ultraviolet (UV) irradiation or low concentration of ozone at 40 °C. The changes in the structural, surface morphology, chemical and physical properties of the films during accelerated weathering were investigated. Qualitative and quantitative changes in properties of pristine and aged materials and the release of nano-clay proceeded slowly until 130 hr irradiation and then accelerated afterward resulting complete degradation. Although nano-clay increased the stability of LDPE and improved thermal and barrier properties, they accelerated the UV oxidation of LDPE. With increasing exposure to UV, the surface roughness, chemiluminescence index, and carbonyl index of the samples increased while decreasing the intensity of the wide-angle X-ray diffraction pattern. Nano-clay particles with sizes ranging from 2-8 nm were released from UV and ozone weathered composite. The concentrations of released nanoparticles increased with an increase in aging time. Various toxicity tests, including reactive oxygen species generation and cell activity/viability were also performed on the released nano-clay and clay polymer. The released nano-clays basically did not show toxicity. Our combined results demonstrated the degradation properties of nano-clay particle-embedded LDPE composites toxicity of released nano-clay particles to A594 adenocarcinomic human alveolar basal epithelial cells was observed, which will help with future risk based-formulations of exposure.

  18. Theoretical and experimental analysis of a linear accelerator endowed with single feed coupler with movable short-circuit.

    PubMed

    Dal Forno, Massimo; Craievich, Paolo; Penco, Giuseppe; Vescovo, Roberto

    2013-11-01

    The front-end injection systems of the FERMI@Elettra linac produce high brightness electron beams that define the performance of the Free Electron Laser. The photoinjector mainly consists of the radiofrequency (rf) gun and of two S-band rf structures which accelerate the beam. Accelerating structures endowed with a single feed coupler cause deflection and degradation of the electron beam properties, due to the asymmetry of the electromagnetic field. In this paper, a new type of single feed structure with movable short-circuit is proposed. It has the advantage of having only one waveguide input, but we propose a novel design where the dipolar component is reduced. Moreover, the racetrack geometry allows to reduce the quadrupolar component. This paper presents the microwave design and the analysis of the particle motion inside the linac. A prototype has been machined at the Elettra facility to verify the new coupler design and the rf field has been measured by adopting the bead-pull method. The results are here presented, showing good agreement with the expectations.

  19. The effects of gallic/ferulic/caffeic acids on colour intensification and anthocyanin stability.

    PubMed

    Qian, Bing-Jun; Liu, Jian-Hua; Zhao, Shu-Juan; Cai, Jian-Xiong; Jing, Pu

    2017-08-01

    The mechanism by which copigments stabilize colour, by protecting anthocyanin chromophores from nucleophilic attack, seems well accepted. This study was to determine effects of gallic/ferulic/caffeic acids on colour intensification and anthocyanin stability. Molecular dynamics simulations were applied to explore molecular interactions. Phenolic acids intensified the colour by 19%∼27%. Colour fading during heating followed first-order reactions with half-lives of 3.66, 9.64, 3.50, and 3.39h, whereas anthocyanin degradation, determined by the pH differential method (or HPLC-PDA), followed second-order reactions with half-lives of 3.29 (3.40), 3.43 (3.39), 2.29 (0.39), and 2.72 (0.32)h alone or with gallic/ferulic/caffeic acids, respectively, suggesting that anthocyanin degradation was faster than the colour fading. The strongest protection of gallic acids might be attributed to the shortest distance (4.37Å) of its aromatic ring to the anthocyanin (AC) panel. Hyperchromic effects induced by phenolic acids were pronounced and they obscured the accelerated anthocyanin degradation due to self-association interruption. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Sand amendment enhances bioelectrochemical remediation of petroleum hydrocarbon contaminated soil.

    PubMed

    Li, Xiaojing; Wang, Xin; Ren, Zhiyong Jason; Zhang, Yueyong; Li, Nan; Zhou, Qixing

    2015-12-01

    Bioelectrochemical system is an emerging technology for the remediation of soils contaminated by petroleum hydrocarbons. However, performance of such systems can be limited by the inefficient mass transport in soil. Here we report a new method of sand amendment, which significantly increases both oxygen and proton transports, resulting to increased soil porosity (from 44.5% to 51.3%), decreased Ohmic resistance (by 46%), and increased charge output (from 2.5 to 3.5Cg(-1)soil). The degradation rates of petroleum hydrocarbons increased by up to 268% in 135d. The degradation of n-alkanes and polycyclic aromatic hydrocarbons with high molecular weight was accelerated, and denaturing gradient gel electrophoresis showed that the microbial community close to the air-cathode was substantially stimulated by the induced current, especially the hydrocarbon degrading bacteria Alcanivorax. The bioelectrochemical stimulation imposed a selective pressure on the microbial community of anodes, including that far from the cathode. These results suggested that sand amendment can be an effective approach for soil conditioning that will enhances the bioelectrochemical removal of hydrocarbons in contaminated soils. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. SU-C-BRD-03: Analysis of Accelerator Generated Text Logs for Preemptive Maintenance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Able, CM; Baydush, AH; Nguyen, C

    2014-06-15

    Purpose: To develop a model to analyze medical accelerator generated parameter and performance data that will provide an early warning of performance degradation and impending component failure. Methods: A robust 6 MV VMAT quality assurance treatment delivery was used to test the constancy of accelerator performance. The generated text log files were decoded and analyzed using statistical process control (SPC) methodology. The text file data is a single snapshot of energy specific and overall systems parameters. A total of 36 system parameters were monitored which include RF generation, electron gun control, energy control, beam uniformity control, DC voltage generation, andmore » cooling systems. The parameters were analyzed using Individual and Moving Range (I/MR) charts. The chart limits were calculated using a hybrid technique that included the use of the standard 3σ limits and the parameter/system specification. Synthetic errors/changes were introduced to determine the initial effectiveness of I/MR charts in detecting relevant changes in operating parameters. The magnitude of the synthetic errors/changes was based on: the value of 1 standard deviation from the mean operating parameter of 483 TB systems, a small fraction (≤ 5%) of the operating range, or a fraction of the minor fault deviation. Results: There were 34 parameters in which synthetic errors were introduced. There were 2 parameters (radial position steering coil, and positive 24V DC) in which the errors did not exceed the limit of the I/MR chart. The I chart limit was exceeded for all of the remaining parameters (94.2%). The MR chart limit was exceeded in 29 of the 32 parameters (85.3%) in which the I chart limit was exceeded. Conclusion: Statistical process control I/MR evaluation of text log file parameters may be effective in providing an early warning of performance degradation or component failure for digital medical accelerator systems. Research is Supported by Varian Medical Systems, Inc.« less

  2. Accelerated Thermal-Aging-Induced Degradation of Organometal Triiodide Perovskite on ZnO Nanostructures and Its Effect on Hybrid Photovoltaic Devices.

    PubMed

    Kumar, S; Dhar, A

    2016-07-20

    Organometal halide perovskite materials are presently some of the pacesetters for light harvesting in hybrid photovoltaic devices because of their excellent inherent electrical and optical properties. However, long-term durability of such perovskite materials remains a major bottleneck for their commercialization especially in countries with hot and humid climatic conditions, thus violating the international standards for photovoltaic technology. Albeit, TiO2 as an electron-transport layer has been well investigated for perovskite solar cells; the high-temperature processing makes it unsuitable for low-cost and large-scale roll-to-roll production of flexible photovoltaic devices. Herein, we have chosen low-temperature (<150 °C)-processable nanostructured ZnO as the electron-selective layer and used a two-step method for sensitizing ZnO nanorods with methylammonium lead iodide (MAPbI3) perovskite, which is viable for flexible photovoltaic devices. We have also elaborately addressed the effect of the annealing duration on the conversion of a precursor solution into the required perovskite phase on ZnO nanostructures. The investigations show that the presence of ZnO nanostructures accelerates the rate of degradation of MAPbI3 films under ambient annealing and thus requires proper optimization. The role of ZnO in enhancing the degradation kinetics of the perovskite layer has been investigated by X-ray photoelectron spectroscopy and a buffer layer passivation technique. The effect of the annealing duration of the MAPbI3 perovskite on the optical, morphological, and compositional behavior has been closely studied and correlated with the photovoltaic efficiency. The study captures the degradation behavior of the commercially interesting MAPbI3 perovskite on a ZnO electron-transport layer and thus can provide insight for developing alternative families of perovskite material with better thermal and environmental stability for application in low-cost flexible photovoltaic technology.

  3. Impact of humic acid on the degradation of levofloxacin by aqueous permanganate: Kinetics and mechanism.

    PubMed

    Xu, Ke; Ben, Weiwei; Ling, Wencui; Zhang, Yu; Qu, Jiuhui; Qiang, Zhimin

    2017-10-15

    Levofloxacin (LF) is a frequently detected fluoroquinolone in surface water, and permanganate (MnO 4 - ) is a commonly used oxidant in drinking water treatment. This study investigated the impact of humic acid (HA) on LF degradation by aqueous MnO 4 - from both kinetic and mechanistic aspects. In the absence of HA, the second-order rate constant (k) of LF degradation by MnO 4 - was determined to be 3.9 M -1  s -1 at pH 7.5, which increased with decreasing pH. In the presence of HA, the pseudo-first-order rate constant (k obs ) of LF degradation at pH 7.5 was significantly increased by 3.8- and 2.8-fold at [HA] o :[KMnO 4 ] o (mass ratio) = 0.5 and 1, respectively. Secondary oxidant scavenging and electron paramagnetic resonance tests indicated that HA could form a complex with Mn(III), a strongly oxidative intermediate produced in the reaction of MnO 4 - with HA, to induce the successive formation of superoxide radicals (O 2 - ) and hydroxyl radicals (OH). The resulting OH primarily contributed to the accelerated LF degradation, and the complex [HA-Mn(III)] could account for the rest of acceleration. The degradation of LF and its byproducts during MnO 4 - oxidation was mainly through hydroxylation, dehydrogenation and carboxylation, and the presence of HA led to a stronger destruction of LF. This study helps better understand the degradation of organic micropollutants by MnO 4 - in drinking water treatment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Thermal decomposition of wood: kinetics and degradation mechanisms.

    PubMed

    Poletto, Matheus; Zattera, Ademir J; Santana, Ruth M C

    2012-12-01

    The influence of wood components and cellulose crystallinity on the kinetic degradation of different wood species has been investigated using thermogravimetry. Four wood species were studied: Pinus elliottii (PIE), Eucalyptus grandis (EUG), Mezilaurus itauba (ITA) and Dipteryx odorata (DIP). Thermogravimetric results showed that higher extractive contents in the wood accelerate the degradation process and promote an increase in the conversion values at low temperatures. Alternatively, the results indicated that the cellulose crystallinity inhibits wood degradation; organized cellulose regions slow the degradation process because the well-packed cellulose chains impede heat diffusion, which improves the wood's thermal stability. The wood degradation mechanism occurs by diffusion processes when the conversion values are below 0.4. When the conversion values are above 0.5, the degradation is a result of random nucleation with one nucleus in each particle. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. Microstructural modifications induced by accelerated aging and lipid absorption in remelted and annealed UHMWPEs for total hip arthroplasty

    PubMed Central

    Puppulin, Leonardo; Zhu, Wenliang; Sugano, Nobuhiko

    2014-01-01

    Three types of commercially available ultra-high molecular weight polyethylene (UHMWPE) acetabular cups currently used in total hip arthroplasty have been studied by means of Raman micro-spectroscopy to unfold the microstructural modification induced by the oxidative degradation after accelerated aging with and without lipid absorption. The three investigated materials were produced by three different manufacturing procedures, as follows: irradiation followed by remelting, one-step irradiation followed by annealing, 3-step irradiation and annealing. Clear microstructural differences were observed in terms of phase contents (i.e. amorphous, crystalline and intermediate phase fraction). The three-step annealed material showed the highest crystallinity fraction in the bulk, while the remelted polyethylene is clearly characterized by the lowest content of crystalline phase and the highest content of amorphous phase. After accelerated aging either with or without lipids, the amount of amorphous phase decreased in all the samples as a consequence of the oxidation-induced recrystallization. The most remarkable variations of phase contents were detected in the remelted and in the single-step annealed materials. The presence of lipids triggered oxidative degradation especially in the remelted polyethylene. Such experimental evidence might be explained by the highest amount of amorphous phase in which lipids can be absorbed prior to accelerated aging. The results of these spectroscopic characterizations help to rationalize the complex effect of different irradiation and post-irradiation treatments on the UHMWPE microstructure and gives useful information on how significantly any single step of the manufacturing procedures might affect the oxidative degradation of the polymer. PMID:25179830

  6. Efficient degradation of Acid Orange 7 in aqueous solution by iron ore tailing Fenton-like process.

    PubMed

    Zheng, Jianming; Gao, Zhanqi; He, Huan; Yang, Shaogui; Sun, Cheng

    2016-05-01

    An effective method based on iron ore tailing Fenton-like process was studied for removing an azo dye, Acid Orange 7 (AO7) in aqueous solution. Five tailings were characterized by X-ray fluorescence spectroscope (XFS), Brunner-Emmet-Teller (BET) measurement, and Scanning Electron Microscope (SEM). The result of XFS showed that Fe, Si and Ca were the most abundant elements and some toxic heavy metals were also present in the studied tailings. The result of BET analysis indicated that the studied tailings had very low surface areas (0.64-5.68 m(2) g(-1)). The degradation efficiencies of AO7 were positively correlated with the content of iron oxide and cupric oxide, and not related with the BET surface area of the tailings. The co-existing metal elements, particularly Cu, might accelerate the heterogeneous Fenton-like reaction. The effects of other parameters on heterogeneous Fenton-like degradation of AO7 by a converter slag iron tailing (tailing E) which contains highest iron oxide were also investigated. The tailing could be reused 10 times without significant decrease of the catalytic capacity. Very low amount of iron species and almost undetectable toxic elements were leached in the catalytic degradation of AO7 by the tailing E. The reaction products were identified by gas chromatography-mass spectrometry and a possible pathway of AO7 degradation was proposed. This study not only provides an effective method for removing azo dyes in polluted water by employing waste tailings as Fenton-like catalysts, but also uses waste tailings as the secondary resource. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. A comparison of interpolation methods for predicting spatial variability of soil organic matter content in Eastern Croatia

    NASA Astrophysics Data System (ADS)

    Đurđević, Boris; Jug, Irena; Jug, Danijel; Vukadinović, Vesna; Bogunović, Igor; Brozović, Bojana; Stipešević, Bojan

    2017-04-01

    Soil organic matter (SOM) plays crucial role in soil health and productivity and represents one of the key functions for determining soil degradation and soil suitability for crop production. Nowadays, continuing decline of organic matter in soils in agroecosystems, due to inappropriate agricultural practice (burning and removal of crop residue, overgrazing, inappropriate tillage, etc.) and environmental conditions (climate change, extreme weather conditions, erosion) leads to devastating soil degradation processes and decreases soil productivity. The main objectives of this research is to compare three different interpolation methods (Inverse Distance Weighting IDW, Ordinary kriging OK and Empirical Bayesian Kriging EBK) and provide best spatial predictor in order to ensure detailed analysis of the agricultural land in Osijek-Baranja County, Croatia. A number of 9,099 soil samples have been compiled from layer 0-30 cm and analyzed in laboratory. The average value of SOM in the study area was 2.66%, while 70.7 % of samples had SOM value below 3% in Osijek-Baranja County. Among the applied methods, the lowest root mean square error was recorded under Empirical Bayesian Kriging method which had most accurately assessed soil organic matter. The main advantage of EBK is that the process of creating a valid kriging model is automated so the manual parameter adjusting is eliminated, and this resulted with reduced uncertainty of EBK model. Conducted interpolation and visualization of data showed that 85.7% of agricultural land in Osijek-Baranja County has SOM content lower than 3%, which may indicate some sort of soil degradation process. By using interpolation methods combined with visualization of data, we can detect problematic areas much easier and with additional analysis, suggest measures to repair degraded soils. This kind of approach to problem solving in agriculture can be applied on various agroecological conditions and can significantly facilitate and accelerate the decision-making process, and thus directly affect the profitability and sustainability of agricultural production.

  8. Effect of High Temperature Storage in Vacuum, Air, and Humid Conditions on Degradation of Gold/Aluminum Wire Bonds in PEMs

    NASA Technical Reports Server (NTRS)

    Teverovsky, Alexander

    2006-01-01

    Microcircuits encapsulated in three plastic package styles were stored in different environments at temperatures varying from 130 C to 225 C for up to 4,000 hours in some cases. To assess the effect of oxygen, the parts were aged at high temperatures in air and in vacuum chambers. The effect of humidity was evaluated during long-term highly accelerated temperature and humidity stress testing (HAST) at temperatures of 130 C and 150 C. High temperature storage testing of decapsulated microcircuits in air, vacuum, and HAST chambers was carried out to evaluate the role of molding compounds in the environmentally-induced degradation and failure of wire bonds (WB). This paper reports on accelerating factors of environment and molding compound on WB failures. It has been shown that all environments, including oxygen, moisture, and the presence of molding compounds reduce time-to-failures compared to unencapsulated devices in vacuum conditions. The mechanism of the environmental effect on KB degradation is discussed.

  9. Introducing saccharic acid as an efficient iron chelate to enhance photo-Fenton degradation of organic contaminants.

    PubMed

    Subramanian, Gokulakrishnan; Madras, Giridhar

    2016-11-01

    The identification of iron chelates that can enhance photo-Fenton degradation is of great interest in the field of advanced oxidation process. Saccharic acid (SA) is a polyhydroxy carboxylic acid and completely non-toxic. Importantly, it can effectively bind Fe(III) as well as induce photoreduction of Fe(III). Despite having these interesting properties, the effect of SA on photo-Fenton degradation has not been studied. Herein, we demonstrate the first assessment of SA as an iron chelate in photo-Fenton process using methylene blue (MB) as a model organic contaminant. Our results demonstrate that SA has the ability to (i) enhance the photo-Fenton degradation of MB by about 11 times at pH 4.5 (ii) intensify photochemical reduction of Fe(III) to Fe(II) by about 17 times and (iii) accelerate the rate of consumption of H 2 O 2 in photo-Fenton process by about 5 times (iv) increase the TOC reduction by about 2 times and (v) improve the photo-Fenton degradation of MB in the presence of a variety of common inorganic ions and organic matter. The influential properties of SA on photo-Fenton degradation is attributed to the efficient photochemical reduction of Fe(III) via LMCT (ligand to metal charge transfer reaction) to Fe(II), which then activated H 2 O 2 to generate OH and accelerated photo-Fenton degradation efficiency. Moreover, the effect of operational parameters such as oxidant: contaminant (H 2 O 2 : MB) ratio, catalyst: contaminant (Fe(III)SA: MB) ratio, Fe(III): SA stoichiometry and pH on the degradation of MB by photo-Fenton in the presence of SA is demonstrated. Importantly, SA assisted photo-Fenton caused effective degradation of MB and 4-Chlorophenol under natural sunlight irradiation in natural water matrix. The findings strongly support SA as a deserving iron chelate to enhance photo-Fenton degradation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Influence of dynamic compressive loading on the in vitro degradation behavior of pure PLA and Mg/PLA composite.

    PubMed

    Li, Xuan; Qi, Chenxi; Han, Linyuan; Chu, Chenglin; Bai, Jing; Guo, Chao; Xue, Feng; Shen, Baolong; Chu, Paul K

    2017-12-01

    The effects of dynamic compressive loading on the in vitro degradation behavior of pure poly-lactic acid (PLA) and PLA-based composite unidirectionally reinforced with micro-arc oxidized magnesium alloy wires (Mg/PLA) are investigated. Dynamic compressive loading is shown to accelerate degradation of pure PLA and Mg/PLA. As the applied stress is increased from 0.1MPa to 0.9MPa or frequency from 0.5Hz to 2.5Hz, the overall degradation rate goes up. After immersion for 21days at 0.9MPa and 2.5Hz, the bending strength retention of the composite and pure PLA is 60.1% and 50%, respectively. Dynamic loading enhances diffusion of small acidic molecules resulting in significant pH decrease in the immersion solution. The synergistic reaction between magnesium alloy wires and PLA in the composite is further clarified by electrochemical tests. The degradation behavior of the pure PLA and PLA matrix in the composite under dynamic conditions obey the first order degradation kinetics and a numerical model is postulated to elucidate the relationship of the bending strength, stress, frequency, and immersion time under dynamic conditions. We systematically study the influence of dynamic loading on the degradation behavior of pure PLA and Mg/PLA. Dynamic compressive loading is shown to accelerate degradation of pure PLA and Mg/PLA. The synergistic reaction between magnesium alloy wires and PLA in the composite is firstly clarified by electrochemical tests. The degradation behavior of the pure PLA and PLA matrix in the composite under dynamic conditions obey the first order degradation kinetics. Then, a numerical model is postulated to elucidate the relationship of the bending strength, stress, frequency, and immersion time under dynamic conditions. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  11. A simulator study on information requirements for precision hovering

    NASA Technical Reports Server (NTRS)

    Lemons, J. L.; Dukes, T. A.

    1975-01-01

    A fixed base simulator study of an advanced helicopter instrument display utilizing translational acceleration, velocity and position information is reported. The simulation involved piloting a heavy helicopter using the Integrated Trajectory Error Display (ITED) in a precision hover task. The test series explored two basic areas. The effect on hover accuracy of adding acceleration information was of primary concern. Also of interest was the operators' ability to use degraded information derived from less sophisticated sources. The addition of translational acceleration to a display containing velocity and position information did not appear to improve the hover performance significantly. However, displayed acceleration information seemed to increase the damping of the man machine system. Finally, the pilots could use translational information synthesized from attitude and angular acceleration as effectively as perfect acceleration.

  12. Landau Damping of Beam Instabilities by Electron Lenses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shiltsev, V.; Alexahin, Yuri; Burov, A.

    2017-06-26

    Modern and future particle accelerators employ increasingly higher intensity and brighter beams of charged particles and become operationally limited by coherent beam instabilities. Usual methods to control the instabilities, such as octupole magnets, beam feedback dampers and use of chromatic effects, become less effective and insufficient. We show that, in contrast, Lorentz forces of a low-energy, a magnetically stabilized electron beam, or "electron lens", easily introduces transverse nonlinear focusing sufficient for Landau damping of transverse beam instabilities in accelerators. It is also important that, unlike other nonlinear elements, the electron lens provides the frequency spread mainly at the beam core,more » thus allowing much higher frequency spread without lifetime degradation. For the parameters of the Future Circular Collider, a single conventional electron lens a few meters long would provide stabilization superior to tens of thousands of superconducting octupole magnets.« less

  13. Landau Damping of Beam Instabilities by Electron Lenses

    DOE PAGES

    Shiltsev, V.; Alexahin, Yuri; Burov, A.; ...

    2017-09-27

    Modern and future particle accelerators employ increasingly higher intensity and brighter beams of charged particles and become operationally limited by coherent beam instabilities. Usual methods to control the instabilities, such as octupole magnets, beam feedback dampers, and use of chromatic effects, become less effective and insufficient. Here, we show that, in contrast, Lorentz forces of a low-energy, magnetically stabilized electron beam, or “electron lens,” easily introduce transverse nonlinear focusing sufficient for Landau damping of transverse beam instabilities in accelerators. It is also important to note that, unlike other nonlinear elements, the electron lens provides the frequency spread mainly at themore » beam core, thus allowing much higher frequency spread without lifetime degradation. For the parameters of the Future Circular Collider, a single conventional electron lens a few meters long would provide stabilization superior to tens of thousands of superconducting octupole magnets.« less

  14. Mechanical properties experimental investigation of HTPB propellant after thermal accelerated aging

    NASA Astrophysics Data System (ADS)

    Yang, Xiaohong; Sun, Chaoxiang; Zhang, Junfa; Xu, Jinsheng; Tan, Bingdong

    2017-04-01

    To get accurate aging mechanical properties of aged HTPB propellant, the thermal accelerated aging experiment method is utilized and the uniaxial tensile experiments were conducted to obtain the mechanical data of aged HTPB propellants, and the maximum tensile strength, σm, maximum tensile strain, ɛm, and the fracture tensile strain, ɛb, of HTPB propellant with different aging time and various aging temperatures,were obtained, using universal material testing machine. The experimental results show that the σm of HTPB propellant initially increases, subsequently decreases and finally increases with aging time. The ɛm and ɛb generally decrease with increasing aging time, what's more, the decrease rate of both ɛm and ɛb reduce with the aging time. What's more, the postcure effect and oxidation reaction occurred inside HTPB matrix, including the chain degradation reaction and oxidation-induced crosslinking, were discussed to explain the mechanical aging rule of HTPB propellant.

  15. Summary Report of Cable Aging and Performance Data for Fiscal Year 2014.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Celina, Mathias C.; Celina, Mathias C.; Redline, Erica Marie

    2014-09-01

    As part of the Light Water Reactor Sustainability Program, science - based engineering approaches were employed to address cable degradation behavior under a range of exposure environments. Experiments were conducted with the goal to provide best guidance for aged material states, remaining life and expected performance under specific conditions for a range of cable materials. Generic engineering tests , which focus on rapid accelerated aging and tensile elongation , were combined with complementar y methods from polymer degradation science. Sandia's approach, building on previous years' efforts, enabled the generation of some of the necessary data supporting the development of improvedmore » lifetime predictions models, which incorporate known material b ehaviors and feedback from field - returned 'aged' cable materials. Oxidation rate measurements have provided access to material behavior under low dose rate thermal conditions, where slow degradation is not apparent in mechanical property changes. Such da ta have shown aging kinetics consistent with established radiati on - thermal degradation models. ACKNOWLEDGEMENTS We gratefully acknowledge ongoing technical support at the LICA facility and extensive sample handling provided by Maryla Wasiolek and Don Hans on. Sam Durbin and Patrick Mattie are recognized for valuable guidance throughout the year and assistance in the preparation of the final report. Doug Brunson is appreciated for sample analysis, compilation and plotting of experimental data.« less

  16. Thermochemical Stability Study of Alkyl-Tethered Quaternary Ammonium Cations for Anion Exchange Membrane Fuel Cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mohanty, Angela D.; Tignor, Steven E.; Sturgeon, Matthew R.

    2017-01-01

    The increased interest in the use of anion exchange membranes (AEMs) for applications in electrochemical devices has prompted significant efforts in designing materials with robust stability in alkaline media. Most reported AEMs suffer from polymer backbone degradation as well as cation functional group degradation. In this report, we provide comprehensive experimental investigations for the analysis of cation functional group stability under alkaline media. A silver oxide-mediated ion exchange method and an accelerated stability test in aqueous KOH solutions at elevated temperatures using a Parr reactor were used to evaluate a broad scope of quaternary ammonium (QA) cationic model compound structures,more » particularly focusing on alkyl-tethered cations. Additionally, byproduct analysis was employed to gain better understanding of degradation pathways and trends of alkaline stability. Experimental results under different conditions gave consistent trends in the order of cation stability of various QA small molecule model compounds. Overall, cations that are benzyl-substituted or that are near to electronegative atoms (such as oxygen) degrade faster in alkaline media in comparison to alkyl-tethered QAs. These comprehensive model compound stability studies provide valuable information regarding the relative stability of various cation structures and can help guide researchers towards designing new and promising candidates for AEM materials.« less

  17. Enhanced photocatalytic activity and synthesis of ZnO nanorods/MoS2 composites

    NASA Astrophysics Data System (ADS)

    Li, Hui; Shen, Hao; Duan, Libing; Liu, Ruidi; Li, Qiang; Zhang, Qian; Zhao, Xiaoru

    2018-05-01

    A stable and recyclable organic degradation catalyst based on MoS2 functionalized ZnO nanorods was introduced. ZnO nanorods were synthesized on the glass substrates (2 cm*2 cm) by sol-gel method and hydrothermal method and functionalized with MoS2 via an argon flow annealing method. The structure and morphology of the as-prepared samples were characterized by XRD, SEM and TEM. Results showed that a small amount of MoS2 was successfully wrapped on the surfaces of ZnO nanorods. XPS analyses showed the existence of Zn-S between ZnO and MoS2, indicating that the MoS2 was combined with ZnO through chemical bonds and formed the ZnO/MoS2 heterostructure. PL results revealed that ZnO/MoS2 had lower fluorescence spectra indicating an electron transport channel between ZnO and MoS2 which separated electrons and holes. Photocatalytic experiment showed that ZnO/MoS2 composites showed a better photodegradation performance of Rhodamine B (RhB) after functionalized with MoS2 under the UV light irradiation which could be attributed to the separation and transfer of photogenerated electrons and holes between ZnO and MoS2. Meanwhile, the high active adsorption sites on the edges of MoS2 also accelerated the degradation process. Furthermore, the scavengers were used to investigate the major active species and results indicated that h+ was the major reactive species for the degradation.

  18. Effect of aerobic exercise intervention on DDT degradation and oxidative stress in rats.

    PubMed

    Li, Kefeng; Zhu, Xiaohua; Wang, Yuzhan; Zheng, Shuqian; Dong, Guijun

    2017-03-01

    Dichlorodiphenyltrichloroethane (DDT) reportedly causes extensively acute or chronic effects to human health. Exercise can generate positive stress. We evaluated the effect of aerobic exercise on DDT degradation and oxidative stress. Male Wistar rats were randomly assigned into control (C), DDT without exercise training (D), and DDT plus exercise training (DE) groups. The rats were treated as follows: DDT exposure to D and DE groups at the first 2 weeks; aerobic exercise treatment only to the DE group from the 1st day until the rats are killed. DDT levels in excrements, muscle, liver, serum, and hearts were analyzed. Superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSH-Px), and malondialdehyde (MDA) levels were determined. Aerobic exercise accelerated the degradation of DDT primarily to DDE due to better oxygen availability and aerobic condition and promoted the degradation of DDT. Cumulative oxidative damage of DDT and exercise led to significant decrease of SOD level. Exercise resulted in consistent increase in SOD activity. Aerobic exercise enhanced activities of CAT and GSH-Px and promoted MDA scavenging. Results suggested that exercise can accelerate adaptive responses to oxidative stress and activate antioxidant enzymes activities. Exercise can also facilitate the reduction of DDT-induced oxidative damage and promoted DDT degradation. This study strongly implicated the positive effect of exercise training on DDT-induced liver oxidative stress.

  19. Monte Carlo study and design of system for implementation of Rotational Total Skin Electron Irradiation technique

    NASA Astrophysics Data System (ADS)

    Ansari, M.; Abbasi Davani, F.; Lamehi Rashti, M.; Monadi, Sh.; Emami, H.

    2018-05-01

    Total skin electron irradiation technique is used in treatment of the mycosis fungoid. The implementation of this technique requires non-standard measurements and complex dosimetry methods. Depending on the linear accelerator (Linac) type, bunker size, room dimensions and dosimetry equipment, the design of instruments for appropriate set up and implementation of TSEI in different radiation therapy centers varies. The studies which have been done in this article provide an introduction to the implementing of this method for the first time in Iran and its results can be used for the centers with similar specifications in the world. This article determined the electron beam characteristic of TSEI for the only electron accelerator, located at the radiation center of the Seyed Alshohada Hospital of Isfahan (NEPTUN 10PC), by performing Monte Carlo simulations and using EGSnrc-based codes (BEAMnrc and DOSXYZnrc). For the best uniformity of the vertical profile, the optimal angle of gantry was defined at SSD=350 cm. The effect of the degrader plane that is located at a distance of 20 cm from the patient surface, was evaluated on the amount of energy reduction of the beam, the opening of the electron beam field and the homogeneity of the dose distribution. The transversal dose distribution from the whole treatment with Stanford technique (six dual fields) and Rotational technique was simulated in a CT-based anthropomorphic phantom. Also, the percentage depth dose in the head, neck, thorax, abdomen and legs was obtained for both methods. The simulation results show that the 20o angle between the horizontal and the beam central axis is optimal in order to provide the best vertical dose uniformity. The mean energy decreases from 6.1 MeV (the exit window) to 3 MeV (the treatment surface) by placing a degrader with 0.8 cm thickness in front of the treatment plane. FWHM of the angular distribution of the electron beam increased from 15o at SSD=100 cm to more than 30o on the treatment surface by traversing the PMMA degrader. The MC calculated percentage depth dose curves in different organs of anthropomorphic phantom for RTSEI indicates that the depth of maximum dose is on the surface of the phantom and Isodose curve of 80% is formed at a depth less than 4 mm. the results also show, with the degrader plane in front of the patient, the degree of homogeneity of the dose distribution for both Stanford and rotational techniques is the same.

  20. 2017 NEPP Tasks Update for Ceramic and Tantalum Capacitors

    NASA Technical Reports Server (NTRS)

    Teverovsky, Alexander A.

    2017-01-01

    This presentation gives an overview of current NEPP tasks on ceramic and tantalum capacitors and plans for the future. It includes tasks on leakage currents, gas generation and case deformation in wet tantalum capacitors; ESR degradation and acceleration factors in MnO2 and polymer cathode capacitors. Preliminary results on the effect of moisture on degradation of reverse currents in MnO2 tantalum capacitors are discussed. Latest results on mechanical characteristics of MLCCs and modeling of degradation of leakage currents in BME capacitors with defects are also presented.

  1. Ultrasonic disintegration of biosolids for improved biodegradation.

    PubMed

    Nickel, Klaus; Neis, Uwe

    2007-04-01

    Biological cell lysis is known to be the rate-limiting step of anaerobic biosolids degradation. Shear forces generated by low frequency ultrasound can be used to disintegrate bacterial cells in sewage sludge. Thus, the quantity of dissolved organic substrate is increased. Consequently, the degradation rate and the biodegradability of organic biosolids mass are improved. Fundamental pilot-studies showed a significantly accelerated biosolids degradation with less digested sludge being produced and increased biogas production being attained. A full-scale ultrasound reactor system was developed for continuous operation under real life conditions on sewage treatment plants (STP).

  2. In vivo degradation behavior and biological activity of some new Mg-Ca alloys with concentration's gradient of Si for bone grafts

    NASA Astrophysics Data System (ADS)

    Trincă, Lucia Carmen; Fântânariu, Mircea; Solcan, Carmen; Trofin, Alina Elena; Burtan, Liviu; Acatrinei, Dumitru Mihai; Stanciu, Sergiu; Istrate, Bogdan; Munteanu, Corneliu

    2015-10-01

    Magnesium based alloys, especially Mg-Ca alloys, are biocompatible substrates with mechanical properties similar to those of bones. The biodegradable alloys of Mg-Ca provide sufficient mechanical strength in load carrying applications as opposed to biopolymers and also they avoid stress shielding and secondary surgery inherent with permanent metallic implant materials. The main issue facing a biodegradable Mg-Ca alloy is the fast degradation in the aggressive physiological environment of the body. The alloy's corrosion is proportional with the dissolution of the Mg in the body: the reaction with the water generates magnesium hydroxide and hydrogen. The accelerated corrosion will lead to early loss of the alloy's mechanical integrity. The degradation rate of an alloy can be improved mainly through tailoring the composition and by carrying out surface treatments. This research focuses on the ability to adjust degradation rate of Mg-Ca alloys by an original method and studies the biological activity of the resulted specimens. A new Mg-Ca alloy, with a Si gradient concentration from the surface to the interior of the material, was obtained. The surface morphology was investigated using scanning electron microscopy (VegaTescan LMH II, SE detector, 30 kV), X-ray diffraction (X'Pert equipment) and energy dispersive X-ray (Bruker EDS equipment). In vivo degradation behavior, biological compatibility and activity of Mg-Ca alloys with/without Si gradient concentration were studied with an implant model (subcutaneous and bony) in rats. The organism response to implants was characterized by using radiological (plain X-rays and computed tomography), biochemical and histological methods of investigation. The results sustained that Si gradient concentration can be used to control the rate of degradation of the Mg-Ca alloys for enhancing their biologic activity in order to facilitate bone tissue repair.

  3. Dynamic Multivariate Accelerated Corrosion Test Protocol

    DTIC Science & Technology

    2014-10-01

    atmospheric, accelerated, AA2024-T3, AA6061-T6, AA7075-T3, 1010 steel, AgCl, rare earth conversion coat, magnesium rich primer, polyurethane , Eyring, Monte...morphology and elemental analysis by scanning electron microscopy-energy dispersive spectroscopy (SEM-EDS) and electrochemical determinations of...in the FT-IR analysis; degradation of the components of the high performance polyurethane coatings exposed in the UV/ozone chamber were more

  4. Chlorophyll loss associated with heat-induced senescence in bentgrass.

    PubMed

    Jespersen, David; Zhang, Jing; Huang, Bingru

    2016-08-01

    Heat stress-induced leaf senescence is characterized by the loss of chlorophyll from leaf tissues. The objectives of this study were to examine genetic variations in the level of heat-induced leaf senescence in hybrids of colonial (Agrostis capillaris)×creeping bentgrass (Agrostis stolonifera) contrasting in heat tolerance, and determine whether loss of leaf chlorophyll during heat-induced leaf senescence was due to suppressed chlorophyll synthesis and/or accelerated chlorophyll degradation in the cool-season perennial grass species. Plants of two hybrid backcross genotypes ('ColxCB169' and 'ColxCB190') were exposed to heat stress (38/33°C, day/night) for 28 d in growth chambers. The analysis of turf quality, membrane stability, photochemical efficiency, and chlorophyll content demonstrated significant variations in the level of leaf senescence induced by heat stress between the two genotypes, with ColXCB169 exhibiting a lesser degree of decline in chlorophyll content, photochemical efficiency and membrane stability than ColXCB190. The assays of enzymatic activity or gene expression of several major chlorophyll-synthesizing (porphobilinogen deaminase, Mg-chelatase, protochlorophyllide-reductase) and chlorophyll-degrading enzymes (chlorophyllase, pheophytinase, and chlorophyll-degrading peroxidase) indicated heat-induced decline in leaf chlorophyll content was mainly due to accelerated chlorophyll degradation, as manifested by increased gene expression levels of chlorophyllase and pheophytinase, and the activity of pheophytinase (PPH), while chlorophyll-synthesizing genes and enzymatic activities were not differentially altered by heat stress in the two genotypes. The analysis of heat-induced leaf senescence of pph mutants of Arabidopsis further confirmed that PPH could be one enzymes that plays key roles in regulating heat-accelerated chlorophyll degradation. Further research on enzymes responsible in part for the loss of chlorophyll during heat-induced senescence could aid in the development of genotypes with stay-green traits either through marker assisted selection or transgenic approaches. Copyright © 2016. Published by Elsevier Ireland Ltd.

  5. Evaluation of 10V Chip Polymer Tantalum Capacitors for Space Applications

    NASA Technical Reports Server (NTRS)

    Teverovsky, Alexander A.

    2016-01-01

    Due to low ESR and safe failure mode, new technology chip polymer tantalum capacitors (CPTC) have gained popularity in the electronics design community, first in commercial applications, and now in hi-rel and space systems. The major drawbacks of these parts are high leakage currents, degradation under environmental stresses, and a relatively narrow temperature range of operating and storage conditions. Several studies have shown that a certain amount of moisture in polymer cathodes is necessary for a normal operation of the parts. This might limit applications of CPTCs in space systems and requires analysis of long-term exposure to deep vacuum conditions on their performance and reliability. High leakage currents and limited maximum operational temperature complicate accelerated testing that is necessary to assess long-term reliability and require new screening and qualification procedures for quality assurance. A better understanding of behavior of CPTCs as compared to traditional, MnO2, capacitors is necessary to develop adequate approaches for QA system for space applications. A specific of CPTCs is that different materials and processes might be used for low-voltage (10 V and less) and high-voltage (above 10 V) capacitors, so performance and degradation processes in these groups require separate analysis. In this work, that is a part of the NASA Electronic Parts and Packaging (NEPP) program, degradation of AC and DC characteristics under environmental stresses at different temperatures and voltages have been studied in nine lots of commercial and automotive grade capacitors rated to 10 V. Results of analysis of leakage currents, high temperature storage (HTS) up to 5000 hrs in vacuum and air at different temperatures, and Highly Accelerated Life Testing (HALT) in the range from 85 C to 145 C are presented. Temperature and voltage acceleration factors were calculated based on approximation of distributions of degradation rates with a general log-linear Weibull model. Mechanisms of degradation and failures, and requirements for screening and qualification testing are discussed.

  6. Comparison of the protection effectiveness of acrylic polyurethane coatings containing bark extracts on three heat-treated North American wood species: Surface degradation

    NASA Astrophysics Data System (ADS)

    Kocaefe, Duygu; Saha, Sudeshna

    2012-04-01

    High temperature heat-treatment of wood is a very valuable technique which improves many properties (biological durability, dimensional stability, thermal insulating characteristics) of natural wood. Also, it changes the natural color of wood to a very attractive dark brown color. Unfortunately, this color is not stable if left unprotected in external environment and turns to gray or white depending on the wood species. To overcome this problem, acrylic polyurethane coatings are applied on heat-treated wood to delay surface degradations (color change, loss of gloss, and chemical modifications) during aging. The acrylic polyurethane coatings which have high resistance against aging are further modified by adding bark extracts and/or lignin stabilizer to enhance their effectiveness in preventing the wood aging behavior. The aging characteristic of this coating is compared with acrylic polyurethane combined with commercially available organic UV stabilizers. In this study, their performance on three heat-treated North American wood species (jack pine, quaking aspen and white birch) are compared under accelerated aging conditions. Both the color change data and visual assessment indicate improvement in protective characteristic of acrylic polyurethane when bark extracts and lignin stabilizer are used in place of commercially available UV stabilizer. The results showed that although acrylic polyurethane with bark extracts and lignin stabilizer was more efficient compared to acrylic polyurethane with organic UV stabilizers in protecting heat-treated jack pine, it failed to protect heat-treated aspen and birch effectively after 672 h of accelerated aging. This degradation was not due to the coating adhesion loss or coating degradation during accelerated aging; rather, it was due to the significant degradation of heat-treated aspen and birch surface beneath this coating. The XPS results revealed formation of carbonyl photoproducts after aging on the coated surfaces and chain scission of Csbnd N of urethane linkages.

  7. Membrane Accelerated Stress Test Development for Polymer Electrolyte Fuel Cell Durability Validated Using Field and Drive Cycle Testing

    DOE PAGES

    Mukundan, Rangachary; Baker, Andrew M.; Kusoglu, Ahmet; ...

    2018-03-01

    A combined chemical/mechanical accelerated stress test (AST) was developed for proton exchange membrane (PEM) fuel cells based on relative humidity cycling (RHC) between dry and saturated gases at open circuit voltage (OCV). Membrane degradation and failure were investigated using scanning electron microscopy and small- and wide-angle X-ray scattering. Changes to membrane thickness, hydrophilic domain spacing, and crystallinity were observed to be most similar between field-operated cells and OCV RHC ASTs, where local thinning and divot-type defects are the primary failure modes. While RHC in air also reproduces these failure modes, it is not aggressive enough to differentiate between different membranemore » types in >1,333 hours (55 days) of testing. Conversely, steady-state OCV tests result in significant ionomer morphology changes and global thinning, which do not replicate field degradation and failure modes. It is inferred that during the OCV RHC AST, the decay of the membrane's mechanical properties is accelerated such that materials can be evaluated in hundreds, instead of thousands, of hours, while replicating the degradation and failure modes of field operation; associated AST protocols are recommended as OCV RHC at 90°C for 500 hours with wet/dry cycle durations of 30s/45s and 2m/2m for automotive and bus operation, respectively.« less

  8. Superconducting Ring Cyclotron for Riken RI Beam Factory in Japan

    NASA Astrophysics Data System (ADS)

    Okuno, H.; Dantsuka, T.; Yamada, K.; Kase, M.; Maie, T.; Kamigaito, O.

    2010-04-01

    Since 1997, RIKEN Nishina Center has been constructing the Radioactive Isotope Beam Factory (RIBF) and succeeded in beam commissioning of its accelerator complex at the end of 2006. The world's first superconducting ring cyclotron (SRC) is the final booster in the RIBF accelerator complex which is able to accelerate all-element heavy ions to a speed of about 70% of the velocity of light. The ring cyclotron consists of 6 major superconducting sector magnets with a maximum field of 3.8 T. The total stored energy is 235 MJ, and its overall sizes are 19 m diameter, 8 m height and 8,300 tons. The magnet system assembly was completed in August 2005, and successfully reached the maximum field in November 2005. The first beam was extracted at the end of 2006 and the first uranium beam was extracted in March 2007. However operation of the helium refrigerator was not satisfactory although the commissioning of SRC was successful. Operation was stopped every two month due to degradation of its cooling power. In February 2008 the reason of the degradation was revealed to be oil contamination. Operation of the cryogenic system was restarted from August 2008 after hard task to clean up the helium refrigerator and to add oil separators to the compressor. After restoration long-term steady operation to keep the magnet superconducting continued for about 8 months with no sign of degradation of cooling capacity.

  9. Membrane Accelerated Stress Test Development for Polymer Electrolyte Fuel Cell Durability Validated Using Field and Drive Cycle Testing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mukundan, Rangachary; Baker, Andrew M.; Kusoglu, Ahmet

    A combined chemical/mechanical accelerated stress test (AST) was developed for proton exchange membrane (PEM) fuel cells based on relative humidity cycling (RHC) between dry and saturated gases at open circuit voltage (OCV). Membrane degradation and failure were investigated using scanning electron microscopy and small- and wide-angle X-ray scattering. Changes to membrane thickness, hydrophilic domain spacing, and crystallinity were observed to be most similar between field-operated cells and OCV RHC ASTs, where local thinning and divot-type defects are the primary failure modes. While RHC in air also reproduces these failure modes, it is not aggressive enough to differentiate between different membranemore » types in >1,333 hours (55 days) of testing. Conversely, steady-state OCV tests result in significant ionomer morphology changes and global thinning, which do not replicate field degradation and failure modes. It is inferred that during the OCV RHC AST, the decay of the membrane's mechanical properties is accelerated such that materials can be evaluated in hundreds, instead of thousands, of hours, while replicating the degradation and failure modes of field operation; associated AST protocols are recommended as OCV RHC at 90°C for 500 hours with wet/dry cycle durations of 30s/45s and 2m/2m for automotive and bus operation, respectively.« less

  10. Validation of a liquid chromatography method for the simultaneous determination of sulfadimethoxine and trimethoprim and application to a stability study.

    PubMed

    Louati, K; Mistiri, F; Kallel, M; Safta, F

    2010-03-01

    A liquid chromatography method is described for the simultaneous determination of sulfadimetoxine and trimethoprim from a veterinary formulation at the proportion of 187 mg and 40 mg respectively in presence of some excipient. The solution was subjected to different International Conference On Harmonisation prescribed stress conditions (hydrolysis, oxidation and photolysis). A stability-indicating high-performance liquid chromatography method was developed for the analysis of active substances in presence of their major degradation products. It involved a Knauer Eurospher C18 thermostated column at 25 degrees C, and 9.57 mM phosphate buffer (pH adjusted to 2.0 with orthophosphoric acid)-acetonitrile (70:30 v/v) as mobile phase. The mobile phase flow rate and sample volume injected were 1.2 mL/min and 20 microL, respectively. The selected wavelength for the determination was 248 nm. The method was validated for linearity, precision, accuracy and specificity, and then applied to a stability study of sulfadimetoxine and trimethoprim in the veterinary solution packaged in high density polyethylene plastic bottles of 1 L and 100 mL thermosealed and no thermosealed and corked by a white cap, at both accelerated and long-term conditions required by the International Conference On Harmonisation. The method developed, which separates all of the most degradation products formed under variety of conditions, proved to be simple, accurate, precise and specific. The results of the stress degradation show that the solution is more sensitive to hydrolysis. The stability studies carried out on three batches of each presentation show that the finished product remains stable for six months. Copyright 2010 Elsevier Masson SAS. All rights reserved.

  11. Degradation of Tetracyclines in Pig Manure by Composting with Rice Straw

    PubMed Central

    Chai, Rushan; Huang, Lidong; Li, Lingling; Gielen, Gerty; Wang, Hailong; Zhang, Yongsong

    2016-01-01

    A holistic approach was followed for utilizing tetracyclines (TCs)-contaminated pig manure, by composting this with rice straw in a greenhouse for CO2 fertilization and composted residue application. After composting, the composted residues can be applied to cropland as a supplemental source of synthetic fertilizers. The objective of this study was to determine the effect of pig manure-rice straw composting on the degradation of TCs in pig manure. The results showed that greenhouse composting significantly accelerated the degradation of TCs. Contents (150 mg·kg−1) of oxytetracycline (OTC), tetracycline (TC) and chlortetracycline (CTC) in the composting feedstock could be completely removed within 42 days for OTC and TC, and 14 days for CTC. However, in the control samples incubated at 25 °C in the dark, concentrations of OTC, TC and CTC only decreased 64.7%, 66.7% and 73.3%, respectively, after 49 days. The degradation rates of TCs in the composting feedstock were in the order of CTC > TC > OTC. During the composting process, CTC dissipated rapidly with the time required for 50% degradation (DT50) and 90% degradation (DT90) of 2.4 and 7.9 days, but OTC was more persistent with DT50 and DT90 values of 5.5 and 18.4 days. On the basis of the results obtained in this study, it could be concluded that pig manure-rice straw composting in a greenhouse can help to accelerate the degradation of TCs in pig manure and make composted residues safer for field application. This technology could be an acceptable practice for greenhouse farmers to utilize TCs-contaminated pig manure. PMID:26927136

  12. Degradation of Tetracyclines in Pig Manure by Composting with Rice Straw.

    PubMed

    Chai, Rushan; Huang, Lidong; Li, Lingling; Gielen, Gerty; Wang, Hailong; Zhang, Yongsong

    2016-02-24

    A holistic approach was followed for utilizing tetracyclines (TCs)-contaminated pig manure, by composting this with rice straw in a greenhouse for CO₂ fertilization and composted residue application. After composting, the composted residues can be applied to cropland as a supplemental source of synthetic fertilizers. The objective of this study was to determine the effect of pig manure-rice straw composting on the degradation of TCs in pig manure. The results showed that greenhouse composting significantly accelerated the degradation of TCs. Contents (150 mg·kg(-1)) of oxytetracycline (OTC), tetracycline (TC) and chlortetracycline (CTC) in the composting feedstock could be completely removed within 42 days for OTC and TC, and 14 days for CTC. However, in the control samples incubated at 25 °C in the dark, concentrations of OTC, TC and CTC only decreased 64.7%, 66.7% and 73.3%, respectively, after 49 days. The degradation rates of TCs in the composting feedstock were in the order of CTC > TC > OTC. During the composting process, CTC dissipated rapidly with the time required for 50% degradation (DT50) and 90% degradation (DT90) of 2.4 and 7.9 days, but OTC was more persistent with DT50 and DT90 values of 5.5 and 18.4 days. On the basis of the results obtained in this study, it could be concluded that pig manure-rice straw composting in a greenhouse can help to accelerate the degradation of TCs in pig manure and make composted residues safer for field application. This technology could be an acceptable practice for greenhouse farmers to utilize TCs-contaminated pig manure.

  13. Mcl-1 dynamics influence mitotic slippage and death in mitosis.

    PubMed

    Sloss, Olivia; Topham, Caroline; Diez, Maria; Taylor, Stephen

    2016-02-02

    Microtubule-binding drugs such as taxol are frontline treatments for a variety of cancers but exactly how they yield patient benefit is unclear. In cell culture, inhibiting microtubule dynamics prevents spindle assembly, leading to mitotic arrest followed by either apoptosis in mitosis or slippage, whereby a cell returns to interphase without dividing. Myeloid cell leukaemia-1 (Mcl-1), a pro-survival member of the Bcl-2 family central to the intrinsic apoptosis pathway, is degraded during a prolonged mitotic arrest and may therefore act as a mitotic death timer. Consistently, we show that blocking proteasome-mediated degradation inhibits taxol-induced mitotic apoptosis in a Mcl-1-dependent manner. However, this degradation does not require the activity of either APC/C-Cdc20, FBW7 or MULE, three separate E3 ubiquitin ligases implicated in targeting Mcl-1 for degradation. This therefore challenges the notion that Mcl-1 undergoes regulated degradation during mitosis. We also show that Mcl-1 is continuously synthesized during mitosis and that blocking protein synthesis accelerates taxol induced death-in-mitosis. Modulating Mcl-1 levels also influences slippage; overexpressing Mcl-1 extends the time from mitotic entry to mitotic exit in the presence of taxol, while inhibiting Mcl-1 accelerates it. We suggest that Mcl-1 competes with Cyclin B1 for binding to components of the proteolysis machinery, thereby slowing down the slow degradation of Cyclin B1 responsible for slippage. Thus, modulating Mcl-1 dynamics influences both death-in-mitosis and slippage. However, because mitotic degradation of Mcl-1 appears not to be under the control of an E3 ligase, we suggest that the notion of network crosstalk is used with caution.

  14. Assessment of Cable Aging Equipment, Status of Acquired Materials, and Experimental Matrix at the Pacific Northwest National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fifield, Leonard S.; Westman, Matthew P.; Zwoster, Andy

    2015-03-30

    The need for increased understanding of the aging and degradation behavior for polymer components of nuclear power plant electrical cables is described in this report. The highest priority materials for study and the resources available at PNNL for these studies are also described. The anticipated outcomes of the PNNL work described are : improved understanding of appropriate accelerated aging conditions, improved knowledge of correlation between observable aging indicators and cable condition in support of advanced non-destructive evaluation methods, and practical knowledge of condition-based cable lifetime prediction.

  15. Method and apparatus for generating low energy nuclear particles

    DOEpatents

    Powell, James R.; Reich, Morris; Ludewig, Hans; Todosow, Michael

    1999-02-09

    A particle accelerator (12) generates an input particle beam having an initial energy level above a threshold for generating secondary nuclear particles. A thin target (14) is rotated in the path of the input beam for undergoing nuclear reactions to generate the secondary particles and correspondingly decrease energy of the input beam to about the threshold. The target (14) produces low energy secondary particles and is effectively cooled by radiation and conduction. A neutron scatterer (44) and a neutron filter (42) are also used for preferentially degrading the secondary particles into a lower energy range if desired.

  16. Retrieving the lost fermionic entanglement by partial measurement in noninertial frames

    NASA Astrophysics Data System (ADS)

    Xiao, Xing; Xie, Ying-Mao; Yao, Yao; Li, Yan-Ling; Wang, Jieci

    2018-03-01

    The initial entanglement shared between inertial and accelerated observers degrades due to the influence of the Unruh effect. Here, we show that the Unruh effect can be completely eliminated by the technique of partial measurement. The lost entanglement could be entirely retrieved or even amplified, which is dependent on whether the optimal strength of reversed measurement is state-independent or state-dependent. Our work provides a novel and unexpected method to recover the lost entanglement under Unruh decoherence and exhibits the ability of partial measurement as an important technique in relativistic quantum information.

  17. Preparation and Characterization of Amylose Inclusion Complexes for Drug Delivery Applications.

    PubMed

    Carbinatto, Fernanda M; Ribeiro, Tatiana S; Colnago, Luiz Alberto; Evangelista, Raul Cesar; Cury, Beatriz S F

    2016-01-01

    Amylose complexes with nimesulide (NMS) and praziquantel (PZQ) were prepared by a simple and low cost method, so that high yield (>57%) and drug content (up to 68.16%) were achieved. The influence of drug:polymer ratio, temperature, and presence of palmitic acid on the complexes properties was evaluated. Differential scanning calorimetry, X-ray diffraction, and nuclear magnetic resonance data evidenced the drug-polymer interaction and the formation of inclusion complexes with semi-crystalline structures related to type II complexes. The drug release rates from complexes were lowered in acid media (pH 1.2) and phosphate buffer (pH 6.9). The presence of pancreatin promoted a significant acceleration of the release rates of both drugs, evidencing the enzymatic degradability of these complexes. The highest enzymatic resistance of PZQ1:30PA60°C complex makes the release time longer and the full release of PZQ in phosphate buffer with pancreatin occurred at 240 min, whereas the complexes with NMS and PZQ1:5PA90°C did it in 60 min. According to the Weibull model, the drug release process in media without enzyme occurred by complex mechanisms involving diffusion, swelling, and erosion. In media containing pancreatin, generally, the better correlation was with the first order, evidencing the acceleration of the release rates of drugs in the early stages of the test, due to enzymatic degradation.

  18. Efficient, environmentally-friendly and specific valorization of lignin: promising role of non-radical lignolytic enzymes.

    PubMed

    Wang, Wenya; Zhang, Chao; Sun, Xinxiao; Su, Sisi; Li, Qiang; Linhardt, Robert J

    2017-06-01

    Lignin is the second most abundant bio-resource in nature. It is increasingly important to convert lignin into high value-added chemicals to accelerate the development of the lignocellulose biorefinery. Over the past several decades, physical and chemical methods have been widely explored to degrade lignin and convert it into valuable chemicals. Unfortunately, these developments have lagged because of several difficulties, of which high energy consumption and non-specific cleavage of chemical bonds in lignin remain the greatest challenges. A large number of enzymes have been discovered for lignin degradation and these are classified as radical lignolytic enzymes and non-radical lignolytic enzymes. Radical lignolytic enzymes, including laccases, lignin peroxidases, manganese peroxidases and versatile peroxidases, are radical-based bio-catalysts, which degrade lignins through non-specific cleavage of chemical bonds but can also catalyze the radical-based re-polymerization of lignin fragments. In contrast, non-radical lignolytic enzymes selectively cleave chemical bonds in lignin and lignin model compounds and, thus, show promise for use in the preparation of high value-added chemicals. In this mini-review, recent developments on non-radical lignolytic enzymes are discussed. These include recently discovered non-radical lignolytic enzymes, their metabolic pathways for lignin conversion, their recent application in the lignin biorefinery, and the combination of bio-catalysts with physical/chemical methods for industrial development of the lignin refinery.

  19. Effects of alternate fuels. Report No. 2. Analysis of basic refractories degraded by residual oil combustion products

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wei, G. C.; Tennery, V. J.

    1978-02-01

    Industrial conversion in the U.S. to alternate fuels from natural gas is presently under way and will accelerate rapidly as a result of gas curtailments and National policy considerations. Currently the prime alternate fuels are distillate and residual oils and coal. Conversion to residual oils or coal for high-temperature process heat applications is anticipated to result in accelerated refractory and insulation corrosion and degradation due to reactions between fuel impurities and the ceramic linings of high-temperature equipment. Understanding the nature of such reactions and identification of means for preventing or retarding them will be of considerable assistance to both refractorymore » manufacturers and users as well as a significant contribution to energy conservation.« less

  20. Degradation of chloramphenicol by UV/chlorine treatment: Kinetics, mechanism and enhanced formation of halonitromethanes.

    PubMed

    Dong, Huiyu; Qiang, Zhimin; Hu, Jun; Qu, Jiuhui

    2017-09-15

    Ultraviolet (UV)/chlorine process is considered as an emerging advanced oxidation process for the degradation of micropollutants. This study investigated the degradation of chloramphenicol (CAP) and formation of disinfection by-products (DBPs) during the UV/chlorine treatment. It was found that CAP degradation was enhanced by combined UV/chlorine treatment compared to that of UV and chlorination treatment alone. The pseudo-first-order rate constant of the UV/chlorine process at pH 7.0 reached 0.016 s -1 , which was 10.0 and 2.0 folds that observed from UV and chlorination alone, respectively. The enhancement can be attributed to the formation of diverse radicals (HO and reactive chlorine species (RCSs)), and the contribution of RCSs maintained more stable than that of HO at pH 5.5-8.5. Meanwhile, enhanced DBPs formation during the UV/chlorine treatment was observed. Both the simultaneous formation and 24-h halonitromethanes formation potential (HNMsFP) were positively correlated with the UV/chlorine treatment time. Although the simultaneous trichloronitromethane (TCNM) formation decreased with the prolonged UV irradiation, TCNM dominated the formation of HNMs after 24 h (>97.0%). According to structural analysis of transformation by-products, both the accelerated CAP degradation and enhanced HNMs formation steps were proposed. Overall, the formation of diverse radicals during the UV/chlorine treatment accelerated the degradation of CAP, while also enhanced the formation of DBPs simultaneously, indicating the need for DBPs evaluation before the application of combined UV/chlorine process. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Effects of different agricultural wastes on the dissipation of PAHs and the PAH-degrading genes in a PAH-contaminated soil.

    PubMed

    Han, Xuemei; Hu, Hangwei; Shi, Xiuzhen; Zhang, Limei; He, Jizheng

    2017-04-01

    Land application of agricultural wastes is considered as a promising bioremediation approach for cleaning up soils contaminated by aged polycyclic aromatic hydrocarbons (PAHs). However, it remains largely unknown about how microbial PAH-degraders, which play a key role in the biodegradation of soil PAHs, respond to the amendments of agricultural wastes. Here, a 90-day soil microcosm study was conducted to compare the effects of three agricultural wastes (i.e. WS, wheat stalk; MCSW, mushroom cultivation substrate waste; and CM, cow manure) on the dissipation of aged PAHs and the abundance and community structure of PAH-degrading microorganisms. The results showed that all the three agricultural wastes accelerated the dissipation of aged PAHs and significantly increased abundances of the bacterial 16S rRNA and PAH-degrading genes (i.e. pdo1 and nah). CM and MCSW with lower ratios of C:N eliminated soil PAHs more efficiently than WS with a high ratio of C:N. Low molecular weight PAHs were dissipated more quickly than those with high molecular weight. Phylogenetic analysis revealed that all of the nah and C12O clones were affiliated within Betaproteobacteria and Gammaproteobacteria, and application of agricultural wastes significantly changed the community structure of the microorganisms harboring nah and C12O genes, particularly in the CM treatment. Taken together, our findings suggest that the three tested agricultural wastes could accelerate the degradation of aged PAHs most likely through changing the abundances and community structure of microbial PAH degraders. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Effect of electrode mass ratio on aging of activated carbon based supercapacitors utilizing organic electrolytes

    NASA Astrophysics Data System (ADS)

    Cericola, D.; Kötz, R.; Wokaun, A.

    2011-03-01

    The accelerated degradation of carbon based supercapacitors utilizing 1 M Et4NBF4 in acetonitrile and in propylene carbonate as electrolyte is investigated for a constant cell voltage of 3.5 V as a function of the positive over total electrode mass ratio. The degradation rate of the supercapacitor using acetonitrile as a solvent can be decreased by increasing the mass of the positive electrode. With a mass ratio (positive electrode mass/total electrode mass) of 0.65 the degradation rate is minimum. For the capacitor utilizing propylene carbonate as a solvent a similar effect was observed. The degradation rate was smallest for a mass ratio above 0.5.

  3. Functional role of R462 in the degradation of hyaluronan catalyzed by hyaluronate lyase from Streptococcus pneumoniae.

    PubMed

    Li, Fengxue; Xu, Dingguo

    2015-08-01

    Hyaluronan lyase from Streptococcus pneumoniae can degrade hyaluronic acid, which is one of the major components in the extracellular matrix. Hyaluronan can regulate water balance, osmotic pressure, and act as an ion exchange resin. Followed by our recent work on the catalytic reaction mechanism and substrate binding mode, we in this work further investigate the functional role of active site arginine residue, R462, in the degradation of hyaluronan. The site directed mutagenesis simulation of R462A and R462Q were modeled using a combined quantum mechanical and molecular mechanical method. The overall substrate binding features upon mutations do not have significant changes. The energetic profiles for the reaction processes are essentially the same as that in wild type enzyme, but significant activation barrier height changes can be observed. Both mutants were shown to accelerate the overall enzymatic activity, e.g., R462A can reduce the barrier height by about 2.8 kcal mol(-1), while R462Q reduces the activation energy by about 2.9 kcal mol(-1). Consistent with the active site model calculated using density functional theory, our results can support that the positive charge on R462 guanidino side chain group plays a negative role in the catalysis. Finally, the functional role of R462 was proposed to facilitate the formation of initial enzyme-substrate complex, but not in the subsequent catalytic degradation reaction. Graphical Abstract Degradation of hyaluronan catalyzed by hyaluronate lyase from Streptococcus pneumoniae.

  4. Polymeric stent materials dysregulate macrophage and endothelial cell functions: implications for coronary artery stent

    PubMed Central

    Wang, Xintong; Zachman, Angela L.; Chun, Young Wook; Shen, Fang-Wen; Hwang, Yu-Shik; Sung, Hak-Joon

    2014-01-01

    Background Biodegradable polymers have been applied as bulk or coating materials for coronary artery stents. The degradation of polymers, however, could induce endothelial dysfunction and aggravate neointimal formation. Here we use polymeric microparticles to simulate and demonstrate the effects of degraded stent materials on phagocytic activity, cell death and dysfunction of macrophages and endothelial cells. Methods Microparticles made of low molecular weight polyesters were incubated with human macrophages and coronary artery endothelial cells (ECs). Microparticle-induced phagocytosis, cytotoxicity, apoptosis, cytokine release and surface marker expression were determined by immunostaining or ELISA. Elastase expression was analyzed by ELISA and the elastase-mediated polymer degradation was assessed by mass spectrometry. Results We demonstrated poly(D,L-lactic acid) (PLLA) and polycaprolactone (PCL) microparticles induced cytotoxicity in macrophages and ECs, partially through cell apoptosis. The particle treatment alleviated EC phagocytosis, as opposed to macrophages, but enhanced the expression of vascular cell adhesion molecule-1 (VCAM) along with decreased nitric oxide production, indicating ECs were activated and lost their capacity to maintain homeostasis. The activation of both cell types induced release of elastase or elastase-like protease, which further accelerated polymer degradation. Conclusions This study revealed that low molecule weight PLLA and PCL microparticles increased cytotoxicity and dysregulated endothelial cell function, which in turn enhanced elastase release and polymer degradation. These indicate polymer or polymer-coated stents impose a risk of endothelial dysfunction after deployment which can potentially lead to delayed endothelialization, neointimal hyperplasia and late thrombosis. PMID:24820736

  5. Fabrication and characterization of PbO2 electrode modified with [Fe(CN)6](3-) and its application on electrochemical degradation of alkali lignin.

    PubMed

    Hao, Xu; Quansheng, Yuan; Dan, Shao; Honghui, Yang; Jidong, Liang; Jiangtao, Feng; Wei, Yan

    2015-04-09

    PbO2 electrode modified by [Fe(CN)6](3-) (marked as FeCN-PbO2) was prepared by electro-deposition method and used for the electrochemical degradation of alkali lignin (AL). The surface morphology and the structure of the electrodes were characterized by scanning electronic microscopy (SEM) and X-ray diffraction (XRD), respectively. The stability and electrochemical activity of FeCN-PbO2 electrode were characterized by accelerated life test, linear sweep voltammetry, electrochemical impedance spectrum (EIS) and AL degradation. The results showed that [Fe(CN)6](3-) increased the average grain size of PbO2 and formed a compact surface coating. The service lifetime of FeCN-PbO2 electrode was 287.25 h, which was longer than that of the unmodified PbO2 electrode (100.5h). The FeCN-PbO2 electrode showed higher active surface area and higher oxygen evolution potential than that of the unmodified PbO2 electrode. In electrochemical degradation tests, the apparent kinetics coefficient of FeCN-PbO2 electrode was 0.00609 min(-1), which was higher than that of unmodified PbO2 electrode (0.00419 min(-1)). The effects of experimental parameters, such as applied current density, initial AL concentration, initial pH value and solution temperature, on electrochemical degradation of AL by FeCN-PbO2 electrode were evaluated. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. A novel electron accelerator for MRI-Linac radiotherapy

    PubMed Central

    Whelan, Brendan; Gierman, Stephen; Holloway, Lois; Schmerge, John; Keall, Paul; Fahrig, Rebecca

    2016-01-01

    Purpose: MRI guided radiotherapy is a rapidly growing field; however, current electron accelerators are not designed to operate in the magnetic fringe fields of MRI scanners. As such, current MRI-Linac systems require magnetic shielding, which can degrade MR image quality and limit system flexibility. The purpose of this work was to develop and test a novel medical electron accelerator concept which is inherently robust to operation within magnetic fields for in-line MRI-Linac systems. Methods: Computational simulations were utilized to model the accelerator, including the thermionic emission process, the electromagnetic fields within the accelerating structure, and resulting particle trajectories through these fields. The spatial and energy characteristics of the electron beam were quantified at the accelerator target and compared to published data for conventional accelerators. The model was then coupled to the fields from a simulated 1 T superconducting magnet and solved for cathode to isocenter distances between 1.0 and 2.4 m; the impact on the electron beam was quantified. Results: For the zero field solution, the average current at the target was 146.3 mA, with a median energy of 5.8 MeV (interquartile spread of 0.1 MeV), and a spot size diameter of 1.5 mm full-width-tenth-maximum. Such an electron beam is suitable for therapy, comparing favorably to published data for conventional systems. The simulated accelerator showed increased robustness to operation in in-line magnetic fields, with a maximum current loss of 3% compared to 85% for a conventional system in the same magnetic fields. Conclusions: Computational simulations suggest that replacing conventional DC electron sources with a RF based source could be used to develop medical electron accelerators which are robust to operation in in-line magnetic fields. This would enable the development of MRI-Linac systems with no magnetic shielding around the Linac and reduce the requirements for optimization of magnetic fringe field, simplify design of the high-field magnet, and increase system flexibility. PMID:26936713

  7. Abiotic and biotic degradation of oxo-biodegradable plastic bags by Pleurotus ostreatus.

    PubMed

    da Luz, José Maria Rodrigues; Paes, Sirlaine Albino; Bazzolli, Denise Mara Soares; Tótola, Marcos Rogério; Demuner, Antônio Jacinto; Kasuya, Maria Catarina Megumi

    2014-01-01

    In this study, we evaluated the growth of Pleurotus ostreatus PLO6 using oxo-biodegradable plastics as a carbon and energy source. Oxo-biodegradable polymers contain pro-oxidants that accelerate their physical and biological degradation. These polymers were developed to decrease the accumulation of plastic waste in landfills. To study the degradation of the plastic polymers, oxo-biodegradable plastic bags were exposed to sunlight for up to 120 days, and fragments of these bags were used as substrates for P. ostreatus. We observed that physical treatment alone was not sufficient to initiate degradation. Instead, mechanical modifications and reduced titanium oxide (TiO2) concentrations caused by sunlight exposure triggered microbial degradation. The low specificity of lignocellulolytic enzymes and presence of endomycotic nitrogen-fixing microorganisms were also contributing factors in this process.

  8. Degradation testing of Mg alloys in Dulbecco's modified eagle medium: Influence of medium sterilization.

    PubMed

    Marco, Iñigo; Feyerabend, Frank; Willumeit-Römer, Regine; Van der Biest, Omer

    2016-05-01

    This work studies the in vitro degradation of Mg alloys for bioabsorbable implant applications under near physiological conditions. For this purpose, the degradation behaviour of Mg alloys in Dulbecco's modified eagle medium (DMEM) which is a commonly used cell culture medium is analysed. Unfortunately, DMEM can be contaminated by microorganisms, acidifying the medium and accelerating the Mg degradation process by dissolution of protective degradation layers, such as (Mgx,Cay)(PO4)z. In this paper the influence of sterilization by applying UV-C radiation and antibiotics (penicillin/streptomycin) is analysed with two implant material candidates: Mg-Gd and Mg-Ag alloys; and pure magnesium as well as Mg-4Y-3RE as a reference. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Conductive iron oxides accelerate thermophilic methanogenesis from acetate and propionate.

    PubMed

    Yamada, Chihaya; Kato, Souichiro; Ueno, Yoshiyuki; Ishii, Masaharu; Igarashi, Yasuo

    2015-06-01

    Anaerobic digester is one of the attractive technologies for treatment of organic wastes and wastewater, while continuous development and improvements on their stable operation with efficient organic removal are required. Particles of conductive iron oxides (e.g., magnetite) are known to facilitate microbial interspecies electron transfer (termed as electric syntrophy). Electric syntrophy has been reported to enhance methanogenic degradation of organic acids by mesophilic communities in soil and anaerobic digester. Here we investigated the effects of supplementation of conductive iron oxides (magnetite) on thermophilic methanogenic microbial communities derived from a thermophilic anaerobic digester. Supplementation of magnetite accelerated methanogenesis from acetate and propionate under thermophilic conditions, while supplementation of ferrihydrite also accelerated methanogenesis from propionate. Microbial community analysis revealed that supplementation of magnetite drastically changed bacterial populations in the methanogenic acetate-degrading cultures, in which Tepidoanaerobacter sp. and Coprothermobacter sp. dominated. These results suggest that supplementation of magnetite induce electric syntrophy between organic acid-oxidizing bacteria and methanogenic archaea and accelerate methanogenesis even under thermophilic conditions. Findings from this study would provide a possibility for the achievement of stably operating thermophilic anaerobic digestion systems with high efficiency for removal of organics and generation of CH4. Copyright © 2014 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  10. Evaluating the Upset Protrusion Joining (UPJ) Method to Join Magnesium Castings to Dissimilar Metals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Logan, Stephen

    2016-02-24

    This presentation discusses advantages and best practices for incorporating magnesium in automotive component applications to achieve substantial mass reduction, as well as some of the key challenges with respect to joining, coating, and galvanic corrosion, before providing an introduction and status update of the U.S. Department of Energy and Department of Defense jointly sponsored Upset Protrusion Joining (UPJ) process development and evaluation project. This update includes sharing performance results of a benchmark evaluation of the self-pierce riveting (SPR) process for joining dissimilar magnesium (Mg) to aluminum (Al) materials in four unique coating configurations before introducing the UPJ concept and comparingmore » performance results of the joints made with the UPJ process to those made with the SPR process. Key results presented include: The benchmark SPR process can produce good joints in the MgAM60B-Al 6013 joint configuration with minimal cracking in the Mg coupons if the rivet is inserted from the Mg side into the Al side; Numerous bare Mg to bare Al joints made with the SPR process separated after only 6-wks of accelerated corrosion testing due to fracture of the rivet as a result of hydrogen embrittlement; For the same joint configurations, UPJ demonstrated substantially higher pre-corrosion joint strengths and post-corrosion joint strengths, primarily because of the larger diameter protrusion compared to smaller SPR rivet diameter and reduced degradation due to accelerated corrosion exposure; As with the SPR process, numerous bare Mg to bare Al joints made with the UPJ process also separated after 6-wks of accelerated corrosion testing, but unlike the SPR experience, the UPJ joints experienced degradation of the boss and head because of galvanic corrosion of the Mg casting, not hydrogen embrittlement of the steel rivet; In the configuration where both the Mg and Al were pretreated with Alodine 5200 prior to joining and the complete assembly was powder-coated afterwards, the UPJ process showed substantial improvement in corrosion performance compared to SPR where many SPR joints had separated after only 6-wks of exposure, but none of the UPJ joints had separated even after 8-wis; and In the cases where the Al panel was coated prior to joining to the pretreated Mg coupons, neither the SPR or UPJ joints showed any joint separation or substantial joint performance degradation even after 12-wks of accelerated corrosion exposure.« less

  11. State Space Formulation of Nonlinear Vibration Responses Collected from a Dynamic Rotor-Bearing System: An Extension of Bearing Diagnostics to Bearing Prognostics

    PubMed Central

    Tse, Peter W.; Wang, Dong

    2017-01-01

    Bearings are widely used in various industries to support rotating shafts. Their failures accelerate failures of other adjacent components and may cause unexpected machine breakdowns. In recent years, nonlinear vibration responses collected from a dynamic rotor-bearing system have been widely analyzed for bearing diagnostics. Numerous methods have been proposed to identify different bearing faults. However, these methods are unable to predict the future health conditions of bearings. To extend bearing diagnostics to bearing prognostics, this paper reports the design of a state space formulation of nonlinear vibration responses collected from a dynamic rotor-bearing system in order to intelligently predict bearing remaining useful life (RUL). Firstly, analyses of nonlinear vibration responses were conducted to construct a bearing health indicator (BHI) so as to assess the current bearing health condition. Secondly, a state space model of the BHI was developed to mathematically track the health evolution of the BHI. Thirdly, unscented particle filtering was used to predict bearing RUL. Lastly, a new bearing acceleration life testing setup was designed to collect natural bearing degradation data, which were used to validate the effectiveness of the proposed bearing prognostic method. Results show that the prediction accuracy of the proposed bearing prognostic method is promising and the proposed bearing prognostic method is able to reflect future bearing health conditions. PMID:28216586

  12. State Space Formulation of Nonlinear Vibration Responses Collected from a Dynamic Rotor-Bearing System: An Extension of Bearing Diagnostics to Bearing Prognostics.

    PubMed

    Tse, Peter W; Wang, Dong

    2017-02-14

    Bearings are widely used in various industries to support rotating shafts. Their failures accelerate failures of other adjacent components and may cause unexpected machine breakdowns. In recent years, nonlinear vibration responses collected from a dynamic rotor-bearing system have been widely analyzed for bearing diagnostics. Numerous methods have been proposed to identify different bearing faults. However, these methods are unable to predict the future health conditions of bearings. To extend bearing diagnostics to bearing prognostics, this paper reports the design of a state space formulation of nonlinear vibration responses collected from a dynamic rotor-bearing system in order to intelligently predict bearing remaining useful life (RUL). Firstly, analyses of nonlinear vibration responses were conducted to construct a bearing health indicator (BHI) so as to assess the current bearing health condition. Secondly, a state space model of the BHI was developed to mathematically track the health evolution of the BHI. Thirdly, unscented particle filtering was used to predict bearing RUL. Lastly, a new bearing acceleration life testing setup was designed to collect natural bearing degradation data, which were used to validate the effectiveness of the proposed bearing prognostic method. Results show that the prediction accuracy of the proposed bearing prognostic method is promising and the proposed bearing prognostic method is able to reflect future bearing health conditions.

  13. Quench-induced degradation of the quality factor in superconducting resonators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Checchin, M.; Martinello, M.; Romanenko, A.

    Quench of superconducting radio-frequency cavities frequently leads to the lowered quality factor Q 0, which had been attributed to the additional trapped magnetic flux. Here we demonstrate that the origin of this magnetic flux is purely extrinsic to the cavity by showing no extra dissipation (unchanged Q 0) after quenching in zero magnetic field, which allows us to rule out intrinsic mechanisms of flux trapping such as generation of thermal currents or trapping of the rf field. We also show the clear relation of dissipation introduced by quenching to the orientation of the applied magnetic field and the possibility tomore » fully recover the quality factor by requenching in the compensated field. We discover that for larger values of the ambient field, the Q-factor degradation may become irreversible by this technique, likely due to the outward flux migration beyond the normal zone opening during quench. Lastly, our findings are of special practical importance for accelerators based on low- and medium-beta accelerating structures residing close to focusing magnets, as well as for all high-Q cavity-based accelerators.« less

  14. Quench-induced degradation of the quality factor in superconducting resonators

    DOE PAGES

    Checchin, M.; Martinello, M.; Romanenko, A.; ...

    2016-04-28

    Quench of superconducting radio-frequency cavities frequently leads to the lowered quality factor Q 0, which had been attributed to the additional trapped magnetic flux. Here we demonstrate that the origin of this magnetic flux is purely extrinsic to the cavity by showing no extra dissipation (unchanged Q 0) after quenching in zero magnetic field, which allows us to rule out intrinsic mechanisms of flux trapping such as generation of thermal currents or trapping of the rf field. We also show the clear relation of dissipation introduced by quenching to the orientation of the applied magnetic field and the possibility tomore » fully recover the quality factor by requenching in the compensated field. We discover that for larger values of the ambient field, the Q-factor degradation may become irreversible by this technique, likely due to the outward flux migration beyond the normal zone opening during quench. Lastly, our findings are of special practical importance for accelerators based on low- and medium-beta accelerating structures residing close to focusing magnets, as well as for all high-Q cavity-based accelerators.« less

  15. Quench-Induced Degradation of the Quality Factor in Superconducting Resonators

    NASA Astrophysics Data System (ADS)

    Checchin, M.; Martinello, M.; Romanenko, A.; Grassellino, A.; Sergatskov, D. A.; Posen, S.; Melnychuk, O.; Zasadzinski, J. F.

    2016-04-01

    Quench of superconducting radio-frequency cavities frequently leads to the lowered quality factor Q0 , which had been attributed to the additional trapped magnetic flux. Here we demonstrate that the origin of this magnetic flux is purely extrinsic to the cavity by showing no extra dissipation (unchanged Q0) after quenching in zero magnetic field, which allows us to rule out intrinsic mechanisms of flux trapping such as generation of thermal currents or trapping of the rf field. We also show the clear relation of dissipation introduced by quenching to the orientation of the applied magnetic field and the possibility to fully recover the quality factor by requenching in the compensated field. We discover that for larger values of the ambient field, the Q -factor degradation may become irreversible by this technique, likely due to the outward flux migration beyond the normal zone opening during quench. Our findings are of special practical importance for accelerators based on low- and medium-β accelerating structures residing close to focusing magnets, as well as for all high-Q cavity-based accelerators.

  16. Physically based DC lifetime model for lead zirconate titanate films

    NASA Astrophysics Data System (ADS)

    Garten, Lauren M.; Hagiwara, Manabu; Ko, Song Won; Trolier-McKinstry, Susan

    2017-09-01

    Accurate lifetime predictions for Pb(Zr0.52Ti0.48)O3 thin films are critical for a number of applications, but current reliability models are not consistent with the resistance degradation mechanisms in lead zirconate titanate. In this work, the reliability and lifetime of chemical solution deposited (CSD) and sputtered Pb(Zr0.52Ti0.48)O3 thin films are characterized using highly accelerated lifetime testing (HALT) and leakage current-voltage (I-V) measurements. Temperature dependent HALT results and impedance spectroscopy show activation energies of approximately 1.2 eV for the CSD films and 0.6 eV for the sputtered films. The voltage dependent HALT results are consistent with previous reports, but do not clearly indicate what causes device failure. To understand more about the underlying physical mechanisms leading to degradation, the I-V data are fit to known conduction mechanisms, with Schottky emission having the best-fit and realistic extracted material parameters. Using the Schottky emission equation as a base, a unique model is developed to predict the lifetime under highly accelerated testing conditions based on the physical mechanisms of degradation.

  17. Visualization of TlBr ionic transport mechanism by the Accelerated Device Degradation technique

    NASA Astrophysics Data System (ADS)

    Datta, Amlan; Becla, Piotr; Motakef, Shariar

    2015-06-01

    Thallium Bromide (TlBr) is a promising gamma radiation semiconductor detector material. However, it is an ionic semiconductor and suffers from polarization. As a result, TlBr devices degrade rapidly at room temperature. Polarization is associated with the flow of ionic current in the crystal under electrical bias, leading to the accumulation of charged ions at the device's electrical contacts. We report a fast and reliable direct characterization technique to identify the effects of various growth and post-growth process modifications on the polarization process. The Accelerated Device Degradation (ADD) characterization technique allows direct observation of nucleation and propagation of ionic transport channels within the TlBr crystals under applied bias. These channels are observed to be initiated both directly under the electrode as well as away from it. The propagation direction is always towards the anode indicating that Br- is the mobile diffusing species within the defect channels. The effective migration energy of the Br- ions was calculated to be 0.33±0.03 eV, which is consistent with other theoretical and experimental results.

  18. Photooxidation of dicarboxylic acids—Part I: Effects of inorganic ions on degradation of azelaic acid

    NASA Astrophysics Data System (ADS)

    Yang, Liming; Ray, Madhumita B.; Yu, Liya E.

    In this paper, the first of a two-part series, effects of chloride, sulfate, and nitrate ions and pH on photooxidation of azelaic acid were investigated in an aqueous system. Nitrate ions play the major role in accelerating photooxidation of azelaic acid by increasing rad OH concentration, while chloride ions consume rad OH concentration and retard photooxidation rates. In inorganic mixtures, a nitrate-to-chloride molar ratio of >1.5 accelerated photooxidation of azelaic acid indicating the dominant role of nitrate. Substantial inhibition effects of chloride on photooxidation of azelaic acid were demonstrated at a nitrate-to-chloride molar ratio <0.3. Nitrate and chloride are interrelated in affecting photooxidation of azelaic acid as photolysis of nitrate would significantly consume H +, retarding reaction of HOCl - with H +, and consequently decreasing rad OH-chloride reaction. pH affects photooxidation of C 2-C 9 dicarboxylic acids (DCAs) in two ways: C 2-C 4 dicarboxylates exhibit substantially higher degradation rates than their parent DCAs, while C 5-C 9 dicarboxylates demonstrate degradation rates similar to their parent DCAs.

  19. Economic development and coastal ecosystem change in China.

    PubMed

    He, Qiang; Bertness, Mark D; Bruno, John F; Li, Bo; Chen, Guoqian; Coverdale, Tyler C; Altieri, Andrew H; Bai, Junhong; Sun, Tao; Pennings, Steven C; Liu, Jianguo; Ehrlich, Paul R; Cui, Baoshan

    2014-08-08

    Despite their value, coastal ecosystems are globally threatened by anthropogenic impacts, yet how these impacts are driven by economic development is not well understood. We compiled a multifaceted dataset to quantify coastal trends and examine the role of economic growth in China's coastal degradation since the 1950s. Although China's coastal population growth did not change following the 1978 economic reforms, its coastal economy increased by orders of magnitude. All 15 coastal human impacts examined increased over time, especially after the reforms. Econometric analysis revealed positive relationships between most impacts and GDP across temporal and spatial scales, often lacking dropping thresholds. These relationships generally held when influences of population growth were addressed by analyzing per capita impacts, and when population density was included as explanatory variables. Historical trends in physical and biotic indicators showed that China's coastal ecosystems changed little or slowly between the 1950s and 1978, but have degraded at accelerated rates since 1978. Thus economic growth has been the cause of accelerating human damage to China's coastal ecosystems. China's GDP per capita remains very low. Without strict conservation efforts, continuing economic growth will further degrade China's coastal ecosystems.

  20. Solar UV Degradation Patterns in Photodegradable Ldpe

    NASA Astrophysics Data System (ADS)

    Andrady, A. L.

    2016-02-01

    "Degradable" polymers have been proposed as an alternative to traditional polymers as a means to potentially reduce the amount and impacts of plastic marine debris, yet the degradation of these materials in seawater is typically unknown. The light-induced degradation of a copolymer of ethylene - carbon monoxide {1%} was studied under accelerated laboratory exposure conditions. The copolymer, used as a substitute for LDPE in some applications where rapid photodegradation is desirable, loses mechanical integrity and embrittles rapidly under outdoor exposure. A laboratory weathering study of these laminates was carried out to compare the kinetics of degradation on sand to those in seawater at ambient temperature, based on the rate of change in tensile properties of the material. Virgin resin pellets of the copolymer were also exposed to laboratory weathering to detect the generation of microparticles at their surface during extensive degradation. Microparticle generation, detected by laser light scattering, as a function of the exposure duration will also be discussed.

  1. Mechanistic insights into lithium ion battery electrolyte degradation - a quantitative NMR study.

    PubMed

    Wiemers-Meyer, S; Winter, M; Nowak, S

    2016-09-29

    The changes in electrolyte composition on the molecular level and the reaction mechanisms of electrolyte degradation upon thermal aging are monitored by quantitative NMR spectroscopy, revealing similar rates of degradation for pristine and already aged electrolytes. The data analysis is not in favor of an autocatalytic reaction mechanism based on OPF 3 but rather indicates that the degradation of LiPF 6 in carbonate based solvents proceeds via a complex sequence of "linear" reactions rather than a cyclic reaction pattern which is determined by the amount of water present in the samples. All investigated electrolytes are reasonably stable at temperatures of up to 60 °C in the presence of minor amounts or absence of water hence indicating that chemical instability of electrolyte components against water is decisive for degradation and an increase in temperature ("thermal aging") just accelerates the degradation impact of water.

  2. Effect of inoculation with white-rot fungi and fungal consortium on the composting efficiency of municipal solid waste.

    PubMed

    Voběrková, Stanislava; Vaverková, Magdalena D; Burešová, Alena; Adamcová, Dana; Vršanská, Martina; Kynický, Jindřich; Brtnický, Martin; Adam, Vojtěch

    2017-03-01

    An investigation was carried out on the effect of inoculation methods on the compost of an organic fraction of municipal solid waste. Three types of white-rot fungi (Phanerochaete chrysosporium, Trametes versicolor and Fomes fomentarius), and a consortium of these fungi, were used. The study assessed their influence on microbial enzymatic activities and the quality of the finished compost. It was found that the addition of white-rot fungi to municipal solid waste (after 37days of composting) could be a useful strategy for enhancing the properties of the final compost product. In comparison with the control sample (compost without inoculation), it accelerates degradation of solid waste as indicated by changes in C/N, electrical conductivity and pH. However, the effectiveness of waste degradation and compost maturation depends on the type of microorganism used for inoculation. The presence of inoculants, such as Trametes versicolor and Fomes fomentarius, led to a higher degrading ratio and a better degree of maturity. This resulted in an increase of enzymatic activities (especially dehydrogenase and protease) and a germination index in comparison with inoculation using Phanerochaete chrysosporium or a consortium of fungi. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Accelerated stress testing of terrestrial solar cells

    NASA Technical Reports Server (NTRS)

    Prince, J. L.; Lathrop, J. W.

    1979-01-01

    A program to investigate the reliability characteristics of unencapsulated low-cost terrestrial solar cells using accelerated stress testing is described. Reliability (or parametric degradation) factors appropriate to the cell technologies and use conditions were studied and a series of accelerated stress tests was synthesized. An electrical measurement procedure and a data analysis and management system was derived, and stress test fixturing and material flow procedures were set up after consideration was given to the number of cells to be stress tested and measured and the nature of the information to be obtained from the process. Selected results and conclusions are presented.

  4. An accelerated test design for use with synchronous orbit. [on Ni-Cd cell degradation behavior

    NASA Technical Reports Server (NTRS)

    Mcdermott, P. P.; Vasanth, K. L.

    1980-01-01

    The Naval Weapons Support Center at Crane, Indiana has conducted a large scale accelerated test of 6.0 Ah Ni-Cd cells. Data from the Crane test have been used to develop an equation for the description of Ni-Cd cell behavior in geosynchronous orbit. This equation relates the anticipated time to failure for a cell in synchronous orbit to temperature and overcharge rate sustained by the cell during the light period. A test design is suggested which uses this equation for setting test parameters for future accelerated testing.

  5. Rapid degradation of 2,4-dichlorophenoxyacetic acid facilitated by acetate under methanogenic condition.

    PubMed

    Yang, Zhiman; Xu, Xiaohui; Dai, Meng; Wang, Lin; Shi, Xiaoshuang; Guo, Rongbo

    2017-05-01

    Acetate can be used as an electron donor to stimulate 2,4-dichlorophenoxyacetic acid (2,4-D), which has not been determined under methanogenic condition. This study applied high-throughput sequencing and methanogenic inhibition approaches to investigate the 2,4-D degradation process using the enrichments obtained from paddy soil. Acetate addition significantly promoted 2,4-D degradation, which was 5-fold higher than in the acetate-unsupplemented enrichments in terms of the 2,4-D degradation rate constant. Dechloromonas and Pseudomonas were the dominant 2,4-D degraders. Methanogenic inhibition experiments indicated that the 2,4-D degradation was independent of methanogenesis. It was proposed that the accelerated 2,4-D degradation in the acetate-supplemented enrichment involved an unusual interaction, where members of the acetate oxidizers primarily oxidized acetate and produced H 2 . H 2 was utilized by the 2,4-D degraders to degrade 2,4-D, but also partially consumed by the hydrogenotrophic methanogens to produce methane. The findings presented here provide a new strategy for the remediation of 2,4-D-polluted soils. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Early experience in using and 18 Me V linear accelerator for mycosis fungoides at Howard University Hospital.

    PubMed

    Kumar, P P; Henschke, K; Mandal, K P; Nibhanupudy, J R; Patel, I S

    1977-04-01

    This paper describes the problems and solutions in using 18 MeV linear accelerator, with minimum 6 MeV electron capability, for total skin irradiation for mycosis fungoides. The 6 MeV electron energy can be degraded to acceptable electron energy of 3.2 MeV by interposing a plexiglass sheet of 9.6 mm in the beam. To minimize the bremsstrahlung, the degrading plexiglass should be kept away from the machine head. A wide area with uniform dose distribution over single plane can be achieved by using dual fields but homogenous dose distribution over irregular body surface cannot be achieved mainly because of self-shielding. The nails and the ocular lens can be easily shielded from the low energy electrons with 1.5 mm lead shield.

  7. A review of proton exchange membrane water electrolysis on degradation mechanisms and mitigation strategies

    NASA Astrophysics Data System (ADS)

    Feng, Qi; Yuan, Xiao-Zi; Liu, Gaoyang; Wei, Bing; Zhang, Zhen; Li, Hui; Wang, Haijiang

    2017-10-01

    Proton exchange membrane water electrolysis (PEMWE) is an advanced and effective solution to the primary energy storage technologies. A better understanding of performance and durability of PEMWE is critical for the engineers and researchers to further advance this technology for its market penetration, and for the manufacturers of PEM water electrolyzers to implement quality control procedures for the production line or on-site process monitoring/diagnosis. This paper reviews the published works on performance degradations and mitigation strategies for PEMWE. Sources of degradation for individual components are introduced. With degradation causes discussed and degradation mechanisms examined, the review emphasizes on feasible strategies to mitigate the components degradation. To avoid lengthy real lifetime degradation tests and their high costs, the importance of accelerated stress tests and protocols is highlighted for various components. In the end, R&D directions are proposed to move the PEMWE technology forward to become a key element in future energy scenarios.

  8. Isolation of bisphenol A-tolerant/degrading Pseudomonas monteilii strain N-502.

    PubMed

    Masuda, Midori; Yamasaki, Yoshiki; Ueno, Shun; Inoue, Akira

    2007-03-01

    Bisphenol A (BPA) is a highly biotoxic compound that kills many microorganisms at a low concentration (1,000 ppm). We isolated BPA-tolerant/degrading Pseudomonas monteilii strain N-502 from about 1,000 samples collected from a field, sewage, and pond water. The isolated strain had strong BPA tolerance and high BPA-degrading activity. This strain was able to grow in a minimum medium containing BPA as the sole carbon source. Strain N-502 is an aerobic, motile, gram-negative, nonspore-forming, rod-shaped bacterium and was identified as P. monteilii, based on 16 S rRNA gene analysis. Strain N-502 completely degraded BPA 500 ppm in a 10-day, in culture system and was able to degrade BPA 100 ppm in a 2-h resting cell system. This strain also showed potent ability to degrade BPA 500 and 1,000 ppm in the resting cell system. Moreover, the initial BPA degradation rate was accelerated with the addition of Ca(2+), Mg(2+), and folic acid.

  9. Endoplasmic reticulum stress contributes to acetylcholine receptor degradation by promoting endocytosis in skeletal muscle cells.

    PubMed

    Du, Ailian; Huang, Shiqian; Zhao, Xiaonan; Zhang, Yun; Zhu, Lixun; Ding, Ji; Xu, Congfeng

    2016-01-15

    After binding by acetylcholine released from a motor neuron, a nicotinic acetylcholine receptor at the neuromuscular junction produces a localized end-plate potential, which leads to muscle contraction. Improper turnover and renewal of acetylcholine receptors contributes to the pathogenesis of myasthenia gravis. In the present study, we demonstrate that endoplasmic reticulum (ER) stress contributes to acetylcholine receptor degradation in C2C12 myocytes. We further show that ER stress promotes acetylcholine receptor endocytosis and lysosomal degradation, which was dampened by blocking endocytosis or treating with lysosome inhibitor. Knockdown of ER stress proteins inhibited acetylcholine receptor endocytosis and degradation, while rescue assay restored its endocytosis and degradation, confirming the effects of ER stress on promoting endocytosis-mediated degradation of junction acetylcholine receptors. Thus, our studies identify ER stress as a factor promoting acetylcholine receptor degradation through accelerating endocytosis in muscle cells. Blocking ER stress and/or endocytosis might provide a novel therapeutic approach for myasthenia gravis. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Investigating the Photocatalytic Degradation of Oil Paint using ATR-IR and AFM-IR.

    PubMed

    Morsch, Suzanne; van Driel, Birgit A; van den Berg, Klaas Jan; Dik, Joris

    2017-03-22

    As linseed oil has a longstanding and continuing history of use as a binder in artistic paints, developing an understanding of its degradation mechanism is critical to conservation efforts. At present, little can be done to detect the early stages of oil paint deterioration due to the complex chemical composition of degrading paints. In this work, we use advanced infrared analysis techniques to investigate the UV-induced deterioration of model linseed oil paints in detail. Subdiffraction limit infrared analysis (AFM-IR) is applied to identify and map accelerated degradation in the presence of two different grades of titanium white pigment particles (rutile or anatase TiO 2 ). Differentiation between the degradation of these two formulations demonstrates the sensitivity of this approach. The identification of characteristic peaks and transient species residing at the paint surface allows infrared absorbance peaks related to degradation deeper in the film to be extricated from conventional ATR-FTIR spectra, potentially opening up a new approach to degradation monitoring.

  11. Status of peatland degradation and development in Sumatra and Kalimantan.

    PubMed

    Miettinen, Jukka; Liew, Soo Chin

    2010-01-01

    Peatlands cover around 13 Mha in Sumatra and Kalimantan, Indonesia. Human activities have rapidly increased in the peatland ecosystems during the last two decades, invariably degrading them and making them vulnerable to fires. This causes high carbon emissions that contribute to global climate change. For this article, we used 94 high resolution (10-20 m) satellite images to map the status of peatland degradation and development in Sumatra and Kalimantan using visual image interpretation. The results reveal that less than 4% of the peatland areas remain covered by pristine peatswamp forests (PSFs), while 37% are covered by PSFs with varying degree of degradation. Furthermore, over 20% is considered to be unmanaged degraded landscape, occupied by ferns, shrubs and secondary growth. This alarming extent of degradation makes peatlands vulnerable to accelerated peat decomposition and catastrophic fire episodes that will have global consequences. With on-going degradation and development the existence of the entire tropical peatland ecosystem in this region is in great danger.

  12. Development and validation of an LC-UV method for the quantification and purity determination of the novel anticancer agent C1311 and its pharmaceutical dosage form.

    PubMed

    den Brok, Monique W J; Nuijen, Bastiaan; Hillebrand, Michel J X; Grieshaber, Charles K; Harvey, Michael D; Beijnen, Jos H

    2005-09-01

    C1311 (5-[[2-(diethylamino)ethyl]amino]-8-hydroxyimidazo [4,5,1-de]-acridin-6-one-dihydrochloride trihydrate) is the lead compound from the group of imidazoacridinones, a novel group of rationally designed anticancer agents. The pharmaceutical development of C1311 necessitated the availability of an assay for the quantification and purity determination of C1311 active pharmaceutical ingredient (API) and its pharmaceutical dosage form. A reversed-phase liquid chromatographic method (RP-LC) with ultraviolet (UV) detection was developed, consisting of separation on a C18 column with phosphate buffer (60 mM; pH 3 with 1 M citric acid)-acetonitrile-triethylamine (83:17:0.05, v/v/v) as the mobile phase and UV-detection at 280 nm. The method was found to be linear over a concentration range of 2.50-100 microg/mL, precise and accurate. Accelerated stress testing showed degradation products, which were well separated from the parent compound, confirming its stability-indicating capacity. Moreover, the use of LC-MS and on-line photo diode array detection enabled us to propose structures for four degradation products. Two of these products were also found as impurities in the API and more abundantly in an impure lot of API.

  13. Abiotic and Biotic Degradation of Oxo-Biodegradable Plastic Bags by Pleurotus ostreatus

    PubMed Central

    da Luz, José Maria Rodrigues; Paes, Sirlaine Albino; Bazzolli, Denise Mara Soares; Tótola, Marcos Rogério; Demuner, Antônio Jacinto; Kasuya, Maria Catarina Megumi

    2014-01-01

    In this study, we evaluated the growth of Pleurotus ostreatus PLO6 using oxo-biodegradable plastics as a carbon and energy source. Oxo-biodegradable polymers contain pro-oxidants that accelerate their physical and biological degradation. These polymers were developed to decrease the accumulation of plastic waste in landfills. To study the degradation of the plastic polymers, oxo-biodegradable plastic bags were exposed to sunlight for up to 120 days, and fragments of these bags were used as substrates for P. ostreatus. We observed that physical treatment alone was not sufficient to initiate degradation. Instead, mechanical modifications and reduced titanium oxide (TiO2) concentrations caused by sunlight exposure triggered microbial degradation. The low specificity of lignocellulolytic enzymes and presence of endomycotic nitrogen-fixing microorganisms were also contributing factors in this process. PMID:25419675

  14. Accelerated Aging with Electrical Overstress and Prognostics for Power MOSFETs

    NASA Technical Reports Server (NTRS)

    Saha, Sankalita; Celaya, Jose Ramon; Vashchenko, Vladislav; Mahiuddin, Shompa; Goebel, Kai F.

    2011-01-01

    Power electronics play an increasingly important role in energy applications as part of their power converter circuits. Understanding the behavior of these devices, especially their failure modes as they age with nominal usage or sudden fault development is critical in ensuring efficiency. In this paper, a prognostics based health management of power MOSFETs undergoing accelerated aging through electrical overstress at the gate area is presented. Details of the accelerated aging methodology, modeling of the degradation process of the device and prognostics algorithm for prediction of the future state of health of the device are presented. Experiments with multiple devices demonstrate the performance of the model and the prognostics algorithm as well as the scope of application. Index Terms Power MOSFET, accelerated aging, prognostics

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Forno, Massimo Dal; Department of Engineering and Architecture, University of Trieste, Trieste; Craievich, Paolo

    The front-end injection systems of the FERMI@Elettra linac produce high brightness electron beams that define the performance of the Free Electron Laser. The photoinjector mainly consists of the radiofrequency (rf) gun and of two S-band rf structures which accelerate the beam. Accelerating structures endowed with a single feed coupler cause deflection and degradation of the electron beam properties, due to the asymmetry of the electromagnetic field. In this paper, a new type of single feed structure with movable short-circuit is proposed. It has the advantage of having only one waveguide input, but we propose a novel design where the dipolarmore » component is reduced. Moreover, the racetrack geometry allows to reduce the quadrupolar component. This paper presents the microwave design and the analysis of the particle motion inside the linac. A prototype has been machined at the Elettra facility to verify the new coupler design and the rf field has been measured by adopting the bead-pull method. The results are here presented, showing good agreement with the expectations.« less

  16. Hardware Acceleration of Adaptive Neural Algorithms.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    James, Conrad D.

    As tradit ional numerical computing has faced challenges, researchers have turned towards alternative computing approaches to reduce power - per - computation metrics and improve algorithm performance. Here, we describe an approach towards non - conventional computing that strengthens the connection between machine learning and neuroscience concepts. The Hardware Acceleration of Adaptive Neural Algorithms (HAANA) project ha s develop ed neural machine learning algorithms and hardware for applications in image processing and cybersecurity. While machine learning methods are effective at extracting relevant features from many types of data, the effectiveness of these algorithms degrades when subjected to real - worldmore » conditions. Our team has generated novel neural - inspired approa ches to improve the resiliency and adaptability of machine learning algorithms. In addition, we have also designed and fabricated hardware architectures and microelectronic devices specifically tuned towards the training and inference operations of neural - inspired algorithms. Finally, our multi - scale simulation framework allows us to assess the impact of microelectronic device properties on algorithm performance.« less

  17. Comparison of different advanced degradation processes for the removal of the pharmaceutical compounds diclofenac and carbamazepine from liquid solutions.

    PubMed

    Capodaglio, Andrea G; Bojanowska-Czajka, Anna; Trojanowicz, Marek

    2018-04-18

    Carbamazepine and diclofenac are two examples of drugs with widespread geographical and environmental media proliferation that are poorly removed by traditional wastewater treatment processes. Advanced oxidation processes (AOPs) have been proposed as alternative methods to remove these compounds in solution. AOPs are based on a wide class of powerful technologies, including UV radiation, ozone, hydrogen peroxide, Fenton process, catalytic wet peroxide oxidation, heterogeneous photocatalysis, electrochemical oxidation and their combinations, sonolysis, and microwaves applicable to both water and wastewater. Moreover, processes rely on the production of oxidizing radicals (•OH and others) in a solution to decompose present pollutants. Water radiolysis-based processes, which are an alternative to the former, involve the use of concentrated energy (beams of accelerated electrons or γ-rays) to split water molecules, generating strong oxidants and reductants (radicals) at the same time. In this paper, the degradation of carbamazepine and diclofenac by means of all these processes is discussed and compared. Energy and byproduct generation issues are also addressed.

  18. Domestication and Breeding of Jatropha curcas L.

    PubMed

    Montes, Juan M; Melchinger, Albrecht E

    2016-12-01

    Jatropha curcas L. (jatropha) has a high, untapped potential to contribute towards sustainable production of food and bioenergy, rehabilitation of degraded land, and reduction of atmospheric carbon dioxide. Tremendous progress in jatropha domestication and breeding has been achieved during the past decade. This review: (i) summarizes current knowledge about the domestication and breeding of jatropha; (ii) identifies and prioritizes areas for further research; and (iii) proposes strategies to exploit the full genetic potential of this plant species. Altogether, the outlook is promising for accelerating the domestication of jatropha by applying modern scientific methods and novel technologies developed in plant breeding. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Effects of clay minerals on diethyl phthalate degradation in Fenton reactions.

    PubMed

    Chen, Ning; Fang, Guodong; Zhou, Dongmei; Gao, Juan

    2016-12-01

    Phthalate esters are a group of plasticizers, which are commonly detected in China's soils and surface water. Fenton reactions are naturally occurring and widely applied in the degradation of contaminants. However, limited research was considered the effects of clay minerals on contaminants degradation with OH oxidation. In this study, batch experiments were conducted to investigate the degradation of diethyl phthalate (DEP) in Fenton reactions in the presence of clay minerals, and the effects of clay type, Fe content in clay structure. The results showed the clay adsorption inhibited total degradation of DEP, and Fe content in clay structure played an important role in DEP degradation, including in solution and adsorbed in clay minerals. Clay minerals with less Fe content (<3%) quenched OH radical, while nontronite with Fe content 19.2% improved OH radical generation and accelerated DEP degradation in solution. The degradation of clay-adsorbed DEP was much slower than DEP in solution. Six main products of DEP degradation were identified, including monoethyl phthalate, phthalate acid, hydroxyl diethyl phthalate, etc. This study implied that phthalate ester's degradation would be much slower in natural water than expected in the presence of clay minerals. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Neuronal-Targeted TFEB Accelerates Lysosomal Degradation of APP, Reducing Aβ Generation and Amyloid Plaque Pathogenesis

    PubMed Central

    Xiao, Qingli; Yan, Ping; Ma, Xiucui; Liu, Haiyan; Perez, Ronaldo; Zhu, Alec; Gonzales, Ernesto; Tripoli, Danielle L.; Czerniewski, Leah; Ballabio, Andrea; Cirrito, John R.

    2015-01-01

    In AD, an imbalance between Aβ production and removal drives elevated brain Aβ levels and eventual amyloid plaque deposition. APP undergoes nonamyloidogenic processing via α-cleavage at the plasma membrane, amyloidogenic β- and γ-cleavage within endosomes to generate Aβ, or lysosomal degradation in neurons. Considering multiple reports implicating impaired lysosome function as a driver of increased amyloidogenic processing of APP, we explored the efficacy of targeting transcription factor EB (TFEB), a master regulator of lysosomal pathways, to reduce Aβ levels. CMV promoter-driven TFEB, transduced via stereotactic hippocampal injections of adeno-associated virus particles in APP/PS1 mice, localized primarily to neuronal nuclei and upregulated lysosome biogenesis. This resulted in reduction of APP protein, the α and β C-terminal APP fragments (CTFs), and in the steady-state Aβ levels in the brain interstitial fluid. In aged mice, total Aβ levels and amyloid plaque load were selectively reduced in the TFEB-transduced hippocampi. TFEB transfection in N2a cells stably expressing APP695, stimulated lysosome biogenesis, reduced steady-state levels of APP and α- and β-CTFs, and attenuated Aβ generation by accelerating flux through the endosome-lysosome pathway. Cycloheximide chase assays revealed a shortening of APP half-life with exogenous TFEB expression, which was prevented by concomitant inhibition of lysosomal acidification. These data indicate that TFEB enhances flux through lysosomal degradative pathways to induce APP degradation and reduce Aβ generation. Activation of TFEB in neurons is an effective strategy to attenuate Aβ generation and attenuate amyloid plaque deposition in AD. SIGNIFICANCE STATEMENT A key driver for AD pathogenesis is the net balance between production and clearance of Aβ, the major component of amyloid plaques. Here we demonstrate that lysosomal degradation of holo-APP influences Aβ production by limiting the availability of APP for amyloidogenic processing. Using viral gene transfer of transcription factor EB (TFEB), a master regulator of lysosome biogenesis in neurons of APP/PS1 mice, steady-state levels of APP were reduced, resulting in decreased interstitial fluid Aβ levels and attenuated amyloid deposits. These effects were caused by accelerated lysosomal degradation of endocytosed APP, reflected by reduced APP half-life and steady-state levels in TFEB-expressing cells, with resultant decrease in Aβ production and release. Additional studies are needed to explore the therapeutic potential of this approach. PMID:26338325

  1. PV Degradation Curves: Non-Linearities and Failure Modes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jordan, Dirk C.; Silverman, Timothy J.; Sekulic, Bill

    Photovoltaic (PV) reliability and durability have seen increased interest in recent years. Historically, and as a preliminarily reasonable approximation, linear degradation rates have been used to quantify long-term module and system performance. The underlying assumption of linearity can be violated at the beginning of the life, as has been well documented, especially for thin-film technology. Additionally, non-linearities in the wear-out phase can have significant economic impact and appear to be linked to different failure modes. In addition, associating specific degradation and failure modes with specific time series behavior will aid in duplicating these degradation modes in accelerated tests and, eventually,more » in service life prediction. In this paper, we discuss different degradation modes and how some of these may cause approximately linear degradation within the measurement uncertainty (e.g., modules that were mainly affected by encapsulant discoloration) while other degradation modes lead to distinctly non-linear degradation (e.g., hot spots caused by cracked cells or solder bond failures and corrosion). The various behaviors are summarized with the goal of aiding in predictions of what may be seen in other systems.« less

  2. Biodegradation of 2,4,6-trinitrophenol by Rhodococcus sp. isolated from a picric acid-contaminated soil.

    PubMed

    Shen, Jinyou; Zhang, Jianfa; Zuo, Yi; Wang, Lianjun; Sun, Xiuyun; Li, Jiansheng; Han, Weiqing; He, Rui

    2009-04-30

    A picric acid-degrading bacterium, strain NJUST16, was isolated from a soil contaminated by picric acid and identified as a member of Rhodococcus sp. based on 16S rRNA sequence. The degradation assays suggested that the strain NJUST16 could utilize picric acid as the sole source of carbon, nitrogen and energy. The isolate grew optimally at 30 degrees C and initial pH 7.0-7.5 in the mineral salts medium supplemented with picric acid. It was basically consistent with degradation of picric acid by the isolate. Addition of nitrogen sources such as yeast extract and peptone accelerated the degradation of picric acid. However, the stimulation was concentration dependent. The degradation was accompanied by release of stoichiometric amount of nitrite and acidification. The degradation of picric acid at relatively high concentrations (>3.93 mM) demonstrated that the degradation was both pH and nitrite dependent. Neutral and slightly basic pH was crucial to achieve high concentrations of picric acid degradation by the NJUST16 strain.

  3. Accelerated Stability Testing of a Clobetasol Propionate-Loaded Nanoemulsion as per ICH Guidelines.

    PubMed

    Ali, Mohammad Sajid; Alam, Mohammad Sarfaraz; Alam, Nawazish; Anwer, Tarique; Safhi, Mohammed Mohsen A

    2013-01-01

    The physical and chemical degradation of drugs may result in altered therapeutic efficacy and even toxic effects. Therefore, the objective of this work was to study the stability of clobetasol propionate (CP) in a nanoemulsion. The nanoemulsion formulation containing CP was prepared by the spontaneous emulsification method. For the formulation of the nanoemulsion, Safsol, Tween 20, ethanol, and distilled water were used. The drug was incorporated into an oil phase in 0.05% w/v. The lipophilic nature of the drug led to the O/W nanoemulsion formulation. This was characterized by droplet size, pH, viscosity, conductivity, and refractive index. Stability studies were performed as per ICH guidelines for a period of three months. The shelf life of the nanoemulsion formulation was also determined after performing accelerated stability testing (40°C ± 2°C and 75% ± 5% RH). We also performed an intermediate stability study (30°C ± 2°C/65% RH ± 5% RH). It was found that the droplet size, conductivity, and refractive index were slightly increased, while the viscosity and pH slightly decreased at all storage conditions during the 3-month period. However, the changes in these parameters were not statistically significant (p≥0.05). The degradation (%) of the optimized nanoemulsion of CP was determined and the shelf life was found to be 2.18 years at room temperature. These studies confirmed that the physical and chemical stability of CP were enhanced in the nanoemulsion formulation.

  4. Deceleration of Antiprotons in Support of Antiproton Storage/Utilization Research

    NASA Astrophysics Data System (ADS)

    Howe, Steven D.; Jackson, Gerald P.; Pearson, J. Boise; Lewis, Raymond A.

    2005-02-01

    Antimatter has the highest energy density known to mankind. Many concepts have been studied that use antimatter for propulsion. All of these concepts require the development of high density storage. Hbar Technologies, under contract with the NASA Marshall Space Flight Center, has undertaken the first step toward development of high density storage. Demonstration of the ability to store antiprotons in a Penning Trap provides the technology to pursue research in alternative storage methods that may lead to eventually to high density concepts. Hbar Technologies has undertaken research activity on the detailed design and operations required to decelerate and redirect the Fermi National Accelerator Laboratory (FNAL) antiproton beam to lay the groundwork for a source of low energy antiprotons. We have performed a detailed assessment of an antiproton deceleration scheme using the FNAL Main Injector, outlining the requirements to significantly and efficiently lower the energy of antiprotons. This task shall require a combination of: theoretical/computation simulations, development of specialized accelerator controls programming, modification of specific Main Injector hardware, and experimental testing of the modified system. Testing shall be performed to characterize the system with a goal of reducing the beam momentum from 8.9 GeV/c to a level of 1 GeV/c or less. We have designed an antiproton degrader system that will integrate with the FNAL decelerated/transferred beam. The degrader shall be designed to maximize the number of low energy antiprotons with a beam spot sized for acceptance by the Mark I test hardware.

  5. Degradation of the UV-filter benzophenone-3 in aqueous solution using persulfate activated by heat, metal ions and light.

    PubMed

    Pan, Xiaoxue; Yan, Liqing; Qu, Ruijuan; Wang, Zunyao

    2018-04-01

    The goals of this study were to bring forward new data and insights into the effect of activation methods, operational variables and reaction pathways during sulfate radicals-based oxidation of benzophenone-3 (BP-3) in aqueous solution. Heat, transition metal ions (Fe 2+ , Cu 2+ , Co 2+ ), UV and visible light irradiation were used to activate persulfate (PS) to degrade BP-3. The results showed that these three activation methods can remarkably enhance BP-3 removal efficiency. Under the conditions of [BP-3] 0 : [PS] 0  = 1: 500, pH = 7.0, and 40 °C, complete removal of BP-3 (1.31 μM) was observed in 3 h. In the pH range of 3.0-9.0, the degradation of BP-3 decreased with increasing pH. Increasing the PS dosage accelerated the reaction, while the presence of humic acid (HA) significantly inhibited the efficiency of BP-3 removal. Based on electron paramagnetic resonance (EPR) and radical quenching studies, sulfate and hydroxyl radicals contributed to the oxidation process. According to the evolution of BP-3 and its 7 by-products, as well as frontier electron densities (FED) calculation, two routes were proposed involving hydroxylation, demethylation and direct oxidation. On the whole, this work is a unique contribution to the systematic elucidation of BP-3 removal by PS. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Stress and the Hair Growth Cycle: Cortisol-Induced Hair Growth Disruption.

    PubMed

    Thom, Erling

    2016-08-01

    The stress hormone, cortisol, is known to affect the function and cyclic regulation of the hair follicle. When cortisol is present at high levels it has been demonstrated to reduce the synthesis and accelerate the degradation of important skin elements, namely hyaluronan and proteoglycans by approximately 40%. The following discussion outlines the relationship between stress, cortisol, and the effect on the normal function of the hair follicle. As a result of this connection, important correlations have been established in the literature to form a basis for novel, effective treatments of stress-related hair growth disorders.
    Amongst various treatment methods and substances, oral supplementation with a specific bioavailable proteoglycan stands out as a promising new therapeutic treatment method.

    J Drugs Dermatol. 2016;15(8):1001-1004.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jalas, S.; Dornmair, I.; Lehe, R.

    Particle in Cell (PIC) simulations are a widely used tool for the investigation of both laser- and beam-driven plasma acceleration. It is a known issue that the beam quality can be artificially degraded by numerical Cherenkov radiation (NCR) resulting primarily from an incorrectly modeled dispersion relation. Pseudo-spectral solvers featuring infinite order stencils can strongly reduce NCR - or even suppress it - and are therefore well suited to correctly model the beam properties. For efficient parallelization of the PIC algorithm, however, localized solvers are inevitable. Arbitrary order pseudo-spectral methods provide this needed locality. Yet, these methods can again be pronemore » to NCR. Here in this paper, we show that acceptably low solver orders are sufficient to correctly model the physics of interest, while allowing for parallel computation by domain decomposition.« less

  8. Sub-aperture switching based ptychographic iterative engine (sasPIE) method for quantitative imaging

    NASA Astrophysics Data System (ADS)

    Sun, Aihui; Kong, Yan; Jiang, Zhilong; Yu, Wei; Liu, Fei; Xue, Liang; Wang, Shouyu; Liu, Cheng

    2018-03-01

    Though ptychographic iterative engine (PIE) has been widely adopted in the quantitative micro-imaging with various illuminations as visible light, X-ray and electron beam, the mechanical inaccuracy in the raster scanning of the sample relative to the illumination always degrades the reconstruction quality seriously and makes the resolution reached much lower than that determined by the numerical aperture of the optical system. To overcome this disadvantage, the sub-aperture switching based PIE method is proposed: the mechanical scanning in the common PIE is replaced by the sub-aperture switching, and the reconstruction error related to the positioning inaccuracy is completely avoided. The proposed technique remarkably improves the reconstruction quality, reduces the complexity of the experimental setup and fundamentally accelerates the data acquisition and reconstruction.

  9. Experimental characterization of magnetic materials for the magnetic shielding of cryomodules in particle accelerators

    DOE PAGES

    Sah, Sanjay; Myneni, Ganapati; Atulasimha, Jayasimha

    2015-10-26

    The magnetic properties of two important passive magnetic shielding materials (A4K and Amumetal) for accelerator applications, subjected to various processing and heat treatment conditions are studied comprehensively over a wide range of temperatures: from cryogenic to room temperature. Furthermore, we analyze the effect of processing on the extent of degradation of the magnetic properties of both materials and investigate the possibility of restoring these properties by re-annealing.

  10. Catalytic photodegradation of pharmaceuticals - homogeneous and heterogeneous photocatalysis.

    PubMed

    Klementova, S; Kahoun, D; Doubkova, L; Frejlachova, K; Dusakova, M; Zlamal, M

    2017-01-18

    Photocatalytic degradation of pharmaceuticals (hydrocortisone, estradiol, and verapamil) and personal care product additives (parabens-methyl, ethyl, and propyl derivatives) was investigated in the homogeneous phase (with ferric ions as the catalyst) and on TiO 2 . Ferric ions in concentrations corresponding to concentrations in natural water bodies were shown to be a significant accelerator of the degradation in homogeneous reaction mixtures. In heterogeneous photocatalytic reactions on TiO 2 , lower reaction rates, but mineralisation to higher extents, were observed.

  11. Influence of bacteria on degradation of bioplastics

    NASA Astrophysics Data System (ADS)

    Blinková, M.; Boturová, K.

    2017-10-01

    The degradation rate of bioplastic in soil is closely related to the diversity of soil microbiota. To investigate the effect of soil bacterial on biodegradation, 4 bacterial strains of soil - Pseudomonas chlororaphis, Kocuria rosea, Cupriavidus necator and Bacillus cereus, were used to accelerate the decomposition of bioplastics manufactured from Polylactid acid (PLA) by direct action during 250 days. The best results were obtained with bacterial strains Cupriavidus necator and Pseudomonas chlororaphis that were isolated of lagoons with anthropogenic sediments.

  12. KRIBB11 accelerates Mcl-1 degradation through an HSF1-independent, Mule-dependent pathway in A549 non-small cell lung cancer cells.

    PubMed

    Kang, Min-Jung; Yun, Hye Hyeon; Lee, Jeong-Hwa

    2017-10-21

    The Bcl-2 family protein, Mcl-1 is known to have anti-apoptotic functions, and depletion of Mcl-1 by cellular stresses favors the apoptotic process. Moreover, Mcl-1 levels are frequently increased in various cancer cells, including non-small cell lung cancer (NSCLC), and is implicated in resistance to conventional chemotherapy and in cancer metastasis. In this study, we demonstrated that KRIBB11 accelerates the proteasomal degradation of Mcl-1 in the NSCLC cell line, A549. While KRIBB11 is an inhibitor of HSF1, we found that KRIBB11 induced Mcl-1 degradation in an HSF1-independent manner. Furthermore, this process was triggered via increase ubiquitination by the E3 ligase, Mule, rather than via de-ubiquitination by USP9X. Additionally, we found that Mcl-1 levels were only transiently reduced by KRIBB11: Mcl-1 levels were gradually restored as KRIBB11 activity diminished. However, we found that this effect was blocked in BIS (Bcl-2 interacting cell death suppressor, also called BAG3)-depleted cells, and that BIS prevents Mcl-1 from undergoing HSP70-driven proteasomal degradation, through an interaction with HSP70. Taken together, our results suggest that targeting Mcl-1 with KRIBB11 treatment, while simultaneously downregulating BIS, could be a therapeutic strategy in NSCLC. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Formation of brown lines in paper: characterization of cellulose degradation at the wet-dry interface.

    PubMed

    Souguir, Zied; Dupont, Anne-Laurence; de la Rie, E René

    2008-09-01

    Brown lines were generated at the wet-dry interface on Whatman paper No. 1 by suspending the sheet vertically in deionized water. Formic acid and acetic acid were quantified in three areas of the paper defined by the wet-dry boundary (above, below, and at the tideline) using capillary zone electrophoresis with indirect UV detection. Their concentration increased upon accelerated aging of the paper and was highest in the tideline. The hydroperoxides have been quantified using reverse phase high performance liquid chromatography with UV detection based on the determination of triphenylphosphine oxide produced from the reaction with triphenylphosphine, and their highest concentration was found in the tideline as well. For the first time, it was shown that various types of hydroperoxides were present, water-soluble and non-water-soluble, most probably in part hydroperoxide functionalized cellulose. After accelerated aging, a significant increase in hydroperoxide concentration was found in all the paper areas. The molar masses of cellulose determined using size-exclusion chromatography with multiangle light scattering detection showed that, upon aging, cellulose degraded significantly more in the tideline area than in the other areas of the paper. The area below the tideline was more degraded than the area above. A kinetic study of the degradation of cellulose allowed determining the constants for glycosidic bond breaking in each of the areas of the paper.

  14. Accelerated laboratory weathering of acrylic lens materials

    NASA Astrophysics Data System (ADS)

    Arndt, Thomas; Richter, Steffen; Kogler, René; Pasierb, Mike; Walby, Christopher

    2015-09-01

    Flat samples from various poly(methyl methacrylate) (PMMA) formulations were subjected to outdoor weathering in Arizona and Florida, EMMAQUA® accelerated outdoor weathering, and two accelerated laboratory weathering procedures at 3 Sun irradiance which, imitate dry (Arizona) and wet (Florida) conditions. The main mode of degradation is yellowing and not the generation of haze for any weathering procedure within the investigated radiant exposure. Higher UV absorber concentrations lead to smaller changes in optical properties and in the resulting relative concentrator photovoltaic (CPV) module efficiencies. Comparison of sample properties after various weathering procedures reveals that the influence of weathering factors other than radiant exposure depends on the sample as well.

  15. The Effect of Sericin from Various Extraction Methods on Cell Viability and Collagen Production

    PubMed Central

    Aramwit, Pornanong; Kanokpanont, Sorada; Nakpheng, Titpawan; Srichana, Teerapol

    2010-01-01

    Silk sericin (SS) can accelerate cell proliferation and attachment; however, SS can be extracted by various methods, which result in SS exhibiting different physical and biological properties. We found that SS produced from various extraction methods has different molecular weights, zeta potential, particle size and amino acid content. The MTT assay indicated that SS from all extraction methods had no toxicity to mouse fibroblast cells at concentrations up to 40 μg/mL after 24 h incubation, but SS obtained from some extraction methods can be toxic at higher concentrations. Heat-degraded SS was the least toxic to cells and activated the highest collagen production, while urea-extracted SS showed the lowest cell viability and collagen production. SS from urea extraction was severely harmful to cells at concentrations higher than 100 μg/mL. SS from all extraction methods could still promote collagen production in a concentration-dependent manner, even at high concentrations that are toxic to cells. PMID:20559510

  16. Cysteine-Accelerated Methanogenic Propionate Degradation in Paddy Soil Enrichment.

    PubMed

    Zhuang, Li; Ma, Jinlian; Tang, Jia; Tang, Ziyang; Zhou, Shungui

    2017-05-01

    Propionate degradation is a critical step during the conversion of complex organic matter under methanogenic conditions, and it requires a syntrophic cooperation between propionate-oxidizing bacteria and methanogenic archaea. Increasing evidences suggest that interspecies electron transfer for syntrophic metabolism is not limited to the reducing equivalents of hydrogen and formate. This study tested the ability of an electron shuttle to mediate interspecies electron transfer in syntrophic methanogenesis. We found that cysteine supplementation (100, 400, and 800 μM) accelerated CH 4 production from propionate in paddy soil enrichments. Of the concentrations tested, 100 μM cysteine was the most effective at enhancing propionate degradation to CH 4 , and the rates of CH 4 production and propionate degradation were increased by 109 and 79%, respectively, compared with the cysteine-free control incubations. We eliminated the possibility that the stimulatory effect of cysteine on methanogenesis was attributable to the function of cysteine as a methanogenic substrate in the presence of propionate. The potential catalytic effect involved cysteine serving as an electron carrier to mediate interspecies electron transfer in syntrophic propionate oxidization. The redox potential of cystine/cysteine, which is dependent on the concentration, might be more suitable to facilitate interspecies electron transfer between syntrophic partners at a concentration of 100 μM. Pelotomaculum, obligately syntrophic, propionate-oxidizing bacteria, and hydrogenotrophic methanogens of the family Methanobacteriaceae are predominant in cysteine-mediated methanogenic propionate degradation. The stimulatory effect of cysteine on syntrophic methanogenesis offers remarkable potential for improving the performance of anaerobic digestion and conceptually broaden strategies for interspecies electron transfer in syntrophic metabolism.

  17. Changes of serum 3-methylhistidine concentration and energy-associated metabolites in dairy cows with ketosis.

    PubMed

    Akamatsu, Hirohisa; Saitoh, Yoshihide; Serizawa, Masahumi; Miyake, Koji; Ohba, Yoshikazu; Nakashima, Kazuki

    2007-10-01

    The present study examined the Serum 3-methylhistidine concentrations and energy-associated variables of 5 healthy Holstein cows and 5 Holstein cows with ketosis. The serum total cholesterol and apolipoprotein B-100 concentrations and lecithin-cholesterol acyltransferase (LCAT) activity of the ketotic cows were lower than those of the healthy cows 14 days before parturition. The serum non-esterified fatty acid (NEFA) concentration on the day of parturition and 3-methylhistidine concentration 14 days after parturition were higher in the ketotic cows. The serum 3-methylhistidine concentration 14 days after parturition was negatively correlated with the serum LCAT activity 14 days before parturition and was positively correlated with the serum NEFA concentration on the day of parturition. Insufficiency of cholesterol metabolism and acceleration of body fat degradation occur before parturition in cows with ketosis, and these characteristics are correlated with acceleration of protein degradation after parturition.

  18. Effects of activation and blockade of NMDA receptors on the extinction of a conditioned passive avoidance response in mice with different levels of anxiety.

    PubMed

    Tomilenko, R A; Dubrovina, N I

    2007-06-01

    The effects of an agonist (D-cycloserine) and an antagonist (dizocilpine) of N-methyl-D-aspartate (NMDA) receptors on the learning and extinction of a conditioned passive avoidance response were studied in mice with low, intermediate, and high levels of anxiety. In intermediate-anxiety mice, D-cycloserine (30 mg/kg) had no effect on learning but accelerated extinction, while dizocilpine (0.15 mg/kg) degraded acquisition of the reflex but delayed extinction. In high-anxiety mice, with good learning and no extinction, D-cycloserine had no effect, while dizocilpine decreased learning and facilitated retention of performance of the memory trace at the ongoing level in conditions promoting extinction. In low-anxiety mice, D-cycloserine degraded learning and accelerated extinction, while dizocilpine completely blocked learning and the retention of the passive avoidance response.

  19. Effect of Reprocessing and Accelerated Weathering on Impact-Modified Recycled Blend

    NASA Astrophysics Data System (ADS)

    Ramesh, V.; Mohanty, Smita; Biswal, Manoranjan; Nayak, Sanjay K.

    2015-12-01

    Recovery of recycled polycarbonate, acrylonitrile butadiene styrene, high-impact polystyrene, and its blends from waste electrical and electronic equipment plastics products properties were enhanced by the addition of virgin polycarbonate and impact modifier. The optimized blend formulation was processed through five cycles, at processing temperature, 220-240 °C and accelerated weathering up to 700 h. Moreover, the effect of reprocessing and accelerated weathering in the physical properties of the modified blends was investigated by mechanical, thermal, rheological, and morphological studies. The results show that in each reprocessing cycle, the tensile strength and impact strength decreased significantly and the similar behavior has been observed from accelerated weathering. Subsequently, the viscosity decreases and this decrease becomes the effect of thermal and photo-oxidative degradation. This can be correlated with FTIR analysis.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Checchin, Mattia

    Superconducting niobium accelerating cavities are devices operating in radio-frequency and able to accelerate charged particles up to energy of tera-electron-volts. Such accelerating structures are though limited in terms of quality factor and accelerating gradient, that translates--in some cases--in higher capital costs of construction and operation of superconducting rf accelerators. Looking forward for a new generation of more affordable accelerators, the physical description of limiting mechanisms in superconducting microwave resonators is discussed. In particular, the physics behind the dissipation introduced by vortices in the superconductor, the ultimate quench limitations and the quality factor degradation mechanism after a quench are described inmore » detail. One of the limiting factor of the quality factor is the dissipation introduced by trapped magnetic flux vortices. The radio-frequency complex response of trapped vortices in superconductors is derived by solving the motion equation for a magnetic flux line, assuming a bi-dimensional and mean free path-dependent Lorentzian-shaped pinning potential. The resulting surface resistance shows the bell-shaped trend as a function of the mean free path, in agreement with the experimental data observed. Such bell-shaped trend of the surface resistance is described in terms of the interplay of the two limiting regimes identified as pinning and flux flow regimes, for low and large mean free path values respectively. The model predicts that the dissipation regime--pinning- or flux-flow-dominated--can be tuned either by acting on the frequency or on the electron mean free path value. The effect of different configurations of pinning sites and strength on the vortex surface resistance are also discussed. Accelerating cavities are also limited by the quench of the superconductive state, which limits the maximum accelerating gradient achievable. The accelerating field limiting factor is usually associate d to the superheating field, which is intimately correlated to the penetration of magnetic flux vortices in the material. Experimental data for N-doped cavities suggest that uniform Ginzburg-Landau parameter cavities are statistically limited by the lower critical field, in terms of accelerating gradient. By introducing a Ginzburg-Landau parameter profile at the cavity rf surface--dirty layer--the accelerating gradient of superconducting resonators can be enhanced. The description of the physics behind the accelerating gradient enhancement as a consequence of the dirty layer is carried out by solving numerically the Ginzburg-Landau equations for the layered system. The enhancement is showed to be promoted by the higher energy barrier to vortex penetration, and by the enhanced lower critical field. Another serious threat to the quality factor during the cavity operation is the extra dissipation introduced by the quench. Such quality factor degradation mechanism due to the quench, is generated by the trapping of external magnetic flux at quench spot. The purely extrinsic origin of such extra dissipation is proven by the impossibility of decrease the quality factor by quenching in a magnetic field-free environment. Also, a clear relation of the dissipation introduced by quenching to the orientation of the applied magnetic field is observed. The full recover of the quality factor by re-quenching in compensated field is possible when the trapped flux at the quench spot is modest. On the contrary, when the trapped magnetic flux is too large, the quality factor degradation may become irreversible by this technique, likely due to the outward flux migration beyond the normal zone opening during the quench.« less

  1. Utilization of a Biodegradable Mulch Sheet Produced from Poly(Lactic Acid)/Ecoflex®/Modified Starch in Mandarin Orange Groves

    PubMed Central

    Tachibana, Yuya; Maeda, Takuya; Ito, Osamu; Maeda, Yasukatsu; Kunioka, Masao

    2009-01-01

    We have developed a mulch sheet made by inflation molding of PLA, Ecoflex® and modified starch, which all have different biodegradabilities. A field test of use as an agricultural mulch sheet for mandarin oranges was carried out over two years. The mechanical properties of the mulch sheet were weakened with time during the field test, but the quality of the mandarin oranges increased, a result of the controlled degradation of the sheet. The most degradable modified starch degraded first, allowing control of the moisture on the soil. Accelerator mass spectroscopy was used for evaluation of the biomass carbon ratio. The biomass carbon ratio decreased by degradation of the biobased materials, PLA and modified starch in the mulch sheet. PMID:19812715

  2. Pressure and temperature effects on degradation kinetics and storage stability of total anthocyanins in blueberry juice.

    PubMed

    Buckow, Roman; Kastell, Anja; Terefe, Netsanet Shiferaw; Versteeg, Cornelis

    2010-09-22

    The degradation kinetics of total anthocyanins in blueberry (Vaccinium myrtillus) juice were studied during thermal processing by treatment at selected temperatures (60-121 °C) and combined high pressure-temperature processing (100-700 MPa, 40-121 °C). Anthocyanin stability was also studied for several of these treatments during storage at 4, 25, and 40 °C. Both pressure and temperature increased d, the degradation rate of total anthocyanins in blueberry juice, meaning that at constant temperature, anthocyanins were more rapidly degraded with increasing pressure. For example, 32% degradation of anthocyanins was observed after 20 min heating at 100 °C and atmospheric pressure, whereas at 100 °C and 600 MPa, approximately 50% of total anthocyanins were lost. Degradation of anthocyanins was significantly accelerated with increasing storage temperatures. Combined pressure-temperature treatment of pasteurized juice led to a slightly faster degradation of total anthocyanins during storage compared to heat treatments at ambient pressure. Degradation of anthocyanins was best described by a 1.4th-order reaction at all conditions investigated. A mathematical model describing the degradation of blueberry anthocyanins in juice as a function of pressure, temperature, and treatment time is presented.

  3. Degradation of MDEA in aqueous solution in the thermally activated persulfate system.

    PubMed

    Li, Yong-Tao; Yue, Dong; Wang, Bing; Ren, Hong-Yang

    2017-03-01

    The feasibility of methyldiethanolamine (MDEA) degradation in thermally activated PS system was evaluated. Effects of the PS concentration, pH, activation temperature and reaction time on MDEA degradation were investigated. Simultaneity, the thermodynamic analysis and degradation process were also performed. Several findings were made in this study including the following: the degradation rates of MDEA in thermally activated PS systems were higher than other systems. MDEA could be readily degraded at 40°C with a PS concentration of 25.2 mM, the process of MDEA degradation was accelerated by higher PS dose and reaction temperature, and MDEA degradation and PS consumption followed the pseudo-first-order kinetic model. The thermodynamic analysis showed that the activation process followed an endothermic path of the positive value of [Formula: see text] and spontaneous with the negative value of [Formula: see text], high temperature was favorable to the degradation of MDEA with the apparent activation energy of 87.11 KJ/mol. Combined FT-IR with GC-MS analysis techniques, MDEA could be oxidative degraded after the C-N bond broken to small molecules of organic acids, alcohols or nitro compounds until oxidized to CO 2 and H 2 O. In conclusion, the thermally activated PS process is a promising option for degrading MDEA effluent liquor.

  4. The biological significance of storage granules in rat parathyroid cells.

    PubMed

    Setoguti, T; Inoue, Y; Wild, P

    1995-10-01

    Both prosecretory and storage granules are concomitantly formed at the trans Golgi network including the innermost Golgi cisterna. Prosecretory granules develop into small secretory granules that release their contents by exocytosis finely regulated by a complex mechanism for maintaining calcium homeostasis. In the rat parathyroid cells, storage granules are large secretory granules storing parathyroid hormone for an emergency supply. The hormone is rapidly discharged by exocytosis when serum calcium concentration is decreased. The granules are constantly produced even under conditions of low serum calcium concentration in the regions of 8 mg/dl. The granule content is constantly hydrolyzed when not discharged, leading to a decreased core and finally to the formation of vacuolar bodies. The fate of the vacuolar bodies is unknown. Hypercalcemic conditions accelerate hydrolysis. The threshold value of calcium concentration required for the release of storage granule contents is between 8.0 and 7.5 mg/dl and that of calcium concentration for accelerating degradation of storage granules is about 11.5 mg/dl. Sympathetic stimulation causes storage granules to be discharged regardless of hypercalcemia or hypocalcemia. Parasympathetic stimulation accelerates hydrolysis. The degradation of storage granules seems to be closely associated with an intracellular regulatory mechanism for parathyroid hormone secretion.

  5. Properties of the electron cloud in a high-energy positron and electron storage ring

    DOE PAGES

    Harkay, K. C.; Rosenberg, R. A.

    2003-03-20

    Low-energy, background electrons are ubiquitous in high-energy particle accelerators. Under certain conditions, interactions between this electron cloud and the high-energy beam can give rise to numerous effects that can seriously degrade the accelerator performance. These effects range from vacuum degradation to collective beam instabilities and emittance blowup. Although electron-cloud effects were first observed two decades ago in a few proton storage rings, they have in recent years been widely observed and intensely studied in positron and proton rings. Electron-cloud diagnostics developed at the Advanced Photon Source enabled for the first time detailed, direct characterization of the electron-cloud properties in amore » positron and electron storage ring. From in situ measurements of the electron flux and energy distribution at the vacuum chamber wall, electron-cloud production mechanisms and details of the beam-cloud interaction can be inferred. A significant longitudinal variation of the electron cloud is also observed, due primarily to geometrical details of the vacuum chamber. Furthermore, such experimental data can be used to provide realistic limits on key input parameters in modeling efforts, leading ultimately to greater confidence in predicting electron-cloud effects in future accelerators.« less

  6. Tryptophan: the key to boosting brain serotonin synthesis in depressive illness.

    PubMed

    Badawy, Abdulla A-B

    2013-10-01

    It has been proposed that focusing on brain serotonin synthesis can advance antidepressant drug development. Biochemical aspects of the serotonin deficiency in major depressive disorder (MDD) are discussed here in detail. The deficiency is caused by a decreased availability of the serotonin precursor tryptophan (Trp) to the brain. This decrease is caused by accelerated Trp degradation, most likely induced by enhancement of the hepatic enzyme tryptophan 2,3-dioxygenase (TDO) by glucocorticoids and/or catecholamines. Induction of the extrahepatic Trp-degrading enzyme indolylamine 2,3-dioxygenase (IDO) by the modest immune activation in MDD has not been demonstrated and, if it occurs, is unlikely to make a significant contribution. Liver TDO appears to be a target of many antidepressants, the mood stabilisers Li(+) and carbamazepine and possibly other adjuncts to antidepressant therapy. The poor, variable and modest antidepressant efficacy of Trp is due to accelerated hepatic Trp degradation, and efficacy can be restored or enhanced by combination with antidepressants or other existing or new TDO inhibitors. Enhancing Trp availability to the brain is thus the key to normalisation of serotonin synthesis and could form the basis for future antidepressant drug development.

  7. Economic development and coastal ecosystem change in China

    PubMed Central

    He, Qiang; Bertness, Mark D.; Bruno, John F.; Li, Bo; Chen, Guoqian; Coverdale, Tyler C.; Altieri, Andrew H.; Bai, Junhong; Sun, Tao; Pennings, Steven C.; Liu, Jianguo; Ehrlich, Paul R.; Cui, Baoshan

    2014-01-01

    Despite their value, coastal ecosystems are globally threatened by anthropogenic impacts, yet how these impacts are driven by economic development is not well understood. We compiled a multifaceted dataset to quantify coastal trends and examine the role of economic growth in China's coastal degradation since the 1950s. Although China's coastal population growth did not change following the 1978 economic reforms, its coastal economy increased by orders of magnitude. All 15 coastal human impacts examined increased over time, especially after the reforms. Econometric analysis revealed positive relationships between most impacts and GDP across temporal and spatial scales, often lacking dropping thresholds. These relationships generally held when influences of population growth were addressed by analyzing per capita impacts, and when population density was included as explanatory variables. Historical trends in physical and biotic indicators showed that China's coastal ecosystems changed little or slowly between the 1950s and 1978, but have degraded at accelerated rates since 1978. Thus economic growth has been the cause of accelerating human damage to China's coastal ecosystems. China's GDP per capita remains very low. Without strict conservation efforts, continuing economic growth will further degrade China's coastal ecosystems. PMID:25104138

  8. Internal loop photo-biodegradation reactor used for accelerated quinoline degradation and mineralization.

    PubMed

    Chang, Ling; Zhang, Yongming; Gan, Lu; Xu, Hua; Yan, Ning; Liu, Rui; Rittmann, Bruce E

    2014-07-01

    Biofilm biodegradation was coupled with ultra-violet photolysis using the internal loop photobiodegradation reactor for degradation of quinoline. Three protocols-photolysis alone (P), biodegradation alone (B), and intimately coupled photolysis and biodegradation (P&B)-were used for degradation of quinoline in batch and continuous-flow experiments. For a 1,000 mg/L initial quinoline concentration, the volumetric removal rate for quinoline was 38 % higher with P&B than with B in batch experiments, and the P&B kinetics were the sum of kinetics from the P and B experiments. Continuous-flow experiments with an influent quinoline concentration of 1,000 mg/L also gave significantly greater quinoline removal in P&B, and the quinoline-removal kinetics for P&B were approximately equal to the sum of the removal kinetics for P and B. P&B similarly increased the rate and extent of quinoline mineralization, for which the kinetics for P&B were nearly equal to the sum of kinetics for P and B. These findings support that the rate-limiting step for mineralization was transformation of quinoline, which was accelerated by the simultaneous action of photolysis and biodegradation.

  9. Basic fibroblast growth factor accelerates matrix degradation via a neuro-endocrine pathway in human adult articular chondrocytes.

    PubMed

    Im, Hee-Jeong; Li, Xin; Muddasani, Prasuna; Kim, Gun-Hee; Davis, Francesca; Rangan, Jayanthi; Forsyth, Christopher B; Ellman, Michael; Thonar, Eugene J M A

    2008-05-01

    Pain-related neuropeptides released from synovial fibroblasts, such as substance P, have been implicated in joint destruction. Substance P-induced inflammatory processes are mediated via signaling through a G-protein-coupled receptor, that is, neurokinin-1 tachykinin receptor (NK(1)-R). We determined the pathophysiological link between substance P and its receptor in human adult articular cartilage homeostasis. We further examined if catabolic growth factors such as basic fibroblast growth factor (bFGF or FGF-2) or IL-1beta accelerate matrix degradation via a neural pathway upregulation of substance P and NK(1)-R. We show here that substance P stimulates the production of cartilage-degrading enzymes, such as matrix metalloproteinase-13 (MMP-13), and suppresses proteoglycan deposition in human adult articular chondrocytes via NK(1)-R. Furthermore, we have demonstrated that substance P negates proteoglycan stimulation promoted by bone morphogenetic protein-7, suggesting the dual role of substance P as both a pro-catabolic and anti-anabolic mediator of cartilage homeostasis. We report that bFGF-mediated stimulation of substance P and its receptor NK(1)-R is, in part, through an IL-1beta-dependent pathway. (c) 2007 Wiley-Liss, Inc.

  10. Basic Fibroblast Growth Factor Accelerates Matrix Degradation Via a Neuro-Endocrine Pathway in Human Adult Articular Chondrocytes

    PubMed Central

    IM, HEE-JEONG; LI, XIN; MUDDASANI, PRASUNA; KIM, GUN-HEE; DAVIS, FRANCESCA; RANGAN, JAYANTHI; FORSYTH, CHRISTOPHER B.; ELLMAN, MICHAEL; THONAR, EUGENE JMA

    2010-01-01

    Pain-related neuropeptides released from synovial fibroblasts, such as substance P, have been implicated in joint destruction. Substance P-induced inflammatory processes are mediated via signaling through a G-protein-coupled receptor, that is, neurokinin-1 tachykinin receptor (NK1-R). We determined the pathophysiological link between substance P and its receptor in human adult articular cartilage homeostasis. We further examined if catabolic growth factors such as basic fibroblast growth factor (bFGF or FGF-2) or IL-1β accelerate matrix degradation via a neural pathway upregulation of substance P and NK1-R. We show here that substance P stimulates the production of cartilage-degrading enzymes, such as matrix metalloproteinase-13 (MMP-13), and suppresses proteoglycan deposition in human adult articular chondrocytes via NK1-R. Furthermore, we have demonstrated that substance P negates proteoglycan stimulation promoted by bone morphogenetic protein-7, suggesting the dual role of substance P as both a pro-catabolic and anti-anabolic mediator of cartilage homeostasis. We report that bFGF-mediated stimulation of substance P and its receptor NK1-R is, in part, through an IL-1β-dependent pathway. PMID:17960584

  11. Effect of simulated mechanical recycling processes on the structure and properties of poly(lactic acid).

    PubMed

    Beltrán, F R; Lorenzo, V; Acosta, J; de la Orden, M U; Martínez Urreaga, J

    2018-06-15

    The aim of this work is to study the effects of different simulated mechanical recycling processes on the structure and properties of PLA. A commercial grade of PLA was melt compounded and compression molded, then subjected to two different recycling processes. The first recycling process consisted of an accelerated ageing and a second melt processing step, while the other recycling process included an accelerated ageing, a demanding washing process and a second melt processing step. The intrinsic viscosity measurements indicate that both recycling processes produce a degradation in PLA, which is more pronounced in the sample subjected to the washing process. DSC results suggest an increase in the mobility of the polymer chains in the recycled materials; however the degree of crystallinity of PLA seems unchanged. The optical, mechanical and gas barrier properties of PLA do not seem to be largely affected by the degradation suffered during the different recycling processes. These results suggest that, despite the degradation of PLA, the impact of the different simulated mechanical recycling processes on the final properties is limited. Thus, the potential use of recycled PLA in packaging applications is not jeopardized. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Cathode Degradation in Thallium Bromide Devices

    NASA Astrophysics Data System (ADS)

    Datta, Amlan; Motakef, Shariar

    2015-06-01

    Thallium bromide (TlBr) is a wide bandgap, compound semiconductor with high gamma-ray stopping power and promising physical properties. However, performance degradation and the eventual irreversible failure of TlBr devices can occur rapidly at room temperature, due to “polarization”, caused by the electromigration of Tl+ and Br- ions to the electrical contacts across the device. Using the Accelerated Device Degradation (ADD) experiment, the degradation phenomena in TlBr devices have been visualized and recorded. This paper focuses on “ageing” of the device cathode at various temperatures. ADD is a fast and reliable direct characterization technique that can be used to identify the effects of various growth and post-growth process modifications on device degradation. Using this technique we have identified cathode degradation with the migration of Br- ions and an associated generation and growth of Thallium-rich fractal “ferns” from the cathode. Its effect on the radiation response of the device has also been discussed in this paper. The chemical changes in the cathode were characterized using Energy-dispersive X-ray spectroscopy.

  13. The prenyltransferase UBIAD1 is the target of geranylgeraniol in degradation of HMG CoA reductase.

    PubMed

    Schumacher, Marc M; Elsabrouty, Rania; Seemann, Joachim; Jo, Youngah; DeBose-Boyd, Russell A

    2015-03-05

    Schnyder corneal dystrophy (SCD) is an autosomal dominant disorder in humans characterized by abnormal accumulation of cholesterol in the cornea. SCD-associated mutations have been identified in the gene encoding UBIAD1, a prenyltransferase that synthesizes vitamin K2. Here, we show that sterols stimulate binding of UBIAD1 to the cholesterol biosynthetic enzyme HMG CoA reductase, which is subject to sterol-accelerated, endoplasmic reticulum (ER)-associated degradation augmented by the nonsterol isoprenoid geranylgeraniol through an unknown mechanism. Geranylgeraniol inhibits binding of UBIAD1 to reductase, allowing its degradation and promoting transport of UBIAD1 from the ER to the Golgi. CRISPR-CAS9-mediated knockout of UBIAD1 relieves the geranylgeraniol requirement for reductase degradation. SCD-associated mutations in UBIAD1 block its displacement from reductase in the presence of geranylgeraniol, thereby preventing degradation of reductase. The current results identify UBIAD1 as the elusive target of geranylgeraniol in reductase degradation, the inhibition of which may contribute to accumulation of cholesterol in SCD.

  14. Influence of colorant and film thickness on thermal aging characteristics of oxo-biodegradable plastic bags

    NASA Astrophysics Data System (ADS)

    Leuterio, Giselle Lou D.; Pajarito, Bryan B.; Domingo, Carla Marie C.; Lim, Anna Patricia G.

    2016-05-01

    Functional, lightweight, strong and cheap plastic bags incorporated with pro-oxidants undergo accelerated degradation under exposure to heat and oxygen. This work investigated the effect of colorant and film thickness on thermal aging characteristics of commercial oxo-biodegradable plastic bag films at 70 °C. Degradation is monitored through changes in infrared absorption, weight, and tensile properties of thermally aged films. The presence of carbonyl band in infrared spectrum after 672 h of thermal aging supports the degradation behavior of exposed films. Results show that incorporation of colorant and increasing thickness exhibit low maximum weight uptake. Titanium dioxide as white colorant in films lowers the susceptibility of films to oxygen uptake but enhances physical degradation. Higher amount of pro-oxidant loading also contributes to faster degradation. Opaque films are characterized by low tensile strength and high elastic modulus. Decreasing the thickness contributes to lower tensile strength of films. Thermally aged films with colorant and low thickness promote enhanced degradation.

  15. Effect of Chemical and Physical Properties on the In Vitro Degradation of 3D Printed High Resolution Poly(propylene fumarate) Scaffolds.

    PubMed

    Walker, Jason M; Bodamer, Emily; Krebs, Olivia; Luo, Yuanyuan; Kleinfehn, Alex; Becker, Matthew L; Dean, David

    2017-04-10

    Two distinct molecular masses of poly(propylene fumarate) (PPF) are combined with an additive manufacturing process to fabricate highly complex scaffolds possessing controlled chemical properties and porous architecture. Scaffolds were manufactured with two polymer molecular masses and two architecture styles. Degradation was assessed in an accelerated in vitro environment. The purpose of the degradation study is not to model or mimic in vivo degradation, but to efficiently compare the effect of modulating scaffold properties. This is the first study addressing degradation of chain-growth synthesized PPF, a process that allows for considerably more control over molecular mass distribution. It demonstrates that, with greater process control, not only is scaffold fabrication reproducible, but the mechanical properties and degradation kinetics can be tailored by altering the physical properties of the scaffold. This is a clear step forward in using PPF to address unmet medical needs while meeting regulatory demands and ultimately obtaining clinical relevancy.

  16. Effects of Glycine, Water, Ammonia, and Ammonium Bicarbonate on the Oligomerization of Methionine

    NASA Astrophysics Data System (ADS)

    Huang, Rui; Furukawa, Yoshihiro; Otake, Tsubasa; Kakegawa, Takeshi

    2017-06-01

    The abiotic oligomerization of amino acids may have created primordial, protein-like biological catalysts on the early Earth. Previous studies have proposed and evaluated the potential of diagenesis for the amino acid oligomerization, simulating the formation of peptides that include glycine, alanine, and valine, separately. However, whether such conditions can promote the formation of peptides composed of multiple amino acids remains unclear. Furthermore, the chemistry of pore water in sediments should affect the oligomerization and degradation of amino acids and oligomers, but these effects have not been studied extensively. In this study, we investigated the effects of water, ammonia, ammonium bicarbonate, pH, and glycine on the oligomerization and degradation of methionine under high pressure (150 MPa) and high temperature conditions (175 °C) for 96 h. Methionine is more difficult to oligomerize than glycine and methionine dimer was formed in the incubation of dry powder of methionine. Methionine oligomers as long as trimers, as well as methionylglycine and glycylmethionine, were formed under every condition with these additional compounds. Among the compounds tested, the oligomerization reaction rate was accelerated by the presence of water and by an increase in pH. Ammonia also increased the oligomerization rate but consumed methionine by side reactions and resulted in the rapid degradation of methionine and its peptides. Similarly, glycine accelerated the oligomerization rate of methionine and the degradation of methionine, producing water, ammonia, and bicarbonate through its decomposition. With Gly, heterogeneous dimers (methionylglycine and glycylmethionine) were formed in greater amounts than with other additional compounds although smaller amount of these heterogeneous dimers were formed with other additional compounds. These results suggest that accelerated reaction rates induced by water and co-existing reactive compounds promote the oligomerization of less reactive amino acids during diagenesis and enhance the formation of peptides composed of multiple amino acids.

  17. Sequential Actions of the AAA-ATPase Valosin-containing Protein (VCP)/p97 and the Proteasome 19 S Regulatory Particle in Sterol-accelerated, Endoplasmic Reticulum (ER)-associated Degradation of 3-Hydroxy-3-methylglutaryl-coenzyme A Reductase*

    PubMed Central

    Morris, Lindsey L.; Hartman, Isamu Z.; Jun, Dong-Jae; Seemann, Joachim; DeBose-Boyd, Russell A.

    2014-01-01

    Accelerated endoplasmic reticulum (ER)-associated degradation (ERAD) of the cholesterol biosynthetic enzyme 3-hydroxy-3-methylglutaryl-coenzyme A reductase results from its sterol-induced binding to ER membrane proteins called Insig-1 and Insig-2. This binding allows for subsequent ubiquitination of reductase by Insig-associated ubiquitin ligases. Once ubiquitinated, reductase becomes dislocated from ER membranes into the cytosol for degradation by 26 S proteasomes through poorly defined reactions mediated by the AAA-ATPase valosin-containing protein (VCP)/p97 and augmented by the nonsterol isoprenoid geranylgeraniol. Here, we report that the oxysterol 25-hydroxycholesterol and geranylgeraniol combine to trigger extraction of reductase across ER membranes prior to its cytosolic release. This conclusion was drawn from studies utilizing a novel assay that measures membrane extraction of reductase by determining susceptibility of a lumenal epitope in the enzyme to in vitro protease digestion. Susceptibility of the lumenal epitope to protease digestion and thus membrane extraction of reductase were tightly regulated by 25-hydroxycholesterol and geranylgeraniol. The reaction was inhibited by RNA interference-mediated knockdown of either Insigs or VCP/p97. In contrast, reductase continued to become membrane-extracted, but not cytosolically dislocated, in cells deficient for AAA-ATPases of the proteasome 19 S regulatory particle. These findings establish sequential roles for VCP/p97 and the 19 S regulatory particle in the sterol-accelerated ERAD of reductase that may be applicable to the ERAD of other substrates. PMID:24860107

  18. Long-Term Reliability of SiGe/Si HBTs From Accelerated Lifetime Testing

    NASA Technical Reports Server (NTRS)

    Bhattacharya, Pallab

    2001-01-01

    Accelerated lifetime tests were performed on double-mesa structure Si(0.7)Ge(0.3)/Si npn heterojunction bipolar transistors, grown by molecular beam epitaxy, in the temperature range of 175 C-275 C. The transistors (with 5x20 sq micron emitter area) have DC current gains approx. 40-50 and f(sub T) and f(sub max) of up to 22 GHz and 25 GHz, respectively. It is found that a gradual degradation in these devices is caused by the recombination enhanced impurity diffusion (REID) of boron atoms from the p-type base region and the associated formation of parasitic energy barriers to electron transport from the emitter to collector layers. This REED has been quantitatively modeled and explained, to the first order of approximation, and the agreement with the measured data is good. The mean time to failure (MTTF) of these devices at room temperature under 1.35 x 10(exp 4) A/sq cm current density operation is estimated from the extrapolation of the Arrhenius plots of device lifetime versus reciprocal temperature. The results of the reliability tests offer valuable feedback for SiGe heterostructure design in order to improve the long-term reliability of the devices and circuits made with them. Hot electron induced degradation of the base-emitter junction was also observed during the accelerated lifetime testing. In order to improve the HBT reliability endangered by the hot electrons, deuterium sintered techniques have been proposed. The preliminary results from this study show that a deuterium-sintered HBT is, indeed, more resistant to hot-electron induced base-emitter junction degradation.

  19. Comparative studies on the properties of glycyrrhetinic acid-loaded PLGA microparticles prepared by emulsion and template methods.

    PubMed

    Wang, Hong; Zhang, Guangxing; Sui, Hong; Liu, Yanhua; Park, Kinam; Wang, Wenping

    2015-12-30

    The O/W emulsion method has been widely used for the production of poly (lactide-co-glycolide) (PLGA) microparticles. Recently, a template method has been used to make homogeneous microparticles with predefined size and shape, and shown to be useful in encapsulating different types of active compounds. However, differences between the template method and emulsion method have not been examined. In the current study, PLGA microparticles were prepared by the two methods using glycyrrhetinic acid (GA) as a model drug. The properties of obtained microparticles were characterized and compared on drug distribution, in vitro release, and degradation. An encapsulation efficiency of over 70% and a mean particle size of about 40μm were found for both methods. DSC thermograms and XRPD diffractograms indicated that GA was highly dispersed or in the amorphous state in the matrix of microparticles. The emulsion method produced microparticles of a broad size distribution with a core-shell type structure and many drug-rich domains inside each microparticle. Its drug release and matrix degradation was slow before Day 50 and then accelerated. In contrast, the template method formed microparticles with narrow size distribution and drug distribution without apparent drug-rich domains. The template microparticles with a loading efficiency of 85% exhibited a zero-order release profile for 3 months after the initial burst release of 26.7%, and a steady surface erosion process as well. The same microparticles made by two different methods showed two distinguished drug release profiles. The two different methods can be supplementary with each other in optimization of drug formulation for achieving predetermined drug release patterns. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Simultaneous Thermal and Gamma Radiation Aging of Cable Polymers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fifield, Leonard S.; Liu, Shuaishuai; Bowler, Nicola

    Polymers used in nuclear power plant electrical cable systems experience aging and degradation over time due to environmental stress including heat and gamma irradiation. Prediction of long-term cable performance has been based on results of short-term accelerated laboratory aging studies, but questions remain regarding the correlation of accelerated aging to long-term, in-plant aging. This work seeks to increase understanding of the combined effects of heat and radiation on cable polymer material aging toward addressing these questions.

  1. Role of target thickness in proton acceleration from near-critical mass-limited plasmas

    NASA Astrophysics Data System (ADS)

    Kuri, Deep Kumar; Das, Nilakshi; Patel, Kartik

    2017-07-01

    The role played by the target thickness in generating high energetic protons by a circularly polarized laser from near-critical mass-limited targets (MLT) has been investigated with the help of three-dimensional (3D) particle-in-cell (PIC) simulations. The radiation pressure accelerates protons from the front side of the target. Due to hole boring, the target front side gets deformed resulting in a change in the effective angle of incidence which causes vacuum heating and hence generates hot electrons. These hot electrons travel through the target at an angle with the laser axis and hence get more diverged along transverse directions for large target thickness. The hot electrons form sheath fields on the target rear side which accelerates protons via target normal sheath acceleration (TNSA). It is observed that the collimation of radiation pressure accelerated protons gets degraded on reaching the target rear side due to TNSA. The effect of transverse hot electron recirculations gets suppressed and the energetic protons get highly collimated on decreasing target thickness as the radiation pressure acceleration (RPA) starts dominating the acceleration process.

  2. Microbial degradation of carbosulfan by carbosulfan--and carbofuran-retreated rice soil suspension.

    PubMed

    Sahoo, A; Sethunathan, N; Sahoo, P K

    1998-07-01

    The role of microorganisms in the degradation of carbosulfan (2,3-dihydro-2,2-dimethyl-7-benzofuranyl-(di-n-butyl)-aminosulfenyl++ + methyl carbamate), an analogue of carbofuran (2,3-dihydro-2,2-dimethyl-7-benzofuranyl-N-methyl carbamate) was studied by selective enrichment of microorganisms degrading either or both insecticides by repeated application of the insecticides, individually or in combination to flooded soil. Soil suspension from the pots treated with carbosulfan and carbofuran, individually or in combination collected after two applications, effected distinctly more rapid hydrolysis of carbosulfan than did the suspension from untreated pots or the uninoculated medium. The rate of hydrolysis was further accelerated by soil suspensions collected after six applications of the insecticides in the order carbosulfan treated > carbofuran treated > carbosulfan + carbofuran treated. The ability of treated and untreated suspension to degrade carbofuran was also studied. The rate of degradation of carbofuran by the suspension was in the order carbofuran retreated > carbosulfan + carbofuran retreated > carbosulfan retreated soil. Further involvement of microorganism in the rapid degradation of carbosulfan was confirmed by testing the degradation in sterilized and nonsterilized enrichment culture.

  3. Accelerated aging studies of UHMWPE. II. Virgin UHMWPE is not immune to oxidative degradation.

    PubMed

    Edidin, A A; Villarraga, M L; Herr, M P; Muth, J; Yau, S S; Kurtz, S M

    2002-08-01

    In Part I of this series, we showed that aging at elevated oxygen pressure is more successful at increasing the depth to which degradation occurs although it, too, generally causes greater degradation at the surface than at the subsurface. Therefore we hypothesized that thermal degradation alone, in the absence of free radicals, could be sufficient to artificially age UHMWPE in a manner analogous to natural aging. In the present study, virgin and air-irradiated UHMWPE (extruded GUR 1050 and compression-molded 1900) were aged up to 4 weeks at elevated oxygen pressure, and the mechanical behavior at the surface and subsurface was examined. All the materials were substantially degraded following 4 weeks of aging, but the spatial variations in the nonirradiated materials more closely mimicked the previously observed subsurface peak of degradation seen in naturally aged UHMWPE following irradiation in air. This aged material could provide a more realistic model for subsurface mechanical degradation, making it suitable for further mechanical testing in venues such as wear simulation. Copyright 2002 Wiley Periodicals, Inc.

  4. Abiotic degradation of plastic films

    NASA Astrophysics Data System (ADS)

    Ángeles-López, Y. G.; Gutiérrez-Mayen, A. M.; Velasco-Pérez, M.; Beltrán-Villavicencio, M.; Vázquez-Morillas, A.; Cano-Blanco, M.

    2017-01-01

    Degradable plastics have been promoted as an option to mitigate the environmental impacts of plastic waste. However, there is no certainty about its degradability under different environmental conditions. The effect of accelerated weathering (AW), natural weathering (NW) and thermal oxidation (TO) on different plastics (high density polyethylene, HDPE; oxodegradable high density polyethylene, HDPE-oxo; compostable plastic, Ecovio ® metalized polypropylene, PP; and oxodegradable metalized polypropylene, PP-oxo) was studied. Plastics films were exposed to AW per 110 hours; to NW per 90 days; and to TO per 30 days. Plastic films exposed to AW and NW showed a general loss on mechanical properties. The highest reduction in elongation at break on AW occurred to HDPE-oxo (from 400.4% to 20.9%) and was higher than 90% for HDPE, HDPE-oxo, Ecovio ® and PP-oxo in NW. No substantial evidence of degradation was found on plastics exposed to TO. Oxo-plastics showed higher degradation rates than their conventional counterparts, and the compostable plastic was resistant to degradation in the studied abiotic conditions. This study shows that degradation of plastics in real life conditions will vary depending in both, their composition and the environment.

  5. Accelerated acquisition of tagged MRI for cardiac motion correction in simultaneous PET-MR: Phantom and patient studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Chuan, E-mail: chuan.huang@stonybrookmedicine.edu; Department of Radiology, Harvard Medical School, Boston, Massachusetts 02115; Departments of Radiology, Psychiatry, Stony Brook Medicine, Stony Brook, New York 11794

    2015-02-15

    Purpose: Degradation of image quality caused by cardiac and respiratory motions hampers the diagnostic quality of cardiac PET. It has been shown that improved diagnostic accuracy of myocardial defect can be achieved by tagged MR (tMR) based PET motion correction using simultaneous PET-MR. However, one major hurdle for the adoption of tMR-based PET motion correction in the PET-MR routine is the long acquisition time needed for the collection of fully sampled tMR data. In this work, the authors propose an accelerated tMR acquisition strategy using parallel imaging and/or compressed sensing and assess the impact on the tMR-based motion corrected PETmore » using phantom and patient data. Methods: Fully sampled tMR data were acquired simultaneously with PET list-mode data on two simultaneous PET-MR scanners for a cardiac phantom and a patient. Parallel imaging and compressed sensing were retrospectively performed by GRAPPA and kt-FOCUSS algorithms with various acceleration factors. Motion fields were estimated using nonrigid B-spline image registration from both the accelerated and fully sampled tMR images. The motion fields were incorporated into a motion corrected ordered subset expectation maximization reconstruction algorithm with motion-dependent attenuation correction. Results: Although tMR acceleration introduced image artifacts into the tMR images for both phantom and patient data, motion corrected PET images yielded similar image quality as those obtained using the fully sampled tMR images for low to moderate acceleration factors (<4). Quantitative analysis of myocardial defect contrast over ten independent noise realizations showed similar results. It was further observed that although the image quality of the motion corrected PET images deteriorates for high acceleration factors, the images were still superior to the images reconstructed without motion correction. Conclusions: Accelerated tMR images obtained with more than 4 times acceleration can still provide relatively accurate motion fields and yield tMR-based motion corrected PET images with similar image quality as those reconstructed using fully sampled tMR data. The reduction of tMR acquisition time makes it more compatible with routine clinical cardiac PET-MR studies.« less

  6. Continuous acoustic emission monitoring of reinforced concrete under accelerated corrosion

    NASA Astrophysics Data System (ADS)

    Di Benedetti, M.; Loreto, G.; Nanni, A.; Matta, F.; Gonzalez-Nunez, M. A.

    2011-04-01

    The development of techniques capable of evaluating deterioration of reinforced concrete (RC) structures is instrumental to the advancement of techniques for the structural health monitoring (SHM) and service life estimate for constructed facilities. One of the main causes leading to degradation of RC is the corrosion of the steel reinforcement. This process can be modeled phenomenologically, while laboratory tests aimed at studying durability responses are typically accelerated in order to provide useful results within a realistic period of time. To assess the condition of damage in RC, a number of nondestructive methods have been recently studied. Acoustic emission (AE) is emerging as a nondestructive tool to detect the onset and progression of deterioration mechanisms. In this paper, the development of accelerated corrosion and continuous AE monitoring test set-up for RC specimens are presented. Relevant information are provided with regard to the characteristics of the corrosion circuit, continuous measurement and acquisition of corrosion potential, selection of AE sensors and AE parameter setting. The effectiveness of the setup in detecting and characterizing the initiation and progression of the corrosion phenomenon is discussed on the basis of preliminary results from small-scale, pre-cracked RC specimens, which are representative of areas near the clear cover in typical RC bridge members.

  7. Influence of in line monitored fluid bed granulation process parameters on the stability of Ethinylestradiol.

    PubMed

    Roßteuscher-Carl, Katrin; Fricke, Sabine; Hacker, Michael C; Schulz-Siegmund, Michaela

    2015-12-30

    Ethinylestradiol (EE) as a highly active and low dosed compound is prone to oxidative degradation. The stability of the drug substance is therefore a critical parameter that has to be considered during drug formulation. Beside the stability of the drug substance, granule particle size and moisture are critical quality attributes (CQA) of the fluid bed granulation process which influence the tableting ability of the resulting granules. Both CQA should therefore be monitored during the production process by process analytic technology (PAT) according to ICH Q8. This work focusses on the effects of drying conditions on the stability of EE in a fluid-bed granulation process. We quantified EE degradation products 6-alpha-hydroxy-EE, 6-beta-hydroxy-EE, 9(11)-dehydro-EE and 6-oxo-EE during long time storage and accelerated conditions. PAT-tools that monitor granule particle size (Spatial filtering technology) and granule moisture (Microwave resonance technology) were applied and compared with off-line methods. We found a relevant influence of residual granule moisture and thermic stress applied during granulation on the storage stability of EE, whereas no degradation was found immediately after processing. Hence we conclude that drying parameters have a relevant influence on long term EE stability. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Preparation and characterization of TiO2 and Si-doped octacalcium phosphate composite coatings on zirconia ceramics (Y-TZP) for dental implant applications

    NASA Astrophysics Data System (ADS)

    Bao, Lei; Liu, Jingxiao; Shi, Fei; Jiang, Yanyan; Liu, Guishan

    2014-01-01

    In order to prevent the low temperature degradation and improve the bioactivity of zirconia ceramic implants, TiO2 and Si-doped octacalcium phosphate composite coating was prepared on zirconia substrate. The preventive effect on low temperature degradation and surface morphology of the TiO2 layer were studied. Meanwhile, the structure and property changes of the bioactive coating after doping Si were discussed. The results indicate that the dense TiO2 layer, in spite of some microcracks, inhibited the direct contact of the water vapor with the sample's surface and thus prevented the low temperature degradation of zirconia substrates. The acceleration aging test shows that the ratio of the monoclinic phase transition decreased from 10% for the original zirconia substrate to 4% for the TiO2-coated substrate. As to the Si-doped octacalcium phosphate coating prepared by biomimetic method, the main phase composition of the coating was octacalcium phosphate. The morphology of the coating was lamellar-like, and the surface was uniform and continuous with no cracks being observed. It is suggested that Si was added into the coating both through substituting for PO43- and doping as NaSiO3.

  9. Effects of Anisometropic Amblyopia on Visuomotor Behavior, Part 2: Visually Guided Reaching

    PubMed Central

    Niechwiej-Szwedo, Ewa; Goltz, Herbert C.; Chandrakumar, Manokaraananthan; Hirji, Zahra; Crawford, J. Douglas; Wong, Agnes M. F.

    2016-01-01

    Purpose The effects of impaired spatiotemporal vision in amblyopia on visuomotor skills have rarely been explored in detail. The goal of this study was to examine the influences of amblyopia on visually guided reaching. Methods Fourteen patients with anisometropic amblyopia and 14 control subjects were recruited. Participants executed reach-to-touch movements toward targets presented randomly 5° or 10° to the left or right of central fixation in three viewing conditions: binocular, monocular amblyopic eye, and monocular fellow eye viewing (left and right monocular viewing for control subjects). Visual feedback of the target was removed on 50% of the trials at the initiation of reaching. Results Reaching accuracy was comparable between patients and control subjects during all three viewing conditions. Patients’ reaching responses were slightly less precise during amblyopic eye viewing, but their precision was normal during binocular or fellow eye viewing. Reaching reaction time was not affected by amblyopia. The duration of the acceleration phase was longer in patients than in control subjects under all viewing conditions, whereas the duration of the deceleration phase was unaffected. Peak acceleration and peak velocity were also reduced in patients. Conclusions Amblyopia affects both the programming and the execution of visually guided reaching. The increased duration of the acceleration phase, as well as the reduced peak acceleration and peak velocity, might reflect a strategy or adaptation of feedforward/feedback control of the visuomotor system to compensate for degraded spatiotemporal vision in amblyopia, allowing patients to optimize their reaching performance. PMID:21051723

  10. Degradation Characterization of Thermal Interface Greases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DeVoto, Douglas J; Major, Joshua; Paret, Paul P

    Thermal interface materials (TIMs) are used in power electronics packaging to minimize thermal resistance between the heat generating component and the heat sink. Thermal greases are one such class. The conformability and thin bond line thickness (BLT) of these TIMs can potentially provide low thermal resistance throughout the operation lifetime of a component. However, their performance degrades over time due to pump-out and dry-out during thermal and power cycling. The reliability performance of greases through operational cycling needs to be quantified to develop new materials with superior properties. NREL, in collaboration with DuPont, has performed thermal and reliability characterization ofmore » several commercially available thermal greases. Initial bulk and contact thermal resistance of grease samples were measured, and then the thermal degradation that occurred due to pump-out and dry-out during temperature cycling was monitored. The thermal resistances of five different grease materials were evaluated using NREL's steady-state thermal resistance tester based on the ASTM test method D5470. Greases were then applied, utilizing a 2.5 cm x 2.5 cm stencil, between invar and aluminum plates to compare the thermomechanical performance of the materials in a representative test fixture. Scanning Acoustic microscopy, thermal, and compositional analyses were performed periodically during thermal cycling from -40 degrees Celcius to 125 degrees Celcius. Completion of this characterization has allowed for a comprehensive evaluation of thermal greases both for their initial bulk and contact thermal performance, as well as their degradation mechanisms under accelerated thermal cycling conditions.« less

  11. Degradation Characterization of Thermal Interface Greases: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DeVoto, Douglas J; Major, Joshua; Paret, Paul P

    Thermal interface materials (TIMs) are used in power electronics packaging to minimize thermal resistance between the heat generating component and the heat sink. Thermal greases are one such class. The conformability and thin bond line thickness (BLT) of these TIMs can potentially provide low thermal resistance throughout the operation lifetime of a component. However, their performance degrades over time due to pump-out and dry-out during thermal and power cycling. The reliability performance of greases through operational cycling needs to be quantified to develop new materials with superior properties. NREL, in collaboration with DuPont, has performed thermal and reliability characterization ofmore » several commercially available thermal greases. Initial bulk and contact thermal resistance of grease samples were measured, and then the thermal degradation that occurred due to pump-out and dry-out during temperature cycling was monitored. The thermal resistances of five different grease materials were evaluated using NREL's steady-state thermal resistance tester based on the ASTM test method D5470. Greases were then applied, utilizing a 2.5 cm x 2.5 cm stencil, between invar and aluminum plates to compare the thermomechanical performance of the materials in a representative test fixture. Scanning Acoustic microscopy, thermal, and compositional analyses were performed periodically during thermal cycling from -40 degrees Celcius to 125 degrees Celcius. Completion of this characterization has allowed for a comprehensive evaluation of thermal greases both for their initial bulk and contact thermal performance, as well as their degradation mechanisms under accelerated thermal cycling conditions.« less

  12. Degradation Characterization of Thermal Interface Greases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Major, Joshua; Narumanchi, Sreekant V; Paret, Paul P

    Thermal interface materials (TIMs) are used in power electronics packaging to minimize thermal resistance between the heat generating component and the heat sink. Thermal greases are one such class. The conformability and thin bond line thickness (BLT) of these TIMs can potentially provide low thermal resistance throughout the operation lifetime of a component. However, their performance degrades over time due to pump-out and dry-out during thermal and power cycling. The reliability performance of greases through operational cycling needs to be quantified to develop new materials with superior properties. NREL, in collaboration with DuPont, has performed thermal and reliability characterization ofmore » several commercially available thermal greases. Initial bulk and contact thermal resistance of grease samples were measured, and then the thermal degradation that occurred due to pump-out and dry-out during temperature cycling was monitored. The thermal resistances of five different grease materials were evaluated using NREL's steady-state thermal resistance tester based on the ASTM test method D5470. Greases were then applied, utilizing a 2.5 cm x 2.5 cm stencil, between invar and aluminum plates to compare the thermomechanical performance of the materials in a representative test fixture. Scanning Acoustic microscopy, thermal, and compositional analyses were performed periodically during thermal cycling from -40 degrees C to 125 degrees C. Completion of this characterization has allowed for a comprehensive evaluation of thermal greases both for their initial bulk and contact thermal performance, as well as their degradation mechanisms under accelerated thermal cycling conditions.« less

  13. Performance degradation mechanisms and modes in terrestrial photovoltaic arrays and technology for their diagnosis

    NASA Technical Reports Server (NTRS)

    Noel, G. T.; Sliemers, F. A.; Derringer, G. C.; Wood, V. E.; Wilkes, K. E.; Gaines, G. B.; Carmichael, D. C.

    1978-01-01

    Accelerated life-prediction test methodologies have been developed for the validation of a 20-year service life for low-cost photovoltaic arrays. Array failure modes, relevant materials property changes, and primary degradation mechanisms are discussed as a prerequisite to identifying suitable measurement techniques and instruments. Measurements must provide sufficient confidence to permit selection among alternative designs and materials and to stimulate widespread deployment of such arrays. Furthermore, the diversity of candidate materials and designs, and the variety of potential environmental stress combinations, degradation mechanisms and failure modes require that combinations of measurement techniques be identified which are suitable for the characterization of various encapsulation system-cell structure-environment combinations.

  14. Degradation of polycyclic aromatic hydrocarbons in crumb tyre rubber catalysed by rutile TiO2 under UV irradiation.

    PubMed

    Yu, Kai; Huang, Linyue; Lou, Lan-Lan; Chang, Yue; Dong, Yanling; Wang, Huan; Liu, Shuangxi

    2015-01-01

    The polycyclic aromatic hydrocarbons (PAHs) in crumb tyre rubber were firstly degraded under UV irradiation in the presence of rutile TiO2 and hydrogen peroxide. The effects of light intensity, catalyst amount, oxidant amount, initial pH value, co-solvent content, and reaction time on degradation efficiency of typical PAHs in crumb tyre rubber were studied. The results indicated that UV irradiation, rutile TiO2, and hydrogen peroxide were beneficial to the degradation of PAHs and co-solvent could accelerate the desorption of PAHs from crumb tyre rubber. Up to 90% degradation efficiency of total 16 PAHs could be obtained in the presence of rutile TiO2 (1 wt%) and hydrogen peroxide (1.0 mL) under 1800 µW cm(-2) UV irradiation for 48 h. The high molecular weight PAHs (such as benz(a)pyrene) were more difficult to be degraded than low molecular weight PAHs (such as phenanthrene, chrysene). Moreover, through the characterization of reaction solution and degradation products via GC-MS, it was proved that the PAHs in crumb tyre rubber were successfully degraded.

  15. RESTORATION EFFECTS ON N CYCLING POOLS AND PROCESSES

    EPA Science Inventory

    Over the past several years, there has been an acceleration of restoration efforts to mitigate the consequences (i.e., ground and surface water chemical pollutants, erosion, etc.) of degraded ecosystems and enhance structural and functional components of watershed ecosystems that...

  16. BIOREACTOR LANDFILLS, THEORETICAL ADVANTAGES AND RESEARCH CHALLENGES

    EPA Science Inventory

    Bioreactor landfills are municipal solid waste landfills that utilize bulk liquids in an effort to accelerate solid waste degradation. There are few potential benefits for operating a MSW landfill as a bioreactor. These include leachate treatment and management, increase in the s...

  17. Statistical analysis of road-vehicle-driver interaction as an enabler to designing behavioural models

    NASA Astrophysics Data System (ADS)

    Chakravarty, T.; Chowdhury, A.; Ghose, A.; Bhaumik, C.; Balamuralidhar, P.

    2014-03-01

    Telematics form an important technology enabler for intelligent transportation systems. By deploying on-board diagnostic devices, the signatures of vehicle vibration along with its location and time are recorded. Detailed analyses of the collected signatures offer deep insights into the state of the objects under study. Towards that objective, we carried out experiments by deploying telematics device in one of the office bus that ferries employees to office and back. Data is being collected from 3-axis accelerometer, GPS, speed and the time for all the journeys. In this paper, we present initial results of the above exercise by applying statistical methods to derive information through systematic analysis of the data collected over four months. It is demonstrated that the higher order derivative of the measured Z axis acceleration samples display the properties Weibull distribution when the time axis is replaced by the amplitude of such processed acceleration data. Such an observation offers us a method to predict future behaviour where deviations from prediction are classified as context-based aberrations or progressive degradation of the system. In addition we capture the relationship between speed of the vehicle and median of the jerk energy samples using regression analysis. Such results offer an opportunity to develop a robust method to model road-vehicle interaction thereby enabling us to predict such like driving behaviour and condition based maintenance etc.

  18. Reliability and Engineering of Thin-Film Photovoltaic Modules. Research forum proceedings

    NASA Technical Reports Server (NTRS)

    Ross, R. G., Jr. (Editor); Royal, E. L. (Editor)

    1985-01-01

    A Research Forum on Reliability and Engineering of Thin Film Photovoltaic Modules, under sponsorship of the Jet Propulsion Laboratory's Flat Plate Solar Array (FSA) Project and the U.S. Department of Energy, was held in Washington, D.C., on March 20, 1985. Reliability attribute investigations of amorphous silicon cells, submodules, and modules were the subjects addressed by most of the Forum presentations. Included among the reliability research investigations reported were: Arrhenius-modeled accelerated stress tests on a Si cells, electrochemical corrosion, light induced effects and their potential effects on stability and reliability measurement methods, laser scribing considerations, and determination of degradation rates and mechanisms from both laboratory and outdoor exposure tests.

  19. Statistical evaluation of accelerated stability data obtained at a single temperature. I. Effect of experimental errors in evaluation of stability data obtained.

    PubMed

    Yoshioka, S; Aso, Y; Takeda, Y

    1990-06-01

    Accelerated stability data obtained at a single temperature is statistically evaluated, and the utility of such data for assessment of stability is discussed focussing on the chemical stability of solution-state dosage forms. The probability that the drug content of a product is observed to be within the lower specification limit in the accelerated test is interpreted graphically. This probability depends on experimental errors in the assay and temperature control, as well as the true degradation rate and activation energy. Therefore, the observation that the drug content meets the specification in the accelerated testing can provide only limited information on the shelf-life of the drug, without the knowledge of the activation energy and the accuracy and precision of the assay and temperature control.

  20. Genetic Linkage of Soil Carbon Pools and Microbial Functions in Subtropical Freshwater Wetlands in Response to Experimental Warming

    PubMed Central

    Wang, Hang; He, Zhili; Lu, Zhenmei; Zhou, Jizhong; Van Nostrand, Joy D.; Xu, Xinhua

    2012-01-01

    Rising climate temperatures in the future are predicted to accelerate the microbial decomposition of soil organic matter. A field microcosm experiment was carried out to examine the impact of soil warming in freshwater wetlands on different organic carbon (C) pools and associated microbial functional responses. GeoChip 4.0, a functional gene microarray, was used to determine microbial gene diversity and functional potential for C degradation. Experimental warming significantly increased soil pore water dissolved organic C and phosphorus (P) concentrations, leading to a higher potential for C emission and P export. Such losses of total organic C stored in soil could be traced back to the decomposition of recalcitrant organic C. Warming preferentially stimulated genes for degrading recalcitrant C over labile C. This was especially true for genes encoding cellobiase and mnp for cellulose and lignin degradation, respectively. We confirmed this with warming-enhanced polyphenol oxidase and peroxidase activities for recalcitrant C acquisition and greater increases in recalcitrant C use efficiency than in labile C use efficiency (average percentage increases of 48% versus 28%, respectively). The relative abundance of lignin-degrading genes increased by 15% under warming; meanwhile, soil fungi, as the primary decomposers of lignin, were greater in abundance by 27%. This work suggests that future warming may enhance the potential for accelerated fungal decomposition of lignin-like compounds, leading to greater microbially mediated C losses than previously estimated in freshwater wetlands. PMID:22923398

  1. Accelerated degradation of methyl iodide by agrochemicals.

    PubMed

    Zheng, Wei; Papiernik, Sharon K; Guo, Mingxin; Yates, Scott R

    2003-01-29

    The fumigant methyl iodide (MeI, iodomethane) is considered a promising alternative to methyl bromide (MeBr) for soil-borne pest control in high-cash-value crops. However, the high vapor pressure of MeI results in emissions of a significant proportion of the applied mass into the ambient air, and this may lead to pollution of the environment. Integrating the application of certain agrochemicals with soil fumigation provides a novel approach to reduce excessive fumigant emissions. This study investigated the potential for several agrochemicals that are commonly used in farming operations, including fertilizers and nitrification inhibitors, to transform MeI in aqueous solution. The pseudo-first-order hydrolysis half-life (t(1/2)) of MeI was approximately 108 d, while the transformation of MeI in aqueous solutions containing selected agrochemicals was more rapid, with t(1/2) < 100 d (t(1/2) < 0.5 d in some solutions containing nitrification inhibitors). The influence of these agrochemicals on the rate of MeI degradation in soil was also determined. Adsorption to soil apparently reduced the availability of some nitrification inhibitors in the soil aqueous phase and lowered the degradation rate in soil. In contrast, addition of the nitrification inhibitors thiourea and allylthiourea to soil significantly accelerated the degradation of MeI, possibly due to soil surface catalysis. The t(1/2) of MeI was <20 h in thiourea- and allylthiourea-amended soil, considerably less than that in unamended soil (t(1/2) > 300 h).

  2. Chloride effect on TNT degradation by zerovalent iron or zinc during water treatment.

    PubMed

    Hernandez, Rafael; Zappi, Mark; Kuo, Chiang-Hai

    2004-10-01

    Addition of corrosion promoters, such as sodium and potassium chloride, accelerated TNT degradation during water treatment using zerovalent zinc and iron. It was theorized that corrosion promoters could be used to accelerate electron generation from metallic species, create new reactive sites on the surface of metals during contaminated water treatment, and minimize passivating effects. The surface area normalized pseudo-first-order rate constant for the reaction of zerovalent zinc with TNT in the absence of KCl was 1.364 L x m(-2) x h(-1). In the presence of 0.3 mM and 3 mM KCI, the rate constant increased to 10.5 L x m(-2) x h(-1) and 51.0 L x m(-2) x h(-1), respectively. For the reaction with zerovalent iron and TNT, the rate constant increased from 6.5 (L/m2 x h) in the absence of KCl to 37 L x m(-2) x h(-1) using 3 mM KCl. The results demonstrate that chloride based corrosion promoters enhance the rate of TNT degradation. The in-situ breakage of the oxide layer using corrosion promoters was applied as a treatment to maintain the long-term activity of the metallic species. Zinc maintained a high reactivity toward TNT, and the reactivity of iron increased after 5 treatment cycles using 3 mM KCI. Zinc and iron scanning electron micrographs indicate that TNT degradation rate enhancement is caused by the pitting corrosion mechanism.

  3. Point target detection utilizing super-resolution strategy for infrared scanning oversampling system

    NASA Astrophysics Data System (ADS)

    Wang, Longguang; Lin, Zaiping; Deng, Xinpu; An, Wei

    2017-11-01

    To improve the resolution of remote sensing infrared images, infrared scanning oversampling system is employed with information amount quadrupled, which contributes to the target detection. Generally the image data from double-line detector of infrared scanning oversampling system is shuffled to a whole oversampled image to be post-processed, whereas the aliasing between neighboring pixels leads to image degradation with a great impact on target detection. This paper formulates a point target detection method utilizing super-resolution (SR) strategy concerning infrared scanning oversampling system, with an accelerated SR strategy proposed to realize fast de-aliasing of the oversampled image and an adaptive MRF-based regularization designed to achieve the preserving and aggregation of target energy. Extensive experiments demonstrate the superior detection performance, robustness and efficiency of the proposed method compared with other state-of-the-art approaches.

  4. Ubiquitinated CD36 sustains insulin-stimulated Akt activation by stabilizing insulin receptor substrate 1 in myotubes.

    PubMed

    Sun, Shishuo; Tan, Pengcheng; Huang, Xiaoheng; Zhang, Wei; Kong, Chen; Ren, Fangfang; Su, Xiong

    2018-02-16

    Both the magnitude and duration of insulin signaling are important in executing its cellular functions. Insulin-induced degradation of insulin receptor substrate 1 (IRS1) represents a key negative feedback loop that restricts insulin signaling. Moreover, high concentrations of fatty acids (FAs) and glucose involved in the etiology of obesity-associated insulin resistance also contribute to the regulation of IRS1 degradation. The scavenger receptor CD36 binds many lipid ligands, and its contribution to insulin resistance has been extensively studied, but the exact regulation of insulin sensitivity by CD36 is highly controversial. Herein, we found that CD36 knockdown in C2C12 myotubes accelerated insulin-stimulated Akt activation, but the activated signaling was sustained for a much shorter period of time as compared with WT cells, leading to exacerbated insulin-induced insulin resistance. This was likely due to enhanced insulin-induced IRS1 degradation after CD36 knockdown. Overexpression of WT CD36, but not a ubiquitination-defective CD36 mutant, delayed IRS1 degradation. We also found that CD36 functioned through ubiquitination-dependent binding to IRS1 and inhibiting its interaction with cullin 7, a key component of the multisubunit cullin-RING E3 ubiquitin ligase complex. Moreover, dissociation of the Src family kinase Fyn from CD36 by free FAs or Fyn knockdown/inhibition accelerated insulin-induced IRS1 degradation, likely due to disrupted IRS1 interaction with CD36 and thus enhanced binding to cullin 7. In summary, we identified a CD36-dependent FA-sensing pathway that plays an important role in negative feedback regulation of insulin activation and may open up strategies for preventing or managing type 2 diabetes mellitus. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  5. The fate of selected pharmaceuticals in solar stills: Transfer, thermal degradation or photolysis?

    PubMed

    Baalbaki, Abbas; Ayoub, George M; Al-Hindi, Mahmoud; Ghauch, Antoine

    2017-01-01

    The increase in demand for, and disposal of, pharmaceuticals, positively correlated with the growing human population, has led to the emergence of contaminants with high environmental and health impacts. Several developing countries that endure problems related to water sufficiency and/or quality resort to the use solar stills as an affordable water treatment method. This research is aimed at investigating the fate of five chemically distinct pharmaceuticals that might pervade solar stills; ibuprofen (IBU), diclofenac (DCF), carbamazepine (CBZ), ampicillin (AMP) and naproxen (NPX). The experiments were conducted under three conditions. The first condition studied the combined effect of temperature and light in simulated field-test-scale solar stills. The effect of temperature as a sole variable was investigated in the second while the third condition studied the effect of light only via concentrated solar power (CSP). Results show that distillates from solar stills did not contain the parent compounds for four out of the five pharmaceuticals. IBU was the only pharmaceutical that showed a transfer via vapor into the distillate with the highest recorded transfer percentage of 2.1% at 50°C when subjected to temperature alone and 0.6% under the combined effect of temperature and light. In the case of NPX and DCF, the parent compounds did not undergo transfer into the distillate phase; however their degradation by-products did. In addition, the results also showed that in the case of NPX, IBU and CBZ both high temperatures and sunlight combined were required to attain noticeable degradation. CSP accelerated the degradation of DCF, NPX and IBU with a three-minutes-degradation percentage of 44%, 13% and 2% respectively. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Degradation of diclofenac by UV-activated persulfate process: Kinetic studies, degradation pathways and toxicity assessments.

    PubMed

    Lu, Xian; Shao, Yisheng; Gao, Naiyun; Chen, Juxiang; Zhang, Yansen; Xiang, Huiming; Guo, Youluo

    2017-07-01

    Diclofenac (DCF) is the frequently detected non-steroidal pharmaceuticals in the aquatic environment. In this study, the degradation of DCF was evaluated by UV-254nm activated persulfate (UV/PS). The degradation of DCF followed the pseudo first-order kinetics pattern. The degradation rate constant (k obs ) was accelerated by UV/PS compared to UV alone and PS alone. Increasing the initial PS dosage or solution pH significantly enhanced the degradation efficiency. Presence of various natural water constituents had different effects on DCF degradation, with an enhancement or inhibition in the presence of inorganic anions (HCO 3 - or Cl - ) and a significant inhibition in the presence of NOM. In addition, preliminary degradation mechanisms and major products were elucidated using LC-MS/MS. Hydroxylation, decarbonylation, ring-opening and cyclation reaction involving the attack of SO 4 • - or other substances, were the main degradation mechanism. TOC analyzer and Microtox bioassay were employed to evaluate the mineralization and cytotoxicity of solutions treated by UV/PS at different times, respectively. Limited elimination of TOC (32%) was observed during the mineralization of DCF. More toxic degradation products and their related intermediate species were formed, and the UV/PS process was suitable for removing the toxicity. Of note, longer degradation time may be considered for the final toxicity removal. Copyright © 2017. Published by Elsevier Inc.

  7. Neuronal-Targeted TFEB Accelerates Lysosomal Degradation of APP, Reducing Aβ Generation and Amyloid Plaque Pathogenesis.

    PubMed

    Xiao, Qingli; Yan, Ping; Ma, Xiucui; Liu, Haiyan; Perez, Ronaldo; Zhu, Alec; Gonzales, Ernesto; Tripoli, Danielle L; Czerniewski, Leah; Ballabio, Andrea; Cirrito, John R; Diwan, Abhinav; Lee, Jin-Moo

    2015-09-02

    In AD, an imbalance between Aβ production and removal drives elevated brain Aβ levels and eventual amyloid plaque deposition. APP undergoes nonamyloidogenic processing via α-cleavage at the plasma membrane, amyloidogenic β- and γ-cleavage within endosomes to generate Aβ, or lysosomal degradation in neurons. Considering multiple reports implicating impaired lysosome function as a driver of increased amyloidogenic processing of APP, we explored the efficacy of targeting transcription factor EB (TFEB), a master regulator of lysosomal pathways, to reduce Aβ levels. CMV promoter-driven TFEB, transduced via stereotactic hippocampal injections of adeno-associated virus particles in APP/PS1 mice, localized primarily to neuronal nuclei and upregulated lysosome biogenesis. This resulted in reduction of APP protein, the α and β C-terminal APP fragments (CTFs), and in the steady-state Aβ levels in the brain interstitial fluid. In aged mice, total Aβ levels and amyloid plaque load were selectively reduced in the TFEB-transduced hippocampi. TFEB transfection in N2a cells stably expressing APP695, stimulated lysosome biogenesis, reduced steady-state levels of APP and α- and β-CTFs, and attenuated Aβ generation by accelerating flux through the endosome-lysosome pathway. Cycloheximide chase assays revealed a shortening of APP half-life with exogenous TFEB expression, which was prevented by concomitant inhibition of lysosomal acidification. These data indicate that TFEB enhances flux through lysosomal degradative pathways to induce APP degradation and reduce Aβ generation. Activation of TFEB in neurons is an effective strategy to attenuate Aβ generation and attenuate amyloid plaque deposition in AD. A key driver for AD pathogenesis is the net balance between production and clearance of Aβ, the major component of amyloid plaques. Here we demonstrate that lysosomal degradation of holo-APP influences Aβ production by limiting the availability of APP for amyloidogenic processing. Using viral gene transfer of transcription factor EB (TFEB), a master regulator of lysosome biogenesis in neurons of APP/PS1 mice, steady-state levels of APP were reduced, resulting in decreased interstitial fluid Aβ levels and attenuated amyloid deposits. These effects were caused by accelerated lysosomal degradation of endocytosed APP, reflected by reduced APP half-life and steady-state levels in TFEB-expressing cells, with resultant decrease in Aβ production and release. Additional studies are needed to explore the therapeutic potential of this approach. Copyright © 2015 the authors 0270-6474/15/3512137-15$15.00/0.

  8. Multidimensional Compressed Sensing MRI Using Tensor Decomposition-Based Sparsifying Transform

    PubMed Central

    Yu, Yeyang; Jin, Jin; Liu, Feng; Crozier, Stuart

    2014-01-01

    Compressed Sensing (CS) has been applied in dynamic Magnetic Resonance Imaging (MRI) to accelerate the data acquisition without noticeably degrading the spatial-temporal resolution. A suitable sparsity basis is one of the key components to successful CS applications. Conventionally, a multidimensional dataset in dynamic MRI is treated as a series of two-dimensional matrices, and then various matrix/vector transforms are used to explore the image sparsity. Traditional methods typically sparsify the spatial and temporal information independently. In this work, we propose a novel concept of tensor sparsity for the application of CS in dynamic MRI, and present the Higher-order Singular Value Decomposition (HOSVD) as a practical example. Applications presented in the three- and four-dimensional MRI data demonstrate that HOSVD simultaneously exploited the correlations within spatial and temporal dimensions. Validations based on cardiac datasets indicate that the proposed method achieved comparable reconstruction accuracy with the low-rank matrix recovery methods and, outperformed the conventional sparse recovery methods. PMID:24901331

  9. A role for calcium hydroxide and dolomite in water: acceleration of the reaction under ultraviolet light.

    PubMed

    Nagase, Hiroyasu; Tsujino, Hidekazu; Kurihara, Daisuke; Saito, Hiroshi; Kawase, Masaya

    2014-04-01

    Organic environmental pollutants are now being detected with remarkably high frequency in the aquatic environment. Photodegradation by ultraviolet light is sometimes used as a method for removing organic chemicals from water; however, this method is relatively inefficient because of the low degradation rates involved, and more efficient methods are under development. Here we show that the removal of various organic pollutants can be assisted by calcined dolomite in aqueous solution under irradiation with ultraviolet light. It was possible to achieve substantial removal of bisphenol A, chlorophenols, alkylphenols, 1-naphthol and 17β-estradiol. The major component of dolomite responsible for the removal was calcium hydroxide. Our results demonstrate that the use of calcium hydroxide with ultraviolet light irradiation can be a very effective method of rapidly removing organic environmental pollutants from water. This is a new role for calcium hydroxide and dolomite in water treatment. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Kinetic Monte Carlo simulation of the efficiency roll-off, emission color, and degradation of organic light-emitting diodes (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Coehoorn, Reinder; van Eersel, Harm; Bobbert, Peter A.; Janssen, Rene A. J.

    2015-10-01

    The performance of Organic Light Emitting Diodes (OLEDs) is determined by a complex interplay of the charge transport and excitonic processes in the active layer stack. We have developed a three-dimensional kinetic Monte Carlo (kMC) OLED simulation method which includes all these processes in an integral manner. The method employs a physically transparent mechanistic approach, and is based on measurable parameters. All processes can be followed with molecular-scale spatial resolution and with sub-nanosecond time resolution, for any layer structure and any mixture of materials. In the talk, applications to the efficiency roll-off, emission color and lifetime of white and monochrome phosphorescent OLEDs [1,2] are demonstrated, and a comparison with experimental results is given. The simulations show to which extent the triplet-polaron quenching (TPQ) and triplet-triplet-annihilation (TTA) contribute to the roll-off, and how the microscopic parameters describing these processes can be deduced properly from dedicated experiments. Degradation is treated as a result of the (accelerated) conversion of emitter molecules to non-emissive sites upon a triplet-polaron quenching (TPQ) process. The degradation rate, and hence the device lifetime, is shown to depend on the emitter concentration and on the precise type of TPQ process. Results for both single-doped and co-doped OLEDs are presented, revealing that the kMC simulations enable efficient simulation-assisted layer stack development. [1] H. van Eersel et al., Appl. Phys. Lett. 105, 143303 (2014). [2] R. Coehoorn et al., Adv. Funct. Mater. (2015), publ. online (DOI: 10.1002/adfm.201402532)

  11. Long-Term Warming Alters Carbohydrate Degradation Potential in Temperate Forest Soils

    PubMed Central

    Billings, Andrew F.; Blanchard, Jeff L.; Burkhardt, Daniel B.; Frey, Serita D.; Melillo, Jerry M.; Schnabel, Julia; van Diepen, Linda T. A.

    2016-01-01

    ABSTRACT As Earth's climate warms, soil carbon pools and the microbial communities that process them may change, altering the way in which carbon is recycled in soil. In this study, we used a combination of metagenomics and bacterial cultivation to evaluate the hypothesis that experimentally raising soil temperatures by 5°C for 5, 8, or 20 years increased the potential for temperate forest soil microbial communities to degrade carbohydrates. Warming decreased the proportion of carbohydrate-degrading genes in the organic horizon derived from eukaryotes and increased the fraction of genes in the mineral soil associated with Actinobacteria in all studies. Genes associated with carbohydrate degradation increased in the organic horizon after 5 years of warming but had decreased in the organic horizon after warming the soil continuously for 20 years. However, a greater proportion of the 295 bacteria from 6 phyla (10 classes, 14 orders, and 34 families) isolated from heated plots in the 20-year experiment were able to depolymerize cellulose and xylan than bacterial isolates from control soils. Together, these findings indicate that the enrichment of bacteria capable of degrading carbohydrates could be important for accelerated carbon cycling in a warmer world. IMPORTANCE The massive carbon stocks currently held in soils have been built up over millennia, and while numerous lines of evidence indicate that climate change will accelerate the processing of this carbon, it is unclear whether the genetic repertoire of the microbes responsible for this elevated activity will also change. In this study, we showed that bacteria isolated from plots subject to 20 years of 5°C of warming were more likely to depolymerize the plant polymers xylan and cellulose, but that carbohydrate degradation capacity is not uniformly enriched by warming treatment in the metagenomes of soil microbial communities. This study illustrates the utility of combining culture-dependent and culture-independent surveys of microbial communities to improve our understanding of the role changing microbial communities may play in soil carbon cycling under climate change. PMID:27590813

  12. Evaluating Brazilian sugarcane expansion effects on soil structure using VESS

    USDA-ARS?s Scientific Manuscript database

    Increasing global demand for biofuel has accelerated land-use change (LUC) in Brazil, primarily by replacing degraded pasture with sugarcane (Saccharum officinarum). The intensive echanization associated with this LUC has increased concerns regarding soil structural quality (SSQ). Through decades of...

  13. Accelerators for Fusion Materials Testing

    NASA Astrophysics Data System (ADS)

    Knaster, Juan; Okumura, Yoshikazu

    Fusion materials research is a worldwide endeavor as old as the parallel one working toward the long term stable confinement of ignited plasma. In a fusion reactor, the preservation of the required minimum thermomechanical properties of the in-vessel components exposed to the severe irradiation and heat flux conditions is an indispensable factor for safe operation; it is also an essential goal for the economic viability of fusion. Energy from fusion power will be extracted from the 14 MeV neutron freed as a product of the deuterium-tritium fusion reactions; thus, this kinetic energy must be absorbed and efficiently evacuated and electricity eventually generated by the conventional methods of a thermal power plant. Worldwide technological efforts to understand the degradation of materials exposed to 14 MeV neutron fluxes >1018 m-2s-1, as expected in future fusion power plants, have been intense over the last four decades. Existing neutron sources can reach suitable dpa (“displacement-per-atom”, the figure of merit to assess materials degradation from being exposed to neutron irradiation), but the differences in the neutron spectrum of fission reactors and spallation sources do not allow one to unravel the physics and to anticipate the degradation of materials exposed to fusion neutrons. Fusion irradiation conditions can be achieved through Li (d, xn) nuclear reactions with suitable deuteron beam current and energy, and an adequate flowing lithium screen. This idea triggered in the late 1970s at Los Alamos National Laboratory (LANL) a campaign working toward the feasibility of continuous wave (CW) high current linacs framed by the Fusion Materials Irradiation Test (FMIT) project. These efforts continued with the Low Energy Demonstrating Accelerator (LEDA) (a validating prototype of the canceled Accelerator Production of Tritium (APT) project), which was proposed in 2002 to the fusion community as a 6.7MeV, 100mA CW beam injector for a Li (d, xn) source to bridge with the International Fusion Materials Irradiation Facility (IFMIF) under discussion at the time. Worldwide technological efforts are maturing soundly and the time for a fusion-relevant neutron source has arrived according to world fusion roadmaps; if decisions are taken we could count the next decade with a powerful source of 14 MeV neutrons thanks to the expected significant results of the Engineering Validation and Engineering Design Activity (EVEDA) phase of the IFMIF project. The accelerator know-how has matured in all possible aspects since the times of FMIT conception in the 1970s; today, operating 125 mA deuteron beam at 40 MeV in CW with high availabilities seems feasible thanks to the understanding of the beam halo physics and the three main technological breakthroughs in accelerator technology: (1) the ECR ion source for light ions developed at Chalk River Laboratories in the early 1990s, (2) the RFQ operation of H+ in CW with 100 mA demonstrated by LEDA in LANL in the late 1990s, and (3) the growing maturity of superconducting resonators for light hadrons and low β beams achieved in recent years.

  14. Accelerators for Fusion Materials Testing

    NASA Astrophysics Data System (ADS)

    Knaster, Juan; Okumura, Yoshikazu

    Fusion materials research is a worldwide endeavor as old as the parallel one working toward the long term stable confinement of ignited plasma. In a fusion reactor, the preservation of the required minimum thermomechanical properties of the in-vessel components exposed to the severe irradiation and heat flux conditions is an indispensable factor for safe operation; it is also an essential goal for the economic viability of fusion. Energy from fusion power will be extracted from the 14 MeV neutron freed as a product of the deuterium-tritium fusion reactions; thus, this kinetic energy must be absorbed and efficiently evacuated and electricity eventually generated by the conventional methods of a thermal power plant. Worldwide technological efforts to understand the degradation of materials exposed to 14 MeV neutron fluxes > 1018 m-2s-1, as expected in future fusion power plants, have been intense over the last four decades. Existing neutron sources can reach suitable dpa ("displacement-per-atom", the figure of merit to assess materials degradation from being exposed to neutron irradiation), but the differences in the neutron spectrum of fission reactors and spallation sources do not allow one to unravel the physics and to anticipate the degradation of materials exposed to fusion neutrons. Fusion irradiation conditions can be achieved through Li (d, xn) nuclear reactions with suitable deuteron beam current and energy, and an adequate flowing lithium screen. This idea triggered in the late 1970s at Los Alamos National Laboratory (LANL) a campaign working toward the feasibility of continuous wave (CW) high current linacs framed by the Fusion Materials Irradiation Test (FMIT) project. These efforts continued with the Low Energy Demonstrating Accelerator (LEDA) (a validating prototype of the canceled Accelerator Production of Tritium (APT) project), which was proposed in 2002 to the fusion community as a 6.7MeV, 100mA CW beam injector for a Li (d, xn) source to bridge with the International Fusion Materials Irradiation Facility (IFMIF) under discussion at the time. Worldwide technological efforts are maturing soundly and the time for a fusion-relevant neutron source has arrived according to world fusion roadmaps; if decisions are taken we could count the next decade with a powerful source of 14 MeV neutrons thanks to the expected significant results of the Engineering Validation and Engineering Design Activity (EVEDA) phase of the IFMIF project. The accelerator know-how has matured in all possible aspects since the times of FMIT conception in the 1970s; today, operating 125 mA deuteron beam at 40 MeV in CW with high availabilities seems feasible thanks to the understanding of the beam halo physics and the three main technological breakthroughs in accelerator technology: (1) the ECR ion source for light ions developed at Chalk River Laboratories in the early 1990s, (2) the RFQ operation of H+ in CW with 100 mA demonstrated by LEDA in LANL in the late 1990s, and (3) the growing maturity of superconducting resonators for light hadrons and low β beams achieved in recent years.

  15. Surface science analysis of GaAs photocathodes following sustained electron beam delivery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carlos Hernandez-Garcia, Fay Hannon, Marcy Stutzman, V. Shutthanandan, Z. Zhu, M. Nandasri, S. V. Kuchibhatla, S. Thevuthasan, W. P. Hess

    2012-06-01

    Degradation of the photocathode materials employed in photoinjectors represents a challenge for sustained operation of nuclear physics accelerators and high power Free Electron Lasers (FEL). Photocathode quantum efficiency (QE) degradation is due to residual gasses in the electron source vacuum system being ionized and accelerated back to the photocathode. These investigations are a first attempt to characterize the nature of the photocathode degradation, and employ multiple surface and bulk analysis techniques to investigate damage mechanisms including sputtering of the Cs-oxidant surface monolayer, other surface chemistry effects, and ion implantation. Surface and bulk analysis studies were conducted on two GaAs photocathodes,more » which were removed from the JLab FEL DC photoemission gun after delivering electron beam, and two control samples. The analysis techniques include Helium Ion Microscopy (HIM), Rutherford Backscattering Spectrometry (RBS), Atomic Force Microscopy (AFM) and Secondary Ion Mass Spectrometry (SIMS). In addition, two high-polarization strained superlattice GaAs photocathode samples, one removed from the Continuous Electron Beam Accelerator Facility (CEBAF) photoinjector and one unused, were also analyzed using Transmission Electron Microscopy (TEM) and SIMS. It was found that heat cleaning the FEL GaAs wafer introduces surface roughness, which seems to be reduced by prolonged use. The bulk GaAs samples retained a fairly well organized crystalline structure after delivering beam but shows evidence of Cs depletion on the surface. Within the precision of the SIMS and RBS measurements the data showed no indication of hydrogen implantation or lattice damage from ion back bombardment in the bulk GaAs wafers. In contrast, SIMS and TEM measurements of the strained superlattice photocathode show clear crystal damage in the wafer from ion back bombardment.« less

  16. Anderson acceleration and application to the three-temperature energy equations

    NASA Astrophysics Data System (ADS)

    An, Hengbin; Jia, Xiaowei; Walker, Homer F.

    2017-10-01

    The Anderson acceleration method is an algorithm for accelerating the convergence of fixed-point iterations, including the Picard method. Anderson acceleration was first proposed in 1965 and, for some years, has been used successfully to accelerate the convergence of self-consistent field iterations in electronic-structure computations. Recently, the method has attracted growing attention in other application areas and among numerical analysts. Compared with a Newton-like method, an advantage of Anderson acceleration is that there is no need to form the Jacobian matrix. Thus the method is easy to implement. In this paper, an Anderson-accelerated Picard method is employed to solve the three-temperature energy equations, which are a type of strong nonlinear radiation-diffusion equations. Two strategies are used to improve the robustness of the Anderson acceleration method. One strategy is to adjust the iterates when necessary to satisfy the physical constraint. Another strategy is to monitor and, if necessary, reduce the matrix condition number of the least-squares problem in the Anderson-acceleration implementation so that numerical stability can be guaranteed. Numerical results show that the Anderson-accelerated Picard method can solve the three-temperature energy equations efficiently. Compared with the Picard method without acceleration, Anderson acceleration can reduce the number of iterations by at least half. A comparison between a Jacobian-free Newton-Krylov method, the Picard method, and the Anderson-accelerated Picard method is conducted in this paper.

  17. A Reliability Model for Ni-BaTiO3-Based (BME) Ceramic Capacitors

    NASA Technical Reports Server (NTRS)

    Liu, Donhang

    2014-01-01

    The evaluation of multilayer ceramic capacitors (MLCCs) with base-metal electrodes (BMEs) for potential NASA space project applications requires an in-depth understanding of their reliability. The reliability of an MLCC is defined as the ability of the dielectric material to retain its insulating properties under stated environmental and operational conditions for a specified period of time t. In this presentation, a general mathematic expression of a reliability model for a BME MLCC is developed and discussed. The reliability model consists of three parts: (1) a statistical distribution that describes the individual variation of properties in a test group of samples (Weibull, log normal, normal, etc.), (2) an acceleration function that describes how a capacitors reliability responds to external stresses such as applied voltage and temperature (All units in the test group should follow the same acceleration function if they share the same failure mode, independent of individual units), and (3) the effect and contribution of the structural and constructional characteristics of a multilayer capacitor device, such as the number of dielectric layers N, dielectric thickness d, average grain size r, and capacitor chip size S. In general, a two-parameter Weibull statistical distribution model is used in the description of a BME capacitors reliability as a function of time. The acceleration function that relates a capacitors reliability to external stresses is dependent on the failure mode. Two failure modes have been identified in BME MLCCs: catastrophic and slow degradation. A catastrophic failure is characterized by a time-accelerating increase in leakage current that is mainly due to existing processing defects (voids, cracks, delamination, etc.), or the extrinsic defects. A slow degradation failure is characterized by a near-linear increase in leakage current against the stress time; this is caused by the electromigration of oxygen vacancies (intrinsic defects). The two identified failure modes follow different acceleration functions. Catastrophic failures follow the traditional power-law relationship to the applied voltage. Slow degradation failures fit well to an exponential law relationship to the applied electrical field. Finally, the impact of capacitor structure on the reliability of BME capacitors is discussed with respect to the number of dielectric layers in an MLCC unit, the number of BaTiO3 grains per dielectric layer, and the chip size of the capacitor device.

  18. Multiscale analysis of the radiooxidative degradation of EVA/EPDM composites. ATH filler and dose rate effect

    NASA Astrophysics Data System (ADS)

    Sidi, Ahmedou; Colombani, Juliette; Larché, Jean-François; Rivaton, Agnès

    2018-01-01

    This study is focused on the radiooxidative degradation of polymeric insulation of electric cables used in Nuclear Power Plants (NPPs). In order to investigate the degradation mechanisms of the insulation, model composites with ATH (Aluminium TriHydrate) filler and blends (without filler) based on a cross-linked mixture of EVA (Ethylene Vinyl Acetate) and EPDM (Ethylene Propylene Diene Monomer) were submitted to gamma-rays. In normal operating conditions of a NPP, the dose rate which electric cables are exposed to is around 0.1 Gy h-1. In this work, artificial accelerated ageing test process has been applied at a relatively low dose rate of 7 Gy h-1. Gamma-irradiations at higher dose rates typically used to accelerate the ageing, in the range 0.2-1 kGy h-1, were also carried out. The first part of the study is focused on irradiations performed at relatively low dose rate and is devoted to the highlighting of the radiooxidative degradation mechanisms of EVA/EPDM blend with and without ATH filler. Correlations between the evolutions of the chemical, morphological and mechanical/electrical properties of the materials occurring after the ageing process are presented. It is shown that the degradation process is governed by radical oxidation mechanism involving chain scissions leading to the formation of carboxylic acids as end-groups. One of the main effects of the ATH filler is the progressive loss of the mechanical properties of the composite upon radiooxidation whereas they are maintained in the case of the unfilled sample. Despite the oxidation of the polymer, no change in the electrical properties of the blend and of the composite could be observed. The second part of the study focuses on the dose rate effect. It is shown that one of the main consequences of an increase of the dose rate from 7 Gy h-1 to 0.2-1 kGy h-1 is a reduction of the chain scission process yield by a factor of about 20. Therefore, an important and consistent finding is that there are some limits that must not be exceeded in terms of dose rate to ensure a global satisfactorily representativeness of the accelerated ageing process.

  19. Enhancing the biodegradation of oil in sandy sediments with choline: a naturally methylated nitrogen compound.

    PubMed

    Mortazavi, Behzad; Horel, Agota; Anders, Jennifer S; Mirjafari, Arsalan; Beazley, Melanie J; Sobecky, Patricia A

    2013-11-01

    We investigated how additions of choline, a naturally occurring methylated nitrogen-containing compound, accelerated hydrocarbon degradation in sandy sediments contaminated with moderately weathered crude oil (4000 mg kg(-1) sediment). Addition of lauroylcholine chloride (LCC) and tricholine citrate (TCC) to oil contaminated sediments resulted in 1.6 times higher hydrocarbon degradation rates compared to treatments without added choline derivatives. However, the degradation rate constant for the oil contaminated sediments amended with LCC was similar to that in contaminated sediments amended with inorganic nitrogen, phosphorus, and glucose. Additions of LLC and TCC to sediments containing extensively weathered oil also resulted in enhanced mineralization rates. Cultivation-free 16S rRNA analysis revealed the presence of an extant microbial community with clones closely related to known hydrocarbon degraders from the Gammaproteobacteria, Alphaproteobacteria, and Firmicutes phyla. The results demonstrate that the addition of minimal amounts of organic compounds to oil contaminated sediments enhances the degradation of hydrocarbons. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Degradation of Leakage Currents in Solid Tantalum Capacitors Under Steady-State Bias Conditions

    NASA Technical Reports Server (NTRS)

    Teverovsky, Alexander A.

    2010-01-01

    Degradation of leakage currents in various types of solid tantalum capacitors under steady-state bias conditions was investigated at temperatures from 105 oC to 170 oC and voltages up to two times the rated voltage. Variations of leakage currents with time under highly accelerated life testing (HALT) and annealing, thermally stimulated depolarization currents, and I-V characteristics were measured to understand the conduction mechanism and the reason for current degradation. During HALT the currents increase gradually up to three orders of magnitude in some cases, and then stabilize with time. This degradation is reversible and annealing can restore the initial levels of leakage currents. The results are attributed to migration of positively charged oxygen vacancies in tantalum pentoxide films that diminish the Schottky barrier at the MnO2/Ta2O5 interface and increase electron injection. A simple model allows for estimation of concentration and mobility of oxygen vacancies based on the level of current degradation.

  1. Effect of Post-HALT Annealing on Leakage Currents in Solid Tantalum Capacitors

    NASA Technical Reports Server (NTRS)

    Teverovsky, Alexander

    2010-01-01

    Degradation of leakage currents is often observed during life testing of tantalum capacitors and is sometimes attributed to the field-induced crystallization in amorphous anodic tantalum pentoxide dielectrics. However, degradation of leakage currents and the possibility of annealing of degraded capacitors have not been investigated yet. In this work the effect of annealing after highly accelerated life testing (HALT) on leakage currents in various types of solid tantalum capacitors was analyzed. Variations of leakage currents with time during annealing at temperatures from 125 oC to 180 oC, thermally stimulated depolarization (TSD) currents, and I-V characteristics were measured to understand the conduction mechanism and the reason for current degradation. Annealing resulted in a gradual decrease of leakage currents and restored their initial values. Repeat HALT after annealing resulted in reproducible degradation of leakage currents. The observed results are explained based on ionic charge instability (drift/diffusion of oxygen vacancies) in the tantalum pentoxide dielectrics using a modified Schottky conduction mechanism.

  2. A Novel Approach to Detect Accelerated Aged and Surface-Mediated Degradation in Explosives by UPLC-ESI-MS.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beppler, Christina L

    2015-12-01

    A new approach was created for studying energetic material degradation. This approach involved detecting and tentatively identifying non-volatile chemical species by liquid chromatography-mass spectrometry (LC-MS) with multivariate statistical data analysis that form as the CL-20 energetic material thermally degraded. Multivariate data analysis showed clear separation and clustering of samples based on sample group: either pristine or aged material. Further analysis showed counter-clockwise trends in the principal components analysis (PCA), a type of multivariate data analysis, Scores plots. These trends may indicate that there was a discrete shift in the chemical markers as the went from pristine to aged material, andmore » then again when the aged CL-20 mixed with a potentially incompatible material was thermally aged for 4, 6, or 9 months. This new approach to studying energetic material degradation should provide greater knowledge of potential degradation markers in these materials.« less

  3. [Oil degradation by basidiomycetes in soil and peat at low temperatures].

    PubMed

    Kulikova, N A; Klein, O I; Pivchenko, D V; Landesman, E O; Pozdnyakova, N N; Turkovskaya, O V; Zaichik, B Ts; Ruzhitskii, A O; Koroleva, O V

    2016-01-01

    A total of 17 basidiomycete strains causing white rot and growing on oil-contaminated substrates have been screened. Three strains with high (Steccherinum murashkinskyi), average (Trametes maxima), and low (Pleurotus ostreatus) capacities for the colonization of oil-contaminated substrates have been selected. The potential for degrading crude oil hydrocarbons has been assessed with the use of fungi grown on nonsterile soil and peat at low temperatures. Candida sp. and Rhodococcus sp. commercial strains have been used as reference organisms with oil-degrading ability. All microorganisms introduced in oil-contaminated soil have proved to be ineffective, whereas the inoculation of peat with basidiomycetes and oil-degrading microorganisms accelerated the destruction of oil hydrocarbons. The greatest degradation potential of oil-aliphatic hydrocarbons has been found in S. murashlinskyi. T. maxima turned out to be the most successful in degrading aromatic hydrocarbons. It has been suggested that aboriginal microflora contributes importantly to the effectiveness of oil-destructing microorganisms. T. maxima and S. murashkinskyi strains are promising for further study as oil-oxidizing agents during bioremediation of oil-contaminated peat soil under conditions of low temperatures.

  4. Effect of enzyme additions on methane production and lignin degradation of landfilled sample of municipal solid waste.

    PubMed

    Jayasinghe, P A; Hettiaratchi, J P A; Mehrotra, A K; Kumar, Sunil

    2011-04-01

    Operation of waste cells as landfill bioreactors with leachate recirculation is known to accelerate waste degradation and landfill gas generation. However, waste degradation rates in landfill bioreactors decrease with time, with the accumulation of difficult to degrade materials, such as lignin-rich waste. Although, potential exists to modify the leachate quality to promote further degradation of such waste, very little information is available in literature. The objective of this study was to determine the viability of augmenting leachate with enzymes to increase the rate of degradation of lignin-rich waste materials. Among the enzymes evaluated MnP enzyme showed the best performance in terms of methane yield and substrate (lignin) utilization. Methane production of 200 mL CH(4)/g VS was observed for the MnP amended reactor as compared to 5.7 mL CH(4)/g VS for the control reactor. The lignin reduction in the MnP amended reactor and control reactor was 68.4% and 6.2%, respectively. Copyright © 2011 Elsevier Ltd. All rights reserved.

  5. The prenyltransferase UBIAD1 is the target of geranylgeraniol in degradation of HMG CoA reductase

    PubMed Central

    Schumacher, Marc M; Elsabrouty, Rania; Seemann, Joachim; Jo, Youngah; DeBose-Boyd, Russell A

    2015-01-01

    Schnyder corneal dystrophy (SCD) is an autosomal dominant disorder in humans characterized by abnormal accumulation of cholesterol in the cornea. SCD-associated mutations have been identified in the gene encoding UBIAD1, a prenyltransferase that synthesizes vitamin K2. Here, we show that sterols stimulate binding of UBIAD1 to the cholesterol biosynthetic enzyme HMG CoA reductase, which is subject to sterol-accelerated, endoplasmic reticulum (ER)-associated degradation augmented by the nonsterol isoprenoid geranylgeraniol through an unknown mechanism. Geranylgeraniol inhibits binding of UBIAD1 to reductase, allowing its degradation and promoting transport of UBIAD1 from the ER to the Golgi. CRISPR-CAS9-mediated knockout of UBIAD1 relieves the geranylgeraniol requirement for reductase degradation. SCD-associated mutations in UBIAD1 block its displacement from reductase in the presence of geranylgeraniol, thereby preventing degradation of reductase. The current results identify UBIAD1 as the elusive target of geranylgeraniol in reductase degradation, the inhibition of which may contribute to accumulation of cholesterol in SCD. DOI: http://dx.doi.org/10.7554/eLife.05560.001 PMID:25742604

  6. Degradation kinetics of cyanidin 3-O-glucoside and cyanidin 3-O-rutinoside during hot air and vacuum drying in mulberry (Morus alba L.) fruit: A comparative study based on solid food system.

    PubMed

    Zhou, Mo; Chen, Qinqin; Bi, Jinfeng; Wang, Yixiu; Wu, Xinye

    2017-08-15

    The aim of this study is to ascertain the degradation kinetic of anthocyanin in dehydration process of solid food system. Mulberry fruit was treated by hot air and vacuum drying at 60 and 75°C. The contents of cyanidin 3-O-glucoside and cyanidin 3-O-rutinoside were determined by using high performance liquid chromatography. Kinetic and thermodynamic parameters were calculated for analysing the degradation characteristics. Model fitting results showed monomeric anthocyanin degradations were followed the second-order kinetic. Vacuum drying presented high kinetic rate constants and low t 1/2 values. Thermodynamic parameters including the activation energy, enthalpy change and entropy change appeared significant differences between hot air and vacuum drying. Both heating techniques showed similar effects on polyphenol oxidase activities. These results indicate the anthocyanin degradation kinetic in solid food system is different from that in liquid and the oxygen can be regarded as a catalyst to accelerate the degradation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Efficiency degradation behaviors of current/thermal co-stressed GaN-based blue light emitting diodes with vertical-structure

    NASA Astrophysics Data System (ADS)

    Liu, Lilin; Ling, Minjie; Yang, Jianfu; Xiong, Wang; Jia, Weiqing; Wang, Gang

    2012-05-01

    With this work, we demonstrate a three-stage degradation behavior of GaN based LED chips under current/thermal co-stressing. The three stages in sequence are the initial improvement stage, the platform stage, and the rapid degradation stage, indicating that current/thermal co-stressing activates positive effects and negative ones simultaneously, and the dominant degradation mechanisms evolve with aging time. Degradation mechanisms are discussed. Electric current stress has dual characters: damaging the active layers by generating defects and at the same time improving the p-type conductivity by activating the Mg-dopant. High temperature stresses will promote the effects from electric current stresses. The activation of the Mg-dopant will saturate, whereas the generation of defects is carried on in a progressive way. Other mechanisms, such as deterioration of ohmic contacts, also operate. These mechanisms compete/cooperate with each other and evolve with aging time, resulting in the observed three-stage degradation behavior. There exist risks to predict the lifetime of LEDs by a model with a constant accelerated factor.

  8. Injectable hyperbranched poly(β-amino ester) hydrogels with on-demand degradation profiles to match wound healing processes.

    PubMed

    Xu, Qian; Guo, Linru; A, Sigen; Gao, Yongsheng; Zhou, Dezhong; Greiser, Udo; Creagh-Flynn, Jack; Zhang, Hong; Dong, Yixiao; Cutlar, Lara; Wang, Fagang; Liu, Wenguang; Wang, Wei; Wang, Wenxin

    2018-02-28

    Adjusting biomaterial degradation profiles to match tissue regeneration is a challenging issue. Herein, biodegradable hyperbranched poly(β-amino ester)s (HP-PBAEs) were designed and synthesized via "A2 + B4" Michael addition polymerization, and displayed fast gelation with thiolated hyaluronic acid (HA-SH) via a "click" thiol-ene reaction. HP-PBAE/HA-SH hydrogels showed tunable degradation profiles both in vitro and in vivo using diamines with different alkyl chain lengths and poly(ethylene glycol) diacrylates with varied PEG spacers. The hydrogels with optimized degradation profiles encapsulating ADSCs were used as injectable hydrogels to treat two different types of humanized excisional wounds - acute wounds with faster healing rates and diabetic wounds with slower healing and neo-tissue formation. The fast-degrading hydrogel showed accelerated wound closure in acute wounds, while the slow-degrading hydrogel showed better wound healing for diabetic wounds. The results demonstrate that the new HP-PBAE-based hydrogel in combination with ADSCs can be used as a well-controlled biodegradable skin substitute, which demonstrates a promising approach in the treatment of various types of skin wounds.

  9. In silico prediction of pharmaceutical degradation pathways: a benchmarking study.

    PubMed

    Kleinman, Mark H; Baertschi, Steven W; Alsante, Karen M; Reid, Darren L; Mowery, Mark D; Shimanovich, Roman; Foti, Chris; Smith, William K; Reynolds, Dan W; Nefliu, Marcela; Ott, Martin A

    2014-11-03

    Zeneth is a new software application capable of predicting degradation products derived from small molecule active pharmaceutical ingredients. This study was aimed at understanding the current status of Zeneth's predictive capabilities and assessing gaps in predictivity. Using data from 27 small molecule drug substances from five pharmaceutical companies, the evolution of Zeneth predictions through knowledge base development since 2009 was evaluated. The experimentally observed degradation products from forced degradation, accelerated, and long-term stability studies were compared to Zeneth predictions. Steady progress in predictive performance was observed as the knowledge bases grew and were refined. Over the course of the development covered within this evaluation, the ability of Zeneth to predict experimentally observed degradants increased from 31% to 54%. In particular, gaps in predictivity were noted in the areas of epimerizations, N-dealkylation of N-alkylheteroaromatic compounds, photochemical decarboxylations, and electrocyclic reactions. The results of this study show that knowledge base development efforts have increased the ability of Zeneth to predict relevant degradation products and aid pharmaceutical research. This study has also provided valuable information to help guide further improvements to Zeneth and its knowledge base.

  10. Catalyst Stability Benchmarking for the Oxygen Evolution Reaction: The Importance of Backing Electrode Material and Dissolution in Accelerated Aging Studies.

    PubMed

    Geiger, Simon; Kasian, Olga; Mingers, Andrea M; Nicley, Shannon S; Haenen, Ken; Mayrhofer, Karl J J; Cherevko, Serhiy

    2017-09-18

    In searching for alternative oxygen evolution reaction (OER) catalysts for acidic water splitting, fast screening of the material intrinsic activity and stability in half-cell tests is of vital importance. The screening process significantly accelerates the discovery of new promising materials without the need of time-consuming real-cell analysis. In commonly employed tests, a conclusion on the catalyst stability is drawn solely on the basis of electrochemical data, for example, by evaluating potential-versus-time profiles. Herein important limitations of such approaches, which are related to the degradation of the backing electrode material, are demonstrated. State-of-the-art Ir-black powder is investigated for OER activity and for dissolution as a function of the backing electrode material. Even at very short time intervals materials like glassy carbon passivate, increasing the contact resistance and concealing the degradation phenomena of the electrocatalyst itself. Alternative backing electrodes like gold and boron-doped diamond show better stability and are thus recommended for short accelerated aging investigations. Moreover, parallel quantification of dissolution products in the electrolyte is shown to be of great importance for comparing OER catalyst feasibility. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. A comparison of biophysical characterization techniques in predicting monoclonal antibody stability.

    PubMed

    Thiagarajan, Geetha; Semple, Andrew; James, Jose K; Cheung, Jason K; Shameem, Mohammed

    2016-01-01

    With the rapid growth of biopharmaceutical product development, knowledge of therapeutic protein stability has become increasingly important. We evaluated assays that measure solution-mediated interactions and key molecular characteristics of 9 formulated monoclonal antibody (mAb) therapeutics, to predict their stability behavior. Colloidal interactions, self-association propensity and conformational stability were measured using effective surface charge via zeta potential, diffusion interaction parameter (kD) and differential scanning calorimetry (DSC), respectively. The molecular features of all 9 mAbs were compared to their stability at accelerated (25°C and 40°C) and long-term storage conditions (2-8°C) as measured by size exclusion chromatography. At accelerated storage conditions, the majority of the mAbs in this study degraded via fragmentation rather than aggregation. Our results show that colloidal stability, self-association propensity and conformational characteristics (exposed tryptophan) provide reasonable prediction of accelerated stability, with limited predictive value at 2-8°C stability. While no correlations to stability behavior were observed with onset-of-melting temperatures or domain unfolding temperatures, by DSC, melting of the Fab domain with the CH2 domain suggests lower stability at stressed conditions. The relevance of identifying appropriate biophysical assays based on the primary degradation pathways is discussed.

  12. Suppression of CHRN endocytosis by carbonic anhydrase CAR3 in the pathogenesis of myasthenia gravis

    PubMed Central

    Du, Ailian; Huang, Shiqian; Zhao, Xiaonan; Feng, Kuan; Zhang, Shuangyan; Huang, Jiefang; Miao, Xiang; Baggi, Fulvio; Ostrom, Rennolds S.; Zhang, Yanyun; Chen, Xiangjun; Xu, Congfeng

    2017-01-01

    ABSTRACT Myasthenia gravis is an autoimmune disorder of the neuromuscular junction manifested as fatigable muscle weakness, which is typically caused by pathogenic autoantibodies against postsynaptic CHRN/AChR (cholinergic receptor nicotinic) in the endplate of skeletal muscle. Our previous studies have identified CA3 (carbonic anhydrase 3) as a specific protein insufficient in skeletal muscle from myasthenia gravis patients. In this study, we investigated the underlying mechanism of how CA3 insufficiency might contribute to myasthenia gravis. Using an experimental autoimmune myasthenia gravis animal model and the skeletal muscle cell C2C12, we find that inhibition of CAR3 (the mouse homolog of CA3) promotes CHRN internalization via a lipid raft-mediated pathway, leading to accelerated degradation of postsynaptic CHRN. Activation of CAR3 reduces CHRN degradation by suppressing receptor endocytosis. CAR3 exerts this effect by suppressing chaperone-assisted selective autophagy via interaction with BAG3 (BCL2-associated athanogene 3) and by dampening endoplasmic reticulum stress. Collectively, our study illustrates that skeletal muscle cell CAR3 is critical for CHRN homeostasis in the neuromuscular junction, and its deficiency leads to accelerated degradation of CHRN and development of myasthenia gravis, potentially revealing a novel therapeutic approach for this disorder. PMID:28933591

  13. Suppression of CHRN endocytosis by carbonic anhydrase CAR3 in the pathogenesis of myasthenia gravis.

    PubMed

    Du, Ailian; Huang, Shiqian; Zhao, Xiaonan; Feng, Kuan; Zhang, Shuangyan; Huang, Jiefang; Miao, Xiang; Baggi, Fulvio; Ostrom, Rennolds S; Zhang, Yanyun; Chen, Xiangjun; Xu, Congfeng

    2017-01-01

    Myasthenia gravis is an autoimmune disorder of the neuromuscular junction manifested as fatigable muscle weakness, which is typically caused by pathogenic autoantibodies against postsynaptic CHRN/AChR (cholinergic receptor nicotinic) in the endplate of skeletal muscle. Our previous studies have identified CA3 (carbonic anhydrase 3) as a specific protein insufficient in skeletal muscle from myasthenia gravis patients. In this study, we investigated the underlying mechanism of how CA3 insufficiency might contribute to myasthenia gravis. Using an experimental autoimmune myasthenia gravis animal model and the skeletal muscle cell C2C12, we find that inhibition of CAR3 (the mouse homolog of CA3) promotes CHRN internalization via a lipid raft-mediated pathway, leading to accelerated degradation of postsynaptic CHRN. Activation of CAR3 reduces CHRN degradation by suppressing receptor endocytosis. CAR3 exerts this effect by suppressing chaperone-assisted selective autophagy via interaction with BAG3 (BCL2-associated athanogene 3) and by dampening endoplasmic reticulum stress. Collectively, our study illustrates that skeletal muscle cell CAR3 is critical for CHRN homeostasis in the neuromuscular junction, and its deficiency leads to accelerated degradation of CHRN and development of myasthenia gravis, potentially revealing a novel therapeutic approach for this disorder.

  14. Mir Cooperative Solar Array Project Accelerated Life Thermal Cycling Test

    NASA Technical Reports Server (NTRS)

    Hoffman, David J.; Scheiman, David A.

    1996-01-01

    The Mir Cooperative Solar Array (MCSA) project was a joint U.S./Russian effort to build a photovoltaic (PV) solar array and deliver it to the Russian space station Mir. The MCSA will be used to increase the electrical power on Mir and provide PV array performance data in support of Phase 1 of the International Space Station. The MCSA was brought to Mir by space shuttle Atlantis in November 1995. This report describes an accelerated thermal life cycle test which was performed on two samples of the MCSA. In eight months time, two MCSA solar array 'mini' panel test articles were simultaneously put through 24,000 thermal cycles. There was no significant degradation in the structural integrity of the test articles and no electrical degradation, not including one cell damaged early and removed from consideration. The nature of the performance degradation caused by this one cell is briefly discussed. As a result of this test, changes were made to improve some aspects of the solar cell coupon-to-support frame interface on the flight unit. It was concluded from the results that the integration of the U.S. solar cell modules with the Russian support structure would be able to withstand at least 24,000 thermal cycles (4 years on-orbit). This was considered a successful development test.

  15. Sulforaphane promotes murine hair growth by accelerating the degradation of dihydrotestosterone.

    PubMed

    Sasaki, Mari; Shinozaki, Shohei; Shimokado, Kentaro

    2016-03-25

    Dihydrotestosterone (DHT) causes the regression of human hair follicles in the parietal scalp, leading to androgenic alopecia (AGA). Sulforaphane (SFN) increases the expression of DHT degrading enzymes, such as 3α-hydroxysteroid dehydrogenases (3α-HSDs), and, therefore, SFN treatment may improve AGA. To determine the effects of SFN on hair growth, we administered SFN (10 mg/kg BW, IP) or vehicle (DMSO) to ob/ob mice for six weeks and examined hair regeneration and the plasma levels of testosterone and DHT. We also tested the effects of SFN on the expression of two forms of 3α-HSD, aldo-keto reductase 1c21 and dehydrogenase/reductase (SDR family) member 9, both in vitro and in vivo. SNF significantly enhanced hair regeneration in ob/ob mice. The mice treated with SFN showed lower plasma levels of testosterone and DHT than those treated with vehicle. SFN increased the mRNA and protein levels of the two forms of 3α-HSD in the liver of the mice and in cultured murine hepatocyte Hepa1c1c7 cells. These results suggest that SFN treatment increases the amount of 3α-HSDs in the liver, accelerates the degradation of blood DHT, and subsequently blocks the suppression of hair growth by DHT. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Predictive models of poly(ethylene-terephthalate) film degradation under multi-factor accelerated weathering exposures

    PubMed Central

    Ngendahimana, David K.; Fagerholm, Cara L.; Sun, Jiayang; Bruckman, Laura S.

    2017-01-01

    Accelerated weathering exposures were performed on poly(ethylene-terephthalate) (PET) films. Longitudinal multi-level predictive models as a function of PET grades and exposure types were developed for the change in yellowness index (YI) and haze (%). Exposures with similar change in YI were modeled using a linear fixed-effects modeling approach. Due to the complex nature of haze formation, measurement uncertainty, and the differences in the samples’ responses, the change in haze (%) depended on individual samples’ responses and a linear mixed-effects modeling approach was used. When compared to fixed-effects models, the addition of random effects in the haze formation models significantly increased the variance explained. For both modeling approaches, diagnostic plots confirmed independence and homogeneity with normally distributed residual errors. Predictive R2 values for true prediction error and predictive power of the models demonstrated that the models were not subject to over-fitting. These models enable prediction under pre-defined exposure conditions for a given exposure time (or photo-dosage in case of UV light exposure). PET degradation under cyclic exposures combining UV light and condensing humidity is caused by photolytic and hydrolytic mechanisms causing yellowing and haze formation. Quantitative knowledge of these degradation pathways enable cross-correlation of these lab-based exposures with real-world conditions for service life prediction. PMID:28498875

  17. Cerium migration during PEM fuel cell accelerated stress testing

    DOE PAGES

    Baker, Andrew M.; Mukundan, Rangachary; Borup, Rodney L.; ...

    2016-01-01

    Cerium is a radical scavenger which improves polymer electrolyte membrane (PEM) fuel cell durability. During operation, however, cerium rapidly migrates in the PEM and into the catalyst layers (CLs). In this work, membrane electrode assemblies (MEAs) were subjected to accelerated stress tests (ASTs) under different humidity conditions. Cerium migration was characterized in the MEAs after ASTs using X-ray fluorescence. During fully humidified operation, water flux from cell inlet to outlet generated in-plane cerium gradients. Conversely, cerium profiles were flat during low humidity operation, where in-plane water flux was negligible, however, migration from the PEM into the CLs was enhanced. Humiditymore » cycling resulted in both in-plane cerium gradients due to water flux during the hydration component of the cycle, and significant migration into the CLs. Fluoride and cerium emissions into effluent cell waters were measured during ASTs and correlated, which signifies that ionomer degradation products serve as possible counter-ions for cerium emissions. Fluoride emission rates were also correlated to final PEM cerium contents, which indicates that PEM degradation and cerium migration are coupled. Lastly, it is proposed that cerium migrates from the PEM due to humidification conditions and degradation, and is subsequently stabilized in the CLs by carbon catalyst supports.« less

  18. Redox Active Transition Metal ions Make Melanin Susceptible to Chemical Degradation Induced by Organic Peroxide.

    PubMed

    Zadlo, Andrzej; Pilat, Anna; Sarna, Michal; Pawlak, Anna; Sarna, Tadeusz

    2017-12-01

    With aging, retinal pigment epithelium melanosomes, by fusion with the age pigment lipofuscin, form complex granules called melanolipofuscin. Lipofuscin granules may contain oxidized proteins and lipid hydroperoxides, which in melanolipofuscin could chemically modify melanin polymer, while transition metal ions present in melanin can accelerate such oxidative modifications. The aim of this research was to examine the effect of selected transition metal ions on melanin susceptibility to chemical modification induced by the water-soluble tert-butyl hydroperoxide used as an oxidizing agent. Synthetic melanin obtained by DOPA autooxidation and melanosomes isolated from bovine retinal pigment epithelium were analyzed. To monitor tert-butyl hydroperoxide-induced oxidative changes of DMa and BMs, electron paramagnetic resonance spectroscopy, UV-vis absorption spectroscopy, dynamic light scattering, atomic force microscopy and electron paramagnetic resonance oximetry were employed. These measurements revealed that both copper and iron ions accelerated chemical degradation induced by tert-butyl hydroperoxide, while zinc ions had no effect. Strong prooxidant action was detected only in the case of melanosomes and melanin degraded in the presence of iron. It can be postulated that similar chemical processes, if they occur in situ in melanolipofuscin granules of the human retinal pigment epithelium, would modify antioxidant properties of melanin and its reactivity.

  19. Effects of fire on the thermal stability of permafrost in lowland and upland black spruce forests of interior Alaska in a changing climate

    USGS Publications Warehouse

    Jafarov, Elchin E.; Romanovsky, Vladimir E.; Genet, Helene; McGuire, Anthony David; Marchenko, Sergey S.

    2013-01-01

    Fire is an important factor controlling the composition and thickness of the organic layer in the black spruce forest ecosystems of interior Alaska. Fire that burns the organic layer can trigger dramatic changes in the underlying permafrost, leading to accelerated ground thawing within a relatively short time. In this study, we addressed the following questions. (1) Which factors determine post-fire ground temperature dynamics in lowland and upland black spruce forests? (2) What levels of burn severity will cause irreversible permafrost degradation in these ecosystems? We evaluated these questions in a transient modeling–sensitivity analysis framework to assess the sensitivity of permafrost to climate, burn severity, soil organic layer thickness, and soil moisture content in lowland (with thick organic layers, ~80 cm) and upland (with thin organic layers, ~30 cm) black spruce ecosystems. The results indicate that climate warming accompanied by fire disturbance could significantly accelerate permafrost degradation. In upland black spruce forest, permafrost could completely degrade in an 18 m soil column within 120 years of a severe fire in an unchanging climate. In contrast, in a lowland black spruce forest, permafrost is more resilient to disturbance and can persist under a combination of moderate burn severity and climate warming.

  20. Comparison of online and offline tests in LED accelerated reliability tests under temperature stress.

    PubMed

    Ke, Hong-Liang; Jing, Lei; Gao, Qun; Wang, Yao; Hao, Jian; Sun, Qiang; Xu, Zhi-Jun

    2015-11-20

    Accelerated aging tests are the main method used in the evaluation of LED reliability, and can be performed in either online or offline modes. The goal of this study is to provide the difference between the two test modes. In the experiments, the sample is attached to different heat sinks to acquire the optical parameters under different junction temperatures of LEDs. By measuring the junction temperature in the aging process (Tj1), and the junction temperature in the testing process (Tj2), we achieve consistency with an online test of Tj1 and Tj2 and a difference with an offline test of Tj1 and Tj2. Experimental results show that the degradation rate of the luminous flux rises as Tj2 increases, which yields a difference of projected life L(70%) of 8% to 13%. For color shifts over 5000 h of aging, the online test shows a larger variation of the distance from the Planckian locus, about 40% to 50% more than the normal test at an ambient temperature of 25°C.

  1. Effect of plasma distribution on propulsion performance in electrodeless plasma thrusters

    NASA Astrophysics Data System (ADS)

    Takao, Yoshinori; Takase, Kazuki; Takahashi, Kazunori

    2016-09-01

    A helicon plasma thruster consisting of a helicon plasma source and a magnetic nozzle is one of the candidates for long-lifetime thrusters because no electrodes are employed to generate or accelerate plasma. A recent experiment, however, detected the non-negligible axial momentum lost to the lateral wall boundary, which degrades thruster performance, when the source was operated with highly ionized gases. To investigate this mechanism, we have conducted two-dimensional axisymmetric particle-in-cell (PIC) simulations with the neutral distribution obtained by Direct Simulation Monte Carlo (DSMC) method. The numerical results have indicated that the axially asymmetric profiles of the plasma density and potential are obtained when the strong decay of neutrals occurs at the source downstream. This asymmetric potential profile leads to the accelerated ion towards the lateral wall, leading to the non-negligible net axial force in the opposite direction of the thrust. Hence, to reduce this asymmetric profile by increasing the neutral density at downstream and/or by confining plasma with external magnetic field would result in improvement of the propulsion performance. These effects are also analyzed by PIC/DSMC simulations.

  2. Negligible degradation upon in situ voltage cycling of a PEMFC using an electrospun niobium-doped tin oxide supported Pt cathode.

    PubMed

    Savych, Iuliia; Subianto, Surya; Nabil, Yannick; Cavaliere, Sara; Jones, Deborah; Rozière, Jacques

    2015-07-14

    Novel platinum-catalysed, corrosion-resistant, loose-tube-structured electrocatalysts for proton exchange membrane fuel cells have been obtained using single-needle electrospinning associated with a microwave-assisted polyol method. Monodisperse platinum particles supported on Nb-SnO2 demonstrated higher electrochemical stability than conventional Pt/C electrodes during ex situ potential cycling and comparable activity in the oxygen reduction reaction. In situ fuel cell operation under accelerated stress test conditions of a membrane electrode assembly elaborated using a Pt/C anode and Pt/Nb-SnO2 cathode confirmed that the voltage loss is significantly lower for the novel cathode than for an MEA prepared using conventional Pt/C supported electrocatalysts. Furthermore, the Nb-SnO2 stabilised the supported platinum nanoparticles against dissolution, migration and reprecipitation in the membrane. Pt/Nb-SnO2 loose-tubes constitute a mitigation strategy for two known degradation mechanisms in PEMFC: corrosion of the carbon support at the cathode, and dissolution of Pt at high cell voltages.

  3. Controlling the degradation kinetics of porous iron by poly(lactic-co-glycolic acid) infiltration for use as temporary medical implants

    PubMed Central

    Yusop, Abdul Hakim Md; Daud, Nurizzati Mohd; Nur, Hadi; Kadir, Mohammed Rafiq Abdul; Hermawan, Hendra

    2015-01-01

    Iron and its alloy have been proposed as biodegradable metals for temporary medical implants. However, the formation of iron oxide and iron phosphate on their surface slows down their degradation kinetics in both in vitro and in vivo scenarios. This work presents new approach to tailor degradation behavior of iron by incorporating biodegradable polymers into the metal. Porous pure iron (PPI) was vacuum infiltrated by poly(lactic-co-glycolic acid) (PLGA) to form fully dense PLGA-infiltrated porous iron (PIPI) and dip coated into the PLGA to form partially dense PLGA-coated porous iron (PCPI). Results showed that compressive strength and toughness of the PIPI and PCPI were higher compared to PPI. A strong interfacial interaction was developed between the PLGA layer and the iron surface. Degradation rate of PIPI and PCPI was higher than that of PPI due to the effect of PLGA hydrolysis. The fast degradation of PIPI did not affect the viability of human fibroblast cells. Finally, this work discusses a degradation mechanism for PIPI and the effect of PLGA incorporation in accelerating the degradation of iron. PMID:26057073

  4. Degradation characteristics of 2,4-dichlorophenoxyacetic acid in electro-biological system.

    PubMed

    Zhang, Jingli; Cao, Zhanping; Zhang, Hongwei; Zhao, Lianmei; Sun, Xudong; Mei, Feng

    2013-11-15

    The reductive degradation of 2,4-dichlorophenoxyacetic acid (2,4-D) was studied in an electro-biological system, a biological system and an electric catalytic system, respectively. Electrochemical characteristics were monitored by cyclic voltammetry and the intermediate products of 2,4-D degradation were determined by high speed liquid chromatography (HPLC). The results showed that all 2,4-D degradations in the three systems conformed to the kinetics characteristics of one-order reaction, and the degradation kinetics constants were 28.74 × 10(-2) h(-1), 19.73 × 10(-2) h(-1) and 3.54 × 10(-2) h(-1), respectively. The kinetics constant in the electro-biological system was higher than the sum in the other two systems by 19%. The electrochemical assistance provided the electrons and accelerated the electron transfer rate in the microbial degradation of 2,4-D. The degradation resulted from the microbial reduction strengthened by the electrochemical assistance. The electron transfer existed between the electrode, cytochrome, NAD and the pollutants. A long-range electron transfer process could be achieved on the multi-phase interfaces between the electrode, bacteria and the pollutants. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. A strategy for the prevention of protein oxidation by drug product in polymer-based syringes.

    PubMed

    Nakamura, Koji; Abe, Yoshihiko; Kiminami, Hideaki; Yamashita, Arisa; Iwasaki, Kazuhiro; Suzuki, Shigeru; Yoshino, Keisuke; Dierick, William; Constable, Kevin

    2015-01-01

    Recently, new and advanced ideas have been presented on the value of polymer-based syringes for improved safety, better strength, reduced aggregation, and the prevention of drug degradation. In this report, our findings on drug degradation from protein oxidation will be presented and discussed. Commonly, dissolved oxygen is one of the factors for causing protein degradation. Due to the nature of higher gas permeability in polymer-based syringes, it was thought to be difficult to control the oxygen level during storage. However, this report demonstrates the appropriateness of combining the use of an oxygen absorber within the secondary packaging as a deoxygenated packaging system. In addition, this report suggests that another factor to enhance protein oxidization is related to radicals on the syringe barrel from sterilization by irradiation. We demonstrate that steam sterilization can minimize protein oxidization, as the protein filled in steam sterilized syringe is much more stable. In conclusion, the main oxidation pathway of a protein has been identified as dissolved oxygen and radical generation within a polymer container. Possible solutions are herewith presented for controlling oxidation by means of applying a deoxygenated packaging system as well as utilizing steam sterilization as a method of sterilization for prefillable polymer syringes. There have been many presentations and discussions about the risks associated with glass prefilled syringes. Advanced ideas are being presented on the value of polymer-based syringes for improved safety, better strength, reduced protein aggregation, and the prevention of drug degradation. Drug degradation based on protein oxidation is discussed in this report. Identification of the main factors causing this degradation and possible solutions available by using polymer-based syringes will be presented. The causes of protein oxidation have been identified as dissolved oxygen and radicals generated by the applied method of sterilization. The oxidation reaction created by dissolved oxygen within the drug product can be effectively inhibited by controlling the removal of the oxygen through the use of a deoxygenated packaging system. This packaging system can control the level or complete removal of oxygen from the primary container and the secondary packaging system. Protein oxidation induced by the formation of radicals from sterilization by irradiation is another critical aspect where it was thought that various sterilization methods were acceptable without loosing drug product quality. However, this report is first to demonstrate that gamma sterilized polymer-based syringes accelerated protein oxidation by radical generation; this effect can be prevented by means of steam sterilization. © PDA, Inc. 2015.

  6. WOODSTOVE DURABILITY TESTING PROTOCOL

    EPA Science Inventory

    The report discusses the development of an accelerated laboratory test to simulate in-home woodstove aging and degradation. nown as a stress test, the protocol determines the long-term durability of woodstove models in a 1- to 2-week time frame. wo avenues of research have been t...

  7. MEASUREMENT OF FUGITIVE EMISSIONS AT A LANDFILL PRACTICING LEACHATE RECIRCULATION AND AIR INJECTION

    EPA Science Inventory

    Recently research has begun on operating bioreactor landfills. The bioreactor process involves the injection of liquid into the waste mass to accelerate waste degradation. Arcadis and EPA conducted a fugitive emissions characterization study at the Three Rivers Solid Waste Techno...

  8. Degradation Kinetics of Grape Skin and Seed Proanthocyanidins in a Model Wine System

    USDA-ARS?s Scientific Manuscript database

    Catechin (monomer), purified grape skin proanthocyanidin (polymer), and purified grape seed proanthocyanidin underwent monitored accelerated oxidation under continuous oxygenation and UV light, at a constant 20 degrees C. Compounds were dissolved in model wine solutions with (and without) catechol. ...

  9. Land Use, Environmental Stressors, and Water Resources: Degradation to Restoration

    EPA Science Inventory

    Land use and climate change can accelerate the depletion of freshwater resources that support humans and ecosystem services on a global scale. Here, we briefly review studies from around the world, including those in this special issue. We identify stages, which characterize i...

  10. An ultrasonic-accelerated oxidation method for determining the oxidative stability of biodiesel.

    PubMed

    Avila Orozco, Francisco D; Sousa, Antonio C; Domini, Claudia E; Ugulino Araujo, Mario Cesar; Fernández Band, Beatriz S

    2013-05-01

    Biodiesel is considered an alternative energy because it is produced from fats and vegetable oils by means of transesterification. Furthermore, it consists of fatty acid alkyl esters (FAAS) which have a great influence on biodiesel fuel properties and in the storage lifetime of biodiesel itself. The biodiesel storage stability is directly related to the oxidative stability parameter (Induction Time - IT) which is determined by means of the Rancimat® method. This method uses condutimetric monitoring and induces the degradation of FAAS by heating the sample at a constant temperature. The European Committee for Standardization established a standard (EN 14214) to determine the oxidative stability of biodiesel, which requires it to reach a minimum induction period of 6h as tested by Rancimat® method at 110°C. In this research, we aimed at developing a fast and simple alternative method to determine the induction time (IT) based on the FAAS ultrasonic-accelerated oxidation. The sonodegradation of biodiesel samples was induced by means of an ultrasonic homogenizer fitted with an immersible horn at 480Watts of power and 20 duty cycles. The UV-Vis spectrometry was used to monitor the FAAS sonodegradation by measuring the absorbance at 270nm every 2. Biodiesel samples from different feedstock were studied in this work. In all cases, IT was established as the inflection point of the absorbance versus time curve. The induction time values of all biodiesel samples determined using the proposed method was in accordance with those measured through the Rancimat® reference method by showing a R(2)=0.998. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. [Adaptation of aerobic methylobacteria to dichloromethane degradation].

    PubMed

    Torgonskaia, M L; Firsova, Iu E; Doronina, N V; Trotsenko, Iu A

    2007-01-01

    A shortening of the lag phase in dichloromethane (DCM) consumption was observed in the methylobacteria Methylopila helvetica DM6 and Albibacter methylovorans DM10 after prior growth on methanol with the presence of 1.5% NaCI. Neither heat nor acid stress accelerated methylobacterium adaptation to DCM consumption. Sodium azide (1 mM) and potassium cyanide (1 mM) inhibited consumption of DCM by these degraders but not by transconjugants Methylobacterium extorquens AM1, expressing DCM dehalogenase but unable to grow on DCM. This indicates that the degrader strains possess energy-dependent systems of transport of DCM or chloride anions produced during DCM dehalogenation. Inducible proteins were found in the membrane fraction of A. methylovorans DM10 cells adapted to DCM and elevated NaCl concentration.

  12. Thermal decomposition of wood: influence of wood components and cellulose crystallite size.

    PubMed

    Poletto, Matheus; Zattera, Ademir J; Forte, Maria M C; Santana, Ruth M C

    2012-04-01

    The influence of wood components and cellulose crystallinity on the thermal degradation behavior of different wood species has been investigated using thermogravimetry, chemical analysis and X-ray diffraction. Four wood samples, Pinus elliottii (PIE), Eucalyptus grandis (EUG), Mezilaurus itauba (ITA) and Dipteryx odorata (DIP) were used in this study. The results showed that higher extractives contents associated with lower crystallinity and lower cellulose crystallite size can accelerate the degradation process and reduce the wood thermal stability. On the other hand, the thermal decomposition of wood shifted to higher temperatures with increasing wood cellulose crystallinity and crystallite size. These results indicated that the cellulose crystallite size affects the thermal degradation temperature of wood species. Copyright © 2012. Published by Elsevier Ltd.

  13. X-Ray-Based Imaging for Characterizing Heterogeneous Gas Diffusion Layers for Polymer Electrolyte Membrane Fuel Cells

    NASA Astrophysics Data System (ADS)

    George, Michael G.

    Characterization of gas diffusion layers (GDLs) for polymer electrolyte membrane (PEM) fuel cells informs modeling studies and the manufacturers of next generation fuel cell materials. Identifying the physical properties related to the primary functions of the modern GDL (thermal, electrical, and mass transport) is necessary for understanding the impact of GDL design choices. X-ray micro-computed tomographic reconstructions of GDLs were studied to isolate GDL surface morphologies. Surface roughness was measured for a wide variety of samples and a sensitivity study highlighted the scale-dependence of surface roughness measurements. Furthermore, a spatially resolved distribution map of polytetrafluoroethylene (PTFE) in the microporous layer (MPL), critical for water management and mass transport, was identified and the existence of PTFE agglomerations was highlighted. Finally, the impact of accelerated degradation on GDL wettability and water transport increases in liquid water accumulation and oxygen mass transport resistance were quantified as a result of accelerated GDL degradation.

  14. Pseudo-entanglement evaluated in noninertial frames

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mehri-Dehnavi, Hossein, E-mail: mehri@alice.math.kindai.ac.jp; Research Center for Quantum Computing, Kinki University, 3-4-1 Kowakae, Higashi-Osaka, Osaka 577-8502; Mirza, Behrouz, E-mail: b.mirza@cc.iut.ac.ir

    2011-05-15

    Research Highlights: > We study pseudo-entanglement in noninertial frames. > We examine different measures of entanglement and nonclassical correlation for the state. > We find the threshold for entanglement is changed in noninertial frames. > We also describe the behavior of local unitary classes of states in noninertial frames. - Abstract: We study quantum discord, in addition to entanglement, of bipartite pseudo-entanglement in noninertial frames. It is shown that the entanglement degrades from its maximum value in a stationary frame to a minimum value in an infinite accelerating frame. There is a critical region found in which, for particular cases,more » entanglement of states vanishes for certain accelerations. The quantum discord of pseudo-entanglement decreases by increasing the acceleration. Also, for a physically inaccessible region, entanglement and nonclassical correlation are evaluated and shown to match the corresponding values of the physically accessible region for an infinite acceleration.« less

  15. Simulating vegetation cover dynamics with regards to long-term climatic variations in sub-arctic landscapes

    NASA Astrophysics Data System (ADS)

    Haraldsson, Hörður V.; Ólafsdóttir, Rannveig

    2003-09-01

    Iceland is facing severe land degradation in many parts of the country. This study aims to increase the understanding of the complex interactions and interconnectivity between the critical factors that help maintain the land degradation processes in sub-arctic environments. A holistic approach in the form of a causal loop diagram (CLD) is applied for diagnosing the influencing factors. To further study the relationship between vegetation cover and its degradation, a dynamic model that uses a long-term temperature data as the main indicator function is constructed to simulate potential vegetation cover during the Holocene. The results depict an oscillating vegetation cover. Gradual degradation in potential vegetation cover begins ca. 3000 BP and accelerates greatly after ca. 2500 BP. From the time of the Norse settlement in the latter halve of the 9th century to present time, the simulated vegetation cover retreats ca. 25% in relation to climatic cooling.

  16. Discovery and characterization of new O-methyltransferase from the genome of the lignin-degrading fungus Phanerochaete chrysosporium for enhanced lignin degradation.

    PubMed

    Thanh Mai Pham, Le; Kim, Yong Hwan

    2016-01-01

    Using bioinformatic homology search tools, this study utilized sequence phylogeny, gene organization and conserved motifs to identify members of the family of O-methyltransferases from lignin-degrading fungus Phanerochaete chrysosporium. The heterologous expression and characterization of O-methyltransferases from P. chrysosporium were studied. The expressed protein utilized S-(5'-adenosyl)-L-methionine p-toluenesulfonate salt (SAM) and methylated various free-hydroxyl phenolic compounds at both meta and para site. In the same motif, O-methyltransferases were also identified in other white-rot fungi including Bjerkandera adusta, Ceriporiopsis (Gelatoporia) subvermispora B, and Trametes versicolor. As free-hydroxyl phenolic compounds have been known as inhibitors for lignin peroxidase, the presence of O-methyltransferases in white-rot fungi suggested their biological functions in accelerating lignin degradation in white-rot basidiomycetes by converting those inhibitory groups into non-toxic methylated phenolic ones. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Enabling reliability assessments of pre-commercial perovskite photovoltaics with lessons learned from industrial standards

    NASA Astrophysics Data System (ADS)

    Snaith, Henry J.; Hacke, Peter

    2018-06-01

    Photovoltaic modules are expected to operate in the field for more than 25 years, so reliability assessment is critical for the commercialization of new photovoltaic technologies. In early development stages, understanding and addressing the device degradation mechanisms are the priorities. However, any technology targeting large-scale deployment must eventually pass industry-standard qualification tests and undergo reliability testing to validate the module lifetime. In this Perspective, we review the methodologies used to assess the reliability of established photovoltaics technologies and to develop standardized qualification tests. We present the stress factors and stress levels for degradation mechanisms currently identified in pre-commercial perovskite devices, along with engineering concepts for mitigation of those degradation modes. Recommendations for complete and transparent reporting of stability tests are given, to facilitate future inter-laboratory comparisons and to further the understanding of field-relevant degradation mechanisms, which will benefit the development of accelerated stress tests.

  18. Earthworms (Eisenia fetida) demonstrate potential for use in soil bioremediation by increasing the degradation rates of heavy crude oil hydrocarbons.

    PubMed

    Martinkosky, Luke; Barkley, Jaimie; Sabadell, Gabriel; Gough, Heidi; Davidson, Seana

    2017-02-15

    Crude oil contamination widely impacts soil as a result of release during oil and gas exploration and production activities. The success of bioremediation methods to meet remediation goals often depends on the composition of the crude oil, the soil, and microbial community. Earthworms may enhance bioremediation by mixing and aerating the soil, and exposing soil microorganisms to conditions in the earthworm gut that lead to increased activity. In this study, the common composting earthworm Eisenia fetida was tested for utility to improve remediation of oil-impacted soil. E. fetida survival in soil contaminated with two distinct crude oils was tested in an artificial (lab-mixed) sandy loam soil, and survival compared to that in the clean soil. Crude oil with a high fraction of light-weight hydrocarbons was more toxic to earthworms than the crude oil with a high proportion of heavy polyaromatic and aliphatic hydrocarbons. The heavier crude oil was added to soil to create a 30,000mg/kg crude oil impacted soil, and degradation in the presence of added earthworms and feed, feed alone, or no additions was monitored over time and compared. Earthworm feed was spread on top to test effectiveness of no mixing. TPH degradation rate for the earthworm treatments was ~90mg/day slowing by 200days to ~20mg/day, producing two phases of degradation. With feed alone, the rate was ~40mg/day, with signs of slowing after 500days. Both treatments reached the same end point concentrations, and exhibited faster degradation of aliphatic hydrocarbons C21, decreased. During these experiments, soils were moderately toxic during the first three months, then earthworms survived well, were active and reproduced with petroleum hydrocarbons present. This study demonstrated that earthworms accelerate bioremediation of crude oil in soils, including the degradation of the heaviest polyaromatic fractions. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Electrochemical oxidation coupled with liquid chromatography and mass spectrometry to study the oxidative stability of active pharmaceutical ingredients in solution: A comparison of off-line and on-line approaches.

    PubMed

    Torres, Susana; Brown, Roland; Zelesky, Todd; Scrivens, Garry; Szucs, Roman; Hawkins, Joel M; Taylor, Mark R

    2016-11-30

    Stability studies of pharmaceutical drug products and pharmaceutical active substances are important to research and development in order to fully understand and maintain product quality and safety throughout its shelf-life. Oxidative forced degradation studies are among the different types of stability studies performed by the pharmaceutical industry in order to understand the intrinsic stability of drug molecules. We have been comparing the use of electrochemistry as an alternative oxidative forced degradation method to traditional forced degradation and accelerated stability studies. Using the electrochemical degradation approach the substrate oxidation takes place in a commercially available electrochemical cell and the effluent of the cell can be either a) directly infused into the mass spectrometer or b) injected in a chromatographic column for separation of the different products formed prior to the mass spectrometry analysis. To enable the study of large numbers of different experimental conditions and molecules we developed a new dual pump automated electrochemical screening platform. This system used a HPLC pump and autosampler to load and wash the electrochemical cell and deliver the oxidized sample plug to a second injection loop. This system enabled the automatic sequential analyses of large numbers of different solutions under varied experimental conditions without need for operator intervention during the run sequence. Here we describe the system and evaluate its performance using a test molecule with well characterized stability and compare results to those obtained using an off-line electrochemistry approach. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Some issues related to the novel spectral acceleration method for the fast computation of radiation/scattering from one-dimensional extremely large scale quasi-planar structures

    NASA Astrophysics Data System (ADS)

    Torrungrueng, Danai; Johnson, Joel T.; Chou, Hsi-Tseng

    2002-03-01

    The novel spectral acceleration (NSA) algorithm has been shown to produce an $[\\mathcal{O}]$(Ntot) efficient iterative method of moments for the computation of radiation/scattering from both one-dimensional (1-D) and two-dimensional large-scale quasi-planar structures, where Ntot is the total number of unknowns to be solved. This method accelerates the matrix-vector multiplication in an iterative method of moments solution and divides contributions between points into ``strong'' (exact matrix elements) and ``weak'' (NSA algorithm) regions. The NSA method is based on a spectral representation of the electromagnetic Green's function and appropriate contour deformation, resulting in a fast multipole-like formulation in which contributions from large numbers of points to a single point are evaluated simultaneously. In the standard NSA algorithm the NSA parameters are derived on the basis of the assumption that the outermost possible saddle point, φs,max, along the real axis in the complex angular domain is small. For given height variations of quasi-planar structures, this assumption can be satisfied by adjusting the size of the strong region Ls. However, for quasi-planar structures with large height variations, the adjusted size of the strong region is typically large, resulting in significant increases in computational time for the computation of the strong-region contribution and degrading overall efficiency of the NSA algorithm. In addition, for the case of extremely large scale structures, studies based on the physical optics approximation and a flat surface assumption show that the given NSA parameters in the standard NSA algorithm may yield inaccurate results. In this paper, analytical formulas associated with the NSA parameters for an arbitrary value of φs,max are presented, resulting in more flexibility in selecting Ls to compromise between the computation of the contributions of the strong and weak regions. In addition, a ``multilevel'' algorithm, decomposing 1-D extremely large scale quasi-planar structures into more than one weak region and appropriately choosing the NSA parameters for each weak region, is incorporated into the original NSA method to improve its accuracy.

  1. Cellular senescence and autophagy in the pathogenesis of chronic obstructive pulmonary disease (COPD) and idiopathic pulmonary fibrosis (IPF).

    PubMed

    Kuwano, Kazuyoshi; Araya, Jun; Hara, Hiromichi; Minagawa, Shunsuke; Takasaka, Naoki; Ito, Saburo; Kobayashi, Kenji; Nakayama, Katsutoshi

    2016-11-01

    Aging is associated with impairments in homeostasis. Although aging and senescence are not equivalent, the number of senescent cells increases with aging. Cellular senescence plays important roles in tissue repair or remodeling, as well as embryonic development. Autophagy is a process of lysosomal self-degradation that maintains a homeostatic balance between the synthesis, degradation, and recycling of cellular proteins. Autophagy diminishes with aging; additionally, accelerated aging can be attributed to reduced autophagy. Cellular senescence has been widely implicated in the pathogenesis of chronic obstructive pulmonary disease (COPD), a disease of accelerated lung aging, presumably by impairing cell repopulation and by aberrant cytokine secretion in the senescence-associated secretory phenotype. The possible participation of autophagy in the pathogenic sequence of COPD has been extensively explored. Although it has been reported that increased autophagy may induce epithelial cell death, an insufficient reserve of autophagy can induce cellular senescence in bronchial epithelial cells of COPD. Furthermore, advanced age is one of the most important risk factors for the development of idiopathic pulmonary fibrosis (IPF). Telomere shortening is found in blood leukocytes and alveolar epithelial cells from patients with IPF. Accelerated senescence of epithelial cells plays a role in IPF pathogenesis by perpetuating abnormal epithelial-mesenchymal interactions. Insufficient autophagy may be an underlying mechanism of accelerated epithelial cell senescence and myofibroblast differentiation in IPF. Herein, we review the molecular mechanisms of cellular senescence and autophagy and summarize the role of cellular senescence and autophagy in both COPD and IPF. Copyright © 2016 The Japanese Respiratory Society. Published by Elsevier B.V. All rights reserved.

  2. Accelerated optical polymer aging studies for LED luminaire applications

    NASA Astrophysics Data System (ADS)

    Estupiñán, Edgar; Wendling, Peter; Kostrun, Marijan; Garner, Richard

    2013-09-01

    There is a need in the lighting industry to design and implement accelerated aging methods that accurately simulate the aging process of LED luminaire components. In response to this need, we have built a flexible and reliable system to study the aging characteristics of optical polymer materials, and we have employed it to study a commercially available LED luminaire diffuser made of PMMA. The experimental system consists of a "Blue LED Emitter" and a working surface. Both the temperatures of the samples and the optical powers of the LEDs are appropriately characterized in the system. Several accelerated aging experiments are carried out at different temperatures and optical powers over a 90 hour period and the measured transmission values are used as inputs to a degradation model derived using plausibility arguments. This model seems capable of predicting the behavior of the material as a function of time, temperature and optical power. The model satisfactorily predicts the measured transmission values of diffusers aged in luminaires at two different times and thus can be used to make application recommendations for this material. Specifically, at 35000 hours (the manufacturer's stated life of the luminaire) and at the typical operational temperature of the diffuser, the model predicts a transmission loss of only a few percent over the original transmission of the material at 450 nm, which renders this material suitable for this application.

  3. Nitrate addition to groundwater impacted by ethanol-blended fuel accelerates ethanol removal and mitigates the associated metabolic flux dilution and inhibition of BTEX biodegradation

    NASA Astrophysics Data System (ADS)

    Corseuil, Henry Xavier; Gomez, Diego E.; Schambeck, Cássio Moraes; Ramos, Débora Toledo; Alvarez, Pedro J. J.

    2015-03-01

    A comparison of two controlled ethanol-blended fuel releases under monitored natural attenuation (MNA) versus nitrate biostimulation (NB) illustrates the potential benefits of augmenting the electron acceptor pool with nitrate to accelerate ethanol removal and thus mitigate its inhibitory effects on BTEX biodegradation. Groundwater concentrations of ethanol and BTEX were measured 2 m downgradient of the source zones. In both field experiments, initial source-zone BTEX concentrations represented less than 5% of the dissolved total organic carbon (TOC) associated with the release, and measurable BTEX degradation occurred only after the ethanol fraction in the multicomponent substrate mixture decreased sharply. However, ethanol removal was faster in the nitrate amended plot (1.4 years) than under natural attenuation conditions (3.0 years), which led to faster BTEX degradation. This reflects, in part, that an abundant substrate (ethanol) can dilute the metabolic flux of target pollutants (BTEX) whose biodegradation rate eventually increases with its relative abundance after ethanol is preferentially consumed. The fate and transport of ethanol and benzene were accurately simulated in both releases using RT3D with our general substrate interaction module (GSIM) that considers metabolic flux dilution. Since source zone benzene concentrations are relatively low compared to those of ethanol (or its degradation byproduct, acetate), our simulations imply that the initial focus of cleanup efforts (after free-product recovery) should be to stimulate the degradation of ethanol (e.g., by nitrate addition) to decrease its fraction in the mixture and speed up BTEX biodegradation.

  4. Nitrate addition to groundwater impacted by ethanol-blended fuel accelerates ethanol removal and mitigates the associated metabolic flux dilution and inhibition of BTEX biodegradation.

    PubMed

    Corseuil, Henry Xavier; Gomez, Diego E; Schambeck, Cássio Moraes; Ramos, Débora Toledo; Alvarez, Pedro J J

    2015-03-01

    A comparison of two controlled ethanol-blended fuel releases under monitored natural attenuation (MNA) versus nitrate biostimulation (NB) illustrates the potential benefits of augmenting the electron acceptor pool with nitrate to accelerate ethanol removal and thus mitigate its inhibitory effects on BTEX biodegradation. Groundwater concentrations of ethanol and BTEX were measured 2 m downgradient of the source zones. In both field experiments, initial source-zone BTEX concentrations represented less than 5% of the dissolved total organic carbon (TOC) associated with the release, and measurable BTEX degradation occurred only after the ethanol fraction in the multicomponent substrate mixture decreased sharply. However, ethanol removal was faster in the nitrate amended plot (1.4 years) than under natural attenuation conditions (3.0 years), which led to faster BTEX degradation. This reflects, in part, that an abundant substrate (ethanol) can dilute the metabolic flux of target pollutants (BTEX) whose biodegradation rate eventually increases with its relative abundance after ethanol is preferentially consumed. The fate and transport of ethanol and benzene were accurately simulated in both releases using RT3D with our general substrate interaction module (GSIM) that considers metabolic flux dilution. Since source zone benzene concentrations are relatively low compared to those of ethanol (or its degradation byproduct, acetate), our simulations imply that the initial focus of cleanup efforts (after free-product recovery) should be to stimulate the degradation of ethanol (e.g., by nitrate addition) to decrease its fraction in the mixture and speed up BTEX biodegradation. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Effect of Modified Red Pottery Clay on the Moisture Absorption Behavior and Weatherability of Polyethylene-Based Wood-Plastic Composites

    PubMed Central

    Li, Qingde; Gao, Xun; Cheng, Wanli; Han, Guangping

    2017-01-01

    Red pottery clay (RPC) was modified using a silane coupling agent, and the modified RPC (mRPC) was then used to enhance the performance of high-density polyethylene-based wood-plastic composites. The effect of the mRPC content on the performances of the composites was investigated through Fourier transform infrared spectrometry, differential mechanical analysis (DMA) and ultraviolet (UV)-accelerated aging tests. After adding the mRPC, a moisture adsorption hysteresis was observed. The DMA results indicated that the mRPC effectively enhanced the rigidity and elasticity of the composites. The mRPC affected the thermal gravimetric, leading to a reduction of the thermal degradation rate and a right-shift of the thermal degradation peak; the initial thermal degradation temperature was increased. After 3000 h of UV-accelerated aging, the flexural strength and impact strength both declined. For aging time between 0 and 1000 h, the increase in amplitude of ΔL* (luminescence) and ΔE* (color) reached a maximum; the surface fading did not became obvious. ΔL* and ΔE* increased more significantly between 1000 and 2000 h. These characterization results indicate that the chromophores of the mRPC became briefly active. However, when the aging times were higher than 2000 h, the photo-degradation reaction was effectively prevented by adding the mRPC. The best overall enhancement was observed for an mRPC mass percentage of 5%, with a storage modulus of 3264 MPa and an increase in loss modulus by 16.8%, the best anti-aging performance and the lowest degree of color fading. PMID:28772470

  6. Comparison of efficiency degradation in polycrystalline-Si and CdTe thin-film PV modules via accelerated lifecycle testing

    NASA Astrophysics Data System (ADS)

    Lai, T.; Potter, B. G.; Simmons-Potter, K.

    2017-08-01

    Thin-film solar cells normally have the shortest energy payback time due to their simpler mass-production process compared to polycrystalline-Si photovoltaic (PV) modules, despite the fact that crystalline-Si-based technology typically has a longer total lifetime and a higher initial power conversion efficiency. For both types of modules, significant aging occurs during the first two years of usage with slower long-term aging over the module lifetime. The PV lifetime and the return-on-investment for local PV system installations rely on long-term device performance. Understanding the efficiency degradation behavior under a given set of environmental conditions is, therefore, a primary goal for experimental research and economic analysis. In the present work, in-situ measurements of key electrical characteristics (J, V, Pmax, etc.) in polycrystalline-Si and CdTe thin-film PV modules have been analyzed. The modules were subjected to identical environmental conditions, representative of southern Arizona, in a full-scale, industrial-standard, environmental degradation chamber, equipped with a single-sun irradiance source, temperature, and humidity controls, and operating an accelerated lifecycle test (ALT) sequence. Initial results highlight differences in module performance with environmental conditions, including temperature de-rating effects, for the two technologies. Notably, the thin-film CdTe PV module was shown to be approximately 15% less sensitive to ambient temperature variation. After exposure to a seven-month equivalent compressed night-day weather cycling regimen the efficiency degradation rates of both PV technology types were obtained and will be discussed.

  7. Role of PF6- in the radiolytical and electrochemical degradation of propylene carbonate solutions

    NASA Astrophysics Data System (ADS)

    Ortiz, Daniel; Jimenez Gordon, Isabel; Legand, Solène; Dauvois, Vincent; Baltaze, Jean-Pierre; Marignier, Jean-Louis; Martin, Jean-Frédéric; Belloni, Jacqueline; Mostafavi, Mehran; Le Caër, Sophie

    2016-09-01

    The behavior under irradiation of neat propylene carbonate (PC), a co-solvent usually used in Li-ion batteries (LIB), and also of Li salt solutions is investigated. The decomposition of neat PC is studied using radiolysis in the pulse and steady state regime and is assigned to the ultrafast formation, in the reducing channel, of the radical anion PCrad - by electron attachment, followed by the ring cleavage, leading to CO. In the oxidative channel, the PC(sbnd H)rad radical is formed, generating CO2. The CO2 and CO yields are both close to the ionization yield of PC. The CO2 and CO productions in LiClO4, LiBF4 and LiN(CF3)2(SO2)2 solutions are similar as in neat PC. In contrast, in LiPF6/PC a strong impact on PC degradation is measured with a doubling of the CO2 yield due to the high reactivity of the electron towards PF6- observed in the picosecond range. A small number of oxide phosphine molecules are detected among the various products of the irradiated solutions, suggesting that most of them, observed in carbonate mixtures used in LIBs, arise from linear rather than from cyclical molecules. The similarity between the degradation by radiolysis or electrolysis highlights the interest of radiolysis as an accelerated aging method.

  8. On the stability of a variety of organic photovoltaic devices by IPCE and in situ IPCE analyses--the ISOS-3 inter-laboratory collaboration.

    PubMed

    Teran-Escobar, Gerardo; Tanenbaum, David M; Voroshazi, Eszter; Hermenau, Martin; Norrman, Kion; Lloyd, Matthew T; Galagan, Yulia; Zimmermann, Birger; Hösel, Markus; Dam, Henrik F; Jørgensen, Mikkel; Gevorgyan, Suren; Kudret, Suleyman; Maes, Wouter; Lutsen, Laurence; Vanderzande, Dirk; Würfel, Uli; Andriessen, Ronn; Rösch, Roland; Hoppe, Harald; Rivaton, Agnès; Uzunoğlu, Gülşah Y; Germack, David; Andreasen, Birgitta; Madsen, Morten V; Bundgaard, Eva; Krebs, Frederik C; Lira-Cantu, Monica

    2012-09-07

    This work is part of the inter-laboratory collaboration to study the stability of seven distinct sets of state-of-the-art organic photovoltaic (OPV) devices prepared by leading research laboratories. All devices have been shipped to and degraded at RISØ-DTU up to 1830 hours in accordance with established ISOS-3 protocols under defined illumination conditions. In this work, we apply the Incident Photon-to-Electron Conversion Efficiency (IPCE) and the in situ IPCE techniques to determine the relation between solar cell performance and solar cell stability. Different ageing conditions were considered: accelerated full sun simulation, low level indoor fluorescent lighting and dark storage. The devices were also monitored under conditions of ambient and inert (N(2)) atmospheres, which allows for the identification of the solar cell materials more susceptible to degradation by ambient air (oxygen and moisture). The different OPVs configurations permitted the study of the intrinsic stability of the devices depending on: two different ITO-replacement alternatives, two different hole extraction layers (PEDOT:PSS and MoO(3)), and two different P3HT-based polymers. The response of un-encapsulated devices to ambient atmosphere offered insight into the importance of moisture in solar cell performance. Our results demonstrate that the IPCE and the in situ IPCE techniques are valuable analytical methods to understand device degradation and solar cell lifetime.

  9. Mn-Ce-Co complex oxide nanoparticles: hydrothermal synthesis and their catalytic subcritical oxidation of 4,4'-Dibromobiphenyl.

    PubMed

    Chen, Jinyang; Xu, Tianjiao; Ding, Junying; Ji, Yimei; Ni, Pei; Li, Zhilian

    2012-10-15

    In situ transformation of 4,4'-Dibromobiphenyl (4,4'-DBB) in water was observed with hydrothermal diamond anvil cell (HDAC) up to 633 K. It shows that 4,4'-DBB dissolves in water to form a homogenous phase at the temperature of 588 K and thus subcritical water oxidation of 4,4'-DBB higher than the temperature can be a homogenous phase. To accelerate the oxidative degradation, some Mn-Ce-Co complex oxide nanoparticles of about 100 nm were prepared by co-precipitation hydrothermal method. The nanoparticles show enough stability and catalytic activity for oxidative degradation of 4,4'-DBB in subcritical water. The catalytic activation increases with some Co doping and as for the complex oxides of Mn(1)Ce(1), Mn(0.9)Ce(1)Co(0.1), Mn(0.5)Ce(1)Co(0.5), Mn(0.1)Ce(1)Co(0.9), and Co(1)Ce(1), the Mn(0.9)Ce(1)Co(0.1) presents the best activation. The main intermediate products of degradation are benzoic acid and phenol. The apparent activation energy (E(a)) is 35.92 with 5% Mn(0.9)Ce(1)Co(0.1) as catalyst and 46.69 kJ/mol with no catalyst about the chemical oxygen demand (COD). Copyright © 2012 Elsevier B.V. All rights reserved.

  10. Drying-induced physico-chemical changes in cranberry products.

    PubMed

    Michalska, Anna; Wojdyło, Aneta; Honke, Joanna; Ciska, Ewa; Andlauer, Wilfried

    2018-02-01

    Sugar-free cranberry juice (XAD) and juice with 15% of maltodextrin were dried by freeze-, vacuum and spray drying methods. Total phenolics (589-6435mg/kg dry matter) including 5 flavonols, 3 phenolic acids, 2 procyanidins and 5 anthocyanins were stronger affected by juice formulation than by drying methods. Spray drying of juice, regardless of its formulation, was competitive to freeze drying in terms of polyphenols' retention. Increase in temperature up to 100°C during vacuum drying of XAD extracts resulted in degradation of polyphenolics (down to 4%), except chlorogenic acid. Its content increased with rise in temperature and accelerated hydroxymethylfurfural formation. The stronger the impact of drying, the more chlorogenic acid is present in cranberry products. In all powders analysed, formation of furoylmethyl amino acids was noted. Antioxidant capacity of cranberry products was influenced by juice formulation and was linked to content of polyphenols. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Degradation of dimethyl disulphide in soil with or without biochar amendment.

    PubMed

    Han, Dawei; Yan, Dongdong; Cao, Aocheng; Fang, Wensheng; Liu, Pengfei; Li, Yuan; Ouyang, Canbin; Wang, Qiuxia

    2017-09-01

    Dimethyl disulphide (DMDS) is a new and effective alternative to methyl bromide for soil fumigation. The effect of biochar on the fate of DMDS in soil is not fully understood. The objective of this study was to determine the degradation kinetics of DMDS in different soils and evaluate the effect of biochar amendment on DMDS degradation using incubation experiments. The degradation half-life of DMDS was between 1.05 and 6.66 days under non-sterile conditions, and 12.63 to 22.67 days under sterile conditions in five types of soil. Seven out of the eight tested biochar amendments (BC-2 to BC-8) delayed the degradation of DMDS in soil, increasing the half-life of DMDS in Fangshan soil from 1.05 to 1.16-5.87 days following amendment with 1% (w/w) biochar. The degradation rate of DMDS in Fangshan soil accelerated as the amendment rate of BC-1 increased, and decreased as the amendment rate of BC-7 increased. Biodegradation is an important degradation route for DMDS in soil, and DMDS degraded faster in alkaline soil. The effects of biochar amendments on DMDS degradation in soil are determined by complex multiple factors (such as surface area, pH and physicochemical composition), rather than by any single property of biochar. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  12. A study of environmental characterization of conventional and advanced aluminum alloys for selection and design. Phase 2: The breaking load test method

    NASA Technical Reports Server (NTRS)

    Sprowls, D. O.; Bucci, R. J.; Ponchel, B. M.; Brazill, R. L.; Bretz, P. E.

    1984-01-01

    A technique is demonstrated for accelerated stress corrosion testing of high strength aluminum alloys. The method offers better precision and shorter exposure times than traditional pass fail procedures. The approach uses data from tension tests performed on replicate groups of smooth specimens after various lengths of exposure to static stress. The breaking strength measures degradation in the test specimen load carrying ability due to the environmental attack. Analysis of breaking load data by extreme value statistics enables the calculation of survival probabilities and a statistically defined threshold stress applicable to the specific test conditions. A fracture mechanics model is given which quantifies depth of attack in the stress corroded specimen by an effective flaw size calculated from the breaking stress and the material strength and fracture toughness properties. Comparisons are made with experimental results from three tempers of 7075 alloy plate tested by the breaking load method and by traditional tests of statistically loaded smooth tension bars and conventional precracked specimens.

  13. Transgenic plants for enhanced biodegradation and phytoremediation of organic xenobiotics.

    PubMed

    Abhilash, P C; Jamil, Sarah; Singh, Nandita

    2009-01-01

    Phytoremediation--the use of plants to clean up polluted soil and water resources--has received much attention in the last few years. Although plants have the inherent ability to detoxify xenobiotics, they generally lack the catabolic pathway for the complete degradation of these compounds compared to microorganisms. There are also concerns over the potential for the introduction of contaminants into the food chain. The question of how to dispose of plants that accumulate xenobiotics is also a serious concern. Hence the feasibility of phytoremediation as an approach to remediate environmental contamination is still somewhat in question. For these reasons, researchers have endeavored to engineer plants with genes that can bestow superior degradation abilities. A direct method for enhancing the efficacy of phytoremediation is to overexpress in plants the genes involved in metabolism, uptake, or transport of specific pollutants. Furthermore, the expression of suitable genes in root system enhances the rhizodegradation of highly recalcitrant compounds like PAHs, PCBs etc. Hence, the idea to amplify plant biodegradation of xenobiotics by genetic manipulation was developed, following a strategy similar to that used to develop transgenic crops. Genes from human, microbes, plants, and animals are being used successfully for this venture. The introduction of these genes can be readily achieved for many plant species using Agrobacterium tumefaciens-mediated plant transformation or direct DNA methods of gene transfer. One of the promising developments in transgenic technology is the insertion of multiple genes (for phase 1 metabolism (cytochrome P450s) and phase 2 metabolism (GSH, GT etc.) for the complete degradation of the xenobiotics within the plant system. In addition to the use of transgenic plants overexpressed with P450 and GST genes, various transgenic plants expressing bacterial genes can be used for the enhanced degradation and remediation of herbicides, explosives, PCBs etc. Another approach to enhancing phytoremediation ability is the construction of plants that secrete chemical degrading enzymes into the rhizosphere. Recent studies revealed that accelerated ethylene production in response to stress induced by contaminants is known to inhibit root growth and is considered as major limitation in improving phytoremediation efficiency. However, this can be overcome by the selective expression of bacterial ACC deaminase (which regulates ethylene levels in plants) in plants together with multiple genes for the different phases of xenobiotic degradation. This review examines the recent developments in use of transgenic-plants for the enhanced metabolism, degradation and phytoremediation of organic xenobiotics and its future directions.

  14. Durability of crosslinked polydimethylsyloxanes: the case of composite insulators

    NASA Astrophysics Data System (ADS)

    Delor-Jestin, Florence; Tomer, Namrata S.; Pal Singh, Raj; Lacoste, Jacques

    2008-04-01

    Most applications of silicones are linked to their hydrophobic properties and (or) their high resistance to ageing (e.g. thermal ageing and photoageing). However, when placed in extreme environments, these materials can fail as in the case of epoxy/fiber glass composite powerlines insulators, where crosslinked polymethylsyloxanes (PDMSs) are used as the protective envelope (housing) of the insulator. We report on the behavior of both pure/noncrosslinked PDMSs and typical formulations used in industrial insulators, i.e. containing peroxide crosslinked PDMS, alumina trioxide hydrated (ATH) and silica. Special attention is paid on both (i) the sources of potential degradation and (ii) the best analytical methods that can be applied to the study of very complex formulations. (i) Aside from conventional types of ageing such as photo-ageing and thermal, hydrolytic, and service life ageings, treatments with acidic vapors, plasma and ozone possibly generating species from the reaction of a high electric field with air were also performed, which allowed to accelerate electrical and out-door ageings and to obtain differently aged materials. (ii) Aside from conventional analytical methods of polymer degradation such as FTIR/ATR spectroscopy and SEC, TG, hardness measurements, more specific methods like photo/DSC, TG/IR, thermoporosimetry, resistivity and density measurements were also performed to characterize the chemical and physical evolutions of polymer materials. In particular, it was found that treatment with nitric acid vapor has detrimental effects on the properties of both fire retardants (e.g. ATH) and PDMSs, affecting the hardness and resistivity of the formulated material.

  15. Simple and cost-effective fabrication of solid biodegradable polymer microneedle arrays with adjustable aspect ratio for transdermal drug delivery using acupuncture microneedles

    NASA Astrophysics Data System (ADS)

    Cha, Kyoung Je; Kim, Taewan; Jea Park, Sung; Kim, Dong Sung

    2014-11-01

    Polymer microneedle arrays (MNAs) have received much attention for their use in transdermal drug delivery and microneedle therapy systems due to the advantages they offer, such as low cost, good mechanical properties, and a versatile choice of materials. Here, we present a simple and cost-effective method for the fabrication of a biodegradable polymer MNA in which the aspect ratio of each microneedle is adjustable using commercially available acupuncture microneedles. In our process, a master template with acupuncture microneedles, whose shape will be the final MNA, was carefully prepared by fixing them onto a plastic substrate with selectively drilled holes which, in turn, determine the aspect ratios of the microneedles. A polylactic acid (PLA; a biodegradable polymer) MNA was fabricated by a micromolding process with a polydimethylsiloxane (PDMS) mold containing the cavity of the microneedles, which was obtained by the PDMS replica molding against the master template. The mechanical force and degradation behavior of the replicated PLA MNA were characterized with the help of a compression test and an accelerated degradation test, respectively. Finally, the transdermal drug delivery performance of the PLA MNA was successfully simulated by two different methods of penetration and staining, using the skin of a pig cadaver. These results indicated that the proposed method can be effectively used for the fabrication of polymer MNAs which can be used in various microneedle applications.

  16. Experimental effects of grazers on autotrophic species assemblages across a nitrate gradient in Florida springs

    USDA-ARS?s Scientific Manuscript database

    Springs face accelerated degradation of ecosystem structure, namely in the form of autotrophic species assemblage shifts from submerged vascular macrophytes to benthic filamentous algae. Increasing nitrate concentrations have been cited as a primary driver of this shift and numeric nutrient criteria...

  17. Restoration effects on N cycling pools and processes

    Treesearch

    James M. Vose; Chris Geron; John Walker; Karsten Raulund-Rasmussen

    2005-01-01

    Over the past several years, there has been an acceleration of restoration efforts to mitigate the consequences (i.e., ground and surface water chemical pollutants, erosion, etc.) of degraded ecosystems and enhance structural and functional components of watershed ecosystems that regulate biogeochemical cycling and associated aquatic components. Biogeochemical...

  18. Photovoltaic Lifetime Project | Photovoltaic Research | NREL

    Science.gov Websites

    PV & Solar Resource Testing Accelerated Testing & Analysis Systems Engineering Project Sandia National Laboratories' PV Performance Modeling Collaborative website. Jinko Solar. PV systems mounted on the ground. Jinko Solar PV Lifetime installation at NREL. need-alt Light-induced degradation

  19. Characterization, Modeling, and Accelerating Emulation of Aircraft Coating Exposure and Degradation

    DTIC Science & Technology

    2009-09-30

    nucleation sites for conjugated polymer electrodeposition on AA 2024-T3. In particular, the role of secondary phase heterogeneities in the nucleation ...work is mainly contained in the MS Thesis of T. Chen, and was presented publicly on October 14, 2010 at the NACE Eastern Area Conference in

  20. Accelerated weathering of natural fiber-filled polyethylene composites

    Treesearch

    Thomas Lundin; Steven M. Cramer; Robert H. Falk; Colin Felton

    2004-01-01

    The resistance of natural fiber-filled high-density polyethylene composite specimens to ultraviolet- (UV) and moisture-induced degradation was evaluated by measuring changes to flexural properties. High-density polyethylene (HDPE) served as the polymer matrix for four formulations: two formulations without fiber filler and two formulations one containing wood flour and...

  1. QUANTITATIVE ULTRAVIOLET SPECTROSCOPY IN WEATHERING OF A MODEL POLYESTER-URETHANE COATING. (R828081E01)

    EPA Science Inventory

    Spectroscopy was used to quantify the effects of ultraviolet light on a model polyester–urethane coating as it degraded in an accelerated exposure chamber. An explorative calculation of the effective dosage absorbed by the coatings was made and, depending on the quantum...

  2. Current-driven plasma acceleration versus current-driven energy dissipation. I - Wave stability theory

    NASA Technical Reports Server (NTRS)

    Kelly, A. J.; Jahn, R. G.; Choueiri, E. Y.

    1990-01-01

    The dominant unstable electrostatic wave modes of an electromagnetically accelerated plasma are investigated. The study is the first part of a three-phase program aimed at characterizing the current-driven turbulent dissipation degrading the efficiency of Lorentz force plasma accelerators such as the MPD thruster. The analysis uses a kinetic theory that includes magnetic and thermal effects as well as those of an electron current transverse to the magnetic field and collisions, thus combining all the features of previous models. Analytical and numerical solutions allow a detailed description of threshold criteria, finite growth behavior, destabilization mechanisms and maximized-growth characteristics of the dominant unstable modes. The lower hybrid current-driven instability is implicated as dominant and was found to preserve its character in the collisional plasma regime.

  3. Abnormal behavior with hump characteristics in current stressed a-InGaZnO thin film transistors

    NASA Astrophysics Data System (ADS)

    Kim, Woo-Sic; Cho, Yong-Jung; Lee, Yeol-Hyeong; Park, JeongKi; Kim, GeonTae; Kim, Ohyun

    2017-11-01

    We investigated the degradation mechanism of a-InGaZnO TFTs under simultaneous gate and drain bias stress. Gate and drain bias of 20 V were applied simultaneously to induce current stress, and abnormal turn-around behavior in transfer characteristics with a hump phenomenon were identified. Hump characteristics were interpreted in terms of parasitic current path, and the degradation itself was found to be caused dominantly by the electrical field and to be accelerated with current by Joule heating. The mechanism of asymmetrical degradation after current stress was also investigated. By decomposing the curves into two curves and measuring the relaxation behavior of the stressed TFTs, we also found that abnormal turn-around behavior in the transfer characteristics was related to acceptor-like states.

  4. Reflectance degradation of a secondary concentrator by nitrate salt vapor deposition in an open volumetric receiver configuration

    NASA Astrophysics Data System (ADS)

    Lahlou, Radia; Armstrong, Peter R.; Calvet, Nicolas; Shamim, Tariq

    2017-06-01

    Nitrate salt vapor deposition on the reflecting surface of a secondary concentrator placed on top of an open molten salt tank at 500 °C is investigated using a lab-scale setup over an 8h-exposure cycle. Deposition, consisting of mostly spherical particles, is characterized in terms of chemical composition using energy dispersive X-ray spectroscopy. The corresponding specular reflectance degradation both temporary (before washing off the salt deposits) and permanent (residual reflectance loss after cleaning), is measured at different incidence angles and at reference points located at different heights. Reflectance drop due to salt deposits is compared to the one resulting from dust deposition. Long-term reflectance degradation by means of corrosion needs to be further studied through suitable accelerated aging tests.

  5. Accelerated degradation of lignin by lignin peroxidase isozyme H8 (LiPH8) from Phanerochaete chrysosporium with engineered 4-O-methyltransferase from Clarkia breweri.

    PubMed

    Pham, Le Thanh Mai; Kim, Yong Hwan

    2014-11-01

    Free-hydroxyl phenolic units can decrease or even abort the catalytic activity of lignin peroxidase H8 during oxidation of veratryl alcohol and model lignin dimers, resulting in slow and inefficient lignin degradation. In this study we applied engineered 4-O-methyltransferase from Clarkia breweri to detoxify the inhibiting free-hydroxyl phenolic groups by converting them to methylated phenolic groups. The multistep, enzyme-catalyzed process that combines 4-O-methyltransferase and lignin peroxidase H8 suggested in this work can increase the efficiency of lignin-degradation. This study also suggests approaching the field of multi-enzyme in vitro systems to improve the understanding and development of plant biomass in biorefinery operations. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. An Acoustic Charge Transport Imager for High Definition Television Applications: Reliability Modeling and Parametric Yield Prediction of GaAs Multiple Quantum Well Avalanche Photodiodes. Degree awarded Oct. 1997

    NASA Technical Reports Server (NTRS)

    Hunt, W. D.; Brennan, K. F.; Summers, C. J.; Yun, Ilgu

    1994-01-01

    Reliability modeling and parametric yield prediction of GaAs/AlGaAs multiple quantum well (MQW) avalanche photodiodes (APDs), which are of interest as an ultra-low noise image capture mechanism for high definition systems, have been investigated. First, the effect of various doping methods on the reliability of GaAs/AlGaAs multiple quantum well (MQW) avalanche photodiode (APD) structures fabricated by molecular beam epitaxy is investigated. Reliability is examined by accelerated life tests by monitoring dark current and breakdown voltage. Median device lifetime and the activation energy of the degradation mechanism are computed for undoped, doped-barrier, and doped-well APD structures. Lifetimes for each device structure are examined via a statistically designed experiment. Analysis of variance shows that dark-current is affected primarily by device diameter, temperature and stressing time, and breakdown voltage depends on the diameter, stressing time and APD type. It is concluded that the undoped APD has the highest reliability, followed by the doped well and doped barrier devices, respectively. To determine the source of the degradation mechanism for each device structure, failure analysis using the electron-beam induced current method is performed. This analysis reveals some degree of device degradation caused by ionic impurities in the passivation layer, and energy-dispersive spectrometry subsequently verified the presence of ionic sodium as the primary contaminant. However, since all device structures are similarly passivated, sodium contamination alone does not account for the observed variation between the differently doped APDs. This effect is explained by the dopant migration during stressing, which is verified by free carrier concentration measurements using the capacitance-voltage technique.

  7. Accelerated stress testing of amorphous silicon solar cells

    NASA Technical Reports Server (NTRS)

    Stoddard, W. G.; Davis, C. W.; Lathrop, J. W.

    1985-01-01

    A technique for performing accelerated stress tests of large-area thin a-Si solar cells is presented. A computer-controlled short-interval test system employing low-cost ac-powered ELH illumination and a simulated a-Si reference cell (seven individually bandpass-filtered zero-biased crystalline PIN photodiodes) calibrated to the response of an a-Si control cell is described and illustrated with flow diagrams, drawings, and graphs. Preliminary results indicate that while most tests of a program developed for c-Si cells are applicable to a-Si cells, spurious degradation may appear in a-Si cells tested at temperatures above 130 C.

  8. Control of target-normal-sheath-accelerated protons from a guiding cone

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zou, D. B.; Institut für Theoretische Physik I, Heinrich-Heine-Universität Düsseldorf, Düsseldorf 40225; Zhuo, H. B., E-mail: hongbin.zhuo@gmail.com

    2015-06-15

    It is demonstrated through particle-in-cell simulations that target-normal-sheath-accelerated protons can be well controlled by using a guiding cone. Compared to a conventional planar target, both the collimation and number density of proton beams are substantially improved, giving a high-quality proton beam which maintained for a longer distance without degradation. The effect is attributed to the radial electric field resulting from the charge due to the hot target electrons propagating along the cone surface. This electric field can effectively suppress the spatial spread of the protons after the expansion of the hot electrons.

  9. Archival-grade optical disc design and international standards

    NASA Astrophysics Data System (ADS)

    Fujii, Toru; Kojyo, Shinichi; Endo, Akihisa; Kodaira, Takuo; Mori, Fumi; Shimizu, Atsuo

    2015-09-01

    Optical discs currently on the market exhibit large variations in life span among discs, making them unsuitable for certain business applications. To assess and potentially mitigate this problem, we performed accelerated degradation testing under standard ISO conditions, determined the probable disc failure mechanisms, and identified the essential criteria necessary for a stable disc composition. With these criteria as necessary conditions, we analyzed the physical and chemical changes that occur in the disc components, on the basis of which we determined technological measures to reduce these degradation processes. By applying these measures to disc fabrication, we were able to develop highly stable optical discs.

  10. Electron-beam irradiation-induced gate oxide degradation

    NASA Astrophysics Data System (ADS)

    Cho, Byung Jin; Chong, Pei Fen; Chor, Eng Fong; Joo, Moon Sig; Yeo, In Seok

    2000-12-01

    Gate oxide degradation induced by electron-beam irradiation has been studied. A large increase in the low-field excess leakage current was observed on irradiated oxides and this was very similar to electrical stress-induced leakage currents. Unlike conventional electrical stress-induced leakage currents, however, electron-beam induced leakage currents exhibit a power law relationship with fluency without any signs of saturation. It has also been found that the electron-beam neither accelerates nor initiates quasibreakdown of the ultrathin gate oxide. Therefore, the traps generated by electron-beam irradiation do not contribute to quasibreakdown, only to the leakage current.

  11. A New Method for Control of the Efficiency of Gear Reducers

    NASA Astrophysics Data System (ADS)

    E Kozlov, K.; Egorov, A. V.; Belogusev, V. N.

    2017-04-01

    This article proposes a new method to control the energy efficiency of gear reducers. The method allows evaluating the friction losses in a drive motor, drive motor bearing assemblies, and toothing both at the stage of control of the finished product and in the course of its operation, maintenance, and repair. The proposed method, unlike currently used methods for control of the efficiency of gear reducers, allows determining the friction losses without the use of strain measurement, which requires calibration of tensometric sensors and expensive equipment. The method is based on the idea of invariability of mechanical characteristics of the induction motor at constant voltage, resistance of windings, and mains frequency, regardless of the driven inertia mass. This paper presents experimental results which verify the theoretical predictions. The proposed method can be implemented in the procedure of acceptance test at the companies that manufacture gear reducers, thereby assess their effectiveness and the level of degradation processes that significantly affect the service life of the research object. The method can be implemented both with universal and with specialized hardware and software complexes. At that, both an increment of the inertia moment and acceleration time of a gear reducer may serve as a performance criterion.

  12. Molecular insight into atypical instability behavior of fixed-dose combination containing amlodipine besylate and losartan potassium.

    PubMed

    Handa, Tarun; Jhajra, Shalu; Bhagat, Shweta; Bharatam, P V; Chakraborti, Asit K; Singh, Saranjit

    2017-03-20

    Combination therapy with the use of fixed-dose combinations (FDCs) is evincing increasing interest of prescribers, manufacturers and even regulators, evidently due to the primary benefit of improved patient compliance. However, owing to potential of drug-drug interaction, FDCs require closer scrutiny with respect to their physical and chemical stability. Accordingly, the purpose of the present study was to explore stability behavior of a popular antihypertensive combination of amlodipine besylate (AML) and losartan potassium (LST). Physical mixtures of the two drugs and multiple marketed formulations were stored under accelerated conditions of temperature and humidity (40°C/75% RH) in a stability chamber and samples were withdrawn after 1 and 3 months. The physical changes were observed visibly, while chemical changes were monitored by HPLC employing a method that could separate the two drugs and all other components present. The combination revealed strong physical instability and also chemical degradation of AML in the presence of LST. Interestingly, three isomeric interaction products of AML were formed in the combination, which otherwise were reported in the literature to be generated on exposure of AML free base above its melting point. The same unusual products were even formed when multiple marketed FDCs were stored under accelerated conditions outside their storage packs. However, these were absent when AML alone was stored in the same studied conditions. Therefore, reasons for physical and chemical incompatibility and the mechanism of degradation of AML in the presence of LST were duly explored at the molecular level. The outcomes of the study are expected to help in development of stable FDCs of the two drugs. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. The effect of mechanical loads on the degradation of aliphatic biodegradable polyesters.

    PubMed

    Li, Ying; Chu, Zhaowei; Li, Xiaoming; Ding, Xili; Guo, Meng; Zhao, Haoran; Yao, Jie; Wang, Lizhen; Cai, Qiang; Fan, Yubo

    2017-06-01

    Aliphatic biodegradable polyesters have been the most widely used synthetic polymers for developing biodegradable devices as alternatives for the currently used permanent medical devices. The performances during biodegradation process play crucial roles for final realization of their functions. Because physiological and biochemical environment in vivo significantly affects biodegradation process, large numbers of studies on effects of mechanical loads on the degradation of aliphatic biodegradable polyesters have been launched during last decades. In this review article, we discussed the mechanism of biodegradation and several different mechanical loads that have been reported to affect the biodegradation process. Other physiological and biochemical factors related to mechanical loads were also discussed. The mechanical load could change the conformational strain energy and morphology to weaken the stability of the polymer. Besides, the load and pattern could accelerate the loss of intrinsic mechanical properties of polymers. This indicated that investigations into effects of mechanical loads on the degradation should be indispensable. More combination condition of mechanical loads and multiple factors should be considered in order to keep the degradation rate controllable and evaluate the degradation process in vivo accurately. Only then can the degradable devise achieve the desired effects and further expand the special applications of aliphatic biodegradable polyesters.

  14. Degradation Study by Start-Up/Shut-Down Cycling of Superhydrophobic Electrosprayed Catalyst Layers Using a Localized Reference Electrode Technique.

    PubMed

    Ferreira-Aparicio, Paloma; Chaparro, Antonio M; Folgado, M Antonia; Conde, Julio J; Brightman, Edward; Hinds, Gareth

    2017-03-29

    Degradation of a polymer electrolyte membrane fuel cell (PEMFC) with electrosprayed cathode catalyst layers is investigated during cyclic start-up and shut-down events. The study is carried out within a single cell incorporating an array of reference electrodes that enables measurement of cell current as a function of local cathode potential (localized polarization curves). Accelerated degradation of the cell by start-up/shut-down cycling gives rise to inhomogeneous performance loss, which is more severe close to the gas outlet and occurs predominantly during start-up. The degradation consists primarily of loss of cathode catalyst activity and increase in cell internal resistance, which is attributed to carbon corrosion and Pt aggregation in both anode and cathode. Cells with an electrosprayed cathode catalyst layer show lower degradation rates during the first 100 cycles, compared with those of a conventional gas diffusion electrode. This difference in behavior is attributed to the high hydrophobicity of the electrosprayed catalyst layer microstructure, which retards the kinetics of corrosion of the carbon support. In the long term, however, the degradation rate is dominated by the Pt/C ratio in the cathode catalyst layer.

  15. Coupled Thermo-Mechanical and Photo-Chemical Degradation Mechanisms that determine the Reliability and Operational Lifetimes for CPV Technologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dauskardt, Reinhold H.

    This project sought to identify and characterize the coupled intrinsic photo-chemo-mechanical degradation mechanisms that determine the reliability and operational lifetimes for CPV technologies. Over a three year period, we have completed a highly successful program which has developed quantitative metrologies and detailed physics-based degradation models, providing new insight into the fundamental reliability physics necessary for improving materials, creating accelerated testing protocols, and producing more accurate lifetime predictions. The tasks for the program were separated into two focus areas shown in the figure below. Focus Area 1, led by Reinhold Dauskardt and Warren Cai with a primary collaboration with David Millermore » of NREL, studied the degradation mechanisms present in encapsulant materials. Focus Area 2, led by Reinhold Dauskardt and Ryan Brock with a primary collaboration with James Ermer and Peter Hebert of Spectrolab, studied stress development and degradation within internal CPV device interfaces. Each focus area was productive, leading to several publications, including findings on the degradation of silicone encapsulant under terrestrial UV, a model for photodegradation of silicone encapsulant adhesion, quantification and process tuning of antireflective layers on CPV, and discovery of a thermal cycling degradation mechanism present in metal gridline structures.« less

  16. Effective passivation of exfoliated black phosphorus transistors against ambient degradation.

    PubMed

    Wood, Joshua D; Wells, Spencer A; Jariwala, Deep; Chen, Kan-Sheng; Cho, EunKyung; Sangwan, Vinod K; Liu, Xiaolong; Lauhon, Lincoln J; Marks, Tobin J; Hersam, Mark C

    2014-12-10

    Unencapsulated, exfoliated black phosphorus (BP) flakes are found to chemically degrade upon exposure to ambient conditions. Atomic force microscopy, electrostatic force microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy, and Fourier transform infrared spectroscopy are employed to characterize the structure and chemistry of the degradation process, suggesting that O2 saturated H2O irreversibly reacts with BP to form oxidized phosphorus species. This interpretation is further supported by the observation that BP degradation occurs more rapidly on hydrophobic octadecyltrichlorosilane self-assembled monolayers and on H-Si(111) versus hydrophilic SiO2. For unencapsulated BP field-effect transistors, the ambient degradation causes large increases in threshold voltage after 6 h in ambient, followed by a ∼ 10(3) decrease in FET current on/off ratio and mobility after 48 h. Atomic layer deposited AlOx overlayers effectively suppress ambient degradation, allowing encapsulated BP FETs to maintain high on/off ratios of ∼ 10(3) and mobilities of ∼ 100 cm(2) V(-1) s(-1) for over 2 weeks in ambient conditions. This work shows that the ambient degradation of BP can be managed effectively when the flakes are sufficiently passivated. In turn, our strategy for enhancing BP environmental stability will accelerate efforts to implement BP in electronic and optoelectronic applications.

  17. [Degradation of Organic Sunscreens 2-hydroxy-4-methoxybenzophenone by UV/ H2O2 Process: Kinetics and Factors].

    PubMed

    Feng, Xin-xin; Du, Er-deng; Guo, Ying-qing; Li, Hua-jie; Liu, Xiang; Zhou, Fang

    2015-06-01

    Organic sunscreens continue to enter the environment through people's daily consumption, and become a kind of emerging contaminants. The photochemical degradation of benzophenone-3 (BP-3) in water by UV/H2O2 process was investigated. Several factors, including the initial BP-3 concentration, H2O2 concentration, UV light intensity, coexisting cations and anions, humic acid and tert-butyl alcohol, were also discussed. The results showed that BP-3 degradation rate constant decreased with increasing initial BP-3 concentration, while increased with increasing H2O2 dosage and UV intensity. Coexisting anions could reduce the degradation rate, while coexisting ferric ions could stimulate the production of OH through Fenton-like reaction, further significantly accelerated BP-3 degradation process. The BP-3 degradation would be inhibited by humic acid or tert-butyl alcohol. The electrical energy per order (E(Eo)) values were also calculated to evaluate the cost of BP-3 degradation by UV/H2O2 process. The addition of ferric ions significantly reduced the value of E(Eo). The investigation of processing parameter could provide a reference for the practical engineering applications of benzophenone compounds removal by UV/H2O2 process.

  18. Progress in Characterizing Thermal Degradation of Ethylene-Propylene Rubber

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fifield, Leonard S.; Huang, Qian; Childers, Matthew I.

    Ethylene-propylene rubber (EPR) is one of the two most common nuclear cable insulation materials. A large fraction of EPR-insulated cables in use in the nuclear industry were manufactured by The Okonite Company. Okoguard® is the name of the medium voltage thermoset EPR manufactured by The Okonite Company. Okoguard® has been produced with silane-treated clay filler and the characteristic pink color since the 1970’s. EPR is complex material that undergoes simultaneous reactions during thermal aging including oxidative and thermal cleavage and oxidative and thermal crosslinking. This reaction complexity makes precise EPR service life prediction from accelerated aging using approaches designed formore » single discreet reactions such as the Arrhenius approach problematic. Performance data and activation energies for EPR aged at conditions closer to service conditions will improve EPR lifetime prediction. In this report pink Okoguard® EPR insulation material has been thermally aged at elevated temperatures. A variety of characterization techniques have been employed to track material changes with aging. It was noted that EPR aged significant departure in aging behavior seemed to occur at accelerated aging temperatures between 140°C and 150°C at around 20 days of exposure. This may be due to alternative degradation mechanisms being accessed at this higher temperature and reinforces the need to perform accelerated aging for Okoguard® EPR service life prediction at temperatures below 150°C.« less

  19. 3D Analysis of Fuel Cell Electrocatalyst Degradation on Alternate Carbon Supports.

    PubMed

    Sneed, Brian T; Cullen, David A; Reeves, Kimberly S; Dyck, Ondrej E; Langlois, David A; Mukundan, Rangachary; Borup, Rodney L; More, Karren L

    2017-09-06

    Understanding the mechanisms associated with Pt/C electrocatalyst degradation in proton exchange membrane fuel cell (PEMFC) cathodes is critical for the future development of higher-performing materials; however, there is a lack of information regarding Pt coarsening under PEMFC operating conditions within the cathode catalyst layer. We report a direct and quantitative 3D study of Pt dispersions on carbon supports (high surface area carbon (HSAC), Vulcan XC-72, and graphitized carbon) with varied surface areas, graphitic character, and Pt loadings ranging from 5 to 40 wt %. This is accomplished both before and after catalyst-cycling accelerated stress tests (ASTs) through observations of the cathode catalyst layer of membrane electrode assemblies. Electron tomography results show Pt nanoparticle agglomeration occurs predominantly at junctions and edges of aggregated graphitized carbon particles, leading to poor Pt dispersion in the as-prepared catalysts and increased coalescence during ASTs. Tomographic reconstructions of Pt/HSAC show much better initial Pt dispersions, less agglomeration, and less coarsening during ASTs in the cathode. However, a large loss of the electrochemically active surface area (ECSA) is still observed and is attributed to accelerated Pt dissolution and nanoparticle coalescence. Furthermore, a strong correlation between Pt particle/agglomerate size and measured ECSA is established and is proposed as a more useful metric than average crystallite size in predicting degradation behavior across different catalyst systems.

  20. 3D Analysis of Fuel Cell Electrocatalyst Degradation on Alternate Carbon Supports

    DOE PAGES

    Sneed, Brian T.; Cullen, David A.; Reeves, Kimberly S.; ...

    2017-08-15

    Understanding the mechanisms associated with Pt/C electrocatalyst degradation in proton exchange membrane fuel cell (PEMFC) cathodes is critical for the future development of higher-performing materials; however, there is a lack of information regarding Pt coarsening under PEMFC operating conditions within the cathode catalyst layer. We report a direct and quantitative 3D study of Pt dispersions on carbon supports (high surface area carbon (HSAC), Vulcan XC-72, and graphitized carbon) with varied surface areas, graphitic character, and Pt loadings ranging from 5 to 40 wt %. This is accomplished both before and after catalyst-cycling accelerated stress tests (ASTs) through observations of themore » cathode catalyst layer of membrane electrode assemblies. Electron tomography results show Pt nanoparticle agglomeration occurs predominantly at junctions and edges of aggregated graphitized carbon particles, leading to poor Pt dispersion in the as-prepared catalysts and increased coalescence during ASTs. Tomographic reconstructions of Pt/HSAC show much better initial Pt dispersions, less agglomeration, and less coarsening during ASTs in the cathode. However, a large loss of the electrochemically active surface area (ECSA) is still observed and is attributed to accelerated Pt dissolution and nanoparticle coalescence. Moreover, a strong correlation between Pt particle/agglomerate size and measured ECSA is established and is proposed as a more useful metric than average crystallite size in predicting degradation behavior across different catalyst systems.« less

Top