Science.gov

Sample records for accelerated mild anodization

  1. Anode power in quasisteady magnetoplasmadynamic accelerators

    NASA Technical Reports Server (NTRS)

    Saber, A. J.; Jahn, R. G.

    1978-01-01

    Anode heat flux in a quasi-steady MPD accelerator has been measured directly and locally by thermocouples attached to the inside surface of a shell anode. These measurements show that over a range of arc current from 5.5 to 44 kA, and argon mass flow from 1 to 48 g/s, the fraction of the total arc power deposited in the anode decreases from 50% at 200 kW to 10% at 20 MW. A theoretical model of the anode heat transfer asserts that energy exchange between electrons and heavy particles in the plasma near the anode occurs over distances greater than the anode sheath thickness, and hence the usual anode fall voltage, electron temperature, and work function contributions to the anode heat flux are supplemented by a contribution from the interelectrode potential. Calculations of anode heat flux using the measured current density, plasma potential, and electron temperature in the plasma adjacent to the anode agree with the direct measurements and indicate that the decrease in anode power fraction at higher arc powers can be attributed to the smaller mean free paths in the interelectrode plasma.

  2. Anode power deposition in quasi-steady MPD arcs. [accelerator anode heat flux measurement

    NASA Technical Reports Server (NTRS)

    Saber, A. J.; Jahn, R. G.

    1973-01-01

    The power deposited in the anode of a quasi-steady MPD accelerator has been measured directly by thermocouples attached to the inside surface of a shell anode which provide a local measurement of anode heat flux. The results over a range of arc currents from 5.5 to 44 kiloamperes and argon mass flows from 1 g/sec to 48 g/sec show that the fraction of the total input power deposited in the anode decreases drastically from 50% at an arc power of 200 kW to 10% at 20 MW, and that anode power is not uniformly deposited in the anode. A theoretical model of the anode heat transfer, including effects of anode work function, electron thermal energy, and anode sheath, can be brought into reasonable agreement with the measurements, provided the effective range of the conduction electrons from within the discharge plasma to the anode surface is properly acknowledged.

  3. Surface plasma source with anode layer plasma accelerator

    SciTech Connect

    Dudnikov, Vadim

    2012-02-15

    Proposed plasma generation system can be used for high current negative ion beam production and for directed deposition by flux of sputtered neutrals and negative ions. The main mechanism of negative ion formation in surface plasma sources is the secondary emission from low work function surface bombarded by a flux of positive ion or neutrals. The emission of negative ions is enhanced significantly by introducing a small amount of cesium or other substance with low ionization potential. In the proposed source are used positive ions generated by Hall drift plasma accelerator (anode layer plasma accelerator or plasma accelerator with insulated channel, with cylindrical or race track configuration of emission slit). The target-emitter is bombarded by the ion beam accelerated in crossed ExB fields. Negative ions are extracted from the target surface with geometrical focusing and are accelerated by negative voltage applied between emitter and plasma, contacting with the plasma accelerator. Hall drift ion source has a special design with a space for passing of the emitted negative ions and sputtered particles through the positive ion source.

  4. Mild oxygen plasma treated PEDOT:PSS as anode buffer layer for vacuum deposited organic light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Zhou, Yunfei; Yuan, Yongbo; Lian, Jiarong; Zhang, Jie; Pang, Hongqi; Cao, Lingfang; Zhou, Xiang

    2006-08-01

    The surface morphology of PEDOT:PSS after mild oxygen plasma treatment were investigated by scanning electron microscopy and atomic force microscopy. The nanometer-scale islands on the surface of treated PEDOT:PSS were observed. Vacuum deposited organic light-emitting diodes (OLEDs) with treated PEDOT:PSS as anode buffer layer had been fabricated. The OLEDs with an appropriately treated PEDOT:PSS as anode buffer layer exhibited significantly enhanced lifetime and decreased driving voltage. The results suggest that the appropriate mild oxygen plasma treatment of PEDOT:PSS layers may be useful for the improvement of the interface with the hole transport layer and enhanced device performance.

  5. Collective acceleration of xenon ions in a plasma-anode vircator

    NASA Astrophysics Data System (ADS)

    Chelpanov, V. I.; Golyakov, P. I.; Kornilov, V. G.; Volkov, A. A.; Dubinov, A. E.; Selemir, V. D.; Zhdanov, V. S.

    2009-01-01

    The collective acceleration of xenon ions in a plasma-anode vircator is studied. It is shown that the energy of accelerated ions may reach 900 MeV. The image of a bremsstrahlung source on the target suggests effective transport of relativistic electrons in the drift channel.

  6. Breathing oscillations in enlarged cylindrical-anode-layer Hall plasma accelerator

    SciTech Connect

    Geng, S. F.; Wang, C. X.; Tang, D. L.; Qiu, X. M.; Fu, R. K. Y.; Chu, Paul K.

    2013-05-28

    Breathing oscillations in the discharge of an enlarged cylindrical-anode-layer Hall plasma accelerator are investigated by three-dimensional particle-in-cell (PIC) simulation. Different from the traditional breathing mode in a circular Hall plasma accelerator, the bulk plasma oscillation here is trigged by the potential barrier generated by the concentrated ion beam and substantial enough to compete with the anode voltage. The electric field near the anode is suppressed by the potential barrier thereby decreasing the electron density by {approx}36%. The discharge is restored to the normal level after the concentrated beam explodes and then it completes one cycle of electro-driven breathing oscillation. The breathing mode identified by the PIC simulation has a frequency range of {approx}156 kHz-{approx}250 kHz and does not vary monotonically with the discharge voltage.

  7. Accelerated life test of sputtering and anode deposit spalling in a small mercury ion thruster

    NASA Technical Reports Server (NTRS)

    Power, J. L.

    1975-01-01

    Tantalum and molybdenum sputtered from discharge chamber components during operation of a 5 centimeter diameter mercury ion thruster adhered much more strongly to coarsely grit blasted anode surfaces than to standard surfaces. Spalling of the sputtered coating did occur from a coarse screen anode surface but only in flakes less than a mesh unit long. The results were obtained in a 200 hour accelerated life test conducted at an elevated discharge potential of 64.6 volts. The test approximately reproduced the major sputter erosion and deposition effects that occur under normal operation but at approximately 75 times the normal rate. No discharge chamber component suffered sufficient erosion in the test to threaten its structural integrity or further serviceability. The test indicated that the use of tantalum-surfaced discharge chamber components in conjunction with a fine wire screen anode surface should cure the problems of sputter erosion and sputtered deposits spalling in long term operation of small mercury ion thrusters.

  8. Concentrated ion beam emitted from an enlarged cylindrical-anode-layer Hall plasma accelerator and mechanism

    SciTech Connect

    Geng, S. F.; Wang, C. X.; Tang, D. L.; Qiu, X. M.; Chu, Paul K.

    2013-01-28

    An enlarged cylindrical-anode-layer Hall plasma accelerator with an outlet diameter of 150 mm is experimentally demonstrated to produce a concentrated ion beam, especially at a high discharge voltage, with a high current utilization efficiency of up to {approx}0.9. Numerical investigation based on the three-dimensional particle-in-cell method is performed to study the ion dynamics and elucidate the origin of the ion beam characteristics. The simulation results reveal that the equipotential lines play an important role in the surface near the anode emitting the ions. The ion emitting surface is determined by the magnetic field lines near the anode and the magnetic mirror contributes to the concentrated beam significantly. The high current utilization efficiency results from the appropriate obliquity of the magnetic mirror.

  9. Accelerated creep in solid oxide fuel cell anode supports during reduction

    NASA Astrophysics Data System (ADS)

    Frandsen, H. L.; Makowska, M.; Greco, F.; Chatzichristodoulou, C.; Ni, D. W.; Curran, D. J.; Strobl, M.; Kuhn, L. T.; Hendriksen, P. V.

    2016-08-01

    To evaluate the reliability of solid oxide fuel cell (SOFC) stacks during operation, the stress field in the stack must be known. During operation the stress field will depend on time as creep processes relax stresses. The creep of reduced Ni-YSZ anode support at operating conditions has been studied previously. In this work a newly discovered creep phenomenon taking place during the reduction is reported. This relaxes stresses at a much higher rate (∼×104) than creep during operation. The phenomenon was studied both in three-point bending and uniaxial tension. Differences between the two measurements could be explained by newly observed stress promoted reduction. Finally, samples exposed to a small tensile stress (∼0.004 MPa) were observed to expand during reduction, which is in contradiction to previous literature. These observations suggest that release of internal residual stresses between the NiO and the YSZ phases occurs during reduction. The accelerated creep should practically eliminate any residual stress in the anode support in an SOFC stack, as has previously been indirectly observed. This phenomenon has to be taken into account both in the production of stacks and in the simulation of the stress field in a stack based on anode supported SOFCs.

  10. Characterization of anode stub corrosion in Hall reduction cells

    SciTech Connect

    Wang, X.; Peterson, R.D.

    1996-10-01

    Mild steel is widely used as a structural material in the aluminum smelting industry. In prebaked-anode reduction cells, the stability of the steel used as an anode stub against high temperature oxidation and corrosion is very important with regard to its full service life and maintaining aluminum purity. This paper deals with the accelerated corrosion of the steel material used as anode stubs in the presence of the sulfur-containing anode gases. Oxidized scale and the interface region of the oxidation reaction zone in a stub from a reduction cell were fully examined using SEM and X-ray diffraction. The sulfur from the bath and the anode carbon, released as SO{sub 2}, plays an important role in accelerating the anode stub corrosion process. A sulfidation-oxidation corrosion mechanism is proposed to support the corrosion phenomena observed on the steel anode pieces.

  11. Behavioral Outcomes Differ between Rotational Acceleration and Blast Mechanisms of Mild Traumatic Brain Injury

    PubMed Central

    Stemper, Brian D.; Shah, Alok S.; Budde, Matthew D.; Olsen, Christopher M.; Glavaski-Joksimovic, Aleksandra; Kurpad, Shekar N.; McCrea, Michael; Pintar, Frank A.

    2016-01-01

    Mild traumatic brain injury (mTBI) can result from a number of mechanisms, including blunt impact, head rotational acceleration, exposure to blast, and penetration of projectiles. Mechanism is likely to influence the type, severity, and chronicity of outcomes. The objective of this study was to determine differences in the severity and time course of behavioral outcomes following blast and rotational mTBI. The Medical College of Wisconsin (MCW) Rotational Injury model and a shock tube model of primary blast injury were used to induce mTBI in rats and behavioral assessments were conducted within the first week, as well as 30 and 60 days following injury. Acute recovery time demonstrated similar increases over protocol-matched shams, indicating acute injury severity equivalence between the two mechanisms. Post-injury behavior in the elevated plus maze demonstrated differing trends, with rotationally injured rats acutely demonstrating greater activity, whereas blast-injured rats had decreased activity that developed at chronic time points. Similarly, blast-injured rats demonstrated trends associated with cognitive deficits that were not apparent following rotational injuries. These findings demonstrate that rotational and blast injury result in behavioral changes with different qualitative and temporal manifestations. Whereas rotational injury was characterized by a rapidly emerging phenotype consistent with behavioral disinhibition, blast injury was associated with emotional and cognitive differences that were not evident acutely, but developed later, with an anxiety-like phenotype still present in injured animals at our most chronic measurements. PMID:27014184

  12. Structural evolution, thermomechanical recrystallization and electrochemical corrosion properties of Ni-Cu-Mg amorphous coating on mild steel fabricated by dual-anode electrolytic processing

    NASA Astrophysics Data System (ADS)

    Abdulwahab, M.; Fayomi, O. S. I.; Popoola, A. P. I.

    2016-07-01

    The electrolytic Ni-Cu based alloy coating with admixed interfacial blend of Mg have been successfully prepared on mild steel substrate by dual anode electroplating processes over a range of applied current density and dwell time. The electrocodeposition of Ni-Cu-Mg coating was investigated in the presence of other bath additives. The influence of deposition current on surface morphology, adhesion behavior, preferred crystal orientation, surface topography and electrochemical activity of Ni-Cu-Mg alloy coating on mild steel were systematically examined. The thermal stability of the developed composite materials was examined via isothermal treatment. Scanning electron microscope equipped with EDS, X-ray diffraction, Atomic force microscope, micro-hardness tester and 3 μmetrohm Potentiostat/galvanostat were used to compare untreated and isothermally treated electrocodeposited composite. The induced activity of the Ni-Cu-Mg alloy changed the surface modification and results to crystal precipitation within the structural interface by the formation of Cu, Ni2Mg3 phase. The obtained results showed that the introduction of Mg particles in the plating bath generally modified the surface and brings an increase in the hardness and corrosion resistance of Ni-Cu-Mg layers fabricated. Equally, isothermally treated composites demonstrated an improved properties indicating 45% increase in the micro-hardness and 79.6% corrosion resistance which further showed that the developed composite is thermally stable.

  13. Arcjet anode

    NASA Technical Reports Server (NTRS)

    Lichon, Paul G. (Inventor)

    1995-01-01

    There is disclosed an anode for an arcjet thruster which resists erosion during start-up on constriction during steady-state operation. The anode includes a converging upstream portion, a diverging downstream portion and a constricted portion disposed therebetween. In one embodiment of the invention, rails formed in the constricted portion accelerate the passage of an arc during start-up reducing erosion. In a second embodiment, a higher strength material resists bulging as a result of the thermal gradient within the nozzle.

  14. Repetitive mild traumatic brain injury with impact acceleration in the mouse: Multifocal axonopathy, neuroinflammation, and neurodegeneration in the visual system.

    PubMed

    Xu, Leyan; Nguyen, Judy V; Lehar, Mohamed; Menon, Adarsh; Rha, Elizabeth; Arena, John; Ryu, Jiwon; Marsh-Armstrong, Nicholas; Marmarou, Christina R; Koliatsos, Vassilis E

    2016-01-01

    Repetitive mild traumatic brain injury (mTBI) is implicated in chronic neurological illness. The development of animal models of repetitive mTBI in mice is essential for exploring mechanisms of these chronic diseases, including genetic vulnerability by using transgenic backgrounds. In this study, the rat model of impact acceleration (IA) was redesigned for the mouse cranium and used in two clinically relevant repetitive mTBI paradigms. We first determined, by using increments of weight dropped from 1m that the 40g weight was most representative of mTBI and was not associated with fractures, brain contusions, anoxic-ischemic injury, mortality, or significant neurological impairments. Quantitative evaluation of traumatic axonal injury (TAI) in the optic nerve/tract, cerebellum and corpus callosum confirmed that weight increase produced a graded injury. We next evaluated two novel repetitive mTBI paradigms (1 time per day or 3 times per day at days 0, 1, 3, and 7) and compared the resulting TAI, neuronal cell death, and neuroinflammation to single hit mTBI at sub-acute (7days) and chronic time points (10weeks) post-injury. Both single and repetitive mTBI caused TAI in the optic nerve/tract, cerebellum, corticospinal tract, lateral lemniscus and corpus callosum. Reactive microglia with phagocytic phenotypes were present at injury sites. Severity of axonal injury corresponded to impact load and frequency in the optic nerve/tract and cerebellum. Both single and repeat injury protocols were associated with retinal ganglion cell loss and optic nerve degeneration; these outcomes correlated with impact load and number/frequency. No phosphorylated tau immunoreactivity was detected in the brains of animals subjected to repetitive mTBI. Our findings establish a new model of repetitive mTBI model featured by TAI in discrete CNS tracts, especially the visual system and cerebellum. Injury in retina and optic nerve provides a sensitive measure of severity of mTBI, thus enabling

  15. Homocysteine-Lowering by B Vitamins Slows the Rate of Accelerated Brain Atrophy in Mild Cognitive Impairment: A Randomized Controlled Trial

    PubMed Central

    Smith, Stephen M.; de Jager, Celeste A.; Whitbread, Philippa; Johnston, Carole; Agacinski, Grzegorz; Oulhaj, Abderrahim; Bradley, Kevin M.; Jacoby, Robin

    2010-01-01

    Background An increased rate of brain atrophy is often observed in older subjects, in particular those who suffer from cognitive decline. Homocysteine is a risk factor for brain atrophy, cognitive impairment and dementia. Plasma concentrations of homocysteine can be lowered by dietary administration of B vitamins. Objective To determine whether supplementation with B vitamins that lower levels of plasma total homocysteine can slow the rate of brain atrophy in subjects with mild cognitive impairment in a randomised controlled trial (VITACOG, ISRCTN 94410159). Methods and Findings Single-center, randomized, double-blind controlled trial of high-dose folic acid, vitamins B6 and B12 in 271 individuals (of 646 screened) over 70 y old with mild cognitive impairment. A subset (187) volunteered to have cranial MRI scans at the start and finish of the study. Participants were randomly assigned to two groups of equal size, one treated with folic acid (0.8 mg/d), vitamin B12 (0.5 mg/d) and vitamin B6 (20 mg/d), the other with placebo; treatment was for 24 months. The main outcome measure was the change in the rate of atrophy of the whole brain assessed by serial volumetric MRI scans. Results A total of 168 participants (85 in active treatment group; 83 receiving placebo) completed the MRI section of the trial. The mean rate of brain atrophy per year was 0.76% [95% CI, 0.63–0.90] in the active treatment group and 1.08% [0.94–1.22] in the placebo group (P = 0.001). The treatment response was related to baseline homocysteine levels: the rate of atrophy in participants with homocysteine >13 µmol/L was 53% lower in the active treatment group (P = 0.001). A greater rate of atrophy was associated with a lower final cognitive test scores. There was no difference in serious adverse events according to treatment category. Conclusions and Significance The accelerated rate of brain atrophy in elderly with mild cognitive impairment can be slowed by treatment with homocysteine

  16. Highly Ordered Porous Anodic Alumina with Large Diameter Pores Fabricated by an Improved Two-Step Anodization Approach.

    PubMed

    Li, Xiaohong; Ni, Siyu; Zhou, Xingping

    2015-02-01

    The aim of this study is to prepare highly ordered porous anodic alumina (PAA) with large pore sizes (> 200 nm) by an improved two-step anodization approach which combines the first hard anodization in oxalic acid-water-ethanol system and second mild anodization in phosphoric acid-water-ethanol system. The surface morphology and elemental composition of PAA are characterized by field emission scanning electron microscopy (FESEM) and energy-dispersive X-ray spectrometer (EDS). The effects of matching of two-step anodizing voltages on the regularity of pore arrangement is evaluated and discussed. Moreover, the pore formation mechanism is also discussed. The results show that the nanopore arrays on all the PAA samples are in a highly regular arrangement and the pore size is adjustable in the range of 200-300 nm. EDS analysis suggests that the main elements of the as-prepared PAA are oxygen, aluminum and a small amount of phosphorus. Furthermore, the voltage in the first anodization must match well with that in the second anodization, which has significant influence on the PAA regularity. The addition of ethanol to the electrolytes effectively accelerates the diffusion of the heat that evolves from the sample, and decreases the steady current to keep the steady growth of PAA film. The improved two-step anodization approach in this study breaks through the restriction of small pore size in oxalic acid and overcomes the drawbacks of irregular pore morphology in phosphoric acid, and is an efficient way to fabricate large diameter ordered PAA. PMID:26353721

  17. Antioxidant capacity of individual and combined virgin olive oil minor compounds evaluated at mild temperature (25 and 40°C) as compared to accelerated and antiradical assays.

    PubMed

    Mancebo-Campos, Vanessa; Salvador, María Desamparados; Fregapane, Giuseppe

    2014-05-01

    The individual and combined antioxidant and antiradical capacity of the main minor compounds of virgin olive oil (α-tocopherol, hydroxytyrosol, tyrosol and oleuropein aglycone) spiked in Purified Olive Oil (POO) as the lipid matrix model is described. The antioxidant activity was assessed under mild temperature conditions (25 and 40°C) to mimic the autoxidation process during real storage conditions. These results were compared with accelerated (Rancimat Induction Period) and antiradical (DPPH) tests. The higher concentration of o-diphenols (hydroxytyrosol or oleuropein aglycone) in olive oil led to a lower oxidation rate under the conditions studied, resulting in a strong antioxidant effect. Remarkably α-tocopherol acted as a pro-oxidant at 25 and 40°C, in particular during the first oxidation stage. In contrast, this compound behaved as an antioxidant under Rancimat and DPPH conditions. The oxidation rate constant as a function of the concentration of spiked compound fit an exponential decay model very well and therefore the progress of the oxidation reaction could be predicted. No synergistic or antagonistic effects were generally observed when combined antioxidant compounds were assayed. PMID:24360465

  18. Anodizing Process

    NASA Technical Reports Server (NTRS)

    1983-01-01

    This anodizing process traces its origin to the 1960's when Reynolds Metals Company, under contract with Goddard Space Flight Center, developed a multipurpose anodizing electrolyte (MAE) process to produce a hard protective finish for spacecraft aluminum. MAE produces a high-density, abrasion-resistant film prior to the coloring step, in which the pores of the film are impregnated with a metallic form of salt. Tru-Color product applications include building fronts, railing, curtain walls, doors and windows.

  19. Collective field accelerator

    DOEpatents

    Luce, John S.

    1978-01-01

    A collective field accelerator which operates with a vacuum diode and utilizes a grooved cathode and a dielectric anode that operates with a relativistic electron beam with a .nu./.gamma. of .about. 1, and a plurality of dielectric lenses having an axial magnetic field thereabout to focus the collectively accelerated electrons and ions which are ejected from the anode. The anode and lenses operate as unoptimized r-f cavities which modulate and focus the beam.

  20. Effect of Anode Dielectric Coating on Hall Thruster Operation

    SciTech Connect

    L. Dorf; Y. Raitses; N.J. Fisch; V. Semenov

    2003-10-20

    An interesting phenomenon observed in the near-anode region of a Hall thruster is that the anode fall changes from positive to negative upon removal of the dielectric coating, which is produced on the anode surface during the normal course of Hall thruster operation. The anode fall might affect the thruster lifetime and acceleration efficiency. The effect of the anode coating on the anode fall is studied experimentally using both biased and emissive probes. Measurements of discharge current oscillations indicate that thruster operation is more stable with the coated anode.

  1. Self-cleaning rotating anode x-ray source

    DOEpatents

    Paulikas, A.P.

    1987-06-02

    A self-cleaning rotating anode x-ray source comprising and evacuable housing, a rotatable cylindrical anode within the housing, a source of electrons within the housing which electrons are caused to impinge upon the anode to produce x-rays, and means for ionizing residual particles within the housing and accelerating such ions so as to impinge upon the anode to sputter impurities from the surface thereof. 2 figs.

  2. Self-cleaning rotating anode X-ray source

    DOEpatents

    Paulikas, Arvydas P.

    1989-01-01

    A self-cleaning rotating anode x-ray source comprising an evacuable housing, a rotatable cylindrical anode within the housing, a source of electrons within the housing which electrons are caused to impinge upon the anode to produce x-rays, and means for ionizing residual particles within the housing and accelerating such ions so as to impinge upon the anode to sputter impurities from the surface thereof.

  3. Conductive polymer coatings for anodes in aqueous electrowinning

    NASA Astrophysics Data System (ADS)

    Alfantazi, A. M.; Moskalyk, R. R.

    2003-07-01

    This article discusses the potential application of electrically conductive polymers as protective coatings for permanent lead anodes employed in aqueous electrowinning processes. Also presented are results from a preliminary study of the performance of two intrinsically conductive polymers (polyaniline and poly 3,4,5-trifluorophenylthiophene [TFPT]) under mild copper electrowinning conditions as conductive and protective coatings on anodic surfaces. The laboratory results indicated that using lead alloy anodes coated with TFPT merits continued research.

  4. Mild balanoposthitis.

    PubMed Central

    Fornasa, C V; Calabrŏ, A; Miglietta, A; Tarantello, M; Biasinutto, C; Peserico, A

    1994-01-01

    AIM--To identify and study cases of mild balanoposthitis (MBP) with penile pathology among patients observed at a dermatology clinic over an 18-month period. MATERIALS--The study included 321 patients with penile pathology. The term MBP was used to describe balanoposthitis of a localised, inflammatory nature with few, non-specific symptoms and a tendency to become chronic or recur. Two hundred and seventy had diseases clearly identifiable by clinical examination or laboratory tests; 51 cases were diagnosed as MBP and these patients had blood tests (to evaluate immune status) and microbiological examination; when these proved negative, a series of patch tests was also used. RESULTS--Of the 51 patients diagnosed as having MBP, the cause was ascertained in 34 cases (infection, mechanical trauma, contact irritation, contact allergy, etc.), whereas no specific aetiological factor was detected to explain the symptoms in the remaining 17 cases. PMID:8001949

  5. A compound heterozygote SLC26A2 mutation resulting in robin sequence, mild limbs shortness, accelerated carpal ossification, and multiple epiphysial dysplasia in two Brazilian sisters. A new intermediate phenotype between diastrophic dysplasia and recessive multiple epiphyseal dysplasia.

    PubMed

    Zechi-Ceide, Roseli Maria; Moura, Priscila Padilha; Raskin, Salmo; Richieri-Costa, Antonio; Guion-Almeida, Maria Leine

    2013-08-01

    Mutations in solute carrier family 26 (sulfate transporter), member 2 (SLC26A2) gene result in a spectrum of autosomal recessive chondrodysplasias that range from the mildest recessive form of multiple epiphysial dysplasia (rMED) through the most common diastrophic dysplasia (DTD) to lethal atelosteogenesis type II and achondrogenesis IB. The clinical variability has been ascribed to quantitative effect of mutations of the sulfate transporter activity. Here we describe two Brazilian sisters, born to healthy and non consanguineous parents, with Robin sequence, mild shortening of upper and lower limbs, brachymetacarpalia/tarsalia, additional and accelerated carpal ossification, marked genu valgum, and multiple epiphysial dysplasia. This phenotype was intermediate between DTD and rMED, and both girls have a compound heterozygous mutations for the SLC26A2, a Finnish founder mutation (c.-26 + 2T>C), and R279W. This combination of mutations has been observed in individuals with different phenotypes, including DTD, DTD variant, and rMED. The distinct phenotype of our cases reinforces the hypothesis that other factors may be influencing the phenotype as previously suggested. PMID:23840040

  6. Advances in aluminum anodizing

    NASA Technical Reports Server (NTRS)

    Dale, K. H.

    1969-01-01

    White anodize is applied to aluminum alloy surfaces by specific surface preparation, anodizing, pigmentation, and sealing techniques. The development techniques resulted in alloys, which are used in space vehicles, with good reflectance values and excellent corrosive resistance.

  7. FLUORINE CELL ANODE ASSEMBLY

    DOEpatents

    Cable, R.E.; Goode, W.B. Jr.; Henderson, W.K.; Montillon, G.H.

    1962-06-26

    An improved anode assembly is deslgned for use in electrolytlc cells ln the productlon of hydrogen and fluorlne from a moIten electrolyte. The anode assembly comprises a copper post, a copper hanger supported by the post, a plurality of carbon anode members, and bolt means for clamplng half of the anode members to one slde of the hanger and for clamplng the other half of the anode members to the other slde of the hanger. The heads of the clamplng bolts are recessed withln the anode members and carbon plugs are inserted ln the recesses above the bolt heads to protect the boIts agalnst corroslon. A copper washer is provided under the head of each clamplng boIt such that the anode members can be tightly clamped to the hanger with a resultant low anode jolnt resistance. (AEC)

  8. Pulsed electromagnetic acceleration

    NASA Technical Reports Server (NTRS)

    Jahn, R. G.; Vonjaskowsky, W. F.; Clark, K. E.

    1973-01-01

    Direct measurements of the power deposited in the anode of a multimegawatt MPD accelerator using thermocouples attached to a thin shell anode reveal a dramatic decrease in the fractional anode power from 50% at 200 KW input power to less than 10% at 20 MW power. The corresponding local power flux peak at a value of 10,000 W/sq cm at the lip of the anode exhaust orifice, a distribution traced to a corresponding peak in the local current density at the anode. A comparison of voltage-current characteristics and spectral photographs of the MPD discharge using quartz, boron nitride and plexiglas insulators with various mass injection configurations led to the identification of different voltage modes and regions of ablation free operation. The technique of piezoelectric impact pressure measurement in the MPD exhaust flow was refined to account for the effects due to probe yaw angle.

  9. Alternate anode materials for cathodic protection of steel reinforced concrete

    SciTech Connect

    Russell, James H.; Bullard, Sophie J.; Covino, Bernard S., Jr.; Cramer, Stephen D.; Holcomb, Gordon R.; Cryer, Curtis B.

    2001-01-01

    Consumable and non-consumable anodes were evaluated in the laboratory for use in cathodic protection (CP) systems for steel reinforced concrete bridges in coastal environments and in areas where deicing salts are employed. The anode materials included Zn-hydrogel and thermal-sprayed Zn, Zn-15Al, Al-12Zn-0.2In, and cobalt-sprayed Ti. These anodes were evaluated for service in both galvanic (GCP) and impressed current (ICCP) cathodic protection systems. Impressed current CP anodes were electrochemically aged at a current density 15 times as great as that used by the Oregon Department of Transportation in typical coastal ICCP systems (2.2 mA/m2 based on anode area). Increasing moisture at the anode-concrete interface reduced the operating voltage of all the anodes. Bond strength between the anodes and concrete decreased with electrochemical aging. The Zn-15Al and Al-12Zn-0.2In anodes provided adequate protection in GCP but their life was too short in the accelerated ICCP tests. Zinc had an adequate life in ICCP tests but was inadequate as a galvanic anode. Zinc-hydrogel performed well in both tests when the hydrogel was kept moist. Titanium was an excellent anode for ICCP, but is not suitable for GCP.

  10. Structural study of very thin anodic alumina films on silicon by anodization in citric acid aqueous solution.

    PubMed

    Kokonou, M; Nassiopoulou, A G; Giannakopoulos, K P; Boukos, N; Travlos, A

    2005-03-01

    The formation of thin alumina films on a silicon substrate by anodization in a mild acid, specifically in 1% wt citric acid aqueous solution, is investigated by transmission electron microscopy (TEM). We present a comparative study between two cases of starting material: pure aluminum and an alloy of aluminum with 1% silicon. In both cases the thickness of the Al layer was less than 50 nm. It was observed that under exactly the same conditions, in the first case the anodization was stopping before anodizing the whole film and a remaining non-anodized Al layer was always present, while in the second case, the Al layer was fully anodized, resulting in an alumina matrix with a very high density of silicon nanocrystals of uniform sizes embedded in it. In both cases the alumina film was compact and amorphous. PMID:15913255

  11. Carbonate fuel cell anodes

    DOEpatents

    Donado, R.A.; Hrdina, K.E.; Remick, R.J.

    1993-04-27

    A molten alkali metal carbonates fuel cell porous anode of lithium ferrite and a metal or metal alloy of nickel, cobalt, nickel/iron, cobalt/iron, nickel/iron/aluminum, cobalt/iron/aluminum and mixtures thereof wherein the total iron content including ferrite and iron of the composite is about 25 to about 80 percent, based upon the total anode, provided aluminum when present is less than about 5 weight percent of the anode. A process is described for production of the lithium ferrite containing anode by slipcasting.

  12. Carbonate fuel cell anodes

    DOEpatents

    Donado, Rafael A.; Hrdina, Kenneth E.; Remick, Robert J.

    1993-01-01

    A molten alkali metal carbonates fuel cell porous anode of lithium ferrite and a metal or metal alloy of nickel, cobalt, nickel/iron, cobalt/iron, nickel/iron/aluminum, cobalt/iron/aluminum and mixtures thereof wherein the total iron content including ferrite and iron of the composite is about 25 to about 80 percent, based upon the total anode, provided aluminum when present is less than about 5 weight percent of the anode. A process for production of the lithium ferrite containing anode by slipcasting.

  13. Anodized aluminum on LDEF

    NASA Technical Reports Server (NTRS)

    Golden, Johnny L.

    1993-01-01

    A compilation of reported analyses and results obtained for anodized aluminum flown on the Long Duration Exposure Facility (LDEF) was prepared. Chromic acid, sulfuric acid, and dyed sulfuric acid anodized surfaces were exposed to the space environment. The vast majority of the anodized surface on LDEF was chromic acid anodize because of its selection as a thermal control coating for use on the spacecraft primary structure, trays, tray clamps, and space end thermal covers. Reports indicate that the chromic acid anodize was stable in solar absorptance and thermal emittance, but that contamination effects caused increases in absorptance on surfaces exposed to low atomic oxygen fluences. There were some discrepancies, however, in that some chromic acid anodized specimens exhibited significant increases in absorptance. Sulfuric acid anodized surfaces also appeared stable, although very little surface area was available for evaluation. One type of dyed sulfuric acid anodize was assessed as an optical baffle coating and was observed to have improved infrared absorptance characteristics with exposure on LDEF.

  14. Anodizing Aluminum with Frills.

    ERIC Educational Resources Information Center

    Doeltz, Anne E.; And Others

    1983-01-01

    "Anodizing Aluminum" (previously reported in this journal) describes a vivid/relevant laboratory experience for general chemistry students explaining the anodizing of aluminum in sulfuric acid and constrasting it to electroplating. Additions to this procedure and the experiment in which they are used are discussed. Reactions involved are also…

  15. Virtual cathode microwave generator having annular anode slit

    SciTech Connect

    Kwan, Thomas J. T.; Snell, Charles M.

    1988-01-01

    A microwave generator is provided for generating microwaves substantially from virtual cathode oscillation. Electrons are emitted from a cathode and accelerated to an anode which is spaced apart from the cathode. The anode has an annular slit therethrough effective to form the virtual cathode. The anode is at least one range thickness relative to electrons reflecting from the virtual cathode. A magnet is provided to produce an optimum magnetic field having the field strength effective to form an annular beam from the emitted electrons in substantial alignment with the annular anode slit. The magnetic field, however, does permit the reflected electrons to axially diverge from the annular beam. The reflected electrons are absorbed by the anode in returning to the real cathode, such that substantially no reflexing electrons occur. The resulting microwaves are produced with a single dominant mode and are substantially monochromatic relative to conventional virtual cathode microwave generators.

  16. Electrically conductive anodized aluminum coatings

    NASA Technical Reports Server (NTRS)

    Alwitt, Robert S. (Inventor); Liu, Yanming (Inventor)

    2001-01-01

    A process for producing anodized aluminum with enhanced electrical conductivity, comprising anodic oxidation of aluminum alloy substrate, electrolytic deposition of a small amount of metal into the pores of the anodized aluminum, and electrolytic anodic deposition of an electrically conductive oxide, including manganese dioxide, into the pores containing the metal deposit; and the product produced by the process.

  17. Anodes - Technology review

    NASA Astrophysics Data System (ADS)

    Wallis, L.; Wills, R. G. A.

    2014-06-01

    Many electrochemical energy storage technologies utilize anodes that are specific to the chemistry of the device. Anodes must be designed for devices including primary and secondary batteries, fuel cells and capacitors. These applications include a diverse range of operational conditions, including aqueous, solid or organic media. This paper will provide a brief overview of anode technologies for medium (e.g. electric and hybrid electric vehicles) and large (e.g. integration of renewable energy generation to electrical networks) battery applications. Established and developing storage technologies will be discussed to provide an insight into how anodes (materials, manufacturing processes and modes of operation) differ between specific applications and devices. Lead-acid batteries are used as a case study to provide a practical example and guide discussion onto the question of future challenges and opportunities.

  18. Anode insulator for electrolytic cell

    SciTech Connect

    Robinson, D.J.

    1986-10-28

    An improved anode insulator is described for use in an electrowinning cell, including spaced anodes each supported by an anode header bar, each having the improved anode insulators disposed thereon for preventing contact with spaced cathodes that are respectively disposed between adjacent anodes, each improved anode insulator comprising: (a) first and second elongated insulating means disposed along intermediate portions of opposite faces of one of the anodes for preventing any contact between the faces of that anode and adjacent cathodes; (b) upper connecting means disposed around the top and side portions of the anode header bar supporting that anode and conforming to the shape of the header bar; and (c) lower connecting means for joining the lower end portions of the first and second elongated insulating means.

  19. Anodic oxidation of benzoquinone using diamond anode.

    PubMed

    Panizza, Marco

    2014-01-01

    The anodic degradation of 1,4-benzoquinone (BQ), one of the most toxic xenobiotic, was investigated by electrochemical oxidation at boron-doped diamond anode. The electrolyses have been performed in a single-compartment flow cell in galvanostatic conditions. The influence of applied current (0.5-2 A), BQ concentration (1-2 g dm(-3)), temperature (20-45 °C) and flow rate (100-300 dm(3) h(-1)) has been studied. BQ decay kinetic, the evolution of its oxidation intermediates and the mineralization of the aqueous solutions were monitored during the electrolysis by high-performance liquid chromatograph (HPLC) and chemical oxygen demand (COD) measurements. The results obtained show that the use of diamond anode leads to total mineralization of BQ in any experimental conditions due to the production of oxidant hydroxyl radicals electrogenerated from water discharge. The decay kinetics of BQ removal follows a pseudo-first-order reaction, and the rate constant increases with rising current density. The COD removal rate was favoured by increasing of applied current, recirculating flow rate and it is almost unaffected by solution temperature. PMID:24710725

  20. Mild Cognitive Impairment

    MedlinePlus

    ... Research Portfolio (IADRP) AMP-AD Detecting Cognitive Impairment Database ... Mild cognitive impairment (MCI) is a condition in which people have more memory or other thinking problems than normal for their ...

  1. Mild Cognitive Impairment

    MedlinePlus

    ... other people their age. This condition is called mild cognitive impairment, or MCI. People with MCI can take care of themselves and do their normal activities. MCI memory problems may include Losing things often Forgetting ...

  2. Investigation of mechanism of anode plasma formation in ion diode with dielectric anode

    SciTech Connect

    Pushkarev, A.

    2015-10-15

    The results of investigation of the anode plasma formation in a diode with a passive anode in magnetic insulation mode are presented. The experiments have been conducted using the BIPPAB-450 ion accelerator (350–400 kV, 6–8 kA, 80 ns) with a focusing conical diode with B{sub r} external magnetic field (a barrel diode). For analysis of plasma formation at the anode and the distribution of the ions beam energy density, infrared imaging diagnostics (spatial resolution of 1–2 mm) is used. For analysis of the ion beam composition, time-of-flight diagnostics (temporal resolution of 1 ns) were used. Our studies have shown that when the magnetic induction in the A-C gap is much larger than the critical value, the ion beam energy density is close to the one-dimensional Child-Langmuir limit on the entire working surface of the diode. Formation of anode plasma takes place only by the flashover of the dielectric anode surface. In this mode, the ion beam consists primarily of singly ionized carbon ions, and the delay of the start of formation of the anode plasma is 10–15 ns. By reducing the magnetic induction in the A-C gap to a value close to the critical one, the ion beam energy density is 3–6 times higher than that calculated by the one-dimensional Child-Langmuir limit, but the energy density of the ion beam is non-uniform in cross-section. In this mode, the anode plasma formation occurs due to ionization of the anode material with accelerated electrons. In this mode, also, the delay in the start of the formation of the anode plasma is much smaller and the degree of ionization of carbon ions is higher. In all modes occurred effective suppression of the electronic component of the total current, and the diode impedance was 20–30 times higher than the values calculated for the mode without magnetic insulation of the electrons. The divergence of the ion beam was 4.5°–6°.

  3. Investigation of mechanism of anode plasma formation in ion diode with dielectric anode

    NASA Astrophysics Data System (ADS)

    Pushkarev, A.

    2015-10-01

    The results of investigation of the anode plasma formation in a diode with a passive anode in magnetic insulation mode are presented. The experiments have been conducted using the BIPPAB-450 ion accelerator (350-400 kV, 6-8 kA, 80 ns) with a focusing conical diode with Br external magnetic field (a barrel diode). For analysis of plasma formation at the anode and the distribution of the ions beam energy density, infrared imaging diagnostics (spatial resolution of 1-2 mm) is used. For analysis of the ion beam composition, time-of-flight diagnostics (temporal resolution of 1 ns) were used. Our studies have shown that when the magnetic induction in the A-C gap is much larger than the critical value, the ion beam energy density is close to the one-dimensional Child-Langmuir limit on the entire working surface of the diode. Formation of anode plasma takes place only by the flashover of the dielectric anode surface. In this mode, the ion beam consists primarily of singly ionized carbon ions, and the delay of the start of formation of the anode plasma is 10-15 ns. By reducing the magnetic induction in the A-C gap to a value close to the critical one, the ion beam energy density is 3-6 times higher than that calculated by the one-dimensional Child-Langmuir limit, but the energy density of the ion beam is non-uniform in cross-section. In this mode, the anode plasma formation occurs due to ionization of the anode material with accelerated electrons. In this mode, also, the delay in the start of the formation of the anode plasma is much smaller and the degree of ionization of carbon ions is higher. In all modes occurred effective suppression of the electronic component of the total current, and the diode impedance was 20-30 times higher than the values calculated for the mode without magnetic insulation of the electrons. The divergence of the ion beam was 4.5°-6°.

  4. Low cost MCFC anodes

    SciTech Connect

    Erickson, D.S.

    1996-12-31

    This paper outlines a project, funded under a DOE SBIR grant, which tested a potentially lower cost method of manufacturing MCFC stack anodes and evaluated the feasibility of using the technology in the existing M-C Power Corp. manufacturing facility. The procedure involves adding activator salts to the anode tape casting slurry with the Ni and Cr or Al powders. Two different processes occur during heat treatment in a reducing environment: sintering of the base Ni structure, and alloying or cementation of the Cr or Al powders. To determine whether it was cost-effective to implement the cementation alloying manufacturing process, the M-C Power manufacturing cost model was used to determine the impact of different material costs and processing parameters on total anode cost. Cost analysis included equipment expenditures and facility modifications required by the cementation alloying process.

  5. Rechargeable sodium alloy anode

    SciTech Connect

    Jow, T.R.

    1988-06-28

    A secondary battery is described comprising: (a) an anode which comprises an alloy of sodium and one or metals selected from the group consisting of tin, lead antimony, bismuth, selenium and tellerium, (b) an electrolyte comprising one or more organic solvents and one or more sodium salts dissolved therein forming dissolved sodium cations in solution; and (c) a cathode; the sodium cations from the electrolyte alloying with the one or more metals of the alloy in the anode during the charging of the battery and sodium in the alloy disoloving in the electrolyte during the discharging of the battery.

  6. Sulfur tolerant anode materials

    SciTech Connect

    Not Available

    1987-02-01

    The goal of this program is the development of a molten carbonate fuel cell (MCFC) anode which is more tolerant of sulfur contaminants in the fuel than the current state-of-the-art nickel-based anode structures. This program addresses two different but related aspects of the sulfur contamination problem. The primary aspect is concerned with the development of a sulfur tolerant electrocatalyst for the fuel oxidation reaction. A secondary issue is the development of a sulfur tolerant water-gas-shift reaction catalyst and an investigation of potential steam reforming catalysts which also have some sulfur tolerant capabilities. These two aspects are being addressed as two separate tasks.

  7. Atmospheric pressure arc discharge with ablating graphite anode

    SciTech Connect

    Nemchinsky, V. A.; Raitses, Y.

    2015-05-18

    The anodic carbon arc discharge is used to produce carbon nanoparticles. Recent experiments with the carbon arc at atmospheric pressure helium demonstrated the enhanced ablation rate for narrow graphite anodes resulting in high deposition rates of carbonaceous products on the copper cathode (Fetterman et al 2008 Carbon 46 1322–6). The proposed model explains these results with interconnected steady-state models of the cathode and the anode processes. When considering cathode functioning, the model predicts circulation of the particles in the near-cathode region: evaporation of the cathode material, ionization of evaporated atoms and molecules in the near-cathode plasma, return of the resulting ions to the cathode, surface recombination of ions and electrons followed again by cathode evaporation etc. In the case of the low anode ablation rate, the ion acceleration in the cathode sheath provides the major cathode heating mechanism. In the case of an intensive anode ablation, an additional cathode heating is due to latent fusion heat of the atomic species evaporated from the anode and depositing at the cathode. Using the experimental arc voltage as the only input discharge parameter, the model allows us to calculate the anode ablation rate. A comparison of the results of calculations with the available experimental data shows reasonable agreement.

  8. Virtual cathode microwave generator having annular anode slit

    SciTech Connect

    Kwan, T.J.T.; Snell, C.M.

    1988-03-08

    A microwave generator using an oscillating virtual cathode is described comprising: a cathode for emitting electrons; an anode for accelerating emitted electrons from the cathode, the anode having an annular slit therethrough effective for forming the virtual cathode and having at least one range thickness relative to electrons reflected from the virtual cathode; and magnet means for producing a magnetic field having a field strength effective to form an annular beam from the emitted electrons in substantial alignment with the annular anode slit and to enable the electrons reflected from the virtual cathode to axially diverge from the annular beam. The reflected electrons return toward the cathode diverge from the annular beam and are absorbed by the anode to substantially eliminate electrons reflexing between the cathode and the virtual cathode.

  9. Properties of a new type Al/Pb-0.3%Ag alloy composite anode for zinc electrowinning

    NASA Astrophysics Data System (ADS)

    Yang, Hai-tao; Liu, Huan-rong; Zhang, Yong-chun; Chen, Bu-ming; Guo, Zhong-cheng; Xu, Rui-dong

    2013-10-01

    An Al/Pb-0.3%Ag alloy composite anode was produced via composite casting. Its electrocatalytic activity for the oxygen evolution reaction and corrosion resistance was evaluated by anodic polarization curves and accelerated corrosion test, respectively. The microscopic morphologies of the anode section and anodic oxidation layer during accelerated corrosion test were obtained by scanning electron microscopy. It is found that the composite anode (hard anodizing) displays a more compact interfacial combination and a better adhesive strength than plating tin. Compared with industrial Pb-0.3%Ag anodes, the oxygen evolution overpotentials of Al/Pb-0.3%Ag alloy (hard anodizing) and Al/Pb-0.3%Ag alloy (plating tin) at 500 A·m-2 were lower by 57 and 14 mV, respectively. Furthermore, the corrosion rates of Pb-0.3%Ag alloy, Al/Pb-0.3%Ag alloy (hard anodizing), and Al/Pb-0.3%Ag alloy (plating tin) were 13.977, 9.487, and 11.824 g·m-2·h-1, respectively, in accelerated corrosion test for 8 h at 2000 A·m-2. The anodic oxidation layer of Al/Pb-0.3%Ag alloy (hard anodizing) is more compact than Pb-0.3%Ag alloy and Al/Pb-0.3%Ag alloy (plating tin) after the test.

  10. Ultraviolet imaging of the anode attachment in transferred-arc plasma cutting

    SciTech Connect

    Bemis, B.L.; Settles, G.S.

    1999-02-01

    The anode phenomena occurring at the location of current transfer from the plasma jet to the plate affects cut quality in plasma cutting of mild steel plate. To understand these phenomena, an ultraviolet imaging technique was used to visualize the anode attachment spot under various cutting conditions. This technique has provided a unique view and fostered a better understanding of the plasma-arc cutting process.

  11. Anode initiated surface flashover switch

    DOEpatents

    Brainard, John P.; Koss, Robert J.

    2003-04-29

    A high voltage surface flashover switch has a pair of electrodes spaced by an insulator. A high voltage is applied to an anode, which is smaller than the opposing, grounded, cathode. When a controllable source of electrons near the cathode is energized, the electrons are attracted to the anode where they reflect to the insulator and initiate anode to cathode breakdown.

  12. Inert Anode Report

    SciTech Connect

    none,

    1999-07-01

    This ASME report provides a broad assessment of open literature and patents that exist in the area of inert anodes and their related cathode systems and cell designs, technologies that are relevant for the advanced smelting of aluminum. The report also discusses the opportunities, barriers, and issues associated with these technologies from a technical, environmental, and economic viewpoint.

  13. Anodic Polarization Curves Revisited

    ERIC Educational Resources Information Center

    Liu, Yue; Drew, Michael G. B.; Liu, Ying; Liu, Lin

    2013-01-01

    An experiment published in this "Journal" has been revisited and it is found that the curve pattern of the anodic polarization curve for iron repeats itself successively when the potential scan is repeated. It is surprising that this observation has not been reported previously in the literature because it immediately brings into…

  14. Anodes for alkaline electrolysis

    DOEpatents

    Soloveichik, Grigorii Lev

    2011-02-01

    A method of making an anode for alkaline electrolysis cells includes adsorption of precursor material on a carbonaceous material, conversion of the precursor material to hydroxide form and conversion of precursor material from hydroxide form to oxy-hydroxide form within the alkaline electrolysis cell.

  15. Movable anode x-ray source with enhanced anode cooling

    DOEpatents

    Bird, Charles R.; Rockett, Paul D.

    1987-01-01

    An x-ray source having a cathode and a disc-shaped anode with a peripheral surface at constant radius from the anode axis opposed to the cathode. The anode has stub axle sections rotatably carried in heat conducting bearing plates which are mounted by thermoelectric coolers to bellows which normally bias the bearing plates to a retracted position spaced from opposing anode side faces. The bellows cooperate with the x-ray source mounting structure for forming closed passages for heat transport fluid. Flow of such fluid under pressure expands the bellows and brings the bearing plates into heat conducting contact with the anode side faces. A worm gear is mounted on a shaft and engages serrations in the anode periphery for rotating the anode when flow of coolant is terminated between x-ray emission events.

  16. Movable anode x-ray source with enhanced anode cooling

    DOEpatents

    Bird, C.R.; Rockett, P.D.

    1987-08-04

    An x-ray source is disclosed having a cathode and a disc-shaped anode with a peripheral surface at constant radius from the anode axis opposed to the cathode. The anode has stub axle sections rotatably carried in heat conducting bearing plates which are mounted by thermoelectric coolers to bellows which normally bias the bearing plates to a retracted position spaced from opposing anode side faces. The bellows cooperate with the x-ray source mounting structure for forming closed passages for heat transport fluid. Flow of such fluid under pressure expands the bellows and brings the bearing plates into heat conducting contact with the anode side faces. A worm gear is mounted on a shaft and engages serrations in the anode periphery for rotating the anode when flow of coolant is terminated between x-ray emission events. 5 figs.

  17. Anodic plasma in Hall thrusters

    SciTech Connect

    Keidar, Michael

    2008-03-01

    In this paper plasma dynamics and ionization of propellant gas are modeled within the anode holes used for gas injection of a Hall thruster. Under conditions of anode coating with dielectric material, the discharge current should close within these holes, which results in ionization and formation of plasma jets emanating from the openings. The model shows that gas ionization inside the anode holes is very significant. For instance, the electron density increases by two orders of magnitude under certain conditions. The potential drop in the anode region which includes the electrostatic sheath inside the hole and potential drop along the hole might be positive or negative, depending on the anode hole radius.

  18. ANODIC TREATMENT OF URANIUM

    DOEpatents

    Kolodney, M.

    1959-02-01

    A method is presented for effecting eloctrolytic dissolution of a metallic uranium article at a uniform rate. The uranium is made the anode in an aqueous phosphoric acid solution containing nitrate ions furnished by either ammonium nitrate, lithium nitrate, sodium nitrate, or potassium nitrate. A stainless steel cathode is employed and electrolysls carried out at a current density of about 0.1 to 1 ampere per square inch.

  19. Nickel anode electrode

    DOEpatents

    Singh, Prabhakar; Benedict, Mark

    1987-01-01

    A nickel anode electrode fabricated by oxidizing a nickel alloying material to produce a material whose exterior contains nickel oxide and whose interior contains nickel metal throughout which is dispersed the oxide of the alloying material and by reducing and sintering the oxidized material to form a product having a nickel metal exterior and an interior containing nickel metal throughout which is dispersed the oxide of the alloying material.

  20. Fabrication of porous anodic alumina using normal anodization and pulse anodization

    NASA Astrophysics Data System (ADS)

    Chin, I. K.; Yam, F. K.; Hassan, Z.

    2015-05-01

    This article reports on the fabrication of porous anodic alumina (PAA) by two-step anodizing the low purity commercial aluminum sheets at room temperature. Different variations of the second-step anodization were conducted: normal anodization (NA) with direct current potential difference; pulse anodization (PA) alternate between potential differences of 10 V and 0 V; hybrid pulse anodization (HPA) alternate between potential differences of 10 V and -2 V. The method influenced the film homogeneity of the PAA and the most homogeneous structure was obtained via PA. The morphological properties are further elucidated using measured current-transient profiles. The absent of current rise profile in PA indicates the anodization temperature and dissolution of the PAA structure were greatly reduced by alternating potential differences.

  1. Inert anodes for aluminum smelting

    SciTech Connect

    Weyand, J.D.; Ray, S.P.; Baker, F.W.; DeYoung, D.H.; Tarcy, G.P.

    1986-02-01

    The use of nonconsumable or inert anodes for replacement of consumable carbon anodes in Hall electrolysis cells for the production of aluminum has been a technical and commercial goal of the aluminum industry for many decades. This report summarizes the technical success realized in the development of an inert anode that can be used to produce aluminum of acceptable metal purity in small scale Hall electrolysis cells. The inert anode material developed consists of a cermet composition containing the phases: copper, nickel ferrite and nickel oxide. This anode material has an electrical conductivity comparable to anode carbon used in Hall cells, i.e., 150 ohm {sup {minus}1}cm{sup {minus}1}. Metal purity of 99.5 percent aluminum has been produced using this material. The copper metal alloy present in the anode is not removed by anodic dissolution as does occur with cermet anodes containing a metallic nickel alloy. Solubility of the oxide phases in the cryolite electrolyte is reduced by: (1) saturated concentration of alumina, (2) high nickel oxide content in the NiO-NiFe{sub 2}O{sub 4} composition, (3) lowest possible cell operating temperature, (4) additions of alkaline or alkaline earth fluorides to the bath to reduce solubilities of the anode components, and (5) avoiding bath contaminants such as silica. Dissolution rate measurements indicate first-order kinetics and that the rate limiting step for dissolution is mass transport controlled. 105 refs., 234 figs., 73 tabs.

  2. Performance of Zinc Anodes for Cathodic Protection of Reinforced Concrete Bridges

    SciTech Connect

    Covino, Bernard S. Jr.; Cramer, Stephen D.; Bullard, Sophie J.; Holcomb, Gordon R.; Russell, James H.; Collins, W. Keith; Laylor, Martin H.; Cryer, Curtis B.

    2002-03-01

    Operation of thermal spray zinc (Zn) anodes for cathodic protection (CP) of reinforced concrete structures was investigated in laboratory and field studies conducted by the Albany Research Center (ARC) in collaboration with the Oregon Department of Transportation. The purposes of the research presented in this report were: evaluate the need for preheating concrete to improve the adhesion of the anode; estimate the service life of thermal spray Zn CP anodes; determine the optimum thickness for Zn CP anodes; characterize the anode-concrete interfacial chemistry; and correlate field and laboratory results. Laboratory studies involved accelerated electrochemical aging of thermal sprayed Zn anodes on concrete slabs, some of which were periodically wetted while others were unwetted. Concrete used in the slabs contained either 1.2 or 3 kg NaCl /m3 (2 or 5 lbs NaCl /yd3) as part of the concrete mix design. The Zn anodes were applied to the slabs using the twin wire arc-spray technique. Half of the slabs were preheated to 120-160 C (250-320 F) to improve the initial Zn anode bond strength and the other half were not. Accelerated aging was done at a current density of 0.032 A/m2 (3 mA/ft2), 15 times that used on Oregon DOT Coastal bridges, i.e, . 0.0022 A/m2 (0.2 mA/ft2) Cores from the Cape Creek Bridge (OR), the Richmond San Rafael Bridge (CA), and the East Camino Underpass (CA) were used to study the anode-concrete interfacial chemistry, to relate the chemistry to electrochemical age at the time of sampling, and to compare the chemistry of the field anodes to the chemistry of anodes from the laboratory studies. Cores from a CALTRANS study of a silane sealant used prior to the application of the Zn anodes and cores with galvanized rebar from the Longbird Bridge (Bermuda) were also studied. Aged laboratory and field anodes were characterized by measuring some or all of the following parameters: thickness, bond strength, anode-concrete interfacial chemistry, bulk chemistry

  3. Response to 'Comment on 'Three-dimensional numerical investigation of electron transport with rotating spoke in a cylindrical anode layer Hall plasma accelerator''[Phys. Plasmas 20, 014701 (2013)

    SciTech Connect

    Tang, D. L.; Qiu, X. M.; Geng, S. F.; Chu, Paul K.

    2013-01-15

    The numerical simulation described in our paper [D. L. Tang et al., Phys. Plasmas 19, 073519 (2012)] shows a rotating dense plasma structure, which is the critical characteristic of the rotating spoke. The simulated rotating spoke has a frequency of 12.5 MHz with a rotational speed of {approx}1.0 Multiplication-Sign 10{sup 6} m/s on the surface of the anode. Accompanied by the almost uniform azimuthal ion distribution, the non-axisymmetric electron distribution introduces two azimuthal electric fields with opposite directions. The azimuthal electric fields have the same rotational frequency and speed together with the rotating spoke. The azimuthal electric fields excite the axial electron drift upstream and downstream due to the additional E{sub {theta}} x B field and then the axial shear flow is generated. The axial local charge separation induced by the axial shear electron flow may be compensated by the azimuthal electron transport, finally resulting in the azimuthal electric field rotation and electron transport with the rotating spoke.

  4. Process for anodizing aluminum foil

    SciTech Connect

    Ball, J.A.; Scott, J.W.

    1984-11-06

    In an integrated process for the anodization of aluminum foil for electrolytic capacitors including the formation of a hydrous oxide layer on the foil prior to anodization and stabilization of the foil in alkaline borax baths during anodization, the foil is electrochemically anodized in an aqueous solution of boric acid and 2 to 50 ppm phosphate having a pH of 4.0 to 6.0. The anodization is interrupted for stabilization by passing the foil through a bath containing the borax solution having a pH of 8.5 to 9.5 and a temperature above 80/sup 0/ C. and then reanodizing the foil. The process is useful in anodizing foil to a voltage of up to 760 V.

  5. Photoelectrochemical cell with nondissolving anode

    NASA Technical Reports Server (NTRS)

    Ellis, A. B.; Kaiser, S. W.; Wrighton, M. S.

    1980-01-01

    Improved electrolytic cells have efficiencies comparable to those of best silicon solar cells but are potentially less expensive to manufacture. Cells consist of light-sensitive n-type semiconductor anode and metallic cathode immersed in electrolytic solution. Reversible redox cells produce no chemical change in electrolyte and stabilize anode against dissolving. Cell can produce more than 500 mW of power per square centimeter of anode area at output voltage of 0.4 V.

  6. Anode-plasma expansion in pinch-reflex diodes

    SciTech Connect

    Colombant, D.G.; Goldstein, S.A.

    1983-10-24

    Anode-plasma expansion in pinch-reflex diodes is investigated with use of a one-dimensional magnetohydrodynamic model. Early in time, the plasma undergoes thermal expansion and its front is slowed down as a result of j x B. After the current has reached its maximum and for small radius where j and B are larger, j x B may accelerate the bulk of the anode plasma to large velocities. Good qualitative agreement is obtained with observations of the time dependence of the plasma velocity as well as its radial profile. The maximum expansion velocities reach tens of centimeters per microsecond.

  7. Thin film buried anode battery

    DOEpatents

    Lee, Se-Hee; Tracy, C. Edwin; Liu, Ping

    2009-12-15

    A reverse configuration, lithium thin film battery (300) having a buried lithium anode layer (305) and process for making the same. The present invention is formed from a precursor composite structure (200) made by depositing electrolyte layer (204) onto substrate (201), followed by sequential depositions of cathode layer (203) and current collector (202) on the electrolyte layer. The precursor is subjected to an activation step, wherein a buried lithium anode layer (305) is formed via electroplating a lithium anode layer at the interface of substrate (201) and electrolyte film (204). The electroplating is accomplished by applying a current between anode current collector (201) and cathode current collector (202).

  8. Electrochemical cell with gelled anode

    SciTech Connect

    Bahary, W.S.

    1983-04-19

    An electrochemical cell having a gelled anode, wherein the gelling agent is an anionic polysaccharide having a rigid ordered structure such as extracellular microbial polysaccharides, particularly xanthan gum.

  9. A dynamic inert metal anode.

    SciTech Connect

    Hryn, J. N.

    1998-11-09

    A new concept for a stable anode for aluminum electrowinning is described. The anode consists of a cup-shaped metal alloy container filled with a molten salt that contains dissolved aluminum. The metal alloy can be any of a number of alloys, but it must contain aluminum as a secondary alloying metal. A possible alloy composition is copper with 5 to 15 weight percent aluminum. In the presence of oxygen, aluminum on the metal anode's exterior surface forms a continuous alumina film that is thick enough to protect the anode from chemical attack by cryolite during electrolysis and thin enough to maintain electrical conductivity. However, the alumina film is soluble in cryolite, so it must be regenerated in situ. Film regeneration is achieved by the transport of aluminum metal from the anode's molten salt interior through the metal wall to the anode's exterior surface, where the transported aluminum oxidizes to alumina in the presence of evolving oxygen to maintain the protective alumina film. Periodic addition of aluminum metal to the anode's interior keeps the aluminum activity in the molten salt at the desired level. This concept for an inert anode is viable as long as the amount of aluminum produced at the cathode greatly exceeds the amount of aluminum required to maintain the anode's protective film.

  10. Thin flexible intercalation anodes

    SciTech Connect

    Levy, S.C.; Cieslak, W.R.; Klassen, S.E.; Lagasse, R.R.

    1994-10-01

    Poly(acrylonitrile) fibers have been pyrolyzed under various conditions to form flexible carbon yarns capable of intercalating lithium ions. These fibers have also been formed into both woven and non woven cloths. Potentiostatic, potentiodynamic and galvanostatic tests have been conducted with these materials in several electrolytes. In some tests, a potential hold was used after each constant current charge and discharge. These tests have shown some of these flexible materials to reversibly intercalate lithium ions to levels that are suitable for use as a practical battery anode.

  11. Fast fabrication of self-ordered anodic porous alumina on oriented aluminum grains by high acid concentration and high temperature anodization.

    PubMed

    Cheng, Chuan; Ngan, Alfonso H W

    2013-05-31

    Anodic porous alumina, which exhibits a characteristic nanohoneycomb structure, has been used in a wide range of nanotechnology applications. The conventional fabrication method of mild anodization (MA) requires a prolonged anodization time which is impractical for batch processing, and self-ordered porous structures can only be formed within narrow processing windows so that the dimensions of the resultant structures are extremely limited. The alternative hard anodization (HA) may easily result in macroscopic defects on the alumina surface. In this work, by systematically varying the anodization conditions including the substrate grain orientation, electrolyte concentration, temperature, voltage, and time, a new oxalic acid based anodization method, called high acid concentration and high temperature anodization (HHA), is found, which can result in far better self-ordering of the porous structures at rates 7-26 times faster than MA, under a continuous voltage range of 30-60 V on (001) oriented Al grains. Unlike HA, no macroscopic defects appear under the optimum self-ordered conditions of HHA at 40 V, even for pore channels grown up to high aspect ratios of more than 3000. Compared to MA and HA, HHA provides more choices of self-ordered nano-porous structures with fast and mechanically stable formation features for practical applications. PMID:23619572

  12. Mesoporous Silicon-Based Anodes

    NASA Technical Reports Server (NTRS)

    Peramunage, Dharmasena

    2015-01-01

    For high-capacity, high-performance lithium-ion batteries. A new high-capacity anode composite based on mesoporous silicon is being developed. With a structure that resembles a pseudo one-dimensional phase, the active anode material will accommodate significant volume changes expected upon alloying and dealloying with lithium (Li).

  13. Anode film formation and control

    DOEpatents

    Koski, Oscar; Marschman, Steven C.

    1990-01-01

    A protective film is created about the anode within a cryolite-based electrolyte during electrolytic production of aluminum from alumina. The film function to minimize corrosion of the anode by the cryolitic electrolyte and thereby extend the life of the anode. Various operating parameters of the electrolytic process are controlled to maintain the protective film about the anode in a protective state throughout the electrolytic reduction of alumina. Such parameters include electrolyte temperature, electrolyte ratio, current density, and Al.sub.2 O.sub.3 concentration. An apparatus is also disclosed to enable identification of the onset of anode corrosion due to disruption of the film to provide real time information regarding the state of the film.

  14. Anode film formation and control

    DOEpatents

    Koski, O.; Marschman, S.C.

    1990-05-01

    A protective film is created about the anode within a cryolite-based electrolyte during electrolytic production of aluminum from alumina. The film functions to minimize corrosion of the anode by the cryolitic electrolyte and thereby extend the life of the anode. Various operating parameters of the electrolytic process are controlled to maintain the protective film about the anode in a protective state throughout the electrolytic reduction of alumina. Such parameters include electrolyte temperature, electrolyte ratio, current density, and Al[sub 2]O[sub 3] concentration. An apparatus is also disclosed to enable identification of the onset of anode corrosion due to disruption of the film to provide real time information regarding the state of the film. 3 figs.

  15. Linear Accelerators

    NASA Astrophysics Data System (ADS)

    Sidorin, Anatoly

    2010-01-01

    In linear accelerators the particles are accelerated by either electrostatic fields or oscillating Radio Frequency (RF) fields. Accordingly the linear accelerators are divided in three large groups: electrostatic, induction and RF accelerators. Overview of the different types of accelerators is given. Stability of longitudinal and transverse motion in the RF linear accelerators is briefly discussed. The methods of beam focusing in linacs are described.

  16. Linear Accelerators

    SciTech Connect

    Sidorin, Anatoly

    2010-01-05

    In linear accelerators the particles are accelerated by either electrostatic fields or oscillating Radio Frequency (RF) fields. Accordingly the linear accelerators are divided in three large groups: electrostatic, induction and RF accelerators. Overview of the different types of accelerators is given. Stability of longitudinal and transverse motion in the RF linear accelerators is briefly discussed. The methods of beam focusing in linacs are described.

  17. Multi-anode ionization chamber

    DOEpatents

    Bolotnikov, Aleksey E.; Smith, Graham; Mahler, George J.; Vanier, Peter E.

    2010-12-28

    The present invention includes a high-energy detector having a cathode chamber, a support member, and anode segments. The cathode chamber extends along a longitudinal axis. The support member is fixed within the cathode chamber and extends from the first end of the cathode chamber to the second end of the cathode chamber. The anode segments are supported by the support member and are spaced along the longitudinal surface of the support member. The anode segments are configured to generate at least a first electrical signal in response to electrons impinging thereon.

  18. Lithium batteries with laminar anodes

    SciTech Connect

    Bruder, A.H.

    1986-11-04

    This patent describes a laminar electrical cell, comprising an anode, a cathode, and an electrolyte permeable separator between the anode and the cathode. The anode consists essentially of a layer of lithium having at least one surface of unreacted lithium metal in direct contact with and adhered to a layer of conductive plastic with no intermediate adhesive promoting adjuncts. The cathode comprises a slurry of MnO/sub 2/ and carbon particles in a solution of a lithium salt in an organic solvent, the solution permeating the separator and being in contact with the lithium.

  19. Single-step direct fabrication of pillar-on-pore hybrid nanostructures in anodizing aluminum for superior superhydrophobic efficiency.

    PubMed

    Jeong, Chanyoung; Choi, Chang-Hwan

    2012-02-01

    Conventional electrochemical anodizing processes of metals such as aluminum typically produce planar and homogeneous nanopore structures. If hydrophobically treated, such 2D planar and interconnected pore structures typically result in lower contact angle and larger contact angle hysteresis than 3D disconnected pillar structures and, hence, exhibit inferior superhydrophobic efficiency. In this study, we demonstrate for the first time that the anodizing parameters can be engineered to design novel pillar-on-pore (POP) hybrid nanostructures directly in a simple one-step fabrication process so that superior surface superhydrophobicity can also be realized effectively from the electrochemical anodization process. On the basis of the characteristic of forming a self-ordered porous morphology in a hexagonal array, the modulation of anodizing voltage and duration enabled the formulation of the hybrid-type nanostructures having controlled pillar morphology on top of a porous layer in both mild and hard anodization modes. The hybrid nanostructures of the anodized metal oxide layer initially enhanced the surface hydrophilicity significantly (i.e., superhydrophilic). However, after a hydrophobic monolayer coating, such hybrid nanostructures then showed superior superhydrophobic nonwetting properties not attainable by the plain nanoporous surfaces produced by conventional anodization conditions. The well-regulated anodization process suggests that electrochemical anodizing can expand its usefulness and efficacy to render various metallic substrates with great superhydrophilicity or -hydrophobicity by directly realizing pillar-like structures on top of a self-ordered nanoporous array through a simple one-step fabrication procedure. PMID:22201335

  20. Cognitive Processing in Mild Disabilities.

    ERIC Educational Resources Information Center

    Al-Hilawani, Yasser A.; Poteet, James A.

    Research regarding the cognitive processing of students with learning disabilities, mild mental handicap, and emotional handicap is reviewed. In considering cognitive processing for students with mild mental handicap, research attention has been directed to the issues of memory and learning, acquisition and retrieval deficits, inefficient…

  1. Electrically Conductive Anodized Aluminum Surfaces

    NASA Technical Reports Server (NTRS)

    Nguyen, Trung Hung

    2006-01-01

    Anodized aluminum components can be treated to make them sufficiently electrically conductive to suppress discharges of static electricity. The treatment was conceived as a means of preventing static electric discharges on exterior satin-anodized aluminum (SAA) surfaces of spacecraft without adversely affecting the thermal-control/optical properties of the SAA and without need to apply electrically conductive paints, which eventually peel off in the harsh environment of outer space. The treatment can also be used to impart electrical conductivity to anodized housings of computers, medical electronic instruments, telephoneexchange equipment, and other terrestrial electronic equipment vulnerable to electrostatic discharge. The electrical resistivity of a typical anodized aluminum surface layer lies between 10(exp 11) and 10(exp 13) Omega-cm. To suppress electrostatic discharge, it is necessary to reduce the electrical resistivity significantly - preferably to < or = 10(exp 9) Omega-cm. The present treatment does this. The treatment is a direct electrodeposition process in which the outer anodized surface becomes covered and the pores in the surface filled with a transparent, electrically conductive metal oxide nanocomposite. Filling the pores with the nanocomposite reduces the transverse electrical resistivity and, in the original intended outer-space application, the exterior covering portion of the nanocomposite would afford the requisite electrical contact with the outer-space plasma. The electrical resistivity of the nanocomposite can be tailored to a value between 10(exp 7) and 10(exp 12) Omega-cm. Unlike electrically conductive paint, the nanocomposite becomes an integral part of the anodized aluminum substrate, without need for adhesive bonding material and without risk of subsequent peeling. The electrodeposition process is compatible with commercial anodizing production lines. At present, the electronics industry uses expensive, exotic

  2. Nano structural anodes for radiation detectors

    DOEpatents

    Cordaro, Joseph V.; Serkiz, Steven M.; McWhorter, Christopher S.; Sexton, Lindsay T.; Retterer, Scott T.

    2015-07-07

    Anodes for proportional radiation counters and a process of making the anodes is provided. The nano-sized anodes when present within an anode array provide: significantly higher detection efficiencies due to the inherently higher electric field, are amenable to miniaturization, have low power requirements, and exhibit a small electromagnetic field signal. The nano-sized anodes with the incorporation of neutron absorbing elements (e.g., .sup.10B) allow the use of neutron detectors that do not use .sup.3He.

  3. Anodized Steel Electrodes for Supercapacitors.

    PubMed

    Sagu, Jagdeep S; Wijayantha, K G Upul; Bohm, Mallika; Bohm, Siva; Kumar Rout, Tapan

    2016-03-01

    Steel was anodized in 10 M NaOH to enhance its surface texture and internal surface area for application as an electrode in supercapacitors. A mechanism was proposed for the anodization process. Field-emission gun scanning electron microscopy (FEGSEM) studies of anodized steel revealed that it contains a highly porous sponge like structure ideal for supercapacitor electrodes. X-ray photoelectron spectroscopy (XPS) measurements showed that the surface of the anodized steel was Fe2O3, whereas X-ray diffraction (XRD) measurements indicated that the bulk remained as metallic Fe. The supercapacitor performance of the anodized steel was tested in 1 M NaOH and a capacitance of 18 mF cm(-2) was obtained. Cyclic voltammetry measurements showed that there was a large psueudocapacitive contribution which was due to oxidation of Fe to Fe(OH)2 and then further oxidation to FeOOH, and the respective reduction of these species back to metallic Fe. These redox processes were found to be remarkably reversible as the electrode showed no loss in capacitance after 10000 cycles. The results demonstrate that anodization of steel is a suitable method to produce high-surface-area electrodes for supercapacitors with excellent cycling lifetime. PMID:26891093

  4. Alternative Anodes for the Electrolytic Reduction of Uranium Dioxide

    NASA Astrophysics Data System (ADS)

    Merwin, Augustus

    Reprocessing of spent nuclear fuel is an essential step in closing the nuclear fuel cycle. In order to consume current stockpiles, ceramic uranium dioxide spent nuclear fuel will be subjected to an electrolytic reduction process. The current reduction process employs a platinum anode and a stainless steel alloy 316 cathode in a molten salt bath consisting of LiCl-2wt% Li 2O and occurs at 700°C. A major shortcoming of the existing process is the degradation of the platinum anode under the severely oxidizing conditions encountered during electrolytic reduction. This work investigates alternative anode materials for the electrolytic reduction of uranium oxide. The high temperature and extreme oxidizing conditions encountered in these studies necessitated a unique set of design constraints on the system. Thus, a customized experimental apparatus was designed and constructed. The electrochemical experiments were performed in an electrochemical reactor placed inside a furnace. This entire setup was housed inside a glove box, in order to maintain an inert atmosphere. This study investigates alternative anode materials through accelerated corrosion testing. Surface morphology was studied using scanning electron microscopy. Surface chemistry was characterized using energy dispersive spectroscopy and Raman spectroscopy. Electrochemical behavior of candidate materials was evaluated using potentiodynamic polarization characteristics. After narrowing the number of candidate electrode materials, ferrous stainless steel alloy 316, nickel based Inconel 718 and elemental tungsten were chosen for further investigation. Of these materials only tungsten was found to be sufficiently stable at the anodic potential required for electrolysis of uranium dioxide in molten salt. The tungsten anode and stainless steel alloy 316 cathode electrode system was studied at the required reduction potential for UO2 with varying lithium oxide concentrations. Electrochemical impedance spectroscopy

  5. Effect of alloying elements Al and Ca on corrosion resistance of plasma anodized Mg alloys

    NASA Astrophysics Data System (ADS)

    Anawati, Asoh, Hidetaka; Ono, Sachiko

    2016-04-01

    Plasma anodizing is a surface treatment used to form a ceramic-type oxide film on Mg alloys by the application of a high anodic voltage to create intense plasma near the metal surface. With proper selection of the process parameters, the technique can produce high quality oxide with superior adhesion, corrosion resistance, micro-hardness, wear resistance and strength. The effect of alloying element Al on plasma anodizing process of Mg alloys was studied by comparing the anodizing curves of pure Mg, AZ31, and AZ61 alloys while the effect of Ca were studied on AZ61 alloys containing 0, 1, and 2 wt% Ca. Anodizing was performed in 0.5 M Na3PO4 solution at a constant current density of 200 Am-2 at 25°C. Anodic oxide films with lava-like structure having mix composition of amorphous and crystal were formed on all of the alloys. The main crystal form of the oxide was Mg3(PO4)2 as analyzed by XRD. Alloying elements Al and Ca played role in modifying the plasma lifetime during anodization. Al tended to extend the strong plasma lifetime and therefore accelerated the film thickening. The effect of Ca on anodizing process was still unclear. The anodic film thickness and chemical composition were altered by the presence of Ca in the alloys. Electrochemical corrosion test in 0.9% NaCl solution showed that the corrosion behavior of the anodized specimens depend on the behavior of the substrate. Increasing Al and Ca content in the alloys tended to increase the corrosion resistance of the specimens. The corrosion resistance of the anodized specimens improved significantly about two orders of magnitude relative to the bare substrate.

  6. Can Accelerators Accelerate Learning?

    NASA Astrophysics Data System (ADS)

    Santos, A. C. F.; Fonseca, P.; Coelho, L. F. S.

    2009-03-01

    The 'Young Talented' education program developed by the Brazilian State Funding Agency (FAPERJ) [1] makes it possible for high-schools students from public high schools to perform activities in scientific laboratories. In the Atomic and Molecular Physics Laboratory at Federal University of Rio de Janeiro (UFRJ), the students are confronted with modern research tools like the 1.7 MV ion accelerator. Being a user-friendly machine, the accelerator is easily manageable by the students, who can perform simple hands-on activities, stimulating interest in physics, and getting the students close to modern laboratory techniques.

  7. PARTICLE ACCELERATOR

    DOEpatents

    Teng, L.C.

    1960-01-19

    ABS>A combination of two accelerators, a cyclotron and a ring-shaped accelerator which has a portion disposed tangentially to the cyclotron, is described. Means are provided to transfer particles from the cyclotron to the ring accelerator including a magnetic deflector within the cyclotron, a magnetic shield between the ring accelerator and the cyclotron, and a magnetic inflector within the ring accelerator.

  8. Quasi-steady plasma acceleration.

    NASA Technical Reports Server (NTRS)

    Jahn, R. G.; Von Jaskowsky, W. F.; Clark, K. E.

    1973-01-01

    A coaxial plasma accelerator driven by protracted pulses of current in the range of 10,000 to 100,000 A and synchronized mass flows from 1.0 to 36 g/sec argon attains, after some tens of microseconds, a stable magnetoplasmadynamic acceleration mode. This 'quasi-steady' discharge form is characterized by constant terminal voltage and current, a diffuse, fixed current distribution within the discharge, and a steady plasma efflux at velocities of approximately 20 km/sec. Measured potential distributions reveal that the bulk of the arc voltage gradient, exclusive of the electrode falls, occurs within two diameters of the cathode, and is normal to it. The anode fall voltage varies inversely with local current density, implying substantially lower anode losses at higher power arc operation. Spectroscopic, potential, and velocity measurements indicate the existence of a characteristic mass flow rate for a given current, below which arc operation becomes erratic.

  9. Alternate Anodes for the Electrolytic Reduction of UO2

    NASA Astrophysics Data System (ADS)

    Merwin, Augustus; Chidambaram, Dev

    2015-01-01

    The electrolytic reduction process of UO2 employs a platinum anode and a stainless steel cathode in molten LiCl-LiO2 maintained at 973 K (700 °C). The degradation of platinum under the severely oxidizing conditions encountered during the process is an issue of concern. In this study, Inconel 600 and 718, stainless steel alloy 316, tungsten, nickel, molybdenum, and titanium, were investigated though electrochemical polarization techniques, electron microscopy, Raman spectroscopy, and X-ray photoelectron spectroscopy to serve as potential anode materials. Of the various materials investigated, only tungsten exhibited sufficient stability at the required potential in the molten electrolyte. Tungsten anodes were further studied in molten LiCl-LiO2 electrolyte containing 2, 4, and 6 wt pct of Li2O. In LiCl-2 wt pct Li2O tungsten was found to be sufficiently stable to both oxidation and microstructural changes and the stability is attributed to the formation of a lithium-intercalated tungsten oxide surface film. Increase in the concentration of Li2O was found to lead to accelerated corrosion of the anode, in conjunction with the formation of a peroxotungstate oxide film.

  10. Self-ordered anodic alumina with continuously tunable pore intervals from 410 to 530 nm.

    PubMed

    Sun, Chuanmin; Luo, Jia; Wu, Longmin; Zhang, Junyan

    2010-05-01

    We report a "mild anodization" (MA) process using aluminum oxalate (Alox) as an additive to suppress breakdown of porous anodic alumina (PAA) in the electrolyte of phosphoric acid at high potentials and comparatively high temperatures. It is shown for the first time that continuously tunable pore intervals (D(int)) from 410 to 530 nm with ordered hexagonal pore arrangement can be controlled by varying the concentrations of phosphoric acid and Alox at anodization voltages (U(a)) from 180 to 230 V, far beyond the U(a) in the single electrolyte of phosphoric acid or oxalic acid. The fabricated PAA films are uniform without any burning spots, and the anodization temperature can be increased to 10-20 degrees C with a much higher growth rate of PAA films than that at a low temperature. Meanwhile, a typical two-step anodization process could also be performed under our conditions. Our results could not only extend the applications of PAA templates but also facilitate understanding of the effects of anions in the process of anodic oxidation. PMID:20408596

  11. Tip-like anodic alumina

    NASA Astrophysics Data System (ADS)

    Sun, Q. W.; Ding, G. Q.; Li, Y. B.; Zheng, M. J.; Shen, W. Z.

    2007-05-01

    Porous anodic alumina membranes and various nanotips have been demonstrating individually their unique usefulness in current nanotechnology. We present a one-step electrochemical approach to fabricate nanoscale alumina tips (tip-like anodic alumina, TAA) in order to combine the benefits of porous anodic alumina and a nanoscale tip array. The realized TAA has an ordered tip surface with controllable aspect ratio and high sheet density of ~1011 cm-2. The formation of alumina nanotips is due to the heat-driven dissolution of the nanopore surface. We have further shown that the surface nanostructure in TAA leads to the wettability reversal, and preferred nucleation and growth during material deposition. The easy and large-scale fabrication of TAA makes it possible for novel nanodevice applications.

  12. Sacrificial anode stability and polarization potential variation in a ternary Al-xZn-xMg alloy in a seawater-marine environment

    NASA Astrophysics Data System (ADS)

    Muazu, Abubakar; Aliyu, Yaro Shehu; Abdulwahab, Malik; Idowu Popoola, Abimbola Patricia

    2016-04-01

    In this paper, the effects of zinc (Zn) and magnesium (Mg) addition on the performance of an aluminum-based sacrificial anode in seawater were investigated using a potential measurement method. Anodic efficiency, protection efficiency, and polarized potential were the parameters used. The percentages of Zn and Mg in the anodes were varied from 2% to 8% Zn and 1% to 4% Mg. The alloys produced were tested as sacrificial anodes for the protection of mild steel in seawater at room temperature. Current efficiency as high as 88.36% was obtained in alloys containing 6% Zn and 1% Mg. The polarized potentials obtained for the coupled (steel/Al-based alloys) are as given in the Pourbaix diagrams, with steel lying within the immunity region/cathodic region and the sacrificial anodes within the anodic region. The protection offered by the sacrificial anodes to the steel after the 7th and 8th week was measured and protection efficiency values as high as 99.66% and 99.47% were achieved for the Al-6%Zn-1%Mg cast anode. The microstructures of the cast anodes comprise of intermetallic structures of hexagonal Mg3Zn2 and body-centered cubic Al2Mg3Zn3. These are probably responsible for the breakdown of the passive alumina film, thus enhancing the anode efficiency.

  13. Sacrificial anode stability and polarization potential variation in a ternary Al-xZn-xMg alloy in a seawater-marine environment

    NASA Astrophysics Data System (ADS)

    Muazu, Abubakar; Aliyu, Yaro Shehu; Abdulwahab, Malik; Idowu Popoola, Abimbola Patricia

    2016-06-01

    In this paper, the effects of zinc (Zn) and magnesium (Mg) addition on the performance of an aluminum-based sacrificial anode in seawater were investigated using a potential measurement method. Anodic efficiency, protection efficiency, and polarized potential were the parameters used. The percentages of Zn and Mg in the anodes were varied from 2% to 8% Zn and 1% to 4% Mg. The alloys produced were tested as sacrificial anodes for the protection of mild steel in seawater at room temperature. Current efficiency as high as 88.36% was obtained in alloys containing 6% Zn and 1% Mg. The polarized potentials obtained for the coupled (steel/Al-based alloys) are as given in the Pourbaix diagrams, with steel lying within the immunity region/cathodic region and the sacrificial anodes within the anodic region. The protection offered by the sacrificial anodes to the steel after the 7th and 8th week was measured and protection efficiency values as high as 99.66% and 99.47% were achieved for the Al-6%Zn-1%Mg cast anode. The microstructures of the cast anodes comprise of intermetallic structures of hexagonal Mg3Zn2 and body-centered cubic Al2Mg3Zn3. These are probably responsible for the breakdown of the passive alumina film, thus enhancing the anode efficiency.

  14. Pulsed electromagnetic gas acceleration

    NASA Technical Reports Server (NTRS)

    Jahn, R. G.; Vonjaskowsky, W. F.; Clark, K. E.

    1974-01-01

    Detailed measurements of the axial velocity profile and electromagnetic structure of a high power, quasi-steady MPD discharge are used to formulate a gasdynamic model of the acceleration process. Conceptually dividing the accelerated plasma into an inner flow and an outer flow, it is found that more than two-thirds of the total power in the plasma is deposited in the inner flow, accelerating it to an exhaust velocity of 12.5 km/sec. The outer flow, which is accelerated to a velocity of only 6.2 km/sec, appears to provide a current conduction path between the inner flow and the anode. Related cathode studies have shown that the critical current for the onset of terminal voltage fluctuations, which was recently shown to be a function of the cathode area, appears to reach an asymptote for cathodes of very large surface area. Detailed floating potential measurements show that the fluctuations are confined to the vicinity of the cathode and hence reflect a cathode emission process rather than a fundamental limit on MPD performance.

  15. Tested Demonstrations: Dyeing of Anodized Aluminum.

    ERIC Educational Resources Information Center

    Gilbert, George L., Ed.

    1983-01-01

    Provides a list of needed materials, required preparations, and instructions for demonstrating the dyeing of anodized aluminum. Discusses the chemistry involved and gives equations for reactions occurring at the anode and cathode. (JM)

  16. Influence of Fluoride Ion on the Performance of Pb-Ag Anode During Long-Term Galvanostatic Electrolysis

    NASA Astrophysics Data System (ADS)

    Zhong, Xiaocong; Yu, Xiaoying; Jiang, Liangxing; Lv, Xiaojun; Liu, Fangyang; Lai, Yanqing; Li, Jie

    2015-09-01

    Anodic potential, morphology and phase composition of the anodic layer, corrosion morphology of the metallic substrate, and oxygen evolution behavior of Pb-Ag anode in H2SO4 solution without/with fluoride ion were investigated and compared. The results showed that the presence of fluoride ions contributed to a smoother anodic layer with lower PbO2 concentration, which resulted in lower double layer capacity and higher charge transfer resistance for the oxygen evolution reaction. Consequently, the Pb-Ag anode showed a higher anodic potential (about 35 mV) in the fluoride-containing electrolyte. In addition, the fluoride ions accelerated the detachment of loose flakes on the anodic layer. It was demonstrated that the anodic layer formed in the fluoride-containing H2SO4 solution was thinner. Furthermore, fluoride ions aggravated the corrosion of the metallic substrate at interdendritic boundary regions. Hence, the presence of fluoride ions is detrimental to oxygen evolution reactivity and increases the corrosion of the Pb-Ag anode, which may further increase the energy consumption and capital cost of zinc plants.

  17. Anodes for Rechargeable Lithium-Sulfur Batteries

    SciTech Connect

    Cao, Ruiguo; Xu, Wu; Lu, Dongping; Xiao, Jie; Zhang, Jiguang

    2015-04-10

    In this work, we will review the recent developments on the protection of Li metal anode in Li-S batteries. Various strategies used to minimize the corrosion of Li anode and reducing its impedance increase will be analyzed. Other potential anodes used in sulfur based rechargeable batteries will also be discussed.

  18. Anode Fall Formation in a Hall Thruster

    SciTech Connect

    Leonid A. Dorf; Yevgeny F. Raitses; Artem N. Smirnov; Nathaniel J. Fisch

    2004-06-29

    As was reported in our previous work, accurate, nondisturbing near-anode measurements of the plasma density, electron temperature, and plasma potential performed with biased and emissive probes allowed the first experimental identification of both electron-repelling (negative anode fall) and electron-attracting (positive anode fall) anode sheaths in Hall thrusters. An interesting new phenomenon revealed by the probe measurements is that the anode fall changes from positive to negative upon removal of the dielectric coating, which appears on the anode surface during the course of Hall thruster operation. As reported in the present work, energy dispersion spectroscopy analysis of the chemical composition of the anode dielectric coating indicates that the coating layer consists essentially of an oxide of the anode material (stainless steel). However, it is still unclear how oxygen gets into the thruster channel. Most importantly, possible mechanisms of anode fall formation in a Hall thruster with a clean and a coated anodes are analyzed in this work; practical implication of understanding the general structure of the electron-attracting anode sheath in the case of a coated anode is also discussed.

  19. Method of making electrolytic capacitor anodes

    SciTech Connect

    Melody, B.; Eickelberg, E.W.

    1987-05-12

    A method is described of making an anode for an electrolytic capacitor. The method comprises providing a powder consisting of a film-forming metal, polyethylene oxide, and ammonium carbonate; pressing the powder to form an anode body; and heating the anode body to remove the polyethylene oxide and ammonium carbonate.

  20. Plasma accelerators

    SciTech Connect

    Ruth, R.D.; Chen, P.

    1986-03-01

    In this paper we discuss plasma accelerators which might provide high gradient accelerating fields suitable for TeV linear colliders. In particular we discuss two types of plasma accelerators which have been proposed, the Plasma Beat Wave Accelerator and the Plasma Wake Field Accelerator. We show that the electric fields in the plasma for both schemes are very similar, and thus the dynamics of the driven beams are very similar. The differences appear in the parameters associated with the driving beams. In particular to obtain a given accelerating gradient, the Plasma Wake Field Accelerator has a higher efficiency and a lower total energy for the driving beam. Finally, we show for the Plasma Wake Field Accelerator that one can accelerate high quality low emittance beams and, in principle, obtain efficiencies and energy spreads comparable to those obtained with conventional techniques.

  1. Anodization As A Repair Technique

    NASA Technical Reports Server (NTRS)

    Groff, Roy E.; Maloney, Robert D.; Reeser, Robert W.

    1988-01-01

    Thin, hard oxide layer added to aluminum part. Surfaces on aluminum part worn out of tolerance by no more than 0.004 in. often repaired by anodizing to build up aluminum oxide layers. Oxide layers very hard and grounded to desired final dimensions.

  2. Electrochemical cell with calcium anode

    DOEpatents

    Cooper, John F.; Hosmer, Pamela K.; Kelly, Benjamin E.

    1979-01-01

    An electrochemical cell comprising a calcium anode and a suitable cathode in an alkaline electrolyte consisting essentially of an aqueous solution of an hydroxide and a chloride. Specifically disclosed is a mechanically rechargeable calcium/air fuel cell with an aqueous NaOH/NaCl electrolyte.

  3. Emittance dependence on anode morphology of an ion beam provided by laser ablation

    NASA Astrophysics Data System (ADS)

    Velardi, L.; Delle Side, D.; Nassisi, V.

    2014-07-01

    In this work, we studied the characteristics of ion beams generated by Platone accelerator in different anode configurations. The accelerator is a laser ion source with two gaps which accelerate the ions in cascade. The laser is a ns pulsed KrF able to apply irradiances of 109-1010 W/cm2. The target ablated was pure disk of Cu. The accelerating voltage applied in this work was 60 kV. The emittance evaluation was performed by the pepper pot method utilizing radio-chromic films, EBT Gafchromic, as sensible targets. The study was performed by varying the geometric configuration of the anode (the extracting electrode), modifying the hole morphology, e.g. a plane and curved grid were mounted in order to change the extraction configuration. The results were compared with the ones obtained with the extraction hole without any grid. For the normalized emittance the lowest value was 0.20π mm mrad.

  4. On the Emittance dependence on anode morphology of laser induced ion beams

    NASA Astrophysics Data System (ADS)

    Velardi, L.; Delle Side, D.; Nassisi, V.

    2014-04-01

    In this work, we studied the characteristics of ion beams generated by PLATONE accelerator in different anode configurations. The accelerator is a laser ion source with two gaps which accelerate the ions in cascade. The laser is an excimer KrF able to work at irradiances of 108-1010 W/cm2. The target ablated was disk of Cu. The accelerating voltage applied in this work was 60 kV. The emittance evaluation was performed by the pepper pot method utilising radio-chromic films, EBT Gafchromic, as sensible targets. The study was performed by varying the geometric configuration of the anode (the extracting electrode), modifying the hole morphology. A plane and curved grids were mounted in order to change the extraction configuration. The results were compared with the ones obtained with the extraction hole without any grid. For the normalized emittance the lowest value found was 0.20 π mm mrad.

  5. Solutions for discharge chamber sputtering and anode deposit spalling in small mercury ion thrusters

    NASA Technical Reports Server (NTRS)

    Power, J. L.; Hiznay, D. J.

    1975-01-01

    Proposed solutions to the problems of sputter erosion and sputtered material spalling in the discharge chamber of small mercury ion thrusters are presented. The accelerated life test evaluated three such proposed solutions: (1) the use of tantalum as a single low sputter yield material for the exposed surfaces of the discharge chamber components subject to sputtering, (2) the use of a severely roughened anode surface to improve the adhesion of the sputter-deposited coating, and (3) the use of a wire cloth anode surface in order to limit the size of any coating flakes which might spall from it. Because of the promising results obtained in the accelerated life test with anode surfaces roughened by grit-blasting, experiments were carried out to optimize the grit-blasting procedure. The experimental results and an optimal grit-blasting procedure are presented.

  6. Anode sheath transition in an anodic arc for synthesis of nanomaterials

    NASA Astrophysics Data System (ADS)

    Nemchinsky, V. A.; Raitses, Y.

    2016-06-01

    The arc discharge with ablating anode or so-called anodic arc is widely used for synthesis of nanomaterials, including carbon nanotubes and fullerens, metal nanoparticles etc. We present the model of this arc, which confirms the existence of the two different modes of the arc operation with two different anode sheath regimes, namely, with negative anode sheath and with positive anode sheath. It was previously suggested that these regimes are associated with two different anode ablating modes—low ablation mode with constant ablation rate and the enhanced ablation mode (Fetterman et al 2008 Carbon 46 1322). The transition of the arc operation from low ablation mode to high ablation mode is determined by the current density at the anode. The model can be used to self-consistently determine the distribution of the electric field, electron density and electron temperature in the near-anode region of the arc discharge. Simulations of the carbon arc predict that for low arc ablating modes, the current is driven mainly by the electron diffusion to the anode. For positive anode sheath, the anode voltage is close to the ionization potential of anode material, while for negative anode sheath, the anode voltage is an order of magnitude smaller. It is also shown that the near-anode plasma, is far from the ionization equilibrium.

  7. -Based Cermet Inert Anodes for Aluminum Electrolysis

    NASA Astrophysics Data System (ADS)

    Tian, ZhongLiang; Lai, YanQing; Li, ZhiYou; Chai, DengPeng; Li, Jie; Liu, YeXiang

    2014-11-01

    The new aluminum electrolysis technology based on inert electrodes has received much interest for several decades because of the environment and energy advantages. The key to realize this technique is the inert anode. This article presents China's recent developments of NiFe2O4-based cermet inert anodes, which include the optimization of material performance, the joint between the cermet inert anode and metallic bar, as well as the results of 20 kA pilot testing for a large-size inert anode group. The problems NiFe2O4-based cermet inert anodes face are also discussed.

  8. Educating Students with Mild Disabilities.

    ERIC Educational Resources Information Center

    Meyen, Edward L., Ed.; And Others

    The book contains 19 papers from the journal, "Focus on Exceptional Children," that discuss new perspectives and practices in educating students with mild disabilities. The first half of the book is titled "New Perspectives" and includes the following articles: "Beyond the Regular Education Initiative/Inclusion and the Resource Room Controversy"…

  9. "White Privilege": A Mild Critique

    ERIC Educational Resources Information Center

    Blum, Lawrence

    2008-01-01

    White privilege analysis has been influential in philosophy of education. I offer some mild criticisms of this largely salutary direction--its inadequate exploration of its own normative foundations, and failure to distinguish between "spared injustice", "unjust enrichment" and "non-injustice-related" privileges; its inadequate exploration of the…

  10. [Vernier Anode Design and Image Simulation].

    PubMed

    Zhao, Ai-rong; Ni, Qi-liang; Song, Ke-fei

    2015-12-01

    Based-MCP position-sensitive anode photon-counting imaging detector is good at detecting extremely faint light, which includes micro-channel plate (MCP), position-sensitive anode and readout, and the performances of these detectors are mainly decided by the position-sensitive anode. As a charge division anode, Vernier anode using cyclically varying electrode areas which replaces the linearly varying electrodes of wedge-strip anode can get better resolution and greater electrode dynamic range. Simulation and design of the Vernier anode based on Vernier's decode principle are given here. Firstly, we introduce the decode and design principle of Vernier anode with nine electrodes in vector way, and get the design parameters which are the pitch, amplitude and the coarse wavelength of electrode. Secondly, we analyze the effect of every design parameters to the imaging of the detector. We simulate the electron cloud, the Vernier anode and the detector imaging using Labview software and get the relationship between the pitch and the coarse wavelength of the anode. Simultaneously, we get the corresponding electron cloud for the designing parameters. Based on the result of the simulation and the practical machining demand, a nine electrodes Vernier anode was designed and fabricated which has a pitch of 891 µm, insulation width of 25 µm, amplitude of 50 µm, coarse pixel numbers of 5. PMID:26964205

  11. Anode power deposition in magnetoplasmadynamic thrusters

    NASA Astrophysics Data System (ADS)

    Gallimore, A. D.; Kelly, A. J.; Jahn, R. G.

    1993-06-01

    Results of anode heat-flux and anode fail measurements from a multimegawatt self-field quasi-steady magnetoplasmadynamic (MPD) thruster are presented. Measurements were obtained with argon and helium propellants for a variety of currents and mass flow rates. Anode heat flux was directly measured with thermocouples attached to the inner surface of a hollowed section. Anode falls were determined both from floating probes and through heat flux measurements. Comparison of data acquired through either method shows excellent agreement. Anode falls varied between 4-50 V with anode power fractions reaching 70 percent with helium at 150 kW, and 50 percent with argon at 1.9 MW. The anode fall was found to correlate well with electron Hall parameters calculated from triple Langmuir and magnetic probe data collected near the anode. Two possible explanations for this result are proposed: (1) the establishment of large electric fields at the anode to maintain current conduction across the strong magnetic fields; and (2) anomalous resistivity resulting from the onset of microturbulence in the plasma. To investigate the latter hypothesis, electric field, magnetic field, and current density profiles measured in the vicinity of the anode were incorporated into Ohm's law to estimate the electrical conductivity. Results of this analysis show a substantial deviation of the measured conductivity from that calculated with classical formulas. These results imply that anomalous effects are present in the plasma near the anode.

  12. Anodes for cathodic protection of reinforced concrete

    SciTech Connect

    S.J. Bullard; B.S. Covino, Jr.; S.D. Cramer; G.R. Holcomb; J.H. Russell

    2000-03-01

    Consumable anodes were evaluated in the laboratory for use in cathodic protection systems for steel reinforced concrete bridges in coastal environments and in areas where de-icing salts are employed. The anode materials include Zn-hydrogel and thermal-sprayed Zn, Zn-15Al, and Al-12Zn-0.2In. These anodes were evaluated for service in both galvanic (GCP) and impressed current (ICCP) cathodic protection systems. ICCP anodes were electrochemically aged at a factor of 15 times greater than used by the Oregon Department of Transportation in typical coastal ICCP systems (2.2 mA/m{sup 2} based on anode area). Increasing moisture at the anode-concrete interface reduced the operating voltage of all the anodes. The pH at the anode-concrete interface fell to 7 to 8.5 with electrochemical age. Bond strength between the anodes and concrete decreased with electrochemical aging. Interfacial chemistry was the critical link between long-term anode performance and electrochemical age. Zn-hydrogel and the rmal-sprayed Zn and Al-12Zn-0.2In GCP anodes appear to supply adequate protection current to rebar in the Cape Perpetua Viaduct.

  13. Anode power deposition in magnetoplasmadynamic thrusters

    NASA Technical Reports Server (NTRS)

    Gallimore, A. D.; Kelly, A. J.; Jahn, R. G.

    1993-01-01

    Results of anode heat-flux and anode fail measurements from a multimegawatt self-field quasi-steady magnetoplasmadynamic (MPD) thruster are presented. Measurements were obtained with argon and helium propellants for a variety of currents and mass flow rates. Anode heat flux was directly measured with thermocouples attached to the inner surface of a hollowed section. Anode falls were determined both from floating probes and through heat flux measurements. Comparison of data acquired through either method shows excellent agreement. Anode falls varied between 4-50 V with anode power fractions reaching 70 percent with helium at 150 kW, and 50 percent with argon at 1.9 MW. The anode fall was found to correlate well with electron Hall parameters calculated from triple Langmuir and magnetic probe data collected near the anode. Two possible explanations for this result are proposed: (1) the establishment of large electric fields at the anode to maintain current conduction across the strong magnetic fields; and (2) anomalous resistivity resulting from the onset of microturbulence in the plasma. To investigate the latter hypothesis, electric field, magnetic field, and current density profiles measured in the vicinity of the anode were incorporated into Ohm's law to estimate the electrical conductivity. Results of this analysis show a substantial deviation of the measured conductivity from that calculated with classical formulas. These results imply that anomalous effects are present in the plasma near the anode.

  14. Fabrication of advanced design (grooved) cermet anodes

    NASA Astrophysics Data System (ADS)

    Windisch, C. F., Jr.; Huettig, F. R.

    1993-05-01

    Attempts were made to fabricate full-size anodes with advanced, or grooved, design using isostatic pressing, slip casting injection molding. Of the three approaches, isostatic pressing produced an anode with dimensions nearest to the target specifications, without serious macroscopic flaws. This approach is considered the most promising for making advanced anodes for aluminum smelting. However, significant work still remains to optimize the physical properties and microstructure of the anode, both of which were significantly different from that of previous anodes. Injection molding and slip casting yielded anode materials with serious deficiencies, including cracks and holes. Injection molding gave cermet material with the best intrinsic microstructure, i.e., the microstructure of the material between macroscopic flaws was very similar to that of anodes previously made at PNL. The reason for the similarity may have to do with amount of residual binder in the material prior to sintering.

  15. Fabrication of advanced design (grooved) cermet anodes

    SciTech Connect

    Windisch, C.F. Jr.; Huettig, F.R.

    1993-05-01

    Attempts were made to fabricate full-size anodes with advanced, or grooved, design using isostatic pressing, slip casting injection molding. Of the three approaches, isostatic pressing produced an anode with dimensions nearest to the target specifications, without serious macroscopic flaws. This approach is considered the most promising for making advanced anodes for aluminum smelting. However, significant work still remains to optimize the physical properties and microstructure of the anode, both of which were significantly different from that of previous anodes. Injection molding and slip casting yielded anode materials with serious deficiencies, including cracks and holes. Injection molding gave cermet material with the best intrinsic microstructure, i.e., the microstructure of the material between macroscopic flaws was very similar to that of anodes previously made at PNL. Reason for the similarity may have to do with amount of residual binder in the material prior to sintering.

  16. Controlled electrochemical etching of nanoporous Si anodes and its discharge behavior in alkaline Si-air batteries.

    PubMed

    Park, Dong-Won; Kim, Soeun; Ocon, Joey D; Abrenica, Graniel Harne A; Lee, Jae Kwang; Lee, Jaeyoung

    2015-02-11

    We report the fabrication of nanoporous silicon (nPSi) electrodes via electrochemical etching to form a porous Si layer with controllable thickness and pore size. Varying the etching time and ethanolic HF concentration results in different surface morphologies, with various degrees of electrolyte access depending on the pore characteristics. Optimizing the etching condition leads to well-developed nPSi electrodes, which have thick porous layers and smaller pore diameter and exhibit improved discharge behavior as anodes in alkaline Si-air cells in contrast to flat Si anode. Although electrochemical etching is effective in improving the interfacial characteristics of Si in terms of high surface area, we observed that mild anodization occurs and produces an oxide overlayer. We then show that this oxide layer in nPSi anodes can be effectively removed to produce an nPSi anode with good discharge behavior in an actual alkaline Si-air cell. In the future, the combination of high surface area nPSi anodes with nonaqueous electrolytes (e.g., room-temperature ionic liquid electrolyte) to minimize the strong passivation behavior and self-discharge in Si could lead to Si-air cells with a stable voltage profile and high anode utilization. PMID:25594400

  17. Compact plasma accelerator

    NASA Technical Reports Server (NTRS)

    Foster, John E. (Inventor)

    2004-01-01

    A compact plasma accelerator having components including a cathode electron source, an anodic ionizing gas source, and a magnetic field that is cusped. The components are held by an electrically insulating body having a central axis, a top axial end, and a bottom axial end. The cusped magnetic field is formed by a cylindrical magnet having an axis of rotation that is the same as the axis of rotation of the insulating body, and magnetized with opposite poles at its two axial ends; and an annular magnet coaxially surrounding the cylindrical magnet, magnetized with opposite poles at its two axial ends such that a top axial end has a magnetic polarity that is opposite to the magnetic polarity of a top axial end of the cylindrical magnet. The ionizing gas source is a tubular plenum that has been curved into a substantially annular shape, positioned above the top axial end of the annular magnet such that the plenum is centered in a ring-shaped cusp of the magnetic field generated by the magnets. The plenum has one or more capillary-like orifices spaced around its top such that an ionizing gas supplied through the plenum is sprayed through the one or more orifices. The plenum is electrically conductive and is positively charged relative to the cathode electron source such that the plenum functions as the anode; and the cathode is positioned above and radially outward relative to the plenum.

  18. Annular arc accelerator shock tube

    NASA Technical Reports Server (NTRS)

    Leibowitz, L. P. (Inventor)

    1976-01-01

    An annular arc accelerator shock tube employs a cold gas driver to flow a stream of gas from an expansion section through a high voltage electrode section to a test section, thus driving a shock wave in front of it. A glow discharge detects the shock wave and actuates a trigger generator which in turn fires spark-gap switches to discharge a bank of capacitors across a centered cathode and an annular anode in tandem electrode sections. The initial shock wave passes through the anode section from the cathode section thereby depositing energy into the flow gas without the necessity of any diaphragm opening in the gas flow from the expansion section through the electrode sections.

  19. Ultra-high density single nanometer-scale anodic alumina nanofibers fabricated by pyrophosphoric acid anodizing.

    PubMed

    Kikuchi, Tatsuya; Nishinaga, Osamu; Nakajima, Daiki; Kawashima, Jun; Natsui, Shungo; Sakaguchi, Norihito; Suzuki, Ryosuke O

    2014-01-01

    Anodic oxide fabricated by anodizing has been widely used for nanostructural engineering, but the nanomorphology is limited to only two oxides: anodic barrier and porous oxides. Therefore, the discovery of an additional anodic oxide with a unique nanofeature would expand the applicability of anodizing. Here we demonstrate the fabrication of a third-generation anodic oxide, specifically, anodic alumina nanofibers, by anodizing in a new electrolyte, pyrophosphoric acid. Ultra-high density single nanometer-scale anodic alumina nanofibers (10(10) nanofibers/cm(2)) consisting of an amorphous, pure aluminum oxide were successfully fabricated via pyrophosphoric acid anodizing. The nanomorphologies of the anodic nanofibers can be controlled by the electrochemical conditions. Anodic tungsten oxide nanofibers can also be fabricated by pyrophosphoric acid anodizing. The aluminum surface covered by the anodic alumina nanofibers exhibited ultra-fast superhydrophilic behavior, with a contact angle of less than 1°, within 1 second. Such ultra-narrow nanofibers can be used for various nanoapplications including catalysts, wettability control, and electronic devices. PMID:25491282

  20. Ultra-High Density Single Nanometer-Scale Anodic Alumina Nanofibers Fabricated by Pyrophosphoric Acid Anodizing

    NASA Astrophysics Data System (ADS)

    Kikuchi, Tatsuya; Nishinaga, Osamu; Nakajima, Daiki; Kawashima, Jun; Natsui, Shungo; Sakaguchi, Norihito; Suzuki, Ryosuke O.

    2014-12-01

    Anodic oxide fabricated by anodizing has been widely used for nanostructural engineering, but the nanomorphology is limited to only two oxides: anodic barrier and porous oxides. Therefore, the discovery of an additional anodic oxide with a unique nanofeature would expand the applicability of anodizing. Here we demonstrate the fabrication of a third-generation anodic oxide, specifically, anodic alumina nanofibers, by anodizing in a new electrolyte, pyrophosphoric acid. Ultra-high density single nanometer-scale anodic alumina nanofibers (1010 nanofibers/cm2) consisting of an amorphous, pure aluminum oxide were successfully fabricated via pyrophosphoric acid anodizing. The nanomorphologies of the anodic nanofibers can be controlled by the electrochemical conditions. Anodic tungsten oxide nanofibers can also be fabricated by pyrophosphoric acid anodizing. The aluminum surface covered by the anodic alumina nanofibers exhibited ultra-fast superhydrophilic behavior, with a contact angle of less than 1°, within 1 second. Such ultra-narrow nanofibers can be used for various nanoapplications including catalysts, wettability control, and electronic devices.

  1. Ultra-High Density Single Nanometer-Scale Anodic Alumina Nanofibers Fabricated by Pyrophosphoric Acid Anodizing

    PubMed Central

    Kikuchi, Tatsuya; Nishinaga, Osamu; Nakajima, Daiki; Kawashima, Jun; Natsui, Shungo; Sakaguchi, Norihito; Suzuki, Ryosuke O.

    2014-01-01

    Anodic oxide fabricated by anodizing has been widely used for nanostructural engineering, but the nanomorphology is limited to only two oxides: anodic barrier and porous oxides. Therefore, the discovery of an additional anodic oxide with a unique nanofeature would expand the applicability of anodizing. Here we demonstrate the fabrication of a third-generation anodic oxide, specifically, anodic alumina nanofibers, by anodizing in a new electrolyte, pyrophosphoric acid. Ultra-high density single nanometer-scale anodic alumina nanofibers (1010 nanofibers/cm2) consisting of an amorphous, pure aluminum oxide were successfully fabricated via pyrophosphoric acid anodizing. The nanomorphologies of the anodic nanofibers can be controlled by the electrochemical conditions. Anodic tungsten oxide nanofibers can also be fabricated by pyrophosphoric acid anodizing. The aluminum surface covered by the anodic alumina nanofibers exhibited ultra-fast superhydrophilic behavior, with a contact angle of less than 1°, within 1 second. Such ultra-narrow nanofibers can be used for various nanoapplications including catalysts, wettability control, and electronic devices. PMID:25491282

  2. Preventing Cracking of Anodized Coatings

    NASA Technical Reports Server (NTRS)

    He, Charles C.; Heslin, Thomas M.

    1995-01-01

    Anodized coatings have been used as optical and thermal surfaces in spacecraft. Particulate contamination from cracked coatings is a concern for many applications. The major cause for the cracking is the difference in the coefficient of thermal expansion between the oxide coatings and the aluminum substrate. The loss of water when the coating is exposed to a vacuum also could induce cracking of the coating. Hot-water sealing was identified as the major cause for the cracking of the coatings because of the large temperature change when the parts were immersed in boiling water and the water was absorbed in the coating. when the hot-water sealing process was eliminated, the cracking resistance of the anodized coatings was greatly improved. Also, it was found that dyed black coatings were more susceptible than clear coatings to cracking during thermo-vacuum cyclings.

  3. Variable anodic thermal control coating

    NASA Technical Reports Server (NTRS)

    Gilliland, C. S.; Duckett, J. (Inventor)

    1983-01-01

    A process for providing a thermal control solar stable surface coating for aluminum surfaces adapted to be exposed to solar radiation wherein selected values within the range of 0.10 to 0.72 thermal emittance (epsilon sub tau) and 0.2 to 0.4 solar absorptance (alpha subs) are reproducibly obtained by anodizing the surface area in a chromic acid solution for a selected period of time. The rate voltage and time, along with the parameters of initial epsilon sub tau and alpha subs, temperature of the chromic acid solution, acid concentration of the solution and the material anodized determines the final values of epsilon/tau sub and alpha sub S. 9 Claims, 5 Drawing Figures.

  4. Biomechanical Risk Estimates for Mild Traumatic Brain Injury

    PubMed Central

    Funk, J. R.; Duma, S. M.; Manoogian, S. J.; Rowson, S.

    2007-01-01

    The objective of this study was to characterize the risk of mild traumatic brain injury (MTBI) in living humans based on a large set of head impact data taken from American football players at the collegiate level. Real-time head accelerations were recorded from helmet-mounted accelerometers designed to stay in contact with the player’s head. Over 27,000 head impacts were recorded, including four impacts resulting in MTBI. Parametric risk curves were developed by normalizing MTBI incidence data by head impact exposure data. An important finding of this research is that living humans, at least in the setting of collegiate football, sustain much more significant head impacts without apparent injury than previously thought. The following preliminary nominal injury assessment reference values associated with a 10% risk of MTBI are proposed: a peak linear head acceleration of 165 g, a HIC of 400, and a peak angular head acceleration of 9000 rad/s2. PMID:18184501

  5. Development of mild gasification process

    SciTech Connect

    Chu, C.I.C.; Derting, T.M.

    1988-07-01

    Under a previous contract with Morgantown Energy Technology Center (METC), Department of Energy (DOE) Contract No. AC21-84MC21108, UCC Research Corporation (UCCRC) built and tested a 1500 lb/day Mild Gasification Process Development Unit (MGU). The MGU, as tested under the previous contract, is shown in Figure 1. Testing completed under the previous contract showed that good quality hydrocarbon liquids and good quality char can be produced in the MGU. However, the MGU is not optimized. The primary objectives of the current project are to optimize the MGU and determine the suitability of char for several commercial applications. The program consists of four tasks; Task 1 -- Test Plan; Task 2 -- Optimization of Mild Gasification Process; Task 3 -- Evaluation of Char and Char/Coal Blends as a Boiler/Blast Furnace Fuel; and Task 4 -- Analysis of Data and Preparation of Final Report. Task 1 has been completed while work continued on Task 2.

  6. Development of mild gasification process

    SciTech Connect

    Chu, C.I.C.; Gillespie, B.L.

    1988-02-01

    Under a previous contract with Morgantown Energy Technology Center (METC), Department of Energy (DOE) Contract No. DE-AC21-84MC21108, UCC Research Corporation (UCCRC) built and tested a 1500 lb/day Mild Gasification Process Development Unit (MGU). The MGU, as tested under the previous contract, is shown in Figure 1. Testing completed under the previous contract showed that good quality hydrocarbon liquids and good quality char can be produced in the MGU. However, the MGU is not optimized. The primary objectives of the current project are to optimize the MGU and determine the suitability of char for several commercial applications. The program consists of four tasks; Task 1-Test Plan; Task 2-Optimization of Mild Gasification Process; Task 3-Evaluation of Char and Char/Coal Blends as a Boiler/Blast Furnace Fuel; and Task 4-Analysis of Data and Preparation of Final Report. Task 1 has been completed while work continued on Task 2.

  7. Development of mild gasification process

    SciTech Connect

    Chu, C.I.C.; Williams, S.W.

    1989-01-01

    Under a previous contract with Morgantown Energy Technology Center (METC), Department of Energy (DOE) Contract No. AC21-84MC21108, UCC Research Corporation (UCCRC) built and tested a 1500 lb/day Mild Gasification Process Development Unit (MGU). The MGU, as tested under the previous contract, is shown in Figure 1. Testing completed under the previous contract showed that good quality hydrocarbon liquids and good quality char can be produced in the MGU. However, the MGU is not optimized. The primary objectives of the current project are to optimize the MGU and determine the suitability of char for several commercial applications. The program consists of four tasks; Task 1 -- Test Plan; Task 2 -- Optimization of Mild Gasification Process; Task 3 -- Evaluation of Char and Char/Coal Blends as a Boiler/Blast Furnace Fuel; and Task 4 -- Analysis of Data and Preparation of Final Report. Task 1 has been completed while work continued on Task 2.

  8. Development of mild gasification process

    SciTech Connect

    Chu, C.I.C.; Gillespie, B.L.

    1987-11-01

    Under a previous contract with Morgantown Energy Technology Center (METC), Department of Energy (DOE) Contract No. AC21-84MC21108, UCC Research Corporation (UCCRC) built and tested a 1500 lb/day Mild Gasification Process Development Unit (MGU). The MGU, as tested under the previous contract, is shown in Figure 1. Testing completed under the previous contract showed that good quality hydrocarbon liquids and good quality char can be produced in the MGU. However, the MGU is not optimized. The primary objectives of the current project are to optimize the MGU and determine the suitability of char for several commercial applications. The program consists of four tasks; Task 1 -- Test Plan; Task 2 -- Optimization of Mild Gasification Process; Task 3 -- Evaluation of Char and Char/Coal Blends as a Boiler/Blast Furnace Fuel; and Task 4 -- Analysis of Data and Preparation of Final Report. Task 1 has been completed while work continued on Task 2.

  9. Mild coal gasification: Product separation

    SciTech Connect

    Wallman, P.H.; Singleton, M.F.

    1992-08-04

    Our general objective is to further the development of efficient continuous mild coal gasification processes. The research this year has been focused on product separation problems and particularly the problem of separating entrained ultra-fine particles from the chemically reactive environment of the product gas stream. Specifically, the objective of the present work has been to study candidate barrier filters for application to mild coal gasification processes. Our approach has been to select the most promising existing designs, to develop a design of our own and to test the designs in our bench-scale gasification apparatus. As a first step towards selection of the most promising barrier filter we have determined coking rates on several candidate filter media.

  10. Metal-based anode for high performance bioelectrochemical systems through photo-electrochemical interaction

    NASA Astrophysics Data System (ADS)

    Liang, Yuxiang; Feng, Huajun; Shen, Dongsheng; Long, Yuyang; Li, Na; Zhou, Yuyang; Ying, Xianbin; Gu, Yuan; Wang, Yanfeng

    2016-08-01

    This paper introduces a novel composite anode that uses light to enhance current generation and accelerate biofilm formation in bioelectrochemical systems. The composite anode is composed of 316L stainless steel substrate and a nanostructured α-Fe2O3 photocatalyst (PSS). The electrode properties, current generation, and biofilm properties of the anode are investigated. In terms of photocurrent, the optimal deposition and heat-treatment times are found to be 30 min and 2 min, respectively, which result in a maximum photocurrent of 0.6 A m-2. The start-up time of the PSS is 1.2 days and the maximum current density is 2.8 A m-2, twice and 25 times that of unmodified anode, respectively. The current density of the PSS remains stable during 20 days of illumination. Confocal laser scanning microscope images show that the PSS could benefit biofilm formation, while electrochemical impedance spectroscopy indicates that the PSS reduce the charge-transfer resistance of the anode. Our findings show that photo-electrochemical interaction is a promising way to enhance the biocompatibility of metal anodes for bioelectrochemical systems.

  11. Memory dysfunction in mild aphasics.

    PubMed

    Rönnberg, J; Larsson, C; Fogelsjöö, A; Nilsson, L G; Lindberg, M; Angquist, K A

    1996-03-01

    The effect of mild aphasia (n = 9), as a result of subarachnoid haemorrhage (SAH), was evaluated against one matched (sex, age, and education) control group suffering from SAH of unknown origin without aphasia, and against one matched healthy control group. According to aphasia testing (Reinvang & Engvik, 1980), criteria for a classical diagnosis were not met. Therefore, the patients were characterized as mild aphasics: They generally displayed intact audo-verbal comprehension and repetition abilities, and they demonstrated a fluent, spontaneous speech. However, they showed phonemic and semantic paraphasias, with self-corrections; a few patients displayed alexia and agraphia. Memory performance of these three groups was evaluated by a neuropsychological test battery, designed to tap various components of verbal memory function. From the results it was concluded that: (a) Short-term memory is impaired, as regards the phonological loop and the central executive in working memory, whereas maintenance rehearsal is unaffected, given that the demands on phonological coding is minimized, (b) long-term memory is also generally impaired, whereas long-term learning and forgetting by means of subject-performed tasks proceeds within a normal range. Impairments were hypothesized to reflect less efficient central executive functions of working memory, involving generation of less appropriate semantic codes and phonological representations, (c) mildly aphasic patients are not subjectively aware of their own memory deficits, and (d) aphasia classification by means of standard procedures do not sufficiently characterize the nature of a mildy aphasic patient's memory problems. PMID:8900819

  12. Mild Hypertransaminasemia in Primary Care

    PubMed Central

    Al-Busafi, Said A.; Hilzenrat, Nir

    2013-01-01

    The liver enzymes, alanine transaminase (ALT) or aspartate transaminase (AST), are commonly used in clinical practice as screening as well as diagnostic tests for liver diseases. ALT is more specific for liver injury than AST and has been shown to be a good predictor of liver related and all-cause mortality. Asymptomatic mild hypertransaminasemia (i.e., less than five times normal) is a common finding in primary care and this could be attributed to serious underlying condition or has transient and benign cause. Unfortunately, there are no good literatures available on the cost-effectiveness of evaluating patients with asymptomatic mild hypertransaminasemia. However, if the history and physical examination do not suggest a clear cause, a stepwise approach should be initiated based on pretest probability of the underlying liver disease. Nonalcoholic fatty liver disease is becoming the most common cause of mild hypertransaminasemia worldwide. Other causes include alcohol abuse, medications, and hepatitis B and C. Less common causes include hemochromatosis, α1-antitrypsin deficiency, autoimmune hepatitis, and Wilson's disease. Nonhepatic causes such as celiac disease, thyroid, and muscle disorders should be considered in the differential diagnosis. Referral to a specialist and a possible liver biopsy should be considered if persistent hypertransaminasemia for six months or more of unclear etiology.

  13. Microbial fuel cell with improved anode

    DOEpatents

    Borole, Abhijeet P.

    2010-04-13

    The present invention relates to a method for preparing a microbial fuel cell, wherein the method includes: (i) inoculating an anodic liquid medium in contact with an anode of the microbial fuel cell with one or more types of microorganisms capable of functioning by an exoelectrogenic mechanism; (ii) establishing a biofilm of the microorganisms on and/or within the anode along with a substantial absence of planktonic forms of the microorganisms by substantial removal of the planktonic microorganisms during forced flow and recirculation conditions of the anodic liquid medium; and (iii) subjecting the microorganisms of the biofilm to a growth stage by incorporating one or more carbon-containing nutritive compounds in the anodic liquid medium during biofilm formation or after biofilm formation on the anode has been established.

  14. Determining Prebaked Anode Properties for Aluminum Production

    NASA Astrophysics Data System (ADS)

    Fischer, W. K.; Perruchoud, R.

    1987-11-01

    Critical to the performance of an aluminum reduction cell is anode quality and durability. In recognition of this consideration, the aluminum industry uses a number of standardized tests to evaluate baked anode samples. In addition to these routine evaluation procedures, recent innovations have led to newer methods which are helpful in diagnosing anode problems and improving net carbon usage. Recent work in particular has enlightened operators in such areas as carboxy reactivity, air reactivity, and thermal shock.

  15. Anodizing And Sealing Aluminum In Nonchromated Solutions

    NASA Technical Reports Server (NTRS)

    Emmons, John R.; Kallenborn, Kelli J.

    1995-01-01

    Improved process for anodizing and sealing aluminum involves use of 5 volume percent sulfuric acid in water as anodizing solution, and 1.5 to 2.0 volume percent nickel acetate in water as sealing solution. Replaces process in which sulfuric acid used at concentrations of 10 to 20 percent. Improved process yields thinner coats offering resistance to corrosion, fatigue life, and alloy-to-alloy consistency equal to or superior to those of anodized coats produced with chromated solutions.

  16. Carbonization of Sugi Leaves Using Mild Superheated Steam

    NASA Astrophysics Data System (ADS)

    Li, Zhixia; Lin, Hongfei; Yamasaki, Nakamichi

    2006-05-01

    As one of main biomass wastes in Japan, Sugi (Japanese cedar) leaves were chipped and treated for preparation of charcoal at mild temperature (250 - 450 °C) using superheated steam with controllable pressure. After the treatment, the solid residual charcoal was examined by FT-IR and CHN elemental analysis. The results suggest that degree of carbonization was significantly affected by treating temperature, time and partial pressure of steam. A temperature above 400 °C and a partial pressure of steam above 4 MPa are necessary for accelerating and completing the carbonization within 2 hours. Adsorption experimental results of charcoal show that the residual charcoal has an excellent absorbability for ammonia gas and heavy metal ion Pb2+. Therefore it is expectable to develop mild superheated steam as reaction medium for preparing valuable charcoal products from biomass wastes with lower energy cost.

  17. Anode Sheath Switching in a Carbon Nanotube Arc Plasma

    SciTech Connect

    Abe Fetterman, Yevgeny Raitses, and Michael Keidar

    2008-04-08

    The anode ablation rate is investigated as a function of anode diameter for a carbon nanotube arc plasma. It is found that anomalously high ablation occurs for small anode diameters. This result is explained by the formation of a positive anode sheath. The increased ablation rate due to this positive anode sheath could imply greater production rate for carbon nanotubes.

  18. Coke calcination levels and aluminum anode quality

    SciTech Connect

    Dreyer, C.; Samanos, B.; Vogt, F.

    1996-10-01

    The calcination temperature of petroleum coke for aluminum anode applications has been generally increased during the past 10 years. This change by coke suppliers has often been done at the request of anode manufacturers (smelters) who seek special quality requirements for the calcined coke. Such an increase in calcining temperatures not only affects coke properties, but also has an effect on calciner operations and may have some unexpected effects on anode quality. One high and one low sulfur coke were calcined industrially at two different levels. The four individual calcined cokes were characterized. Then laboratory scale anodes were produced with each individual calcined coke. These all-coke anodes were first evaluated for optimum pitch content. Then the anodes were baked over a range of temperatures (920 to 1,260 C) in order to evaluate the influence of this heat treatment on anode properties. The results show the influence of calcining temperature on coke properties and anode properties, including the most important influence of the anode baking level.

  19. Surface modifications for carbon lithium intercalation anodes

    DOEpatents

    Tran, Tri D.; Kinoshita, Kimio

    2000-01-01

    A prefabricated carbon anode containing predetermined amounts of passivating film components is assembled into a lithium-ion rechargeable battery. The modified carbon anode enhances the reduction of the irreversible capacity loss during the first discharge of a cathode-loaded cell. The passivating film components, such as Li.sub.2 O and Li.sub.2 CO.sub.3, of a predetermined amount effective for optimal passivation of carbon, are incorporated into carbon anode materials to produce dry anodes that are essentially free of battery electrolyte prior to battery assembly.

  20. Development of a multi-anode ionization chamber

    NASA Astrophysics Data System (ADS)

    Makino, Hiroki; Morikawa, Tsuneyasu; Noro, Tetsuo; Maeda, Toyokazu

    2009-10-01

    A multi-anode ionization chamber with a Frisch grid has been developed. An immediate purpose is the use in accelerator mass spectrometry (AMS), but the system will also be applied to measurements in heavy-ion nuclear physics. In order to identify the incident heavy ions, the anode is divided into 16 sections so that the ionization distribution along the ion trajectory (Bragg curve) can be analyzed. Layout of the electrodes, for field shaping, has been determined based on calculations by using a computer code, Poisson-Superfish. A good discrimination of ^36Cl ions from background ^36S ions has been shown by the Monte Carlo simulation. For the signal readout, an originally designed charge-sensitive preamplifier was newly made by using conventional operational amplifiers so as to integrate the ionization charge and interface the shaped signal to the electronic modules of existing data acquisition system. These developments are still in progress. In the meeting, the overall performance of the ionization-chamber system investigated by using accelerated heavy ion beams will be presented.

  1. Anode conductor for alkaline cells

    SciTech Connect

    Schrenk, D.J.; Murphy, P.E.

    1988-12-13

    This patent describes an electrochemical cell comprised of an anode comprised of zinc; a cathode; and alkaline electrolyte; and a current collector comprised of a silicon bronze alloy that is comprised of 85-98% by weight copper and 1-5% by weight silicon with the remainder being comprised of at least one of manganese, iron, zinc, aluminum, tin, lead, or mixtures thereof; and a strip of metal tab stock welded to the current collector, the tab stock being a metal other than silicon bronze alloy.

  2. Accelerated Reader.

    ERIC Educational Resources Information Center

    Education Commission of the States, Denver, CO.

    This paper provides an overview of Accelerated Reader, a system of computerized testing and record-keeping that supplements the regular classroom reading program. Accelerated Reader's primary goal is to increase literature-based reading practice. The program offers a computer-aided reading comprehension and management program intended to motivate…

  3. Myocardial protection with mild hypothermia.

    PubMed

    Tissier, Renaud; Ghaleh, Bijan; Cohen, Michael V; Downey, James M; Berdeaux, Alain

    2012-05-01

    Mild hypothermia, 32-35° C, is very potent at reducing myocardial infarct size in rabbits, dogs, sheep, pigs, and rats. The benefit is directly related to reduction in normothermic ischaemic time, supporting the relevance of early and rapid cooling. The cardioprotective effect of mild hypothermia is not limited to its recognized reduction of infarct size, but also results in conservation of post-ischaemic contractile function, prevention of no-reflow or microvascular obstruction, and ultimately attenuation of left ventricular remodelling. The mechanism of the anti-infarct effect does not appear to be related to diminished energy utilization and metabolic preservation, but rather to survival signalling that involves either the extracellular signal-regulated kinases and/or the Akt/phosphoinositide 3-kinase/mammalian target of rapamycin pathways. Initial clinical trials of hypothermia in patients with ST-segment elevation myocardial infarction were disappointing, probably because cooling was too slow to shorten normothermic ischaemic time appreciably. New approaches to more rapid cooling have recently been described and may soon be available for clinical use. Alternatively, it may be possible to pharmacologically mimic the protection provided by cooling soon after the onset of ischaemia with an activator of mild hypothermia signalling, e.g. extracellular signal-regulated kinase activator, that could be given by emergency medical personnel. Finally, the protection afforded by cooling can be added to that of pre- and post-conditioning because their mechanisms differ. Thus, myocardial salvage might be greatly increased by rapidly cooling patients as soon as possible and then giving a pharmacological post-conditioning agent immediately prior to reperfusion. PMID:22131353

  4. Anodization process produces opaque, reflective coatings on aluminum

    NASA Technical Reports Server (NTRS)

    1965-01-01

    Opaque, reflective coatings are produced on aluminum articles by an anodizing process wherein the anodizing bath contains an aqueous dispersion of finely divided insoluble inorganic compounds. These particles appear as uniformly distributed occlusions in the anodic deposit on the aluminum.

  5. Improved Carbon Anodes For Rechargeable Lithium Cells

    NASA Technical Reports Server (NTRS)

    Huang, Chen-Kuo; Surampudi, Subbarao; Attia, Alan; Halpert, Gerald

    1994-01-01

    Carbon anodes for rechargeable lithium cells improved by choosing binder contents and fabrication conditions to achieve maximum porosity, uniform loading, and maximum reversible lithium capacity. Stacking electrodes under pressure during assembly of cells increases cyclability of lithium. Rechargeable, high-energy-density lithium cells containing improved carbon anodes find use in spacecraft, military, communications, automotive, and other demanding applications.

  6. Remote control for anode-cathode adjustment

    DOEpatents

    Roose, Lars D.

    1991-01-01

    An apparatus for remotely adjusting the anode-cathode gap in a pulse power machine has an electric motor located within a hollow cathode inside the vacuum chamber of the pulse power machine. Input information for controlling the motor for adjusting the anode-cathode gap is fed into the apparatus using optical waveguides. The motor, controlled by the input information, drives a worm gear that moves a cathode tip. When the motor drives in one rotational direction, the cathode is moved toward the anode and the size of the anode-cathode gap is diminished. When the motor drives in the other direction, the cathode is moved away from the anode and the size of the anode-cathode gap is increased. The motor is powered by batteries housed in the hollow cathode. The batteries may be rechargeable, and they may be recharged by a photovoltaic cell in combination with an optical waveguide that receives recharging energy from outside the hollow cathode. Alternatively, the anode-cathode gap can be remotely adjusted by a manually-turned handle connected to mechanical linkage which is connected to a jack assembly. The jack assembly converts rotational motion of the handle and mechanical linkage to linear motion of the cathode moving toward or away from the anode.

  7. An oxygen pumping anode for electrowinning aluminium.

    PubMed

    Liu, Changqing; Ji, Xiaobo; Zhang, Pingmin; Chen, Qiyuan; Banks, Craig E

    2013-05-01

    The chemical potential of oxygen ions at the novel oxygen pumping anode for electrowinning aluminum was manipulated by the electromotive forces to create thermodynamic stability. It is our anticipation that this newly designed anode can be applied to electrochemical metallurgy of other metals, such as the direct electrochemical reduction of TiO2 in the FFC process. PMID:23519386

  8. Growth behavior of anodic oxide formed by aluminum anodizing in glutaric and its derivative acid electrolytes

    NASA Astrophysics Data System (ADS)

    Nakajima, Daiki; Kikuchi, Tatsuya; Natsui, Shungo; Suzuki, Ryosuke O.

    2014-12-01

    The growth behavior of anodic oxide films formed via anodizing in glutaric and its derivative acid solutions was investigated based on the acid dissociation constants of electrolytes. High-purity aluminum foils were anodized in glutaric, ketoglutaric, and acetonedicarboxylic acid solutions under various electrochemical conditions. A thin barrier anodic oxide film grew uniformly on the aluminum substrate by glutaric acid anodizing, and further anodizing caused the film to breakdown due to a high electric field. In contrast, an anodic porous alumina film with a submicrometer-scale cell diameter was successfully formed by ketoglutaric acid anodizing at 293 K. However, the increase and decrease in the temperature of the ketoglutaric acid resulted in non-uniform oxide growth and localized pitting corrosion of the aluminum substrate. An anodic porous alumina film could also be fabricated by acetonedicarboxylic acid anodizing due to the relatively low dissociation constants associated with the acid. Acid dissociation constants are an important factor for the fabrication of anodic porous alumina films.

  9. LINEAR ACCELERATOR

    DOEpatents

    Colgate, S.A.

    1958-05-27

    An improvement is presented in linear accelerators for charged particles with respect to the stable focusing of the particle beam. The improvement consists of providing a radial electric field transverse to the accelerating electric fields and angularly introducing the beam of particles in the field. The results of the foregoing is to achieve a beam which spirals about the axis of the acceleration path. The combination of the electric fields and angular motion of the particles cooperate to provide a stable and focused particle beam.

  10. One hundred anode microchannel plate ion detector

    SciTech Connect

    He Yi; Poehlman, John F.; Alexander, Andrew W.; Boraas, Kirk; Reilly, James P.

    2011-08-15

    A one-hundred-anode microchannel plate detector is constructed on a 10 cm x 15 cm printed circuit board and attached to a homebuilt matrix assisted laser desorption ionization (MALDI) time-of-flight mass spectrometer. Ringing and cross talk between anodes have been successfully eliminated and preliminary mass spectra of peptide ions recorded. With one hundred anodes on the printed circuit board, spatial information about the ion beam can also be readily determined with this detector. During operation, the detector anode assembly loses sensitivity after ions strike it for a considerable period of time due to charging of the non-conductive regions between anodes. However, this effect can be minimized by deflecting matrix ions away from the detector.

  11. An investigation into the role that a transverse magnetic field plays in the formation of large anode sheath potentials

    NASA Astrophysics Data System (ADS)

    Foster, J. E.; Gallimore, A. D.

    1996-11-01

    A 9.25 A low-pressure (45-55 mTorr) hollow cathode arc discharge has been used to simulate plasma processes that occur at the anode of magnetoplasmadynamic accelerators used for space propulsion applications. The interest in the near-anode region is related to findings of past research, which indicate that large anode sheath potentials can drive as much as 70% of the input electrical power into the anode, thus degrading thrust efficiency. Presented here are results that essentially characterize the behavior of the near-anode plasma as a function of a transverse magnetic field. Plasma diagnostics included single Langmuir probe techniques, emission spectroscopy, and water calorimetry for anode heat flux measurements. Phenomenological arguments based on measurements taken suggest that observed changes in anode fall voltage are related to variations in the measured local electron number density as the magnetic field is varied. This behavior is attributed to the variations in the measured ionization rate, which is shown to be a nonlinear function of transverse magnetic field.

  12. Analyzing the Performance of Multi-Anode PMTs for the SoLID Project at Jefferson Lab

    NASA Astrophysics Data System (ADS)

    Haurie, Patrick

    2014-09-01

    As a part of their particle accelerator upgrade from 6 GeV to 12 GeV, Jefferson Lab is building a Solenoidal Large Intensity Device (SoLID). SoLID is a high rate and large acceptance particle detector containing multiple detectors including an electromagnetic calorimeter, and a large solenoidal magnet. Due to the large number of particles that need to be detected, SoLID needs a photomultiplier setup with high channel density. This research is to characterize the level of performance of Hamamatsu H10966 multi-anode Photomultiplier Tubes (PMTs) for the SoLID project. The two types of PMTs, multi-anode and single-anode, both have advantages and disadvantages. With higher channel density, multi-anode PMTs are more cost effective than single-anode, but it's not possible to control the relative gains of their channels. Single-anode PMTs have more control over their gain, but are easily affected by magnetic fields. We performed a uniformity scan of the multi-anode PMT, which is a measurement of the relative gain of each pixel to make sure the PMT works as the manufacturer specified. The next step was to measure the crosstalk across the PMT. This is the most important part of our research because it tells us if the PMT will be beneficial to the SoLID project.

  13. Effects of half-wave and full-wave power source on the anodic oxidation process on AZ91D magnesium alloy

    NASA Astrophysics Data System (ADS)

    Wang, Ximei; Zhu, Liqun; Li, Weiping; Liu, Huicong; Li, Yihong

    2009-03-01

    Anodic films have been prepared on the AZ91D magnesium alloys in 1 mol/L Na 2SiO 3 with 10 vol.% silica sol addition under the constant voltage of 60 V at room temperature by half-wave and full-wave power sources. The weight of the anodic films has been scaled by analytical balance, and the thickness has been measured by eddy current instrument. The surface morphologies, chemical composition and structure of the anodic films have been characterized by scanning electron microscopy (SEM), energy dispersion spectrometry (EDS), X-ray diffraction (XRD) and transmission electron microscopy (TEM). The results show that the thickness and weight of the anodic films formed by the two power sources both increase with the anodizing time, and the films anodized by full-wave power source grow faster than that by half-wave one. Furthermore, we have fitted polynomial to the scattered data of the weight and thickness in a least-squares sense with MATLAB, which could express the growth process of the anodic films sufficiently. The full-wave power source is inclined to accelerate the growth of the anodic films, and the half-wave one is mainly contributed to the uniformity and fineness of the films. The anodic film consists of crystalline Mg 2SiO 4 and amorphous SiO 2.

  14. Acceleration switch

    DOEpatents

    Abbin, J.P. Jr.; Devaney, H.F.; Hake, L.W.

    1979-08-29

    The disclosure relates to an improved integrating acceleration switch of the type having a mass suspended within a fluid filled chamber, with the motion of the mass initially opposed by a spring and subsequently not so opposed.

  15. Acceleration switch

    DOEpatents

    Abbin, Jr., Joseph P.; Devaney, Howard F.; Hake, Lewis W.

    1982-08-17

    The disclosure relates to an improved integrating acceleration switch of the type having a mass suspended within a fluid filled chamber, with the motion of the mass initially opposed by a spring and subsequently not so opposed.

  16. ION ACCELERATOR

    DOEpatents

    Bell, J.S.

    1959-09-15

    An arrangement for the drift tubes in a linear accelerator is described whereby each drift tube acts to shield the particles from the influence of the accelerating field and focuses the particles passing through the tube. In one embodiment the drift tube is splii longitudinally into quadrants supported along the axis of the accelerator by webs from a yoke, the quadrants. webs, and yoke being of magnetic material. A magnetic focusing action is produced by energizing a winding on each web to set up a magnetic field between adjacent quadrants. In the other embodiment the quadrants are electrically insulated from each other and have opposite polarity voltages on adjacent quadrants to provide an electric focusing fleld for the particles, with the quadrants spaced sufficienily close enough to shield the particles within the tube from the accelerating electric field.

  17. LINEAR ACCELERATOR

    DOEpatents

    Christofilos, N.C.; Polk, I.J.

    1959-02-17

    Improvements in linear particle accelerators are described. A drift tube system for a linear ion accelerator reduces gap capacity between adjacent drift tube ends. This is accomplished by reducing the ratio of the diameter of the drift tube to the diameter of the resonant cavity. Concentration of magnetic field intensity at the longitudinal midpoint of the external sunface of each drift tube is reduced by increasing the external drift tube diameter at the longitudinal center region.

  18. The Nitrogen-Nitride Anode.

    SciTech Connect

    Delnick, Frank M.

    2014-10-01

    Nitrogen gas N 2 can be reduced to nitride N -3 in molten LiCl-KCl eutectic salt electrolyte. However, the direct oxidation of N -3 back to N 2 is kinetically slow and only occurs at high overvoltage. The overvoltage for N -3 oxidation can be eliminated by coordinating the N -3 with BN to form the dinitridoborate (BN 2 -3 ) anion which forms a 1-D conjugated linear inorganic polymer with -Li-N-B-N- repeating units. This polymer precipitates out of solution as Li 3 BN 2 which becomes a metallic conductor upon delithiation. Li 3 BN 2 is oxidized to Li + + N 2 + BN at about the N 2 /N -3 redox potential with very little overvoltage. In this report we evaluate the N 2 /N -3 redox couple as a battery anode for energy storage.

  19. Electrical Breakdown of Anodized Structures in a Low Earth Orbital Environmental

    NASA Technical Reports Server (NTRS)

    Galofaro, J. T.; Doreswamy, C. V.; Vayner, B. V.; Snyder, D. B.; Ferguson, D. C.

    1999-01-01

    A comprehensive set of investigations involving arcing on a negatively biased anodized aluminum plate immersed in a low density argon plasma at low pressures (P(sub O), 7.5 x 10(exp -5) Torr) have been performed. These arcing experiments were designed to simulate electrical breakdown of anodized coatings in a Low Earth Orbital (LEO) environment. When electrical breakdown of an anodized layer occurs, an arc strikes, and there is a sudden flux of electrons accelerated into the ambient plasma. This event is directly followed by ejection of a quasi-neutral plasma cloud consisting of ejected material blown out of the anodized layer. Statistical analysis of plasma cloud expansion velocities have yielded a mean propagation velocity, v = (19.4 +/- 3.5) km/s. As the plasma cloud expands into the ambient plasma, energy in the form of electrical noise is generated. The radiated electromagnetic noise is detected by means of an insulated antenna immersed in the ambient plasma. The purpose of the investigations is (1) to observe and record the electromagnetic radiation spectrum resulting from the arcing process. (2) Make estimates of the travel time of the quasi-neutral plasma cloud based on fluctuations to several Langmuir probes mounted in the ambient plasma. (3) To study induced arcing between two anodized aluminum structures in close proximity.

  20. Mild traumatic brain injury in a gymnast.

    PubMed

    Knight, Debra; Dewitt, Rachel; Moser, Sharon

    2016-07-01

    Primary care providers often are responsible for the initial evaluation and management plan of young patients with mild traumatic brain injury (mild TBI, also called concussion), and need to be familiar with new protocols and how to incorporate them into a patient's treatment plan. This article describes a patient who suffered a mild TBI and returned to sports too early, and discusses the appropriate protocols for managing concussion in children. PMID:27351644

  1. Anodizing of High Electrically Stressed Components

    SciTech Connect

    Flores, P.; Henderson, D. J.; Good, D. E.; Hogge, K.; Mitton, C. V.; Molina, I.; Naffziger, C.; Codova, S. R.; Ormond, E. U.

    2013-06-01

    Anodizing creates an aluminum oxide coating that penetrates into the surface as well as builds above the surface of aluminum creating a very hard ceramic-type coating with good dielectric properties. Over time and use, the electrical carrying components (or spools in this case) experience electrical breakdown, yielding undesirable x-ray dosages or failure. The spool is located in the high vacuum region of a rod pinch diode section of an x-ray producing machine. Machine operators have recorded decreases in x-ray dosages over numerous shots using the reusable spool component, and re-anodizing the interior surface of the spool does not provide the expected improvement. A machine operation subject matter expert coated the anodized surface with diffusion pump oil to eliminate electrical breakdown as a temporary fix. It is known that an anodized surface is very porous, and it is because of this porosity that the surface may trap air that becomes a catalyst for electrical breakdown. In this paper we present a solution of mitigating electrical breakdown by oiling. We will also present results of surface anodizing improvements achieved by surface finish preparation and surface sealing. We conclude that oiling the anodized surface and using anodized hot dip sealing processes will have similar results.

  2. Mild Traumatic Brain Injury in Translation

    PubMed Central

    Robertson, Claudia S.

    2013-01-01

    Abstract This Introduction to a Special Issue on Mild Traumatic Brain Injury (mTBI) highlights the methodological challenges in outcome studies and clinical trials involving patients who sustain mTBI. Recent advances in brain imaging and portable, computerized cognitive tasks have contributed to protocols that are sensitive to the effects of mTBI and efficient in time for completion. Investigation of civilian mTBI has been extended to single and repeated injuries in athletes and blast-related mTBI in service members and veterans. Despite differences in mechanism of injury, there is evidence for similar effects of acceleration-deceleration and blast mechanisms of mTBI on cognition. Investigation of repetitive mTBI suggests that the effects may be cumulative and that repeated mTBI and repeated subconcussive head trauma may lead to neurodegenerative conditions. Although animal models of mTBI using cortical impact and fluid percussion injury in rodents have been able to reproduce some of the cognitive deficits frequently exhibited by patients after mTBI, modeling post-concussion symptoms is difficult. Recent use of closed head and blast injury animal models may more closely approximate clinical mTBI. Translation of interventions that are developed in animal models to patients with mTBI is a priority for the research agenda. This Special Issue on mTBI integrates basic neuroscience studies using animal models with studies of human mTBI, including the cognitive sequelae, persisting symptoms, brain imaging, and host factors that facilitate recovery. PMID:23046349

  3. Dual-Anode Nickel/Hydrogen Cell

    NASA Technical Reports Server (NTRS)

    Gahn, Randall F.; Ryan, Timothy P.

    1994-01-01

    Use of two hydrogen anodes in nickel/hydrogen cell reduces ohmic and concentration polarizations contributing to internal resistance, yielding cell with improved discharging performance compared to single-anode cell. Dual-anode concept incorporated into nickel/hydrogen cells of individual pressure-vessel type (for use aboard spacecraft) and common pressure-vessel type, for use on Earth to store electrical energy from photovoltaic sources, "uninterruptible" power supplies of computer and telephone systems, electric vehicles, and load leveling on power lines. Also applicable to silver/hydrogen and other metal/gas batteries.

  4. Anode materials for electrochemical waste destruction

    NASA Technical Reports Server (NTRS)

    Molton, Peter M.; Clarke, Clayton

    1990-01-01

    Electrochemical Oxidation (ECO) offers promise as a low-temperature, atmospheric pressure method for safe destruction of hazardous organic chemical wastes in water. Anode materials tend to suffer corrosion in the intensely oxidizing environment of the ECO cell. There is a need for cheaper, more resistant materials. In this experiment, a system is described for testing anode materials, with examples of several common anodes such as stainless steel, graphite, and platinized titanium. The ECO system is simple and safe to operate and the experiment can easily be expanded in scope to study the effects of different solutions, temperatures, and organic materials.

  5. A mouse model of human repetitive mild traumatic brain injury

    PubMed Central

    Kane, Michael J.; Pérez, Mariana Angoa; Briggs, Denise I.; Viano, David C.; Kreipke, Christian W.; Kuhn, Donald M.

    2011-01-01

    A novel method for the study of repetitive mild traumatic brain injury (rmTBI) that models the most common form of head injury in humans is presented. Existing animal models of TBI impart focal, severe damage unlike that seen in repeated and mild concussive injuries, and few are configured for repetitive application. Our model is a modification of the Marmarou weight drop method and allows repeated head impacts to lightly anesthetized mice. A key facet of this method is the delivery of an impact to the cranium of an unrestrained subject allowing rapid acceleration of the free-moving head and torso, an essential characteristic known to be important for concussive injury in humans, and a factor that is missing from existing animal models of TBI. Our method does not require scalp incision, emplacement of protective skull helmets or surgery and the procedure can be completed in 1-2 minutes. Mice spontaneously recover the righting reflex and show no evidence of seizures, paralysis or impaired behavior. Skull fractures and intracranial bleeding are very rare. Minor deficits in motor coordination and locomotor hyperactivity recover over time. Histological analyses reveal mild astrocytic reactivity (increased expression of GFAP) and increased phospho-tau but a lack of blood-brain-barrier disruption, edema and microglial activation. This new animal model is simple and cost-effective and will facilitate characterization of the neurobiological and behavioral consequences of rmTBI. It is also ideal for high throughput screening of potential new therapies for mild concussive injuries as experienced by athletes and military personnel. PMID:21930157

  6. Evaluation of mild skin cleansers.

    PubMed

    Wortzman, M S

    1991-01-01

    Each person makes the decision of how best to care for his or her own skin. Among the prime concerns, especially for facial skin, is the type of dirt, debris, or make-up to be removed. In most cases, all products do an adequate job in the removal of dirt; if not, the washing techniques can be modified to accomplish the task at hand. What cannot be controlled are the adverse side effects inherent in the use of that product. These adverse properties include damages to the barrier function of the skin; increased susceptibility to environmental sources of irritation and sensitization; frank irritation responses, such as erythema and edema; and reduction of the cosmetic qualities of the skin, such as degree of moisture and smoothness. Part of the problem is that most of these changes are subtle, occurring slowly over time. Often, the association of these problems with the use of a particular facial cleansing regimen is overlooked. The typical woman uses as many as 10 to 15 facial cosmetic and cleansing products each day, making the identification of a problem even more difficult. It is important to identify the risks associated with individual products and with product categories in general. Although the identification of a safe group of products to use for facial cleansing is desirable, the results of this investigation indicate that there are no simple answers. It has been assumed that because moisturizing cream formulations are routinely safe and mild in general use, a cleansing product in the same general form would share these attributes. We can see from the results in Table 2 and Figures 2, 3, 5, 7, and 9 that cleansing creams are not uniformly superior to cleansing bars in the key attributes that are used to evaluate mildness. In each evaluation there were individual cleansing creams that demonstrated statistically weaker performance than did cleansing bars in general. As a group, cleansing creams did well in the cosmetic categories of dryness and texture but

  7. Acceleration Studies

    NASA Technical Reports Server (NTRS)

    Rogers, Melissa J. B.

    1993-01-01

    Work to support the NASA MSFC Acceleration Characterization and Analysis Project (ACAP) was performed. Four tasks (analysis development, analysis research, analysis documentation, and acceleration analysis) were addressed by parallel projects. Work concentrated on preparation for and implementation of near real-time SAMS data analysis during the USMP-1 mission. User support documents and case specific software documentation and tutorials were developed. Information and results were presented to microgravity users. ACAP computer facilities need to be fully implemented and networked, data resources must be cataloged and accessible, future microgravity missions must be coordinated, and continued Orbiter characterization is necessary.

  8. Design comparison of single-anode and double-anode 300-MW magnetron injection gun

    SciTech Connect

    Lawson, W.; Specht, V. )

    1993-07-01

    Analytic tradeoff equations based on adiabatic assumptions are used to explore feasible design regions for single-anode Magnetron Injection Guns (MIG's). Particle simulations are then used to optimize a single-anode and a double-anode design for a 1-[mu]s, 500-kV, 600-A MIG which is required for a second-harmonic gyroklystron. The advantages and disadvantages of each configuration are critically examined.

  9. Reduction of ahead of schedule anodes through anode rod quality control

    SciTech Connect

    Baillargeon, F.; Menard, Y.; Perron, C.; Proulx, A.L.

    1996-10-01

    One of the major causes of ahead of schedule anodes reported in recent years by the P155 potroom operation was related to the inherent weakness in the rod welded joints. The development and implementation of an apparatus and procedure to measure, detect and reject the faulty rods prior to anode rodding, will be presented and discussed. The technology has not only significantly reduced the number of ahead of schedule anodes, it has also provided useful information concerning other process improvements.

  10. Berberine as a natural source inhibitor for mild steel in 1 M H 2SO 4

    NASA Astrophysics Data System (ADS)

    Li, Yan; Zhao, Peng; Liang, Qiang; Hou, Baorong

    2005-12-01

    Berberine was abstracted from coptis chinensis and its inhibition efficiency on corrosion of mild steel in 1 M H 2SO 4 was investigated through weight loss experiment, electrochemical techniques and scanning electronic microscope (SEM) with energy disperse spectrometer (EDS). The weight loss results showed that berberine is an excellent corrosion inhibitor for mild steel immersed in 1 M H 2SO 4. Potentiodynamic curves suggested that berberine suppressed both cathodic and anodic processes for its concentrations higher than 1.0 × 10 -4 M and mainly cathodic reaction was suppressed for lower concentrations. The Nyquist diagrams of impedance for mild steel in 1 M H 2SO 4 containing berberine with different concentrations showed one capacitive loop, and the polarization resistance increased with the inhibitor concentration rising. A good fit to Flory-Huggins isotherm was obtained between surface coverage degree and inhibitor concentration. The surface morphology and EDS analysis for mild steel specimens in sulfuric acid in the absence and presence of the inhibitor also proved the results obtained by the weight loss and electrochemical experiments. The correlation of inhibition effect and molecular structure of berberine was then discussed by quantum chemistry study.

  11. Structural Engineering of Nanoporous Anodic Alumina Photonic Crystals by Sawtooth-like Pulse Anodization.

    PubMed

    Law, Cheryl Suwen; Santos, Abel; Nemati, Mahdieh; Losic, Dusan

    2016-06-01

    This study presents a sawtooth-like pulse anodization approach aiming to create a new type of photonic crystal structure based on nanoporous anodic alumina. This nanofabrication approach enables the engineering of the effective medium of nanoporous anodic alumina in a sawtooth-like manner with precision. The manipulation of various anodization parameters such as anodization period, anodization amplitude, number of anodization pulses, ramp ratio and pore widening time allows a precise control and fine-tuning of the optical properties (i.e., characteristic transmission peaks and interferometric colors) exhibited by nanoporous anodic alumina photonic crystals (NAA-PCs). The effect of these anodization parameters on the photonic properties of NAA-PCs is systematically evaluated for the establishment of a fabrication methodology toward NAA-PCs with tunable optical properties. The effective medium of the resulting NAA-PCs is demonstrated to be optimal for the development of optical sensing platforms in combination with reflectometric interference spectroscopy (RIfS). This application is demonstrated by monitoring in real-time the formation of monolayers of thiol molecules (11-mercaptoundecanoic acid) on the surface of gold-coated NAA-PCs. The obtained results reveal that the adsorption mechanism between thiol molecules and gold-coated NAA-PCs follows a Langmuir isotherm model, indicating a monolayer sorption mechanism. PMID:27171214

  12. Effects of anode material on arcjet performance

    NASA Technical Reports Server (NTRS)

    Sankovic, John M.; Curran, Frank M.; Larson, C. A.

    1992-01-01

    Anodes fabricated from four different materials were tested in a modular arcjet thruster at 1 kW power level on nitrogen/hydrogen mixtures. A two-percent thoriated tungsten anode served as the control. Graphite was chosen for its ease in fabrication, but experienced severe erosion in the constrictor and diverging side. Hafnium carbide and lanthanum hexaboride were chosen for their low work functions but failed due to thermal stress and reacted with the propellant. When compared to the thoriated tungsten nozzle, thruster performance was significantly lower for the lanthanum hexaboride insert and the graphite nozzle, but was slightly higher for the hafnium carbide nozzle. Both the lanthanum hexaboride and hafnium carbide nozzle operated at higher voltages. An attempt was made to duplicate higher performance hafnium carbide results, but repeated attempts at machining a second anode insert were unsuccessful. Graphite, hafnium carbide, and lanthanum hexaboride do not appear viable anode materials for low power arcjet thrusters.

  13. Masking of aluminum surface against anodizing

    NASA Technical Reports Server (NTRS)

    Crawford, G. B.; Thompson, R. E.

    1969-01-01

    Masking material and a thickening agent preserve limited unanodized areas when aluminum surfaces are anodized with chromic acid. For protection of large areas it combines well with a certain self-adhesive plastic tape.

  14. Pilot demonstration of cerium oxide coated anodes

    SciTech Connect

    Gregg, J.S.; Frederick, M.S.; Shingler, M.J.; Alcorn, T.R.

    1992-10-01

    Cu cermet anodes were tested for 213 to 614 hours with an in-situ deposited CEROX coating in a pilot cell operated by Reynolds Manufacturing Technology Laboratory. At high bath ratio ([approximately]1.5) and low current density (0.5 A/cm[sup 2]), a [ge]1 mm thick dense CEROX coating was deposited on the anodes. At lower bath ratios and higher current density, the CEROX coating was thinner and less dense, but no change in corrosion rate was noted. Regions of low current density on the anodes and sides adjacent to the carbon anode sometimes had thin or absent CEROX coatings. Problems with cracking and oxidation of the cermet substrates led to higher corrosion rates in a pilot cell than would be anticipated from lab scale results.

  15. Metal assisted anodic etching of silicon

    NASA Astrophysics Data System (ADS)

    Lai, Chang Quan; Zheng, Wen; Choi, W. K.; Thompson, Carl V.

    2015-06-01

    Metal assisted anodic etching (MAAE) of Si in HF, without H2O2, is demonstrated. Si wafers were coated with Au films, and the Au films were patterned with an array of holes. A Pt mesh was used as the cathode while the anodic contact was made through either the patterned Au film or the back side of the Si wafer. Experiments were carried out on P-type, N-type, P+-type and N+-type Si wafers and a wide range of nanostructure morphologies were observed, including solid Si nanowires, porous Si nanowires, a porous Si layer without Si nanowires, and porous Si nanowires on a thick porous Si layer. Formation of wires was the result of selective etching at the Au-Si interface. It was found that when the anodic contact was made through P-type or P+-type Si, regular anodic etching due to electronic hole injection leads to formation of porous silicon simultaneously with metal assisted anodic etching. When the anodic contact was made through N-type or N+-type Si, generation of electronic holes through processes such as impact ionization and tunnelling-assisted surface generation were required for etching. In addition, it was found that metal assisted anodic etching of Si with the anodic contact made through the patterned Au film essentially reproduces the phenomenology of metal assisted chemical etching (MACE), in which holes are generated through metal assisted reduction of H2O2 rather than current flow. These results clarify the linked roles of electrical and chemical processes that occur during electrochemical etching of Si.Metal assisted anodic etching (MAAE) of Si in HF, without H2O2, is demonstrated. Si wafers were coated with Au films, and the Au films were patterned with an array of holes. A Pt mesh was used as the cathode while the anodic contact was made through either the patterned Au film or the back side of the Si wafer. Experiments were carried out on P-type, N-type, P+-type and N+-type Si wafers and a wide range of nanostructure morphologies were observed

  16. A review of anode phenomena in vacuum arces

    SciTech Connect

    Miller, H.C.

    1988-09-01

    This report discusses arc modes at the anode, experimental results pertinent to anode phenomena, and theoretical explanations of anode phenomena. The dominant mechanism controlling the formation of an anode spot appears to depend upon the electrode geometry, the electrode material, and the current waveforms of the particular vacuum arc being considered. In specific experimental conditions, either magnetic constriction in the gap plasma or gross anode melting or local anode evaporation can trigger the transition. However, the most probable explanation of anode spot formation is a combination theory, which considers magnetic constriction in the plasma together with the fluxes of material from the anode and cathode as well as the thermal, electrical, and geometric effects of the anode in analyzing the behavior of the anode and the nearby plasma. 88 refs., 6 figs., 8 tabs.

  17. Pulsed klystrons with feedback controlled mod-anode modulators

    SciTech Connect

    Reass, William A; Baca, David M; Jerry, Davis L; Rees, Daniel E

    2009-01-01

    This paper describes a fast rise and fall, totem-pole mod-anode modulators for klystron application. Details of these systems as recently installed utilizing a beam switch tube ''on-deck'' and a planar triode ''off-deck'' in a grid-catch feedback regulated configuration will be provided. The grid-catch configuration regulates the klystron mod-anode voltage at a specified set-point during switching as well as providing a control mechanism that flat-top regulates the klystron beam current during the pulse. This flat-topped klystron beam current is maintained while the capacitor bank droops. In addition, we will review more modern on-deck designs using a high gain, high voltage planar triode as a regulating and switching element. These designs are being developed, tested, and implemented for the Los Alamos Neutron Science Center (LANSCE) accelerator refurbishment project, ''LANSCE-R''. An advantage of the planar triode is that the tube can be directly operated with solid state linear components and provides for a very compact design. The tubes are inexpensive compared to stacked semiconductor switching assemblies and also provide a linear control capability. Details of these designs are provided as well as operational and developmental results.

  18. Dust particle injector for hypervelocity accelerators provides high charge-to-mass ratio

    NASA Technical Reports Server (NTRS)

    Berg, O. E.

    1966-01-01

    Injector imparts a high charge-to-mass ratio to microparticles and injects them into an electrostatic accelerator so that the particles are accelerated to meteoric speeds. It employs relatively large masses in the anode and cathode structures with a relatively wide separation, thus permitting a large increase in the allowable injection voltages.

  19. Metal assisted anodic etching of silicon.

    PubMed

    Lai, Chang Quan; Zheng, Wen; Choi, W K; Thompson, Carl V

    2015-07-01

    Metal assisted anodic etching (MAAE) of Si in HF, without H2O2, is demonstrated. Si wafers were coated with Au films, and the Au films were patterned with an array of holes. A Pt mesh was used as the cathode while the anodic contact was made through either the patterned Au film or the back side of the Si wafer. Experiments were carried out on P-type, N-type, P(+)-type and N(+)-type Si wafers and a wide range of nanostructure morphologies were observed, including solid Si nanowires, porous Si nanowires, a porous Si layer without Si nanowires, and porous Si nanowires on a thick porous Si layer. Formation of wires was the result of selective etching at the Au-Si interface. It was found that when the anodic contact was made through P-type or P(+)-type Si, regular anodic etching due to electronic hole injection leads to formation of porous silicon simultaneously with metal assisted anodic etching. When the anodic contact was made through N-type or N(+)-type Si, generation of electronic holes through processes such as impact ionization and tunnelling-assisted surface generation were required for etching. In addition, it was found that metal assisted anodic etching of Si with the anodic contact made through the patterned Au film essentially reproduces the phenomenology of metal assisted chemical etching (MACE), in which holes are generated through metal assisted reduction of H2O2 rather than current flow. These results clarify the linked roles of electrical and chemical processes that occur during electrochemical etching of Si. PMID:26059556

  20. Plasma accelerator

    DOEpatents

    Wang, Zhehui; Barnes, Cris W.

    2002-01-01

    There has been invented an apparatus for acceleration of a plasma having coaxially positioned, constant diameter, cylindrical electrodes which are modified to converge (for a positive polarity inner electrode and a negatively charged outer electrode) at the plasma output end of the annulus between the electrodes to achieve improved particle flux per unit of power.

  1. Accelerated Achievement

    ERIC Educational Resources Information Center

    Ford, William J.

    2010-01-01

    This article focuses on the accelerated associate degree program at Ivy Tech Community College (Indiana) in which low-income students will receive an associate degree in one year. The three-year pilot program is funded by a $2.3 million grant from the Lumina Foundation for Education in Indianapolis and a $270,000 grant from the Indiana Commission…

  2. ACCELERATION INTEGRATOR

    DOEpatents

    Pope, K.E.

    1958-01-01

    This patent relates to an improved acceleration integrator and more particularly to apparatus of this nature which is gyrostabilized. The device may be used to sense the attainment by an airborne vehicle of a predetermined velocitv or distance along a given vector path. In its broad aspects, the acceleration integrator utilizes a magnetized element rotatable driven by a synchronous motor and having a cylin drical flux gap and a restrained eddy- current drag cap deposed to move into the gap. The angular velocity imparted to the rotatable cap shaft is transmitted in a positive manner to the magnetized element through a servo feedback loop. The resultant angular velocity of tae cap is proportional to the acceleration of the housing in this manner and means may be used to measure the velocity and operate switches at a pre-set magnitude. To make the above-described dcvice sensitive to acceleration in only one direction the magnetized element forms the spinning inertia element of a free gyroscope, and the outer housing functions as a gimbal of a gyroscope.

  3. Particle acceleration

    NASA Technical Reports Server (NTRS)

    Vlahos, L.; Machado, M. E.; Ramaty, R.; Murphy, R. J.; Alissandrakis, C.; Bai, T.; Batchelor, D.; Benz, A. O.; Chupp, E.; Ellison, D.

    1986-01-01

    Data is compiled from Solar Maximum Mission and Hinothori satellites, particle detectors in several satellites, ground based instruments, and balloon flights in order to answer fundamental questions relating to: (1) the requirements for the coronal magnetic field structure in the vicinity of the energization source; (2) the height (above the photosphere) of the energization source; (3) the time of energization; (4) transistion between coronal heating and flares; (5) evidence for purely thermal, purely nonthermal and hybrid type flares; (6) the time characteristics of the energization source; (7) whether every flare accelerates protons; (8) the location of the interaction site of the ions and relativistic electrons; (9) the energy spectra for ions and relativistic electrons; (10) the relationship between particles at the Sun and interplanetary space; (11) evidence for more than one acceleration mechanism; (12) whether there is single mechanism that will accelerate particles to all energies and also heat the plasma; and (13) how fast the existing mechanisms accelerate electrons up to several MeV and ions to 1 GeV.

  4. Fibrous zinc anodes for high power batteries

    NASA Astrophysics Data System (ADS)

    Zhang, X. Gregory

    This paper introduces newly developed solid zinc anodes using fibrous material for high power applications in alkaline and large size zinc-air battery systems. The improved performance of the anodes in these two battery systems is demonstrated. The possibilities for control of electrode porosity and for anode/battery design using fibrous materials are discussed in light of experimental data. Because of its mechanical integrity and connectivity, the fibrous solid anode has good electrical conductivity, mechanical stability, and design flexibility for controlling mass distribution, porosity and effective surface area. Experimental data indicated that alkaline cells made of such anodes can have a larger capacity at high discharging currents than commercially available cells. It showed even greater improvement over commercial cells with a non-conventional cell design. Large capacity anodes for a zinc-air battery have also been made and have shown excellent material utilization at various discharge rates. The zinc-air battery was used to power an electric bicycle and demonstrated good results.

  5. Anode power deposition in applied-field MPD thrusters

    NASA Technical Reports Server (NTRS)

    Myers, Roger M.; Soulas, George C.

    1992-01-01

    Anode power deposition is the principle performance limiter of magnetoplasmadynamic (MPD) thrusters. Current thrusters lose between 50 and 70 percent of the input power to the anode. In this work, anode power deposition was studied for three cylindrical applied magnetic field thrusters for a range of argon propellant flow rates, discharge currents, and applied-field strengths. Between 60 and 95 percent of the anode power deposition resulted from electron current conduction into the anode, with cathode radiation depositing between 5 and 35 percent of the anode power, and convective heat transfer from the hot plasma accounting for less than 5 percent. While the fractional anode power loss decreased with increasing applied-field strength and anode size, the magnitude of the anode power increased. The rise in anode power resulted from a linear rise in the anode fall voltage with applied-field strength and anode radius. The anode fall voltage also rose with decreasing propellant flow rate. The trends indicate that the anode fall region is magnetized, and suggest techniques for reducing the anode power loss in MPD thrusters.

  6. Anode power deposition in applied-field MPD thrusters

    NASA Technical Reports Server (NTRS)

    Myers, Roger M.; Soulas, George C.

    1992-01-01

    Anode power deposition is the principal performance limiter of magnetoplasmadynamic (MPD) thrusters. Current thrusters lose between 50 and 70 percent of the input power to the anode. In this work, anode power deposition was studied for three cylindrical applied magnetic field thrusters for a range of argon propellant flow rates, discharge currents, and applied-field strengths. Between 60 and 95 percent of the anode power depositions resulted from electron current conduction into the anode, with cathode radiation depositing between 5 and 35 percent of the anode power, and convective heat transfer from the hot plasma accounting for less than 5 percent. While the fractional anode power loss decreased with increasing applied-field strength and anode size, the magnitude of the anode power increased. The rise in anode power resulted from a linear rise in the anode fall voltage with applied-field strength and anode radius. The anode fall voltage also rose with decreasing propellant flow rate. The trends indicate that the anode fall region is magnetized, and suggest techniques for reducing the anode power loss in MPD thrusters.

  7. Synthesis, Characterization, and Optimization of Novel Solid Oxide Fuel Cell Anodes

    NASA Astrophysics Data System (ADS)

    Miller, Elizabeth C.

    (SLT) anode supports, thin La1--xSr x Ga0.8Mg0.2O3 (x = 0.1, 0.2) dense electrolytes, and porous LSGM anode functional layers. The SLT support and the LSGM functional layer are infiltrated with nanoscale Ni, creating extensive electrochemically active triple phase boundary area. The scope of the work presented here encompasses every step of cell development including powder synthesis, optimization of firing conditions, and long-term stability testing. Using an optimized fabrication process, cells with power density > 1.2 W cm-2 were fabricated. Dry pressing and colloidal de-position were used to make the first generation of these cells, and once suitable times and temperatures were determined, the process was shifted to tape casting to make larger batches of uniform cells. After obtaining initial results of low anode polarization resistance and high power density, the long-term stability of the Ni-infiltrated anodes was examined. A coarsening model was developed using the data from accelerated degradation tests to predict cell performance over a typical device lifetime. This thesis encompasses a broad range of novel SOFC anode materials, each of which has its own strengths and weaknesses. Presenting several possible avenues for SOFC development provides a complete picture of the ?eld and its current focuses. The wide scope of this work offers multiple solutions for the SOFC community and demonstrates that SOFCs are a strong candidate for meeting the United States' need for energy conversion and storage.

  8. Compact accelerator

    DOEpatents

    Caporaso, George J.; Sampayan, Stephen E.; Kirbie, Hugh C.

    2007-02-06

    A compact linear accelerator having at least one strip-shaped Blumlein module which guides a propagating wavefront between first and second ends and controls the output pulse at the second end. Each Blumlein module has first, second, and third planar conductor strips, with a first dielectric strip between the first and second conductor strips, and a second dielectric strip between the second and third conductor strips. Additionally, the compact linear accelerator includes a high voltage power supply connected to charge the second conductor strip to a high potential, and a switch for switching the high potential in the second conductor strip to at least one of the first and third conductor strips so as to initiate a propagating reverse polarity wavefront(s) in the corresponding dielectric strip(s).

  9. [Mild brain injuries in emergency medicine].

    PubMed

    Liimatainen, Suvi; Niskakangas, Tero; Ohman, Juha

    2011-01-01

    Diagnostics and correct classification of mild brain injuries is challenging. Problems caused by insufficient documentation at the acute phase become more obvious in situations in which legal insurance issues are to be considered. A small proportion of patients with mild brain injury suffer from prolonged symptoms. Medical recording and classification of the brain injury at the initial phase should therefore be carried out in a structured manner. The review deals with the diagnostic problems of mild brain injuries and presents a treatment protocol for adult patients at the acute phase, aiming at avoiding prolonged problems. PMID:22238915

  10. Anodized aluminum on LDEF: A current status of measurements on chromic acid anodized aluminum

    NASA Technical Reports Server (NTRS)

    Golden, Johnny L.

    1992-01-01

    Chromic acid anodize was used as the exterior coating for aluminum surfaces on LDEF to provide passive thermal control. Chromic acid anodized aluminum was also used as test specimens in thermal control coatings experiments. The following is a compilation and analysis of the data obtained thus far.

  11. BICEP's acceleration

    SciTech Connect

    Contaldi, Carlo R.

    2014-10-01

    The recent Bicep2 [1] detection of, what is claimed to be primordial B-modes, opens up the possibility of constraining not only the energy scale of inflation but also the detailed acceleration history that occurred during inflation. In turn this can be used to determine the shape of the inflaton potential V(φ) for the first time — if a single, scalar inflaton is assumed to be driving the acceleration. We carry out a Monte Carlo exploration of inflationary trajectories given the current data. Using this method we obtain a posterior distribution of possible acceleration profiles ε(N) as a function of e-fold N and derived posterior distributions of the primordial power spectrum P(k) and potential V(φ). We find that the Bicep2 result, in combination with Planck measurements of total intensity Cosmic Microwave Background (CMB) anisotropies, induces a significant feature in the scalar primordial spectrum at scales k∼ 10{sup -3} Mpc {sup -1}. This is in agreement with a previous detection of a suppression in the scalar power [2].

  12. Anode Interactions with Coal Gas Contaminants

    SciTech Connect

    Marina, Olga A.; Coffey, Greg W.; Coyle, Christopher A.; Nguyen, Carolyn D.; Thomsen, Edwin C.; Pederson, Larry R.

    2008-08-13

    This report describes efforts to characterize the interactions nickel anodes with phosphorus in coal gas using three different button cell configurations to emphasize particular degradation modes. Important parameters addressed included contaminant concentration, temperature, reaction time, fuel utilization, and current density. In addition, coupon tests in flow-through and flow-by arrangements were conducted to complement cell tests. The studies have involved extensive electrochemical testing using both dc and ac methods. Post-test analyses to determine the composition and extent of nickel modification are particularly important to understanding reactions that have occurred. This report also provides a thermodynamic assessment of contaminant reactions with nickel in a coal gas environment with regard to alteration phase formation. Contaminants addressed were phosphorus, arsenic, sulfur, selenium, and antimony. Phosphorus was found to interact strongly with nickel and result in extensive alteration phase formation, consistent with expectations based on thermodynamic properties. Even in button cell tests where the fuel utilization was low, phosphorus was found to be nearly completely captured by the nickel anode. For anode-supported cells, an important degradation mode involved loss of electronic percolation, the result of nickel phosphide formation, grain growth, and inducement of micro-fractures within the anode support. Even with excessive anode support conversion, electrochemical degradation rates were often very low. This is attributed to a “shadowing effect,” whereby a dense structure such as current leads prevent phosphorus from reacting with the nickel directly underneath. This effect maintains an electrical pathway to the active interface, and allows the cell to operate with minimal degradation until the anode is essentially completely consumed. In a planar stack, ribs on the interconnect plate would be expected to provide this conductive pathway in the

  13. New High-Energy Nanofiber Anode Materials

    SciTech Connect

    Zhang, Xiangwu; Fedkiw, Peter; Khan, Saad; Huang, Alex; Fan, Jiang

    2013-11-15

    The overall goal of the proposed work was to use electrospinning technology to integrate dissimilar materials (lithium alloy and carbon) into novel composite nanofiber anodes, which simultaneously had high energy density, reduced cost, and improved abuse tolerance. The nanofiber structure allowed the anodes to withstand repeated cycles of expansion and contraction. These composite nanofibers were electrospun into nonwoven fabrics with thickness of 50 μm or more, and then directly used as anodes in a lithium-ion battery. This eliminated the presence of non-active materials (e.g., conducting carbon black and polymer binder) and resulted in high energy and power densities. The nonwoven anode structure also provided a large electrode-electrolyte interface and, hence, high rate capacity and good lowtemperature performance capability. Following are detailed objectives for three proposed project periods. • During the first six months: Obtain anodes capable of initial specific capacities of 650 mAh/g and achieve ~50 full charge/discharge cycles in small laboratory scale cells (50 to 100 mAh) at the 1C rate with less than 20 percent capacity fade; • In the middle of project period: Assemble, cycle, and evaluate 18650 cells using proposed anode materials, and demonstrate practical and useful cycle life (750 cycles of ~70% state of charge swing with less than 20% capacity fade) in 18650 cells with at least twice improvement in the specific capacity than that of conventional graphite electrodes; • At the end of project period: Deliver 18650 cells containing proposed anode materials, and achieve specific capacities greater than 1200 mAh/g and cycle life longer than 5000 cycles of ~70% state of charge swing with less than 20% capacity fade.

  14. Anodized Ti3SiC2 As an Anode Material for Li-ion Microbatteries.

    PubMed

    Tesfaye, Alexander T; Mashtalir, Olha; Naguib, Michael; Barsoum, Michel W; Gogotsi, Yury; Djenizian, Thierry

    2016-07-01

    We report on the synthesis of an anode material for Li-ion batteries by anodization of a common MAX phase, Ti3SiC2, in an aqueous electrolyte containing hydrofluoric acid (HF). The anodization led to the formation of a porous film containing anatase, a small quantity of free carbon, and silica. By varying the anodization parameters, various oxide morphologies were produced. The highest areal capacity was achieved by anodization at 60 V in an aqueous electrolyte containing 0.1 v/v HF for 3 h at room temperature. After 140 cycles performed at multiple applied current densities, an areal capacity of 380 μAh·cm(-2) (200 μA·cm(-2)) has been obtained, making this new material, free of additives and binders, a promising candidate as a negative electrode for Li-ion microbatteries. PMID:27282275

  15. Upgrading mild gasification liquids to produce electrode binder pitch: Final technical report, September 1, 1993--October 31, 1994

    SciTech Connect

    Knight, R.A.

    1994-12-31

    The objective of this program is to investigate the production of electrode binder pitch, valued at $250--$300/ton, from mild gasification liquids. In the IGT MILDGAS process, the 400 C+ distillation residue (crude pitch) comprises up to 20 wt% of maf feed coal. The largest market for pitch made from coal liquids is the aluminum industry, which uses it to make carbon anodes for electrolytic furnaces. In this project, crude MILDGAS pitch is being modified by flash thermocracking to achieve binder pitch specifications. A 1-kg/h continuous unit has been built for operation up to 900 C at 2.5 atm, and parametric tests were conducted in N{sub 2}, H{sub 2} and 50% H{sub 2}/N{sub 2}. In general, thermocracking at 750--850 C in N{sub 2} resulted in a pitch which meets binder pitch requirements for QI, TI, softening point, and C:H ratio. Further improvements in density and sulfur content are required. Test anodes were prepared by Alcoa using the upgraded mild gasification pitch. All of the key anode properties (density, strength, resistivity, thermal properties, permeability, and reactivity) compared very favorably with those of electrodes made from a standard pitch binder.

  16. Advanced concepts for acceleration

    SciTech Connect

    Keefe, D.

    1986-07-01

    Selected examples of advanced accelerator concepts are reviewed. Such plasma accelerators as plasma beat wave accelerator, plasma wake field accelerator, and plasma grating accelerator are discussed particularly as examples of concepts for accelerating relativistic electrons or positrons. Also covered are the pulsed electron-beam, pulsed laser accelerator, inverse Cherenkov accelerator, inverse free-electron laser, switched radial-line accelerators, and two-beam accelerator. Advanced concepts for ion acceleration discussed include the electron ring accelerator, excitation of waves on intense electron beams, and two-wave combinations. (LEW)

  17. Kids with Mild Asthma Can Take Acetaminophen

    MedlinePlus

    ... gov/news/fullstory_160475.html Kids With Mild Asthma Can Take Acetaminophen: Study Finding counters past research ... 17, 2016 (HealthDay News) -- Acetaminophen does not worsen asthma symptoms in young children, a new study finds. ...

  18. Mild Air Pollution of Concern in Pregnancy

    MedlinePlus

    ... nih.gov/medlineplus/news/fullstory_158558.html Mild Air Pollution of Concern in Pregnancy Study found risk for ... Being exposed to just a small amount of air pollution during pregnancy ups the risk of a pregnancy ...

  19. Mild Air Pollution of Concern in Pregnancy

    MedlinePlus

    ... https://medlineplus.gov/news/fullstory_158558.html Mild Air Pollution of Concern in Pregnancy Study found risk for ... Being exposed to just a small amount of air pollution during pregnancy ups the risk of a pregnancy ...

  20. Treatment Alternatives Following Mild Head Injury.

    ERIC Educational Resources Information Center

    Novack, Thomas A.; And Others

    1988-01-01

    Discusses treatment alternatives which may alleviate problems in recovery following mild head injury, including providing education, cognitive stimulation, stress management training, individual counseling, group discussion, and physical activity in a day treatment setting. (Author/ABL)

  1. Boat electrofishing relative to anode arrangement

    USGS Publications Warehouse

    Miranda, L.E.; Kratochvil, M.

    2008-01-01

    We assessed the effect of boom (i.e., anode) arrangement (a single boom and double booms spaced 1.3, 1.9, and 3.2 m apart) on the characteristics of the electric field formed ahead of an electrofishing boat as well as on fish catch. Anode arrangement affected the lengthwise and crosswise characteristics of the field. As a general rule, rearranging the anodes from a single boom located centrally to a double-boom system with broadly separated anodes shifted the strength of the field outward (away from the center) and forward (away from the boat). The highest voltage gradients occurred when the anodes had the greatest separation. Catch rates varied by boom arrangement, increasing as boom separation increased. Differences in species and length selectivity with respect to boom arrangement were minor. We suggest that the double-boom arrangement with the booms placed about 1.9 m apart (but no more than about 2.5 m) is suitable for most electrofishing applications. ?? Copyright by the American Fisheries Society 2008.

  2. Anode sheath contributions in plasma thrusters

    NASA Astrophysics Data System (ADS)

    Riggs, John F.

    1994-03-01

    Contributions of the anode to Magnetoplasmadynamic (MPD) thruster performance are considered. High energy losses at this electrode, surface erosion, and sheath/ionization effects must be controlled in designs of practical interest. Current constriction or spotting at the anode, evolving into localized surface damage and considerable throat erosion, is shown to be related to the electron temperature's T(sub e) rise above the gas temperature T(sub o). An elementary one-dimensional description of a collisional sheath which highlights the role of T(sub e) is presented. Computations to model the one-dimensional sheath are attempted using a set of five coupled first-order, nonlinear differential equations describing the electric field, as well as the species current and number densities. For a large temperature nonequilibrium (i.e., T(sub e) greater than T(sub o)), the one-dimensional approach fails to give reasonable answers and a multidimensional description is deemed necessary. Thus, anode spotting may be precipitated by the elevation of T sub e among other factors. A review of transpiration cooling as a means of recouping some anode power is included. Active anode cooling via transpiration cooling would result in (1) quenching T(sub e), (2) adding 'hot' propellant to exhaust, and (3) reducing the local electron Hall parameter.

  3. Chemical enhancement of metallized zinc anode performance

    SciTech Connect

    Bennett, J.

    1998-12-31

    Galvanic current delivered to reinforced concrete by a metallized zinc anode was studied relative to the humidity of its environment and periodic direct wetting. Current decreased quickly at low humidity to values unlikely to meet accepted cathodic protection criteria, but could be easily restored by direct wetting of the anode. Thirteen chemicals were screened for their ability to enhance galvanic current. Such chemicals, when applied to the exterior surface of the anode, are easily transported by capillary action to the anode-concrete interface where they serve to maintain the interface conductive and the zinc electrochemically active. The most effective chemicals were potassium and lithium bromide, acetate, chloride and nitrate, which increased galvanic current by a factor of 2--15, depending on relative humidity and chloride contamination of the concrete. This new technique is expected to greatly expand the number of concrete structures which can be protected by simple galvanic cathodic protection, The use of lithium-based chemicals together with metallized zinc anode is also proposed for mitigation of existing problems due to ASR. In this case, lithium which prevents or inhibits expansion due to ASR can be readily injected into the concrete. A new process, electrochemical maintenance of concrete (EMC), is also proposed to benefit reinforced concrete structures suffering from chloride-induced corrosion.

  4. Accelerators and the Accelerator Community

    SciTech Connect

    Malamud, Ernest; Sessler, Andrew

    2008-06-01

    In this paper, standing back--looking from afar--and adopting a historical perspective, the field of accelerator science is examined. How it grew, what are the forces that made it what it is, where it is now, and what it is likely to be in the future are the subjects explored. Clearly, a great deal of personal opinion is invoked in this process.

  5. Classification and management of mild head trauma

    PubMed Central

    Andrade, Almir F; Paiva, Wellingson S; Soares, Matheus S; De Amorim, Robson LO; Tavares, Wagner M; Teixeira, Manoel J

    2011-01-01

    Mild head trauma had been defined in patients with direct impact or deceleration effect admitted with a Glasgow Coma Scale score of 13–15. It is one of the most frequent causes of morbidity in emergency medicine. Although common, several controversies persist about its clinical management. In this paper, we describe the Brazilian guidelines for mild head trauma, based on a critical review of the relevant literature. PMID:21475628

  6. Electrolytic Cell For Production Of Aluminum Employing Planar Anodes.

    DOEpatents

    Barnett, Robert J.; Mezner, Michael B.; Bradford, Donald R

    2004-10-05

    A method of producing aluminum in an electrolytic cell containing alumina dissolved in an electrolyte, the method comprising providing a molten salt electrolyte having alumina dissolved therein in an electrolytic cell. A plurality of anodes and cathodes having planar surfaces are disposed in a generally vertical orientation in the electrolyte, the anodes and cathodes arranged in alternating or interleaving relationship to provide anode planar surfaces disposed opposite cathode planar surfaces, the anode comprised of carbon. Electric current is passed through anodes and through the electrolyte to the cathodes depositing aluminum at the cathodes and forming carbon containing gas at the anodes.

  7. Anode current density distribution in a cusped field thruster

    SciTech Connect

    Wu, Huan Liu, Hui Meng, Yingchao; Zhang, Junyou; Yang, Siyu; Hu, Peng; Chen, Pengbo; Yu, Daren

    2015-12-15

    The cusped field thruster is a new electric propulsion device that is expected to have a non-uniform radial current density at the anode. To further study the anode current density distribution, a multi-annulus anode is designed to directly measure the anode current density for the first time. The anode current density decreases sharply at larger radii; the magnitude of collected current density at the center is far higher compared with the outer annuli. The anode current density non-uniformity does not demonstrate a significant change with varying working conditions.

  8. Anode current density distribution in a cusped field thruster

    NASA Astrophysics Data System (ADS)

    Wu, Huan; Liu, Hui; Meng, Yingchao; Zhang, Junyou; Yang, Siyu; Hu, Peng; Chen, Pengbo; Yu, Daren

    2015-12-01

    The cusped field thruster is a new electric propulsion device that is expected to have a non-uniform radial current density at the anode. To further study the anode current density distribution, a multi-annulus anode is designed to directly measure the anode current density for the first time. The anode current density decreases sharply at larger radii; the magnitude of collected current density at the center is far higher compared with the outer annuli. The anode current density non-uniformity does not demonstrate a significant change with varying working conditions.

  9. The role of anode and cathode plasmas in high power ion diode performance

    SciTech Connect

    Mehlhorn, T.A.; Bailey, J.E.; Bernard, M.A.

    1996-06-01

    We describe measurements, modeling, and mitigation experiments on the effects of anode and cathode plasmas in applied-B ion diodes. We have performed experiments with electrode conditioning and cleaning techniques including RF discharges, anode heating, cryogenic cathode cooling and anode surface coatings that have been successful in mitigating some of the effects of electrode contamination on ion diode performance on both the SABRE and PBFA accelerators. We are developing sophisticated spectroscopic diagnostic techniques that allow us to measure the electric and magnetic fields in the A-K gap, we compare these measured fields with those predicted by our 3-D particle-in-cell (PIC) simulations of ion diodes, and we measure anode and cathode plasma densities and expansion velocities. We are continuing to develop E-M simulation codes with fluid-PIC hybrid models for dense plasmas, in order to understand the role of electrode plasmas in ion diode performance. Our strategy for improving high power ion diode performance is to employ and expand our capabilities in measuring and modeling A-K gap plasmas and leverage our increased knowledge into an increase in total ion beam brightness to High Yield Facility (HYF) levels.

  10. A NiFeCu alloy anode catalyst for direct-methane solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Wang, Wei; Zhu, Huaiyu; Yang, Guangming; Park, Hee Jung; Jung, Doh Won; Kwak, Chan; Shao, Zongping

    2014-07-01

    In this study, a new anode catalyst based on a NiFeCu alloy is investigated for use in direct-methane solid oxide fuel cells (SOFCs). The influence of the conductive copper introduced into the anode catalyst layer on the performance of the SOFCs is systematically studied. The catalytic activity for partial oxidation of methane and coking resistance tests are proposed with various anode catalyst layer materials prepared using different methods, including glycine nitrate process (GNP), physical mixing (PM) and impregnation (IMP). The surface conductivity tests indicate that the conductivities of the NiFe-ZrO2/Cu (PM) and NiFe-ZrO2/Cu (IMP) catalysts are considerably greater than that of NiFe-ZrO2/Cu (GNP), which is consistent with the SEM results. Among the three preparation methods, the cell containing the NiFe-ZrO2/Cu (IMP) catalyst layer performs best on CH4-O2 fuel, especially under reduced temperatures, because the coking resistance should be considered in real fuel cell conditions. The cell containing the NiFe-ZrO2/Cu (IMP) catalyst layer also delivers an excellent operational stability using CH4-O2 fuel for 100 h without any signs of decay. In summary, this work provides new alternative anode catalytic materials to accelerate the commercialization of SOFC technology.

  11. Li2OHCl Crystalline Electrolyte for Stable Metallic Lithium Anodes

    SciTech Connect

    Hood, Zachary D; Hood, Zachary; Wang, Hui; Samuthira Pandian, Amaresh; Keum, Jong Kahk; Liang, Chengdu

    2016-01-01

    In a classic example of stability from instability, we show that Li2OHCl solid electrolyte forms a stable solid electrolyte interface (SEI) with metallic lithium anode. The Li2OHCl solid electrolyte can be readily achieved through simple mixing of air-stable LiOH and LiCl precursors with a mild processing temperature under 400 C. Additionally, we show that continuous, dense Li2OHCl membranes can be fabricated at temperatures less than 400 C, standing in great contrast to current processing temperatures of over 1600 C for most oxide-based solid electrolytes. The ionic conductivity and Arrhenius activation energy were explored for the LiOH-LiCl system of crystalline solid electrolytes where Li2OHCl with increased crystal defects was found to have the highest ionic conductivity and reasonable Arrhenius activation energy. The Li2OHCl solid electrolyte displays stability against metallic lithium, even in extreme conditions past the melting point of lithium metal. To understand this excellent stability, we show that SEI formation is critical in stabilizing the interface between metallic lithium and the Li2OHCl solid electrolyte.

  12. Li2OHCl crystalline electrolyte for stable metallic lithium anodes

    DOE PAGESBeta

    Hood, Zachary D.; Wang, Hui; Samuthira Pandian, Amaresh; Keum, Jong Kahk; Liang, Chengdu

    2016-01-22

    In a classic example of stability from instability, we show that Li2OHCl solid electrolyte forms a stable solid electrolyte interface (SEI) with metallic lithium anode. The Li2OHCl solid electrolyte can be readily achieved through simple mixing of air-stable LiOH and LiCl precursors with a mild processing temperature under 400 °C. Additionally, we show that continuous, dense Li2OHCl membranes can be fabricated at temperatures less than 400 °C, standing in great contrast to current processing temperatures of over 1600 °C for most oxide-based solid electrolytes. The ionic conductivity and Arrhenius activation energy were explored for the LiOH-LiCl system of crystalline solidmore » electrolytes where Li2OHCl with increased crystal defects was found to have the highest ionic conductivity and reasonable Arrhenius activation energy. The Li2OHCl solid electrolyte displays stability against metallic lithium, even in extreme conditions past the melting point of lithium metal. Furthermore, to understand this excellent stability, we show that SEI formation is critical in stabilizing the interface between metallic lithium and the Li2OHCl solid electrolyte.« less

  13. Ultrananocrystalline Diamond Cantilever Wide Dynamic Range Acceleration/Vibration /Pressure Sensor

    DOEpatents

    Krauss, Alan R.; Gruen, Dieter M.; Pellin, Michael J.; Auciello, Orlando

    2003-09-02

    An ultrananocrystalline diamond (UNCD) element formed in a cantilever configuration is used in a highly sensitive, ultra-small sensor for measuring acceleration, shock, vibration and static pressure over a wide dynamic range. The cantilever UNCD element may be used in combination with a single anode, with measurements made either optically or by capacitance. In another embodiment, the cantilever UNCD element is disposed between two anodes, with DC voltages applied to the two anodes. With a small AC modulated voltage applied to the UNCD cantilever element and because of the symmetry of the applied voltage and the anode-cathode gap distance in the Fowler-Nordheim equation, any change in the anode voltage ratio V1/V2 required to maintain a specified current ratio precisely matches any displacement of the UNCD cantilever element from equilibrium. By measuring changes in the anode voltage ratio required to maintain a specified current ratio, the deflection of the UNCD cantilever can be precisely determined. By appropriately modulating the voltages applied between the UNCD cantilever and the two anodes, or limit electrodes, precise independent measurements of pressure, uniaxial acceleration, vibration and shock can be made. This invention also contemplates a method for fabricating the cantilever UNCD structure for the sensor.

  14. Ultrananocrystalline diamond cantilever wide dynamic range acceleration/vibration/pressure sensor

    DOEpatents

    Krauss, Alan R.; Gruen, Dieter M.; Pellin, Michael J.; Auciello, Orlando

    2002-07-23

    An ultrananocrystalline diamond (UNCD) element formed in a cantilever configuration is used in a highly sensitive, ultra-small sensor for measuring acceleration, shock, vibration and static pressure over a wide dynamic range. The cantilever UNCD element may be used in combination with a single anode, with measurements made either optically or by capacitance. In another embodiment, the cantilever UNCD element is disposed between two anodes, with DC voltages applied to the two anodes. With a small AC modulated voltage applied to the UNCD cantilever element and because of the symmetry of the applied voltage and the anode-cathode gap distance in the Fowler-Nordheim equation, any change in the anode voltage ratio V1/N2 required to maintain a specified current ratio precisely matches any displacement of the UNCD cantilever element from equilibrium. By measuring changes in the anode voltage ratio required to maintain a specified current ratio, the deflection of the UNCD cantilever can be precisely determined. By appropriately modulating the voltages applied between the UNCD cantilever and the two anodes, or limit electrodes, precise independent measurements of pressure, uniaxial acceleration, vibration and shock can be made. This invention also contemplates a method for fabricating the cantilever UNCD structure for the sensor.

  15. Beam Transport with an Applied-B Diode with Magnetically Injected Anode Plasma

    NASA Astrophysics Data System (ADS)

    Johnson, D. J.; Lockner, T. R.

    1998-11-01

    Proton and nitrogen beams generated with a 10-cm-radius extractor diode on the 600kV, 40kA, 100ns RHEPP1 accelerator are observed with shadowboxes, witness plates and Faraday cups to optimize beam transport for IBEST. An active anode plasma was created by a 2μs-risetime B-field from a fast coil that induces an E-field to ionize a gas puff. A second gas puff neutralizes the space charge of the beam during transport through the applied-B-field in the diode. The effects of diagmagnetic motion on the accelerating equipotentals and space-charge blow up at the edges of the annular beam in the 1.5 cm AKG are investigated. Accelerating potentials with a 7-cm-radius convex curvature gave a proton beam energy at a 14-cm-diameter region 50 cm from the anode that is ~ 40% of the energy coupled to the diode. With nitrogen beams ~ 20% of the diode energy is transported to this region when a 10-cm-radius accelerating curvature is used. Studies of beam rotation show that the beam is emitted from plasma that crosses ~ 7 mm of the slow applied-B field in the AKG reducing the effective AKG to ~ 8 mm.

  16. Microwave processing of tantalum capacitor anodes

    NASA Astrophysics Data System (ADS)

    Lauf, R. J.; Hamby, C.; Holcombe, C. E.; Vierow, W. F.

    Porous tantalum anodes were sintered from 1600 to 1900 C using a conventional high vacuum furnace as well as both 2.45 GHz fixed-frequency and 4 to 8 GHz variable frequency microwave furnaces. Various insulation and casketing techniques were used to couple the microwave power to the tantalum compacts. Several types of tantalum powder were used to assess the effect of microwave processing on sintered surface area and impurity levels. Some microwave sintered anodes have an unusual surface rippling not seen on conventionally fired parts. The rippling suggests that a microscopic arcing or plasma might have been generated. Two important effects could be exploited if this phenomenon can be controlled. First, the effective tantalum surface area could be increased, yielding higher capacitance per volume. Second, surface impurities might be cleaned away, allowing the formation of a better dielectric film during the anodization process and, ultimately, higher working voltage.

  17. Nanocomposite protective coatings for battery anodes

    DOEpatents

    Lemmon, John P; Xiao, Jie; Liu, Jun

    2014-01-21

    Modified surfaces on metal anodes for batteries can help resist formation of malfunction-inducing surface defects. The modification can include application of a protective nanocomposite coating that can inhibit formation of surface defects. such as dendrites, on the anode during charge/discharge cycles. For example, for anodes having a metal (M'), the protective coating can be characterized by products of chemical or electrochemical dissociation of a nanocomposite containing a polymer and an exfoliated compound (M.sub.a'M.sub.b''X.sub.c). The metal, M', comprises Li, Na, or Zn. The exfoliated compound comprises M' among lamella of M.sub.b''X.sub.c, wherein M'' is Fe, Mo, Ta, W, or V, and X is S, O, or Se.

  18. An Insoluble Titanium-Lead Anode for Sulfate Electrolytes

    SciTech Connect

    Ferdman, Alla

    2005-05-11

    The project is devoted to the development of novel insoluble anodes for copper electrowinning and electrolytic manganese dioxide (EMD) production. The anodes are made of titanium-lead composite material produced by techniques of powder metallurgy, compaction of titanium powder, sintering and subsequent lead infiltration. The titanium-lead anode combines beneficial electrochemical behavior of a lead anode with high mechanical properties and corrosion resistance of a titanium anode. In the titanium-lead anode, the titanium stabilizes the lead, preventing it from spalling, and the lead sheathes the titanium, protecting it from passivation. Interconnections between manufacturing process, structure, composition and properties of the titanium-lead composite material were investigated. The material containing 20-30 vol.% of lead had optimal combination of mechanical and electrochemical properties. Optimal process parameters to manufacture the anodes were identified. Prototypes having optimized composition and structure were produced for testing in operating conditions of copper electrowinning and EMD production. Bench-scale, mini-pilot scale and pilot scale tests were performed. The test anodes were of both a plate design and a flow-through cylindrical design. The cylindrical anodes were composed of cylinders containing titanium inner rods and fitting over titanium-lead bushings. The cylindrical design allows the electrolyte to flow through the anode, which enhances diffusion of the electrolyte reactants. The cylindrical anodes demonstrate higher mass transport capabilities and increased electrical efficiency compared to the plate anodes. Copper electrowinning represents the primary target market for the titanium-lead anode. A full-size cylindrical anode performance in copper electrowinning conditions was monitored over a year. The test anode to cathode voltage was stable in the 1.8 to 2.0 volt range. Copper cathode morphology was very smooth and uniform. There was no

  19. Anodizing color coded anodized Ti6Al4V medical devices for increasing bone cell functions

    PubMed Central

    Ross, Alexandra P; Webster, Thomas J

    2013-01-01

    Current titanium-based implants are often anodized in sulfuric acid (H2SO4) for color coding purposes. However, a crucial parameter in selecting the material for an orthopedic implant is the degree to which it will integrate into the surrounding bone. Loosening at the bone–implant interface can cause catastrophic failure when motion occurs between the implant and the surrounding bone. Recently, a different anodization process using hydrofluoric acid has been shown to increase bone growth on commercially pure titanium and titanium alloys through the creation of nanotubes. The objective of this study was to compare, for the first time, the influence of anodizing a titanium alloy medical device in sulfuric acid for color coding purposes, as is done in the orthopedic implant industry, followed by anodizing the device in hydrofluoric acid to implement nanotubes. Specifically, Ti6Al4V model implant samples were anodized first with sulfuric acid to create color-coding features, and then with hydrofluoric acid to implement surface features to enhance osteoblast functions. The material surfaces were characterized by visual inspection, scanning electron microscopy, contact angle measurements, and energy dispersive spectroscopy. Human osteoblasts were seeded onto the samples for a series of time points and were measured for adhesion and proliferation. After 1 and 2 weeks, the levels of alkaline phosphatase activity and calcium deposition were measured to assess the long-term differentiation of osteoblasts into the calcium depositing cells. The results showed that anodizing in hydrofluoric acid after anodizing in sulfuric acid partially retains color coding and creates unique surface features to increase osteoblast adhesion, proliferation, alkaline phosphatase activity, and calcium deposition. In this manner, this study provides a viable method to anodize an already color coded, anodized titanium alloy to potentially increase bone growth for numerous implant applications

  20. Silicon Whisker and Carbon Nanofiber Composite Anode

    NASA Technical Reports Server (NTRS)

    Lang, Christopher M.

    2015-01-01

    Phase II Objectives: Demonstrate production levels of grams per batch; Achieve full cell anode capacity of greater than 1,000 mAh/g at a charge rate of 10 (C/10) and 0 degree C; Establish a full cell cycle life of over 300 cycles; Display an operating temperature of negative 30 degrees C to plus 30 degrees C; Demonstrate a rate capability of C/5 or higher; Deliver to NASA three 2.5 Ah cells (energy density greater than 220 Wh/kg); Exhibit the safety features of the anode and full cells; Design a 1 kWh prismatic battery pack.

  1. Lithium intercalation in porous carbon anodes

    SciTech Connect

    Tran, T.D.; Pekala, R.W.; Mayer, S.T.

    1994-11-23

    Carbon foams derived from the phase separation of polyacrylonitrile/solvent mixtures were investigated as lithium intercalation anodes for rechargeable lithium-ion batteries. The carbon foams have a bulk density of 0.35--0.5 g/cm{sup 3}, low surface area (< 50 m{sup 2}/g), and an average cell size of 5--10 {mu}m. Polyacrylonitrile-based carbon foams doped with phosphoric acid had capacity as high as 450 mAh/g. Carbon capacity increased with increasing phosphoric acid concentration in the doping solution. The doped porous carbon anodes exhibited good cyclability and excellent coulombic efficiency.

  2. Evidence for the Therapeutic Efficacy of Either Mild Hypothermia or Oxygen Radical Scavengers after Repetitive Mild Traumatic Brain Injury

    PubMed Central

    Miyauchi, Takashi; Wei, Enoch P.

    2014-01-01

    Abstract Repetitive brain injury, particularly that occurring with sporting-related injuries, has recently garnered increased attention in both the clinical and public settings. In the laboratory, we have demonstrated the adverse axonal and vascular consequences of repetitive brain injury and have demonstrated that moderate hypothermia and/or FK506 exerted protective effects after repetitive mild traumatic brain injury (mTBI) when administered within a specific time frame, suggesting a range of therapeutic modalities to prevent a dramatic exacerbation. In this communication, we revisit the utility of targeted therapeutic intervention to seek the minimal level of hypothermia needed to achieve protection while probing the role of oxygen radicals and their therapeutic targeting. Male Sprague-Dawley rats were subjected to repetitive mTBI by impact acceleration injury. Mild hypothermia (35°C, group 2), superoxide dismutase (group 3), and Tempol (group 4) were employed as therapeutic interventions administered 1 h after the repetitive mTBI. To assess vascular function, cerebral vascular reactivity to acetylcholine was evaluated 3 and 4 h after the repetitive mTBI, whereas to detect the burden of axonal damage, amyloid precursor protein (APP) density in the medullospinal junction was measured. Whereas complete impairment of vascular reactivity was observed in group 1 (without intervention), significant preservation of vascular reactivity was found in the other groups. Similarly, whereas remarkable increase in the APP-positive axon was observed in group 1, there were no significant increases in the other groups. Collectively, these findings indicate that even mild hypothermia or the blunting free radical damage, even when performed in a delayed period, is protective in repetitive mTBI. PMID:24341607

  3. Controlling the anodizing conditions in preparation of an nanoporous anodic aluminium oxide template

    NASA Astrophysics Data System (ADS)

    Nazemi, Azadeh; Abolfazl, Seyed; Sadjadi, Seyed

    2014-12-01

    Porous anodic aluminium oxide (AAO) template is commonly used in the synthesis of one-dimensional nanostructures, such as nanowires and nanorods, due to its simple fabrication process. Controlling the anodizing conditions is important because of their direct influence on the size of AAO template pores; it affects the size of nanostructures that are fabricated in AAO template. In present study, several alumina templates were fabricated by a two-step electrochemical anodization in different conditions, such as the time of first process, its voltage, and electrolyte concentration. The effect of these factors on pore diameters of AAO templates was investigated using scanning electron microscopy (SEM).

  4. Fuel cell system shutdown with anode pressure control

    DOEpatents

    Clingerman, Bruce J.; Doan, Tien M.; Keskula, Donald H.

    2002-01-01

    A venting methodology and pressure sensing and vent valving arrangement for monitoring anode bypass valve operating during the normal shutdown of a fuel cell apparatus of the type used in vehicle propulsion systems. During a normal shutdown routine, the pressure differential between the anode inlet and anode outlet is monitored in real time in a period corresponding to the normal closing speed of the anode bypass valve and the pressure differential at the end of the closing cycle of the anode bypass valve is compared to the pressure differential at the beginning of the closing cycle. If the difference in pressure differential at the beginning and end of the anode bypass closing cycle indicates that the anode bypass valve has not properly closed, a system controller switches from a normal shutdown mode to a rapid shutdown mode in which the anode inlet is instantaneously vented by rapid vents.

  5. 4. Anode Building. View is to the east. This facility, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. Anode Building. View is to the east. This facility, which was used for the cleaning and manufacture of anodes, was documented prior to demolition in 1993. - Sullivan Electrolytic Zinc Plant, Government Gulch, Kellogg, Shoshone County, ID

  6. Fabrication of anodic aluminum oxide with incorporated chromate ions

    NASA Astrophysics Data System (ADS)

    Stępniowski, Wojciech J.; Norek, Małgorzata; Michalska-Domańska, Marta; Bombalska, Aneta; Nowak-Stępniowska, Agata; Kwaśny, Mirosław; Bojar, Zbigniew

    2012-10-01

    The anodization of aluminum in 0.3 M chromic acid is studied. The influence of operating conditions (like anodizing voltage and electrolyte's temperature) on the nanoporous anodic aluminum oxide geometry (including pore diameter, interpore distance, the oxide layer thickness and pores density) is thoroughly investigated. The results revealed typical correlations of the anodic alumina nanopore geometry with operating conditions, such as linear increase of pore diameter and interpore distance with anodizing voltage. The anodic aluminum oxide is characterized by a low pores arrangement, as determined by Fast Fourier transforms analyses of the FE-SEM images, which translates into a high concentration of oxygen vacancies. Moreover, an optimal experimental condition where chromate ions are being successfully incorporated into the anodic alumina walls, have been determined: the higher oxide growth rate the more chromate ions are being trapped. The trapped chromate ions and a high concentration of oxygen vacancies make the anodic aluminum oxide a promising luminescent material.

  7. Aluminum microstructures on anodic alumina for aluminum wiring boards.

    PubMed

    Jha, Himendra; Kikuchi, Tatsuya; Sakairi, Masatoshi; Takahashi, Hideaki

    2010-03-01

    The paper demonstrates simple methods for the fabrication of aluminum microstructures on the anodic oxide film of aluminum. The aluminum sheets were first engraved (patterned) either by laser beam or by embossing to form deep grooves on the surface. One side of the sheet was then anodized, blocking the other side by using polymer mask to form the anodic alumina. Because of the lower thickness at the bottom part of the grooves, the part was completely anodized before the complete oxidation of the other parts. Such selectively complete anodizing resulted in the patterns of metallic aluminum on anodic alumina. Using the technique, we fabricated microstructures such as line patterns and a simple wiring circuit-board-like structure on the anodic alumina. The aluminum microstructures fabricated by the techniques were embedded in anodic alumina/aluminum sheet, and this technique is promising for applications in electronic packaging and devices. PMID:20356280

  8. Operational implications of qualification tests of class 1E electrical components for mild environments

    SciTech Connect

    Jabs, R.H.; Gangloff, W.

    1986-06-01

    This paper presents information regarding a program of accelerated aging and seismic testing of electrical and electronic components used in safety related equipment which is located in mild environment areas of a nuclear power plant. The test methodology is responsive to IEEE Std. 323-1974 and IEEE Std. 344-1975 for Class 1E electrical equipment. The methods used in accelerated aging and seismic testing of the elemental components (capacitors, potentiometers, integrated circuits, etc.) are described and results are presented on a mix of such components which have been tested to various equivalent lives. The operational implications of this program are also discussed.

  9. Accelerator system and method of accelerating particles

    NASA Technical Reports Server (NTRS)

    Wirz, Richard E. (Inventor)

    2010-01-01

    An accelerator system and method that utilize dust as the primary mass flux for generating thrust are provided. The accelerator system can include an accelerator capable of operating in a self-neutralizing mode and having a discharge chamber and at least one ionizer capable of charging dust particles. The system can also include a dust particle feeder that is capable of introducing the dust particles into the accelerator. By applying a pulsed positive and negative charge voltage to the accelerator, the charged dust particles can be accelerated thereby generating thrust and neutralizing the accelerator system.

  10. Attention's Accelerator.

    PubMed

    Reinhart, Robert M G; McClenahan, Laura J; Woodman, Geoffrey F

    2016-06-01

    How do people get attention to operate at peak efficiency in high-pressure situations? We tested the hypothesis that the general mechanism that allows this is the maintenance of multiple target representations in working and long-term memory. We recorded subjects' event-related potentials (ERPs) indexing the working memory and long-term memory representations used to control attention while performing visual search. We found that subjects used both types of memories to control attention when they performed the visual search task with a large reward at stake, or when they were cued to respond as fast as possible. However, under normal circumstances, one type of target memory was sufficient for slower task performance. The use of multiple types of memory representations appears to provide converging top-down control of attention, allowing people to step on the attentional accelerator in a variety of high-pressure situations. PMID:27056975

  11. Dissipation factor as a predictor of anodic coating performance

    DOEpatents

    Panitz, Janda K. G.

    1995-01-01

    A dissipation factor measurement is used to predict as-anodized fixture performance prior to actual use of the fixture in an etching environment. A dissipation factor measurement of the anodic coating determines its dielectric characteristics and correlates to the performance of the anodic coating in actual use. The ability to predict the performance of the fixture and its anodized coating permits the fixture to be repaired or replaced prior to complete failure.

  12. Mild oxidative stress is beneficial for sperm telomere length maintenance

    PubMed Central

    Mishra, Swetasmita; Kumar, Rajeev; Malhotra, Neena; Singh, Neeta; Dada, Rima

    2016-01-01

    AIM: To evaluate telomere length in sperm DNA and its correlation with oxidative stress (normal, mild, severe). METHODS: The study included infertile men (n = 112) and age matched fertile controls (n = 102). The average telomere length from the sperm DNA was measured using a quantitative real time PCR based assay. Seminal reactive oxygen species (ROS) and 8-Isoprostane (8-IP) levels were measured by chemiluminescence assay and ELISA respectively. RESULTS: Average sperm telomere length in infertile men and controls was 0.609 ± 0.15 and 0.789 ± 0.060, respectively (P < 0.0001). Seminal ROS levels in infertile was higher [66.61 ± 28.32 relative light units (RLU)/s/million sperm] than in controls (14.04 ± 10.67 RLU/s/million sperm) (P < 0.0001). The 8-IP level in infertile men was significantly higher (421.55 ± 131.29 pg/mL) than in controls (275.94 ± 48.13 pg/mL) (P < 0.001). When correlated to oxidative stress, in normal range of oxidative stress (ROS, 0-21.3 RLU/s/million sperm) the average telomere length in cases was 0.663 ± 0.14, in mild oxidative stress (ROS, 21.3-35 RLU/s/million sperm) it was elevated (0.684 ± 0.12) and in severe oxidative stress (ROS > 35 RLU/s/million sperm) average telomere length was decreased to 0.595 ± 0.15. CONCLUSION: Mild oxidative stress results in lengthening of telomere length, but severe oxidative stress results in shorter telomeres. Although telomere maintenance is a complex trait, the study shows that mild oxidative stress is beneficial in telomere length maintenance and thus a delicate balance needs to be established to maximize the beneficial effects of free radicals and prevent harmful effects of supra physiological levels. Detailed molecular evaluation of telomere structure, its correlation with oxidative stress would aid in elucidating the cause of accelerated telomere length attrition. PMID:27376021

  13. Cadmium plated steel caps seal anodized aluminum fittings

    NASA Technical Reports Server (NTRS)

    Padden, J.

    1971-01-01

    Cadmium prevents fracturing of hard anodic coating under torquing to system specification requirements, prevents galvanic coupling, and eliminates need for crush washers, which, though commonly used in industry, do not correct leakage problem experienced when anodized aluminum fittings and anodized aluminum cap assemblies are joined.

  14. Improved anode design for metal-oxygen cells

    NASA Technical Reports Server (NTRS)

    Arrance, F. C.; Robertson, W. A.; Rosa, A. G.

    1969-01-01

    Method for returning electrolyte to the anode compartment in metal-oxygen second battery cells eliminates the problem of the anode drying out during charge-discharge cycling. Electrolyte forced out of the separator is returned to the anode by a microporous insert and wicking material.

  15. Electrochemical cell and anode for an electrochemical cell

    SciTech Connect

    Coetzer, J.; Thackeray, M.M.

    1981-09-01

    An electrochemical cell and an anode for use in an electrochemical cell are disclosed. The cell in its charged state comprises an anode, a cathode and an electrolyte. The anode comprises a polysulphide or a polyselenide of an alkali metal such as sodium, potassium, or lithium sorbed into a zeolite molecular sieve carrier.

  16. Coaxial anode improves sensitivity of gas radiation counters

    NASA Technical Reports Server (NTRS)

    Kraushaar, W. L.

    1974-01-01

    Anode wire itself is enclosed by three segments. Two on ends are rejector segments, and middle one is primary charge-detecting segment. Anode wire is made from tungsten and is surrounded by enamel insulation. Enamel is covered by segments of vapor-deposited gold. At one point in center segment, gold layer makes direct contact with anode wire.

  17. Electrochemical Aging of Thermal-Sprayed Zinc Anodes on Concrete

    SciTech Connect

    Holcomb, G.R.; Bullard, S.J.; Covino, B.S. Jr.; Cramer, S.D.; Cryer, C.B.; McGill, G.E.

    1996-10-01

    Thermal-sprayed zinc anodes are used in impressed current cathodic protection systems for some of Oregon's coastal reinforced concrete bridges. Electrochemical aging of zinc anodes results in physical and chemical changes at the zinc-concrete interface. Concrete surfaces heated prior to thermal-spraying had initial adhesion strengths 80 pct higher than unheated surfaces. For electrochemical aging greater than 200 kC/m{sup 2} (5.2 A h/ft{sup 2}), there was no difference in adhesion strengths for zinc on preheated and unheated concrete. Adhesion strengths decreased monotonically after about 400 to 600 kC/m{sup 2} (10.4 to 15.6 A-h/ft{sup 2}) as a result of the reaction zones at the zinc-concrete interface. A zone adjacent to the metallic zinc (and originally part of the zinc coating) was primarily zincite (ZnO), with minor constituents of wulfingite (Zn(OH){sub 2}), simonkolleite (Zn{sub 5}(OH) {sub 8}C{sub l2}{sup .}H{sub 2}O), and hydrated zinc hydroxide sulfates (Zn{sub 4}SO{sub 4}(OH){sub 6}{sup .}xH{sub 2}O). This zone is the locus for cohesive fracture when the zinc coating separates from the concrete during adhesion tests. Zinc ions substitute for calcium in the cement paste adjacent to the coating as the result of secondary mineralization. The initial estimate of the coating service life based on adhesion strength measurements in accelerated impressed current cathodic protection tests is about 27 years.

  18. Variation of nanopore diameter along porous anodic alumina channels by multi-step anodization.

    PubMed

    Lee, Kwang Hong; Lim, Xin Yuan; Wai, Kah Wing; Romanato, Filippo; Wong, Chee Cheong

    2011-02-01

    In order to form tapered nanocapillaries, we investigated a method to vary the nanopore diameter along the porous anodic alumina (PAA) channels using multi-step anodization. By anodizing the aluminum in either single acid (H3PO4) or multi-acid (H2SO4, oxalic acid and H3PO4) with increasing or decreasing voltage, the diameter of the nanopore along the PAA channel can be varied systematically corresponding to the applied voltages. The pore size along the channel can be enlarged or shrunken in the range of 20 nm to 200 nm. Structural engineering of the template along the film growth direction can be achieved by deliberately designing a suitable voltage and electrolyte together with anodization time. PMID:21456152

  19. Anodic Stripping Voltammetry: An Instrumental Analysis Experiment.

    ERIC Educational Resources Information Center

    Wang, Joseph

    1983-01-01

    Describes an experiment designed to acquaint students with the theory and applications of anodic stripping voltammetry (ASV) as well as such ASV problems as contamination associated with trace analysis. The experimental procedure, instrumentation, and materials discussed are designed to minimize cost and keep procedures as simple as possible. (JM)

  20. Anode materials for lithium-ion batteries

    DOEpatents

    Sunkara, Mahendra Kumar; Meduri, Praveen; Sumanasekera, Gamini

    2014-12-30

    An anode material for lithium-ion batteries is provided that comprises an elongated core structure capable of forming an alloy with lithium; and a plurality of nanostructures placed on a surface of the core structure, with each nanostructure being capable of forming an alloy with lithium and spaced at a predetermined distance from adjacent nanostructures.

  1. Hybrid anode for semiconductor radiation detectors

    DOEpatents

    Yang, Ge; Bolotnikov, Aleksey E; Camarda, Guiseppe; Cui, Yonggang; Hossain, Anwar; Kim, Ki Hyun; James, Ralph B

    2013-11-19

    The present invention relates to a novel hybrid anode configuration for a radiation detector that effectively reduces the edge effect of surface defects on the internal electric field in compound semiconductor detectors by focusing the internal electric field of the detector and redirecting drifting carriers away from the side surfaces of the semiconductor toward the collection electrode(s).

  2. Anode for rechargeable ambient temperature lithium cells

    NASA Technical Reports Server (NTRS)

    Huang, Chen-Kuo (Inventor); Surampudi, Subbarao (Inventor); Attia, Alan I. (Inventor); Halpert, Gerald (Inventor)

    1994-01-01

    An ambient room temperature, high density, rechargeable lithium battery includes a Li(x)Mg2Si negative anode which intercalates lithium to form a single crystalline phase when x is up to 1.0 and an amorphous phase when x is from 1 to 2.0. The electrode has good reversibility and mechanical strength after cycling.

  3. Silicon Whisker and Carbon Nanofiber Composite Anode

    NASA Technical Reports Server (NTRS)

    Ma, Junqing (Inventor); Newman, Aron (Inventor); Lennhoff, John (Inventor)

    2015-01-01

    A carbon nanofiber can have a surface and include at least one crystalline whisker extending from the surface of the carbon nanofiber. A battery anode composition can be formed from a plurality of carbon nanofibers each including a plurality of crystalline whiskers.

  4. An inert metal anode for magnesium electrowinning

    SciTech Connect

    Moore, J. F.; Hryn, J. N.; Pellin, M. J.; Calaway, W. F.; Watson, K.

    1999-12-01

    Results from the development of a novel type of anode for electrowinning Mg are reported. A tailored alloy system based on the binary Cu-Al can be made to form a thin alumina layer on its surface that is relatively impervious to attack by the molten chloride melt at high temperature. This barrier is thin enough (5--50 nm) to conduct electrical current without significant IR loss. As the layer slowly dissolves, the chemical potential developed at the surface drives the diffusion of aluminum from the bulk alloy to reform (heal) the protective alumina layer. In this way, an anode that generates Cl{sub 2} (melt electrolysis) and O{sub 2} (wet feed hydrolysis) and no chlorocarbons can be realized. Further, the authors expect the rate of loss of the anode to be dramatically less than the coke-derived carbon anodes typically in use for this technology, leading to substantial cost savings and ancillary pollution control by eliminating coke plant emissions, as well as eliminating chlorinated hydrocarbon emissions from Mg electrowinning cells.

  5. Fatigue Crack Nucleation Studies on Sulfuric Acid Anodized 7075-T73 Aluminum

    NASA Astrophysics Data System (ADS)

    Savas, Terence P.; Earthman, James C.

    2014-06-01

    The influence of a sulfuric acid anodic coating process on the fatigue crack nucleation behavior of 7075-T73 aluminum alloy was investigated. Silicone surface replication in combination with carbon sputter coating and scanning electron microscopy (SEM) allowed for in situ monitoring of the number of cycles for crack nucleation. A single edge circular notch (SECN) coupon was designed for the present study to localize fatigue damage thus enhancing fatigue crack detection and capture the effects of multiaxial stress conditions indicative of a majority engineering applications. Linear elastic finite element modeling of the SECN coupon was performed to quantify the von Mises equivalent stress distribution and the stress concentration factor of the notched region. The experimental results indicate that the presence of localized pitting corrosion initiated during the anodic coating pretreatment process had an adverse effect on fatigue performance. Specifically, multiple crack nucleation sites were evident as opposed to a single crack origin for the untreated specimens. Post-cycling SEM surface examinations displayed networks of micro-cracks in the anodic coating emanating from the pits although these were not found to be fatigue crack origin sites during post SEM fractographic exams. Thus, the stress concentration effect of the corrosion pits was found to be predominant. The total cycles to failure on average was reduced by approximately 60% for the anodic coated versus untreated specimens. A strategy is also discussed on how to mitigate accelerated crack nucleation by controlled surface pretreatment and use of a chromated chemical conversion coating in lieu of an anodic coating for selective applications.

  6. Automatic Prosodic Analysis to Identify Mild Dementia

    PubMed Central

    Gonzalez-Moreira, Eduardo; Torres-Boza, Diana; Kairuz, Héctor Arturo; Ferrer, Carlos; Garcia-Zamora, Marlene; Espinoza-Cuadros, Fernando; Hernandez-Gómez, Luis Alfonso

    2015-01-01

    This paper describes an exploratory technique to identify mild dementia by assessing the degree of speech deficits. A total of twenty participants were used for this experiment, ten patients with a diagnosis of mild dementia and ten participants like healthy control. The audio session for each subject was recorded following a methodology developed for the present study. Prosodic features in patients with mild dementia and healthy elderly controls were measured using automatic prosodic analysis on a reading task. A novel method was carried out to gather twelve prosodic features over speech samples. The best classification rate achieved was of 85% accuracy using four prosodic features. The results attained show that the proposed computational speech analysis offers a viable alternative for automatic identification of dementia features in elderly adults. PMID:26558287

  7. Automatic Prosodic Analysis to Identify Mild Dementia.

    PubMed

    Gonzalez-Moreira, Eduardo; Torres-Boza, Diana; Kairuz, Héctor Arturo; Ferrer, Carlos; Garcia-Zamora, Marlene; Espinoza-Cuadros, Fernando; Hernandez-Gómez, Luis Alfonso

    2015-01-01

    This paper describes an exploratory technique to identify mild dementia by assessing the degree of speech deficits. A total of twenty participants were used for this experiment, ten patients with a diagnosis of mild dementia and ten participants like healthy control. The audio session for each subject was recorded following a methodology developed for the present study. Prosodic features in patients with mild dementia and healthy elderly controls were measured using automatic prosodic analysis on a reading task. A novel method was carried out to gather twelve prosodic features over speech samples. The best classification rate achieved was of 85% accuracy using four prosodic features. The results attained show that the proposed computational speech analysis offers a viable alternative for automatic identification of dementia features in elderly adults. PMID:26558287

  8. [Enhanced Performance of Rolled Membrane Electrode Assembly by Adding Cation Exchange Resin to Anode in Microbial Fuel Cells].

    PubMed

    Mei, Zhuo; Zhang, Zhe; Wang, Xin

    2015-11-01

    The membrane electrode assembly (MEA) with an anode-membrane-cathode structure ban reduce the distance between anode and cathode to improve the power of microbial fuel cells (MFCs). Here in order to further promote the performance of MFCs, a novel MEA was constructed by rolling-press method without noble metal material, and the Ohmic resistance decreased to 3-5 Ω. The maximum power density was 446 mW x m(-2) when acetate was used as the substrate. Solid spheres (like polystyrene balls and glass microspheres) were added into anode to enhance the transportation of electrolyte to cathode, resulting in a 10% increase in power density by producing macropores on and in the anode during rolling process. Cation exchange resin was added to accelerate the transportation of proton through the anode so that the power density further increased to 543 mW x m(-2). Meanwhile, the stability of cell voltage and Coulomb efficiency of MFC were both enhanced after the addition of cation exchange resin. PMID:26911023

  9. Enhancing the power generation in microbial fuel cells with effective utilization of goethite recovered from mining mud as anodic catalyst.

    PubMed

    Jadhav, Dipak A; Ghadge, Anil N; Ghangrekar, Makarand M

    2015-09-01

    Catalytic effect of goethite recovered from iron-ore mining mud was studied in microbial fuel cells (MFCs). Characterization of material recovered from mining mud confirms the recovery of iron oxide as goethite. Heat treated goethite (550 °C) and untreated raw goethite were coated on stainless-steel anode of MFC-1 and MFC-2, respectively; whereas, unmodified stainless-steel anode was used in MFC-3 (control). Fivefold increment in power was obtained in MFC-1 (17.1 W/m(3) at 20 Ω) than MFC-3 (3.5 W/m(3)). MFC with raw goethite coated anode also showed enhanced power (11 W/m(3)). Higher Coulombic efficiency (34%) was achieved in MFC-1 than control MFC-3 (13%). Decrease in mass-transport losses and higher redox current during electrochemical analyses support improved electron transfer with the use of goethite on anode. Cheaper goethite coating kinetically accelerates the electron transfer between bacteria and anode, proving to be a novel approach for enhancing the electricity generation along with organic matter removal in MFC. PMID:25983229

  10. Facile Fabrication of Anodic Alumina Rod-Capped Nanopore Films with Condensate Microdrop Self-Propelling Function.

    PubMed

    Li, Juan; Zhang, Wenjing; Luo, Yuting; Zhu, Jie; Gao, Xuefeng

    2015-08-26

    We report that aluminum surfaces can be endowed with condensate microdrop self-propelling (CMDSP) function by one-step voltage-rising mild anodization in hot phosphoric acid solution followed by fluorosilane modification. Via regulating reaction parameters, we can achieve anodic alumina self-standing rod-capped nanopore films and minimize their solid-liquid interface adhesion. Such low-adhesive nanostructured film owns remarkable CMDSP function, especially to condensate microdrops with sizes below 50 μm, differing from usual gravity-driven dropwise condensation on flat aluminum surfaces. Clearly, this work offers a facile, efficient, and industry-compatible approach to processing CMDSP aluminum materials, which is significant for developing innovative energy-saving air-conditioner heat exchangers. PMID:26270768

  11. Post oxygen treatment characteristics of coke as an anode material for Li-ion batteries.

    PubMed

    Kim, Jae-Hun; Park, Min-Sik; Jo, Yong Nam; Yu, Ji-Sang; Jeong, Goojin; Kim, Young-Jun

    2013-05-01

    The effect of a oxygen treatment on the electrochemical characteristics of a soft carbon anode material for Li-ion batteries was investigated. After a coke carbonization process at 1000 degrees C in an argon atmosphere, the samples were treated under a flow of oxygen gas to obtain a mild oxidation effect. After this oxygen treatment, the coke samples exhibited an improved initial coulombic efficiency and cycle performance as compared to the carbonized sample. High-resolution transmission electron microscopy revealed that the carbonized cokes consisted of disordered and nanosized graphene layers and the surface of the modified carbon was significantly changed after the treatment. The chemical state of the cokes was analyzed using X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy. The enhanced electrochemical properties of the surface modified cokes could be attributed to the mild oxidation effect induced by the oxygen treatment. The mild oxidation process could have led to the elimination of surface imperfections and the reinforcement of a solid electrolyte interphase film, which resulted in the improved electrochemical characteristics. PMID:23858847

  12. Bilateral internuclear ophthalmoplegia following mild head injury.

    PubMed

    Muthukumar, N; Veerarajkumar, N; Madeswaran, K

    2001-05-01

    A 7-year-old child presented with bilateral internuclear ophthalmoplegia (INO) following a trivial head injury. CT was normal. MRI revealed a pontine lesion. Two months after the injury the patient was neurologically normal. INO following head injury is rare. Rarer still is INO following mild head injury. To date, only four cases of INO had been reported following mild head injury; the present case is the fifth and the first in which the lesion was documented using MRI. The relevant literature is reviewed. PMID:11417420

  13. Acceleration modules in linear induction accelerators

    NASA Astrophysics Data System (ADS)

    Wang, Shao-Heng; Deng, Jian-Jun

    2014-05-01

    The Linear Induction Accelerator (LIA) is a unique type of accelerator that is capable of accelerating kilo-Ampere charged particle current to tens of MeV energy. The present development of LIA in MHz bursting mode and the successful application into a synchrotron have broadened LIA's usage scope. Although the transformer model is widely used to explain the acceleration mechanism of LIAs, it is not appropriate to consider the induction electric field as the field which accelerates charged particles for many modern LIAs. We have examined the transition of the magnetic cores' functions during the LIA acceleration modules' evolution, distinguished transformer type and transmission line type LIA acceleration modules, and re-considered several related issues based on transmission line type LIA acceleration module. This clarified understanding should help in the further development and design of LIA acceleration modules.

  14. Perovskites for use as sulfur tolerant anodes

    NASA Astrophysics Data System (ADS)

    Howell, Thomas G.

    One of the major obstacles encountered when using solid oxide fuel cells with hydrocarbon fuels is sulfur poisoning. The current anode material used is Ni/YSZ and Ni is not sulfur tolerant; therefore, the performance of the cell will degrade over time due to the formation of NiS. Perovskites have demonstrated superior sulfur tolerance but lack the high conductivity and catalytic activity of Ni/YSZ cermets. One of the objectives of this effort is to explore the substitution of the A-site in an A2MgMoO 6 perovskite with Sr and Ba, to create Sr2MgMoO6 (SMMO) and Ba2MgMoO6 (BMMO), respectively, to improve the sulfur tolerance of solid oxide fuel cells (SOFCs). Sr2MgMoO 6, a double perovskite, has been previously studied and is suggested as a material of interest because of its relatively high conductivity and catalytic potential. Barium has not been previously studied and was selected as the dopant because the ionic radii (1.61 A) resulted in a calculated tolerance factor of 1.036 for BMMO when compared to SMMO, which has an ionic radii of 1.44 A and a calculated tolerance factor of 0.978. The tolerance factor for BaSrMgMoO6, a bi-substituted material synthesized for comparison as an intermediate formulation, was calculated to be 1.00. Another objective is to synthesize and characterize a series of lanthanum (La) doped Sr2MgMoO6 (SMMO) or La doped Sr2MgNbO 6 (SMNO) anode materials, which can be used in combination with electrolytes containing lanthanum to mitigate the effects of lanthanum poisoning in SOFCs. Currently, a La0.4Ce0.6O1.8 (LDC) transition layer is used with many perovskite-based anode materials to prevent La diffusion into the anode from the La0.8Sr0.2Ga0.8Mg 0.2O2.8 (LSGM) electrolyte, which can create a resistive La species that impedes electrochemical performance. To accomplish this, a new class of anode materials was synthesized with the goal of balancing La chemical potential between these neighboring materials. It was hypothesized that by

  15. Experimental studies of anode sheath phenomena in a hall thruster.

    SciTech Connect

    Dorf, L. A.; Fisch, N. J.; Raitses, Yevgeny F.

    2004-01-01

    Both electron-repelling (negative anode fall) and electron-attracting (positive anode fall) anode sheaths in a Hall thruster were identified experimentally by performing accurate, non-disturbing near-anode measurements with biased and emissive probes. An interesting new phenomenon revealed by the probe measurements is that the anode fall changes from positive to negative upon removal of the dielectric coating, which appears on the anode surface during the course of Hall thruster operation. Probe measurements in a Hall thruster with three different magnetic field configurations show that an anode fall at the clean anode is a function of the radial magnetic field profile inside the channel. A positive anode fall formation mechanism suggested in this work is that: (1) when the anode front surface is coated with dielectric, a discharge current closes to the anode at the surfaces that remain conductive, (2) a total thermal electron current toward the conductive area is significantly smaller than the discharge current, therefore an additional electron flux needs to be attracted toward the conductive surfaces by the electronattracting sheath that appears at these surfaces.

  16. Methods for determining the degree of baking in anodes

    SciTech Connect

    Hughes, C.P.

    1996-10-01

    Anode baking temperature is recognized as a critical factor in determining anode quality and performance. It is difficult and costly to measure directly and an indirect method, the coke L{sub c} technique, is often used. In this technique, baking temperature is estimated from the average crystallite size in the c direction (L{sub c}) of a coke sample placed in the anode stubhole. The paper details the results of a large statistically designed experimental program in which coke L{sub c} results were compared to anode properties routinely measured by smelters. Anode thermal conductivity and air and carboxy reactivity were found to correlate well with baking temperature. A direct anode L{sub c} measurement technique was also strongly associated with temperature, particularly at high baking temperatures. Recommendations are given on the usefulness and simplicity of traditional anode property measurements for assessing baking temperatures as alternatives to the coke L{sub c} method.

  17. Entropic Heat Effects in Aluminum Electrolysis Cells with Inert Anodes

    NASA Astrophysics Data System (ADS)

    Solheim, Asbjørn

    2016-04-01

    While the overall energy requirement for the aluminum electrolysis is well known and can be calculated from readily available thermodynamic data, the distribution of the different types of energy to the anode, the cathode, and the electrolyte is not straightforward. The present attempt is based on the application of activity data including partial entropies on the electrode reactions in a cell operating with inert anodes. The calculations indicate that the cell reaction implies a relatively strong cooling of the anode, a moderate heating of the cathode, and a moderate cooling of the electrolyte. The mass- and heat transfer coefficients at the anode in a cell with inert anodes were estimated. The electrolyte at the anode will be higher in aluminum fluoride, lower in alumina, and colder than the bulk of the electrolyte. The cooling and heating effects are only marginally different from the situation prevailing in traditional aluminum electrolysis cells with carbon anodes.

  18. Methods for making anodes for lithium ion batteries

    DOEpatents

    Xu, Wu; Canfield, Nathan L.; Zhang, Ji-Guang; Liu, Wei; Xiao, Jie; Wang, Deyu; Yang, Z. Gary

    2015-05-26

    Methods for making composite anodes, such as macroporous composite anodes, are disclosed. Embodiments of the methods may include forming a tape from a slurry including a substrate metal precursor, an anode active material, a pore-forming agent, a binder, and a solvent. A laminated structure may be prepared from the tape and sintered to produce a porous structure, such as a macroporous structure. The macroporous structure may be heated to reduce a substrate metal precursor and/or anode active material. Macroporous composite anodes formed by some embodiments of the disclosed methods comprise a porous metal and an anode active material, wherein the anode active material is both externally and internally incorporated throughout and on the surface of the macroporous structure.

  19. Progress on plasma accelerators

    SciTech Connect

    Chen, P.

    1986-05-01

    Several plasma accelerator concepts are reviewed, with emphasis on the Plasma Beat Wave Accelerator (PBWA) and the Plasma Wake Field Accelerator (PWFA). Various accelerator physics issues regarding these schemes are discussed, and numerical examples on laboratory scale experiments are given. The efficiency of plasma accelerators is then revealed with suggestions on improvements. Sources that cause emittance growth are discussed briefly.

  20. Mild fetal hydronephrosis indicating vesicoureteric reflux.

    PubMed Central

    Marra, G; Barbieri, G; Moioli, C; Assael, B M; Grumieri, G; Caccamo, M L

    1994-01-01

    The management of neonates with mild hydronephrosis diagnosed antenatally is still debated. Although some of these infants are normal, it is recognised that others will have mild obstruction of the ureteropelvic junction or vesicoureteric reflux (VUR). A prospective study was performed in all newborn infants with an antenatal diagnosis of mild hydronephrosis (47 babies, 62 kidneys) born over a two year period in order to assess the frequency of VUR. Voiding cystography in 14 patients with 21 renal units showed VUR. Two patients underwent surgery and the VUR resolved; the other 12 received medical treatment. Repeat cystography was scheduled for 12-18 months later, when a high rate of spontaneous cure was observed. The remaining patients were monitored by ultrasonography but only in one case did hydronephrosis deteriorate because of the presence of severe ureteropelvic junction obstruction. It is concluded that mild dilatation of the pelvis might be an expression of a potentially severe malformation such as VUR, and a careful follow up of these cases is mandatory. Images PMID:7802758

  1. Learning Strategies for Adolescents with Mild Disabilities

    ERIC Educational Resources Information Center

    Conderman, Greg; Koman, Kara; Schibelka, Mary; Higgin, Karen; Cooper, Cody; Butler, Jordyn

    2013-01-01

    Learning strategy instruction is an evidence-based practice for teaching adolescents with mild disabilities. However, researchers have not developed strategies for every content area or skill. Therefore, teachers need to be able develop strategies based on the needs of their students. This article reviews the process for developing and teaching…

  2. Mild Traumatic Brain Injury: Facilitating School Success.

    ERIC Educational Resources Information Center

    Hux, Karen; Hacksley, Carolyn

    1996-01-01

    A case study is used to demonstrate the effects of mild traumatic brain injury on educational efforts. Discussion covers factors complicating school reintegration, ways to facilitate school reintegration, identification of cognitive and behavioral consequences, minimization of educators' discomfort, reintegration program design, and family…

  3. Deuterium accelerator experiments for APT.

    SciTech Connect

    Causey, Rion A. (Sandia National Laboratories, Livermore, CA); Hertz, Kristin L. (Sandia National Laboratories, Livermore, CA); Cowgill, Donald F. (Sandia National Laboratories, Livermore, CA)

    2005-08-01

    Sandia National Laboratories in California initiated an experimental program to determine whether tritium retention in the tube walls and permeation through the tubes into the surrounding coolant water would be a problem for the Accelerator Production of Tritium (APT), and to find ways to mitigate the problem, if it existed. Significant holdup in the tube walls would limit the ability of APT to meet its production goals, and high levels of permeation would require a costly cleanup system for the cooling water. To simulate tritium implantation, a 200 keV accelerator was used to implant deuterium into Al 6061-T and SS3 16L samples at temperatures and particle fluxes appropriate for APT, for times varying between one week and five months. The implanted samples were characterized to determine the deuterium retention and Permeation. During the implantation, the D(d,p)T nuclear reaction was used to monitor the build-up of deuterium in the implant region of the samples. These experiments increased in sophistication, from mono-energetic deuteron implants to multi-energetic deuteron and proton implants, to more accurately reproduce the conditions expected in APT. Micron-thick copper, nickel, and anodized aluminum coatings were applied to the front surface of the samples (inside of the APT walls) in an attempt to lower retention and permeation. The reduction in both retention and permeation produced by the nickel coatings, and the ability to apply them to the inside of the APT tubes, indicate that both nickel-coated Al 6061-T6 and nickel-coated SS3 16L tubes would be effective for use in APT. The results of this work were submitted to the Accelerator Production of Tritium project in document number TPO-E29-Z-TNS-X-00050, APT-MP-01-17.

  4. Fuel cell anode configuration for CO tolerance

    DOEpatents

    Uribe, Francisco A.; Zawodzinski, Thomas A.

    2004-11-16

    A polymer electrolyte fuel cell (PEFC) is designed to operate on a reformate fuel stream containing oxygen and diluted hydrogen fuel with CO impurities. A polymer electrolyte membrane has an electrocatalytic surface formed from an electrocatalyst mixed with the polymer and bonded on an anode side of the membrane. An anode backing is formed of a porous electrically conductive material and has a first surface abutting the electrocatalytic surface and a second surface facing away from the membrane. The second surface has an oxidation catalyst layer effective to catalyze the oxidation of CO by oxygen present in the fuel stream where at least the layer of oxidation catalyst is formed of a non-precious metal oxidation catalyst selected from the group consisting of Cu, Fe, Co, Tb, W, Mo, Sn, and oxides thereof, and other metals having at least two low oxidation states.

  5. Electrocatalysis of anodic oxidation of ethanol

    NASA Astrophysics Data System (ADS)

    Tarasevich, M. R.; Korchagin, O. V.; Kuzov, A. V.

    2013-11-01

    The results of fundamental and applied studies in the field of electrocatalysis of anodic oxidation of ethanol in fuel cells are considered. Features of the mechanism of ethanol electrooxidation are discussed as well as the structure and electrochemical properties of the most widely used catalysts of this process. The prospects of further studies of direct ethanol fuel cells with alkaline and acidic electrolytes are outlined. The bibliography includes 166 references.

  6. High performance anode for advanced Li batteries

    SciTech Connect

    Lake, Carla

    2015-11-02

    The overall objective of this Phase I SBIR effort was to advance the manufacturing technology for ASI’s Si-CNF high-performance anode by creating a framework for large volume production and utilization of low-cost Si-coated carbon nanofibers (Si-CNF) for the battery industry. This project explores the use of nano-structured silicon which is deposited on a nano-scale carbon filament to achieve the benefits of high cycle life and high charge capacity without the consequent fading of, or failure in the capacity resulting from stress-induced fracturing of the Si particles and de-coupling from the electrode. ASI’s patented coating process distinguishes itself from others, in that it is highly reproducible, readily scalable and results in a Si-CNF composite structure containing 25-30% silicon, with a compositionally graded interface at the Si-CNF interface that significantly improve cycling stability and enhances adhesion of silicon to the carbon fiber support. In Phase I, the team demonstrated the production of the Si-CNF anode material can successfully be transitioned from a static bench-scale reactor into a fluidized bed reactor. In addition, ASI made significant progress in the development of low cost, quick testing methods which can be performed on silicon coated CNFs as a means of quality control. To date, weight change, density, and cycling performance were the key metrics used to validate the high performance anode material. Under this effort, ASI made strides to establish a quality control protocol for the large volume production of Si-CNFs and has identified several key technical thrusts for future work. Using the results of this Phase I effort as a foundation, ASI has defined a path forward to commercialize and deliver high volume and low-cost production of SI-CNF material for anodes in Li-ion batteries.

  7. Improvement in direct methanol fuel cell performance by treating the anode at high anodic potential

    NASA Astrophysics Data System (ADS)

    Joghee, Prabhuram; Pylypenko, Svitlana; Wood, Kevin; Corpuz, April; Bender, Guido; Dinh, Huyen N.; O'Hayre, Ryan

    2014-01-01

    This work investigates the effect of a high anodic potential treatment protocol on the performance of a direct methanol fuel cell (DMFC). DMFC membrane electrode assemblies (MEAs) with PtRu/C (Hi-spec 5000) anode catalyst are subjected to anodic treatment (AT) at 0.8 V vs. DHE using potentiostatic method. Despite causing a slight decrease in the electrochemical surface area (ECSA) of the anode, associated with ruthenium dissolution, AT results in significant improvement in DMFC performance in the ohmic and mass transfer regions and increases the maximum power density by ∼15%. Furthermore, AT improves the long-term DMFC stability by reducing the degradation of the anode catalyst. From XPS investigation, it is hypothesized that the improved performance of AT-treated MEAs is related to an improved interface between the catalyst and Nafion ionomer. Among potential explanations, this improvement may be caused by incorporation of the ionomer within the secondary pores of PtRu/C agglomerates, which generates a percolating network of ionomer between PtRu/C agglomerates in the catalyst layer. Furthermore, the decreased concentration of hydrophobic CF2 groups may help to enhance the hydrophilicity of the catalyst layer, thereby increasing the accessibility of methanol and resulting in better performance in the high current density region.

  8. The anodizing behavior of aluminum in malonic acid solution and morphology of the anodic films

    NASA Astrophysics Data System (ADS)

    Ren, Jianjun; Zuo, Yu

    2012-11-01

    The anodizing behavior of aluminum in malonic acid solution and morphology of the anodic films were studied. The voltage-time response for galvanostatic anodization of aluminum in malonic acid solution exhibits a conventional three-stage feature but the formation voltage is much higher. With the increase of electrolyte concentration, the electrolyte viscosity increases simultaneously and the high viscosity decreases the film growth rate. With the concentration increase of the malonic acid electrolyte, the critical current density that initiates local "burning" on the sample surface decreases. For malonic acid anodization, the field-assisted dissolution on the oxide surface is relatively weak and the nucleation of pores is more difficult, which results in greater barrier layer thickness and larger cell dimension. The embryo of the porous structure of anodic film has been created within the linear region of the first transient stage, and the definite porous structure has been established before the end of the first transient stage. The self-ordering behavior of the porous film is influenced by the electrolyte concentration, film thickness and the applied current density. Great current density not only improves the cell arrangement order but also brings about larger cell dimension.

  9. Mortality associated with mild, untreated xerophthalmia.

    PubMed Central

    Sommer, A

    1983-01-01

    The high mortality rate among children with severe corneal xerophthalmia is well recognized. The present study investigates, for the first time, mortality among the very much larger number of otherwise healthy free-living children with mild xerophthalmia (night blindness and Bitot's spots). An average of 3481 children (under 6 years of age) living in six Indonesian villages were reexamined by an ophthalmologist, pediatrician, and nutritionist every 3 months for 18 months. The overall prevalence of mild xerophthalmia was 4.9%. During the 18 months of observation, 132 children died. Of these, 24 had mild xerophthalmia and 108 had normal eyes at the 3-monthly examination preceding their death. Mortality rates were calculated for each 3-month interval by classifying all children by their ocular status at the start of the interval, and then dividing the number of deaths within the interval by the number of children of the same ocular status followed up for that interval. Mortality rates for the six 3-month intervals were then added together, and the results expressed as deaths per 1000 "child-intervals" of follow-up. Overall mortality rates for children with mild xerophthalmia and for children with normal eyes were 23.3 and 5.3, respectively, a ratio of 4 to 1. Excess mortality among the mildly xerophthalmic children increased with the severity of their xerophthalmia. Mortality rates for children with night blindness, with Bitot's spots, and with the two conditions concurrently were 2.7, 6.6, and 8.6 times the mortality rate of non-xerophthalmic children. This direct, almost linear relation between mortality and the severity of mild xerophthalmia was still present after standardizing for age and for the presence or absence of respiratory infection and protein-energy malnutrition. In the population studied, 16% of all deaths in children 1 to 6 years of age were directly related to vitamin A deficiency identified by the presence of mild xerophthalmia. These results

  10. Chromic acid anodizing of aluminum foil

    NASA Technical Reports Server (NTRS)

    Dursch, H.

    1988-01-01

    The success of the Space Station graphite/epoxy truss structure depends on its ability to endure long-term exposure to the LEO environment, primarily the effects of atomic oxygen and the temperture cycling resulting from the 94 minute orbit. This report describes the development and evaluation of chromic acid anodized (CAA) aluminum foil as protective coatings for these composite tubes. Included are: development of solar absorptance and thermal emittance properties required of Al foil and development of CAA parameters to achieve these optical properties; developing techniques to CAA 25 ft lengths of Al foil; developing bonding processes for wrapping the Al foil to graphite/epoxy tubes; and atomic oxygen testing of the CAA Al foil. Two specifications were developed and are included in the report: Chromic Acid Anodizing of Aluminum Foil Process Specification and Bonding of Anodized Aluminum Foil to Graphite/Epoxy Tubes. Results show that CAA Al foil provides and excellent protective and thermal control coating for the Space Station truss structure.

  11. Lithium Metal Anodes for Rechargeable Batteries

    SciTech Connect

    Xu, Wu; Wang, Jiulin; Ding, Fei; Chen, Xilin; Nasybulin, Eduard N.; Zhang, Yaohui; Zhang, Jiguang

    2013-10-29

    Rechargeable lithium metal batteries have much higher energy density than those of lithium ion batteries using graphite anode. Unfortunately, uncontrollable dendritic lithium growth inherent in these batteries (upon repeated charge/discharge cycling) and limited Coulombic efficiency during lithium deposition/striping has prevented their practical application over the past 40 years. With the emerging of post Li-ion batteries, safe and efficient operation of lithium metal anode has become an enabling technology which may determine the fate of several promising candidates for the next generation of energy storage systems, including rechargeable Li-air battery, Li-S battery, and Li metal battery which utilize lithium intercalation compounds as cathode. In this work, various factors which affect the morphology and Coulombic efficiency of lithium anode will be analyzed. Technologies used to characterize the morphology of lithium deposition and the results obtained by modeling of lithium dendrite growth will also be reviewed. At last, recent development in this filed and urgent need in this field will also be discussed.

  12. Anode arc motion in high power arcjets

    NASA Technical Reports Server (NTRS)

    Harris, W. J.; O'Hair, E. A.; Hatfield, L. L.; Kristiansen, M.; Mankins, J. S.

    1992-01-01

    The long-term operational lifetime of most medium to high power arcjets is currently limited by the rapid deterioration of the arcjet electrodes. To a large extent, the rate of this deterioration is related to the motion of the arc discharge on the electrode surfaces. This paper details a series of experiments aimed at studying the temporal behavior of dc arcs on a water-cooled radially-segmented 30 kW class arcjet anode. The experimental anode used for these tests was made of copper, and was divided into four equivalent radial segments which were electrically isolated with aluminum oxide gaskets. The current carried by each segment was measured independently using four calibrated resistive shunts, and was analyzed by digital computer. The tests were limited to nitrogen propellant over a current range of 100-250 A dc. Results show that for the range of total currents considered here, the current distribution in the segmented arcjet anode is generally asymmetric, exhibiting random fluctuations over a wide range of frequencies.

  13. Pack aluminization of nickel anode for molten carbonate fuel cells

    NASA Astrophysics Data System (ADS)

    Chun, H. S.; Park, G. P.; Lim, J. H.; Kim, K.; Lee, J. K.; Moon, K. H.; Youn, J. H.

    1994-04-01

    The aluminum pack cementation (pack aluminization) process on a porous nickel anode for molten carbonate fuel cells has been studied to improve anode creep resistance. The porous nickel substrates used in this study were fabricated by doctor blade equipment followed by sintering (850 C). Packs surrounding the Ni anode were made by mixing Al2O3 powder, Al powder, and NaCl as activator. The pack aluminization was performed at 700 to 850 C for 0.5-5.0 h. After pack aluminization, the principal Ni-Al intermetallic compounds detected were Ni3Al at 700 C, NiAl at 750 C and Ni3Al2 at 800 C. The aluminum content in the aluminized Ni anode was proportional to the square root of pack aluminizing time. With increasing the Al content in the anode, the creep of the anode decreased. It was nearly constant (2.0%) when the Al content was above 5.0%. Although the exchange current density (24 mA/sq cm) for the aluminized (2.5 wt.%) Ni anode was somewhat lower than that of the pure Ni anode (40 mA/sq cm), the performance of a single cell using an aluminized Ni anode was similar to that of the one with pure Ni anode.

  14. Alternative consumable anodes for cathodic protection of reinforced concrete bridges

    SciTech Connect

    Bullard, Sophie J.; Covino, Bernard S., Jr.; Cramer, Stephen D.; Holcomb, Gordon R.; Russell, James H.; Cryer, C.B.; Laylor, H.M.

    1999-01-01

    Alternative consumable anodes were evaluated in the laboratory for use in cathodic protection systems for steel reinforced concrete bridges in coastal environments and in areas where deicing salts are employed. The anode materials included zinc hydrogel foil and thermal-sprayed Zn, Zn-15Al, and Al-12Zn-0.2In alloys. They were evaluated for service in both impressed current (ICCP) and galvanic (GCP) cathodic protection systems. ICCP anodes were electrochemically aged at current densities of five to fifteen times that used by the Oregon Department of Transportation (Oregon DOT) in typical coastal CP systems (2.2 mA/m2 based on anode area). GCP anodes were electrochemically aged at a rate defined by the steel-anode couple. Both types of anodes were exposed to 80°F, a relative humidity of 85 pct, and were periodically wetted with deionized water. The Zn anode gave the best performance in ICCP systems. The four anodes all produced sufficient current density suitable for use in GCP systems. The anodes materials, ranked in increasing order of GCP current output, were: thermal-sprayed Al-12Zn-0.2In, Zn hydrogel, thermal-sprayed Zn-15Al, and thermal-sprayed Zn.

  15. Operational results of pilot cell test with cermet inert'' anodes

    SciTech Connect

    Alcorn, T.R.; Tabereaux, A.T.; Richards, N.E. . Mfg. Technology Lab.); Windisch, C.F. Jr.; Strachan, D.M. ); Gregg, J.S.; Frederick, M.S. )

    1993-02-01

    The operational performance of a six-pack'' of cermet anodes and corrosion rates was evaluated in a six kA pilot reduction cell at Reynolds' Manufacturing Technology Laboratory. Two separate test periodswere conducted with the cermet anodes; the first period was in conjunction with the Pacific Northwest Laboratory and the second with ELTECH Research Corporation. Both tests used identical NiO-NiFe[sub 2]O[sub 4]-Cu anodes manufactured by Ceramic Magnetics, Inc.. The ELTECH testing involved the in situ coating of the anodes with cerium oxide. Primary evaluations for both test periods were conducted at target conditions of alumina saturation and 0.5 amp/cm[sup 2] anode current density. Individual anodes remained in operation for 25 days during the two and one-half month testing period. Operational difficulties developed throughout the test due to breakage of the anode conductor stems, cracking and breaking of the cermet anodes, unequal anode current distribution, and alumina muck build-up in the cell. These operational problems are discussed as well as an estimate of anode corrosion rates based on metal impurity levels in the aluminum metal pad.

  16. Operational results of pilot cell test with cermet ``inert`` anodes

    SciTech Connect

    Alcorn, T.R.; Tabereaux, A.T.; Richards, N.E.; Windisch, C.F. Jr.; Strachan, D.M.; Gregg, J.S.; Frederick, M.S.

    1993-02-01

    The operational performance of a ``six-pack`` of cermet anodes and corrosion rates was evaluated in a six kA pilot reduction cell at Reynolds` Manufacturing Technology Laboratory. Two separate test periodswere conducted with the cermet anodes; the first period was in conjunction with the Pacific Northwest Laboratory and the second with ELTECH Research Corporation. Both tests used identical NiO-NiFe{sub 2}O{sub 4}-Cu anodes manufactured by Ceramic Magnetics, Inc.. The ELTECH testing involved the in situ coating of the anodes with cerium oxide. Primary evaluations for both test periods were conducted at target conditions of alumina saturation and 0.5 amp/cm{sup 2} anode current density. Individual anodes remained in operation for 25 days during the two and one-half month testing period. Operational difficulties developed throughout the test due to breakage of the anode conductor stems, cracking and breaking of the cermet anodes, unequal anode current distribution, and alumina muck build-up in the cell. These operational problems are discussed as well as an estimate of anode corrosion rates based on metal impurity levels in the aluminum metal pad.

  17. Self-assembled monolayers of flufenaminate anions on mild steel surface formed in aqueous solution

    NASA Astrophysics Data System (ADS)

    Kazansky, Leonid P.; Kuznetsov, Yuri I.; Andreeva, Nina P.; Bober, Yana G.

    2010-12-01

    Adsorption of derivative of phenylanthranilic acid - flufenamic acid (FFA) on the "oxide-free" and oxidized surface of mild steel in neutral borate buffer solution was studied by ellipsometry and XPS. Anodic polarization curves reveal that complete suppression of the anodic dissolution of iron is achieved at FFA concentration Cin = 3.8 mM. Besides, adding FFA substantially shifts the pitting potential from 0.06 V to 0.67 V. Ellipsometric studies have shown that at the applied potential -0.65 V, when the surface is free from the oxide layer, FFA forms monomolecular layer. To characterize the surface layers formed after exposing the sample in 5 mM FFA solution the XPS was used to assess the composition and the thickness of the layers. Using the intensities of the Fe 2p, Fe 3p, N 1s, F 1s, O 1s and C 1s and analyzing the angle resolved XPS data the FFA molecules have been shown to form monomolecular layer in which FFA is (vertically or slightly inclined) anchored by iron cations through oxygen atoms of carboxyl group to the surface and the fluorine atoms of CF 3 groups form the utmost layer. Similar orientation is also assumed for FFA molecules adsorbed on the oxidized iron surface. It seems that the layer formed by FFA or similar molecules may serve a robust interface for grafting other substances on such a functionalized surface.

  18. Beam Efficiency of an Applied-B Diode with Magnetically Injected Anode Plasma

    NASA Astrophysics Data System (ADS)

    Johnson, D. J.; Crawford, M. T.

    1997-11-01

    Proton and electron currents are measured for a repetitively pulsed extractor diode on RHEPP1. The 600 kV, 40 kA, 100 ns power pulse accelerates a 10 cm radius, 2 cm annular beam via a 1.3 cm anode-cathode gap (AKG). The anode plasma originates from a hydrogen gas puff and 2 μs risetime B field from a fast coil. The inducted-E field from the coil creates plasma in the gas that is injected into the AKG by the fast-B field. The electron beam was measured with anode dB/dt loops and radiachromic film to be 8 kA. The beam current measured with Rogowski coils in the cathodes was 32 kA at peak diode power. Although these two currents equal the diode current, proton beam measurements with Faraday cups and nuclear activation show a total proton beam of 16 kA with 6 kA striking the cathode coil supports and housings and 10 kA available to focus. The 16 kA missing beam may be due to very low energy protons that undergo charge-exchange in the AKG.

  19. Production of intense ion beams in a reflex triode with an external plasma source at the anode

    SciTech Connect

    Bystritskii, V.M.; Verigin, A.A.; Volkov, S.N.; Krasik, Y.E.; Podkatov, V.I.

    1986-09-01

    An experimental study of the production of intense ion beams in a reflex triode with an external plasma source at the anode is reported. The ions had various ratios Z/M. When the anode plasma is produced in a preliminary charging pulse of the accelerator, the plasma density is too low for operation under charge-limited emission conditions. In this case, an ion beam is observed to be produced from the plasma formed by the direct heating of the anode material by oscillating electrons. When an anode plasma resulting from the breakdown of a dielectric insert or of the vacuum gap of a composite andode by an external voltage source is used to produce an ion beam, the reflex triode operating conditions depend on delaying the operation of the accelerator with respect to the external source. The highest efficiency (approx. =20%) in the production of an ion beam is observed at t/sub d/ = 3--6 ..mu..s. In this case, the reflex triode operates under increasing or constant impedance conditions. It was shown in the course of the experiments that the ion beam which is produced is nonuniform. There are three groups of ions: H/sup +/, C/sup n//sup +/, and Cu/sup n//sup +/. The energy of the heavy ions depends on the applied anode potential. The different mass components of the ion beam do not appear at the same time. The macroscopic divergence of the beam is 4--6/sup 0/ at the periphery and drops off to approx. <1/sup 0/ at the center. The microscopic divergence of the beam is 3/sup 0/. The total energy of the ion beam which is produced is less than 120 J at an average current approx. =2.8 kA.

  20. Structural tuning of photoluminescence in nanoporous anodic alumina by hard anodization in oxalic and malonic acids

    PubMed Central

    2012-01-01

    We report on an exhaustive and systematic study about the photoluminescent properties of nanoporous anodic alumina membranes fabricated by the one-step anodization process under hard conditions in oxalic and malonic acids. This optical property is analysed as a function of several parameters (i.e. hard anodization voltage, pore diameter, membrane thickness, annealing temperature and acid electrolyte). This analysis makes it possible to tune the photoluminescent behaviour at will simply by modifying the structural characteristics of these membranes. This structural tuning ability is of special interest in such fields as optoelectronics, in which an accurate design of the basic nanostructures (e.g. microcavities, resonators, filters, supports, etc.) yields the control over their optical properties and, thus, upon the performance of the nanodevices derived from them (biosensors, interferometers, selective filters, etc.) PMID:22515214

  1. A diode for accelerating hydrogen nuclides with electron conductivity suppressed by an internal ring magnet

    NASA Astrophysics Data System (ADS)

    Shikanov, A. E.; Vovchenko, E. D.; Kozlovskii, K. I.; Shatokhin, V. L.

    2015-05-01

    We present new experimental data on the acceleration of deuterons in a small-size magnetically insulated diode. Plasma containing deuterons was created at the anode during irradiation of a TiD target by a focused laser beam with a wavelength of 1.06 μm. The accelerating voltage pulse was formed by an Arkadiev-Marx generator. A circular cathode was arranged symmetrically relative to the anode and represented a permanent ring magnet with an inner radius not exceeding 0.02 m and a magnetic induction of up to 0.4 T at the center, which ensured magnetic insulation of the accelerating gap. The experiments showed that the current of accelerated deuterons with energies of up to 300 eV can reach a level of 0.5 kA at pulse durations of ≤0.5 μs.

  2. The ENCOAL Mild Gasification Demonstration Project

    SciTech Connect

    Not Available

    1990-07-01

    The DOE plans to enter into a Cooperative Agreement with ENCOAL Corporation, a wholly owned subsidiary of Shell Mining Company, for the cost-shared design, construction and operation of a mild gasification facility based on Liquids-from-Coal (LFC) technology. The facility is planned to be located at the Triton Coal Company's Buckskin Mine near Gillette, Wyoming. The mild gasification process to be demonstrated will produce two new, low-sulfur fuel forms (a solid and a liquid) from subbituminous coal. The new fuel forms would be suitable for combustion in commercial, industrial, and utility boilers. This environmental assessment has been prepared by the DOE to comply with the requirements of the NEPA. Pollutant emissions, land use, water, and waste management are briefly discussed. 3 figs., 5 tabs.

  3. Structural changes of anodic layer on titanium in sulfate solution as a function of anodization duration in constant current mode

    NASA Astrophysics Data System (ADS)

    Komiya, Shinji; Sakamoto, Kouta; Ohtsu, Naofumi

    2014-03-01

    The present study investigated the effect of anodization time, in constant current mode, on the anodic oxide layer formed on titanium (Ti). Anodization of the Ti substrate was carried out in a 0.1 M (NH4)2SO4 aqueous solution with reaction times of various durations, after which the characteristics and photocatalytic activity were investigated in detail. The TiO2 layer fabricated in a short duration exhibited comparatively flat surface morphology and an anatase-type crystal structure. This layer acted as a photocatalyst only under ultraviolet light (UV) illumination. Upon prolonging the anodization, the layer structure changed drastically. The surface morphology became rough, and the crystal structure changed to rutile-type TiO2. Furthermore, the layer showed photocatalytic activity both under UV and visible light illumination. Further anodization increased the amount of methylene blue (MB) adsorbed on the surface, but did not cause additional change to the structure of the anodic layer. The surface morphology and crystal structure of the anodic layer were predominantly controlled by the anodization time; thus, the anodization time is an important parameter for controlling the characteristics of the anodic layer.

  4. [Nonsurgical management of mild primary hyperparathyroidism].

    PubMed

    Imanishi, Yasuo

    2016-06-01

    Primary hyperparathyroidism(PHPT)is one of the common endocrine disorders, which results clinically in nephrolithiasis, osteoporosis, muscle weakness, cardiac and psychiatric abnormalities even in a mild or asymptomatic disease. Parathyroidectomy(PTX)is the only definitive treatment for PHPT, however, some patients with sporadic PHPT refuse surgery, are medically unfit, or have residual or recurrent disease inaccessible to further surgery. These patients may require intervention for management of symptomatic or moderate to severe hypercalcemia, bone loss or kidney calculi. PMID:27230840

  5. Disposable baby wipes: efficacy and skin mildness.

    PubMed

    Odio, M; Streicher-Scott, J; Hansen, R C

    2001-04-01

    The results of a series of four clinical studies demonstrated that disposable baby wipes were milder to the skin than use of a cotton washcloth and water, recognized as a "gold standard" for skin mildness. Importantly, the baby wipes caused no significant change from the baseline value in any of the skin parameters examined. This observation verified that the test wipes are minimally disruptive to the epidermal barrier and thus suitable for use on intact or compromised, irritated skin. PMID:11917305

  6. Perinatal Risk Factors for Mild Motor Disability

    ERIC Educational Resources Information Center

    Hands, Beth; Kendall, Garth; Larkin, Dawne; Parker, Helen

    2009-01-01

    The aetiology of mild motor disability (MMD) is a complex issue and as yet is poorly understood. The aim of this study was to identify the prevalence of perinatal risk factors in a cohort of 10-year-old boys and girls with (n = 362) and without (n = 1193) MMD. Among the males with MMD there was a higher prevalence of postpartum haemorrhage,…

  7. Subacute to chronic mild traumatic brain injury.

    PubMed

    Mott, Timothy F; McConnon, Michael L; Rieger, Brian P

    2012-12-01

    Although a universally accepted definition is lacking, mild traumatic brain injury and concussion are classified by transient loss of consciousness, amnesia, altered mental status, a Glasgow Coma Score of 13 to 15, and focal neurologic deficits following an acute closed head injury. Most patients recover quickly, with a predictable clinical course of recovery within the first one to two weeks following traumatic brain injury. Persistent physical, cognitive, or behavioral postconcussive symptoms may be noted in 5 to 20 percent of persons who have mild traumatic brain injury. Physical symptoms include headaches, dizziness, and nausea, and changes in coordination, balance, appetite, sleep, vision, and hearing. Cognitive and behavioral symptoms include fatigue, anxiety, depression, and irritability, and problems with memory, concentration and decision making. Women, older adults, less educated persons, and those with a previous mental health diagnosis are more likely to have persistent symptoms. The diagnostic workup for subacute to chronic mild traumatic brain injury focuses on the history and physical examination, with continuing observation for the development of red flags such as the progression of physical, cognitive, and behavioral symptoms, seizure, progressive vomiting, and altered mental status. Early patient and family education should include information on diagnosis and prognosis, symptoms, and further injury prevention. Symptom-specific treatment, gradual return to activity, and multidisciplinary coordination of care lead to the best outcomes. Psychiatric and medical comorbidities, psychosocial issues, and legal or compensatory incentives should be explored in patients resistant to treatment. PMID:23198672

  8. Mild Appendicitis Complication Rates Similar for Surgery, Antibiotics

    MedlinePlus

    ... html Mild Appendicitis Complication Rates Similar for Surgery, Antibiotics Decision not to operate might be matter of ... 25, 2016 FRIDAY, March 25, 2016 (HealthDay News) -- Antibiotics can be used to treat mild appendicitis, but ...

  9. Fundamental Investigation of Si Anode in Li-Ion Cells

    NASA Technical Reports Server (NTRS)

    Wu, James J.; Bennett, William R.

    2012-01-01

    Silicon is a promising and attractive anode material to replace graphite for high capacity lithium ion cells since its theoretical capacity is approximately 10 times of graphite and it is an abundant element on earth. However, there are challenges associated with using silicon as Li-ion anode due to the significant first cycle irreversible capacity loss and subsequent rapid capacity fade during cycling. In this paper, cyclic voltammetry and electrochemical impedance spectroscopy are used to build a fundamental understanding of silicon anodes. The results show that it is difficult to form the SEI film on the surface of Si anode during the first cycle, the lithium ion insertion and de-insertion kinetics for Si are sluggish, and the cell internal resistance changes with the state of lithiation after electrochemical cycling. These results are compared with those for extensively studied graphite anodes. The understanding gained from this study will help to design better Si anodes.

  10. Materials characterization of cermet anodes tested in a pilot cell

    SciTech Connect

    Windisch, C.F. Jr.; Strachan, D.M.; Henager, C.H. Jr. ); Alcorn, T.R.; Tabereaux, A.T.; Richards, N.E. . Mfg. Technology Lab.)

    1993-02-01

    Cermet anodes were evaluated as nonconsumable substitutes for carbon anodes using a pilot-scale reduction cell at the Reynolds Manufacturing Technology Laboratory. After pilot cell testing, tile anodes were subjected to extensive materials characterization and physical properties measurements at the Pacific Northwest Laboratory. Significant changes in the composition of the cermet anodes were observed including the growth of a reaction layer and penetration of electrolyte deep into the cermet matrix. Fracture strength and toughness were measured as a function of temperature and the ductile-brittle transition wasreduced by 500C following pilot cell testing. These results imply difficulties with anode material and control of operating conditions in the pilot cell, and suggest that additional development work be performed before the cermet anodes are used in commercial reduction cells. The results also highlight specific fabrication and operational considerations that should be addressed in future testing.

  11. Laser driven ion accelerator

    DOEpatents

    Tajima, Toshiki

    2006-04-18

    A system and method of accelerating ions in an accelerator to optimize the energy produced by a light source. Several parameters may be controlled in constructing a target used in the accelerator system to adjust performance of the accelerator system. These parameters include the material, thickness, geometry and surface of the target.

  12. Laser driven ion accelerator

    DOEpatents

    Tajima, Toshiki

    2005-06-14

    A system and method of accelerating ions in an accelerator to optimize the energy produced by a light source. Several parameters may be controlled in constructing a target used in the accelerator system to adjust performance of the accelerator system. These parameters include the material, thickness, geometry and surface of the target.

  13. Spectroscopic investigation of the plasma in a hollow anode with an incorporated ferroelectric plasma source

    SciTech Connect

    Krokhmal, A.; Gleizer, J.Z.; Krasik, Ya.E.; Yarmolich, D.; Felsteiner, J.; Bernshtam, V.

    2004-10-01

    Spectroscopic measurements are reported of the plasma formed inside a hollow anode (HA) with a ferroelectric plasma source (FPS) incorporated in it. The HA was used as a cathode in a diode supplied by an accelerating pulse ({<=}300 kV, {<=}400 ns). It was found that the HA discharge (1.2 kA, 10 {mu}s) is accompanied by the formation of a dense ({approx_equal}8x10{sup 14} cm{sup -3}) plasma layer at the surface of the FPS. This surface plasma serves as a practically unlimited source of electrons. In the bulk of the HA plasma the density is {approx_equal}3x10{sup 13} cm{sup -3} and it remains the same during the accelerating pulse whereas the plasma electron temperature increases from 4 to 11 eV.

  14. The influence of coke source on anode performance

    NASA Astrophysics Data System (ADS)

    Jonville, C.; Thomas, J. C.; Dreyer, C.

    1995-08-01

    The role of anode raw material has long been debated in the aluminum smelting industry. By examining data accumulated from two similar smelting operations of Aluminium Pechiney, this article focuses on the differences in performance of anodes that can be attributed to the raw materials. The results suggest that good anode performance can be obtained for a range of cokes, provided that the operation is well designed and carefully operated.

  15. The effects of petroleum coke properties on carbon anode quality

    SciTech Connect

    Belitskus, D. ); Danka, D.J. )

    1988-11-01

    Comprehensive bench-scale testing of the effects of calcined coke on the properties of prebaked anodes for aluminum smelting cells has revealed correlations between coke and anode properties. Extensive measurements of the physical properties of coke as well as impurities, determinations of performance-indicative anode properties, and correlation by regression analyses provided statistically significant relationships which can generally be explained in terms of reasonable chemical and physical interactions.

  16. Performance of a dual anode nickel-hydrogen cell

    NASA Technical Reports Server (NTRS)

    Gahn, Randall F.

    1991-01-01

    An experimental study was conducted to characterize the voltage performance of a nickel hydrogen cell containing a hydrogen electrode on both sides of the nickel electrode. The dual anode cell was compared with a convenient single anode cell using the same nickel electrode. Higher discharge voltages and lower charge voltages were obtained with the dual anode cell during constant current discharges to 10C, pulse discharges to 8C, and polarization measurements at 50 percent of charge.

  17. Thermal-sprayed zinc anodes for cathodic protection of steel-reinforced concrete bridges

    SciTech Connect

    Bullard, Sophie J.; Covino, Bernard S., Jr.; Cramer, Stephen D.; McGill, Galen E.

    1996-01-01

    Thermal-sprayed zinc anodes are being used in Oregon in impressed current cathodic protection (ICCP) systems for reinforced concrete bridges. The U.S. Department of Energy, Albany Research Center, is collaborating with the Oregon Department of Transportation (ODOT) to evaluate the long-term performance and service life of these anodes. Laboratory studies were conducted on concrete slabs coated with 0.5 mm (20 mil) thick, thermal-sprayed zinc anodes. The slabs were electrochemically aged at an accelerated rate using an anode current density of 0.032 A/m2 (3mA/ft2). Half the slabs were preheated before thermal-spraying with zinc; the other half were unheated. Electrochemical aging resulted in the formation at the zinc-concrete interface of a thin, low pH zone (relative to cement paste) consisting primarily of ZnO and Zn(OH)2, and in a second zone of calcium and zinc aluminates and silicates formed by secondary mineralization. Both zones contained elevated concentrations of sulfate and chloride ions. The original bond strength of the zinc coating decreased due to the loss of mechanical bond to the concrete with the initial passage of electrical charge (aging). Additional charge led to an increase in bond strength to a maximum as the result of secondary mineralization of zinc dissolution products with the cement paste. Further charge led to a decrease in bond strength and ultimately coating disbondment as the interfacial reaction zones continued to thicken. This occurred at an effective service life of 27 years at the 0.0022 A/m2 (0.2 mA/ft2) current density typically used by ODOT in ICCP systems for coastal bridges. Zinc coating failure under tensile stress was primarily cohesive within the thickening reaction zones at the zinc-concrete interface. There was no difference between the bond strength of zinc coatings on preheated and unheated concrete surfaces after long service times.

  18. Investigation of the electrochemically active surface area and lithium diffusion in graphite anodes by a novel OsO4 staining method

    NASA Astrophysics Data System (ADS)

    Pfaffmann, Lukas; Birkenmaier, Claudia; Müller, Marcus; Bauer, Werner; Mitsch, Tim; Feinauer, Julian; Krämer, Yvonne; Scheiba, Frieder; Hintennach, Andreas; Schleid, Thomas; Schmidt, Volker; Ehrenberg, Helmut

    2016-03-01

    Negative electrodes of lithium-ion batteries generally consist of graphite-based active materials. In order to realize batteries with a high current density and therefore accelerated charging processes, the intercalation of lithium and the diffusion processes of these carbonaceous materials must be understood. In this paper, we visualized the electrochemical active surface area for three different anode materials using a novel OsO4 staining method in combination with scanning electron microscopy techniques. The diffusion behavior of these three anode materials is investigated by potentiostatic intermittent titration technique measurements. From those we determine the diffusion coefficient with and without consideration of the electrochemical active surface area.

  19. Cerium oxide coated anodes for aluminum electrowinning: Topical report, October 1, 1986-June 30, 1987

    SciTech Connect

    Walker, J. K.

    1987-12-01

    Because of the cost of building and maintaining a carbon anode plant and the energy penalties associated with the use of carbon anodes in the production of aluminum, the use of inert anodes has long been proposed. Various cermet anodes have been investigated. In this paper, tests on a material, cerium oxyfluoride (CEROX), deposited in situ as an anode, are reported. (JDH)

  20. Design of capillary flows with functionally graded porous titanium oxide films fabricated by anodization instability.

    PubMed

    Joung, Young Soo; Figliuzzi, Bruno Michel; Buie, Cullen R

    2014-06-01

    We have developed an electrochemical fabrication method utilizing breakdown anodization (BDA) to yield capillary flows that can be expressed as functions of capillary height. This method uses anodization instability with high electric potentials and mildly acidic electrolytes that are maintained at low temperature. BDA produces highly porous micro- and nano-structured surfaces composed of amorphous titanium oxide on titanium substrates, resulting in high capillary pressure and capillary diffusivity. With this fabrication technique the capillary flow properties can be controlled by varying the applied electric field and electrolyte temperature. Furthermore, they can be expressed as functions of capillary height when customized electric fields are used in BDA. To predict capillary flows on BDA surfaces, we developed a conceptual model of highly wettable porous films, which are modeled as multiple layers of capillary tubes oriented in the flow direction. From the model, we derived a general capillary flow equation of motion in terms of capillary pressure and capillary diffusivity, both of which can be expressed as functions of capillary height. The theoretical model was verified by comparisons with experimental capillary flows, showing good agreement. From investigation of the surface morphology we found that the surface structures were also functionally graded with respect to the capillary height (i.e. applied electric field). The suggested fabrication method and the theoretical model offer novel design methodologies for microscale liquid transport devices requiring control over propagation speed. PMID:24703679

  1. The Relationship of Mild Depression to Stress and Coping.

    ERIC Educational Resources Information Center

    Kolenc, Koleen M.; And Others

    1990-01-01

    Investigated relationship of mild depression, stress, and coping based on Lazarus's model of stress and coping. Examined two coping styles (problem and emotion focused), two measures of stress, and mild depression in college students (N=227). Found mildly depressed persons relied more on emotion-focused coping and experience more stress than did…

  2. High-energy electron acceleration in the gas-puff Z-pinch plasma

    SciTech Connect

    Takasugi, Keiichi; Miyazaki, Takanori; Nishio, Mineyuki

    2014-12-15

    The characteristics of hard x-ray generation were examined in the gas-puff z-pinch experiment. The experiment on reversing the voltage was conducted. In both of the positive and negative discharges, the x-ray was generated only from the anode surface, so it was considered that the electrons were accelerated by the induced electromagnetic force at the pinch time.

  3. Accelerated corrosion of stainless steel in thiocyanate-containing solutions

    SciTech Connect

    Pistorius, P Chris; Li, Wen

    2012-09-19

    It is known that reduced sulfur compounds (such as thiocyanate and thiosulfate) can accelerate active corrosion of austenitic stainless steel in acid solutions, but before we started this project the mechanism of acceleration was largely unclear. This work combined electrochemical measurements and analysis using scanning electron microscopy (SEM) and X-ray photo-electron spectroscopy (XPS), which provided a comprehensive understanding of the catalytic effect of reduced sulfur species on the active corrosion of stainless steel. Both the behavior of the pure elements and the steel were studied and the work focused on the interaction between the pure elements of the steel, which is the least understood area. Upon completion of this work, several aspects are now much clearer. The main results from this work can be summarized as follows: The presence of low concentrations (around 0.1 mM) of thiocyanate or tetrathionate in dilute sulfuric acid greatly accelerates the anodic dissolution of chromium and nickel, but has an even stronger effect on stainless steels (iron-chromium-nickel alloys). Electrochemical measurements and surface analyses are in agreement with the suggestion that accelerated dissolution really results from suppressed passivation. Even well below the passivation potential, the electrochemical signature of passivation is evident in the electrode impedance; the electrode impedance shows clearly that this pre-passivation is suppressed in the presence of thiocyanate. For the stainless steels, remarkable changes in the morphology of the corroded metal surface and in the surface concentration of chromium support the suggestion that pre-passivation of stainless steels is suppressed because dissolution of chromium is accelerated. Surface analysis confirmed that adsorbed sulfur / sulfide forms on the metal surfaces upon exposure to solutions containing thiocyanate or thiosulfate. For pure nickel, and steels containing nickel (and residual copper), bulk sulfide

  4. The corrosion protection of 2219-T87 aluminum by anodizing

    NASA Technical Reports Server (NTRS)

    Danford, M. D.

    1991-01-01

    Various types of anodizing coatings were studied for 2219-T87 aluminum. These include both type II and type III anodized coats which were water sealed and a newly developed and proprietary Magnaplate HCR (TM) coat. Results indicate that type II anodizing is not much superior to type II anodizing as far as corrosion protection for 2219-T87 aluminum is concerned. Magnaplate HCR (TM) coatings should provide superior corrosion protection over an extended period of time using a coating thickness of 51 microns (2.0 mils).

  5. Cooling for a rotating anode X-ray tube

    DOEpatents

    Smither, Robert K.

    1998-01-01

    A method and apparatus for cooling a rotating anode X-ray tube. An electromagnetic motor is provided to rotate an X-ray anode with cooling passages in the anode. These cooling passages are coupled to a cooling structure located adjacent the electromagnetic motor. A liquid metal fills the passages of the cooling structure and electrical power is provided to the motor to rotate the anode and generate a rotating magnetic field which moves the liquid metal through the cooling passages and cooling structure.

  6. Finding Platinum-Coating Gaps On Titanium Anodes

    NASA Technical Reports Server (NTRS)

    Bodemeijer, Ronnald; Flowers, Cecil E.

    1990-01-01

    Simple procedure makes gaps visible to eye. New gap-detection method consists of plating thin layer of non-silver-colored metal like copper or gold on anode. Contrast in color between plated metal and bare anode material makes gaps stand out. If anode passes inspection, copper or gold plate removable by reversal of test-plating current. Remains to be determined whether test plating and removal damages anode. New method simpler and more economical than previous attempts to identify gaps in platinum.

  7. Improving Efficiency of Aluminium Sacrificial Anode Using Cold Work Process

    NASA Astrophysics Data System (ADS)

    Asmara, Y. P.; Siregar, J. P.; Tezara, C.; Ann, Chang Tai

    2016-02-01

    Aluminium is one of the preferred materials to be used as sacrificial anode for carbon steel protection. The efficiency of these can be low due to the formation of oxide layer which passivate the anodes. Currently, to improve its efficiency, there are efforts using a new technique called surface modifications. The objective of this research is to study corrosion mechanism of aluminium sacrificial anode which has been processed by cold work. The cold works are applied by reducing the thickness of aluminium sacrificial anodes at 20% and 40% of thickness reduction. The cathodic protection experiments were performed by immersion of aluminium connected to carbon steel cylinder in 3% NaCl solutions. Visual inspections using SEM had been conducted during the experiments and corrosion rate data were taken in every week for 8 weeks of immersion time. Corrosion rate data were measured using weight loss and linear polarization technique (LPR). From the results, it is observed that cold worked aluminium sacrificial anode have a better corrosion performance. It shows higher corrosion rate and lower corrosion potential. The anodes also provided a long functional for sacrificial anode before it stop working. From SEM investigation, it is shown that cold works have changed the microstructure of anodes which is suspected in increasing corrosion rate and cause de-passivate of the surface anodes.

  8. Testing and Characterization of Anode Current in Aluminum Reduction Cells

    NASA Astrophysics Data System (ADS)

    Wang, Yongliang; Tie, Jun; Sun, Shuchen; Tu, Ganfeng; Zhang, Zhifang; Zhao, Rentao

    2016-06-01

    Anode current is an important parameter in the aluminum reduction process, but to test the anode current accurately is difficult at present. This study tested the individual anode current using the fiber-optic current sensor. The testing results show that this method can effectively avoid the interference of the electromagnetic field, and the current is measured with high precision which error is less than 1 pct. In the paper, the test currents under different cell conditions, including anode changing, metal tapping, abnormal current, and anode effect, are investigated using the method of time-domain and frequency-domain analysis, and the simulation method is also combined to investigate the cell conditions. The results prove that different cell conditions will show different anode current characteristics, and the individual current can monitor the cell conditions, especially the localized cell conditions. Some abnormal cell conditions can be found through anode current rather than cell voltage. The anode current can also be used for early detection of anode effect.

  9. Mesh-on-lead anodes for copper electrowinning

    NASA Astrophysics Data System (ADS)

    Moats, Michael; Hardee, Kenneth; Brown, Carl

    2003-07-01

    ELTECH System Corporation has developed and patented a Mesh-on-Lead™ (MOL™) (Mesh-on-Lead and MOL are trademarks of ELTECH Systems Corporation) anode for primary copper electrowinning operations. Over the past five years, ELTECH has demonstrated the MOL concept with full-scale anodes at several premier commercial tankhouses. During these demonstrations MOL anodes exhibited numerous performance advantages relative to standard Pb-Ca-Sn anodes, including reduced power consumption due to lower oxygen evolution over-potential, improved cathode quality, minimized lead sludge generation, eliminated cobalt addition as a result of stabilized lead substrate, and improved current efficiency due to reduced short circuiting.

  10. The Characterization of Biological Rhythms in Mild Cognitive Impairment

    PubMed Central

    Díaz-Mardomingo, Carmen; García-Herranz, Sara; Pereda-Pérez, Inmaculada; Peraita, Herminia; Venero, César; Madrid, Juan Antonio; Rol, Maria Angeles

    2014-01-01

    Introduction. Patients with dementia, especially Alzheimer's disease, present several circadian impairments related to an accelerated perturbation of their biological clock that is caused by the illness itself and not merely age-related. Thus, the objective of this work was to elucidate whether these circadian system alterations were already present in patients with mild cognitive impairment (MCI), as compared to healthy age-matched subjects. Methods. 40 subjects (21 patients diagnosed with MCI, 74.1 ± 1.5 y.o., and 19 healthy subjects, 71.7 ± 1.4 y.o.) were subjected to ambulatory monitoring, recording wrist skin temperature, motor activity, body position, and the integrated variable TAP (including temperature, activity, and position) for one week. Nonparametrical analyses were then applied. Results. MCI patients exhibited a significant phase advance with respect to the healthy group for the following phase markers: temperature M5 (mean ± SEM: 04:20 ± 00:21 versus 02:52 ± 00:21) and L10 (14:35 ± 00:27 versus 13:24 ± 00:16) and TAP L5 (04:18 ± 00:14 versus 02:55 ± 00:30) and M10 (14:30 ± 00:18 versus 13:28 ± 00:23). Conclusions. These results suggest that significant advances in the biological clock begin to occur in MCI patients, evidenced by an accelerated aging of the circadian clock, as compared to a healthy population of the same age. PMID:25157363

  11. Writing Impairments in Japanese Patients with Mild Cognitive Impairment and with Mild Alzheimer's Disease

    PubMed Central

    Hayashi, Atsuko; Nomura, Hiroshi; Mochizuki, Ruriko; Ohnuma, Ayumu; Kimpara, Teiko; Suzuki, Kyoko; Mori, Etsuro

    2015-01-01

    Background/Aims We investigated writing abilities in patients with the amnestic type of mild cognitive impairment (aMCI) and mild Alzheimer's disease (AD). To examine the earliest changes in writing function, we used writing tests for both words and sentences with different types of Japanese characters (Hiragana, Katakana, and Kanji). Methods A total of 25 aMCI patients, 38 AD patients, and 22 healthy controls performed writing to dictation for Kana and Kanji words, copied Kanji words, and wrote in response to a picture story task. Analysis of variance was used to test the subject group effects on the scores in the above writing tasks. Results For the written Kanji words, the mild AD group performed worse than the aMCI group and the controls, but there was no difference between the aMCI group and the controls. For the picture story writing task, the mild AD and aMCI groups performed worse than the controls, but the difference between the AD and the aMCI groups was not significant. Conclusions The mild AD group showed defects in writing Kanji characters, and the aMCI group showed impairments in narrative writing. Our study suggests that narrative writing, which demands complex integration of multiple cognitive functions, can be used to detect the subtle writing deficits in aMCI patients. PMID:26483830

  12. A Highly Controllable Electrochemical Anodization Process to Fabricate Porous Anodic Aluminum Oxide Membranes

    NASA Astrophysics Data System (ADS)

    Lin, Yuanjing; Lin, Qingfeng; Liu, Xue; Gao, Yuan; He, Jin; Wang, Wenli; Fan, Zhiyong

    2015-12-01

    Due to the broad applications of porous alumina nanostructures, research on fabrication of anodized aluminum oxide (AAO) with nanoporous structure has triggered enormous attention. While fabrication of highly ordered nanoporous AAO with tunable geometric features has been widely reported, it is known that its growth rate can be easily affected by the fluctuation of process conditions such as acid concentration and temperature during electrochemical anodization process. To fabricate AAO with various geometric parameters, particularly, to realize precise control over pore depth for scientific research and commercial applications, a controllable fabrication process is essential. In this work, we revealed a linear correlation between the integrated electric charge flow throughout the circuit in the stable anodization process and the growth thickness of AAO membranes. With this understanding, we developed a facile approach to precisely control the growth process of the membranes. It was found that this approach is applicable in a large voltage range, and it may be extended to anodization of other metal materials such as Ti as well.

  13. A Highly Controllable Electrochemical Anodization Process to Fabricate Porous Anodic Aluminum Oxide Membranes.

    PubMed

    Lin, Yuanjing; Lin, Qingfeng; Liu, Xue; Gao, Yuan; He, Jin; Wang, Wenli; Fan, Zhiyong

    2015-12-01

    Due to the broad applications of porous alumina nanostructures, research on fabrication of anodized aluminum oxide (AAO) with nanoporous structure has triggered enormous attention. While fabrication of highly ordered nanoporous AAO with tunable geometric features has been widely reported, it is known that its growth rate can be easily affected by the fluctuation of process conditions such as acid concentration and temperature during electrochemical anodization process. To fabricate AAO with various geometric parameters, particularly, to realize precise control over pore depth for scientific research and commercial applications, a controllable fabrication process is essential. In this work, we revealed a linear correlation between the integrated electric charge flow throughout the circuit in the stable anodization process and the growth thickness of AAO membranes. With this understanding, we developed a facile approach to precisely control the growth process of the membranes. It was found that this approach is applicable in a large voltage range, and it may be extended to anodization of other metal materials such as Ti as well. PMID:26706687

  14. Ventricular capture by anodal pacemaker stimulation.

    PubMed

    Occhetta, Eraldo; Bortnik, Miriam; Marino, Paolo

    2006-05-01

    This report describes the case of an 86-year-old male with syncopal paroxysmal 2:1 atrioventricular block and a single chamber VVI pacemaker programmed to bipolar sensing and unipolar pacing. After recurrence of syncope, a complete loss of ventricular capture with regular ventricular sensing was observed on ECG; fluoroscopic examination suggested perforation of the right ventricle by the helix of the implanted screw-in lead. Reprogramming the pacemaker to bipolar pacing/sensing resulted in regular ventricular capture and sensing, suggesting effective anodal stimulation from the ring electrode permitting complete non-invasive palliation. PMID:16636000

  15. Borderlines between Sarcopenia and Mild Late-Onset Muscle Disease

    PubMed Central

    Palmio, Johanna; Udd, Bjarne

    2014-01-01

    Numerous natural or disease-related alterations occur in different tissues of the body with advancing age. Sarcopenia is defined as age-related decrease of muscle mass and strength beginning in mid-adulthood and accelerating in people older than 60 years. Pathophysiology of sarcopenia involves both neural and muscle dependent mechanisms and is enhanced by multiple factors. Aged muscles show loss in fiber number, fiber atrophy, and gradual increase in the number of ragged red fibers and cytochrome c oxidase-negative fibers. Generalized loss of muscle tissue and increased amount of intramuscular fat are seen on muscle imaging. However, the degree of these changes varies greatly between individuals, and the distinction between normal age-related weakening of muscle strength and clinically significant muscle disease is not always obvious. Because some of the genetic myopathies can present at a very old age and be mild in severity, the correct diagnosis is easily missed. We highlight this difficult borderline zone between sarcopenia and muscle disease by two examples: LGMD1D and myotonic dystrophy type 2. Muscle magnetic resonance imaging (MRI) is a useful tool to help differentiate myopathies from sarcopenia and to reach the correct diagnosis also in the elderly. PMID:25324776

  16. Bismuth-based oxide semiconductors: Mild synthesis and practical applications

    NASA Astrophysics Data System (ADS)

    Timmaji, Hari Krishna

    In this dissertation study, bismuth based oxide semiconductors were prepared using 'mild' synthesis techniques---electrodeposition and solution combustion synthesis. Potential environmental remediation and solar energy applications of the prepared oxides were evaluated. Bismuth vanadate (BiVO4) was prepared by electrodeposition and solution combustion synthesis. A two step electrosynthesis strategy was developed and demonstrated for the first time. In the first step, a Bi film was first electrodeposited on a Pt substrate from an acidic BiCl3 medium. Then, this film was anodically stripped in a medium containing hydrolyzed vanadium precursor, to generate Bi3+, and subsequent BiVO4 formation by in situ precipitation. The photoelectrochemical data were consistent with the in situ formation of n-type semiconductor films. In the solution combustion synthesis procedure, BiVO4 powders were prepared using bismuth nitrate pentahydrate as the bismuth precursor and either vanadium chloride or vanadium oxysulfate as the vanadium precursor. Urea, glycine, or citric acid was used as the fuel. The effect of the vanadium precursor on the photocatalytic activity of combustion synthesized BiVO 4 was evaluated in this study. Methyl orange was used as a probe to test the photocatalytic attributes of the combustion synthesized (CS) samples, and benchmarked against a commercial bismuth vanadate sample. The CS samples showed superior activity to the commercial benchmark sample, and samples derived from vanadium chloride were superior to vanadium oxysulfate counterparts. The photoelectrochemical properties of the various CS samples were also studied and these samples were shown to be useful both for environmental photocatalytic remediation and water photooxidation applications. Silver bismuth tungstate (AgBiW2O8) nanoparticles were prepared for the first time by solution combustion synthesis by using silver nitrate, bismuth nitrate, sodium tungstate as precursors for Ag, Bi, and W

  17. Mild hypoglycaemia and questionnaire measures of aggression.

    PubMed

    Benton, D; Kumari, N; Brain, P F

    1982-01-01

    A glucose-tolerance test was given to a group of males who did not have a history involving aggressive behaviour or abnormal glucose metabolism. In these subjects a significant correlation was found between the tendency to become mildly hypoglycaemic and scores on the Buss-Durkee Hostility Inventory and the Rosenzweig Picture Frustration Study. A factor analysis of the data found that both scores on the aggression questionnaires and the measure of hypoglycaemia were similarly weighted. These results extent to normal subjects the finding that there is a relationship between hypoglycaemia and aggressiveness, a result previously found in psychiatric patients. PMID:7104424

  18. Mild cognitive impairment is becoming more psychosocial.

    PubMed

    Verhey, Frans; de Vugt, Marjolein

    2013-01-01

    In recent years, researchers have underlined the need for more studies of early psychosocial interventions for patients with mild cognitive impairment (MCI) and early dementia (Moniz-Cook, Vernooij-Dassen, Woods, & Orrell, 2011 ). In the last 10 years, MCI has become more 'psychosocial' and a starting point for professionals to help patients and their nearest ones to deal with their handicaps, to cope with a future that is insecure and gloomy, and to get prepared for the possibility of further decline and dependency. It is timely that Aging & Mental Health is devoting this paper, a special section in this issue with contributions dealing with psychological and social aspects of MCI. PMID:23402425

  19. Aluminium compound additives to reduce zinc corrosion in anodes of electrochemical cells

    SciTech Connect

    Jacus, R.J.

    1991-07-23

    This patent describes an electrochemical cell. It comprises an alkaline anode/electrolyte mixture, the anode/electrolyte mixture comprising zinc anode material containing less than 1% mercury by weight of zinc and a source of aluminum ions.

  20. Interfacial oxygen stabilizes composite silicon anodes.

    PubMed

    Sun, Chuan-Fu; Zhu, Hongli; Okada, Morihiro; Gaskell, Karen; Inoue, Yoku; Hu, Liangbing; Wang, YuHuang

    2015-01-14

    Silicon can store Li(+) at a capacity 10 times that of graphite anodes. However, to harness this remarkable potential for electrical energy storage, one has to address the multifaceted challenge of volume change inherent to high capacity electrode materials. Here, we show that, solely by chemical tailoring of Si-carbon interface with atomic oxygen, the cycle life of Si/carbon matrix-composite electrodes can be substantially improved, by 300%, even at high mass loadings. The interface tailored electrodes simultaneously attain high areal capacity (3.86 mAh/cm(2)), high specific capacity (922 mAh/g based on the mass of the entire electrode), and excellent cyclability (80% retention of capacity after 160 cycles), which are among the highest reported. Even at a high rate of 1C, the areal capacity approaches 1.61 mAh/cm(2) at the 500th cycle. This remarkable electrochemical performance is directly correlated with significantly improved structural and electrical interconnections throughout the entire electrode due to chemical tailoring of the Si-carbon interface with atomic oxygen. Our results demonstrate that interfacial bonding, a new dimension that has yet to be explored, can play an unexpectedly important role in addressing the multifaceted challenge of Si anodes. PMID:25513731

  1. Hybrid phosphazene anodes for energy storage applications

    SciTech Connect

    Eric J. Dufek; Mark L. Stone; Kevin L. Gering; Frederick F. Stewart; David Jamison; Aaron D. Wilson; Lucia M. Petkovic; Mason K. Harrup; Harry W. Rollins

    2014-12-01

    The use of hybrid cyclic phosphazene polymer/graphite anodes, where the phosphazene serves as distributed loci for Li deposition, has been investigated. Capacity within the hybrid system was found to occur reversibly in distinct regions. At the most positive voltages, above 0.06 V vs Li/Li+, the capacity was associated mostly with Li+ intercalation into graphite. In the most negative region, deposition of Li within the polymer was the predominate mechanism. A transitional region is inferred by the data whereby bulk aggregation or clustering of Li atoms occurs in proximity to the phosphazene sites that then serve as a template for more widespread population of Li within the anode at higher voltages, akin to a nucleation process. In full cells with a mixed oxide cathode, controlling the extent of Li deposition by limiting the charging voltage to 4.45 V enabled repeated cycling with no loss in capacity. Capacities as high as 183 mAh g-1 have been achieved for systems containing as little as 10% graphite while retaining coulombic efficiencies of 98% over 50 cycles. This level of cycling equates to the deposition of 7.4 Li per cyclic phosphazene.

  2. Alternative Anode Reaction for Copper Electrowinning

    SciTech Connect

    Not Available

    2005-07-01

    This report describes a project funded by the Department of Energy, with additional funding from Bechtel National, to develop a copper electrowinning process with lower costs and lower emissions than the current process. This new process also includes more energy efficient production by using catalytic-surfaced anodes and a different electrochemical couple in the electrolyte, providing an alternative oxidation reaction that requires up to 50% less energy than is currently required to electrowin the same quantity of copper. This alternative anode reaction, which oxidizes ferric ions to ferrous, with subsequent reduction back to ferric using sulfur dioxide, was demonstrated to be technically and operationally feasible. However, pure sulfur dioxide was determined to be prohibitively expensive and use of a sulfur burner, producing 12% SO{sub 2}, was deemed a viable alternative. This alternate, sulfur-burning process requires a sulfur burner, waste heat boiler, quench tower, and reaction towers. The electrolyte containing absorbed SO{sub 2} passes through activated carbon to regenerate the ferrous ion. Because this reaction produces sulfuric acid, excess acid removal by ion exchange is necessary and produces a low concentration acid suitable for leaching oxide copper minerals. If sulfide minerals are to be leached or the acid unneeded on site, hydrogen was demonstrated to be a potential reductant. Preliminary economics indicate that the process would only be viable if significant credits could be realized for electrical power produced by the sulfur burner and for acid if used for leaching of oxidized copper minerals on site.

  3. Mild Neurocognitive Disorder: An Old Wine in a New Bottle

    PubMed Central

    Stokin, Gorazd B.; Krell-Roesch, Janina; Petersen, Ronald C.; Geda, Yonas E.

    2015-01-01

    Abstract The American Psychiatric Association has recently published the fifth edition of the Diagnostic and Statistical Manual of Mental Disorders (DSM-5). The DSM-IV category “Dementia, Delirium, Amnestic, and Other Cognitive Disorders” has undergone extensive revision. DSM-5 has renamed this category as “Neurocognitive Disorders” (NCD), which now covers three entities: delirium, major NCD, and mild NCD. The DSM-IV version of mild NCD resembles the DSM-5 version in name only. DSM-IV defined mild NCD based on a single criterion, whereas DSM-5 defines mild NCD by using several cognitive and related criteria. The main difference between mild NCD and the Key International Symposium criteria of mild cognitive impairment (MCI) is that the research work that led to the construct of MCI primarily involved elderly study participants (even though age was not part of the definition of MCI), whereas mild NCD includes acquired cognitive disorders of all age groups. DSM-5 essentially discusses the epidemiology and diagnostic markers of mild NCD by drawing congruence between MCI and mild NCD. The DSM-5 definition of mild NCD is anchored on four criteria and two specifiers. The four criteria refer to cognitive changes, functional activities, and exclusion of delirium and competing mental disorders. The two specifiers are the presumed etiologies of mild NCD and the presence or absence of behavioral problems. While the category “mild NCD” may improve reliability of diagnoses, it has yet to withstand scientific scrutiny to be considered a valid construct. This article reviews the DSM-5 criteria for mild NCD, compares them with the Key International Symposium MCI criteria, and discusses the pros and cons of the mild NCD construct. PMID:26332219

  4. The direction of acceleration

    NASA Astrophysics Data System (ADS)

    Wilhelm, Thomas; Burde, Jan-Philipp; Lück, Stephan

    2015-11-01

    Acceleration is a physical quantity that is difficult to understand and hence its complexity is often erroneously simplified. Many students think of acceleration as equivalent to velocity, a ˜ v. For others, acceleration is a scalar quantity, which describes the change in speed Δ|v| or Δ|v|/Δt (as opposed to the change in velocity). The main difficulty with the concept of acceleration therefore lies in developing a correct understanding of its direction. The free iOS app AccelVisu supports students in acquiring a correct conception of acceleration by showing acceleration arrows directly at moving objects.

  5. TURBULENT SHEAR ACCELERATION

    SciTech Connect

    Ohira, Yutaka

    2013-04-10

    We consider particle acceleration by large-scale incompressible turbulence with a length scale larger than the particle mean free path. We derive an ensemble-averaged transport equation of energetic charged particles from an extended transport equation that contains the shear acceleration. The ensemble-averaged transport equation describes particle acceleration by incompressible turbulence (turbulent shear acceleration). We find that for Kolmogorov turbulence, the turbulent shear acceleration becomes important on small scales. Moreover, using Monte Carlo simulations, we confirm that the ensemble-averaged transport equation describes the turbulent shear acceleration.

  6. Vacuum Plasma Spray Forming of Tungsten Lorentz Force Accelerator Components

    NASA Technical Reports Server (NTRS)

    Zimmerman, Frank R.

    2001-01-01

    The Vacuum Plasma Spray (VPS) Laboratory at NASA's Marshall Space Flight Center has developed and demonstrated a fabrication technique using the VPS process to form anode sections for a Lorentz force accelerator from tungsten. Lorentz force accelerators are an attractive form of electric propulsion that provides continuous, high-efficiency propulsion at useful power levels for such applications as orbit transfers or deep space missions. The VPS process is used to deposit refractory metals such as tungsten onto a graphite mandrel of the desired shape. Because tungsten is reactive at high temperatures, it is thermally sprayed in an inert environment where the plasma gun melts and accelerates the metal powder onto the mandrel. A three-axis robot inside the chamber controls the motion of the plasma spray torch. A graphite mandrel acts as a male mold, forming the required contour and dimensions of the inside surface of the anode. This paper describes the processing techniques, design considerations, and process development associated with the VPS forming of the Lorentz force accelerator.

  7. Vacuum Plasma Spray Forming of Tungsten Lorentz Force Accelerator Components

    NASA Technical Reports Server (NTRS)

    Zimmerman, Frank R.

    2004-01-01

    The Vacuum Plasma Spray (VPS) Laboratory at NASA's Marshall Space Flight Center, working with the Jet Propulsion Laboratory, has developed and demonstrated a fabrication technique using the VPS process to form anode and cathode sections for a Lorentz force accelerator made from tungsten. Lorentz force accelerators are an attractive form of electric propulsion that provides continuous, high-efficiency propulsion at useful power levels for such applications as orbit transfers or deep space missions. The VPS process is used to deposit refractory metals such as tungsten onto a graphite mandrel of the desired shape. Because tungsten is reactive at high temperatures, it is thermally sprayed in an inert environment where the plasma gun melts and deposits the molten metal powder onto a mandrel. A three-axis robot inside the chamber controls the motion of the plasma spray torch. A graphite mandrel acts as a male mold, forming the required contour and dimensions for the inside surface of the anode or cathode of the accelerator. This paper describes the processing techniques, design considerations, and process development associated with the VPS forming of Lorentz force accelerator components.

  8. Performance of newly developed sprayed anode cathodic protection system

    SciTech Connect

    Funahashi, M.; Young, W.T.; Daily, S.F.

    1997-12-01

    To improve sprayed sacrificial zinc anode cathodic protection system, the Federal Highway Administration has sponsored a comprehensive program to develop a new sacrificial alloy for use as an anode to cathodically protect reinforced prestressed concrete structures. Under this program, a new sacrificial aluminum alloy has been developed. This paper presents the results of laboratory and field studies using this alloy.

  9. Electrolytic production of high purity aluminum using ceramic inert anodes

    DOEpatents

    Ray, Siba P.; Liu, Xinghua; Weirauch, Douglas A.; DiMilia, Robert A.; Dynys, Joseph M.; Phelps, Frankie E.; LaCamera, Alfred F.

    2002-01-01

    A method of producing commercial purity aluminum in an electrolytic reduction cell comprising ceramic inert anodes is disclosed. The method produces aluminum having acceptable levels of Fe, Cu and Ni impurities. The ceramic inert anodes used in the process may comprise oxides containing Fe and Ni, as well as other oxides, metals and/or dopants.

  10. Fundamental Investigation of Silicon Anode in Lithium-Ion Cells

    NASA Technical Reports Server (NTRS)

    Wu, James J.; Bennett, William R.

    2012-01-01

    Silicon is a promising and attractive anode material to replace graphite for high capacity lithium ion cells since its theoretical capacity is 10 times of graphite and it is an abundant element on Earth. However, there are challenges associated with using silicon as Li-ion anode due to the significant first cycle irreversible capacity loss and subsequent rapid capacity fade during cycling. Understanding solid electrolyte interphase (SEI) formation along with the lithium ion insertion/de-insertion kinetics in silicon anodes will provide greater insight into overcoming these issues, thereby lead to better cycle performance. In this paper, cyclic voltammetry and electrochemical impedance spectroscopy are used to build a fundamental understanding of silicon anodes. The results show that it is difficult to form the SEI film on the surface of a Si anode during the first cycle; the lithium ion insertion and de-insertion kinetics for Si are sluggish, and the cell internal resistance changes with the state of lithiation after electrochemical cycling. These results are compared with those for extensively studied graphite anodes. The understanding gained from this study will help to design better Si anodes, and the combination of cyclic voltammetry with impedance spectroscopy provides a useful tool to evaluate the effectiveness of the design modifications on the Si anode performance.

  11. Electrolytic production of high purity aluminum using inert anodes

    DOEpatents

    Ray, Siba P.; Liu, Xinghua; Weirauch, Jr., Douglas A.

    2001-01-01

    A method of producing commercial purity aluminum in an electrolytic reduction cell comprising inert anodes is disclosed. The method produces aluminum having acceptable levels of Fe, Cu and Ni impurities. The inert anodes used in the process preferably comprise a cermet material comprising ceramic oxide phase portions and metal phase portions.

  12. Tubular bamboo charcoal for anode in microbial fuel cells

    NASA Astrophysics Data System (ADS)

    Zhang, Jun; Li, Jun; Ye, Dingding; Zhu, Xun; Liao, Qiang; Zhang, Biao

    2014-12-01

    The anode material plays a significant role in determining the performance of microbial fuel cells (MFCs). In this study, the bamboo charcoal tube is proposed as a novel anode substrate by carbonizing the natural bamboo. Its surface functional groups, biocompatibility and internal resistance are thoroughly investigated. Performance of the MFCs with a conventional graphite tube anode and a bamboo charcoal tube anode is also compared. The results indicate that the tubular bamboo charcoal anode exhibits advantages over the graphite tube anode in terms of rougher surface, superior biocompatibility and smaller total internal resistance. Moreover, the X-ray photoelectron spectroscopy (XPS) analysis for the bamboo charcoal reveals that the introduced C-N bonds facilitate the electron transfer between the biofilm and electrodes. As a result, the MFC with a bamboo charcoal tube anode achieves a 50% improvement in the maximum power density over the graphite tube case. Furthermore, scale-up of the bamboo charcoal tube anode is demonstrated by employing a bundle of tubular bamboo charcoal to reach higher power output.

  13. High-absorptance high-emittance anodic coating

    NASA Technical Reports Server (NTRS)

    Le, Huong Giang (Inventor); Chesterfield, John L. (Inventor)

    1999-01-01

    A colored anodic coating for use on surfaces of substrates, e.g. aluminum substrates in which it is desirable to maintain a high solar absorptance (.alpha.) and a high infrared emittance (.epsilon.), particularly in low earth orbit space environments. This anodic coating is preferably a dark colored coating, and even more preferably a black coating. This coating allows a touch temperature within an acceptable design range to preclude burning of an astronaut in case of contact, but also allows a solar radiation absorption in an amount such that an .alpha./.epsilon. ratio of unity is achieved. The coating of the invention comprises a first layer in the form of an acid anodized colored anodic layer for achieving a high solar absorptance and a second or high emittance layer in the form of a clear acid anodized layer for achieving a high emittance. The entire coating is quite thin, e.g. 1-2 mils and is quite stable in a hostile space environment of the type encountered in a low earth orbit. The coating is obtained by first creating the high emittance clear anodized coating on the metal surface followed by anodizing using a colored anodizing process.

  14. High-absorptance high-emittance anodic coating

    NASA Technical Reports Server (NTRS)

    Le, Huong Giang (Inventor); Chesterfield, John L. (Inventor)

    1998-01-01

    A colored anodic coating for use on surfaces of substrates, e.g. aluminum substrates in which it is desirable to maintain a high solar absorptance (a) and a high infrared emittance (e), particularly in low earth orbit space environments. This anodic coating is preferably a dark colored coating, and even more preferably a black coating. This coating allows a touch temperature within an acceptable design range to preclude burning of an astronaut in case of contact, but also allows a solar radiation absorption in an amount such that an a/e ratio of unity is achieved. The coating of the invention comprises a first layer in the form of an acid anodized colored anodic layer for achieving a high solar absorptance and a second or high emittance layer in the form of a clear acid anodized layer for achieving a high emittance. The entire coating is quite thin, e.g. 1-2 mils and is quite stable in a hostile space environment of the type encountered in a low earth orbit. The coating is obtained by first creating the high emittance clear anodized coating on the metal surface followed by anodizing using a colored anodizing process.

  15. The history of progress in dimensionally stable anodes

    NASA Astrophysics Data System (ADS)

    Duby, Paul

    1993-03-01

    This article provides a brief history of dimensionally stable anodes by reviewing innovations in the chlor-alkali industry, electroplating and electrogalvanizing, and electrowinning. These anodes are attractive for numerous reasons (e.g.,.long life and reduced energy consumption), but they must still overcome the hurdle of cost togain wider acceptance for applications in the metallurgical process industries.

  16. Electrostatic ion acceleration across a diverging magnetic field

    NASA Astrophysics Data System (ADS)

    Ichihara, D.; Uchigashima, A.; Iwakawa, A.; Sasoh, A.

    2016-08-01

    Electrostatic ion acceleration across a diverging magnetic field, which is generated by a solenoid coil, permanent magnets, and a yoke between an upstream ring anode and a downstream off-axis hollow cathode, is investigated. The cathode is set in an almost magnetic-field-free region surrounded by a cusp. Inside the ring anode, an insulating wall is set to form an annular slit through which the working gas is injected along the anode inner surface, so the ionization of the working gas is enhanced there. By supplying 1.0 Aeq of argon as working gas with a discharge voltage of 225 V, the ion beam energy reached about 60% of a discharge voltage. In spite of this unique combination of electrodes and magnetic field, a large electrical potential drop is formed almost in the axial direction, located slightly upstream of the magnetic-field-free region. The ion beam current almost equals the equivalent working gas flow rate. These ion acceleration characteristics are useful for electric propulsion in space.

  17. Endothelial dysfunction and atherothrombosis in mild hyperhomocysteinemia.

    PubMed

    Weiss, Norbert; Keller, Christiane; Hoffmann, Ulrich; Loscalzo, Joseph

    2002-08-01

    Mildly elevated plasma homocysteine levels are an independent risk factor for atherothrombotic vascular disease in the coronary, cerebrovascular, and peripheral arterial circulation. Endothelial dysfunction as manifested by impaired endothelium-dependent regulation of vascular tone and blood flow, by increased recruitment and adhesion of circulating inflammatory cells to the endothelium, and by a loss of endothelial cell antithrombotic function contributes to the vascular disorders linked to hyperhomocysteinemia. Increased vascular oxidant stress through imbalanced thiol redox status and inhibition of important antioxidant enzymes by homocysteine results in decreased bioavailability of the endothelium-derived signaling molecule nitric oxide via oxidative inactivation. This plays a central role in the molecular mechanisms underlying the effects of homocysteine on endothelial function. Supplementation of folic acid and vitamin B12 has been demonstrated to be efficient in lowering mildly elevated plasma homocysteine levels and in reversing homocysteine-induced impairment of endothelium-dependent vasoreactivity. Results from ongoing intervention trials will determine whether homocysteine-lowering therapies contribute to the prevention and reduction of atherothrombotic vascular disease and may thereby provide support for the causal relationship between hyperhomocysteinemia and atherothrombosis. PMID:12553746

  18. ENCOAL mild coal gasification project. Annual report

    SciTech Connect

    Not Available

    1993-10-01

    This document is the combination of the fourth quarter report (July--September 1993) and the 1993 annual report for the ENCOAL project. The following pages include the background and process description for the project, brief summaries of the accomplishments for the first three quarters, and a detailed fourth quarter report. Its purpose is to convey the accomplishments and current progress of the project. ENCOAL Corporation, has completed the construction of a mild gasification demonstration plant at Triton Coal Company`s Buckskin Mine near Gillette, Wyoming. The process, using Liquids From Coal (LFC) technology developed by SMC and SGI International, utilizes low-sulfur Powder River Basin coal to produce two new fuels, Process Derived Fuel (PDF) and Coal Derived Liquids (CDL). ENCOAL submitted an application to the US Department of Energy (DOE) in August 1989, soliciting joint funding of the project in the third round of the Clean Coal Technology Program. The project was selected by DOE in December, 1989 and the Cooperative Agreement approved in September, 1990. Construction, commissioning, and start-up of the ENCOAL mild coal gasification facility was completed in June of 1992, and the project is currently in the operations phase. Some plant modifications have been required and are discussed in this report.

  19. Mild pyrolysis of selectively oxidized coals

    SciTech Connect

    Hippo, E.J.

    1991-01-01

    The primary objective of this study is to investigate the removal organic sulfur from selectively oxidized Illinois coals using mild thermal/chemical processes. Work completed this quarter includes the investigation of the mild pyrolysis of unoxidized coals plus a selection of selectively oxidized coals. In addition the effect of particle size and extent of oxidation on pyrolysis was investigated. Some preliminary data concerning pyrolysis under vacuum and ambient pressure was also obtained. Work completed this quarter supports the following conclusions: (1) Desulfurization of unoxidized coals increases with increasing pyrolysis temperature and correlates with the loss of volatile matter. (2) Particle size did not influence the extent of desulfurization significantly. (3) Removing pyrite prior to pyrolysis helps to achieve a lower sulfur product beyond that expected from the removal of pyrite alone. (4) The extent of selective oxidation in teh pretreatment step did not effect the level of desulfurization obtained by pyrolysis alone. However this factor was important in the desulfurization obtained with supercritical methanol (SCM)/base. (5) Up to 84% of the sulfur has been removed from the IBC 101 coal by combining selective oxidation and SCM/base reactions. (6) Evidence for regressive reactions between volatilized sulfur compounds and partially desulfurized products was obtained by studying how changes in pyrolysis pressure effected the product sulfur content.

  20. Results from a pilot cell test of cermet anodes

    SciTech Connect

    Windisch, Jr, C F; Strachan, D M; Henager, Jr, C H; Greenwell, E N; Alcorn, T R

    1992-08-01

    Goal was to develop long-lasting, energy-efficient anodes for Hall-Heroult cells used to produce Al metal. The anodes were made from a ceramic/metal composite consisting of NiO and NiFe{sub 2}O{sub 4} and a Cu/Ni metal phase. Thirteen cermet anodes were tested at Reynolds Metals Co., Muscle Shoals, AL. All anodes corroded severely during the pilot test. Electrolyte components were found deep within the anodes. However, there were many deficiencies in the pilot cell test, mainly the failure to maintain optimal operating conditions. It is concluded that there is a variety of fabrication and operational considerations that need to be addressed carefully in any future testing. 118 figs, 16 tabs, 17 refs.(DLC)

  1. Prototypic MHD anode designs and confirmation test results

    SciTech Connect

    Pian, C.C.P.; Petty, S.W.; Schmitt, E.W.

    1993-12-31

    This paper reviews the design and the design rationale for the anode electrodes of the Integrated Topping Cycle (ITC) MHD power generator. This power generator is currently undergoing proof-of-concept (POC) duration testing at the U.S. Department of Energy`s Component Development and Integration Facility (CDIF) in Butte, Montana. The major anode lifetime-limiting mechanisms, as well as the design features adopted to overcome these mechanisms, are described in detail in the full paper. Anode fabrication procedures are reviewed. Also described is the nondestructive ultrasonic inspection technique used to evaluate the braze joints of all production electrode pieces. Finally, the test results from the coal-fired confirmation tests of the prototypic anode design are reported. These tests were carried out in the workhorse generator channel at the CDIF between 1991 and 1992. Several alternative anode designs also have projected lifetimes exceeding the ITC 2000-hour lifetime requirement.

  2. Light-assisted anodized TiO₂ nanotube arrays.

    PubMed

    Smith, York R; Sarma, Biplab; Mohanty, Swomitra K; Misra, Mano

    2012-11-01

    Self-assembled arrays of titania nanotubes are synthesized via electrochemical anodization of Ti foils under the presence of UV-vis irradiation. Compared to control samples (anodized without light), the light-assisted anodized samples exhibit larger diameters as well as thicker nanotube walls, whereas the length of the nanotubes remains the same under otherwise similar synthesis conditions. Enhanced photoelectrochemical performance with light-assisted anodized samples under simulated AM 1.5 irradiation is observed by an increase in photocurrent density of 45-73% at 1.23 V (RHE). The enhanced photoelectrochemical performance is correlated to improved charge separation analyzed by Mott-Schottky. A mechanism on the photoeffect during anodization is presented. The morphology and improved properties obtained from the synthesis methodology may also find application in other fields such as sensing and catalysis. PMID:23078074

  3. Focused cathode design to reduce anode heating during vircator operation

    NASA Astrophysics Data System (ADS)

    Lynn, Curtis F.; Dickens, James C.; Neuber, Andreas A.

    2013-10-01

    Virtual cathode oscillators, or vircators, are a type of high power microwave device which operates based on the instability of a virtual cathode, or cloud of electrons, which forms when electron current injected into the drift tube exceeds the space charge limited current within the drift tube. Anode heating by the electron beam during vircator operation ultimately limits achievable pulse lengths, repetition rates, and the duration of burst mode operation. This article discusses a novel cathode design that focuses electrons through holes in the anode, thus significantly reducing anode heating by the electrons emitted from the cathode during the first transit through the A-K gap. Reflexing electrons continue to deposit energy on the anode; however, the discussed minimization of anode heating by main beam electrons has the potential to enable higher repetition rates as well as efficiency and longer diode lifetime. A simulation study of this type of cathode design illustrates possible advantages.

  4. Natural gas anodes for aluminium electrolysis in molten fluorides.

    PubMed

    Haarberg, Geir Martin; Khalaghi, Babak; Mokkelbost, Tommy

    2016-08-15

    Industrial primary production of aluminium has been developed and improved over more than 100 years. The molten salt electrolysis process is still suffering from low energy efficiency and considerable emissions of greenhouse gases (CO2 and PFC). A new concept has been suggested where methane is supplied through the anode so that the CO2 emissions may be reduced significantly, the PFC emissions may be eliminated and the energy consumption may decrease significantly. Porous carbon anodes made from different graphite grades were studied in controlled laboratory experiments. The anode potential, the anode carbon consumption and the level of HF gas above the electrolyte were measured during electrolysis. In some cases it was found that the methane oxidation was effectively participating in the anode process. PMID:27210046

  5. Interfacial chemistry of zinc anodes for reinforced concrete structures

    SciTech Connect

    Covino, B.S. Jr.; Bullard, S.J.; Cramer, S.D.; Holcomb, G.R.; McGill, G.E.; Cryer, C.B.; Stoneman, A.; Carter, R.R.

    1997-12-01

    Thermally-sprayed zinc anodes are used in both galvanic and impressed current cathodic protection systems for reinforced concrete structures. The Albany Research Center, in collaboration with the Oregon Department of Transportation, has been studying the effect of electrochemical aging on the bond strength of zinc anodes for bridge cathodic protection systems. Changes in anode bond strength and other anode properties can be explained by the chemistry of the zinc-concrete interface. The chemistry of the zinc-concrete interface in laboratory electrochemical aging studies is compared with that of several bridges with thermal-sprayed zinc anodes and which have been in service for 5 to 10 years using both galvanic and impressed current cathodic protection systems. The bridges are the Cape Creek Bridge on the Oregon coast and the East Camino Undercrossing near Placerville, CA. Also reported are interfacial chemistry results for galvanized steel rebar from the 48 year old Longbird Bridge in Bermuda.

  6. Cell and method for electrolysis of water and anode

    NASA Technical Reports Server (NTRS)

    Aylward, J. R. (Inventor)

    1981-01-01

    An electrolytic cell for converting water vapor to oxygen and hydrogen include an anode comprising a foraminous conductive metal substrate with a 65-85 weight percent iridium oxide coating and 15-35 weight percent of a high temperature resin binder. A matrix member contains an electrolyte to which a cathode substantially inert. The foraminous metal member is most desirably expanded tantalum mesh, and the cell desirably includes reservoir elements of porous sintered metal in contact with the anode to receive and discharge electrolyte to the matrix member as required. Upon entry of a water vapor containing airstream into contact with the outer surface of the anode and thence into contact with iridium oxide coating, the water vapor is electrolytically converted to hydrogen ions and oxygen with the hydrogen ions migrating through the matrix to the cathode and the oxygen gas produced at the anode to enrich the air stream passing by the anode.

  7. Experiences in retrofitting sacrificial anodes in offshore Arabian Gulf

    SciTech Connect

    Kiefer, J.H.; Thomason, W.H.; Alansari, N.G.

    1998-12-31

    An analysis was made of the cathodic protection systems of fifteen (15) fixed offshore platforms. These steel template structures are located in the warm waters off the coast of the United Arab Emirates with water depth varying between 125 and 185 feet. The operator employs a systematic survey program to monitor the corrosion protection systems including the assessment of sacrificial anode depletion, and measurement of the anode and platform potentials. These data are used to design new anode retrofits for the older structures to extend the life of the CP systems. This paper presents an analysis of the field survey measurements, the method used to evaluate when new anodes are required, how many are needed, and where to locate retrofit anodes.

  8. Accelerating Particles with Plasma

    SciTech Connect

    Litos, Michael; Hogan, Mark

    2014-11-05

    Researchers at SLAC explain how they use plasma wakefields to accelerate bunches of electrons to very high energies over only a short distance. Their experiments offer a possible path for the future of particle accelerators.

  9. Improved plasma accelerator

    NASA Technical Reports Server (NTRS)

    Cheng, D. Y.

    1971-01-01

    Converging, coaxial accelerator electrode configuration operates in vacuum as plasma gun. Plasma forms by periodic injections of high pressure gas that is ionized by electrical discharges. Deflagration mode of discharge provides acceleration, and converging contours of plasma gun provide focusing.

  10. Phenomenological Model of Current Sheet Canting in Pulsed Electromagnetic Accelerators

    NASA Technical Reports Server (NTRS)

    Markusic, Thomas; Choueiri, E. Y.

    2003-01-01

    The phenomenon of current sheet canting in pulsed electromagnetic accelerators is the departure of the plasma sheet (that carries the current) from a plane that is perpendicular to the electrodes to one that is skewed, or tipped. Review of pulsed electromagnetic accelerator literature reveals that current sheet canting is a ubiquitous phenomenon - occurring in all of the standard accelerator geometries. Developing an understanding of current sheet canting is important because it can detract from the propellant sweeping capabilities of current sheets and, hence, negatively impact the overall efficiency of pulsed electromagnetic accelerators. In the present study, it is postulated that depletion of plasma near the anode, which results from axial density gradient induced diamagnetic drift, occurs during the early stages of the discharge, creating a density gradient normal to the anode, with a characteristic length on the order of the ion skin depth. Rapid penetration of the magnetic field through this region ensues, due to the Hall effect, leading to a canted current front ahead of the initial current conduction channel. In this model, once the current sheet reaches appreciable speeds, entrainment of stationary propellant replenishes plasma in the anode region, inhibiting further Hall-convective transport of the magnetic field; however, the previously established tilted current sheet remains at a fairly constant canting angle for the remainder of the discharge cycle, exerting a transverse J x B force which drives plasma toward the cathode and accumulates it there. This proposed sequence of events has been incorporated into a phenomenological model. The model predicts that canting can be reduced by using low atomic mass propellants with high propellant loading number density; the model results are shown to give qualitative agreement with experimentally measured canting angle mass dependence trends.

  11. Model anodes and anode models for understanding the mechanism of hydrogen oxidation in solid oxide fuel cells.

    PubMed

    Bessler, Wolfgang G; Vogler, Marcel; Störmer, Heike; Gerthsen, Dagmar; Utz, Annika; Weber, André; Ivers-Tiffée, Ellen

    2010-11-14

    This article presents a literature review and new results on experimental and theoretical investigations of the electrochemistry of solid oxide fuel cell (SOFC) model anodes, focusing on the nickel/yttria-stabilized zirconia (Ni/YSZ) materials system with operation under H(2)/H(2)O atmospheres. Micropatterned model anodes were used for electrochemical characterization under well-defined operating conditions. Structural and chemical integrity was confirmed by ex situ pre-test and post-test microstructural and chemical analysis. Elementary kinetic models of reaction and transport processes were used to assess reaction pathways and rate-determining steps. The comparison of experimental and simulated electrochemical behaviors of pattern anodes shows quantitative agreement over a wide range of operating conditions (p(H(2)) = 8×10(2) - 9×10(4) Pa, p(H(2)O) = 2×10(1) - 6×10(4) Pa, T = 400-800 °C). Previously published experimental data on model anodes show a strong scatter in electrochemical performance. Furthermore, model anodes exhibit a pronounced dynamics on multiple time scales which is not reproduced in state-of-the-art models and which is also not observed in technical cermet anodes. Potential origin of these effects as well as consequences for further steps in model anode and anode model studies are discussed. PMID:20820576

  12. Resonance of human brain under head acceleration

    PubMed Central

    Laksari, Kaveh; Wu, Lyndia C.; Kurt, Mehmet; Kuo, Calvin; Camarillo, David C.

    2015-01-01

    Although safety standards have reduced fatal head trauma due to single severe head impacts, mild trauma from repeated head exposures may carry risks of long-term chronic changes in the brain's function and structure. To study the physical sensitivities of the brain to mild head impacts, we developed the first dynamic model of the skull–brain based on in vivo MRI data. We showed that the motion of the brain can be described by a rigid-body with constrained kinematics. We further demonstrated that skull–brain dynamics can be approximated by an under-damped system with a low-frequency resonance at around 15 Hz. Furthermore, from our previous field measurements, we found that head motions in a variety of activities, including contact sports, show a primary frequency of less than 20 Hz. This implies that typical head exposures may drive the brain dangerously close to its mechanical resonance and lead to amplified brain–skull relative motions. Our results suggest a possible cause for mild brain trauma, which could occur due to repetitive low-acceleration head oscillations in a variety of recreational and occupational activities. PMID:26063824

  13. Resonance of human brain under head acceleration.

    PubMed

    Laksari, Kaveh; Wu, Lyndia C; Kurt, Mehmet; Kuo, Calvin; Camarillo, David C

    2015-07-01

    Although safety standards have reduced fatal head trauma due to single severe head impacts, mild trauma from repeated head exposures may carry risks of long-term chronic changes in the brain's function and structure. To study the physical sensitivities of the brain to mild head impacts, we developed the first dynamic model of the skull-brain based on in vivo MRI data. We showed that the motion of the brain can be described by a rigid-body with constrained kinematics. We further demonstrated that skull-brain dynamics can be approximated by an under-damped system with a low-frequency resonance at around 15 Hz. Furthermore, from our previous field measurements, we found that head motions in a variety of activities, including contact sports, show a primary frequency of less than 20 Hz. This implies that typical head exposures may drive the brain dangerously close to its mechanical resonance and lead to amplified brain-skull relative motions. Our results suggest a possible cause for mild brain trauma, which could occur due to repetitive low-acceleration head oscillations in a variety of recreational and occupational activities. PMID:26063824

  14. Titanium dental implant surfaces obtained by anodic spark deposition - From the past to the future.

    PubMed

    Kaluđerović, Milena R; Schreckenbach, Joachim P; Graf, Hans-Ludwig

    2016-12-01

    Commercial titanium-based dental implants are obtained applying various methods such as machining, acid etching, anodization, plasma spraying, grit blasting or combination techniques yielding materials with smooth or micro-roughened surfaces. Those techniques are used to optimize the surface properties and to maximize biocompatibility and bioactivity with bone tissue. Present review is focused on the material surfaces obtained by anodic spark deposition (ASD). From the early 1980s till present, the results of numerous studies have shown that anodically oxidized surfaces with different dopants express a positive effect on osteoblasts behavior in vitro and osseointegration in vivo. Those surfaces demonstrated a high biocompatibility and rapid osseointegration in clinical application. This paper provides an overview of the preparation of implant surfaces by employing ASD process. Moreover, reviewed are clinically used ASD implant surfaces (Ticer, TiUnite, Osstem, etc.). The electrolyte variations in ASD process and their influence on surface properties are given herein. Using different electrolytes, anode voltages and temperatures, the above fabrication process can yield various surface morphologies from smooth to rough, porous surfaces. Furthermore, ASD enables thickening of oxide layers and enrichment with different dopands from used electrolyte, which hinder release of potentially toxic titanium ions in surrounding tissue. Particularly exciting results were achieved by calcium and phosphorus doping of the oxide layer (Ticer, ZL Microdent; TiUnite, Nobel Biocare Holding AB) which significantly increased the osteocompatibility. Ticer, a dental implant with anodically oxidized surface and the first among similar materials employed in clinical practice, was found to promote fast osteoblast cell differentiation and mineralization processes. Moreover, Ticer accelerate the integration with the bone, increase the bone/implant contact and improve primary and secondary

  15. Acceleration gradient of a plasma wakefield accelerator

    SciTech Connect

    Uhm, Han S.

    2008-02-25

    The phase velocity of the wakefield waves is identical to the electron beam velocity. A theoretical analysis indicates that the acceleration gradient of the wakefield accelerator normalized by the wave breaking amplitude is K{sub 0}({xi})/K{sub 1}({xi}), where K{sub 0}({xi}) and K{sub 1}({xi}) are the modified Bessel functions of the second kind of order zero and one, respectively and {xi} is the beam parameter representing the beam intensity. It is also shown that the beam density must be considerably higher than the diffuse plasma density for the large radial velocity of plasma electrons that are required for a high acceleration gradient.

  16. Far field acceleration

    SciTech Connect

    Fernow, R.C.

    1995-07-01

    Far fields are propagating electromagnetic waves far from their source, boundary surfaces, and free charges. The general principles governing the acceleration of charged particles by far fields are reviewed. A survey of proposed field configurations is given. The two most important schemes, Inverse Cerenkov acceleration and Inverse free electron laser acceleration, are discussed in detail.

  17. Angular Acceleration Without Torque?

    NASA Astrophysics Data System (ADS)

    Kaufman, Richard D.

    2012-01-01

    Hardly. Just as Robert Johns qualitatively describes angular acceleration by an internal force in his article "Acceleration Without Force?" here we will extend the discussion to consider angular acceleration by an internal torque. As we will see, this internal torque is due to an internal force acting at a distance from an instantaneous center.2

  18. Sustained linear acceleration

    NASA Technical Reports Server (NTRS)

    Fraser, T. M.

    1973-01-01

    The subjective effects of sustained acceleration are discussed, including positive, negative, forward, backward, and lateral acceleration effects. Physiological effects, such as retinal and visual response, unconsciousness and cerebral function, pulmonary response, and renal output, are studied. Human tolerance and performance under sustained acceleration are ascertained.

  19. Angular Acceleration without Torque?

    ERIC Educational Resources Information Center

    Kaufman, Richard D.

    2012-01-01

    Hardly. Just as Robert Johns qualitatively describes angular acceleration by an internal force in his article "Acceleration Without Force?" here we will extend the discussion to consider angular acceleration by an internal torque. As we will see, this internal torque is due to an internal force acting at a distance from an instantaneous center.

  20. Acceleration: It's Elementary

    ERIC Educational Resources Information Center

    Willis, Mariam

    2012-01-01

    Acceleration is one tool for providing high-ability students the opportunity to learn something new every day. Some people talk about acceleration as taking a student out of step. In actuality, what one is doing is putting a student in step with the right curriculum. Whole-grade acceleration, also called grade-skipping, usually happens between…

  1. Synthesis of iridescent Ni-containing anodic aluminum oxide films by anodization in oxalic acid

    NASA Astrophysics Data System (ADS)

    Xu, Qin; Ma, Hong-Mei; Zhang, Yan-Jun; Li, Ru-Song; Sun, Hui-Yuan

    2016-02-01

    Ni-containing anodic aluminum oxide films with highly saturated colors were synthesized using an ac electrodeposition method, and the optical and magnetic characteristics of the films were characterized. Precisely controllable color tuning could be obtained using wet-chemical etching to thin and widen the anodic aluminum oxide films pores isotropically before Ni deposition. Magnetic measurements indicate that such colored composite films not exhibit obvious easy magnetization direction. The resulted short (200 nm in length) and wide (50 nm in diameter) Ni nanowires present only fcc phase. The magnetization reversal mechanism is in good agreement with the symmetric fanning reversal mode which is discussed in detail. Such films may find applications in decoration, display and multifunctional anti-counterfeiting applications.

  2. Development of anode zone using dual-anode system to reduce organic matter crossover in membraneless microbial fuel cells.

    PubMed

    Kim, Jisu; Kim, Bongkyu; An, Junyeong; Lee, Yoo Seok; Chang, In Seop

    2016-08-01

    To prevent the occurrence of the organic crossover in membraneless microbial fuel cells (ML-MFCs), dual-anode MFC (DA-MFC) was designed from multi-anode concept to ensure anode zone. The anode zone addressed increase the utilization of organic matter in ML-MFCs, as the result, the organic crossover was prevented and performance of MFCs were enhanced. The maximum power of the DA-MFC was 0.46mW, which is about 1.56 times higher than the ML-MFC (0.29mW). Furthermore, the DA-MFC had advantage in correlation of organic substance concentration and dissolved oxygen concentration, and even electric over-potential. In addition, in terms of cathode fouling, the DA-MFC showed clearer surface. Hence, the anode zone should be considered in the advanced ML-MFC for practically use in wastewater treatment process, and also for scale-up of MFCs. PMID:26972026

  3. Swimming and persons with mild persistant asthma.

    PubMed

    Arandelović, Mirjana; Stanković, Ivana; Nikolić, Maja

    2007-01-01

    The aim of our study was to analyze the effect of recreational swimming on lung function and bronchial hyperresponsiveness (BHR) in patients with mild persistent asthma. This study included 65 patients with mild persistent asthma, who were divided into two groups: experimental group A (n = 45) and control group B (n = 20). Patients from both groups were treated with low doses of inhaled corticosteroids (ICS) and short-acting beta2 agonists salbutamol as needed. Our program for patients in group A was combined asthma education with swimming (twice a week on a 1-h basis for the following 6 months). At the end of the study, in Group A, we found a statistically significant increase of lung function parameters FEV1 (forced expiratory volume in 1 sec) (3.55 vs. 3.65) (p < 0.01), FVC (forced vital capacity) (4.27 vs. 4.37) (p < 0.05), PEF (peak expiratory flow) (7.08 vs. 7.46) (p < 0.01), and statistically significant decrease of BHR (PD20 0.58 vs. 2.01) (p < 0.001). In Group B, there was a statistically significant improvement of FEV1 3.29 vs. 3.33 (p < 0.05) and although FVC, FEV1/FVC, and PEF were improved, it was not significant. When Groups A and B were compared at the end of the study, there was a statistically significant difference of FVC (4.01 vs. 4.37), FEV1 (3.33 vs. 3.55), PEF (6.79 vs.7.46), and variability (p < 0.001), and statistically significantly decreased BHR in Group A (2.01 vs. 1.75) (p < 0.001). Engagement of patients with mild persistent asthma in recreational swimming in nonchlorinated pools, combined with regular medical treatment and education, leads to better improvement of their parameters of lung function and also to more significant decrease of their airway hyperresponsiveness compared to patients treated with traditional medicine. PMID:17704850

  4. A lithotrophic microbial fuel cell operated with pseudomonads-dominated iron-oxidizing bacteria enriched at the anode

    PubMed Central

    Nguyen, Thuy Thu; Luong, Tha Thanh Thi; Tran, Phuong Hoang Nguyen; Bui, Ha Thi Viet; Nguyen, Huy Quang; Dinh, Hang Thuy; Kim, Byung Hong; Pham, Hai The

    2015-01-01

    In this study, we attempted to enrich neutrophilic iron bacteria in a microbial fuel cell (MFC)-type reactor in order to develop a lithotrophic MFC system that can utilize ferrous iron as an inorganic electron donor and operate at neutral pHs. Electrical currents were steadily generated at an average level of 0.6 mA (or 0.024 mA cm–2 of membrane area) in reactors initially inoculated with microbial sources and operated with 20 mM Fe2+ as the sole electron donor and 10 ohm external resistance; whereas in an uninoculated reactor (the control), the average current level only reached 0.2 mA (or 0.008 mA cm–2 of membrane area). In an inoculated MFC, the generation of electrical currents was correlated with increases in cell density of bacteria in the anode suspension and coupled with the oxidation of ferrous iron. Cultivation-based and denaturing gradient gel electrophoresis analyses both show the dominance of some Pseudomonas species in the anode communities of the MFCs. Fluorescent in-situ hybridization results revealed significant increases of neutrophilic iron-oxidizing bacteria in the anode community of an inoculated MFC. The results, altogether, prove the successful development of a lithotrophic MFC system with iron bacteria enriched at its anode and suggest a chemolithotrophic anode reaction involving some Pseudomonas species as key players in such a system. The system potentially offers unique applications, such as accelerated bioremediation or on-site biodetection of iron and/or manganese in water samples. PMID:25712332

  5. Formation of Nanoporous Anodic Alumina by Anodization of Aluminum Films on Glass Substrates

    NASA Astrophysics Data System (ADS)

    Lebyedyeva, Tetyana; Kryvyi, Serhii; Lytvyn, Petro; Skoryk, Mykola; Shpylovyy, Pavlo

    2016-04-01

    Our research was aimed at the study of aluminum films and porous anodic alumina (PAA) films in thin-film PAA/Al structures for optical sensors, based on metal-clad waveguides (MCWG). The results of the scanning electron microscopy (SEM) and atomic force microscopy (AFM) studies of the structure of Al films, deposited by DC magnetron sputtering, and of PAA films, formed on them, are presented in this work.

  6. Surface roughness of anodized titanium coatings.

    SciTech Connect

    Dugger, Michael Thomas; Chinn, Douglas Alan

    2010-10-01

    Samples of grade five 6Al4V titanium alloy were coated with two commercial fluoropolymer anodizations (Tiodize and Canadize) and compared. Neither coating demonstrates significant outgassing. The coatings show very similar elemental analysis, except for the presence of lead in the Canadize coating, which may account for its lower surface friction in humid environments. Surface roughness has been compared by SEM, contact profilometry, optical profilometry, power spectral density and bidirectional scattering distribution function (BSDF). The Tiodize film is slightly smoother by all measurement methods, but the Canadize film shows slightly less scatter at all angles of incidence. Both films exhibited initial friction coefficients of 0.2 to 0.4, increasing to 0.4 to 0.8 after 1000 cycles of sliding due to wear of the coating and ball. The coatings are very similar and should behave identically in most applications.

  7. Anodic bonding of gallium arsenide to glass

    NASA Astrophysics Data System (ADS)

    Hök, Bertil; Dubon, Chantal; Ovrén, Christer

    1983-08-01

    We describe a modified anodic bonding technique for hermetic sealing between GaAs and glass, the modification being called for by the formation of a nonadherent oxide layer during the bonding process. We show that this can be avoided by prebaking the glass and performing the bonding operation in a reducing atmosphere. With this technique, strong, hermetic seals can be produced. Parameter dependence has been studied theoretically by solving the continuity equation for a one-dimensional model of the experimental situation. Experimentally, the bonds were evaluated with a number of methods, giving support for a model consisting of a high-field, sodium-depleted zone in the interface region during bond formation. The described technique is of particular interest for optoelectronic devices requiring transparent and hermetic seals.

  8. High performance zinc anode for battery applications

    NASA Technical Reports Server (NTRS)

    Casey, John E., Jr. (Inventor)

    1998-01-01

    An improved zinc anode for use in a high density rechargeable alkaline battery is disclosed. A process for making the zinc electrode comprises electrolytic loading of the zinc active material from a slightly acidic zinc nitrate solution into a substrate of nickel, copper or silver. The substrate comprises a sintered plaque having very fine pores, a high surface area, and 80-85 percent total initial porosity. The residual porosity after zinc loading is approximately 25-30%. The electrode of the present invention exhibits reduced zinc mobility, shape change and distortion, and demonstrates reduced dendrite buildup cycling of the battery. The disclosed battery is useful for applications requiring high energy density and multiple charge capability.

  9. Variable anodic thermal control coating on aluminum

    NASA Technical Reports Server (NTRS)

    Duckett, R. J.; Gilliland, C. S.

    1983-01-01

    A variable thermal control coating (modified chromic acid anodizing) has been developed to meet the needs for the thermal control of spacecraft. This coating, with controlled variable ranges of 0.10 to 0.72 thermal emittance and 0.2 to 0.4 solar absorptance, allows the user to select any value of thermal emittance and solar absorptance within the range specified and obtain both values within + or - 0.02. Preliminary solar stability has shown less than 15 percent degradation over 2000 hours of vacuum solar exposure. The technique has been determined to be sensitive to the parameters of voltage, rate of voltage application, time, temperature, acid concentration, and material pretreatment.

  10. A dual anode nickel-hydrogen cell

    NASA Astrophysics Data System (ADS)

    Gahn, Randall F.; Ryan, Timothy P.

    1992-02-01

    A dual anode cell with decreased polarization effects provides improved performance characteristics, such as voltage characteristics and depth-of-discharge characteristics. A hydrogen electrode is placed on both sides of a nickel electrode. An electrolyte saturated separator is placed between each hydrogen electrode and the nickel electrode. The electrolyte saturated separator can be a layered-type separator consisting of one layer of zirconia knit cloth next to the hydrogen electrode and a layer of radiation-grafted polyethylene film next to the nickel electrode. These layers of the electrochemical cell are cut in a pineapple-slice configuration. Both hydrogen electrodes are connected in parallel to form a single electrical node. The electrochemical cell is placed in a vessel pressurized with hydrogen and saturated with a potassium hydroxide electrolyte. A gas screen is placed on the outer surface of each of the hydrogen electrodes.

  11. Carbonaceous materials as lithium intercalation anodes

    SciTech Connect

    Tran, T.D.; Feikert, J.H.; Mayer, S.T.; Song, X.; Kinoshita, K.

    1994-10-01

    Commercial and polymer-derived carbonaceous materials were examined as lithium intercalation anodes in propylene carbonate (pyrolysis < 1350C, carbons) and ethylene carbonate/dimethyl carbonate (graphites) electrolytes. The reversible capacity (180--355 mAh/g) and the irreversible capacity loss (15--200 % based on reversible capacity) depend on the type of binder, carbon type, morphology, and phosphorus doping concentration. A carbon-based binder was chosen for electrode fabrication, producing mechanically and chemically stable electrodes and reproducible results. Several types of graphites had capacity approaching LiC{sub 6}. Petroleum fuel green cokes doped with phosphorous gave more than a 20 % increase in capacity compared to undoped samples. Electrochemical characteristics are related to SEM, TEM, XRD and BET measurements.

  12. ZIRCONIUM OXIDE NANOSTRUCTURES PREPARED BY ANODIC OXIDATION

    SciTech Connect

    Dang, Y. Y.; Bhuiyan, M.S.; Paranthaman, M. P.

    2008-01-01

    Zirconium oxide is an advanced ceramic material highly useful for structural and electrical applications because of its high strength, fracture toughness, chemical and thermal stability, and biocompatibility. If highly-ordered porous zirconium oxide membranes can be successfully formed, this will expand its real-world applications, such as further enhancing solid-oxide fuel cell technology. Recent studies have achieved various morphologies of porous zirconium oxide via anodization, but they have yet to create a porous layer where nanoholes are formed in a highly ordered array. In this study, electrochemical methods were used for zirconium oxide synthesis due to its advantages over other coating techniques, and because the thickness and morphology of the ceramic fi lms can be easily tuned by the electrochemical parameters, such as electrolyte solutions and processing conditions, such as pH, voltage, and duration. The effects of additional steps such as pre-annealing and post-annealing were also examined. Results demonstrate the formation of anodic porous zirconium oxide with diverse morphologies, such as sponge-like layers, porous arrays with nanoholes ranging from 40 to 75 nm, and nanotube layers. X-ray powder diffraction analysis indicates a cubic crystallographic structure in the zirconium oxide. It was noted that increased voltage improved the ability of the membrane to stay adhered to the zirconium substrate, whereas lower voltages caused a propensity for the oxide fi lm to fl ake off. Further studies are needed to defi ne the parameters windows that create these morphologies and to investigate other important characteristics such as ionic conductivity.

  13. Zirconium Oxide Nanostructures Prepared by Anodic Oxidation

    SciTech Connect

    Dang, Ying Yi; Bhuiyan, Md S; Paranthaman, Mariappan Parans

    2008-01-01

    Zirconium oxide is an advanced ceramic material highly useful for structural and electrical applications because of its high strength, fracture toughness, chemical and thermal stability, and biocompatibility. If highly-ordered porous zirconium oxide membranes can be successfully formed, this will expand its real-world applications, such as further enhancing solid-oxide fuel cell technology. Recent studies have achieved various morphologies of porous zirconium oxide via anodization, but they have yet to create a porous layer where nanoholes are formed in a highly ordered array. In this study, electrochemical methods were used for zirconium oxide synthesis due to its advantages over other coating techniques, and because the thickness and morphology of the ceramic films can be easily tuned by the electrochemical parameters, such as electrolyte solutions and processing conditions, such as pH, voltage, and duration. The effects of additional steps such as pre-annealing and post-annealing were also examined. Results demonstrate the formation of anodic porous zirconium oxide with diverse morphologies, such as sponge-like layers, porous arrays with nanoholes ranging from 40 to 75 nm, and nanotube layers. X-ray powder diffraction analysis indicates a cubic crystallographic structure in the zirconium oxide. It was noted that increased voltage improved the ability of the membrane to stay adhered to the zirconium substrate, whereas lower voltages caused a propensity for the oxide film to flake off. Further studies are needed to define the parameters windows that create these morphologies and to investigate other important characteristics such as ionic conductivity.

  14. Thin-film sulfuric acid anodizing as a replacement for chromic acid anodizing

    NASA Technical Reports Server (NTRS)

    Kallenborn, K. J.; Emmons, J. R.

    1995-01-01

    Chromic acid has long been used to produce a thin, corrosion resistant (Type I) coating on aluminum. Following anodizing, the hardware was sealed using a sodium dichromate solution. Sealing closes up pores inherent in the anodized coating, thus improving corrosion resistance. The thinness of the brittle coating is desirable from a fatigue standpoint, and chromium was absorbed by the coating during the sealing process, further improving corrosion resistance. Unfortunately, both chromic acid and sodium dichromate contain carcinogenic hexavalent chromium. Sulfuric acid is being considered as a replacement for chromic acid. Sulfuric acid of 10-20 percent concentration has traditionally been used to produce relatively thick (Types II and III) or abrasion resistant (Type III) coatings. A more dilute, that is five weight percent, sulfuric acid anodizing process, which produces a thinner coating than Type II or III, with nickel acetate as the sealant has been developed. The process was evaluated in regard to corrosion resistance, throwing power, fatigue life, and processing variable sensitivity, and shows promise as a replacement for the chromic acid process.

  15. Magnetic circuit for hall effect plasma accelerator

    NASA Technical Reports Server (NTRS)

    Manzella, David H. (Inventor); Jacobson, David T. (Inventor); Jankovsky, Robert S. (Inventor); Hofer, Richard (Inventor); Peterson, Peter (Inventor)

    2009-01-01

    A Hall effect plasma accelerator includes inner and outer electromagnets, circumferentially surrounding the inner electromagnet along a thruster centerline axis and separated therefrom, inner and outer magnetic conductors, in physical connection with their respective inner and outer electromagnets, with the inner magnetic conductor having a mostly circular shape and the outer magnetic conductor having a mostly annular shape, a discharge chamber, located between the inner and outer magnetic conductors, a magnetically conducting back plate, in magnetic contact with the inner and outer magnetic conductors, and a combined anode electrode/gaseous propellant distributor, located at a bottom portion of the discharge chamber. The inner and outer electromagnets, the inner and outer magnetic conductors and the magnetically conducting back plate form a magnetic circuit that produces a magnetic field that is largely axial and radially symmetric with respect to the thruster centerline.

  16. Mild desalination of various raw water streams.

    PubMed

    Groot, C K; van den Broek, W B P; Loewenberg, J; Koeman-Stein, N; Heidekamp, M; de Schepper, W

    2015-01-01

    For chemical industries, fresh water availability is a pre-requisite for sustainable operation. However, in many delta areas around the world, fresh water is scarce. Therefore, the E4 Water project (www.e4water.eu) comprises a case study at the Dow site in Terneuzen, The Netherlands, which is designed to develop commercial applications for mild desalination of brackish raw water streams from various origins to enable reuse in industry or agriculture. This study describes an effective two-stage work process, which was used to narrow down a broad spectrum of desalination technologies to a selection of the most promising techniques for a demonstration pilot at 2-4 m³/hour. Through literature study, laboratory experiments and multi-criteria analysis, nanofiltration and electrodialysis reversal were selected, both having the potential to attain the objectives of E4Water at full scale. PMID:26204068

  17. Mildly Recycled Pulsars at High-Energies

    NASA Astrophysics Data System (ADS)

    Pellizzoni, A.

    2011-08-01

    Mildly recyled pulsars (MRP), conventionally defined as neutron star having spin period in the 20-100 ms range and surface magnetic field <1011 Gauss, probably rise from binary systems (disrupted or not) with an intermediate or an high mass companion. Despite their relatively low spin-down energies compared to the ``fully'' recycled millisecond pulsars (arising from common low mass X-ray binaries), nearby MRPs can be detected by deep X-ray observations and by timing analysis of the very long data span provided by gamma-ray space detectors. The discovery of peculiar timing and spectral properties, possibly transitional, of the MRPs can be of the utmost importance to link different classes of neutron stars and study their evolution.

  18. [Mental disorders after mild traumatic brain injury].

    PubMed

    Gonschorek, A S; Schwenkreis, P; Guthke, T

    2016-05-01

    Mild traumatic brain injury (mTBI) is a frequent neurological disorder following a closed head injury. It is often accompanied by temporary changes of consciousness as well as cognitive, emotional and physical symptoms. These symptoms subside in the vast majority of affected persons within a few weeks; however, in recent years it has become increasingly more apparent that functionally significant long-term effects can remain after an initially diagnosed mTBI. In these cases mental disorders, such as impairment of cognitive and emotional functions as well as somatic disorders play an important role. This article presents the frequency, diagnosis, therapy and possible mechanisms of cognitive and emotional dysfunction after mTBI, including medicolegal aspects. PMID:27119532

  19. South: in the mild southern tradition

    SciTech Connect

    Price, T.L.

    1980-01-01

    Trends in the development of current and future energy resources in the southern states of the U.S. are reviewed. The south has the advantages of a mild climate and abundant sources of natural gas, coal, and hydro power, however, the supply and distribution of energy are primarily controlled by private and federal monopolies. The Tennessee Valley Authority (TVA) has a program for funding 100,000 solar domestic hot water systems plus low interest loans for wood heaters, zero interest conservation loans, and financing of passive solar homes. TVA will also construct a large passive solar complex. Other applications of solar technology discussed include installation in a brewery, apartment buildings, abandoned city housing, a duplex, an environmental center, a planned community, and a kiln company.

  20. Functional Hubs in Mild Cognitive Impairment

    NASA Astrophysics Data System (ADS)

    Navas, Adrián; Papo, David; Boccaletti, Stefano; Del-Pozo, F.; Bajo, Ricardo; Maestú, Fernando; Martínez, J. H.; Gil, Pablo; Sendiña-Nadal, Irene; Buldú, Javier M.

    We investigate how hubs of functional brain networks are modified as a result of mild cognitive impairment (MCI), a condition causing a slight but noticeable decline in cognitive abilities, which sometimes precedes the onset of Alzheimer's disease. We used magnetoencephalography (MEG) to investigate the functional brain networks of a group of patients suffering from MCI and a control group of healthy subjects, during the execution of a short-term memory task. Couplings between brain sites were evaluated using synchronization likelihood, from which a network of functional interdependencies was constructed and the centrality, i.e. importance, of their nodes was quantified. The results showed that, with respect to healthy controls, MCI patients were associated with decreases and increases in hub centrality respectively in occipital and central scalp regions, supporting the hypothesis that MCI modifies functional brain network topology, leading to more random structures.

  1. Synchrotron emissivity from mildly relativistic particles

    NASA Technical Reports Server (NTRS)

    Petrosian, V.

    1981-01-01

    Approximate analytic expressions are presented for evaluation of the frequency and angular dependence of synchrotron emissivity from mildly relativistic particles with arbitrary energy spectrum and pitch angle distribution in a given magnetic field. Results agree with previous expressions for a nonrelativistic Maxwellian particle distribution, and when extrapolated to nonrelativistic and extreme relativistic regimes, they also agree with the previous expressions obtained under those limiting conditions. The results from the analytic expression are compared with results from detailed numerical evaluations. Excellent agreement is found not only at frequencies large compared to the gyro-frequency but also at lower frequencies, in fact, all the way down to the gyro-frequency, where the analytic approximations are expected to be less accurate.

  2. Atmospheric corrosion of mild steel in Oman

    NASA Astrophysics Data System (ADS)

    Gismelseed, Abbasher; Al-Harthi, S. H.; Elzain, M.; Al-Rawas, A. D.; Yousif, A.; Al-Saadi, S.; Al-Omari, I.; Widatallah, H.; Bouziane, K.

    2006-01-01

    A systematic study has been made of the initial corrosion products which form on mild steel capons exposed near the coastal region of Oman and at some industrial areas. The phases and compositions of the products formed at different periods of exposure were examined by using Mössbauer spectroscopy (295 and 78 K) and X-ray diffraction (XRD) techniques. The results show that lepidocorcite and maghemite are early corrosion products and goethite starts to form after 2 months of metal exposure to the atmosphere. Akaganeite is an early corrosion product but it forms in marine environments only, which reflects the role of chlorine effect in the atmosphere. The 12 months coupons showed the presence of goethite, lepidocorcite and maghemite, but no akaganeite being seen in the products of one of the studied areas.

  3. Atmospheric corrosion of mild steel in Oman

    NASA Astrophysics Data System (ADS)

    Gismelseed, Abbasher; Al-Harthi, S. H.; Elzain, M.; Al-Rawas, A. D.; Yousif, A.; Al-Saadi, S.; Al-Omari, I.; Widatallah, H.; Bouziane, K.

    A systematic study has been made of the initial corrosion products which form on mild steel capons exposed near the coastal region of Oman and at some industrial areas. The phases and compositions of the products formed at different periods of exposure were examined by using Mossbauer spectroscopy (295 and 78 K) and X-ray diffraction (XRD) techniques. The results show that lepidocorcite and maghemite are early corrosion products and goethite starts to form after 2 months of metal exposure to the atmosphere. Akaganeite is an early corrosion product but it forms in marine environments only, which reflects the role of chlorine effect in the atmosphere. The 12 months coupons showed the presence of goethite, lepidocorcite and maghemite, but no akaganeite being seen in the products of one of the studied areas.

  4. Compact Plasma Accelerator

    NASA Technical Reports Server (NTRS)

    Foster, John E.

    2004-01-01

    A plasma accelerator has been conceived for both material-processing and spacecraft-propulsion applications. This accelerator generates and accelerates ions within a very small volume. Because of its compactness, this accelerator could be nearly ideal for primary or station-keeping propulsion for spacecraft having masses between 1 and 20 kg. Because this accelerator is designed to generate beams of ions having energies between 50 and 200 eV, it could also be used for surface modification or activation of thin films.

  5. Mechanisms of anode power deposition in a low pressure free burning arc

    NASA Technical Reports Server (NTRS)

    Soulas, George C.; Myers, Roger M.

    1994-01-01

    Anode power deposition is a dominant power loss mechanism for arc jets and MPD thrusters. In this study, a free burning arc experiment was operated at pressures and current densities similar to those in arc jets and MPD thrusters in an attempt to identify the physics controlling this loss mechanism. Use of a free burning arc allowed for the isolation of independent variables controlling anode power deposition and provided a convenient and flexible way to cover a broad range of currents, anode surface pressures, and applied magnetic field strengths and orientations using an argon gas. Test results showed that anode power deposition decreased with increasing anode surface pressure up to 6.7 Pa (0.05 torr) and then became insensitive to pressure. Anode power increased with increasing arc current while the electron number density near the anode surface increased linearity. Anode power also increased with increasing applied magnetic field strength due to an increasing anode fall voltage. Applied magnetic field orientation had an effect only at high currents and low anode surface pressures, where anode power decreased when applied field lines intercepted the anode surface. The results demonstrated that anode power deposition was dominated by the current carrying electrons and that the anode fall voltage was the largest contributor. Furthermore, the results showed that anode power deposition can be reduced by operating at increased anode pressures, reduced arc currents, and applied magnetic field strengths and with magnetic field lines intercepting the anode.

  6. Pressure passivation of mild pyrolysis char

    SciTech Connect

    Ochs, T.; Summers, C.; Schroeder, K.; Sands, W.

    1999-07-01

    Low-rank coals that have been thermally dried in the mild pyrolysis process have a tendency to spontaneously combust. The spontaneous combustion of coals and chars has been linked to their affinity for oxygen. The USDOE has developed a method for the passivation of mild pyrolysis char derived from a low-rank coal using pressure differentials to control the oxidation of the active sites in the char rapidly and safely. Initial experiments performed by the USDOE show that the affinity of the coal for oxygen uptake (residual oxygen demand, ROD) is reduced by exposure of the coal-char to high-pressure gas mixtures including air or oxygen-enriched air. Laboratory-scale tests have shown that the ROD can be rapidly reduced by cycling the active coals between low-pressure (atmospheric pressure or less) and high-pressure (500 psi to 1,500 psi) regimes. Cycling the pressure of the treatment gas provides rapid passivation resulting from two effects: The high-pressure cycle forces fresh oxygen into the pores which have been purged of adsorbed gases and reaction products. The pores of coal are small enough to prohibit free convection and force oxygen exchange to take place by way of diffusion under ambient conditions. The forced introduction of fresh process gas under high pressure overcomes the restrictions due to diffusion limits while the removal of adsorbed products clears the way to active surface sites. The high pressure increases the number of oxygen molecules with sufficient energy to overcome the activation barrier of the passivation reaction, due to the increased number of molecules per unit volume of the high-pressure gas. Combined, the two effects rapidly produce a coal with a significantly reduced ROD.

  7. The small chill: mild hypothermia for cardioprotection?

    PubMed

    Tissier, Renaud; Chenoune, Mourad; Ghaleh, Bijan; Cohen, Michael V; Downey, James M; Berdeaux, Alain

    2010-12-01

    Reducing the heart's temperature by 2-5°C is a potent cardioprotective treatment in animal models of coronary artery occlusion. The anti-infarct benefit depends upon the target temperature and the time at which cooling is instituted. Protection primarily results from cooling during the ischaemic period, whereas cooling during reperfusion or beyond offers little protection. In animal studies, protection is proportional to both the depth and duration of cooling. An optimal cooling protocol must appreciably shorten the normothermic ischaemic time to effectively salvage myocardium. Patients presenting with acute myocardial infarction could be candidates for mild hypothermia since the current door-to-balloon time is typically 90 min. But they would have to be cooled quickly shortly after their arrival. Several strategies have been proposed for ultra-fast cooling, but most like liquid ventilation and pericardial perfusion are too invasive. More feasible strategies might include cutaneous cooling, peritoneal lavage with cold solutions, and endovascular cooling with intravenous thermodes. This last option has been investigated clinically, but the results have been disappointing possibly because the devices lacked capacity to cool the patient quickly or cooling was not implemented soon enough. The mechanism of hypothermia's protection has been assumed to be energy conservation. However, whereas deep hypothermia clearly preserves ATP, mild hypothermia has only a modest effect on ATP depletion during ischaemia. Some evidence suggests that intracellular signalling pathways might be responsible for the protection. It is unknown how cooling could trigger these pathways, but, if true, then it might be possible to duplicate cooling's protection pharmacologically. PMID:20621922

  8. Development of Bipolar Pulse Accelerator for Pulsed Ion Beam Implantation to Semiconductor

    NASA Astrophysics Data System (ADS)

    Masugata, Katsumi; Kawahara, Yoshihiro; Mitsui, Chihiro; Kitamura, Iwao; Takahashi, Takakazu; Tanaka, Yasunori; Tanoue, Hisao; Arai, Kazuo

    2002-12-01

    To improve the purity of the ion beams new type of pulsed power ion accelerator named "bipolar pulse accelerator" was proposed. The accelerator consists of two acceleration gaps (an ion source gap and a post acceleration gap) and a drift tube, and a bipolar pulse is applied to the drift tube to accelerate the beam. In the accelerator intended ions are selectively accelerated and the purity of the ion beam is enhanced. As the first step of the development of the accelerator, a Br-type magnetically insulated acceleration gap is developed. The gap has an ion source of coaxial gas puff plasma gun on the grounded anode and a negative pulse is applied to the cathode to accelerate the ion beam. By using the plasma gun, ion source plasma (nitrogen) of current density around 100 A/cm2 is obtained. In the paper, the experimental results of the evaluation of the ion beam and the characteristics of the gap are shown with the principle and the design concept of the proposed accelerator.

  9. High brightness electron accelerator

    DOEpatents

    Sheffield, Richard L.; Carlsten, Bruce E.; Young, Lloyd M.

    1994-01-01

    A compact high brightness linear accelerator is provided for use, e.g., in a free electron laser. The accelerator has a first plurality of acclerating cavities having end walls with four coupling slots for accelerating electrons to high velocities in the absence of quadrupole fields. A second plurality of cavities receives the high velocity electrons for further acceleration, where each of the second cavities has end walls with two coupling slots for acceleration in the absence of dipole fields. The accelerator also includes a first cavity with an extended length to provide for phase matching the electron beam along the accelerating cavities. A solenoid is provided about the photocathode that emits the electons, where the solenoid is configured to provide a substantially uniform magnetic field over the photocathode surface to minimize emittance of the electons as the electrons enter the first cavity.

  10. Fiber Accelerating Structures

    SciTech Connect

    Hammond, Andrew P.; /Reed Coll. /SLAC

    2010-08-25

    One of the options for future particle accelerators are photonic band gap (PBG) fiber accelerators. PBG fibers are specially designed optical fibers that use lasers to excite an electric field that is used to accelerate electrons. To improve PBG accelerators, the basic parameters of the fiber were tested to maximize defect size and acceleration. Using the program CUDOS, several accelerating modes were found that maximized these parameters for several wavelengths. The design of multiple defects, similar to having closely bound fibers, was studied to find possible coupling or the change of modes. The amount of coupling was found to be dependent on distance separated. For certain distances accelerating coupled modes were found and examined. In addition, several non-periodic fiber structures were examined using CUDOS. The non-periodic fibers produced several interesting results and promised more modes given time to study them in more detail.

  11. Interconnected hollow carbon nanospheres for stable lithium metal anodes.

    PubMed

    Zheng, Guangyuan; Lee, Seok Woo; Liang, Zheng; Lee, Hyun-Wook; Yan, Kai; Yao, Hongbin; Wang, Haotian; Li, Weiyang; Chu, Steven; Cui, Yi

    2014-08-01

    For future applications in portable electronics, electric vehicles and grid storage, batteries with higher energy storage density than existing lithium ion batteries need to be developed. Recent efforts in this direction have focused on high-capacity electrode materials such as lithium metal, silicon and tin as anodes, and sulphur and oxygen as cathodes. Lithium metal would be the optimal choice as an anode material, because it has the highest specific capacity (3,860 mAh g(-1)) and the lowest anode potential of all. However, the lithium anode forms dendritic and mossy metal deposits, leading to serious safety concerns and low Coulombic efficiency during charge/discharge cycles. Although advanced characterization techniques have helped shed light on the lithium growth process, effective strategies to improve lithium metal anode cycling remain elusive. Here, we show that coating the lithium metal anode with a monolayer of interconnected amorphous hollow carbon nanospheres helps isolate the lithium metal depositions and facilitates the formation of a stable solid electrolyte interphase. We show that lithium dendrites do not form up to a practical current density of 1 mA cm(-2). The Coulombic efficiency improves to ∼ 99% for more than 150 cycles. This is significantly better than the bare unmodified samples, which usually show rapid Coulombic efficiency decay in fewer than 100 cycles. Our results indicate that nanoscale interfacial engineering could be a promising strategy to tackle the intrinsic problems of lithium metal anodes. PMID:25064396

  12. Nanoporous Anodic Edge Passivation of Si Solar Cells.

    PubMed

    Choi, Jaeho; Palei, Srikanta; Parida, Bhaskar; Ko, Seuk Yong; Kim, Keunjoo

    2015-11-01

    We investigated the anodization effect on edge passivation of Si solar cells. The Si anodization allowed SiO2 formation on the edges of the cell for electrical passivation. The edge passivated cell showed enhanced conversion efficiency with reduced carrier recombination which was observed from photoluminescence and electroluminescence images. The luminescences were reduced at the edges indicating prevention of edge current leakage. However, when the rear Al paste layer of a sample was contacted to the solution during the anodization process, the conversion efficiency of the cell was reduced. We characterized oxide thin films by performing the anodization process for front Al thin film layer deposited by evaporation and rear Al paste layer. The front anodic aluminum oxide covering the Si emitter layer showed the excellent phototransmission with small photoreflectance lower than 5% and the anodization of Al paste showed the formation of a thin SiO2 film as well as nanoporous Al2O3 layer originating from the microspherical Al paste. The rear Al paste anodization allowed the Al microspheres to be filled with the nanopores in the inner empty space. PMID:26726608

  13. Surface characteristics and bioactivity of an anodized titanium surface

    PubMed Central

    Kim, Kyul; Lee, Bo-Ah; Piao, Xing-Hui; Chung, Hyun-Ju

    2013-01-01

    Purpose The aim of this study was to evaluate the surface properties and biological response of an anodized titanium surface by cell proliferation and alkaline phosphatase activity analysis. Methods Commercial pure titanium (Ti) disks were prepared. The samples were divided into an untreated machined Ti group and anodized Ti group. The anodization of cp-Ti was formed using a constant voltage of 270 V for 60 seconds. The surface properties were evaluated using scanning electron microscopy, X-ray photoelectron spectroscopy, and an image analyzing microscope. The surface roughness was evaluated by atomic force microscopy and a profilometer. The contact angle and surface energy were analyzed. Cell adhesion, cell proliferation, and alkaline phosphatase activity were evaluated using mouse MC3T3-E1 cells. Results The anodized Ti group had a more porous and thicker layer on its surface. The surface roughness of the two groups measured by the profilometer showed no significant difference (P>0.001). The anodized Ti dioxide (TiO2) surface exhibited better corrosion resistance and showed a significantly lower contact angle than the machined Ti surface (P>0.001). Although there was no significant difference in the cell viability between the two groups (P>0.001), the anodized TiO2 surface showed significantly enhanced alkaline phosphatase activity (P<0.001). Conclusions These results suggest that the surface modification of Ti by anodic oxidation improved the osteogenic response of the osteoblast cells. PMID:24040573

  14. Influence of anode surface chemistry on microbial fuel cell operation.

    PubMed

    Santoro, Carlo; Babanova, Sofia; Artyushkova, Kateryna; Cornejo, Jose A; Ista, Linnea; Bretschger, Orianna; Marsili, Enrico; Atanassov, Plamen; Schuler, Andrew J

    2015-12-01

    Self-assembled monolayers (SAMs) modified gold anodes are used in single chamber microbial fuel cells for organic removal and electricity generation. Hydrophilic (N(CH3)3(+), OH, COOH) and hydrophobic (CH3) SAMs are examined for their effect on bacterial attachment, current and power output. The different substratum chemistry affects the community composition of the electrochemically active biofilm formed and thus the current and power output. Of the four SAM-modified anodes tested, N(CH3)3(+) results in the shortest start up time (15 days), highest current achieved (225 μA cm(-2)) and highest MFC power density (40 μW cm(-2)), followed by COOH (150 μA cm(-2) and 37 μW cm(-2)) and OH (83 μA cm(-2) and 27 μW cm(-2)) SAMs. Hydrophobic SAM decreases electrochemically active bacteria attachment and anode performance in comparison to hydrophilic SAMs (CH3 modified anodes 7 μA cm(-2) anodic current and 1.2 μW cm(-2) MFC's power density). A consortium of Clostridia and δ-Proteobacteria is found on all the anode surfaces, suggesting a synergistic cooperation under anodic conditions. PMID:26025340

  15. Interconnected hollow carbon nanospheres for stable lithium metal anodes

    NASA Astrophysics Data System (ADS)

    Zheng, Guangyuan; Lee, Seok Woo; Liang, Zheng; Lee, Hyun-Wook; Yan, Kai; Yao, Hongbin; Wang, Haotian; Li, Weiyang; Chu, Steven; Cui, Yi

    2014-08-01

    For future applications in portable electronics, electric vehicles and grid storage, batteries with higher energy storage density than existing lithium ion batteries need to be developed. Recent efforts in this direction have focused on high-capacity electrode materials such as lithium metal, silicon and tin as anodes, and sulphur and oxygen as cathodes. Lithium metal would be the optimal choice as an anode material, because it has the highest specific capacity (3,860 mAh g-1) and the lowest anode potential of all. However, the lithium anode forms dendritic and mossy metal deposits, leading to serious safety concerns and low Coulombic efficiency during charge/discharge cycles. Although advanced characterization techniques have helped shed light on the lithium growth process, effective strategies to improve lithium metal anode cycling remain elusive. Here, we show that coating the lithium metal anode with a monolayer of interconnected amorphous hollow carbon nanospheres helps isolate the lithium metal depositions and facilitates the formation of a stable solid electrolyte interphase. We show that lithium dendrites do not form up to a practical current density of 1 mA cm-2. The Coulombic efficiency improves to ˜99% for more than 150 cycles. This is significantly better than the bare unmodified samples, which usually show rapid Coulombic efficiency decay in fewer than 100 cycles. Our results indicate that nanoscale interfacial engineering could be a promising strategy to tackle the intrinsic problems of lithium metal anodes.

  16. [Status of mild hypertension guidelines in Japan and abroad].

    PubMed

    Matsuoka, Hiroaki

    2008-08-01

    Historically patients with systolic blood pressure level 140 to 159 mmHg or diastolic blood pressure level 90 to 99 mmHg had been defined as mild hypertension. However, the word of mild hypertension is not used in recent guidelines, such as JNC 7 and ESH/ESC 2007, although it is still used in JSH2004 and BHS IV. Patients with mild hypertension in JSH2004 are diagnosed as high risk hypertension if these patients are complicated cardiovascular organ damage, cardiovascular disease, or diabetes mellitus etc. Personally, I think the word of mild hypertension should be changed to another word or applied to patients with low risk hypertension. PMID:18700542

  17. Acceleration in astrophysics

    SciTech Connect

    Colgate, S.A.

    1993-12-31

    The origin of cosmic rays and applicable laboratory experiments are discussed. Some of the problems of shock acceleration for the production of cosmic rays are discussed in the context of astrophysical conditions. These are: The presumed unique explanation of the power law spectrum is shown instead to be a universal property of all lossy accelerators; the extraordinary isotropy of cosmic rays and the limited diffusion distances implied by supernova induced shock acceleration requires a more frequent and space-filling source than supernovae; the near perfect adiabaticity of strong hydromagnetic turbulence necessary for reflecting the accelerated particles each doubling in energy roughly 10{sup 5} to {sup 6} scatterings with negligible energy loss seems most unlikely; the evidence for acceleration due to quasi-parallel heliosphere shocks is weak. There is small evidence for the expected strong hydromagnetic turbulence, and instead, only a small number of particles accelerate after only a few shock traversals; the acceleration of electrons in the same collisionless shock that accelerates ions is difficult to reconcile with the theoretical picture of strong hydromagnetic turbulence that reflects the ions. The hydromagnetic turbulence will appear adiabatic to the electrons at their much higher Larmor frequency and so the electrons should not be scattered incoherently as they must be for acceleration. Therefore the electrons must be accelerated by a different mechanism. This is unsatisfactory, because wherever electrons are accelerated these sites, observed in radio emission, may accelerate ions more favorably. The acceleration is coherent provided the reconnection is coherent, in which case the total flux, as for example of collimated radio sources, predicts single charge accelerated energies much greater than observed.

  18. Inert Anode Life in Low Temperature Reduction Process

    SciTech Connect

    Bradford, Donald R.

    2005-06-30

    The production of aluminum metal by low temperature electrolysis utilizing metal non-consumable anodes and ceramic cathodes was extensively investigated. Tests were performed with traditional sodium fluoride--aluminum fluoride composition electrolytes, potassium fluoride-- aluminum fluoride electrolytes, and potassium fluoride--sodium fluoride--aluminum fluoride electrolytes. All of the Essential First-Tier Requirements of the joint DOE-Aluminum Industry Inert Anode Road Map were achieved and those items yet to be resolved for commercialization of this technology were identified. Methods for the fabrication and welding of metal alloy anodes were developed and tested. The potential savings of energy and energy costs were determined and potential environmental benefits verified.

  19. Unstable behavior of anodic arc discharge for synthesis of nanomaterials

    NASA Astrophysics Data System (ADS)

    Gershman, Sophia; Raitses, Yevgeny

    2016-09-01

    A short carbon arc operating with a high ablation rate of the graphite anode exhibits a combined motion of the arc and the arc attachment to the anode. A characteristic time scale of this motion is in a 10‑3 s range. The arc exhibits a negative differential resistance before the arc motion occurs. Thermal processes in the arc plasma region interacting with the ablating anode are considered as possible causes of this unstable arc behavior. It is also hypothesized that the arc motion could potentially cause mixing of the various nanoparticles synthesized in the arc in the high ablation regime.

  20. Metal-air battery with easily removable anodes

    SciTech Connect

    Niksa, A.J.; Nikasa, M.J.; Noscal, J.M.; Sovich, T.J.

    1990-08-21

    This patent describes a metal-air battery. It comprises: one or more cells. Each cell comprising;a frame having opposed faces; an air cathode sealed to each face of the frame; an access opening in the frame; an anode blank comprising a consumable end inserted through the access opening into the space between the air cathodes and an exposed end protruding from the opening for replacement of the anode blank through the opening; and a labyrinth seal molded directly onto the anode blank between the consumable end and the exposed end sealing the access opening.

  1. Anodic electrosynthesis of some peroxy compounds on glassy carbon electrodes

    SciTech Connect

    Khomutov, N.E.; Zakhodyakina, N.A.; Svirida, L.V.; Nesvat, N.V.

    1987-11-10

    The authors present the results of a study of the anodic electrosynthesis of hydrogen peroxide and its derivatives on glassy carbon in solutions of sodium carbonate and sodium carbonate with sodium borate. We studied the kinetics of anodic processes on glassy carbon with the aid of polarization measurements and a method for determining the concentrations of active oxygen in the anolyte and the current efficiency. The current efficiencies with respect to active oxygen obtained on glassy carbon in the mixed solution of sodium borate and sodium carbonate are close to the current efficiencies which are observed on platinum anodes in the industrial electrosynthesis of perborates.

  2. Modelling the initial stage of porous alumina growth during anodization

    NASA Astrophysics Data System (ADS)

    Aryslanova, E. M.; Alfimov, A. V.; Chivilikhin, S. A.

    2013-05-01

    Artificially on the surface of aluminum there may be build a thick layer of Al2O3, which has a porous structure. In this paper we present a model of growth of porous alumina in the initial stage of anodizing, identifying dependencies anodizing parameters on the rate of growth of the film and the distance between the pores and as a result of the created model equations were found for changes in the disturbance of alumina for the initial stage of anodizing aluminum oxide porous border aluminum-alumina and alumina-electrolyte, with the influence of surface diffusion of aluminum oxide.

  3. [Progress in nanomaterials modified anodes of microbial fuel cell].

    PubMed

    Niu, Hao; Wu, Wenguo

    2016-03-01

    Anode is an important part of microbial fuel cell, its performance significantly affects the electricity generation of microbial fuel cells (MFCs). Nanomaterials have excellent properties, such as good conductivity and large surface area. Therefore, nanomaterials modified anode can effectively reduce the electrode resistance, increase the amount of microbial adhesion and improve the electricity generation of MFCs. In this paper, we introduced various nanomaterials modified anodes and summarized their effects on the output performance of MFCs. Finally, the prospect of modifying nanomaterials and technologies were discussed. PMID:27349110

  4. Cu-Ni-Fe anodes having improved microstructure

    DOEpatents

    Bergsma, S. Craig; Brown, Craig W.

    2004-04-20

    A method of producing aluminum in a low temperature electrolytic cell containing alumina dissolved in an electrolyte. The method comprises the steps of providing a molten electrolyte having alumina dissolved therein in an electrolytic cell containing the electrolyte. A non-consumable anode and cathode is disposed in the electrolyte, the anode comprised of Cu--Ni--Fe alloys having single metallurgical phase. Electric current is passed from the anode, through the electrolyte to the cathode thereby depositing aluminum on the cathode, and molten aluminum is collected from the cathode.

  5. Seawater piping systems designed with AISI 316 and RCP anodes

    SciTech Connect

    Valen, S.; Johnsen, R.; Gartland, P.O.; Drugli, J.M.

    1999-11-01

    Internal cathodic protection by resistor controlled anodes--Resistor controlled Cathodic Protection (RCP)--has been introduced as an alternative method for the prevention of localized corrosion of seawater transportation systems. More than 1000 RCP anodes have been installed in seawater piping systems made from highly alloyed stainless steel which previously had suffered from corrosion. The application of cheaper stainless steels like AISI 316 in combination with RCP anodes results in significant cost savings for the seawater system, and a few systems have been installed. This paper gives a short review of the theoretical background, and a presentation of the experience from some of the installations with these materials and RCP.

  6. Self-adjusting anode power supply for a gyrotron

    SciTech Connect

    Brand, G.F.; Fekete, P.W.; Hong, K. ); Idehara, T.; Tatsukawa, T. )

    1991-02-01

    Sydney University's tunable cw gyrotrons use a simplified power supply arrangement to provide the voltages on the gun electrodes. The cathode supply is conventional, but the anode voltage is provided by a single high-value resistor connected between the anode and ground. A small fraction of the electrons in the beam are reflected and the anode automatically finds an optimum operating potential. This arrangement is shown to have lower starting currents. Two advantages follow. It becomes easier to operate low-power gyrotrons with modest power supplies and it becomes easier to achieve higher frequencies by exciting harmonics of the electron cyclotron frequency.

  7. Weight Loss Predicts Progression of Mild Cognitive Impairment to Alzheimer’s Disease

    PubMed Central

    Cova, Ilaria; Rossi, Annalia; Cucumo, Valentina; Ghiretti, Roberta; Maggiore, Laura; Pomati, Simone; Galimberti, Daniela; Scarpini, Elio; Mariani, Claudio; Caracciolo, Barbara

    2016-01-01

    Background Weight loss is common in people with Alzheimer’s disease (AD) and it could be a marker of impending AD in Mild Cognitive Impairment (MCI) and improve prognostic accuracy, if accelerated progression to AD would be shown. Aims To assess weight loss as a predictor of dementia and AD in MCI. Methods One hundred twenty-five subjects with MCI (age 73.8 ± 7.1 years) were followed for an average of 4 years. Two weight measurements were carried out at a minimum time interval of one year. Dementia was defined according to DSM-IV criteria and AD according to NINCDS-ADRDA criteria. Weight loss was defined as a ≥4% decrease in baseline weight. Results Fifty-three (42.4%) MCI progressed to dementia, which was of the AD-type in half of the cases. Weight loss was associated with a 3.4-fold increased risk of dementia (95% CI = 1.5–6.9) and a 3.2-fold increased risk of AD (95% CI = 1.4–8.3). In terms of years lived without disease, weight loss was associated to a 2.3 and 2.5 years earlier onset of dementia and AD. Conclusions Accelerated progression towards dementia and AD is expected when weight loss is observed in MCI patients. Weight should be closely monitored in elderly with mild cognitive impairment. PMID:26990757

  8. Na-Ion Battery Anodes: Materials and Electrochemistry.

    PubMed

    Luo, Wei; Shen, Fei; Bommier, Clement; Zhu, Hongli; Ji, Xiulei; Hu, Liangbing

    2016-02-16

    The intermittent nature of renewable energy sources, such as solar and wind, calls for sustainable electrical energy storage (EES) technologies for stationary applications. Li will be simply too rare for Li-ion batteries (LIBs) to be used for large-scale storage purposes. In contrast, Na-ion batteries (NIBs) are highly promising to meet the demand of grid-level storage because Na is truly earth abundant and ubiquitous around the globe. Furthermore, NIBs share a similar rocking-chair operation mechanism with LIBs, which potentially provides high reversibility and long cycling life. It would be most efficient to transfer knowledge learned on LIBs during the last three decades to the development of NIBs. Following this logic, rapid progress has been made in NIB cathode materials, where layered metal oxides and polyanionic compounds exhibit encouraging results. On the anode side, pure graphite as the standard anode for LIBs can only form NaC64 in NIBs if solvent co-intercalation does not occur due to the unfavorable thermodynamics. In fact, it was the utilization of a carbon anode in LIBs that enabled the commercial successes. Anodes of metal-ion batteries determine key characteristics, such as safety and cycling life; thus, it is indispensable to identify suitable anode materials for NIBs. In this Account, we review recent development on anode materials for NIBs. Due to the limited space, we will mainly discuss carbon-based and alloy-based anodes and highlight progress made in our groups in this field. We first present what is known about the failure mechanism of graphite anode in NIBs. We then go on to discuss studies on hard carbon anodes, alloy-type anodes, and organic anodes. Especially, the multiple functions of natural cellulose that is used as a low-cost carbon precursor for mass production and as a soft substrate for tin anodes are highlighted. The strategies of minimizing the surface area of carbon anodes for improving the first-cycle Coulombic efficiency are

  9. Novel structure formation at the bottom surface of porous anodic alumina fabricated by single step anodization process.

    PubMed

    Ali, Ghafar; Ahmad, Maqsood; Akhter, Javed Iqbal; Maqbool, Muhammad; Cho, Sung Oh

    2010-08-01

    A simple approach for the growth of long-range highly ordered nanoporous anodic alumina film in H(2)SO(4) electrolyte through a single step anodization without any additional pre-anodizing procedure is reported. Free-standing porous anodic alumina film of 180 microm thickness with through hole morphology was obtained. A simple and single step process was used for the detachment of alumina from aluminum substrate. The effect of anodizing conditions, such as anodizing voltage and time on the pore diameter and pore ordering is discussed. The metal/oxide and oxide/electrolyte interfaces were examined by high resolution scanning transmission electron microscope. The arrangement of pores on metal/oxide interface was well ordered with smaller diameters than that of the oxide/electrolyte interface. The inter-pore distance was larger in metal/oxide interface as compared to the oxide/electrolyte interface. The size of the ordered domain was found to depend strongly upon anodizing voltage and time. PMID:20493719

  10. Plasma inverse transition acceleration

    SciTech Connect

    Xie, Ming

    2001-06-18

    It can be proved fundamentally from the reciprocity theorem with which the electromagnetism is endowed that corresponding to each spontaneous process of radiation by a charged particle there is an inverse process which defines a unique acceleration mechanism, from Cherenkov radiation to inverse Cherenkov acceleration (ICA) [1], from Smith-Purcell radiation to inverse Smith-Purcell acceleration (ISPA) [2], and from undulator radiation to inverse undulator acceleration (IUA) [3]. There is no exception. Yet, for nearly 30 years after each of the aforementioned inverse processes has been clarified for laser acceleration, inverse transition acceleration (ITA), despite speculation [4], has remained the least understood, and above all, no practical implementation of ITA has been found, until now. Unlike all its counterparts in which phase synchronism is established one way or the other such that a particle can continuously gain energy from an acceleration wave, the ITA to be discussed here, termed plasma inverse transition acceleration (PITA), operates under fundamentally different principle. As a result, the discovery of PITA has been delayed for decades, waiting for a conceptual breakthrough in accelerator physics: the principle of alternating gradient acceleration [5, 6, 7, 8, 9, 10]. In fact, PITA was invented [7, 8] as one of several realizations of the new principle.

  11. Flash vacuum-ultraviolet generator having a mercury-anode tube

    NASA Astrophysics Data System (ADS)

    Sagae, Michiaki; Sato, Eiichi; Oizumi, Teiji; Yamamoto, Mariko; Takabe, Akihito; Sakamaki, Kimio; Ojima, Hidenori; Takayama, Kazuyoshi; Tamakawa, Yoshiharu; Yanagisawa, Toru

    1995-09-01

    The fundamental studies on a flash vacuum-ultraviolet (VUV) generator for producing water- window x rays are described. this generator consisted of the following essential components: a high-voltage power supply, a polarity-inversion-type high-voltage pulser having a 15 nF condenser, a thyristor pulser as a trigger device, a turbo molecular pump, and a VUV tube. The VUV tube employed a mercury anode, and the ferrite cathode was embedded in the anode. The pressure in the tube was primarily determined by the steam pressure of mercury as a function of temperature. The condenser in the pulser was charged from -10 to -30 kV by the power supply, and the electric charges in the condenser were discharged to the radiation tube after closing a gap switch by the thyristor pulser. As the high electron flows from the cathode electrode evaporated the anode electrode, VUV rays were then produced. The maximum output voltage from the pulser was approximately -1 times the charging voltage, and both the tube voltage and current displayed damped oscillations. The maximum values of the tube voltage and current were 14 kV and 2.0 kA, respectively. Since the effective accelerating voltage was substantially decreased by the ferrite cathode, soft x rays were easily generated. The pulse durations of the VUV rays including water-window x rays were nearly equivalent to those of the damped oscillations of the voltage and current, and their values were less than 15 microsecond(s) .

  12. [The influence of anodizing conditions on the activity of urease immobilized to anodized sheet aluminium (author's transl)].

    PubMed

    Grunwald, P; Grunsser, W; Pfaff, K P; Krause, R; Lutz, K

    1980-01-01

    The activity of urease immobilized by adsorption on anodized sheet aluminium strongly depends on the method chosen for preparation of these carriers. If oxalic acid is applied as electrolyte, only the anodizing temperature significantly influences the activity of the preparations. In case of the well-known GS process, however, the activity is not only affected by the temperature, but also by other conditions of anodizing, for example the current density and the electrolyte concentration. For both methods the correlation between the topography of the carrier surfaces and the activity of enzyme immobilized to the surface is described. PMID:7445681

  13. Electrostatic acceleration of helicon plasma using a cusped magnetic field

    NASA Astrophysics Data System (ADS)

    Harada, S.; Baba, T.; Uchigashima, A.; Yokota, S.; Iwakawa, A.; Sasoh, A.; Yamazaki, T.; Shimizu, H.

    2014-11-01

    The electrostatic acceleration of helicon plasma is investigated using an electrostatic potential exerted between the ring anode at the helicon source exit and an off-axis hollow cathode in the downstream region. In the downstream region, the magnetic field for the helicon source, which is generated by a solenoid coil, is modified using permanent magnets and a yoke, forming an almost magnetic field-free region surrounded by an annular cusp field. Using a retarding potential analyzer, two primary ion energy peaks, where the lower peak corresponds to the space potential and the higher one to the ion beam, are detected in the field-free region. Using argon as the working gas with a helicon power of 1.5 kW and a mass flow rate of 0.21 mg/s, the ion beam energy is on the order of the applied acceleration voltage. In particular, with an acceleration voltage lower than 150 V, the ion beam energy even exceeds the applied acceleration voltage by an amount on the order of the electron thermal energy at the exit of the helicon plasma source. The ion beam energy profile strongly depends on the helicon power and the applied acceleration voltage. Since by this method the whole working gas from the helicon plasma source can, in principle, be accelerated, this device can be applied as a noble electrostatic thruster for space propulsion.

  14. Electrostatic acceleration of helicon plasma using a cusped magnetic field

    SciTech Connect

    Harada, S.; Baba, T.; Uchigashima, A.; Iwakawa, A.; Sasoh, A.; Yokota, S.; Yamazaki, T.; Shimizu, H.

    2014-11-10

    The electrostatic acceleration of helicon plasma is investigated using an electrostatic potential exerted between the ring anode at the helicon source exit and an off-axis hollow cathode in the downstream region. In the downstream region, the magnetic field for the helicon source, which is generated by a solenoid coil, is modified using permanent magnets and a yoke, forming an almost magnetic field-free region surrounded by an annular cusp field. Using a retarding potential analyzer, two primary ion energy peaks, where the lower peak corresponds to the space potential and the higher one to the ion beam, are detected in the field-free region. Using argon as the working gas with a helicon power of 1.5 kW and a mass flow rate of 0.21 mg/s, the ion beam energy is on the order of the applied acceleration voltage. In particular, with an acceleration voltage lower than 150 V, the ion beam energy even exceeds the applied acceleration voltage by an amount on the order of the electron thermal energy at the exit of the helicon plasma source. The ion beam energy profile strongly depends on the helicon power and the applied acceleration voltage. Since by this method the whole working gas from the helicon plasma source can, in principle, be accelerated, this device can be applied as a noble electrostatic thruster for space propulsion.

  15. The Dielectric Wall Accelerator

    SciTech Connect

    Caporaso, George J.; Chen, Yu-Jiuan; Sampayan, Stephen E.

    2009-01-01

    The Dielectric Wall Accelerator (DWA), a class of induction accelerators, employs a novel insulating beam tube to impress a longitudinal electric field on a bunch of charged particles. The surface flashover characteristics of this tube may permit the attainment of accelerating gradients on the order of 100 MV/m for accelerating pulses on the order of a nanosecond in duration. A virtual traveling wave of excitation along the tube is produced at any desired speed by controlling the timing of pulse generating modules that supply a tangential electric field to the tube wall. Because of the ability to control the speed of this virtual wave, the accelerator is capable of handling any charge to mass ratio particle; hence it can be used for electrons, protons and any ion. The accelerator architectures, key technologies and development challenges will be described.

  16. A comparison of chromic acid and sulfuric acid anodizing

    NASA Technical Reports Server (NTRS)

    Danford, M. D.

    1992-01-01

    Because of federal and state mandates restricting the use of hexavalent chromium, it was deemed worthwhile to compare the corrosion protection afforded 2219-T87 aluminum alloy by both Type I chromic acid and Type II sulfuric acid anodizing per MIL-A-8625. Corrosion measurements were made on large, flat 2219-T87 aluminum alloy sheet material with an area of 1 cm(exp 2) exposed to a corrosive medium of 3.5-percent sodium chloride at pH 5.5. Both ac electrochemical impedance spectroscopy and the dc polarization resistance techniques were employed. The results clearly indicate that the corrosion protection obtained by Type II sulfuric acid anodizing is superior, and no problems should result by substituting Type II sulfuric acid anodizing for Type I chromic acid anodizing.

  17. Virus-Enabled Silicon Anode for Lithium-Ion Batteries

    SciTech Connect

    Chen, X. L.; Gerasopoulos, K.; Guo, J. C.; Brown, A.; Wang, Chunsheng; Ghodssi, Reza; Culver, J. N.

    2010-08-13

    A novel three-dimensional Tobacco mosaic virus assembled silicon anode is reported. This electrode combines genetically modified virus templates for the production of high aspect ratio nanofeatured surfaces with electroless deposition to produce an integrated nickel current collector followed by physical vapor deposition of a silicon layer to form a high capacity silicon anode. This composite silicon anode produced high capacities (3300 mAh/g), excellent charge-discharge cycling stability (0.20% loss per cycle at 1C), and consistent rate capabilities (46.4% at 4C) between 0 and 1.5 V. The biological templated nanocomposite electrode architecture displays a nearly 10-fold increase in capacity over currently available graphite anodes with remarkable cycling stability.

  18. Passive films on magnesium anodes in primary batteries

    NASA Technical Reports Server (NTRS)

    Ratnakumar, B. V.

    1988-01-01

    The characteristics of the passive films over Mg anodes, which essentially govern the voltage delay of the latter, have been determined nondestructively from an analysis of the transient and steady-state response of the electrode potential to low amplitude galvanostatic polarization under various experimental conditions viz., with different corrosion inhibitor coatings on Mg, after various periods of ageing of anode in solutions containing corrosion inhibitors, at various low temperatures etc. Using these parameters, the kinetics of film build-up or dissolution under these conditions have been monitored. The morphology of the anode film has been verified with scanning electron microscopy. Similar transients at low temperatures point out a steep rise in the film resistivity which is essentially responsible for the severe voltage delay. Finally, possible application of this technique in secondary Li batteries to improve cycling characteristics of the Li anode has been pointed out.

  19. Recent Development on Anodes for Na-Ion Batteries

    SciTech Connect

    Bommier, C; Ji, XL

    2015-01-23

    New discoveries in anode materials for sodium ion batteries (NIBs) are highly necessary to achieve the goals of widespread applications, such as electric vehicles (EVs) and grid-level energy storage. Carbon-based materials are critical for this task as they are inexpensive, abundant, and versatile. They contain a plethora of structures and morphologies, ranging from highly ordered graphite or nanotubes to highly disordered amorphous carbon, thus making them very attractive for electrochemical energy storage. This review attempts to cover past and recent progress in the development of carbon-based anode materials for NIBs. To give a larger context, the article will briefly cover other anode materials for NIBs as well. The aim of this paper is to provide a timely update for researchers currently involved in the respective fields or to serve as a starting point for individuals who would like to gain a greater knowledge of new NIB anode materials.

  20. Multi-Anode Frequency Triplers at Sub-Millimeter Wavelengths

    NASA Technical Reports Server (NTRS)

    Maestrini, Alain; Tripon-Canseliet, Charlotte; Ward, John S.; Javadi, Hamid; Gill, John; Chattopadhyay, Goutam; Schlecht, Erich; Mehdi, Imran

    2005-01-01

    We report on the design methodology of fix-tuned split-block waveguide balanced frequency triplers working at 300,600 and 900 GHz. They feature four to six GaAs Schottky planar diodes in a balanced configuration. A 6-anode 300 GHz tripler, a 6-anode 560 GHz tripler and a 4-anode 900 GHz tripler will be fabricated with JPL membrane technology in order to minimize dielectric loading and ensure accurate thickness of the substrate. A 4-anode 600 GHz tripler was fabricated with JPL substrateless technology that delivers 0.8-1.6mW in the 540-640 GHz band at room temperature. When cooled to l2OK this tripler delivers 2-4mW from 540 to 640 GHz.

  1. Anode consumption on a subsea X-mas tree

    SciTech Connect

    Lye, R.E.

    1998-12-31

    Anode consumption and coating breakdown on a X-mas tree installed at the Troll Field in the Norwegian North Sea was investigated after 5 years. A comparison with a spare tree and one tree being exposed for only 3--4 months was done. The epoxy coating has several blisters, in particular on stainless steel surfaces. Water inside the blisters has a pH of 13-14 indicating that the cathodic reaction occurs inside them. The anode dimensions indicate an overall anode consumption of approximately 20%, while the design allows 27% after 5 years. This indicates that the original design is quite conservative. If the design had been done according to present day design rules, the conservatism would be reduced; an overall anode consumption of 23% is then likely (still less than allowed 27%).

  2. ALUMINUM RECLAMATION BY ACIDIC EXTRACTION OF ALUMINUM-ANODIZING SLUDGES

    EPA Science Inventory

    Extraction of aluminum-anodizing sludges with sulfuric acid was examined to determine the potential for production of commercial-strength solutions of aluminum sulfate, that is liquid alum. The research established kinetic and stoichiometric relationships and evaluates product qu...

  3. Topics in Chemical Instrumentation: CII. Automated Anodic Stripping Voltammetry.

    ERIC Educational Resources Information Center

    Stock, John T.; Ewing, Galen W., Ed.

    1980-01-01

    Presents details of anodic stripping analysis (ASV) in college chemistry laboratory experiments. Provides block diagrams of the analyzer system, circuitry and power supplies of the automated stripping analyzer, and instructions for implementing microcomputer control of the ASV. (CS)

  4. Nanocomposite anode materials for sodium-ion batteries

    DOEpatents

    Manthiram, Arumugam; Kim Il, Tae; Allcorn, Eric

    2016-06-14

    The disclosure relates to an anode material for a sodium-ion battery having the general formula AO.sub.x--C or AC.sub.x--C, where A is aluminum (Al), magnesium (Mg), titanium (Ti), vanadium (V), chromium (Cr), manganese (Mn), iron (Fe), cobalt (Co), nickel (Ni), zirconium (Zr), molybdenum (Mo), tungsten (W), niobium (Nb), tantalum (Ta), silicon (Si), or any combinations thereof. The anode material also contains an electrochemically active nanoparticles within the matrix. The nanoparticle may react with sodium ion (Na.sup.+) when placed in the anode of a sodium-ion battery. In more specific embodiments, the anode material may have the general formula M.sub.ySb-M'O.sub.x--C, Sb-MO.sub.x--C, M.sub.ySn-M'C.sub.x--C, or Sn-MC.sub.x--C. The disclosure also relates to rechargeable sodium-ion batteries containing these materials and methods of making these materials.

  5. Effect of processing on structural features of anodic aluminum oxides

    NASA Astrophysics Data System (ADS)

    Erdogan, Pembe; Birol, Yucel

    2012-09-01

    Morphological features of the anodic aluminum oxide (AAO) templates fabricated by electrochemical oxidation under different processing conditions were investigated. The selection of the polishing parameters does not appear to be critical as long as the aluminum substrate is polished adequately prior to the anodization process. AAO layers with a highly ordered pore distribution are obtained after anodizing in 0.6 M oxalic acid at 20 °C under 40 V for 5 minutes suggesting that the desired pore features are attained once an oxide layer develops on the surface. While the pore features are not affected much, the thickness of the AAO template increases with increasing anodization treatment time. Pore features are better and the AAO growth rate is higher at 20 °C than at 5 °C; higher under 45 V than under 40 V; higher with 0.6 M than with 0.3 M oxalic acid.

  6. VIEW OF INTERIOR SPACE WITH ANODIZING TANK AND LIQUID BIN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW OF INTERIOR SPACE WITH ANODIZING TANK AND LIQUID BIN STORAGE TANK IN FOREGROUND, FACING NORTH. - Douglas Aircraft Company Long Beach Plant, Aircraft Parts Receiving & Storage Building, 3855 Lakewood Boulevard, Long Beach, Los Angeles County, CA

  7. Blue fluorescent organic light emitting diodes with multilayered graphene anode

    SciTech Connect

    Hwang, Joohyun; Choi, Hong Kyw; Moon, Jaehyun; Shin, Jin-Wook; Joo, Chul Woong; Han, Jun-Han; Cho, Doo-Hee; Huh, Jin Woo; Choi, Sung-Yool; Lee, Jeong-Ik; Chu, Hye Yong

    2012-10-15

    As an innovative anode for organic light emitting devices (OLEDs), we have investigated graphene films. Graphene has importance due to its huge potential in flexible OLED applications. In this work, graphene films have been catalytically grown and transferred to the glass substrate for OLED fabrications. We have successfully fabricated 2 mm × 2 mm device area blue fluorescent OLEDs with graphene anodes which showed 2.1% of external quantum efficiency at 1000 cd/m{sup 2}. This is the highest value reported among fluorescent OLEDs using graphene anodes. Oxygen plasma treatment on graphene has been found to improve hole injections in low voltage regime, which has been interpreted as oxygen plasma induced work function modification. However, plasma treatment also increases the sheet resistance of graphene, limiting the maximum luminance. In summary, our works demonstrate the practical possibility of graphene as an anode material for OLEDs and suggest a processing route which can be applied to various graphene related devices.

  8. Recent anode advances in solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Sun, Chunwen; Stimming, Ulrich

    Solid oxide fuel cells (SOFCs) are electrochemical reactors that can directly convert the chemical energy of a fuel gas into electrical energy with high efficiency and in an environment-friendly way. The recent trends in the research of solid oxide fuel cells concern the use of available hydrocarbon fuels, such as natural gas. The most commonly used anode material Ni/YSZ cermet exhibits some disadvantages when hydrocarbons were used as fuels. Thus it is necessary to develop alternative anode materials which display mixed conductivity under fuel conditions. This article reviews the recent developments of anode in SOFCs with principal emphasis on the material aspects. In addition, the mechanism and kinetics of fuel oxidation reactions are also addressed. Various processes used for the cost-effective fabrication of anode have also been summarized. Finally, this review will be concluded with personal perspectives on the future research directions of this area.

  9. Formation of anodic aluminum oxide with serrated nanochannels.

    PubMed

    Li, Dongdong; Zhao, Liang; Jiang, Chuanhai; Lu, Jia G

    2010-08-11

    We report a simple and robust method to self-assemble porous anodic aluminum oxide membranes with serrated nanochannels by anodizing in phosphoric acid solution. Due to high field conduction and anionic incorporation, an increase of anodizing voltage leads to an increase of the impurity levels and also the field strength across barrier layer. On the basis of both experiment and simulation results, the initiation and formation of serrated channels are attributed to the evolution of oxygen gas bubbles followed by plastic deformation in the oxide film. Alternating anodization in oxalic and phosphoric acids is applied to construct multilayered membranes with smooth and serrated channels, demonstrating a unique way to design and construct a three-dimensional hierarchical system with controllable morphology and composition. PMID:20617804

  10. Functionally strain-graded nanoscoops for high power Li-ion battery anodes.

    PubMed

    Krishnan, Rahul; Lu, Toh-Ming; Koratkar, Nikhil

    2011-02-01

    Lithium-ion batteries show poor performance for high power applications involving ultrafast charging/discharging rates. Here we report a functionally strain-graded carbon-aluminum-silicon anode architecture that overcomes this drawback. It consists of an array of nanostructures each comprising an amorphous carbon nanorod with an intermediate layer of aluminum that is finally capped by a silicon nanoscoop on the very top. The gradation in strain arises from graded levels of volumetric expansion in these three materials on alloying with lithium. The introduction of aluminum as an intermediate layer enables the gradual transition of strain from carbon to silicon, thereby minimizing the mismatch at interfaces between differentially strained materials and enabling stable operation of the electrode under high-rate charge/discharge conditions. At an accelerated current density of ∼51.2 A/g (i.e., charge/discharge rate of ∼40C), the strain-graded carbon-aluminum-silicon nanoscoop anode provides average capacities of ∼412 mAh/g with a power output of ∼100 kW/kg(electrode) continuously over 100 charge/discharge cycles. PMID:21192713

  11. Anchoring Nanostructured Manganese Fluoride on Few-Layer Graphene Nanosheets as Anode for Enhanced Lithium Storage.

    PubMed

    Rui, Kun; Wen, Zhaoyin; Lu, Yan; Shen, Chen; Jin, Jun

    2016-01-27

    Manganese fluoride (MnF2)/few-layer graphene nanosheets (GNS) composites are successfully prepared via a facile solvothermal method. It is found that in situ formed tetragonal MnF2 submicron crystals (50-200 nm) with good crystallinity anchoring homogeneously onto conducting GNS, allows the electrically insulating MnF2 particles to be wired up to the current collector with enhanced electron transport pathway. The MnF2/GNS composites act as anode in LIBs and display prominently improved electrochemical performance in comparison to that of pure MnF2, on account of the close interactions between the underlying graphene nanosheets and MnF2 particles grown atop. Distinctly enhanced capacity as high as 489 mAh g(-1) after 100 cycles can be obtained at 600 mA g(-1), while the self-activation process can be greatly accelerated at 6000 mA g(-1) with a maximum specific capacity of 530 mAh g(-1). With long cycling stability for 4000 cycles at 6000 mA g(-1), the MnF2/GNS composite can be deemed as an attractive candidate anode for high-capacity, long cycle life, and environmentally friendly LIBs. PMID:26727406

  12. Electron beam modification of anode materials for high-rate lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Park, Yiseul; Park, Jung Soo; Baek, Seong-Ho; Kim, Jae Hyun

    2015-11-01

    The rate capability of a Li4Ti5O12 (LTO)-based anode in a lithium ion battery can be easily improved by electron beam (EB) irradiation without the need for complicated synthetic procedures. The electrode prepared with EB-irradiated LTO at a 50 kGy dose has an enhanced rate capability while retaining a discharge capacity of 100 mAh g-1, even at the 20 C-rate. The effect of EB irradiation on the properties of the anode materials (i.e., LTO, poly(vinylidene fluoride) (PVDF), super P carbon) is examined in detail through systematic experiments. Both LTO and PVDF are affected by EB irradiation and dependent on the exposed electron dose, but super P is affected negligibly. EB irradiation partially reduces LTO with forming Tix+ (2 < x < 4) which is attributed to the enhanced electrical conductivity. EB irradiation causes dehydrofluorination and cross-linking in PVDF, resulting in the formation of carbon-carbon double bonds. The conjugated structure of PVDF is formed by the further dehydrofluorination during mixing with LTO via ball-milling, and this is accelerated in the presence of EB-PVDF. This conjugated structure enhances the electrical conductivity and is responsible for the improved rate capability.

  13. Evaluation of Multi-Anode Photomultipliers for the CLAS12 Ring-Imaging Cherenkov Detector

    NASA Astrophysics Data System (ADS)

    Samuel, Jenna

    2015-04-01

    Thomas Jefferson National Accelerator Facility has recently upgraded its Continuous Electron Beam Accelerator Facility (CEBAF) Large Acceptance Spectrometer (CLAS12) to provide a comprehensive study of the complex internal structure and dynamics of the nucleon. The upgrade includes new detectors such as the Ring Imaging Cherenkov detector (RICH). The RICH will use multi-anode photomultipliers (MAPMTs) for the detection of Cherenkov photons. Our study compared two models of Hamamatsu MAPMTs (H8500 and H12700) under consideration for the CLAS12 RICH in terms of their single photoelectron (SPE) peak, dark current, and crosstalk. The MAPMTs were tested inside a light-tight box, using a low intensity laser to simulate single photoelectron events similar to Cherenkov radiation. The H12700's SPE peaks were on average 78% the width of the H8500's peaks. For both models, the probability of dark current was on the order of 10-4. The probability of crosstalk for H8500s was 1.6 to 2.7 times that for H12700s. The H12700s were deemed better because they had negligible crosstalk and dark current while providing a narrower peak for single photoelectron events. Thomas Jefferson National Accelerator Facility, Science Undergraduate Laboratory Internship.

  14. ACCELERATION RESPONSIVE SWITCH

    DOEpatents

    Chabrek, A.F.; Maxwell, R.L.

    1963-07-01

    An acceleration-responsive device with dual channel capabilities whereby a first circuit is actuated upon attainment of a predetermined maximum acceleration level and when the acceleration drops to a predetermined minimum acceleriltion level another circuit is actuated is described. A fluid-damped sensing mass slidably mounted in a relatively frictionless manner on a shaft through the intermediation of a ball bushing and biased by an adjustable compression spring provides inertially operated means for actuating the circuits. (AEC)

  15. Space Acceleration Measurement System

    NASA Technical Reports Server (NTRS)

    1993-01-01

    This training video, presented by the Lewis Research Center's Space Experiments Division, gives a background and detailed instructions for preparing the space acceleration measurement system (SAMS) for use. The SAMS measures, conditions, and records forces of low gravity accelerations, and is used to determine the effect of these forces on various experiments performed in microgravity. Inertial sensors are used to measure positive and negative acceleration over a specified frequency range. The video documents the SAMS' uses in different configurations during shuttle missions.

  16. Wake field accelerators

    SciTech Connect

    Wilson, P.B.

    1986-02-01

    In a wake field accelerator a high current driving bunch injected into a structure or plasma produces intense induced fields, which are in turn used to accelerate a trailing charge or bunch. The basic concepts of wake field acceleration are described. Wake potentials for closed cavities and periodic structures are derived, as are wake potentials on a collinear path with a charge distribution. Cylindrically symmetric structures excited by a beam in the form of a ring are considered. (LEW)

  17. Accelerating into the future

    NASA Astrophysics Data System (ADS)

    Murray, Cherry

    2009-05-01

    Accelerator science has traditionally been associated with high-energy physics and nuclear physics. But the use of accelerators in other areas of science, as well as in medicine and industry, is steadily growing. Accelerators are now, for example, used to treat cancer using proton therapy, which can deposit radiation onto a tumour while causing much less damage to surrounding healthy tissue than with other treatment techniques.

  18. Optically pulsed electron accelerator

    DOEpatents

    Fraser, J.S.; Sheffield, R.L.

    1985-05-20

    An optically pulsed electron accelerator can be used as an injector for a free electron laser and comprises a pulsed light source, such as a laser, for providing discrete incident light pulses. A photoemissive electron source emits electron bursts having the same duration as the incident light pulses when impinged upon by same. The photoemissive electron source is located on an inside wall of a radiofrequency-powered accelerator cell which accelerates the electron burst emitted by the photoemissive electron source.

  19. Optically pulsed electron accelerator

    DOEpatents

    Fraser, John S.; Sheffield, Richard L.

    1987-01-01

    An optically pulsed electron accelerator can be used as an injector for a free electron laser and comprises a pulsed light source, such as a laser, for providing discrete incident light pulses. A photoemissive electron source emits electron bursts having the same duration as the incident light pulses when impinged upon by same. The photoemissive electron source is located on an inside wall of a radio frequency powered accelerator cell which accelerates the electron burst emitted by the photoemissive electron source.

  20. Miniaturization Techniques for Accelerators

    SciTech Connect

    Spencer, James E.

    2003-05-27

    The possibility of laser driven accelerators [1] suggests the need for new structures based on micromachining and integrated circuit technology because of the comparable scales. Thus, we are exploring fully integrated structures including sources, optics (for both light and particle) and acceleration in a common format--an accelerator-on-chip (AOC). Tests suggest a number of preferred materials and techniques but no technical or fundamental roadblocks at scales of order 1 {micro}m or larger.

  1. Dianils: New and effective corrosion inhibitors for oil-well steel (N-80) and mild steel in boiling hydrochloric acid

    SciTech Connect

    Quraishi, M.A.; Jamal, D.

    2000-02-01

    Selected condensation products of aromatic aldehydes and p-phenylenediamine have been synthesized and evaluated as corrosion inhibitors for mild steel (MS) and oil-well steel (N-80) in 15% hydrochloric acid (HCl) at 105 C {+-} 2 C by the weight loss method. All the condensation products showed excellent performance. 2,4-dicinnamyledene aminophenylene (DCAP) was found to be the best corrosion inhibitor. It exhibited 99.75% inhibition efficiency (IE) for MS and 99.12% for N-80 steel at 5,000 ppm of inhibitor concentration. The potentiodynamic polarization studies carried out at room temperature on MS in 15% HCl containing 500 ppm of condensation products showed that all the investigated compounds were mixed type inhibitors, whereas 500 ppm DCAP on N-80 steel behaved predominantly as anodic inhibitors. The adsorption of all the condensation products was found to obey Temkin's adsorption isotherm.

  2. Indole Alkaloids of Alstonia angustifolia var. latifolia as Green Inhibitor for Mild Steel Corrosion in 1 M HCl Media

    NASA Astrophysics Data System (ADS)

    Raja, Pandian Bothi; Qureshi, Ahmad Kaleem; Rahim, Afidah Abdul; Awang, Khalijah; Mukhtar, Mat Ropi; Osman, Hasnah

    2013-04-01

    The inhibition effect of mild steel (MS) corrosion in 1 M HCl was studied by the addition of indole alkaloids (crude) isolated from Alstonia angustifolia var. latifolia ( A. latifolia) leaves at 303 K. Potentiodynamic polarization, impedance spectroscopy, scanning electron microscopy (SEM), and Fourier transform infrared (FTIR) analyses were used for this study. Results show that the isolated alkaloid extract of A. latifolia is a good inhibitor and exhibited maximum inhibition efficiency (above 80%) at concentrations between 3 and 5 mg/L. Polarization measurements indicated that the inhibitor does not alter the mechanism of either anodic or cathodic reactions and acted as mixed-type inhibitor. The inhibition efficiencies of both electrochemical techniques are found to be in good agreement and adsorption of inhibitor follows Langmuir isotherm. Adsorption of inhibitor over metal surface was well supported by the SEM studies, while FTIR studies evidenced the presence of indole alkaloids as green inhibitor that reduces the rate of corrosion.

  3. Corrosion mitigation of N-(2-hydroxy-3-trimethyl ammonium)propyl chitosan chloride as inhibitor on mild steel.

    PubMed

    Sangeetha, Y; Meenakshi, S; SairamSundaram, C

    2015-01-01

    The biopolymer N-(2-hydroxy-3-trimethyl ammonium)propyl chitosan chloride (HTACC) was synthesised and its influence as a novel corrosion inhibitor on mild steel in 1M HCl was studied using gravimetric and electrochemical experiments. The compound obtained was characterised using FTIR and NMR studies. The inhibition efficiency increased with the increase in concentration and reached a maximum of 98.9% at 500 ppm concentration. Polarisation studies revealed that HTACC acts both as anodic and cathodic inhibitor. Electrochemical impedance studies confirmed that the inhibition is through adsorption on the metal surface. The extent of inhibition exhibits a negative trend with increase in temperature. Langmuir isotherm provides the best description on the adsorption nature of the inhibitor. SEM analysis indicated the presence of protective film formed by the inhibitor on the metal surface. PMID:25450546

  4. Digit Symbol Performance in Mild Dementia and Depression.

    ERIC Educational Resources Information Center

    Hart, Robert P.; And Others

    1987-01-01

    Patients with mild dementia of the Alzheimer's type (DAT), patients with major depression, and normal control subjects completed the Wechsler Adult Intelligence Scale (WAIS) Digit Symbol test of incidental memory. Though mild DAT and depressed patients had equivalent deficits in psychomotor speed, DAT patients recalled fewer digit-symbol items.…

  5. Low Elevated Lead Levels and Mild Mental Retardation.

    ERIC Educational Resources Information Center

    Marlowe, Mike; And Others

    To investigate the relation between low level lead absorption and mild mental retardation, hair lead concentrations were compared in a group of 40 mildly retarded children "etiology unknown" with a control group of 20 children. Children with probable cause for retardation were excluded from the sample as were children with a history of lead…

  6. Impaired Verb Fluency: A Sign of Mild Cognitive Impairment

    ERIC Educational Resources Information Center

    Ostberg, Per; Fernaeus, Sven-Erik; Hellstrom, Ake; Bogdanovic, Nenad; Wahlund, Lars Olof

    2005-01-01

    We assessed verb fluency vs. noun and letter-based fluency in 199 subjects referred for cognitive complaints including Subjective Cognitive Impairment, Mild Cognitive Impairment, and Alzheimer's disease. ANCOVAs and factor analyses identified verb, noun, and letter-based fluency as distinct tasks. Verb fluency performance in Mild Cognitive…

  7. Get Well Care: Guidelines for Programs Serving Mildly Ill Children.

    ERIC Educational Resources Information Center

    Montanari, Ellen Orton, Ed.

    Although child care programs for mildly ill children are proliferating around the country, very few states have developed regulations for these types of programs, and no states have developed standards or guidelines. Based upon this concern, a group of medical and early childhood professionals, parents, and directors of programs for mildly ill…

  8. Teaching Elementary Social Studies to Students with Mild Disabilities.

    ERIC Educational Resources Information Center

    Taylor, Howard E.; Larson, Susan M.

    2000-01-01

    Explains what mild disabilities are and discusses the issue of mainstreaming within the realm of elementary school social studies. Provides strategies for social studies teachers to use when addressing the needs of students with learning disabilities, emotional and behavioral disorders, mild mental retardation, and other health impairments. (CMK)

  9. Mild Aphasia: Is This the Place for an Argument?

    ERIC Educational Resources Information Center

    Armstrong, Elizabeth; Fox, Sarah; Wilkinson, Ray

    2013-01-01

    Purpose: Individuals with mild aphasia often report significant disruption to their communication despite seemingly minor impairment. This study explored this phenomenon through examining conversations of a person with mild aphasia engaging in argumentation--a skill she felt had significantly deteriorated after her stroke. Method: A person with…

  10. Predicting Mild and Severe Husband-to-Wife Physical Aggression.

    ERIC Educational Resources Information Center

    Pan, Helen S.; And Others

    1994-01-01

    Estimated odds of mild and severe husband-to-wife physical aggression in 11,870 white men. Being younger, having lower income, and having alcohol problem significantly increased odds of either mild or severe physical aggression. Drug problem uniquely increased risk of severe physical aggression. Marital discord and depression further increased…

  11. Fuel cell having dual electrode anode or cathode

    DOEpatents

    Findl, E.

    1984-04-10

    A fuel cell that is characterized by including a dual electrode anode that is operable to simultaneously electro-oxidize a gaseous fuel and a liquid fuel. In alternative embodiments, a fuel cell having a single electrode anode is provided with a dual electrode cathode that is operable to simultaneously reduce a gaseous oxidant and a liquid oxidant to electro-oxidize a fuel supplied to the cell.

  12. Fuel cell having dual electrode anode or cathode

    DOEpatents

    Findl, Eugene

    1985-01-01

    A fuel cell that is characterized by including a dual electrode anode that is operable to simultaneously electro-oxidize a gaseous fuel and a liquid fuel. In alternative embodiments, a fuel cell having a single electrode anode is provided with a dual electrode cathode that is operable to simultaneously reduce a gaseous oxidant and a liquid oxidant to electro-oxidize a fuel supplied to the cell.

  13. New Anode Material for Rechargeable Li-ION Cells

    NASA Technical Reports Server (NTRS)

    Huang, C. -K.; Smart, M.; Halpert, G.; Surampudi, S.; Wolfenstine, J.

    1995-01-01

    Carbon materials, such as graphite, cokes, pitch and PAN fibers, are being evaluated in lithium batteries as alternate anode materials with some degree of success. There is an effort to look for other non-carbon anode materials which have larger Li capacity, higher rate capability, smaller first charge capacity loss and better mechanical stability during cycling. A Li-Mg-Si material is evaluated.

  14. Development of Carbon Anode for Rechargeable Lithium Cells

    NASA Technical Reports Server (NTRS)

    Huang, C. -K.; Surampudi, S.; Halpert, G.

    1994-01-01

    Conventionally, rechargeable lithium cells employ a pure lithium anode. To overcome problems associated with the pure lithium electrode, it has been proposed to replace the conventional electrode with an alternative material having a greater stability with respect to the cell electrolytes. For this reason, several graphitic and coke based carbonaceous materials were evaluated as candidate anode materials...In this paper, we summarize the results of the studies on Li-ion cell development.

  15. Zinc mesh anodes cast into concrete pile jackets

    SciTech Connect

    Kessler, R.J.; Powers, R.G.; Lasa, I.R.

    1996-12-01

    A sacrificial cathodic protection system has been designed to provide corrosion control to the splash area and the submerged portion of reinforced concrete bridge pilings. The system consists of a two-piece stay-in-place fiberglass form with an internal expanded zinc mesh anode. It is filled with a portland cement-sand mortar to protect the splash area. The submerged portion of the pile is protected using a standard zinc bulk anode.

  16. Particle acceleration in flares

    NASA Technical Reports Server (NTRS)

    Benz, Arnold O.; Kosugi, Takeo; Aschwanden, Markus J.; Benka, Steve G.; Chupp, Edward L.; Enome, Shinzo; Garcia, Howard; Holman, Gordon D.; Kurt, Victoria G.; Sakao, Taro

    1994-01-01

    Particle acceleration is intrinsic to the primary energy release in the impulsive phase of solar flares, and we cannot understand flares without understanding acceleration. New observations in soft and hard X-rays, gamma-rays and coherent radio emissions are presented, suggesting flare fragmentation in time and space. X-ray and radio measurements exhibit at least five different time scales in flares. In addition, some new observations of delayed acceleration signatures are also presented. The theory of acceleration by parallel electric fields is used to model the spectral shape and evolution of hard X-rays. The possibility of the appearance of double layers is further investigated.

  17. Charged particle accelerator grating

    DOEpatents

    Palmer, Robert B.

    1986-09-02

    A readily disposable and replaceable accelerator grating for a relativistic particle accelerator. The grating is formed for a plurality of liquid droplets that are directed in precisely positioned jet streams to periodically dispose rows of droplets along the borders of a predetermined particle beam path. A plurality of lasers are used to direct laser beams into the droplets, at predetermined angles, thereby to excite the droplets to support electromagnetic accelerating resonances on their surfaces. Those resonances operate to accelerate and focus particles moving along the beam path. As the droplets are distorted or destroyed by the incoming radiation, they are replaced at a predetermined frequency by other droplets supplied through the jet streams.

  18. Accelerator-based BNCT.

    PubMed

    Kreiner, A J; Baldo, M; Bergueiro, J R; Cartelli, D; Castell, W; Thatar Vento, V; Gomez Asoia, J; Mercuri, D; Padulo, J; Suarez Sandin, J C; Erhardt, J; Kesque, J M; Valda, A A; Debray, M E; Somacal, H R; Igarzabal, M; Minsky, D M; Herrera, M S; Capoulat, M E; Gonzalez, S J; del Grosso, M F; Gagetti, L; Suarez Anzorena, M; Gun, M; Carranza, O

    2014-06-01

    The activity in accelerator development for accelerator-based BNCT (AB-BNCT) both worldwide and in Argentina is described. Projects in Russia, UK, Italy, Japan, Israel, and Argentina to develop AB-BNCT around different types of accelerators are briefly presented. In particular, the present status and recent progress of the Argentine project will be reviewed. The topics will cover: intense ion sources, accelerator tubes, transport of intense beams, beam diagnostics, the (9)Be(d,n) reaction as a possible neutron source, Beam Shaping Assemblies (BSA), a treatment room, and treatment planning in realistic cases. PMID:24365468

  19. Mild cognitive impairment: believe it or not?

    PubMed

    Allegri, Ricardo F; Glaser, Frank B; Taragano, Fernando E; Buschke, Herman

    2008-08-01

    Mild cognitive impairment (MCI) was previously defined as a transitional state that can precede dementia, but the condition and the rates of conversion remain controversial. MCI is now the focus of natural history studies, along with Alzheimer's disease (AD) prevention. The objective of our review will be to consider the question of whether MCI is a well enough established entity that it can be a diagnosis in medical practice and a valid target of Alzheimer's prevention therapy. MCI was originally defined by Petersen et al. (1999) as progressive memory loss, prodrome of Alzheimer's disease. More recently MCI has been expanded to other cognitive domains with other potential causes like normal aging, fronto-temporal dementia, and vascular dementia. Despite many consensus conferences, experts cannot agree on critical aspects of the MCI, particularly with respect to its clinical utility. Based on neuropsychological studies, a hippocampal memory profile has been proposed for MCI as prodromal AD. Further research is needed to advance these criteria. We have no doubt, however, that in the future, the diagnosis of AD as disease (not only a dementia syndrome) will be made in the early pre-dementia stage and will be drawn from a combination of neuropsychological, neuro-imaging and CSF biomarkers. PMID:18925484

  20. Mild-split SUSY with flavor

    NASA Astrophysics Data System (ADS)

    Eliaz, Latif; Giveon, Amit; Gudnason, Sven Bjarke; Tsuk, Eitan

    2013-10-01

    In the framework of a gauge mediated quiver-like model, the standard model flavor texture can be naturally generated. The model — like the MSSM — has furthermore a region in parameter space where the lightest Higgs mass is fed by heavy stop loops, which in turn sets the average squark mass scale near 10 - 20TeV. We perform a careful flavor analysis to check whether this type of mild-split SUSY passes all flavor constraints as easily as envisioned in the original type of split SUSY. Interestingly, it turns out to be on the border of several constraints, in particular, the branching ratio of μ → eγ and, if order one complex phases are assumed, also ɛ K , neutron and electron EDM. Furthermore, we consider unification as well as dark matter candidates, especially the gravitino. Finally, we provide a closed-form formula for the soft masses of matter in arbitrary representations of any of the gauge groups in a generic quiver-like model with a general messenger sector.

  1. Acceleration of polarized protons in circular accelerators

    SciTech Connect

    Courant, E.D.; Ruth, R.D.

    1980-09-12

    The theory of depolarization in circular accelerators is presented. The spin equation is first expressed in terms of the particle orbit and then converted to the equivalent spinor equation. The spinor equation is then solved for three different situations: (1) a beam on a flat top near a resonance, (2) uniform acceleration through an isolated resonance, and (3) a model of a fast resonance jump. Finally, the depolarization coefficient, epsilon, is calculated in terms of properties of the particle orbit and the results are applied to a calculation of depolarization in the AGS.

  2. Stainless steel anodes for alkaline water electrolysis and methods of making

    DOEpatents

    Soloveichik, Grigorii Lev

    2014-01-21

    The corrosion resistance of stainless steel anodes for use in alkaline water electrolysis was increased by immersion of the stainless steel anode into a caustic solution prior to electrolysis. Also disclosed herein are electrolyzers employing the so-treated stainless steel anodes. The pre-treatment process provides a stainless steel anode that has a higher corrosion resistance than an untreated stainless steel anode of the same composition.

  3. Hyper-dendritic nanoporous zinc foam anodes

    DOE PAGESBeta

    Chamoun, Mylad; Hertzberg, Benjamin J.; Gupta, Tanya; Davies, Daniel; Bhadra, Shoham; Van Tassell, Barry.; Erdonmez, Can; Steingart, Daniel A.

    2015-04-24

    The low cost, significant reducing potential, and relative safety of the zinc electrode is a common hope for a reductant in secondary batteries, but it is limited mainly to primary implementation due to shape change. In this work we exploit such shape change for the benefit of static electrodes through the electrodeposition of hyper-dendritic nanoporous zinc foam. Electrodeposition of zinc foam resulted in nanoparticles formed on secondary dendrites in a three-dimensional network with a particle size distribution of 54.1 - 96.0 nm. The nanoporous zinc foam contributed to highly oriented crystals, high surface area and more rapid kinetics in contrastmore » to conventional zinc in alkaline mediums. The anode material presented had a utilization of ~ 88% at full depth-of-discharge at various rates indicating a superb rate-capability. The rechargeability of Zn⁰/Zn²⁺ showed significant capacity retention over 100 cycles at a 40% depth-of-discharge to ensure that the dendritic core structure was imperforated. The dendritic architecture was densified upon charge-discharge cycling and presented superior performance compared to bulk zinc electrodes.« less

  4. Hyper-dendritic nanoporous zinc foam anodes

    SciTech Connect

    Chamoun, Mylad; Hertzberg, Benjamin J.; Gupta, Tanya; Davies, Daniel; Bhadra, Shoham; Van Tassell, Barry.; Erdonmez, Can; Steingart, Daniel A.

    2015-04-24

    The low cost, significant reducing potential, and relative safety of the zinc electrode is a common hope for a reductant in secondary batteries, but it is limited mainly to primary implementation due to shape change. In this work we exploit such shape change for the benefit of static electrodes through the electrodeposition of hyper-dendritic nanoporous zinc foam. Electrodeposition of zinc foam resulted in nanoparticles formed on secondary dendrites in a three-dimensional network with a particle size distribution of 54.1 - 96.0 nm. The nanoporous zinc foam contributed to highly oriented crystals, high surface area and more rapid kinetics in contrast to conventional zinc in alkaline mediums. The anode material presented had a utilization of ~ 88% at full depth-of-discharge at various rates indicating a superb rate-capability. The rechargeability of Zn⁰/Zn²⁺ showed significant capacity retention over 100 cycles at a 40% depth-of-discharge to ensure that the dendritic core structure was imperforated. The dendritic architecture was densified upon charge-discharge cycling and presented superior performance compared to bulk zinc electrodes.

  5. Nano-film assisted anodic bonding

    NASA Astrophysics Data System (ADS)

    Wei, J.; Xie, H.; Wong, C. K.; Lee, L. C.

    2002-11-01

    The paper reports on the development of low temperature silicon-to-glass anodic bonding for wafer level microelectromechanical systems (MEMS) packaging. A hydrogen-free amorphous silicon layer of about 40 nm thickness was deposited on the silicon substrate. The effects of bonding temperature and voltage on the bond integrity and strength were investigated. The bonding temperatures and voltages ranged from 200 to 300 °C and 200 to 1000 V, respectively. It is found that bubble-free interface can be achieved as long as the temperature is above 250 °C. Even at lower temperatures, the unbonded area can be less than 0.5% of the wafer area. The bubble size decreases with an increase in the bonding temperature. A similar effect was observed with the applied voltage. The bond strength obtained was typically 20 MPa or higher. In the destructive tests, fractures were found to occur mainly inside the glass wafer rather than at the interface. The interface was analysed with Raman spectroscopy and SIMS. The analyses showed that Si-O chemical bonds are formed at the interface. Higher bonding temperatures result in more oxygen migrating to the interface and reacting with Si to form Si-O bonds. Electrostatic attraction and chemical reaction are the two main mechanisms that generate the bonding between silicon and glass wafers.

  6. Electrochemical oxidation of phenol using graphite anodes

    SciTech Connect

    Awad, Y.M.; Abuzaid, N.S.

    1999-02-01

    The effects of current and pH on the electrochemical oxidation of phenol on graphite electrodes is investigated in this study. There was no sign of deterioration of the graphite bed after 5 months of operation. Phenol removal efficiency was a function of the current applied and was around 70% at a current of 2.2 A. The increase of phenol removal efficiency with current is attributed to the increase of ionic transport which increases the rate of electrode reactions responsible for the removal process. The percentage of complete oxidation of phenol increases with current, with a maximum value of about 50%. However, at pH 0.2 it is slightly higher than that at pH 0.5 at all currents. The phenol removal rate increases with increases of current and pH. While the current (CO{sub 2}) efficiency reaches a maximum value in the current range of 1.0--1.2 A, it increases with an increase of acid concentration. The findings of this study have important implications: while anodic oxidation of phenol on graphite can achieve acceptable removal of phenol, the extent of oxidation should not be overlooked.

  7. Graphene production in magnetically enhanced anodic arc

    NASA Astrophysics Data System (ADS)

    Shashurin, Alexey; Raitses, Yevgeny; Keidar, Michael

    2010-11-01

    Graphene is a one-atom-thick planar sheet of sp^2-bonded carbon atoms that are densely packed in a honeycomb crystal lattice. This new material, which combines aspects of semiconductors and metals, could be a leading candidate to replace silicon in applications ranging from high-speed computer chips to biochemical sensors. However, before graphene sheets can be applied to commercial applications, it is necessary to find lower cost methods of mass production. Recently, a new method of graphene synthesis in magnetically controlled anodic arc discharge was discovered.ootnotetextM. Keidar, A. Shashurin, O. Volotskova, Y. Raitses, and I. I. Beilis Phys. Plasmas 17, 057101 (2010) The effect of external magnetic field application to the discharge zone on production yield of graphene flakes is studied using specially-designed magnetic system able to create different magnetic field configurations with magnitudes of up to several kGauss. The considered here method may have broad commercial impact on production of bulk graphene for different energy, electronics, aerospace, mechanical, civil, and biomedical applications, and especially for newly emerging ultracapacitor industry.

  8. Process for anodizing a robotic device

    DOEpatents

    Townsend, William T.

    2011-11-08

    A robotic device has a base and at least one finger having at least two links that are connected in series on rotary joints with at least two degrees of freedom. A brushless motor and an associated controller are located at each joint to produce a rotational movement of a link. Wires for electrical power and communication serially connect the controllers in a distributed control network. A network operating controller coordinates the operation of the network, including power distribution. At least one, but more typically two to five, wires interconnect all the controllers through one or more joints. Motor sensors and external world sensors monitor operating parameters of the robotic hand. The electrical signal output of the sensors can be input anywhere on the distributed control network. V-grooves on the robotic hand locate objects precisely and assist in gripping. The hand is sealed, immersible and has electrical connections through the rotary joints for anodizing in a single dunk without masking. In various forms, this intelligent, self-contained, dexterous hand, or combinations of such hands, can perform a wide variety of object gripping and manipulating tasks, as well as locomotion and combinations of locomotion and gripping.

  9. Dissolution of amorphous Ti-Zr-Si alloy during anodic oxidation with formation of barrier films

    SciTech Connect

    Isaev, N.I.; Yakovlev, V.B.; Iovdal'skii, A.A.; Gorshkov, T.P.

    1988-07-01

    Radiometric analysis of a solution has been used to study kinetic mechanisms for dissolution of amorphous alloy components in acid aqueous solutions with anodic oxidation in different regimes. In a galvanostatic regime for alloy and crystalline Ti, Zr, and Ta two sections are detected: an initial section of accelerated dissolution and a steady section. An increase in dissolution of zirconium from the alloy has been revealed compared with pure crystalline zirconium. Potentiostatic oxidation is accompanied by a slowdown in dissolution similar to a change in current. Current yield has been analyzed for dissolution of the main elements and nonrectifying impurities of the alloy (for example copper). Gamma spectroscopy using the gamma radiation from neutron-activated isotopes of the components and impurities was performed.

  10. Studies of Multi-Anode PMTs for a Ring Imaging Cherenkov for CLAS12

    NASA Astrophysics Data System (ADS)

    Lendacky, Andrew; Benmokhtar, Fatiha; Kubarovsky, Valery; Kim, Andrey

    2015-10-01

    At Thomas Jefferson National Accelerator Facility (TJNAF), the CLAS12 detector in Hall B is undergoing an upgrade. A Ring Imaging Cherenkov (R.I.C.H) detector is being built to improve particle identification in the 3-8 GeV/c momentum range. Approximately four hundred Hamamatsu H121700 Multi-Anode Photomultiplier Tubes (MA-PMTs) are being used in this detector to measure photons emitted through Cherenkov Radiation. These MA-PMTs' characteristics are being tested and measured, and I will be presenting my work about the crosstalk study. Crosstalk is the occurrence of incident light striking one area of the photocathode, but is additionally measured in nearby areas. By using a Class 3b laser in the 470 nm wavelength, and an optical density resembling the single photon emission spectrum, the crosstalk for the H121700 MA-PMTs are measured and categorized into a database for future reference.

  11. On the anodic aluminium oxide refractive index of nanoporous templates

    NASA Astrophysics Data System (ADS)

    Hierro-Rodriguez, A.; Rocha-Rodrigues, P.; Valdés-Bango, F.; Alameda, J. M.; Jorge, P. A. S.; Santos, J. L.; Araujo, J. P.; Teixeira, J. M.; Guerreiro, A.

    2015-11-01

    In the present study, we have determined the intrinsic refractive index of anodic aluminium oxide, which is originated by the formation of nanoporous alumina templates. Different templates have been fabricated by the conventional two-step anodization procedure in oxalic acid. Their porosities were modified by chemical wet etching allowing the tuning of their effective refractive indexes (air-filled nanopores  +  anodic aluminium oxide). By standard spectroscopic light transmission measurements, the effective refractive index for each different template was extracted in the VIS-NIR region. The determination of the intrinsic anodic aluminium oxide refractive index was performed by using the Maxwell-Garnett homogenization theory. The results are coincident for all the fabricated samples. The obtained refractive index (~1.55) is quite lower (~22%) than the commonly used Al2O3 handbook value (~1.75), showing that the amorphous nature of the anodic oxide structure strongly conditions its optical properties. This difference is critical for the correct design and modeling of optical plasmonic metamaterials based on anodic aluminium oxide nanoporous templates.

  12. Formation of Anodic Aluminum Oxide with Branched and Meshed Pores.

    PubMed

    Kim, Byeol; Lee, Jin Seok

    2016-06-01

    Anodic aluminum oxide (AAO), with a self-ordered hexagonal array, is important for various applications in nanofabrication including as the fabrication of nanotemplates and other nanostructures. With the consideration, there have been many efforts to control the characteristic parameters of porous anodic alumina by adjustment of the anodizing conditions such as the electrolyte, temperature, applied potential, and Al purity. In particular, impurities in Al are changing the morphology of an alumina film; however, the formation mechanism has not yet been explained. In this work, we anodized a high purity (99.999%, Al(high)) and low purity (99.8%, Al(low)) aluminum foil by a two-step anodization process in an oxalic acid solution or phosphoric acid. It was found that the purity of aluminum foil has influenced the morphology of the alumina film resulting in branched and meshed pores. Also, electrochemical analysis indicated that the branched and meshed pores in the low-purity Al foil formed by the presence of impurities. Impurities act as defects and change the general growth mechanism for pore formation by inducing an electric field imbalance during anodization. This work contributes to the research field of topographical chemistry and applied fields including nanofabrication. PMID:27427755

  13. The anodic oxidation of p-benzoquinone and maleic acid

    SciTech Connect

    Bock, C.; MacDougall, B.

    1999-08-01

    The oxidation of organics, in particular of p-benzoquinone and maleic acid, at high anodic potentials has been studied using a range of anode materials such as noble-metal-based oxides and antimony-doped tin oxides. The influence of the current density was also investigated showing that the oxidation rate of p-benzoquinone increased only slightly with increasing current density. The efficiency of the p-benzoquinone oxidation was found to depend on several properties of the anode material, not just its chemical nature. Furthermore, efficiencies for the partial oxidation of p-benzoquinone using specially prepared noble-metal-oxide-based anodes were found to be only somewhat smaller or even as high as those observed for PbO{sub 2} or antimony-doped tin oxide anodes, respectively. The anodic electrolysis of maleic acid solutions was found to decrease the activity of IrO{sub 2} for the oxidation of organic compounds. This was not observed when PbO{sup 2} was employed for the oxidation of maleic acid.

  14. Effect of surface anodization on stability of orthodontic microimplant

    PubMed Central

    Karmarker, Sanket; Yu, Wonjae

    2012-01-01

    Objective To determine the effect of surface anodization on the interfacial strength between an orthodontic microimplant (MI) and the rabbit tibial bone, particularly in the initial phase after placement. Methods A total of 36 MIs were driven into the tibias of 3 mature rabbits by using the self-drilling method and then removed after 6 weeks. Half the MIs were as-machined (n = 18; machined group), while the remaining had anodized surfaces (n = 18; anodized group). The peak insertion torque (PIT) and the peak removal torque (PRT) values were measured for the 2 groups of MIs. These values were then used to calculate the interfacial shear strength between the MI and cortical bone. Results There were no statistical differences in terms of PIT between the 2 groups. However, mean PRT was significantly greater for the anodized implants (3.79 ± 1.39 Ncm) than for the machined ones (2.05 ± 1.07 Ncm) (p < 0.01). The interfacial strengths, converted from PRT, were calculated at 10.6 MPa and 5.74 MPa for the anodized and machined group implants, respectively. Conclusions Anodization of orthodontic MIs may enhance their early-phase retention capability, thereby ensuring a more reliable source of absolute anchorage. PMID:23112925

  15. Nanostructured silicon anodes for lithium ion rechargeable batteries.

    PubMed

    Teki, Ranganath; Datta, Moni K; Krishnan, Rahul; Parker, Thomas C; Lu, Toh-Ming; Kumta, Prashant N; Koratkar, Nikhil

    2009-10-01

    Rechargeable lithium ion batteries are integral to today's information-rich, mobile society. Currently they are one of the most popular types of battery used in portable electronics because of their high energy density and flexible design. Despite their increasing use at the present time, there is great continued commercial interest in developing new and improved electrode materials for lithium ion batteries that would lead to dramatically higher energy capacity and longer cycle life. Silicon is one of the most promising anode materials because it has the highest known theoretical charge capacity and is the second most abundant element on earth. However, silicon anodes have limited applications because of the huge volume change associated with the insertion and extraction of lithium. This causes cracking and pulverization of the anode, which leads to a loss of electrical contact and eventual fading of capacity. Nanostructured silicon anodes, as compared to the previously tested silicon film anodes, can help overcome the above issues. As arrays of silicon nanowires or nanorods, which help accommodate the volume changes, or as nanoscale compliant layers, which increase the stress resilience of silicon films, nanoengineered silicon anodes show potential to enable a new generation of lithium ion batteries with significantly higher reversible charge capacity and longer cycle life. PMID:19739146

  16. The Evolution of Solid Oxide Fuel Cell Nickel-Yttria Stabilized Zirconia Anodes Studied Using Electrochemical and Three-Dimensional Microstructural Characterizations

    NASA Astrophysics Data System (ADS)

    Kennouche, David O.

    This thesis focuses on Solid Oxide Fuel Cells (SOFCs). The 21st century will see major changes in the way energy is produced, stored, and used around the world. SOFCs, which provide an efficient, scalable, and low-pollution alternative method for electricity generation, are expected to play an important role. SOFCs can also be operated in electrolysis mode for energy storage, important since health and economic reasons are causing a shift towards intermittent renewable energy resources. However, multiple limitations mainly linked to cost and durability have prevented the expansion of this technology to mass markets. This work focuses on the Nickel - Yttria Stabilized Zirconia (Ni-YSZ) anode that is widely used in SOFCs. Coarsening of Ni in the Ni-YSZ anode has been widely cited as a primary cause of long-term SOFC degradation. While there have been numerous studies of Ni coarsening reported, these have typically only tracked the evolution of Ni particle size, not the entire microstructure, and have typically not been correlated directly with electrochemical performance. In this thesis, the advanced tomography techniques Focused Ion Beam - Scanning Electron Microscopy (FIB-SEM) tomography and Trans- mission X-ray Microscopy (TXM) have been utilized to enable insight into the evolution of Ni-YSZ structure and how it relates to performance degradation. Extensive anode aging studies were done for relatively short times using temperatures higher than in normal SOFC operation in order to accelerate microstructural evolution. In addition the microstructure changes were correlated with changes in anode polarization resistance. While most of the measurements were done by comparing different anodes aged under different conditions, the first example of a "pseudo in situ" measurement where the same anode was 3D imaged repeatedly with intervening aging steps, was also demonstrated. A microstructural evolution model that focuses on the active three-phase boundary density was

  17. The rapid growth of 3 µm long titania nanotubes by anodization of titanium in a neutral electrochemical bath

    NASA Astrophysics Data System (ADS)

    Lockman, Zainovia; Ismail, Syahriza; Sreekantan, Srimala; Schmidt-Mende, L.; MacManus-Driscoll, J. L.

    2010-02-01

    The length of titania nanotubes formed by anodization of 0.1 mm thick titanium foil was found to be a strong function of the pH of the electrolyte. The longest nanotubes were formed by using an electrolyte consisting of 1 M Na2SO4 plus 5 wt% NH4F with pH 7. At this pH, after 30 min of anodization, 3 µm length nanotubular titania arrays with top diameters of ~50 nm and bottom diameters of 100 nm were produced. No acid was added to this electrolyte. The formation of titania nanotubes in neutral pH systems was therefore successful due to the excess NH4F in the electrolyte which increases the chemical dissolution process at the metal/oxide interface. Since the pH of the electrolyte at the top part of the nanotubes is kept very high, the dissolution of the nanotubes at the surface is minimal. However, the amount is adequate to remove the initial barrier layer, forming a rather well-defined nanoporous structure. All anodized foils were weakly crystalline and the transformation to anatase phase was achieved by heat treatment at temperatures from 200 to 500 °C for 1 h in air. Annealing at temperatures above 500 °C induce rutile phase formation and annealing at higher temperatures accelerates the diffusion of Ti4+ leading to excessive growth and the nanotubular structure diminishes.

  18. The rapid growth of 3 microm long titania nanotubes by anodization of titanium in a neutral electrochemical bath.

    PubMed

    Lockman, Zainovia; Ismail, Syahriza; Sreekantan, Srimala; Schmidt-Mende, L; Macmanus-Driscoll, J L

    2010-02-01

    The length of titania nanotubes formed by anodization of 0.1 mm thick titanium foil was found to be a strong function of the pH of the electrolyte. The longest nanotubes were formed by using an electrolyte consisting of 1 M Na(2)SO(4) plus 5 wt% NH(4)F with pH 7. At this pH, after 30 min of anodization, 3 microm length nanotubular titania arrays with top diameters of approximately 50 nm and bottom diameters of 100 nm were produced. No acid was added to this electrolyte. The formation of titania nanotubes in neutral pH systems was therefore successful due to the excess NH(4)F in the electrolyte which increases the chemical dissolution process at the metal/oxide interface. Since the pH of the electrolyte at the top part of the nanotubes is kept very high, the dissolution of the nanotubes at the surface is minimal. However, the amount is adequate to remove the initial barrier layer, forming a rather well-defined nanoporous structure. All anodized foils were weakly crystalline and the transformation to anatase phase was achieved by heat treatment at temperatures from 200 to 500 degrees C for 1 h in air. Annealing at temperatures above 500 degrees C induce rutile phase formation and annealing at higher temperatures accelerates the diffusion of Ti(4+) leading to excessive growth and the nanotubular structure diminishes. PMID:20023309

  19. Anode heating/cleaning and its effects on diode impedance in Self-Magnetic Pinch (SMP) Experiments

    NASA Astrophysics Data System (ADS)

    Renk, Timothy; Simpson, Sean; Zier, Jacob; Weber, Bruce

    2015-11-01

    The SMP diode is fielded on both the RITS-6 (3.5-8.5 MV) and Mercury (5.5 MV) accelerators, located at Sandia and the Naval Research Laboratory, respectively. This diode utilizes a hollowed metal cathode to produce focused electron beams (<3 mm diameter) onto a high-Z converter for flash x-ray applications. We observe on some shots unexplained impedance collapse beyond what may be attributed to normal A-K gap closure. This could be caused by gas evolution off the as-provided hardware making up the anode and cathode. The goal of heating the anode is to remove gases trapped within the bulk of the Ta anode, and so reduce the volume of evolving gases near the A-K gap. Two heating techniques have been investigated, a short-pulse (~1 sec) resulting in high Ta temperature (~3000 °C), and a longer (~100 sec) heating of the Ta to lower peak temperature (~1000 °C). Initial experiments indicate a modest improvement to diode performance. Additional experiments are ongoing, and latest results will be reported. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  20. Production of lithium positive ions from LiF thin films on the anode in PBFA II

    SciTech Connect

    Green, T.A.; Stinnett, R.W.; Gerber, R.A.

    1995-09-01

    The production of positive lithium ions using a lithium-fluoride-coated stainless steel anode in the particle beam fusion accelerator PBFA II is considered from both the experimental and theoretical points of view. It is concluded that the mechanism of Li{sup +} ion production is electric field desorption from the tenth-micron-scale crystallites which compose the columnar growth of the LiF thin film. The required electric field is estimated to be of the order of 5 MV/cm. An essential feature of the mechanism is that the crystallites are rendered electronically conducting through electron-hole pair generation by MeV electron bombardment of the thin film during the operation of the diode. It is proposed that the ion emission mechanism is an electronic conductivity analogue to that discovered by Rollgen for lithium halide crystallites which were rendered ionically conducting by heating to several hundred degrees Celsius. Since an electric field desorption mechanism cannot operate if a surface flashover plasma has formed and reduced the anode electric field to low values, the possibility of flashover on the lithium fluoride coated anode of the PBFA II Li{sup +} ion source is studied theoretically. It is concluded with near certainty that flashover does not occur.

  1. Impurity-defect structure of anodic aluminum oxide produced by two-sided anodizing in tartaric acid

    NASA Astrophysics Data System (ADS)

    Chernyakova, K. V.; Vrublevsky, I. A.; Ivanovskaya, M. I.; Kotsikau, D. A.

    2012-03-01

    Porous aluminum oxide is prepared in a 0.4 M aqueous solution of tartaric acid by two-sided anodizing. Fourier Transform IR spectroscopy (FTIR) data reveal the presence, in the alumina, of unoxidized tartarate ions, as well as products of their partial (radical organic products and CO) and complete (CO2) oxidation. Carboxylate ions and elemental carbon contained in the anodic oxide impart a gray color to the films.

  2. Scaling FFAG accelerator for muon acceleration

    SciTech Connect

    Lagrange, JB.; Planche, T.; Mori, Y.

    2011-10-06

    Recent developments in scaling fixed field alternating gradient (FFAG) accelerators have opened new ways for lattice design, with straight sections, and insertions like dispersion suppressors. Such principles and matching issues are detailed in this paper. An application of these new concepts is presented to overcome problems in the PRISM project.

  3. Angular velocities, angular accelerations, and coriolis accelerations

    NASA Technical Reports Server (NTRS)

    Graybiel, A.

    1975-01-01

    Weightlessness, rotating environment, and mathematical analysis of Coriolis acceleration is described for man's biological effective force environments. Effects on the vestibular system are summarized, including the end organs, functional neurology, and input-output relations. Ground-based studies in preparation for space missions are examined, including functional tests, provocative tests, adaptive capacity tests, simulation studies, and antimotion sickness.

  4. Accelerators (4/5)

    ScienceCinema

    None

    2011-10-06

    1a) Introduction and motivation 1b) History and accelerator types 2) Transverse beam dynamics 3a) Longitudinal beam dynamics 3b) Figure of merit of a synchrotron/collider 3c) Beam control 4) Main limiting factors 5) Technical challenges Prerequisite knowledge: Previous knowledge of accelerators is not required.

  5. J-PARC Accelerator

    SciTech Connect

    Yamazaki, Yoshishige

    2008-02-21

    The Japan Proton Accelerator Research Complex (J-PARC) is under construction in Tokai site. The linac beam commissioning started last fall, while the beam commissioning of the 3-GeV Rapid-Cycling Synchrotron (RCS) will start this fall. The status of the J-PARC accelerator is reported with emphasis on the technical development accomplished for the J-PARC.

  6. Particle Acceleration in Jets

    NASA Technical Reports Server (NTRS)

    Nishikawa, Ken-Ichi

    2005-01-01

    Nonthermal radiation observed from astrophysical systems containing relativistic jets and shocks, e.g., active galactic nuclei (AGNs), gamma ray burst (GRBs), and Galactic microquasar systems usually have power-law emission spectra. Fermi acceleration is the mechanism usually assumed for the acceleration of particles in astrophysical environments.

  7. Diagnostics for induction accelerators

    SciTech Connect

    Fessenden, T.J.

    1996-04-01

    The induction accelerator was conceived by N. C. Christofilos and first realized as the Astron accelerator that operated at LLNL from the early 1960`s to the end of 1975. This accelerator generated electron beams at energies near 6 MeV with typical currents of 600 Amperes in 400 ns pulses. The Advanced Test Accelerator (ATA) built at Livermore`s Site 300 produced 10,000 Ampere beams with pulse widths of 70 ns at energies approaching 50 MeV. Several other electron and ion induction accelerators have been fabricated at LLNL and LBNL. This paper reviews the principal diagnostics developed through efforts by scientists at both laboratories for measuring the current, position, energy, and emittance of beams generated by these high current, short pulse accelerators. Many of these diagnostics are closely related to those developed for other accelerators. However, the very fast and intense current pulses often require special diagnostic techniques and considerations. The physics and design of the more unique diagnostics developed for electron induction accelerators are presented and discussed in detail.

  8. Accelerators Beyond The Tevatron?

    SciTech Connect

    Lach, Joseph

    2010-07-01

    Following the successful operation of the Fermilab superconducting accelerator three new higher energy accelerators were planned. They were the UNK in the Soviet Union, the LHC in Europe, and the SSC in the United States. All were expected to start producing physics about 1995. They did not. Why?

  9. Microscale acceleration history discriminators

    DOEpatents

    Polosky, Marc A.; Plummer, David W.

    2002-01-01

    A new class of micromechanical acceleration history discriminators is claimed. These discriminators allow the precise differentiation of a wide range of acceleration-time histories, thereby allowing adaptive events to be triggered in response to the severity (or lack thereof) of an external environment. Such devices have applications in airbag activation, and other safety and surety applications.

  10. KEK digital accelerator

    NASA Astrophysics Data System (ADS)

    Iwashita, T.; Adachi, T.; Takayama, K.; Leo, K. W.; Arai, T.; Arakida, Y.; Hashimoto, M.; Kadokura, E.; Kawai, M.; Kawakubo, T.; Kubo, Tomio; Koyama, K.; Nakanishi, H.; Okazaki, K.; Okamura, K.; Someya, H.; Takagi, A.; Tokuchi, A.; Wake, M.

    2011-07-01

    The High Energy Accelerator Research Organization KEK digital accelerator (KEK-DA) is a renovation of the KEK 500 MeV booster proton synchrotron, which was shut down in 2006. The existing 40 MeV drift tube linac and rf cavities have been replaced by an electron cyclotron resonance (ECR) ion source embedded in a 200 kV high-voltage terminal and induction acceleration cells, respectively. A DA is, in principle, capable of accelerating any species of ion in all possible charge states. The KEK-DA is characterized by specific accelerator components such as a permanent magnet X-band ECR ion source, a low-energy transport line, an electrostatic injection kicker, an extraction septum magnet operated in air, combined-function main magnets, and an induction acceleration system. The induction acceleration method, integrating modern pulse power technology and state-of-art digital control, is crucial for the rapid-cycle KEK-DA. The key issues of beam dynamics associated with low-energy injection of heavy ions are beam loss caused by electron capture and stripping as results of the interaction with residual gas molecules and the closed orbit distortion resulting from relatively high remanent fields in the bending magnets. Attractive applications of this accelerator in materials and biological sciences are discussed.

  11. Accelerators (5/5)

    ScienceCinema

    None

    2011-10-06

    1a) Introduction and motivation 1b) History and accelerator types 2) Transverse beam dynamics 3a) Longitudinal beam dynamics 3b) Figure of merit of a synchrotron/collider 3c) Beam control 4) Main limiting factors 5) Technical challenges Prerequisite knowledge: Previous knowledge of accelerators is not required.

  12. Accelerating global forest mortality

    NASA Astrophysics Data System (ADS)

    McDowell, N. G.

    2014-12-01

    Forest mortality is apparently accelerating globally. The evidence supporting this contention is now substantial, as is the evidence suggesting the acceleration has just begun and will become progressively worse in upcoming decades. I will review the data and models used to make these contentions.

  13. Accelerators (3/5)

    ScienceCinema

    None

    2011-10-06

    1a) Introduction and motivation 1b) History and accelerator types 2) Transverse beam dynamics 3a) Longitudinal beam dynamics 3b) Figure of merit of a synchrotron/collider 3c) Beam control 4) Main limiting factors 5) Technical challenges Prerequisite knowledge: Previous knowledge of accelerators is not required.

  14. Formation of Nanoporous Anodic Alumina by Anodization of Aluminum Films on Glass Substrates.

    PubMed

    Lebyedyeva, Tetyana; Kryvyi, Serhii; Lytvyn, Petro; Skoryk, Mykola; Shpylovyy, Pavlo

    2016-12-01

    Our research was aimed at the study of aluminum films and porous anodic alumina (PAA) films in thin-film РАА/Al structures for optical sensors, based on metal-clad waveguides (MCWG). The results of the scanning electron microscopy (SEM) and atomic force microscopy (AFM) studies of the structure of Al films, deposited by DC magnetron sputtering, and of PAA films, formed on them, are presented in this work.The study showed that the structure of the Al films is defined by the deposition rate of aluminum and the thickness of the film. We saw that under anodization in 0.3 M aqueous oxalic acid solution at a voltage of 40 V, the PAA film with a disordered array of pores was formed on aluminum films 200-600 nm thick, which were deposited on glass substrates with an ultra-thin adhesive Nb layer. The research revealed the formation of two differently sized types of pores. The first type of pores is formed on the grain boundaries of aluminum film, and the pores are directed perpendicularly to the surface of aluminum. The second type of pores is formed directly on the grains of aluminum. They are directed perpendicularly to the grain plains. There is a clear tendency to self-ordering in this type of pores. PMID:27083584

  15. Arterial stiffness in mild primary hyperparathyroidism.

    PubMed

    Rubin, Mishaela R; Maurer, Mathew S; McMahon, Donald J; Bilezikian, John P; Silverberg, Shonni J

    2005-06-01

    When primary hyperparathyroidism was a more symptomatic disease, it was often associated with increased cardiovascular risk. As the clinical manifestations of the disease have changed to a milder, more asymptomatic disorder, investigation is shifting to more subtle cardiovascular abnormalities. We measured arterial stiffness in 39 patients with mild primary hyperparathyroidism [serum calcium, 2.66 +/- 0.2 mmol/liter (10.7 +/- 0.6 mg/dl); PTH, 21.7 +/- 9.5 pmol/liter (89 +/- 39 pg/ml)] and in 134 controls. Arterial stiffness was measured mathematically at the radial artery with a noninvasive device as the "augmentation index" (AIx). The AIx measures the difference between the second and first systolic peaks in the pressure waveform and correlates with increased cardiovascular risk. When physiological variables affecting augmentation index and potentially confounding cardiovascular risk factors (age, gender, heart rate, height, blood pressure, diabetes mellitus, smoking, and hyperlipidemia) were adjusted for, primary hyperparathyroidism was an independent predictor of increased augmentation index (B = 3.37; P < 0.03). A matched-pair analysis showed that 15% of the variance in AIx was uniquely accounted for by the presence of primary hyperparathyroidism. The presence of primary hyperparathyroidism was a stronger predictor of elevated AIx than age, gender, smoking, hypertension, hyperlipidemia, or diabetes mellitus. AIx was also directly correlated with evidence of more active parathyroid disease, including higher PTH levels (r = +0.42; P < 0.05) and lower bone mineral density at the distal one-third radius (r = -0.33; P < 0.05). The diagnosis of primary hyperparathyroidism was therefore an independent predictor of increased AIx, an early measure of arterial stiffness, and the increase was associated with evidence of more active parathyroid disease. PMID:15769995

  16. Inverse Compton Scattering in Mildly Relativistic Plasma

    NASA Technical Reports Server (NTRS)

    Molnar, S. M.; Birkinshaw, M.

    1998-01-01

    We investigated the effect of inverse Compton scattering in mildly relativistic static and moving plasmas with low optical depth using Monte Carlo simulations, and calculated the Sunyaev-Zel'dovich effect in the cosmic background radiation. Our semi-analytic method is based on a separation of photon diffusion in frequency and real space. We use Monte Carlo simulation to derive the intensity and frequency of the scattered photons for a monochromatic incoming radiation. The outgoing spectrum is determined by integrating over the spectrum of the incoming radiation using the intensity to determine the correct weight. This method makes it possible to study the emerging radiation as a function of frequency and direction. As a first application we have studied the effects of finite optical depth and gas infall on the Sunyaev-Zel'dovich effect (not possible with the extended Kompaneets equation) and discuss the parameter range in which the Boltzmann equation and its expansions can be used. For high temperature clusters (k(sub B)T(sub e) greater than or approximately equal to 15 keV) relativistic corrections based on a fifth order expansion of the extended Kompaneets equation seriously underestimate the Sunyaev-Zel'dovich effect at high frequencies. The contribution from plasma infall is less important for reasonable velocities. We give a convenient analytical expression for the dependence of the cross-over frequency on temperature, optical depth, and gas infall speed. Optical depth effects are often more important than relativistic corrections, and should be taken into account for high-precision work, but are smaller than the typical kinematic effect from cluster radial velocities.

  17. Toxicity studies of mild gasification products

    SciTech Connect

    Ong, T.M.; Whong, W.Z.; Ma, J.; Zhong, B.Z.; Bryant, D.

    1992-01-01

    The objectives of this project are: (1) to perform mutagenicity studies with the Ames Salmonella/microsomal assay system on coal liquids produced by mild gasification from different coals and/or processing conditions, (2) to determine whether coal liquids which are mutagenic to bacteria are also genotoxic to mammalian cells, (3) to establish correlations between mutagenicity, aromaticity, and boiling point range of coal liquids, and (4) to identify the chemical classes which are likely to be responsible for the mutagenic activity of gasification products. Four of the seven samples tested so far failed to demonstrate any mutagenic activity under any conditions tested. Those samples were SHELL[number sign]830331, MG-122IBP-420[degree]F, MG-122 420--720[degree]F, and MG-122 720[degree]F+. Table 1 summarizes the results from all samples tested in DMSO and Tween 80. When solvated in DMSO, MG-119 and MG-120 composite materials displayed slight, but ultimately insignificant, genotoxic activity on TA98 and TA1OO in the presence of S9. When Tween 80 was used as the solvent, MG-119 and MG-120 displayed slight, but significant, geno-toxic activity on TA98 with S9 (Figure 4). CTC[number sign]11 in DMSO displayed significant genotoxic activity on both TA98 and TA1OO with and without S9. The activity was higher on TA98 than TA100, and higher with S9 than without, primarily indicating the presence of indirect-acting frameshift mutagen. The results of the testing on CTC[number sign]11 were similar for both solvents, DMSO and Tween 80 (Table 2).

  18. Toxicity studies of mild gasification products

    SciTech Connect

    Ong, T.M.; Whong, W.Z.; Ma, J.; Zhong, B.Z.; Bryant, D.

    1992-11-01

    The objectives of this project are: (1) to perform mutagenicity studies with the Ames Salmonella/microsomal assay system on coal liquids produced by mild gasification from different coals and/or processing conditions, (2) to determine whether coal liquids which are mutagenic to bacteria are also genotoxic to mammalian cells, (3) to establish correlations between mutagenicity, aromaticity, and boiling point range of coal liquids, and (4) to identify the chemical classes which are likely to be responsible for the mutagenic activity of gasification products. Four of the seven samples tested so far failed to demonstrate any mutagenic activity under any conditions tested. Those samples were SHELL{number_sign}830331, MG-122IBP-420{degree}F, MG-122 420--720{degree}F, and MG-122 720{degree}F+. Table 1 summarizes the results from all samples tested in DMSO and Tween 80. When solvated in DMSO, MG-119 and MG-120 composite materials displayed slight, but ultimately insignificant, genotoxic activity on TA98 and TA1OO in the presence of S9. When Tween 80 was used as the solvent, MG-119 and MG-120 displayed slight, but significant, geno-toxic activity on TA98 with S9 (Figure 4). CTC{number_sign}11 in DMSO displayed significant genotoxic activity on both TA98 and TA1OO with and without S9. The activity was higher on TA98 than TA100, and higher with S9 than without, primarily indicating the presence of indirect-acting frameshift mutagen. The results of the testing on CTC{number_sign}11 were similar for both solvents, DMSO and Tween 80 (Table 2).

  19. Accelerators, Beams And Physical Review Special Topics - Accelerators And Beams

    SciTech Connect

    Siemann, R.H.; /SLAC

    2011-10-24

    Accelerator science and technology have evolved as accelerators became larger and important to a broad range of science. Physical Review Special Topics - Accelerators and Beams was established to serve the accelerator community as a timely, widely circulated, international journal covering the full breadth of accelerators and beams. The history of the journal and the innovations associated with it are reviewed.

  20. Cascaded radiation pressure acceleration

    SciTech Connect

    Pei, Zhikun; Shen, Baifei E-mail: zhxm@siom.ac.cn; Zhang, Xiaomei E-mail: zhxm@siom.ac.cn; Wang, Wenpeng; Zhang, Lingang; Yi, Longqing; Shi, Yin; Xu, Zhizhan

    2015-07-15

    A cascaded radiation-pressure acceleration scheme is proposed. When an energetic proton beam is injected into an electrostatic field moving at light speed in a foil accelerated by light pressure, protons can be re-accelerated to much higher energy. An initial 3-GeV proton beam can be re-accelerated to 7 GeV while its energy spread is narrowed significantly, indicating a 4-GeV energy gain for one acceleration stage, as shown in one-dimensional simulations and analytical results. The validity of the method is further confirmed by two-dimensional simulations. This scheme provides a way to scale proton energy at the GeV level linearly with laser energy and is promising to obtain proton bunches at tens of gigaelectron-volts.