Zhang, Shuai; Qin, Chunxia; Cao, Guoqiong; Xin, Wenfeng; Feng, Chengqiang; Zhang, Wensheng
2016-08-02
Long noncoding RNAs (lncRNAs) may play an important role in Alzheimer's disease (AD) pathogenesis. However, despite considerable research in this area, the comprehensive and systematic understanding of lncRNAs in AD is still limited. The emergence of RNA sequencing provides a predictor and has incomparable advantage compared with other methods, including microarray. In this study, we identified lncRNAs in a 7-month-old mouse brain through deep RNA sequencing using the senescence-accelerated mouse prone 8 (SAMP8) and senescence-accelerated mouse resistant 1 (SAMR1) models. A total of 599,985,802 clean reads and 23,334 lncRNA transcripts were obtained. Then, we identified 97 significantly upregulated and 114 significantly downregulated lncRNA transcripts from all cases in SAMP8 mice relative to SAMR1 mice. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes analyses revealed that these significantly dysregulated lncRNAs were involved in regulating the development of AD from various angles, such as nerve growth factor term (GO: 1990089), mitogen-activated protein kinase signaling pathway, and AD pathway. Furthermore, the most probable AD-associated lncRNAs were predicted and listed in detail. Our study provided the systematic dissection of lncRNA profiling in SAMP8 mouse brain and accelerated the development of lncRNA biomarkers in AD. These attracting biomarkers could provide significant insights into AD therapy in the future.
The senescence accelerated mouse prone 8 (SAMP8): A novel murine model for cardiac aging.
Karuppagounder, Vengadeshprabhu; Arumugam, Somasundaram; Babu, Sahana Suresh; Palaniyandi, Suresh S; Watanabe, Kenichi; Cooke, John P; Thandavarayan, Rajarajan A
2017-05-01
Because cardiovascular disease remains the major cause of mortality and morbidity world-wide, there remains a compelling need for new insights and novel therapeutic avenues. In this regard, the senescence-accelerated mouse prone 8 (SAMP8) line is a particularly good model for studying the effects of aging on cardiovascular health. Accumulating evidence suggests that this model may shed light on age-associated cardiac and vascular dysfunction and disease. These animals manifest evidence of inflammation, oxidative stress and adverse cardiac remodeling that may recapitulate processes involved in human disease. Early alterations in oxidative damage promote endoplasmic reticulum stress to trigger apoptosis and cytokine production in this genetically susceptible mouse strain. Conversely, pharmacological treatments that reduce inflammation and oxidative stress improve cardiac function in these animals. Therefore, the SAMP8 mouse model provides an exciting opportunity to expand our knowledge of aging in cardiovascular disease and the potential identification of novel targets of treatment. Herein, we review the previous studies performed in SAMP8 mice that provide insight into age-related cardiovascular alterations. Copyright © 2016 Elsevier B.V. All rights reserved.
Okuda, Michiaki; Fujita, Yuki; Katsube, Takuya; Tabata, Hiromasa; Yoshino, Katsumi; Hashimoto, Michio; Sugimoto, Hachiro
2018-03-27
Alzheimer's disease (AD) is the most common form of dementia and the number of AD patients continues to increase worldwide. Components of the germ layer and bran of Brown rice (BR) help maintain good health and prevent AD. Because the germ layer and bran absorb little water and are very hard and difficult to cook, they are often removed during processing. To solve these problems, in this study, we tried to use a high-pressure (HP) technique. We produced the highly water pressurized brown rice (HPBR) by pressurizing BR at 600 MPa, and then we fed it to an AD mouse model, senescence-accelerated mouse prone 8, to investigate the therapeutic effects of HPBR on cognitive dysfunction by Y-maze spatial memory test. HP treatment increased the water absorbency of BR without nutrient loss. HPBR ameliorated cognitive dysfunction and reduced the levels of amyloid-β, which is a major protein responsible for AD, in the brain. These results suggest that HPBR is effective for preventing AD.
Sato, Tomonori; Ito, Yoshiaki; Nagasawa, Takashi
2017-02-01
Sarcopenia is a condition of the loss of muscle mass that is associated with aging and that increases the risk for bedridden state, thereby warranting studies of interventions that attenuate sarcopenia. Here the effects of 2-month dietary L-lysine (Lys) supplementation (1.5-3.0 %) on myofibrillar protein degradation and major proteolytic systems were investigated in senescence-accelerated mouse prone 8 (SAMP8). At 36 weeks of age, skeletal muscle and lean body mass was reduced in SAMP8 when compared with control senescence-accelerated mouse resistant 1 (SAMR1). The myofibrillar protein degradation, which was evaluated by the release of 3-methylhistidine, was stimulated in SAMP8, and the autophagy activity, which was evaluated by light chain 3-II, was stimulated in the skeletal muscle of SAMP8. The activation of ubiquitin-proteasome system was not observed in the muscles of SAMP8. However, myofibrillar protein degradation and autophagic activity in skeletal muscles of SAMP8 were suppressed by dietary intake of 3.0 % Lys. The present data indicate that myofibrillar protein degradation by bulk autophagy is stimulated in the skeletal muscles of SAMP8 and that dietary Lys supplementation attenuates sarcopenia in SAMP8 by suppressing autophagic proteolysis.
Wang, Hualong; Lian, Kaoqi; Han, Bing; Wang, Yanyong; Kuo, Sheng-Han; Geng, Yuan; Qiang, Jing; Sun, Meiyu; Wang, Mingwei
2015-01-01
Alzheimer's disease (AD), the most common age-dependent neurodegenerative disorder, produces a progressive decline in cognitive function. The metabolic mechanism of AD has emerged in recent years. In this study, we used multivariate analyses of gas chromatography-mass spectrometry measurements to determine that learning and retention-related metabolic profiles are altered during aging in the hippocampus of the senescence-accelerated mouse prone 8 (SAMP8). Alterations in 17 metabolites were detected in mature and aged mice compared to young mice (13 decreased and 4 increased metabolites), including metabolites related to dysfunctional lipid metabolism (significantly increased cholesterol, oleic acid, and phosphoglyceride levels), decreased amino acid (alanine, serine, glycine, aspartic acid, glutamate, and gamma-aminobutyric acid), and energy-related metabolite levels (malic acid, butanedioic acid, fumaric acid, and citric acid), and other altered metabolites (increased N-acetyl-aspartic acid and decreased pyroglutamic acid, urea, and lactic acid) in the hippocampus. All of these alterations indicated that the metabolic mechanisms of age-related cognitive impairment in SAMP8 mice were related to multiple pathways and networks. Lipid metabolism, especially cholesterol metabolism, appears to play a distinct role in the hippocampus in AD. PMID:24284365
Mitsuoka, Kazuyuki; Kikutani, Takeshi; Miwa, Yoko; Sato, Iwao
2018-01-18
Calcitonin gene-related peptide (CGRP) is a neurotransmitter that is released from the superior cervical ganglion (SCG) and causes head and neck pain. The morphological properties of human SCG neurons, including neurotransmitter content, are altered during aging. However, morphological changes in CGRP in the SCG during aging are not known. Therefore, we investigated CGRP and other markers in the SCG during aging in an aging model of senescence-accelerated prone mouse (SAMP8) and senescence-accelerated resistant mice (SAMR1) using real-time RT-PCR mRNA analyses and in situ hybridization. The abundance of neurotransmitter (CGRP, NPY, TRPV1), vascular genesis marker (CD31, LYVE-1), and cytochrome C mRNA differed between 12-week-old and 24-week-old SAMP8 and SAMR1. Abundance of TRPV1, CD31 and cytochrome C mRNAs of SAMP8 decreased between 12- and 24-week-old. The ratio of CGRP mRNA positive cells and CGRP mRNA abundance levels of the SCG of aging mouse such as SAMP8 have already been also higher than that of SAMR1 at 12-week-old. The CGRP positive shrunken ganglion cells was increased from 12- to 24-weeks-old mouse in SAMR1 and SAMP8. The SCG primarily affected the internal and external carotid arteries, larynx thyroid gland, and pharyngeal muscle during aging. Copyright © 2017 Elsevier B.V. All rights reserved.
Zhang, Ning; Chow, Simon Kwoon Ho; Leung, Kwok Sui; Lee, Ho Hin; Cheung, Wing Hoi
2017-10-15
Sarcopenia and osteoporotic fracture are common aging-related musculoskeletal problems. Recent evidences report that osteoporotic fracture patients showed high prevalence of sarcopenia; however, current clinical practice basically does not consider sarcopenia in the treatment or rehabilitation of osteoporotic fracture. There is almost no report studying the relationship of the co-existing of sarcopenia and osteoporotic fracture healing. In this study, we validated aged senescence accelerated mouse prone 8 (SAMP8) and senescence accelerated mouse resistant 1 (SAMR1) as animal models of senile osteoporosis with/without sarcopenia. Bone mineral density (BMD) at the 5th lumbar and muscle testing of the two animal strains were measured to confirm the status of osteoporosis and sarcopenia, respectively. Closed fracture was created on the right femur of 8-month-old animals. Radiographs were taken weekly post-fracture. MicroCT and histology of the fractured femur were performed at week 2, 4 and 6 post-fracture, while mechanical test of both femora at week 4 and 6 post-fracture. Results showed that the callus of SAMR1 was significantly larger at week 2 but smaller at week 6 post-fracture than SAMP8. Mechanical properties were significantly better at week 4 post-fracture in SAMR1 than SAMP8, indicating osteoporotic fracture healing was delayed in sarcopenic SAMP8. This study validated an animal model of co-existing sarcopenia and osteoporotic fracture, where a delayed fracture healing might be resulted in the presence of sarcopenia. Copyright © 2017 Elsevier Inc. All rights reserved.
Protective actions of melatonin and growth hormone on the aged cardiovascular system.
Paredes, Sergio D; Forman, Katherine A; García, Cruz; Vara, Elena; Escames, Germaine; Tresguerres, Jesús A F
2014-05-01
Epidemiological studies indicate that certain aspects of lifestyle and genetics act as risk factors for a variety of cardiovascular disorders, including coronary disease, hypertension, heart failure and stroke. Aging, however, appears to be the major contributor for morbidity and mortality of the impaired cardiovascular system. Growth hormone (GH) and melatonin seem to prevent cardiac aging, as they contribute to the recovery of several physiological parameters affected by age. These hormones exhibit antioxidant properties and decrease oxidative stress and apoptosis. This paper summarizes a set of studies related to the potential role that therapy with GH and melatonin may play in the protection of the altered cardiac function due to aging, with a focus on experiments performed in our laboratory using the senescence-accelerated mouse as an aging model. In general, we observed significantly increased inflammation, oxidative stress and apoptosis markers in hearts from senescence-accelerated prone 10-month-old animals compared to 2-month-old controls, while anti-inflammatory and antiapoptotic markers as well as endothelial nitric oxide synthase were decreased. Senescence-accelerated resistant animals showed no significant changes with age. GH or melatonin treatment prevented the age-dependent cardiac alterations observed in the senescence-accelerated prone group. Combined administration of GH plus melatonin reduced the age-related changes in senescence-accelerated prone hearts in an additive fashion that was different to that displayed when administered alone. GH and melatonin may be potential agents for counteracting oxidative stress, apoptosis and inflammation in the aging heart.
Baltanás, Ana; Solesio, Maria E; Zalba, Guillermo; Galindo, María F; Fortuño, Ana; Jordán, Joaquín
2013-12-01
Herein, we investigate whether the NADPH oxidase might be playing a key role in the degree of oxidative stress in the senescence-accelerated mouse prone-8 (SAM-P8). To this end, the activity and expression of the NADPH oxidase, the ratio of glutathione and glutathione disulfides (GSH/GSSG), and the levels of malonyl dialdehyde (MDA) and nitrotyrosine (NT) were determined in renal tissue from SAM-P8 mice at the age of 1 and 6 months. The senescence-accelerated-resistant mouse (SAM-R1) was used as control. At the age of 1 month, NADPH oxidase activity and Nox2 protein expression were higher in SAM-P8 than in SAM-R1 mice. However, we found no differences in the GSH/GSSG ratio, MDA, NT, and Nox4 levels between both groups of animals. At the age of 6 months, SAM-R1 mice in comparison to SAM-P8 mice showed an increase in NADPH oxidase activity, which is associated with higher levels of NT and increased Nox4 and Nox2 expression levels. Furthermore, we found oxidative stress hallmarks including depletion in GSH/GSSG ratio and increase in MDA levels in the kidney of SAM-P8 mice. Finally, NADPH oxidase activity positively correlated with Nox2 expression in all the animals (r = 0.382, P < 0.05). Taken together, our data allow us to suggest that an increase in NADPH oxidase activity might be an early hallmark to predict future oxidative stress in renal tissue during the aging process that takes place in SAM-P8 mice.
Li, Qian; Wu, Fengjuan; Wen, Min; Yanagita, Teruyoshi; Xue, Changhu; Zhang, Tiantian; Wang, Yuming
2018-02-01
Alzheimer's disease (AD) is a common neurodegenerative disorder, and oxidative stress plays a vital role in its progression. Antarctic krill oil (AKO) is rich in polyunsaturated fatty acids, which has various biological activities, such as improving insulin sensitivity, alleviating inflammation and ameliorating oxidative stress. In this study, the protective effect of AKO against AD were investigated in senescence-accelerated prone mouse strain 8 (SAMP8) mice. Results showed that treatment with AKO could effectively ameliorate learning and memory deficits and ease the anxiety in SAMP8 mice by Morris water maze, Barnes maze test and open-field test. Further analysis indicated that AKO might reduce β-amyloid (Aβ) accumulation in hippocampus through decreasing the contents of malondialdehyde (MDA) and 7,8-dihydro-8-oxoguanine (8-oxo-G), increasing the superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) activities in the brain of SAMP8 mice. The results of Morris water maze, Barnes maze test and open-field test indicated that Antarctic krill oil (AKO) improved the cognitive function and anxiety of SAMP8 mice. AKO reduced the Aβ 42 level in hippocampus of SAMP8 mice. AKO ameliorated oxidative stress in brain rather than in serum and liver of SAMP8 mice. © 2018 Institute of Food Technologists®.
Adiposity-Related Biochemical Phenotype in Senescence-Accelerated Mouse Prone 6 (SAMP6)
Niimi, Kimie; Takahashi, Eiki; Itakura, Chitoshi
2009-01-01
Senescence-accelerated mouse prone 6 (SAMP6) is a model of senile osteoporosis. From 10 to 22 wk of age, SAMP6 mice were heavier than age-matched AKR/J and SAMR1 mice. Body mass indices of 10- and 25-wk-old SAMP6 mice were higher than those of age-matched AKR/J and SAMR1 mice, indicating obesity in the SAMP6 animals. We compared the blood biochemical values among SAMP6, SAMR1, and AKR/J mice to assess whether the SAMP6 strain has abnormal obesity-related parameters. Plasma glucose, triglyceride, insulin, and leptin levels were higher in 10-wk-old SAMP6 mice than in age-matched SAMR1 and AKR/J mice, whereas plasma glucagon and adiponectin levels in 25-wk-old SAMP6 were lower compared with those in age-matched SAMR1 and AKR/J. Total cholesterol levels in SAMR1 and SAMP6 mice at 10 and 25 wk of age were higher than those in AKR/J mice. Hepatic lipid levels were higher in 10- and 25-wk-old SAMP6 mice compared with age-matched AKR/J and SAMR1 animals. These results indicate that SAMP6 mice exhibit obesity and hyperlipidemia, suggesting that the SAMP6 strain is a potential tool for the study of hyperlipidemia. PMID:19887026
Yanai, Shuichi; Toyohara, Jun; Ishiwata, Kiichi; Ito, Hideki; Endo, Shogo
2017-04-01
Phosphodiesterases (PDEs), which hydrolyze and inactivate 3', 5'-cyclic adenosine monophosphate (cAMP) and 3', 5'-cyclic guanosine monophosphate (cGMP), play an important role in synaptic plasticity that underlies memory. Recently, several PDE inhibitors were assessed for their possible therapeutic efficacy in treating cognitive disorders. Here, we examined how cilostazol, a selective PDE3 inhibitor, affects brain functions in senescence-accelerated mouse prone 8 (SAMP8), an animal model of age-related cognitive impairment. Long-term administration of cilostazol restored the impaired context-dependent conditioned fear memory of SAMP8 to match that in normal aging control substrain SAMR1. Cilostazol also increased the number of cells containing phosphorylated cAMP-responsive element binding protein (CREB), a downstream component of the cAMP pathway. Finally, cilostazol improves blood-brain barrier (BBB) integrity, demonstrated by reduced extravasation of 2-deoxy-2- 18 F-fluoro-d-glucose and Evans Blue dye in the brains of SAMP8. This improvement in BBB integrity was associated with an increased amount of zona occludens protein 1 (ZO-1) and occludin proteins, components of tight junctions integral to the BBB. The results suggest that long-term administration of cilostazol exerts its beneficial effects on age-related cognitive impairment through a dual mechanism: by enhancing the cAMP system in the brain and by maintaining or improving BBB integrity. Copyright © 2016 Elsevier Ltd. All rights reserved.
Eckert, Gunter P; Schiborr, Christina; Hagl, Stephanie; Abdel-Kader, Reham; Müller, Walter E; Rimbach, Gerald; Frank, Jan
2013-04-01
The aging brain suffers mitochondrial dysfunction and a reduced availability of energy in the form of ATP, which in turn may cause or promote the decline in cognitive, sensory, and motor function observed with advancing age. There is a need for animal models that display some of the pathological features of human brain aging in order to study their prevention by e.g. dietary factors. We thus investigated the suitability of the fast-aging senescence-accelerated mouse-prone 8 (SAMP8) strain and its normally aging control senescence-accelerated mouse-resistant 1 (SAMR1) as a model for the age-dependent changes in mitochondrial function in the brain. To this end, 2-months old male SAMR1 (n=10) and SAMP8 mice (n=7) were fed a Western type diet (control groups) for 5months and one group of SAMP8 mice (n=6) was fed an identical diet fortified with 500mg curcumin per kg. Dissociated brain cells and brain tissue homogenates were analyzed for malondialdehyde, heme oxygenase-1 mRNA, mitochondrial membrane potential (MMP), ATP concentrations, protein levels of mitochondrial marker proteins for mitochondrial membranes (TIMM, TOMM), the mitochondrial permeability transition pore (ANT1, VDAC1, TSPO), respiration complexes, and fission and fusion (Fis, Opa1, Mfn1, Drp1). Dissociated brain cells isolated from SAMP8 mice showed significantly reduced MMP and ATP levels, probably due to significantly diminished complex V protein expression, and increased expression of TSPO. Fission and fusion marker proteins indicate enhanced mitochondrial fission in brains of SAMP8 mice. Treatment of SAMP8 mice with curcumin improved MMP and ATP and restored mitochondrial fusion, probably by up-regulating nuclear factor PGC1α protein expression. In conclusion, SAMP8 compared to SAMR1 mice are a suitable model to study age-dependent changes in mitochondrial function and curcumin emerges as a promising nutraceutical for the prevention of neurodegenerative diseases that are accompanied or caused by mitochondrial dysfunction. Copyright © 2013 Elsevier Ltd. All rights reserved.
Rapoport, Basil; Aliesky, Holly A.; Banuelos, Bianca; Chen, Chun-Rong; McLachlan, Sandra M.
2015-01-01
Antibodies that stimulate the thyrotropin receptor (TSHR), the cause of Graves’ hyperthyroidism, only develop in humans. TSHR antibodies can be induced in mice by immunization but studying pathogenesis and therapeutic intervention requires a model without immunization. Spontaneous, iodine-accelerated, thyroid autoimmunity develops in NOD.H2h4 mice associated with thyroglobulin and thyroid-peroxidase, but not TSHR, antibodies. We hypothesized that transferring the human (h)TSHR A-subunit to NOD.H2h4 mice would result in loss of tolerance to this protein. BALB/c hTSHR A-subunit mice were bred to NOD.H2h4 mice and transgenic offspring were repeatedly backcrossed to NOD.H2h4 mice. All offspring developed antibodies to thyroglobulin and thyroid-peroxidase. However, only TSHR-transgenic NOD.H2h4 mice (TSHR/NOD.H2h4) developed pathogenic TSHR antibodies as detected using clinical Graves’ disease assays. As in humans, TSHR/NOD.H2h4 females were more prone than males to developing pathogenic TSHR antibodies. Fortunately, in view of the confounding effect of excess thyroid hormone on immune responses, spontaneously arising pathogenic (h)TSHR antibodies cross-react poorly with the mouse TSHR and do not cause thyrotoxicosis. In summary, the TSHR/NOD.H2h4 mouse strain develops spontaneous, iodine-accelerated, pathogenic TSHR antibodies in females, providing a unique model to investigate disease pathogenesis and test novel TSHR-antigen specific immunotherapies aimed at curing Graves’ disease in humans. PMID:25825442
Bernstein, Lori R; Mackenzie, Amelia C L; Kraemer, Duane C; Morley, John E; Farr, Susan; Chaffin, Charles L; Merchenthaler, István
2014-06-01
Women experience a series of specific transitions in their reproductive function with age. Shortening of the menstrual cycle begins in the mid to late 30s and is regarded as the first sign of reproductive aging. Other early changes include elevation and increased variance of serum FSH levels, increased incidences of oocyte spindle aberrations and aneuploidy, and declining fertility. The goal of this study was to investigate whether the mouse strain senescence-accelerated mouse-prone-8 (SAMP8) is a suitable model for the study of these midlife reproductive aging characteristics. Midlife SAMP8 mice aged 6.5-7.85 months (midlife SAMP8) exhibited shortened estrous cycles compared with SAMP8 mice aged 2-3 months (young SAMP8, P = .0040). Midlife SAMP8 mice had high FSH levels compared with young SAMP8 mice, and mice with a single day of high FSH exhibited statistically elevated FSH throughout the cycle, ranging from 1.8- to 3.6-fold elevation on the days of proestrus, estrus, metestrus, and diestrus (P < .05). Midlife SAMP8 mice displayed more variance in FSH than young SAMP8 mice (P = .01). Midlife SAMP8 ovulated fewer oocytes (P = .0155). SAMP8 oocytes stained with fluorescently labeled antitubulin antibodies and scored in fluorescence microscopy exhibited increased incidence of meiotic spindle aberrations with age, from 2/126 (1.59%) in young SAMP8 to 38/139 (27.3%) in midlife SAMP8 (17.2-fold increase, P < .0001). Finally, SAMP8 exhibited declining fertility from 8.9 pups/litter in young SAMP8 to 3.5 pups/litter in midlife SAMP8 mice (P < .0001). The age at which these changes occur is younger than for most mouse strains, and their simultaneous occurrence within a single strain has not been described previously. We propose that SAMP8 mice are a model of midlife human female reproductive aging.
Kiso, Minako; Manabe, Noboru; Komatsu, Kohji; Shimabe, Munetake; Miyamoto, Hajime
2003-12-01
Senescence accelerated mouse-prone (SAMP) mice with a shortened life span show accelerated changes in many of the signs of aging and a shorter reproductive life span than SAM-resistant (SAMR) controls. We previously showed that functional regression (progesterone dissimilation) occurs in abnormally accumulated luteal bodies (aaLBs) of SAMP mice, but structural regression of luteal cells in aaLB is inhibited. A deficiency of luteal cell apoptosis causes the abnormal accumulation of LBs in SAMP ovaries. In the present study, to show the abnormality of Fas ligand (FasL)/Fas-mediated apoptosis signal transducing factors in the aaLBs of the SAMP ovaries, we assessed the changes in the expression of FasL, Fas, caspase-8 and caspase-3 mRNAs by reverse transcription-polymerase chain reaction, and in the expression and localization of FasL, Fas and activated caspase-3 proteins by Western blotting and immunohistochemistry, respectively, during the estrus cycle/luteolysis. These mRNAs and proteins were expressed in normal LBs of both SAMP and SAMR ovaries, but not at all or only in trace amounts in aaLBs of SAMP, indicating that structural regression is inhibited by blockage of the expression of these transducing factors in luteal cells of aaLBs in SAMP mice.
Castro-Garcia, Paola; Díaz-Moreno, María; Gil-Gas, Carmen; Fernández-Gómez, Francisco J; Honrubia-Gómez, Paloma; Álvarez-Simón, Carmen Belén; Sánchez-Sánchez, Francisco; Cano, Juan Carlos Castillo; Almeida, Francisco; Blanco, Vicente; Jordán, Joaquín; Mira, Helena; Ramírez-Castillejo, Carmen
2015-04-01
We studied potential changes in the subventricular zone (SVZ) stem cell niche of the senescence-accelerated mouse prone-8 (SAM-P8) aging model. Bromodeoxyuridine (BrdU) assays with longtime survival revealed a lower number of label-retaining stem cells in the SAM-P8 SVZ compared with the SAM-Resistant 1 (SAM-R1) control strain. We also found that in SAM-P8 niche signaling is attenuated and the stem cell pool is less responsive to the self-renewal niche factor pigmented epithelium-derived factor (PEDF). Protein analysis demonstrated stable amounts of the PEDF ligand in the SAM-P8 SVZ niche; however, SAM-P8 stem cells present a significant expression decrease of patatin-like phospholipase domain containing 2, a receptor for PEDF (PNPLA2-PEDF) receptor, but not of laminin receptor (LR), a receptor for PEDF (LR-PEDF) receptor. We observed changes in self-renewal related genes (hairy and enhancer of split 1 (Hes1), hairy and enhancer of split 1 (Hes5), Sox2] and report that although these genes are down-regulated in SAM-P8, differentiation genes (Pax6) are up-regulated and neurogenesis is increased. Finally, sheltering mammalian telomere complexes might be also involved given a down-regulation of telomeric repeat binding factor 1 (Terf1) expression was observed in SAM-P8 at young age periods. Differences between these 2 models, SAM-P8 and SAM-R1 controls, have been previously detected at more advanced ages. We now describe alterations in the PEDF signaling pathway and stem cell self-renewal at a very young age, which could be involved in the premature senescence observed in the SAM-P8 model. © FASEB.
Zhou, Hong-Jing; Zeng, Chen-Ye; Yang, Ting-Ting; Long, Fang-Yi; Kuang, Xi; Du, Jun-Rong
2018-05-01
Oxidative stress caused by aging aggravates neuropathological changes and cognitive deficits. Klotho, an anti-aging protein, shows an anti-oxidative effect. The aims of the present study were to determine the potential therapeutic effect of klotho in aging-related neuropathological changes and memory impairments in senescence-accelerated mouse prone-8 (SAMP8) mice, and identify the potential mechanism of these neuroprotective effects. A lentivirus was used to deliver and sustain the expression of klotho. The lentiviral vectors were injected into the bilateral lateral ventricles of 7-month-old SAMP8 mice or age-matched SAMR1 mice. Three months later, the Y-maze alternation task and passive avoidance task were used to assess the memory deficits of the mice. In situ hybridization, immunohistochemistry, immunofluorescence, Nissl staining, quantitative real-time PCR and Western blot assays were applied in the following research. Our results showed that 3 months after injection of the lentiviral vectors encoding the full-length klotho gene, the expression of klotho in the brain was significantly increased in 10-month-old SAMP8 mice. This treatment reduced memory deficits, neuronal loss, synaptic damage and 4-HNE levels but increased mitochondrial manganese-superoxide dismutase (Mn-SOD) and catalase (CAT) expression. Moreover, the up-regulation of klotho expression decreased Akt and Forkhead box class O1 (FoxO1) phosphorylation. The present study provides a novel approach for klotho gene therapy and demonstrates that direct up-regulation of klotho in the brain might improve aging-related memory impairments and decrease oxidative stress. The underlying mechanism of this effect likely involves the inhibition of the Akt/FoxO1 pathway. Copyright © 2018 Elsevier Inc. All rights reserved.
Antika, Lucia Dwi; Lee, Eun-Jung; Kim, Yun-Ho; Kang, Min-Kyung; Park, Sin-Hye; Kim, Dong Yeon; Oh, Hyeongjoo; Choi, Yean-Jung; Kang, Young-Hee
2017-11-01
Osteoporosis is one of the most prevalent forms of age-related bone diseases. Increased bone loss with advancing age has become a grave public health concern. This study examined whether phlorizin and phloretin, dihydrochalcones in apple peels, inhibited senile osteoporosis through enhancing osteoblastogenic bone formation in cell-based and aged mouse models. Submicromolar phloretin and phlorizin markedly stimulated osteoblast differentiation of MC3T3-E1 cells with increased transcription of Runx2 and osteocalcin. Senescence-accelerated resistant mouse strain prone-6 (SAMP6) mice were orally supplemented with 10 mg/kg phlorizin and phloretin daily for 12 weeks. Male senescence-accelerated resistant mouse strain R1 mice were employed as a nonosteoporotic age-matched control. Oral administration of ploretin and phorizin boosted bone mineralization in all the bones of femur, tibia and vertebra of SAMP6. In particular, phlorizin reduced serum RANKL/OPG ratio and diminished TRAP-positive osteoclasts in trabecular bones of SAMP6. Additionally, treating phlorizin to SAMP6 inhibited the osteoporotic resorption in distal femoral bones through up-regulating expression of BMP-2 and collagen-1 and decreasing production of matrix-degrading cathepsin K and MMP-9. Finally, phlorizin and phloretin antagonized GSK-3β induction and β-catenin phosphorylation in osteoblasts and aged mouse bones. Therefore, phlorizin and phloretin were potential therapeutic agents encumbering senile osteoporosis through promoting bone-forming osteoblastogenesis via modulation of GSK-3β/β-catenin-dependent signaling. Copyright © 2017 Elsevier Inc. All rights reserved.
Jiang, Jing; Liu, Gang; Shi, Suhua; Li, Zhigang
2016-01-01
Objectives . To compare musical electroacupuncture and electroacupuncture in a mouse model of Alzheimer's disease. Methods . In this study, 7.5-month-old male senescence-accelerated mouse prone 8 (SAMP8) mice were used as an Alzheimer's disease animal model. In the normal control paradigm, 7.5-month-old male SAMR1 mice were used as the blank control group (N group). After 15 days of treatment, using Morris water maze test, micro-PET, and immunohistochemistry, the differences among the musical electroacupuncture (MEA), electroacupuncture (EA), Alzheimer's disease (AD), and normal (N) groups were assessed. Results . The Morris water maze test, micro-PET, and immunohistochemistry revealed that MEA and EA therapies could improve spatial learning and memory ability, glucose metabolism level in the brain, and A β amyloid content in the frontal lobe, compared with the AD group ( P < 0.05). Moreover, MEA therapy performed better than EA treatment in decreasing amyloid-beta levels in the frontal lobe of mice with AD. Conclusion . MEA therapy may be superior to EA in treating Alzheimer's disease as demonstrated in SAMP8 mice.
Jiang, Jing; Liu, Gang
2016-01-01
Objectives. To compare musical electroacupuncture and electroacupuncture in a mouse model of Alzheimer's disease. Methods. In this study, 7.5-month-old male senescence-accelerated mouse prone 8 (SAMP8) mice were used as an Alzheimer's disease animal model. In the normal control paradigm, 7.5-month-old male SAMR1 mice were used as the blank control group (N group). After 15 days of treatment, using Morris water maze test, micro-PET, and immunohistochemistry, the differences among the musical electroacupuncture (MEA), electroacupuncture (EA), Alzheimer's disease (AD), and normal (N) groups were assessed. Results. The Morris water maze test, micro-PET, and immunohistochemistry revealed that MEA and EA therapies could improve spatial learning and memory ability, glucose metabolism level in the brain, and Aβ amyloid content in the frontal lobe, compared with the AD group (P < 0.05). Moreover, MEA therapy performed better than EA treatment in decreasing amyloid-beta levels in the frontal lobe of mice with AD. Conclusion. MEA therapy may be superior to EA in treating Alzheimer's disease as demonstrated in SAMP8 mice. PMID:27974974
Zeng, Yi; Wang, Ping-Han; Zhang, Mao; Du, Jun-Rong
2016-02-01
The predominant distribution of the antiaging Klotho protein in both the kidneys and brain may point to its essential role in protecting against dysfunction of the kidney-brain axis during the aging process. Our previous study showed that the downregulation of Klotho was involved in aging-related cognitive impairment in aged senescence-accelerated mouse prone-8 (SAMP8) mice. The present study investigated the potential role of Klotho in aging-associated inflammation and renal injury. Age- and gender-matched groups of SAMP8 mice and their corresponding normal control senescence-accelerated mouse resistant-1 (SAMR1) were used to investigate the potential role of Klotho in aging-associated inflammation and renal injury. Compared with aged SAMR1 controls, early-stage chronic kidney disease (CKD), which is associated with an increase in the urinary albumin-to-creatinine ratio, inflammatory cell infiltration, glomerulosclerosis, and tubulointerstitial fibrosis, was observed in aged SAMP8 mice. Furthermore, the aging-related loss of Klotho-induced activation of the retinoic acid-inducible gene 1/nuclear factor-κB (RIG-I/NF-κB) signaling pathway and subsequent production of the proinflammatory mediators tumor necrosis factor α, interleukin-6, and inducible nitric oxide synthase in the kidneys of aged SAMP8 mice compared with SAMR1 controls. The present results suggest that aging-related inflammation and the development of early-stage CKD are likely associated with the downregulation of Klotho and induction of the RIG-I/NF-κB signaling pathway in 12-month-old SAMP8 mice. Moreover, aged SAMP8 mice with cognitive deficits and renal damage may be a potential mouse model for investigating the kidney-brain axis in the aging process.
Abnormal gut microbiota composition contributes to cognitive dysfunction in SAMP8 mice.
Zhan, Gaofeng; Yang, Ning; Li, Shan; Huang, Niannian; Fang, Xi; Zhang, Jie; Zhu, Bin; Yang, Ling; Yang, Chun; Luo, Ailin
2018-06-10
Alzheimer's disease is characterized by cognitive dysfunction and aging is an important predisposing factor; however, the pathological and therapeutic mechanisms are not fully understood. Recently, the role of gut microbiota in Alzheimer's disease has received increasing attention. The cognitive function in senescence-accelerated mouse prone 8 (SAMP8) mice was significantly decreased and the Chao 1 and Shannon indices, principal coordinates analysis, and principal component analysis results were notably abnormal compared with that of those in senescence-accelerated mouse resistant 1 (SAMR1) mice. Moreover, 27 gut bacteria at six phylogenetic levels differed between SAMP8 and SAMR1 mice. In a separate study, we transplanted fecal bacteria from SAMP8 or SAMR1 mice into pseudo germ-free mice. Interestingly, the pseudo germ-free mice had significantly lower cognitive function prior to transplant. Pseudo germ-free mice that received fecal bacteria transplants from SAMR1 mice but not from SAMP8 mice showed improvements in behavior and in α-diversity and β-diversity indices. In total, 14 bacteria at six phylogenetic levels were significantly altered by the gut microbiota transplant. These results suggest that cognitive dysfunction in SAMP8 mice is associated with abnormal composition of the gut microbiota. Thus, improving abnormal gut microbiota may provide an alternative treatment for cognitive dysfunction and Alzheimer's disease.
Onishi, Shintaro; Ishino, Mayu; Kitazawa, Hidefumi; Yoto, Ai; Shimba, Yuki; Mochizuki, Yusuke; Unno, Keiko; Meguro, Shinichi; Tokimitsu, Ichiro; Miura, Shinji
2018-01-01
Muscle atrophy (loss of skeletal muscle mass) causes progressive deterioration of skeletal function. Recently, excessive intake of fats was suggested to induce insulin resistance, followed by muscle atrophy. Green tea extracts (GTEs), which contain polyphenols such as epigallocatechin gallate, have beneficial effects on obesity, hyperglycemia, and insulin resistance, but their effects against muscle atrophy are still unclear. Here, we found that GTEs prevented high-fat (HF) diet-induced muscle weight loss in senescence-accelerated mouse prone-8 (SAMP8), a murine model of senescence. SAMP8 mice were fed a control diet, an HF diet, or HF with 0.5% GTEs (HFGT) diet for 4 months. The HF diet induced muscle weight loss with aging (measured as quadriceps muscle weight), whereas GTEs prevented this loss. In HF diet-fed mice, blood glucose and plasma insulin concentrations increased in comparison with the control group, and these mice had insulin resistance as determined by homeostasis model assessment of insulin resistance (HOMA-IR). In these mice, serum concentrations of leukocyte cell-derived chemotaxin 2 (LECT2), which is known to induce insulin resistance in skeletal muscle, were elevated, and insulin signaling in muscle, as determined by the phosphorylation levels of Akt and p70 S6 kinases, tended to be decreased. In HFGT diet-fed mice, these signs of insulin resistance and elevation of serum LECT2 were not observed. Although our study did not directly show the effect of serum LECT2 on muscle weight, insulin resistance examined using HOMA-IR indicated an intervention effect of serum LECT2 on muscle weight, as revealed by partial correlation analysis. Accordingly, GTEs might have beneficial effects on age-related and HF diet-induced muscle weight loss, which correlates with insulin resistance and is accompanied by a change in serum LECT2.
Cheng, Xiao-Rui; Zhou, Wen-Xia; Zhang, Yong-Xiang
2006-05-01
Alzheimer' s disease (AD) is the most common form of dementia in the elderly. AD is an invariably fatal neurodegenerative disorder with no effective treatment. Senescence-accelerated mouse prone 8 (SAMP8) is a model for studying age-related cognitive impairments and also is a good model to study brain aging and one of mouse model of AD. The technique of cDNA microarray can monitor the expression levels of thousands of genes simultaneously and can be used to study AD with the character of multi-mechanism, multi-targets and multi-pathway. In order to disclose the mechanism of AD and find the drug targets of AD, cDNA microarray containing 3136 cDNAs amplified from the suppression subtracted cDNA library of hippocampus of SAMP8 and SAMR1 was prepared with 16 blocks and 14 x 14 pins, the housekeeping gene beta-actin and G3PDH as inner conference. The background of this microarray was low and unanimous, and dots divided evenly. The conditions of hybridization and washing were optimized during the hybridization of probe and target molecule. After the data of hybridization analysis, the differential expressed cDNAs were sequenced and analyzed by the bioinformatics, and some of genes were quantified by the real time RT-PCR and the reliability of this cDNA microarray were validated. This cDNA microarray may be the good means to select the differential expressed genes and disclose the molecular mechanism of SAMP8's brain aging and AD.
Drinking hydrogen water ameliorated cognitive impairment in senescence-accelerated mice.
Gu, Yeunhwa; Huang, Chien-Sheng; Inoue, Tota; Yamashita, Takenori; Ishida, Torao; Kang, Ki-Mun; Nakao, Atsunori
2010-05-01
Hydrogen has been reported to have neuron protective effects due to its antioxidant properties, but the effects of hydrogen on cognitive impairment due to senescence-related brain alterations and the underlying mechanisms have not been characterized. In this study, we investigated the efficacies of drinking hydrogen water for prevention of spatial memory decline and age-related brain alterations using senescence-accelerated prone mouse 8 (SAMP8), which exhibits early aging syndromes including declining learning ability and memory. However, treatment with hydrogen water for 30 days prevented age-related declines in cognitive ability seen in SAMP8 as assessed by a water maze test and was associated with increased brain serotonin levels and elevated serum antioxidant activity. In addition, drinking hydrogen water for 18 weeks inhibited neurodegeneration in hippocampus, while marked loss of neurons was noted in control, aged brains of mice receiving regular water. On the basis of our results, hydrogen water merits further investigation for possible therapeutic/preventative use for age-related cognitive disorders.
Gharaee-Kermani, Mehrnaz; Rodriguez-Nieves, Jose A.; Mehra, Rohit; Vezina, Chad A.; Sarma, Aruna V.; Macoska, Jill A.
2017-01-01
BACKGROUND Progressive aging- and inflammation-associated fibrosis effectively remodels the extracellular matrix (ECM) to increase prostate tissue stiffness and reduce urethral flexibility, resulting in urinary flow obstruction and lower urinary tract symptoms (LUTS). In the current study, we sought to test whether senescence-accelerated mouse prone (SAMP)6 mice, which were reported to develop prostatic fibrosis, would also develop LUTS, and whether these symptoms would be exacerbated by diet-induced obesity and concurrent Type 2 Diabetes Mellitus (T2DM). METHODS To accomplish this, SAMP6 and AKR/J background strain mice were fed regular mouse chow, low fat diet chow, or high fat diet chow for 8 months, then subjected to glucose tolerance tests, assessed for plasma insulin levels, evaluated for urinary voiding function, and assessed for lower urinary tract fibrosis. RESULTS The results of these studies show that SAMP6 mice and AKR/J background strain mice develop diet-induced obesity and T2DM concurrent with urinary voiding dysfunction. Moreover, urinary voiding dysfunction was more severe in SAMP6 than AKR/J mice and was associated with pronounced prostatic and urethral tissue fibrosis. CONCLUSIONS Taken together, these studies suggest that obesity, T2DM, lower urinary tract fibrosis, and urinary voiding dysfunction are inextricably and biologically linked. Prostate. PMID:23532836
Soleus muscles of SAMP8 mice provide an accelerated model of skeletal muscle senescence.
Derave, Wim; Eijnde, Bert O; Ramaekers, Monique; Hespel, Peter
2005-07-01
Animal models are valuable research tools towards effective prevention of sarcopenia and towards a better understanding of the mechanisms underlying skeletal muscle aging. We investigated whether senescence-accelerated mouse (SAM) strains provide valid models for skeletal muscle aging studies. Male senescence-prone mice SAMP6 and SAMP8 were studied at age 10, 25 and 60 weeks and compared with senescence-resistant strain, SAMR1. Soleus and EDL muscles were tested for in vitro contractile properties, phosphocreatine content, muscle mass and fiber-type distribution. Declined muscle mass and contractility were observed at 60 weeks, the differences being more pronounced in SAMP8 than SAMP6 and more pronounced in soleus than EDL. Likewise, age-related decreases in muscle phosphocreatine content and type-II fiber size were most pronounced in SAMP8 soleus. In conclusion, typical features of muscular senescence occur at relatively young age in SAMP8 and nearly twice as fast as compared with other models. We suggest that soleus muscles of SAMP8 mice provide a cost-effective model for muscular aging studies.
Ota, Hidetaka; Akishita, Masahiro; Akiyoshi, Takuyu; Kahyo, Tomoaki; Setou, Mitsutoshi; Ogawa, Sumito; Iijima, Katsuya; Eto, Masato; Ouchi, Yasuyoshi
2012-01-01
Oxidative stress and atherosclerosis-related vascular disorders are risk factors for cognitive decline with aging. In a small clinical study in men, testosterone improved cognitive function; however, it is unknown how testosterone ameliorates the pathogenesis of cognitive decline with aging. Here, we investigated whether the cognitive decline in senescence-accelerated mouse prone 8 (SAMP8), which exhibits cognitive impairment and hypogonadism, could be reversed by testosterone, and the mechanism by which testosterone inhibits cognitive decline. We found that treatment with testosterone ameliorated cognitive function and inhibited senescence of hippocampal vascular endothelial cells of SAMP8. Notably, SAMP8 showed enhancement of oxidative stress in the hippocampus. We observed that an NAD+-dependent deacetylase, SIRT1, played an important role in the protective effect of testosterone against oxidative stress-induced endothelial senescence. Testosterone increased eNOS activity and subsequently induced SIRT1 expression. SIRT1 inhibited endothelial senescence via up-regulation of eNOS. Finally, we showed, using co-culture system, that senescent endothelial cells promoted neuronal senescence through humoral factors. Our results suggest a critical role of testosterone and SIRT1 in the prevention of vascular and neuronal aging. PMID:22238626
Hou, Xue-Qin; Song, Hou-Pan; Chen, Yun-Bo; Cheng, Shu-Yi; Fang, Shu-Huan; Zhang, Ji-Guo; Wang, Qi
2018-01-01
The present study aimed to investigate the possible effects and underlying molecular mechanism of Bushen-Yizhi formula (BSYZ), a traditional Chinese medicine, on age-related degeneration of brain physiology in senescence-accelerated mouse prone 8 (SAMP8) mice. SAMP8 mice (age, 6 months) were administered BSYZ (1.46, 2.92 and 5.84 g/kg/day) for 30 days. Morris water maze and step-down tests demonstrated that BSYZ significantly improved memory impairments in SAMP8 mice. In addition, BSYZ significantly enhanced the expression levels of peroxisome proliferator-activated receptor-γ and B-cell lymphoma extra-large, and downregulated the expression levels of inflammatory mediators, glial fibrillary acidic protein, cyclooxygenase-2, nuclear factor-κB and interleukin-1β in the brain compared with untreated SAMP8 mice. Furthermore, BSYZ reversed disordered superoxide dismutase activity, malondialdehyde content and glutathione peroxidase activity, and ameliorated apoptosis and histological alterations. The present study indicated that BSYZ may attenuate cognitive impairment in SAMP8 mice, and modulate inflammation, oxidative stress and neuronal apoptosis. These results suggested that BSYZ may have the potential to be further developed into a therapeutic agent for protection against age-related neurodegenerative diseases. PMID:29568888
Lai, Yan-Liang; Lin, Chen-Yu; Jiang, Wei-Cheng; Ho, Yen-Chun; Chen, Chung-Huang; Yet, Shaw-Fang
2018-05-01
Heme oxygenase (HO)-1 is an inducible stress response protein and well known to protect cells and tissues against injury. Despite its important function in cytoprotection against physiological stress, the role of HO-1 in embryonic stem cell (ESC) differentiation remains largely unknown. We showed previously that induced pluripotent stem (iPS) cells that lack HO-1 are more sensitive to oxidant stress-induced cell death and more prone to lose pluripotent markers upon LIF withdrawal. To elucidate the role of HO-1 in ESC differentiation and to rule out the controversy of potential gene flaws in iPS cells, we derived and established mouse HO-1 knockout ESC lines from HO-1 knockout blastocysts. Using wild type D3 and HO-1 knockout ESCs in the 3-dimensional embryoid body (EB) differentiation model, we showed that at an early time point during EB development, an absence of HO-1 led to enhanced ROS level, concomitant with increased expressions of master mesodermal regulator brachyury and endodermal marker GATA6. In addition, critical smooth muscle cell (SMC) transcription factor serum response factor and its coactivator myocardin were enhanced. Furthermore, HO-1 deficiency increased Smad2 in ESCs and EBs, revealing a role of HO-1 in controlling Smad2 level. Smad2 not only mediates mesendoderm differentiation of mouse ESCs but also SMC development. Collectively, loss of HO-1 resulted in higher level of mesodermal and SMC regulators, leading to accelerated and enhanced SMC marker SM α-actin expression. Our results reveal a previously unrecognized function of HO-1 in regulating SMC gene expressions during ESC-EB development. More importantly, our findings may provide a novel strategy in enhancing ESC differentiation toward SMC lineage. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
Fimognari, Nicholas; Hollings, Ashley; Lam, Virginie; Tidy, Rebecca J; Kewish, Cameron M; Albrecht, Matthew A; Takechi, Ryu; Mamo, John C L; Hackett, Mark J
2018-06-14
Western society is facing a health epidemic due to the increasing incidence of dementia in ageing populations, and there are still few effective diagnostic methods, minimal treatment options, and no cure. Ageing is the greatest risk factor for memory loss that occurs during the natural ageing process, as well as being the greatest risk factor for neurodegenerative disease such as Alzheimer's disease. Therefore, greater understanding of the biochemical pathways that drive a healthy ageing brain towards dementia (pathological ageing or Alzheimer's disease), is required to accelerate the development of improved diagnostics and therapies. Unfortunately, many animal models of dementia model chronic amyloid precursor protein over-expression, which although highly relevant to mechanisms of amyloidosis and familial Alzheimer's disease, does not model well dementia during the natural ageing process. A promising animal model reported to model mechanisms of accelerated natural ageing and memory impairments, is the senescence accelerated murine prone strain 8 (SAMP8), which has been adopted by many research group to study the biochemical transitions that occur during brain ageing. A limitation to traditional methods of biochemical characterisation is that many important biochemical and elemental markers (lipid saturation, lactate, transition metals) cannot be imaged at meso- or micro-spatial resolution. Therefore, in this investigation we report the first multi-modal biospectroscopic characterisation of the SAMP8 model, and have identified important biochemical and elemental alterations, and co-localisations, between 4 month old SAMP8 mice and the relevant control (SAMR1) mice. Specifically, we demonstrate direct evidence of altered metabolism and disturbed lipid homeostasis within corpus callosum white matter, in addition to localised hippocampal metal deficiencies, in the accelerated ageing phenotype. Such findings have important implication for future research aimed at elucidating specific biochemical pathways for therapeutic intervention.
A roadmap for the genetic analysis of renal aging
Noordmans, Gerda A; Hillebrands, Jan-Luuk; van Goor, Harry; Korstanje, Ron
2015-01-01
Several studies show evidence for the genetic basis of renal disease, which renders some individuals more prone than others to accelerated renal aging. Studying the genetics of renal aging can help us to identify genes involved in this process and to unravel the underlying pathways. First, this opinion article will give an overview of the phenotypes that can be observed in age-related kidney disease. Accurate phenotyping is essential in performing genetic analysis. For kidney aging, this could include both functional and structural changes. Subsequently, this article reviews the studies that report on candidate genes associated with renal aging in humans and mice. Several loci or candidate genes have been found associated with kidney disease, but identification of the specific genetic variants involved has proven to be difficult. CUBN, UMOD, and SHROOM3 were identified by human GWAS as being associated with albuminuria, kidney function, and chronic kidney disease (CKD). These are promising examples of genes that could be involved in renal aging, and were further mechanistically evaluated in animal models. Eventually, we will provide approaches for performing genetic analysis. We should leverage the power of mouse models, as testing in humans is limited. Mouse and other animal models can be used to explain the underlying biological mechanisms of genes and loci identified by human GWAS. Furthermore, mouse models can be used to identify genetic variants associated with age-associated histological changes, of which Far2, Wisp2, and Esrrg are examples. A new outbred mouse population with high genetic diversity will facilitate the identification of genes associated with renal aging by enabling high-resolution genetic mapping while also allowing the control of environmental factors, and by enabling access to renal tissues at specific time points for histology, proteomics, and gene expression. PMID:26219736
Erickson, Michelle A; Niehoff, Michael L; Farr, Susan A; Morley, John E; Dillman, Lucy A; Lynch, Kristin M; Banks, William A
2012-01-01
The senescence accelerated mouse-prone 8 (SAMP8) mouse model of Alzheimer's disease has a natural mutation leading to age-related increases in the amyloid-β protein precursor (AβPP) and amyloid-β (Aβ) in the brain, memory impairment, and deficits in Aβ removal from the brain. Previous studies show that centrally administered antisense oligonucleotide directed against AβPP can decrease AβPP expression and Aβ production in the brains of aged SAMP8 mice, and improve memory. The same antisense crosses the blood-brain barrier and reverses memory deficits when injected intravenously. Here, we give 6 μg of AβPP or control antisense 3 times over 2 week intervals to 12 month old SAMP8 mice. Object recognition test was done 48 hours later, followed by removal of whole brains for immunoblot analysis of AβPP, low-density lipoprotein-related protein-1 (LRP-1), p-glycoprotein (Pgp), receptor for advanced glycation endproducts (RAGE), or ELISA of soluble Aβ(40). Our results show that AβPP antisense completely reverses a 30% age-associated increase in AβPP signal (p < 0.05 versus untreated 4 month old SAMP8). Soluble Aβ(40) increased with age, but was not reversed by antisense. LRP-1 large and small subunits increased significantly with age (147.7%, p < 0.01 and 123.7%, p < 0.05 respectively), and AβPP antisense completely reversed these increases (p < 0.05). Pgp and RAGE were not significantly altered with age or antisense. Antisense also caused improvements in memory (p < 0.001). Together, these data support the therapeutic potential of AβPP antisense and show a unique association between AβPP and LRP-1 expression in the SAMP8 mouse.
Favoino, E; Favia, E I; Digiglio, L; Racanelli, V; Shoenfeld, Y; Perosa, F
2014-01-01
The safety of four different adjuvants was assessed in lupus-prone New Zealand black/New Zealand white (BW)F1 mice. Four groups of mice were injected intraperitoneally with incomplete Freund's adjuvant (IFA), complete Freund's adjuvant (CFA), squalene (SQU) or aluminium hydroxide (ALU). An additional group received plain phosphate-buffered saline (PBS) (UNT group). Mice were primed at week 9 and boosted every other week up to week 15. Proteinuria became detectable at weeks 17 (IFA group), 24 (CFA group), 28 (SQU and ALU groups) and 32 (UNT group). Different mean values were obtained among the groups from weeks 17 to 21 [week 17: one-way analysis of variance (anova) P = 0·016; weeks 18 and 19: P = 0·048; weeks 20 and 21: P = 0·013] being higher in the IFA group than the others [Tukey's honestly significant difference (HSD) post-test P < 0·05]. No differences in anti-DNA antibody levels were observed among groups. Anti-RNP/Sm antibody developed at week 19 in only one CFA-treated mouse. Mean mouse weight at week 18 was lower in the ALU group than the IFA (Tukey's HSD post-test P = 0·04), CFA (P = 0·01) and SQU (P < 0·0001) groups, while the mean weight in the SQU group was higher than in the IFA (P = 0·009), CFA (P = 0·013) and UNT (P = 0·005) groups. The ALU group weight decreased by almost half between weeks 29 and 31, indicating some toxic effect of ALU in the late post-immunization period. Thus, SQU was the least toxic adjuvant as it did not (i) accelerate proteinuria onset compared to IFA; (ii) induce toxicity compared to ALU or (iii) elicit anti-RNP/Sm autoantibody, as occurred in the CFA group. © 2013 British Society for Immunology.
Disruption of the RP-MDM2-p53 pathway accelerates APC loss-induced colorectal tumorigenesis.
Liu, S; Tackmann, N R; Yang, J; Zhang, Y
2017-03-01
Inactivation of the adenomatous polyposis coli (APC) tumor suppressor is frequently found in colorectal cancer. Loss of APC function results in deregulation of the Wnt/β-catenin signaling pathway causing overexpression of the c-MYC oncogene. In lymphoma, both p19ARF and ribosomal proteins RPL11 and RPL5 respond to c-MYC activation to induce p53. Their role in c-MYC-driven colorectal carcinogenesis is unclear, as p19ARF deletion does not accelerate APC loss-triggered intestinal tumorigenesis. To determine the contribution of the ribosomal protein (RP)-murine double minute 2 (MDM2)-p53 pathway to APC loss-induced tumorigenesis, we crossed mice bearing MDM2 C305F mutation, which disrupts RPL11- and RPL5-MDM2 binding, with Apc min/+ mice, which are prone to intestinal tumor formation. Interestingly, loss of RP-MDM2 binding significantly accelerated colorectal tumor formation while having no discernable effect on small intestinal tumor formation. Mechanistically, APC loss leads to overexpression of c-MYC, RPL11 and RPL5 in mouse colonic tumor cells irrespective of MDM2 C305F mutation. However, notable p53 stabilization and activation were observed only in Apc min/+ ;Mdm2 +/+ but not Apc min/+ ;Mdm2 C305F/C305F colon tumors. These data establish that the RP-MDM2-p53 pathway, in contrast to the p19ARF-MDM2-p53 pathway, is a critical mediator of colorectal tumorigenesis following APC loss.
Tian, Geng; Sawashita, Jinko; Kubo, Hiroshi; Nishio, Shin-ya; Hashimoto, Shigenari; Suzuki, Nobuyoshi; Yoshimura, Hidekane; Tsuruoka, Mineko; Wang, Yaoyong; Liu, Yingye; Luo, Hongming; Xu, Zhe; Mori, Masayuki; Kitano, Mitsuaki; Hosoe, Kazunori; Takeda, Toshio; Usami, Shin-ichi; Higuchi, Keiichi
2014-06-01
The present study was conducted to define the relationship between the anti-aging effect of ubiquinol-10 supplementation and mitochondrial activation in senescence-accelerated mouse prone 1 (SAMP1) mice. Here, we report that dietary supplementation with ubiquinol-10 prevents age-related decreases in the expression of sirtuin gene family members, which results in the activation of peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α), a major factor that controls mitochondrial biogenesis and respiration, as well as superoxide dismutase 2 (SOD2) and isocitrate dehydrogenase 2 (IDH2), which are major mitochondrial antioxidant enzymes. Ubiquinol-10 supplementation can also increase mitochondrial complex I activity and decrease levels of oxidative stress markers, including protein carbonyls, apurinic/apyrimidinic sites, malondialdehydes, and increase the reduced glutathione/oxidized glutathione ratio. Furthermore, ubiquinol-10 may activate Sirt1 and PGC-1α by increasing cyclic adenosine monophosphate (cAMP) levels that, in turn, activate cAMP response element-binding protein (CREB) and AMP-activated protein kinase (AMPK). These results show that ubiquinol-10 may enhance mitochondrial activity by increasing levels of SIRT1, PGC-1α, and SIRT3 that slow the rate of age-related hearing loss and protect against the progression of aging and symptoms of age-related diseases.
Hepatic JAK2 protects against atherosclerosis through circulating IGF-1
Sivasubramaniyam, Tharini; Schroer, Stephanie A.; Li, Angela; Luk, Cynthia T.; Shi, Sally Yu; Besla, Rickvinder; Metherel, Adam H.; Kitson, Alex P.; Brunt, Jara J.; Lopes, Joshua; Wagner, Kay-Uwe; Bazinet, Richard P.; Bendeck, Michelle P.; Robbins, Clinton S.
2017-01-01
Atherosclerosis is considered both a metabolic and inflammatory disease; however, the specific tissue and signaling molecules that instigate and propagate this disease remain unclear. The liver is a central site of inflammation and lipid metabolism that is critical for atherosclerosis, and JAK2 is a key mediator of inflammation and, more recently, of hepatic lipid metabolism. However, precise effects of hepatic Jak2 on atherosclerosis remain unknown. We show here that hepatic Jak2 deficiency in atherosclerosis-prone mouse models exhibited accelerated atherosclerosis with increased plaque macrophages and decreased plaque smooth muscle cell content. JAK2’s essential role in growth hormone signalling in liver that resulted in reduced IGF-1 with hepatic Jak2 deficiency played a causal role in exacerbating atherosclerosis. As such, restoring IGF-1 either pharmacologically or genetically attenuated atherosclerotic burden. Together, our data show hepatic Jak2 to play a protective role in atherogenesis through actions mediated by circulating IGF-1 and, to our knowledge, provide a novel liver-centric mechanism in atheroprotection. PMID:28724798
Fisetin Reduces the Impact of Aging on Behavior and Physiology in the Rapidly Aging SAMP8 Mouse.
Currais, Antonio; Farrokhi, Catherine; Dargusch, Richard; Armando, Aaron; Quehenberger, Oswald; Schubert, David; Maher, Pamela
2018-03-02
Alzheimer's disease (AD) is rarely addressed in the context of aging even though there is an overlap in pathology. We previously used a phenotypic screening platform based on old age-associated brain toxicities to identify the flavonol fisetin as a potential therapeutic for AD and other age-related neurodegenerative diseases. Based on earlier results with fisetin in transgenic AD mice, we hypothesized that fisetin would be effective against brain aging and cognitive dysfunction in rapidly aging senescence-accelerated prone 8 (SAMP8) mice, a model for sporadic AD and dementia. An integrative approach was used to correlate protein expression and metabolite levels in the brain with cognition. It was found that fisetin reduced cognitive deficits in old SAMP8 mice while restoring multiple markers associated with impaired synaptic function, stress, and inflammation. These results provide further evidence for the potential benefits of fisetin for the treatment of age-related neurodegenerative diseases.
Asai, Akira; Nagao, Mototsugu; Kawahara, Momoyo; Shuto, Yuki; Sugihara, Hitoshi; Oikawa, Shinichi
2013-12-01
Impaired glucose tolerance (IGT) is an independent risk factor for atherosclerotic cardiovascular disease. However, due to the lack of appropriate animal models, the underlying mechanisms for IGT-induced atherosclerosis remain to be elucidated in vivo. We recently used selective breeding to establish 2 mouse lines with distinctively different susceptibilities to diet-induced glucose intolerance, designated selectively bred diet-induced glucose intolerance-resistant (SDG-R) and SDG-prone (SDG-P), respectively. Here, we assessed atherosclerotic lesion formation in these mice. Female SDG-R and SDG-P mice were fed an atherogenic diet (AD; 1.25% cholesterol, 0.5% sodium cholate, and 36% energy as fat) for 20 weeks (8-28 weeks of age). Oral glucose tolerance tests were performed during the AD-feeding period. Atherosclerotic lesion formation was quantitatively analyzed in serial aortic sinus sections by oil red O staining. Plasma lipids were measured after the AD-feeding period. Glucose tolerance was impaired in SDG-P mice as compared to SDG-R mice over the 20-week AD-feeding period. No significant differences were observed in any plasma lipid measurement between the 2 mouse lines. Aortic sinus atherosclerotic lesion formation in SDG-P mice was approximately 4-fold greater than that in SDG-R mice. In 2 mouse lines with different susceptibilities to diet-induced glucose intolerance, IGT accelerated atherosclerotic lesion formation. These mice may therefore serve as useful in vivo models for investigating the causal role of IGT in the pathogenesis of atherosclerosis. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Maejima, Hiroshi; Kanemura, Naohiko; Kokubun, Takanori; Murata, Kenji; Takayanagi, Kiyomi
2018-02-05
Aerobic exercise is known to increase expression of neurotrophins, particularly brain-derived neurotrophic factor (BDNF), in the hippocampus and to improve cognitive function. Exercise exerts neuroprotective effects in the hippocampus by inducing epigenetic changes, which play crucial roles in aging and neurodegenerative diseases. Specifically, the activity levels of histone acetyltransferases (HATs) and histone deacetylases (HDACs) regulate histone acetylation and modulate gene transcription. The objective of the present study was to assess the interactive effects of exercise and aging on cognitive function, expression of neurotrophins (BDNF and neurotrophin-4) and their receptors (tyrosine receptor kinase B and p75), and epigenetic regulations, including the activity of HATs and HADCs in the hippocampus. We used the senescence-accelerated mouse (SAM) model, specifically 13-month-old SAM resistant 1(SAMR1) and SAM prone 1 (SAMP1) lines. Mice were distributed into four groups based on accelerated senescence and exercise status. Mice in the exercise groups exercised on a treadmill for approximately 60min a day, 5days a week. Aerobic exercise for 4 weeks improved cognitive function, accompanied by an increase in BDNF expression and a decrease in p75 transcription in both SAMR1 and SAMP1. In addition, the exercise regimen activated both HAT and HDAC in the hippocampus. Therefore, the present study reveals that despite accelerated senescence, long-term exercise improved cognitive function, upregulated the expression of BDNF, and downregulated p75, a receptor involved in apoptotic signaling. Furthermore, long-term exercise enhanced activity of both HAT and HDAC, which may contribute to the transcriptional regulation underlying the improvement of cognitive function. Copyright © 2017 Elsevier B.V. All rights reserved.
Nagao, Mototsugu; Asai, Akira; Kawahara, Momoyo; Nakajima, Yasushi; Sato, Yuki; Tanimura, Kyoko; Okajima, Fumitaka; Takaya, Makiyo; Sudo, Mariko; Takemitsu, Shuji; Harada, Taro; Sugihara, Hitoshi; Oikawa, Shinichi
2012-06-06
Aims/Introduction: The development of type 2 diabetes is primarily due to lifestyle and environmental factors, as well as genetics, as shown by familial clustering. To establish mouse lines for evaluating heritable factors determining susceptibility to diet-induced diabetes, we performed selective breeding for differences in high fat diet (HFD)-induced glucose intolerance. Selective breeding was performed using hybrid mice of C57BL/6J, C3H/HeJ and AKR/N backgrounds. After 5-week HFD feeding, mice showing high and low 2-h blood glucose levels in an oral glucose tolerance test (OGTT) were selected and bred over 14 generations to produce lines prone and resistant to diet-induced glucose intolerance (designated Selectively bred Diet-induced Glucose intolerance-Prone [SDG-P] and -Resistant [SDG-R]). At 5 weeks of age (pre HFD feeding), SDG-P mice showed higher blood glucose levels both in the OGTT and insulin tolerance test as compared to SDG-R mice. After receiving HFD, the glucose intolerance of SDG-P mice became more evident without hyper insulin secretion. In addition, SDG-P mice had greater body weight gain and lower HDL-cholesterol levels as compared to SDG-R mice. In comparison with C57BL/6J, a well-known strain prone to HFD-induced glucose intolerance, SDG-P mice showed significantly higher glucose levels in OGTT after the 5-week HFD feeding. Susceptibility to HFD-induced glucose intolerance was transmitted over generations and was intensified by selective breeding. The newly established mouse lines, SDG-P and SDG-R, may be useful in investigating the pathophysiology of type 2 diabetes through elucidating the crucial factors for determining the susceptibility to HFD-induced glucose intolerance. (J Diabetes Invest, doi: 10.1111/j.2040-1124.2011.00175.x, 2011).
Toth, Linda A; Trammell, Rita A; Liberati, Teresa; Verhulst, Steve; Hart, Marcia L; Moskowitz, Jacob E; Franklin, Craig
2017-01-01
Shift work (SW) is viewed as a risk factor for the development of many serious health conditions, yet prospective studies that document such risks are rare. The current study addressed this void by testing the hypothesis that long-term exposure to repeated diurnal phase shifts, mimicking SW, will accelerate disease onset or death in inbred mice with genetic risk of developing cancer, diabetes, or autoimmune disease. The data indicate that 1) life-long exposure to simulated SW accelerates death in female cancer-prone AKR/J mice; 2) a significant proportion of male NON/ShiLtJ mice, which have impaired glucose tolerance but do not normally progress to type 2 diabetes, develop hyperglycemia, consistent with diabetes (that is, blood glucose 250 mg/dL or greater) after exposure to simulated SW for 8 wk; and 3) MRL/MpJ mice, which are prone to develop autoimmune disease, showed sex-related acceleration of disease development when exposed to SW as compared with mice maintained on a stable photocycle. Thus, long-term exposure to diurnal phase shifts that mimic SW reduces health or longevity in a wide variety of disease models. Our approach provides a simple way to assess the effect of chronic diurnal disruption in disease development in at-risk genotypes. PMID:28381312
The role of a prone setup in breast radiation therapy.
Huppert, Nelly; Jozsef, Gabor; Dewyngaert, Keith; Formenti, Silvia Chiara
2011-01-01
Most patients undergoing breast conservation therapy receive radiotherapy in the supine position. Historically, prone breast irradiation has been advocated for women with large pendulous breasts in order to decrease acute and late toxicities. With the advent of CT planning, the prone technique has become both feasible and reproducible. It was shown to be advantageous not only for women with larger breasts but in most patients since it consistently reduces, if not eliminates, the inclusion of heart and lung within the field. The prone setup has been accepted as the best localizing position for both MRI and stereotactic biopsy, but its adoption has been delayed in radiotherapy. New technological advances including image-modulated radiation therapy and image-guided radiation therapy have made possible the exploration of accelerated fractionation schemes with a concomitant boost to the tumor bed in the prone position, along with better imaging and verification of reproducibility of patient setup. This review describes some of the available techniques for prone breast radiotherapy and the available experience in their application. The NYU prone breast radiotherapy approach is discussed, including a summary of the results from several prospective trials.
Adler, Brittany L; Yarchoan, Mark; Hwang, Hae Min; Louneva, Natalia; Blair, Jeffrey A; Palm, Russell; Smith, Mark A; Lee, Hyoung-Gon; Arnold, Steven E; Casadesus, Gemma
2014-04-01
Amylin is a metabolic peptide hormone that is co-secreted with insulin from beta cells in the pancreas and activates many of the downstream targets of insulin. To investigate the relationship between this hormone and Alzheimer's disease (AD), we measured plasma human amylin levels in 206 subjects with AD, 64 subjects with mild cognitive impairment, and 111 subjects with no cognitive impairment and found significantly lower amylin levels among subjects with AD and mild cognitive impairment compared with the cognitively intact subjects. To investigate mechanisms underlying amylin's effects in the brain, we administered chronic infusions of the amylin analog pramlintide in the senescence-accelerated prone mouse, a mouse model of sporadic AD. Pramlintide administration improved performance in the novel object recognition task, a validated test of memory and cognition. The pramlintide-treated mice had increased expression of the synaptic marker synapsin I and the kinase cyclin-dependent kinase-5 in the hippocampus, as well as decreased oxidative stress and inflammatory markers in the hippocampus. A dose-dependent increase in cyclin-dependent kinase-5 and activation of extracellular-signal-regulated-kinases 1/2 by pramlintide treatment in vitro was also present indicating functionality of the amylin receptor in neurons. Together these results suggest that amylin analogs have neuroprotective properties and might be of therapeutic benefit in AD. Copyright © 2014 Elsevier Inc. All rights reserved.
Tian, Geng; Sawashita, Jinko; Kubo, Hiroshi; Nishio, Shin-ya; Hashimoto, Shigenari; Suzuki, Nobuyoshi; Yoshimura, Hidekane; Tsuruoka, Mineko; Wang, Yaoyong; Liu, Yingye; Luo, Hongming; Xu, Zhe; Mori, Masayuki; Kitano, Mitsuaki; Hosoe, Kazunori; Takeda, Toshio; Usami, Shin-ichi
2014-01-01
Abstract Aim: The present study was conducted to define the relationship between the anti-aging effect of ubiquinol-10 supplementation and mitochondrial activation in senescence-accelerated mouse prone 1 (SAMP1) mice. Results: Here, we report that dietary supplementation with ubiquinol-10 prevents age-related decreases in the expression of sirtuin gene family members, which results in the activation of peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α), a major factor that controls mitochondrial biogenesis and respiration, as well as superoxide dismutase 2 (SOD2) and isocitrate dehydrogenase 2 (IDH2), which are major mitochondrial antioxidant enzymes. Ubiquinol-10 supplementation can also increase mitochondrial complex I activity and decrease levels of oxidative stress markers, including protein carbonyls, apurinic/apyrimidinic sites, malondialdehydes, and increase the reduced glutathione/oxidized glutathione ratio. Furthermore, ubiquinol-10 may activate Sirt1 and PGC-1α by increasing cyclic adenosine monophosphate (cAMP) levels that, in turn, activate cAMP response element-binding protein (CREB) and AMP-activated protein kinase (AMPK). Innovation and Conclusion: These results show that ubiquinol-10 may enhance mitochondrial activity by increasing levels of SIRT1, PGC-1α, and SIRT3 that slow the rate of age-related hearing loss and protect against the progression of aging and symptoms of age-related diseases. Antioxid. Redox Signal. 20, 2606–2620 PMID:24124769
Lifespan and reproduction in brain-specific miR-29-knockdown mouse.
Takeda, Toru; Tanabe, Hiroyuki
2016-03-18
The microRNA miR-29 is widely distributed and highly expressed in adult mouse brain during the mouse's lifetime. We recently created conditional mutant mice whose miR-29 was brain-specifically knocked down through overexpression of an antisense RNA transgene against miR-29. To explore a role for brain miR-29 in maximizing organismal fitness, we assessed somatic growth, reproduction, and lifespan in the miR-29-knockdown (KD) mice and their wild-type (WT) littermates. The KD mice were developmentally indistinguishable from WT mice with respect to gross morphology and physical activity. Fertility testing revealed that KD males were subfertile, whereas KD females were hyperfertile, only in terms of reproductive success, when compared to their gender-matched WT correspondents. Another phenotypic difference between KD and WT animals appeared in their lifespan data; KD males displayed an overall increasing tendency in post-reproductive survival relative to WT males. In contrast, KD females were prone to shorter lifespans than WT females. These results clarify that brain-targeted miR-29 knockdown affects both lifespan and reproduction in a gender-dependent manner, and moreover that the reciprocal responsiveness to the miR-29 knockdown between these two phenotypes in both genders closely follow life-course models based on the classical trade-off prediction wherein elaborate early-life energetic investment in reproduction entails accelerated late-life declines in survival, and vice versa. Thus, this study identified miR-29 as the first mammalian miRNA that is directly implicated in the lifetime trade-off between the two major fitness components, lifespan and reproduction. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
Cell-autonomous progeroid changes in conditional mouse models for repair endonuclease XPG deficiency
Barnhoorn, Sander; Uittenboogaard, Lieneke M.; Jaarsma, Dick; ...
2014-10-09
As part of the Nucleotide Excision Repair (NER) process, the endonuclease XPG is involved in repair of helix-distorting DNA lesions, but the protein has also been implicated in several other DNA repair systems, complicating genotype-phenotype relationship in XPG patients. Defects in XPG can cause either the cancer-prone condition xeroderma pigmentosum (XP) alone, or XP combined with the severe neurodevelopmental disorder Cockayne Syndrome (CS), or the infantile lethal cerebro-oculo-facio-skeletal (COFS) syndrome, characterized by dramatic growth failure, progressive neurodevelopmental abnormalities and greatly reduced life expectancy. Here, we present a novel (conditional) Xpg -/- mouse model which—in a C57BL6/FVB F1 hybrid genetic background—displaysmore » many progeroid features, including cessation of growth, loss of subcutaneous fat, kyphosis, osteoporosis, retinal photoreceptor loss, liver aging, extensive neurodegeneration, and a short lifespan of 4–5 months. We show that deletion of XPG specifically in the liver reproduces the progeroid features in the liver, yet abolishes the effect on growth or lifespan. In addition, specific XPG deletion in neurons and glia of the forebrain creates a progressive neurodegenerative phenotype that shows many characteristics of human XPG deficiency. Our findings therefore exclude that both the liver as well as the neurological phenotype are a secondary consequence of derailment in other cell types, organs or tissues (e.g. vascular abnormalities) and support a cell-autonomous origin caused by the DNA repair defect itself. In addition they allow the dissection of the complex aging process in tissue- and cell-type-specific components. Moreover, our data highlight the critical importance of genetic background in mouse aging studies, establish the Xpg -/- mouse as a valid model for the severe form of human XPG patients and segmental accelerated aging, and strengthen the link between DNA damage and aging.« less
Cell-autonomous progeroid changes in conditional mouse models for repair endonuclease XPG deficiency
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barnhoorn, Sander; Uittenboogaard, Lieneke M.; Jaarsma, Dick
As part of the Nucleotide Excision Repair (NER) process, the endonuclease XPG is involved in repair of helix-distorting DNA lesions, but the protein has also been implicated in several other DNA repair systems, complicating genotype-phenotype relationship in XPG patients. Defects in XPG can cause either the cancer-prone condition xeroderma pigmentosum (XP) alone, or XP combined with the severe neurodevelopmental disorder Cockayne Syndrome (CS), or the infantile lethal cerebro-oculo-facio-skeletal (COFS) syndrome, characterized by dramatic growth failure, progressive neurodevelopmental abnormalities and greatly reduced life expectancy. Here, we present a novel (conditional) Xpg -/- mouse model which—in a C57BL6/FVB F1 hybrid genetic background—displaysmore » many progeroid features, including cessation of growth, loss of subcutaneous fat, kyphosis, osteoporosis, retinal photoreceptor loss, liver aging, extensive neurodegeneration, and a short lifespan of 4–5 months. We show that deletion of XPG specifically in the liver reproduces the progeroid features in the liver, yet abolishes the effect on growth or lifespan. In addition, specific XPG deletion in neurons and glia of the forebrain creates a progressive neurodegenerative phenotype that shows many characteristics of human XPG deficiency. Our findings therefore exclude that both the liver as well as the neurological phenotype are a secondary consequence of derailment in other cell types, organs or tissues (e.g. vascular abnormalities) and support a cell-autonomous origin caused by the DNA repair defect itself. In addition they allow the dissection of the complex aging process in tissue- and cell-type-specific components. Moreover, our data highlight the critical importance of genetic background in mouse aging studies, establish the Xpg -/- mouse as a valid model for the severe form of human XPG patients and segmental accelerated aging, and strengthen the link between DNA damage and aging.« less
Neurodevelopmental correlates of proneness to guilt and shame in adolescence and early adulthood.
Whittle, Sarah; Liu, Kirra; Bastin, Coralie; Harrison, Ben J; Davey, Christopher G
2016-06-01
Investigating how brain development during adolescence and early adulthood underlies guilt- and shame-proneness may be important for understanding risk processes for mental disorders. The aim of this study was to investigate the neurodevelopmental correlates of interpersonal guilt- and shame-proneness in healthy adolescents and young adults using structural magnetic resonance imaging (sMRI). Sixty participants (age range: 15-25) completed sMRI and self-report measures of interpersonal guilt- and shame-proneness. Independent of interpersonal guilt, higher levels of shame-proneness were associated with thinner posterior cingulate cortex (PCC) thickness and smaller amygdala volume. Higher levels of shame-proneness were also associated with attenuated age-related reductions in thickness of lateral orbitofrontal cortex (lOFC). Our findings highlight the complexities in understanding brain-behavior relationships during the adolescent/young adult period. Results were consistent with growing evidence that accelerated cortical thinning during adolescence may be associated with superior socioemotional functioning. Further research is required to understand the implications of these findings for mental disorders characterized by higher levels of guilt and shame. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
García-Matas, Silvia; Paul, Rajib K; Molina-Martínez, Patricia; Palacios, Hector; Gutierrez, Vincent M; Corpas, Rubén; Pallas, Mercè; Cristòfol, Rosa; de Cabo, Rafael; Sanfeliu, Coral
2015-01-01
Astrocytes are key cells in brain aging, helping neurons to undertake healthy aging or otherwise letting them enter into a spiral of neurodegeneration. We aimed to characterize astrocytes cultured from senescence-accelerated prone 8 (SAMP8) mice, a mouse model of brain pathological aging, along with the effects of caloric restriction, the most effective rejuvenating treatment known so far. Analysis of the transcriptomic profiles of SAMP8 astrocytes cultured in control conditions and treated with caloric restriction serum was performed using mRNA microarrays. A decrease in mitochondrial and ribosome mRNA, which was restored by caloric restriction, confirmed the age-related profile of SAMP8 astrocytes and the benefits of caloric restriction. An amelioration of antioxidant and neurodegeneration-related pathways confirmed the brain benefits of caloric restriction. Studies of oxidative stress and mitochondrial function demonstrated a reduction of oxidative damage and partial improvement of mitochondria after caloric restriction. In summary, caloric restriction showed a significant tendency to normalize pathologically aged astrocytes through the activation of pathways that are protective against the age-related deterioration of brain physiology. PMID:25711920
Tian, Tian; Sun, Yanhong; Wu, Huangan; Pei, Jian; Zhang, Jing; Zhang, Yi; Wang, Lu; Li, Bin; Wang, Lihua; Shi, Jiye; Hu, Jun; Fan, Chunhai
2016-01-21
Acupuncture has historically been practiced to treat medical disorders by mechanically stimulating specific acupoints with fine needles. Despite its well-documented efficacy, its biological basis remains largely elusive. In this study, we found that mechanical stimulation at the acupoint of Yanglingquan (GB34) promoted the autophagic clearance of α-synuclein (α-syn), a well known aggregation-prone protein closely related to Parkinson's disease (PD), in the substantia nigra par compacta (SNpc) of the brain in a PD mouse model. We found the protein clearance arose from the activation of the autophagy-lysosome pathway (ALP) in a mammalian target of rapamycin (mTOR)-independent approach. Further, we observed the recovery in the activity of dopaminergic neurons in SNpc, and improvement in the motor function at the behavior level of PD mice. Whereas acupuncture and rapamycin, a chemical mTOR inhibitor, show comparable α-syn clearance and therapeutic effects in the PD mouse model, the latter adopts a distinctly different, mTOR-dependent, autophagy induction process. Due to this fundamental difference, acupuncture may circumvent adverse effects of the rapamycin treatment. The newly discovered connection between acupuncture and autophagy not only provides a new route to understanding the molecular mechanism of acupuncture but also sheds new light on cost-effective and safe therapy of neurodegenerative diseases.
Alterations in carbohydrate metabolism and its regulation in PPARalpha null mouse hearts
USDA-ARS?s Scientific Manuscript database
Although a shift from fatty acids (FAs) to carbohydrates (CHOs) is considered beneficial for the diseased heart, it is unclear why subjects with FA beta-oxidation defects are prone to cardiac decompensation under stress conditions. The present study investigated potential alterations in the myocardi...
Multiple-mouse MRI with multiple arrays of receive coils.
Ramirez, Marc S; Esparza-Coss, Emilio; Bankson, James A
2010-03-01
Compared to traditional single-animal imaging methods, multiple-mouse MRI has been shown to dramatically improve imaging throughput and reduce the potentially prohibitive cost for instrument access. To date, up to a single radiofrequency coil has been dedicated to each animal being simultaneously scanned, thus limiting the sensitivity, flexibility, and ultimate throughput. The purpose of this study was to investigate the feasibility of multiple-mouse MRI with a phased-array coil dedicated to each animal. A dual-mouse imaging system, consisting of a pair of two-element phased-array coils, was developed and used to achieve acceleration factors greater than the number of animals scanned at once. By simultaneously scanning two mice with a retrospectively gated cardiac cine MRI sequence, a 3-fold acceleration was achieved with signal-to-noise ratio in the heart that is equivalent to that achieved with an unaccelerated scan using a commercial mouse birdcage coil. (c) 2010 Wiley-Liss, Inc.
A 20-Channel Receive-Only Mouse Array Coil for a 3T Clinical MRI System
Keil, Boris; Wiggins, Graham C.; Triantafyllou, Christina; Wald, Lawrence L.; Meise, Florian M.; Schreiber, Laura M.; Klose, Klaus J.; Heverhagen, Johannes T.
2010-01-01
A 20-channel phased-array coil for Magnetic Resonance Imaging (MRI) of mice has been designed, constructed and validated with bench measurements and high resolution accelerated imaging. The technical challenges of designing a small, high density array have been overcome using individual small-diameter coil elements arranged on a cylinder in a hexagonal overlapping design with adjacent low impedance preamplifiers to further decouple the array elements. Signal-to-noise ratio (SNR) and noise amplification in accelerated imaging were simulated and quantitatively evaluated in phantoms and in vivo mouse images. Comparison between the 20-channel mouse array and a length-matched quadrature driven small animal birdcage coil showed an SNR increase at the periphery and in the center of the phantom of 3-fold and 1.3-fold, respectively. Comparison to a shorter but SNR-optimized birdcage coil (aspect ratio 1:1 and only half mouse coverage) showed an SNR gain of 2-fold at the edge of the phantom and similar SNR in the center. G-factor measurements indicate that the coil is well suited to acquire highly accelerated images. PMID:21433066
SU-F-T-668: Irradiating Mouse Brain with a Clinical Linear Accelerator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perez-Torres, C
Purpose: To design and construct a “mouse jig” device that would allow for irradiation of the mouse brain with a clinical Varian 6 MeV Linear Accelerator. This device must serve as a head immobilizer, gaseous anesthesia delivery, and radiation bolus concurrently. Methods: The mouse jig was machined out of nylon given that it is inexpensive, easy to machine, and has similar electron density to water. A cylindrical opening with diameter of 16 mm and 40 mm depth was drilled into a nylon block sized 56×56×50 mm (width, length, depth). Additional slots were included in the block for ear bars andmore » a tooth bar to serve as a three-point immobilization device as well as for anesthesia delivery and scavenging. For ease of access when loading the mouse into the holder, there is a removable piece at the top of the block that is 15 mm in depth. This serves a dual purpose, as with the proper extra shielding, the mouse jig could be used with lower linear energy transfer photons with this piece removed. A baseplate was then constructed with five square slots where the mouse jig can securely be inserted plus additional slots that would allow the baseplate to be mounted on a standard lock bar in the treatment couch. This maximizes the reproducibility of placement between imaging and treatment and between treatment sessions. Results: CT imaging and radiation treatment planning was performed that showed acceptable coverage and uniformity of radiation dose in the mouse brain while sparing the throat and eyes. Conclusion: We have designed and manufactured a device that fulfills our criteria allowing us to selectively irradiate the mouse brain with a clinical linear accelerator. This setup will be used for generating mouse models of radiation-induced brain injury.« less
Kamei, Noriyasu
2017-01-01
Recent reports suggest that peptide drugs such as insulin have the potential to serve as therapeutics in neurodegenerative diseases such as Alzheimer's disease. However, the transport of these drugs to the therapeutic target, the brain, is significantly hindered by the blood-brain barrier (BBB). Intranasal administration appears to be an ideal solution for drug delivery to the brain, bypassing the BBB, however the entry of peptide drugs into neuronal and epithelial cells in the olfactory mucosa remains low. In this study, we therefore examined whether intranasal coadministration of cell-penetrating peptides (CPPs) could improve nose-to-brain drug transport. In both mice and rats, we found that direct transport of insulin into the brain was significantly facilitated when coadministered with amphipathic CPP penetratin, and eventually insulin reached the deeper regions of the brain such as the hippocampus. In the mouse line senescence-accelerated mouse prone-8 (SAMP8), spatial learning tests demonstrated that long-term intranasal coadministration of insulin with penetratin improved mild memory loss in the early stages of dementia. In contrast, the severe cognitive dysfunction in the aged SAMP8 mice was preserved despite intranasal coadministration of insulin with penetratin. The immunohistological examination of the hippocampus suggested that enhanced nose-to-brain delivery of insulin had a partial neuroprotective effect but unexpectedly increased amyloid β plaque deposition. In conclusion, intranasal coadministration of insulin with CPPs has the potential to serve as a therapeutic for mild cognitive dysfunction. To identify suitable pharmacotherapy for dementia with severe pathology, further studies of nose-to-brain delivery of molecularly appropriate biopharmaceuticals are necessary.
Thorp, Edward; Cui, Dongying; Schrijvers, Dorien M; Kuriakose, George; Tabas, Ira
2008-08-01
Atherosclerotic plaques that are prone to disruption and acute thrombotic vascular events are characterized by large necrotic cores. Necrotic cores result from the combination of macrophage apoptosis and defective phagocytic clearance (efferocytosis) of these apoptotic cells. We previously showed that macrophages with tyrosine kinase-defective Mertk receptor (Mertk(KD)) have a defect in phagocytic clearance of apoptotic macrophages in vitro. Herein we test the hypothesis that the Mertk(KD) mutation would result in increased accumulation of apoptotic cells and promote necrotic core expansion in a mouse model of advanced atherosclerosis. Mertk(KD);Apoe(-/-) mice and control Apoe(-/-) mice were fed a Western-type diet for 10 or 16 weeks, and aortic root lesions were analyzed for apoptosis and plaque necrosis. We found that the plaques of the Mertk(KD);Apoe(-/-) mice had a significant increase in terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling (TUNEL)-positive apoptotic cells. Most importantly, there were more non-macrophage-associated apoptotic cells in the Mertk(KD) lesions, consistent with defective efferocytosis. The more advanced (16-week) Mertk(KD);Apoe(-/-) plaques were more necrotic, consistent with a progression from apoptotic cell accumulation to plaque necrosis in the setting of a defective efferocytosis receptor. In a mouse model of advanced atherosclerosis, mutation of the phagocytic Mertk receptor promotes the accumulation of apoptotic cells and the formation of necrotic plaques. These data are consistent with the notion that a defect in an efferocytosis receptor can accelerate the progression of atherosclerosis and suggest a novel therapeutic target to prevent advanced plaque progression and its clinical consequences.
Khudoerkov, R M; Sal'kov, V N; Sal'nikova, O V; Sobolev, V B
2014-01-01
Computerized morphometry was used to examine the sizes of neuronal bodies and the compactness of arrangement of neurons and neuroglial cells in layers III and V of the sensorimotor cortex in senescence-accelerated prone 1 (SAMP1) mice (an experimental group) and senescence-accelerated-resistant strain 1 (SAMR1) ones (a control group). In the SAMP1 mice as compared to the SAMR1 ones, the neuronal body sizes were significantly unchanged; the compactness of their arrangement decreased by 17 and 20% in layers III and V, respectively; that of neuroglial cells significantly increased by 14% in layer III only. In the SAMP1 mice versus the SAMR1 ones, the glial index rose by 36% in layer III and by 24% in layer V. During simulation of physiological aging, the sizes of neuronal bodies were shown to be virtually unchanged in the cerebral cortex; the compactness of their arrangement (cell counts) moderately reduced and that of neuroglial cells increased, which caused a rise in the glioneuronal index that was indicative of the enhanced supporting function of neuroglial cells during the physiological aging of brain structures.
FK506: therapeutic effects on lupus dermatoses in autoimmune-prone MRL/Mp-lpr/lpr mice.
Furukawa, F; Imamura, S; Takigawa, M
1995-01-01
The effects of FK506, a new immunosuppressive agent, on the development of lupus dermatoses were investigated in the autoimmune-prone MRL/Mp-lpr/lpr (MRL/lpr) mouse, which is an animal model for the spontaneous development of skin lesions similar to those of human lupus erythematosus (LE). FK506 reduced the incidence of skin lesions, lupus nephritis, the titre of serum anti-double-stranded DNA antibodies and the massive T cell proliferation. The incidence and magnitude of IgG deposition at the dermoepidermal junction were not changed. These results suggest that FK506 is a promising immunosuppressive agent for the control of autoimmune skin diseases.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Galavis, P; Barbee, D; Jozsef, G
2016-06-15
Purpose: Prone accelerated partial breast irradiation (APBI) results in dose reduction to the heart and lung. Flattening filter free beams (FFF) reduce out of field dose due to the reduced scatter from the removal of the flattening filter and reduce the buildup region. The aim of this work is to evaluate the dosimetric advantages of FFF beams to prone APBI target coverage and reduction in dose to organs at risk. Methods: Fifteen clinical prone APBI cases using flattened photon beams were retrospectively re-planned in Eclipse-TPS using FFF beams. FFF plans were designed to provide equivalent target coverage with similar hotspotsmore » using the same field arrangements, resulting in comparable target DVHs. Both plans were transferred to a prone breast phantom and delivered on Varian-Edge-Linac. GafChromic-film was placed in the coronal plane of the phantom, partially overlapping the treatment field and extending into OARs to compare dose profiles from both plans. Results: FFF plans were comparable to the clinical plans with maximum doses of (108.3±2.3)% and (109.2±2.4)% and mean doses of (104.5±1.0)% and (104.6±1.2)%, respectively. Similar mean dose doses to the heart and contralateral lungs were observed from both plans, whereas the mean dose to the contra-lateral breast was (2.79±1.18) cGy and (2.86±1.40) cGy for FFF and clinical plans respectively. However for both plans the error between calculated and measured doses at 4 cm from the field edge was 10%. Conclusion: The results showed that FFF beams in prone APBI provide dosimetrically equivalent target coverage and improved coverage in superficial target due to softer energy spectra. Film analysis showed that the TPS underestimates dose outside field edges for both cases. The FFF measured plans showed less dose outside the beam that might reduce the probability of secondary cancers in the contralateral breast.« less
Mehta, Gaurav; Ferreira, Viviana P.; Pickering, Matthew C.; Skerka, Christine; Zipfel, Peter F.; Banda, Nirmal K.
2014-01-01
Complement factor H (CFH) protein is an inhibitor of the alternative pathway of complement (AP) both in the fluid phase and on the surface of host cells. Mouse and human complement factor H-related (CFHR) proteins also belong to the fH family of plasma glycoproteins. The main goal of the current study was to compare the presence of mRNA for two mCFHR proteins in spontaneously developing autoimmune diseases in mice such as dense deposit disease (DDD), diabetes mellitus (DM), basal laminar deposits (BLD), collagen antibody-induced arthrits (CAIA) and systemic lupus erythematosus (SLE). Here we report for the first time that the CFHR-C mRNA was universally absent in the liver from three strains of lupus-prone mice and in a diabetic-prone mouse strain. The mRNA levels (pg/ng) for CFH and CFHR-B in MRL-lpr/lpr, at 9 wks and 23 wks were 707.2 ± 44.4, 54.5 ± 5.75 and 729 ± 252.9, 74.04 ± 22.76 respectively. The mRNA levels for CFH and CFHR-B in NZB/NZW mice, at 9 wks and 54 wks were 579.9 ± 23.8, 58.8 ± 1.41 and 890.3 ± 135.2, 63.30 ± 9.2 respectively. CFHR-C protein was absent in the circulation of MRL-lpr/lpr and NZB/NZW mice before and after the development of lupus. Similarly, mRNA and protein for CFHR-C was universally absent in liver and other organs and in the circulation of NOD mice before and after the development of DM. In contrast, the mRNAs for CFH, CFHR-B and CFHR-C were universally present in the liver from mice with and without DDD, BLD and CAIA. The levels of mRNA for CFHR-B in mice with and without BLD were ~4 times higher than the mice with lupus. The complete absence of mRNA for CFHR-C in lupus and diabetic-prone strains indicates that polymorphic variation within the mouse CFHR family exists and raises the possibility that such variation contributes to lupus and diabetic phenotypes. PMID:25033230
Impaired Gal-9 Dysregulates the PBMC-Induced Th1/Th2 Imbalance in Abortion-Prone Matings
He, Mengzhou; Jiang, Ming; Zhou, Yuan; Li, Fanfan; Yang, Meitao; Fan, Yao; Xie, Yin; Beejadhursing, Rajluxmee; Feng, Ling
2018-01-01
Recurrent miscarriage is defined as the loss of 3 or more consecutive pregnancies; however, the underlying immunologic mechanisms that trigger pregnancy loss remain largely unelucidated. Galectin-9 (Gal-9) may modulate a variety of biologic functions and play an important role in Th1/Th2 immune deviation. To analyze the mechanism of Gal-9 in abortion, we used the classical abortion-prone mouse model (DBA/2-mated CBA/J mice) to detect the expression of Gal-9 at the maternal-fetal interface. We also mimicked the immune environment of pregnancy by culturing trophoblast cells with peripheral blood mononuclear cells (PBMCs) to explore how Gal-9 might be involved in the pathogenesis of abortion. We found that the expression levels of Gal-9 in abortion-prone matings were lower than that for controls. Using a coculture system, we detected a Th1 preponderance in the coculture from abortion-prone matings. Furthermore, Gal-9 blockade augmented the imbalance of Th1/Th2 immunity in abortion-prone matings by promoting the secretion of Th1-derived cytokines in coculture, while there was a Th2 preponderance when we administered recombinant Gal-9. In conclusion, our results suggest that the Gal-9 signal is important for the regulation of PBMC function toward a Th2 bias at the maternal-fetal interface, which is beneficial for the maintenance of a normal pregnancy. PMID:29651447
Ragan, Agnieszka R; Lesniak, Anna; Bochynska-Czyz, Marta; Kosson, Anna; Szymanska, Hanna; Pysniak, Kazimiera; Gajewska, Marta; Lipkowski, Andrzej W; Sacharczuk, Mariusz
2013-09-01
Both chronic stress conditions and hyperergic reaction to environmental stress are known to enhance cancer susceptibility. We described two mouse lines that displayed high (HA) and low (LA) swim stress-induced analgesia (SSIA) to investigate the relationship between inherited differences in sensitivity to stress and proneness to an increased growth rate of subcutaneously inoculated melanoma. These lines display several genetic and physiological differences, among which distinct sensitivity to mutagens and susceptibility to cancer are especially noticeable. High analgesic mice display high proneness both to stress and a rapid local spread of B16F0 melanoma. However, stress-resistant LA mice do not develop melanoma tumors after inoculation, or if so, tumors regress spontaneously. We found that the chronic mild stress (CMS) procedure leads to enhanced interlinear differences in melanoma susceptibility. Tumors developed faster in stress conditions in both lines. However, LA mice still displayed a tendency for spontaneous regression, and 50% of LA mice did not develop a tumor, even under stressed conditions. Moreover, we showed that chronic stress, but not tumor progression, induces depressive behavior, which may be an important clue in cancer therapy. Our results clearly indicate how the interaction between genetic susceptibility to stress and environmental stress determine the risk and progression of melanoma. To our knowledge, HA/LA mouse lines are the first animal models of distinct melanoma progression mediated by inherited differences in stress reactivity.
Nagao, Mototsugu; Asai, Akira; Sugihara, Hitoshi; Oikawa, Shinichi
2015-01-01
We recently established 2 mouse lines with different susceptibilities (prone and resistant) to high-fat diet (HFD)-induced glucose intolerance by selective breeding (designated selectively bred diet-induced glucose intolerance-prone [SDG-P] and -resistant [SDG-R], respectively). In the present study, we analyzed transgenerational changes in metabolic phenotypes in these 2 mouse colonies to explore how the distinct phenotypes have emerged through the repetitive selection. Using C57BL/6, C3H, and AKR as background strains, mice showing inferior and superior glucose tolerance after HFD feeding were selected and bred repetitively over 20 generations to produce SDG-P and SDG-R, respectively. In addition to the blood glucose levels, HFD intake and body weight were also measured over the selective breeding period. As the generations proceeded, SDG-P mice became more susceptible to HFD-induced glucose intolerance and body weight gain, whereas SDG-R mice had gradually reduced HFD intake. The differences in fasting and post-glucose challenge blood glucose levels, body weight, and HFD intake became more evident between the 2 colonies through the selective breeding, mainly due to the HFD-induced glucose metabolism impairment and body weight gain in SDG-P mice and the reduction of HFD intake in SDG-R mice. These transgenerational changes in the metabolic phenotypes suggest that the genetic loci associated with the quantitative traits have been selectively enriched in SDG-P and SDG-R.
2009-01-01
to a trans- planted ’self skin (isograft). We transplanted synge- neic naive skin onto the dorsum of MRL/++ mice 30-40 days post-bum injury. Graft...through molecular mimicry . Nat Med 2005; 11: 85-89. Cooper GS, Dooley MA, Treadwell EL, St Clair EW, Gilkeson GS. Risk factors for development of
Coletti, Dario; Adamo, Sergio; Moresi, Viviana
2017-02-24
Invited Letter to the Editor. Physical activity has multiple beneficial effects in the physiology and pathology of the organism. In particular, we and other groups have shown that running counteracts cancer cachexia in both humans and rodents. The latter are prone to exercise in wheel-equipped cages even at advanced stages of cachexia. However, when we wanted to replicate the experimental model routinely used at the University of Rome in a different laboratory (i.e. at Paris 6 University), we had to struggle with puzzling results due to unpredicted mouse behavior. Here we report the experience and offer the explanation underlying these apparently irreproducible results. The original data are currently used for teaching purposes in undergraduate student classes of biological sciences.
Genetics of SLE: evidence from mouse models.
Morel, Laurence
2010-06-01
Great progress has been made in the field of lupus genetics in the past few years, notably with the publication of genome-wide association studies in humans and the identification of susceptibility genes (including Fcgr2b, Ly108, Kallikrein genes and Coronin-1A) in mouse models of spontaneous lupus. This influx of new information has revealed an ever-increasing interdependence between the mouse and human systems for unraveling the genetic basis of lupus susceptibility. Studies in the 1980s and 1990s established that mice prone to spontaneous lupus constitute excellent models of the genetic architecture of human systemic lupus erythematosus (SLE). This notion has been greatly strengthened by the convergence of the functional pathways that are defective in both human and murine lupus. Within these pathways, variants in a number of genes have now been shown to be directly associated with lupus in both species. Consequently, mouse models will continue to serve a pre-eminent role in lupus genetics research, with an increased emphasis on mechanistic and molecular studies of human susceptibility alleles.
Loss of circadian clock accelerates aging in neurodegeneration-prone mutants
Krishnan, Natraj; Rakshit, Kuntol; Chow, Eileen S.; Wentzell, Jill S.; Kretzschmar, Doris; Giebultowicz, Jadwiga M.
2012-01-01
Circadian clocks generate rhythms in molecular, cellular, physiological, and behavioral processes. Recent studies suggest that disruption of the clock mechanism accelerates organismal senescence and age-related pathologies in mammals. Impaired circadian rhythms are observed in many neurological diseases; however, it is not clear whether loss of rhythms is the cause or result of neurodegeneration, or both. To address this important question, we examined the effects of circadian disruption in Drosophila melanogaster mutants that display clock-unrelated neurodegenerative phenotypes. We combined a null mutation in the clock gene period (per01) that abolishes circadian rhythms, with a hypomorphic mutation in the carbonyl reductase gene sniffer (sni1), which displays oxidative stress induced neurodegeneration. We report that disruption of circadian rhythms in sni1 mutants significantly reduces their lifespan compared to single mutants. Shortened lifespan in double mutants was coupled with accelerated neuronal degeneration evidenced by vacuolization in the adult brain. In addition, per01 sni1 flies showed drastically impaired vertical mobility and increased accumulation of carbonylated proteins compared to age-matched single mutant flies. Loss of per function does not affect sni mRNA expression, suggesting that these genes act via independent pathways producing additive effects. Finally, we show that per01 mutation accelerates the onset of brain pathologies when combined with neurodegeneration-prone mutation in another gene, swiss cheese (sws1), which does not operate through the oxidative stress pathway. Taken together, our data suggest that the period gene may be causally involved in neuroprotective pathways in aging Drosophila. PMID:22227001
Trichloroethylene (1,1,2-trichloroethene) is a major environmental contaminant. There is increasing evidence relating exposure to trichloroethylene with autoimmunity. To investigate potential mechanisms, we treated the autoimmune-prone MRL+/+ mice with trichlo...
Expression of VGLUTs contributes to degeneration and acquisition of learning and memory.
Cheng, Xiao-Rui; Yang, Yong; Zhou, Wen-Xia; Zhang, Yong-Xiang
2011-03-01
Vesicular glutamate transporters (VGLUTs), which include VGLUT1, VGLUT2 and VGLUT3, are responsible for the uploading of L-glutamate into synaptic vesicles. The expression pattern of VGLUTs determines the level of synaptic vesicle filling (i.e., glutamate quantal size) and directly influences glutamate receptors and glutamatergic synaptic transmission; thus, VGLUTs may play a key role in learning and memory in the central nervous system. To determine whether VGLUTs contribute to the degeneration or acquisition of learning and memory, we used an animal model for the age-related impairment of learning and memory, senescence-accelerated mouse/prone 8 (SAMP8). KM mice were divided into groups based on their learning and memory performance in a shuttle-box test. The expression of VGLUTs and synaptophysin (Syp) mRNA and protein in the cerebral cortex and hippocampus were investigated with real-time fluorescence quantitative PCR and western blot, respectively. Our results demonstrate that, in the cerebral cortex, protein expression of VGLUT1, VGLUT2, VGLUT3 and Syp was decreased in SAMP8 with age and increased in KM mice, which displayed an enhanced capacity for learning and memory. The protein expression of VGLUT2 and Syp was decreased in the hippocampus of SAMP8 with aging. The expression level of VGLUT1 and VGLUT2 proteins were highest in KM mouse group with a 76-100% avoidance score in the shuttle-box test. These data demonstrate that protein expression of VGLUT1, VGLUT2 and Syp decreases age-dependently in SAMP8 and increases in a learning- and memory-dependent manner in KM mice. Correlation analysis indicated the protein expression of VGLUT1, VGLUT2 and Syp has a positive correlation with the capacity of learning and memory. Copyright © 2011 Elsevier Inc. All rights reserved.
Augmented Computer Mouse Would Measure Applied Force
NASA Technical Reports Server (NTRS)
Li, Larry C. H.
1993-01-01
Proposed computer mouse measures force of contact applied by user. Adds another dimension to two-dimensional-position-measuring capability of conventional computer mouse; force measurement designated to represent any desired continuously variable function of time and position, such as control force, acceleration, velocity, or position along axis perpendicular to computer video display. Proposed mouse enhances sense of realism and intuition in interaction between operator and computer. Useful in such applications as three-dimensional computer graphics, computer games, and mathematical modeling of dynamics.
Bruno Garza, J L; Eijckelhof, B H W; Johnson, P W; Raina, S M; Rynell, P W; Huysmans, M A; van Dieën, J H; van der Beek, A J; Blatter, B M; Dennerlein, J T
2012-01-01
This study, a part of the PRedicting Occupational biomechanics in OFfice workers (PROOF) study, investigated whether there are differences in field-measured forces, muscle efforts, postures, velocities and accelerations across computer activities. These parameters were measured continuously for 120 office workers performing their own work for two hours each. There were differences in nearly all forces, muscle efforts, postures, velocities and accelerations across keyboard, mouse and idle activities. Keyboard activities showed a 50% increase in the median right trapezius muscle effort when compared to mouse activities. Median shoulder rotation changed from 25 degrees internal rotation during keyboard use to 15 degrees external rotation during mouse use. Only keyboard use was associated with median ulnar deviations greater than 5 degrees. Idle activities led to the greatest variability observed in all muscle efforts and postures measured. In future studies, measurements of computer activities could be used to provide information on the physical exposures experienced during computer use. Practitioner Summary: Computer users may develop musculoskeletal disorders due to their force, muscle effort, posture and wrist velocity and acceleration exposures during computer use. We report that many physical exposures are different across computer activities. This information may be used to estimate physical exposures based on patterns of computer activities over time.
Chakravarti, D; Mailander, P C; Li, K M; Higginbotham, S; Zhang, H L; Gross, M L; Meza, J L; Cavalieri, E L; Rogan, E G
2001-11-29
Treatment of SENCAR mouse skin with dibenzo[a,l]pyrene results in abundant formation of abasic sites that undergo error-prone excision repair, forming oncogenic H-ras mutations in the early preneoplastic period. To examine whether the abundance of abasic sites causes repair infidelity, we treated SENCAR mouse skin with estradiol-3,4-quinone (E(2)-3,4-Q) and determined adduct levels 1 h after treatment, as well as mutation spectra in the H-ras gene between 6 h and 3 days after treatment. E(2)-3,4-Q formed predominantly (> or =99%) the rapidly-depurinating 4-hydroxy estradiol (4-OHE(2))-1-N3Ade adduct and the slower-depurinating 4-OHE(2)-1-N7Gua adduct. Between 6 h and 3 days, E(2)-3,4-Q induced abundant A to G mutations in H-ras DNA, frequently in the context of a 3'-G residue. Using a T.G-DNA glycosylase (TDG)-PCR assay, we determined that the early A to G mutations (6 and 12 h) were in the form of G.T heteroduplexes, suggesting misrepair at A-specific depurination sites. Since G-specific mutations were infrequent in the spectra, it appears that the slow rate of depurination of the N7Gua adducts during active repair may not generate a threshold level of G-specific abasic sites to affect repair fidelity. These results also suggest that E(2)-3,4-Q, a suspected endogenous carcinogen, is a genotoxic compound and could cause mutations.
Kulikova, E A; Bazovkina, D V; Antonov, Y V; Akulov, A E; Kulikov, A V; Kondaurova, E M
2017-04-01
Catalepsy is an inability to correct an externally imposed awkward posture; it is associated with schizophrenia and depression in human. We created new recombinant B6.CBA-D13Mit76C and B6.CBA-D13Mit76B mouse lines on the C57Bl/6 genome, carrying the 102.73-110.56Mbp fragment of chromosome 13 derived from the catalepsy-prone CBA strain and catalepsy-resistant C57BL/6 strain, respectively. We compared the behavior and brain morphology (11.7T BioSpec 117/16 USR tomograph, Germany) in these lines. The effects of acute emotional stress on corticosterone's level in the blood and mRNA expression of Bdnf and Arc genes in the brain were investigated. The B6.CBA-D13Mit76B mice were non-cataleptic, while about 17% of B6.CBA-D13Mit76C mice demonstrated catalepsy-like immobility. No difference between these lines was revealed in the open field and social interaction tests. In the Morris water maze test, both lines effectively found the platform on the fourth day; however B6.CBA-D13Mit76B mice achieved significantly better results than cataleptic-prone animals. B6.CBA-D13Mit76C mice were characterized by decreased volume of the total brain and reduced sizes of striatum, cerebellum and pituitary gland. The both lines showed the similar basal and stress-induced levels of corticosterone, while the brain expression of Bdnf and Arc genes was more vulnerable to stress in the catalepsy-prone B6.CBA-D13Mit76C line. Copyright © 2016 Elsevier Ireland Ltd and Japan Neuroscience Society. All rights reserved.
Jozsef, Gabor; DeWyngaert, J Keith; Becker, Stewart J; Lymberis, Stella; Formenti, Silvia C
2011-10-01
To report setup variations during prone accelerated partial breast irradiation (APBI). New York University (NYU) 07-582 is an institutional review board-approved protocol of cone-beam computed tomography (CBCT) to deliver image-guided ABPI in the prone position. Eligible are postmenopausal women with pT1 breast cancer excised with negative margins and no nodal involvement. A total dose of 30 Gy in five daily fractions of 6 Gy are delivered to the planning target volume (the tumor cavity with 1.5-cm margin) by image-guided radiotherapy. Patients are set up prone, on a dedicated mattress, used for both simulation and treatment. After positioning with skin marks and lasers, CBCTs are performed and the images are registered to the planning CT. The resulting shifts (setup corrections) are recorded in the three principal directions and applied. Portal images are taken for verification. If they differ from the planning digital reconstructed radiographs, the patient is reset, and a new CBCT is taken. 70 consecutive patients have undergone a total of 343 CBCTs: 7 patients had four of five planned CBCTs performed. Seven CBCTs (2%) required to be repeated because of misalignment in the comparison between portal and digital reconstructed radiograph image after the first CBCT. The mean shifts and standard deviations in the anterior-posterior (AP), superior-inferior (SI), and medial-lateral (ML) directions were -0.19 (0.54), -0.02 (0.33), and -0.02 (0.43) cm, respectively. The average root mean squares of the daily shifts were 0.50 (0.28), 0.29 (0.17), and 0.38 (0.20). A conservative margin formula resulted in a recommended margin of 1.26, 0.73, 0.96 cm in the AP, SI, and ML directions. CBCTs confirmed that the NYU prone APBI setup and treatment technique are reproducible, with interfraction variation comparable to those reported for supine setup. The currently applied margin (1.5 cm) adequately compensates for the setup variation detected. Copyright © 2011 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chiu, T; Hrycushko, B; Zhao, B
2015-06-15
Purpose: For early-stage breast cancer, accelerated partial breast irradiation (APBI) is a cost-effective breast-conserving treatment. Irradiation in a prone position can mitigate respiratory induced breast movement and achieve maximal sparing of heart and lung tissues. However, accurate dose delivery is challenging due to breast deformation and lumpectomy cavity shrinkage. We propose a 3D volumetric ultrasound (US) image guidance system for accurate prone APBI Methods: The designed system, set beneath the prone breast board, consists of a water container, an US scanner, and a two-layer breast immobilization cup. The outer layer of the breast cup forms the inner wall of watermore » container while the inner layer is attached to patient breast directly to immobilization. The US transducer scans is attached to the outer-layer of breast cup at the dent of water container. Rotational US scans in a transverse plane are achieved by simultaneously rotating water container and transducer, and multiple transverse scanning forms a 3D scan. A supercompounding-technique-based volumetric US reconstruction algorithm is developed for 3D image reconstruction. The performance of the designed system is evaluated with two custom-made gelatin phantoms containing several cylindrical inserts filled in with water (11% reflection coefficient between materials). One phantom is designed for positioning evaluation while the other is for scaling assessment. Results: In the positioning evaluation phantom, the central distances between the inserts are 15, 20, 30 and 40 mm. The distances on reconstructed images differ by −0.19, −0.65, −0.11 and −1.67 mm, respectively. In the scaling evaluation phantom, inserts are 12.7, 19.05, 25.40 and 31.75 mm in diameter. Measured inserts’ sizes on images differed by 0.23, 0.19, −0.1 and 0.22 mm, respectively. Conclusion: The phantom evaluation results show that the developed 3D volumetric US system can accurately localize target position and determine target volume, and is a promising image-guidance tool for prone APBI.« less
Synergistic Action of FOXP3 and TSC1 Pathways During Tumor Progression
2015-10-01
invasive carcinoma and, ultimately, metastatic disease [1-3]. Mouse models of PIN (mPIN) generated by a single- mutant gene in prostate do not progress...downstream target) is sufficient to significantly reduce the initiation of prostate cancer in the Pten conditional knockout mouse model [19-21...the possibility that these two genetic hits cooperate to promote tumor progression, and mouse models show that this cooperation accelerates
A new progeroid syndrome reveals that genotoxic stress suppresses the somatotroph axis.
Niedernhofer, Laura J; Garinis, George A; Raams, Anja; Lalai, Astrid S; Robinson, Andria Rasile; Appeldoorn, Esther; Odijk, Hanny; Oostendorp, Roos; Ahmad, Anwaar; van Leeuwen, Wibeke; Theil, Arjan F; Vermeulen, Wim; van der Horst, Gijsbertus T J; Meinecke, Peter; Kleijer, Wim J; Vijg, Jan; Jaspers, Nicolaas G J; Hoeijmakers, Jan H J
2006-12-21
XPF-ERCC1 endonuclease is required for repair of helix-distorting DNA lesions and cytotoxic DNA interstrand crosslinks. Mild mutations in XPF cause the cancer-prone syndrome xeroderma pigmentosum. A patient presented with a severe XPF mutation leading to profound crosslink sensitivity and dramatic progeroid symptoms. It is not known how unrepaired DNA damage accelerates ageing or its relevance to natural ageing. Here we show a highly significant correlation between the liver transcriptome of old mice and a mouse model of this progeroid syndrome. Expression data from XPF-ERCC1-deficient mice indicate increased cell death and anti-oxidant defences, a shift towards anabolism and reduced growth hormone/insulin-like growth factor 1 (IGF1) signalling, a known regulator of lifespan. Similar changes are seen in wild-type mice in response to chronic genotoxic stress, caloric restriction, or with ageing. We conclude that unrepaired cytotoxic DNA damage induces a highly conserved metabolic response mediated by the IGF1/insulin pathway, which re-allocates resources from growth to somatic preservation and life extension. This highlights a causal contribution of DNA damage to ageing and demonstrates that ageing and end-of-life fitness are determined both by stochastic damage, which is the cause of functional decline, and genetics, which determines the rates of damage accumulation and decline.
Cerebrosides from Sea Cucumber Protect Against Oxidative Stress in SAMP8 Mice and PC12 Cells.
Che, Hongxia; Du, Lei; Cong, Peixu; Tao, Suyuan; Ding, Ning; Wu, Fengjuan; Xue, Changhu; Xu, Jie; Wang, Yuming
2017-04-01
Alzheimer's disease (AD) is a neurodegenerative disorder. Emerging evidence implicates β-amyloid (Aβ) plays a critical role in the progression of AD. In this study, we investigated the protective effect of cerebrosides obtained from sea cucumber against senescence-accelerated mouse prone 8 (SAMP8) mice in vivo. We also studied the effect of cerebrosides on Aβ-induced cytotoxicity on the rat pheochromocytoma cell (PC12) and the underlying molecular mechanisms. Cerebrosides ameliorated learning and memory deficits and the Aβ accumulation in demented mice, decreased the content of malondialdehyde (MDA), 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-OHdG), 8-hydroxy-2'-deoxyguanosine (8-oxo-G), and nitric oxide (NO), and enhanced the superoxide dismutase (SOD) activity significantly. The neuroprotective effect of sea cucumber cerebrosides (SCC) was also verified in vitro: the cerebrosides increased the survival rate of PC12 cells, recovered the cellular morphology, downregulated the protein levels of Caspase-9, cleaved Caspase-3, total Caspase-3, and Bax, and upregulated the protein level of Bcl-2, revealing that cerebrosides could inhibit Aβ-induced cell apoptosis. The results showed the protective effect of SCC was regulated by the mitochondria-dependent apoptotic pathway. Our results provide a new approach to developing the marine organisms as functional foods for neuroprotection.
Zonation of Landslide-Prone Using Microseismic Method and Slope Analysis in Margoyoso, Magelang
NASA Astrophysics Data System (ADS)
Aditya, Muchamad Reza; Fauqi Romadlon, Arriqo’; Agra Medika, Reymon; Alfontius, Yosua; Delva Jannet, Zukhruf; Hartantyo, Eddy
2018-04-01
Margoyoso Village, Salaman Sub-district, Magelang Regency, Central Java is one of the villages that were included in landslide prone areas. The steep slopes and land use in this village were quite apprehensive. There were fractures with 5 cm in width and a length of 50 m. Moreover, these fractures appeared in the home residents. Although the local government has established a disaster response organization, this village is still not getting adequate information about the landslide prone areas. Based on the description before, we conducted research with geophysical methods and geotechnical analysis to minimize the danger of landslides. The geophysical method used in this research was microseismic method and geotechnical analysis. The microseismic measurement and slope stability analysis at Margoyoso village was a step in analysing the landslide-prone zone boundary. The results of this research indicated that landslide potential areas had a low peak ground acceleration values with a range from 36 gal to 46 gal. Measurement of slope stability indicated that a slope angle values between 55°-78° are a potential landslide slope because the soil in this village has very loose properties so it is very easy to move.
Loss of circadian clock accelerates aging in neurodegeneration-prone mutants.
Krishnan, Natraj; Rakshit, Kuntol; Chow, Eileen S; Wentzell, Jill S; Kretzschmar, Doris; Giebultowicz, Jadwiga M
2012-03-01
Circadian clocks generate rhythms in molecular, cellular, physiological, and behavioral processes. Recent studies suggest that disruption of the clock mechanism accelerates organismal senescence and age-related pathologies in mammals. Impaired circadian rhythms are observed in many neurological diseases; however, it is not clear whether loss of rhythms is the cause or result of neurodegeneration, or both. To address this important question, we examined the effects of circadian disruption in Drosophila melanogaster mutants that display clock-unrelated neurodegenerative phenotypes. We combined a null mutation in the clock gene period (per(01)) that abolishes circadian rhythms, with a hypomorphic mutation in the carbonyl reductase gene sniffer (sni(1)), which displays oxidative stress induced neurodegeneration. We report that disruption of circadian rhythms in sni(1) mutants significantly reduces their lifespan compared to single mutants. Shortened lifespan in double mutants was coupled with accelerated neuronal degeneration evidenced by vacuolization in the adult brain. In addition, per(01)sni(1) flies showed drastically impaired vertical mobility and increased accumulation of carbonylated proteins compared to age-matched single mutant flies. Loss of per function does not affect sni mRNA expression, suggesting that these genes act via independent pathways producing additive effects. Finally, we show that per(01) mutation accelerates the onset of brain pathologies when combined with neurodegeneration-prone mutation in another gene, swiss cheese (sws(1)), which does not operate through the oxidative stress pathway. Taken together, our data suggest that the period gene may be causally involved in neuroprotective pathways in aging Drosophila. Copyright © 2011 Elsevier Inc. All rights reserved.
Accelerating cine-MR Imaging in Mouse Hearts Using Compressed Sensing
Wech, Tobias; Lemke, Angela; Medway, Debra; Stork, Lee-Anne; Lygate, Craig A; Neubauer, Stefan; Köstler, Herbert; Schneider, Jürgen E
2011-01-01
Purpose To combine global cardiac function imaging with compressed sensing (CS) in order to reduce scan time and to validate this technique in normal mouse hearts and in a murine model of chronic myocardial infarction. Materials and Methods To determine the maximally achievable acceleration factor, fully acquired cine data, obtained in sham and chronically infarcted (MI) mouse hearts were 2–4-fold undersampled retrospectively, followed by CS reconstruction and blinded image segmentation. Subsequently, dedicated CS sampling schemes were implemented at a preclinical 9.4 T magnetic resonance imaging (MRI) system, and 2- and 3-fold undersampled cine data were acquired in normal mouse hearts with high temporal and spatial resolution. Results The retrospective analysis demonstrated that an undersampling factor of three is feasible without impairing accuracy of cardiac functional parameters. Dedicated CS sampling schemes applied prospectively to normal mouse hearts yielded comparable left-ventricular functional parameters, and intra- and interobserver variability between fully and 3-fold undersampled data. Conclusion This study introduces and validates an alternative means to speed up experimental cine-MRI without the need for expensive hardware. J. Magn. Reson. Imaging 2011. © 2011 Wiley Periodicals, Inc. PMID:21932360
Palavicini, Juan Pablo; Wang, Hongjie; Minond, Dmitriy; Bianchi, Elisabetta; Xu, Shaohua; Lakshmana, Madepalli K
2014-01-01
Loss of synaptic proteins and functional synapses in the brains of patients with Alzheimer's disease (AD) as well as transgenic mouse models expressing amyloid-β protein precursor is now well established. However, the earliest age at which such loss of synapses occurs, and whether known markers of AD progression accelerate functional deficits is completely unknown. We previously showed that RanBP9 overexpression leads to enhanced amyloid plaque burden in a mouse model of AD. In this study, we found significant reductions in the levels of synaptophysin and spinophilin, compared with wild-type controls, in both the cortex and the hippocampus of 5- and 6-month old but not 3- or 4-month old APΔE9/RanBP9 triple transgenic mice, and not in APΔE9 double transgenic mice, nor in RanBP9 single transgenic mice. Interestingly, amyloid plaque burden was also increased in the APΔE9/RanBP9 mice at 5-6 months. Consistent with these results, we found significant deficits in learning and memory in the APΔE9/RanBP9 mice at 5 and 6 month. These data suggest that increased amyloid plaques and accelerated learning and memory deficits and loss of synaptic proteins induced by RanBP9 are correlated. Most importantly, APΔE9/RanBP9 mice also showed significantly reduced levels of the phosphorylated form of cofilin in the hippocampus. Taken together these data suggest that RanBP9 overexpression down-regulates cofilin, causes early synaptic deficits and impaired learning, and accelerates accumulation of amyloid plaques in the mouse brain.
Burns, Terry C; Li, Matthew D; Mehta, Swapnil; Awad, Ahmed J; Morgan, Alexander A
2015-07-15
Translational research for neurodegenerative disease depends intimately upon animal models. Unfortunately, promising therapies developed using mouse models mostly fail in clinical trials, highlighting uncertainty about how well mouse models mimic human neurodegenerative disease at the molecular level. We compared the transcriptional signature of neurodegeneration in mouse models of Alzheimer׳s disease (AD), Parkinson׳s disease (PD), Huntington׳s disease (HD) and amyotrophic lateral sclerosis (ALS) to human disease. In contrast to aging, which demonstrated a conserved transcriptome between humans and mice, only 3 of 19 animal models showed significant enrichment for gene sets comprising the most dysregulated up- and down-regulated human genes. Spearman׳s correlation analysis revealed even healthy human aging to be more closely related to human neurodegeneration than any mouse model of AD, PD, ALS or HD. Remarkably, mouse models frequently upregulated stress response genes that were consistently downregulated in human diseases. Among potential alternate models of neurodegeneration, mouse prion disease outperformed all other disease-specific models. Even among the best available animal models, conserved differences between mouse and human transcriptomes were found across multiple animal model versus human disease comparisons, surprisingly, even including aging. Relative to mouse models, mouse disease signatures demonstrated consistent trends toward preserved mitochondrial function protein catabolism, DNA repair responses, and chromatin maintenance. These findings suggest a more complex and multifactorial pathophysiology in human neurodegeneration than is captured through standard animal models, and suggest that even among conserved physiological processes such as aging, mice are less prone to exhibit neurodegeneration-like changes. This work may help explain the poor track record of mouse-based translational therapies for neurodegeneration and provides a path forward to critically evaluate and improve animal models of human disease. Copyright © 2015 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beninati, G; Barbiere, J; Godfrey, L
2016-06-15
Purpose: To demonstrate that Volumetric Modulated Arc Therapy (VMAT) can be an alternative technique to Brachytherapy Accelerated Partial Breast Irradiation (APBI) for treating large breasted women. The non-coplanar VMAT technique uses a commercially available couch and a small number of angles. This technique with the patient in the prone position can reduce high skin and critical structure doses in large breasted women, which are usually associated with Brachytherapy APBI. Methods: Philips Pinnacle treatment planning system with Smart Arc was used to plan a left sided laterally located excision cavity on a standard prone breast patient setup. Three thirty-degree arcs enteredmore » from the lateral side at respective couch angles of 345, 0, and 15 degrees. A fourth thirty degree arc beam entered from the medial side at a couch angle of 0 degrees. The arcs were selected to avoid critical structures as much as possible. A test run was then performed to verify that the beams did not collide with the patient nor support structures. NSABP B-39/RTOG 0413 protocol guidelines were used for dose prescription, normal tissue, and target definition. Results: Dose Volume Histogram analysis indicated that all parameters were equal or better than RTOG recommendations. Of particular note regarding the plan quality:1.(a) For a prescribed dose of 3850cGy the PTV-EVAL target volume receiving 100 percent of the dose(V100) was 93; protocol recommendation is V90 > 90 percent. (b) Maximum dose was 110 percent versus the allowed 120 percent .2. Uninvolved percentage of normal breast V100 and V50 were 17 and 47 versus allowed 35 and 60 percent respectively.3. For the skin, V100 was 5.7cc and the max dose to 0.1 cc was 4190cGy. Conclusion: Prone Breast non-coplanar VMAT APBI can achieve better skin cosmesis and lower critical structure doses than Brachytherapy APBI.« less
Orejana, Lourdes; Barros-Miñones, Lucía; Jordan, Joaquin; Cedazo-Minguez, Angel; Tordera, Rosa M; Aguirre, Norberto; Puerta, Elena
2015-06-01
The senescence-accelerated mouse-prone 8 (SAMP8), used as a model of aging, displays many established pathological features of Alzheimer's disease. Cognitive impairments and increased levels of hyperphosphorylated tau are found in the hippocampus of SAMP8 mice along with an increased β-secretase activity and amyloid-β (Aβ) depositions that increase in number and extent with age. Based on a previous study from our laboratory showing an amelioration of cognitive impairments and tau pathology by sildenafil, in this study we tested whether this drug could also modulate the amyloid precursor protein amyloidogenic processing in this mouse model. Our results show that the protein levels of the β-secretases β-site amyloid precursor protein cleaving enzyme 1 and cathepsin B are higher in the hippocampus of 9-month-old SAMP8 mice than those of age-matched senescence-resistant-1. Sildenafil (7.5mg/kg for 4 weeks) attenuated learning and memory impairments shown by SAMP8 mice in the passive avoidance test. The increased expression of β-site amyloid precursor protein cleaving enzyme 1 was also reduced by sildenafil, an effect paralleled to decreases in the activities of two β-site amyloid precursor protein cleaving enzyme 1 modulators, calpain and cyclin-dependent kinase 5 protein. Interestingly, sildenafil enhanced both Akt and glycogen synthase kinase-3β (ser9) phosphorylation, which could be mediating the reduction in cathepsin B levels found in the hippocampus of sildenafil-treated SAMP8 mice. Sildenafil-induced reduction in β-site amyloid precursor protein cleaving enzyme 1 and cathepsin B expression in SAMP8 mice was associated with a decrease in hippocampal Aβ42 levels which, in turn, could mediate the parallel decline in glial fibrillary acidic protein expression observed in these animals. These findings highlight the therapeutic potential of sildenafil in Alzheimer's disease pathogenesis. © The Author 2014. Published by Oxford University Press on behalf of the Gerontological Society of America. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Caignard, Grégory; Eva, Megan M.; van Bruggen, Rebekah; Eveleigh, Robert; Bourque, Guillaume; Malo, Danielle; Gros, Philippe; Vidal, Silvia M.
2014-01-01
Infectious diseases are responsible for over 25% of deaths globally, but many more individuals are exposed to deadly pathogens. The outcome of infection results from a set of diverse factors including pathogen virulence factors, the environment, and the genetic make-up of the host. The completion of the human reference genome sequence in 2004 along with technological advances have tremendously accelerated and renovated the tools to study the genetic etiology of infectious diseases in humans and its best characterized mammalian model, the mouse. Advancements in mouse genomic resources have accelerated genome-wide functional approaches, such as gene-driven and phenotype-driven mutagenesis, bringing to the fore the use of mouse models that reproduce accurately many aspects of the pathogenesis of human infectious diseases. Treatment with the mutagen N-ethyl-N-nitrosourea (ENU) has become the most popular phenotype-driven approach. Our team and others have employed mouse ENU mutagenesis to identify host genes that directly impact susceptibility to pathogens of global significance. In this review, we first describe the strategies and tools used in mouse genetics to understand immunity to infection with special emphasis on chemical mutagenesis of the mouse germ-line together with current strategies to efficiently identify functional mutations using next generation sequencing. Then, we highlight illustrative examples of genes, proteins, and cellular signatures that have been revealed by ENU screens and have been shown to be involved in susceptibility or resistance to infectious diseases caused by parasites, bacteria, and viruses. PMID:25268389
Yadav, A K; Chaudhari, H; Shah, P K; Madan, T
2016-02-01
Dysregulation of immune response at the feto-maternal interface during first trimester of pregnancy is one of the leading causes of spontaneous abortion. Previously, we reported differential expression of collectins, soluble pattern recognition molecules involved in immunoregulation, in placental and decidual tissues during spontaneous labor. In the present pilot study, the expression of collectins was analyzed in the inflamed human gestational tissues of spontaneous abortion ('SA') and in 13.5 dpc placental tissues from resorption survived embryos of murine model (CBA/J X DBA/2J). Transcripts of SP-A were significantly down-regulated and SP-D were significantly up-regulated in placental and decidual tissues of 'SA' group compared to that of 'normal' group. Immunostaining for SP-D and MBL proteins was positive in placental and decidual tissues. However, levels of SP-D and MBL proteins were not significantly altered in placental as well as in decidual tissues of 'SA' group in comparison to the 'normal' group. Placental tissues of viable embryos from the abortion prone mouse model showed significantly enhanced expression of mSP-A and mSP-D transcripts at 13.5 day post coitus (dpc) and 14.5 dpc compared to the control group (CBA/J X Balb/c). Mouse collectins were localized in placental tissues (13.5 dpc), with increased staining in murine model compared to control. Human and murine data together indicate that SP-A, SP-D and MBL are synthesised in early gestational tissues, and may contribute to regulation of immune response at the feto-maternal interface during pregnancy. Copyright © 2015 Elsevier GmbH. All rights reserved.
Nagao, Mototsugu; Asai, Akira; Inaba, Wataru; Kawahara, Momoyo; Shuto, Yuki; Kobayashi, Shunsuke; Sanoyama, Daisuke; Sugihara, Hitoshi; Yagihashi, Soroku; Oikawa, Shinichi
2014-01-01
Hereditary predisposition to diet-induced type 2 diabetes has not yet been fully elucidated. We recently established 2 mouse lines with different susceptibilities (resistant and prone) to high-fat diet (HFD)-induced glucose intolerance by selective breeding (designated selectively bred diet-induced glucose intolerance-resistant [SDG-R] and -prone [SDG-P], respectively). To investigate the predisposition to HFD-induced glucose intolerance in pancreatic islets, we examined the islet morphological features and functions in these novel mouse lines. Male SDG-P and SDG-R mice were fed a HFD for 5 weeks. Before and after HFD feeding, glucose tolerance was evaluated by oral glucose tolerance test (OGTT). Morphometry and functional analyses of the pancreatic islets were also performed before and after the feeding period. Before HFD feeding, SDG-P mice showed modestly higher postchallenge blood glucose levels and lower insulin increments in OGTT than SDG-R mice. Although SDG-P mice showed greater β cell proliferation than SDG-R mice under HFD feeding, SDG-P mice developed overt glucose intolerance, whereas SDG-R mice maintained normal glucose tolerance. Regardless of whether it was before or after HFD feeding, the isolated islets from SDG-P mice showed impaired glucose- and KCl-stimulated insulin secretion relative to those from SDG-R mice; accordingly, the expression levels of the insulin secretion-related genes in SDG-P islets were significantly lower than those in SDG-R islets. These findings suggest that the innate predispositions in pancreatic islets may determine the susceptibility to diet-induced diabetes. SDG-R and SDG-P mice may therefore be useful polygenic animal models to study the gene-environment interactions in the development of type 2 diabetes.
Nagao, Mototsugu; Asai, Akira; Inaba, Wataru; Kawahara, Momoyo; Shuto, Yuki; Kobayashi, Shunsuke; Sanoyama, Daisuke; Sugihara, Hitoshi; Yagihashi, Soroku; Oikawa, Shinichi
2014-01-01
Hereditary predisposition to diet-induced type 2 diabetes has not yet been fully elucidated. We recently established 2 mouse lines with different susceptibilities (resistant and prone) to high-fat diet (HFD)-induced glucose intolerance by selective breeding (designated selectively bred diet-induced glucose intolerance-resistant [SDG-R] and -prone [SDG-P], respectively). To investigate the predisposition to HFD-induced glucose intolerance in pancreatic islets, we examined the islet morphological features and functions in these novel mouse lines. Male SDG-P and SDG-R mice were fed a HFD for 5 weeks. Before and after HFD feeding, glucose tolerance was evaluated by oral glucose tolerance test (OGTT). Morphometry and functional analyses of the pancreatic islets were also performed before and after the feeding period. Before HFD feeding, SDG-P mice showed modestly higher postchallenge blood glucose levels and lower insulin increments in OGTT than SDG-R mice. Although SDG-P mice showed greater β cell proliferation than SDG-R mice under HFD feeding, SDG-P mice developed overt glucose intolerance, whereas SDG-R mice maintained normal glucose tolerance. Regardless of whether it was before or after HFD feeding, the isolated islets from SDG-P mice showed impaired glucose- and KCl-stimulated insulin secretion relative to those from SDG-R mice; accordingly, the expression levels of the insulin secretion-related genes in SDG-P islets were significantly lower than those in SDG-R islets. These findings suggest that the innate predispositions in pancreatic islets may determine the susceptibility to diet-induced diabetes. SDG-R and SDG-P mice may therefore be useful polygenic animal models to study the gene–environment interactions in the development of type 2 diabetes. PMID:24454742
A novel phantom model for mouse tumor dose assessment under MV beams
Gossman, Michael S.; Das, Indra J.; Sharma, Subhash C.; Lopez, Jeffrey P.; Howard, Candace M.; Claudio, Pier P.
2011-01-01
Purpose In order to determine a mouse’s dose accurately and prior to engaging in live mouse radiobiological research, a tissue-equivalent tumor-bearing phantom mouse was constructed and bored to accommodate detectors. Methods and Materials Comparisons were made between four different types of radiation detectors, each inserted into the phantom mouse for radiation measurement under a 6 MV linear accelerator beam. Dose detection response from a diode, thermoluminescent dosimeters, metal-oxide semiconductor field-effect transistors were used and compared to that of a reference pin-point ionization chamber. Likewise, a computerized treatment planning system was also directly compared. Results Each detector system demonstrated results similar to the dose computed by the therapeutic treatment planning system, although some differences were noted. The average disagreement from a accelerator calibrated output dose prescription in the range of 200–400 cGy were −0.4% ± 0.5σ for the diode, −2.4% ± 2.6σ for the TLD, −2.9% ± 5.0σ for the MOSFET and +1.3% ± 1.4σ for the treatment planning system. Conclusions This phantom mouse design is unique, simple, reproducible and therefore recommended as a standard approach to dosimetry for radiobiological mouse studies by means of any of the detectors used in this study. We fully advocate for treatment planning modeling when possible prior to linac-based dose delivery. PMID:22048493
Chen, Shuang; Lee, Young Ho; Crother, Timothy R.; Fishbein, Michael; Zhang, Wenxuan; Yilmaz, Atilla; Shimada, Kenichi; Schulte, Danica J; Lehman, Thomas J.A.; Shah, Prediman K.; Arditi, Moshe
2012-01-01
Objective To investigate if Lactobacillus casei cell wall extract (LCWE)-induced Kawasaki Disease (KD) accelerates atherosclerosis in hypercholesterolemic mice. Method and Resuslts Apoe−/− or Ldlr−/− mice were injected with LCWE (KD mice) or PBS, fed high fat diet for 8 weeks, and atherosclerotic lesions in aortic sinuses (AS), arch (AC) and whole aorta were assessed. KD mice had larger, more complex aortic lesions with abundant collagen, and both extracellular and intracellular lipid and foam cells, compared to lesions in control mice despite similar cholesterol levels. Both Apoe−/− KD and Ldlr−/− KD mice showed dramatic acceleration in atherosclerosis vs. controls, with increases in en face aortic atherosclerosis and plaque size in both the AS and AC plaques. Accelerated atherosclerosis was associated with increased circulating IL-12p40, IFN-γ, TNF-α, and increased macrophage, DC, and T cell recruitment in lesions. Furthermore, daily injections of the IL-1Ra, which inhibits LCWE induced KD vasculitis, prevented the acceleration of atherosclerosis. Conclusions Our results suggest an important pathophysiologic link between coronary arteritis/vasculitis in the KD mouse model and subsequent atherosclerotic acceleration, supporting the concept that a similar relation may also be present in KD patients. These results also suggest that KD in childhood may predispose to accelerated and early atherosclerosis as adults. PMID:22628430
Mehla, Jogender; Chauhan, Balwantsinh C; Chauhan, Neelima B
2014-01-01
Alzheimer's disease (AD) is an age-dependent neurodegenerative disease constituting ~95% of late-onset non-familial/sporadic AD, and only ~5% accounting for early-onset familial AD. Availability of a pertinent model representing sporadic AD is essential for testing candidate therapies. Emerging evidence indicates a causal link between diabetes and AD. People with diabetes are >1.5-fold more likely to develop AD. Senescence-accelerated mouse model (SAMP8) of accelerated aging displays many features occurring early in AD. Given the role played by diabetes in the pre-disposition of AD, and the utility of SAMP8 non-transgenic mouse model of accelerated aging, we examined if high fat diet-induced experimental type 2 diabetes in SAMP8 mice will trigger pathological aging of the brain. Results showed that compared to non-diabetic SAMP8 mice, diabetic SAMP8 mice exhibited increased cerebral amyloid-β, dysregulated tau-phosphorylating glycogen synthase kinase 3β, reduced synaptophysin immunoreactivity, and displayed memory deficits, indicating Alzheimer-like changes. High fat diet-induced type 2 diabetic SAMP8 mice may represent the metabolic model of AD.
Mouse Models of Neurofibromatosis 1 and 21
Gutmann, David H; Giovannini, Marco
2002-01-01
Abstract The neurofibromatoses represent two of the most common inherited tumor predisposition syndromes affecting the nervous system. Individuals with neurofibromatosis 1 (NF1) are prone to the development of astrocytomas and peripheral nerve sheath tumors whereas those affected with neurofibromatosis 2 (NF2) develop schwannomas and meningiomas. The development of traditional homozygous knockout mice has provided insights into the roles of the NF1 and NF2 genes during development and in differentiation, but has been less instructive regarding the contribution of NF1 and NF2 dysfunction to the pathogenesis of specific benign and malignant tumors. Recent progress employing novel mouse targeting strategies has begun to illuminate the roles of the NF1 and NF2 gene products in the molecular pathogenesis of NF-associated tumors. PMID:12082543
Liver-Directed Lentiviral Gene Therapy in a Dog Model of Hemophilia B
Bartholomae, Cynthia C.; Volpin, Monica; Della Valle, Patrizia; Sanvito, Francesca; Sergi Sergi, Lucia; Gallina, Pierangela; Benedicenti, Fabrizio; Bellinger, Dwight; Raymer, Robin; Merricks, Elizabeth; Bellintani, Francesca; Martin, Samia; Doglioni, Claudio; D’Angelo, Armando; VandenDriessche, Thierry; Chuah, Marinee K.; Schmidt, Manfred; Nichols, Timothy; Montini, Eugenio; Naldini, Luigi
2017-01-01
We investigated the safety and efficacy of liver-directed gene therapy using lentiviral vectors in a large animal model of hemophilia B, and evaluated the risk of insertional mutagenesis in tumor-prone mouse models. We show that gene therapy using lentiviral vectors targeting expression of a canine factor IX transgene to hepatocytes was well-tolerated and provided stable long-term production of coagulation factor IX in dogs with hemophilia B. By exploiting three different mouse models designed to amplify the consequences of insertional mutagenesis, we show that no genotoxicity was detected with these lentiviral vectors. Our findings suggest that lentiviral vectors may be an attractive candidate for gene therapy targeted to the liver and may be useful for the treatment of hemophilia. PMID:25739762
Lechner, O; Dietrich, H; Oliveira dos Santos, A; Wiegers, G J; Schwarz, S; Harbutz, M; Herold, M; Wick, G
2000-06-01
The immune system interacts with the hypothalamo-pituitary-adrenal axis via so-called glucocorticoid increasing factors, which are produced by the immune system during immune reactions, causing an elevation of systemic glucocorticoid levels that contribute to preservation of the immune reactions specificities. Previous results from our laboratory had already shown an altered immuno-neuroendocrine dialogue via the hypothalamo-pituitary-adrenal axis in autoimmune disease-prone chicken and mouse strains. In the present study, we further investigated the altered glucocorticoid response via the hypothalamo-pituitary-adrenal axis in murine lupus. We established the circadian rhythms of corticosterone, dehydroepiandrosterone-sulfate, adrenocorticotropic hormone and melatonin, as well as the time response curves after injection of interleukin-1 of the first three parameters in normal SWISS and lupus-prone MRL/MP-fas(Ipr) mice. The results show that lupus-prone MRL/ MP-fas(Ipr) mice do not react appropriately to changes of the light/dark cycle, circadian melatonin rhythms seem to uncouple from the light/dark cycle, and plasma corticosterone levels are elevated during the resting phase. Diurnal changes of dehydroepiandrosterone-sulfate and adrenocorticotropic hormone were normal compared to healthy controls. These data indicate that MRL/ MP-fas(Ipr) mice not only show an altered glucocorticoid response mediated via the hypothalamo pituitary adrenal axis to IL-1, but are also affected by disturbances of corticosterone and melatonin circadian rhythms. Our findings may have implications for intrathymic T cell development and the emergence of autoimmune disease.
Multi-tissue DNA methylation age predictor in mouse.
Stubbs, Thomas M; Bonder, Marc Jan; Stark, Anne-Katrien; Krueger, Felix; von Meyenn, Ferdinand; Stegle, Oliver; Reik, Wolf
2017-04-11
DNA methylation changes at a discrete set of sites in the human genome are predictive of chronological and biological age. However, it is not known whether these changes are causative or a consequence of an underlying ageing process. It has also not been shown whether this epigenetic clock is unique to humans or conserved in the more experimentally tractable mouse. We have generated a comprehensive set of genome-scale base-resolution methylation maps from multiple mouse tissues spanning a wide range of ages. Many CpG sites show significant tissue-independent correlations with age which allowed us to develop a multi-tissue predictor of age in the mouse. Our model, which estimates age based on DNA methylation at 329 unique CpG sites, has a median absolute error of 3.33 weeks and has similar properties to the recently described human epigenetic clock. Using publicly available datasets, we find that the mouse clock is accurate enough to measure effects on biological age, including in the context of interventions. While females and males show no significant differences in predicted DNA methylation age, ovariectomy results in significant age acceleration in females. Furthermore, we identify significant differences in age-acceleration dependent on the lipid content of the diet. Here we identify and characterise an epigenetic predictor of age in mice, the mouse epigenetic clock. This clock will be instrumental for understanding the biology of ageing and will allow modulation of its ticking rate and resetting the clock in vivo to study the impact on biological age.
Automatic detection and quantitative analysis of cells in the mouse primary motor cortex
NASA Astrophysics Data System (ADS)
Meng, Yunlong; He, Yong; Wu, Jingpeng; Chen, Shangbin; Li, Anan; Gong, Hui
2014-09-01
Neuronal cells play very important role on metabolism regulation and mechanism control, so cell number is a fundamental determinant of brain function. Combined suitable cell-labeling approaches with recently proposed three-dimensional optical imaging techniques, whole mouse brain coronal sections can be acquired with 1-μm voxel resolution. We have developed a completely automatic pipeline to perform cell centroids detection, and provided three-dimensional quantitative information of cells in the primary motor cortex of C57BL/6 mouse. It involves four principal steps: i) preprocessing; ii) image binarization; iii) cell centroids extraction and contour segmentation; iv) laminar density estimation. Investigations on the presented method reveal promising detection accuracy in terms of recall and precision, with average recall rate 92.1% and average precision rate 86.2%. We also analyze laminar density distribution of cells from pial surface to corpus callosum from the output vectorizations of detected cell centroids in mouse primary motor cortex, and find significant cellular density distribution variations in different layers. This automatic cell centroids detection approach will be beneficial for fast cell-counting and accurate density estimation, as time-consuming and error-prone manual identification is avoided.
Chronic skin inflammation accelerates macrophage cholesterol crystal formation and atherosclerosis
Ng, Qimin; Sanda, Gregory E.; Dey, Amit K.; Teague, Heather L.; Sorokin, Alexander V.; Dagur, Pradeep K.; Silverman, Joanna I.; Harrington, Charlotte L.; Rodante, Justin A.; Rose, Shawn M.; Varghese, Nevin J.; Belur, Agastya D.; Goyal, Aditya; Gelfand, Joel M.; Springer, Danielle A.; Bleck, Christopher K.E.; Thomas, Crystal L.; Yu, Zu-Xi; Winge, Mårten C.G.; Kruth, Howard S.; Marinkovich, M. Peter; Joshi, Aditya A.; Playford, Martin P.; Mehta, Nehal N.
2018-01-01
Inflammation is critical to atherogenesis. Psoriasis is a chronic inflammatory skin disease that accelerates atherosclerosis in humans and provides a compelling model to understand potential pathways linking these diseases. A murine model capturing the vascular and metabolic diseases in psoriasis would accelerate our understanding and provide a platform to test emerging therapies. We aimed to characterize a new murine model of skin inflammation (Rac1V12) from a cardiovascular standpoint to identify novel atherosclerotic signaling pathways modulated in chronic skin inflammation. The RacV12 psoriasis mouse resembled the human disease state, including presence of systemic inflammation, dyslipidemia, and cardiometabolic dysfunction. Psoriasis macrophages had a proatherosclerotic phenotype with increased lipid uptake and foam cell formation, and also showed a 6-fold increase in cholesterol crystal formation. We generated a triple-genetic K14-RacV12–/+/Srb1–/–/ApoER61H/H mouse and confirmed psoriasis accelerates atherogenesis (~7-fold increase). Finally, we noted a 60% reduction in superoxide dismutase 2 (SOD2) expression in human psoriasis macrophages. When SOD2 activity was restored in macrophages, their proatherogenic phenotype reversed. We demonstrate that the K14-RacV12 murine model captures the cardiometabolic dysfunction and accelerates vascular disease observed in chronic inflammation and that skin inflammation induces a proatherosclerotic macrophage phenotype with impaired SOD2 function, which associated with accelerated atherogenesis. PMID:29321372
CHL1 gene acts as a tumor suppressor in human neuroblastoma.
Ognibene, Marzia; Pagnan, Gabriella; Marimpietri, Danilo; Cangelosi, Davide; Cilli, Michele; Benedetti, Maria Chiara; Boldrini, Renata; Garaventa, Alberto; Frassoni, Francesco; Eva, Alessandra; Varesio, Luigi; Pistoia, Vito; Pezzolo, Annalisa
2018-05-25
Neuroblastoma is an aggressive, relapse-prone childhood tumor of the sympathetic nervous system that accounts for 15% of pediatric cancer deaths. A distal portion of human chromosome 3p is often deleted in neuroblastoma, this region may contain one or more putative tumor suppressor genes. A 2.54 Mb region at 3p26.3 encompassing the smallest region of deletion pinpointed CHL1 gene, the locus for neuronal cell adhesion molecule close homolog of L1. We found that low CHL1 expression predicted poor outcome in neuroblastoma patients. Here we have used two inducible cell models to analyze the impact of CHL1 on neuroblastoma biology. Over-expression of CHL1 induced neurite-like outgrowth and markers of neuronal differentiation in neuroblastoma cells, halted tumor progression, inhibited anchorage-independent colony formation, and suppressed the growth of human tumor xenografts. Conversely, knock-down of CHL1 induced neurite retraction and activation of Rho GTPases, enhanced cell proliferation and migration, triggered colony formation and anchorage-independent growth, accelerated growth in orthotopic xenografts mouse model. Our findings demonstrate unambiguously that CHL1 acts as a regulator of proliferation and differentiation of neuroblastoma cells through inhibition of the MAPKs and Akt pathways. CHL1 is a novel candidate tumor suppressor in neuroblastoma, and its associated pathways may represent a promising target for future therapeutic interventions.
Rajendran, Peramaiyan; Tzang, Bor-Show; Yeh, Yu-Lan; Shen, Chia-Yao; Chen, Ray-Jade; Ho, Tsung-Jung; Vijaya Padma, Viswanadha
2017-01-01
Systemic lupus erythematosus (SLE) is a disease that mostly affects women. Accelerated atherosclerosis is a high-risk factor associated with SLE patients. SLE associated with cardiovascular disease is one of the most important causes of death. In this study, we demonstrated that Lactobacillus paracasei GMNL-32 (GMNL-32), a probiotic species, exhibits anti-fibrosis and anti-apoptotic effects on the cardiac tissue of NZB/WF1 mice. Female NZB/W F1 mice, a well-known and commonly used lupus-prone mouse strain, were treated with or without GMNL-32 administration for 12 weeks. Oral administration of GMNL-32 to NZB/WF1 mice significantly increased the ventricular thickness when compared to that of NZB/WF1 mice. Administration of GMNL-32 significantly attenuated the cardiac cell apoptosis that was observed in exacerbate levels in the control NZB/WF1 mice. Further, the cellular morphology that was slightly distorted in the NZB/WF1 was effectively alleviated in the treatment group mice. In addition, GMNL-32 reduced the level of Fas death receptor-related pathway of apoptosis signaling and enhanced anti-apoptotic proteins. These results indicate that GMNL-32 exhibit an effective protective effect on cardiac cells of SLE mice. Thus, GMNL-32 may be a potential therapeutic strategy against SLE associated arthrosclerosis. PMID:28934296
Translational research impacting on crop productivity in drought-prone environments.
Reynolds, Matthew; Tuberosa, Roberto
2008-04-01
Conventional breeding for drought-prone environments (DPE) has been complemented by using exotic germplasm to extend crop gene pools and physiological approaches that consider water uptake (WU), water-use efficiency (WUE), and harvest index (HI) as drivers of yield. Drivers are associated with proxy genetic markers, such as carbon-isotope discrimination for WUE, canopy temperature for WU, and anthesis-silking interval for HI in maize. Molecular markers associated with relevant quantitative trait loci are being developed. WUE has also been increased through combining understanding of root-to-shoot signaling with deficit irrigation. Impacts in DPE will be accelerated by combining proven technologies with promising new strategies such as marker-assisted selection, and genetic transformation, as well as conservation agriculture that can increase WU while averting soil degradation.
Leontyev, Anton; Sun, Stanley; Wolfe, Mary; Yamauchi, Takashi
2018-01-01
Attention deficit/hyperactivity disorder (ADHD) is frequently characterized as a disorder of executive function (EF). However, behavioral tests of EF, such as go/No-go tasks, often fail to grasp the deficiency in EF revealed by questionnaire-based measures. This inability is usually attributed to questionnaires and behavioral tasks assessing different constructs of EFs. We propose an additional explanation for this discrepancy. We hypothesize that this problem stems from the lack of dynamic assessment of decision-making (e.g., continuous monitoring of motor behavior such as velocity and acceleration in choice reaching) in classical versions of behavioral tasks. We test this hypothesis by introducing dynamic assessment in the form of mouse motion in a go/No-go task. Our results indicate that, among healthy college students, self-report measures of ADHD symptoms become strongly associated with performance in behavioral tasks when continuous assessment (e.g., acceleration in the mouse-cursor motion) is introduced. PMID:29695985
Leontyev, Anton; Sun, Stanley; Wolfe, Mary; Yamauchi, Takashi
2018-01-01
Attention deficit/hyperactivity disorder (ADHD) is frequently characterized as a disorder of executive function (EF). However, behavioral tests of EF, such as go/No-go tasks, often fail to grasp the deficiency in EF revealed by questionnaire-based measures. This inability is usually attributed to questionnaires and behavioral tasks assessing different constructs of EFs. We propose an additional explanation for this discrepancy. We hypothesize that this problem stems from the lack of dynamic assessment of decision-making (e.g., continuous monitoring of motor behavior such as velocity and acceleration in choice reaching) in classical versions of behavioral tasks. We test this hypothesis by introducing dynamic assessment in the form of mouse motion in a go/No-go task. Our results indicate that, among healthy college students, self-report measures of ADHD symptoms become strongly associated with performance in behavioral tasks when continuous assessment (e.g., acceleration in the mouse-cursor motion) is introduced.
Patrick C. Tobin; Julie Van Stappen; Laura M. Blackburn
2011-01-01
The introduction of non-native species has accelerated due to increasing levels of global trade and travel, threatening the composition and function of ecosystems. Upon arrival and successful establishment, biological invaders begin to spread and often do so with considerable assistance from humans. Recreational areas can be especially prone to the problem of...
Patrick C. Tobin; Julie Van Stappen; Laura M. Blackburn
2010-01-01
The introduction of non-native species has accelerated due to increasing levels of global trade and travel, threatening the composition and function of ecosystems. Upon arrival and successful establishment, biological invaders begin to spread and often do so with considerable assistance from humans. Recreational areas can be especially prone to the problem of...
α-Synuclein aggregation, seeding and inhibition by scyllo-inositol
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ibrahim, Tarek; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, M4N 3M5, ON; McLaurin, JoAnne, E-mail: jmclaurin@sri.utoronto.ca
2016-01-15
Recent literature demonstrates the accelerated aggregation of α-synuclein, a protein implicated in the pathogenesis of Parkinson's disease (PD), by the presence of preformed fibrillar conformers in vitro. Furthermore, these preformed fibrillar seeds are suggested to accelerate pathological induction in vivo when injected into the brains of mice. Variation in the results of in vivo studies is proposed to be caused by α-synuclein conformational variants. To investigate the impact of amino acid sequence on seeding efficiency, human and mouse α-synuclein seeds, which vary at 7 amino acid residues, were generated and cross-seeding kinetics studied. Using transmission electron microscopy (TEM), we confirmed that mouse α-synucleinmore » aggregated more rapidly than human α-synuclein. Subsequently, we determined that seeding of human and mouse α-synuclein was more rapid in the presence of seeds generated from the same species. In addition, an established amyloid inhibitor, scyllo-inositol, was examined for potential inhibitory effects on α-synuclein aggregation. TEM analysis of protein:inhibitor assays demonstrated that scyllo-inositol inhibits the aggregation of α-synuclein, suggesting the therapeutic potential of the small molecule in PD. - Highlights: • Mouse α-syn fibrillizes in a significantly shorter timeframe than human α-syn. • Seeding of monomers is more efficient when seeds originate from the same species. • scyllo-Inositol has anti-aggregation effects on mouse and human α-syn.« less
Puigoriol-Illamola, Dolors; Griñán-Ferré, Christian; Vasilopoulou, Foteini; Leiva, Rosana; Vázquez, Santiago; Pallàs, Mercè
2018-04-02
Elevated glucocorticoid (GC) exposure is widely accepted as a key factor in the age-related cognitive decline in rodents and humans. 11β-HSD1 is a key enzyme in the GCs pathway, catalyzing the conversion of 11β-dehydrocorticosterone to corticosterone in mice, with possible implications in neurodegenerative processes and cognitive impairment. Here, we determined the effect of a new 11β-HSD1 inhibitor, RL-118, administered to 12-month-old senescence-accelerated mouse-prone 8 (SAMP8) mice with neuropathological AD-like hallmarks and widely used as a rodent model of cognitive dysfunction. Behavioral tests (open field and object location) and neurodegeneration molecular markers were studied. After RL-118 treatment, increased locomotor activity and cognitive performance were found. Likewise, we found changes in hippocampal autophagy markers such as Beclin1, LC3B, AMPKα, and mTOR, indicating a progression in the autophagy process. In line with autophagy increase, a diminution in phosphorylated tau species (Ser 396 and Ser 404) jointly with an increase in ADAM10 and sAPPα indicated that an improvement in removing the abnormal proteins by autophagy might be implicated in the neuroprotective role of the 11β-HSD1 inhibitor. In addition, gene expression of oxidative stress (OS) and inflammatory markers, such as Hmox1, Aldh2, Il-1β, and Ccl3, were reduced in old treated mice in comparison to that of the control group. Consistent with this, we further demonstrate a significant correlation with autophagy markers and cognitive improvement and significant inverse correlation with autophagy, OS, and neuroinflammation markers. We concluded that inhibition of 11β-HSD1 by RL-118 prevented neurodegenerative processes and cognitive decline, acting on autophagy process, being an additional neuroprotective mechanism not described previously.
He, Yifan; Zhu, Jihong; Huang, Fang; Qin, Liu; Fan, Wenguo; He, Hongwen
2014-11-15
The tooth belongs to the trigeminal sensory pathway. Dental damage has been associated with impairments in the central nervous system that may be mediated by injury to the trigeminal nerve. In the present study, we investigated the effects of damage to the inferior alveolar nerve, an important peripheral nerve in the trigeminal sensory pathway, on learning and memory behaviors and structural changes in related brain regions, in a mouse model of Alzheimer's disease. Inferior alveolar nerve transection or sham surgery was performed in middle-aged (4-month-old) or elderly (7-month-old) senescence-accelerated mouse prone 8 (SAMP8) mice. When the middle-aged mice reached 8 months (middle-aged group 1) or 11 months (middle-aged group 2), and the elderly group reached 11 months, step-down passive avoidance and Y-maze tests of learning and memory were performed, and the cholinergic system was examined in the hippocampus (Nissl staining and acetylcholinesterase histochemistry) and basal forebrain (choline acetyltransferase immunohistochemistry). In the elderly group, animals that underwent nerve transection had fewer pyramidal neurons in the hippocampal CA1 and CA3 regions, fewer cholinergic fibers in the CA1 and dentate gyrus, and fewer cholinergic neurons in the medial septal nucleus and vertical limb of the diagonal band, compared with sham-operated animals, as well as showing impairments in learning and memory. Conversely, no significant differences in histology or behavior were observed between middle-aged group 1 or group 2 transected mice and age-matched sham-operated mice. The present findings suggest that trigeminal nerve damage in old age, but not middle age, can induce degeneration of the septal-hippocampal cholinergic system and loss of hippocampal pyramidal neurons, and ultimately impair learning ability. Our results highlight the importance of active treatment of trigeminal nerve damage in elderly patients and those with Alzheimer's disease, and indicate that tooth extraction should be avoided in these populations.
Accumulation of oligomer-prone α-synuclein exacerbates synaptic and neuronal degeneration in vivo
Rockenstein, Edward; Nuber, Silke; Overk, Cassia R.; Ubhi, Kiren; Mante, Michael; Patrick, Christina; Adame, Anthony; Trejo-Morales, Margarita; Gerez, Juan; Picotti, Paola; Jensen, Poul H.; Campioni, Silvia; Riek, Roland; Winkler, Jürgen; Gage, Fred H.; Winner, Beate
2014-01-01
In Parkinson’s disease and dementia with Lewy bodies, α-synuclein aggregates to form oligomers and fibrils; however, the precise nature of the toxic α-synuclein species remains unclear. A number of synthetic α-synuclein mutations were recently created (E57K and E35K) that produce species of α-synuclein that preferentially form oligomers and increase α-synuclein-mediated toxicity. We have shown that acute lentiviral expression of α-synuclein E57K leads to the degeneration of dopaminergic neurons; however, the effects of chronic expression of oligomer-prone α-synuclein in synapses throughout the brain have not been investigated. Such a study could provide insight into the possible mechanism(s) through which accumulation of α-synuclein oligomers in the synapse leads to neurodegeneration. For this purpose, we compared the patterns of neurodegeneration and synaptic damage between a newly generated mThy-1 α-synuclein E57K transgenic mouse model that is prone to forming oligomers and the mThy-1 α-synuclein wild-type mouse model (Line 61), which accumulates various forms of α-synuclein. Three lines of α-synuclein E57K (Lines 9, 16 and 54) were generated and compared with the wild-type. The α-synuclein E57K Lines 9 and 16 were higher expressings of α-synuclein, similar to α-synuclein wild-type Line 61, and Line 54 was a low expressing of α-synuclein compared to Line 61. By immunoblot analysis, the higher-expressing α-synuclein E57K transgenic mice showed abundant oligomeric, but not fibrillar, α-synuclein whereas lower-expressing mice accumulated monomeric α-synuclein. Monomers, oligomers, and fibrils were present in α-synuclein wild-type Line 61. Immunohistochemical and ultrastructural analyses demonstrated that α-synuclein accumulated in the synapses but not in the neuronal cells bodies, which was different from the α-synuclein wild-type Line 61, which accumulates α-synuclein in the soma. Compared to non-transgenic and lower-expressing mice, the higher-expressing α-synuclein E57K mice displayed synaptic and dendritic loss, reduced levels of synapsin 1 and synaptic vesicles, and behavioural deficits. Similar alterations, but to a lesser extent, were seen in the α-synuclein wild-type mice. Moreover, although the oligomer-prone α-synuclein mice displayed neurodegeneration in the frontal cortex and hippocampus, the α-synuclein wild-type only displayed neuronal loss in the hippocampus. These results support the hypothesis that accumulating oligomeric α-synuclein may mediate early synaptic pathology in Parkinson’s disease and dementia with Lewy bodies by disrupting synaptic vesicles. This oligomer-prone model might be useful for evaluating therapies directed at oligomer reduction. PMID:24662516
Accumulation of oligomer-prone α-synuclein exacerbates synaptic and neuronal degeneration in vivo.
Rockenstein, Edward; Nuber, Silke; Overk, Cassia R; Ubhi, Kiren; Mante, Michael; Patrick, Christina; Adame, Anthony; Trejo-Morales, Margarita; Gerez, Juan; Picotti, Paola; Jensen, Poul H; Campioni, Silvia; Riek, Roland; Winkler, Jürgen; Gage, Fred H; Winner, Beate; Masliah, Eliezer
2014-05-01
In Parkinson's disease and dementia with Lewy bodies, α-synuclein aggregates to form oligomers and fibrils; however, the precise nature of the toxic α-synuclein species remains unclear. A number of synthetic α-synuclein mutations were recently created (E57K and E35K) that produce species of α-synuclein that preferentially form oligomers and increase α-synuclein-mediated toxicity. We have shown that acute lentiviral expression of α-synuclein E57K leads to the degeneration of dopaminergic neurons; however, the effects of chronic expression of oligomer-prone α-synuclein in synapses throughout the brain have not been investigated. Such a study could provide insight into the possible mechanism(s) through which accumulation of α-synuclein oligomers in the synapse leads to neurodegeneration. For this purpose, we compared the patterns of neurodegeneration and synaptic damage between a newly generated mThy-1 α-synuclein E57K transgenic mouse model that is prone to forming oligomers and the mThy-1 α-synuclein wild-type mouse model (Line 61), which accumulates various forms of α-synuclein. Three lines of α-synuclein E57K (Lines 9, 16 and 54) were generated and compared with the wild-type. The α-synuclein E57K Lines 9 and 16 were higher expressings of α-synuclein, similar to α-synuclein wild-type Line 61, and Line 54 was a low expressing of α-synuclein compared to Line 61. By immunoblot analysis, the higher-expressing α-synuclein E57K transgenic mice showed abundant oligomeric, but not fibrillar, α-synuclein whereas lower-expressing mice accumulated monomeric α-synuclein. Monomers, oligomers, and fibrils were present in α-synuclein wild-type Line 61. Immunohistochemical and ultrastructural analyses demonstrated that α-synuclein accumulated in the synapses but not in the neuronal cells bodies, which was different from the α-synuclein wild-type Line 61, which accumulates α-synuclein in the soma. Compared to non-transgenic and lower-expressing mice, the higher-expressing α-synuclein E57K mice displayed synaptic and dendritic loss, reduced levels of synapsin 1 and synaptic vesicles, and behavioural deficits. Similar alterations, but to a lesser extent, were seen in the α-synuclein wild-type mice. Moreover, although the oligomer-prone α-synuclein mice displayed neurodegeneration in the frontal cortex and hippocampus, the α-synuclein wild-type only displayed neuronal loss in the hippocampus. These results support the hypothesis that accumulating oligomeric α-synuclein may mediate early synaptic pathology in Parkinson's disease and dementia with Lewy bodies by disrupting synaptic vesicles. This oligomer-prone model might be useful for evaluating therapies directed at oligomer reduction.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chiu, T; Yan, Y; Ramirez, E
2015-06-15
Purpose: Accelerated partial breast irradiation (APBI) is an effective treatment for early stage breast-cancer. Irradiation in a prone position can mitigate breast motion and spare heart and lung. In this study, a comprehensive study is performed to evaluate various treatment techniques for prone APBI treatment including: 3D-CRT, IMRT, co-planar and non-coplanar partial arcs treatment. Methods: In this treatment planning study, a left breast patient treated in prone position in our clinic was imported into Varian Eclipse TPS. Six beams tangential to chest wall were used in both 3D-CRT and IMRT plans. These six beams were coplanar in a transactional planemore » achieved by both gantry and couch rotation. A 60-beam IMRT plan was also created to explore the maximum benefit of co-planar IMRT. Within deliverable couch rotation range (±30°), partial arc treatment plans with one and up to ten couch positions were generated for comparison. For each plan, 30Gy in 6 fractions was prescribed to 95% PTV volume. Critical dosimetric parameters, such as conformity index, mean, maximum, and volume dose of organ at risk, are evaluated. Results: The conformity indexes (CI) are 3.53, 3.17, 2.21 and 1.08 respectively to 3D-CRT, 6-beam IMRT, 60-beam IMRT, and two-partial-arcs coplanar plans. However, arc plans increase heart dose. CI for non-coplanar arc plans decreases from 1.19 to 1.10 when increases couch positions. Maximum dose in ipsilateral lung (1.98 to 1.13 Gy), and heart (0.62 to 0.43 Gy) are steadily decreased with the increased number of non-coplanar arcs. Conclusions: The dosimetric evaluation results show that partial arc plans have improved CIs compared to conventional 3D-CRT and IMRT plans. Increasing number of partial arcs decreases lung and heart dose. The dosimetric benefit obtained from non-coplanar arcs should be considered with treatment delivery time.« less
FIVE-YEAR RESULTS OF ADJUVANT RADIOTHER
Osa, Etin-Osa O.; DeWyngaert, Keith; Roses, Daniel; Speyer, James; Guth, Amber; Axelrod, Deborah; Kerimian, Maria Fenton; Goldberg, Judith D.; Formenti, Silvia C.
2015-01-01
Purpose/Objective A technique of prone breast radiotherapy delivered by a regimen of accelerated intensity modulated radiation therapy (IMRT) with a concurrent boost to the tumor bed, was developed at our institution. We report the five year results of this approach. Methods and Materials Between 2003–2006, 404 patients with Stage I–II breast cancer were prospectively enrolled into two consecutive protocols, institutional trials 03–30 and 05–181, that used the same regimen of 40.5Gy/15 fractions delivered to the index breast over 3 weeks, with a concomitant daily boost to the tumor bed of 0.5Gy (total dose=48Gy). All patients were treated after segmental mastectomy, had negative margins, and nodal assessment. Patients were set up prone: only if lung or heart volumes were in the field was a supine set-up attempted, and chosen if found to better spare these organs. Results 92% of patients were treated prone, 8% supine. 72% had stage I, 28% stage II invasive breast cancer. In-field lung volume ranged from 0 –228.27cc, mean: 19.65cc. In-field heart volume for left breast cancer patients ranged from 0–21.24cc, mean: 1.59cc. There was no heart in the field for right breast cancer patients. At a median follow-up of five years, the five-year cumulative incidence of isolated ipsilateral breast tumor recurrence was 0.82% (95% CI: 0.65–1.04). The five-year cumulative incidence of regional recurrence was 0.53% (95% CI:0.41–0.69) and the five-year overall cumulative death rate was 1.28% (95% CI: 0.48–3.38). 82% (95% CI: 77–85) of patients judged their final cosmetic result as excellent/good. Conclusions Prone accelerated IMRT with a concomitant boost results in excellent local control, optimal sparing of heart and lung, with good cosmesis. RTOG 10–05, a phase III, multi-institutional, randomized trial is ongoing and is evaluating the equivalence of a similar dose and fractionation approach to standard six weeks radiotherapy with a sequential boost. PMID:24867535
NASA Astrophysics Data System (ADS)
Irianto, H.; Mujiyo; Riptanti, E. W.; Qonita, A.
2018-03-01
Bojonegoro regency occupies the largest flood-prone rice fields of about 14,198 hectares, in East Java province. Floods commonly occur due to Bengawan Solo river over-burst, particularly in rainy season. The fields are potential for cultivating rice, but floods lasting for months causing these areas to be unproductive. The objective of this article is to examine the potential land use of flood prone rice fields in Bojonegoro regency using floating rice system as an effort to maintain productivity in rainy season. The method of this study is referential study about the rice production using floating cultivation system in other regions, which are later compared with the physical condition of the fields in Bojonegoro. The results of analysis show that rice cultivation using floating system can maintain rice production in flood prone areas during rainy season. The potential production of rice is 5-6 tons/ha. However, technical problems for cultivating rice cannot be ignored since farmers are not familiar with cultivating flooded fields. This article also explains alternatives of floating rice cultivation technique, which can be implemented effectively and efficiently. Pioneer work of developing floating rice in Bojonegoro that has been done by the Team of Faculty of Agriculture of UNS, Surakarta, is expected to serve as a medium for accelerating the adoption of cultivation technology innovation to farmers.
A deficiency in DNA repair and DNA-PKcs expression in the radiosensitive BALB/c mouse
NASA Technical Reports Server (NTRS)
Okayasu, R.; Suetomi, K.; Yu, Y.; Silver, A.; Bedford, J. S.; Cox, R.; Ullrich, R. L.
2000-01-01
We have studied the efficiency of DNA double strand break (DSB) rejoining in primary cells from mouse strains that show large differences in in vivo radiosensitivity and tumor susceptibility. Cells from radiosensitive, cancer-prone BALB/c mice showed inefficient end joining of gamma ray-induced DSBs as compared with cells from all of the other commonly used strains and F1 hybrids of C57BL/6 and BALB/c mice. The BALB/c repair phenotype was accompanied by a significantly reduced expression level of DNA-PKcs protein as well as a lowered DNA-PK activity level as compared with the other strains. In conjunction with published reports, these data suggest that natural genetic variation in nonhomologous end joining processes may have a significant impact on the in vivo radiation response of mice.
Liver-directed lentiviral gene therapy in a dog model of hemophilia B.
Cantore, Alessio; Ranzani, Marco; Bartholomae, Cynthia C; Volpin, Monica; Valle, Patrizia Della; Sanvito, Francesca; Sergi, Lucia Sergi; Gallina, Pierangela; Benedicenti, Fabrizio; Bellinger, Dwight; Raymer, Robin; Merricks, Elizabeth; Bellintani, Francesca; Martin, Samia; Doglioni, Claudio; D'Angelo, Armando; VandenDriessche, Thierry; Chuah, Marinee K; Schmidt, Manfred; Nichols, Timothy; Montini, Eugenio; Naldini, Luigi
2015-03-04
We investigated the efficacy of liver-directed gene therapy using lentiviral vectors in a large animal model of hemophilia B and evaluated the risk of insertional mutagenesis in tumor-prone mouse models. We showed that gene therapy using lentiviral vectors targeting the expression of a canine factor IX transgene in hepatocytes was well tolerated and provided a stable long-term production of coagulation factor IX in dogs with hemophilia B. By exploiting three different mouse models designed to amplify the consequences of insertional mutagenesis, we showed that no genotoxicity was detected with these lentiviral vectors. Our findings suggest that lentiviral vectors may be an attractive candidate for gene therapy targeted to the liver and may be potentially useful for the treatment of hemophilia. Copyright © 2015, American Association for the Advancement of Science.
Leutgeb, Verena; Schäfer, Axel; Schienle, Anne
2011-01-01
Objectives Dental phobia is currently classified as a specific phobia of the blood-injection-injury (BII) subtype. In another subtype, animal phobia, enhanced amplitudes of late event-related potentials have consistently been identified for patients during passive viewing of disorder-relevant pictures. However, this has not been shown for BII phobics, and studies with dental phobics are lacking. Findings on cardiac responses in BII phobia during exposure are heterogeneous, as some studies showed a diphasic pattern of heart rate acceleration and deceleration, whereas others observed pure acceleration. In contrast, heart rate increase has consistently been shown for dental phobics, resembling the reaction of animal phobics. Moreover, the BII subtype is characterized by elevated disgust reactivity whereas the role of habitual disgust proneness in dental phobia is unclear. Methods We recorded the electroencephalogram and the electrocardiogram from 18 dental phobic and 18 healthy women while they watched pictures depicting dental treatment, disgust, fear and neutral items. Results Phobics relative to controls showed an enhanced late positive potential (300–700 ms) and heart rate acceleration towards phobic material, reflecting motivated attention and fear. Affective ratings revealed that dental phobics experienced significantly higher levels of fear than disgust during exposure to phobia-relevant material. Patients' elevated habitual disgust proneness was restricted to specific domains, such as the oral incorporation of offensive objects. Conclusion The psychophysiology of dental phobia resembles the fear-dominated subtypes of specific phobia reported in earlier studies. Future studies should continue to investigate whether the current classification of this disorder as BII phobia needs to be reconsidered. PMID:21238507
Segev, Yifat; Livne, Adva; Mints, Meshi; Rosenblum, Kobi
2016-01-01
Aging is the main risk factor for neurodegenerative diseases, including Alzheimer's disease (AD). However, evidence indicates that the pathological process begins long before actual cognitive or pathological symptoms are apparent. The long asymptomatic phase and complex integration between genetic, environmental and metabolic factors make it one of the most challenging diseases to understand and cure. In the present study, we asked whether an environmental factor such as high-fat (HF) diet would synergize with a genetic factor to affect the metabolic and cognitive state in the Apolipoprotein E (ApoE4) mouse model of AD. Our data suggest that a HF diet induces diabetes mellitus (DM)-like metabolism in ApoE4 mice, as well as changes in β-site amyloid precursor protein-cleaving enzyme 1 (BACE1) protein levels between the two ApoE strains. Furthermore, HF diet induces anxiety in this AD mouse model. Our results suggest that young ApoE4 carriers are prone to psychological stress and metabolic abnormalities related to AD, which can easily be triggered via HF nutrition.
Yamamoto, Mitsuko L.; Maier, Irene; Dang, Angeline Tilly; Berry, David; Liu, Jared; Ruegger, Paul M.; Yang, Jiue-in; Soto, Phillip A.; Presley, Laura L.; Reliene, Ramune; Westbrook, Aya M.; Wei, Bo; Loy, Alexander; Chang, Christopher; Braun, Jonathan; Borneman, James; Schiestl, Robert H.
2013-01-01
Ataxia-telangiectasia (A-T) is a genetic disorder associated with high incidence of B cell lymphoma. Using an A-T mouse model, we compared lymphoma incidence in several isogenic mouse colonies harboring different bacterial communities, finding that intestinal microbiota are a major contributor to disease penetrance and latency, lifespan, molecular oxidative stress and systemic leucocyte genotoxicity. High throughput sequence analysis of rRNA genes identified mucosa-associated bacterial phylotypes that were colony-specific. Lactobacillus johnsonii, which was deficient in the more cancer-prone mouse colony, was causally tested for its capacity to confer reduced genotoxicity when restored by short-term oral transfer. This intervention decreased systemic genotoxicity, a response associated with reduced basal leucocytes and the cytokine-mediated inflammatory state, and mechanistically linked to the host cell biology of systemic genotoxicity. Our results suggest that intestinal microbiota are a potentially modifiable trait for translational intervention in individuals at risk for B cell lymphoma, or for other diseases that are driven by genotoxicity or the molecular response to oxidative stress. PMID:23860718
Spangler, Edward L; Patel, Namisha; Speer, Dorey; Hyman, Michael; Hengemihle, John; Markowska, Alicja; Ingram, Donald K
2002-02-01
Two strains of the senescence accelerated mouse, P8 and R1,were tested in footshock-motivated passive avoidance (PA; P8, 3-21 months; R1, 3-24 months) and 14-unit T-maze (P8 and R1, 9, and 15 months) tasks. For PA, entry to a dark chamber from a lighted chamber was followed by a brief shock. Latency to enter the dark chamber 24 hours later served as a measure of retention. Two days of active avoidance training in a straight runway preceded 2 days (8 trials/day) of testing in the 14-unit T-maze. For PA retention, older P8 mice entered the dark chamber more quickly than older R1 mice, whereas no differences were observed between young P8 or R1 mice. In the 14-unit T-maze, age-related learning performance deficits were reflected in higher error scores for older mice. P8 mice were actually superior learners; that is, they had lower error scores compared with those of age-matched R1 counterparts. Although PA learning results were in agreement with other reports, results obtained in the 14-unit T-maze were not consistent with previous reports of learning impairments in the P8 senescence accelerated mouse.
Cui, Yujie; Huang, Mingwei; He, Yingbo; Zhang, Shuyan; Luo, Yongzhang
2011-01-01
The link between lipoprotein metabolism and Alzheimer's disease (AD) has been established. Apolipoprotein A-IV (apoA-IV), a component of lipoprotein particles similar to apolipoprotein E, has been suggested to play an important role in brain metabolism. Although there are clinical debates on the function of its polymorphism in AD, the pathologic role of apoA-IV in AD is still unknown. Here, we report that genetic ablation of apoA-IV is able to accelerate AD pathogenesis in mice. In a mouse model that overexpresses human amyloid precursor protein (APP) and presenilin 1, genetic reduction of apoA-IV augments extracellular amyloid-β peptide (Aβ) burden and aggravates neuron loss in the brain. In addition, genetic ablation of apoA-IV also accelerates spatial learning deficits and increases the mortality of mice. We have found that apoA-IV colocalizes within Aβ plaques in APP/presenilin 1 transgenic mice and binds to Aβ in vitro. Subsequent studies show that apoA-IV in this model facilitates Aβ uptake in the Aβ clearance pathway mediated by astrocytes rather than the amyloidogenic pathway of APP processing. Taken together, we conclude that apoA-IV deficiency increases Aβ deposition and results in cognitive damage in the mouse model. Enhancing levels of apoA-IV may have therapeutic potential in AD treatment. PMID:21356380
Leu, Jyh-Gang; Chen, Siang-An; Chen, Han-Min; Wu, Wen-Mein; Hung, Chi-Feng; Yao, Yeong-Der; Tu, Chi-Shun; Liang, Yao-Jen
2012-07-01
Topical applications of antioxidant agents in cutaneous wounds have attracted much attention. Gold nanoparticles (AuNPs), epigallocatechin gallate (EGCG), and α-lipoic acid (ALA) were shown to have antioxidative effects and could be helpful in wound healing. Their effects in Hs68 and HaCaT cell proliferation and in mouse cutaneous wound healing were studied. Both the mixture of EGCG + ALA (EA) and AuNPs + EGCG + ALA (AuEA) significantly increased Hs68 and HaCaT proliferation and migration. Topical AuEA application accelerated wound healing on mouse skin. Immunoblotting of wound tissue showed significant increase of vascular endothelial cell growth factor and angiopoietin-1 protein expression, but no change of angiopoietin-2 or CD31 after 7 days. After AuEA treatment, CD68 protein expression decreased and Cu/Zn superoxide dismutase increased significantly in the wound area. In conclusion, AuEA significantly accelerated mouse cutaneous wound healing through anti-inflammatory and antioxidation effects. This study may support future studies using other antioxidant agents in the treatment of cutaneous wounds. In this study, topically applied gold nanoparticles with epigallocatechin gallate and alpha-lipoic acid were studied regarding their effects in wound healing in cell cultures. Significant acceleration was demonstrated in wound healing in a murine model. Copyright © 2012 Elsevier Inc. All rights reserved.
Holcomb, Valerie B; von Lindern, Marieke; Jong, Willeke M. C; Zeeuw, Chris I. De; Suh, Yousin; Hasty, Paul; Hoeijmakers, Jan H. J; van der Horst, Gijsbertus T. J; Mitchell, James R
2006-01-01
How congenital defects causing genome instability can result in the pleiotropic symptoms reminiscent of aging but in a segmental and accelerated fashion remains largely unknown. Most segmental progerias are associated with accelerated fibroblast senescence, suggesting that cellular senescence is a likely contributing mechanism. Contrary to expectations, neither accelerated senescence nor acute oxidative stress hypersensitivity was detected in primary fibroblast or erythroblast cultures from multiple progeroid mouse models for defects in the nucleotide excision DNA repair pathway, which share premature aging features including postnatal growth retardation, cerebellar ataxia, and death before weaning. Instead, we report a prominent phenotypic overlap with long-lived dwarfism and calorie restriction during postnatal development (2 wk of age), including reduced size, reduced body temperature, hypoglycemia, and perturbation of the growth hormone/insulin-like growth factor 1 neuroendocrine axis. These symptoms were also present at 2 wk of age in a novel progeroid nucleotide excision repair-deficient mouse model (XPDG602D/R722W/XPA−/−) that survived weaning with high penetrance. However, despite persistent cachectic dwarfism, blood glucose and serum insulin-like growth factor 1 levels returned to normal by 10 wk, with hypoglycemia reappearing near premature death at 5 mo of age. These data strongly suggest changes in energy metabolism as part of an adaptive response during the stressful period of postnatal growth. Interestingly, a similar perturbation of the postnatal growth axis was not detected in another progeroid mouse model, the double-strand DNA break repair deficient Ku80 −/− mouse. Specific (but not all) types of genome instability may thus engage a conserved response to stress that evolved to cope with environmental pressures such as food shortage. PMID:17173483
van de Ven, Marieke; Andressoo, Jaan-Olle; Holcomb, Valerie B; von Lindern, Marieke; Jong, Willeke M C; De Zeeuw, Chris I; Suh, Yousin; Hasty, Paul; Hoeijmakers, Jan H J; van der Horst, Gijsbertus T J; Mitchell, James R
2006-12-15
How congenital defects causing genome instability can result in the pleiotropic symptoms reminiscent of aging but in a segmental and accelerated fashion remains largely unknown. Most segmental progerias are associated with accelerated fibroblast senescence, suggesting that cellular senescence is a likely contributing mechanism. Contrary to expectations, neither accelerated senescence nor acute oxidative stress hypersensitivity was detected in primary fibroblast or erythroblast cultures from multiple progeroid mouse models for defects in the nucleotide excision DNA repair pathway, which share premature aging features including postnatal growth retardation, cerebellar ataxia, and death before weaning. Instead, we report a prominent phenotypic overlap with long-lived dwarfism and calorie restriction during postnatal development (2 wk of age), including reduced size, reduced body temperature, hypoglycemia, and perturbation of the growth hormone/insulin-like growth factor 1 neuroendocrine axis. These symptoms were also present at 2 wk of age in a novel progeroid nucleotide excision repair-deficient mouse model (XPD(G602D/R722W)/XPA(-/-)) that survived weaning with high penetrance. However, despite persistent cachectic dwarfism, blood glucose and serum insulin-like growth factor 1 levels returned to normal by 10 wk, with hypoglycemia reappearing near premature death at 5 mo of age. These data strongly suggest changes in energy metabolism as part of an adaptive response during the stressful period of postnatal growth. Interestingly, a similar perturbation of the postnatal growth axis was not detected in another progeroid mouse model, the double-strand DNA break repair deficient Ku80(-/-) mouse. Specific (but not all) types of genome instability may thus engage a conserved response to stress that evolved to cope with environmental pressures such as food shortage.
USDA-ARS?s Scientific Manuscript database
We have observed that lactating mouse dams nursed 4 times per day (4X) maintained lactation, but had lower milk yields by the weigh-suckle-weigh method, than dams nursed ad libitum (AL). Therefore, we hypothesized that decreased nursing frequency would also decrease lactation persistence, increase m...
Platelet-Rich Fibrin Accelerates Skin Wound Healing in Diabetic Mice.
Ding, Yinjia; Cui, Lei; Zhao, Qiming; Zhang, Weiqiang; Sun, Huafeng; Zheng, Lijun
2017-09-01
Diabetic foot ulcers (DFUs) are associated with an increased risk of secondary infection and amputation. Platelet-rich fibrin (PRF), a platelet and leukocyte concentrate containing several cytokines and growth factors, is known to promote wound healing. However, the effect of PRF on diabetic wound healing has not been adequately investigated. The aim of the study was to investigate the effect of PRF on skin wound healing in a diabetic mouse model. Platelet-rich fibrin was prepared from whole blood of 8 healthy volunteers. Two symmetrical skin wounds per mouse were created on the back of 16 diabetic nude mice. One of the 2 wounds in each mouse was treated with routine dressings (control), whereas the other wound was treated with PRF in addition to routine dressings (test), each for a period of 14 days. Skin wound healing rate was calculated.Use of PRF was associated with significantly improved skin wound healing in diabetic mice. On hematoxylin and eosin and CD31 staining, a significant increase in the number of capillaries and CD31-positive cells was observed, suggesting that PRF may have promoted blood vessel formation in the skin wound. In this study, PRF seemed to accelerate skin wound healing in diabetic mouse models, probably via increased blood vessel formation.
Le Quang, Khai; Bouchareb, Rihab; Lachance, Dominic; Laplante, Marc-André; El Husseini, Diala; Boulanger, Marie-Chloé; Fournier, Dominique; Fang, Xiang Ping; Avramoglu, Rita Kohen; Pibarot, Philippe; Deshaies, Yves; Sweeney, Gary; Mathieu, Patrick; Marette, André
2014-10-01
This study aimed to determine the potential impact of type 2 diabetes mellitus on left ventricular dysfunction and the development of calcified aortic valve disease using a dyslipidemic mouse model prone to developing type 2 diabetes mellitus. When compared with nondiabetic LDLr(-/-)/ApoB(100/100), diabetic LDLr(-/-)/ApoB(100/100)/IGF-II mice exhibited similar dyslipidemia and obesity but developed type 2 diabetes mellitus when fed a high-fat/sucrose/cholesterol diet for 6 months. LDLr(-/-)/ApoB(100/100)/IGF-II mice showed left ventricular hypertrophy versus C57BL6 but not LDLr(-/-)/ApoB(100/100) mice. Transthoracic echocardiography revealed significant reductions in both left ventricular systolic fractional shortening and diastolic function in high-fat/sucrose/cholesterol fed LDLr(-/-)/ApoB(100/100)/IGF-II mice when compared with LDLr(-/-)/ApoB(100/100). Importantly, we found that peak aortic jet velocity was significantly increased in LDLr(-/-)/ApoB(100/100)/IGF-II mice versus LDLr(-/-)/ApoB(100/100) animals on the high-fat/sucrose/cholesterol diet. Microtomography scans and Alizarin red staining indicated calcification in the aortic valves, whereas electron microscopy and energy dispersive x-ray spectroscopy further revealed mineralization of the aortic leaflets and the presence of inflammatory infiltrates in diabetic mice. Studies showed upregulation of hypertrophic genes (anp, bnp, b-mhc) in myocardial tissues and of osteogenic genes (spp1, bglap, runx2) in aortic tissues of diabetic mice. We have established the diabetes mellitus -prone LDLr(-/-)/ApoB(100/100)/IGF-II mouse as a new model of calcified aortic valve disease. Our results are consistent with the growing body of clinical evidence that the dysmetabolic state of type 2 diabetes mellitus contributes to early mineralization of the aortic valve and calcified aortic valve disease pathogenesis. © 2014 American Heart Association, Inc.
Bat Accelerated Regions Identify a Bat Forelimb Specific Enhancer in the HoxD Locus
Mason, Mandy K.; VanderMeer, Julia E.; Zhao, Jingjing; Eckalbar, Walter L.; Logan, Malcolm; Illing, Nicola; Pollard, Katherine S.; Ahituv, Nadav
2016-01-01
The molecular events leading to the development of the bat wing remain largely unknown, and are thought to be caused, in part, by changes in gene expression during limb development. These expression changes could be instigated by variations in gene regulatory enhancers. Here, we used a comparative genomics approach to identify regions that evolved rapidly in the bat ancestor, but are highly conserved in other vertebrates. We discovered 166 bat accelerated regions (BARs) that overlap H3K27ac and p300 ChIP-seq peaks in developing mouse limbs. Using a mouse enhancer assay, we show that five Myotis lucifugus BARs drive gene expression in the developing mouse limb, with the majority showing differential enhancer activity compared to the mouse orthologous BAR sequences. These include BAR116, which is located telomeric to the HoxD cluster and had robust forelimb expression for the M. lucifugus sequence and no activity for the mouse sequence at embryonic day 12.5. Developing limb expression analysis of Hoxd10-Hoxd13 in Miniopterus natalensis bats showed a high-forelimb weak-hindlimb expression for Hoxd10-Hoxd11, similar to the expression trend observed for M. lucifugus BAR116 in mice, suggesting that it could be involved in the regulation of the bat HoxD complex. Combined, our results highlight novel regulatory regions that could be instrumental for the morphological differences leading to the development of the bat wing. PMID:27019019
Rajeev, K R; Menon, Smrithy S; Beena, K; Holla, Raghavendra; Kumar, R Rajaneesh; Dinesh, M
2014-01-01
A prospective study was undertaken to evaluate the influence of patient positioning on the set up variations to determine the planning target volume (PTV) margins and to evaluate the clinical relevance volume assessment of the small bowel (SB) within the irradiated volume. During the period of months from December 2011 to April 2012, a computed tomography (CT) scan was done either in supine position or in prone position using a belly board (BB) for 20 consecutive patients. All the patients had histologically proven rectal cancer and received either post- or pre-operative pelvic irradiation. Using a three-dimensional planning system, the dose-volume histogram for SB was defined in each axial CT slice. Total dose was 46-50 Gy (2 Gy/fraction), delivered using the 4-field box technique. The set up variation of the study group was assessed from the data received from the electronic portal imaging device in the linear accelerator. The shift along X, Y, and Z directions were noted. Both systematic and random errors were calculated and using both these values the PTV margin was calculated. The systematic errors of patients treated in the supine position were 0.87 (X-mm), 0.66 (Y-mm), 1.6 (Z-mm) and in the prone position were 1.3 (X-mm), 0.59 (Y-mm), 1.17 (Z-mm). The random errors of patients treated in the supine positions were 1.81 (X-mm), 1.73 (Y-mm), 1.83 (Z-mm) and in prone position were 2.02 (X-mm), 1.21 (Y-mm), 3.05 (Z-mm). The calculated PTV margins in the supine position were 3.45 (X-mm), 2.87 (Y-mm), 5.31 (Z-mm) and in the prone position were 4.91 (X-mm), 2.32 (Y-mm), 5.08 (Z-mm). The mean volume of the peritoneal cavity was 648.65 cm 3 in the prone position and 1197.37 cm 3 in the supine position. The prone position using BB device was more effective in reducing irradiated SB volume in rectal cancer patients. There were no significant variations in the daily set up for patients treated in both supine and prone positions.
BDNF and its pro-peptide are stored in presynaptic dense core vesicles in brain neurons
Dieni, Sandra; Matsumoto, Tomoya; Dekkers, Martijn; Rauskolb, Stefanie; Ionescu, Mihai S.; Deogracias, Ruben; Gundelfinger, Eckart D.; Kojima, Masami; Nestel, Sigrun; Frotscher, Michael
2012-01-01
Although brain-derived neurotrophic factor (BDNF) regulates numerous and complex biological processes including memory retention, its extremely low levels in the mature central nervous system have greatly complicated attempts to reliably localize it. Using rigorous specificity controls, we found that antibodies reacting either with BDNF or its pro-peptide both stained large dense core vesicles in excitatory presynaptic terminals of the adult mouse hippocampus. Both moieties were ∼10-fold more abundant than pro-BDNF. The lack of postsynaptic localization was confirmed in Bassoon mutants, a seizure-prone mouse line exhibiting markedly elevated levels of BDNF. These findings challenge previous conclusions based on work with cultured neurons, which suggested activity-dependent dendritic synthesis and release of BDNF. They instead provide an ultrastructural basis for an anterograde mode of action of BDNF, contrasting with the long-established retrograde model derived from experiments with nerve growth factor in the peripheral nervous system. PMID:22412021
Keeney, Michael; Chung, Michael T; Zielins, Elizabeth R; Paik, Kevin J; McArdle, Adrian; Morrison, Shane D; Ransom, Ryan C; Barbhaiya, Namrata; Atashroo, David; Jacobson, Gunilla; Zare, Richard N; Longaker, Michael T; Wan, Derrick C; Yang, Fan
2016-08-01
Scaffold-mediated gene delivery holds great promise for tissue regeneration. However, previous attempts to induce bone regeneration using scaffold-mediated non-viral gene delivery rarely resulted in satisfactory healing. We report a novel platform with sustained release of minicircle DNA (MC) from PLGA scaffolds to accelerate bone repair. MC was encapsulated inside PLGA scaffolds using supercritical CO2 , which showed prolonged release of MC. Skull-derived osteoblasts transfected with BMP-2 MC in vitro result in higher osteocalcin gene expression and mineralized bone formation. When implanted in a critical-size mouse calvarial defect, scaffolds containing luciferase MC lead to robust in situ protein production up to at least 60 days. Scaffold-mediated BMP-2 MC delivery leads to substantially accelerated bone repair as early as two weeks, which continues to progress over 12 weeks. This platform represents an efficient, long-term nonviral gene delivery system, and may be applicable for enhancing repair of a broad range of tissues types. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 2099-2107, 2016. © 2016 Wiley Periodicals, Inc.
Accelerative Forces Associated with Routine Inhouse Transportation of Rodent Cages
Hurst, Keriann; Litwak, Kenneth N
2012-01-01
Transportation of rodents has repeatedly been demonstrated to potentially affect research outcomes. In addition, rapid acceleration and deceleration have marked physiologic effects. The current study determined the accelerative forces associated with common types of animal transportation within the institution and means of reducing these effects. A rodent-sized (24 g) accelerometer was placed in a standard polycarbonate mouse cage, which then was hand-carried or loaded onto a plastic, small metal, or large metal cart. The cage then moved along a set path that included several flooring types and obstacles. Accelerative forces within the mouse cage varied by as much as 35 m/s2 in as little as 1 s, primarily along the vertical axis (Z-axis). Measured acceleration was greatest with the plastic cart and lowest during hand-carrying. The placement of a towel under the cage dampened in-cage acceleration due to cart use by more than 50%, whereas a similarly located underpad had no significant effect. These data document that small rodents typically are exposed to considerable motion during transportation. The resulting physical and physiologic effects could affect study outcomes. PMID:23312081
Zhou, Miao-Miao; Che, Hong-Xia; Huang, Jia-Qi; Zhang, Tian-Tian; Xu, Jie; Xue, Chang-Hu; Wang, Yu-Ming
2018-04-01
Recent studies have shown that omega-3 PUFAs enriched phospholipids (n-3 PUFA-PLs) have beneficial effects on memory and cognition. However, most reports only attribute the benefit to docosahexaenoic acid (DHA) and pay little attention to eicosapentaenoic acid (EPA). We investigate the effect of EPA-enriched phospholipids on cognitive deficiency in senescence-accelerated prone 8 (SAMP8) mouse. Ten-month-old SAMP8 mice are fed with 2% (w/w) EPA-enriched phosphatidylcholine/phosphatidyl ethanolamine (EPA-PC/PE; EPA:DHA = 46.8:3.01) or 2% EPA-enriched phosphatidylserine (EPA-PS; biosynthesized from EPA-PC/PE) for 8 weeks; we then test the behavioral performances in the Barnes maze test and Morris maze test; the changes of oxidative stress, apoptosis, neurotrophic factors, tau phosphorylation, and Aβ pathology are also measured. The results of behavior tests indicate that both EPA-PC/PE and EPA-PS significantly improve memory and cognitive deficiency. It is found that remarkable amelioration of oxidative stress and apoptosis occurs in both EPA-PC/PE and EPA-PS groups. EPA-PS shows more ameliorative effects than EPA-PC/PE on neurotrophic activity by decreasing hyper-phosphorylation of tau and depressing the generation and accumulation of β-amyloid peptide (Aβ). These data suggest that EPA-PS exhibits better effects than EPA-PC/PE on ameliorating memory and cognitive function, which might be attributed to the phospholipid polar groups. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Design and validation of an improved graphical user interface with the 'Tool ball'.
Lee, Kuo-Wei; Lee, Ying-Chu
2012-01-01
The purpose of this research is introduce the design of an improved graphical user interface (GUI) and verifies the operational efficiency of the proposed interface. Until now, clicking the toolbar with the mouse is the usual way to operate software functions. In our research, we designed an improved graphical user interface - a tool ball that is operated by a mouse wheel to perform software functions. Several experiments are conducted to measure the time needed to operate certain software functions with the traditional combination of "mouse click + tool button" and the proposed integration of "mouse wheel + tool ball". The results indicate that the tool ball design can accelerate the speed of operating software functions, decrease the number of icons on the screen, and enlarge the applications of the mouse wheel. Copyright © 2011 Elsevier Ltd and The Ergonomics Society. All rights reserved.
Planel, Emmanuel; Bretteville, Alexis; Liu, Li; Virag, Laszlo; Du, Angela L.; Yu, Wai Haung; Dickson, Dennis W.; Whittington, Robert A.; Duff, Karen E.
2009-01-01
Alzheimer’s disease and other tauopathies are characterized by the presence of intracellular neurofibrillary tangles composed of hyperphosphorylated, insoluble tau. General anesthesia has been shown to be associated with increased risk of Alzheimer’s disease, and we have previously demonstrated that anesthesia induces hypothermia, which leads to overt tau hyperphosphorylation in the brain of mice regardless of the anesthetic used. To investigate whether anesthesia enhances the long-term risk of developing pathological forms of tau, we exposed a mouse model with tauopathy to anesthesia and monitored the outcome at two time points—during anesthesia, or 1 wk after exposure. We found that exposure to isoflurane at clinically relevant doses led to increased levels of phospho-tau, increased insoluble, aggregated forms of tau, and detachment of tau from microtubules. Furthermore, levels of phospho-tau distributed in the neuropil, as well as in cell bodies increased. Interestingly, the level of insoluble tau was increased 1 wk following anesthesia, suggesting that anesthesia precipitates changes in the brain that provoke the later development of tauopathy. Overall, our results suggest that anesthesia-induced hypothermia could lead to an acceleration of tau pathology in vivo that could have significant clinical implications for patients with early stage, or overt neurofibrillary tangle pathology.—Planel, E., Bretteville, A., Liu, L., Virag, L., Du, A. L., Yu, W. Y., Dickson, D. W., Whittington, R. A., Duff, K. E. Acceleration and persistence of neurofibrillary pathology in a mouse model of tauopathy following anesthesia. PMID:19279139
Zhan, Yifan; Carrington, Emma M; Ko, Hyun-Ja; Vikstrom, Ingela B; Oon, Shereen; Zhang, Jian-Guo; Vremec, David; Brady, Jamie L; Bouillet, Philippe; Wu, Li; Huang, David C S; Wicks, Ian P; Morand, Eric F; Strasser, Andreas; Lew, Andrew M
2015-03-01
Interferon-α (IFNα)-producing plasmacytoid dendritic cells (PDCs) are implicated in the pathogenesis of systemic lupus erythematosus (SLE). IFNα-related genes are highlighted among SLE susceptibility alleles and are characteristically expressed in the blood of patients with SLE, while in mouse models of lupus, PDC numbers and IFNα production are increased. This study was undertaken to investigate the effects of inhibitors that selectively target different antiapoptotic molecules on the survival of PDCs. PDC numbers, in vitro survival, and expression of antiapoptotic molecules were evaluated in lupus-prone (NZB × NZW)F1 (NZB/NZW) mice. The impact of Bcl-2 antagonists and glucocorticoids on PDCs was evaluated in vitro and in vivo. IFNα production by NZB/NZW mice was evaluated before and after treatment with Bcl-2 antagonists. PDCs, but not lymphoid tissue-resident conventional DCs, largely relied on the antiapoptotic protein Bcl-2 for survival. The enlarged PDC compartment in NZB/NZW mice was associated with selectively prolonged survival and increased Bcl-2 transcription. Functionally, this resulted in enhanced production of IFNα. Bcl-2 inhibitors selectively killed mouse and human PDCs, including PDCs from SLE patients, but not conventional DCs, dampened IFNα production by PDCs, and synergized with glucocorticoids to kill activated PDCs. Enhanced PDC survival is a likely contributing factor to enhanced IFNα production by lupus PDCs. Bcl-2 antagonists potently and selectively kill PDCs and reduce IFNα production. Thus, we believe that they are attractive candidates for treating PDC-associated diseases. Copyright © 2015 by the American College of Rheumatology.
2014-10-01
Previously I had determined that Rpl22 functions as a haploinsufficient tumor suppressor in mouse T - cell lymphoma model by activating the NF B and...preclinical animal models of T cell malignancy as well as in the manipulation of development of primary hematopoietic stem cells in vitro and in vivo...allelic inactivation can accelerate the development of T - cell lymphoma in a mouse model where disease is driven by a MyrAkt2-transgene. Rpl22 inactivation
Weights of Evidence Method for Landslide Susceptibility Mapping in Takengon, Central Aceh, Indonesia
NASA Astrophysics Data System (ADS)
Pamela; Sadisun, Imam A.; Arifianti, Yukni
2018-02-01
Takengon is an area prone to earthquake disaster and landslide. On July 2, 2013, Central Aceh earthquake induced large numbers of landslides in Takengon area, which resulted in casualties of 39 people. This location was chosen to assess the landslide susceptibility of Takengon, using a statistical method, referred to as the weight of evidence (WoE). This WoE model was applied to indicate the main factors influencing the landslide susceptible area and to derive landslide susceptibility map of Takengon. The 251 landslides randomly divided into two groups of modeling/training data (70%) and validation/test data sets (30%). Twelve thematic maps of evidence are slope degree, slope aspect, lithology, land cover, elevation, rainfall, lineament, peak ground acceleration, curvature, flow direction, distance to river and roads used as landslide causative factors. According to the AUC, the significant factor controlling the landslide is the slope, the slope aspect, peak ground acceleration, elevation, lithology, flow direction, lineament, and rainfall respectively. Analytical result verified by using test data of landslide shows AUC prediction rate is 0.819 and AUC success rate with all landslide data included is 0.879. This result showed the selective factors and WoE method as good models for assessing landslide susceptibility. The landslide susceptibility map of Takengon shows the probabilities, which represent relative degrees of susceptibility for landslide proneness in Takengon area.
Griñan-Ferré, Christian; Pérez-Cáceres, David; Gutiérrez-Zetina, Sofía Martínez; Camins, Antoni; Palomera-Avalos, Verónica; Ortuño-Sahagún, Daniel; Rodrigo, M Teresa; Pallàs, M
2016-05-01
The environment in which organisms live can greatly influence their development. Consequently, environmental enrichment (EE) is progressively recognized as an important component in the improvement of brain function and development. It has been demonstrated that rodents raised under EE conditions exhibit favorable neuroanatomical effects that improve their learning, spatial memory, and behavioral performance. Here, by using senescence-accelerated prone mice (SAMP8) and these as a model of adverse genetic conditions for brain development, we determined the effect of EE by raising these mice during early life under favorable conditions. We found a better generalized performance of SAMP8 under EE in the results of four behavioral and learning tests. In addition, we demonstrated broad molecular correlation in the hippocampus by an increase in NeuN and Ki67 expression, as well as an increase in the expression of neurotrophic factors, such as pleiotrophin (PTN) and brain-derived neurotrophic factor (BDNF), with a parallel decrease in neurodegenerative markers such as GSK3, amyloid-beta precursor protein, and phosphorylated beta-catenin, and a reduction of SBDP120, Bax, GFAP, and interleukin-6 (IL-6), resulting in a neuroprotective panorama. Globally, it can be concluded that EE applied to SAMP8 at young ages resulted in epigenetic regulatory mechanisms that give rise to significant beneficial effects at the molecular, cellular, and behavioral levels during brain development, particularly in the hippocampus.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cooper, Benjamin T.; Formenti-Ujlaki, George F.; Li, Xiaochun
Purpose: To report the results of a prospective randomized trial comparing a daily versus weekly boost to the tumor cavity during the course of accelerated radiation to the breast with patients in the prone position. Methods and Materials: From 2009 to 2012, 400 patients with stage 0 to II breast cancer who had undergone segmental mastectomy participated in an institutional review board–approved trial testing prone breast radiation therapy to 40.5 Gy in 15 fractions 5 d/wk to the whole breast, after randomization to a concomitant daily boost to the tumor bed of 0.5 Gy, or a weekly boost of 2 Gy, on Friday.more » The present noninferiority trial tested the primary hypothesis that a weekly boost produced no more acute toxicity than did a daily boost. The recurrence-free survival was estimated for both treatment arms using the Kaplan-Meier method; the relative risk of recurrence or death was estimated, and the 2 arms were compared using the log-rank test. Results: At a median follow-up period of 45 months, no deaths related to breast cancer had occurred. The weekly boost regimen produced no more grade ≥2 acute toxicity than did the daily boost regimen (8.1% vs 10.4%; noninferiority Z = −2.52; P=.006). No statistically significant difference was found in the cumulative incidence of long-term fibrosis or telangiectasia of grade ≥2 between the 2 arms (log-rank P=.923). Two local and two distant recurrences developed in the daily treatment arm and three local and one distant developed in the weekly arm. The 4-year recurrence-free survival rate was not different between the 2 treatment arms (98% for both arms). Conclusions: A tumor bed boost delivered either daily or weekly was tolerated similarly during accelerated prone breast radiation therapy, with excellent control of disease and comparable cosmetic results.« less
Segev, Yifat; Livne, Adva; Mints, Meshi; Rosenblum, Kobi
2016-01-01
Aging is the main risk factor for neurodegenerative diseases, including Alzheimer’s disease (AD). However, evidence indicates that the pathological process begins long before actual cognitive or pathological symptoms are apparent. The long asymptomatic phase and complex integration between genetic, environmental and metabolic factors make it one of the most challenging diseases to understand and cure. In the present study, we asked whether an environmental factor such as high-fat (HF) diet would synergize with a genetic factor to affect the metabolic and cognitive state in the Apolipoprotein E (ApoE4) mouse model of AD. Our data suggest that a HF diet induces diabetes mellitus (DM)-like metabolism in ApoE4 mice, as well as changes in β-site amyloid precursor protein-cleaving enzyme 1 (BACE1) protein levels between the two ApoE strains. Furthermore, HF diet induces anxiety in this AD mouse model. Our results suggest that young ApoE4 carriers are prone to psychological stress and metabolic abnormalities related to AD, which can easily be triggered via HF nutrition. PMID:27656136
Temporally and spatially controllable gene expression and knockout in mouse urothelium.
Zhou, Haiping; Liu, Yan; He, Feng; Mo, Lan; Sun, Tung-Tien; Wu, Xue-Ru
2010-08-01
Urothelium that lines almost the entire urinary tract performs important functions and is prone to assaults by urinary microbials, metabolites, and carcinogens. To improve our understanding of urothelial physiology and disease pathogenesis, we sought to develop two novel transgenic systems, one that would allow inducible and urothelium-specific gene expression, and another that would allow inducible and urothelium-specific knockout. Toward this end, we combined the ability of the mouse uroplakin II promoter (mUPII) to drive urothelium-specific gene expression with a versatile tetracycline-mediated inducible system. We found that, when constructed under the control of mUPII, only a modified, reverse tetracycline trans-activator (rtTA-M2), but not its original version (rtTA), could efficiently trans-activate reporter gene expression in mouse urothelium on doxycycline (Dox) induction. The mUPII/rtTA-M2-inducible system retained its strict urothelial specificity, had no background activity in the absence of Dox, and responded rapidly to Dox administration. Using a reporter gene whose expression was secondarily controlled by histone remodeling, we were able to identify, colocalize with 5-bromo-2-deoxyuridine incorporation, and semiquantify newly divided urothelial cells. Finally, we established that, when combined with a Cre recombinase under the control of the tetracycline operon, the mUPII-driven rtTA-M2 could inducibly inactivate any gene of interest in mouse urothelium. The establishment of these two new transgenic mouse systems enables the manipulation of gene expression and/or inactivation in adult mouse urothelium at any given time, thus minimizing potential compensatory effects due to gene overexpression or loss and allowing more accurate modeling of urothelial diseases than previously reported constitutive systems.
Chai, J H; Locke, D P; Ohta, T; Greally, J M; Nicholls, R D
2001-11-01
Prader-Willi syndrome (PWS) results from loss of function of a 1.0- to 1.5-Mb domain of imprinted, paternally expressed genes in human Chromosome (Chr) 15q11-q13. The loss of imprinted gene expression in the homologous region in mouse Chr 7C leads to a similar neonatal PWS phenotype. Several protein-coding genes in the human PWS region are intronless, possibly arising by retrotransposition. Here we present evidence for continued acquisition of genes by the mouse PWS region during evolution. Bioinformatic analyses identified a BAC containing four genes, Mkrn3, Magel2, Ndn, Frat3, and the Atp5l-ps1 pseudogene, the latter two genes derived from recent L1-mediated retrotransposition. Analyses of eight overlapping BACs indicate that these genes are clustered within 120 kb in two inbred strains, in the order tel-Atp5l-ps1-Frat3-Mkrn3-Magel2-Ndn-cen. Imprinting analyses show that Frat3 is differentially methylated and expressed solely from the paternal allele in a transgenic mouse model of Angelman syndrome, with no expression from the maternal allele in a mouse model of PWS. Loss of Frat3 expression may, therefore, contribute to the phenotype of mouse models of PWS. The identification of five intronless genes in a small genomic interval suggests that this region is prone to retroposition in germ cells or their zygotic and embryonic cell precursors, and that it allows the subsequent functional expression of these foreign sequences. The recent evolutionary acquisition of genes that adopt the same imprint as older, flanking genes indicates that the newly acquired genes become 'innocent bystanders' of a primary epigenetic signal causing imprinting in the PWS domain.
Smc1β is required for activation of SAC during mouse oocyte meiosis.
Miao, Yilong; Zhou, Changyin; Cui, Zhaokang; Dai, Xiaoxin; Zhang, Mianqun; Lu, Yajuan; Xiong, Bo
2017-03-19
Smc1β is a meiosis-specific cohesin subunit that is essential for sister chromatid cohesion and DNA recombination. Previous studies have shown that Smc1β-deficient mice in both sexes are sterile. Ablation of Smc1β during male meiosis leads to the blockage of spermatogenesis in pachytene stage, and ablation of Smc1β during female meiosis generates a highly error-prone oocyte although it could develop to metaphase II stage. However, the underlying mechanisms regarding how Smc1β maintains the correct meiotic progression in mouse oocytes have not been clearly defined. Here, we find that GFP-fused Smc1β is expressed and localized to the chromosomes from GV to MII stages during mouse oocyte meiotic maturation. Knockdown of Smc1β by microinjection of gene-specific morpholino causes the impaired spindle apparatus and chromosome alignment which are highly correlated with the defective kinetochore-microtubule attachments, consequently resulting in a prominently higher incidence of aneuploid eggs. In addition, the premature extrusion of polar bodies and escape of metaphase I arrest induced by low dose of nocodazole treatment in Smc1β-depleted oocytes indicates that Smc1β is essential for activation of spindle assembly checkpoint (SAC) activity. Collectively, we identify a novel function of Smc1β as a SAC participant beyond its role in chromosome cohesion during mouse oocyte meiosis.
Pathogenesis of Pancreatic Cancer: Lessons from Animal Models
Murtaugh, L. Charles
2014-01-01
The past several decades have seen great effort devoted to mimicking the key features of pancreatic ductal adenocarcinoma (PDAC) in animals, and have produced two robust models of this deadly cancer. Carcinogen-treated Syrian hamsters develop PDAC with genetic lesions that reproduce those of human, including activation of the Kras oncogene, and early studies in this species validated non-genetic risk factors for PDAC including pancreatitis, obesity and diabetes. More recently, PDAC research has been invigorated by the development of genetically-engineered mouse models based on tissue-specific Kras activation and deletion of tumor suppressor genes. Surprisingly, mouse PDAC appears to arise from exocrine acinar rather than ductal cells, via a process of phenotypic reprogramming that is accelerated by inflammation. Studies in both models have uncovered molecular mechanisms by which inflammation promotes and sustains PDAC, and identified targets for chemoprevention to suppress PDAC in high-risk individuals. The mouse model, in particular, has also been instrumental in developing new approaches to early detection as well as treatment of advanced disease. Together, animal models enable diverse approaches to basic and preclinical research on pancreatic cancer, the results of which will accelerate progress against this currently intractable cancer. PMID:24178582
Baek, Wook-Young; Park, Seung-Yoon; Kim, Yeo Hyang; Lee, Min-A; Kwon, Tae-Hwan; Park, Kwon-Moo; de Crombrugghe, Benoit; Kim, Jung-Eun
2013-01-01
Osterix (Osx) is an essential transcription factor for osteoblast differentiation and bone formation. Osx knockout show a complete absence of bone formation, whereas Osx conditional knockout in osteoblasts produce an osteopenic phenotype after birth. Here, we questioned whether Osx has a potential role in regulating physiological homeostasis. In Osx heterozygotes expressing low levels of Osx in bones, the expression levels of pro-inflammatory cytokines were significantly elevated, indicating that reduced Osx expression may reflect an inflammatory-prone state. In particular, the expression of interleukin-6, a key mediator of chronic inflammation, was increased in Osx heterozygotes and decreased in Osx overexpressing osteoblasts, and transcriptionally down-regulated by Osx. Although no significant differences were revealed in renal morphology and function between Osx heterozygotes and wild-type under normoxic conditions, recovery of kidneys after ischemic damage was remarkably delayed in Osx heterozygotes, as indicated by elevated blood urea nitrogen and creatinine levels, and by morphological alterations consistent with acute tubular necrosis. Eventually, protracted low Osx expression level caused an inflammatory-prone state in the body, resulting in the enhanced susceptibility to renal injury and the delayed renal repair after ischemia/reperfusion. This study suggests that the maintenance of Osx expression in bone is important in terms of preventing the onset of an inflammatory-prone state. PMID:23922826
Size of lethality target in mouse immature oocytes determined with accelerated heavy ions.
Straume, T; Dobson, R L; Kwan, T C
1989-01-01
Mouse immature oocytes were irradiated in vivo with highly charged, heavy ions from the Bevalac accelerator at the Lawrence Berkeley Laboratory. The particles used were 670-MeV/nucleon Si14+, 570-MeV/nucleon Ar18+, and 450-MeV/nucleon Fe26+. The cross-sectional area of the lethality target in these extremely radiosensitive cells was determined from fluence-response curves and information on energy deposition by delta rays. Results indicate a target cross-section larger than that of the nucleus, one which closely approximates the cross-sectional area of the entire oocyte. For 450-MeV/nucleon Fe26+ particles, the predicted target cross-sectional area is 120 +/- 16 microns2, comparing well with the microscopically determined cross-sectional area of 111 +/- 12 microns2 for these cells. The present results are in agreement with our previous target studies which implicate the oocyte plasma membrane.
Martínez-García, Cristina; Izquierdo, Adriana; Velagapudi, Vidya; Vivas, Yurena; Velasco, Ismael; Campbell, Mark; Burling, Keith; Cava, Fernando; Ros, Manuel; Orešič, Matej; Vidal-Puig, Antonio; Medina-Gomez, Gema
2012-01-01
SUMMARY Individuals with metabolic syndrome are at high risk of developing chronic kidney disease (CKD) through unclear pathogenic mechanisms. Obesity and diabetes are known to induce glucolipotoxic effects in metabolically relevant organs. However, the pathogenic role of glucolipotoxicity in the aetiology of diabetic nephropathy is debated. We generated a murine model, the POKO mouse, obtained by crossing the peroxisome proliferator-activated receptor gamma 2 (PPARγ2) knockout (KO) mouse into a genetically obese ob/ob background. We have previously shown that the POKO mice showed: hyperphagia, insulin resistance, hyperglycaemia and dyslipidaemia as early as 4 weeks of age, and developed a complete loss of normal β-cell function by 16 weeks of age. Metabolic phenotyping of the POKO model has led to investigation of the structural and functional changes in the kidney and changes in blood pressure in these mice. Here we demonstrate that the POKO mouse is a model of renal disease that is accelerated by high levels of glucose and lipid accumulation. Similar to ob/ob mice, at 4 weeks of age these animals exhibited an increased urinary albumin:creatinine ratio and significantly increased blood pressure, but in contrast showed a significant increase in the renal hypertrophy index and an associated increase in p27Kip1 expression compared with their obese littermates. Moreover, at 4 weeks of age POKO mice showed insulin resistance, an alteration of lipid metabolism and glomeruli damage associated with increased transforming growth factor beta (TGFβ) and parathyroid hormone-related protein (PTHrP) expression. At this age, levels of proinflammatory molecules, such as monocyte chemoattractant protein-1 (MCP-1), and fibrotic factors were also increased at the glomerular level compared with levels in ob/ob mice. At 12 weeks of age, renal damage was fully established. These data suggest an accelerated lesion through glucolipotoxic effects in the renal pathogenesis in POKO mice. PMID:22773754
Martínez-García, Cristina; Izquierdo, Adriana; Velagapudi, Vidya; Vivas, Yurena; Velasco, Ismael; Campbell, Mark; Burling, Keith; Cava, Fernando; Ros, Manuel; Oresic, Matej; Vidal-Puig, Antonio; Medina-Gomez, Gema
2012-09-01
Individuals with metabolic syndrome are at high risk of developing chronic kidney disease (CKD) through unclear pathogenic mechanisms. Obesity and diabetes are known to induce glucolipotoxic effects in metabolically relevant organs. However, the pathogenic role of glucolipotoxicity in the aetiology of diabetic nephropathy is debated. We generated a murine model, the POKO mouse, obtained by crossing the peroxisome proliferator-activated receptor gamma 2 (PPARγ2) knockout (KO) mouse into a genetically obese ob/ob background. We have previously shown that the POKO mice showed: hyperphagia, insulin resistance, hyperglycaemia and dyslipidaemia as early as 4 weeks of age, and developed a complete loss of normal β-cell function by 16 weeks of age. Metabolic phenotyping of the POKO model has led to investigation of the structural and functional changes in the kidney and changes in blood pressure in these mice. Here we demonstrate that the POKO mouse is a model of renal disease that is accelerated by high levels of glucose and lipid accumulation. Similar to ob/ob mice, at 4 weeks of age these animals exhibited an increased urinary albumin:creatinine ratio and significantly increased blood pressure, but in contrast showed a significant increase in the renal hypertrophy index and an associated increase in p27(Kip1) expression compared with their obese littermates. Moreover, at 4 weeks of age POKO mice showed insulin resistance, an alteration of lipid metabolism and glomeruli damage associated with increased transforming growth factor beta (TGFβ) and parathyroid hormone-related protein (PTHrP) expression. At this age, levels of proinflammatory molecules, such as monocyte chemoattractant protein-1 (MCP-1), and fibrotic factors were also increased at the glomerular level compared with levels in ob/ob mice. At 12 weeks of age, renal damage was fully established. These data suggest an accelerated lesion through glucolipotoxic effects in the renal pathogenesis in POKO mice.
Tang, Wei; Tian, Jingjing; Zheng, Qiang; Yan, Lin; Wang, Jiangxue; Li, Zhou; Wang, Zhong Lin
2015-08-25
Bone remodeling or orthodontic treatment is usually a long-term process. It is highly desirable to speed up the process for effective medical treatment. In this work, a self-powered low-level laser cure system for osteogenesis is developed using the power generated by the triboelectric nanogenerator. It is found that the system significantly accelerated the mouse embryonic osteoblasts' proliferation and differentiation, which is essential for bone and tooth healing. The system is further demonstrated to be driven by a living creature's motions, such as human walking or a mouse's breathing, suggesting its practical use as a portable or implantable clinical cure for bone remodeling or orthodontic treatment.
Kocher, Brandon; Piwnica-Worms, David
2013-01-01
Bioluminescent imaging (BLI) is a powerful non-invasive tool that has dramatically accelerated the in vivo interrogation of cancer systems and longitudinal analysis of mouse models of cancer over the past decade. Various luciferase enzymes have been genetically engineered into mouse models (GEMMs) of cancer which permit investigation of cellular and molecular events associated with oncogenic transcription, post-transcriptional processing, protein-protein interactions, transformation and oncogene addiction in live cells and animals. Luciferase-coupled GEMMs ultimately serve as a non-invasive, repetitive, longitudinal, and physiological means by which cancer systems and therapeutic responses can be investigated accurately within the autochthonous context of a living animal. PMID:23585416
The menopausal mouse: a new neural paradigm of a distressing human condition.
Danilovich, Natalia; Sairam, M Ram; Maysinger, Dusica
2003-08-26
Progressive and long-term sex hormone imbalance in the FSH-R haploinsufficient menopausal mouse leads to degenerative changes in the CNS associated with increased anxiety. The brain region most affected by aging in these mice is the hippocampus. Choline acetyltransferase (ChAT) enzymatic activity and synapsin immunoreactivity are reduced at 20 months of age. Neurons in the dentate gyrus show signs of progressive degenerative changes, hypertrophy and glyosis, and subsequent cell shrinkage and death. These results suggest that the menopausal mouse mimics degenerative changes in the hippocampus of hormonally imbalanced aging humans. We propose using this animal model to test the effectiveness of potential therapeutics in paradigms of accelerated aging.
Accelerated self-gated UTE MRI of the murine heart
NASA Astrophysics Data System (ADS)
Motaal, Abdallah G.; Noorman, Nils; De Graaf, Wolter L.; Florack, Luc J.; Nicolay, Klaas; Strijkers, Gustav J.
2014-03-01
We introduce a new protocol to obtain radial Ultra-Short TE (UTE) MRI Cine of the beating mouse heart within reasonable measurement time. The method is based on a self-gated UTE with golden angle radial acquisition and compressed sensing reconstruction. The stochastic nature of the retrospective triggering acquisition scheme produces an under-sampled and random kt-space filling that allows for compressed sensing reconstruction, hence reducing scan time. As a standard, an intragate multislice FLASH sequence with an acquisition time of 4.5 min per slice was used to produce standard Cine movies of 4 mice hearts with 15 frames per cardiac cycle. The proposed self-gated sequence is used to produce Cine movies with short echo time. The total scan time was 11 min per slice. 6 slices were planned to cover the heart from the base to the apex. 2X, 4X and 6X under-sampled k-spaces cine movies were produced from 2, 1 and 0.7 min data acquisitions for each slice. The accelerated cine movies of the mouse hearts were successfully reconstructed with a compressed sensing algorithm. Compared to the FLASH cine images, the UTE images showed much less flow artifacts due to the short echo time. Besides, the accelerated movies had high image quality and the undersampling artifacts were effectively removed. Left ventricular functional parameters derived from the standard and the accelerated cine movies were nearly identical.
Tracking Second Thoughts: Continuous and Discrete Revision Processes during Visual Lexical Decision
Barca, Laura; Pezzulo, Giovanni
2015-01-01
We studied the dynamics of lexical decisions by asking participants to categorize lexical and nonlexical stimuli and recording their mouse movements toward response buttons during the choice. In a previous report we revealed greater trajectory curvature and attraction to competitors for Low Frequency words and Pseudowords. This analysis did not clarify whether the trajectory curvature in the two conditions was due to a continuous dynamic competition between the response alternatives or if a discrete revision process (a "change of mind") took place during the choice from an initially selected response to the opposite one. To disentangle these two possibilities, here we analyse the velocity and acceleration profiles of mouse movements during the choice. Pseudowords' peak movement velocity occurred with 100ms delay with respect to words and Letters Strings. Acceleration profile for High and Low Frequency words and Letters Strings exhibited a butterfly plot with one acceleration peak at 400ms and one deceleration peak at 650ms. Differently, Pseudowords' acceleration profile had double positive peaks (at 400 and 600ms) followed by movement deceleration, in correspondence with changes in the decision from lexical to nonlexical response buttons. These results speak to different online processes during the categorization of Low Frequency words and Pseudowords, with a continuous competition process for the former and a discrete revision process for the latter. PMID:25699992
Kishikawa, Takahiro; Otsuka, Motoyuki; Suzuki, Tatsunori; Seimiya, Takahiro; Sekiba, Kazuma; Ishibashi, Rei; Tanaka, Eri; Ohno, Motoko; Yamagami, Mari; Koike, Kazuhiko
2018-05-10
Highly repetitive tandem arrays such as satellite sequences in the centromeric and pericentromeric regions of chromosomes, which were previously considered to be silent, are actively transcribed in various biological processes, including cancers. In the pancreas, this aberrant expression occurs even in Kras-mutated pancreatic intraepithelial neoplasia (PanIN) tissues, which are precancerous lesions. To determine the biological role of satellite RNAs in carcinogenesis in vivo , we constructed mouse major satellite (MajSAT) RNA-expressing transgenic mice. However, these transgenic mice did not show spontaneous malignant tumor formation under normal breeding. Importantly, however, DNA damage was increased in pancreatic tissues induced by caerulein treatment or high-fat diet, which may be due to impaired nuclear localization of Y-Box Binding Protein 1 (YBX1), a component of the DNA damage repair machinery. In addition, when crossed with pancreas-specific Kras-mutant mice, MajSAT RNA expression resulted in an earlier increase in PanIN formation. These results suggest that aberrant MajSAT RNA expression accelerates oncogenesis by increasing the probability of a second driver mutation, thus accelerating cells to exit from the breakthrough phase to the expansion phase. Implications: Aberrant expression of satellite RNAs accelerates oncogenesis through a mechanism involving increased DNA damage. Mol Cancer Res; 1-8. ©2018 AACR. ©2018 American Association for Cancer Research.
Expression of endogenous mouse APP modulates β-amyloid deposition in hAPP-transgenic mice.
Steffen, Johannes; Krohn, Markus; Schwitlick, Christina; Brüning, Thomas; Paarmann, Kristin; Pietrzik, Claus U; Biverstål, Henrik; Jansone, Baiba; Langer, Oliver; Pahnke, Jens
2017-06-20
Amyloid-β (Aβ) deposition is one of the hallmarks of the amyloid hypothesis in Alzheimer's disease (AD). Mouse models using APP-transgene overexpression to generate amyloid plaques have shown to model only certain parts of the disease. The extent to which the data from mice can be transferred to man remains controversial. Several studies have shown convincing treatment results in reducing Aβ and enhancing cognition in mice but failed totally in human. One model-dependent factor has so far been almost completely neglected: the endogenous expression of mouse APP and its effects on the transgenic models and the readout for therapeutic approaches.Here, we report that hAPP-transgenic models of amyloidosis devoid of endogenous mouse APP expression (mAPP-knockout / mAPPko) show increased amounts and higher speed of Aβ deposition than controls with mAPP. The number of senile plaques and the level of aggregated hAβ were elevated in mAPPko mice, while the deposition in cortical blood vessels was delayed, indicating an alteration in the general aggregation propensity of hAβ together with endogenous mAβ. Furthermore, the cellular response to Aβ deposition was modulated: mAPPko mice developed a pronounced and age-dependent astrogliosis, while microglial association to amyloid plaques was diminished. The expression of human and murine aggregation-prone proteins with differing amino acid sequences within the same mouse model might not only alter the extent of deposition but also modulate the route of pathogenesis, and thus, decisively influence the study outcome, especially in translational research.
Yao, Zhihui; Li, Haisheng; He, Weifeng; Yang, Sisi; Zhang, Xiaorong; Zhan, Rixing; Xu, Rui; Tan, Jianglin; Zhou, Junyi; Wu, Jun; Luo, Gaoxing
2017-03-15
P311 is a newly discovered functional gene, and it has been proved to play a key role in blood pressure homeostasis, glioblastoma invasion, renal fibrosis, hypertrophic scar formation, and others. In this study, for the first time, we found that P311 could enhance reepithelialization during wound healing via promoting epidermal stem cell (EpSC) migration through Rho GTPases. P311 expression was highly increased in neo-epidermal cells during human and mouse skin wound healing, and P311was co-localized with 5-bromo-2'-deoxyuridine positive label-retaining cells in a mouse superficial second-degree burn wound model. Furthermore, transfection of human EpSCs with adenovirus encoding P311 significantly accelerated the cell migration in vitro. Moreover, highly expressed P311 could enhance the activities of the Rho GTPases (RhoA, Rac1, and Cdc42) in cultured human EpSCs. P311-knockout mouse EpSCs showed dramatically decreased cell migration and activities of Rho GTPases (RhoA, Rac1, and Cdc42). Besides, both the RhoA-specific inhibitor and the Rac1 inhibitor, not the Cdc42 inhibitor, could significantly suppress P311-induced human EpSC migration. In vivo, the reepithelialization was markedly impaired during wound healing after P311 was knocked out. Together, our results suggested that P311 could accelerate skin wound reepithelialization by promoting the migration of EpSCs through RhoA and Rac1 activation. P311 could serve as a novel target for regulation of EpSC migration during cutaneous wound healing.
Verhey, Theodore B; Castellanos, Mildred; Chaconas, George
2018-05-29
The Lyme disease spirochete, Borrelia burgdorferi, uses antigenic variation as a strategy to evade the host's acquired immune response. New variants of surface-localized VlsE are generated efficiently by unidirectional recombination from 15 unexpressed vls cassettes into the vlsE locus. Using algorithms to analyze switching from vlsE sequencing data, we characterize a population of over 45,000 inferred recombination events generated during mouse infection. We present evidence for clustering of these recombination events within the population and along the vlsE gene, a role for the direct repeats flanking the variable region in vlsE, and the importance of sequence homology in determining the location of recombination, despite RecA's dispensability. Finally, we report that non-templated sequence variation is strongly associated with recombinational switching and occurs predominantly at the 5' end of conversion tracts. This likely results from an error-prone repair mechanism operational during recombinational switching that elevates the mutation rate > 5,000-fold in switched regions. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.
Cathepsins L and Z Are Critical in Degrading Polyglutamine-containing Proteins within Lysosomes*
Bhutani, Nidhi; Piccirillo, Rosanna; Hourez, Raphael; Venkatraman, Prasanna; Goldberg, Alfred L.
2012-01-01
In neurodegenerative diseases caused by extended polyglutamine (polyQ) sequences in proteins, aggregation-prone polyQ proteins accumulate in intraneuronal inclusions. PolyQ proteins can be degraded by lysosomes or proteasomes. Proteasomes are unable to hydrolyze polyQ repeat sequences, and during breakdown of polyQ proteins, they release polyQ repeat fragments for degradation by other cellular enzymes. This study was undertaken to identify the responsible proteases. Lysosomal extracts (unlike cytosolic enzymes) were found to rapidly hydrolyze polyQ sequences in peptides, proteins, or insoluble aggregates. Using specific inhibitors against lysosomal proteases, enzyme-deficient extracts, and pure cathepsins, we identified cathepsins L and Z as the lysosomal cysteine proteases that digest polyQ proteins and peptides. RNAi for cathepsins L and Z in different cell lines and adult mouse muscles confirmed that they are critical in degrading polyQ proteins (expanded huntingtin exon 1) but not other types of aggregation-prone proteins (e.g. mutant SOD1). Therefore, the activities of these two lysosomal cysteine proteases are important in host defense against toxic accumulation of polyQ proteins. PMID:22451661
Breaching peripheral tolerance promotes the production of HIV-1–neutralizing antibodies
Schroeder, Kristin M.S.; Harper, Michael S.; Santiago, Mario L.
2017-01-01
A subset of characterized HIV-1 broadly neutralizing antibodies (bnAbs) are polyreactive with additional specificities for self-antigens and it has been proposed immunological tolerance may present a barrier to their participation in protective humoral immunity. We address this hypothesis by immunizing autoimmune-prone mice with HIV-1 Envelope (Env) and characterizing the primary antibody response for HIV-1 neutralization. We find autoimmune mice generate neutralizing antibody responses to tier 2 HIV-1 strains with alum treatment alone in the absence of Env. Importantly, experimentally breaching immunological tolerance in wild-type mice also leads to the production of tier 2 HIV-1–neutralizing antibodies, which increase in breadth and potency following Env immunization. In both genetically prone and experimentally induced mouse models of autoimmunity, increased serum levels of IgM anti-histone H2A autoantibodies significantly correlated with tier 2 HIV-1 neutralization, and anti-H2A antibody clones were found to neutralize HIV-1. These data demonstrate that breaching peripheral tolerance permits a cross-reactive HIV-1 autoantibody response able to neutralize HIV-1. PMID:28698284
Characteristics of Vibration that Alter Cardiovascular Parameters in Mice
Li, Yao; Rabey, Karyne N; Schmitt, Daniel; Norton, John N; Reynolds, Randall P
2015-01-01
We hypothesized that short-term exposure of mice to vibration within a frequency range thought to be near the resonant frequency range of mouse tissue and at an acceleration of 0 to 1 m/s2 would alter heart rate (HR) and mean arterial pressure (MAP). We used radiotelemetry to evaluate the cardiovascular response to vibration in C57BL/6 and CD1 male mice exposed to vertical vibration of various frequencies and accelerations. MAP was consistently increased above baseline values at an acceleration near 1 m/s2 and a frequency of 90 Hz in both strains, and HR was increased also in C57BL/6 mice. In addition, MAP increased at 80 Hz in individual mice of both strains. When both strains were analyzed together, mean MAP and HR were increased at 90 Hz at 1 m/s2, and HR was increased at 80 Hz at 1 m/s2. No consistent change in MAP or HR occurred when mice were exposed to frequencies below 80 Hz or above 90 Hz. The increase in MAP and HR occurred only when the mice had conscious awareness of the vibration, given that these changes did not occur when anesthetized mice were exposed to vibration. Tested vibration acceleration levels lower than 0.75 m/s2 did not increase MAP or HR at 80 or 90 Hz, suggesting that a relatively high level of vibration is necessary to increase these parameters. These data are important to establish the harmful frequencies and accelerations of environmental vibration that should be minimized or avoided in mouse facilities. PMID:26224436
Naumenko, Ekaterina Anatolevna; Ahlemeyer, Barbara; Baumgart-Vogt, Eveline
2017-03-01
2,4,6-Trinitrotoluene (TNT) has been widely used as an explosive substance and its toxicity is still of interest as it persisted in polluted areas. TNT is metabolized in hepatocytes which are prone to its toxicity. Since analysis of the human liver or hepatocytes is restricted due to ethical reasons, we investigated the effects of TNT on cell viability, reactive oxygen species (ROS) production, peroxisome proliferation, and antioxidative enzymes in human (HepG2), mouse (Hepa 1-6), and rat (H4IIEC3) hepatoma cell lines. Under control conditions, hepatoma cells of all three species were highly comparable exhibiting identical proliferation rates and distribution of their cell cycle phases. However, we found strong differences in TNT toxicity with the lowest IC 50 values (highest cell death rate) for rat cells, whereas human and mouse cells were three to sevenfold less sensitive. Moreover, a strong decrease in cellular dehydrogenase activity (MTT assay) and increased ROS levels were noted. TNT caused peroxisome proliferation with rat hepatoma cells being most responsive followed by those from mouse and human. Under control conditions, rat cells contained fivefold higher peroxisomal catalase and mitochondrial SOD2 activities and a twofold higher capacity to reduce MTT than human and mouse cells. TNT treatment caused an increase in catalase and SOD2 mRNA and protein levels in human and mouse, but not in rat cells. Similarly, human and mouse cells upregulated SOD2 activity, whereas rat cells failed therein. We conclude that TNT induced oxidative stress, peroxisome proliferation and mitochondrial damage which are highest in rat cells rendering them most susceptible toward TNT. © 2016 Wiley Periodicals, Inc. Environ Toxicol 32: 989-1006, 2017. © 2016 Wiley Periodicals, Inc.
Correlation of disease severity with body weight and high fat diet in the FATZO/Pco mouse.
Droz, Brian A; Sneed, Bria L; Jackson, Charles V; Zimmerman, Karen M; Michael, M Dodson; Emmerson, Paul J; Coskun, Tamer; Peterson, Richard G
2017-01-01
Obesity in many current pre-clinical animal models of obesity and diabetes is mediated by monogenic mutations; these are rarely associated with the development of human obesity. A new mouse model, the FATZO mouse, has been developed to provide polygenic obesity and a metabolic pattern of hyperglycemia and hyperinsulinemia, that support the presence of insulin resistance similar to metabolic disease in patients with insulin resistance/type 2 diabetes. The FATZO mouse resulted from a cross of C57BL/6J and AKR/J mice followed by selective inbreeding for obesity, increased insulin and hyperglycemia. Since many clinical studies have established a close link between higher body weight and the development of type 2 diabetes, we investigated whether time to progression to type 2 diabetes or disease severity in FATZO mice was dependent on weight gain in young animals. Our results indicate that lighter animals developed metabolic disturbances much slower and to a lesser magnitude than their heavier counterparts. Consumption of a diet containing high fat, accelerated weight gain in parallel with disease progression. A naturally occurring and significant variation in the body weight of FATZO offspring enables these mice to be identified as low, mid and high body weight groups at a young age. These weight groups remain into adulthood and correspond to slow, medium and accelerated development of type 2 diabetes. Thus, body weight inclusion criteria can optimize the FATZO model for studies of prevention, stabilization or treatment of type 2 diabetes.
Correlation of disease severity with body weight and high fat diet in the FATZO/Pco mouse
Droz, Brian A.; Sneed, Bria L.; Jackson, Charles V.; Zimmerman, Karen M.; Michael, M. Dodson; Emmerson, Paul J.; Coskun, Tamer
2017-01-01
Obesity in many current pre-clinical animal models of obesity and diabetes is mediated by monogenic mutations; these are rarely associated with the development of human obesity. A new mouse model, the FATZO mouse, has been developed to provide polygenic obesity and a metabolic pattern of hyperglycemia and hyperinsulinemia, that support the presence of insulin resistance similar to metabolic disease in patients with insulin resistance/type 2 diabetes. The FATZO mouse resulted from a cross of C57BL/6J and AKR/J mice followed by selective inbreeding for obesity, increased insulin and hyperglycemia. Since many clinical studies have established a close link between higher body weight and the development of type 2 diabetes, we investigated whether time to progression to type 2 diabetes or disease severity in FATZO mice was dependent on weight gain in young animals. Our results indicate that lighter animals developed metabolic disturbances much slower and to a lesser magnitude than their heavier counterparts. Consumption of a diet containing high fat, accelerated weight gain in parallel with disease progression. A naturally occurring and significant variation in the body weight of FATZO offspring enables these mice to be identified as low, mid and high body weight groups at a young age. These weight groups remain into adulthood and correspond to slow, medium and accelerated development of type 2 diabetes. Thus, body weight inclusion criteria can optimize the FATZO model for studies of prevention, stabilization or treatment of type 2 diabetes. PMID:28640904
Alterations in nuclear structure promote lupus autoimmunity in a mouse model
Singh, Namrata; Johnstone, Duncan B.; Martin, Kayla A.; Tempera, Italo; Kaplan, Mariana J.
2016-01-01
ABSTRACT Systemic lupus erythematosus (SLE) is an autoimmune disorder characterized by the development of autoantibodies that recognize components of the cell nucleus. The vast majority of lupus research has focused on either the contributions of immune cell dysfunction or the genetics of the disease. Because granulocytes isolated from human SLE patients had alterations in neutrophil nuclear morphology that resembled the Pelger–Huet anomaly, and had prominent mis-splicing of mRNA encoding the nuclear membrane protein lamin B receptor (LBR), consistent with their Pelger–Huet-like nuclear morphology, we used a novel mouse model system to test the hypothesis that a disruption in the structure of the nucleus itself also contributes to the development of lupus autoimmunity. The lupus-prone mouse strain New Zealand White (NZW) was crossed with c57Bl/6 mice harboring a heterozygous autosomal dominant mutation in Lbr (B6.Lbric/+), and the (NZW×B6.Lbric)F1 offspring were evaluated for induction of lupus autoimmunity. Only female (NZW×B6.Lbric)F1 mice developed lupus autoimmunity, which included splenomegaly, kidney damage and autoantibodies. Kidney damage was accompanied by immune complex deposition, and perivascular and tubule infiltration of mononuclear cells. The titers of anti-chromatin antibodies exceeded those of aged female MRL-Faslpr mice, and were predominantly of the IgG2 subclasses. The anti-nuclear antibody staining profile of female (NZW×B6.Lbric)F1 sera was complex, and consisted of an anti-nuclear membrane reactivity that colocalized with the A-type lamina, in combination with a homogeneous pattern that was related to the recognition of histones with covalent modifications that are associated with gene activation. An anti-neutrophil IgM recognizing calreticulin, but not myeloperoxidase (MPO) or proteinase 3 (PR3), was also identified. Thus, alterations in nuclear structure contribute to lupus autoimmunity when expressed in the context of a lupus-prone genetic background, suggesting a mechanism for the development of lupus autoimmunity in genetically predisposed individuals that is induced by the disruption of nuclear architecture. PMID:27483354
Keil, Deborah E; Peden-Adams, Margie M; Wallace, Stacy; Ruiz, Phillip; Gilkeson, Gary S
2009-04-01
There is increasing laboratory and epidemiologic evidence relating exposure to trichloroethylene (TCE) with autoimmune disease including scleroderma and lupus. New Zealand Black/New Zealand White (NZBWF1) and B6C3F1 mice were exposed to TCE (0, 1, 400 or 14,000 ppb) via drinking water for 27 or 30 weeks, respectively. NZBWF1 mice spontaneously develop autoimmune disease while B6C3F1 mice, a standard strain used in immunotoxicology testing, are not genetically prone to develop autoimmune disease. During the TCE exposure period, serum levels of total IgG, and autoantibodies (anti-ssDNA, -dsDNA, and -glomerular antigen [GA]) were monitored. At the termination of the study, renal pathology, natural killer (NK) cell activity, total IgG levels, autoantibody production, T-cell activation, and lymphocytic proliferative responses were evaluated. TCE did not alter NK cell activity, or T- and B-cell proliferation in either strain. Numbers of activated T-cells (CD4+/CD44+) were increased in the B6C3F1 mice but not in the NZBWF1 mice. Renal pathology, as indicated by renal score, was significantly increased in the B6C3F1, but not in the NZBWF1 mice. Serum levels of autoantibodies to dsDNA and ssDNA were increased at more time points in B6C3F1, as compared to the NZBWF1 mice. Anti-GA autoantibodies were increased by TCE treatment in early stages of the study in NZBWF1 mice, but by 23 weeks of age, control levels were comparable to those of TCE-exposed animals. Serum levels anti-GA autoantibodies in B6C3F1 were not affected by TCE exposure. Overall, these data suggest that TCE did not contribute to the progression of autoimmune disease in autoimmune-prone mice during the period of 11-36 weeks of age, but rather lead to increased expression of markers associated with autoimmune disease in a non-genetically prone mouse strain.
Poon, H Fai; Farr, Susan A; Thongboonkerd, Visith; Lynn, Bert C; Banks, William A; Morley, John E; Klein, Jon B; Butterfield, D Allan
2005-01-01
Free radical-mediated damage to neuronal membrane components has been implicated in the etiology of Alzheimer's disease (AD) and aging. The senescence accelerated prone mouse strain 8 (SAMP8) exhibits age-related deterioration in memory and learning along with increased oxidative markers. Therefore, SAMP8 is a suitable model to study brain aging and, since aging is the major risk factor for AD and SAMP8 exhibits many of the biochemical findings of AD, perhaps as a model for and the early phase of AD. Our previous studies reported higher oxidative stress markers in brains of 12-month-old SAMP8 mice when compared to that of 4-month-old SAMP8 mice. Further, we have previously shown that injecting the mice with alpha-lipoic acid (LA) reversed brain lipid peroxidation, protein oxidation, as well as the learning and memory impairments in SAMP8 mice. Recently, we reported the use of proteomics to identify proteins that are expressed differently and/or modified oxidatively in aged SAMP8 brains. In order to understand how LA reverses the learning and memory deficits of aged SAMP8 mice, in the current study, we used proteomics to compare the expression levels and specific carbonyl levels of proteins in brains from 12-month-old SAMP8 mice treated or not treated with LA. We found that the expressions of the three brain proteins (neurofilament triplet L protein, alpha-enolase, and ubiquitous mitochondrial creatine kinase) were increased significantly and that the specific carbonyl levels of the three brain proteins (lactate dehydrogenase B, dihydropyrimidinase-like protein 2, and alpha-enolase) were significantly decreased in the aged SAMP8 mice treated with LA. These findings suggest that the improved learning and memory observed in LA-injected SAMP8 mice may be related to the restoration of the normal condition of specific proteins in aged SAMP8 mouse brain. Moreover, our current study implicates neurofilament triplet L protein, alpha-enolase, ubiquitous mitochondrial creatine kinase, lactate dehydrogenase B, and dihydropyrimidinase-like protein 2 in process associated with learning and memory of SAMP8 mice.
Role of the gastrointestinal ecosystem in the development of Type 1 Diabetes
Daft, Joseph G.; Lorenz, Robin G.
2015-01-01
A new emphasis has been put on the role of the gastrointestinal (GI) ecosystem in autoimmune diseases; however, there is limited knowledge about its role in type 1 diabetes (T1D). Distinct differences have been observed in intestinal permeability, epithelial barrier function, commensal microbiota, and mucosal innate and adaptive immunity of patients and animals with T1D, when compared to healthy controls. The non-obese diabetic (NOD) mouse and the BioBreeding diabetes prone (BBdp) rat are the most commonly used models to study T1D pathogenesis. With the increasing awareness of the importance of the GI ecosystem in systemic disease, it is critical to understand the basics, as well as the similarities and differences between rat and mouse models and human patients. This review examines the current knowledge of the role of the GI ecosystem in T1D and indicates the extensive opportunities for further investigation that could lead to biomarkers and therapeutic interventions for disease prevention and/or modulation. PMID:25952017
Mouse Models of Gastric Cancer
Hayakawa, Yoku; Fox, James G.; Gonda, Tamas; Worthley, Daniel L.; Muthupalani, Sureshkumar; Wang, Timothy C.
2013-01-01
Animal models have greatly enriched our understanding of the molecular mechanisms of numerous types of cancers. Gastric cancer is one of the most common cancers worldwide, with a poor prognosis and high incidence of drug-resistance. However, most inbred strains of mice have proven resistant to gastric carcinogenesis. To establish useful models which mimic human gastric cancer phenotypes, investigators have utilized animals infected with Helicobacter species and treated with carcinogens. In addition, by exploiting genetic engineering, a variety of transgenic and knockout mouse models of gastric cancer have emerged, such as INS-GAS mice and TFF1 knockout mice. Investigators have used the combination of carcinogens and gene alteration to accelerate gastric cancer development, but rarely do mouse models show an aggressive and metastatic gastric cancer phenotype that could be relevant to preclinical studies, which may require more specific targeting of gastric progenitor cells. Here, we review current gastric carcinogenesis mouse models and provide our future perspectives on this field. PMID:24216700
Novel targets for Huntington’s disease in an mTOR-independent autophagy pathway
Williams, Andrea; Sarkar, Sovan; Cuddon, Paul; Ttofi, Evangelia K.; Saiki, Shinji; Siddiqi, Farah H.; Jahreiss, Luca; Fleming, Angeleen; Pask, Dean; Goldsmith, Paul; O’Kane, Cahir J.; Floto, R. Andres; Rubinsztein, David C.
2009-01-01
Autophagy is a major clearance route for intracellular aggregate-prone proteins causing diseases like Huntington’s disease. Autophagy induction with the mTOR inhibitor, rapamycin, accelerates clearance of these toxic substrates. As rapamycin has non-trivial side effects, we screened FDA-approved drugs to identify novel autophagy-inducing pathways. We found that L-type Ca2+ channel antagonists, the K+ATP channel opener minoxidil, and the Gi signaling activator clonidine, induce autophagy. These drugs revealed a cyclical mTOR-independent pathway regulating autophagy, where cAMP regulates IP3 levels, influencing calpain activity, which completes the cycle by cleaving and activating Gsα, which regulates cAMP levels. This pathway has numerous potential points where autophagy can be induced and we provide proof-of-principle for therapeutic relevance in Huntington’s disease using mammalian cell, fly and zebrafish models. Our data also suggest that insults that elevate intracytosolic Ca2+, like excitotoxicity, will inhibit autophagy, thus retarding clearance of aggregate-prone proteins. PMID:18391949
de Wind, N; Dekker, M; Claij, N; Jansen, L; van Klink, Y; Radman, M; Riggins, G; van der Valk, M; van't Wout, K; te Riele, H
1999-11-01
Cancer predisposition in hereditary non-polyposis colon cancer (HNPCC) is caused by defects in DNA mismatch repair (MMR). Mismatch recognition is attributed to two heterodimeric protein complexes: MutSalpha (refs 2, 3, 4, 5), a dimer of MutS homologues MSH2 and MSH6; and MutSbeta (refs 2,7), a dimer of MSH2 and MSH3. These complexes have specific and redundant mismatch recognition capacity. Whereas MSH2 deficiency ablates the activity of both dimers, causing strong cancer predisposition in mice and men, loss of MSH3 or MSH6 (also known as GTBP) function causes a partial MMR defect. This may explain the rarity of MSH6 and absence of MSH3 germline mutations in HNPCC families. To test this, we have inactivated the mouse genes Msh3 (formerly Rep3 ) and Msh6 (formerly Gtmbp). Msh6-deficient mice were prone to cancer; most animals developed lymphomas or epithelial tumours originating from the skin and uterus but only rarely from the intestine. Msh3 deficiency did not cause cancer predisposition, but in an Msh6 -deficient background, loss of Msh3 accelerated intestinal tumorigenesis. Lymphomagenesis was not affected. Furthermore, mismatch-directed anti-recombination and sensitivity to methylating agents required Msh2 and Msh6, but not Msh3. Thus, loss of MMR functions specific to Msh2/Msh6 is sufficient for lymphoma development in mice, whereas predisposition to intestinal cancer requires loss of function of both Msh2/Msh6 and Msh2/Msh3.
Wang, Jian-hui; Cheng, Xiao-rui; Zhang, Xiao-rui; Wang, Tong-xing; Xu, Wen-jian; Li, Fei; Liu, Feng; Cheng, Jun-ping; Bo, Xiao-chen; Wang, Sheng-qi; Zhou, Wen-xia; Zhang, Yong-xiang
2016-01-01
Senescence-accelerated mouse prone 8 strain (SAMP8) and PrP-hAβPPswe/PS1ΔE9 (APP/PS1) mice are classic animal models of sporadic Alzheimer's disease and familial AD respectively. Our study showed that object recognition memory, spatial learning and memory, active and passive avoidance were deteriorated and neuroendocrine immunomodulation (NIM) network was imbalance in SAMP8 and APP/PS1 mice. SAMP8 and APP/PS1 mice had their own specific phenotype of cognition, neuroendocrine, immune and NIM molecular network. The endocrine hormone corticosterone, luteinizing hormone and follicle-stimulating hormone, chemotactic factor monocyte chemotactic protein-1, macrophage inflammatory protein-1β, regulated upon activation normal T cell expressed and secreted factor and eotaxin, pro-inflammatory factor interleukin-23, and the Th1 cell acting as cell immunity accounted for cognitive deficiencies in SAMP8 mice, while adrenocorticotropic hormone and gonadotropin-releasing hormone, colony stimulating factor granulocyte colony stimulating factor, and Th2 cell acting as humoral immunity in APP/PS1 mice. On the pathway level, chemokine signaling and T cell receptor signaling pathway played the key role in cognition impairments of two models, while cytokine-cytokine receptor interaction and natural killer cell mediated cytotoxicity were more important in cognitive deterioration of SAMP8 mice than APP/PS1 mice. This mechanisms of NIM network underlying cognitive impairment is significant for further understanding the pathogenesis of AD and can provide useful information for development of AD therapeutic drug. PMID:27049828
Which host-dependent insects are most prone to coextinction under changed climates?
Moir, Melinda L; Hughes, Lesley; Vesk, Peter A; Leng, Mei Chen
2014-01-01
Coextinction (loss of dependent species with their host or partner species) presents a threat to untold numbers of organisms. Climate change may act synergistically to accelerate rates of coextinction. In this review, we present the first synthesis of the available literature and propose a novel schematic diagram that can be used when assessing the potential risk climate change represents for dependent species. We highlight traits that may increase the susceptibility of insect species to coextinction induced by climate change, suggest the most influential host characteristics, and identify regions where climate change may have the greatest impact on dependent species. The aim of this review was to provide a platform for future research, directing efforts toward taxa and habitats at greatest risk of species loss through coextinction accelerated by climate change. PMID:24834327
Semi-automated quantification and neuroanatomical mapping of heterogeneous cell populations.
Mendez, Oscar A; Potter, Colin J; Valdez, Michael; Bello, Thomas; Trouard, Theodore P; Koshy, Anita A
2018-07-15
Our group studies the interactions between cells of the brain and the neurotropic parasite Toxoplasma gondii. Using an in vivo system that allows us to permanently mark and identify brain cells injected with Toxoplasma protein, we have identified that Toxoplasma-injected neurons (TINs) are heterogeneously distributed throughout the brain. Unfortunately, standard methods to quantify and map heterogeneous cell populations onto a reference brain atlas are time consuming and prone to user bias. We developed a novel MATLAB-based semi-automated quantification and mapping program to allow the rapid and consistent mapping of heterogeneously distributed cells on to the Allen Institute Mouse Brain Atlas. The system uses two-threshold background subtraction to identify and quantify cells of interest. We demonstrate that we reliably quantify and neuroanatomically localize TINs with low intra- or inter-observer variability. In a follow up experiment, we show that specific regions of the mouse brain are enriched with TINs. The procedure we use takes advantage of simple immunohistochemistry labeling techniques, use of a standard microscope with a motorized stage, and low cost computing that can be readily obtained at a research institute. To our knowledge there is no other program that uses such readily available techniques and equipment for mapping heterogeneous populations of cells across the whole mouse brain. The quantification method described here allows reliable visualization, quantification, and mapping of heterogeneous cell populations in immunolabeled sections across whole mouse brains. Copyright © 2018 Elsevier B.V. All rights reserved.
The cathelicidin protein CRAMP is a potential atherosclerosis self-antigen in ApoE(-/-) mice
Mihailovic, Peter M.; Lio, Wai Man; Yano, Juliana; Zhao, Xiaoning; Zhou, Jianchang; Chyu, Kuang-Yuh; Shah, Prediman K.; Cercek, Bojan
2017-01-01
Auto-immunity is believed to contribute to inflammation in atherosclerosis. The antimicrobial peptide LL-37, a fragment of the cathelicidin protein precursor hCAP18, was previously identified as an autoantigen in psoriasis. Given the reported link between psoriasis and coronary artery disease, the biological relevance of the autoantigen to atherosclerosis was tested in vitro using a truncated (t) form of the mouse homolog of hCAP18, CRAMP, on splenocytes from athero-prone ApoE(-/-) mice. Stimulation with tCRAMP resulted in increased CD8+ T cells with Central Memory and Effector Memory phenotypes in ApoE(-/-) mice, differentially activated by feeding with normal chow or high fat diet. Immunization of ApoE(-/-) with different doses of the shortened peptide (Cramp) resulted in differential outcomes with a lower dose reducing atherosclerosis whereas a higher dose exacerbating the disease with increased neutrophil infiltration of the atherosclerotic plaques. Low dose Cramp immunization also resulted in increased splenic CD8+ T cell degranulation and reduced CD11b+CD11c+ conventional dendritic cells (cDCs), whereas high dose increased CD11b+CD11c+ cDCs. Our results identified CRAMP, the mouse homolog of hCAP-18, as a potential self-antigen involved in the immune response to atherosclerosis in the ApoE(-/-) mouse model. PMID:29091929
Raitila, Anniina; Lehtonen, Heli J.; Arola, Johanna; Heliövaara, Elina; Ahlsten, Manuel; Georgitsi, Marianthi; Jalanko, Anu; Paetau, Anders; Aaltonen, Lauri A.; Karhu, Auli
2010-01-01
Mutations in the aryl hydrocarbon receptor-interacting protein (AIP) gene have been shown to predispose to pituitary adenoma predisposition, a condition characterized by growth hormone (GH)-secreting pituitary tumors. To study AIP-mediated tumorigenesis, we generated an Aip mouse model. Heterozygous mice developed normally but were prone to pituitary adenomas, in particular to those secreting GH. A complete loss of AIP was detected in these lesions, and full penetrance was reached at the age of 15 months. No excess of any other tumor type was found. Ki-67 analysis indicated that Aip-deficient tumors have higher proliferation rates compared with Aip-proficient tumors, suggesting a more aggressive disease. Similar to human AIP-deficient pituitary adenomas, immunohistochemical studies showed that expression of aryl hydrocarbon receptor nuclear translocator 1 or 2 (ARNT or ARNT2) protein was lost in the mouse tumors, suggesting that mechanisms of AIP-related tumorigenesis involve aberrant ARNT function. The Aip+/− mouse appears to be an excellent model for the respective human disease phenotype. This model constitutes a tool to further study AIP-associated pituitary tumorigenesis and may be potentially valuable in efforts to develop therapeutic strategies to treat pituitary adenomas. PMID:20709796
Srivastava, Meera; Montagna, Cristina; Leighton, Ximena; Glasman, Mirta; Naga, Shanmugam; Eidelman, Ofer; Ried, Thomas; Pollard, Harvey B.
2003-01-01
Annexin 7 (ANX7) acts as a tumor suppressor gene in prostate cancer, where loss of heterozygosity and reduction of ANX7 protein expression is associated with aggressive metastatic tumors. To investigate the mechanism by which this gene controls tumor development, we have developed an Anx7(+/-) knockout mouse. As hypothesized, the Anx7(+/-) mouse has a cancer-prone phenotype. The emerging tumors express low levels of Anx7 protein. Nonetheless, the wild-type Anx7 allele is detectable in laser-capture microdissection-derived tumor tissue cells. Genome array analysis of hepatocellular carcinoma tissue indicates that the Anx7(+/-) genotype is accompanied by profound reductions of expression of several other tumor suppressor genes, DNA repair genes, and apoptosis-related genes. In situ analysis by tissue imprinting from chromosomes in the primary tumor and spectral karyotyping analysis of derived cell lines identify chromosomal instability and clonal chromosomal aberrations. Furthermore, whereas 23% of the mutant mice develop spontaneous neoplasms, all mice exhibit growth anomalies, including gender-specific gigantism and organomegaly. We conclude that haploinsufficiency of Anx7 expression appears to drive disease progression to cancer because of genomic instability through a discrete signaling pathway involving other tumor suppressor genes, DNA-repair genes, and apoptosis-related genes. PMID:14608035
De Wilde, David; Trachet, Bram; Debusschere, Nic; Iannaccone, Francesco; Swillens, Abigail; Degroote, Joris; Vierendeels, Jan; De Meyer, Guido R Y; Segers, Patrick
2016-07-26
The ApoE(-)(/)(-) mouse is a common small animal model to study atherosclerosis, an inflammatory disease of the large and medium sized arteries such as the carotid artery. It is generally accepted that the wall shear stress, induced by the blood flow, plays a key role in the onset of this disease. Wall shear stress, however, is difficult to derive from direct in vivo measurements, particularly in mice. In this study, we integrated in vivo imaging (micro-Computed Tomography-µCT and ultrasound) and fluid-structure interaction (FSI) modeling for the mouse-specific assessment of carotid hemodynamics and wall shear stress. Results were provided for 8 carotid bifurcations of 4 ApoE(-)(/)(-) mice. We demonstrated that accounting for the carotid elasticity leads to more realistic flow waveforms over the complete domain of the model due to volume buffering capacity in systole. The 8 simulated cases showed fairly consistent spatial distribution maps of time-averaged wall shear stress (TAWSS) and relative residence time (RRT). Zones with reduced TAWSS and elevated RRT, potential indicators of atherosclerosis-prone regions, were located mainly at the outer sinus of the external carotid artery. In contrast to human carotid hemodynamics, no flow recirculation could be observed in the carotid bifurcation region. Copyright © 2015 Elsevier Ltd. All rights reserved.
Sargent, Dorian; Verchère, Jérémy; Lazizzera, Corinne; Gaillard, Damien; Lakhdar, Latifa; Streichenberger, Nathalie; Morignat, Eric; Bétemps, Dominique; Baron, Thierry
2017-10-01
The M83 transgenic mouse is a model of human synucleinopathies that develops severe motor impairment correlated with accumulation of the pathological Ser129-phosphorylated α-synuclein (α-syn P ) in the brain and spinal cord. M83 disease can be accelerated by intracerebral inoculation of brain extracts from sick M83 mice. This has also recently been described using peripheral routes, injecting recombinant preformed α-syn fibrils into the muscle or the peritoneum. Here, we inoculated homozygous and/or hemizygous M83 neonates via the intraperitoneal and/or intracerebral routes with two different brain extracts: one from sick M83 mice inoculated with brain extract from other sick M83 mice, and the other derived from a human multiple system atrophy source passaged in M83 mice. Detection of α-syn P using ELISA and western blot confirmed the disease in mice. The distribution of α-syn P in the central nervous system was similar, independently of the inoculum or inoculation route, consistent with previous studies describing M83 disease. ELISA tests revealed higher levels of α-syn P in homozygous than in hemizygous sick M83 mice, at least after IC inoculation. Interestingly, the immunoreactivity of α-syn P detected by ELISA was significantly lower in M83 mice inoculated with the multiple system atrophy inoculum than in M83 mice inoculated with the M83 inoculum, at the first two passages. 'Prion-like' propagation of the synucleinopathy up to the clinical disease was accelerated by both intracerebral and intraperitoneal inoculations of brain extracts from sick mice. This acceleration, however, depends on the levels of α-syn expression by the mouse and the type of inoculum. © 2017 International Society for Neurochemistry.
The use of genetically modified mice in cancer risk assessment: challenges and limitations.
Eastmond, David A; Vulimiri, Suryanarayana V; French, John E; Sonawane, Babasaheb
2013-09-01
The use of genetically modified (GM) mice to assess carcinogenicity is playing an increasingly important role in the safety evaluation of chemicals. While progress has been made in developing and evaluating mouse models such as the Trp53⁺/⁻, Tg.AC and the rasH2, the suitability of these models as replacements for the conventional rodent cancer bioassay and for assessing human health risks remains uncertain. The objective of this research was to evaluate the use of accelerated cancer bioassays with GM mice for assessing the potential health risks associated with exposure to carcinogenic agents. We compared the published results from the GM bioassays to those obtained in the National Toxicology Program's conventional chronic mouse bioassay for their potential use in risk assessment. Our analysis indicates that the GM models are less efficient in detecting carcinogenic agents but more consistent in identifying non-carcinogenic agents. We identified several issues of concern related to the design of the accelerated bioassays (e.g., sample size, study duration, genetic stability and reproducibility) as well as pathway-dependency of effects, and different carcinogenic mechanisms operable in GM and non-GM mice. The use of the GM models for dose-response assessment is particularly problematic as these models are, at times, much more or less sensitive than the conventional rodent cancer bioassays. Thus, the existing GM mouse models may be useful for hazard identification, but will be of limited use for dose-response assessment. Hence, caution should be exercised when using GM mouse models to assess the carcinogenic risks of chemicals.
The use of genetically modified mice in cancer risk assessment: Challenges and limitations*
Eastmond, David A.; Vulimiri, Suryanarayana V.; French, John E.; Sonawane, Babasaheb
2015-01-01
The use of genetically modified (GM) mice to assess carcinogenicity is playing an increasingly important role in the safety evaluation of chemicals. While progress has been made in developing and evaluating mouse models such as the Trp53+/−, Tg.AC and the rasH2, the suitability of these models as replacements for the conventional rodent cancer bioassay and for assessing human health risks remains uncertain. The objective of this research was to evaluate the use of accelerated cancer bioassays with GM mice for assessing the potential health risks associated with exposure to carcinogenic agents. We compared the published results from the GM bioassays to those obtained in the National Toxicology Program’s conventional chronic mouse bioassay for their potential use in risk assessment. Our analysis indicates that the GM models are less efficient in detecting carcinogenic agents but more consistent in identifying non-carcinogenic agents. We identified several issues of concern related to the design of the accelerated bioassays (e.g., sample size, study duration, genetic stability and reproducibility) as well as pathway-dependency of effects, and different carcinogenic mechanisms operable in GM and non-GM mice. The use of the GM models for dose-response assessment is particularly problematic as these models are, at times, much more or less sensitive than the conventional rodent cancer bioassays. Thus, the existing GM mouse models may be useful for hazard identification, but will be of limited use for dose-response assessment. Hence, caution should be exercised when using GM mouse models to assess the carcinogenic risks of chemicals. PMID:23985072
DiStefano, Tyler; Chen, Holly Yu; Panebianco, Christopher; Kaya, Koray Dogan; Brooks, Matthew J; Gieser, Linn; Morgan, Nicole Y; Pohida, Tom; Swaroop, Anand
2018-01-09
Pluripotent stem cells can be differentiated into 3D retinal organoids, with major cell types self-patterning into a polarized, laminated architecture. In static cultures, organoid development may be hindered by limitations in diffusion of oxygen and nutrients. Herein, we report a bioprocess using rotating-wall vessel (RWV) bioreactors to culture retinal organoids derived from mouse pluripotent stem cells. Organoids in RWV demonstrate enhanced proliferation, with well-defined morphology and improved differentiation of neurons including ganglion cells and S-cone photoreceptors. Furthermore, RWV organoids at day 25 (D25) reveal similar maturation and transcriptome profile as those at D32 in static culture, closely recapitulating spatiotemporal development of postnatal day 6 mouse retina in vivo. Interestingly, however, retinal organoids do not differentiate further under any in vitro condition tested here, suggesting additional requirements for functional maturation. Our studies demonstrate that bioreactors can accelerate and improve organoid growth and differentiation for modeling retinal disease and evaluation of therapies. Published by Elsevier Inc.
Microarray Analysis of Iris Gene Expression in Mice with Mutations Influencing Pigmentation
Trantow, Colleen M.; Cuffy, Tryphena L.; Fingert, John H.; Kuehn, Markus H.
2011-01-01
Purpose. Several ocular diseases involve the iris, notably including oculocutaneous albinism, pigment dispersion syndrome, and exfoliation syndrome. To screen for candidate genes that may contribute to the pathogenesis of these diseases, genome-wide iris gene expression patterns were comparatively analyzed from mouse models of these conditions. Methods. Iris samples from albino mice with a Tyr mutation, pigment dispersion–prone mice with Tyrp1 and Gpnmb mutations, and mice resembling exfoliation syndrome with a Lyst mutation were compared with samples from wild-type mice. All mice were strain (C57BL/6J), age (60 days old), and sex (female) matched. Microarrays were used to compare transcriptional profiles, and differentially expressed transcripts were described by functional annotation clustering using DAVID Bioinformatics Resources. Quantitative real-time PCR was performed to validate a subset of identified changes. Results. Compared with wild-type C57BL/6J mice, each disease context exhibited a large number of statistically significant changes in gene expression, including 685 transcripts differentially expressed in albino irides, 403 in pigment dispersion–prone irides, and 460 in exfoliative-like irides. Conclusions. Functional annotation clusterings were particularly striking among the overrepresented genes, with albino and pigment dispersion–prone irides both exhibiting overall evidence of crystallin-mediated stress responses. Exfoliative-like irides from mice with a Lyst mutation showed overall evidence of involvement of genes that influence immune system processes, lytic vacuoles, and lysosomes. These findings have several biologically relevant implications, particularly with respect to secondary forms of glaucoma, and represent a useful resource as a hypothesis-generating dataset. PMID:20739468
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kline, Josh; /SLAC
2006-08-28
The testing of the upgrade prototype for the bunch current monitors (BCMs) in the PEP-II storage rings at the Stanford Linear Accelerator Center (SLAC) is the topic of this paper. Bunch current monitors are used to measure the charge in the electron/positron bunches traveling in particle storage rings. The BCMs in the PEP-II storage rings need to be upgraded because components of the current system have failed and are known to be failure prone with age, and several of the integrated chips are no longer produced making repairs difficult if not impossible. The main upgrade is replacing twelve old (1995)more » field programmable gate arrays (FPGAs) with a single Virtex II FPGA. The prototype was tested using computer synthesis tools, a commercial signal generator, and a fast pulse generator.« less
Pardo-Andreu, Gilberto L; Paim, Bruno A; Castilho, Roger F; Velho, Jesus A; Delgado, René; Vercesi, Anibal E; Oliveira, Helena C F
2008-05-01
Atherosclerosis is linked to a number of oxidative events ranging from low-density lipoprotein (LDL) oxidation to the increased production of intracellular reactive oxygen species (ROS). We have recently demonstrated that liver mitochondria isolated from the atherosclerosis-prone hypercholesterolemic LDL receptor knockout (LDLr(-/-)) mice have lower content of NADP(H)-linked substrates than the controls and, as consequence, higher sensitivity to oxidative stress and mitochondrial membrane permeability transition (MPT). In the present work, we show that oral supplementation with the antioxidants Mangifera indica L. extract (Vimang) or its main polyphenol mangiferin shifted the sensitivity of LDLr(-/-) liver mitochondria to MPT to control levels. These in vivo treatments with Vimang and mangiferin also significantly reduced ROS generation by both isolated LDLr(-/-) liver mitochondria and spleen lymphocytes. In addition, these antioxidant treatments prevented mitochondrial NAD(P)H-linked substrates depletion and NADPH spontaneous oxidation. In summary, Vimang and mangiferin spared the endogenous reducing equivalents (NADPH) in LDLr(-/-) mice mitochondria correcting their lower antioxidant capacity and restoring the organelle redox homeostasis. The effective bioavailability of these compounds makes them suitable antioxidants with potential use in atherosclerosis susceptible conditions.
NASA Astrophysics Data System (ADS)
Nikiforova, Vasilisa; Damour, Thibault
2018-06-01
We continue the exploration of the consistency of a modified-gravity theory that generalizes general relativity by including a dynamical torsion in addition to the dynamical metric. The six-parameter theory we consider was found to be consistent around arbitrary torsionless Einstein backgrounds, in spite of its containing a (notoriously delicate) massive spin-2 excitation. At zero bare cosmological constant, this theory was found to admit a self-accelerating solution whose exponential expansion is sustained by a nonzero torsion background. The scalar-type perturbations of the latter torsionfull self-accelerating solution were recently studied and were found to preserve the number of propagating scalar degrees of freedom, but to exhibit, for some values of the torsion background, some exponential instabilities (of a rather mild type). Here, we study the tensor-type and vector-type perturbations of the torsionfull self-accelerating solution, and of its deformation by a nonzero bare cosmological constant. We find strong, "gradient" instabilities in the vector sector. No tuning of the parameters of the theory can kill these instabilities without creating instabilities in the other sectors. Further work is needed to see whether generic torsionfull backgrounds are prone to containing gradient instabilities, or if the instabilities we found are mainly due to the (generalized) self-accelerating nature of the special de Sitter backgrounds we considered.
Cuadrado-Tejedor, Mar; García-Osta, Ana
2016-01-01
A comprehensive chronic mild stress (CMS) procedure is presented, which consists in the application of unpredictable mild stressors to animal models in a random order for several weeks. This assay can be applied to Alzheimer's disease (AD) mouse models, leading to accelerated onset and increased severity of AD phenotypes and signs, including memory deficits and the accumulation of amyloid-β and phospho-tau. These assays open the way towards advanced studies on the influence of sustained mild stress, stress responses and pathways on the onset and propagation of Alzheimer's disease.
RNAi in the mouse: rapid and affordable gene function studies in a vertebrate system.
Rytlewski, Julie A; Beronja, Slobodan
2015-01-01
The addition of RNA interference (RNAi) to the mammalian genomic toolbox has significantly expanded our ability to use higher-order models in studies of development and disease. The mouse, in particular, has benefited most from RNAi technology. Unique combinations of RNAi vectors and delivery methods now offer a broad platform for gene silencing in transgenic mice, enabling the design of new physiologically relevant models. The era of RNAi mice has accelerated the pace of genetic study and made high-throughput screens not only feasible but also affordable. © 2014 Wiley Periodicals, Inc.
Diverse Application of Magnetic Resonance Imaging for Mouse Phenotyping
Wu, Yijen L.; Lo, Cecilia W.
2017-01-01
Small animal models, particularly mouse models, of human diseases are becoming an indispensable tool for biomedical research. Studies in animal models have provided important insights into the etiology of diseases and accelerated the development of therapeutic strategies. Detailed phenotypic characterization is essential, both for the development of such animal models and mechanistic studies into disease pathogenesis and testing the efficacy of experimental therapeutics. Magnetic Resonance Imaging (MRI) is a versatile and non-invasive imaging modality with excellent penetration depth, tissue coverage, and soft tissue contrast. MRI, being a multi-modal imaging modality, together with proven imaging protocols and availability of good contrast agents, is ideally suited for phenotyping mutant mouse models. Here we describe the applications of MRI for phenotyping structural birth defects involving the brain, heart, and kidney in mice. The versatility of MRI and its ease of use are well suited to meet the rapidly increasing demands for mouse phenotyping in the coming age of functional genomics. PMID:28544650
Defective natural killer cell activity in a mouse model of eczema herpeticum.
Kawakami, Yuko; Ando, Tomoaki; Lee, Jong-Rok; Kim, Gisen; Kawakami, Yu; Nakasaki, Tae; Nakasaki, Manando; Matsumoto, Kenji; Choi, Youn Soo; Kawakami, Toshiaki
2017-03-01
Patients with atopic dermatitis (AD) are susceptible to several viruses, including herpes simplex virus (HSV). Some patients experience 1 or more episodes of a severe skin infection caused by HSV termed eczema herpeticum (EH). There are numerous mouse models of AD, but no established model exists for EH. We sought to establish and characterize a mouse model of EH. We infected AD-like skin lesions with HSV1 to induce severe skin lesions in a dermatitis-prone mouse strain of NC/Nga. Gene expression was investigated by using a microarray and quantitative PCR; antibody titers were measured by means of ELISA; and natural killer (NK) cell, cytotoxic T-cell, regulatory T-cell, and follicular helper T-cell populations were evaluated by using flow cytometry. The role of NK cells in HSV1-induced development of severe skin lesions was examined by means of depletion and adoptive transfer. Inoculation of HSV1 induced severe erosive skin lesions in eczematous mice, which had an impaired skin barrier, but milder lesions in small numbers of normal mice. Eczematous mice exhibited lower NK cell activity but similar cytotoxic T-cell activity and humoral immune responses compared with normal mice. The role of NK cells in controlling HSV1-induced skin lesions was demonstrated by experiments depleting or transferring NK cells. A murine model of EH with an impaired skin barrier was established in this study. We demonstrated a critical role of defective NK activities in the development of HSV1-induced severe skin lesions in eczematous mice. Copyright © 2016 American Academy of Allergy, Asthma & Immunology. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sundar, Isaac K.; Hwang, Jae-Woong; Wu, Shaoping
Research highlights: {yields} Vitamin D deficiency is linked to accelerated decline in lung function. {yields} Levels of vitamin D receptor (VDR) are decreased in lungs of patients with COPD. {yields} VDR knock-out mouse showed increased lung inflammation and emphysema. {yields} This was associated with decline in lung function and increased MMPs. {yields} VDR knock-out mouse model is useful for studying the mechanisms of lung diseases. -- Abstract: Deficiency of vitamin D is associated with accelerated decline in lung function. Vitamin D is a ligand for nuclear hormone vitamin D receptor (VDR), and upon binding it modulates various cellular functions. Themore » level of VDR is reduced in lungs of patients with chronic obstructive pulmonary disease (COPD) which led us to hypothesize that deficiency of VDR leads to significant alterations in lung phenotype that are characteristics of COPD/emphysema associated with increased inflammatory response. We found that VDR knock-out (VDR{sup -/-}) mice had increased influx of inflammatory cells, phospho-acetylation of nuclear factor-kappaB (NF-{kappa}B) associated with increased proinflammatory mediators, and up-regulation of matrix metalloproteinases (MMPs) MMP-2, MMP-9, and MMP-12 in the lung. This was associated with emphysema and decline in lung function associated with lymphoid aggregates formation compared to WT mice. These findings suggest that deficiency of VDR in mouse lung can lead to an early onset of emphysema/COPD because of chronic inflammation, immune dysregulation, and lung destruction.« less
Chen, Yan; Guo, Wenjie; Li, Wenjuan; Cheng, Meng; Hu, Ying; Xu, Wenming
2016-01-01
Estrogen induces oligodendrocyte remyelination in response to demyelination in the central nervous system. Our objective was to determine the effects of 17β-estradiol (E2) on Schwann cell function and peripheral nerve remyelination after injury. Adult male C57BL/6J mice were used to prepare the sciatic nerve transection injury model and were randomly categorized into control and E2 groups. To study myelination in vitro, dorsal root ganglion (DRG) explant culture was prepared using 13.5-day-old mouse embryos. Primary Schwann cells were isolated from the sciatic nerves of 1- to 3-day-old Sprague–Dawley rats. Immunostaining for myelin basic protein (MBP) expression and toluidine blue staining for myelin sheaths demonstrated that E2 treatment accelerates early remyelination in the “nerve bridge” region between the proximal and distal stumps of the transection injury site in the mouse sciatic nerve. The 5-bromo-2′-deoxyuridine incorporation assay revealed that E2 promotes Schwann cell proliferation in the bridge region and in the primary culture, which is blocked using AKT inhibitor MK2206. The in vitro myelination in the DRG explant culture determined showed that the MBP expression in the E2-treated group is higher than that in the control group. These results show that E2 promotes Schwann cell proliferation and myelination depending on AKT activation. PMID:27872858
PTEN is a potent suppressor of small cell lung cancer.
Cui, Min; Augert, Arnaud; Rongione, Michael; Conkrite, Karina; Parazzoli, Susan; Nikitin, Alexander Yu; Ingolia, Nicholas; MacPherson, David
2014-05-01
Small cell lung carcinoma (SCLC) is a highly metastatic tumor type with neuroendocrine features and a dismal prognosis. PTEN mutations and PIK3CA activating mutations have been reported in SCLC but the functional relevance of this pathway is unknown. The PTEN/PIK3CA pathway was interrogated using an AdenoCre-driven mouse model of SCLC harboring inactivated Rb and p53. Inactivation of one allele of PTEN in Rb/p53-deleted mice led to accelerated SCLC with frequent metastasis to the liver. In contrast with the high mutation burden reported in human SCLC, exome analyses revealed a low number of protein-altering mutations in mouse SCLC. Inactivation of both alleles of PTEN in the Rb/p53-deleted system led to nonmetastatic adenocarcinoma with neuroendocrine differentiation. This study reveals a critical role for the PTEN/PI3K pathway in both SCLC and lung adenocarcinoma and provides an ideal system to test the phosphoinositide 3-kinase (PI3K) pathway inhibitors as targeted therapy for subsets of patients with SCLC. The ability of PTEN inactivation to accelerate SCLC in a genetic mouse model suggests that targeting the PTEN pathway is a therapeutic option for a subset of human patients with SCLC. VISUAL OVERVIEW: http://mcr.aacrjournals.org/content/early/2014/04/28/1541-7786.MCR-13-0554/F1.large.jpg. ©2014 AACR.
Williams, Matthew R.; Kirsch, Robert F.
2013-01-01
We investigated the performance of three user interfaces for restoration of cursor control in individuals with tetraplegia: head orientation, EMG from face and neck muscles, and a standard computer mouse (for comparison). Subjects engaged in a 2D, center-out, Fitts’ Law style task and performance was evaluated using several measures. Overall, head orientation commanded motion resembled mouse commanded cursor motion (smooth, accurate movements to all targets), although with somewhat lower performance. EMG commanded movements exhibited a higher average speed, but other performance measures were lower, particularly for diagonal targets. Compared to head orientation, EMG as a cursor command source was less accurate, was more affected by target direction and was more prone to overshoot the target. In particular, EMG commands for diagonal targets were more sequential, moving first in one direction and then the other rather than moving simultaneous in the two directions. While the relative performance of each user interface differs, each has specific advantages depending on the application. PMID:18990652
Role of the gastrointestinal ecosystem in the development of type 1 diabetes.
Daft, Joseph G; Lorenz, Robin G
2015-09-01
A new emphasis has been put on the role of the gastrointestinal (GI) ecosystem in autoimmune diseases; however, there is limited knowledge about its role in type 1 diabetes (T1D). Distinct differences have been observed in intestinal permeability, epithelial barrier function, commensal microbiota, and mucosal innate and adaptive immunity of patients and animals with T1D, when compared with healthy controls. The non-obese diabetic (NOD) mouse and the BioBreeding diabetes prone (BBdp) rat are the most commonly used models to study T1D pathogenesis. With the increasing awareness of the importance of the GI ecosystem in systemic disease, it is critical to understand the basics, as well as the similarities and differences between rat and mouse models and human patients. This review examines the current knowledge of the role of the GI ecosystem in T1D and indicates the extensive opportunities for further investigation that could lead to biomarkers and therapeutic interventions for disease prevention and/or modulation. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Snider, James W; Mutaf, Yildirim; Nichols, Elizabeth; Hall, Andrea; Vadnais, Patrick; Regine, William F; Feigenberg, Steven J
2017-01-01
Accelerated partial breast irradiation has caused higher than expected rates of poor cosmesis. At our institution, a novel breast stereotactic radiotherapy device has demonstrated dosimetric distributions similar to those in brachytherapy. This study analyzed comparative dose distributions achieved with the device and intensity-modulated radiation therapy accelerated partial breast irradiation. Nine patients underwent computed tomography simulation in the prone position using device-specific immobilization on an institutional review board-approved protocol. Accelerated partial breast irradiation target volumes (planning target volume_10mm) were created per the National Surgical Adjuvant Breast and Bowel Project B-39 protocol. Additional breast stereotactic radiotherapy volumes using smaller margins (planning target volume_3mm) were created based on improved immobilization. Intensity-modulated radiation therapy and breast stereotactic radiotherapy accelerated partial breast irradiation plans were separately generated for appropriate volumes. Plans were evaluated based on established dosimetric surrogates of poor cosmetic outcomes. Wilcoxon rank sum tests were utilized to contrast volumes of critical structures receiving a percentage of total dose ( Vx). The breast stereotactic radiotherapy device consistently reduced dose to all normal structures with equivalent target coverage. The ipsilateral breast V20-100 was significantly reduced ( P < .05) using planning target volume_10mm, with substantial further reductions when targeting planning target volume_3mm. Doses to the chest wall, ipsilateral lung, and breast skin were also significantly lessened. The breast stereotactic radiotherapy device's uniform dosimetric improvements over intensity-modulated accelerated partial breast irradiation in this series indicate a potential to improve outcomes. Clinical trials investigating this benefit have begun accrual.
Klaus, Tomasz; Bzowska, Monika; Kulesza, Małgorzata; Kabat, Agnieszka Martyna; Jemioła-Rzemińska, Małgorzata; Czaplicki, Dominik; Makuch, Krzysztof; Jucha, Jarosław; Karabasz, Alicja; Bereta, Joanna
2016-01-01
Mouse immunoglobulins M (IgMs) that recognize human blood group antigens induce haemagglutination and are used worldwide for diagnostic blood typing. Contrary to the current belief that IgGs are too small to simultaneously bind antigens on two different erythrocytes, we obtained agglutinating mouse IgG3 that recognized antigen B of the human ABO blood group system. Mouse IgG3 is an intriguing isotype that has the ability to form Fc-dependent oligomers. However, F(ab′)2 fragments of the IgG3 were sufficient to agglutinate type B red blood cells; therefore, IgG3-triggered agglutination did not require oligomerization. Molecular modelling indicated that mouse IgG3 has a larger range of Fab arms than other mouse IgG subclasses and that the unique properties of mouse IgG3 are likely due to the structure of its hinge region. With a focus on applications in diagnostics, we compared the stability of IgG3 and two IgMs in formulated blood typing reagents using an accelerated storage approach and differential scanning calorimetry. IgG3 was much more stable than IgMs. Interestingly, the rapid decrease in IgM activity was caused by aggregation of the molecules and a previously unknown posttranslational proteolytic processing of the μ heavy chain. Our data point to mouse IgG3 as a potent diagnostic tool. PMID:27484487
Nucleotide excision repair deficient mouse models and neurological disease
Niedernhofer, Laura J.
2008-01-01
Nucleotide excision repair (NER) is a highly conserved mechanism to remove helix-distorting DNA base damage. A major substrate for NER is DNA damage caused by environmental genotoxins, most notably ultraviolet radiation. Xeroderma pigmentosum, Cockayne syndrome and trichothiodystrophy are three human diseases caused by inherited defects in NER. The symptoms and severity of these diseases vary dramatically, ranging from profound developmental delay to cancer predisposition and accelerated aging. All three syndromes include neurological disease, indicating an important role for NER in protecting against spontaneous DNA damage as well. To study the pathophysiology caused by DNA damage, numerous mouse models of NER deficiency were generated by knocking-out genes required for NER or knocking-in disease-causing human mutations. This review explores the utility of these mouse models to study neurological disease caused by NER deficiency. PMID:18272436
Wang, Zheng; Yin, Hao; Lv, Lei; Feng, Yingying; Chen, Shaopeng; Liang, Junting; Huang, Yun; Jiang, Xiaohua; Jiang, Hanwei; Bukhari, Ihtisham; Wu, Lijun; Cooke, Howard J; Shi, Qinghua
2014-01-01
Elimination of uniparental chromosomes occurs frequently in interspecific hybrid cells. For example, human chromosomes are always eliminated during clone formation when human cells are fused with mouse cells. However, the underlying mechanisms are still elusive. Here, we show that the elimination of human chromosomes in human–mouse hybrid cells is accompanied by continued cell division at the presence of DNA damage on human chromosomes. Deficiency in DNA damage repair on human chromosomes occurs after cell fusion. Furthermore, increasing the level of DNA damage on human chromosomes by irradiation accelerates human chromosome loss in hybrid cells. Our results indicate that the elimination of human chromosomes in human–mouse hybrid cells results from unrepaired DNA damage on human chromosomes. We therefore provide a novel mechanism underlying chromosome instability which may facilitate the understanding of carcinogenesis. PMID:24608870
Olsen, Anna H.; Heaton, Thomas H.; Hall, John F.
2015-01-01
This work applies 64,765 simulated seismic ground motions to four models each of 6- or 20-story, steel special moment-resisting frame buildings. We consider two vector intensity measures and categorize the building response as “collapsed,” “unrepairable,” or “repairable.” We then propose regression models to predict the building responses from the intensity measures. The best models for “collapse” or “unrepairable” use peak ground displacement and velocity as intensity measures, and the best models predicting peak interstory drift ratio, given that the frame model is “repairable,” use spectral acceleration and epsilon (ϵ) as intensity measures. The more flexible frame is always more likely than the stiffer frame to “collapse” or be “unrepairable.” A frame with fracture-prone welds is substantially more susceptible to “collapse” or “unrepairable” damage than the equivalent frame with sound welds. The 20-story frames with fracture-prone welds are more vulnerable to P-delta instability and have a much higher probability of collapse than do any of the 6-story frames.
Autophagy and Neurodegeneration: Pathogenic Mechanisms and Therapeutic Opportunities.
Menzies, Fiona M; Fleming, Angeleen; Caricasole, Andrea; Bento, Carla F; Andrews, Stephen P; Ashkenazi, Avraham; Füllgrabe, Jens; Jackson, Anne; Jimenez Sanchez, Maria; Karabiyik, Cansu; Licitra, Floriana; Lopez Ramirez, Ana; Pavel, Mariana; Puri, Claudia; Renna, Maurizio; Ricketts, Thomas; Schlotawa, Lars; Vicinanza, Mariella; Won, Hyeran; Zhu, Ye; Skidmore, John; Rubinsztein, David C
2017-03-08
Autophagy is a conserved pathway that delivers cytoplasmic contents to the lysosome for degradation. Here we consider its roles in neuronal health and disease. We review evidence from mouse knockout studies demonstrating the normal functions of autophagy as a protective factor against neurodegeneration associated with intracytoplasmic aggregate-prone protein accumulation as well as other roles, including in neuronal stem cell differentiation. We then describe how autophagy may be affected in a range of neurodegenerative diseases. Finally, we describe how autophagy upregulation may be a therapeutic strategy in a wide range of neurodegenerative conditions and consider possible pathways and druggable targets that may be suitable for this objective. Copyright © 2017 Elsevier Inc. All rights reserved.
Two Pore Channel 2 Differentially Modulates Neural Differentiation of Mouse Embryonic Stem Cells
Zhang, Zhe-Hao; Lu, Ying-Ying; Yue, Jianbo
2013-01-01
Nicotinic acid adenine dinucleotide phosphate (NAADP) is an endogenous Ca2+ mobilizing nucleotide presented in various species. NAADP mobilizes Ca2+ from acidic organelles through two pore channel 2 (TPC2) in many cell types and it has been previously shown that NAADP can potently induce neuronal differentiation in PC12 cells. Here we examined the role of TPC2 signaling in the neural differentiation of mouse embryonic stem (ES) cells. We found that the expression of TPC2 was markedly decreased during the initial ES cell entry into neural progenitors, and the levels of TPC2 gradually rebounded during the late stages of neurogenesis. Correspondingly, TPC2 knockdown accelerated mouse ES cell differentiation into neural progenitors but inhibited these neural progenitors from committing to neurons. Overexpression of TPC2, on the other hand, inhibited mouse ES cell from entering the early neural lineage. Interestingly, TPC2 knockdown had no effect on the differentiation of astrocytes and oligodendrocytes of mouse ES cells. Taken together, our data indicate that TPC2 signaling plays a temporal and differential role in modulating the neural lineage entry of mouse ES cells, in that TPC2 signaling inhibits ES cell entry to early neural progenitors, but is required for late neuronal differentiation. PMID:23776607
Gao, Ying; Goodnough, Candida L.; Erokwu, Bernadette O.; Farr, George W.; Darrah, Rebecca; Lu, Lan; Dell, Katherine M.; Yu, Xin; Flask, Chris A.
2014-01-01
Arterial Spin Labeling (ASL) is a valuable non-contrast perfusion MRI technique with numerous clinical applications. Many previous ASL MRI studies have utilized either Echo-Planar Imaging (EPI) or True Fast Imaging with Steady-State Free Precession (True FISP) readouts that are prone to off-resonance artifacts on high field MRI scanners. We have developed a rapid ASL-FISP MRI acquisition for high field preclinical MRI scanners providing perfusion-weighted images with little or no artifacts in less than 2 seconds. In this initial implementation, a FAIR (Flow-Sensitive Alternating Inversion Recovery) ASL preparation was combined with a rapid, centrically-encoded FISP readout. Validation studies on healthy C57/BL6 mice provided consistent estimation of in vivo mouse brain perfusion at 7 T and 9.4 T (249±38 ml/min/100g and 241±17 ml/min/100g, respectively). The utility of this method was further demonstrated in detecting significant perfusion deficits in a C57/BL6 mouse model of ischemic stroke. Reasonable kidney perfusion estimates were also obtained for a healthy C57/BL6 mouse exhibiting differential perfusion in the renal cortex and medulla. Overall, the ASL-FISP technique provides a rapid and quantitative in vivo assessment of tissue perfusion for high field MRI scanners with minimal image artifacts. PMID:24891124
Marée, Athanasius F M; Komba, Mitsuhiro; Finegood, Diane T; Edelstein-Keshet, Leah
2008-01-01
Macrophages play an important role in clearing apoptotic debris from tissue. Defective or reduced clearance, seen, for instance, in non-obese diabetic (NOD) mice, has been correlated with initiation of autoimmune (Type 1) diabetes (T1D) (O'Brien BA, Huang Y, Geng X, Dutz JP, Finegood DT. Diabetes 51: 2481-2488, 2002). To validate such a link, it is essential to quantify the reduced clearance (for example, by comparison to BALB/c control mice) and to determine which elements of that clearance are impaired. Recently, we fit data for the time course of in vitro macrophage feeding experiments to basic models of macrophage clearance dynamics, thus quantifying kinetics of uptake and digestion of apoptotic cells in both mouse strains (Marée AFM, Komba M, Dyck C, Łabeçki M, Finegood DT, Edelstein-Keshet L. J Theor Biol 233: 533-551, 2005). In the cycle of modeling and experimental investigation, we identified the importance of 1) measuring short-, intermediate-, and long-time data (to increase the accuracy of parameter fits), and 2) designing experiments with distinct observable regimes, including engulfment-only and digestion-only phases. Here, we report on new results from experiments so designed. In comparing macrophages from the two strains, we find that NOD macrophage engulfment of apoptotic cells is 5.5 times slower than BALB/c controls. Significantly, our new data demonstrate that digestion is at least two times slower in NOD, in contrast with previous conclusions. Moreover, new data enable us to detect an acceleration in engulfment (after the first engulfment) in both strains, but much smaller in NOD macrophages.
Zhang, Jingnan; Yue, Xiangpei; Luo, Hongjun; Jiang, Wenjing; Mei, Yufei; Ai, Li; Gao, Ge; Wu, Yan; Yang, Hui; An, Jieran; Ding, Shumao; Yang, Xu; Sun, Bingui; Luo, Wenhong; He, Rongqiao; Jia, Jianping; Lyu, Jihui; Tong, Zhiqian
2018-06-05
Pharmacological treatments for Alzheimer's disease (AD) have not resulted in desirable clinical efficacy over 100 years. Hydrogen peroxide (H2O2), a reactive and the most stable compound of reactive oxygen species (ROS), contributes to oxidative stress in AD patients. Here, we designed a medical device to emit red light at 630±15 nm from a light-emitting diode (LED-RL) and investigated whether the LED-RL reduces brain H2O2 levels and improves memory in senescence-accelerated prone 8 mouse (SAMP8) model of age-related dementia. We found that age-associated H2O2 directly inhibited formaldehyde dehydrogenase (FDH). FDH inactivity and semicarbazide-sensitive amine oxidase (SSAO) disorder resulted in endogenous formaldehyde (FA) accumulation. Unexpectedly, excess FA, in turn, caused acetylcholine (Ach) deficiency by inhibiting choline acetyltransferase (ChAT) activity in vitro and in vivo. Interestingly, the 630-nm red light can penetrate the skull and abdomen with light penetration rates: ~49% and ~43%, respectively. Illumination with LED-RL markedly activated both catalase and FDH in the brains, cultured cells and purified protein solutions, all reduced brain H2O2 and FA levels and restored brain Ach contents. Consequently, LED-RL not only prevented early-stage memory decline but also rescued late-stage memory deficits in SAMP8 mice. We developed a phototherapeutic device with 630-nm red light, and this LED-RL reduced brain H2O2 levels and reversed age-related memory disorders. The phototherapy of LED-RL has low photo toxicity and high rate of tissue penetration, and non-invasively reverses aging-associated cognitive decline. This finding opens a promising opportunity to translate LED-RL into clinical treatment for patients with dementia.
Puglisi, Rossella; Maccari, Irene; Pipolo, Simona; Conrad, Marcus; Mangia, Franco; Boitani, Carla
2012-04-01
The nuclear isoform of the selenoprotein Phospholipid Hydroperoxide Glutathione Peroxidase (nGPx4) is expressed in haploid male germ cells, contains several cysteines and is able to oxidize protein thiols, besides glutathione. In this study we have investigated the subnuclear localization of this isoform in isolated mouse male germ cells at different steps of maturation. Immunoblotting and confocal microscopy analyses of subnuclear fractions showed that nGPx4 is localized to the nuclear matrix together with well known markers of this subnuclear compartment like lamin B and topoisomerase IIβ at all stages of germ cell differentiation. The peculiar nGPx4 distribution was confirmed by both biochemical and morphological analyses of COS-1 cells overexpressing Flag-tagged nGPx4. To test the functional role of nGPx4 in the process of chromatin assembly, sperm isolated from the caput and the cauda epididymides of wild-type (WT) and genetically deficient in nGPx4 (nGPx4-KO) mice were analyzed in an in vitro chromatin decondensation assay. Results showed that sperm from nGPx4-KO mice were more prone to decondense than those from WT mice at all stages of epididymal maturation, providing conclusive evidence that nGPx4 is required for a correct sperm chromatin compaction. We next addressed the issue of whether the lack of nGPx4 impacts on early events occurring at fertilization. Indeed, in vitro fertilization experiments showed an acceleration of sperm chromatin dispersion in oocytes fertilized by nGpx4-KO sperm compared with control. Overall these data indicate that the absence of nGPx4 leads to sperm nuclear matrix/chromatin instability that may negatively affect the embryo development. Copyright © 2011 Wiley Periodicals, Inc.
Sandoval, Karin E; Farr, Susan A; Banks, William A; Crider, Albert M; Morley, John E; Witt, Ken A
2013-07-03
Soluble amyloid-β peptide (Aβ) oligomers have been hypothesized to be primary mediators of Alzheimer's disease progression. In this regard, reduction of soluble Aβ-oligomers levels within the brain may provide a viable means in which to treat the disease. Somatostatin receptor subtype-4 (SSTR4) agonists have been proposed to reduce Aβ levels in the brain via enhancement of enzymatic degradation. Herein we evaluated the effect of selective SSTR4 agonist NNC 26-9100 on the changes in learning and soluble Aβ42 oligomer brain content with and without co-administration of the M13-metalloproteinase family enzyme-inhibitor phosphoramidon, using the senescence-accelerated mouse prone-8 (SAMP8) model. NNC 26-9100 treatment (0.2 µg i.c.v. in 2 µL) improved learning, which was blocked by phosphoramidon (1 and 10mM, respectively). NNC 26-9100 decreased total soluble Aβ42, an effect which was blocked by phosphoramidon (10mM). Extracellular, intracellular, and membrane fractions were then isolated from cortical tissue and assessed for soluble oligomer alterations. NNC 26-9100 decreased the Aβ42 trimeric (12 kDa) form within the extracellular and intracellular fractions, and produced a band-split effect of the Aβ42 hexameric (25 kDa) form within the extracellular fraction. These effects were also blocked by phosphoramdon (1 and 10mM, respectively). Subsequent evaluation of NNC 26-9100 in APPswe Tg2576 transgenic mice showed a similar learning improvement and corresponding reduction in soluble Aβ42 oligomers within extracellular, intracellular, and membrane fractions. These data support the hypothesis that NNC 26-9100 reduces soluble Aβ42 oligomers and enhances learning through a phosphoramidon-sensitive metalloproteinase-dependent mechanism. Copyright © 2013 Elsevier B.V. All rights reserved.
Bernstein, Lori R; Mackenzie, Amelia C L; Lee, Se-Jin; Chaffin, Charles L; Merchenthaler, István
2016-03-01
Women of advanced maternal age (AMA) (age ≥ 35) have increased rates of infertility, miscarriages, and trisomic pregnancies. Collectively these conditions are called "egg infertility." A root cause of egg infertility is increased rates of oocyte aneuploidy with age. AMA women often have elevated endogenous FSH. Female senescence-accelerated mouse-prone-8 (SAMP8) has increased rates of oocyte spindle aberrations, diminished fertility, and rising endogenous FSH with age. We hypothesize that elevated FSH during the oocyte's FSH-responsive growth period is a cause of abnormalities in the meiotic spindle. We report that eggs from SAMP8 mice treated with equine chorionic gonadotropin (eCG) for the period of oocyte growth have increased chromosome and spindle misalignments. Activin is a molecule that raises FSH, and ActRIIB:Fc is an activin decoy receptor that binds and sequesters activin. We report that ActRIIB:Fc treatment of midlife SAMP8 mice for the duration of oocyte growth lowers FSH, prevents egg chromosome and spindle misalignments, and increases litter sizes. AMA patients can also have poor responsiveness to FSH stimulation. We report that although eCG lowers yields of viable oocytes, ActRIIB:Fc increases yields of viable oocytes. ActRIIB:Fc and eCG cotreatment markedly reduces yields of viable oocytes. These data are consistent with the hypothesis that elevated FSH contributes to egg aneuploidy, declining fertility, and poor ovarian response and that ActRIIB:Fc can prevent egg aneuploidy, increase fertility, and improve ovarian response. Future studies will continue to examine whether ActRIIB:Fc works via FSH and/or other pathways and whether ActRIIB:Fc can prevent aneuploidy, increase fertility, and improve stimulation responsiveness in AMA women.
Palomera-Avalos, V; Griñán-Ferré, C; Puigoriol-Ilamola, D; Camins, A; Sanfeliu, C; Canudas, A M; Pallàs, M
2017-04-01
Metabolic stress induced by high-fat (HF) diet leads to cognitive dysfunction and aging, but the physiological mechanisms are not fully understood. Senescence-accelerated prone mouse (SAMP8) models were conducted under metabolic stress conditions by feeding HF for 15 weeks, and the preventive effect of resveratrol was studied. This dietary strategy demonstrates cognitive impairment in SAMP8-HF and significant preventive effect by resveratrol-treated animals. Hippocampal changes in the proteins involved in mitochondrial dynamics optic atrophy-1 protein (OPA1) and mitofusin 2 (MFN2) comprised a differential feature found in SAMP8-HF that was prevented by resveratrol. Electronic microscopy showed a larger mitochondria in SAMP8-HF + resveratrol (SAMP8-HF + RV) than in SAMP8-HF, indicating increases in fusion processes in resveratrol-treated mice. According to the mitochondrial morphology, significant increases in the I-NDUFB8, II-SDNB, III-UQCRC2, and V-ATPase complexes, in addition to that of voltage-dependent anion channel 1 (VDAC1)/porin, were found in resveratrol-treated animals with regard to SAMP8-HF, reaching control-animal levels. Moreover, tumor necrosis factor alpha (TNF-α) and interleukin (IL-6) were increased after HF, and resveratrol prevents its increase. Moreover, we found that the HF diet affected the Wnt pathway, as demonstrated by β-catenin inactivation and modification in the expression of several components of this pathway. Resveratrol induced strong activation of β-catenin. The metabolic stress rendered in the cognitive and cellular pathways altered in SAMP8 focus on different targets in order to act on preventing cognitive impairment in neurodegeneration, and resveratrol can offer therapeutic possibilities for preventive strategies in aging or neurodegenerative conditions.
Asai, M; Ikeda, M; Akiyama, M; Oshima, I; Shibata, S
2000-09-08
We analyzed effects of aging on behavioral rhythms in the mouse showing senescence acceleration, SAMP8 strains. The free-running rhythms had longer free-running periods (tau) in SAMP8 than in the control strain (SAMR1). Drinking of melatonin promoted the adaptation to advanced LD in SAMR1 but not in SAMP8, although both strains exhibited melatonin MT1 and MT2 receptors. The present results suggest that melatonin promotes the adaptation to advanced LD cycles in normal aging mice.
NASA Astrophysics Data System (ADS)
Begg, John; Brackley, Hannah; Irwin, Marion; Grant, Helen; Berryman, Kelvin; Dellow, Grant; Scott, David; Jones, Katie; Barrell, David; Lee, Julie; Townsend, Dougal; Jacka, Mike; Harwood, Nick; McCahon, Ian; Christensen, Steve
2013-04-01
Following the damaging 4 Sept 2010 Mw7.1 Darfield Earthquake, the 22 Feb 2011 Christchurch Earthquake and subsequent damaging aftershocks, we completed a liquefaction hazard evaluation for c. 2700 km2 of the coastal Canterbury region. Its purpose was to distinguish at a regional scale areas of land that, in the event of strong ground shaking, may be susceptible to damaging liquefaction from areas where damaging liquefaction is unlikely. This information will be used by local government for defining liquefaction-related geotechnical investigation requirements for consent applications. Following a review of historic records of liquefaction and existing liquefaction assessment maps, we undertook comprehensive new work that included: a geologic context from existing geologic maps; geomorphic mapping using LiDAR and integrating existing soil map data; compilation of lithological data for the surficial 10 m from an extensive drillhole database; modelling of depth to unconfined groundwater from existing subsurface and surface water data. Integrating and honouring all these sources of information, we mapped areas underlain by materials susceptible to liquefaction (liquefaction-prone lithologies present, or likely, in the near-surface, with shallow unconfined groundwater) from areas unlikely to suffer widespread liquefaction damage. Comparison of this work with more detailed liquefaction susceptibility assessment based on closely spaced geotechnical probes in Christchurch City provides a level of confidence in these results. We tested our susceptibility map by assigning a matrix of liquefaction susceptibility rankings to lithologies recorded in drillhole logs and local groundwater depths, then applying peak ground accelerations for four earthquake scenarios from the regional probabilistic seismic hazard model (25 year return = 0.13g; 100 year return = 0.22g; 500 year return = 0.38g and 2500 year return = 0.6g). Our mapped boundary between liquefaction-prone areas and areas unlikely to sustain heavy damage proved sound. In addition, we compared mapped liquefaction extents (derived from post-earthquake aerial photographs) from the 4 Sept 2010 Mw7.1 and 22 Feb 2011 Mw6.2 earthquakes with our liquefaction susceptibility map. The overall area of liquefaction for these two earthquakes was similar, and statistics show that for the first (large regional) earthquake, c. 93% of mapped liquefaction fell within the liquefaction-prone area, and for the second (local, high peak ground acceleration) earthquake, almost 99% fell within the liquefaction-prone area. We conclude that basic geological and groundwater data when coupled with LiDAR data can usefully delineate areas susceptible to liquefaction from those unlikely to suffer damaging liquefaction. We believe that these techniques can be used successfully in many other cities around the world.
The effect of track structure on the induction of chromosomal aberrations in murine cells
NASA Technical Reports Server (NTRS)
Durante, M.; Cella, L.; Furusawa, Y.; George, K.; Gialanella, G.; Grossi, G.; Pugliese, M.; Saito, M.; Yang, T. C.
1998-01-01
PURPOSE: To measure chromosome aberrations in C3H 10T1/2 mouse fibroblasts using FISH painting at the first mitosis following exposure to 30 keV/microm hydrogen or neon ions. MATERIALS AND METHODS: Cells in plateau-phase were irradiated with 0.86 MeV protons at the TTT-3 Tandem accelerator in Naples (Italy), or with 400 MeV/n Ne ions at the HIMAC accelerator in Chiba (Japan). Colcemid-blocked cells were harvested at the first mitosis following exposure, and chromosome spreads were hybridized in situ with a fluorescein-labelled composite mouse DNA probe specific for chromosomes 2 and 8. RESULTS: Protons were more efficient than neon ions at the same LET in the induction of chromosome interchanges and breaks. Yields of complex exchanges were similar for both particles at the same dose, but protons produced mostly insertions, while with Ne exposure non-reciprocal exchanges were the most frequent complex-type exchange. CONCLUSIONS: Charged particles with the same LET produce different yields of chromosome aberrations, and some observed differences can be explained based on the available track-structure models.
The effect of track structure on the induction of chromosomal aberrations in murine cells.
Durante, M; Cella, L; Furusawa, Y; George, K; Gialanella, G; Grossi, G; Pugliese, M; Saito, M; Yang, T C
1998-03-01
To measure chromosome aberrations in C3H 10T1/2 mouse fibroblasts using FISH painting at the first mitosis following exposure to 30 keV/microm hydrogen or neon ions. Cells in plateau-phase were irradiated with 0.86 MeV protons at the TTT-3 Tandem accelerator in Naples (Italy), or with 400 MeV/n Ne ions at the HIMAC accelerator in Chiba (Japan). Colcemid-blocked cells were harvested at the first mitosis following exposure, and chromosome spreads were hybridized in situ with a fluorescein-labelled composite mouse DNA probe specific for chromosomes 2 and 8. Protons were more efficient than neon ions at the same LET in the induction of chromosome interchanges and breaks. Yields of complex exchanges were similar for both particles at the same dose, but protons produced mostly insertions, while with Ne exposure non-reciprocal exchanges were the most frequent complex-type exchange. Charged particles with the same LET produce different yields of chromosome aberrations, and some observed differences can be explained based on the available track-structure models.
NASA Technical Reports Server (NTRS)
Duke, J.
1985-01-01
Studies on the development of embryonic mouse tissues exposed to excess gravity in vitro and in vivo are discussed. Suppression is seen in limb buds cultured under 3G. Mouse palates were exposed to excess G in vitro, 13- and 14-day palates were exposed to 2.6G for 24 hours. For in vivo studies, a small animal centrifuge was constructed. When the centrifuge is operated at 40 and 45 rpm, the linear accelerations generated range from 1.8 to 3.5G. The effects of gravity on body weights and on reproduction is also presented.
Motor impairment: a new ethanol withdrawal phenotype in mice
Philibin, Scott D.; Cameron, Andy J.; Metten, Pamela; Crabbe, John C.
2015-01-01
Alcoholism is a complex disorder with genetic and environmental risk factors. The presence of withdrawal symptoms is one criterion for alcohol dependence. Genetic animal models have followed a reductionist approach by quantifying various effects of ethanol withdrawal separately. Different ethanol withdrawal symptoms may have distinct genetic etiologies, and therefore differentiating distinct neurobiological mechanisms related to separate signs of withdrawal would increase our understanding of various aspects of the complex phenotype. This study establishes motor incoordination as a new phenotype of alcohol withdrawal in mice. Mice were made physically dependent on ethanol by exposure to ethanol vapor for 72 h. The effects of ethanol withdrawal in mice from different genetic backgrounds were measured on the accelerating rotarod, a simple motor task. Ethanol withdrawal disrupted accelerating rotarod behavior in mice. The disruptive effects of withdrawal suggest a performance rather than a learning deficit. Inbred strain comparisons suggest genetic differences in magnitude of this withdrawal phenotype. The withdrawal-induced deficits were not correlated with the selection response difference in handling convulsion severity in selectively bred Withdrawal Seizure-Prone and Withdrawal Seizure-Resistant lines. The accelerating rotarod seems to be a simple behavioral measure of ethanol withdrawal that is suitable for comparing genotypes. PMID:18690115
Seismic passive earth resistance using modified pseudo-dynamic method
NASA Astrophysics Data System (ADS)
Pain, Anindya; Choudhury, Deepankar; Bhattacharyya, S. K.
2017-04-01
In earthquake prone areas, understanding of the seismic passive earth resistance is very important for the design of different geotechnical earth retaining structures. In this study, the limit equilibrium method is used for estimation of critical seismic passive earth resistance for an inclined wall supporting horizontal cohesionless backfill. A composite failure surface is considered in the present analysis. Seismic forces are computed assuming the backfill soil as a viscoelastic material overlying a rigid stratum and the rigid stratum is subjected to a harmonic shaking. The present method satisfies the boundary conditions. The amplification of acceleration depends on the properties of the backfill soil and on the characteristics of the input motion. The acceleration distribution along the depth of the backfill is found to be nonlinear in nature. The present study shows that the horizontal and vertical acceleration distribution in the backfill soil is not always in-phase for the critical value of the seismic passive earth pressure coefficient. The effect of different parameters on the seismic passive earth pressure is studied in detail. A comparison of the present method with other theories is also presented, which shows the merits of the present study.
Caza, Tiffany N; Fernandez, David R; Talaber, Gergely; Oaks, Zachary; Haas, Mark; Madaio, Michael P; Lai, Zhi-wei; Miklossy, Gabriella; Singh, Ram R; Chudakov, Dmitriy M; Malorni, Walter; Middleton, Frank; Banki, Katalin; Perl, Andras
2014-01-01
Objective Accumulation of mitochondria underlies T-cell dysfunction in systemic lupus erythematosus (SLE). Mitochondrial turnover involves endosomal traffic regulated by HRES-1/Rab4, a small GTPase that is overexpressed in lupus T cells. Therefore, we investigated whether (1) HRES-1/Rab4 impacts mitochondrial homeostasis and (2) Rab geranylgeranyl transferase inhibitor 3-PEHPC blocks mitochondrial accumulation in T cells, autoimmunity and disease development in lupus-prone mice. Methods Mitochondria were evaluated in peripheral blood lymphocytes (PBL) of 38 SLE patients and 21 healthy controls and mouse models by flow cytometry, microscopy and western blot. MRL/lpr mice were treated with 125 μg/kg 3-PEHPC or 1 mg/kg rapamycin for 10 weeks, from 4 weeks of age. Disease was monitored by antinuclear antibody (ANA) production, proteinuria, and renal histology. Results Overexpression of HRES-1/Rab4 increased the mitochondrial mass of PBL (1.4-fold; p=0.019) and Jurkat cells (2-fold; p=0.000016) and depleted the mitophagy initiator protein Drp1 both in human (−49%; p=0.01) and mouse lymphocytes (−41%; p=0.03). Drp1 protein levels were profoundly diminished in PBL of SLE patients (−86±3%; p=0.012). T cells of 4-week-old MRL/lpr mice exhibited 4.7-fold over-expression of Rab4A (p=0.0002), the murine homologue of HRES-1/Rab4, and depletion of Drp1 that preceded the accumulation of mitochondria, ANA production and nephritis. 3-PEHPC increased Drp1 (p=0.03) and reduced mitochondrial mass in T cells (p=0.02) and diminished ANA production (p=0.021), proteinuria (p=0.00004), and nephritis scores of lupus-prone mice (p<0.001). Conclusions These data reveal a pathogenic role for HRES-1/Rab4-mediated Drp1 depletion and identify endocytic control of mitophagy as a treatment target in SLE. PMID:23897774
Nestel, Paul; Fujii, Akihiko; Allen, Terri
2006-12-01
Reduction in atherosclerosis has been reported in experimental animals fed mixtures of conjugated linoleic acid (CLA). In this study, the major naturally occurring CLA isomer (cis-9,trans-11) was tested in an atherosclerosis-prone mouse model. In a model of insulin deficient apoE deficient mice, 16 animals were fed for 20 weeks with supplemental CLA (09.%, w/w) and compared with a similar number of mice of this phenotype. A control comparison was made of metabolic changes in non-diabetic apoE deficient mice that develop little atherosclerosis over 20 weeks. At 20 weeks, plasma lipids were measured and aortic atherosclerosis quantified by Sudan staining in the arch, thoracic and abdominal segments. The diabetic apoE deficient mice developed marked dyslipidemia, primarily as cholesterol-enriched chylomicron and VLDL-sized lipoproteins and atherosclerosis in the aortic arch. However, there were no significant differences between CLA fed and non-CLA fed mice in either phenotype in plasma cholesterol concentration (in diabetic: 29.4+/-7.7 and 29.5+/-5.9 mmol/L, respectively) or in the area of aortic arch atherosclerosis (in diabetic: 24.8+/-10.3 and 27.6+/-7.7%, respectively). However, among diabetic mice the triglyceride concentration in triglyceride-rich lipoproteins was significantly lower in those fed CLA (for plasma 2.2+/-0.8 to 1.1+/-0.3 mmol/L; P<0.001), a significant difference that was seen also in the non-diabetic mice in which HDL cholesterol increased significantly with CLA (0.35+/-0.12-0.56+/-0.15 mmol/L). In this atherosclerosis-prone model, the diabetic apoE deficient mouse, supplemental 0.9% CLA (cis-9,trans-11) failed to reduce the severity of aortic atherosclerosis, although plasma triglyceride concentration was substantially lowered and HDL cholesterol raised.
An optimized small animal tumour model for experimentation with low energy protons.
Beyreuther, Elke; Brüchner, Kerstin; Krause, Mechthild; Schmidt, Margret; Szabo, Rita; Pawelke, Jörg
2017-01-01
The long-term aim of developing laser based particle acceleration towards clinical application requires not only substantial technological progress, but also the radiobiological characterization of the resulting ultra-short and ultra-intensive particle beam pulses. After comprehensive cell studies a mouse ear tumour model was established allowing for the penetration of low energy protons (~20 MeV) currently available at laser driven accelerators. The model was successfully applied for a first tumour growth delay study with laser driven electrons, whereby the need of improvements crop out. To optimise the mouse ear tumour model with respect to a stable, high take rate and a lower number of secondary tumours, Matrigel was introduced for tumour cell injection. Different concentrations of two human tumour cell lines (FaDu, LN229) and Matrigel were evaluated for stable tumour growth and fulfilling the allocation criteria for irradiation experiments. The originally applied cell injection with PBS was performed for comparison and to assess the long-term stability of the model. Finally, the optimum suspension of cells and Matrigel was applied to determine applicable dose ranges for tumour growth delay studies by 200 kV X-ray irradiation. Both human tumour models showed a high take rate and exponential tumour growth starting at a volume of ~10 mm3. As disclosed by immunofluorescence analysis these small tumours already interact with the surrounding tissue and activate endothelial cells to form vessels. The formation of delimited, solid tumours at irradiation size was shown by standard H&E staining and a realistic dose range for inducing tumour growth delay without permanent tumour control was obtained for both tumour entities. The already established mouse ear tumour model was successfully upgraded now providing stable tumour growth with high take rate for two tumour entities (HNSCC, glioblastoma) that are of interest for future irradiation experiments at experimental accelerators.
Kijani, Siavash; Vázquez, Ana Maria; Levin, Malin; Borén, Jan; Fogelstrand, Per
2017-07-01
Accelerated atherosclerosis diminishes the long term patency of vascular interventions, such as percutaneous coronary intervention and implantation of saphenous vein grafts. However, the cause of this accelerated atherosclerosis is unclear. In this study, we tested the hypothesis that intimal hyperplasia formed following vascular intervention promotes retention of atherogenic lipoproteins. Intimal hyperplasia was surgically induced in the mouse common carotid artery. The surgery was combined with different mouse models of hypercholesterolemia to obtain different cholesterol levels and to control the onsets of hypercholesterolemia. Three weeks after surgery, samples were immunostained for apoB lipoproteins, smooth muscle cells and leukocytes. Already at mild hypercholesterolemia (193 mg/dL), pronounced apoB lipoprotein retention was found in the extracellular matrix in both intimal hyperplasia and the injured underlying media. In contrast, minimal retention was detected in the uninjured proximal region of the same vessel, or in vessels from mice with normal cholesterol levels (81 mg/dL). Induction of aggravated hypercholesterolemia 3 weeks after surgery, when a mature intimal hyperplasia had been formed, caused a very rapid development of atherosclerotic lesions. Mechanistically, we show that lipoprotein retention was almost exclusively dependent on electrostatic interactions to proteoglycan glycosaminoglycans, and the lipoprotein retention to intimal hyperplasia could be inhibited in vivo using glycosaminoglycan-binding antibodies. Thus, formation of intimal hyperplasia following vascular intervention makes the vessel wall highly susceptible for lipoprotein retention and accelerated atherosclerosis. The increased lipoprotein retention in intimal hyperplasia can be targeted by blocking the interaction between apoB lipoproteins and glycosaminoglycans in the extracellular matrix. © 2017 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.
Grounds, Miranda D.; Radley, Hannah G.; Lynch, Gordon S.; Nagaraju, Kanneboyina; De Luca, Annamaria
2008-01-01
This review discusses various issues to consider when developing standard operating procedures for pre-clinical studies in the mdx mouse model of Duchenne muscular dystrophy (DMD). The review describes and evaluates a wide range of techniques used to measure parameters of muscle pathology in mdx mice and identifies some basic techniques that might comprise standardised approaches for evaluation. While the central aim is to provide a basis for the development of standardised procedures to evaluate efficacy of a drug or a therapeutic strategy, a further aim is to gain insight into pathophysiological mechanisms in order to identify other therapeutic targets. The desired outcome is to enable easier and more rigorous comparison of pre-clinical data from different laboratories around the world, in order to accelerate identification of the best pre-clinical therapies in the mdx mouse that will fast-track translation into effective clinical treatments for DMD. PMID:18499465
Kobayashi, Yutaro; Inagawa, Hiroyuki; Kohchi, Chie; Kazumura, Kimiko; Tsuchiya, Hiroshi; Miwa, Toshiyuki; Okazaki, Katsuichiro; Soma, Gen-Ichiro
2018-01-01
The pathogenesis of Alzheimer's disease (AD) remains unclear, but an imbalance between the production and clearance of amyloid-β (Aβ) peptides is known to play a critical role in AD progression. A promising preventative approach is to enhance the normal Aβ clearance activity of brain phagocytes such as microglia. In mice, the intraperitoneal injection of Toll-like receptor 4 agonist was shown to enhance Aβ clearance and exhibit a preventative effect on AD-related pathology. Our previous clinical study demonstrated that orally administered Pantoea agglomerans-derived lipopolysaccharide (LPSp) exhibited an LDL (low-density lipoprotein)-lowering effect in human volunteers with hyperlipidemia, a known risk factor for AD. In vitro studies have shown that LPSp treatment increases Aβ phagocytosis by microglial cells; however it is still unclear whether orally administered LPSp exhibits a preventive effect on AD progression. We show here that in senescence-accelerated prone 8 (SAMP8) mice fed a high-fat diet, oral administration of LPSp at 0.3 or 1 mg/kg body weight·day for 18 weeks significantly improved glucose metabolism and lipid profiles. The LPSp treatment also reduced pro-inflammatory cytokine expression and oxidative-burst activity in the peripheral blood. Moreover, LPSp significantly reduced brain Aβ burden and memory impairment as seen in the water maze test, although we could not confirm a significant enhancement of Aβ phagocytosis in microglia isolated from the brains after treatment. Taken together, our results show that LPSp holds promise as a preventative therapy for AD or AD-related diseases induced by impairment of metabolic functions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liang, Jieming; Atwood, Todd; Eyben, Rie von
2015-08-01
Purpose: To develop planning and delivery capabilities for linear accelerator–based nonisocentric trajectory modulated arc therapy (TMAT) and to evaluate the benefit of TMAT for accelerated partial breast irradiation (APBI) with the patient in prone position. Methods and Materials: An optimization algorithm for volumetrically modulated arc therapy (VMAT) was generalized to allow for user-defined nonisocentric TMAT trajectories combining couch rotations and translations. After optimization, XML scripts were automatically generated to program and subsequently deliver the TMAT plans. For 10 breast patients in the prone position, TMAT and 6-field noncoplanar intensity modulated radiation therapy (IMRT) plans were generated under equivalent objectives andmore » constraints. These plans were compared with regard to whole breast tissue volume receiving more than 100%, 80%, 50%, and 20% of the prescription dose. Results: For TMAT APBI, nonisocentric collision-free horizontal arcs with large angular span (251.5 ± 7.9°) were optimized and delivered with delivery time of ∼4.5 minutes. Percentage changes of whole breast tissue volume receiving more than 100%, 80%, 50%, and 20% of the prescription dose for TMAT relative to IMRT were −10.81% ± 6.91%, −27.81% ± 7.39%, −14.82% ± 9.67%, and 39.40% ± 10.53% (P≤.01). Conclusions: This is a first demonstration of end-to-end planning and delivery implementation of a fully dynamic APBI TMAT. Compared with IMRT, TMAT resulted in marked reduction of the breast tissue volume irradiated at high doses.« less
Mouse homologues of human hereditary disease.
Searle, A G; Edwards, J H; Hall, J G
1994-01-01
Details are given of 214 loci known to be associated with human hereditary disease, which have been mapped on both human and mouse chromosomes. Forty two of these have pathological variants in both species; in general the mouse variants are similar in their effects to the corresponding human ones, but exceptions include the Dmd/DMD and Hprt/HPRT mutations which cause little, if any, harm in mice. Possible reasons for phenotypic differences are discussed. In most pathological variants the gene product seems to be absent or greatly reduced in both species. The extensive data on conserved segments between human and mouse chromosomes are used to predict locations in the mouse of over 50 loci of medical interest which are mapped so far only on human chromosomes. In about 80% of these a fairly confident prediction can be made. Some likely homologies between mapped mouse loci and unmapped human ones are also given. Sixty six human and mouse proto-oncogene and growth factor gene homologies are also listed; those of confirmed location are all in known conserved segments. A survey of 18 mapped human disease loci and chromosome regions in which the manifestation or severity of pathological effects is thought to be the result of genomic imprinting shows that most of the homologous regions in the mouse are also associated with imprinting, especially those with homologues on human chromosomes 11p and 15q. Useful methods of accelerating the production of mouse models of human hereditary disease include (1) use of a supermutagen, such as ethylnitrosourea (ENU), (2) targeted mutagenesis involving ES cells, and (3) use of gene transfer techniques, with production of 'knockout mutations'. PMID:8151633
Melis, Monique H M; Nevedomskaya, Ekaterina; van Burgsteden, Johan; Cioni, Bianca; van Zeeburg, Hester J T; Song, Ji-Ying; Zevenhoven, John; Hawinkels, Lukas J A C; de Visser, Karin E; Bergman, Andries M
2017-11-07
Increasing evidence from epidemiological and pathological studies suggests a role of the immune system in the initiation and progression of multiple cancers, including prostate cancer. Reports on the contribution of the adaptive immune system are contradictive, since both suppression and acceleration of disease development have been reported. This study addresses the functional role of lymphocytes in prostate cancer development using a genetically engineered mouse model (GEMM) of human c-Myc driven prostate cancer (Hi-Myc mice) combined with B and T cell deficiency (RAG1 -/- mice). From a pre-cancerous stage on, Hi-Myc mice showed higher accumulation of immune cells in their prostates then wild-type mice, of which macrophages were the most abundant. The onset of invasive adenocarcinoma was delayed in Hi-MycRAG1 -/- compared to Hi-Myc mice and associated with decreased infiltration of leukocytes into the prostate. In addition, lower levels of the cytokines CXCL2, CCL5 and TGF-β1 were detected in Hi-MycRAG1 -/- compared to Hi-Myc mouse prostates. These results from a GEMM of prostate cancer provide new insights into the promoting role of the adaptive immune system in prostate cancer development. Our findings indicate that the endogenous adaptive immune system does not protect against de novo prostate carcinogenesis in Hi-Myc transgenic mice, but rather accelerates the formation of invasive adenocarcinomas. This may have implications for the development of novel treatment strategies.
Xiao, Yi; Ma, Haixia; Wan, Ping; Qin, Dandan; Wang, Xiaoxiao; Zhang, Xiaoxin; Xiang, Yunlong; Liu, Wenbo; Chen, Jiong; Yi, Zhaohong; Li, Lei
2017-01-27
Trp-Asp (WD) repeat domain 1 (WDR1) is a highly conserved actin-binding protein across all eukaryotes and is involved in numerous actin-based processes by accelerating Cofilin severing actin filament. However, the function and the mechanism of WDR1 in mammalian early development are still largely unclear. We now report that WDR1 is essential for mouse peri-implantation development and regulates Cofilin phosphorylation in mouse cells. The disruption of maternal WDR1 does not obviously affect ovulation and female fertility. However, depletion of zygotic WDR1 results in embryonic lethality at the peri-implantation stage. In WDR1 knock-out cells, we found that WDR1 regulates Cofilin phosphorylation. Interestingly, WDR1 is overdosed to regulate Cofilin phosphorylation in mouse cells. Furthermore, we showed that WDR1 interacts with Lim domain kinase 1 (LIMK1), a well known phosphorylation kinase of Cofilin. Altogether, our results provide new insights into the role and mechanism of WDR1 in physiological conditions. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choi, Chang-Hyuk; Kim, Hong-Tae; Choe, Jung-Yoon
This study was performed to observe microstructures of the rheumatoid arthritis induced mouse feet using a synchrotron radiation beam and to compare findings with histological observations. X-ray refraction images from ex-vivo rheumatoid arthritis induced mouse feet were obtained with an 8KeV white (unmonochromatic) beam and 20 micron thick CsI(Tl) scintillation crystal. The visual image was magnified using a x 10 microscope objective and captured using digital CCD camera. Experiments were performed at 1B2 bending magnet beamline of the Pohang Accelerator Laboratory (PAL) in Korea. Obtained images were compared with histopathologic findings from same sample. Cartilage destruction and thickened joint capsulemore » with joint space narrowing were clearly identified at each grade of rheumatoid model with spatial resolution of as much as 1.2 micron and these findings were directly correlated with histopathologic findings. The results suggest that x-ray microscopy study of the rheumatoid arthritis model using synchrotron radiation demonstrates the potential for clinically relevant micro structure of mouse feet without sectioning and fixation.« less
NASA Technical Reports Server (NTRS)
Jackson, Catherine G. R.
1996-01-01
Long term spaceflight and habitation of a space station and/or the moon require that astronauts be provided with sufficient environmental and physiological support so that they can not only function in microgravity but be returned to earth safely. As the duration of habitation in microgravity increase the effects of the concomitant deconditioning of body systems becomes a concern for added exercise in space and for reentry to Earth gravity. Many countermeasures have been proposed to maintain proper functioning of the body, but none have proved sufficient, especially when the cost of crew time spent in these activities is considered. The issue of appropriate countermeasures remains unresolved. Spaceflight deconditioning decreases tolerance to +Gz acceleration, head to foot, the direction which is experienced during reentry; the result is that the crew member is more prone to becoming pre-syncopal or syncopal, thus exacerbating the orthostatic intolerance. All ground-based research using microgravity analogues has produced this same lowered G tolerance. When intermittent exposure to +1 to +4 Gz acceleration training was used, some alleviation of orthosatic intolerance and negative physiological effects of deconditioning occurred. Exercise alone was not as effective; but the added G force was. The physiological responses to acceleration added to exercise training have not been clearly shown. We will test the hypothesis that there will be no difference in the exercise oxygen uptake-exercise load relationship with added +Gz acceleration. We wi also compare oxygen uptake during graded exercise-acceleration loads in the human-powered short arm centrifuge with those from normal supine exercise loads. The human-powered short arm centrifuge was built by NASA engineers at Ames Research Center.
Baumann, Claudia; Wang, Xiaotian; Yang, Luhan; Viveiros, Maria M
2017-04-01
Mouse oocytes lack canonical centrosomes and instead contain unique acentriolar microtubule-organizing centers (aMTOCs). To test the function of these distinct aMTOCs in meiotic spindle formation, pericentrin (Pcnt), an essential centrosome/MTOC protein, was knocked down exclusively in oocytes by using a transgenic RNAi approach. Here, we provide evidence that disruption of aMTOC function in oocytes promotes spindle instability and severe meiotic errors that lead to pronounced female subfertility. Pcnt-depleted oocytes from transgenic (Tg) mice were ovulated at the metaphase-II stage, but show significant chromosome misalignment, aneuploidy and premature sister chromatid separation. These defects were associated with loss of key Pcnt-interacting proteins (γ-tubulin, Nedd1 and Cep215) from meiotic spindle poles, altered spindle structure and chromosome-microtubule attachment errors. Live-cell imaging revealed disruptions in the dynamics of spindle assembly and organization, together with chromosome attachment and congression defects. Notably, spindle formation was dependent on Ran GTPase activity in Pcnt-deficient oocytes. Our findings establish that meiotic division is highly error-prone in the absence of Pcnt and disrupted aMTOCs, similar to what reportedly occurs in human oocytes. Moreover, these data underscore crucial differences between MTOC-dependent and -independent meiotic spindle assembly. © 2017. Published by The Company of Biologists Ltd.
Garcia, Mariana G; Tirado-Gonzalez, Irene; Handjiski, Bori; Tometten, Mareike; Orsal, Arif S; Hajos, Silvia E; Fernández, Nelson; Arck, Petra C; Blois, Sandra M
2007-07-01
The materno-fetal interface has for long been considered as an immune privileged biological site and thus understanding the mechanisms underlying fetal survival have been the focus of intense research. In adults, survivin and Stat-3 proteins are involved in tolerance as well as the induction of apoptosis. However, the role of these molecules in pregnancy and development has not been addressed. We have evaluated the expression of survivin and Stat-3 in allogeneic mouse models of low abortions (CBA/J x Balb/c), abortion prone (CBA/J x DBA/2J) and stress-triggered abortions from DBA/2J-mated CBA/J mice. We show that survivin is over-expressed in abortion-prone mating on gestation day 7.5. This effect was also found in stress-exposed mice, whereas expression was low in normal pregnancy mice. The phosphorylated Stat-3 (p-Stat-3) was down regulated in high abortion mating compared with low abortion mating, CBA/J x Balb/c. The level of apoptosis was similar in the three groups studied. Our results suggest that high expression of survivin and low expression of p-Stat-3 are involved in pregnancy loss in mice.
Dewald, Oliver; Ren, Guofeng; Duerr, Georg D.; Zoerlein, Martin; Klemm, Christina; Gersch, Christine; Tincey, Sophia; Michael, Lloyd H.; Entman, Mark L.; Frangogiannis, Nikolaos G.
2004-01-01
Large animal models have provided much of the descriptive data regarding the cellular and molecular events in myocardial infarction and repair. The availability of genetically altered mice may provide a valuable tool for specific cellular and molecular dissection of these processes. In this report we compare closed chest models of canine and mouse infarction/reperfusion qualitatively and quantitatively for temporal, cellular, and spatial differences. Much like the canine model, reperfused mouse hearts are associated with marked induction of endothelial adhesion molecules, cytokines, and chemokines. Reperfused mouse infarcts show accelerated replacement of cardiomyocytes by granulation tissue leading to a thin mature scar at 14 days, when the canine infarction is still cellular and evolving. Infarcted mouse hearts demonstrate a robust but transient postreperfusion inflammatory reaction, associated with a rapid up-regulation of interleukin-10 and transforming growth factor-β. Unlike canine infarcts, infarcted mouse hearts show only transient macrophage infiltration and no significant mast cell accumulation. In correlation, the growth factor for macrophages, M-CSF, shows modest and transient up-regulation in the early days of reperfusion; and the obligate growth factor for mast cells, stem cell factor, SCF, is not induced. In summary, the postinfarction inflammatory response and resultant repair in the mouse heart shares many common characteristics with large mammalian species, but has distinct temporal and qualitative features. These important species-specific differences should be considered when interpreting findings derived from studies using genetically altered mice. PMID:14742270
Grimm, Christian; Wenzel, Andreas; Stanescu, Dinu; Samardzija, Marijana; Hotop, Svenja; Groszer, Mathias; Naash, Muna; Gassmann, Max; Remé, Charlotte
2010-01-01
Elevation of erythropoietin (Epo) concentrations by hypoxic preconditioning or application of recombinant human Epo (huEpo) protects the mouse retina against light-induced degeneration by inhibiting photoreceptor cell apoptosis. Because photoreceptor apoptosis is also the common path to cell loss in retinal dystrophies such as retinitis pigmentosa (RP), we tested whether high levels of huEpo would reduce apoptotic cell death in two mouse models of human RP. We combined the two respective mutant mouse lines with a transgenic line (tg6) that constitutively overexpresses huEpo mainly in neural tissues. Transgenic expression of huEpo caused constitutively high levels of Epo in the retina and protected photoreceptors against light-induced degeneration; however, the presence of high levels of huEpo did not affect the course or the extent of retinal degeneration in a light-independent (rd1) and a light-accelerated (VPP) mouse model of RP. Similarly, repetitive intraperitoneal injections of recombinant huEpo did not protect the retina in the rd1 and the VPP mouse. Lack of neuroprotection by Epo in the two models of inherited retinal degeneration was not caused by adaptational downregulation of Epo receptor. Our results suggest that apoptotic mechanisms during acute, light-induced photoreceptor cell death differ from those in genetically based retinal degeneration. Therapeutic intervention with cell death in inherited retinal degeneration may therefore require different drugs and treatments. PMID:15215287
USDA-ARS?s Scientific Manuscript database
Decrease of cellular zinc in the epithelium of the prostate has been implicated in the development of prostate cancer. To investigate whether ZnT7, a zinc transporter involved in intracellular zinc accumulation, plays a role in prostate cancer development, we have generated and characterized a trans...
Novel Method for Analyzing Locomotor Ability after Spinal Cord Injury in Rats: Technical Note
Shinozaki, Munehisa; Yasuda, Akimasa; Nori, Satoshi; Saito, Nobuhito; Toyama, Yoshiaki; Okano, Hideyuki; Nakamura, Masaya
2013-01-01
In the research for the treatment of spinal cord injury (SCI), the evaluation of motor function in model rats must be as objective, noninvasive, and ethical as possible. The maximum speed and acceleration of a mouse measured using a SCANET system were previously reported to vary significantly according to severity of SCI. In the present study, the motor performance of SCI model rats was examined with SCANET and assessed for Basso-Beattie-Bresnahan (BBB) score to determine the usefulness of the SCANET system in evaluating functional recovery after SCI. Maximum speed and acceleration within the measurement period correlated significantly with BBB scores. Furthermore, among several phased kinematic factors used in BBB scores, the capability of “plantar stepping” was associated with a drastic increase in maximum speed and acceleration after SCI. Therefore, evaluation of maximum speed and acceleration using a SCANET system is a useful method for rat models of SCI and can complement open field scoring scales. PMID:24097095
Osorio, Fernando G; Bárcena, Clea; Soria-Valles, Clara; Ramsay, Andrew J; de Carlos, Félix; Cobo, Juan; Fueyo, Antonio; Freije, José M P; López-Otín, Carlos
2012-10-15
Alterations in the architecture and dynamics of the nuclear lamina have a causal role in normal and accelerated aging through both cell-autonomous and systemic mechanisms. However, the precise nature of the molecular cues involved in this process remains incompletely defined. Here we report that the accumulation of prelamin A isoforms at the nuclear lamina triggers an ATM- and NEMO-dependent signaling pathway that leads to NF-κB activation and secretion of high levels of proinflammatory cytokines in two different mouse models of accelerated aging (Zmpste24(-/-) and Lmna(G609G/G609G) mice). Causal involvement of NF-κB in accelerated aging was demonstrated by the fact that both genetic and pharmacological inhibition of NF-κB signaling prevents age-associated features in these animal models, significantly extending their longevity. Our findings provide in vivo proof of principle for the feasibility of pharmacological modulation of the NF-κB pathway to slow down the progression of physiological and pathological aging.
Mei, Feng; Lehmann-Horn, Klaus; Shen, Yun-An A; Rankin, Kelsey A; Stebbins, Karin J; Lorrain, Daniel S; Pekarek, Kara; A Sagan, Sharon; Xiao, Lan; Teuscher, Cory; von Büdingen, H-Christian; Wess, Jürgen; Lawrence, J Josh; Green, Ari J; Fancy, Stephen Pj; Zamvil, Scott S; Chan, Jonah R
2016-09-27
Demyelination in MS disrupts nerve signals and contributes to axon degeneration. While remyelination promises to restore lost function, it remains unclear whether remyelination will prevent axonal loss. Inflammatory demyelination is accompanied by significant neuronal loss in the experimental autoimmune encephalomyelitis (EAE) mouse model and evidence for remyelination in this model is complicated by ongoing inflammation, degeneration and possible remyelination. Demonstrating the functional significance of remyelination necessitates selectively altering the timing of remyelination relative to inflammation and degeneration. We demonstrate accelerated remyelination after EAE induction by direct lineage analysis and hypothesize that newly formed myelin remains stable at the height of inflammation due in part to the absence of MOG expression in immature myelin. Oligodendroglial-specific genetic ablation of the M1 muscarinic receptor, a potent negative regulator of oligodendrocyte differentiation and myelination, results in accelerated remyelination, preventing axonal loss and improving functional recovery. Together our findings demonstrate that accelerated remyelination supports axonal integrity and neuronal function after inflammatory demyelination.
Chou, Chun-Hsiao; Gong, Chi-Li; Chao, Chia-Chia; Lin, Chia-Huei; Kwan, Chiu-Yin; Hsieh, Ching-Liang; Leung, Yuk-Man
2009-05-22
Rhynchophylline (1), a neuroprotective agent isolated from the traditional Chinese medicinal herb Uncaria rhynchophylla, was shown to affect voltage-gated K(+) (Kv) channel slow inactivation in mouse neuroblastoma N2A cells. Extracellular 1 (30 microM) accelerated the slow decay of Kv currents and shifted the steady-state inactivation curve to the left. Intracellular dialysis of 1 did not accelerate the slow current decay, suggesting that this compound acts extracellularly. In addition, the percent blockage of Kv currents by this substance was independent of the degree of depolarization and the intracellular K(+) concentration. Therefore, 1 did not appear to directly block the outer channel pore, with the results obtained suggesting that it drastically accelerated Kv channel slow inactivation. Interestingly, 1 also shifted the activation curve to the left. This alkaloid also strongly accelerated slow inactivation and caused a left shift of the activation curve of Kv1.2 channels heterologously expressed in HEK293 cells. Thus, this compound functionally turned delayed rectifiers into A-type K(+) channels.
Mouse models of ageing and their relevance to disease.
Kõks, Sulev; Dogan, Soner; Tuna, Bilge Guvenc; González-Navarro, Herminia; Potter, Paul; Vandenbroucke, Roosmarijn E
2016-12-01
Ageing is a process that gradually increases the organism's vulnerability to death. It affects different biological pathways, and the underlying cellular mechanisms are complex. In view of the growing disease burden of ageing populations, increasing efforts are being invested in understanding the pathways and mechanisms of ageing. We review some mouse models commonly used in studies on ageing, highlight the advantages and disadvantages of the different strategies, and discuss their relevance to disease susceptibility. In addition to addressing the genetics and phenotypic analysis of mice, we discuss examples of models of delayed or accelerated ageing and their modulation by caloric restriction. Copyright © 2016 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.
Young, Douglas; Mayer, Franziska; Vidotto, Nella; Schweizer, Tatjana; Berth, Ramon; Abramowski, Dorothee; Shimshek, Derya R.; van der Putten, P. Herman; Schmid, Peter
2013-01-01
Huntington's disease (HD) is an autosomal dominant, progressive and fatal neurological disorder caused by an expansion of CAG repeats in exon-1 of the huntingtin gene. The encoded poly-glutamine stretch renders mutant huntingtin prone to aggregation. HdhQ150 mice genocopy a pathogenic repeat (∼150 CAGs) in the endogenous mouse huntingtin gene and model predominantly pre-manifest HD. Treating early is likely important to prevent or delay HD, and HdhQ150 mice may be useful to assess therapeutic strategies targeting pre-manifest HD. This requires appropriate markers and here we demonstrate, that pre-symptomatic HdhQ150 mice show several dramatic mutant huntingtin gene-dose dependent pathological changes including: (i) an increase of neuronal intra-nuclear inclusions (NIIs) in brain, (ii) an increase of extra-nuclear aggregates in dentate gyrus, (iii) a decrease of DARPP32 protein and (iv) an increase in glial markers of neuroinflammation, which curiously did not correlate with local neuronal mutant huntingtin inclusion-burden. HdhQ150 mice developed NIIs also in all retinal neuron cell-types, demonstrating that retinal NIIs are not specific to human exon-1 R6 HD mouse models. Taken together, the striking and robust mutant huntingtin gene-dose related changes in aggregate-load, DARPP32 levels and glial activation markers should greatly facilitate future testing of therapeutic strategies in the HdhQ150 HD mouse model. PMID:24086450
2011-01-01
Background Chotosan (CTS, Diaoteng San), a Kampo medicine (ie Chinese medicine) formula, is reportedly effective in the treatment of patients with cerebral ischemic insults. This study aims to evaluate the therapeutic potential of CTS in cognitive deficits and investigates the effects and molecular mechanism(s) of CTS on learning and memory deficits and emotional abnormality in an animal aging model, namely 20-week-old senescence-accelerated prone mice (SAMP8), with and without a transient ischemic insult (T2VO). Methods Age-matched senescence-resistant inbred strain mice (SAMR1) were used as control. SAMP8 received T2VO (T2VO-SAMP8) or sham operation (sham-SAMP8) at day 0. These SAMP8 groups were administered CTS (750 mg/kg, p.o.) or water daily for three weeks from day 3. Results Compared with the control group, both sham-SAMP8 and T2VO-SAMP8 groups exhibited cognitive deficits in the object discrimination and water maze tests and emotional abnormality in the elevated plus maze test. T2VO significantly exacerbated spatial cognitive deficits of SAMP8 elucidated by the water maze test. CTS administration ameliorated the cognitive deficits and emotional abnormality of sham- and T2VO-SAMP8 groups. Western blotting and immunohistochemical studies revealed a marked decrease in the levels of phosphorylated forms of neuroplasticity-related proteins, N-methyl-D-aspartate receptor 1 (NMDAR1), Ca2+/calmodulin-dependent protein kinase II (CaMKII), cyclic AMP responsive element binding protein (CREB) and brain-derived neurotrophic factor (BDNF) in the frontal cortices of sham-SAMP8 and T2VO-SAMP8. Moreover, these animal groups showed significantly reduced levels of vasculogenesis/angiogenesis factors, vascular endothelial growth factor (VEGF), VEGF receptor type 2 (VEGFR2), platelet-derived growth factor-A (PDGF-A) and PDGF receptor α (PDGFRα). CTS treatment reversed the expression levels of these factors down-regulated in the brains of sham- and T2VO-SAMP8. Conclusion Recovery of impaired neuroplasticity system and VEGF/PDGF systems may play a role in the ameliorative effects of CTS on cognitive dysfunction caused by aging and ischemic insult. PMID:21943225
Aging in the Male Face: Intrinsic and Extrinsic Factors.
Keaney, Terrence C
2016-07-01
Gender is one of the most significant factors that influence facial anatomy and behavior, both key factors in the aging process. To review male facial anatomy, physiology, and behavior and how it contributes to sexual dimorphism in facial aging. A MEDLINE search was performed for publications on gender differences in facial anatomy, aging, cutaneous physiology, and behavior. There are differences in both intrinsic and extrinsic aging factors in men. Men have a thicker epidermis and dermis with more active cutaneous appendages including hair growth. Male skin has a reduced antioxidant capacity and increased ultraviolet-induced immunosuppression. The male face is larger and has a unique square shape with less subcutaneous soft tissue, especially at the medial cheek. Men are also more prone to smoking and exhibiting poor sun-protective behavior. The differences in intrinsic and extrinsic aging factors contribute to poor facial aging in men. Men develop more severe rhytides in a unique pattern, show increased periocular aging changes, and are more prone to hair loss. This review provides insight into the factors contributing to accelerated male facial aging. Understanding gender differences in aging will help physicians tailor cosmetic treatments for men and minimize extrinsic aging factors.
Mattana, Sara; Caponi, Silvia; Tamagnini, Francesco; Fioretto, Daniele; Palombo, Francesca
2017-11-01
Amyloidopathy is one of the most prominent hallmarks of Alzheimer's disease (AD), the leading cause of dementia worldwide, and is characterized by the accumulation of amyloid plaques in the brain parenchyma. The plaques consist of abnormal deposits mainly composed of an aggregation-prone protein fragment, β -amyloid 1-40/1-42, into the extracellular matrix. Brillouin microspectroscopy is an all-optical contactless technique that is based on the interaction between visible light and longitudinal acoustic waves or phonons , giving access to the viscoelasticity of a sample on a subcellular scale. Here, we describe the first application of micromechanical mapping based on Brillouin scattering spectroscopy to probe the stiffness of individual amyloid plaques in the hippocampal part of the brain of a β -amyloid overexpressing transgenic mouse. Correlative analysis based on Brillouin and Raman microspectroscopy showed that amyloid plaques have a complex structure with a rigid core of β -pleated sheet conformation ( β -amyloid) protein surrounded by a softer ring-shaped region richer in lipids and other protein conformations. These preliminary results give a new insight into the plaque biophysics and biomechanics, and a valuable contrast mechanism for the study and diagnosis of amyloidopathy.
Mattana, Sara; Caponi, Silvia; Tamagnini, Francesco; Fioretto, Daniele; Palombo, Francesca
2017-01-01
Amyloidopathy is one of the most prominent hallmarks of Alzheimer’s disease (AD), the leading cause of dementia worldwide, and is characterized by the accumulation of amyloid plaques in the brain parenchyma. The plaques consist of abnormal deposits mainly composed of an aggregation-prone protein fragment, β-amyloid 1-40/1-42, into the extracellular matrix. Brillouin microspectroscopy is an all-optical contactless technique that is based on the interaction between visible light and longitudinal acoustic waves or phonons, giving access to the viscoelasticity of a sample on a subcellular scale. Here, we describe the first application of micromechanical mapping based on Brillouin scattering spectroscopy to probe the stiffness of individual amyloid plaques in the hippocampal part of the brain of a β-amyloid overexpressing transgenic mouse. Correlative analysis based on Brillouin and Raman microspectroscopy showed that amyloid plaques have a complex structure with a rigid core of β-pleated sheet conformation (β-amyloid) protein surrounded by a softer ring-shaped region richer in lipids and other protein conformations. These preliminary results give a new insight into the plaque biophysics and biomechanics, and a valuable contrast mechanism for the study and diagnosis of amyloidopathy. PMID:29151920
ACCELERATED FAILURE TIME MODELS PROVIDE A USEFUL STATISTICAL FRAMEWORK FOR AGING RESEARCH
Swindell, William R.
2009-01-01
Survivorship experiments play a central role in aging research and are performed to evaluate whether interventions alter the rate of aging and increase lifespan. The accelerated failure time (AFT) model is seldom used to analyze survivorship data, but offers a potentially useful statistical approach that is based upon the survival curve rather than the hazard function. In this study, AFT models were used to analyze data from 16 survivorship experiments that evaluated the effects of one or more genetic manipulations on mouse lifespan. Most genetic manipulations were found to have a multiplicative effect on survivorship that is independent of age and well-characterized by the AFT model “deceleration factor”. AFT model deceleration factors also provided a more intuitive measure of treatment effect than the hazard ratio, and were robust to departures from modeling assumptions. Age-dependent treatment effects, when present, were investigated using quantile regression modeling. These results provide an informative and quantitative summary of survivorship data associated with currently known long-lived mouse models. In addition, from the standpoint of aging research, these statistical approaches have appealing properties and provide valuable tools for the analysis of survivorship data. PMID:19007875
Accelerated failure time models provide a useful statistical framework for aging research.
Swindell, William R
2009-03-01
Survivorship experiments play a central role in aging research and are performed to evaluate whether interventions alter the rate of aging and increase lifespan. The accelerated failure time (AFT) model is seldom used to analyze survivorship data, but offers a potentially useful statistical approach that is based upon the survival curve rather than the hazard function. In this study, AFT models were used to analyze data from 16 survivorship experiments that evaluated the effects of one or more genetic manipulations on mouse lifespan. Most genetic manipulations were found to have a multiplicative effect on survivorship that is independent of age and well-characterized by the AFT model "deceleration factor". AFT model deceleration factors also provided a more intuitive measure of treatment effect than the hazard ratio, and were robust to departures from modeling assumptions. Age-dependent treatment effects, when present, were investigated using quantile regression modeling. These results provide an informative and quantitative summary of survivorship data associated with currently known long-lived mouse models. In addition, from the standpoint of aging research, these statistical approaches have appealing properties and provide valuable tools for the analysis of survivorship data.
Local administration of a hedgehog agonist accelerates fracture healing in a mouse model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kashiwagi, Miki; Division of Clinical Biotechnology, The University of Tokyo Graduate School of Medicine, Bunkyo-ku, Tokyo, 113-0033; Hojo, Hironori
Bone fracture healing is processed through multiple biological stages including the transition from cartilaginous callus to bony callus formation. Because of its specific, temporal and indispensable functions demonstrated by mouse genetic studies, Hedgehog (Hh) signaling is one of the most potent signaling pathways involved in these processes, but the effect of Hh-signaling activation by small compounds on the repair process had not yet been addressed. Here we examined therapeutic effects of local and one shot-administration of the Hh agonist known as smoothened agonist (SAG) on bone fracture healing in a mouse model. A quantitative analysis with three-dimensional micro-computed tomography showedmore » that SAG administration increased the size of both the cartilaginous callus and bony callus at 14 days after the surgery. A histological analysis showed that SAG administration increased the number of cells expressing a proliferation marker and a chondrocyte marker in cartilaginous callus as well as the cells expressing an osteoblast marker in bony callus. These results indicate that the SAG administration resulted in an enhancement of callus formation during bone fracture healing, which is at least in part mediated by an increase in chondrocyte proliferation in cartilaginous callus and the promotion of bone formation in bony callus. Therapeutic strategies with a SAG-mediated protocol may thus be useful for the treatment of bone fractures. - Highlights: • Local administration of a Hh agonist accelerates callus formation. • The Hh agonist administration promotes chondrocyte proliferation in the soft callus. • The Hh agonist administration increases osteoblast formation in the hard callus.« less
Muscle mass, structural and functional investigations of senescence-accelerated mouse P8 (SAMP8)
Guo, An Yun; Leung, Kwok Sui; Siu, Parco Ming Fai; Qin, Jiang Hui; Chow, Simon Kwoon Ho; Qin, Ling; Li, Chi Yu; Cheung, Wing Hoi
2015-01-01
Sarcopenia is an age-related systemic syndrome with progressive deterioration in skeletal muscle functions and loss in mass. Although the senescence-accelerated mouse P8 (SAMP8) was reported valid for muscular ageing research, there was no report on the details such as sarcopenia onset time. Therefore, this study was to investigate the change of muscle mass, structure and functions during the development of sarcopenia. Besides the average life span, muscle mass, structural and functional measurements were also studied. Male SAMP8 animals were examined at month 6, 7, 8, 9, and 10, in which the right gastrocnemius was isolated and tested for ex vivo contractile properties and fatigability while the contralateral one was harvested for muscle fiber cross-sectional area (FCSA) and typing assessments. Results showed that the peak of muscle mass appeared at month 7 and the onset of contractility decline was observed from month 8. Compared with month 8, most of the functional parameters at month 10 decreased significantly. Structurally, muscle fiber type IIA made up the largest proportion of the gastrocnemius, and the fiber size was found to peak at month 8. Based on the altered muscle mass, structural and functional outcomes, it was concluded that the onset of sarcopenia in SAMP8 animals was at month 8. SAMP8 animals at month 8 should be at pre-sarcopenia stage while month 10 at sarcopenia stage. It is confirmed that SAMP8 mouse can be used in sarcopenia research with established time line in this study. PMID:26193895
NOD2 Receptor is Expressed in Platelets and Enhances Platelet Activation and Thrombosis
Zhang, Si; Zhang, Shenghui; Hu, Liang; Zhai, Lili; Xue, Ruyi; Ye, Jianqin; Chen, Leilei; Cheng, Guanjun; Mruk, Jozef; Kunapuli, Satya P.; Ding, Zhongren
2015-01-01
Background Pattern recognition receptor NOD2 (nucleotide binding oligomerization domain 2) is well investigated in immunity, its expression and function in platelets has never been explored. Method and Results Using RT-PCR and Western blot we show that both human and mouse platelets express NOD2, and its agonist MDP induced NOD2 activation as evidenced by receptor dimerization. NOD2 activation potentiates platelet aggregation and secretion induced by low concentration of thrombin or collagen, as well as clot retraction. These potentiating effects of MDP were not seen in platelets from NOD2-deficient mice. Plasma from septic patients also potentiates platelet aggregation induced by thrombin or collagen NOD2-dependently. Using intravital microscopy, we found that MDP administration accelerated in vivo thrombosis in FeCl3-injured mesenteric arteriole thrombosis mouse model. Platelet depletion and transfusion experiments confirmed that NOD2 from platelets contributes to the in vivo thrombosis in mice. NOD2 activation also accelerates platelet-dependent hemostasis. We further found that platelets express RIP2 (receptor-interacting protein 2), and provided evidences suggesting that MAPK and NO/sGC/cGMP/PGK pathways downstream of RIP2 mediate the role of NOD2 in platelets. Finally, MDP stimulates proinflammatory cytokine IL-1β maturation and accumulation in human and mouse platelets NOD2-dependently. Conclusions NOD2 is expressed in platelets and functions in platelet activation and arterial thrombosis, possibly during infection. To our knowledge, this is the first study on NOD-like receptors in platelets which links thrombotic events to inflammation. PMID:25825396
Goldstein, Lee E.; Fisher, Andrew M.; Tagge, Chad A.; Zhang, Xiao-Lei; Velisek, Libor; Sullivan, John A.; Upreti, Chirag; Kracht, Jonathan M.; Ericsson, Maria; Wojnarowicz, Mark W.; Goletiani, Cezar J.; Maglakelidze, Giorgi M.; Casey, Noel; Moncaster, Juliet A.; Minaeva, Olga; Moir, Robert D.; Nowinski, Christopher J.; Stern, Robert A.; Cantu, Robert C.; Geiling, James; Blusztajn, Jan K.; Wolozin, Benjamin L.; Ikezu, Tsuneya; Stein, Thor D.; Budson, Andrew E.; Kowall, Neil W.; Chargin, David; Sharon, Andre; Saman, Sudad; Hall, Garth F.; Moss, William C.; Cleveland, Robin O.; Tanzi, Rudolph E.; Stanton, Patric K.; McKee, Ann C.
2013-01-01
Blast exposure is associated with traumatic brain injury (TBI), neuropsychiatric symptoms, and long-term cognitive disability. We examined a case series of postmortem brains from U.S. military veterans exposed to blast and/or concussive injury. We found evidence of chronic traumatic encephalopathy (CTE), a tau protein–linked neurodegenerative disease, that was similar to the CTE neuropathology observed in young amateur American football players and a professional wrestler with histories of concussive injuries. We developed a blast neurotrauma mouse model that recapitulated CTE-linked neuropathology in wild-type C57BL/6 mice 2 weeks after exposure to a single blast. Blast-exposed mice demonstrated phosphorylated tauopathy, myelinated axonopathy, microvasculopathy, chronic neuroinflammation, and neurodegeneration in the absence of macroscopic tissue damage or hemorrhage. Blast exposure induced persistent hippocampal-dependent learning and memory deficits that persisted for at least 1 month and correlated with impaired axonal conduction and defective activity-dependent long-term potentiation of synaptic transmission. Intracerebral pressure recordings demonstrated that shock waves traversed the mouse brain with minimal change and without thoracic contributions. Kinematic analysis revealed blast-induced head oscillation at accelerations sufficient to cause brain injury. Head immobilization during blast exposure prevented blast-induced learning and memory deficits. The contribution of blast wind to injurious head acceleration may be a primary injury mechanism leading to blast-related TBI and CTE. These results identify common pathogenic determinants leading to CTE in blast-exposed military veterans and head-injured athletes and additionally provide mechanistic evidence linking blast exposure to persistent impairments in neurophysiological function, learning, and memory. PMID:22593173
Goldstein, Lee E; Fisher, Andrew M; Tagge, Chad A; Zhang, Xiao-Lei; Velisek, Libor; Sullivan, John A; Upreti, Chirag; Kracht, Jonathan M; Ericsson, Maria; Wojnarowicz, Mark W; Goletiani, Cezar J; Maglakelidze, Giorgi M; Casey, Noel; Moncaster, Juliet A; Minaeva, Olga; Moir, Robert D; Nowinski, Christopher J; Stern, Robert A; Cantu, Robert C; Geiling, James; Blusztajn, Jan K; Wolozin, Benjamin L; Ikezu, Tsuneya; Stein, Thor D; Budson, Andrew E; Kowall, Neil W; Chargin, David; Sharon, Andre; Saman, Sudad; Hall, Garth F; Moss, William C; Cleveland, Robin O; Tanzi, Rudolph E; Stanton, Patric K; McKee, Ann C
2012-05-16
Blast exposure is associated with traumatic brain injury (TBI), neuropsychiatric symptoms, and long-term cognitive disability. We examined a case series of postmortem brains from U.S. military veterans exposed to blast and/or concussive injury. We found evidence of chronic traumatic encephalopathy (CTE), a tau protein-linked neurodegenerative disease, that was similar to the CTE neuropathology observed in young amateur American football players and a professional wrestler with histories of concussive injuries. We developed a blast neurotrauma mouse model that recapitulated CTE-linked neuropathology in wild-type C57BL/6 mice 2 weeks after exposure to a single blast. Blast-exposed mice demonstrated phosphorylated tauopathy, myelinated axonopathy, microvasculopathy, chronic neuroinflammation, and neurodegeneration in the absence of macroscopic tissue damage or hemorrhage. Blast exposure induced persistent hippocampal-dependent learning and memory deficits that persisted for at least 1 month and correlated with impaired axonal conduction and defective activity-dependent long-term potentiation of synaptic transmission. Intracerebral pressure recordings demonstrated that shock waves traversed the mouse brain with minimal change and without thoracic contributions. Kinematic analysis revealed blast-induced head oscillation at accelerations sufficient to cause brain injury. Head immobilization during blast exposure prevented blast-induced learning and memory deficits. The contribution of blast wind to injurious head acceleration may be a primary injury mechanism leading to blast-related TBI and CTE. These results identify common pathogenic determinants leading to CTE in blast-exposed military veterans and head-injured athletes and additionally provide mechanistic evidence linking blast exposure to persistent impairments in neurophysiological function, learning, and memory.
Acceleration of diabetic wound healing using a novel protease–anti-protease combination therapy
Gao, Ming; Nguyen, Trung T.; Suckow, Mark A.; Wolter, William R.; Gooyit, Major; Mobashery, Shahriar; Chang, Mayland
2015-01-01
Nonhealing chronic wounds are major complications of diabetes resulting in >70,000 annual lower-limb amputations in the United States alone. The reasons the diabetic wound is recalcitrant to healing are not fully understood, and there are limited therapeutic agents that could accelerate or facilitate its repair. We previously identified two active forms of matrix metalloproteinases (MMPs), MMP-8 and MMP-9, in the wounds of db/db mice. We argued that the former might play a role in the body’s response to wound healing and that the latter is the pathological consequence of the disease with detrimental effects. Here we demonstrate that the use of compound ND-336, a novel highly selective inhibitor of gelatinases (MMP-2 and MMP-9) and MMP-14, accelerates diabetic wound healing by lowering inflammation and by enhancing angiogenesis and re-epithelialization of the wound, thereby reversing the pathological condition. The detrimental role of MMP-9 in the pathology of diabetic wounds was confirmed further by the study of diabetic MMP-9–knockout mice, which exhibited wounds more prone to healing. Furthermore, topical administration of active recombinant MMP-8 also accelerated diabetic wound healing as a consequence of complete re-epithelialization, diminished inflammation, and enhanced angiogenesis. The combined topical application of ND-336 (a small molecule) and the active recombinant MMP-8 (an enzyme) enhanced healing even more, in a strategy that holds considerable promise in healing of diabetic wounds. PMID:26598687
Acceleration of diabetic wound healing using a novel protease-anti-protease combination therapy.
Gao, Ming; Nguyen, Trung T; Suckow, Mark A; Wolter, William R; Gooyit, Major; Mobashery, Shahriar; Chang, Mayland
2015-12-08
Nonhealing chronic wounds are major complications of diabetes resulting in >70,000 annual lower-limb amputations in the United States alone. The reasons the diabetic wound is recalcitrant to healing are not fully understood, and there are limited therapeutic agents that could accelerate or facilitate its repair. We previously identified two active forms of matrix metalloproteinases (MMPs), MMP-8 and MMP-9, in the wounds of db/db mice. We argued that the former might play a role in the body's response to wound healing and that the latter is the pathological consequence of the disease with detrimental effects. Here we demonstrate that the use of compound ND-336, a novel highly selective inhibitor of gelatinases (MMP-2 and MMP-9) and MMP-14, accelerates diabetic wound healing by lowering inflammation and by enhancing angiogenesis and re-epithelialization of the wound, thereby reversing the pathological condition. The detrimental role of MMP-9 in the pathology of diabetic wounds was confirmed further by the study of diabetic MMP-9-knockout mice, which exhibited wounds more prone to healing. Furthermore, topical administration of active recombinant MMP-8 also accelerated diabetic wound healing as a consequence of complete re-epithelialization, diminished inflammation, and enhanced angiogenesis. The combined topical application of ND-336 (a small molecule) and the active recombinant MMP-8 (an enzyme) enhanced healing even more, in a strategy that holds considerable promise in healing of diabetic wounds.
Langhammer, Martina; Michaelis, Marten; Hoeflich, Andreas; Sobczak, Alexander; Schoen, Jennifer; Weitzel, Joachim M
2014-01-01
Animal models are valuable tools in fertility research. Worldwide, there are more than 400 transgenic or knockout mouse models available showing a reproductive phenotype; almost all of them exhibit an infertile or at least subfertile phenotype. By contrast, animal models revealing an improved fertility phenotype are barely described. This article summarizes data on two outbred mouse models exhibiting a 'high-fertility' phenotype. These mouse lines were generated via selection over a time period of more than 40 years and 161 generations. During this selection period, the number of offspring per litter and the total birth weight of the entire litter nearly doubled. Concomitantly with the increased fertility phenotype, several endocrine parameters (e.g. serum testosterone concentrations in male animals), physiological parameters (e.g. body weight, accelerated puberty, and life expectancy), and behavioral parameters (e.g. behavior in an open field and endurance fitness on a treadmill) were altered. We demonstrate that the two independently bred high-fertility mouse lines warranted their improved fertility phenotype using different molecular and physiological strategies. The fertility lines display female- as well as male-specific characteristics. These genetically heterogeneous mouse models provide new insights into molecular and cellular mechanisms that enhance fertility. In view of decreasing fertility in men, these models will therefore be a precious information source for human reproductive medicine. Translated abstract A German translation of abstract is freely available at http://www.reproduction-online.org/content/147/4/427/suppl/DC1.
Topical Application of Oleuropein Induces Anagen Hair Growth in Telogen Mouse Skin
Tong, Tao; Kim, Nahyun; Park, Taesun
2015-01-01
We observed that oleuropein, the main constituent of the leaves and unprocessed olive drupes of Olea europaea, protected mice from high-fat diet-induced adiposity by up-regulation of genes involved in Wnt10b-mediated signaling in adipose tissue. The activation of Wnt/β-catenin pathway is also well established to positively regulate the anagen phase of hair growth cycle in mice skin. Methodology and Principal Findings Oleuropein promoted cultured human follicle dermal papilla cell proliferation and induced LEF1 and Cyc-D1 mRNA expression and β-catenin protein expression in dermal papilla cells. Nuclear accumulation of β-catenin in dermal papilla cells was observed after oleuropein treatment. Topical application of oleuropein (0.4 mg/mouse/day) to C57BL/6N mice accelerated the hair-growth induction and increased the size of hair follicles in telogenic mouse skin. The oleuropein-treated mouse skin showed substantial upregulation of Wnt10b, FZDR1, LRP5, LEF1, Cyc-D1, IGF-1, KGF, HGF, and VEGF mRNA expression and β-catenin protein expression. Conclusions and Significance These results demonstrate that topical oleuroepin administration induced anagenic hair growth in telogenic C57BL/6N mouse skin. The hair-growth promoting effect of oleuropein in mice appeared to be associated with the stimulation of the Wnt10b/β-catenin signaling pathway and the upregulation of IGF-1, KGF, HGF, and VEGF gene expression in mouse skin tissue. PMID:26060936
Jian, Yifan; Xu, Jing; Gradowski, Martin A.; Bonora, Stefano; Zawadzki, Robert J.; Sarunic, Marinko V.
2014-01-01
We present wavefront sensorless adaptive optics (WSAO) Fourier domain optical coherence tomography (FD-OCT) for in vivo small animal retinal imaging. WSAO is attractive especially for mouse retinal imaging because it simplifies optical design and eliminates the need for wavefront sensing, which is difficult in the small animal eye. GPU accelerated processing of the OCT data permitted real-time extraction of image quality metrics (intensity) for arbitrarily selected retinal layers to be optimized. Modal control of a commercially available segmented deformable mirror (IrisAO Inc.) provided rapid convergence using a sequential search algorithm. Image quality improvements with WSAO OCT are presented for both pigmented and albino mouse retinal data, acquired in vivo. PMID:24575347
Karageorgas, Theophanis P.; Tseronis, Dimitrios D.; Mavragani, Clio P.
2011-01-01
Growing evidence over the last few years suggests a central role of type I IFN pathway in the pathogenesis of systemic autoimmune disorders. Data from clinical and genetic studies in patients with systemic lupus erythematosus (SLE) and lupus-prone mouse models, indicates that the type I interferon system may play a pivotal role in the pathogenesis of several lupus and associated clinical features, such as nephritis, neuropsychiatric and cutaneous lupus, premature atherosclerosis as well as lupus-specific autoantibodies particularly against ribonucleoproteins. In the current paper, our aim is to summarize the latest findings supporting the association of type I IFN pathway with specific clinical manifestations in the setting of SLE providing insights on the potential use of type I IFN as a therapeutic target. PMID:22162633
Fahimian, Benjamin; Yu, Victoria; Horst, Kathleen; Xing, Lei; Hristov, Dimitre
2013-12-01
External beam radiation therapy (EBRT) provides a non-invasive treatment alternative for accelerated partial breast irradiation (APBI), however, limitations in achievable dose conformity of current EBRT techniques have been correlated to reported toxicity. To enhance the conformity of EBRT APBI, a technique for conventional LINACs is developed, which through combined motion of the couch, intensity modulated delivery, and a prone breast setup, enables wide-angular coronal arc irradiation of the ipsilateral breast without irradiating through the thorax and contralateral breast. A couch trajectory optimization technique was developed to determine the trajectories that concurrently avoid collision with the LINAC and maintain the target within the MLC apertures. Inverse treatment planning was performed along the derived trajectory. The technique was experimentally implemented by programming the Varian TrueBeam™ STx in Developer Mode. The dosimetric accuracy of the delivery was evaluated by ion chamber and film measurements in phantom. The resulting optimized trajectory was shown to be necessarily non-isocentric, and contain both translation and rotations of the couch. Film measurements resulted in 93% of the points in the measured two-dimensional dose maps passing the 3%/3mm Gamma criterion. Preliminary treatment plan comparison to 5-field 3D-conformal, IMRT, and VMAT demonstrated enhancement in conformity, and reduction of the normal tissue V50% and V100% parameters that have been correlated with EBRT toxicity. The feasibility of wide-angular intensity modulated partial breast irradiation using motion of the couch has been demonstrated experimentally on a standard LINAC for the first time. For patients eligible for a prone setup, the technique may enable improvement of dose conformity and associated dose-volume parameters correlated with toxicity. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Carisi, Francesca; Domeneghetti, Alessio; Castellarin, Attilio
2017-04-01
Can man-induced or man-accelerated land-subsidence modify significantly riverine flood-hazard in flood-prone areas? We address this question by investigating the possible changes in flood hazard over one of the most prominent cases of anthropogenic land-subsidence in Italy, a 77-km2 area around the city of Ravenna. The subsidence rate in the area, naturally in the order of a few mm/year, increased dramatically after World War II as a consequence of groundwater pumping and natural gas extraction, exceeding 110 mm/year and resulting in cumulative drops larger than 1.5 m in roughly 100 years. The Montone-Ronco and Fiumi Uniti rivers flow in the southern portion of the study area, which is protected from frequent flooding by levees. We simulated the inundation events associated with different potential levee-breaching configurations by using a fully two-dimensional hydrodynamic model constructed on the basis of four different floodplain geometries: the current topography and a reconstruction of ground elevations before anthropogenic land-subsidence, both neglecting man-made infrastructures, and the current and historical topographies completed with a representation of road and railway embankments and main land-reclamation channels. Our results show that flood-hazard changes due to anthropogenic land-subsidence are limited (e.g. significant changes in simulated values of water depth, h, velocity, v, and intensity, i=hṡv, are detected in roughly 1%, 2% and 8% of the flood-prone area, in this order) and overwhelmingly lower than those determined by the construction of road and railway embankments or artificial channel networks (20%, 14% and 48% of the flood-prone area, respectively).
Osorio, Fernando G.; Bárcena, Clea; Soria-Valles, Clara; Ramsay, Andrew J.; de Carlos, Félix; Cobo, Juan; Fueyo, Antonio; Freije, José M.P.; López-Otín, Carlos
2012-01-01
Alterations in the architecture and dynamics of the nuclear lamina have a causal role in normal and accelerated aging through both cell-autonomous and systemic mechanisms. However, the precise nature of the molecular cues involved in this process remains incompletely defined. Here we report that the accumulation of prelamin A isoforms at the nuclear lamina triggers an ATM- and NEMO-dependent signaling pathway that leads to NF-κB activation and secretion of high levels of proinflammatory cytokines in two different mouse models of accelerated aging (Zmpste24−/− and LmnaG609G/G609G mice). Causal involvement of NF-κB in accelerated aging was demonstrated by the fact that both genetic and pharmacological inhibition of NF-κB signaling prevents age-associated features in these animal models, significantly extending their longevity. Our findings provide in vivo proof of principle for the feasibility of pharmacological modulation of the NF-κB pathway to slow down the progression of physiological and pathological aging. PMID:23019125
Ackers-Johnson, Matthew; Li, Peter Yiqing; Holmes, Andrew P.; O’Brien, Sian-Marie; Pavlovic, Davor; Foo, Roger S.
2018-01-01
Rationale Cardiovascular disease represents a global pandemic. The advent of and recent advances in mouse genomics, epigenomics, and transgenics offer ever-greater potential for powerful avenues of research. However, progress is often constrained by unique complexities associated with the isolation of viable myocytes from the adult mouse heart. Current protocols rely on retrograde aortic perfusion using specialized Langendorff apparatus, which poses considerable logistical and technical barriers to researchers and demands extensive training investment. Objective To identify and optimize a convenient, alternative approach, allowing the robust isolation and culture of adult mouse cardiac myocytes using only common surgical and laboratory equipment. Methods and Results Cardiac myocytes were isolated with yields comparable to those in published Langendorff-based methods, using direct needle perfusion of the LV ex vivo and without requirement for heparin injection. Isolated myocytes can be cultured antibiotic free, with retained organized contractile and mitochondrial morphology, transcriptional signatures, calcium handling, responses to hypoxia, neurohormonal stimulation, and electric pacing, and are amenable to patch clamp and adenoviral gene transfer techniques. Furthermore, the methodology permits concurrent isolation, separation, and coculture of myocyte and nonmyocyte cardiac populations. Conclusions We present a novel, simplified method, demonstrating concomitant isolation of viable cardiac myocytes and nonmyocytes from the same adult mouse heart. We anticipate that this new approach will expand and accelerate innovative research in the field of cardiac biology. PMID:27502479
Reixach, Natàlia; Foss, Ted R; Santelli, Eugenio; Pascual, Jaime; Kelly, Jeffery W; Buxbaum, Joel N
2008-01-25
The transthyretin amyloidoses appear to be caused by rate-limiting tetramer dissociation and partial monomer unfolding of the human serum protein transthyretin, resulting in aggregation and extracellular deposition of amorphous aggregates and amyloid fibrils. Mice transgenic for few copies of amyloid-prone human transthyretin variants, including the aggressive L55P mutant, failed to develop deposits. Silencing the murine transthyretin gene in the presence of the L55P human gene resulted in enhanced tissue deposition. To test the hypothesis that the murine protein interacted with human transthyretin, preventing the dissociation and partial unfolding required for amyloidogenesis, we produced recombinant murine transthyretin and human/murine transthyretin heterotetramers and compared their structures and biophysical properties to recombinant human transthyretin. We found no significant differences between the crystal structures of murine and human homotetramers. Murine transthyretin is not amyloidogenic because the native homotetramer is kinetically stable under physiologic conditions and cannot dissociate into partially unfolded monomers, the misfolding and aggregation precursor. Heterotetramers composed of murine and human subunits are also kinetically stable. These observations explain the lack of transthyretin deposition in transgenics carrying a low copy number of human transthyretin genes. The incorporation of mouse subunits into tetramers otherwise composed of human amyloid-prone transthyretin subunits imposes kinetic stability, preventing dissociation and subsequent amyloidogenesis.
Mechanisms by which stress can lead to coronary heart disease.
Henry, J. P.
1986-01-01
Much stress is of psychological origin and due to emotional arousal. The mechanisms by which anger, helplessness, or a sense of control and serenity exert their various neuroendocrine effects are discussed. Primacy is given to three systems; to the catecholamines, to testosterone and to cortisol. Evidence that they interact to accelerate the arteriosclerotic process is cited. The protective aspects of intimacy are discussed together with evidence that certain personality types promote it in the marital situation while others do not. It is suggested that the post-traumatic stress syndrome may relate to the coronary-prone personality for it involves an alexithymic disturbance of the emotional competence required for successful intimacy. PMID:3748938
Fan, Xingjun; Zhou, Sheng; Wang, Benlian; Hom, Grant; Guo, Minfei; Li, Binbin; Yang, Jing; Vaysburg, Dennis; Monnier, Vincent M
2015-01-01
Low glutathione levels are associated with crystallin oxidation in age-related nuclear cataract. To understand the role of cysteine residue oxidation, we used the novel approach of comparing human cataracts with glutathione-depleted LEGSKO mouse lenses for intra- versus intermolecular disulfide crosslinks using 2D-PAGE and proteomics, and then systematically identified in vivo and in vitro all disulfide forming sites using ICAT labeling method coupled with proteomics. Crystallins rich in intramolecular disulfides were abundant at young age in human and WT mouse lens but shifted to multimeric intermolecular disulfides at older age. The shift was ∼4x accelerated in LEGSKO lens. Most cysteine disulfides in β-crystallins (except βA4 in human) were highly conserved in mouse and human and could be generated by oxidation with H2O2, whereas γ-crystallin oxidation selectively affected γC23/42/79/80/154, γD42/33, and γS83/115/130 in human cataracts, and γB79/80/110, γD19/109, γF19/79, γE19, γS83/130, and γN26/128 in mouse. Analysis based on available crystal structure suggests that conformational changes are needed to expose Cys42, Cys79/80, Cys154 in γC; Cys42, Cys33 in γD, and Cys83, Cys115, and Cys130 in γS. In conclusion, the β-crystallin disulfidome is highly conserved in age-related nuclear cataract and LEGSKO mouse, and reproducible by in vitro oxidation, whereas some of the disulfide formation sites in γ-crystallins necessitate prior conformational changes. Overall, the LEGSKO mouse model is closely reminiscent of age-related nuclear cataract. PMID:26453637
Tichy, Elisia D; Pillai, Resmi; Deng, Li; Liang, Li; Tischfield, Jay; Schwemberger, Sandy J; Babcock, George F; Stambrook, Peter J
2010-11-01
Embryonic stem (ES) cells give rise to all cell types of an organism. Since mutations at this embryonic stage would affect all cells and be detrimental to the overall health of an organism, robust mechanisms must exist to ensure that genomic integrity is maintained. To test this proposition, we compared the capacity of murine ES cells to repair DNA double-strand breaks with that of differentiated cells. Of the 2 major pathways that repair double-strand breaks, error-prone nonhomologous end joining (NHEJ) predominated in mouse embryonic fibroblasts, whereas the high fidelity homologous recombinational repair (HRR) predominated in ES cells. Microhomology-mediated end joining, an emerging repair pathway, persisted at low levels in all cell types examined. The levels of proteins involved in HRR and microhomology-mediated end joining were highly elevated in ES cells compared with mouse embryonic fibroblasts, whereas those for NHEJ were quite variable, with DNA Ligase IV expression low in ES cells. The half-life of DNA Ligase IV protein was also low in ES cells. Attempts to increase the abundance of DNA Ligase IV protein by overexpression or inhibition of its degradation, and thereby elevate NHEJ in ES cells, were unsuccessful. When ES cells were induced to differentiate, however, the level of DNA Ligase IV protein increased, as did the capacity to repair by NHEJ. The data suggest that preferential use of HRR rather than NHEJ may lend ES cells an additional layer of genomic protection and that the limited levels of DNA Ligase IV may account for the low level of NHEJ activity.
Hussain, Muadh; Zimmermann, Vanessa; van Wijk, Sjoerd J L; Fulda, Simone
2018-07-01
Mouse embryonic fibroblasts (MEFs) have extensively been used to study necroptosis, a recently identified form of programmed cell death. However, very little is yet known about the role of necroptosis and its regulation by reactive oxygen species (ROS) in cell types naturally exposed to high oxygen levels such as mouse lung fibroblasts (MLFs). Here, we discover that MLFs are highly susceptible to undergo necroptosis in a ROS-dependent manner upon exposure to a prototypic death receptor-mediated necroptotic stimulus, i.e. cotreatment with tumor necrosis factor (TNF)α, Smac mimetic and the caspase inhibitor zVAD.fmk (TSZ). Kinetic analysis revealed that TSZ rapidly induces cell death in MLFs. Pharmacological inhibition of receptor-interacting protein kinase (RIPK)1 by necrostatin-1 (Nec-1) or RIPK3 by GSK'872 significantly rescues TSZ-stimulated cell death. Also, genetic silencing of RIPK3 or mixed lineage kinase domain-like pseudokinase (MLKL) significantly protects MLFs from TSZ-mediated cell death. Prior to cell death, TSZ significantly increases production of ROS. Importantly, addition of radical scavengers such as butylated hydroxyanisole (BHA) or α-Tocopherol (α-Toc) significantly suppresses TSZ-induced cell death in parallel with a significant reduction of ROS generation. Consistently, BHA prevented TSZ-triggered phosphorylation of MLKL similar to the addition of GSK'872. Thus, our study demonstrates for the first time that MLFs are prone to undergo necroptosis in response to a prototypic necroptotic stimulus and identifies ROS as important mediators of TSZ-triggered necroptosis. Copyright © 2018 Elsevier Inc. All rights reserved.
Peng, Jun; Guo, Kevin; Xia, Jianguo; Zhou, Jianjun; Yang, Jing; Westaway, David; Wishart, David S; Li, Liang
2014-10-03
Because of a limited volume of urine that can be collected from a mouse, it is very difficult to apply the common strategy of using multiple analytical techniques to analyze the metabolites to increase the metabolome coverage for mouse urine metabolomics. We report an enabling method based on differential isotope labeling liquid chromatography mass spectrometry (LC-MS) for relative quantification of over 950 putative metabolites using 20 μL of urine as the starting material. The workflow involves aliquoting 10 μL of an individual urine sample for ¹²C-dansylation labeling that target amines and phenols. Another 10 μL of aliquot was taken from each sample to generate a pooled sample that was subjected to ¹³C-dansylation labeling. The ¹²C-labeled individual sample was mixed with an equal volume of the ¹³C-labeled pooled sample. The mixture was then analyzed by LC-MS to generate information on metabolite concentration differences among different individual samples. The interday repeatability for the LC-MS runs was assessed, and the median relative standard deviation over 4 days was 5.0%. This workflow was then applied to a metabolomic biomarker discovery study using urine samples obtained from the TgCRND8 mouse model of early onset familial Alzheimer's disease (FAD) throughout the course of their pathological deposition of beta amyloid (Aβ). It was showed that there was a distinct metabolomic separation between the AD prone mice and the wild type (control) group. As early as 15-17 weeks of age (presymptomatic), metabolomic differences were observed between the two groups, and after the age of 25 weeks the metabolomic alterations became more pronounced. The metabolomic changes at different ages corroborated well with the phenotype changes in this transgenic mice model. Several useful candidate biomarkers including methionine, desaminotyrosine, taurine, N1-acetylspermidine, and 5-hydroxyindoleacetic acid were identified. Some of them were found in previous metabolomics studies in human cerebrospinal fluid or blood samples. This work illustrates the utility of this isotope labeling LC-MS method for biomarker discovery using mouse urine metabolomics.
Leung, Donald YM; Gao, Pei-Song; Grigoryev, Dmitry N; Rafaels, Nicholas M; Streib, Joanne E; Howell, Michael D; Taylor, Patricia A; Boguniewicz, Mark; Canniff, Jennifer; Armstrong, Brian; Zaccaro, Daniel J; Schneider, Lynda C; Hata, Tissa R; Hanifin, Jon M; Beck, Lisa A; Weinberg, Adriana; Barnes, Kathleen C
2011-01-01
Background The basis for increased susceptibility of atopic dermatitis (AD) patients to develop disseminated viral skin infections such as eczema herpeticum (ADEH+) is poorly understood. Objective We sought to determine whether atopic dermatitis subjects prone to disseminated viral skin infections have defects in their interferon responses. Methods GeneChip profiling was used to identify differences in gene expression of peripheral blood mononuclear cells (PBMC) from patients with a history of ADEH+ as compared to ADEH− and non-atopic controls. Key differences in protein expression were verified by ELISPOT and/or ELISA. Clinical relevance was further demonstrated by a mouse model of disseminated viral skin infection and genetic association analysis for genetic variants in IFNG and IFNGR1 and ADEH among 435 cases and controls. Results We demonstrate by global gene expression analysis selective transcriptomic changes within the interferon (IFN) superfamily of PBMCs from ADEH+ subjects reflecting low IFNγ and IFNγ receptor gene expression. IFNγ protein production was also significantly lower in ADEH+ (N=24) compared to ADEH− (N=20) and non-atopic (NA; N=20) controls. IFNγ receptor knockout (KO) mice developed disseminated viral skin infection after epicutaneous challenge with vaccinia virus (VV). Genetic variants in IFNG and IFNGR1 SNPs were significantly associated with ADEH (112 cases, 166 controls) and IFNγ production: a 2-SNP (A–G) IFNGR1 haplotype (rs10457655 and rs7749390) showed the strongest association with a reduced risk of ADEH+ ((13.2% ADEH+ vs 25.5% ADEH−, P = 0.00057). Conclusions ADEH+ patients have reduced IFNγ production, and IFNG and IFNGR1 SNPs are significantly associated with ADEH+ and may contribute to an impaired immune response to herpes simplex virus (HSV). Clinical Implications Atopic dermatitis subjects prone to disseminated viral skin infections have defects in their interferon responses. Capsule summary Using genomic, immunologic and genetic approaches, these investigators demonstrated that atopic dermatitis subjects prone to disseminated viral skin infections have defects in their interferon responses. PMID:21458658
Gut Microbiota in Human Systemic Lupus Erythematosus and a Mouse Model of Lupus.
Luo, Xin M; Edwards, Michael R; Mu, Qinghui; Yu, Yang; Vieson, Miranda D; Reilly, Christopher M; Ahmed, S Ansar; Bankole, Adegbenga A
2018-02-15
Gut microbiota dysbiosis has been observed in a number of autoimmune diseases. However, the role of the gut microbiota in systemic lupus erythematosus (SLE), a prototypical autoimmune disease characterized by persistent inflammation in multiple organs of the body, remains elusive. Here we report the dynamics of the gut microbiota in a murine lupus model, NZB/W F1, as well as intestinal dysbiosis in a small group of SLE patients with active disease. The composition of the gut microbiota changed markedly before and after the onset of lupus disease in NZB/W F1 mice, with greater diversity and increased representation of several bacterial species as lupus progressed from the predisease stage to the diseased stage. However, we did not control for age and the cage effect. Using dexamethasone as an intervention to treat SLE-like signs, we also found that a greater abundance of a group of lactobacilli (for which a species assignment could not be made) in the gut microbiota might be correlated with more severe disease in NZB/W F1 mice. Results of the human study suggest that, compared to control subjects without immune-mediated diseases, SLE patients with active lupus disease possessed an altered gut microbiota that differed in several particular bacterial species (within the genera Odoribacter and Blautia and an unnamed genus in the family Rikenellaceae ) and was less diverse, with increased representation of Gram-negative bacteria. The Firmicutes / Bacteroidetes ratios did not differ between the SLE microbiota and the non-SLE microbiota in our human cohort. IMPORTANCE SLE is a complex autoimmune disease with no known cure. Dysbiosis of the gut microbiota has been reported for both mice and humans with SLE. In this emerging field, however, more studies are required to delineate the roles of the gut microbiota in different lupus-prone mouse models and people with diverse manifestations of SLE. Here, we report changes in the gut microbiota in NZB/W F1 lupus-prone mice and a group of SLE patients with active disease. Copyright © 2018 American Society for Microbiology.
Molecular Mechanism of Mutant p53 Stabilization: The Role of HSP70 and MDM2
Wiech, Milena; Olszewski, Maciej B.; Tracz-Gaszewska, Zuzanna; Wawrzynow, Bartosz; Zylicz, Maciej; Zylicz, Alicja
2012-01-01
Numerous p53 missense mutations possess gain-of-function activities. Studies in mouse models have demonstrated that the stabilization of p53 R172H (R175H in human) mutant protein, by currently unknown factors, is a prerequisite for its oncogenic gain-of-function phenotype such as tumour progression and metastasis. Here we show that MDM2-dependent ubiquitination and degradation of p53 R175H mutant protein in mouse embryonic fibroblasts is partially inhibited by increasing concentration of heat shock protein 70 (HSP70/HSPA1-A). These phenomena correlate well with the appearance of HSP70-dependent folding intermediates in the form of dynamic cytoplasmic spots containing aggregate-prone p53 R175H and several molecular chaperones. We propose that a transient but recurrent interaction with HSP70 may lead to an increase in mutant p53 protein half-life. In the presence of MDM2 these pseudoaggregates can form stable amyloid-like structures, which occasionally merge into an aggresome. Interestingly, formation of folding intermediates is not observed in the presence of HSC70/HSPA8, the dominant-negative K71S variant of HSP70 or HSP70 inhibitor. In cancer cells, where endogenous HSP70 levels are already elevated, mutant p53 protein forms nuclear aggregates without the addition of exogenous HSP70. Aggregates containing p53 are also visible under conditions where p53 is partially unfolded: 37°C for temperature-sensitive variant p53 V143A and 42°C for wild-type p53. Refolding kinetics of p53 indicate that HSP70 causes transient exposure of p53 aggregate-prone domain(s). We propose that formation of HSP70- and MDM2-dependent protein coaggregates in tumours with high levels of these two proteins could be one of the mechanisms by which mutant p53 is stabilized. Moreover, sequestration of p73 tumour suppressor protein by these nuclear aggregates may lead to gain-of-function phenotypes. PMID:23251530
Assmann, Karel J M; van Son, Jacco P H F; Dïjkman, Henry B P M; Mentzel, Stef; Wetzels, Jack F M
2002-07-01
Podocytes play an important role in the development of proteinuria and focal glomerulosclerosis. Previously we have demonstrated that a combination of two monoclonal antibodies (mAb) against aminopeptidase A (APA), an enzyme present on podocytes, induces a massive acute albuminuria in mice. The present study examined the relationship between the acute antibody-induced albuminuria and the development of focal glomerulosclerosis in the Thy-1.1 transgenic mouse. This mouse expresses a hybrid human-mouse Thy-1.1 antigen on the podocytes, and slowly but spontaneously develops albuminuria and focal glomerulosclerosis. Five-week-old non-albuminuric Thy-1.1 transgenic and non-transgenic control mice were injected with anti-APA and anti-Thy-1.1 mAb or saline. Albuminuria was measured at days 1, 7, 14 and 21. At day 21 kidneys were processed for light microscopy, immunofluorescence, and electron microscopy. Injection of anti-APA and anti-Thy1.1 mAb in Thy-1.1 transgenic mice induced an albuminuria at day 1 that persisted at day 21. The acute albuminuria after injection of anti-APA mAb was more prominent but transient in non-transgenic mice. In non-trangenic mice no albuminuria could be induced with anti-Thy 1.1 mAb. Light microscopy revealed normal glomeruli at day 1 in all transgenic mice, however, at day 21 advanced glomerulosclerotic lesions were seen in mice injected with either anti-APA mAb (37+/-19% of glomeruli affected) or anti-Thy-1.1 mAb (71+/-5%). Non-transgenic mice did not reveal sclerotic lesions at any time investigated. In the transgenic mice the percentage of focal glomerulosclerosis at day 21 did not correlate with albuminuria at day 21. However, we found a highly significant correlation between percentage of focal glomerulosclerosis and the time-averaged albuminuria over the three-week study period (P < 0.001). Injection of a combination of anti-APA or anti-Thy-1.1 mAb into one mo old, non-albuminuric Thy-1.1 transgenic mice induces an acute albuminuria at day 1 that is accompanied by an accelerated focal glomerulosclerosis at day 21. We suggest that the Thy-1.1 transgenic mouse is an excellent model to study specifically the relation between podocytic injury, albuminuria and the development of focal glomerulosclerosis.
NASA Technical Reports Server (NTRS)
Carpenter-Smith, Theodore R.; Futamura, Robert G.; Parker, Donald E.
1995-01-01
The present study focused on the development of a procedure to assess perceived self-motion induced by visual surround motion - vection. Using an apparatus that permitted independent control of visual and inertial stimuli, prone observers were translated along their head x-axis (fore/aft). The observers' task was to report the direction of self-motion during passive forward and backward translations of their bodies coupled with exposure to various visual surround conditions. The proportion of 'forward' responses was used to calculate each observer's point of subjective equality (PSE) for each surround condition. The results showed that the moving visual stimulus produced a significant shift in the PSE when data from the moving surround condition were compared with the stationary surround and no-vision condition. Further, the results indicated that vection increased monotonically with surround velocities between 4 and 40/s. It was concluded that linear vection can be measured in terms of changes in the amplitude of whole-body inertial acceleration required to elicit equivalent numbers of 'forward' and 'backward' self-motion reports.
Protein aggregates as depots for the release of biologically active compounds.
Artemova, Natalya V; Kasakov, Alexei S; Bumagina, Zoya M; Lyutova, Elena M; Gurvits, Bella Ya
2008-12-12
Protein misfolding and aggregation is one of the most serious problems in cell biology, molecular medicine, and biotechnology. Misfolded proteins interact with each other or with other proteins in non-productive or damaging ways. However, a new paradigm arises that protein aggregation may be exploited by nature to perform specific functions in different biological contexts. From this consideration, acceleration of stress-induced protein aggregation triggered by any factor resulting in the formation of soluble aggregates may have paradoxical positive consequences. Here, we suggest that amorphous aggregates can act as a source for the release of biologically active proteins after removal of stress conditions. To address this concept, we investigated the kinetics of thermal aggregation in vitro of yeast alcohol dehydrogenase (ADH) as a model substrate in the presence of two amphiphilic peptides: Arg-Phe or Ala-Phe-Lys. Using dynamic light scattering (DLS) and turbidimetry, we have demonstrated that under mild stress conditions the concentration-dependent acceleration of ADH aggregation by these peptides results in formation of large but soluble complexes of proteins prone to refolding.
A Test Methodology for Determining Space-Readiness of Xilinx SRAM-Based FPGA Designs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Quinn, Heather M; Graham, Paul S; Morgan, Keith S
2008-01-01
Using reconfigurable, static random-access memory (SRAM) based field-programmable gate arrays (FPGAs) for space-based computation has been an exciting area of research for the past decade. Since both the circuit and the circuit's state is stored in radiation-tolerant memory, both could be alterd by the harsh space radiation environment. Both the circuit and the circuit's state can be prote cted by triple-moduler redundancy (TMR), but applying TMR to FPGA user designs is often an error-prone process. Faulty application of TMR could cause the FPGA user circuit to output incorrect data. This paper will describe a three-tiered methodology for testing FPGA usermore » designs for space-readiness. We will describe the standard approach to testing FPGA user designs using a particle accelerator, as well as two methods using fault injection and a modeling tool. While accelerator testing is the current 'gold standard' for pre-launch testing, we believe the use of fault injection and modeling tools allows for easy, cheap and uniform access for discovering errors early in the design process.« less
Proescher, Jody B; Son, Marjatta; Elliott, Jeffrey L; Culotta, Valeria C
2008-06-15
The CCS copper chaperone is critical for maturation of Cu, Zn-superoxide dismutase (SOD1) through insertion of the copper co-factor and oxidization of an intra-subunit disulfide. The disulfide helps stabilize the SOD1 polypeptide, which can be particularly important in cases of amyotrophic lateral sclerosis (ALS) linked to misfolding of mutant SOD1. Surprisingly, however, over-expressed CCS was recently shown to greatly accelerate disease in a G93A SOD1 mouse model for ALS. Herein we show that disease in these G93A/CCS mice correlates with incomplete oxidation of the SOD1 disulfide. In the brain and spinal cord, CCS over-expression failed to enhance oxidation of the G93A SOD1 disulfide and if anything, effected some accumulation of disulfide-reduced SOD1. This effect was mirrored in culture with a C244,246S mutant of CCS that has the capacity to interact with SOD1 but can neither insert copper nor oxidize the disulfide. In spite of disulfide effects, there was no evidence for increased SOD1 aggregation. If anything, CCS over-expression prevented SOD1 misfolding in culture as monitored by detergent insolubility. This protection against SOD1 misfolding does not require SOD1 enzyme activation as the same effect was obtained with the C244,246S allele of CCS. In the G93A SOD1 mouse, CCS over-expression was likewise associated with a lack of obvious SOD1 misfolding marked by detergent insolubility. CCS over-expression accelerates SOD1-linked disease without the hallmarks of misfolding and aggregation seen in other mutant SOD1 models. These studies are the first to indicate biological effects of CCS in the absence of SOD1 enzymatic activation.
Altamirano, Francisco; Perez, Claudio F; Liu, Min; Widrick, Jeffrey; Barton, Elisabeth R; Allen, Paul D; Adams, Jose A; Lopez, Jose R
2014-01-01
Duchenne muscular dystrophy (DMD) is a genetic disorder caused by the absence of dystrophin in both skeletal and cardiac muscles. This leads to severe muscle degeneration, and dilated cardiomyopathy that produces patient death, which in most cases occurs before the end of the second decade. Several lines of evidence have shown that modulators of nitric oxide (NO) pathway can improve skeletal muscle and cardiac function in the mdx mouse, a mouse model for DMD. Whole body periodic acceleration (pGz) is produced by applying sinusoidal motion to supine humans and in standing conscious rodents in a headward-footward direction using a motion platform. It adds small pulses as a function of movement frequency to the circulation thereby increasing pulsatile shear stress to the vascular endothelium, which in turn increases production of NO. In this study, we examined the potential therapeutic properties of pGz for the treatment of skeletal muscle pathology observed in the mdx mouse. We found that pGz (480 cpm, 8 days, 1 hr per day) decreased intracellular Ca(2+) and Na(+) overload, diminished serum levels of creatine kinase (CK) and reduced intracellular accumulation of Evans Blue. Furthermore, pGz increased muscle force generation and expression of both utrophin and the carboxy-terminal PDZ ligand of nNOS (CAPON). Likewise, pGz (120 cpm, 12 h) applied in vitro to skeletal muscle myotubes reduced Ca(2+) and Na(+) overload, diminished abnormal sarcolemmal Ca(2+) entry and increased phosphorylation of endothelial NOS. Overall, this study provides new insights into the potential therapeutic efficacy of pGz as a non-invasive and non-pharmacological approach for the treatment of DMD patients through activation of the NO pathway.
Loss of CDH1 and Pten accelerates cellular invasiveness and angiogenesis in the mouse uterus.
Lindberg, Mallory E; Stodden, Genna R; King, Mandy L; MacLean, James A; Mann, Jordan L; DeMayo, Francesco J; Lydon, John P; Hayashi, Kanako
2013-07-01
E-cadherin (CDH1) is a cell adhesion molecule that coordinates key morphogenetic processes regulating cell growth, cell proliferation, and apoptosis. Loss of CDH1 is a trademark of the cellular event epithelial to mesenchymal transition, which increases the metastatic potential of malignant cells. PTEN is a tumor-suppressor gene commonly mutated in many human cancers, including endometrial cancer. In the mouse uterus, ablation of Pten induces epithelial hyperplasia, leading to endometrial carcinomas. However, loss of Pten alone does not affect longevity until around 5 mo. Similarly, conditional ablation of Cdh1 alone does not predispose mice to cancer. In this study, we characterized the impact of dual Cdh1 and Pten ablation (Cdh1(d/d) Pten(d/d)) in the mouse uterus. We observed that Cdh1(d/d) Pten(d/d) mice died at Postnatal Days 15-19 with massive blood loss. Their uteri were abnormally structured with curly horns, disorganized epithelial structure, and increased cell proliferation. Co-immunostaining of KRT8 and ACTA2 showed invasion of epithelial cells into the myometrium. Further, the uteri of Cdh1(d/d) Pten(d/d) mice had prevalent vascularization in both the endometrium and myometrium. We also observed reduced expression of estrogen and progesterone receptors, loss of cell adherens, and tight junction molecules (CTNNB1 and claudin), as well as activation of AKT in the uteri of Cdh1(d/d) Pten(d/d) mice. However, complex hyperplasia was not found in the uteri of Cdh1(d/d) Pten(d/d) mice. Collectively, these findings suggest that ablation of Pten with Cdh1 in the uterus accelerates cellular invasiveness and angiogenesis and causes early death.
Loss of Cdh1 and Pten Accelerates Cellular Invasiveness and Angiogenesis in the Mouse Uterus1
Lindberg, Mallory E.; Stodden, Genna R.; King, Mandy L.; MacLean, James A.; Mann, Jordan L.; DeMayo, Francesco J.; Lydon, John P.; Hayashi, Kanako
2013-01-01
ABSTRACT E-cadherin (CDH1) is a cell adhesion molecule that coordinates key morphogenetic processes regulating cell growth, cell proliferation, and apoptosis. Loss of CDH1 is a trademark of the cellular event epithelial to mesenchymal transition, which increases the metastatic potential of malignant cells. PTEN is a tumor-suppressor gene commonly mutated in many human cancers, including endometrial cancer. In the mouse uterus, ablation of Pten induces epithelial hyperplasia, leading to endometrial carcinomas. However, loss of Pten alone does not affect longevity until around 5 mo. Similarly, conditional ablation of Cdh1 alone does not predispose mice to cancer. In this study, we characterized the impact of dual Cdh1 and Pten ablation (Cdh1d/d Ptend/d) in the mouse uterus. We observed that Cdh1d/d Ptend/d mice died at Postnatal Days 15–19 with massive blood loss. Their uteri were abnormally structured with curly horns, disorganized epithelial structure, and increased cell proliferation. Co-immunostaining of KRT8 and ACTA2 showed invasion of epithelial cells into the myometrium. Further, the uteri of Cdh1d/d Ptend/d mice had prevalent vascularization in both the endometrium and myometrium. We also observed reduced expression of estrogen and progesterone receptors, loss of cell adherens, and tight junction molecules (CTNNB1 and claudin), as well as activation of AKT in the uteri of Cdh1d/d Ptend/d mice. However, complex hyperplasia was not found in the uteri of Cdh1d/d Ptend/d mice. Collectively, these findings suggest that ablation of Pten with Cdh1 in the uterus accelerates cellular invasiveness and angiogenesis and causes early death. PMID:23740945
Gleitz, Hélène F. E.; O’Leary, Claire; Holley, Rebecca J.
2017-01-01
Severe mucopolysaccharidosis type II (MPS II) is a progressive lysosomal storage disease caused by mutations in the IDS gene, leading to a deficiency in the iduronate-2-sulfatase enzyme that is involved in heparan sulphate and dermatan sulphate catabolism. In constitutive form, MPS II is a multi-system disease characterised by progressive neurocognitive decline, severe skeletal abnormalities and hepatosplenomegaly. Although enzyme replacement therapy has been approved for treatment of peripheral organs, no therapy effectively treats the cognitive symptoms of the disease and novel therapies are in development to remediate this. Therapeutic efficacy and subsequent validation can be assessed using a variety of outcome measures that are translatable to clinical practice, such as behavioural measures. We sought to consolidate current knowledge of the cognitive, skeletal and motor abnormalities present in the MPS II mouse model by performing time course behavioural examinations of working memory, anxiety, activity levels, sociability and coordination and balance, up to 8 months of age. Cognitive decline associated with alterations in spatial working memory is detectable at 8 months of age in MPS II mice using spontaneous alternation, together with an altered response to novel environments and anxiolytic behaviour in the open-field. Coordination and balance on the accelerating rotarod were also significantly worse at 8 months, and may be associated with skeletal changes seen in MPS II mice. We demonstrate that the progressive nature of MPS II disease is also seen in the mouse model, and that cognitive and motor differences are detectable at 8 months of age using spontaneous alternation, the accelerating rotarod and the open-field tests. This study establishes neurological, motor and skeletal measures for use in pre-clinical studies to develop therapeutic approaches in MPS II. PMID:28207863
Incio, Joao; Tam, Josh; Rahbari, Nuh N; Suboj, Priya; McManus, Dan T; Chin, Shan M; Vardam, Trupti D; Batista, Ana; Babykutty, Suboj; Jung, Keehoon; Khachatryan, Anna; Hato, Tai; Ligibel, Jennifer A; Krop, Ian E; Puchner, Stefan B; Schlett, Christopher L; Hoffmman, Udo; Ancukiewicz, Marek; Shibuya, Masabumi; Carmeliet, Peter; Soares, Raquel; Duda, Dan G; Jain, Rakesh K; Fukumura, Dai
2016-06-15
Obesity promotes pancreatic and breast cancer progression via mechanisms that are poorly understood. Although obesity is associated with increased systemic levels of placental growth factor (PlGF), the role of PlGF in obesity-induced tumor progression is not known. PlGF and its receptor VEGFR-1 have been shown to modulate tumor angiogenesis and promote tumor-associated macrophage (TAM) recruitment and activity. Here, we hypothesized that increased activity of PlGF/VEGFR-1 signaling mediates obesity-induced tumor progression by augmenting tumor angiogenesis and TAM recruitment/activity. We established diet-induced obese mouse models of wild-type C57BL/6, VEGFR-1 tyrosine kinase (TK)-null, or PlGF-null mice, and evaluated the role of PlGF/VEGFR-1 signaling in pancreatic and breast cancer mouse models and in human samples. We found that obesity increased TAM infiltration, tumor growth, and metastasis in pancreatic cancers, without affecting vessel density. Ablation of VEGFR-1 signaling prevented obesity-induced tumor progression and shifted the tumor immune environment toward an antitumor phenotype. Similar findings were observed in a breast cancer model. Obesity was associated with increased systemic PlGF, but not VEGF-A or VEGF-B, in pancreatic and breast cancer patients and in various mouse models of these cancers. Ablation of PlGF phenocopied the effects of VEGFR-1-TK deletion on tumors in obese mice. PlGF/VEGFR-1-TK deletion prevented weight gain in mice fed a high-fat diet, but exacerbated hyperinsulinemia. Addition of metformin not only normalized insulin levels but also enhanced antitumor immunity. Targeting PlGF/VEGFR-1 signaling reprograms the tumor immune microenvironment and inhibits obesity-induced acceleration of tumor progression. Clin Cancer Res; 22(12); 2993-3004. ©2016 AACR. ©2016 American Association for Cancer Research.
Mughal, Awais A; Zhang, Lili; Fayzullin, Artem; Server, Andres; Li, Yuping; Wu, Yingxi; Glass, Rainer; Meling, Torstein; Langmoen, Iver A; Leergaard, Trygve B; Vik-Mo, Einar O
2018-05-21
Widespread infiltration of tumor cells into surrounding brain parenchyma is a hallmark of malignant gliomas, but little data exist on the overall invasion pattern of tumor cells throughout the brain. We have studied the invasive phenotype of malignant gliomas in two invasive mouse models and patients. Tumor invasion patterns were characterized in a patient-derived xenograft mouse model using brain-wide histological analysis and magnetic resonance (MR) imaging. Findings were histologically validated in a cdkn2a-/- PDGF-β lentivirus-induced mouse glioblastoma model. Clinical verification of the results was obtained by analysis of MR images of malignant gliomas. Histological analysis using human-specific cellular markers revealed invasive tumors with a non-radial invasion pattern. Tumors cells accumulated in structures located far from the transplant site, such as the optic white matter and pons, whereas certain adjacent regions were spared. As such, the hippocampus was remarkably free of infiltrating tumor cells despite the extensive invasion of surrounding regions. Similarly, MR images of xenografted mouse brains displayed tumors with bihemispheric pathology, while the hippocampi appeared relatively normal. In patients, most malignant temporal lobe gliomas were located lateral to the collateral sulcus. Despite widespread pathological fluid-attenuated inversion recovery signal in the temporal lobe, 74% of the "lateral tumors" did not show signs of involvement of the amygdalo-hippocampal complex. Our data provide clear evidence for a compartmental pattern of invasive growth in malignant gliomas. The observed invasion patterns suggest the presence of preferred migratory paths, as well as intra-parenchymal boundaries that may be difficult for glioma cells to traverse supporting the notion of compartmental growth. In both mice and human patients, the hippocampus appears to be a brain region that is less prone to tumor invasion. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.
Underbody Blast Models of TBI Caused by Hyper-Acceleration and Secondary Head Impact
2014-02-01
Cleveland RO, Tanzi RE, Stanton PK, McKee AC. (2012) Chronic traumatic encephalopathy in blast-exposed military veterans and a blast neurotrauma mouse model...exposure, remove brains, and process for electron microscopic analysis of cyto- and axonal ultrastructure and for histochemical evidence of acute ...of Trauma and Acute Care Surgery (see Appendix). These observations include increased axonopathy (silver staining) in the cerebellum and astrocyte
Zhang, Yan; Daquinag, Alexes; Traktuev, Dmitry O.; Amaya-Manzanares, Felipe; Simmons, Paul J.; March, Keith L.; Pasqualini, Renata; Arap, Wadih; Kolonin, Mikhail G.
2010-01-01
The connection between obesity and accelerated cancer progression has been established, but the mediating mechanisms are not well understood. We have shown that stromal cells from white adipose tissue (WAT) cooperate with the endothelium to promote blood vessel formation through the secretion of soluble trophic factors. Here, we hypothesize that WAT directly mediates cancer progression by serving as a source of cells that migrate to tumors and promote neovascularization. To test this hypothesis, we have evaluated the recruitment of WAT-derived cells by tumors and the effect of their engraftment on tumor growth by integrating a transgenic mouse strain engineered for expansion of traceable cells with established allograft and xenograft cancer models. Our studies show that entry of adipose stromal and endothelial cells into systemic circulation leads to their homing to and engraftment into tumor stroma and vasculature, respectively. We show that recruitment of adipose stromal cells by tumors is sufficient to promote tumor growth. Finally, we show that migration of stromal and vascular progenitor cells from WAT grafts to tumors is also associated with acceleration of cancer progression. These results provide a biological insight for the clinical association between obesity and cancer, thus outlining potential avenues for preventive and therapeutic strategies. PMID:19491274
Wang, Jianhui; Cheng, Xiaorui; Zhang, Xiaorui; Cheng, Junping; Xu, Yiran; Zeng, Ju; Zhou, Wenxia; Zhang, Yongxiang
2016-05-10
Although there were considerable advances in the anti-aging medical field, it is short of therapeutic drug for anti-aging. Mounting evidence indicates that the immunosenescence is the key physiopathological mechanism of aging. This study showed the treatment of LW-AFC, an herbal medicine, decreased the grading score of senescence, increased weight, prolonged average life span and ameliorated spatial memory impairment in 12- and 24-month-old senescence accelerated mouse resistant 1 (SAMR1) strain. And these anti-aging effects of LW-AFC were more excellent than melatonin. The administration of LW-AFC enhanced ConA- and LPS-induced splenocyte proliferation in aged SAMR1 mice. The treatment of LW-AFC not only reversed the decreased the proportions of helper T cells, suppressor T cells and B cells, the increased regulatory T cells in the peripheral blood of old SAMR1 mice, but also could modulate the abnormal secretion of IL-1β, IL-2, IL-6, IL-17, IL-23, GM-CSF, IFN-γ, TNF-α, TNF-β, RANTES, eotaxin, MCP-1, IL-4, IL-5, IL-10 and G-CSF. These data indicated that LW-AFC reversed the immunosenescence status by restoring immunodeficiency and decreasing chronic inflammation and suggested LW-AFC may be an effective anti-aging agent.
Chen, Li; Hou, Qian; Zhou, Zhong-Zhi; Li, Mei-Rong; Zhong, Ling-Zhi; Deng, Xiang-Dong; Zhu, Zi-Ying; Cheng, Zhong-Yi; Zhu, Jun; Xiang, Cong-Lian; He, Wen-Jun; Fu, Xiao-Bing
2017-09-01
Traditional Chinese medicine has great potential to improve wound healing. ANBP, the mixture of 4 Chinese herbs- Agrimoniapilosa, Nelumbonucifera, Boswelliacarteri, and Pollen typhae-is effective in trauma treatment while its mechanism is still elusive. In this study, quantitative proteomics and bioinformatics analyses were performed to decipher the possible roles of ANBP in accelerated wound healing of mouse skin. Among all 3171 identified proteins, 90, 71, 80, and 140 proteins were found to be differently expressed in 6 hours, 3 days, 7 days, and 14 days ANBP-treated tissues compared with corresponding control tissues, respectively. The result showed that different biological processes and pathways were activated at different healing stages. At the early healing stage, ANBP treatment mainly affected several biological processes, including immune and defense response, vascular system restoration, hemostasis and coagulation regulation, lipid metabolism and signal transduction, while muscle tissue, hair, epidermis, extracellular matrix and tissue remodeling related activities were the major events in ANBP promoted later wound healing. This is the first quantitative proteome study of ANBP-treated wound tissues, which provide a new perspective for the mechanism of ANBP accelerated wound healing and is of guiding significance for clinical application of ANBP in trauma disorders cure.
Epidermal stem cells (ESCs) accelerate diabetic wound healing via the Notch signalling pathway.
Yang, Rong-Hua; Qi, Shao-Hai; Shu, Bin; Ruan, Shu-Bin; Lin, Ze-Peng; Lin, Yan; Shen, Rui; Zhang, Feng-Gang; Chen, Xiao-Dong; Xie, Ju-Lin
2016-08-01
Chronic, non-healing wounds are a major complication of diabetes. Recently, various cell therapies have been reported for promotion of diabetic wound healing. Epidermal stem cells (ESCs) are considered a powerful tool for tissue therapy. However, the effect and the mechanism of the therapeutic properties of ESCs in the diabetic wound healing are unclear. Herein, to determine the ability of ESCs to diabetic wound healing, a dorsal skin defect in a streptozotocin (STZ)-induced diabetes mellitus (DM) mouse model was used. ESCs were isolated from mouse skin. We found that both the mRNA and protein levels of a Notch ligand Jagged1 (Jag1), Notch1 and Notch target gene Hairy Enhancer of Split-1 (Hes1) were significantly increased at the wound margins. In addition, we observed that Jag1 was high expressed in ESCs. Overexpression of Jag1 promotes ESCs migration, whereas knockdown Jag1 resulted in a significant reduction in ESCs migration in vitro Importantly, Jag1 overexpression improves diabetic wound healing in vivo These results provide evidence that ESCs accelerate diabetic wound healing via the Notch signalling pathway, and provide a promising potential for activation of the Notch pathway for the treatment of diabetic wound. © 2016 The Author(s).
Metcalfe, Kay; Simeonov, Emil; Beckett, William; Donnai, Dian; Tassabehji, May
2005-04-01
Williams-Beuren syndrome (WBS) is a neurodevelopmental microdeletion disorder that usually occurs sporadically due to its location within a highly repetitive genomic region that is unstable and prone to unequal cross-over during meiosis. The consequential loss of chromosomal material includes approximately 1.5 Mb of DNA at 7q11.23. Whilst cases of dominant inheritance have been described in the literature, there have been few reports of molecular confirmation and none have carried out detailed genotyping. We describe a Bulgarian father and son with WBS detected by fluorescent in situ hybridisation (with an elastin gene probe) and loss of heterozygosity mapping using microsatellite markers located in the critical region. These individuals appear to have a common WBS heterozygous deletion, confirming the expected dominant transmission and adding to the few familial cases reported. The deletion includes the gene FKBP6 which has recently been shown to play a role in homologous chromosome pairing in meiosis and male fertility in mouse models. Homozygous Fkbp6 -/- male mice are infertile and our data suggests that haploinsufficiency for FKBP6 does not appear to preclude male fertility in WBS, although male infertility involving this gene has the potential to follow the mouse model as a human autosomal recessive condition.
Unraveling the key to the resistance of canids to prion diseases
Fernández-Borges, Natalia; Sánchez-Martín, Manuel A.; Pumarola, Martí
2017-01-01
One of the characteristics of prions is their ability to infect some species but not others and prion resistant species have been of special interest because of their potential in deciphering the determinants for susceptibility. Previously, we developed different in vitro and in vivo models to assess the susceptibility of species that were erroneously considered resistant to prion infection, such as members of the Leporidae and Equidae families. Here we undertake in vitro and in vivo approaches to understand the unresolved low prion susceptibility of canids. Studies based on the amino acid sequence of the canine prion protein (PrP), together with a structural analysis in silico, identified unique key amino acids whose characteristics could orchestrate its high resistance to prion disease. Cell- and brain-based PMCA studies were performed highlighting the relevance of the D163 amino acid in proneness to protein misfolding. This was also investigated by the generation of a novel transgenic mouse model carrying this substitution and these mice showed complete resistance to disease despite intracerebral challenge with three different mouse prion strains (RML, 22L and 301C) known to cause disease in wild-type mice. These findings suggest that dog D163 amino acid is primarily, if not totally, responsible for the prion resistance of canids. PMID:29131852
Kc, Ranjan; Li, Xin; Forsyth, Christopher B; Voigt, Robin M; Summa, Keith C; Vitaterna, Martha Hotz; Tryniszewska, Beata; Keshavarzian, Ali; Turek, Fred W; Meng, Qing-Jun; Im, Hee-Jeong
2015-11-20
A variety of environmental factors contribute to progressive development of osteoarthritis (OA). Environmental factors that upset circadian rhythms have been linked to various diseases. Our recent work establishes chronic environmental circadian disruption - analogous to rotating shiftwork-associated disruption of circadian rhythms in humans - as a novel risk factor for the development of OA. Evidence suggests shift workers are prone to obesity and also show altered eating habits (i.e., increased preference for high-fat containing food). In the present study, we investigated the impact of chronic circadian rhythm disruption in combination with a high-fat diet (HFD) on progression of OA in a mouse model. Our study demonstrates that when mice with chronically circadian rhythms were fed a HFD, there was a significant proteoglycan (PG) loss and fibrillation in knee joint as well as increased activation of the expression of the catabolic mediators involved in cartilage homeostasis. Our results, for the first time, provide the evidence that environmental disruption of circadian rhythms plus HFD potentiate OA-like pathological changes in the mouse joints. Thus, our findings may open new perspectives on the interactions of chronic circadian rhythms disruption with diet in the development of OA and may have potential clinical implications.
Singh, Ratnesh K; Lui, Edmund; Wright, David; Taylor, Adrian; Bakovic, Marica
2017-09-01
We investigated whether North American ginseng (Panax quinquefolius) could reduce development of the metabolic syndrome phenotype in a mouse model (ETKO) of the disease. Young ETKO mice have no disease but similar to humans start to develop the fatty liver, hypertriglyceridemia, obesity, and insulin resistance at 25-30 weeks of age, and the disease continues to progress with ageing. ETKO mice were orally given an ethanol extract of ginseng roots at 4 and 32 weeks of age. Treatments with ginseng eliminated the ETKO fatty liver, reduced hepatic and intestinal lipoprotein secretion, and reduced the level of circulating lipids. Improvements by ginseng treatments were manifested as a reduction in the expression of genes involved in the regulation of fatty acid and triglyceride (fat) synthesis and secretion by the lipoproteins on one hand, and the stimulation of fatty acid oxidation and triglyceride degradation by lipolysis on the other hand. These processes altogether improved glucose, fatty acid, and triglyceride metabolism, reduced liver fat load, and reversed the progression of metabolic syndrome. These data confirm that treatments with North American ginseng could alleviate metabolic syndrome through the maintenance of a better balance between glucose and fatty acid metabolism, lipoprotein secretion, and energy homeostasis in disease-prone states.
Luisier, Raphaëlle; Unterberger, Elif B.; Goodman, Jay I.; Schwarz, Michael; Moggs, Jonathan; Terranova, Rémi; van Nimwegen, Erik
2014-01-01
Gene regulatory interactions underlying the early stages of non-genotoxic carcinogenesis are poorly understood. Here, we have identified key candidate regulators of phenobarbital (PB)-mediated mouse liver tumorigenesis, a well-characterized model of non-genotoxic carcinogenesis, by applying a new computational modeling approach to a comprehensive collection of in vivo gene expression studies. We have combined our previously developed motif activity response analysis (MARA), which models gene expression patterns in terms of computationally predicted transcription factor binding sites with singular value decomposition (SVD) of the inferred motif activities, to disentangle the roles that different transcriptional regulators play in specific biological pathways of tumor promotion. Furthermore, transgenic mouse models enabled us to identify which of these regulatory activities was downstream of constitutive androstane receptor and β-catenin signaling, both crucial components of PB-mediated liver tumorigenesis. We propose novel roles for E2F and ZFP161 in PB-mediated hepatocyte proliferation and suggest that PB-mediated suppression of ESR1 activity contributes to the development of a tumor-prone environment. Our study shows that combining MARA with SVD allows for automated identification of independent transcription regulatory programs within a complex in vivo tissue environment and provides novel mechanistic insights into PB-mediated hepatocarcinogenesis. PMID:24464994
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miura, Keiji; Kurosawa, Yoshikazu; Hirai, Momoki
1996-06-01
Nucleobindin (Nuc) was first identified as a secreted protein of 55 kDa that promotes production of DNA-specific antibodies in lupus-prone MRL/lpr mice. Analysis of cDNA that encoded Nuc revealed that the protein is composed of a signal peptide, a DNA-binding site, two calcium-binding motifs (EF-hand motifs), and a leucine zipper. In the present study, we analysed the organization of the human gene for Nuc (NUC). It consists of 13 exons that are distributed in a region of 32 kb. The functional motifs listed above are encoded in corresponding exons. NUC was expressed in all organs examined. Comparison of nucleotide sequencesmore » in the promotre regions between human and mouse NCU genes revealed several conserved sequences. Among them, two Sp1-binding sites and a CCAAT box are of particular interest. The promoter is of the TATA-less type, and transcription starts at multiple sites in both the human and the mouse genes. These features suggest that NUC might normally play a role as a housekeeping gene. NUC was located at human chromosome 19q13.2-q13.4. 25 refs., 4 figs., 1 tab.« less
Winkler, Tamara; Mahoney, Eric J; Sinner, Debora; Wylie, Christopher C; Dahia, Chitra Lekha
2014-01-01
Intervertebral discs (IVDs) are strong fibrocartilaginous joints that connect adjacent vertebrae of the spine. As discs age they become prone to failure, with neurological consequences that are often severe. Surgical repair of discs treats the result of the disease, which affects as many as one in seven people, rather than its cause. An ideal solution would be to repair degenerating discs using the mechanisms of their normal differentiation. However, these mechanisms are poorly understood. Using the mouse as a model, we previously showed that Shh signaling produced by nucleus pulposus cells activates the expression of differentiation markers, and cell proliferation, in the postnatal IVD. In the present study, we show that canonical Wnt signaling is required for the expression of Shh signaling targets in the IVD. We also show that Shh and canonical Wnt signaling pathways are down-regulated in adult IVDs. Furthermore, this down-regulation is reversible, since re-activation of the Wnt or Shh pathways in older discs can re-activate molecular markers of the IVD that are lost with age. These data suggest that biological treatments targeting Wnt and Shh signaling pathways may be feasible as a therapeutic for degenerative disc disease.
Kwon, Michelle; Pavlov, Tengis S.; Nozu, Kandai; Rasmussen, Shauna A.; Ilatovskaya, Daria V.; Lerch-Gaggl, Alexandra; North, Lauren M.; Kim, Hyunho; Qian, Feng; Sweeney, William E.; Avner, Ellis D.; Blumer, Joe B.; Staruschenko, Alexander; Park, Frank
2012-01-01
Polycystic kidney diseases are the most common genetic diseases that affect the kidney. There remains a paucity of information regarding mechanisms by which G proteins are regulated in the context of polycystic kidney disease to promote abnormal epithelial cell expansion and cystogenesis. In this study, we describe a functional role for the accessory protein, G-protein signaling modulator 1 (GPSM1), also known as activator of G-protein signaling 3, to act as a modulator of cyst progression in an orthologous mouse model of autosomal dominant polycystic kidney disease (ADPKD). A complete loss of Gpsm1 in the Pkd1V/V mouse model of ADPKD, which displays a hypomorphic phenotype of polycystin-1, demonstrated increased cyst progression and reduced renal function compared with age-matched cystic Gpsm1+/+ and Gpsm1+/− mice. Electrophysiological studies identified a role by which GPSM1 increased heteromeric polycystin-1/polycystin-2 ion channel activity via Gβγ subunits. In summary, the present study demonstrates an important role for GPSM1 in controlling the dynamics of cyst progression in an orthologous mouse model of ADPKD and presents a therapeutic target for drug development in the treatment of this costly disease. PMID:23236168
Ma, Haixia; Lin, Yu; Zhao, Zhen-Ao; Lu, Xukun; Yu, Yang; Zhang, Xiaoxin; Wang, Qiang; Li, Lei
2016-06-03
Specification of the three germ layers is a fundamental process and is essential for the establishment of organ rudiments. Multiple genetic and epigenetic factors regulate this dynamic process; however, the function of specific microRNAs in germ layer differentiation remains unknown. In this study, we established that microRNA-127 (miR-127) is related to germ layer specification via microRNA array analysis of isolated three germ layers of E7.5 mouse embryos and was verified through differentiation of mouse embryonic stem cells. miR-127 is highly expressed in endoderm and primitive streak. Overexpression of miR-127 increases and inhibition of miR-127 decreases the expression of mesendoderm markers. We further show that miR-127 promotes mesendoderm differentiation through the nodal pathway, a determinative signaling pathway in early embryogenesis. Using luciferase reporter assay, left-right determination factor 2 (Lefty2), an antagonist of nodal, is identified to be a novel target of miR-127. Furthermore, the role of miR-127 in mesendoderm differentiation is attenuated by Lefty2 overexpression. Altogether, our results indicate that miR-127 accelerates mesendoderm differentiation of mouse embryonic stem cells through nodal signaling by targeting Lefty2. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
Uncomplicating the Macrovascular Complications of Diabetes: The 2014 Edwin Bierman Award Lecture
2015-01-01
The risk of cardiovascular events in humans increases in the presence of type 1 or type 2 diabetes mellitus, in large part due to exacerbated atherosclerosis. Genetically engineered mouse models have begun to elucidate cellular and molecular mechanisms responsible for diabetes-exacerbated atherosclerosis. Research on these mouse models has revealed that diabetes independently accelerates initiation and progression of lesions of atherosclerosis and also impairs the regression of lesions following aggressive lipid lowering. Myeloid cell activation in combination with proatherogenic changes allowing for increased monocyte recruitment into arteries of diabetic mice has emerged as an important mediator of the effects of diabetes on the three stages of atherosclerosis. The effects of diabetes on atherosclerosis appear to be dependent on an interplay between glucose and lipids, as well as other factors, and result in increased recruitment of monocytes into both progressing and regressing lesions of atherosclerosis. Importantly, some of the mechanisms revealed by mouse models are now being studied in human subjects. This Perspective highlights new mechanistic findings based on mouse models of diabetes-exacerbated atherosclerosis and discusses the relevance to humans and areas in which more research is urgently needed in order to lessen the burden of macrovascular complications of type 1 and type 2 diabetes mellitus. PMID:26207031
White matter injuries induced by MK-801 in a mouse model of schizophrenia based on NMDA antagonism.
Xiu, Yun; Kong, Xiang-Ru; Zhang, Lei; Qiu, Xuan; Chao, Feng-Lei; Peng, Chao; Gao, Yuan; Huang, Chun-Xia; Wang, San-Rong; Tang, Yong
2014-08-01
The etiology of schizophrenia (SZ) is complex and largely unknown. Neuroimaging and postmortem studies have suggested white matter disturbances in SZ. In the present study, we tested the white matter deficits hypothesis of SZ using a mouse model of SZ induced by NMDA receptor antagonist MK-801. We found that mice with repeated chronic MK-801 administration showed increased locomotor activity in the open field test, less exploration of a novel environment in the hole-board test, and increased anxiety in the elevated plus maze but no impairments were observed in coordination or motor function on accelerating rota-rod. The total white matter volume and corpus callosum volume in mice treated with MK-801 were significantly decreased compared to control mice treated with saline. Myelin basic protein and 2', 3'-cyclic nucleotide 3'-phosphodiesterase were also significantly decreased in the mouse model of SZ. Furthermore, we observed degenerative changes of myelin sheaths in the mouse model of SZ. These results provide further evidence of white matter deficits in SZ and indicate that the animal model of SZ induced by MK-801 is a useful model to investigate mechanisms underlying white matter abnormalities in SZ. Copyright © 2014 Wiley Periodicals, Inc.
King, Benedict; Lee, Michael S Y
2015-09-01
A broad scale analysis of the evolution of viviparity across nearly 4,000 species of squamates revealed that origins increase in frequency toward the present, raising the question of whether rates of change have accelerated. We here use simulations to show that the increased frequency is within the range expected given that the number of squamate lineages also increases with time. Novel, epoch-based methods implemented in BEAST (which allow rates of discrete character evolution to vary across time-slices) also give congruent results, with recent epochs having very similar rates to older epochs. Thus, contrary to expectations, there was no accelerated burst of origins of viviparity in response to global cooling during the Cenozoic or glacial cycles during the Plio-Pleistocene. However, if one accepts the conventional view that viviparity is more likely to evolve than to be lost, and also the evidence here that viviparity has evolved with similar regularity throughout the last 200 Ma, then the absence of large, ancient clades of viviparous squamates (analogs to therian mammals) requires explanation. Viviparous squamate lineages might be more prone to extinction than are oviparous lineages, due to their prevalance at high elevations and latitudes and thus greater susceptibility to climate fluctuations. If so, the directional bias in character evolution would be offset by the bias in extinction rates. © 2015 Wiley Periodicals, Inc.
Son, Seung-Wan; Lee, Jin-Seok; Kim, Hyeong-Geug; Kim, Dong-Woon; Ahn, Yo-Chan; Son, Chang-Gue
2016-01-01
Among sex hormones, estrogen is particularly well known to act as neuroprotective agent. Unlike estrogen, testosterone has not been well investigated in regard to its effects on the brain, especially under psychological stress. To investigate the role of testosterone in oxidative brain injuries under psychological stress, we adapted an orchiectomy and restraint stress model. BALB/c mice were subjected to either an orchiectomy or sham operation. After allowing 15 days for recovery, mice were re-divided into four groups according to exposure of restraint stress: sham, sham plus stress, orchiectomy, and orchiectomy plus stress. Serum testosterone was undetectable in orchiectomized groups and restraint-induced stress significantly reduced testosterone levels in sham plus stress group. The serum levels of corticosterone and adrenaline were notably elevated by restraint stress, and these elevated hormones were markedly augmented by orchiectomy. Two oxidative stressors and biomarkers for lipid and protein peroxidation were significantly increased in the cerebral cortex and hippocampus by restraint stress, while the reverse pattern was observed in antioxidant enzymes. These results were supported by histopathological findings, with 4-hydroxynonenal staining for oxidative injury and Fluoro-Jade B staining showing the degenerating neurons. The aforementioned patterns of oxidative injury were accelerated by orchiectomy. These findings strongly suggest the conclusion that testosterone exerts a protective effect against oxidative brain damage, especially under stressed conditions. Unlike estrogen, the effects of testosterone on the brain have not been thoroughly investigated. In order to investigate the role of testosterone in oxidative brain injuries under psychological stress, we adapted an orchiectomy and restraint stress model. Orchiectomy markedly augmented the restraint stress-induced elevation of serum corticosterone and adrenaline levels as well as oxidative alterations in brain tissues, especially in the hippocampus. These findings are the first evidence that testosterone depletion makes the brain prone to oxidative injury. © 2015 International Society for Neurochemistry.
Sakurai, Keisuke; Young, Joyce E.; Kefalov, Vladimir J.; Khani, Shahrokh C.
2011-01-01
Purpose. Rod photoreceptors are exquisitely sensitive light detectors that function in dim light. The timely inactivation of their light responses is critical for the ability of rods to reliably detect and count photons. A key step in the inactivation of the rod transduction is the phosphorylation of the rod visual pigment, rhodopsin, catalyzed by G-protein-dependent receptor kinase 1 (GRK1). Absence of GRK1 greatly prolongs the photoreceptors' light response and enhances their susceptibility to degeneration. This study examined the light responses from mouse rods expressing various levels of GRK1 to evaluate how their function is modulated by rhodopsin inactivation. Methods. Transretinal and single-cell rod electrophysiological recordings were obtained from several strains of mice expressing GRK1 at 0.3- to 3-fold the wild-type levels. The effect of GRK1 expression level on the function of mouse rods was examined in darkness and during background adaptation. Results. Altering the expression of GRK1 from 0.3- to 3-fold that in wild-type rods had little effect on the single photon response amplitude. Notably, increasing the expression level of GRK1 accelerated the dim flash response shut off but had no effect on the saturated response shut off. Additionally, GRK1 excess abolished the acceleration of saturated responses shut off during light adaptation. Conclusions. These results demonstrate that rhodopsin inactivation can modulate the kinetics of recovery from dim light stimulation. More importantly, the ratio of rhodopsin kinase to its modulator recoverin appears critical for the proper adaptation of rods and the acceleration of their response shut off in background light. PMID:21474765
Sakurai, Keisuke; Young, Joyce E; Kefalov, Vladimir J; Khani, Shahrokh C
2011-08-29
Rod photoreceptors are exquisitely sensitive light detectors that function in dim light. The timely inactivation of their light responses is critical for the ability of rods to reliably detect and count photons. A key step in the inactivation of the rod transduction is the phosphorylation of the rod visual pigment, rhodopsin, catalyzed by G-protein-dependent receptor kinase 1 (GRK1). Absence of GRK1 greatly prolongs the photoreceptors' light response and enhances their susceptibility to degeneration. This study examined the light responses from mouse rods expressing various levels of GRK1 to evaluate how their function is modulated by rhodopsin inactivation. Transretinal and single-cell rod electrophysiological recordings were obtained from several strains of mice expressing GRK1 at 0.3- to 3-fold the wild-type levels. The effect of GRK1 expression level on the function of mouse rods was examined in darkness and during background adaptation. Altering the expression of GRK1 from 0.3- to 3-fold that in wild-type rods had little effect on the single photon response amplitude. Notably, increasing the expression level of GRK1 accelerated the dim flash response shut off but had no effect on the saturated response shut off. Additionally, GRK1 excess abolished the acceleration of saturated responses shut off during light adaptation. These results demonstrate that rhodopsin inactivation can modulate the kinetics of recovery from dim light stimulation. More importantly, the ratio of rhodopsin kinase to its modulator recoverin appears critical for the proper adaptation of rods and the acceleration of their response shut off in background light.
Mouse Noxa uses only the C-terminal BH3-domain to inactivate Mcl-1.
Weber, Arnim; Ausländer, David; Häcker, Georg
2013-09-01
Noxa is a member of the pro-apoptotic BH3-only group of Bcl-2 proteins that is known to bind specifically to anti-apoptotic Mcl-1 and A1, antagonizing their function. Mcl-1 has been reported to have a short half-life, and Noxa up-regulation accelerates Mcl-1 degradation by the proteasome. Unlike human Noxa, mouse Noxa has two BH3-domains, which both have affinity for Mcl-1. We here investigate two aspects of the molecular function of Noxa, namely the requirements for the two BH3-domains in mouse Noxa and the role of Noxa in Mcl-1-degradation. We found that only the C-terminal BH3-domain of mouse Noxa is active in neutralizing Mcl-1. This was the result of the targeting of Noxa to the outer mitochondrial membrane through its C-terminal alpha-helix, which allowed Mcl-1-neutralization only when the BH3-domain was immediately N-terminal of the membrane anchor. However, the N-terminal BH3-domain enhanced interaction with Mcl-1 and A1. The Noxa-dependent degradation of Mcl-1 was independent of the kinase GSK3 and the deubiquitinase Usp9x in mouse embryonic fibroblasts. These data show that Noxa is targeted to the mitochondrial membrane where it neutralises Mcl-1 via its C-terminal BH3-domain and suggest that Noxa is co-degraded with Noxa, in a way independent of ubiquitin-modifying enzymes described for Mcl-1.
Jin, Jing; Peng, Qi; Hou, Zhipeng; Jiang, Mali; Wang, Xin; Langseth, Abraham J.; Tao, Michael; Barker, Peter B.; Mori, Susumu; Bergles, Dwight E.; Ross, Christopher A.; Detloff, Peter J.; Zhang, Jiangyang; Duan, Wenzhen
2015-01-01
White matter abnormalities have been reported in premanifest Huntington's disease (HD) subjects before overt striatal neuronal loss, but whether the white matter changes represent a necessary step towards further pathology and the underlying mechanism of these changes remains unknown. Here, we characterized a novel knock-in mouse model that expresses mouse HD gene homolog (Hdh) with extended CAG repeat- HdhQ250, which was derived from the selective breeding of HdhQ150 mice. HdhQ250 mice manifest an accelerated and robust phenotype compared with its parent line. HdhQ250 mice exhibit progressive motor deficits, reduction in striatal and cortical volume, accumulation of mutant huntingtin aggregation, decreased levels of DARPP32 and BDNF and altered striatal metabolites. The abnormalities detected in this mouse model are reminiscent of several aspects of human HD. In addition, disturbed myelination was evident in postnatal Day 14 HdhQ250 mouse brain, including reduced levels of myelin regulatory factor and myelin basic protein, and decreased numbers of myelinated axons in the corpus callosum. Thinner myelin sheaths, indicated by increased G-ratio of myelin, were also detected in the corpus callosum of adult HdhQ250 mice. Moreover, proliferation of oligodendrocyte precursor cells is altered by mutant huntingtin both in vitro and in vivo. Our data indicate that this model is suitable for understanding comprehensive pathogenesis of HD in white matter and gray matter as well as developing therapeutics for HD. PMID:25609071
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pope, C; O’Connor, B; Hayes, L
Purpose: The prone treatment position has been used to reduce ipsilateral lung and heart dose in left breast radiation. We conducted a retrospective study to evaluate the difference in the dosimetry between prone and supine treatment positions. Methods: Eight left breast cancer patients were simulated in both the supine and prone positions as a pretreatment evaluation for the optimal treatment position. Treatment plans were created for all patients in both the supine and prone positions using a field in field three dimensional planning technique. Prescribed dose was 45 Gy delivered by two tangential photon fields. Irradiated volume (IV) was evaluatedmore » by V50, V100, and dose to lung and heart by V5, V10, V20, and the mean dose were evaluated. Results: All dosimetry metrics for both the supine and prone plans met our internal normal structure guidelines which are based on Quantec data. The average IVs (50% and 100%) were 2223cc and 1361cc prone, 2315cc and 1315cc supine. The average ipsilateral lung Mean dose (0.83Gy prone vs 5.8Gy supine), V5 (1.6% prone vs 20.9% supine), V10 (0.78% prone vs 15% supine) and V20 (0.36% prone vs 11% supine) were significantly lower in prone position. Heart Mean dose (1.4Gy prone vs 2.9Gy supine), V10 (1.4% prone vs 5.0% supine) and V20 (0.4% prone vs 3.5% supine) were found improved for all patients except one where the mean dose was the same and all other values were improved. Conclusion: The prone position offer preferable dosimetry for all patients planned in our study. These patients were chosen based on the physician’s belief that they would benefit from prone treatment either because they had large pendulous breasts or due to the amount of heart seen in the field on CT simulation.« less
Blank, Thomas; Goldmann, Tobias; Koch, Mirja; Amann, Lukas; Schön, Christian; Bonin, Michael; Pang, Shengru; Prinz, Marco; Burnet, Michael; Wagner, Johanna E; Biel, Martin; Michalakis, Stylianos
2017-01-01
Retinitis pigmentosa (RP) denotes a family of inherited blinding eye diseases characterized by progressive degeneration of rod and cone photoreceptors in the retina. In most cases, a rod-specific genetic defect results in early functional loss and degeneration of rods, which is followed by degeneration of cones and loss of daylight vision at later stages. Microglial cells, the immune cells of the central nervous system, are activated in retinas of RP patients and in several RP mouse models. However, it is still a matter of debate whether activated microglial cells may be responsible for the amplification of the typical degenerative processes. Here, we used Cngb1 -/- mice, which represent a slow degenerative mouse model of RP, to investigate the extent of microglia activation in retinal degeneration. With a combination of FACS analysis, immunohistochemistry and gene expression analysis we established that microglia in the Cngb1 -/- retina were already activated in an early, predegenerative stage of the disease. The evidence available so far suggests that early retinal microglia activation represents a first step in RP, which might initiate or accelerate photoreceptor degeneration.
Wang, Zhi-Hao; Gong, Ke; Liu, Xia; Zhang, Zhentao; Sun, Xiaoou; Wei, Zheng Zachory; Yu, Shan Ping; Manfredsson, Fredric P; Sandoval, Ivette M; Johnson, Peter F; Jia, Jianping; Wang, Jian-Zhi; Ye, Keqiang
2018-05-03
Delta-secretase cleaves both APP and Tau to mediate the formation of amyloid plaques and neurofibrillary tangle in Alzheimer's disease (AD). However, how aging contributes to an increase in delta-secretase expression and AD pathologies remains unclear. Here we show that a CCAAT-enhancer-binding protein (C/EBPβ), an inflammation-regulated transcription factor, acts as a key age-dependent effector elevating both delta-secretase (AEP) and inflammatory cytokines expression in mediating pathogenesis in AD mouse models. We find that C/EBPβ regulates delta-secretase transcription and protein levels in an age-dependent manner. Overexpression of C/EBPβ in young 3xTg mice increases delta-secretase and accelerates the pathological features including cognitive dysfunctions, which is abolished by inactive AEP C189S. Conversely, depletion of C/EBPβ from old 3xTg or 5XFAD mice diminishes delta-secretase and reduces AD pathologies, leading to amelioration of cognitive impairment in these AD mouse models. Thus, our findings support that C/EBPβ plays a pivotal role in AD pathogenesis via increasing delta-secretase expression.
Fan, Xingjun; Reneker, Lixing W.; Obrenovich, Mark E.; Strauch, Christopher; Cheng, Rongzhu; Jarvis, Simon M.; Ortwerth, Beryl J.; Monnier, Vincent M.
2006-01-01
Senile cataracts are associated with progressive oxidation, fragmentation, cross-linking, insolubilization, and yellow pigmentation of lens crystallins. We hypothesized that the Maillard reaction, which leads browning and aroma development during the baking of foods, would occur between the lens proteins and the highly reactive oxidation products of vitamin C. To test this hypothesis, we engineered a mouse that selectively overexpresses the human vitamin C transporter SVCT2 in the lens. Consequently, lenticular levels of vitamin C and its oxidation products were 5- to 15-fold elevated, resulting in a highly compressed aging process and accelerated formation of several protein-bound advanced Maillard reaction products identical with those of aging human lens proteins. These data strongly implicate vitamin C in lens crystallin aging and may serve as a model for protein aging in other tissues particularly rich in vitamin C, such as the hippocampal neurons and the adrenal gland. The hSVCT2 mouse is expected to facilitate the search for drugs that inhibit damage by vitamin C oxidation products. PMID:17075057
Escalante, Nichole K; Lemire, Paul; Cruz Tleugabulova, Mayra; Prescott, David; Mortha, Arthur; Streutker, Catherine J; Girardin, Stephen E; Philpott, Dana J; Mallevaey, Thierry
2016-12-12
The mammalian gastrointestinal tract hosts a diverse community of microbes including bacteria, fungi, protozoa, helminths, and viruses. Through coevolution, mammals and these microbes have developed a symbiosis that is sustained through the host's continuous sensing of microbial factors and the generation of a tolerant or pro-inflammatory response. While analyzing T cell-driven colitis in nonlittermate mouse strains, we serendipitously identified that a nongenetic transmissible factor dramatically increased disease susceptibility. We identified the protozoan Tritrichomonas muris as the disease-exacerbating element. Furthermore, experimental colonization with T. muris induced an elevated Th1 response in the cecum of naive wild-type mice and accelerated colitis in Rag1 -/- mice after T cell transfer. Overall, we describe a novel cross-kingdom interaction within the murine gut that alters immune cell homeostasis and disease susceptibility. This example of unpredicted microbial priming of the immune response highlights the importance of studying trans-kingdom interactions and serves as a stark reminder of the importance of using littermate controls in all mouse research. © 2016 Escalante et al.
Shinoda, K; Nakamura, Y; Matsushita, K; Shimoda, K; Okita, H; Fukuma, M; Yamada, T; Ohde, H; Oguchi, Y; Hata, J; Umezawa, A
2001-10-01
EAT/mcl-1 (EAT), an immediate early gene, functions in a similar way to bcl-2 in neutralising Bax mediated cytotoxicity, suggesting that EAT is a blocker of cell death. The aim of this study was to determine the effect of overexpression of the human EAT gene on light induced retinal cell apoptosis. EAT transgenic mice incorporating the EF-1alpha promoter were utilised, and expression of human EAT was detected by RT-PCR. Light damage was induced by raising mice under constant illumination. Two groups of animals, EAT transgenic mice (n=14) and littermates (n=13), were examined by ERG testing and histopathology at regular time points up to 20 weeks of constant light stimulation. Electrophysiological and histopathological findings were evaluated by established systems of arbitrary scoring as scores 0-2 and scores 0-3, respectively. The mean score (SD) of ERG response was significantly lower in EAT transgenic mice (0.79 (0.89)) than in littermates (1.69 (0.48)) (p<0.01). Although the differences between the two survival curves did not reach statistical significance (p=0.1156), the estimated incidence of electrophysiological retinal damage was higher in EAT mice (0.0495/mouse/week; 95% confidence interval (CI) 0.0347-0.0500) than in littermates (0. 0199/mouse/week; 95% CI 0.0035-0.0364). The mean scores (SD) for histopathological retinal degeneration were 2.31 (0.63) in littermates and 1.43 (1.22) in EAT transgenic mice (p=0.065). However, Kaplan-Meier curves for histopathological failure in two groups of mice showed that retinal photoreceptor cells were preserved significantly against constant light in the littermate compared with transgenic mice (p=0.0241). The estimated incidence of histopathological retinal damage was 0.0042/mouse/week in the littermates (95% CI 0-0.0120) and 0.0419/mouse/week in the EAT mice (95% CI 0.0286-0.0500). Retinal photoreceptor cell apoptosis under constant light stimulation is likely to be accelerated in transgenic retina overexpressing EAT.
YOUNG, CHELSIE M.; NEIGHBORS, CLAYTON; DIBELLO, ANGELO M.; TRAYLOR, ZACHARY K.; TOMKINS, MARY
2017-01-01
The present study examined the roles of shame- and guilt-proneness as mediators of associations between general causality orientations and depressive symptoms. We expected autonomy would be associated with less depressive symptoms based on higher guilt-proneness and lower shame-proneness, whereas control would be associated with more depressive symptoms based on lower guilt-proneness and higher shame-proneness. Undergraduates (N = 354) completed assessments of general causality orientations, shame- and guilt-proneness, and depressive symptoms in exchange for extra credit. Results of mediation analyses were generally supportive of the framework indicating that shame- and guilt-proneness mediate associations between self-determination and depressive symptoms. Autonomy was indirectly associated with less depressive symptoms through positive associations with guilt-proneness, in spite of unexpected positive associations with shame-proneness. Control and impersonal orientation were indirectly associated with more depressive symptoms through positive associations with shame-proneness. Results extend previous research relating self-determination to mental health in providing preliminary support suggesting that individual differences in self-determination facilitate differential tendencies in experiencing guilt and shame. PMID:28344381
Can a sand storm in Arabia cause a dip in the yield of your photovoltaic plant?
NASA Astrophysics Data System (ADS)
Ravindra, B.
2018-05-01
Solar power generation has accelerated worldwide during the last decade. Often the regions of high intensity of solar radiation are in the desert areas which are prone to Haboobs (Arabic word meaning "wind"). Haboobs are sandstorms caused by strong horizontal winds. They occur regularly in arid regions throughout the world. Impact of these events has been examined from various angles such as health, aviation, transportation, agriculture as they affect a billion people around the world. Here it is shown that these events can decrease the yield of a solar photovoltaic plant significantly. Analysis of measured solar radiation during a sand storm is carried out to assess its impact on solar power generation.
Acute starvation ketoacidosis in pregnancy with severe hypertriglyceridemia: A case report.
Hui, Li; Shuying, Li
2018-05-01
Pregnant women are more prone to ketosis due to the relative insulin resistance, accelerated lipolysis and increased free fatty acids. We report a pregnant woman with hyperlipidemia, who experienced severe metabolic acidosis after a short period of starvation. Based on her clinical symptoms, exclusion diagnosis and therapeutic diagnosis, her condition was diagnosed as starvation ketoacidosis. An emergency caesarean section under general anesthesia was implemented 2 hours after her admission. The metabolic acidosis was treated with fluid resuscitation using compound sodium lactate, bicarbonate, and 5% dextrose together with insulin 6U. Both mother and baby were discharged clinically well. Starvation ketoacidosis may happen in special patient who was in pregnancy and with severe hypertriglyceridemia, after just one day fasting and vomiting.
2013-11-01
clones . Western blot analysis will be used to detect the protein expression after selection. 2. Differentiation into oligoprecursor cells (OPCs... monkey and mouse which will be tested in iPSC derived neurons aged with progerin. 13 Key Research Accomplishments: • Milestone 1 (month 1-2...iPSC clones with drug-inducible progerin construct we established the plasmid transfection for iPSC induced neural stem cells, the retroviral
Identification of Sonic Hedgehog-Induced Stromal Factors That Stimulate Prostate Tumor Growth
2006-11-01
LN -Shh xenograft tumors is unabated after castration of the host mouse. However, castration of mice bearing LNCaP + Gli3-/- UGSM bi-clonal...canonical xenograft undergoes involution and growth arrest, growth of LN -Shh xenograft tumors is unabated after castration. As we have shown...signalingindependent of Shh ligand in tumor stroma accelerates tumor growth. We have identified potential stromal Shh target genes in xenograft tumors and have begun
Rapid In Vivo Validation of Tumor Suppressor Gene Function in Prostate Cancer Progression
2016-07-01
release; distribution unlimited 13. SUPPLEMENTARY NOTES: NONE 14. ABSTRACT We have established a powerful system to interrogate CRISPR efficiency...identification of the best sgRNA sequences and accelerated our ability to move to the in vivo studies proposed in Aim2. Our goal was to use CRISPR /Cas...and to initiate prostate cancer in the mouse after injection of lentiviral particles expressing CRISPR /Cas components and Cre recombinase. Our initial
Xu, Qingfu; Wischmeyer, Jareth; Gonzalez, Eduardo; Pichichero, Michael E
2017-07-01
We sought to understand how polymicrobial colonization varies during health, viral upper respiratory infection (URI) and acute upper respiratory bacterial infection to understand differences in infection-prone vs. non-prone patients. Nasopharyngeal (NP) samples were collected from 74 acute otitis media (AOM) infection-prone and 754 non-prone children during 2094 healthy visits, 673 viral URI visits and 631 AOM visits. Three otopathogens Streptococcus pneumoniae (Spn), Nontypeable Haemophilus influenzae (NTHi), and Moraxella catarrhalis (Mcat) were identified by culture. NP colonization rates of multiple otopathogens during health were significantly lower than during viral URI, and during URI they were lower than at onset of upper respiratory bacterial infection in both AOM infection-prone and non-prone children. AOM infection-prone children had higher polymicrobial colonization rates than non-prone children during health, viral URI and AOM. Polymicrobial colonization rates of AOM infection-prone children during health were equivalent to that of non-prone children during viral URI, and during viral URI were equivalent to that of non-prone during AOM infection. Spn colonization was positively associated with NTHi and Mcat colonization during health, but negatively during AOM infection. The infection-prone patients more frequently have multiple potential bacterial pathogens in the NP than the non-prone patients. Polymicrobial interaction in the NP differs during health and at onset of infection. Copyright © 2017 The British Infection Association. Published by Elsevier Ltd. All rights reserved.
Vaccination for treatment and prevention of cancer in animal models.
Cavallo, Federica; Offringa, Rienk; van der Burg, Sjoerd H; Forni, Guido; Melief, Cornelis J M
2006-01-01
Two approaches to immunological intervention in tumor-host interactions in mouse models are discussed in this review. The first is described with reference to experiments in which CD8(+) T lymphocytes are used to kill established transplantable tumors. Peptides and their optimal presentation by dendritic cells and intervention in immune regulatory mechanisms are the key issues for efficient induction of T-killer cell-mediated tumor eradication. The time frame of tumor therapy and the threat imposed by tumor growth in transplantable models and cancer patients require the induction of a robust T-cell reaction. Prevention of the progression of small preneoplastic lesions, on the other hand, requires the significant and prolonged immune protection sought in the second approach. This is based on antibody production and the coordinated activation of multiple low-avidity cell-mediated mechanisms elicited by DNA vaccination in genetically modified cancer-prone mice, transgenic for a mutant Her-2/neu growth factor receptor expressed at the plasma membrane surface of preneoplastic mammary gland epithelial cells. Vaccination with appropriate DNA formulations results in prolonged immune inhibition of the progression of preneoplastic mammary lesions but is ineffective against established tumors. The use of molecularly defined adjuvants and intervention in immune regulatory mechanisms are critical in both the elicitation of an effective T-cell mediated reaction required for tumor debulking in the first set of models and the induction by vaccination of a sustained immune memory able to prevent the expansion of preneoplastic lesions in genetically cancer-prone mice.
Richard, Erin Morris; Thiyagarajan, Thirumagal; Bunni, Marlene A.; Basher, Fahmin; Roddy, Patrick O.; Siskind, Leah J.; Nietert, Paul J.; Nowling, Tamara K.
2013-01-01
Systemic Lupus erythematosus (SLE) is an autoimmune disease caused, in part, by abnormalities in cells of the immune system including B and T cells. Genetically reducing globally the expression of the ETS transcription factor FLI1 by 50% in two lupus mouse models significantly improves disease measures and survival through an unknown mechanism. In this study we analyze the effects of reducing FLI1 in the MRL/lpr lupus prone model on T cell function. We demonstrate that adoptive transfer of MRL/lpr Fli1 +/+ or Fli1 +/- T cells and B cells into Rag1-deficient mice results in significantly decreased serum immunoglobulin levels in animals receiving Fli1 +/- lupus T cells compared to animals receiving Fli1 +/+ lupus T cells regardless of the genotype of co-transferred lupus B cells. Ex vivo analyses of MRL/lpr T cells demonstrated that Fli1 +/- T cells produce significantly less IL-4 during early and late disease and exhibited significantly decreased TCR-specific activation during early disease compared to Fli1 +/+ T cells. Moreover, the Fli1 +/- T cells expressed significantly less neuraminidase 1 (Neu1) message and decreased NEU activity during early disease and significantly decreased levels of glycosphingolipids during late disease compared to Fli1 +/+ T cells. FLI1 dose-dependently activated the Neu1 promoter in mouse and human T cell lines. Together, our results suggest reducing FLI1 in lupus decreases the pathogenicity of T cells by decreasing TCR-specific activation and IL-4 production in part through the modulation of glycosphingolipid metabolism. Reducing the expression of FLI1 or targeting the glycosphingolipid metabolic pathway in lupus may serve as a therapeutic approach to treating lupus. PMID:24040398
Richard, Erin Morris; Thiyagarajan, Thirumagal; Bunni, Marlene A; Basher, Fahmin; Roddy, Patrick O; Siskind, Leah J; Nietert, Paul J; Nowling, Tamara K
2013-01-01
Systemic Lupus erythematosus (SLE) is an autoimmune disease caused, in part, by abnormalities in cells of the immune system including B and T cells. Genetically reducing globally the expression of the ETS transcription factor FLI1 by 50% in two lupus mouse models significantly improves disease measures and survival through an unknown mechanism. In this study we analyze the effects of reducing FLI1 in the MRL/lpr lupus prone model on T cell function. We demonstrate that adoptive transfer of MRL/lpr Fli1(+/+) or Fli1(+/-) T cells and B cells into Rag1-deficient mice results in significantly decreased serum immunoglobulin levels in animals receiving Fli1(+/-) lupus T cells compared to animals receiving Fli1(+/+) lupus T cells regardless of the genotype of co-transferred lupus B cells. Ex vivo analyses of MRL/lpr T cells demonstrated that Fli1(+/-) T cells produce significantly less IL-4 during early and late disease and exhibited significantly decreased TCR-specific activation during early disease compared to Fli1(+/+) T cells. Moreover, the Fli1(+/-) T cells expressed significantly less neuraminidase 1 (Neu1) message and decreased NEU activity during early disease and significantly decreased levels of glycosphingolipids during late disease compared to Fli1(+/+) T cells. FLI1 dose-dependently activated the Neu1 promoter in mouse and human T cell lines. Together, our results suggest reducing FLI1 in lupus decreases the pathogenicity of T cells by decreasing TCR-specific activation and IL-4 production in part through the modulation of glycosphingolipid metabolism. Reducing the expression of FLI1 or targeting the glycosphingolipid metabolic pathway in lupus may serve as a therapeutic approach to treating lupus.
Duarte-Silva, S; Silva-Fernandes, A; Neves-Carvalho, A; Soares-Cunha, C; Teixeira-Castro, A; Maciel, P
2016-01-28
A major pathological hallmark in several neurodegenerative disorders, like polyglutamine disorders (polyQ), including Machado-Joseph disease (MJD), is the formation of protein aggregates. MJD is caused by a CAG repeat expansion in the ATXN3 gene, resulting in an abnormal protein, which is prone to misfolding and forms cytoplasmic and nuclear aggregates within neurons, ultimately inducing neurodegeneration. Treatment of proteinopathies with drugs that up-regulate autophagy has shown promising results in models of polyQ diseases. Temsirolimus (CCI-779) inhibits the mammalian target of rapamycin (m-TOR), while lithium chloride (LiCl) acts by inhibiting inositol monophosphatase, both being able to induce autophagy. We have previously shown that chronic treatment with LiCl (10.4 mg/kg) had limited effects in a transgenic MJD mouse model. Also, others have shown that CCI-779 had mild positive effects in a different mouse model of the disease. It has been suggested that the combination of mTOR-dependent and -independent autophagy inducers could be a more effective therapeutic approach. To further explore this avenue toward therapy, we treated CMVMJD135 transgenic mice with a conjugation of CCI-779 and LiCl, both at concentrations known to induce autophagy and not to be toxic. Surprisingly, this combined treatment proved to be deleterious to both wild-type (wt) and transgenic animals, failing to rescue their neurological symptoms and actually exerting neurotoxic effects. These results highlight the possible dangers of manipulating autophagy in the nervous system and suggest that a better understanding of the potential disruption in the autophagy pathway in MJD is required before successful long-term autophagy modulating therapies can be developed. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.
The neuroregenerative capacity of olfactory stem cells is not limitless: implications for aging.
Child, Kevin M; Herrick, Daniel B; Schwob, James E; Holbrook, Eric H; Jang, Woochan
2018-06-22
The olfactory epithelium (OE) of vertebrates is a highly regenerative neuroepithelium, maintained under normal condition by a population of stem and progenitor cells - globose basal cells (GBCs) that also contribute to epithelial reconstitution after injury. However, aging of the OE often leads to neurogenic exhaustion - the disappearance of both GBCs and olfactory sensory neurons (OSNs). Aneuronal tissue may remain as olfactory, with an uninterrupted sheet of apically arrayed microvillar-capped sustentacular cell, or may undergo respiratory metaplasia. We have generated a transgenic mouse model for neurogenic exhaustion using OMP-driven Tet-off regulation of the A subunit of Diphtheria toxin such that the death of mature OSNs is accelerated. As early as 2 months of age the epithelium of transgenic mice, regardless of sex, recapitulates what is seen in the aged OE of humans and rodents. Areas of the epithelium completely lack neurons and GBCs, while the horizontal basal cells, a reserve stem cell population, show no evidence of activation. Surprisingly, other areas that were olfactory undergo respiratory metaplasia. The impact of accelerated neuronal death and reduced innervation on the olfactory bulb (OB) is also examined. Constant neuronal turnover leaves glomeruli shrunken and impacts the dopaminergic interneurons in the periglomerular layer. Moreover, the acceleration of OSN death can be reversed in those areas where some GBCs persist. However, the projection onto the OB recovers incompletely and the reinnervated glomeruli are markedly altered. Thus, the capacity for OE regeneration is tempered when GBCs disappear. SIGNIFICANCE STATEMENT A large percentage of humans lose or suffer a significant decline in olfactory function as they age. Consequently, quality of life suffers, and safety and nutritional status are put at risk. With age, the OE apparently becomes incapable of fully maintaining the neuronal population of the epithelium despite its well-known capacity for recovering from most forms of injury when younger which may contribute to age-related olfactory loss. Efforts to identify the mechanism by which olfactory neurogenesis becomes exhausted with age require a powerful model for accelerating age-related tissue pathology. The current OMP-tTA ; TetO-DTA transgenic mouse model, in which olfactory neurons die when they reach maturity and accelerated death can be aborted to assess the capacity for structural recovery, satisfies that need. Copyright © 2018 the authors.
Castroneves, Luciana A; Jugo, Rebecca H; Maynard, Michelle A; Lee, Jennifer S; Wassner, Ari J; Dorfman, David; Bronson, Roderick T; Ukomadu, Chinweike; Agoston, Agoston T; Ding, Lai; Luongo, Cristina; Guo, Cuicui; Song, Huaidong; Demchev, Valeriy; Lee, Nicholas Y; Feldman, Henry A; Vella, Kristen R; Peake, Roy W; Hartigan, Christina; Kellogg, Mark D; Desai, Anal; Salvatore, Domenico; Dentice, Monica; Huang, Stephen A
2014-10-01
Type 3 deiodinase (D3), the physiologic inactivator of thyroid hormones, is induced during tissue injury and regeneration. This has led to the hypotheses that D3 impacts injury tolerance by reducing local T3 signaling and contributes to the fall in serum triiodothyronine (T3) observed in up to 75% of sick patients (termed the low T3 syndrome). Here we show that a novel mutant mouse with hepatocyte-specific D3 deficiency has normal local responses to toxin-induced hepatonecrosis, including normal degrees of tissue necrosis and intact regeneration, but accelerated systemic recovery from illness-induced hypothyroxinemia and hypotriiodothyroninemia, demonstrating that peripheral D3 expression is a key modulator of the low T3 syndrome.
Castroneves, Luciana A.; Jugo, Rebecca H.; Maynard, Michelle A.; Lee, Jennifer S.; Wassner, Ari J.; Dorfman, David; Bronson, Roderick T.; Ukomadu, Chinweike; Agoston, Agoston T.; Ding, Lai; Luongo, Cristina; Guo, Cuicui; Song, Huaidong; Demchev, Valeriy; Lee, Nicholas Y.; Feldman, Henry A.; Vella, Kristen R.; Peake, Roy W.; Hartigan, Christina; Kellogg, Mark D.; Desai, Anal; Salvatore, Domenico; Dentice, Monica
2014-01-01
Type 3 deiodinase (D3), the physiologic inactivator of thyroid hormones, is induced during tissue injury and regeneration. This has led to the hypotheses that D3 impacts injury tolerance by reducing local T3 signaling and contributes to the fall in serum triiodothyronine (T3) observed in up to 75% of sick patients (termed the low T3 syndrome). Here we show that a novel mutant mouse with hepatocyte-specific D3 deficiency has normal local responses to toxin-induced hepatonecrosis, including normal degrees of tissue necrosis and intact regeneration, but accelerated systemic recovery from illness-induced hypothyroxinemia and hypotriiodothyroninemia, demonstrating that peripheral D3 expression is a key modulator of the low T3 syndrome. PMID:25004090
Telezhkin, Vsevolod; Straccia, Marco; Yarova, Polina; Pardo, Monica; Yung, Sun; Vinh, Ngoc-Nga; Hancock, Jane M; Barriga, Gerardo Garcia-Diaz; Brown, David A; Rosser, Anne E; Brown, Jonathan T; Canals, Josep M; Randall, Andrew D; Allen, Nicholas D; Kemp, Paul J
2018-05-24
Kv7 channels determine the resting membrane potential of neurons and regulate their excitability. Even though dysfunction of Kv7 channels has been linked to several debilitating childhood neuronal disorders, the ontogeny of the constituent genes, which encode Kv7 channels (KNCQ), and expression of their subunits have been largely unexplored. Here, we show that developmentally regulated expression of specific KCNQ mRNA and Kv7 channel subunits in mouse and human striatum is crucial to the functional maturation of mouse striatal neurons and human-induced pluripotent stem cell-derived neurons. This demonstrates their pivotal role in normal development and maturation, the knowledge of which can now be harnessed to synchronise and accelerate neuronal differentiation of stem cell-derived neurons, enhancing their utility for disease modelling and drug discovery.
Isometric elbow extensors strength in supine- and prone-lying positions.
Abdelzaher, Ibrahim E; Ababneh, Anas F; Alzyoud, Jehad M
2013-01-01
The purpose of this study was to compare isometric strength of elbow extensors measured in supine- and prone-lying positions at elbow flexion angles of 45 and 90 degrees. Twenty-two male subjects under single-blind procedures participated in the study. Each subject participated in both supine-lying and prone-lying measuring protocols. Calibrated cable tensiometer was used to measure isometric strength of the right elbow extensors and a biofeedback electromyography was used to assure no substitution movements from shoulder girdle muscles. The mean values of isometric strength of elbow extensors measured from supine-lying position at elbow flexion angles of 45 and 90 degrees were 11.1 ± 4.2 kg and 13.1 ± 4.6 kg, while those measured from prone-lying position were 9.9 ± 3.6 kg and 12 ± 4.2 kg, respectively. There is statistical significant difference between the isometric strength of elbow extensors measured from supine-lying position at elbow flexion angles of 45 and 90 degrees compared to that measured from prone-lying position (p < 0.05). The results suggest that in manual muscle testing starting position can affect the isometric strength of elbow extensors since supine-lying starting position is better than prone-lying starting position.
Vinberg, Frans; Peshenko, Igor V; Chen, Jeannie; Dizhoor, Alexander M; Kefalov, Vladimir J
2018-05-11
Light adaptation of photoreceptor cells is mediated by Ca 2+ -dependent mechanisms. In darkness, Ca 2+ influx through cGMP-gated channels into the outer segment of photoreceptors is balanced by Ca 2+ extrusion via Na + /Ca 2+ , K + exchangers (NCKXs). Light activates a G protein signaling cascade, which closes cGMP-gated channels and decreases Ca 2+ levels in photoreceptor outer segment because of continuing Ca 2+ extrusion by NCKXs. Guanylate cyclase-activating proteins (GCAPs) then up-regulate cGMP synthesis by activating retinal membrane guanylate cyclases (RetGCs) in low Ca 2+ This activation of RetGC accelerates photoresponse recovery and critically contributes to light adaptation of the nighttime rod and daytime cone photoreceptors. In mouse rod photoreceptors, GCAP1 and GCAP2 both contribute to the Ca 2+ -feedback mechanism. In contrast, only GCAP1 appears to modulate RetGC activity in mouse cones because evidence of GCAP2 expression in cones is lacking. Surprisingly, we found that GCAP2 is expressed in cones and can regulate light sensitivity and response kinetics as well as light adaptation of GCAP1-deficient mouse cones. Furthermore, we show that GCAP2 promotes cGMP synthesis and cGMP-gated channel opening in mouse cones exposed to low Ca 2+ Our biochemical model and experiments indicate that GCAP2 significantly contributes to the activation of RetGC1 at low Ca 2+ when GCAP1 is not present. Of note, in WT mouse cones, GCAP1 dominates the regulation of cGMP synthesis. We conclude that, under normal physiological conditions, GCAP1 dominates the regulation of cGMP synthesis in mouse cones, but if its function becomes compromised, GCAP2 contributes to the regulation of phototransduction and light adaptation of cones. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burgess, Robert M.; Post, Matthew B.; Buttner, William J.
Pressure relief devices (PRDs ) are used to protect high pressure systems from burst failure caused by overpressurization. Codes and standards require the use of PRDs for the safe design of many pressurized systems. These systems require high reliability due to the risks associated with a burst failure. Hydrogen service can increase the risk of PRD failure due to material property degradation caused by hydrogen attack. The National Renewable Energy Laboratory (NREL) has conducted an accelerated life test on a conventional spring loaded PRD. Based on previous failures in the field, the nozzles specific to these PRDs are of particularmore » interest. A nozzle in a PRD is a small part that directs the flow of fluid toward the sealing surface to maintain the open state of the valve once the spring force is overcome. The nozzle in this specific PRD is subjected to the full tensile force of the fluid pressure. These nozzles are made from 440C material, which is a type of hardened steel that is commonly chosen for high pressure applications because of its high strength properties. In a hydrogen environment, however, 440C is considered a worst case material since hydrogen attack results in a loss of almost all ductility and thus 440C is prone to fatigue and material failure. Accordingly, 440C is not recommended for hydrogen service. Conducting an accelerated life test on a PRD with 440C material provides information on necessary and sufficient conditions required to produce crack initiation and failure. The accelerated life test also provides information on other PRD failure modes that are somewhat statistically random in nature.« less
Ohno, Tatsuya; Nakano, Takashi; Kato, Shingo; Koo, Cho Chul; Chansilpa, Yaowalak; Pattaranutaporn, Pittayapoom; Calaguas, Miriam Joy C; de Los Reyes, Rey H; Zhou, Beibei; Zhou, Juying; Susworo, Raden; Supriana, Nana; Dung, To Anh; Ismail, Fuad; Sato, Sinichiro; Suto, Hisao; Kutsutani-Nakamura, Yuzuru; Tsujii, Hirohiko
2008-04-01
To evaluate the toxicity and efficacy of accelerated hyperfractionated radiotherapy (RT) for locally advanced cervical cancer. A multi-institutional prospective single-arm study was conducted among eight Asian countries. Between 1999 and 2002, 120 patients (64 with Stage IIB and 56 with Stage IIIB) with squamous cell carcinoma of the cervix were treated with accelerated hyperfractionated RT. External beam RT consisted of 30 Gy to the whole pelvis, 1.5 Gy/fraction twice daily, followed by 20 Gy of pelvic RT with central shielding at a dose of 2-Gy fractions daily. A small bowel displacement device was used with the patient in the prone position. In addition to central shielding RT, intracavitary brachytherapy was started. Acute and late morbidities were graded according to the Radiation Therapy Oncology Group and Radiation Therapy Oncology Group/European Organization for Research and Treatment of Cancer criteria. The median overall treatment time was 35 days. The median follow-up time for surviving patients was 4.7 years. The 5-year pelvic control and overall survival rate for all patients was 84% and 70%, respectively. The 5-year pelvic control and overall survival rate was 78% and 69% for tumors > or = 6 cm in diameter, respectively. No treatment-related death occurred. Grade 3-4 late toxicities of the small intestine, large intestine, and bladder were observed in 1, 1, and 2 patients, respectively. The 5-year actuarial rate of Grade 3-4 late toxicity at any site was 5%. The results of our study have shown that accelerated hyperfractionated RT achieved sufficient pelvic control and survival without increasing severe toxicity. This treatment could be feasible in those Asian countries where chemoradiotherapy is not available.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ohno, Tatsuya; Nakano, Takashi; Kato, Shingo
2008-04-01
Purpose: To evaluate the toxicity and efficacy of accelerated hyperfractionated radiotherapy (RT) for locally advanced cervical cancer. Methods and Materials: A multi-institutional prospective single-arm study was conducted among eight Asian countries. Between 1999 and 2002, 120 patients (64 with Stage IIB and 56 with Stage IIIB) with squamous cell carcinoma of the cervix were treated with accelerated hyperfractionated RT. External beam RT consisted of 30 Gy to the whole pelvis, 1.5 Gy/fraction twice daily, followed by 20 Gy of pelvic RT with central shielding at a dose of 2-Gy fractions daily. A small bowel displacement device was used with themore » patient in the prone position. In addition to central shielding RT, intracavitary brachytherapy was started. Acute and late morbidities were graded according to the Radiation Therapy Oncology Group and Radiation Therapy Oncology Group/European Organization for Research and Treatment of Cancer criteria. Results: The median overall treatment time was 35 days. The median follow-up time for surviving patients was 4.7 years. The 5-year pelvic control and overall survival rate for all patients was 84% and 70%, respectively. The 5-year pelvic control and overall survival rate was 78% and 69% for tumors {>=}6 cm in diameter, respectively. No treatment-related death occurred. Grade 3-4 late toxicities of the small intestine, large intestine, and bladder were observed in 1, 1, and 2 patients, respectively. The 5-year actuarial rate of Grade 3-4 late toxicity at any site was 5%. Conclusion: The results of our study have shown that accelerated hyperfractionated RT achieved sufficient pelvic control and survival without increasing severe toxicity. This treatment could be feasible in those Asian countries where chemoradiotherapy is not available.« less
Smartphone application for mechanical quality assurance of medical linear accelerators
NASA Astrophysics Data System (ADS)
Kim, Hwiyoung; Lee, Hyunseok; In Park, Jong; Choi, Chang Heon; Park, So-Yeon; Kim, Hee Jung; Kim, Young Suk; Ye, Sung-Joon
2017-06-01
Mechanical quality assurance (QA) of medical linear accelerators consists of time-consuming and human-error-prone procedures. We developed a smartphone application system for mechanical QA. The system consists of two smartphones: one attached to a gantry for obtaining real-time information on the mechanical parameters of the medical linear accelerator, and another displaying real-time information via a Bluetooth connection with the former. Motion sensors embedded in the smartphone were used to measure gantry and collimator rotations. Images taken by the smartphone’s high-resolution camera were processed to evaluate accuracies of jaw-positioning, crosshair centering and source-to-surface distance (SSD). The application was developed using Android software development kit and OpenCV library. The accuracy and precision of the system was validated against an optical rotation stage and digital calipers, prior to routine QA measurements of five medical linear accelerators. The system accuracy and precision in measuring angles and lengths were determined to be 0.05 ± 0.05° and 0.25 ± 0.14 mm, respectively. The mean absolute errors (MAEs) in QA measurements of gantry and collimator rotation were 0.05 ± 0.04° and 0.05 ± 0.04°, respectively. The MAE in QA measurements of light field was 0.39 ± 0.36 mm. The MAEs in QA measurements of crosshair centering and SSD were 0.40 ± 0.35 mm and 0.41 ± 0.32 mm, respectively. In conclusion, most routine mechanical QA procedures could be performed using the smartphone application system with improved precision and within a shorter time-frame, while eliminating potential human errors.
Smartphone application for mechanical quality assurance of medical linear accelerators.
Kim, Hwiyoung; Lee, Hyunseok; Park, Jong In; Choi, Chang Heon; Park, So-Yeon; Kim, Hee Jung; Kim, Young Suk; Ye, Sung-Joon
2017-06-07
Mechanical quality assurance (QA) of medical linear accelerators consists of time-consuming and human-error-prone procedures. We developed a smartphone application system for mechanical QA. The system consists of two smartphones: one attached to a gantry for obtaining real-time information on the mechanical parameters of the medical linear accelerator, and another displaying real-time information via a Bluetooth connection with the former. Motion sensors embedded in the smartphone were used to measure gantry and collimator rotations. Images taken by the smartphone's high-resolution camera were processed to evaluate accuracies of jaw-positioning, crosshair centering and source-to-surface distance (SSD). The application was developed using Android software development kit and OpenCV library. The accuracy and precision of the system was validated against an optical rotation stage and digital calipers, prior to routine QA measurements of five medical linear accelerators. The system accuracy and precision in measuring angles and lengths were determined to be 0.05 ± 0.05° and 0.25 ± 0.14 mm, respectively. The mean absolute errors (MAEs) in QA measurements of gantry and collimator rotation were 0.05 ± 0.04° and 0.05 ± 0.04°, respectively. The MAE in QA measurements of light field was 0.39 ± 0.36 mm. The MAEs in QA measurements of crosshair centering and SSD were 0.40 ± 0.35 mm and 0.41 ± 0.32 mm, respectively. In conclusion, most routine mechanical QA procedures could be performed using the smartphone application system with improved precision and within a shorter time-frame, while eliminating potential human errors.
Sringean, Jirada; Anan, Chanawat; Thanawattano, Chusak; Bhidayasiri, Roongroj
2017-02-15
Nocturnal hypokinesia is a common night-time symptom in patients with Parkinson's disease (PD). However, there is still little understanding of the nature, and variations of severity of this symptom. To evaluate the severity of nocturnal hypokinesia and sleep positions in PD patients using multisite wearable sensors. Nocturnal parameters and sleep positions in 18 PD couples were assessed and compared using wearable sensors (limbs and trunk) for one night in their homes. Nocturnal parameters included number, velocity, acceleration, degree, limb movements and the number of times they got out of bed. PD patients had significantly fewer episodes of turns in bed than their spouses (p=0.043), which was associated with significantly slower speed (p=0.005), acceleration (p=0.005) and fewer degrees (p=0.017). When we split the night into the first and second half, significant findings were mainly demonstrated in the second half of the night, including significantly fewer turns (p=0.02) with smaller degrees (p=0.017), slower speed (p=0.005) and acceleration (p=0.007). No significant differences in these parameters were shown in the first half of the night except for smaller degrees of turn in bed in PD patients (p=0.028) and slower acceleration (p=0.037). In addition, PD patients spent significantly more time in a supine position compared to their spouses (p=0.031) with significantly less time in a prone position (p=0.041). Nocturnal hypokinesia gets worse as the night progresses. Treatment of nocturnal hypokinesia should aim at providing a continuous dopaminergic delivery that can achieve a sustained therapeutic level of dopamine throughout the night. Copyright © 2016 Elsevier B.V. All rights reserved.
Boredom proneness: its relationship to positive and negative affect.
Vodanovich, S J; Verner, K M; Gilbride, T V
1991-12-01
170 undergraduate students completed the Boredom Proneness Scale by Farmer and Sundberg and the Multiple Affect Adjective Checklist by Zuckerman and Lubin. Significant negative relationships were found between boredom proneness and negative affect scores (i.e., Depression, Hostility, Anxiety). Significant positive correlations also obtained between boredom proneness and positive affect (i.e., Positive Affect, Sensation Seeking). The correlations between boredom proneness "subscales" and positive and negative affect were congruent with those obtained using total boredom proneness scores. Implications for counseling are discussed.
2015-10-01
T cell malignancy as well as in the manipulation of development of primary hematopoietic stem cells in vitro and in vivo, has enabled me to...lymphoblastic leukemia/ lymphoma ( T -ALL), and that loss of just one Rpl22 allele accelerates T - cell lymphomagenesis by activating NF-κB and inducing the stem ...3). Previously I have determined that Rpl22 functions as a haploinsufficient tumor suppressor in a mouse T - cell lymphoma model by activating NFκB
GSK-3α is a central regulator of age-related pathologies in mice
Zhou, Jibin; Freeman, Theresa A.; Ahmad, Firdos; Shang, Xiying; Mangano, Emily; Gao, Erhe; Farber, John; Wang, Yajing; Ma, Xin-Liang; Woodgett, James; Vagnozzi, Ronald J.; Lal, Hind; Force, Thomas
2013-01-01
Aging is regulated by conserved signaling pathways. The glycogen synthase kinase-3 (GSK-3) family of serine/threonine kinases regulates several of these pathways, but the role of GSK-3 in aging is unknown. Herein, we demonstrate premature death and acceleration of age-related pathologies in the Gsk3a global KO mouse. KO mice developed cardiac hypertrophy and contractile dysfunction as well as sarcomere disruption and striking sarcopenia in cardiac and skeletal muscle, a classical finding in aging. We also observed severe vacuolar degeneration of myofibers and large tubular aggregates in skeletal muscle, consistent with impaired clearance of insoluble cellular debris. Other organ systems, including gut, liver, and the skeletal system, also demonstrated age-related pathologies. Mechanistically, we found marked activation of mTORC1 and associated suppression of autophagy markers in KO mice. Loss of GSK-3α, either by pharmacologic inhibition or Gsk3a gene deletion, suppressed autophagy in fibroblasts. mTOR inhibition rescued this effect and reversed the established pathologies in the striated muscle of the KO mouse. Thus, GSK-3α is a critical regulator of mTORC1, autophagy, and aging. In its absence, aging/senescence is accelerated in multiple tissues. Strategies to maintain GSK-3α activity and/or inhibit mTOR in the elderly could retard the appearance of age-related pathologies. PMID:23549082
Rebrin, Igor; Zicker, Steven; Wedekind, Karen J.; Paetau-Robinson, Inke; Packer, Lester; Sohal, Rajindar S.
2010-01-01
The main purpose of this study was to investigate whether consumption of diets enriched in antioxidants attenuates the level of oxidative stress in the senescence-accelerated mouse (SAM). In separate and independent studies, two different dietary mixtures, one enriched with vitamin E, vitamin C, L-carnitine, and lipoic acid (Diet I) and another diet including vitamins E and C and 13 additional ingredients containing micronutrients with bioflavonoids, polyphenols, and carotenoids (Diet II), were fed for 8 and 10 months, respectively. The amounts of glutathione (GSH) and glutathione disulfides (GSSG) and GSH:GSSG ratios were determined in plasma, tissue homogenates, and mitochondria isolated from five different tissues of SAM (P8) mice. Both diets had a reductive effect in plasma; however Diet I had relatively little effect on the glutathione redox status in tissue homogenates or mitochondria. Remarkably, Diet II caused a large increase in the amount of glutathione and a marked reductive shift in glutathione redox state in mitochondria. Overall, the effects of Diet II were tissue and gender specific. Results indicated that the glutathione redox state in mitochondria and tissues can be altered by supplemental intake of a relatively complex mixture of dietary antioxidants that contains substances known to induce phase 2 enzymes, glutathione, and antioxidant defenses. Whether corresponding attenuations occur in age-associated deleterious changes in physiological functions or life span remains unknown. PMID:16043026
Rebrin, Igor; Zicker, Steven; Wedekind, Karen J; Paetau-Robinson, Inke; Packer, Lester; Sohal, Rajindar S
2005-08-15
The main purpose of this study was to investigate whether consumption of diets enriched in antioxidants attenuates the level of oxidative stress in the senescence-accelerated mouse (SAM). In separate and independent studies, two different dietary mixtures, one enriched with vitamin E, vitamin C, L-carnitine, and lipoic acid (Diet I) and another diet including vitamins E and C and 13 additional ingredients containing micronutrients with bioflavonoids, polyphenols, and carotenoids (Diet II), were fed for 8 and 10 months, respectively. The amounts of glutathione (GSH) and glutathione disulfides (GSSG) and GSH:GSSG ratios were determined in plasma, tissue homogenates, and mitochondria isolated from five different tissues of SAM (P8) mice. Both diets had a reductive effect in plasma; however Diet I had relatively little effect on the glutathione redox status in tissue homogenates or mitochondria. Remarkably, Diet II caused a large increase in the amount of glutathione and a marked reductive shift in glutathione redox state in mitochondria. Overall, the effects of Diet II were tissue and gender specific. Results indicated that the glutathione redox state in mitochondria and tissues can be altered by supplemental intake of a relatively complex mixture of dietary antioxidants that contains substances known to induce phase 2 enzymes, glutathione, and antioxidant defenses. Whether corresponding attenuations occur in age-associated deleterious changes in physiological functions or life span remains unknown.
Genetically engineered mouse models in oncology research and cancer medicine.
Kersten, Kelly; de Visser, Karin E; van Miltenburg, Martine H; Jonkers, Jos
2017-02-01
Genetically engineered mouse models (GEMMs) have contributed significantly to the field of cancer research. In contrast to cancer cell inoculation models, GEMMs develop de novo tumors in a natural immune-proficient microenvironment. Tumors arising in advanced GEMMs closely mimic the histopathological and molecular features of their human counterparts, display genetic heterogeneity, and are able to spontaneously progress toward metastatic disease. As such, GEMMs are generally superior to cancer cell inoculation models, which show no or limited heterogeneity and are often metastatic from the start. Given that GEMMs capture both tumor cell-intrinsic and cell-extrinsic factors that drive de novo tumor initiation and progression toward metastatic disease, these models are indispensable for preclinical research. GEMMs have successfully been used to validate candidate cancer genes and drug targets, assess therapy efficacy, dissect the impact of the tumor microenvironment, and evaluate mechanisms of drug resistance. In vivo validation of candidate cancer genes and therapeutic targets is further accelerated by recent advances in genetic engineering that enable fast-track generation and fine-tuning of GEMMs to more closely resemble human patients. In addition, aligning preclinical tumor intervention studies in advanced GEMMs with clinical studies in patients is expected to accelerate the development of novel therapeutic strategies and their translation into the clinic. © 2016 The Authors. Published under the terms of the CC BY 4.0 license.
Ireland, Zoe; Dickinson, Hayley; Fleiss, Bobbi; Hutton, Lisa C; Walker, David W
2010-01-01
We have previously developed a model of near-term intra-uterine hypoxia producing significant neonatal mortality (37%) in a small laboratory animal - the spiny mouse - which has precocial offspring at birth. The aim of the present study was to determine if this insult resulted in the appearance of behavioural abnormalities in those offspring which survived the hypoxic delivery. Behavioural tests assessed gait (using footprint patterns), motor coordination and balance on an accelerating rotarod, and spontaneous locomotion and exploration in an open field. We found that the near-term acute hypoxic episode produced a mild neurological deficit in the early postnatal period. In comparison to vaginally delivered controls, hypoxia pups were able to remain on the accelerating rotarod for significantly shorter durations on postnatal days 1-2, and in the open field they travelled significantly shorter distances, jumped less, and spent a greater percentage of time stationary on postnatal days 5 and 15. No changes were observed in gait. Unlike some rodent models of cerebral hypoxia-ischaemia, macroscopic examination of the brain on postnatal day 5 showed no gross cystic lesions, oedema or infarct. Future studies should be directed at identifying hypoxia-induced alterations in the function of specific brain regions, and assessing if maternal administration of neuroprotective agents can prevent against hypoxia-induced neurological deficits and brain damage that occur at birth. Copyright 2009 S. Karger AG, Basel.
Bornfeldt, Karin E
2014-04-01
Adults with diabetes mellitus are much more likely to have cardiovascular disease than those without diabetes mellitus. Genetically engineered mouse models have started to provide important insight into the mechanisms whereby diabetes mellitus promotes atherosclerosis. Such models have demonstrated that diabetes mellitus promotes formation of atherosclerotic lesions, progression of lesions into advanced hemorrhaged lesions, and that it prevents lesion regression. The proatherosclerotic effects of diabetes mellitus are driven in part by the altered function of myeloid cells. The protein S100A9 and the receptor for advanced glycation end-products are important modulators of the effect of diabetes mellitus on myelopoiesis, which might promote monocyte accumulation in lesions. Furthermore, myeloid cell expression of the enzyme acyl-CoA synthetase 1 (ACSL1), which converts long-chain fatty acids into their acyl-CoA derivatives, has emerged as causal to diabetes mellitus-induced lesion initiation. The protective effects of myeloid ACSL1-deficiency in diabetic mice, but not in nondiabetic mice, indicate that myeloid cells are activated by diabetes mellitus through mechanisms that play minor roles in the absence of diabetes mellitus. The roles of reactive oxygen species and insulin resistance in diabetes mellitus-accelerated atherosclerosis are also discussed, primarily in relation to endothelial cells. Translational studies addressing whether the mechanisms identified in mouse models are equally important in humans with diabetes mellitus will be paramount.
PTHrP and Indian hedgehog control differentiation of growth plate chondrocytes at multiple steps.
Kobayashi, Tatsuya; Chung, Ung-Il; Schipani, Ernestina; Starbuck, Michael; Karsenty, Gerard; Katagiri, Takenobu; Goad, Dale L; Lanske, Beate; Kronenberg, Henry M
2002-06-01
In developing murine growth plates, chondrocytes near the articular surface (periarticular chondrocytes) proliferate, differentiate into flat column-forming proliferating cells (columnar chondrocytes), stop dividing and finally differentiate into hypertrophic cells. Indian hedgehog (Ihh), which is predominantly expressed in prehypertrophic cells, stimulates expression of parathyroid hormone (PTH)-related peptide (PTHrP) which negatively regulates terminal chondrocyte differentiation through the PTH/PTHrP receptor (PPR). However, the roles of PTHrP and Ihh in regulating earlier steps in chondrocyte differentiation are unclear. We present novel mouse models with PPR abnormalities that help clarify these roles. In mice with chondrocyte-specific PPR ablation and mice with reduced PPR expression, chondrocyte differentiation was accelerated not only at the terminal step but also at an earlier step: periarticular to columnar differentiation. In these models, upregulation of Ihh action in the periarticular region was also observed. In the third model in which the PPR was disrupted in about 30% of columnar chondrocytes, Ihh action in the periarticular chondrocytes was upregulated because of ectopically differentiated hypertrophic chondrocytes that had lost PPR. Acceleration of periarticular to columnar differentiation was also noted in this mouse, while most of periarticular chondrocytes retained PPR signaling. These data suggest that Ihh positively controls differentiation of periarticular chondrocytes independently of PTHrP. Thus, chondrocyte differentiation is controlled at multiple steps by PTHrP and Ihh through the mutual regulation of their activities.
Zhao, Lihua; Du, Xinhua; Huang, Kun; Zhang, Tuo; Teng, Zhen; Niu, Wanbao; Wang, Chao; Xia, Guoliang
2016-01-01
The size of the primordial follicle pool determines the reproductive potential of mammalian females, and establishment of the pool is highly dependent on specific genes expression. However, the molecular mechanisms by which the essential genes are regulated coordinately to ensure primordial follicle assembly remain a mystery. Here, we show that the small GTPase Rac1 plays an indispensable role in controlling the formation of primordial follicles in mouse ovary. Employing fetal mouse ovary organ culture system, we demonstrate that disruption of Rac1 retarded the breakdown of germline cell cysts while Rac1 overexpression accelerated the formation of primordial follicles. In addition, in vivo inhibitor injection resulted in the formation of multi-oocyte follicles. Subsequent investigation showed that Rac1 induced nuclear import of STAT3 by physical binding. In turn, nuclear STAT3 directly activated the transcription of essential oocyte-specific genes, including Jagged1, GDF9, BMP15 and Nobox. Further, GDF9 and BMP15 regulated the translation of Notch2 via mTORC1 activation in pregranulosa cells. Overexression or addition of Jagged1, GDF9 and BMP15 not only reversed the effect of Rac1 disruption, but also accelerated primordial follicle formation via Notch2 signaling activation. Collectively, these results indicate that Rac1 plays important roles as a key regulator in follicular assembly. PMID:27050391
Park, Jun Yeon; Lee, Yun Kyung; Lee, Dong-Soo; Yoo, Jeong-Eun; Shin, Myoung-Sook; Yamabe, Noriko; Kim, Su-Nam; Lee, Seulah; Kim, Ki Hyun; Lee, Hae-Jeung; Roh, Seok Sun; Kang, Ki Sung
2017-05-05
Resin known as Resina Pini is listed in the Korean and Japanese pharmacopoeias and has been used for treating skin wounds and inflammation. Resin is composed of more than 50% abietic acid and 10% neutral substances. In the present study, the wound-healing effects of abietic acid and the possible underlying mechanism of action were investigated in various in vitro and in vivo models. The effects of abietic acid on tube formation and migration were measured in human umbilical vein vascular endothelial cells (HUVECs). Protein expression of mitogen-activated protein kinase (MAPK) activation was evaluated via Western blotting analysis. The wound-healing effects of abietic acid were assessed using a mouse model of cutaneous wounds. The results showed that abietic acid enhanced cell migration and tube formation in HUVECs. Abietic acid induced significant angiogenic potential, which is associated with upregulation of extracellular signal-regulated kinase (ERK) and p38 expression. Additionally, 0.8μM abietic acid-treated groups showed accelerated wound closure compared to the controls in a mouse model of cutaneous wounds. The current data indicate that abietic acid treatment elevated cell migration and tube formation in HUVECs by the activation of ERK and p38 MAPKs. We suggest that abietic acid can be developed as a wound-healing agent. Copyright © 2017 Elsevier Ltd. All rights reserved.
The thymus of the hairless rhino-j (hr/hr-j) mice
SAN JOSE, I.; GARCÍA-SUÁREZ, O.; HANNESTAD, J.; CABO, R.; GAUNA, L.; REPRESA, J.; VEGA, J. A.
2001-01-01
The hairless (hr) gene is expressed in a large number of tissues, primarily the skin, and a mutation in the hr gene is responsible for the typical cutaneous phenotype of hairless mice. Mutant hr mouse strains show immune defects involving especially T cells and macrophages, as well as an age-related immunodeficiency and an accelerated atrophy of the thymus. These data suggest that the hr mutation causes a defect of this organ, although hr transcripts have not been detected in fetal or adult mice thymus. The present study analyses the thymus of young (3 mo) and adult (9 mo) homozygous hr-rh-j mice (a strain of hairless mice) by means of structural techniques and immunohistochemistry to selectively identify thymic epithelial cells, dendritic cells, and macrophages. There were structural alterations in the thymus of both young and adult rh-rh-j mice, which were more severe in older animals. These alterations consisted of relative cortical atrophy, enlargement of blood vessels, proliferation of perivascular connective tissue, and the appearance of cysts. hr-rh-j mice also showed a decrease in the number of epithelial and dendritic cells, and macrophages. Taken together, present results strongly suggest degeneration and accelerated age-dependent regression of the thymus in hr-rh-j mice, which could explain at least in part the immune defects reported in hairless mouse strains. PMID:11327202
Jumping to conclusions and the continuum of delusional beliefs.
Warman, Debbie M; Lysaker, Paul H; Martin, Joel M; Davis, Louanne; Haudenschield, Samantha L
2007-06-01
The present study examined the jumping to conclusions reasoning bias across the continuum of delusional ideation by investigating individuals with active delusions, delusion prone individuals, and non-delusion prone individuals. Neutral and highly self-referent probabilistic reasoning tasks were employed. Results indicated that individuals with delusions gathered significantly less information than delusion prone and non-delusion prone participants on both the neutral and self-referent tasks, (p<.001). Individuals with delusions made less accurate decisions than the delusion prone and non-delusion prone participants on both tasks (p<.001), yet were more confident about their decisions than were delusion prone and non-delusion prone participants on the self-referent task (p=.002). Those with delusions and those who were delusion prone reported higher confidence in their performance on the self-referent task than they did the neutral task (p=.02), indicating that high self-reference impacted information processing for individuals in both of these groups. The results are discussed in relation to previous research in the area of probabilistic reasoning and delusions.
A miniature mechanical ventilator for newborn mice.
Kolandaivelu, K; Poon, C S
1998-02-01
Transgenic/knockout mice with pre-defined mutations have become increasingly popular in biomedical research as models of human diseases. In some instances, the resulting mutation may cause cardiorespiratory distress in the neonatal or adult animals and may necessitate resuscitation. Here we describe the design and testing of a miniature and versatile ventilator that can deliver varying ventilatory support modes, including conventional mechanical ventilation and high-frequency ventilation, to animals as small as the newborn mouse. With a double-piston body chamber design, the device circumvents the problem of air leakage and obviates the need for invasive procedures such as endotracheal intubation, which are particularly important in ventilating small animals. Preliminary tests on newborn mice as early as postnatal day O demonstrated satisfactory restoration of pulmonary ventilation and the prevention of respiratory failure in mutant mice that are prone to respiratory depression. This device may prove useful in the postnatal management of transgenic/knockout mice with genetically inflicted respiratory disorders.
Painting blood vessels and atherosclerotic plaques with an adhesive drug depot
Kastrup, Christian J.; Nahrendorf, Matthias; Figueiredo, Jose Luiz; Lee, Haeshin; Kambhampati, Swetha; Lee, Timothy; Cho, Seung-Woo; Gorbatov, Rostic; Iwamoto, Yoshiko; Dang, Tram T.; Dutta, Partha; Yeon, Ju Hun; Cheng, Hao; Pritchard, Christopher D.; Vegas, Arturo J.; Siegel, Cory D.; MacDougall, Samantha; Okonkwo, Michael; Thai, Anh; Stone, James R.; Coury, Arthur J.; Weissleder, Ralph; Langer, Robert; Anderson, Daniel G.
2012-01-01
The treatment of diseased vasculature remains challenging, in part because of the difficulty in implanting drug-eluting devices without subjecting vessels to damaging mechanical forces. Implanting materials using adhesive forces could overcome this challenge, but materials have previously not been shown to durably adhere to intact endothelium under blood flow. Marine mussels secrete strong underwater adhesives that have been mimicked in synthetic systems. Here we develop a drug-eluting bioadhesive gel that can be locally and durably glued onto the inside surface of blood vessels. In a mouse model of atherosclerosis, inflamed plaques treated with steroid-eluting adhesive gels had reduced macrophage content and developed protective fibrous caps covering the plaque core. Treatment also lowered plasma cytokine levels and biomarkers of inflammation in the plaque. The drug-eluting devices developed here provide a general strategy for implanting therapeutics in the vasculature using adhesive forces and could potentially be used to stabilize rupture-prone plaques. PMID:23236189
Imaging Chromosome Separation in Mouse Oocytes by Responsive 3D Confocal Timelapse Microscopy.
Lane, Simon I R; Crouch, Stephen; Jones, Keith T
2017-01-01
Accurate chromosome segregation is necessary so that genetic material is equally shared among daughter cells. However, maturing mammalian oocytes are particularly prone to chromosome segregation errors, making them a valuable tool for identifying the causes of mis-segregation. Factors such as aging, cohesion loss, DNA damage, and the roles of a plethora of kinetochore and cell cycle-related proteins are involved. To study chromosome segregation in oocytes in a live setting is an imaging challenge that requires advanced techniques. Here we describe a method for examining chromosomes in live oocytes in detail as they undergo maturation. Our method is based on tracking the "center of brightness" of fluorescently labeled chromosomes. Here we describe how to set up our software and run experiments on a Leica TCS SP8 confocal microscope, but the method would be transferable to other microscopes with computer-aided microscopy.
"Isogaba Maware": quality control of genome DNA by checkpoints.
Kitazono, A; Matsumoto, T
1998-05-01
Checkpoints maintain the interdependency of cell cycle events by permitting the onset of an event only after the completion of the preceding event. The DNA replication checkpoint induces a cell cycle arrest until the completion of the DNA replication. Similarly, the DNA damage checkpoint arrests cell cycle progression if DNA repair is incomplete. A number of genes that play a role in the two checkpoints have been identified through genetic studies in yeasts, and their homologues have been found in fly, mouse, and human. They form signaling cascades activated by a DNA replication block or DNA damage and subsequently generate the negative constraints on cell cycle regulators. The failure of these signaling cascades results in producing offspring that carry mutations or that lack a portion of the genome. In humans, defects in the checkpoints are often associated with cancer-prone diseases. Focusing mainly on the studies in budding and fission yeasts, we summarize the recent progress.
Developmental history and application of CRISPR in human disease.
Liang, Puping; Zhang, Xiya; Chen, Yuxi; Huang, Junjiu
2017-06-01
Genome-editing tools are programmable artificial nucleases, mainly including zinc-finger nucleases, transcription activator-like effector nucleases and clustered regularly interspaced short palindromic repeat (CRISPR). By recognizing and cleaving specific DNA sequences, genome-editing tools make it possible to generate site-specific DNA double-strand breaks (DSBs) in the genome. DSBs will then be repaired by either error-prone nonhomologous end joining or high-fidelity homologous recombination mechanisms. Through these two different mechanisms, endogenous genes can be knocked out or precisely repaired/modified. Rapid developments in genome-editing tools, especially CRISPR, have revolutionized human disease models generation, for example, various zebrafish, mouse, rat, pig, monkey and human cell lines have been constructed. Here, we review the developmental history of CRISPR and its application in studies of human diseases. In addition, we also briefly discussed the therapeutic application of CRISPR in the near future. Copyright © 2017 John Wiley & Sons, Ltd.
Selective recruitment of the lower fibers of the trapezius muscle.
Arlotta, Melissa; Lovasco, Gina; McLean, Linda
2011-06-01
We aimed to determine the effectiveness of five isometric exercises at maximally activating the lower trapezius muscle in healthy subjects. Surface electromyography data were recorded from the upper, middle, and lower fibers of the trapezius muscle bilaterally while 18 healthy subjects performed five different exercises: Latissimus Pull-down, Prone Row, Prone V-Raise, Posterior Fly and Modified Prone Cobra. The peak activation was determined from the rectified and smoothed data to determine which exercise generated the highest amount of lower trapezius activity, and to determine which exercise best resulted in activation of the lower fibers of trapezius while minimizing activation of the upper and middle fibers of trapezius. Males and females demonstrated different patterns of lower trapezius recruitment and therefore the data were analyzed separately for each sex. For the males, the Prone Row exercise (2.84 ± 1.67 mV), the Posterior Fly (2.23 ± 1.00 mV) and the Modified Prone Cobra (2.26 ± 1.19 mV) exercises generated the highest EMG activity in the lower trapezius muscle. For the females, the Modified Prone Cobra (2.40 ± 1.32 mV) and the Prone Row (2.37 ± 1.14 mV) exercises generated higher activation than the Latissimus Pull Down (1.04 ± 0.56 mV), the Posterior Fly (1.62 ± 1.044 mV) and the Prone V-Raise (1.32 ± 1.07 mV). In both sexes, the Modified Prone Cobra, the Prone Row and the Latissimus Pull Down outperformed the other exercises in terms of maximizing lower trapezius activation while minimizing activation of the upper and middle fibers of trapezius. The Modified Prone Cobra showed lower relative activation of the upper trapezius muscle than did the Prone Row exercise. The Modified Prone Cobra and Prone Row exercises are the most effective exercises for targeted strengthening of the lower trapezius muscle in both sexes. The Modified Prone Cobra is somewhat better than the Prone Row due to the low activation of the upper trapezius muscle during this exercise. The Modified Prone Cobra exercise should therefore be considered as a manual muscle test position and as a strengthening exercise for the lower trapezius muscle fibers. Copyright © 2010 Elsevier Ltd. All rights reserved.
Inoue, Yukiko U; Morimoto, Yuki; Hoshino, Mikio; Inoue, Takayoshi
2018-07-01
Pax6 encodes a transcription factor that plays pivotal roles in eye development, early brain patterning, neocortical arealization, and so forth. Visualization of Pax6 expression dynamics in these events could offer numerous advantages to neurodevelopmental studies. While CRISPR/Cas9 system has dramatically accelerated one-step generation of knock-out mouse, establishment of gene-cassette knock-in mouse via zygote injection has been considered insufficient due to its low efficiency. Recently, an improved CRISPR/Cas9 system for effective gene-cassette knock-in has been reported, where the native form of guide RNAs (crRNA and tracrRNA) assembled with recombinant Cas9 protein are directly delivered into mouse fertilized eggs. Here we apply this strategy to insert IRES-EGFP-pA cassette into Pax6 locus and achieve efficient targeted insertions of the 1.8 kb reporter gene. In Pax6-IRES-EGFP mouse we have generated, EGFP-positive cells reside in the eyes and cerebellum as endogenous Pax6 expressing cells at postnatal day 2. At the early embryonic stages when the embryos are transparent, EGFP-positive regions can be easily identified without PCR-based genotyping, precisely recapitulating the endogenous Pax6 expression patterns. Remarkably, at E12.5, the graded expression patterns of Pax6 in the developing neocortex now become recognizable in our knock-in mice, serving a sufficiently sensitive and useful tool to precisely visualize neurodevelopmental processes. Copyright © 2018 Elsevier B.V. and Japan Neuroscience Society. All rights reserved.
Mihara, Hiroshi; Suzuki, Nobuhiro; Yamawaki, Hidemoto; Tominaga, Makoto; Sugiyama, Toshiro
2013-02-01
Gastric adaptive relaxation (GAR) is impaired in ~40% of functional dyspepsia (FD) patients, and nitric oxide (NO) released from inhibitory motor neurons plays an important role in this relaxation. Although the underlying molecular mechanism of GAR is poorly understood, transient receptor potential channel vanilloid 2 (TRPV2) mechano- and chemoreceptors are expressed in mouse intestinal inhibitory motor neurons and are involved in intestinal relaxation. The aim of this study was to evaluate the distribution of TRPV2 in inhibitory motor neurons throughout the mouse gastrointestinal tract and the contribution of TRPV2 to GAR. RT-PCR and immunohistochemical analyses were used to detect TRPV2 mRNA and protein, respectively. Intragastric pressure was determined with an isolated mouse stomach. Gastric emptying (GE) in vivo was determined using a test meal. TRPV2 mRNA was detected throughout the mouse gastrointestinal tract, and TRPV2 immunoreactivity was detected in 84.3% of neuronal nitric oxide synthase-expressing myenteric neurons in the stomach. GAR, which was expressed as the rate of decline of intragastric pressure in response to volume stimuli, was significantly enhanced by the TRPV2 activator probenecid, and the enhancement was inhibited by the TRPV2 inhibitor tranilast. GE was significantly accelerated by TRPV2 agonist applications, and the probenecid-induced enhancement was significantly inhibited by tranilast coapplication. Mechanosensitive TRPV2 was expressed in inhibitory motor neurons in the mouse stomach and contributed to GAR and GE. TRPV2 may be a promising target for FD patients with impaired GAR.
Wicki, Simone; Gurzeler, Ursina; Corazza, Nadia; Genitsch, Vera; Wong, Wendy Wei-Lynn; Kaufmann, Thomas
2018-02-28
Neutrophils are key players in the early defense against invading pathogens. Due to their potent effector functions, programmed cell death of activated neutrophils has to be tightly controlled; however, its underlying mechanisms remain unclear. Fas ligand (FASL/CD95L) has been shown to induce neutrophil apoptosis, which is accelerated by the processing of the BH3-only protein BH3 interacting domain death agonist (BID) to trigger mitochondrial apoptotic events, and been attributed a regulatory role during viral and bacterial infections. Here, we show that, in accordance with previous works, mouse neutrophils underwent caspase-dependent apoptosis in response to FASL, and that this cell death was significantly delayed upon loss of BID. However, pan-caspase inhibition failed to protect mouse neutrophils from FASL-induced apoptosis and caused a switch to RIPK3-dependent necroptotic cell death. Intriguingly, such a switch was less evident in the absence of BID, particularly under inflammatory conditions. Delayed neutrophil apoptosis has been implicated in several auto-inflammatory diseases, including inflammatory bowel disease. We show that neutrophil and macrophage driven acute dextran sulfate sodium (DSS) induced colitis was slightly more aggravated in BID-deficient mice, based on significantly increased weight loss compared to wild-type controls. Taken together, our data support a central role for FASL > FAS and BID in mouse neutrophil cell death and further underline the anti-inflammatory role of BID.
Wicki, Simone; Gurzeler, Ursina; Corazza, Nadia; Genitsch, Vera
2018-01-01
Neutrophils are key players in the early defense against invading pathogens. Due to their potent effector functions, programmed cell death of activated neutrophils has to be tightly controlled; however, its underlying mechanisms remain unclear. Fas ligand (FASL/CD95L) has been shown to induce neutrophil apoptosis, which is accelerated by the processing of the BH3-only protein BH3 interacting domain death agonist (BID) to trigger mitochondrial apoptotic events, and been attributed a regulatory role during viral and bacterial infections. Here, we show that, in accordance with previous works, mouse neutrophils underwent caspase-dependent apoptosis in response to FASL, and that this cell death was significantly delayed upon loss of BID. However, pan-caspase inhibition failed to protect mouse neutrophils from FASL-induced apoptosis and caused a switch to RIPK3-dependent necroptotic cell death. Intriguingly, such a switch was less evident in the absence of BID, particularly under inflammatory conditions. Delayed neutrophil apoptosis has been implicated in several auto-inflammatory diseases, including inflammatory bowel disease. We show that neutrophil and macrophage driven acute dextran sulfate sodium (DSS) induced colitis was slightly more aggravated in BID-deficient mice, based on significantly increased weight loss compared to wild-type controls. Taken together, our data support a central role for FASL > FAS and BID in mouse neutrophil cell death and further underline the anti-inflammatory role of BID. PMID:29495595
Jiang, Kai; Li, Wen; Li, Wei; Jiao, Sen; Castel, Laurie; Van Wagoner, David R; Yu, Xin
2015-11-01
The aim of this study was to develop a rapid, multislice cardiac T1 mapping method in mice and to apply the method to quantify manganese (Mn(2+)) uptake in a mouse model with altered Ca(2+) channel activity. An electrocardiography-triggered multislice saturation-recovery Look-Locker method was developed and validated both in vitro and in vivo. A two-dose study was performed to investigate the kinetics of T1 shortening, Mn(2+) relaxivity in myocardium, and the impact of Mn(2+) on cardiac function. The sensitivity of Mn(2+)-enhanced MRI in detecting subtle changes in altered Ca(2+) channel activity was evaluated in a mouse model with α-dystrobrevin knockout. Validation studies showed strong agreement between the current method and an established method. High Mn(2+) dose led to significantly accelerated T1 shortening. Heart rate decreased during Mn(2+) infusion, while ejection ratio increased slightly at the end of imaging protocol. No statistical difference in cardiac function was detected between the two dose groups. Mice with α-dystrobrevin knockout showed enhanced Mn(2+) uptake in vivo. In vitro patch-clamp study showed increased Ca(2+) channel activity. The saturation recovery method provides rapid T1 mapping in mouse hearts, which allowed sensitive detection of subtle changes in Mn(2+) uptake in α-dystrobrevin knockout mice. © 2014 Wiley Periodicals, Inc.
Poster - 34: Clinical Implementation of Prone Breast Treatment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiang, Runqing; Fleming, Katrina; Kobeleva, Sofya
2016-08-15
Purpose: Prone breast treatment is used to reduce acute and late toxicities for large or pendulous breast patients. This study developed and implemented the clinical workflow of prone breast radiotherapy treatment. Methods: Varian kVue Access360™ Prone Breast Couchtop was used as prone breast board. The treatment planning (TP)is performed in Eclipse TP system. TP comparisons between supine deep inspiration breathing hold (DIBH) and prone breast; prone forward field-in-field (FinF) planning and inverse IMRT planning were performed and discussed. For the daily setup, breast coverage was assessed in the room using light field and MV imaging was used at day 1more » and weekly. Results: The first ten patients are CT scanned and planned both supine and prone. The coverage was all excellent for supine DIBH plan and prone breast plan. The plan in the prone position demonstrated improvements in lung sparing comparing to the DIBH plan. Both forward FinF plan and inverse IMRT plan achieved acceptable coverage of the breast, and heart dose is comparable. Considering the daily setup variations and MLC leakage, forward FinF plan was recommended for routine clinical use. The procedure has been tested in phantom and patients were treated clinically. Conclusions: Prone breast irradiation has been advocated for women with large pendulous breasts in order to decrease acute and late toxicities. The workflow for prone breast radiation therapy has been developed and the technique is ready to treat patients.« less
Oaks, Zachary; Winans, Thomas; Caza, Tiffany; Fernandez, David; Liu, Yuxin; Landas, Steve K.; Banki, Katalin
2016-01-01
Objective Antiphospholipid antibodies (aPL) constitute a diagnostic criterion of systemic lupus erythematosus (SLE), and aPL have been functionally linked to liver disease in patients with SLE. Since the mechanistic target of rapamycin (mTOR) is a regulator of oxidative stress, a pathophysiologic process that contributes to the development of aPL, this study was undertaken in a mouse model of SLE to examine the involvement of liver mitochondria in lupus pathogenesis. Methods Mitochondria were isolated from lupus‐prone MRL/lpr, C57BL/6.lpr, and MRL mice, age‐matched autoimmunity‐resistant C57BL/6 mice as negative controls, and transaldolase‐deficient mice, a strain that exhibits oxidative stress in the liver. Electron transport chain (ETC) activity was assessed using measurements of oxygen consumption. ETC proteins, which are regulators of mitochondrial homeostasis, and the mTOR complexes mTORC1 and mTORC2 were examined by Western blotting. Anticardiolipin (aCL) and anti–β2‐glycoprotein I (anti‐β2GPI) autoantibodies were measured by enzyme‐linked immunosorbent assay in mice treated with rapamycin or mice treated with a solvent control. Results Mitochondrial oxygen consumption was increased in the livers of 4‐week‐old, disease‐free MRL/lpr mice relative to age‐matched controls. Levels of the mitophagy initiator dynamin‐related protein 1 (Drp1) were depleted while the activity of mTORC1 was increased in MRL/lpr mice. In turn, mTORC2 activity was decreased in MRL and MRL/lpr mice. In addition, levels of aCL and anti‐β2GPI were elevated preceding the development of nephritis in 4‐week‐old MRL, C57BL/6.lpr, and MRL/lpr mice. Transaldolase‐deficient mice showed increased oxygen consumption, depletion of Drp1, activation of mTORC1, and elevated expression of NADH:ubiquinone oxidoreductase core subunit S3 (NDUFS3), a pro‐oxidant subunit of ETC complex I, as well as increased production of aCL and anti‐β2GPI autoantibodies. Treatment with rapamycin selectively blocked mTORC1 activation, NDUFS3 expression, and aPL production both in transaldolase‐deficient mice and in lupus‐prone mice. Conclusion In lupus‐prone mice, mTORC1‐dependent mitochondrial dysfunction contributes to the generation of aPL, suggesting that such mechanisms may represent a treatment target in patients with SLE. PMID:27332042
Oaks, Zachary; Winans, Thomas; Caza, Tiffany; Fernandez, David; Liu, Yuxin; Landas, Steve K; Banki, Katalin; Perl, Andras
2016-11-01
Antiphospholipid antibodies (aPL) constitute a diagnostic criterion of systemic lupus erythematosus (SLE), and aPL have been functionally linked to liver disease in patients with SLE. Since the mechanistic target of rapamycin (mTOR) is a regulator of oxidative stress, a pathophysiologic process that contributes to the development of aPL, this study was undertaken in a mouse model of SLE to examine the involvement of liver mitochondria in lupus pathogenesis. Mitochondria were isolated from lupus-prone MRL/lpr, C57BL/6.lpr, and MRL mice, age-matched autoimmunity-resistant C57BL/6 mice as negative controls, and transaldolase-deficient mice, a strain that exhibits oxidative stress in the liver. Electron transport chain (ETC) activity was assessed using measurements of oxygen consumption. ETC proteins, which are regulators of mitochondrial homeostasis, and the mTOR complexes mTORC1 and mTORC2 were examined by Western blotting. Anticardiolipin (aCL) and anti-β 2 -glycoprotein I (anti-β 2 GPI) autoantibodies were measured by enzyme-linked immunosorbent assay in mice treated with rapamycin or mice treated with a solvent control. Mitochondrial oxygen consumption was increased in the livers of 4-week-old, disease-free MRL/lpr mice relative to age-matched controls. Levels of the mitophagy initiator dynamin-related protein 1 (Drp1) were depleted while the activity of mTORC1 was increased in MRL/lpr mice. In turn, mTORC2 activity was decreased in MRL and MRL/lpr mice. In addition, levels of aCL and anti-β 2 GPI were elevated preceding the development of nephritis in 4-week-old MRL, C57BL/6.lpr, and MRL/lpr mice. Transaldolase-deficient mice showed increased oxygen consumption, depletion of Drp1, activation of mTORC1, and elevated expression of NADH:ubiquinone oxidoreductase core subunit S3 (NDUFS3), a pro-oxidant subunit of ETC complex I, as well as increased production of aCL and anti-β 2 GPI autoantibodies. Treatment with rapamycin selectively blocked mTORC1 activation, NDUFS3 expression, and aPL production both in transaldolase-deficient mice and in lupus-prone mice. In lupus-prone mice, mTORC1-dependent mitochondrial dysfunction contributes to the generation of aPL, suggesting that such mechanisms may represent a treatment target in patients with SLE. © 2016, The Authors. Arthritis & Rheumatology published by Wiley Periodicals, Inc. on behalf of American College of Rheumatology.
Huang, Suzhen; Xue, Tingli; Wang, Zhiquan; Ma, Yuanyuan; He, Xueting; Hong, Jiefang; Zou, Shaolan; Song, Hao; Zhang, Minhua
2018-04-01
Furfural-tolerant strain is essential for the fermentative production of biofuels or chemicals from lignocellulosic biomass. In this study, Zymomonas mobilis CP4 was for the first time subjected to error-prone PCR-based whole genome shuffling, and the resulting mutants F211 and F27 that could tolerate 3 g/L furfural were obtained. The mutant F211 under various furfural stress conditions could rapidly grow when the furfural concentration reduced to 1 g/L. Meanwhile, the two mutants also showed higher tolerance to high concentration of glucose than the control strain CP4. Genome resequencing revealed that the F211 and F27 had 12 and 13 single-nucleotide polymorphisms. The activity assay demonstrated that the activity of NADH-dependent furfural reductase in mutant F211 and CP4 was all increased under furfural stress, and the activity peaked earlier in mutant than in control. Also, furfural level in the culture of F211 was also more rapidly decreased. These indicate that the increase in furfural tolerance of the mutants may be resulted from the enhanced NADH-dependent furfural reductase activity during early log phase, which could lead to an accelerated furfural detoxification process in mutants. In all, we obtained Z. mobilis mutants with enhanced furfural and high concentration of glucose tolerance, and provided valuable clues for the mechanism of furfural tolerance and strain development.
NASA Astrophysics Data System (ADS)
Kossobokov, Vladimir G.; Nekrasova, Anastasia K.
2018-05-01
We continue applying the general concept of seismic risk analysis in a number of seismic regions worldwide by constructing regional seismic hazard maps based on morphostructural analysis, pattern recognition, and the Unified Scaling Law for Earthquakes (USLE), which generalizes the Gutenberg-Richter relationship making use of naturally fractal distribution of earthquake sources of different size in a seismic region. The USLE stands for an empirical relationship log10 N(M, L) = A + B·(5 - M) + C·log10 L, where N(M, L) is the expected annual number of earthquakes of a certain magnitude M within a seismically prone area of linear dimension L. We use parameters A, B, and C of USLE to estimate, first, the expected maximum magnitude in a time interval at seismically prone nodes of the morphostructural scheme of the region under study, then map the corresponding expected ground shaking parameters (e.g., peak ground acceleration, PGA, or macro-seismic intensity). After a rigorous verification against the available seismic evidences in the past (usually, the observed instrumental PGA or the historically reported macro-seismic intensity), such a seismic hazard map is used to generate maps of specific earthquake risks for population, cities, and infrastructures (e.g., those based on census of population, buildings inventory). The methodology of seismic hazard and risk assessment is illustrated by application to the territory of Greater Caucasus and Crimea.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pedersen, K; Irwin, J; Sansourekidou, P
Purpose: To investigate the impact of the treatment table on skin dose for prone breast patients for which the breast contacts the table and to develop a method to decrease skin dose. Methods: We used 12cm stack of 15cmx15cm solid water slabs to imitate breast. Calibrated EBT3 radiochromic film was affixed to the bottom of the phantom. Treatments for 32 patients were analyzed to determine typical prone breast beam parameters. Based on the analysis, a field size and a range of gantry angles were chosen for the test beams. Three experimental setups were used. The first represented the patient setupmore » currently used in our clinics with the phantom directly on the table. The second was the skin sparing setup, with a 1.5cm Styrofoam slab between the phantom and the table. The third used a 7.5cm Styrofoam slab to examine the extent of skin sparing potential. The calibration curve was applied to each film to determine dose. Percent difference in dose between the current and skin sparing setups was calculated for each gantry angle and gantry angle pair. Results: Data showed that beams entering through the table showed a skin dose decrease ranging from 13%–30% with the addition of 7.5cm Styrofoam, while beams exiting through the table showed no significant difference. The addition of 1.5cm Styrofoam resulted in differences ranging from 0.5%–13% with the skin sparing setup. Conclusion: The results demonstrate that skin in contact with the table receives increased dose from beams entering through the table. By creating separation between the breast and the table with Styrofoam the skin dose can be lowered, but 1.5 cm did not fully mitigate the effect. Further investigation will be performed to identify a clinically practical thickness that maximizes this mitigation.« less
Evaluation and modeling of the potential effects of a module manufacturing anomaly
Kempe, Michael D.; Jordan, Dirk C.
2017-07-13
Photovoltaic lifetime predictions are in great demand, but are exceedingly difficult to achieve with uncertainties small enough to be useful. During the construction of photovoltaic modules, small unplanned variability in materials or processes can have profound effects on module durability. Thus, continual monitoring of production quality is needed. In the subject production run, module quality, as monitored by damp heat testing, revealed a subset of modules that were prone to higher degradation rates. An assessment of the potential long-term power loss and mitigation strategies was needed. To do this, modules were exposed to variable levels of humidity and temperature withmore » periodic monitoring. The analysis takes into account the kinetics of the degradation and the spatially and temporally varying humidity content within the module during accelerated stress testing. This is an important aspect for extrapolating laboratory results to field exposure because moisture ingress is diffusion limited in most laboratory module tests but not limited in these fielded modules. This analysis predicted that although a solder flux induce degradation mechanism is significant in accelerated stress test, this is probably an artifact of a process with a very large acceleration factor that is not likely to be significant for deployed modules. The degradation mechanism affected a limited area around the tabbing helping to minimize the effect. Furthermore, three years after the system was commissioned, the fielded modules indeed show no significant power loss.« less
Evaluation and modeling of the potential effects of a module manufacturing anomaly
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kempe, Michael D.; Jordan, Dirk C.
Photovoltaic lifetime predictions are in great demand, but are exceedingly difficult to achieve with uncertainties small enough to be useful. During the construction of photovoltaic modules, small unplanned variability in materials or processes can have profound effects on module durability. Thus, continual monitoring of production quality is needed. In the subject production run, module quality, as monitored by damp heat testing, revealed a subset of modules that were prone to higher degradation rates. An assessment of the potential long-term power loss and mitigation strategies was needed. To do this, modules were exposed to variable levels of humidity and temperature withmore » periodic monitoring. The analysis takes into account the kinetics of the degradation and the spatially and temporally varying humidity content within the module during accelerated stress testing. This is an important aspect for extrapolating laboratory results to field exposure because moisture ingress is diffusion limited in most laboratory module tests but not limited in these fielded modules. This analysis predicted that although a solder flux induce degradation mechanism is significant in accelerated stress test, this is probably an artifact of a process with a very large acceleration factor that is not likely to be significant for deployed modules. The degradation mechanism affected a limited area around the tabbing helping to minimize the effect. Furthermore, three years after the system was commissioned, the fielded modules indeed show no significant power loss.« less
Ling, Stella Sye Chee; Chang, Sui Kiat; Sia, Winne Chiaw Mei; Yim, Hip Seng
2015-01-01
Sunflower oil is prone to oxidation during storage time, leading to production of toxic compounds that might affect human health. Synthetic antioxidants are used to prevent lipid oxidation. Spreading interest in the replacement of synthetic food antioxidants by natural ones has fostered research on fruit and vegetables for new antioxidants. In this study, the efficacy of unripe banana peel extracts (100, 200 and 300 ppm) in stabilizing sunflower oil was tested under accelerated storage (65°C) for a period of 24 days. BHA and α-tocopherol served as comparative standards besides the control. Established parameters such as peroxide value (PV), iodine value (IV), p-anisidine value (p-AnV), total oxidation value (TOTOX), thiobarbituric acid reactive substances (TBARS) and free fatty acid (FFA) content were used to assess the extent of oil deterioration. After 24 days storage at 65°C, sunflower oil containing 200 and 300 ppm extract of unripe banana peel showed significantly lower PV and TOTOX compared to BHA and α-tocopherol. TBARS, p-AnV and FFA values of sunflower oil containing 200 and 300 ppm of unripe banana peel extract exhibited comparable inhibitory effects with BHA. Unripe banana peel extract at 200 and 300 ppm demonstrated inhibitory effect against both primary and secondary oxidation up to 24 days under accelerated storage conditions. Unripe banana peel extract may be used as a potential source of natural antioxidants in the application of food industry to suppress lipid oxidation.
Adaptive Acceleration of Visually Evoked Smooth Eye Movements in Mice
2016-01-01
The optokinetic response (OKR) consists of smooth eye movements following global motion of the visual surround, which suppress image slip on the retina for visual acuity. The effective performance of the OKR is limited to rather slow and low-frequency visual stimuli, although it can be adaptably improved by cerebellum-dependent mechanisms. To better understand circuit mechanisms constraining OKR performance, we monitored how distinct kinematic features of the OKR change over the course of OKR adaptation, and found that eye acceleration at stimulus onset primarily limited OKR performance but could be dramatically potentiated by visual experience. Eye acceleration in the temporal-to-nasal direction depended more on the ipsilateral floccular complex of the cerebellum than did that in the nasal-to-temporal direction. Gaze-holding following the OKR was also modified in parallel with eye-acceleration potentiation. Optogenetic manipulation revealed that synchronous excitation and inhibition of floccular complex Purkinje cells could effectively accelerate eye movements in the nasotemporal and temporonasal directions, respectively. These results collectively delineate multiple motor pathways subserving distinct aspects of the OKR in mice and constrain hypotheses regarding cellular mechanisms of the cerebellum-dependent tuning of movement acceleration. SIGNIFICANCE STATEMENT Although visually evoked smooth eye movements, known as the optokinetic response (OKR), have been studied in various species for decades, circuit mechanisms of oculomotor control and adaptation remain elusive. In the present study, we assessed kinematics of the mouse OKR through the course of adaptation training. Our analyses revealed that eye acceleration at visual-stimulus onset primarily limited working velocity and frequency range of the OKR, yet could be dramatically potentiated during OKR adaptation. Potentiation of eye acceleration exhibited different properties between the nasotemporal and temporonasal OKRs, indicating distinct visuomotor circuits underlying the two. Lesions and optogenetic manipulation of the cerebellum provide constraints on neural circuits mediating visually driven eye acceleration and its adaptation. PMID:27335412
Papapetrou, Eirini P; Kovalovsky, Damian; Beloeil, Laurent; Sant'angelo, Derek; Sadelain, Michel
2009-01-01
MicroRNAs (miRNAs) are small, noncoding RNAs that regulate gene expression by targeting complementary sequences, referred to as miRNA recognition elements (MREs), typically located in the 3' untranslated region of mRNAs. miR-181a is highly expressed in developing thymocytes and markedly downregulated in post-thymic T cells. We investigated whether endogenous miR-181a can be harnessed to segregate expression of chimeric antigen receptors (CARs) and TCRs between developing and mature T cells. Lentiviral-encoded antigen receptors were tagged with a miR-181a-specific MRE and transduced into mouse BM cells that were used to generate hematopoietic chimeras. Expression of a CAR specific for human CD19 (hCD19) was selectively suppressed in late double-negative and double-positive thymocytes, coinciding with the peak in endogenous miR-181a expression. Receptor expression was fully restored in post-thymic resting and activated T cells, affording protection against a subsequent challenge with hCD19+ tumors. Hematopoietic mouse chimeras engrafted with a conalbumin-specific TCR prone to thymic clonal deletion acquired peptide-specific T cell responsiveness only when the vector-encoded TCR transcript was similarly engineered to be subject to regulation by miR-181a. These results demonstrate the potential of miRNA-regulated transgene expression in stem cell-based therapies, including cancer immunotherapy.
Fasting metabolism modulates the interleukin-12/interleukin-10 cytokine axis
Kernbauer, Elisabeth; Hölzl, Markus A.; Hofer, Johannes; Gualdoni, Guido A.; Schmetterer, Klaus G.; Miftari, Fitore; Sobanov, Yury; Meshcheryakova, Anastasia; Mechtcheriakova, Diana; Witzeneder, Nadine; Greiner, Georg; Ohradanova-Repic, Anna; Waidhofer-Söllner, Petra; Säemann, Marcus D.; Decker, Thomas
2017-01-01
A crucial role of cell metabolism in immune cell differentiation and function has been recently established. Growing evidence indicates that metabolic processes impact both, innate and adaptive immunity. Since a down-stream integrator of metabolic alterations, mammalian target of rapamycin (mTOR), is responsible for controlling the balance between pro-inflammatory interleukin (IL)-12 and anti-inflammatory IL-10, we investigated the effect of upstream interference using metabolic modulators on the production of pro- and anti-inflammatory cytokines. Cytokine release and protein expression in human and murine myeloid cells was assessed after toll-like receptor (TLR)-activation and glucose-deprivation or co-treatment with 5′-adenosine monophosphate (AMP)-activated protein kinase (AMPK) activators. Additionally, the impact of metabolic interference was analysed in an in-vivo mouse model. Glucose-deprivation by 2-deoxy-D-glucose (2-DG) increased the production of IL-12p40 and IL-23p19 in monocytes, but dose-dependently inhibited the release of anti-inflammatory IL-10. Similar effects have been observed using pharmacological AMPK activation. Consistently, an inhibition of the tuberous sclerosis complex-mTOR pathway was observed. In line with our in vitro observations, glycolysis inhibition with 2-DG showed significantly reduced bacterial burden in a Th2-prone Listeria monocytogenes mouse infection model. In conclusion, we showed that fasting metabolism modulates the IL-12/IL-10 cytokine balance, establishing novel targets for metabolism-based immune-modulation. PMID:28742108
Brown, Rachel C; Morris, Andrew P; O'Neil, Roger G
2007-01-26
Understanding the molecular and biochemical mechanisms regulating the blood-brain barrier is aided by in vitro model systems. Many studies have used primary cultures of brain microvessel endothelial cells for this purpose. However, primary cultures limit the generation of material for molecular and biochemical assays since cells grow slowly, are prone to contamination by other neurovascular unit cells, and lose blood-brain barrier characteristics when passaged. To address these issues, immortalized cell lines have been generated. In these studies, we assessed the suitability of the immortalized mouse brain endothelial cell line, bEnd3, as a blood-brain barrier model. RT-PCR and immunofluorescence indicated expression of multiple tight junction proteins. bEnd3 cells formed barriers to radiolabeled sucrose, and responded like primary cultures to disrupting stimuli. Exposing cells to serum-free media on their basolateral side significantly decreased paracellular permeability; astrocyte-conditioned media did not enhance barrier properties. The serum-free media-induced decrease in permeability was correlated with an increase in claudin-5 and zonula occludens-1 immunofluorescence at cell-cell contracts. We conclude that bEnd3 cells are an attractive candidate as a model of the blood-brain barrier due to their rapid growth, maintenance of blood-brain barrier characteristics over repeated passages, formation of functional barriers and amenability to numerous molecular interventions.
Brown, Rachel C.; Morris, Andrew P.; O’Neil, Roger G.
2007-01-01
Understanding the molecular and biochemical mechanisms regulating the blood-brain barrier is aided by in vitro model systems. Many studies have used primary cultures of brain microvessel endothelial cells for this purpose. However, primary cultures limit the generation of material for molecular and biochemical assays since cells grow slowly, are prone to contamination by other neurovascular unit cells, and lose blood-brain barrier characteristics when passaged. To address these issues, immortalized cell lines have been generated. In these studies, we assessed the suitability of the immortalized mouse brain endothelial cell line, bEnd3, as a blood-brain barrier model. RT-PCR and immunofluorescence indicated expression of multiple tight junction proteins. bEnd3 cells formed barriers to radiolabeled sucrose, and responded like primary cultures to disrupting stimuli. Exposing cells to serum-free media on their basolateral side significantly decreased paracellular permeability; astrocyte-conditioned media did not enhance barrier properties. The serum-free media-induced decrease in permeability was correlated with an increase in claudin-5 and zonula occludens-1 immunofluorescence at cell-cell contracts. We conclude that bEnd3 cells are an attractive candidate as a model of the blood-brain barrier due to their rapid growth, maintenance of blood-brain barrier characteristics over repeated passages, formation of functional barriers and amenability to numerous molecular interventions. PMID:17169347
Longitudinal Analysis of Mouse SDOCT Volumes
Antony, Bhavna J.; Carass, Aaron; Lang, Andrew; Kim, Byung-Jin; Zack, Donald J.; Prince, Jerry L.
2017-01-01
Spectral-domain optical coherence tomography (SDOCT), in addition to its routine clinical use in the diagnosis of ocular diseases, has begun to find increasing use in animal studies. Animal models are frequently used to study disease mechanisms as well as to test drug efficacy. In particular, SDOCT provides the ability to study animals longitudinally and non-invasively over long periods of time. However, the lack of anatomical landmarks makes the longitudinal scan acquisition prone to inconsistencies in orientation. Here, we propose a method for the automated registration of mouse SDOCT volumes. The method begins by accurately segmenting the blood vessels and the optic nerve head region in the scans using a pixel classification approach. The segmented vessel maps from follow-up scans were registered using an iterative closest point (ICP) algorithm to the baseline scan to allow for the accurate longitudinal tracking of thickness changes. Eighteen SDOCT volumes from a light damage model study were used to train a random forest utilized in the pixel classification step. The area under the curve (AUC) in a leave-one-out study for the retinal blood vessels and the optic nerve head (ONH) was found to be 0.93 and 0.98, respectively. The complete proposed framework, the retinal vasculature segmentation and the ICP registration, was applied to a secondary set of scans obtained from a light damage model. A qualitative assessment of the registration showed no registration failures. PMID:29138527
Sena, Sandra; Sloan, Crystal; Tebbi, Ali; Han, Yong Hwan; O'Neill, Brian T.; Cooksey, Robert C.; Jones, Deborah; Holland, William L.; McClain, Donald A.; Abel, E. Dale
2012-01-01
This study sought to elucidate the relationship between skeletal muscle mitochondrial dysfunction, oxidative stress, and insulin resistance in two mouse models with differential susceptibility to diet-induced obesity. We examined the time course of mitochondrial dysfunction and insulin resistance in obesity-prone C57B and obesity-resistant FVB mouse strains in response to high-fat feeding. After 5 wk, impaired insulin-mediated glucose uptake in skeletal muscle developed in both strains in the absence of any impairment in proximal insulin signaling. Impaired mitochondrial oxidative capacity preceded the development of insulin resistant glucose uptake in C57B mice in concert with increased oxidative stress in skeletal muscle. By contrast, mitochondrial uncoupling in FVB mice, which prevented oxidative stress and increased energy expenditure, did not prevent insulin resistant glucose uptake in skeletal muscle. Preventing oxidative stress in C57B mice treated systemically with an antioxidant normalized skeletal muscle mitochondrial function but failed to normalize glucose tolerance and insulin sensitivity. Furthermore, high fat-fed uncoupling protein 3 knockout mice developed increased oxidative stress that did not worsen glucose tolerance. In the evolution of diet-induced obesity and insulin resistance, initial but divergent strain-dependent mitochondrial adaptations modulate oxidative stress and energy expenditure without influencing the onset of impaired insulin-mediated glucose uptake. PMID:22510273
Pan, Huei-Ju; Lin, Yiming; Chen, Yuqing E; Vance, Dennis E; Leiter, Edward H
2006-07-01
Given the heterogeneous nature of metabolic dysfunctions associated with insulin resistance and type 2 diabetes (T2D), a single pharmaceutical cannot be expected to provide complication-free therapy in all patients. Thiazolidinediones (TZD) increase insulin sensitivity, reduce blood glucose and improve cardiovascular parameters. However, in addition to increasing fat mass, TZD have the potential in certain individuals to exacerbate underlying hepatosteatosis and diabetic cardiomyopathy. Pharmacogenetics should allow patient selection to maximize therapy and minimize risk. To this end, we have combined two genetically diverse inbred strains, NON/Lt and NZO/Lt, to produce a "negative heterosis" increasing the frequency of T2D in F1 males. As in humans with T2D, treatment of diabetic and hyperlipemic F1 males with rosiglitazone (Rosi), an agonist of peroxisome proliferator-activated gamma receptor (PPARgamma), reverses these disease phenotypes. However, the hybrid genome perturbed both major pathways for phosphatidylcholine (PC) biosynthesis in the liver, and effected remarkable alterations in the composition of cardiolipin in heart mitochondria. These metabolic defects severely exacerbated an underlying hepatosteatosis and increased levels of the adipokine, plasminogen activator inhibitor-1 (PAI-1), a risk factor for cardiovascular events. This model system demonstrates how the power of mouse genetics can be used to identify the metabolic signatures of individuals who may be prone to drug side effects.
NASA Astrophysics Data System (ADS)
Khademi, April; Hosseinzadeh, Danoush
2014-03-01
Alzheimer's disease (AD) is the most common form of dementia in the elderly characterized by extracellular deposition of amyloid plaques (AP). Using animal models, AP loads have been manually measured from histological specimens to understand disease etiology, as well as response to treatment. Due to the manual nature of these approaches, obtaining the AP load is labourious, subjective and error prone. Automated algorithms can be designed to alleviate these challenges by objectively segmenting AP. In this paper, we focus on the development of a novel algorithm for AP segmentation based on robust preprocessing and a Type II fuzzy system. Type II fuzzy systems are much more advantageous over the traditional Type I fuzzy systems, since ambiguity in the membership function may be modeled and exploited to generate excellent segmentation results. The ambiguity in the membership function is defined as an adaptively changing parameter that is tuned based on the local contrast characteristics of the image. Using transgenic mouse brains with AP ground truth, validation studies were carried out showing a high degree of overlap and low degree of oversegmentation (0.8233 and 0.0917, respectively). The results highlight that such a framework is able to handle plaques of various types (diffuse, punctate), plaques with varying Aβ concentrations as well as intensity variation caused by treatment effects or staining variability.
Jansen, Jacob G.; Temviriyanukul, Piya; Wit, Niek; Delbos, Frédéric; Reynaud, Claude-Agnès; Jacobs, Heinz; de Wind, Niels
2014-01-01
Short-wave ultraviolet light induces both mildly helix-distorting cyclobutane pyrimidine dimers (CPDs) and severely distorting (6–4) pyrimidine pyrimidone photoproducts ((6–4)PPs). The only DNA polymerase (Pol) that is known to replicate efficiently across CPDs is Polη, a member of the Y family of translesion synthesis (TLS) DNA polymerases. Phenotypes of Polη deficiency are transient, suggesting redundancy with other DNA damage tolerance pathways. Here we performed a comprehensive analysis of the temporal requirements of Y-family Pols ι and κ as backups for Polη in (i) bypassing genomic CPD and (6–4)PP lesions in vivo, (ii) suppressing DNA damage signaling, (iii) maintaining cell cycle progression and (iv) promoting cell survival, by using mouse embryonic fibroblast lines with single and combined disruptions in these Pols. The contribution of Polι is restricted to TLS at a subset of the photolesions. Polκ plays a dominant role in rescuing stalled replication forks in Polη-deficient mouse embryonic fibroblasts, both at CPDs and (6–4)PPs. This dampens DNA damage signaling and cell cycle arrest, and results in increased survival. The role of relatively error-prone Pols ι and κ as backups for Polη contributes to the understanding of the mutator phenotype of xeroderma pigmentosum variant, a syndrome caused by Polη defects. PMID:25170086
Muglia, C; Mercer, N; Toscano, M A; Schattner, M; Pozner, R; Cerliani, J P; Gobbi, R Papa; Rabinovich, G A; Docena, G H
2011-05-26
Intestinal epithelial cells serve as mechanical barriers and active components of the mucosal immune system. These cells migrate from the crypt to the tip of the villus, where different stimuli can differentially affect their survival. Here we investigated, using in vitro and in vivo strategies, the role of galectin-1 (Gal-1), an evolutionarily conserved glycan-binding protein, in modulating the survival of human and mouse enterocytes. Both Gal-1 and its specific glyco-receptors were broadly expressed in small bowel enterocytes. Exogenous Gal-1 reduced the viability of enterocytes through apoptotic mechanisms involving activation of both caspase and mitochondrial pathways. Consistent with these findings, apoptotic cells were mainly detected at the tip of the villi, following administration of Gal-1. Moreover, Gal-1-deficient (Lgals1(-/-)) mice showed longer villi compared with their wild-type counterparts in vivo. In an experimental model of starvation, fasted wild-type mice displayed reduced villi and lower intestinal weight compared with Lgals1(-/-) mutant mice, an effect reflected by changes in the frequency of enterocyte apoptosis. Of note, human small bowel enterocytes were also prone to this pro-apoptotic effect. Thus, Gal-1 is broadly expressed in mucosal tissue and influences the viability of human and mouse enterocytes, an effect which might influence the migration of these cells from the crypt, the integrity of the villus and the epithelial barrier function.
Longitudinal analysis of mouse SDOCT volumes
NASA Astrophysics Data System (ADS)
Antony, Bhavna J.; Carass, Aaron; Lang, Andrew; Kim, Byung-Jin; Zack, Donald J.; Prince, Jerry L.
2017-03-01
Spectral-domain optical coherence tomography (SDOCT), in addition to its routine clinical use in the diagnosis of ocular diseases, has begun to fund increasing use in animal studies. Animal models are frequently used to study disease mechanisms as well as to test drug efficacy. In particular, SDOCT provides the ability to study animals longitudinally and non-invasively over long periods of time. However, the lack of anatomical landmarks makes the longitudinal scan acquisition prone to inconsistencies in orientation. Here, we propose a method for the automated registration of mouse SDOCT volumes. The method begins by accurately segmenting the blood vessels and the optic nerve head region in the scans using a pixel classification approach. The segmented vessel maps from follow-up scans were registered using an iterative closest point (ICP) algorithm to the baseline scan to allow for the accurate longitudinal tracking of thickness changes. Eighteen SDOCT volumes from a light damage model study were used to train a random forest utilized in the pixel classification step. The area under the curve (AUC) in a leave-one-out study for the retinal blood vessels and the optic nerve head (ONH) was found to be 0.93 and 0.98, respectively. The complete proposed framework, the retinal vasculature segmentation and the ICP registration, was applied to a secondary set of scans obtained from a light damage model. A qualitative assessment of the registration showed no registration failures.
Kaur, Ravinder; Casey, Janet R.; Pichichero, Michael E.
2011-01-01
Background Streptococcus pneumoniae (Spn) is one of the common bacteria responsible for episodic acute otitis media (AOM; non-otitis prone), recurrent AOM (otitis-prone) and AOM treatment failure (AOMTF) in children. Objective From a population of 268 children we sought to compare the serum IgG antibody titers to five different Spn proteins (PhtD, LytB, PcpA, PhtE and Ply) that are vaccine candidates in children with episodic AOM (n=34), who were otitis prone (n=35), and who had AOMTF (n=25) caused by Spn. Methods Antibody was quantitated by ELISA. Results At their acute AOM visit, anti-PhtD, -LytB, -PhtE and −Ply IgG antibody titers in otitis-prone children were significantly lower compared to non-otitis prone children (p <0.05) and children with AOMTF (p <0.05). Comparing acute to convalescent titers of antibody after AOM we found that otitis-prone, AOMTF and non-otitis prone children had no significant change in geometric mean IgG antibody titers against the five proteins (except for PhtE in children with AOMTF), but detailed analysis showed that about one-third of the children in each cohort had a 2-fold rise in antibody to the studied antigens. While non-otitis prone children had significant increases (p <0.001) between 6 and 24 months of age in anti-PhtD, PcpA, PhtE and Ply IgG antibody titers as a consequence of nasopharyngeal colonization and AOM, otitis-prone children either failed to show rises or the rises were significantly less than the non-otitis prone children. Conclusion Otitis-prone and AOMTF children mount less of an IgG serum antibody response than non-otitis prone children to Spn proteins following AOM and nasopharyngeal colonization. PMID:21487325
DOE Office of Scientific and Technical Information (OSTI.GOV)
Catron, T; Rosu, M; Weiss, E
2014-06-01
Purpose: This study assesses the effect of physiological abdominal compression from prone positioning by comparing respiratory-induced tumor movements in supine and prone positions. Methods: 19 lung cancer patients underwent repeated supine and prone free-breathing 4DCT scans. The effect of patient position on motion magnitude was investigated for tumors, lymph nodes (9 cases), and subgroups of central (11 cases), peripheral (8 cases) and small peripheral tumors (5 cases), by evaluating the population average excursions, absolute and relative to a carina-point. Results: Absolute motion analysis: In prone, motion increased by ~20% for tumors and ~25% for lymph nodes. Central tumors moved moremore » compared to peripheral tumors in both supine and prone (~22%, and ~4% respectively). Central tumors movement increased by ~12% in prone. For peripheral tumors the increase in prone position was ~25% (~40% and 29% changes on along RL and AP directions). Motion relative to carina-point analysis: Overall, tumor excursions relative to carina-point increased by ~17% in prone. Lymph node relative magnitudes were lower by ~4%. Likewise, the central tumors moved ~7% less in prone. The subgroup of peripheral tumors exhibited increased amplitudes by ~44%; the small peripheral tumors had even larger relative displacements in prone (~46%). Conclusion: Tumor and lymph node movement in the patient population from this study averaged to be higher in prone than in supine position. Results from carina analysis also suggest that peripheral tissues have more physiologic freedom of motility when placed in the prone position, regardless of size. From these observations we should continue to avoid prone positioning for all types of primary lung tumor, suggesting that patients should receive radiotherapy for primary lung cancer in supine position to minimize target tissue mobility during normal respiratory effort. Further investigation will include more patients with peripheral tumors to validate our observations.« less
Treatment of ARDS With Prone Positioning.
Scholten, Eric L; Beitler, Jeremy R; Prisk, G Kim; Malhotra, Atul
2017-01-01
Prone positioning was first proposed in the 1970s as a method to improve gas exchange in ARDS. Subsequent observations of dramatic improvement in oxygenation with simple patient rotation motivated the next several decades of research. This work elucidated the physiological mechanisms underlying changes in gas exchange and respiratory mechanics with prone ventilation. However, translating physiological improvements into a clinical benefit has proved challenging; several contemporary trials showed no major clinical benefits with prone positioning. By optimizing patient selection and treatment protocols, the recent Proning Severe ARDS Patients (PROSEVA) trial demonstrated a significant mortality benefit with prone ventilation. This trial, and subsequent meta-analyses, support the role of prone positioning as an effective therapy to reduce mortality in severe ARDS, particularly when applied early with other lung-protective strategies. This review discusses the physiological principles, clinical evidence, and practical application of prone ventilation in ARDS. Copyright © 2016 American College of Chest Physicians. Published by Elsevier Inc. All rights reserved.
Köse, A C; Demirbas, M
2004-02-01
To investigate the utility of a new 'modified-prone' position for treating pre-vesical stones with extracorporeal shock wave lithotripsy (ESWL), usually considered an acceptable and effective treatment for such stones, but for which many different body positions have been used in an attempt to increase its efficacy. The study included 268 consecutive patients with a solitary pre-vesical stone who underwent ESWL either prone (69) or in the modified-prone position (199) between May 1999 and August 2001. Only those with one stone between the ureteric orifice and 1 cm proximal to the vesico-ureteric junction were included. In each case the stone diameter, days to stone clearance, number of shock waves applied per treatment, and number of sessions required to become stone-free were recorded. If the treatment failed this was also noted. Success rates in the prone and modified-prone groups were compared and analysed to assess which of the variables influenced success with ESWL. After ESWL, 95.5% of the 268 patients were stone-free; the rates in the prone and modified-prone groups were 89.9% and 97.5%, respectively (P = 0.015). The probability of success with ESWL therapy for pre-vesical calculi in modified-prone position was about five times (odds ratio 4.56, 95% confidence interval 1.2-17.7) greater than that expected with when prone. The modified-prone position was an independent factor most significantly influencing success with ESWL in these patients. The modified-prone position for ESWL is a new and very effective way to treat patients with pre-vesical stones.
Bleaching of red lake paints in encaustic mummy portraits
NASA Astrophysics Data System (ADS)
Miliani, Costanza; Daveri, Alessia; Spaabaek, Lin; Romani, Aldo; Manuali, Valentina; Sgamellotti, Antonio; Brunetti, Brunetto Giovanni
2010-09-01
The present paper reports on the study of the development of whitish opacity in pink paints in encaustic mummy portraits. Non-invasive measurements carried out on two encaustic portraits belonging to the Ny Carlsberg Glyptotek, Copenhagen, by reflectance FTIR and UV-vis fluorescence have shown that the areas prone to the bleaching phenomenon had been painted with melted beeswax and an anthraquinone vegetal lake mixed with calcium sulphate hemihydrate and dihydrate. The hypothesis that the bleaching disease was neither related to a degradation of the dyes nor to an alteration of the wax but rather to a dehydration-hydration reaction of the CaSO4-H2O system, has been corroborated by the analyses of two microsamples from the bleached areas and ascertained by accelerated ageing experiments on encaustic models.
Hydrodynamic Model for Density Gradients Instability in Hall Plasmas Thrusters
NASA Astrophysics Data System (ADS)
Singh, Sukhmander
2017-10-01
There is an increasing interest for a correct understanding of purely growing electromagnetic and electrostatic instabilities driven by a plasma gradient in a Hall thruster devices. In Hall thrusters, which are typically operated with xenon, the thrust is provided by the acceleration of ions in the plasma generated in a discharge chamber. The goal of this paper is to study the instabilities due to gradients of plasma density and conditions for the growth rate and real part of the frequency for Hall thruster plasmas. Inhomogeneous plasmas prone a wide class of eigen modes induced by inhomogeneities of plasma density and called drift waves and instabilities. The growth rate of the instability has a dependences on the magnetic field, plasma density, ion temperature and wave numbers and initial drift velocities of the plasma species.
Qi, Yuchen; Zhang, Xin-Jun; Renier, Nicolas; Wu, Zhuhao; Atkin, Talia; Sun, Ziyi; Ozair, M. Zeeshan; Tchieu, Jason; Zimmer, Bastian; Fattahi, Faranak; Ganat, Yosif; Azevedo, Ricardo; Zeltner, Nadja; Brivanlou, Ali H.; Karayiorgou, Maria; Gogos, Joseph; Tomishima, Mark; Tessier-Lavigne, Marc; Shi, Song-Hai; Studer, Lorenz
2017-01-01
Considerable progress has been made in converting human pluripotent stem cells (hPSCs) into functional neurons. However, the protracted timing of human neuron specification and functional maturation remains a key challenge that hampers the routine application of hPSC-derived lineages in disease modeling and regenerative medicine. Using a combinatorial small-molecule screen, we previously identified conditions for the rapid differentiation of hPSCs into peripheral sensory neurons. Here we generalize the approach to central nervous system (CNS) fates by developing a small-molecule approach for accelerated induction of early-born cortical neurons. Combinatorial application of 6 pathway inhibitors induces post-mitotic cortical neurons with functional electrophysiological properties by day 16 of differentiation, in the absence of glial cell co-culture. The resulting neurons, transplanted at 8 days of differentiation into the postnatal mouse cortex, are functional and establish long-distance projections, as shown using iDISCO whole brain imaging. Accelerated differentiation into cortical neuron fates should facilitate hPSC-based strategies for disease modeling and cell therapy in CNS disorders. PMID:28112759
Smout, Michael J.; Sotillo, Javier; Laha, Thewarach; Papatpremsiri, Atiroch; Rinaldi, Gabriel; Pimenta, Rafael N.; Chan, Lai Yue; Johnson, Michael S.; Turnbull, Lynne; Whitchurch, Cynthia B.; Giacomin, Paul R.; Moran, Corey S.; Golledge, Jonathan; Daly, Norelle; Sripa, Banchob; Mulvenna, Jason P.
2015-01-01
Abstract Infection with the human liver fluke Opisthorchis viverrini induces cancer of the bile ducts, cholangiocarcinoma (CCA). Injury from feeding activities of this parasite within the human biliary tree causes extensive lesions, wounds that undergo protracted cycles of healing, and re-injury over years of chronic infection. We show that O. viverrini secreted proteins accelerated wound resolution in human cholangiocytes, an outcome that was compromised following silencing of expression of the fluke-derived gene encoding the granulin-like growth factor, Ov-GRN-1. Recombinant Ov-GRN-1 induced angiogenesis and accelerated mouse wound healing. Ov-GRN-1 was internalized by human cholangiocytes and induced gene and protein expression changes associated with wound healing and cancer pathways. Given the notable but seemingly paradoxical properties of liver fluke granulin in promoting not only wound healing but also a carcinogenic microenvironment, Ov-GRN-1 likely holds marked potential as a therapeutic wound-healing agent and as a vaccine against an infection-induced cancer of major public health significance in the developing world. PMID:26485648
Production of giant mouse oocyte nucleoli and assessment of their protein content.
Fulka, Helena; Martinkova, Stanislava; Kyogoku, Hirohisa; Langerova, Alena; Fulka, Josef
2012-01-01
Compared with advanced developmental stage embryos and somatic cells, fully grown mammalian oocytes contain specific nucleolus-like structures (NPB - nucleolus precursor bodies). It is commonly accepted that they serve as a store of material(s) from which typical nucleoli are gradually formed. Whilst nucleoli from somatic cells can be collected relatively easily for further biochemical analyses, a sufficient number of oocyte nucleoli is very difficult to obtain. We have found that isolated oocytes nucleoli fuse very efficiently when contact is established between them. Thus, well visible giant nucleoli can be obtained, relatively easily handled and then used for further biochemical analyses. With the use of colloidal gold staining, we estimated that a single fully grown mouse oocyte nucleolus contains approximately 1.6 ng of protein. We do believe that this approach will accelerate further research aiming at analyzing the composition of oocyte nucleoli in more detail.
SIRT1, 2, 3 protect mouse oocytes from postovulatory aging.
Zhang, Teng; Zhou, Yang; Li, Li; Wang, Hong-Hui; Ma, Xue-Shan; Qian, Wei-Ping; Shen, Wei; Schatten, Heide; Sun, Qing-Yuan
2016-04-01
The quality of metaphase II oocytes will undergo a time-dependent deterioration following ovulation as the result of the oocyte aging process. In this study, we determined that the expression of sirtuin family members (SIRT1, 2, 3) was dramatically reduced in mouse oocytes aged in vivo or in vitro. Increased intracellular ROS was observed when SIRT1, 2, 3 activity was inhibited. Increased frequency of spindle defects and disturbed distribution of mitochondria were also observed in MII oocytes aged in vitro after treatment with Nicotinamide (NAM), indicating that inhibition of SIRT1, 2, 3 may accelerate postovulatory oocyte aging. Interestingly, when MII oocytes were exposed to caffeine, the decline of SIRT1, 2, 3 mRNA levels was delayed and the aging-associated defective phenotypes could be improved. The results suggest that the SIRT1, 2, 3 pathway may play a potential protective role against postovulatory oocyte aging by controlling ROS generation.
Zeichhardt, H; Habermehl, K O; Wetz, K
1983-04-01
The preexistence of a cytoplasmic membrane complex in HEp-2 cells, induced by poliovirus when inhibited in its reproduction by guanidine, was a prerequisite for accelerated reproduction of superinfecting Mouse Elberfeld (ME) virus. Guanidine-inhibited poliovirus induced a membrane complex of 470S that was successively modified into a faster sedimenting membrane complex (up to 700S) by superinfecting ME virus and exploited for ME virus reproduction. The modified membrane complex was the site for ME virus-specific RNA polymerization characterized by the existence of in vivo and in vitro activity of ME virus RNA polymerase associated with the modified membrane complex. Proof of membrane-bound RNA polymerase and newly synthesized ME virus RNA including replicative intermediate led to the conclusion that superinfecting ME virus exploits the 'poliovirus/guanidine'-induced complex as the site of action of its replication complex.
Murakami, Tatsuya C; Mano, Tomoyuki; Saikawa, Shu; Horiguchi, Shuhei A; Shigeta, Daichi; Baba, Kousuke; Sekiya, Hiroshi; Shimizu, Yoshihiro; Tanaka, Kenji F; Kiyonari, Hiroshi; Iino, Masamitsu; Mochizuki, Hideki; Tainaka, Kazuki; Ueda, Hiroki R
2018-04-01
A three-dimensional single-cell-resolution mammalian brain atlas will accelerate systems-level identification and analysis of cellular circuits underlying various brain functions. However, its construction requires efficient subcellular-resolution imaging throughout the entire brain. To address this challenge, we developed a fluorescent-protein-compatible, whole-organ clearing and homogeneous expansion protocol based on an aqueous chemical solution (CUBIC-X). The expanded, well-cleared brain enabled us to construct a point-based mouse brain atlas with single-cell annotation (CUBIC-Atlas). CUBIC-Atlas reflects inhomogeneous whole-brain development, revealing a significant decrease in the cerebral visual and somatosensory cortical areas during postnatal development. Probabilistic activity mapping of pharmacologically stimulated Arc-dVenus reporter mouse brains onto CUBIC-Atlas revealed the existence of distinct functional structures in the hippocampal dentate gyrus. CUBIC-Atlas is shareable by an open-source web-based viewer, providing a new platform for whole-brain cell profiling.
Sasaki, Toshiya; Oh, Ki-Bong; Matsuoka, Hideaki; Saito, Mikako
2008-03-01
Bioactive compounds that may control the specific differentiation from mouse embryonic stem (ES) cells into cardiac-like cells have been screened from herbal medicines. Among seven preparations, Panax ginseng was found to promote the differentiation into beating cells and to sustain their beating for longer than the control. Active compounds were found in its water-soluble fraction. Although they were not isolated, their candidates were surveyed in 42 compounds selected from the database of P. ginseng. Finally we found that vitamin B12 (VB12) and methionine were active. VB12 accelerated the differentiation into beating cells and made the beating rate constantly 100%. Moreover, VB12 was effective in the recovery of beating that was inhibited by spermine action. The mechanism of action of VB12 is discussed in termo of the relevance of intercellular electrical signal transduction.
NAKAMURA, Satoshi; IMAMICHI, Shoji; MASUMOTO, Kazuyoshi; ITO, Masashi; WAKITA, Akihisa; OKAMOTO, Hiroyuki; NISHIOKA, Shie; IIJIMA, Kotaro; KOBAYASHI, Kazuma; ABE, Yoshihisa; IGAKI, Hiroshi; KURITA, Kazuyoshi; NISHIO, Teiji; MASUTANI, Mitsuko; ITAMI, Jun
2017-01-01
This study aimed to evaluate the residual radioactivity in mice induced by neutron irradiation with an accelerator-based boron neutron capture therapy (BNCT) system using a solid Li target. The radionuclides and their activities were evaluated using a high-purity germanium (HP-Ge) detector. The saturated radioactivity of the irradiated mouse was estimated to assess the radiation protection needs for using the accelerator-based BNCT system. 24Na, 38Cl, 80mBr, 82Br, 56Mn, and 42K were identified, and their saturated radioactivities were (1.4 ± 0.1) × 102, (2.2 ± 0.1) × 101, (3.4 ± 0.4) × 102, 2.8 ± 0.1, 8.0 ± 0.1, and (3.8 ± 0.1) × 101 Bq/g/mA, respectively. The 24Na activation rate at a given neutron fluence was found to be consistent with the value reported from nuclear-reactor-based BNCT experiments. The induced activity of each nuclide can be estimated by entering the saturated activity of each nuclide, sample mass, irradiation time, and proton current into the derived activation equation in our accelerator-based BNCT system. PMID:29225308
Nakamura, Satoshi; Imamichi, Shoji; Masumoto, Kazuyoshi; Ito, Masashi; Wakita, Akihisa; Okamoto, Hiroyuki; Nishioka, Shie; Iijima, Kotaro; Kobayashi, Kazuma; Abe, Yoshihisa; Igaki, Hiroshi; Kurita, Kazuyoshi; Nishio, Teiji; Masutani, Mitsuko; Itami, Jun
2017-01-01
This study aimed to evaluate the residual radioactivity in mice induced by neutron irradiation with an accelerator-based boron neutron capture therapy (BNCT) system using a solid Li target. The radionuclides and their activities were evaluated using a high-purity germanium (HP-Ge) detector. The saturated radioactivity of the irradiated mouse was estimated to assess the radiation protection needs for using the accelerator-based BNCT system. 24 Na, 38 Cl, 80m Br, 82 Br, 56 Mn, and 42 K were identified, and their saturated radioactivities were (1.4 ± 0.1) × 10 2 , (2.2 ± 0.1) × 10 1 , (3.4 ± 0.4) × 10 2 , 2.8 ± 0.1, 8.0 ± 0.1, and (3.8 ± 0.1) × 10 1 Bq/g/mA, respectively. The 24 Na activation rate at a given neutron fluence was found to be consistent with the value reported from nuclear-reactor-based BNCT experiments. The induced activity of each nuclide can be estimated by entering the saturated activity of each nuclide, sample mass, irradiation time, and proton current into the derived activation equation in our accelerator-based BNCT system.
Rioux, James A; Beyea, Steven D; Bowen, Chris V
2017-02-01
Purely phase-encoded techniques such as single point imaging (SPI) are generally unsuitable for in vivo imaging due to lengthy acquisition times. Reconstruction of highly undersampled data using compressed sensing allows SPI data to be quickly obtained from animal models, enabling applications in preclinical cellular and molecular imaging. TurboSPI is a multi-echo single point technique that acquires hundreds of images with microsecond spacing, enabling high temporal resolution relaxometry of large-R 2 * systems such as iron-loaded cells. TurboSPI acquisitions can be pseudo-randomly undersampled in all three dimensions to increase artifact incoherence, and can provide prior information to improve reconstruction. We evaluated the performance of CS-TurboSPI in phantoms, a rat ex vivo, and a mouse in vivo. An algorithm for iterative reconstruction of TurboSPI relaxometry time courses does not affect image quality or R 2 * mapping in vitro at acceleration factors up to 10. Imaging ex vivo is possible at similar acceleration factors, and in vivo imaging is demonstrated at an acceleration factor of 8, such that acquisition time is under 1 h. Accelerated TurboSPI enables preclinical R 2 * mapping without loss of data quality, and may show increased specificity to iron oxide compared to other sequences.
Mouse Models of Human T Lymphotropic Virus Type-1–Associated Adult T-Cell Leukemia/Lymphoma
Zimmerman, B.; Niewiesk, S.; Lairmore, M. D.
2011-01-01
Human T-lymphotropic virus type-1 (HTLV-1), the first human retrovirus discovered, is the causative agent of adult T-cell leukemia/lymphoma (ATL) and a number of lymphocyte-mediated inflammatory conditions including HTLV-1–associated myelopathy/tropical spastic paraparesis. Development of animal models to study the pathogenesis of HTLV-1–associated diseases has been problematic. Mechanisms of early infection and cell-to-cell transmission can be studied in rabbits and nonhuman primates, but lesion development and reagents are limited in these species. The mouse provides a cost-effective, highly reproducible model in which to study factors related to lymphoma development and the preclinical efficacy of potential therapies against ATL. The ability to manipulate transgenic mice has provided important insight into viral genes responsible for lymphocyte transformation. Expansion of various strains of immunodeficient mice has accelerated the testing of drugs and targeted therapy against ATL. This review compares various mouse models to illustrate recent advances in the understanding of HTLV-1–associated ATL development and how improvements in these models are critical to the future development of targeted therapies against this aggressive T-cell lymphoma. PMID:20442421
Lallemand-Breitenbach, Valérie; Guillemin, Marie-Claude; Janin, Anne; Daniel, Marie-Thérèse; Degos, Laurent; Kogan, Scott C.; Michael Bishop, J.; de Thé, Hugues
1999-01-01
In acute promyelocytic leukemia (APL) patients, retinoic acid (RA) triggers differentiation while arsenic trioxide (arsenic) induces both a partial differentiation and apoptosis. Although their mechanisms of action are believed to be distinct, these two drugs both induce the catabolism of the oncogenic promyelocytic leukemia (PML)/RARα fusion protein. While APL cell lines resistant to one agent are sensitive to the other, the benefit of combining RA and arsenic in cell culture is controversial, and thus far, no data are available in patients. Using syngenic grafts of leukemic blasts from PML/RARα transgenic mice as a model for APL, we demonstrate that arsenic induces apoptosis and modest differentiation, and prolongs mouse survival. Furthermore, combining arsenic with RA accelerates tumor regression through enhanced differentiation and apoptosis. Although RA or arsenic alone only prolongs survival two- to threefold, associating the two drugs leads to tumor clearance after a 9-mo relapse-free period. These studies establishing RA/arsenic synergy in vivo prompt the use of combined arsenic/RA treatments in APL patients and exemplify how mouse models of human leukemia can be used to design or optimize therapies. PMID:10190895
Function and regulation of AUTS2, a gene implicated in autism and human evolution.
Oksenberg, Nir; Stevison, Laurie; Wall, Jeffrey D; Ahituv, Nadav
2013-01-01
Nucleotide changes in the AUTS2 locus, some of which affect only noncoding regions, are associated with autism and other neurological disorders, including attention deficit hyperactivity disorder, epilepsy, dyslexia, motor delay, language delay, visual impairment, microcephaly, and alcohol consumption. In addition, AUTS2 contains the most significantly accelerated genomic region differentiating humans from Neanderthals, which is primarily composed of noncoding variants. However, the function and regulation of this gene remain largely unknown. To characterize auts2 function, we knocked it down in zebrafish, leading to a smaller head size, neuronal reduction, and decreased mobility. To characterize AUTS2 regulatory elements, we tested sequences for enhancer activity in zebrafish and mice. We identified 23 functional zebrafish enhancers, 10 of which were active in the brain. Our mouse enhancer assays characterized three mouse brain enhancers that overlap an ASD-associated deletion and four mouse enhancers that reside in regions implicated in human evolution, two of which are active in the brain. Combined, our results show that AUTS2 is important for neurodevelopment and expose candidate enhancer sequences in which nucleotide variation could lead to neurological disease and human-specific traits.
Boredom proneness: its relationship to psychological- and physical-health symptoms.
Sommers, J; Vodanovich, S J
2000-01-01
The relationship between boredom proneness and health-symptom reporting was examined. Undergraduate students (N = 200) completed the Boredom Proneness Scale and the Hopkins Symptom Checklist. A multiple analysis of covariance indicated that individuals with high boredom-proneness total scores reported significantly higher ratings on all five subscales of the Hopkins Symptom Checklist (Obsessive-Compulsive, Somatization, Anxiety, Interpersonal Sensitivity, and Depression). The results suggest that boredom proneness may be an important element to consider when assessing symptom reporting. Implications for determining the effects of boredom proneness on psychological- and physical-health symptoms. as well as the application in clinical settings, are discussed.
Sznycer, Daniel; Takemura, Kosuke; Delton, Andrew W; Sato, Kosuke; Robertson, Theresa; Cosmides, Leda; Tooby, John
2012-06-29
People vary in how easily they feel ashamed, that is, in their shame proneness. According to the information threat theory of shame, variation in shame proneness should, in part, be regulated by features of a person's social ecology. On this view, shame is an emotion program that evolved to mitigate the likelihood or costs of reputation-damaging information spreading to others. In social environments where there are fewer possibilities to form new relationships (i.e., low relational mobility), there are higher costs to damaging or losing existing ones. Therefore, shame proneness toward current relationship partners should increase as perceived relational mobility decreases. In contrast, individuals with whom one has little or no relationship history are easy to replace, and so shame-proneness towards them should not be modulated by relational mobility. We tested these predictions cross-culturally by measuring relational mobility and shame proneness towards friends and strangers in Japan, the United States, and the United Kingdom. Japanese subjects were more shame-prone than their British and American counterparts. Critically, lower relational mobility was associated with greater shame proneness towards friends (but not strangers), and this relationship partially mediated the cultural differences in shame proneness. Shame proneness appears tailored to respond to relevant features of one's social ecology.
Zhang, Chun-Lei; Aime, Mattia; Laheranne, Emilie; Houbaert, Xander; El Oussini, Hajer; Martin, Christelle; Lepleux, Marilyn; Normand, Elisabeth; Chelly, Jamel; Herzog, Etienne; Billuart, Pierre; Humeau, Yann
2017-11-15
Classical and systems genetics have identified wide networks of genes associated with cognitive and neurodevelopmental diseases. In parallel to deciphering the role of each of these genes in neuronal or synaptic function, evaluating the response of neuronal and molecular networks to gene loss of function could reveal some pathophysiological mechanisms potentially accessible to nongenetic therapies. Loss of function of the Rho-GAP oligophrenin-1 is associated with cognitive impairments in both human and mouse. Upregulation of both PKA and ROCK has been reported in Ophn1 -/ y mice, but it remains unclear whether kinase hyperactivity contributes to the behavioral phenotypes. In this study, we thoroughly characterized a prominent perseveration phenotype displayed by Ophn1 -deficient mice using a Y-maze spatial working memory (SWM) test. We report that Ophn1 deficiency in the mouse generated severe cognitive impairments, characterized by both a high occurrence of perseverative behaviors and a lack of deliberation during the SWM test. In vivo and in vitro pharmacological experiments suggest that PKA dysregulation in the mPFC underlies cognitive dysfunction in Ophn1 -deficient mice, as assessed using a delayed spatial alternation task results. Functionally, mPFC neuronal networks appeared to be affected in a PKA-dependent manner, whereas hippocampal-PFC projections involved in SWM were not affected in Ophn1 -/y mice. Thus, we propose that discrete gene mutations in intellectual disability might generate "secondary" pathophysiological mechanisms, which are prone to become pharmacological targets for curative strategies in adult patients. SIGNIFICANCE STATEMENT Here we report that Ophn1 deficiency generates severe impairments in performance at spatial working memory tests, characterized by a high occurrence of perseverative behaviors and a lack of decision making. This cognitive deficit is consecutive to PKA deregulation in the mPFC that prevents Ophn1 KO mice to exploit a correctly acquired rule. Functionally, mPFC neuronal networks appear to be affected in a PKA-dependent manner, whereas behaviorally important hippocampal projections were preserved by the mutation. Thus, we propose that discrete gene mutations in intellectual disability can generate "secondary" pathophysiological mechanisms prone to become pharmacological targets for curative strategies in adults. Copyright © 2017 the authors 0270-6474/17/3711114-13$15.00/0.
CaMKII effects on inotropic but not lusitropic force frequency responses require phospholamban
Wu, Yiming; Luczak, Elizabeth D; Lee, Eun-Jeong; Hidalgo, Carlos; Yang, Jinying; Gao, Zhan; Li, Jingdong; Wehrens, Xander; Granzier, Henk; Anderson, Mark E
2014-01-01
Increasing heart rate enhances cardiac contractility (force frequency relationship, FFR) and accelerates cardiac relaxation (frequency-dependent acceleration of relaxation, FDAR). The positive FFR together with FDAR promotes rapid filling and ejection of blood from the left ventricle (LV) at higher heart rates. Recent studies indicate that the multifunctional Ca2+/calmodulin-dependent protein kinase II (CaMKII) is involved in regulating FFR and FDAR. We used isolated perfused mouse hearts to study the mechanisms of FFR and FDAR in different genetic models, including transgenic myocardial CaMKII inhibition (AC3-I) and phosphalamban knockout (PLN−/−). When the rate was increased from 360 beats/min to 630 beats/min in wild type mouse hearts, the LV developed pressure (LVDP) and the maximum rate of increase in pressure (dP/dt max) increased by 37.6 ± 4.7% and 77.0 ± 8.1%, respectively. However, hearts from AC3-I littermates showed no increase of LVDP and a relatively modest (20.4 ± 3.9 %) increase in dP/dt max. PLN−/− hearts had a negative FFR, and myocardial AC3-I expression did not change the FFR in PLN−/− mice. PLN−/− mouse hearts did not exhibit FDAR, while PLN−/−mice with myocardial AC3-I expression showed further frequency dependent reductions in cardiac relaxation, suggesting CaMKII targets in addition to PLN were critical to myocardial relaxation. We incubated a constitutively active form of CaMKII with chemically-skinned myocardium and found that several myofilament proteins were phosphorylated by CaMKII. However, CaMKII did not affect myofilament calcium sensitivity. Our study shows that CaMKII plays an important role in modulating FFR and FDAR in murine hearts and suggest that PLN is a critical target for CaMKII effects on FFR, while CaMKII effects on FDAR partially require PLN-alternative targets. PMID:22796260
Cheng, Yuyan; Pardo, Marta; de Souza Armini, Rubia; Martinez, Ana; Mouhsine, Hadley; Zagury, Jean-Francois; Jope, Richard S.; Beurel, Eleonore
2016-01-01
Most psychiatric and neurological diseases are exacerbated by stress. Because this may partially result from stress-induced inflammation, we examined factors involved in this stress response. After a paradigm of inescapable foot shock stress that causes learned helplessness depression-like behavior, eighteen cytokines and chemokines increased in mouse hippocampus, peaking 6 to 12 hr after stress. A 24 hr prior pre-conditioning stress accelerated the rate of stress-induced hippocampal cytokine and chemokine increases, with most reaching peak levels after 1 to 3 hr, often without altering the maximal levels. Toll-like receptor 4 (TLR4) was involved in this response because most stress-induced hippocampal cytokines and chemokines were attenuated in TLR4 knockout mice. Stress activated glycogen synthase kinase-3 (GSK3) in wild-type mouse hippocampus, but not in TLR4 knockout mice. Administration of the antidepressant fluoxetine or the GSK3 inhibitor TDZD-8 reduced the stress-induced increases of most hippocampal cytokines and chemokines. Stress increased hippocampal levels of the danger-associated molecular pattern (DAMP) protein high mobility group box 1 (HMGB1), activated the inflammatory transcription factor NF-κB, and the NLRP3 inflammasome. Knockdown of HMGB1 blocked the acceleration of cytokine and chemokine increases in the hippocampus caused by two successive stresses. Fluoxetine treatment blocked stress-induced up-regulation of HMGB1 and subsequent NF-κB activation, whereas TDZD-8 administration attenuated NF-κB activation downstream of HMGB1. To test if stress-induced cytokines and chemokines contribute to depression-like behavior, the learned helplessness model was assessed. Antagonism of TNFα modestly reduced susceptibility to learned helplessness induction, whereas TLR4 knockout mice were resistant to learned helplessness. Thus, stress-induces a broad inflammatory response in mouse hippocampus that involves TLR4, GSK3, and downstream inflammatory signaling, and these stress responses contribute to susceptibility to depression-like behavior in mice. PMID:26772151
Nakamura, Emi; Kinoshita, Hiroyuki; Feng, Guo-Gang; Hayashi, Hisaki; Satomoto, Maiko; Sato, Motohiko; Fujiwara, Yoshihiro
2016-01-01
Sevoflurane exposure impairs the long-term memory in neonates. Whether the exposure to animals in adolescence affects the memory, however, has been unclear. A small hydrolase enzyme of guanosine triphosphate (GTPase) rac1 plays a role in the F-actin dynamics related to the synaptic plasticity, as well as superoxide production via reduced nicotinamide adenine dinucleotide phosphate (NADPH) oxidase activation. The current study was designed to examine whether sevoflurane exposure to mice in early adolescence modifies the long-term learning ability concomitantly with the changes in F-actin constitution as well as superoxide production in the hippocampus according to the levels of rac1 protein expression. Four-week-old mice were subjected to the evaluation of long-term learning ability for three days. On day one, each mouse was allowed to enter a dark chamber for five min to acclimatization. On day two, the procedure was repeated with the addition of an electric shock as soon as a mouse entered the dark chamber. All mice subsequently inhaled 2 L/min air with (Sevoflurane group) and without (Control group) 2.5% sevoflurane for three hours. On day three, each mouse was placed on the platform and retention time, which is the latency to enter the dark chamber, was examined. The brain removed after the behavior test, was used for analyses of immunofluorescence, Western immunoblotting and intracellular levels of superoxide. Sevoflurane exposure significantly prolonged retention time, indicating the enhanced long-term memory. Sevoflurane inhalation augmented F-actin constitution coexisting with the rac1 protein overexpression in the hippocampus whereas it did not alter the levels of superoxide. Sevoflurane exposure to 4-week-old mice accelerates the long-term memory concomitantly with the enhanced F-actin constitution coexisting with the small GTPase rac1 overexpression in the hippocampus. These results suggest that sevoflurane inhalation may amplify long-term memory consolidation via the increased cytoskeleton constitution in the hippocampus of animals in early adolescence.
Cheng, Yuyan; Pardo, Marta; Armini, Rubia de Souza; Martinez, Ana; Mouhsine, Hadley; Zagury, Jean-Francois; Jope, Richard S; Beurel, Eleonore
2016-03-01
Most psychiatric and neurological diseases are exacerbated by stress. Because this may partially result from stress-induced inflammation, we examined factors involved in this stress response. After a paradigm of inescapable foot shock stress that causes learned helplessness depression-like behavior, eighteen cytokines and chemokines increased in mouse hippocampus, peaking 6-12h after stress. A 24h prior pre-conditioning stress accelerated the rate of stress-induced hippocampal cytokine and chemokine increases, with most reaching peak levels after 1-3h, often without altering the maximal levels. Toll-like receptor 4 (TLR4) was involved in this response because most stress-induced hippocampal cytokines and chemokines were attenuated in TLR4 knockout mice. Stress activated glycogen synthase kinase-3 (GSK3) in wild-type mouse hippocampus, but not in TLR4 knockout mice. Administration of the antidepressant fluoxetine or the GSK3 inhibitor TDZD-8 reduced the stress-induced increases of most hippocampal cytokines and chemokines. Stress increased hippocampal levels of the danger-associated molecular pattern (DAMP) protein high mobility group box 1 (HMGB1), activated the inflammatory transcription factor NF-κB, and the NLRP3 inflammasome. Knockdown of HMGB1 blocked the acceleration of cytokine and chemokine increases in the hippocampus caused by two successive stresses. Fluoxetine treatment blocked stress-induced up-regulation of HMGB1 and subsequent NF-κB activation, whereas TDZD-8 administration attenuated NF-κB activation downstream of HMGB1. To test if stress-induced cytokines and chemokines contribute to depression-like behavior, the learned helplessness model was assessed. Antagonism of TNFα modestly reduced susceptibility to learned helplessness induction, whereas TLR4 knockout mice were resistant to learned helplessness. Thus, stress-induces a broad inflammatory response in mouse hippocampus that involves TLR4, GSK3, and downstream inflammatory signaling, and these stress responses contribute to susceptibility to depression-like behavior in mice. Copyright © 2016 Elsevier Inc. All rights reserved.
Vallerie, Sara N; Kramer, Farah; Barnhart, Shelley; Kanter, Jenny E; Breyer, Richard M; Andreasson, Katrin I; Bornfeldt, Karin E
2016-01-01
Type 1 diabetes mellitus (T1DM) is associated with cardiovascular complications induced by atherosclerosis. Prostaglandin E2 (PGE2) is often raised in states of inflammation, including diabetes, and regulates inflammatory processes. In myeloid cells, a key cell type in atherosclerosis, PGE2 acts predominately through its Prostaglandin E Receptor 4 (EP4; Ptger4) to modulate inflammation. The effect of PGE2-mediated EP4 signaling specifically in myeloid cells on atherosclerosis in the presence and absence of diabetes is unknown. Because diabetes promotes atherosclerosis through increased arterial myeloid cell accumulation, we generated a myeloid cell-targeted EP4-deficient mouse model (EP4M-/-) of T1DM-accelerated atherogenesis to investigate the relationship between myeloid cell EP4, inflammatory phenotypes of myeloid cells, and atherogenesis. Diabetic mice exhibited elevated plasma PGE metabolite levels and elevated Ptger4 mRNA in macrophages, as compared with non-diabetic littermates. PGE2 increased Il6, Il1b, Il23 and Ccr7 mRNA while reducing Tnfa mRNA through EP4 in isolated myeloid cells. Consistently, the stimulatory effect of diabetes on peritoneal macrophage Il6 was mediated by PGE2-EP4, while PGE2-EP4 suppressed the effect of diabetes on Tnfa in these cells. In addition, diabetes exerted effects independent of myeloid cell EP4, including a reduction in macrophage Ccr7 levels and increased early atherogenesis characterized by relative lesional macrophage accumulation. These studies suggest that this mouse model of T1DM is associated with increased myeloid cell PGE2-EP4 signaling, which is required for the stimulatory effect of diabetes on IL-6, markedly blunts the effect of diabetes on TNF-α and does not modulate diabetes-accelerated atherogenesis.
Vallerie, Sara N.; Kramer, Farah; Barnhart, Shelley; Kanter, Jenny E.; Breyer, Richard M.; Andreasson, Katrin I.; Bornfeldt, Karin E.
2016-01-01
Type 1 diabetes mellitus (T1DM) is associated with cardiovascular complications induced by atherosclerosis. Prostaglandin E2 (PGE2) is often raised in states of inflammation, including diabetes, and regulates inflammatory processes. In myeloid cells, a key cell type in atherosclerosis, PGE2 acts predominately through its Prostaglandin E Receptor 4 (EP4; Ptger4) to modulate inflammation. The effect of PGE2-mediated EP4 signaling specifically in myeloid cells on atherosclerosis in the presence and absence of diabetes is unknown. Because diabetes promotes atherosclerosis through increased arterial myeloid cell accumulation, we generated a myeloid cell-targeted EP4-deficient mouse model (EP4M-/-) of T1DM-accelerated atherogenesis to investigate the relationship between myeloid cell EP4, inflammatory phenotypes of myeloid cells, and atherogenesis. Diabetic mice exhibited elevated plasma PGE metabolite levels and elevated Ptger4 mRNA in macrophages, as compared with non-diabetic littermates. PGE2 increased Il6, Il1b, Il23 and Ccr7 mRNA while reducing Tnfa mRNA through EP4 in isolated myeloid cells. Consistently, the stimulatory effect of diabetes on peritoneal macrophage Il6 was mediated by PGE2-EP4, while PGE2-EP4 suppressed the effect of diabetes on Tnfa in these cells. In addition, diabetes exerted effects independent of myeloid cell EP4, including a reduction in macrophage Ccr7 levels and increased early atherogenesis characterized by relative lesional macrophage accumulation. These studies suggest that this mouse model of T1DM is associated with increased myeloid cell PGE2-EP4 signaling, which is required for the stimulatory effect of diabetes on IL-6, markedly blunts the effect of diabetes on TNF-α and does not modulate diabetes-accelerated atherogenesis. PMID:27351842
Masuda, Yoshiki; Tatsumi, Hiroomi; Imaizumi, Hitoshi; Gotoh, Kyoko; Yoshida, Shinichiro; Chihara, Shinya; Takahashi, Kanako; Yamakage, Michiaki
2014-03-01
Prone ventilation is an effective method for improving oxygenation in patients with acute respiratory failure. However, in extracorporeal circulation, there is a risk of cannula-related complications when changing the position. In this study, we investigated cannula-related complications when changing position for prone ventilation and the effect of prone ventilation on impaired oxygenation in patients who underwent extracorporeal membrane oxygenation (ECMO). The study subjects were patients who underwent prone ventilation during ECMO in the period from 2004 to 2011. Indication for prone ventilation was the presence of dorsal infiltration shown by lung computed tomography. Factors investigated were cannula insertion site, dislodgement or obstruction of the cannula, malfunction of vascular access and unplanned dislodgement of the catheters when changing position. Mean arterial pressure, PaO2/FiO2, PEEP level, blood flow and rotation speed of the pump were also determined before and after position change. Five patients were selected as study subjects. The mean duration of prone positioning was 15.3 ± 0.5 h. Strict management during position changes prevented cannula-related complications in the patients who underwent extracorporeal circulation. There were no significant changes in mean arterial pressure, PEEP level, blood flow and rotation speed of the pump when changing position. Low PaO2/FiO2 prior to prone ventilation was significantly increased after supine to prone and then prone to supine position. Prone positioning to improve impaired oxygenation is a safe procedure and not a contraindication in patients receiving extracorporeal circulation.
"Jumping to conclusions" in delusion-prone participants: an experimental economics approach.
van der Leer, Leslie; McKay, Ryan
2014-01-01
That delusional and delusion-prone individuals "jump to conclusions" on probabilistic reasoning tasks is a key finding in cognitive neuropsychiatry. Here we focused on a less frequently investigated aspect of "jumping to conclusions" (JTC): certainty judgments. We incorporated rigorous procedures from experimental economics to eliminate potential confounds of miscomprehension and motivation and systematically investigated the effect of incentives on task performance. Low- and high-delusion-prone participants (n = 109) completed a series of computerised trials; on each trial, they were shown a black or a white fish, caught from one of the two lakes containing fish of both colours in complementary ratios. In the betting condition, participants were given £4 to distribute over the two lakes as they wished; in the control condition, participants simply provided an estimate of how probable each lake was. Deviations from Bayesian probabilities were investigated. Whereas high-delusion-prone participants in both the control and betting conditions underestimated the Bayesian probabilities (i.e. were conservative), low-delusion-prone participants in the control condition underestimated but those in the betting condition provided accurate estimates. In the control condition, there was a trend for high-delusion-prone participants to give higher estimates than low-delusion-prone participants, which is consistent with previous reports of "jumping to conclusions" in delusion-prone participants. However, our findings in the betting condition, where high-delusion-prone participants provided lower estimates than low-delusion-prone participants (who were accurate), are inconsistent with the jumping-to-conclusions effect in both a relative and an absolute sense. Our findings highlight the key role of task incentives and underscore the importance of comparing the responses of delusion-prone participants to an objective rational standard as well as to the responses of non-delusion-prone participants.
Dopamine synthesis in alcohol drinking-prone and -resistant mouse strains
Siciliano, Cody A.; Locke, Jason L.; Mathews, Tiffany A.; Lopez, Marcelo F.; Becker, Howard C.; Jones, Sara R.
2017-01-01
Alcoholism is a prevalent and debilitating neuropsychiatric disease, and much effort has been aimed at elucidating the neurobiological mechanisms underlying maladaptive alcohol drinking in an effort to design rational treatment strategies. In preclinical literature, the use of inbred mouse lines has allowed for the examination of ethanol effects across vulnerable and resistant phenotypes. C57BL/6J mice consistently show higher rates of ethanol drinking compared to most mouse strains. Conversely, DBA/2J mice display low rates of ethanol consumption. Given that the reinforcing and rewarding effects of ethanol are thought to be in part mediated by its actions on dopamine neurotransmission, we hypothesized that alcohol-preferring C57BL/6J and alcohol-avoiding DBA/2J mice would display basal differences in dopamine system function. By administering an L-aromatic acid decarboxylase inhibitor and measuring L-Dopa accumulation via high-performance liquid chromatography as a measure of tyrosine hydroxylase activity, we found no difference in dopamine synthesis between mouse strains in the midbrain, dorsal striatum, or ventral striatum. However, we did find that quinpirole-induced inhibition of dopamine synthesis was greater in the ventral striatum of C57BL/6J mice, suggesting increased presynaptic D2-type dopamine autoreceptor sensitivity. To determine whether dopamine synthesis or autoreceptor sensitivity was altered by a history of ethanol, we exposed C57BL/6J mice to one or two weekly cycles of chronic intermittent ethanol (CIE) exposure and withdrawal. We found that there was an attenuation of baseline dopamine synthesis in the ventral striatum after two cycles of CIE. Finally, we examined tissue content of dopamine and dopamine metabolites across recombinant inbred mice bred from a C57BL/6J × DBA/2J cross (BXD). We found that low dopaminergic activity, as indicated by high dopamine/metabolite ratios, was positively correlated with drinking. Together, these findings show differential autoreceptor effects on dopamine synthesis between C57BL/6J and DBA/2J mice, and suggest that decreased dopaminergic activity is associated with excessive drinking. PMID:27425261
Effect of human cell malignancy on activity of DNA polymerase iota.
Kazakov, A A; Grishina, E E; Tarantul, V Z; Gening, L V
2010-07-01
An increased level of mutagenesis, partially caused by imbalanced activities of error prone DNA polymerases, is a key symptom of cell malignancy. To clarify the possible role of incorrect DNA polymerase iota (Pol iota) function in increased frequency of mutations in mammalian cells, the activity of this enzyme in extracts of cells of different mouse organs and human eye (melanoma) and eyelid (basal-cell skin carcinoma) tumor cells was studied. Both Mg2+, considered as the main activator of the enzyme reaction of in vivo DNA replication, and Mn2+, that activates homogeneous Pol iota preparations in experiments in vitro more efficiently compared to all other bivalent cations, were used as cofactors of the DNA polymerase reaction in these experiments. In the presence of Mg2+, the enzyme was active only in cell extracts of mouse testicles and brain, whereas in the presence of Mn2+ the activity of Pol iota was found in all studied normal mouse organs. It was found that in cell extracts of both types of malignant tumors (basal-cell carcinoma and melanoma) Pol iota activity was observed in the presence of either Mn2+ or Mg2+. Manganese ions activated Pol iota in both cases, though to a different extent. In the presence of Mn2+ the Pol iota activity in the basal-cell carcinoma exceeded 2.5-fold that in control cells (benign tumors from the same eyelid region). In extracts of melanoma cells in the presence of either cation, the level of the enzyme activity was approximately equal to that in extracts of cells of surrounding tumor-free tissues as well as in eyes removed after traumas. The distinctive feature of tissue malignancy (in basal-cell carcinoma and in melanoma) was the change in DNA synthesis revealed as Mn2+-activated continuation of DNA synthesis after incorrect incorporation of dG opposite dT in the template by Pol iota. Among cell extracts of different normal mouse organs, only those of testicles exhibited a similar feature. This similarity can be explained by cell division blocking that occurs in all normal cells except in testicles and in malignant cells.
Boredom proneness in a psychiatric inpatient population.
Newell, Susan E; Harries, Priscilla; Ayers, Susan
2012-09-01
Boredom has been reported as a common experience for service users of acute psychiatric wards. It has been associated with negative mental and physical health. Research has yet to show what factors are associated with boredom proneness within the acute psychiatric population. (1) To investigate the distribution of boredom proneness in a population of mentally ill inpatients according to age, gender, diagnosis, Mental Health Act status and length of stay in hospital. (2) To test the hypothesis that boredom proneness is negatively correlated with autonomous activity levels. Two self-report questionnaires were used with 55 inpatients of acute psychiatric wards: the Boredom Proneness Scale (Farmer & Sundberg, 1986) and the Hospital Anxiety and Depression Scale (Zigmond & Snaith, 1983). Questions were also asked about individuals' activity engagement during their current admission. Data on age, gender, diagnosis, ethnicity, Mental Health Act status and length of stay were collected from case notes. The highest incidence of boredom proneness was in participants with depression. Those detained under the Mental Health Act appeared less boredom prone than those admitted voluntarily. Boredom proneness was not associated with age, gender or length of stay. There was an association between engagement in more autonomous activities and lower boredom proneness.
Predicting Psychotic-Like Experiences during Sensory Deprivation
Daniel, Christina; Mason, Oliver J.
2015-01-01
Aims. This study aimed to establish the contribution of hallucination proneness, anxiety, suggestibility, and fantasy proneness to psychotic-like experiences (PLEs) reported during brief sensory deprivation. Method. Twenty-four high and 22 low hallucination-prone participants reported on PLEs occurring during brief sensory deprivation and at baseline. State/trait anxiety, suggestibility, and fantasy proneness were also measured. Results. Both groups experienced a significant increase in PLEs in sensory deprivation. The high hallucination prone group reported more PLEs both at baseline and in sensory deprivation. They also scored significantly higher on measures of state/trait anxiety, suggestibility, and fantasy proneness, though these did not explain the effects of group or condition. Regression analysis found hallucination proneness to be the best predictor of the increase in PLEs, with state anxiety also being a significant predictor. Fantasy proneness and suggestibility were not significant predictors. Conclusion. This study suggests the increase in PLEs reported during sensory deprivation reflects a genuine aberration in perceptual experience, as opposed to increased tendency to make false reports due to suggestibility of fantasy proneness. The study provides further support for the use of sensory deprivation as a safe and effective nonpharmacological model of psychosis. PMID:25811027
Thomas, James A; Deaton, Rebecca A; Hastings, Nicole E; Shang, Yueting; Moehle, Christopher W; Eriksson, Ulf; Topouzis, Stavros; Wamhoff, Brian R; Blackman, Brett R; Owens, Gary K
2009-02-01
Platelet-derived growth factor (PDGF)-BB is a well-known smooth muscle (SM) cell (SMC) phenotypic modulator that signals by binding to PDGF alphaalpha-, alphabeta-, and betabeta-membrane receptors. PDGF-DD is a recently identified PDGF family member, and its role in SMC phenotypic modulation is unknown. Here we demonstrate that PDGF-DD inhibited expression of multiple SMC genes, including SM alpha-actin and SM myosin heavy chain, and upregulated expression of the potent SMC differentiation repressor gene Kruppel-like factor-4 at the mRNA and protein levels. On the basis of the results of promoter-reporter assays, changes in SMC gene expression were mediated, at least in part, at the level of transcription. Attenuation of the SMC phenotypic modulatory activity of PDGF-DD by pharmacological inhibitors of ERK phosphorylation and by a small interfering RNA to Kruppel-like factor-4 highlight the role of these two pathways in this process. PDGF-DD failed to repress SM alpha-actin and SM myosin heavy chain in mouse SMCs lacking a functional PDGF beta-receptor. Importantly, PDGF-DD expression was increased in neointimal lesions in the aortic arch region of apolipoprotein C-deficient (ApoE(-/-)) mice. Furthermore, human endothelial cells exposed to an atherosclerosis-prone flow pattern, as in vascular regions susceptible to the development of atherosclerosis, exhibited a significant increase in PDGF-DD expression. These findings demonstrate a novel activity for PDGF-DD in SMC biology and highlight the potential contribution of this molecule to SMC phenotypic modulation in the setting of disturbed blood flow.
Early life stress accelerates behavioral and neural maturation of the hippocampus in male mice.
Bath, K; Manzano-Nieves, G; Goodwill, H
2016-06-01
Early life stress (ELS) increases the risk for later cognitive and emotional dysfunction. ELS is known to truncate neural development through effects on suppressing cell birth, increasing cell death, and altering neuronal morphology, effects that have been associated with behavioral profiles indicative of precocious maturation. However, how earlier silencing of growth drives accelerated behavioral maturation has remained puzzling. Here, we test the novel hypothesis that, ELS drives a switch from growth to maturation to accelerate neural and behavioral development. To test this, we used a mouse model of ELS, fragmented maternal care, and a cross-sectional dense sampling approach focusing on hippocampus and measured effects of ELS on the ontogeny of behavioral development and biomarkers of neural maturation. Consistent with previous work, ELS was associated with an earlier developmental decline in expression of markers of cell proliferation (Ki-67) and differentiation (doublecortin). However, ELS also led to a precocious arrival of Parvalbumin-positive cells, led to an earlier switch in NMDA receptor subunit expression (marker of synaptic maturity), and was associated with an earlier rise in myelin basic protein expression (key component of the myelin sheath). In addition, in a contextual fear-conditioning task, ELS accelerated the timed developmental suppression of contextual fear. Together, these data provide support for the hypothesis that ELS serves to switch neurodevelopment from processes of growth to maturation and promotes accelerated development of some forms of emotional learning. Copyright © 2016 Elsevier Inc. All rights reserved.
Chen, Jenny Ling-Yu; Cheng, Jason Chia-Hsien; Kuo, Sung-Hsin; Chan, Hsing-Min; Huang, Yu-Sen; Chen, Yu-Hsuan
2013-01-01
Since December 2009, after breast-conserving surgery for Stage 0–I cancer of the left breast, 21 women with relatively pendulous breasts underwent computed tomography prone and supine simulations. The adjuvant radiotherapy was 50 Gy in 25 fractions to the left breast alone. Four plans—conventional wedged tangents and forward intensity-modulated radiotherapy (fIMRT) in supine and prone positions—were generated. fIMRT generated better homogeneity in both positions. Prone position centralized the breast tissue by gravity and also shortened the breast width which led to better conformity in both planning techniques. Prone fIMRT significantly reduced doses to left lung, Level I and Level II axilla. The mean cardiac doses did not differ between positions. Among the four plans, prone fIMRT produced the best target dosimetry and normal organ sparing. In subgroup analysis, patients with absolute breast depth > 7 cm in the prone position or breast depth difference > 3 cm between positions had significant cardiac sparing with prone fIMRT. Sixteen patients with significant cardiac sparing in prone position were treated using prone fIMRT and the others using supine fIMRT. All patients received a supine electron tumor bed boost of 10 Gy in 5 fractions. No patients developed Grade 2 or worse acute or late toxicities. There was no difference in the number of segments or beams, monitor units, treatment time, or positioning reproducibility between prone and supine positions. At a median follow-up time of 26.8 months, no locoregional or distant recurrence or death was noted. PMID:23504450
ERIC Educational Resources Information Center
Calamari, Elena; Pini, Mauro
2003-01-01
Study investigated the relationships between dissociative experiences, anger proneness, and attachment styles in a nonclinical sample of late adolescent females. Found a connection between anger proneness and dissociation. Insecurely attached females showed more anger proneness. Results confirm the importance of psychological intervention for…
Ka, Shuk-Man; Lin, Jung-Chen; Lin, Tsai-Jung; Liu, Feng-Cheng; Chao, Louis Kuoping; Ho, Chen-Lung; Yeh, Li-Tzu; Sytwu, Huey-Kang; Hua, Kuo-Feng; Chen, Ann
2015-11-19
Lupus nephritis (LN) is a major complication of systemic lupus erythematosus. NLRP3 inflammasome activation, reactive oxygen species (ROS) and mononuclear leukocyte infiltration in the kidney have been shown to provoke the acceleration and deterioration of LN, such as accelerated and severe LN (ASLN). Development of a novel therapeutic remedy based on these molecular events to prevent the progression of the disease is clinically warranted. Citral (3,7-dimethyl-2,6-octadienal), a major active compound in a Chinese herbal medicine Litsea cubeba, was used to test its renoprotective effects in a lipopolysaccharide (LPS)-induced mouse ASLN model by examining NLRP3 inflammasome activation, ROS and COX-2 production as well as Nrf2 activation. The analysis of mechanisms of action of Citral also involved its effects on IL-1β secretion and signaling pathways of NLRP3 inflammasome in LPS-primed peritoneal macrophages or J774A macrophages. Attenuated proteinuria, renal function impairment, and renal histopathology, the latter including intrinsic cell proliferation, cellular crescents, neutrophil influx, fibrinoid necrosis in the glomerulus, and peri-glomerular infiltration of mononuclear leukocytes as well as glomerulonephritis activity score were observed in Citral-treated ASLN mice. In addition, Citral inhibited NLRP3 inflammasome activation and levels of ROS, NAD(P)H oxidase subunit p47(phox), or COX-2, and it enhanced the activation of nuclear factor E2-related factor 2 (Nrf2). In LPS-primed macrophages, Citral reduced ATP-induced IL-1β secretion and caspase-1 activation, but did not affect LPS-induced NLRP3 protein expression. Our data show that Citral alleviates the mouse ASLN model by inhibition of the activation signal, but not the priming signal, of NLRP3 inflammasome and enhanced activation of Nrf2 antioxidant signaling.
Chen, Jianglei; Fan, Jun; Wang, Shirley; Sun, Zhongjie
2018-05-01
Senescence-accelerated mice P1 (SAMP1) is an aging model characterized by shortened lifespan and early signs of senescence. Klotho is an aging-suppressor gene. The purpose of this study is to investigate whether in vivo expression of secreted klotho ( Skl ) gene attenuates aortic valve fibrosis in SAMP1 mice. SAMP1 mice and age-matched (AKR/J) control mice were used. SAMP1 mice developed obvious fibrosis in aortic valves, namely fibrotic aortic valve disease. Serum level of Skl was decreased drastically in SAMP1 mice. Expression of MCP-1 (monocyte chemoattractant protein 1), ICAM-1 (intercellular adhesion molecule 1), F4/80, and CD68 was increased in aortic valves of SAMP1 mice, indicating inflammation. An increase in expression of α-smooth muscle actin (myofibroblast marker), transforming growth factorβ-1, and scleraxis (a transcription factor of collagen synthesis) was also found in aortic valves of SAMP1 mice, suggesting that accelerated aging is associated with myofibroblast transition and collagen gene activation. We constructed adeno-associated virus 2 carrying mouse Skl cDNA for in vivo expression of Skl. Skl gene delivery effectively increased serum Skl of SAMP1 mice to the control level. Skl gene delivery inhibited inflammation and myofibroblastic transition in aortic valves and attenuated fibrotic aortic valve disease in SAMP1 mice. It is concluded that senescence-related fibrotic aortic valve disease in SAMP1 mice is associated with a decrease in serum klotho leading to inflammation, including macrophage infiltration and transforming growth factorβ-1/scleraxis-driven myofibroblast differentiation in aortic valves. Restoration of serum Skl levels by adeno-associated virus 2 carrying mouse Skl cDNA effectively suppresses inflammation and myofibroblastic transition and attenuates aortic valve fibrosis. Skl may be a potential therapeutic target for fibrotic aortic valve disease. © 2018 American Heart Association, Inc.
Mouse Activity across Time Scales: Fractal Scenarios
Lima, G. Z. dos Santos; Lobão-Soares, B.; do Nascimento, G. C.; França, Arthur S. C.; Muratori, L.; Ribeiro, S.; Corso, G.
2014-01-01
In this work we devise a classification of mouse activity patterns based on accelerometer data using Detrended Fluctuation Analysis. We use two characteristic mouse behavioural states as benchmarks in this study: waking in free activity and slow-wave sleep (SWS). In both situations we find roughly the same pattern: for short time intervals we observe high correlation in activity - a typical 1/f complex pattern - while for large time intervals there is anti-correlation. High correlation of short intervals ( to : waking state and to : SWS) is related to highly coordinated muscle activity. In the waking state we associate high correlation both to muscle activity and to mouse stereotyped movements (grooming, waking, etc.). On the other side, the observed anti-correlation over large time scales ( to : waking state and to : SWS) during SWS appears related to a feedback autonomic response. The transition from correlated regime at short scales to an anti-correlated regime at large scales during SWS is given by the respiratory cycle interval, while during the waking state this transition occurs at the time scale corresponding to the duration of the stereotyped mouse movements. Furthermore, we find that the waking state is characterized by longer time scales than SWS and by a softer transition from correlation to anti-correlation. Moreover, this soft transition in the waking state encompass a behavioural time scale window that gives rise to a multifractal pattern. We believe that the observed multifractality in mouse activity is formed by the integration of several stereotyped movements each one with a characteristic time correlation. Finally, we compare scaling properties of body acceleration fluctuation time series during sleep and wake periods for healthy mice. Interestingly, differences between sleep and wake in the scaling exponents are comparable to previous works regarding human heartbeat. Complementarily, the nature of these sleep-wake dynamics could lead to a better understanding of neuroautonomic regulation mechanisms. PMID:25275515
Neurological soft signs in individuals with schizotypal personality features.
Chan, Raymond C K; Wang, Ya; Zhao, Qing; Yan, Chao; Xu, Ting; Gong, Qi-Yong; Manschreck, Theo C
2010-09-01
The current study attempted to examine the prevalence of neurological soft signs and their relationships with schizotypal traits in individuals with psychometrically defined schizotypal personality disorder (SPD) features. Sixty-four individuals with SPD-proneness and 51 without SPD-proneness were recruited for the present study. The soft signs subscales of the Cambridge Neurological Inventory were administered to all participants; the Schizotypal Personality Questionnaire (SPQ) was administered to SPD-proneness and non-SPD-proneness participants. The SPD-proneness participants demonstrated significantly higher prevalence of soft signs than those without SPD-proneness. SPQ subscales were significantly associated with ratings of motor coordination, sensory integration and total soft signs. These findings suggest that neurological soft signs are trait markers of schizophrenia.
Rebamipide suppresses TNF-α production and macrophage infiltration in the conjunctiva.
Tajima, Kazuki; Hattori, Takaaki; Takahashi, Hiroki; Katahira, Haruki; Narimatsu, Akitomo; Kumakura, Shigeto; Goto, Hiroshi
2017-12-18
To evaluate the anti-inflammatory effect of rebamipide during corneal epithelial wound healing using a mouse wound repair model. A 2-mm circular disc of the central cornea was demarcated in the right eye of C57BL/6 mice and the epithelium removed. Rebamipide 2% eyedrop was instilled onto the wounded eye 5 times a day (n = 26). Phosphate-buffered saline (PBS) was used in the control group (n = 26). Corneal and conjunctival IL-1β and TNF-α levels were measured at 6 h and 24 h postinjury by ELISA. The wounded area was evaluated by fluorescein staining at 24 h postinjury. Macrophage infiltration was assessed immunohistochemically, and TNF-α secretion from macrophages was examined in vitro. Conjunctival IL-1β and corneal IL-1β levels were not significantly different between PBS-treated and rebamipide-treated groups. However, conjunctival TNF-α level was significantly lower in the rebamipide-treated group compared with the PBS-treated group. Macrophage migration into the conjunctiva, but not into the cornea, was suppressed by rebamipide treatment. In addition, TNF-α secretion from cultured macrophages was suppressed by rebamipide in a concentration-dependent manner. Rebamipide treatment significantly accelerated corneal epithelial wound healing at 24 h postinjury. In a mouse corneal epithelial wound model, rebamipide suppressed TNF-α secretion and macrophage infiltration in the conjunctiva, which might have contributed to accelerated corneal epithelial wound healing in the first 24 h following injury. © 2017 American College of Veterinary Ophthalmologists.
Thiyagarajan, Saravanan; Das, Sandhya T.; Zabuawala, Tahera; Chen, Joy; Cho, Yoon-Jae; Luong, Richard; Tamayo, Pablo; Salih, Tarek; Aziz, Khaled; Adam, Stacey J.; Vicent, Silvestre; Nielsen, Carsten H.; Withofs, Nadia; Sweet-Cordero, Alejandro; Gambhir, Sanjiv S.; Rudin, Charles M.; Felsher, Dean W.
2012-01-01
KRAS mutant lung cancers are generally refractory to chemotherapy as well targeted agents. To date, the identification of drugs to therapeutically inhibit K-RAS have been unsuccessful, suggesting that other approaches are required. We demonstrate in both a novel transgenic mutant Kras lung cancer mouse model and in human lung tumors that the inhibition of Twist1 restores a senescence program inducing the loss of a neoplastic phenotype. The Twist1 gene encodes for a transcription factor that is essential during embryogenesis. Twist1 has been suggested to play an important role during tumor progression. However, there is no in vivo evidence that Twist1 plays a role in autochthonous tumorigenesis. Through two novel transgenic mouse models, we show that Twist1 cooperates with KrasG12D to markedly accelerate lung tumorigenesis by abrogating cellular senescence programs and promoting the progression from benign adenomas to adenocarcinomas. Moreover, the suppression of Twist1 to physiological levels is sufficient to cause Kras mutant lung tumors to undergo senescence and lose their neoplastic features. Finally, we analyzed more than 500 human tumors to demonstrate that TWIST1 is frequently overexpressed in primary human lung tumors. The suppression of TWIST1 in human lung cancer cells also induced cellular senescence. Hence, TWIST1 is a critical regulator of cellular senescence programs, and the suppression of TWIST1 in human tumors may be an effective example of pro-senescence therapy. PMID:22654667
Li, Yuesheng; Knapp, Joanne R; Kopchick, John J
2003-02-01
Growth hormone (GH) acts on adipose tissue by accelerating fat expenditure, preventing triglyceride accumulation, and facilitating lipid mobilization. To investigate whether GH is involved in the development and metabolism of interscapular brown adipose tissue (BAT), a site of nonshivering thermogenesis, we employed three lines of transgenic mice. Two of the lines are dwarf due to expression of a GH antagonist (GHA) or disruption of the GH receptor/binding-protein gene. A third mouse line is giant due to overexpression of a bovine GH (bGH) transgene. We have found that the body weights of those animals are proportional to their body lengths at 10 weeks of age. However, GHA dwarf mice tend to catch up with the nontransgenic (NT) littermates in body weight but not in body length at 52 weeks of age. The increase of body mass index (BMI) for GHA mice accelerates rapidly relative to controls as a function of age. We have also observed that BAT in both dwarf mouse lines but not in giant mice is enlarged in contrast to nontransgenic littermates. This enlargement occurs as a function of age. Northern analysis suggests that BAT can be a GH-responsive tissue because GHR/BP mRNAs were found there. Finally, the level of uncoupling protein-1 (UCP1) RNA was found to be higher in dwarf mice and lower in giant animals relative to controls, suggesting that GH-mediated signaling may negatively regulate UCP1 gene expression in BAT.
Ding, Jiaqi; Chen, Xiaoli; Lin, Jiaji; Zhu, Junling; Li, Zhuyi
2018-01-01
Objective To study the effects of dopamine receptor D2 (DRD2) on the adipogenesis genes in mouse primary mesencephalic neurons. Methods The lentiviral vectors which expressed specific shRNA targeting DRD2 were constructed to decrease DRD2 expression in mouse primary mesencephalic neurons. High throughput sequencing (HTS) analysis was used to investigate gene expression changes between the DRD2 knock-down group and the negative control group. Real-time quantitative PCR (qRT-PCR) and Western blot analysis were applied to verify the differently expressed genes. Fatty acids were measured by fatty acid detection kit. Results DRD2 expression was effectively down-regulated in mouse primary mesencephalic neurons by lentiviral vectors. HTS revealed adipogenesis genes were significantly up-regulated after DRD2 down-regulation, mainly including delta(14)-sterol reductase, acetyl-coenzyme A synthetase, insulin-induced gene 1 protein and especially stearoyl-coenzyme A desaturase 1 (SCD1, 4-fold upregulated). The qRT-PCR and Western blot analysis verified that SCD1 was upregulated 2.6 folds and 2 folds respectively by lentiviral DRD2-shRNA vectors. Moreover, the SCD1-related free fatty acids were significantly more increased than the negative control group. Conclusion DRD2 in primary mesencephalic neurons had a significant regulative effect on the adipogenesis genes. The up-regulation of SCD1 can accelerate the conversion of saturated fatty acids to monounsaturated fatty acids and prevent the damage of lipid toxicity to cells.
Cognitive Impairment, Neuroimaging, and Alzheimer Neuropathology in Mouse Models of Down Syndrome
Hamlett, Eric D.; Boger, Heather A.; Ledreux, Aurélie; Kelley, Christy M.; Mufson, Elliott J.; Falangola, Maria F.; Guilfoyle, David N.; Nixon, Ralph A.; Patterson, David; Duval, Nathan; Granholm, Ann-Charlotte E.
2016-01-01
Down syndrome (DS) is the most common non-lethal genetic condition that affects approximately 1 in 700 births in the United States of America. DS is characterized by complete or segmental chromosome 21 trisomy, which leads to variable intellectual disabilities, progressive memory loss, and accelerated neurodegeneration with age. During the last three decades, people with DS have experienced a doubling of life expectancy due to progress in treatment of medical comorbidities, which has allowed this population to reach the age when they develop early onset Alzheimer’s disease (AD). Individuals with DS develop cognitive and pathological hallmarks of AD in their fourth or fifth decade, and are currently lacking successful prevention or treatment options for dementia. The profound memory deficits associated with DS-related AD (DS-AD) have been associated with degeneration of several neuronal populations, but mechanisms of neurodegeneration are largely unexplored. The most successful animal model for DS is the Ts65Dn mouse, but several new models have also been developed. In the current review, we discuss recent findings and potential treatment options for the management of memory loss and AD neuropathology in DS mouse models. We also review age-related neuropathology, and recent findings from neuroimaging studies. The validation of appropriate DS mouse models that mimic neurodegeneration and memory loss in humans with DS can be valuable in the study of novel preventative and treatment interventions, and may be helpful in pinpointing gene-gene interactions as well as specific gene segments involved in neurodegeneration. PMID:26391050
Obesity genetics in mouse and human: back and forth, and back again
Yazdi, Fereshteh T.; Clee, Susanne M.
2015-01-01
Obesity is a major public health concern. This condition results from a constant and complex interplay between predisposing genes and environmental stimuli. Current attempts to manage obesity have been moderately effective and a better understanding of the etiology of obesity is required for the development of more successful and personalized prevention and treatment options. To that effect, mouse models have been an essential tool in expanding our understanding of obesity, due to the availability of their complete genome sequence, genetically identified and defined strains, various tools for genetic manipulation and the accessibility of target tissues for obesity that are not easily attainable from humans. Our knowledge of monogenic obesity in humans greatly benefited from the mouse obesity genetics field. Genes underlying highly penetrant forms of monogenic obesity are part of the leptin-melanocortin pathway in the hypothalamus. Recently, hypothesis-generating genome-wide association studies for polygenic obesity traits in humans have led to the identification of 119 common gene variants with modest effect, most of them having an unknown function. These discoveries have led to novel animal models and have illuminated new biologic pathways. Integrated mouse-human genetic approaches have firmly established new obesity candidate genes. Innovative strategies recently developed by scientists are described in this review to accelerate the identification of causal genes and deepen our understanding of obesity etiology. An exhaustive dissection of the molecular roots of obesity may ultimately help to tackle the growing obesity epidemic worldwide. PMID:25825681
Vocational interests and career indecision among psychosis-prone college students.
Poreh, A M; Schullen, C
1998-10-01
This study investigated the relationship between scores on scales that purport to measure psychosis-proneness and scores on vocational interests, identity, and differentiation scales in a sample of 233 college students who completed the Perceptual Aberration and Magical Ideation scales, the Strong Campbell Interest Inventory, and the Career Decision Scale. The present findings are consistent with prior work indicating a sex-related association of scores on measures of psychosis-proneness and vocational interests. A positive correlation between scores on vocational indecision and measures of psychosis-proneness was also found, suggesting that both men and women who score high on psychosis-proneness find it difficult to formulate long-term career goals. Finally, there was no significant correlation between scores on measures of psychosis-proneness and Holland's Vocational Differentiation Index. Present results are discussed in light of previously reported sex differences among psychosis-prone adults and diagnosed schizophrenics. The implications of the findings for vocational counselors are also addressed.
Current Suicide Proneness and Past Suicidal Behavior in Adjudicated Adolescents
ERIC Educational Resources Information Center
Langhinrichsen-Rohling, Jennifer; Lamis, Dorian A.
2008-01-01
Youth recently assigned to probation (n = 233) were assessed for current suicide proneness, depression, and hopelessness, as well as for recent suicide ideation, previous suicide ideation, or suicide attempt(s). The Life Attitudes Schedule-Short Form (LAS-SF) was used to assess suicide proneness. As per the LAS-SF, suicide proneness was defined…
Lamis, Dorian A.; Malone, Patrick S.; Langhinrichsen-Rohling, Jennifer; Ellis, Thomas E.
2009-01-01
This study examined the relationships among three risk factors – body investment, depression, and alcohol use – and suicide proneness as measured by the Life Attitudes Schedule – Short Form (LAS-SF) in college students (n = 318). Path analysis was used to construct a causal model of suicide proneness. The Body Investment Scale (BIS) subscales were assumed to be causally prior to depression, which was in turn modeled as occurring prior to alcohol use, which was in turn modeled as prior to suicide proneness. Results revealed that, as expected suicide proneness was positively predicted by alcohol use, alcohol use was positively predicted by depression, and depression was negatively predicted by the body image component of the BIS. Additionally, the body image-suicide proneness link was significantly mediated by depression and its direct effect on suicide proneness as well as by the two-mediator path of body image on depression on drinking on suicide proneness. Implications are offered for the improved identification and treatment of young adults at risk for suicidal and health-diminishing behaviors. PMID:20573605
Association between sleep position and early motor development.
Majnemer, Annette; Barr, Ronald G
2006-11-01
To compare motor performance in infants sleeping in prone versus supine positions. Healthy 4-month-olds (supine: n = 71, prone: n = 12) and 6-month olds (supine: n = 50, prone: n = 22) were evaluated with the Alberta Infant Motor Scale (AIMS) and Peabody Developmental Motor Scale (PDMS), and parents completed a positioning diary. Infants were reassessed at 15 months. At 4 months, motor scores were lower in the supine group and were less likely to achieve prone extension (P < .05). At 6 months, there were wide discrepancies on the AIMS (supine: 44.5 +/- 21.6, prone: 60.0 +/- 18.8, P = .005) and the gross motor PDMS (supine: 85.7 +/- 7.6, prone: 90.2 +/- 9.5, P = .03). Motor delays were documented in 22% of babies sleeping supine. Prone sleep-positioned infants were more likely to sit and roll. Daily exposure to awake prone positioning was predictive of motor performance in infants sleeping supine. At 15 months, sleep position continued to predict motor performance. Infants sleeping supine may exhibit early motor lags, associated with less time in prone while awake. This has implications for accurate interpretation of assessment of infants at risk and prevention of inappropriate referrals. Rate of infant motor development appears influenced by extrinsic factors such as positioning practices.
Beyond prone position in percutaneous nephrolithotomy: a comprehensive review.
de la Rosette, Jean J M C H; Tsakiris, Peter; Ferrandino, Michael N; Elsakka, Ahmed M; Rioja, Jorge; Preminger, Glenn M
2008-12-01
Percutaneous nephrolithotomy (PNL) is traditionally performed with the patient in the prone position. To assess the efficacy and safety of the prone and supine positions, particularly in obese patients and in those with staghorn calculi. A Medline search was conducted for articles published during the last 10 yr related to PNL in the prone and supine positions. This search revealed 9 published studies for supine and 25 for prone PNL. None of the supine PNL studies reported visceral injuries, while transfusion rates were 0.0-9.4% and stone-free rates were 69.6-95.0%. One study of supine PNL evaluated a significant proportion of obese patients. Prone PNL studies in obese patients report transfusion rates of 3.2-8.8% and stone-free rates of 79.0-89.2%. In the only randomized study, excluding obese patients and staghorn calculi, operative time favors the supine position. A nonrandomized comparative study demonstrated similar complication rates with insignificant improvement in treatment success for supine PNL; however, when comparing series with similar proportions of staghorn calculi cases, there are slightly improved outcomes for prone PNL. Moreover, comparison of weighted means favors prone PNL. For obese patients and staghorn calculi, prone PNL appears to be associated with decreased operative times with similar bleeding rates and slightly better stone-free rates than supine PNL.
Delusion proneness and emotion appraisal in individuals with high psychosis vulnerability.
Szily, Erika; Kéri, Szabolcs
2013-01-01
Evidence suggests that emotional processes play an important role in the development of delusions. The aim of the present study was to investigate emotion appraisal in individuals with high and low psychosis proneness. We compared 30 individuals who experienced a transient psychotic episode followed by a complete remission with 30 healthy control volunteers. The participants received the Peters et al. Delusion Inventory (PDI) and the Scherer's Emotion Appraisal Questionnaire. We also assessed the IQ and the severity of depressive and anxiety symptoms. Results revealed that individuals with high psychosis proneness displayed increased PDI scores and more pronounced anxiety compared with individuals with low psychosis proneness. There was a specific pattern of emotion appraisal in individuals with high psychosis proneness. In the case of fear, they achieved higher scores for external causality and immorality, and lower scores for coping ability and self-esteem compared with individuals with low proneness. The PDI scores were weakly related to external causality (r = 0.41) and self-esteem (r = -0.37). In the case of sadness and joy, no emotion appraisal differences were found between participants with low and high proneness. These results suggest that individuals who had a history of psychotic breakdown and therefore exhibit high psychosis proneness display an altered appraisal of fear, emphasizing external circumstances, feeling less power to cope and experience low self-esteem. Patients remitted from a transient psychotic episode still exhibit milder forms of delusion proneness. Emotion appraisal for fear is related to delusion proneness. Clinicians should pay a special attention to self-esteem and attribution biases in psychosis-prone individuals. Copyright © 2011 John Wiley & Sons, Ltd.
SU-F-T-536: Contra-Lateral Breast Study for Prone Versus Supine Patients
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marrero, M; Joseph, K; Klein, E
Purpose: There are several advantages to utilizing the prone technique for intact breast cancer patients. However, as the topography changes, accompanied by the influence of a supporting breast board and patient treatment couch, the question that arises is to whether there is a concern for contralateral breast dose for intact breast cancer patients being treated with this technique. Methods: An anthropomorphic phantom with breast mounds to duplicate intact breast cancer treatment was planned in prone and supine position. Two tangential beams were executed in the similar manner for as the radiotherapy planning system. For the prone setup, a breast densemore » foam board was used to support the phantom. A grid of 24 OSL nanodots was placed at 6cm, 4cm, and 2cm apart from the medial border for both prone and supine setups. The phantom was set up using megavoltage imaging and treated as per plan. Additional, a similar study was performed on a patient treated in prone position. Results: Overall, the contralateral breast dose was generally higher for prone setups at all locations especially when close to the medial border. The average mean dose was found to be 1.8%, 2.5% of the prescribed dose for supine respectively prone position. The average of the standard deviation is 1.04%, 1.38% for supine respectively prone position. As for patient treated in prone position average mean dose was found to be 1.165% of the prescribed dose and average of the standard deviation is 9.456%. Conclusion: There is minimal influence of scatter from the breast board. It appears that the volatility of the setup could lead to higher doses than expected from the planning system to the contralateral breast when the patient is in the prone position.« less
SR-BI selective lipid uptake: subsequent metabolism of acute phase HDL.
de Beer, Maria C; Webb, Nancy R; Whitaker, Nathan L; Wroblewski, Joanne M; Jahangiri, Anisa; van der Westhuyzen, Deneys R; de Beer, Frederick C
2009-09-01
The purpose of this study was to investigate the interaction of SAA and SR-BI in remodeling of acute phase HDL (AP HDL). We used SAA and SR-BI adenoviral vector expression models to study the interaction between these entities. SR-BI processing of mouse AP HDL generated progressively smaller discreet HDL particles with distinct apolipoprotein compositions. SR-BI actions segregated apolipoproteins with the smallest particles containing only apoA-I. Larger remnants contained apoA-I, apoA-II, and SAA. Small apoA-I only particles failed to associate with preformed HDL, whereas larger remnants readily did. The presence of SAA on SR-BI-processed HDL particles propelled apoA-I to a small lipid-poor form and accelerated apoA-I catabolism. Data indicate that after core and surface HDL lipid perturbation by SR-BI, SAA propels apoA-I to a small lipid-poor form while accelerating HDL metabolism.
SR-BI Selective Lipid Uptake: Subsequent Metabolism of Acute Phase HDL
de Beer, Maria C.; Webb, Nancy R.; Whitaker, Nathan L.; Wroblewski, Joanne M.; Jahangiri, Anisa; van der Westhuyzen, Deneys R.; de Beer, Frederick C.
2009-01-01
Objective To investigate the interaction of SAA and SR-BI in remodeling of acute phase HDL (AP HDL). Methods and Results We used SAA and SR-BI adenoviral vector expression models to study the interaction between these entities. SR-BI processing of mouse AP HDL generated progressively smaller discreet HDL particles with distinct apolipoprotein compositions. SR-BI actions segregated apolipoproteins with the smallest particles containing only apoA-I. Larger remnants contained apoA-I, apoA-II and SAA. Small apoA-I only particles failed to associate with preformed HDL whereas larger remnants readily did. The presence of SAA on SR-BI processed HDL particles propelled apoA-I to a small lipid-poor form and accelerated apoA-I catabolism. Conclusions Data indicate that after core and surface HDL lipid perturbation by SR-BI, SAA propels apoA-I to a small lipid-poor form while accelerating HDL metabolism. PMID:19304574
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lockshin, A.; Giovanella, B.C.; Vardeman, D.M.
1985-04-01
Anticancer drugs were tested on NIH-2 nude mice inoculated ip with BRO human melanoma cells, which are rapidly lethal for these hosts. Criteria for drug activity were a) increased host survival and b) an increased rate of radioactivity loss from mice bearing BRO cells prelabeled with (/sup 125/I)5-iodo-2'-deoxyuridine. Diphtheria toxin, which is selectively toxic to human cells compared to mouse cells, prolonged host survival and accelerated /sup 125/I elimination in a dose-dependent manner. Drugs that increased the rate of /sup 125/I loss compared to the rate of untreated mice also prolonged the lives of treated mice. With one exception, drugsmore » that did not accelerate /sup 125/I elimination had little or no effect on the length of survival.« less
Özdemir, Berna C; Pentcheva-Hoang, Tsvetelina; Carstens, Julienne L; Zheng, Xiaofeng; Wu, Chia-Chin; Simpson, Tyler R; Laklai, Hanane; Sugimoto, Hikaru; Kahlert, Christoph; Novitskiy, Sergey V; De Jesus-Acosta, Ana; Sharma, Padmanee; Heidari, Pedram; Mahmood, Umar; Chin, Lynda; Moses, Harold L; Weaver, Valerie M; Maitra, Anirban; Allison, James P; LeBleu, Valerie S; Kalluri, Raghu
2014-06-16
Pancreatic ductal adenocarcinoma (PDAC) is associated with marked fibrosis and stromal myofibroblasts, but their functional contribution remains unknown. Transgenic mice with the ability to delete αSMA(+) myofibroblasts in pancreatic cancer were generated. Depletion starting at either noninvasive precursor (pancreatic intraepithelial neoplasia) or the PDAC stage led to invasive, undifferentiated tumors with enhanced hypoxia, epithelial-to-mesenchymal transition, and cancer stem cells, with diminished animal survival. In PDAC patients, fewer myofibroblasts in their tumors also correlated with reduced survival. Suppressed immune surveillance with increased CD4(+)Foxp3(+) Tregs was observed in myofibroblast-depleted mouse tumors. Although myofibroblast-depleted tumors did not respond to gemcitabine, anti-CTLA4 immunotherapy reversed disease acceleration and prolonged animal survival. This study underscores the need for caution in targeting carcinoma-associated fibroblasts in PDAC. Copyright © 2014 Elsevier Inc. All rights reserved.
RTEL1 is a replisome-associated helicase that promotes telomere and genome-wide replication.
Vannier, Jean-Baptiste; Sandhu, Sumit; Petalcorin, Mark I R; Wu, Xiaoli; Nabi, Zinnatun; Ding, Hao; Boulton, Simon J
2013-10-11
Regulator of telomere length 1 (RTEL1) is an essential DNA helicase that disassembles telomere loops (T loops) and suppresses telomere fragility to maintain the integrity of chromosome ends. We established that RTEL1 also associates with the replisome through binding to proliferating cell nuclear antigen (PCNA). Mouse cells disrupted for the RTEL1-PCNA interaction (PIP mutant) exhibited accelerated senescence, replication fork instability, reduced replication fork extension rates, and increased origin usage. Although T-loop disassembly at telomeres was unaffected in the mutant cells, telomere replication was compromised, leading to fragile sites at telomeres. RTEL1-PIP mutant mice were viable, but loss of the RTEL1-PCNA interaction accelerated the onset of tumorigenesis in p53-deficient mice. We propose that RTEL1 plays a critical role in both telomere and genome-wide replication, which is crucial for genetic stability and tumor avoidance.
Diane, Abdoulaye; Vine, Donna F; Heth, C Donald; Russell, James C; Proctor, Spencer D; Pierce, W David
2013-05-01
We hypothesized that a polycystic ovary syndrome (PCOS) background associated with obese-prone genotype, coupled with preconditioning by caloric restriction, would confer a survival benefit in genetically prepubertal obese/PCOS (O/PCOS)-prone rats faced with an unpredictable challenge of food shortage. Female, juvenile JCR:LA-cp rats, O/PCOS- and lean-prone, were exposed to 1.5 h of daily meals and 22.5 h of voluntary wheel-running, a procedure that leads to activity anorexia (AA). One week before the AA challenge (AAC), O/PCOS-prone rats were freely fed (O/PCOS-FF) or pair fed (O/PCOS-FR) to lean-prone, free-feeding animals (Lean-FF). O/PCOS-FR and lean-prone, food-restricted (Lean-FR) groups were matched on relative average caloric intake. Animals were removed from protocol at 75% of initial body weight (starvation criterion) or after 14 days (survival criterion). The AAC induced weight loss in all rats, but there were significant effects of both genotype and feeding history on weight loss (lean-prone rats exhibited a higher rate of weight loss than O/PCOS-prone; P < 0.001), and rats with prior caloric restriction retained more weight than those free fed previously (90.68 ± 0.59% vs. 85.47 ± 0.46%; P < 0.001). The daily rate of running was higher in lean-prone rats compared with O/PCOS-prone. This difference in running rate correlated with differences in mean days of survival. All O/PCOS-FR rats survived at day 14. O/PCOS-FF rats survived longer (10.00 ± 0.97 days) than Lean-FR (6.17 ± 1.58 days) and Lean-FF (4.33 ± 0.42 days) rats (P < 0.05). Thus preconditioning by caloric restriction induces a substantial survival advantage, beyond genotype alone, in prepubertal O/PCOS-prone rats.
Lontchi-Yimagou, E; Nguewa, J L; Assah, F; Noubiap, J J; Boudou, P; Djahmeni, E; Balti, E V; Atogho-Tiedeu, B; Gautier, J F; Mbanya, J C; Sobngwi, E
2017-03-01
It is unclear whether ketosis-prone diabetes is a specific type or a subtype of Type 2 diabetes. We aimed to describe the clinical and metabolic features of ketosis-prone diabetes in a sub-Saharan population. We consecutively enrolled and characterized 173 people with non-autoimmune diabetes admitted for hyperglycaemic crisis at the Yaoundé Central Hospital, Cameroon. Blood samples were collected for fasting glucose, HbA 1c , lipid profile and C-peptide assays with insulin resistance and secretion estimation by homeostasis model assessment. People were classified as having Type 2 diabetes (n = 124) or ketosis-prone diabetes (n = 49). Ketosis-prone diabetes was sub-classified as new-onset ketotic phase (n = 34) or non-ketotic phase (n = 15). Ketosis-prone diabetes was found in 28.3% of the hyperglycaemic crises. Age at diabetes diagnosis was comparable in Type 2 and ketosis-prone diabetes [48 ± 14 vs 47 ± 11 years; P = 0.13] with a similar sex distribution. Overall BMI was 27.7 ± 13.4 kg/m 2 and was ≥ 25 kg/m 2 in 55.8% of those taking part, however, 73.5% of those with ketosis-prone diabetes reported weight loss of > 5% at diagnosis. Blood pressure and lipid profile were comparable in both types. Ketosis-prone diabetes in the ketotic phase was characterized by lower insulin secretion and higher serum triglycerides compared with non-ketotic ketosis prone and Type 2 diabetes. Type 2 and ketosis prone diabetes in the non-ketotic phase were comparable in terms of lipid profile, blood pressure, waist-to-hip ratio, BMI and fat mass, insulin secretion and insulin resistance indices. Ketosis-prone diabetes is likely to be a subtype of Type 2 diabetes with the potential to develop acute insulinopenic episodes. © 2016 Diabetes UK.
Prebio, Michael; Katz-Papatheophilou, Elfriede; Heindl, Werner; Gelbmann, Herbert; Burghuber, Otto C
2005-02-01
Prone positioning in patients with adult respiratory distress syndrome is a well-known method to improve oxygenation. The aim of our study was to evaluate a new device for prone positioning, the prone-head support system (PHS system), with regard to reduction of cutaneous pressure sores. In a pilot study we randomized 8 patients with ARDS in two groups: 180 degrees standard prone positioning (group without mask) and prone positioning with the PHS system (group with mask). The PHS system consists of a facemask support, which is connected to an adapted air suspension bed. The patients of both groups were intermittently proned for several days. We evaluated the pressure sores on head and neck before turning the patients prone for the first time and after each period of prone positioning. We documented the quantity, the size, the type and the localization of the pressure sores. There was no significant difference in the mean duration of prone positioning (27.1+/-14.7 hours in the group with mask versus 24.5+/-18.7 h in the group without mask). In the group with mask there were 1.5+/-0.8 new pressure sores by each proning, whereas in the group without mask there were 2.37+/-1.6 new pressure sores, which was lower, but not significantly. The overall area of pressure sores (798 mm2 versus 3184 mm2, p=0.004), the area of pressure sores per patient (199.5+/-104.7 mm2 versus 796+/-478 mm2, p=0.03) and the increase of the area of pressure sores per proning (79.8+/-52.0 mm2 versus 398.0+/-214.3 mm2, p=0.004) were significantly lower in the group with mask in comparison to the group without mask. The lips were the most effected localization in both groups. The pressure sores in the group with mask were less severe and showed a homogenous distribution in comparison to the group without mask. Blisters dominated in the group with mask in comparison to erosions, necrosis and ulcers in the group without mask. The PHS system with its face mask is able to reduce the extent and the severity of pressure sores in patients ventilated in prone position. Controlled randomized studies with large study populations seem justified.
Xiao, Jian-Ying; Liu, Chao; Sun, Xiao-Han; Yu, Bing-Zhi
2012-02-25
To further test whether protein kinase A (PKA) can affect the mitotic cell cycle, one-cell stage mouse embryos at S phase (22 h after hCG injection) were incubated in M16 medium containing various concentrations of H-89, a PKA inhibitor. With increasing concentrations of H-89 (0-50 μmol/L), the G(2) phase of eggs was decreased and the cleavage rate was accelerated. A concentration of 40 μmol/L H-89 led to all of the mouse eggs entering the M phase of mitosis. Furthermore, to study the role of PKA in regulating the phosphorylation status of S149 and S321 sites of cell division cycle 25B (CDC25B) on one-cell stage fertilized mouse eggs, pBSK-CDC25B-WT, pBSK-CDC25B-S149A, pBSK-CDC25B-S321A and pBSK-CDC25B-S149A/S321A were transcribed into mRNAs in vitro, then mRNAs were microinjected into S phase of mouse fertilized eggs and cultured in M16 medium pretreated with H-89. Then, the cleavage of fertilized eggs, maturation promoting factor (MPF) activity and phosphorylation status of CDC2-Tyr15 were observed. In the presence of 40 μmol/L H-89, the cleavage rate of fertilized eggs in CDC25B-S/A-mRNAs and CDC25B-WT-mRNA injected groups was significantly higher than that in the control groups, and the peak of MPF activity appeared in the CDC25B-S/A-mRNAs and CDC25B-WT-mRNA injected groups earlier than that in the control groups. CDC2-Tyr15 phosphorylation state was consistent with MPF activity. In conclusion, the present study suggests that PKA regulates the early development of mouse embryos by phosphorylation of S149 and S321 of CDC25B, which plays an important role in the regulation of G(2)/M transition in the mitotic cell cycle of fertilized mouse eggs.
Duration-dependent effects of the bite-raised condition on hippocampal function in SAMP8 mice.
Arakawa, Yoko; Ichihashi, Yukiko; Iinuma, Mitsuo; Tamura, Yasuo; Iwaku, Fumihiko; Kubo, Kin-Ya
2007-11-01
We evaluated the effect of the duration of occlusal disharmony induced chronic stress on hippocampal function by examining spatial memory in the Morris water maze and on the number of hippocampal neurons in aged senescence-accelerated prone (SAMP8) mice. The bite of SAMP8 mice was raised 0.1 mm using dental adhesive. Groups of mice were tested in the Morris water maze 8, 11, or 22 d after raising the bite. The results indicated that the longer the duration of the bite-raised condition, the greater the impairment in spatial learning ability and the greater the decrease in the number of neurons in the hippocampal CA3 subfield. Thus, behavioral and morphologic deficits induced by the bite-raised condition in aged SAMP8 mice are influenced by the duration of the occlusal disharmony.
a Gaussian Process Based Multi-Person Interaction Model
NASA Astrophysics Data System (ADS)
Klinger, T.; Rottensteiner, F.; Heipke, C.
2016-06-01
Online multi-person tracking in image sequences is commonly guided by recursive filters, whose predictive models define the expected positions of future states. When a predictive model deviates too much from the true motion of a pedestrian, which is often the case in crowded scenes due to unpredicted accelerations, the data association is prone to fail. In this paper we propose a novel predictive model on the basis of Gaussian Process Regression. The model takes into account the motion of every tracked pedestrian in the scene and the prediction is executed with respect to the velocities of all interrelated persons. As shown by the experiments, the model is capable of yielding more plausible predictions even in the presence of mutual occlusions or missing measurements. The approach is evaluated on a publicly available benchmark and outperforms other state-of-the-art trackers.
NASA Field Demo to Reduce Ground Delays Begins
2017-10-31
The forward cabin door is closed. Everyone is sitting down with their seat belts fastened. Then comes the gentle nudge as the airliner is pushed back from its gate. Then the aircraft stops, and you have no choice but to wait some more. Thirty minutes after departing the gate, your patience all but shot, the airplane accelerates into the sky and you wonder why this whole process of getting from the gate to cruising altitude has to be so difficult and delay-prone? A solution for this problem is being tested right now at Charlotte-Douglas International Airport in North Carolina. Called ATD-2, short for Airspace Technology Demonstration-2, the three-year field demonstration of software solutions to better manage air traffic to and from Charlotte, with an emphasis on more efficiently handling aircraft movements between gate and runway.
Efficient Variational Quantum Simulator Incorporating Active Error Minimization
NASA Astrophysics Data System (ADS)
Li, Ying; Benjamin, Simon C.
2017-04-01
One of the key applications for quantum computers will be the simulation of other quantum systems that arise in chemistry, materials science, etc., in order to accelerate the process of discovery. It is important to ask the following question: Can this simulation be achieved using near-future quantum processors, of modest size and under imperfect control, or must it await the more distant era of large-scale fault-tolerant quantum computing? Here, we propose a variational method involving closely integrated classical and quantum coprocessors. We presume that all operations in the quantum coprocessor are prone to error. The impact of such errors is minimized by boosting them artificially and then extrapolating to the zero-error case. In comparison to a more conventional optimized Trotterization technique, we find that our protocol is efficient and appears to be fundamentally more robust against error accumulation.
NASA Astrophysics Data System (ADS)
Kossobokov, V. G.; Nekrasova, A.
2017-12-01
We continue applying the general concept of seismic risk analysis in a number of seismic regions worldwide by constructing regional seismic hazard maps based on morphostructural analysis, pattern recognition, and the Unified Scaling Law for Earthquakes, USLE, which generalizes the Gutenberg-Richter relationship making use of naturally fractal distribution of earthquake sources of different size in a seismic region. The USLE stands for an empirical relationship log10N(M, L) = A + B·(5 - M) + C·log10L, where N(M, L) is the expected annual number of earthquakes of a certain magnitude M within an seismically prone area of linear dimension L. We use parameters A, B, and C of USLE to estimate, first, the expected maximum credible magnitude in a time interval at seismically prone nodes of the morphostructural scheme of the region under study, then map the corresponding expected ground shaking parameters (e.g. peak ground acceleration, PGA, or macro-seismic intensity etc.). After a rigorous testing against the available seismic evidences in the past (usually, the observed instrumental PGA or the historically reported macro-seismic intensity), such a seismic hazard map is used to generate maps of specific earthquake risks for population, cities, and infrastructures (e.g., those based on census of population, buildings inventory, etc.). This, USLE based, methodology of seismic hazard and risks assessment is applied to the territory of Altai-Sayan Region, of Russia. The study supported by the Russian Science Foundation Grant No. 15-17-30020.
NASA Astrophysics Data System (ADS)
Norman, S. P.; Hargrove, W. W.; Lee, D. C.; Spruce, J.
2013-12-01
Wildfires could provide a cost-effective means to maintain or restore some aspects of fire-adapted landscapes. Yet with the added influence of climate change and invasives, wildfires may also facilitate or accelerate undesired type conversions. As megafires are becoming increasingly common across portions of the US West, managers require a framework for long-term monitoring that integrates the trajectories of fire-prone landscapes and objectives, not just conditions immediately after a burn. Systematic use of satellite data provides an efficient cross-jurisdictional solution to this problem. Since 2000, MODIS-technology has provided high frequency, 240m resolution observations of Earth. Using this data stream, the ForWarn system, developed through a partnership of the US Forest Service, NASA-Stennis and others, provides 46 estimates of the Normalized Difference Vegetation Index (NDVI) per year for the conterminous US. From this time series, a variety of secondary metrics have been derived including median annual NDVI, amplitude, and phenological spikiness. Each is both a fire and recovery sensitive measure that allows managers to systematically track conditions with respect to either the pre-fire baseline or desired future conditions more adaptively. In dry interior forests where wildfires could be used to thin stands, recovery to untreated conditions may not be desired given fuels objectives or climate change. In more mesic systems, fire effects may be monitored as staged succession. With both coarse filter monitoring and desired conditions in hand, managers can better recognize and prioritize problems in disturbance-prone landscapes.
Can imaginary head tilt shorten postrotatory nystagmus?
Gianna-Poulin, C C; Voelker, C C; Erickson, B; Black, F O
2001-08-01
In healthy subjects, head tilt upon cessation of a constant-velocity yaw head rotation shortens the duration of postrotatory nystagmus. The presumed mechanism for this effect is that the velocity storage of horizontal semicircular canal inputs is being discharged by otolith organ inputs which signal a constant yaw head position when the head longitudinal axis is no longer earth-vertical. In the present study, normal subjects were rotated head upright in the dark on a vertical-axis rotational chair at 60 degrees/s for 75 s and were required to perform a specific task as soon as the chair stopped. Horizontal position of the right eye was recorded with an infra-red video camera. The average eye velocity (AEV) was measured over a 30-s interval following chair acceleration/deceleration. The ratios (postrotatory AEV/perrotatory AEV) were 1.1 (SD 0.112) when subjects (N=10) kept their head erect, 0.414 (SD 0.083) when subjects tilted their head forward, 1.003 (SD 0.108) when subjects imagined watching a TV show, 1.012 (SD 0.074) when subjects imagined looking at a painting on a wall, and 0.995 (SD 0.074) when subjects imagined floating in a prone position on a lake. Thus, while actual head tilt reduced postrotatory nystagmus, the imagination tasks did not have a statistically significant effect on postrotatory nystagmus. Therefore, velocity storage does not appear to be under the influence of cortical neural signals when subjects imagine that they are floating in a prone orientation.
Remigi, Philippe; Capela, Delphine; Clerissi, Camille; Tasse, Léna; Torchet, Rachel; Bouchez, Olivier; Batut, Jacques; Cruveiller, Stéphane; Rocha, Eduardo P. C.; Masson-Boivin, Catherine
2014-01-01
Horizontal gene transfer (HGT) is an important mode of adaptation and diversification of prokaryotes and eukaryotes and a major event underlying the emergence of bacterial pathogens and mutualists. Yet it remains unclear how complex phenotypic traits such as the ability to fix nitrogen with legumes have successfully spread over large phylogenetic distances. Here we show, using experimental evolution coupled with whole genome sequencing, that co-transfer of imuABC error-prone DNA polymerase genes with key symbiotic genes accelerates the evolution of a soil bacterium into a legume symbiont. Following introduction of the symbiotic plasmid of Cupriavidus taiwanensis, the Mimosa symbiont, into pathogenic Ralstonia solanacearum we challenged transconjugants to become Mimosa symbionts through serial plant-bacteria co-cultures. We demonstrate that a mutagenesis imuABC cassette encoded on the C. taiwanensis symbiotic plasmid triggered a transient hypermutability stage in R. solanacearum transconjugants that occurred before the cells entered the plant. The generated burst in genetic diversity accelerated symbiotic adaptation of the recipient genome under plant selection pressure, presumably by improving the exploration of the fitness landscape. Finally, we show that plasmid imuABC cassettes are over-represented in rhizobial lineages harboring symbiotic plasmids. Our findings shed light on a mechanism that may have facilitated the dissemination of symbiotic competency among α- and β-proteobacteria in natura and provide evidence for the positive role of environment-induced mutagenesis in the acquisition of a complex lifestyle trait. We speculate that co-transfer of complex phenotypic traits with mutagenesis determinants might frequently enhance the ecological success of HGT. PMID:25181317
Daintain/AIF-1 (Allograft Inflammatory Factor-1) accelerates type 1 diabetes in NOD mice
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Yan-Ying, E-mail: biozyy@163.com; Huang, Xin-Yuan; Chen, Zheng-Wang
Highlights: Black-Right-Pointing-Pointer Daintain/AIF-1 is over-expressed in the blood of NOD mice suffering from insulitis. Black-Right-Pointing-Pointer Daintain/AIF-1 stimulates white blood cell proliferation in NOD mice. Black-Right-Pointing-Pointer Daintain/AIF-1 increases blood glucose levels and triggers type 1 diabetes. Black-Right-Pointing-Pointer Daintain/AIF-1 accelerates insulitis, while its antibody prevents insulitis. Black-Right-Pointing-Pointer Daintain/AIF-1 enhances the levels of nitric oxide in the pancreases of NOD mice. -- Abstract: A large body of experimental evidence suggests that cytokines trigger pancreatic {beta}-cell death in type 1 diabetes mellitus. Daintain/AIF-1 (Allograft Inflammatory Factor-1), a specific marker for activated macrophages, is accumulated in the pancreatic islets of pre-diabetic BB rats. In themore » present study, we demonstrate that daintain/AIF-1 is released into blood and the levels of daintain/AIF-1 in the blood of type 1 diabetes-prone non-obese diabetic (NOD) mice suffering from insulitis are significantly higher than that in healthy NOD mice. When injected intravenously into NOD mice, daintain/AIF-1 stimulates white blood cell proliferation, increases the concentrations of blood glucose, impairs insulin expression, up-regulates nitric oxide (NO) production in pancreases and accelerates diabetes in NOD mice, while the antibody against daintain/AIF-1 delays or prevents insulitis in NOD mice. These results imply daintain/AIF-1 triggers type 1 diabetes probably via arousing immune cells activation and induction of NO production in pancreas of NOD mice.« less
Local Dynamic Stability Assessment of Motion Impaired Elderly Using Electronic Textile Pants.
Liu, Jian; Lockhart, Thurmon E; Jones, Mark; Martin, Tom
2008-10-01
A clear association has been demonstrated between gait stability and falls in the elderly. Integration of wearable computing and human dynamic stability measures into home automation systems may help differentiate fall-prone individuals in a residential environment. The objective of the current study was to evaluate the capability of a pair of electronic textile (e-textile) pants system to assess local dynamic stability and to differentiate motion-impaired elderly from their healthy counterparts. A pair of e-textile pants comprised of numerous e-TAGs at locations corresponding to lower extremity joints was developed to collect acceleration, angular velocity and piezoelectric data. Four motion-impaired elderly together with nine healthy individuals (both young and old) participated in treadmill walking with a motion capture system simultaneously collecting kinematic data. Local dynamic stability, characterized by maximum Lyapunov exponent, was computed based on vertical acceleration and angular velocity at lower extremity joints for the measurements from both e-textile and motion capture systems. Results indicated that the motion-impaired elderly had significantly higher maximum Lyapunov exponents (computed from vertical acceleration data) than healthy individuals at the right ankle and hip joints. In addition, maximum Lyapunov exponents assessed by the motion capture system were found to be significantly higher than those assessed by the e-textile system. Despite the difference between these measurement techniques, attaching accelerometers at the ankle and hip joints was shown to be an effective sensor configuration. It was concluded that the e-textile pants system, via dynamic stability assessment, has the potential to identify motion-impaired elderly.
Delusion proneness and 'jumping to conclusions': relative and absolute effects.
van der Leer, L; Hartig, B; Goldmanis, M; McKay, R
2015-04-01
That delusional and delusion-prone individuals 'jump to conclusions' is one of the most robust and important findings in the literature on delusions. However, although the notion of 'jumping to conclusions' (JTC) implies gathering insufficient evidence and reaching premature decisions, previous studies have not investigated whether the evidence gathering of delusion-prone individuals is, in fact, suboptimal. The standard JTC effect is a relative effect but using relative comparisons to substantiate absolute claims is problematic. In this study we investigated whether delusion-prone participants jump to conclusions in both a relative and an absolute sense. Healthy participants (n = 112) completed an incentivized probabilistic reasoning task in which correct decisions were rewarded and additional information could be requested for a small price. This combination of rewards and costs generated optimal decision points. Participants also completed measures of delusion proneness, intelligence and risk aversion. Replicating the standard relative finding, we found that delusion proneness significantly predicted task decisions, such that the more delusion prone the participants were, the earlier they decided. This finding was robust when accounting for the effects of risk aversion and intelligence. Importantly, high-delusion-prone participants also decided in advance of an objective rational optimum, gathering fewer data than would have maximized their expected payoff. Surprisingly, we found that even low-delusion-prone participants jumped to conclusions in this absolute sense. Our findings support and clarify the claim that delusion formation is associated with a tendency to 'jump to conclusions'. In short, most people jump to conclusions, but more delusion-prone individuals 'jump further'.
Comparison of Dose Decrement from Intrafraction Motion for Prone and Supine Prostate Radiotherapy
Olsen, Jeffrey; Parikh, Parag J; Watts, Michael; Noel, Camille E; Baker, Kenneth W; Santanam, Lakshmi; Michalski, Jeff M
2012-01-01
Background and Purpose Dose effects of intrafraction motion during prone prostate radiotherapy are unknown. We compared prone and supine treatment using real-time tracking data to model dose coverage. Material and Methods Electromagnetic tracking data was analyzed for 10 patients treated prone, and 15 treated supine, with IMRT for localized prostate cancer. Plans were generated using 0, 3, and 5 mm PTV expansions. Manual beam-hold interventions were applied to reposition the patient when translations exceeded a predetermined threshold. A custom software application (SWIFTER) used intrafraction tracking data acquired during beam-on to model delivered prostate dose, by applying rigid body transformations to the prostate structure contoured at simulation within the planned dose cloud. The delivered minimum prostate dose as a percentage of planned dose (Dmin%), and prostate volume covered by the prescription dose as a percentage of the planned volume (VRx%) were compared for prone and supine treatment. Results Dmin% was reduced for prone treatment for 0 (p=0.02) and 3 mm (p=0.03) PTV margins. VRx% was reduced for prone treatment only for 0 mm margins (p=0.002). No significant differences were found using 5 mm margins. Conclusions Intrafraction motion has a greater impact on target coverage for prone compared to supine prostate radiotherapy. PTV margins of 3 mm or less correlate with a significant decrease in delivered dose for prone treatment. PMID:22809590
Comparison of dose decrement from intrafraction motion for prone and supine prostate radiotherapy.
Olsen, Jeffrey R; Parikh, Parag J; Watts, Michael; Noel, Camille E; Baker, Kenneth W; Santanam, Lakshmi; Michalski, Jeff M
2012-08-01
Dose effects of intrafraction motion during prone prostate radiotherapy are unknown. We compared prone and supine treatment using real-time tracking data to model dose coverage. Electromagnetic tracking data were analyzed for 10 patients treated prone, and 15 treated supine, with IMRT for localized prostate cancer. Plans were generated using 0 mm, 3 mm, and 5mm PTV expansions. Manual beam-hold interventions were applied to reposition the patient when translations exceeded a predetermined threshold. A custom software application (SWIFTER) used intrafraction tracking data acquired during beam-on model delivered prostate dose, by applying rigid body transformations to the prostate structure contoured at simulation within the planned dose cloud. The delivered minimum prostate dose as a percentage of planned dose (Dmin%), and prostate volume covered by the prescription dose as a percentage of the planned volume (VRx%) were compared for prone and supine treatment. Dmin% was reduced for prone treatment for 0 (p=0.02) and 3 mm (p=0.03) PTV margins. VRx% was reduced for prone treatment only for 0mm margins (p=0.002). No significant differences were found using 5 mm margins. Intrafraction motion has a greater impact on target coverage for prone compared to supine prostate radiotherapy. PTV margins of 3 mm or less correlate with a significant decrease in delivered dose for prone treatment. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Ketosis-Onset Diabetes and Ketosis-Prone Diabetes: Same or Not?
Liu, Beiyan; Yu, Changhua; Li, Qiang; Li, Lin
2013-01-01
Objective. To compare clinical characteristics, immunological markers, and β-cell functions of 4 subgroups (“Aβ” classification system) of ketosis-onset diabetes and ketosis prone diabetes patients without known diabetes, presenting with ketosis or diabetic ketoacidosis (DKA) and admitted to our department from March 2011 to December 2011 in China, with 50 healthy persons as control group. Results. β-cell functional reserve was preserved in 63.52% of patients. In almost each subgroup (except A− β− subgroup of ketosis prone group), male patients were more than female ones. The age of the majority of patients in ketosis prone group was older than that of ketosis-onset group, except A− β− subgroup of ketosis prone group. The durations from the patient first time ketosis or DKA onset to admitting to the hospital have significant difference, which were much longer for the ketosis prone group except the A+ β+ subgroup. BMI has no significant difference among subgroups. FPG of ketosis prone group was lower than that of A− β+ subgroup and A+ β+ subgroup in ketosis-onset group. A− β− subgroup and A+ β+ subgroup of ketosis prone group have lower HbA1c than ketosis-onset group. Conclusions. Ketosis-onset diabetes and ketosis prone diabetes do not absolutely have the same clinical characteristics. Each subgroup shows different specialty. PMID:23710177
Imai, Rika; Asai, Kanae; Hanai, Jun-ichi; Takenaka, Masaru
2015-07-01
Glia Maturation Factor-β (GMF), a brain specific protein, is induced by proteinuria in renal tubules. Ectopic GMF overexpression causes apoptosisin vitro via cellular vulnerability to oxidative stress. In order to examine the roles of GMF in non-brain tissue, we constructed transgenic mice overexpressing GMF (GMF-TG). The GMF-TG mice exhibited appearance phenotypes associated with premature aging. The GMF-TG mice also demonstrated short lifespans and reduced hair regrowth, suggesting an accelerated aging process. The production of an abnormal lamin A, a nuclear envelope protein, plays a causal role in both normal aging and accelerated aging diseases, known as laminopathies. Importantly, we identified the abnormal lamin A (prelamin A), accompanied by a down-regulation of a lamin A processing enzyme (Zmpste24) in the kidney of the GMF-TG mice. The GMF-TG mice showed accelerated aging in the kidney, compared with wild-type mice, showing increased TGF-β1, CTGF gene and serum creatinine. The gene expression of p21/waf1 was increased at an earlier stage of life, at 10 weeks, which was in turn down-regulated at a later stage, at 60 weeks. In conclusion, we propose that GMF-TG mice might be a novel mouse model of accelerated aging, due to the abnormal lamin A.
Regional ventilation-perfusion distribution is more uniform in the prone position
NASA Technical Reports Server (NTRS)
Mure, M.; Domino, K. B.; Lindahl, S. G.; Hlastala, M. P.; Altemeier, W. A.; Glenny, R. W.
2000-01-01
The arterial blood PO(2) is increased in the prone position in animals and humans because of an improvement in ventilation (VA) and perfusion (Q) matching. However, the mechanism of improved VA/Q is unknown. This experiment measured regional VA/Q heterogeneity and the correlation between VA and Q in supine and prone positions in pigs. Eight ketamine-diazepam-anesthetized, mechanically ventilated pigs were studied in supine and prone positions in random order. Regional VA and Q were measured using fluorescent-labeled aerosols and radioactive-labeled microspheres, respectively. The lungs were dried at total lung capacity and cubed into 603-967 small ( approximately 1.7-cm(3)) pieces. In the prone position the homogeneity of the ventilation distribution increased (P = 0.030) and the correlation between VA and Q increased (correlation coefficient = 0.72 +/- 0.08 and 0.82 +/- 0.06 in supine and prone positions, respectively, P = 0.03). The homogeneity of the VA/Q distribution increased in the prone position (P = 0.028). We conclude that the improvement in VA/Q matching in the prone position is secondary to increased homogeneity of the VA distribution and increased correlation of regional VA and Q.
McElwain, Nancy L; Holland, Ashley S; Engle, Jennifer M; Wong, Maria S
2012-02-01
Child-mother attachment security, assessed via a modified Strange Situation procedure (Cassidy & Marvin, with the MacArthur Attachment Working Group, 1992), and parent-reported child proneness to anger were examined as correlates of observed child behavior toward mothers during a series of interactive tasks (N = 120, 60 girls). Controlling for maternal sensitivity and child gender and expressive language ability, greater attachment security, and lower levels of anger proneness were related to more child responsiveness to maternal requests and suggestions during play and snack sessions. As hypothesized, anger proneness also moderated several security-behavior associations. Greater attachment security was related to (a) more committed compliance during clean-up and snack-delay tasks for children high on anger proneness, (b) more self-assertiveness during play and snack for children moderate or high on anger proneness, and (c) more help-seeking during play and snack for children moderate or low on anger proneness. Findings further our understanding of the behavioral correlates of child-mother attachment security assessed during late toddlerhood via the Cassidy-Marvin system and underscore child anger proneness as a moderator of attachment-related differences in child behavior during this developmental period.
Suggestibility and signal detection performance in hallucination-prone students.
Alganami, Fatimah; Varese, Filippo; Wagstaff, Graham F; Bentall, Richard P
2017-03-01
Auditory hallucinations are associated with signal detection biases. We examine the extent to which suggestions influence performance on a signal detection task (SDT) in highly hallucination-prone and low hallucination-prone students. We also explore the relationship between trait suggestibility, dissociation and hallucination proneness. In two experiments, students completed on-line measures of hallucination proneness (the revised Launay-Slade Hallucination Scale; LSHS-R), trait suggestibility (Inventory of Suggestibility) and dissociation (Dissociative Experiences Scale-II). Students in the upper and lower tertiles of the LSHS-R performed an auditory SDT. Prior to the task, suggestions were made pertaining to the number of expected targets (Experiment 1, N = 60: high vs. low suggestions; Experiment 2, N = 62, no suggestion vs. high suggestion vs. no voice suggestion). Correlational and regression analyses indicated that trait suggestibility and dissociation predicted hallucination proneness. Highly hallucination-prone students showed a higher SDT bias in both studies. In Experiment 1, both bias scores were significantly affected by suggestions to the same degree. In Experiment 2, highly hallucination-prone students were more reactive to the high suggestion condition than the controls. Suggestions may affect source-monitoring judgments, and this effect may be greater in those who have a predisposition towards hallucinatory experiences.
An update on the prone position: Continuing Professional Development.
Chui, Jason; Craen, Rosemary Ann
2016-06-01
The purpose of this Continuing Professional Development module is to provide information needed to prepare for and clinically manage a patient in the prone position. Prone positioning is required for surgical procedures that involve the posterior aspect of a patient. We searched MEDLINE(®) and EMBASE™ from January 2000 to January 2015 for literature related to the prone position and retrieved only original articles in English. We reviewed the advantages and disadvantages of various equipment used in prone positioning, the physiological changes associated with prone positioning, and the complications that can occur. We also reviewed strategies for the safe conduct and management of position-related complications. Increased age, elevated body mass index, the presence of comorbidities, and long duration of surgery appear to be the most important risk factors for complications associated with prone positioning. We recommend a structured team approach and careful selection of equipment tailored to the patient and surgery. The systematic use of checklists is recommended to guide operating room teams and to reduce prone position-related complications. Anesthesiologists should be prepared to manage major intraoperative emergencies (e.g., accidental extubation) and anticipate postoperative complications (e.g., airway edema and visual loss).
Effects of climate and corrosion on concrete behaviour
NASA Astrophysics Data System (ADS)
Ismail, Mohammad; Egba, Ernest Ituma
2017-11-01
Corrosion of steel is a damaging agent that reduces the functional and structural responsibilities of reinforced concrete structures. Accordingly, reinforced concrete members in the environments that are prone to concrete carbonation or chloride attack coupled with high temperature and relative humidity suffer from accelerated corrosion of reinforcing material. Also, literature proves that climate influences corrosion of concrete, and suggests investigation of impact of corrosion on concrete based on climate zone. Therefore, this paper presents the effects of climate and corrosion on concrete behavior, using bond strength of concrete as a case study. Concrete specimens were prepared form concrete mix that was infested with 3.5 kgm-3 of sodium chloride to accelerate corrosion. The specimens were cured sodium chloride solution 3.5% by weight of water for 28 days before placing them in the exposure conditions. Pull-out tests were conducted at time intervals for one year to measure the impact of exposure condition and corrosion on bond strength of concrete. The results show reduction of bond strength of concrete by 32%, 28% and 8% after one year of subjection of the specimens to the unsheltered natural climate, sheltered natural climate, and laboratory ambient environment respectively. The findings indicate that the climate influences corrosion, which reduces the interlocking bond between the reinforcing bar and the adjacent concrete.
Wu, An-Guo; Wong, Vincent Kam-Wai; Xu, Su-Wei; Chan, Wai-Kit; Ng, Choi-In; Liu, Liang; Law, Betty Yuen-Kwan
2013-11-15
Emerging evidence indicates important protective roles being played by autophagy in neurodegenerative disorders through clearance of aggregate-prone or mutant proteins. In the current study, we aimed to identify autophagy inducers from Chinese medicinal herbs as a potential neuroprotective agent that enhances the clearance of mutant huntingtin and α-synuclein in PC-12 cells. Through intensive screening using the green fluorescent protein-light chain 3 (GFP-LC3) autophagy detection platform, we found that the ethanol extracts of Radix Polygalae (Yuan Zhi) were capable of inducing autophagy. Further investigation showed that among three single components derived from Radix Polygalae--i.e., polygalacic acid, senegenin and onjisaponin B--onjisaponin B was able to induce autophagy and accelerate both the removal of mutant huntingtin and A53T α-synuclein, which are highly associated with Huntington disease and Parkinson disease, respectively. Our study further demonstrated that onjisaponin B induces autophagy via the AMPK-mTOR signaling pathway. Therefore, findings in the current study provide detailed insights into the protective mechanism of a novel autophagy inducer, which is valuable for further investigation as a new candidate agent for modulating neurodegenerative disorders through the reduction of toxicity and clearance of mutant proteins in the cellular level.
Wu, An-Guo; Wong, Vincent Kam-Wai; Xu, Su-Wei; Chan, Wai-Kit; Ng, Choi-In; Liu, Liang; Law, Betty Yuen-Kwan
2013-01-01
Emerging evidence indicates important protective roles being played by autophagy in neurodegenerative disorders through clearance of aggregate-prone or mutant proteins. In the current study, we aimed to identify autophagy inducers from Chinese medicinal herbs as a potential neuroprotective agent that enhances the clearance of mutant huntingtin and α-synuclein in PC-12 cells. Through intensive screening using the green fluorescent protein-light chain 3 (GFP-LC3) autophagy detection platform, we found that the ethanol extracts of Radix Polygalae (Yuan Zhi) were capable of inducing autophagy. Further investigation showed that among three single components derived from Radix Polygalae—i.e., polygalacic acid, senegenin and onjisaponin B—onjisaponin B was able to induce autophagy and accelerate both the removal of mutant huntingtin and A53T α-synuclein, which are highly associated with Huntington disease and Parkinson disease, respectively. Our study further demonstrated that onjisaponin B induces autophagy via the AMPK-mTOR signaling pathway. Therefore, findings in the current study provide detailed insights into the protective mechanism of a novel autophagy inducer, which is valuable for further investigation as a new candidate agent for modulating neurodegenerative disorders through the reduction of toxicity and clearance of mutant proteins in the cellular level. PMID:24248062
Li, Huabing; Xu, Dake; Li, Yingchao; Feng, Hao; Liu, Zhiyong; Li, Xiaogang; Gu, Tingyue; Yang, Ke
2015-01-01
Carbon steels are widely used in the oil and gas industry from downhole tubing to transport trunk lines. Microbes form biofilms, some of which cause the so-called microbiologically influenced corrosion (MIC) of carbon steels. MIC by sulfate reducing bacteria (SRB) is often a leading cause in MIC failures. Electrogenic SRB sessile cells harvest extracellular electrons from elemental iron oxidation for energy production in their metabolism. A previous study suggested that electron mediators riboflavin and flavin adenine dinucleotide (FAD) both accelerated the MIC of 304 stainless steel by the Desulfovibrio vulgaris biofilm that is a corrosive SRB biofilm. Compared with stainless steels, carbon steels are usually far more prone to SRB attacks because SRB biofilms form much denser biofilms on carbon steel surfaces with a sessile cell density that is two orders of magnitude higher. In this work, C1018 carbon steel coupons were used in tests of MIC by D. vulgaris with and without an electron mediator. Experimental weight loss and pit depth data conclusively confirmed that both riboflavin and FAD were able to accelerate D. vulgaris attack against the carbon steel considerably. It has important implications in MIC failure analysis and MIC mitigation in the oil and gas industry.
Seismic hazard analysis with PSHA method in four cities in Java.
NASA Astrophysics Data System (ADS)
Elistyawati, Y.; Palupi, I. R.; Suharsono
2016-11-01
In this study the tectonic earthquakes was observed through the peak ground acceleration through the PSHA method by dividing the area of the earthquake source. This study applied the earthquake data from 1965 - 2015 that has been analyzed the completeness of the data, location research was the entire Java with stressed in four large cities prone to earthquakes. The results were found to be a hazard map with a return period of 500 years, 2500 years return period, and the hazard curve were four major cities (Jakarta, Bandung, Yogyakarta, and the city of Banyuwangi). Results Java PGA hazard map 500 years had a peak ground acceleration within 0 g ≥ 0.5 g, while the return period of 2500 years had a value of 0 to ≥ 0.8 g. While, the PGA hazard curves on the city's most influential source of the earthquake was from sources such as fault Cimandiri backgroud, for the city of Bandung earthquake sources that influence the seismic source fault dent background form. In other side, the city of Yogyakarta earthquake hazard curve of the most influential was the source of the earthquake background of the Opak fault, and the most influential hazard curve of Banyuwangi earthquake was the source of Java and Sumba megatruts earthquake.
Li, Yingchao; Feng, Hao; Liu, Zhiyong; Li, Xiaogang; Gu, Tingyue; Yang, Ke
2015-01-01
Carbon steels are widely used in the oil and gas industry from downhole tubing to transport trunk lines. Microbes form biofilms, some of which cause the so-called microbiologically influenced corrosion (MIC) of carbon steels. MIC by sulfate reducing bacteria (SRB) is often a leading cause in MIC failures. Electrogenic SRB sessile cells harvest extracellular electrons from elemental iron oxidation for energy production in their metabolism. A previous study suggested that electron mediators riboflavin and flavin adenine dinucleotide (FAD) both accelerated the MIC of 304 stainless steel by the Desulfovibrio vulgaris biofilm that is a corrosive SRB biofilm. Compared with stainless steels, carbon steels are usually far more prone to SRB attacks because SRB biofilms form much denser biofilms on carbon steel surfaces with a sessile cell density that is two orders of magnitude higher. In this work, C1018 carbon steel coupons were used in tests of MIC by D. vulgaris with and without an electron mediator. Experimental weight loss and pit depth data conclusively confirmed that both riboflavin and FAD were able to accelerate D. vulgaris attack against the carbon steel considerably. It has important implications in MIC failure analysis and MIC mitigation in the oil and gas industry. PMID:26308855
Children’s Proneness to Shame and Guilt Predict Risky and Illegal Behaviors in Young Adulthood
Stuewig, Jeffrey; Tangney, June P.; Kendall, Stephanie; Folk, Johanna B.; Meyer, Candace Reinsmith; Dearing, Ronda L.
2014-01-01
Do shame and guilt help people avoid doing wrong? Although some research suggests that guilt-proneness is a protective factor while shame-proneness puts individuals at risk, most research is either cross-sectional or short-term. In this longitudinal study, 380 5th graders (ages 10–12) completed measures of proneness to shame and guilt. We re-interviewed 68% of participants after they turned 18 years old (range 18–21). Guilt-proneness assessed in childhood predicted fewer sexual partners, less use of illegal drugs and alcohol, and less involvement with the criminal justice system. Shame-proneness, in contrast, was a risk factor for later deviant behavior. Shame-prone children were more likely to have unprotected sex and use illegal drugs in young adulthood. These results held when controlling for childhood SES and teachers’ ratings of aggression. Children’s moral emotional styles appear to be well established by at least middle childhood, with distinct downstream implications for risky behavior in early adulthood. PMID:24842762
Children's proneness to shame and guilt predict risky and illegal behaviors in young adulthood.
Stuewig, Jeffrey; Tangney, June P; Kendall, Stephanie; Folk, Johanna B; Meyer, Candace Reinsmith; Dearing, Ronda L
2015-04-01
Do shame and guilt help people avoid doing wrong? Although some research suggests that guilt-proneness is a protective factor while shame-proneness puts individuals at risk, most research is either cross-sectional or short-term. In this longitudinal study, 380 5th graders (ages 10-12) completed measures of proneness to shame and guilt. We re-interviewed 68 % of participants after they turned 18 years old (range 18-21). Guilt-proneness assessed in childhood predicted fewer sexual partners, less use of illegal drugs and alcohol, and less involvement with the criminal justice system. Shame-proneness, in contrast, was a risk factor for later deviant behavior. Shame-prone children were more likely to have unprotected sex and use illegal drugs in young adulthood. These results held when controlling for childhood SES and teachers' ratings of aggression. Children's moral emotional styles appear to be well established by at least middle childhood, with distinct downstream implications for risky behavior in early adulthood.
Lee, Joo-Yong; Kawaguchi, Yoshiharu; Li, Ming; Kapur, Meghan; Choi, Su Jin; Kim, Hak-June; Park, Song-Yi; Zhu, Haining; Yao, Tso-Pang
2015-01-01
Aberrant accumulation of protein aggregates is a pathological hallmark of many neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS). Although a buildup of protein aggregates frequently leads to cell death, whether it is the key pathogenic factor in driving neurodegenerative disease remains controversial. HDAC6, a cytosolic ubiquitin-binding deacetylase, has emerged as an important regulator of ubiquitin-dependent quality control autophagy, a lysosome-dependent degradative system responsible for the disposal of misfolded protein aggregates and damaged organelles. Here, we show that in cell models HDAC6 plays a protective role against multiple disease-associated and aggregation-prone cytosolic proteins by facilitating their degradation. We further show that HDAC6 is required for efficient localization of lysosomes to protein aggregates, indicating that lysosome targeting to autophagic substrates is regulated. Supporting a critical role of HDAC6 in protein aggregate disposal in vivo, genetic ablation of HDAC6 in a transgenic SOD1G93A mouse, a model of ALS, leads to dramatic accumulation of ubiquitinated SOD1G93A protein aggregates. Surprisingly, despite a robust buildup of SOD1G93A aggregates, deletion of HDAC6 only moderately modified the motor phenotypes. These findings indicate that SOD1G93A aggregation is not the only determining factor to drive neurodegeneration in ALS, and that HDAC6 likely modulates neurodegeneration through additional mechanisms beyond protein aggregate clearance. © 2015 S. Karger AG, Basel.
NK cell heparanase controls tumor invasion and immune surveillance
Putz, Eva M.; Mayfosh, Alyce J.; Barkauskas, Deborah S.; Nakamura, Kyohei; Town, Liam; Goodall, Katharine J.; Yee, Dean Y.; Poon, Ivan K.H.; Baschuk, Nikola; Souza-Fonseca-Guimaraes, Fernando; Hulett, Mark D.; Smyth, Mark J.
2017-01-01
NK cells are highly efficient at preventing cancer metastasis but are infrequently found in the core of primary tumors. Here, have we demonstrated that freshly isolated mouse and human NK cells express low levels of the endo-β-D-glucuronidase heparanase that increase upon NK cell activation. Heparanase deficiency did not affect development, differentiation, or tissue localization of NK cells under steady-state conditions. However, mice lacking heparanase specifically in NK cells (Hpsefl/fl NKp46-iCre mice) were highly tumor prone when challenged with the carcinogen methylcholanthrene (MCA). Hpsefl/fl NKp46-iCre mice were also more susceptible to tumor growth than were their littermate controls when challenged with the established mouse lymphoma cell line RMA-S-RAE-1β, which overexpresses the NK cell group 2D (NKG2D) ligand RAE-1β, or when inoculated with metastatic melanoma, prostate carcinoma, or mammary carcinoma cell lines. NK cell invasion of primary tumors and recruitment to the site of metastasis were strictly dependent on the presence of heparanase. Cytokine and immune checkpoint blockade immunotherapy for metastases was compromised when NK cells lacked heparanase. Our data suggest that heparanase plays a critical role in NK cell invasion into tumors and thereby tumor progression and metastases. This should be considered when systemically treating cancer patients with heparanase inhibitors, since the potential adverse effect on NK cell infiltration might limit the antitumor activity of the inhibitors. PMID:28581441
Genetic dissection of the Gpnmb network in the eye.
Lu, Hong; Wang, Xusheng; Pullen, Matthew; Guan, Huaijin; Chen, Hui; Sahu, Shwetapadma; Zhang, Bing; Chen, Hao; Williams, Robert W; Geisert, Eldon E; Lu, Lu; Jablonski, Monica M
2011-06-13
To use a systematic genetics approach to investigate the regulation of Gpnmb, a gene that contributes to pigmentary dispersion syndrome (PDS) and pigmentary glaucoma (PG) in the DBA/2J (D2) mouse. Global patterns of gene expression were studied in whole eyes of a large family of BXD mouse strains (n = 67) generated by crossing the PDS- and PG-prone parent (DBA/2J) with a resistant strain (C57BL/6J). Quantitative trait locus (eQTL) mapping methods and gene set analysis were used to evaluate Gpnmb coexpression networks in wild-type and mutant cohorts. The level of Gpnmb expression was associated with a highly significant cis-eQTL at the location of the gene itself. This autocontrol of Gpnmb is likely to be a direct consequence of the known premature stop codon in exon 4. Both gene ontology and coexpression network analyses demonstrated that the mutation in Gpnmb radically modified the set of genes with which Gpnmb expression is correlated. The covariates of wild-type Gpnmb are involved in biological processes including melanin synthesis and cell migration, whereas the covariates of mutant Gpnmb are involved in the biological processes of posttranslational modification, stress activation, and sensory processing. These results demonstrated that a systematic genetics approach provides a powerful tool for constructing coexpression networks that define the biological process categories within which similarly regulated genes function. The authors showed that the R150X mutation in Gpnmb dramatically modified its list of genetic covariates, which may explain the associated ocular pathology.
Chromosomal mosaicism in mouse two-cell embryos after paternal exposure to acrylamide
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marchetti, Francesco; Bishop, Jack; Lowe, Xiu
2008-10-14
Chromosomal mosaicism in human preimplantation embryos is a common cause ofspontaneous abortions, however, our knowledge of its etiology is limited. We used multicolor fluorescence in situ hybridization (FISH) painting to investigate whether paternally-transmitted chromosomal aberrations result in mosaicism in mouse 2-cell embryos. Paternal exposure to acrylamide, an important industrial chemical also found in tobacco smoke and generated during the cooking process of starchy foods, produced significant increases in chromosomally defective 2-cell embryos, however, the effects were transient primarily affecting the postmeiotic stages of spermatogenesis. Comparisons with our previous study of zygotes demonstrated similar frequencies of chromosomally abnormal zygotes and 2-cellmore » embryos suggesting that there was no apparent selection against numerical or structural chromosomal aberrations. However, the majority of affected 2-cell embryos were mosaics showing different chromosomal abnormalities in the two blastomeric metaphases. Analyses of chromosomal aberrations in zygotes and 2-cell embryos showed a tendency for loss of acentric fragments during the first mitotic division ofembryogenesis, while both dicentrics and translocations apparently underwent propersegregation. These results suggest that embryonic development can proceed up to the end of the second cell cycle of development in the presence of abnormal paternal chromosomes and that even dicentrics can persist through cell division. The high incidence of chromosomally mosaic 2-cell embryos suggests that the first mitotic division of embryogenesis is prone to missegregation errors and that paternally-transmitted chromosomal abnromalities increase the risk of missegregation leading to embryonic mosaicism.« less
Muglia, C; Mercer, N; Toscano, M A; Schattner, M; Pozner, R; Cerliani, J P; Gobbi, R Papa; Rabinovich, G A; Docena, G H
2011-01-01
Intestinal epithelial cells serve as mechanical barriers and active components of the mucosal immune system. These cells migrate from the crypt to the tip of the villus, where different stimuli can differentially affect their survival. Here we investigated, using in vitro and in vivo strategies, the role of galectin-1 (Gal-1), an evolutionarily conserved glycan-binding protein, in modulating the survival of human and mouse enterocytes. Both Gal-1 and its specific glyco-receptors were broadly expressed in small bowel enterocytes. Exogenous Gal-1 reduced the viability of enterocytes through apoptotic mechanisms involving activation of both caspase and mitochondrial pathways. Consistent with these findings, apoptotic cells were mainly detected at the tip of the villi, following administration of Gal-1. Moreover, Gal-1-deficient (Lgals1−/−) mice showed longer villi compared with their wild-type counterparts in vivo. In an experimental model of starvation, fasted wild-type mice displayed reduced villi and lower intestinal weight compared with Lgals1−/− mutant mice, an effect reflected by changes in the frequency of enterocyte apoptosis. Of note, human small bowel enterocytes were also prone to this pro-apoptotic effect. Thus, Gal-1 is broadly expressed in mucosal tissue and influences the viability of human and mouse enterocytes, an effect which might influence the migration of these cells from the crypt, the integrity of the villus and the epithelial barrier function. PMID:21614093
Proneness to Self-Conscious Emotions in Adults With and Without Autism Traits.
Davidson, Denise; Vanegas, Sandra B; Hilvert, Elizabeth
2017-11-01
Self-conscious emotions, such as shame, guilt and pride, facilitate our social interactions by motivating us to adhere to social norms and external standards. In this study, we examined proneness to shame, guilt, hubristic pride and authentic pride in adults with Autism Spectrum Disorder traits (ASD-T) and in neurotypical (NT) adults. Relations between proneness to self-conscious emotions and theory of mind (ToM), fear of negative evaluation, and social functioning were also assessed. Adults with ASD-T showed greater proneness to shame, and less proneness to guilt and pride than NT adults. Both ToM and fear of negative evaluation predicted proneness to self-conscious emotions in ASD-T. These findings are discussed in terms of understanding complex emotion processing in adults with ASD-T.
Sharma, Sharad K.; Casey, Janet R.
2012-01-01
A low level of serum antibody to antigens expressed by Streptococcus pneumoniae has been proposed to explain the susceptibility of children to recurrent episodes of acute otitis media (hereafter, “otitis-prone children”). By use of enzyme-linked immunospot assays, the percentages of memory B cells to pneumococcal protein antigens PhtD, LytB, PcpA, PhtE, and Ply were compared between otitis-prone and non–otitis-prone children at the time of acute otitis media or nasopharyngeal colonization with S. pneumoniae. We found significantly lower percentages of memory B cells to 3 pneumococcal protein antigens (PhtD, PhtE, and Ply) and reduced antigen-specific immunoglobulin G concentrations in otitis-prone children, compared with non–otitis-prone children. PMID:22383675
Neglected children, shame-proneness, and depressive symptoms.
Bennett, David S; Sullivan, Margaret Wolan; Lewis, Michael
2010-11-01
Neglected children may be at increased risk for depressive symptoms. This study examines shame-proneness as an outcome of child neglect and as a potential explanatory variable in the relation between neglect and depressive symptoms. Participants were 111 children (52 with a Child Protective Services [CPS] allegation of neglect) seen at age 7. Neglected children reported more shame-proneness and more depressive symptoms than comparison children. Guilt-proneness, in contrast, was unrelated to neglect and depressive symptoms, indicating specificity for shame-proneness. The potential role of shame as a process variable that can help explain how some neglected children exhibit depressive symptoms is discussed.
Procrastination and suicide proneness: A moderated-mediation model for cognitive schemas and gender.
Klibert, Jeffrey; LeLeux-LaBarge, Kayla; Tarantino, Nicholas; Yancey, Thresa; Lamis, Dorian A
2016-07-01
This study examined the direct and indirect paths between procrastination and suicide proneness while considering gender differences. Participants included 547 undergraduates from a southeastern university. Procrastination was positively related to suicide proneness for both genders, although this relation was stronger for women. Moderated-mediation analyses with bootstrapping highlighted insufficient self-control schemas as a mediator in the relation between procrastination and suicide proneness. However, indirect pathways did not vary by gender. Results represent an extension of the Procrastination-Health Model by highlighting the contribution of cognitive factors in explaining the relation between procrastination and suicide proneness.
Scanning Thin-Sheet Laser Imaging Microscopy Elucidates Details on Mouse Ear Development
Kopecky, Benjamin; Johnson, Shane; Schmitz, Heather; Santi, Peter; Fritzsch, Bernd
2016-01-01
Background The mammalian inner ear is transformed from a flat placode into a three-dimensional (3D) structure with six sensory epithelia that allow for the perception of sound and both linear and angular acceleration. While hearing and balance problems are typically considered to be adult onset diseases, they may arise as a developmental perturbation to the developing ear. Future prevention of hearing or balance loss requires an understanding of how closely genetic mutations in model organisms reflect the human case, necessitating an objective multidimensional comparison of mouse ears with human ears that have comparable mutations in the same gene. Results Here, we present improved 3D analyses of normal murine ears during embryonic development using optical sections obtained through Thin-Sheet Laser Imaging Microscopy. We chronicle the transformation of an undifferentiated otic vesicle between mouse embryonic day 11.5 to a fully differentiated inner ear at postnatal day 15. Conclusions Our analysis of ear development provides new insights into ear development, enables unique perspectives into the complex development of the ear, and allows for the first full quantification of volumetric and linear aspects of ear growth. Our data provide the framework for future analysis of mutant phenotypes that are currently under-appreciated using only two dimensional renderings. PMID:22271591
Xu, Jing; Wong, Kevin; Jian, Yifan; Sarunic, Marinko V
2014-02-01
In this report, we describe a graphics processing unit (GPU)-accelerated processing platform for real-time acquisition and display of flow contrast images with Fourier domain optical coherence tomography (FDOCT) in mouse and human eyes in vivo. Motion contrast from blood flow is processed using the speckle variance OCT (svOCT) technique, which relies on the acquisition of multiple B-scan frames at the same location and tracking the change of the speckle pattern. Real-time mouse and human retinal imaging using two different custom-built OCT systems with processing and display performed on GPU are presented with an in-depth analysis of performance metrics. The display output included structural OCT data, en face projections of the intensity data, and the svOCT en face projections of retinal microvasculature; these results compare projections with and without speckle variance in the different retinal layers to reveal significant contrast improvements. As a demonstration, videos of real-time svOCT for in vivo human and mouse retinal imaging are included in our results. The capability of performing real-time svOCT imaging of the retinal vasculature may be a useful tool in a clinical environment for monitoring disease-related pathological changes in the microcirculation such as diabetic retinopathy.
Britton-Davidian, Janice; Catalan, Josette; da Graça Ramalhinho, Maria; Auffray, Jean-Christophe; Claudia Nunes, Ana; Gazave, Elodie; Searle, Jeremy B; da Luz Mathias, Maria
2005-12-01
The ancestral karyotype of the house mouse (Mus musculus) consists of 40 acrocentric chromosomes, but numerous races exist within the domesticus subspecies characterized by different metacentric chromosomes formed by the joining at the centromere of two acrocentrics. An exemplary case is present on the island of Madeira where six highly divergent chromosomal races have accumulated different combinations of 20 metacentrics in 500-1000 years. Chromosomal cladistic phylogenies were performed to test the relative performance of Robertsonian (Rb) fusions, Rb fissions and whole-arm reciprocal translocations (WARTs) in resolving relationships between the chromosomal races. The different trees yielded roughly similar topologies, but varied in the number of steps and branch support. The analyses using Rb fusions/fissions as characters resulted in poorly supported trees requiring six to eight homoplasious events. Allowance for WARTs considerably increased nodal support and yielded the most parsimonious trees since homoplasy was reduced to a single event. The WART-based trees required five to nine WARTs and 12 to 16 Rb fusions. These analyses provide support for the role of WARTs in generating the extensive chromosomal diversification observed in house mice. The repeated occurrence of Rb fusions and WARTs highlights the contribution of centromere-related rearrangements to accelerated rates of chromosomal change in the house mouse.
Scanning thin-sheet laser imaging microscopy elucidates details on mouse ear development.
Kopecky, Benjamin; Johnson, Shane; Schmitz, Heather; Santi, Peter; Fritzsch, Bernd
2012-03-01
The mammalian inner ear is transformed from a flat placode into a three-dimensional (3D) structure with six sensory epithelia that allow for the perception of sound and both linear and angular acceleration. While hearing and balance problems are typically considered to be adult onset diseases, they may arise as a developmental perturbation to the developing ear. Future prevention of hearing or balance loss requires an understanding of how closely genetic mutations in model organisms reflect the human case, necessitating an objective multidimensional comparison of mouse ears with human ears that have comparable mutations in the same gene. Here, we present improved 3D analyses of normal murine ears during embryonic development using optical sections obtained through Thin-Sheet Laser Imaging Microscopy. We chronicle the transformation of an undifferentiated otic vesicle between mouse embryonic day 11.5 to a fully differentiated inner ear at postnatal day 15. Our analysis of ear development provides new insights into ear development, enables unique perspectives into the complex development of the ear, and allows for the first full quantification of volumetric and linear aspects of ear growth. Our data provide the framework for future analysis of mutant phenotypes that are currently under-appreciated using only two dimensional renderings. Copyright © 2012 Wiley Periodicals, Inc.
Social psychogenic stress promotes the development of endometriosis in mouse.
Guo, Sun-Wei; Zhang, Qi; Liu, Xishi
2017-03-01
Exposure to chronic stress before and well after the induction of endometriosis is reported to increase lesion sizes in rats, but it is unclear whether stress, exposed shortly after the induction of endometriosis, would also promote the development of endometriosis, nor is it clear what the underlying possible molecular mechanism is. This study was undertaken to test the hypothesis that chronic stress can promote the development of endometriosis. A prospective randomized mouse experiment was conducted that subjected mice with induced endometriosis to predator stress. In addition, a cross-sectional immunohistochemistry study was performed in ectopic and eutopic endometrial tissue samples from age- and roughly menstrual phase-matched women with ovarian endometriomas. It was found that the chronic psychogenic stress induced epigenetic changes in the hippocampus in mouse independent of endometriosis. It was also found that chronic psychogenic stress induced epigenetic changes in the hippocampus of mice with endometriosis, and seemingly activated the adrenergic signalling in ectopic endometrium, resulting in increased angiogenesis and accelerated growth of endometriotic lesions. Thus, chronic psychogenic stress promotes endometriosis development, raising the possibility that the use of anti-depressants in cases of prolonged and intense stress might forestall the negative impact of stress on the development of endometriosis. Copyright © 2016 Reproductive Healthcare Ltd. Published by Elsevier Ltd. All rights reserved.
Xu, Wenan; Jiang, Shan; Chen, Qiuyue; Ye, Yanyan; Chen, Jiajing; Heng, Boon Chin; Jiang, Qianli; Wu, Buling; Ding, Zihai; Zhang, Chengfei
2016-02-01
Migratory cells via blood circulation or cells adjacent to the root apex may potentially participate in dental pulp tissue regeneration or renewal. This study investigated whether systemically transplanted bone marrow cells can contribute to pulp regeneration in a chimeric mouse model. A chimeric mouse model was created through the injection of bone marrow cells from green fluorescent protein (GFP) transgenic C57BL/6 mice into the tail veins of recipient wild-type C57BL/6 mice that had been irradiated with a lethal dose of 8.5 Gy from a high-frequency linear accelerator. These mice were subjected to pulpectomy and pulp revascularization. At 1, 4, and 8 weeks after surgery, in vivo animal imaging and histologic analyses were conducted. In vivo animal imaging showed that the green biofluorescence signal from the transplanted GFP+ cells increased significantly and was maintained at a high level during the first 4 weeks after surgery. Immunofluorescence analyses of tooth specimens collected at 8 weeks postsurgery showed the presence of nestin+/GFP+, α smooth muscle actin (α-SMA)/GFP+, and NeuN/GFP+ cells within the regenerated pulplike tissue. These data confirm that transplanted bone marrow-derived cells can contribute to dental pulp regeneration. Copyright © 2016 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.
Fine regulation of RhoA and Rock is required for skeletal muscle differentiation.
Castellani, Loriana; Salvati, Erica; Alemà, Stefano; Falcone, Germana
2006-06-02
The RhoA GTPase controls a variety of cell functions such as cell motility, cell growth, and gene expression. Previous studies suggested that RhoA mediates signaling inputs that promote skeletal myogenic differentiation. We show here that levels and activity of RhoA protein are down-regulated in both primary avian myoblasts and mouse satellite cells undergoing differentiation, suggesting that a fine regulation of this GTPase is required. In addition, ectopic expression of activated RhoA in primary quail myocytes, but not in mouse myocytes, inhibits accumulation of muscle-specific proteins and cell fusion. By disrupting RhoA signaling with specific inhibitors, we have shown that this GTPase, although required for cell identity in proliferating myoblasts, is not essential for commitment to terminal differentiation and muscle gene expression. Ectopic expression of an activated form of its downstream effector, Rock, impairs differentiation of both avian and mouse myoblasts. Conversely, Rock inhibition with specific inhibitors and small interfering RNA-mediated gene silencing leads to accelerated progression in the lineage and enhanced cell fusion, underscoring a negative regulatory function of Rock in myogenesis. Finally, we have reported that Rock acts independently from RhoA in preventing myoblast exit from the cell cycle and commitment to differentiation and may receive signaling inputs from Raf-1 kinase.
Mouse and human HSPC immobilization in liquid culture by CD43- or CD44-antibody coating.
Loeffler, Dirk; Wang, Weijia; Hopf, Alois; Hilsenbeck, Oliver; Bourgine, Paul E; Rudolf, Fabian; Martin, Ivan; Schroeder, Timm
2018-03-29
Keeping track of individual cell identifications is imperative to the study of dynamic single-cell behavior over time. Highly motile hematopoietic stem and progenitor cells (HSPCs) migrate quickly and do not adhere, and thus must be imaged very frequently to keep cell identifications. Even worse, they are also flushed away during medium exchange. To overcome these limitations, we tested antibody coating for reducing HSPC motility in vitro. Anti-CD43- and anti-CD44-antibody coating reduced the cell motility of mouse and human HSPCs in a concentration-dependent manner. This enables 2-dimensional (2D) colony formation without cell mixing in liquid cultures, massively increases time-lapse imaging throughput, and also maintains cell positions during media exchange. Anti-CD43 but not anti-CD44 coating reduces mouse HSPC proliferation with increasing concentrations. No relevant effects on cell survival or myeloid and megakaryocyte differentiation of hematopoietic stem cells and multipotent progenitors 1-5 were detected. Human umbilical cord hematopoietic CD34 + cell survival, proliferation, and differentiation were not affected by either coating. This approach both massively simplifies and accelerates continuous analysis of suspension cells, and enables the study of their behavior in dynamic rather than static culture conditions over time. © 2018 by The American Society of Hematology.
Genomic interval engineering of mice identified a novel modulator of triglyceride production
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, Y.; Jong, M.C.; Frazer, K.A.
1999-10-01
To accelerate the biological annotation of novel genes discovered in sequenced of mammalian genomes, we are creating large deletions in the mouse genome targeted to include clusters of such genes. Here we describe the targeted deletion of a 450 kb region on mouse chromosome 11 which, based on computational analysis of the deleted murine sequences and human 5q orthologous sequences, codes for nine putative genes. Mice homozygous for the deletion had a variety of abnormalities including severe hypertriglyceridemia, hepatic and cardiac enlargement, growth retardation and premature mortality. Analysis of triglyceride metabolism in these animals demonstrated a several-fold increase in hepaticmore » very-low density lipoprotein (VLDL) triglyceride secretion, the most prevalent mechanism responsible for hypertriglyceridemia in humans. A series of mouse BAC and human YAC transgenes covering different intervals of the 450 kb deleted region were assessed for their ability to complement the deletion induced abnormalities. These studies revealed that OCTN2, a gene recently shown to play a role in carnitine transport, was able to correct the triglyceride abnormalities. The discovery of this previously unappreciated relationship between OCTN2, carnitine and hepatic triglyceride production is of particular importance due to the clinical consequence of hypertriglyceridemia and the paucity of genes known to modulate triglyceride secretion.« less
Titration of biologically active amyloid–β seeds in a transgenic mouse model of Alzheimer's disease
Morales, Rodrigo; Bravo-Alegria, Javiera; Duran-Aniotz, Claudia; Soto, Claudio
2015-01-01
Experimental evidence in animal models suggests that misfolded Amyloid-β (Aβ) spreads in disease following a prion-like mechanism. Several properties characteristics of infectious prions have been shown for the induction of Aβ aggregates. However, a detailed titration of Aβ misfolding transmissibility and estimation of the minimum concentration of biologically active Aβ seeds able to accelerate pathological changes has not yet been performed. In this study, brain extracts from old tg2576 animals were serially diluted and intra-cerebrally injected into young subjects from the same transgenic line. Animals were sacrificed several months after treatment and brain slices were analyzed for amyloid pathology. We observed that administration of misfolded Aβ was able to significantly accelerate amyloid deposition in young mice, even when the original sample was diluted a million times. The titration curve obtained in this experiment was compared to the natural Aβ load spontaneously accumulated by these mice overtime. Our findings suggest that administration of the largest dose of Aβ seeds led to an acceleration of pathology equivalent to over a year. These results show that active Aβ seeds present in the brain can seed amyloidosis in a titratable manner, similarly as observed for infectious prions. PMID:25879692
Porporato, Paolo E; Payen, Valéry L; De Saedeleer, Christophe J; Préat, Véronique; Thissen, Jean-Paul; Feron, Olivier; Sonveaux, Pierre
2012-12-01
Wounds notoriously accumulate lactate as a consequence of both anaerobic and aerobic glycolysis following microcirculation disruption, immune activation, and increased cell proliferation. Several pieces of evidence suggest that lactate actively participates in the healing process through the activation of several molecular pathways that collectively promote angiogenesis. Lactate indeed stimulates endothelial cell migration and tube formation in vitro, as well as the recruitment of circulating vascular progenitor cells and vascular morphogenesis in vivo. In this study, we examined whether the pro-angiogenic potential of lactate may be exploited therapeutically to accelerate wound healing. We show that lactate delivered from a Matrigel matrix improves reperfusion and opposes muscular atrophy in ischemic hindlimb wounds in mice. Both responses involve lactate-induced reparative angiogenesis. Using microdialysis and enzymatic measurements, we found that, contrary to poly-L-lactide (PLA), a subcutaneous implant of poly-D,L-lactide-co-glycolide (PLGA) allows sustained local and systemic lactate release. PLGA promoted angiogenesis and accelerated the closure of excisional skin wounds in different mouse strains. This polymer is FDA-approved for other applications, emphasizing the possibility of exploiting PLGA therapeutically to improve wound healing.
Hu, Simon; Lustig, Michael; Balakrishnan, Asha; Larson, Peder E. Z.; Bok, Robert; Kurhanewicz, John; Nelson, Sarah J.; Goga, Andrei; Pauly, John M.; Vigneron, Daniel B.
2010-01-01
High polarization of nuclear spins in liquid state through hyperpolarized technology utilizing dynamic nuclear polarization has enabled the direct monitoring of 13C metabolites in vivo at a high signal-to-noise ratio. Acquisition time limitations due to T1 decay of the hyperpolarized signal require accelerated imaging methods, such as compressed sensing, for optimal speed and spatial coverage. In this paper, the design and testing of a new echo-planar 13C three-dimensional magnetic resonance spectroscopic imaging (MRSI) compressed sensing sequence is presented. The sequence provides up to a factor of 7.53 in acceleration with minimal reconstruction artifacts. The key to the design is employing x and y gradient blips during a fly-back readout to pseudorandomly undersample kf-kx-ky space. The design was validated in simulations and phantom experiments where the limits of undersampling and the effects of noise on the compressed sensing nonlinear reconstruction were tested. Finally, this new pulse sequence was applied in vivo in preclinical studies involving transgenic prostate cancer and transgenic liver cancer murine models to obtain much higher spatial and temporal resolution than possible with conventional echo-planar spectroscopic imaging methods. PMID:20017160
Teng, Yan; Sun, An-Na; Pan, Xiao-Chen; Yang, Guan; Yang, Lei-Lei; Wang, Ming-Rong; Yang, Xiao
2006-07-15
The genetic bases underlying esophageal tumorigenesis are poorly understood. Our previous studies have shown that coordinated deletion of the Smad4 and PTEN genes results in accelerated hair loss and skin tumor formation in mice. Herein, we exemplify that the concomitant inactivation of Smad4 and PTEN accelerates spontaneous forestomach carcinogenesis at complete penetrance during the first 2 months of age. All of the forestomach tumors were invasive squamous cell carcinomas (SCCs), which recapitulated the natural history and pathologic features of human esophageal SCCs. A small population of the SCC lesions was accompanied by adenocarcinomas at the adjacent submucosa region in the double mutant mice. The rapid progression of forestomach tumor formation in the Smad4 and PTEN double knockout mice corresponded to a dramatic increase in esophageal and forestomach epithelial proliferation. The decreased expression of p27, p21, and p16 together with the overexpression of cyclin D1 contributed cooperatively to the accelerated forestomach tumorigenesis in the double mutant mice. Our results point strongly to the crucial relevance of synergy between Smad4 and PTEN to suppress forestomach tumorigenesis through the cooperative induction of cell cycle inhibitors.
Robust and Sensitive Analysis of Mouse Knockout Phenotypes
Karp, Natasha A.; Melvin, David; Mott, Richard F.
2012-01-01
A significant challenge of in-vivo studies is the identification of phenotypes with a method that is robust and reliable. The challenge arises from practical issues that lead to experimental designs which are not ideal. Breeding issues, particularly in the presence of fertility or fecundity problems, frequently lead to data being collected in multiple batches. This problem is acute in high throughput phenotyping programs. In addition, in a high throughput environment operational issues lead to controls not being measured on the same day as knockouts. We highlight how application of traditional methods, such as a Student’s t-Test or a 2-way ANOVA, in these situations give flawed results and should not be used. We explore the use of mixed models using worked examples from Sanger Mouse Genome Project focusing on Dual-Energy X-Ray Absorptiometry data for the analysis of mouse knockout data and compare to a reference range approach. We show that mixed model analysis is more sensitive and less prone to artefacts allowing the discovery of subtle quantitative phenotypes essential for correlating a gene’s function to human disease. We demonstrate how a mixed model approach has the additional advantage of being able to include covariates, such as body weight, to separate effect of genotype from these covariates. This is a particular issue in knockout studies, where body weight is a common phenotype and will enhance the precision of assigning phenotypes and the subsequent selection of lines for secondary phenotyping. The use of mixed models with in-vivo studies has value not only in improving the quality and sensitivity of the data analysis but also ethically as a method suitable for small batches which reduces the breeding burden of a colony. This will reduce the use of animals, increase throughput, and decrease cost whilst improving the quality and depth of knowledge gained. PMID:23300663
Reproductive Resilience to Food Shortage in a Small Heterothermic Primate
Perret, Martine; Henry, Pierre-Yves
2012-01-01
The massive energetic costs entailed by reproduction in most mammalian females may increase the vulnerability of reproductive success to food shortage. Unexpected events of unfavorable climatic conditions are expected to rise in frequency and intensity as climate changes. The extent to which physiological flexibility allows organisms to maintain reproductive output constant despite energetic bottlenecks has been poorly investigated. In mammals, reproductive resilience is predicted to be maximal during early stages of reproduction, due to the moderate energetic costs of ovulation and gestation relative to lactation. We experimentally tested the consequences of chronic-moderate and short-acute food shortages on the reproductive output of a small seasonally breeding primate, the grey mouse lemur (Microcebus murinus) under thermo-neutral conditions. These two food treatments were respectively designed to simulate the energetic constraints imposed by a lean year (40% caloric restriction over eight months) or by a sudden, severe climatic event occurring shortly before reproduction (80% caloric restriction over a month). Grey mouse lemurs evolved under the harsh, unpredictable climate of the dry forest of Madagascar and should thus display great potential for physiological adjustments to energetic bottlenecks. We assessed the resilience of the early stages of reproduction (mating success, fertility, and gestation) to these contrasted food treatments, and on the later stages (lactation and offspring growth) in response to the chronic food shortage only. Food deprived mouse lemurs managed to maintain constant most reproductive parameters, including oestrus timing, estrogenization level at oestrus, mating success, litter size, and litter mass as well as their overall number of surviving offspring at weaning. However, offspring growth was delayed in food restricted mothers. These results suggest that heterothermic, fattening-prone mammals display important reproductive resilience to energetic bottlenecks. More generally, species living in variable and unpredictable habitats may have evolved a flexible reproductive physiology that helps buffer environmental fluctuations. PMID:22848507
Reproductive resilience to food shortage in a small heterothermic primate.
Canale, Cindy I; Huchard, Elise; Perret, Martine; Henry, Pierre-Yves
2012-01-01
The massive energetic costs entailed by reproduction in most mammalian females may increase the vulnerability of reproductive success to food shortage. Unexpected events of unfavorable climatic conditions are expected to rise in frequency and intensity as climate changes. The extent to which physiological flexibility allows organisms to maintain reproductive output constant despite energetic bottlenecks has been poorly investigated. In mammals, reproductive resilience is predicted to be maximal during early stages of reproduction, due to the moderate energetic costs of ovulation and gestation relative to lactation. We experimentally tested the consequences of chronic-moderate and short-acute food shortages on the reproductive output of a small seasonally breeding primate, the grey mouse lemur (Microcebus murinus) under thermo-neutral conditions. These two food treatments were respectively designed to simulate the energetic constraints imposed by a lean year (40% caloric restriction over eight months) or by a sudden, severe climatic event occurring shortly before reproduction (80% caloric restriction over a month). Grey mouse lemurs evolved under the harsh, unpredictable climate of the dry forest of Madagascar and should thus display great potential for physiological adjustments to energetic bottlenecks. We assessed the resilience of the early stages of reproduction (mating success, fertility, and gestation) to these contrasted food treatments, and on the later stages (lactation and offspring growth) in response to the chronic food shortage only. Food deprived mouse lemurs managed to maintain constant most reproductive parameters, including oestrus timing, estrogenization level at oestrus, mating success, litter size, and litter mass as well as their overall number of surviving offspring at weaning. However, offspring growth was delayed in food restricted mothers. These results suggest that heterothermic, fattening-prone mammals display important reproductive resilience to energetic bottlenecks. More generally, species living in variable and unpredictable habitats may have evolved a flexible reproductive physiology that helps buffer environmental fluctuations.
Masum, Md Abdul; Ichii, Osamu; Elewa, Yaser Hosny Ali; Nakamura, Teppei; Kon, Yasuhiro
2017-09-04
The renal vasculature plays important roles in both homeostasis and pathology. In this study, we examined pathological changes in the renal microvascular in mouse models of kidney diseases. Glomerular lesions (GLs) in autoimmune disease-prone male BXSB/MpJ-Yaa (Yaa) mice and tubulointerstitial lesions (TILs) in male C57BL/6 mice subjected to unilateral ureteral obstruction (UUO) for 7 days were studied. Collected kidneys were examined using histopathological techniques. A nonparametric Mann-Whitney U test (P < 0.05) was performed to compare healthy controls and the experimental mice. The Kruskal-Wallis test was used to compare three or more groups, and multiple comparisons were performed using Scheffe's method when significant differences were observed (P < 0.05). Yaa mice developed severe autoimmune glomerulonephritis, and the number of CD34 + glomerular capillaries decreased significantly in GLs compared to that in control mice. However, UUO-treated mice showed severe TILs only, and CD34 + tubulointerstitial capillaries were decreased significantly in TILs with the progression of tubulointerstitial fibrosis compared to those in untreated control kidneys. Infiltrations of B-cells, T-cells, and macrophages increased significantly in the respective lesions of both disease models (P < 0.05). In observations of vascular corrosion casts by scanning electron microscopy and of microfil rubber-perfused thick kidney sections by fluorescence microscopy, segmental absences of capillaries were observed in the GLs and TILs of Yaa and UUO-treated mice, respectively. Further, transmission electron microscopy revealed capillary endothelial injury in the respective lesions of both models. The numbers of CD34 + glomerular and tubulointerstitial capillaries were negatively correlated with all examined parameters in GLs (P < 0.05) and TILs (P < 0.01), respectively. From the analysis of mouse models, we identified inverse pathological correlations between the number of local capillaries in GLs and TILs and the severity of kidney diseases.
Ota, Hidetaka; Ogawa, Sumito; Ouchi, Yasuyoshi; Akishita, Masahiro
2015-12-01
Alzheimer disease (AD) is a neurodegenerative disorder characterized by cognitive dysfunction. The pathology of AD is mainly related to amyloid ß (Aß)-peptides, but glutamate-mediated toxicity is also one of the main processes of memory impairment in AD. Glutamate is the main excitatory neurotransmitter in the central nervous system (CNS) and is particularly involved in synaptic plasticity, memory, and learning. Memantine is a low-affinity voltage-dependent noncompetitive antagonist at glutamatergic NMDA receptors. Here,we investigated whether memantine protects against glutamate-induced senescence. In PC12 cells, treatment with glutamate induced senescent phenotypes as judged by the cell appearance and senescence-associated ß-galactosidase (SA-ßgal) in parallel with decreased SIRT1 and increased p53 expression. However, treatment with memantine decreased glutamate-induced senescent PC12 cells and reversed the changes in SIRT1 and p53 expression. Glutamate is known to stimulate the production of NO and O2(-) and has the capacity to generate ONOO(-) in the CNS. Therefore, we investigated whether glutamate activates nNOS and memantine reverses it. Treatment with glutamate increased nNOS expression, activity, and production of NO,whereas memantine blocked them. Next, the in vivo effects of memantine on cognitive function in senescence-accelerated mouse prone 8 (SAMP8), as a model of AD, were investigated. In the Morris water maze test, SAMP8 showed a marked decline in performance, but memantine administration improved it. Moreover, neuronal senescence and the level of oxidative stress in the hippocampus were decreased by memantine. Finally, the effects of combination treatment with memantine and donepezil, a cholinesterase inhibitor, were investigated. We observed additive effects of memantine and donepezil on the senescent phenotype of PC12 cells and the hippocampus of SAMP8. These results indicate that inhibition of the NMDA receptor by memantine leads to a decrease innNOS activity and results in a reduction of glutamate-induced senescence. Thus, our present study suggests a critical role of memantine in the prevention of neuronal aging, and supports that donepezil has a combined effect with memantine.
NASA Astrophysics Data System (ADS)
Kubota, Tetsuya; Prasad Paudel, Prem
2016-04-01
In 2013, some landslides induced by heavy rainfalls occurred in southern part of Kathmandu, Nepal which is located southern suburb of Kathmandu, the capital. These landslide slopes hit by the strong Gorkha Earthquake in April 2015 and seemed to destabilize again. Hereby, to clarify their susceptibility of landslide in the earthquake, one of these landslide slopes was analyzed its slope stability by CSSDP (Critical Slip Surface analysis by Dynamic Programming based on limit equilibrium method, especially Janbu method) against slope failure with various seismic acceleration observed around Kathmandu in the Gorkha Earthquake. The CSSDP can detect the landslide slip surface which has minimum Fs (factor of safety) automatically using dynamic programming theory. The geology in this area mainly consists of fragile schist and it is prone to landslide occurrence. Field survey was conducted to obtain topological data such as ground surface and slip surface cross section. Soil parameters obtained by geotechnical tests with field sampling were applied. Consequently, the slope has distinctive characteristics followings in terms of slope stability: (1) With heavy rainfall, it collapsed and had a factor of safety Fs <1.0 (0.654 or more). (2) With seismic acceleration of 0.15G (147gal) observed around Kathmandu, it has Fs=1.34. (3) With possible local seismic acceleration of 0.35G (343gal) estimated at Kathmandu, it has Fs=0.989. If it were very shallow landslide and covered with cedars, it could have Fs =1.055 due to root reinforcement effect to the soil strength. (4) Without seismic acceleration and with no rainfall condition, it has Fs=1.75. These results can explain the real landslide occurrence in this area with the maximum seismic acceleration estimated as 0.15G in the vicinity of Kathmandu by the Gorkha Earthquake. Therefore, these results indicate landslide susceptibility of the slopes in this area with strong earthquake. In this situation, it is possible to predict efficiently the landslide susceptibility in earthquakes in this area by this method.
Diané, Abdoulaye; Pierce, W David; Russell, James C; Heth, C Donald; Vine, Donna F; Richard, Denis; Proctor, Spencer D
2014-03-14
We hypothesised that hypothalamic feeding-related neuropeptides are differentially expressed in obese-prone and lean-prone rats and trigger overeating-induced obesity. To test this hypothesis, in the present study, we measured energy balance and hypothalamic neuropeptide Y (NPY) and pro-opiomelanocortin (POMC) mRNA expressions in male JCR:LA-cp rats. We compared, in independent cohorts, free-feeding obese-prone (Obese-FF) and lean-prone (Lean-FF) rats at pre-weaning (10 d old), weaning (21-25 d old) and early adulthood (8-12 weeks). A group of Obese-pair-feeding (PF) rats pair-fed to the Lean-FF rats was included in the adult cohort. The body weights of 10-d-old Obese-FF and Lean-FF pups were not significantly different. However, when the pups were shifted from dams' milk to solid food (weaning), the obese-prone rats exhibited more energy intake over the days than the lean-prone rats and higher body and fat pad weights and fasting plasma glucose, leptin, insulin and lipid levels. These differences were consistent with higher energy consumption and lower energy expenditure. In the young adult cohort, the differences between the Obese-FF and Lean-FF rats became more pronounced, yielding significant age effects on most of the parameters of the metabolic syndrome, which were reduced in the Obese-PF rats. The obese-prone rats displayed higher NPY expression than the lean-prone rats at pre-weaning and weaning, and the expression levels did not differ by age. In contrast, POMC expression exhibited significant age-by-genotype differences. At pre-weaning, there was no genotype difference in POMC expression, but in the weanling cohort, obese-prone pups exhibited lower POMC expression than the lean-prone rats. This genotype difference became more pronounced at adulthood. Overall, the development of hyperphagia-induced obesity in obese-prone JCR rats is related to POMC expression down-regulation in the presence of established NPY overexpression.
Abroug, Fekri; Ouanes-Besbes, Lamia; Elatrous, Souheil; Brochard, Laurent
2008-06-01
To compare the effects of ventilation in prone and in supine position in patients with acute lung injury/acute respiratory distress syndrome (ALI/ARDS). Meta-analysis of randomised controlled trials. BioMedCentral, PubMed, CINAHL, and Embase (to November 2007), with additional information from authors. From selected randomised controlled trials comparing positioning in ALI/ARDS we extracted data concerning study design, disease severity, clinical outcomes, and adverse events. Five trials including 1,372 patients met the inclusion criteria for mortality analysis; one trial was added to assess the effects on acquisition of ventilator-associated pneumonia (VAP). The included trials were significantly underpowered and enrolled patients with varying severity. Prone positioning duration and mechanical ventilation strategy were not standardised across studies. Using a fixed-effects model, we did not find a significant effect of prone positioning (proning) on mortality (odds ratio 0.97, 95% confidence interval 0.77-1.22). The PaO(2)/FiO(2) ratio increased significantly more with proning (weighted means difference 25 mmHg, p < 0.00001). Proning was associated with a non-significant 23% reduction in the odds of VAP (p=0.09), and with no increase in major adverse airway complications: OR 1.01, 95% CI 0.71-1.43. Length of intensive care unit stay was marginally and not significantly increased by proning. Prone position is not associated with a significant reduction in mortality from ALI/ARDS despite a significant increase in PaO(2)/FiO(2), is safe, and tends to decrease VAP. Published studies exhibit substantial clinical heterogeneity, suggesting that an adequately sized study optimising the duration of proning and ventilation strategy is warranted to enable definitive conclusions to be drawn.
On the importance of distinguishing shame from guilt: Relations to problematic alcohol and drug use
Dearing, Ronda L.; Stuewig, Jeffrey; Tangney, June Price
2011-01-01
Previous research has demonstrated that shame-proneness (the tendency to feel bad about the self) relates to a variety of life problems, whereas guilt-proneness (the tendency to feel bad about a specific behavior) is more likely to be adaptive. The current analyses sought to clarify the relations of shame-proneness and guilt-proneness to substance use problems in three samples with differing levels of alcohol and drug problem severity: college undergraduates (Study 1 N =235, Study 2 N =249) and jail inmates (Study 3 N =332). Across samples, shame-proneness was generally positively correlated with substance use problems, whereas guilt-proneness was inversely related (or unrelated) to substance use problems. Results suggest that shame and guilt should be considered separately in the prevention and treatment of substance misuse. PMID:16022935
Gökce, Mehmet İlker; Ibiş, Arif; Sancı, Adem; Akıncı, Aykut; Bağcı, Uygar; Ağaoğlu, Eylül Asya; Süer, Evren; Gülpınar, Ömer
2017-12-01
Percutaneous nephrolithotomy (PNL) is the primary treatment modality for management of staghorn stones. PNL in supine position has important advantages over prone positon. However, studies comparing prone and supine positions for PNL in staghorn stone patients have conflicting results, and the aim of the current study was to compare prone and supine positions for PNL in staghorn stone cases. Data of patients underwent PNL for staghorn stones in supine or prone position by a single urologist were collected prospectively. The supine and prone position groups were compared for stone free rate (SFR) and complication rates. All patients were evaluated with NCCT for evaluation of SFR. Chi-square test was used to compare categorical variables and Student t test was applied for continuous variables of the treatment groups. The groups were similar for demographic and stone-related characteristics. Multi-caliceal and intercostal access was more common in prone position. Operation duration was significantly shorter and hemoglobin drop was significantly less in supine group. SFR was 64.1 and 60.4% in the supine and prone groups, respectively (p = 0.72). Complication rates were similar in the two groups but Clavien III complications were observed in two patients in the prone group. PNL in supine position is an effective treatment for management of staghorn stones. The need for multi-caliceal and intercostal puncture is less when combined with retrograde intrarenal surgery. PNL in supine position should be considered as primary treatment option in staghorn stone cases.