Science.gov

Sample records for accelerated postnatal growth

  1. The structural alteration of gut microbiota in low-birth-weight mice undergoing accelerated postnatal growth.

    PubMed

    Wang, Jingjing; Tang, Huang; Wang, Xiaoxin; Zhang, Xu; Zhang, Chenhong; Zhang, Menghui; Zhao, Yufeng; Zhao, Liping; Shen, Jian

    2016-01-01

    The transient disruption of gut microbiota in infancy by antibiotics causes adult adiposity in mice. Accelerated postnatal growth (A) leads to a higher risk of adult metabolic syndrome in low birth-weight (LB) humans than in normal birth-weight (NB) individuals, but the underlying mechanism remains unclear. Here, we set up an experiment using LB + A mice, NB + A mice, and control mice with NB and normal postnatal growth. At 24 weeks of age (adulthood), while NB + A animals had a normal body fat content and glucose tolerance compared with controls, LB + A mice exhibited excessive adiposity and glucose intolerance. In infancy, more fecal bacteria implicated in obesity were increased in LB + A pups than in NB + A pups, including Desulfovibrionaceae, Enterorhabdus, and Barnesiella. One bacterium from the Lactobacillus genus, which has been implicated in prevention of adult adiposity, was enhanced only in NB + A pups. Besides, LB + A pups, but not NB + A pups, showed disrupted gut microbiota fermentation activity. After weaning, the fecal microbiota composition of LB + A mice, but not that of NB + A animals, became similar to that of controls by 24 weeks. In infancy, LB + A mice have a more dysbiotic gut microbiome compared to NB + A mice, which might increase their risk of adult metabolic syndrome. PMID:27277748

  2. The structural alteration of gut microbiota in low-birth-weight mice undergoing accelerated postnatal growth

    PubMed Central

    Wang, Jingjing; Tang, Huang; Wang, Xiaoxin; Zhang, Xu; Zhang, Chenhong; Zhang, Menghui; Zhao, Yufeng; Zhao, Liping; Shen, Jian

    2016-01-01

    The transient disruption of gut microbiota in infancy by antibiotics causes adult adiposity in mice. Accelerated postnatal growth (A) leads to a higher risk of adult metabolic syndrome in low birth-weight (LB) humans than in normal birth-weight (NB) individuals, but the underlying mechanism remains unclear. Here, we set up an experiment using LB + A mice, NB + A mice, and control mice with NB and normal postnatal growth. At 24 weeks of age (adulthood), while NB + A animals had a normal body fat content and glucose tolerance compared with controls, LB + A mice exhibited excessive adiposity and glucose intolerance. In infancy, more fecal bacteria implicated in obesity were increased in LB + A pups than in NB + A pups, including Desulfovibrionaceae, Enterorhabdus, and Barnesiella. One bacterium from the Lactobacillus genus, which has been implicated in prevention of adult adiposity, was enhanced only in NB + A pups. Besides, LB + A pups, but not NB + A pups, showed disrupted gut microbiota fermentation activity. After weaning, the fecal microbiota composition of LB + A mice, but not that of NB + A animals, became similar to that of controls by 24 weeks. In infancy, LB + A mice have a more dysbiotic gut microbiome compared to NB + A mice, which might increase their risk of adult metabolic syndrome. PMID:27277748

  3. Coenzyme Q10 prevents hepatic fibrosis, inflammation, and oxidative stress in a male rat model of poor maternal nutrition and accelerated postnatal growth1

    PubMed Central

    Tarry-Adkins, Jane L; Fernandez-Twinn, Denise S; Hargreaves, Iain P; Neergheen, Viruna; Aiken, Catherine E; Martin-Gronert, Malgorzata S; McConnell, Josie M; Ozanne, Susan E

    2016-01-01

    Background: It is well established that low birth weight and accelerated postnatal growth increase the risk of liver dysfunction in later life. However, molecular mechanisms underlying such developmental programming are not well characterized, and potential intervention strategies are poorly defined. Objectives: We tested the hypotheses that poor maternal nutrition and accelerated postnatal growth would lead to increased hepatic fibrosis (a pathological marker of liver dysfunction) and that postnatal supplementation with the antioxidant coenzyme Q10 (CoQ10) would prevent this programmed phenotype. Design: A rat model of maternal protein restriction was used to generate low-birth-weight offspring that underwent accelerated postnatal growth (termed “recuperated”). These were compared with control rats. Offspring were weaned onto standard feed pellets with or without dietary CoQ10 (1 mg/kg body weight per day) supplementation. At 12 mo, hepatic fibrosis, indexes of inflammation, oxidative stress, and insulin signaling were measured by histology, Western blot, ELISA, and reverse transcriptase–polymerase chain reaction. Results: Hepatic collagen deposition (diameter of deposit) was greater in recuperated offspring (mean ± SEM: 12 ± 2 μm) than in controls (5 ± 0.5 μm) (P < 0.001). This was associated with greater inflammation (interleukin 6: 38% ± 24% increase; P < 0.05; tumor necrosis factor α: 64% ± 24% increase; P < 0.05), lipid peroxidation (4-hydroxynonenal, measured by ELISA: 0.30 ± 0.02 compared with 0.19 ± 0.05 μg/mL per μg protein; P < 0.05), and hyperinsulinemia (P < 0.05). CoQ10 supplementation increased (P < 0.01) hepatic CoQ10 concentrations and ameliorated liver fibrosis (P < 0.001), inflammation (P < 0.001), some measures of oxidative stress (P < 0.001), and hyperinsulinemia (P < 0.01). Conclusions: Suboptimal in utero nutrition combined with accelerated postnatal catch-up growth caused more hepatic fibrosis in adulthood, which was

  4. Poor maternal nutrition and accelerated postnatal growth induces an accelerated aging phenotype and oxidative stress in skeletal muscle of male rats

    PubMed Central

    Fernandez-Twinn, Denise S.; Chen, Jian Hua; Hargreaves, Iain P.; Neergheen, Viruna; Aiken, Catherine E.; Ozanne, Susan E.

    2016-01-01

    ABSTRACT ‘Developmental programming’, which occurs as a consequence of suboptimal in utero and early environments, can be associated with metabolic dysfunction in later life, including an increased incidence of cardiovascular disease and type 2 diabetes, and predisposition of older men to sarcopenia. However, the molecular mechanisms underpinning these associations are poorly understood. Many conditions associated with developmental programming are also known to be associated with the aging process. We therefore utilized our well-established rat model of low birth weight and accelerated postnatal catch-up growth (termed ‘recuperated’) in this study to establish the effects of suboptimal maternal nutrition on age-associated factors in skeletal muscle. We demonstrated accelerated telomere shortening (a robust marker of cellular aging) as evidenced by a reduced frequency of long telomeres (48.5-8.6 kb) and an increased frequency of short telomeres (4.2-1.3 kb) in vastus lateralis muscle from aged recuperated offspring compared to controls. This was associated with increased protein expression of the DNA-damage-repair marker 8-oxoguanine-glycosylase (OGG1) in recuperated offspring. Recuperated animals also demonstrated an oxidative stress phenotype, with decreased citrate synthase activity, increased electron-transport-complex activities of complex I, complex II-III and complex IV (all markers of functional mitochondria), and increased xanthine oxidase (XO), p67phox and nuclear-factor kappa-light-chain-enhancer of activated B-cells (NF-κB). Recuperated offspring also demonstrated increased antioxidant defense capacity, with increased protein expression of manganese superoxide dismutase (MnSOD), copper-zinc superoxide dismutase (CuZnSOD), catalase and heme oxygenase-1 (HO1), all of which are known targets of NF-κB and can be upregulated as a consequence of oxidative stress. Recuperated offspring also had a pro-inflammatory phenotype, as evidenced by

  5. Dietary supplementation with β-hydroxy-β-methylbutyrate calcium during the early postnatal period accelerates skeletal muscle fibre growth and maturity in intra-uterine growth-retarded and normal-birth-weight piglets.

    PubMed

    Wan, Haifeng; Zhu, Jiatao; Su, Guoqi; Liu, Yan; Hua, Lun; Hu, Liang; Wu, Caimei; Zhang, Ruinan; Zhou, Pan; Shen, Yong; Lin, Yan; Xu, Shengyu; Fang, Zhengfeng; Che, Lianqiang; Feng, Bin; Wu, De

    2016-04-01

    Intra-uterine growth restriction (IUGR) impairs postnatal growth and skeletal muscle development in neonatal infants. This study evaluated whether dietary β-hydroxy-β-methylbutyrate Ca (HMB-Ca) supplementation during the early postnatal period could improve muscle growth in IUGR neonates using piglets as a model. A total of twelve pairs of IUGR and normal-birth-weight (NBW) male piglets with average initial weights (1·85 (sem 0·36) and 2·51 (sem 0·39) kg, respectively) were randomly allotted to groups that received milk-based diets (CON) or milk-based diets supplemented with 800 mg/kg HMB-Ca (HMB) during days 7-28 after birth. Blood and longissimus dorsi (LD) samples were collected and analysed for plasma amino acid content, fibre morphology and the expression of genes related to muscle development. The results indicate that, regardless of diet, IUGR piglets had a significantly decreased average daily weight gain (ADG) compared with that of NBW piglets (P<0·05). However, IUGR piglets fed HMB-Ca had a net weight and ADG similar to that of NBW piglets fed the CON diet. Irrespective of body weight (BW), HMB-Ca supplementation markedly increased the type II fibre cross-sectional area and the mRNA expression of mammalian target of rapamycin (mTOR), insulin-like growth factor-1 and myosin heavy-chain isoform IIb in the LD of piglets (P<0·05). Moreover, there was a significant interaction between the effects of BW and HMB on mTOR expression in the LD (P<0·05). In conclusion, HMB-Ca supplementation during the early postnatal period could improve skeletal muscle growth and maturity by accelerating fast-twitch glycolytic fibre development in piglets.

  6. Early influences of nutrition on postnatal growth.

    PubMed

    Koletzko, Berthold; Beyer, Jeanette; Brands, Brigitte; Demmelmair, Hans; Grote, Veit; Haile, Gudrun; Gruszfeld, Dariusz; Rzehak, Peter; Socha, Piotr; Weber, Martina

    2013-01-01

    Health and nutrition modulate postnatal growth. The availability of amino acids and energy, and insulin and insulin-like growth factor-I (IGF-I) regulates early growth through the mTOR pathway. Amino acids and glucose also stimulate the secretion of IGF-I and insulin. Postnatal growth induces lasting, programming effects on later body size and adiposity in animals and in human observational studies. Rapid weight gain in infancy and the first 2 years was shown to predict increased obesity risk in childhood and adulthood. Breastfeeding leads to lesser high weight gain in infancy and reduces obesity risk in later life by about 20%, presumably partly due to the lower protein supply with human milk than conventional infant formula. In a large randomized clinical trial, we tested the hypothesis that reduced infant formula protein contents lower insulin-releasing amino acid concentrations and thereby decrease circulating insulin and IGF-I levels, resulting in lesser early weight gain and reduced later obesity risk (the 'Early Protein Hypothesis'). The results demonstrate that lowered protein in infant formula induces similar - but not equal - metabolic and endocrine responses and normalizes weight and BMI relative to breastfed controls at the age of 2 years. The results available should lead to enhanced efforts to actively promote, protect and support breastfeeding. For infants that are not breastfed or not fully breastfed, the use of infant formulas with lower protein contents but high protein quality appears preferable. Cows' milk as a drink provides high protein intake and should be avoided in infancy.

  7. Early influences of nutrition on postnatal growth.

    PubMed

    Koletzko, Berthold; Beyer, Jeanette; Brands, Brigitte; Demmelmair, Hans; Grote, Veit; Haile, Gudrun; Gruszfeld, Dariusz; Rzehak, Peter; Socha, Piotr; Weber, Martina

    2013-01-01

    Health and nutrition modulate postnatal growth. The availability of amino acids and energy, and insulin and insulin-like growth factor-I (IGF-I) regulates early growth through the mTOR pathway. Amino acids and glucose also stimulate the secretion of IGF-I and insulin. Postnatal growth induces lasting, programming effects on later body size and adiposity in animals and in human observational studies. Rapid weight gain in infancy and the first 2 years was shown to predict increased obesity risk in childhood and adulthood. Breastfeeding leads to lesser high weight gain in infancy and reduces obesity risk in later life by about 20%, presumably partly due to the lower protein supply with human milk than conventional infant formula. In a large randomized clinical trial, we tested the hypothesis that reduced infant formula protein contents lower insulin-releasing amino acid concentrations and thereby decrease circulating insulin and IGF-I levels, resulting in lesser early weight gain and reduced later obesity risk (the 'Early Protein Hypothesis'). The results demonstrate that lowered protein in infant formula induces similar - but not equal - metabolic and endocrine responses and normalizes weight and BMI relative to breastfed controls at the age of 2 years. The results available should lead to enhanced efforts to actively promote, protect and support breastfeeding. For infants that are not breastfed or not fully breastfed, the use of infant formulas with lower protein contents but high protein quality appears preferable. Cows' milk as a drink provides high protein intake and should be avoided in infancy. PMID:23502135

  8. Intrauterine Growth Restriction: Antenatal and Postnatal Aspects.

    PubMed

    Sharma, Deepak; Shastri, Sweta; Sharma, Pradeep

    2016-01-01

    Intrauterine growth restriction (IUGR), a condition that occurs due to various reasons, is an important cause of fetal and neonatal morbidity and mortality. It has been defined as a rate of fetal growth that is less than normal in light of the growth potential of that specific infant. Usually, IUGR and small for gestational age (SGA) are used interchangeably in literature, even though there exist minute differences between them. SGA has been defined as having birth weight less than two standard deviations below the mean or less than the 10th percentile of a population-specific birth weight for specific gestational age. These infants have many acute neonatal problems that include perinatal asphyxia, hypothermia, hypoglycemia, and polycythemia. The likely long-term complications that are prone to develop when IUGR infants grow up includes growth retardation, major and subtle neurodevelopmental handicaps, and developmental origin of health and disease. In this review, we have covered various antenatal and postnatal aspects of IUGR. PMID:27441006

  9. Intrauterine Growth Restriction: Antenatal and Postnatal Aspects

    PubMed Central

    Sharma, Deepak; Shastri, Sweta; Sharma, Pradeep

    2016-01-01

    Intrauterine growth restriction (IUGR), a condition that occurs due to various reasons, is an important cause of fetal and neonatal morbidity and mortality. It has been defined as a rate of fetal growth that is less than normal in light of the growth potential of that specific infant. Usually, IUGR and small for gestational age (SGA) are used interchangeably in literature, even though there exist minute differences between them. SGA has been defined as having birth weight less than two standard deviations below the mean or less than the 10th percentile of a population-specific birth weight for specific gestational age. These infants have many acute neonatal problems that include perinatal asphyxia, hypothermia, hypoglycemia, and polycythemia. The likely long-term complications that are prone to develop when IUGR infants grow up includes growth retardation, major and subtle neurodevelopmental handicaps, and developmental origin of health and disease. In this review, we have covered various antenatal and postnatal aspects of IUGR. PMID:27441006

  10. Effect of fetal undernutrition and postnatal overfeeding on rat adipose tissue and organ growth at early stages of postnatal development.

    PubMed

    Munoz-Valverde, D; Rodríguez-Rodríguez, P; Gutierrez-Arzapalo, P Y; López de Pablo, A L; Carmen González, M; López-Giménez, R; Somoza, B; Arribas, S M

    2015-01-01

    Intrauterine and perinatal life are critical periods for programming of cardiometabolic diseases. However, their relative role remains controversial. We aimed to assess, at weaning, sex-dependent alterations induced by fetal or postnatal nutritional interventions on key organs for metabolic and cardiovascular control. Fetal undernutrition was induced by dam food restriction (50 % from mid-gestation to delivery) returning to ad libitum throughout lactation (Maternal Undernutrition, MUN, 12 pups/litter). Postnatal overfeeding (POF) was induced by litter size reduction from normally fed dams (4 pups/litter). Compared to control, female and male MUN offspring exhibited: 1) low birth weight and accelerated growth, reaching similar weight and tibial length by weaning, 2) increased glycemia, liver and white fat weights; 3) increased ventricular weight and tendency to reduced kidney weight (males only). Female and male POF offspring showed: 1) accelerated growth; 2) increased glycemia, liver and white fat weights; 3) unchanged heart and kidney weights. In conclusion, postnatal accelerated growth, with or without fetal undernutrition, induces early alterations relevant for metabolic disease programming, while fetal undernutrition is required for heart abnormalities. The progression of cardiac alterations and their role on hypertension development needs to be evaluated. The similarities between sexes in pre-pubertal rats suggest a role of sex-hormones in female protection against programming.

  11. Postnatal growth and age estimation in Scotophilus kuhlii.

    PubMed

    Chen, Shiang-Fan; Huang, Shang-Shang; Lu, Dau-Jye; Shen, Tsung-Jen

    2016-01-01

    Adequate postnatal growth is important for young bats to develop skilled sensory and locomotor abilities, which are highly associated with their survival once independent. This study investigated the postnatal growth and development of Scotophilus kuhlii in captivity. An empirical growth curve was established, and the postnatal growth rate was quantified to derive an age-predictive equation. By further controlling the fostering conditions of twins, the differences in the development patterns between pups that received maternal care or were hand-reared were analyzed to determine whether the latter developed in the same manner as their maternally reared counterparts. Our results indicate that both forearm length and body mass increased rapidly and linearly during the first 4 weeks, after which the growth rate gradually decreased to reach a stable level. The first flight occurred at an average age of 39 days with a mean forearm length and body mass of 92.07% and 70.52% of maternal size, respectively. The developmental pattern of hand-reared pups, although similar to that of their maternally reared twin siblings, displayed a slightly faster growth rate in the 4th and 5th weeks. The heavier body mass of hand-reared pups during the pre-fledging period may cause higher wing loading, potentially influencing the flight performance and survival of the bats once independent. PMID:26600428

  12. Postnatal growth of tracheobronchial airways of Sprague–Dawley rats

    PubMed Central

    Lee, DongYoub; Srirama, Praveen K; Wallis, Christopher; Wexler, Anthony S

    2011-01-01

    Rats are widely used for the studies of pulmonary toxicology in both juveniles and adults. To facilitate such studies, investigators have developed models of lung architecture based on manual or computerized airway measurements. However, postnatal growth of conducting airways of rat lungs has never been reported. In this paper, we present conducting airway architecture statistics for male Sprague–Dawley rat lungs at ages 15, 28, 40, and 81 days by analyzing CT images from airway silicon casts. Detailed branching characteristics and intersubject variance are presented. This study shows that (i) airway growth in diameter and length is not linear with age, (ii) growth of airway length is faster than that of diameter during the 15–81-day postnatal period, and (iii) asymmetry in airway diameter (ratio of major to minor daughter diameter) increases with age. PMID:21534951

  13. Cellular basis of differential limb growth in postnatal gray short-tailed opossums (Monodelphis domestica).

    PubMed

    Beiriger, Anastasia; Sears, Karen E

    2014-06-01

    While growth has been studied extensively in invertebrates, the mechanisms by which it is controlled in vertebrates, particularly in mammals, remain poorly understood. In this study, we investigate the cellular basis of differential limb growth in postnatal Monodelphis domestica, the gray short-tailed opossum, to gain insights into the mechanisms regulating mammalian growth. Opossums are an ideal model for the study of growth because they are born with relatively large, well-developed forelimbs and small hind limbs that must "catch up" to the forelimb before the animal reaches adulthood. Postnatal Days 1-17 were identified as a key period of growth for the hind limbs, during which they undergo accelerated development and nearly quadruple in length. Histology performed on fore- and hind limbs from this period indicates a higher rate of cellular differentiation in the long bones of the hind limbs. Immunohistochemical assays indicate that cellular proliferation is also occurring at a significantly greater rate in the long bones of the hind limb at 6 days after birth. Taken together, these results suggest that a faster rate of cellular proliferation and differentiation in the long bones of the hind limb relative to those of the forelimb generates a period of accelerated growth through which the adult limb phenotype of M. domestica is achieved. Assays for gene expression suggest that the molecular basis of this differential growth differs from that previously identified for differential pre-natal growth in opossum fore- and hind limbs.

  14. Behavioral intervention and post-natal growth in full-term intrauterine growth retarded (IUGR) infants.

    PubMed

    Garcia Coll, C T; Halpern, L; Seifer, R; Meyer, E C; Kilis, E; Lester, B M; Vohr, B R; Oh, W

    1996-09-20

    The purpose of this study was twofold: (1) to describe the patterns of post-natal growth in full-term infants as a function of IUGR and (2) to assess the impact of an individualized behavioral feeding intervention with the mothers on these patterns of infant growth. Eighty-eight (88) full-term infants, including 54 with IUGR, half of whom received behavioral intervention were included. Weight, length, skinfold thickness, head circumference and Ponderal Index were measured at birth and at 1, 4, 8, 12, and 18 months. Results show positive intervention effects between birth and 1 month in weight, length, skinfold thickness, and Ponderal Index. However, there were no intervention effects at subsequent ages. No evidence was found for catch-up growth in full-term IUGR infants in weight, length, and head circumference. We conclude that an individualized behavioral feeding intervention can accelerate early growth in IUGR infants, but the positive effects on growth are only seen while the intervention lasts (between birth and 1 month). On most parameters of physical growth, there is no lasting catch-up growth over the first 18 months in IUGR full-term infants.

  15. Explaining postnatal growth plasticity in a generalist brood parasite

    NASA Astrophysics Data System (ADS)

    Remeš, Vladimír

    2010-03-01

    Selection of a particular host has clear consequences for the performance of avian brood parasites. Experimental studies showed that growth rate and fledging mass of brood parasites varied between host species independently of the original host species. Finding correlates of this phenotypic plasticity in growth is important for assessing adaptiveness and potential fitness consequences of host choice. Here, I analyzed the effects of several host characteristics on growth rate and fledging mass of the young of brown-headed cowbird ( Molothrus ater), a generalist, non-evicting brood parasite. Cowbird chicks grew better in fast-developing host species and reached higher fledging mass in large hosts with fast postnatal development. A potential proximate mechanism linking fast growth and high fledging mass of cowbird with fast host development is superior food supply in fast-developing foster species. So far, we know very little about the consequences of the great plasticity in cowbird growth for later performance of the adult parasite. Thus, cowbird species could become interesting model systems for investigating the role of plasticity and optimization in the evolution of growth rate in birds.

  16. Placental restriction of fetal growth reduces size at birth and alters postnatal growth, feeding activity, and adiposity in the young lamb.

    PubMed

    De Blasio, Miles J; Gatford, Kathryn L; Robinson, Jeffrey S; Owens, Julie A

    2007-02-01

    Intrauterine growth restriction (IUGR) is associated with accelerated growth after birth. Together, IUGR and accelerated growth after birth predict reduced lean tissue mass and increased obesity in later life. Although placental insufficiency is a major cause of IUGR, whether it alters growth and adiposity in early postnatal life is not known. We hypothesized that placental restriction (PR) in the sheep would reduce size at birth and increase postnatal growth rate, fat mass, and feeding activity in the young lamb. PR reduced survival rate and size at birth, with soft tissues reduced to a greater extent than skeletal tissues and relative sparing of head width (P < 0.05 for all). PR did not alter absolute growth rates (i.e., the slope of the line of best fit for age vs. parameter size from birth to 45 days of age) but increased neonatal fractional growth rates (absolute growth rate relative to size at birth) for body weight (+24%), tibia (+15%) and metatarsal (+18%) lengths, hindlimb (+23%) and abdominal (+19%) circumferences, and fractional growth rates for current weight (P < 0.05) weekly throughout the first 45 days of life. PR and small size at birth reduced individual skeletal muscle weights and increased visceral adiposity in absolute and relative terms. PR also altered feeding activity, which increased with decreasing size at birth and was predictive of increased postnatal growth and adiposity. In conclusion, PR reduced size at birth and induced catch-up growth postnatally, normalizing weight and length but increasing adiposity in early postnatal life. Increased feeding activity may contribute to these alterations in growth and body composition following prenatal restraint and, if they persist, may lead to adverse metabolic and cardiovascular outcomes in later life. PMID:17023666

  17. Should We Promote Catch-Up Growth or Growth Acceleration in Low-Birthweight Infants?

    PubMed

    Singhal, Atul

    2015-01-01

    The idea that catch-up growth or growth acceleration has adverse effects on long-term health has generated much debate. This pattern of growth is most commonly seen after birth in infants of low birthweight; a global problem affecting over 20 million newborns a year. Faster postnatal growth may have short-term benefits but increases the long-term risk of aging, obesity and metabolic disease. Consequently, the optimal pattern of postnatal growth is unclear and is likely to differ in different populations. In infants born prematurely, faster postnatal growth improves long-term cognitive function but is associated with later risk factors for cardiovascular disease. So, on balance, the current policy is to promote faster growth by increasing nutrient intake (e.g. using higher-nutrient preterm formulas). Whether the same policy should apply to larger preterm infants is not known. Similarly, in infants from impoverished environments, the short-term benefits of faster postnatal growth may outweigh long-term disadvantages. However, whether similar considerations apply to infants from countries in transition is uncertain. For term infants from developed countries, promoting catch-up growth by nutritional supplementation has few advantages for short- or long-term health. Overall therefore, a 'one size fits all' solution for the optimal pattern of postnatal growth is unlikely. PMID:26111563

  18. Should We Promote Catch-Up Growth or Growth Acceleration in Low-Birthweight Infants?

    PubMed

    Singhal, Atul

    2015-01-01

    The idea that catch-up growth or growth acceleration has adverse effects on long-term health has generated much debate. This pattern of growth is most commonly seen after birth in infants of low birthweight; a global problem affecting over 20 million newborns a year. Faster postnatal growth may have short-term benefits but increases the long-term risk of aging, obesity and metabolic disease. Consequently, the optimal pattern of postnatal growth is unclear and is likely to differ in different populations. In infants born prematurely, faster postnatal growth improves long-term cognitive function but is associated with later risk factors for cardiovascular disease. So, on balance, the current policy is to promote faster growth by increasing nutrient intake (e.g. using higher-nutrient preterm formulas). Whether the same policy should apply to larger preterm infants is not known. Similarly, in infants from impoverished environments, the short-term benefits of faster postnatal growth may outweigh long-term disadvantages. However, whether similar considerations apply to infants from countries in transition is uncertain. For term infants from developed countries, promoting catch-up growth by nutritional supplementation has few advantages for short- or long-term health. Overall therefore, a 'one size fits all' solution for the optimal pattern of postnatal growth is unlikely.

  19. Pre- and post-natal growth in two sisters with 3-M syndrome.

    PubMed

    Lugli, Licia; Bertucci, Emma; Mazza, Vincenzo; Elmakky, Amira; Ferrari, Fabrizio; Neuhaus, Christine; Percesepe, Antonio

    2016-04-01

    3-M syndrome (OMIM #273750) is a rare autosomal recessive growth disorder characterized by severe pre- and post-natal growth restriction, associated with minor skeletal abnormalities and dysmorphisms. Although the 3-M syndrome is well known as a primordial dwarfism, descriptions of the prenatal growth are missing. We report a family with variable phenotypic features of 3-M syndrome and we describe the prenatal and postnatal growth pattern of two affected sisters with a novel homozygous CUL7 mutation (c.3173-1G>C), showing a pre- and post-natal growth deficiency and a normal cranial circumference. PMID:26850509

  20. Eating behavior, prenatal and postnatal growth in Angelman syndrome.

    PubMed

    Mertz, Line G B; Christensen, Rikke; Vogel, Ida; Hertz, Jens M; Østergaard, John R

    2014-11-01

    The objectives of the present study were to investigate eating behavior and growth parameters in Angelman syndrome. We included 39 patients with Angelman syndrome. Twelve cases had a larger Class I deletion, eighteen had a smaller Class II deletion, whereas paternal uniparental disomy (pUPD) or a verified UBE3A mutation were present in five and four cases, respectively. Eating behavior was assessed by a questionnaire. Anthropometric measures were obtained from medical records and compared to Danish reference data. Children with pUPD had significantly larger birth weight and birth length than children carrying a deletion or a UBE3A mutation. We found no difference in birth weight or length in children with Class I or Class II deletions. When maternal birth weight and/or birth weight of siblings were taken into consideration, children with Class I deletion had a lower weight at birth than expected, and the weight continued to be reduced during the investigated initial five years of life. In contrast, children with pUPD showed hyperphagic behavior and their weight increased significantly after the age of two years. Accordingly, their body mass index was significantly increased as compared to children with a deletion. At birth, one child showed microcephaly. At five years of age, microcephaly was observed in half of the deletion cases, but in none of the cases with a UBE3A mutation or pUPD. The apparently normal cranial growth in the UBE3A and pUPD patients should however be regarded as the result of a generally increased growth. Eating behavior, pre- and postnatal growth in children with Angelman syndrome depends on genotype. PMID:25064682

  1. Maternal Nutrient Restriction During Late Gestation and Early Postnatal Growth in Sheep Differentially Reset the Control of Energy Metabolism in the Gastric Mucosa

    PubMed Central

    Sebert, S. P.; Dellschaft, N. S.; Chan, L. L. Y.; Street, H.; Henry, M.; Francois, C.; Sharma, V.; Fainberg, H. P.; Patel, N.; Roda, J.; Keisler, D.; Budge, H.

    2011-01-01

    Fetal growth restriction followed by accelerated postnatal growth contributes to impaired metabolic function in adulthood. The extent to which these outcomes may be mediated centrally within the hypothalamus, as opposed to in the periphery within the digestive tract, remains unknown. In a sheep model, we achieved intrauterine growth restriction experimentally by maternal nutrient restriction (R) that involved a 40% reduction in food intake through late gestation. R offspring were then either reared singly to accelerate postnatal growth (RA) or as twins and compared with controls also reared singly. From weaning, all offspring were maintained indoors until adulthood. A reduced litter size accelerated postnatal growth for only the first month of lactation. Independently from postnatal weight gain and later fat mass, R animals developed insulin resistance as adults. However, restricted accelerated offspring compared with both the control accelerated and restricted restricted offspring ate less and had higher fasting plasma leptin as adults, an adaptation which was accompanied by changes in energy sensing and cell proliferation within the abomasum. Additionally, although fetal restriction down-regulated gene expression of mammalian target of rapamycin and carnitine palmitoyltransferase 1-dependent pathways in the abomasum, RA offspring compensated for this by exhibiting greater activity of AMP-activated kinase-dependent pathways. This study demonstrates a role for perinatal nutrition in the peripheral control of food intake and in energy sensing in the gastric mucosal and emphasizes the importance of diet in early life in regulating energy metabolism during adulthood. PMID:21558318

  2. Prenatal low-protein and postnatal high-fat diets induce rapid adipose tissue growth by inducing Igf2 expression in Sprague Dawley rat offspring.

    PubMed

    Claycombe, Kate J; Uthus, Eric O; Roemmich, James N; Johnson, Luann K; Johnson, W Thomas

    2013-10-01

    Maternal low-protein diets result in lower birth weight followed by accelerated catch-up growth that is accompanied by the development of obesity and glucose intolerance in later life. Whether postnatal high-fat (HF) diets further contribute to the development of obesity and insulin resistance in offspring by affecting adipose tissue metabolism and DNA methylation is currently unknown. Obese-prone Sprague-Dawley rats were fed 8% low protein (LP) or 20% normal protein diets for 3 wk prior to conception and throughout pregnancy and lactation to investigate whether prenatal LP and postnatal HF diets affect the rate of adipose tissue growth, insulin-like growth factor 2 (Igf2) expression, and DNA methylation in male offspring. At weaning, the offspring were fed 10% normal fat or 45% HF diets for 12 wk. The adipose tissue growth rate was increased (up to 26-fold) by the LP prenatal and HF postnatal diets. Adipose tissue Igf2 mRNAs and DNA methylation were increased by the LP prenatal and HF postnatal diets. The LP prenatal and HF postnatal diet increased the number of small adipocytes in adipose tissue and decreased insulin sensitivity. These findings suggest that prenatal LP and postnatal HF intake result in adipose tissue catch-up growth through alterations in the expression of the Igf2 gene and DNA methylation within adipocytes. These alterations in adiposity are accompanied by an increased risk of development of type 2 diabetes.

  3. Postnatal nutritional restriction affects growth and immune function of piglets with intra-uterine growth restriction.

    PubMed

    Hu, Liang; Liu, Yan; Yan, Chuan; Peng, Xie; Xu, Qin; Xuan, Yue; Han, Fei; Tian, Gang; Fang, Zhengfeng; Lin, Yan; Xu, Shengyu; Zhang, Keying; Chen, Daiwen; Wu, De; Che, Lianqiang

    2015-07-14

    Postnatal rapid growth by excess intake of nutrients has been associated with an increased susceptibility to diseases in neonates with intra-uterine growth restricted (IUGR). The aim of the present study was to determine whether postnatal nutritional restriction could improve intestinal development and immune function of neonates with IUGR using piglets as model. A total of twelve pairs of normal-birth weight (NBW) and IUGR piglets (7 d old) were randomly assigned to receive adequate nutrient intake or restricted nutrient intake (RNI) by artificially liquid feeding for a period of 21 d. Blood samples and intestinal tissues were collected at necropsy and were analysed for morphology, digestive enzyme activities, immune cells and expression of innate immunity-related genes. The results indicated that both IUGR and postnatal nutritional restriction delayed the growth rate during the sucking period. Irrespective of nutrient intake, piglets with IUGR had a significantly lower villous height and crypt depth in the ileum than the NBW piglets. Moreover, IUGR decreased alkaline phosphatase activity while enhanced lactase activity in the jejunum and mRNA expressions of Toll-like receptor 9 (TLR-9) and DNA methyltransferase 1 (DNMT1) in the ileum of piglets. Irrespective of body weight, RNI significantly decreased the number and/or percentage of peripheral leucocytes, lymphocytes and monocytes of piglets, whereas the percentage of neutrophils and the ratio of CD4+ to CD8+ were increased. Furthermore, RNI markedly enhanced the mRNA expression of TLR-9 and DNMT1, but decreased the expression of NOD2 and TRAF-6 in the ileum of piglets. In summary, postnatal nutritional restriction led to abnormal cellular and innate immune response, as well as delayed the growth and intestinal development of IUGR piglets. PMID:26059215

  4. PTH Receptor Signaling in Osteoblasts Regulates Endochondral Vascularization in Maintenance of Postnatal Growth Plate

    PubMed Central

    Qiu, Tao; Xian, Lingling; Crane, Janet; Wen, Chunyi; Hilton, Matthew; Lu, William; Newman, Peter; Cao, Xu

    2016-01-01

    Longitudinal growth of postnatal bone requires precise control of growth plate cartilage chondrocytes and subsequent osteogenesis and bone formation. Little is known about the role of angiogenesis and bone remodeling in maintenance of cartilaginous growth plate. Parathyroid hormone (PTH) stimulates bone remodeling by activating PTH receptor (PTH1R). Mice with conditional deletion of PTH1R in osteoblasts showed disrupted trabecular bone formation. The mice also exhibited postnatal growth retardation with profound defects in growth plate cartilage, ascribable predominantly to a decrease in number of hypertrophic chondrocytes, resulting in premature fusion of the growth plate and shortened long bones. Further characterization of hypertrophic zone and primary spongiosa revealed that endochondral angiogenesis and vascular invasion of the cartilage were impaired, which was associated with aberrant chondrocyte maturation and cartilage development. These studies reveal that PTH1R signaling in osteoblasts regulates cartilaginous growth plate for postnatal growth of bone. PMID:25196529

  5. Identification of proliferative progenitors associated with prominent postnatal growth of the pons

    PubMed Central

    Lindquist, Robert A.; Guinto, Cristina D.; Rodas-Rodriguez, Jose L.; Fuentealba, Luis C.; Tate, Matthew C.; Rowitch, David H.; Alvarez-Buylla, Arturo

    2016-01-01

    The pons controls crucial sensorimotor and autonomic functions. In humans, it grows sixfold postnatally and is a site of paediatric gliomas; however, the mechanisms of pontine growth remain poorly understood. We show that the murine pons quadruples in volume postnatally; growth is fastest during postnatal days 0–4 (P0–P4), preceding most myelination. We identify three postnatal proliferative compartments: ventricular, midline and parenchymal. We find no evidence of postnatal neurogenesis in the pons, but each progenitor compartment produces new astroglia and oligodendroglia; the latter expand 10- to 18-fold postnatally, and are derived mostly from the parenchyma. Nearly all parenchymal progenitors at P4 are Sox2+Olig2+, but by P8 a Sox2− subpopulation emerges, suggesting a lineage progression from Sox2+ ‘early' to Sox2− ‘late' oligodendrocyte progenitor. Fate mapping reveals that >90% of adult oligodendrocytes derive from P2–P3 Sox2+ progenitors. These results demonstrate the importance of postnatal Sox2+Olig2+ progenitors in pontine growth and oligodendrogenesis. PMID:27188978

  6. Effects of Prenatal Irradiation with an Accelerated Heavy-Ion Beam on Postnatal Development in Rats

    NASA Astrophysics Data System (ADS)

    Wang, B.; Murakami, M.; Eguchi-Kasai, K.; Nojima, K.; Shang, Y.; Tanaka, K.; Fujita, K.; Coffigny, H.; Hayata, I.

    Effects on postnatal neurophysiological development in offspring were studied following exposure of pregnant Wistar rats to accelerated neon-ion beams with a LET value of about 30 keV mu m at a dose range from 0 1 Gy to 2 0Gy on the 15th day of gestation The age at which four physiologic markers appeared and five reflexes were acquired was examined prior to weaning Gain in body weight was monitored until the offspring were 3 months old Male offspring were evaluated as young adults using two behavioral tests The effects of X-rays at 200 kVp measured for the same biological end points were studied for comparison Our previous study on carbon-ion beams with a LET value of about 13 keV mu m was also cited to elucidate a possible LET-related effect For most of the endpoints at early age significant alteration was even observed in offspring prenatally received 0 1 Gy of accelerated neon ions while neither X rays nor carbon-ions under the same dose resulted in such a significant alteration compared to that from the sham-irradiated dams All offspring whose mothers received 2 0 Gy died prior to weaning Offspring from dams irradiated with accelerated neon ions generally showed higher incidences of prenatal death and preweaning mortality markedly delayed accomplishment in their physiological markers and reflexes and gain in body weight compared to those exposed to X-rays or carbon ions at doses of 0 1 to 1 5 Gy Significantly reduced ratios of main organ weight to body weight at postnatal ages of 30 60 and 90 days were also observed

  7. Early postnatal caloric restriction protects adult male intrauterine growth-restricted offspring from obesity.

    PubMed

    Garg, Meena; Thamotharan, Manikkavasagar; Dai, Yun; Thamotharan, Shanthie; Shin, Bo-Chul; Stout, David; Devaskar, Sherin U

    2012-06-01

    Postnatal ad libitum caloric intake superimposed on intrauterine growth restriction (IUGR) is associated with adult-onset obesity, insulin resistance, and type 2 diabetes mellitus (T2DM). We hypothesized that this paradigm of prenatal nutrient deprivation-induced programming can be reversed with the introduction of early postnatal calorie restriction. Ten-month-old male rats exposed to either prenatal nutrient restriction with ad libitum postnatal intake (IUGR), pre- and postnatal nutrient restriction (IPGR), or postnatal nutrient restriction limited to the suckling phase (50% from postnatal [PN]1 to PN21) (PNGR) were compared with age-matched controls (CON). Visceral adiposity, metabolic profile, and insulin sensitivity by hyperinsulinemic-euglycemic clamps were examined. The 10-month-old male IUGR group had a 1.5- to 2.0-fold increase in subcutaneous and visceral fat (P < 0.0002) while remaining euglycemic, insulin sensitive, inactive, and exhibiting metabolic inflexibility (Vo(2)) versus CON. The IPGR group remained lean, euglycemic, insulin sensitive, and active while maintaining metabolic flexibility. The PNGR group was insulin sensitive, similar to IPGR, but less active while maintaining metabolic flexibility. We conclude that IUGR resulted in obesity without insulin resistance and energy metabolic perturbations prior to development of glucose intolerance and T2DM. Postnatal nutrient restriction superimposed on IUGR was protective, restoring metabolic normalcy to a lean and active phenotype. PMID:22461568

  8. Postnatal growth defects in mice with constitutive depletion of central serotonin.

    PubMed

    Narboux-Nême, Nicolas; Angenard, Gaelle; Mosienko, Valentina; Klempin, Friederike; Pitychoutis, Pothitos M; Deneris, Evan; Bader, Michael; Giros, Bruno; Alenina, Natalia; Gaspar, Patricia

    2013-01-16

    Although the trophic actions of serotonin (5-HT) are well established, only few developmental defects have been reported in mouse strains with constitutive hyposerotonergia. We analyzed postnatal growth and cortical development in three different mutant mouse strains with constitutive reductions in central 5-HT levels. We compared two previously published mouse strains with severe (-95%) depletions of 5-HT, the tryptophan hydroxylase (Tph) 2(-/-) mouse line and VMAT2(sert-cre) mice, with a new strain, in which VMAT2 deletion is driven by Pet1 (VMAT2(pet1-cre)) in 5-HT raphe neurons leading to partial (-75%) reduction in brain 5-HT levels. We find that normal embryonic growth and postnatal growth retardation are common features of all these mouse strains. Postnatal growth retardation varied from mild to severe according to the extent of the brain 5-HT reduction and gender. Normal growth was reinstated in VMAT2(sert-cre) mice by reconstituting central 5-HT stores. Growth abnormalities could not be linked to altered food intake or temperature control. Morphological study of the cerebral cortex over postnatal development showed a delayed maturation of the upper cortical layers in the VMAT2(sert-cre) and Tph2(-/-) mice, but not in the VMAT2(pet1-cre) mice. No changes in layer-specific gene expression or morphological alterations of barrel cortex development were found. Overall, these observations sustain the notion that central 5-HT signaling is required for the preweaning growth spurt of mouse pups. Brain development appeared to be immune to severe central 5-HT depletion for its overall growth during prenatal life, whereas reduced brain growth and delayed cortical maturation development occurred during postnatal life. Reduced developmental 5-HT signaling during postnatal development might modulate the function and fine structure of neural circuits in ways that affect adult behavior. PMID:23336056

  9. Postnatal penile growth concurrent with mini-puberty predicts later sex-typed play behavior: Evidence for neurobehavioral effects of the postnatal androgen surge in typically developing boys.

    PubMed

    Pasterski, Vickie; Acerini, Carlo L; Dunger, David B; Ong, Ken K; Hughes, Ieuan A; Thankamony, Ajay; Hines, Melissa

    2015-03-01

    The masculinizing effects of prenatal androgens on human neurobehavioral development are well established. Also, the early postnatal surge of androgens in male infants, or mini-puberty, has been well documented and is known to influence physiological development, including penile growth. However, neurobehavioral effects of androgen exposure during mini-puberty are largely unknown. The main aim of the current study was to evaluate possible neurobehavioral consequences of mini-puberty by relating penile growth in the early postnatal period to subsequent behavior. Using multiple linear regression, we demonstrated that penile growth between birth and three months postnatal, concurrent with mini-puberty, significantly predicted increased masculine/decreased feminine behavior assessed using the Pre-school Activities Inventory (PSAI) in 81 healthy boys at 3 to 4years of age. When we controlled for other potential influences on masculine/feminine behavior and/or penile growth, including variance in androgen exposure prenatally and body growth postnally, the predictive value of penile growth in the early postnatal period persisted. More specifically, prenatal androgen exposure, reflected in the measurement of anogenital distance (AGD), and early postnatal androgen exposure, reflected in penile growth from birth to 3months, were significant predictors of increased masculine/decreased feminine behavior, with each accounting for unique variance. Our findings suggest that independent associations of PSAI with AGD at birth and with penile growth during mini-puberty reflect prenatal and early postnatal androgen exposures respectively. Thus, we provide a novel and readily available approach for assessing effects of early androgen exposures, as well as novel evidence that early postnatal aes human neurobehavioral development.

  10. Postnatal penile growth concurrent with mini-puberty predicts later sex-typed play behavior: Evidence for neurobehavioral effects of the postnatal androgen surge in typically developing boys.

    PubMed

    Pasterski, Vickie; Acerini, Carlo L; Dunger, David B; Ong, Ken K; Hughes, Ieuan A; Thankamony, Ajay; Hines, Melissa

    2015-03-01

    The masculinizing effects of prenatal androgens on human neurobehavioral development are well established. Also, the early postnatal surge of androgens in male infants, or mini-puberty, has been well documented and is known to influence physiological development, including penile growth. However, neurobehavioral effects of androgen exposure during mini-puberty are largely unknown. The main aim of the current study was to evaluate possible neurobehavioral consequences of mini-puberty by relating penile growth in the early postnatal period to subsequent behavior. Using multiple linear regression, we demonstrated that penile growth between birth and three months postnatal, concurrent with mini-puberty, significantly predicted increased masculine/decreased feminine behavior assessed using the Pre-school Activities Inventory (PSAI) in 81 healthy boys at 3 to 4years of age. When we controlled for other potential influences on masculine/feminine behavior and/or penile growth, including variance in androgen exposure prenatally and body growth postnally, the predictive value of penile growth in the early postnatal period persisted. More specifically, prenatal androgen exposure, reflected in the measurement of anogenital distance (AGD), and early postnatal androgen exposure, reflected in penile growth from birth to 3months, were significant predictors of increased masculine/decreased feminine behavior, with each accounting for unique variance. Our findings suggest that independent associations of PSAI with AGD at birth and with penile growth during mini-puberty reflect prenatal and early postnatal androgen exposures respectively. Thus, we provide a novel and readily available approach for assessing effects of early androgen exposures, as well as novel evidence that early postnatal aes human neurobehavioral development. PMID:25597916

  11. Compound equation developed for postnatal growth of birds and mammals

    NASA Technical Reports Server (NTRS)

    Laird, A. K.

    1968-01-01

    Compound growth equation was developed in which the rate of this linear growth process is regarded as proportional to the mass already attained at any instant by an underlying Gompertz process. This compound growth model was fitted to the growth data of a variety of birds and mammals of both sexes.

  12. Catch-up growth after dexamethasone withdrawal occurs in cultured postnatal rat metatarsal bones.

    PubMed

    Chagin, Andrei S; Karimian, Elham; Sundström, Katja; Eriksson, Emma; Sävendahl, Lars

    2010-01-01

    Children exposed to systemic glucocorticoids often exhibit growth retardation and after the cessation of therapy catch-up growth occurs in many, but not all patients. The developmental regulation and underlying cellular mechanisms of catch-up growth are not fully understood. To clarify this issue, we established an in vitro model of catch-up growth. Here we present a protocol for the long-term culture (up to 160 days) of fetal (E20) as well as postnatal (P8) rat metatarsal bones which allowed us to characterize ex vivo the phenomenon of catch-up growth without any influence by systemic factors. The relevance of the model was confirmed by the demonstration that the growth of fetal and postnatal bones were stimulated by IGF1 (100 ng/ml) and inhibited by dexamethasone (Dexa; 1 microM). We found that the capacity to undergo catch-up growth was restricted to postnatal bones. Catch-up growth occurred after postnatal bones had been exposed to Dexa for 7 or 12 days but not after a more prolonged exposure (19 days). Incomplete catch-up growth resulted in compromised bone length when assessed at the end of the 4-month period of culture. While exposure to Dexa was associated with decreased chondrocyte proliferation and differentiation, catch-up growth was only associated with increased cell proliferation. We conclude that the phenomenon of catch-up growth after Dexa treatment is intrinsic to the growth plate and primarily mediated by an upregulation of chondrocyte proliferation.

  13. Neonatal pain in relation to postnatal growth in infants born very preterm.

    PubMed

    Vinall, Jillian; Miller, Steven P; Chau, Vann; Brummelte, Susanne; Synnes, Anne R; Grunau, Ruth E

    2012-07-01

    Procedural pain is associated with poorer neurodevelopment in infants born very preterm (≤ 32 weeks gestational age), however, the etiology is unclear. Animal studies have demonstrated that early environmental stress leads to slower postnatal growth; however, it is unknown whether neonatal pain-related stress affects postnatal growth in infants born very preterm. The aim of this study was to examine whether greater neonatal pain (number of skin-breaking procedures adjusted for medical confounders) is related to decreased postnatal growth (weight and head circumference [HC] percentiles) early in life and at term-equivalent age in infants born very preterm. Participants were n=78 preterm infants born ≤ 32 weeks gestational age, followed prospectively since birth. Infants were weighed and HC measured at birth, early in life (median: 32 weeks [interquartile range 30.7-33.6]) and at term-equivalent age (40 weeks [interquartile range 38.6-42.6]). Weight and HC percentiles were computed from sex-specific British Columbia population-based data. Greater neonatal pain predicted lower body weight (Wald χ(2)=7.36, P=0.01) and HC (Wald χ(2)=4.36, P=0.04) percentiles at 32 weeks postconceptional age, after adjusting for birth weight percentile and postnatal risk factors of illness severity, duration of mechanical ventilation, infection, and morphine and corticosteroid exposure. However, later neonatal infection predicted lower weight percentile at term (Wald χ(2)=5.09, P=0.02). Infants born very preterm undergo repetitive procedural pain during a period of physiological immaturity that appears to impact postnatal growth, and may activate a downstream cascade of stress signaling that affects later growth in the neonatal intensive care unit. PMID:22704600

  14. [Recent advances in nutritional support and postnatal growth in premature infants].

    PubMed

    Senterre, T; Rigo, J

    2013-02-01

    Nutrition has always been described as challenging in premature infants, especially in very low birth weight (VLBW, < 1500 g) infants. Therefore, postnatal malnutrition is frequently observed in these infants and most develop a severe postnatal growth restriction with a very high incidence of hypotrophy at term corrected age. Otherwise, both insufficient nutritional intakes and postnatal growth restriction during the perinatal period have been associated with adverse developmental outcomes. In this article, an optimized nutritional policy characterized by a standardization of nutritional support is discussed. This policy implies the use of one standardized parenteral nutrition solution and a rapidly enriched feeding regimen. Recent studies in VLBW infants have demonstrated that this approach is associated with significant improvement of nutritional support, postnatal growth and biological homeostasis. Only 6% of appropriate for gestational age infants at birth were described small for gestational age at discharge. This policy has recently been reproduced by the industry that developed the first manufactured triple-chamber parenteral nutrition bags specifically designed for premature infants. It represents a great opportunity for premature infants to improve their development and long-term outcomes.

  15. Estimated in vivo postnatal surface growth patterns of the ovine main pulmonary artery and ascending aorta.

    PubMed

    Fata, Bahar; Gottlieb, Danielle; Mayer, John E; Sacks, Michael S

    2013-07-01

    Delineating the normal postnatal development of the pulmonary artery (PA) and ascending aorta (AA) can inform our understanding of congenital abnormalities, as well as pulmonary and systolic hypertension. We thus conducted the following study to delineate the PA and AA postnatal growth deformation characteristics in an ovine model. MR images were obtained from endoluminal surfaces of 11 animals whose ages ranged from 1.5 months/15.3 kg mass (very young) to 12 months/56.6 kg mass (adult). A bicubic Hermite finite element surface representation was developed for the each artery from each animal. Under the assumption that the relative locations of surface points were retained during growth, the individual animal surface fits were subsequently used to develop a method to estimate the time-evolving local effective surface growth (relative to the youngest measured animal) in the end-diastolic state. Results indicated that the spatial and temporal surface growth deformation patterns of both arteries, especially in the circumferential direction, were heterogeneous, leading to an increase in taper and increase in cross-sectional ellipticity of the PA. The longitudinal PA growth stretch of a large segment on the posterior wall reached 2.57 ± 0.078 (mean ± SD) at the adult stage. In contrast, the longitudinal growth of the AA was smaller and more uniform (1.80 ± 0.047). Interestingly, a region of the medial wall of both arteries where both arteries are in contact showed smaller circumferential growth stretches-specifically 1.12 ± 0.012 in the PA and 1.43 ± 0.071 in the AA at the adult stage. Overall, our results indicated that contact between the PA and AA resulted in increasing spatial heterogeneity in postnatal growth, with the PA demonstrating the greatest changes. Parametric studies using simplified geometric models of curved arteries during growth suggest that heterogeneous effective surface growth deformations must occur to account for the

  16. p38 MAPK Signaling in Postnatal Tendon Growth and Remodeling

    PubMed Central

    Schwartz, Andrew J.; Sarver, Dylan C.; Sugg, Kristoffer B.; Dzierzawski, Justin T.; Gumucio, Jonathan P.; Mendias, Christopher L.

    2015-01-01

    Tendon is a dynamic tissue whose structure and function is influenced by mechanical loading, but little is known about the fundamental mechanisms that regulate tendon growth and remodeling in vivo. Data from cultured tendon fibroblasts indicated that the p38 MAPK pathway plays an important role in tendon fibroblast proliferation and collagen synthesis in vitro. To gain greater insight into the mechanisms of tendon growth, and explore the role of p38 MAPK signaling in this process, we tested the hypotheses that inducing plantaris tendon growth through the ablation of the synergist Achilles tendon would result in rapid expansion of a neotendon matrix surrounding the original tendon, and that treatment with the p38 MAPK inhibitor SB203580 would prevent this growth. Rats were treated with vehicle or SB203580, and subjected to synergist ablation by bilateral tenectomy of the Achilles tendon. Changes in histological and biochemical properties of plantaris tendons were analyzed 3, 7, or 28 days after overload, and comparisons were made to non-overloaded animals. By 28 days after overload, tendon mass had increased by 30% compared to non-overloaded samples, and cross-sectional area (CSA) increased by around 50%, with most of the change occurring in the neotendon. The expansion in CSA initially occurred through the synthesis of a hyaluronic acid rich matrix that was progressively replaced with mature collagen. Pericytes were present in areas of active tendon growth, but never in the original tendon ECM. Inhibition of p38 MAPK resulted in a profound decrease in IL6 expression, and had a modest effect on the expression of other ECM and cell proliferation genes, but had a negligible impact on overall tendon growth. The combined results from this study provided novel insights into tendon mechanobiology, and suggest that p38 MAPK signaling does not appear to be necessary for tendon growth in vivo. PMID:25768932

  17. Postnatal brain and skull growth in an Apert syndrome mouse model

    PubMed Central

    Hill, Cheryl A.; Martínez-Abadías, Neus; Motch, Susan M.; Austin, Jordan R.; Wang, Yingli; Jabs, Ethylin Wang; Richtsmeier, Joan T.; Aldridge, Kristina

    2012-01-01

    Craniofacial and neural tissues develop in concert throughout pre- and postnatal growth. FGFR-related craniosynostosis syndromes, such as Apert syndrome (AS), are associated with specific phenotypes involving both the skull and the brain. We analyzed the effects of the FGFR P253R mutation for Apert syndrome using the Fgfr2+/P253R mouse to evaluate the effects of this mutation on these two tissues over the course of development from day of birth (P0) to postnatal day 2 (P2). Three-dimensional magnetic resonance microscopy and computed tomography images were acquired from Fgfr2+/P253R mice and unaffected littermates at P0 (N=28) and P2 (N=23). 3D coordinate data for 23 skull and 15 brain landmarks were statistically compared between groups. Results demonstrate that the Fgfr2+/P253R mice show reduced growth in the facial skeleton and the cerebrum, while the height and width of the neurocranium and caudal regions of the brain show increased growth relative to unaffected littermates. This localized correspondence of differential growth patterns in skull and brain point to their continued interaction through development and suggest that both tissues display divergent postnatal growth patterns relative to unaffected littermates. However, the change in the skull-brain relationship from P0 to P2 implies that each tissue affected by the mutation retains a degree of independence, rather than one tissue directing the development of the other. PMID:23495236

  18. Peri- and Postnatal Effects of Prenatal Adenoviral VEGF Gene Therapy in Growth-Restricted Sheep.

    PubMed

    Carr, David J; Wallace, Jacqueline M; Aitken, Raymond P; Milne, John S; Martin, John F; Zachary, Ian C; Peebles, Donald M; David, Anna L

    2016-06-01

    Uterine artery (UtA) adenovirus (Ad) vector-mediated overexpression of vascular endothelial growth factor (VEGF) enhances uterine blood flow in normal sheep pregnancy and increases fetal growth in the overnourished adolescent sheep model of fetal growth restriction (FGR). Herein, we examined its impact on gestation length, neonatal survival, early postnatal growth and metabolism. Singleton-bearing ewes were evenly allocated to receive Ad.VEGF-A165 (5 × 10(10) particles/ml, 10 ml, n = 17) or saline (10 ml, n = 16) injected into each UtA at laparotomy (0.6 gestation). Fetal growth was serially monitored (blind) by ultrasound until delivery. Lambs were weighed and blood was sampled weekly and a glucose tolerance test performed (68-day postnatal age). Hepatic DNA/RNA was extracted at necropsy (83-day postnatal age) to examine methylation status of eight somatotropic axis genes. IGF1 mRNA and protein expression were measured by RT-PCR and radioimmunoassay, respectively. All pregnancies remained viable following Ad.VEGF-A165 treatment. Fetal abdominal circumference and renal volume were greater in the Ad.VEGF-A165 group compared with the saline group at 21/28 days (P ≤ 0.04) postinjection. At delivery, gestation length (P = 0.07), lamb birthweight (P = 0.08), umbilical girth (P = 0.06), and plasma glucose (P = 0.09) tended to be greater in Ad.VEGF-A165-treated lambs. Levels of neonatal intervention required to ensure survival was equivalent between groups. Absolute postnatal growth rate (P = 0.02), insulin area under the curve (P = 0.04) and carcass weight at necropsy (P = 0.04) were increased by Ad.VEGF-A165 treatment. There was no impact on markers of insulin sensitivity or methylation/expression of key genes involved in somatic growth. Ad.VEGF-A165 gene therapy increased fetal growth in a sheep FGR model, and lambs continued to thrive during the neonatal and early postnatal period. PMID:27103444

  19. Peri- and Postnatal Effects of Prenatal Adenoviral VEGF Gene Therapy in Growth-Restricted Sheep.

    PubMed

    Carr, David J; Wallace, Jacqueline M; Aitken, Raymond P; Milne, John S; Martin, John F; Zachary, Ian C; Peebles, Donald M; David, Anna L

    2016-06-01

    Uterine artery (UtA) adenovirus (Ad) vector-mediated overexpression of vascular endothelial growth factor (VEGF) enhances uterine blood flow in normal sheep pregnancy and increases fetal growth in the overnourished adolescent sheep model of fetal growth restriction (FGR). Herein, we examined its impact on gestation length, neonatal survival, early postnatal growth and metabolism. Singleton-bearing ewes were evenly allocated to receive Ad.VEGF-A165 (5 × 10(10) particles/ml, 10 ml, n = 17) or saline (10 ml, n = 16) injected into each UtA at laparotomy (0.6 gestation). Fetal growth was serially monitored (blind) by ultrasound until delivery. Lambs were weighed and blood was sampled weekly and a glucose tolerance test performed (68-day postnatal age). Hepatic DNA/RNA was extracted at necropsy (83-day postnatal age) to examine methylation status of eight somatotropic axis genes. IGF1 mRNA and protein expression were measured by RT-PCR and radioimmunoassay, respectively. All pregnancies remained viable following Ad.VEGF-A165 treatment. Fetal abdominal circumference and renal volume were greater in the Ad.VEGF-A165 group compared with the saline group at 21/28 days (P ≤ 0.04) postinjection. At delivery, gestation length (P = 0.07), lamb birthweight (P = 0.08), umbilical girth (P = 0.06), and plasma glucose (P = 0.09) tended to be greater in Ad.VEGF-A165-treated lambs. Levels of neonatal intervention required to ensure survival was equivalent between groups. Absolute postnatal growth rate (P = 0.02), insulin area under the curve (P = 0.04) and carcass weight at necropsy (P = 0.04) were increased by Ad.VEGF-A165 treatment. There was no impact on markers of insulin sensitivity or methylation/expression of key genes involved in somatic growth. Ad.VEGF-A165 gene therapy increased fetal growth in a sheep FGR model, and lambs continued to thrive during the neonatal and early postnatal period.

  20. Protein restriction during pregnancy affects postnatal growth in swine progeny.

    PubMed

    Schoknecht, P A; Pond, W G; Mersmann, H J; Maurer, R R

    1993-11-01

    Protein deficiency during pregnancy affects fetal development. The critical period, when the fetus is most susceptible to maternal protein deficiency and its effect on neonatal growth, is unknown. Therefore, we studied the effect of a protein-restricted diet during early and late pregnancy and throughout pregnancy on growth of pigs from birth to market weight. Sows were fed a control (13% protein) or protein-restricted (0.5% protein) diet throughout pregnancy or protein-restricted diet from d 1 to 44, then control diet to term or control diet from d 1 to 81, then the protein-restricted diet to term. In Experiment 1, birth weights were measured, and 12 pigs/diet group were weaned at 4 wk and raised to market weight. Feeding the protein-restricted diet throughout pregnancy reduced birth and slaughter weights, whereas the control followed by protein-restricted and protein-restricted followed by control diets reduced only birth weight relative to controls. Indices of carcass lean were reduced in the protein-restricted piglets, with carcass fat not affected. In Experiment 2, control and control-protein-restricted litters were reduced to six piglets and 3/litter cross-fostered to a sow of the other treatment group. After weaning at 4 wk, 4 piglets/group were individually fed to 8 wk. The control and control followed by protein-restricted diet fed piglets had similar weights at birth, but piglets raised by a control-protein-restricted sow tended to weight less at weaning than their littermates raised by a control sow. After weaning, these piglets had greater feed intakes relative to other groups and there were no weight differences by 8 wk.(ABSTRACT TRUNCATED AT 250 WORDS)

  1. Postnatal Growth of the Human Pons: A Morphometric and Immunohistochemical Analysis

    PubMed Central

    Tate, Matthew C.; Lindquist, Robert A.; Nguyen, Thuhien; Sanai, Nader; Barkovich, A. James; Huang, Eric J.; Rowitch, David H.; Alvarez-Buylla, Arturo

    2014-01-01

    Despite its critical importance to global brain function, the postnatal development of the human pons remains poorly understood. In the present study, we first performed MRI-based morphometric analyses of the postnatal human pons (0–18 years; n=6–14/timepoint). Pons volume increased 6-fold from birth to 5 years, followed by continued slower growth throughout childhood. The observed growth was primarily due to expansion of the basis pontis. T2-based MRI analysis suggests that this growth is linked to increased myelination, and histological analysis of myelin basic protein in human postmortem specimens confirmed a dramatic increase in myelination during infancy. Analysis of cellular proliferation revealed many Ki67+ cells during the first 7 months of life, particularly during the first month where proliferation was increased in the basis relative to tegmentum. The majority of proliferative cells in the postnatal pons expressed the transcription factor Olig2, suggesting an oligodendrocyte lineage. The proportion of proliferating cells that were Olig2+ was similar through the first 7 months of life and between basis and tegmentum. The number of Ki67+ cells declined dramatically from birth to 7 months and further decreased by 3 years, with a small number of Ki67+ cells observed throughout childhood. In addition, two populations of vimentin/nestin-expressing cells were identified: a dorsal group near the ventricular surface, which persists throughout childhood, and a parenchymal population that diminishes by 7 months and was not evident later in childhood. Together, our data reveal remarkable postnatal growth in the ventral pons, particularly during infancy when cells are most proliferative and myelination increases. PMID:25307966

  2. Postnatal growth restriction and gene expression changes in a mouse model of fetal alcohol syndrome.

    PubMed

    Kaminen-Ahola, Nina; Ahola, Arttu; Flatscher-Bader, Traute; Wilkins, Sarah J; Anderson, Greg J; Whitelaw, Emma; Chong, Suyinn

    2010-10-01

    Growth restriction, craniofacial dysmorphology, and central nervous system defects are the main diagnostic features of fetal alcohol syndrome. Studies in humans and mice have reported that the growth restriction can be prenatal or postnatal, but the underlying mechanisms remain unknown.We recently described a mouse model of moderate gestational ethanol exposure that produces measurable phenotypes in line with fetal alcohol syndrome (e.g., craniofacial changes and growth restriction in adolescent mice). In this study, we characterize in detail the growth restriction phenotype by measuring body weight at gestational day 16.5, cross-fostering from birth to weaning, and by extending our observations into adulthood. Furthermore, in an attempt to unravel the molecular events contributing to the growth phenotype, we have compared gene expression patterns in the liver and kidney of nonfostered, ethanol-exposed and control mice at postnatal day 28.We find that the ethanol-induced growth phenotype is not detectable prior to birth, but is present at weaning, even in mice that have been cross-fostered to unexposed dams. This finding suggests a postnatal growth restriction phenotype that is not due to deficient postpartum care by dams that drank ethanol, but rather a physiologic result of ethanol exposure in utero. We also find that, despite some catch-up growth after 5 weeks of age, the effect extends into adulthood, which is consistent with longitudinal studies in humans.Genome-wide gene expression analysis revealed interesting ethanol-induced changes in the liver, including genes involved in the metabolism of exogenous and endogenous compounds, iron homeostasis, and lipid metabolism.

  3. [Parenteral nutrition in premature infants: practical aspects to optimize postnatal growth and development].

    PubMed

    Senterre, T; Rigo, J

    2013-09-01

    Nutrition and growth are still a major challenge in neonatal intensive care. Many studies have demonstrated that premature infants frequently develop severe cumulative nutritional deficit during the first weeks of life. This malnutrition is the primary etiology of postnatal growth restriction, which is still universally described in very premature infants. Furthermore, both postnatal nutritional deficit and postnatal growth restriction have been associated with adverse long-term outcome in adulthood. Due to their immaturity, premature infants are frequently not fed by the enteral route. Therefore, parenteral nutrition remains an essential therapy in neonatology. Most recent recommendations suggest starting parenteral nutrition as soon as possible after birth with a minimum of 40 kcal/kg/day with around 2-3g/kg/day of amino acids and 1g/kg/day of lipids. Afterwards, intake should increase rapidly during the first week of life, up to 90-120 kcal/kg/day with around 3.5 g/kg/day amino acids and 3g/kg/day of lipids. There is great heterogeneity in parenteral nutrition practices among neonatal units, with frequent discrepancies. This article discusses the principal theoretical aspects of parenteral nutrition in premature infants, the guidelines, and the opportunity to optimize nutritional support routinely, especially in very premature infants. PMID:23845601

  4. Multiple functions of Osterix are required for bone growth and homeostasis in postnatal mice

    PubMed Central

    Zhou, Xin; Zhang, Zhaoping; Feng, Jian Q.; Dusevich, Vladmir M.; Sinha, Krishna; Zhang, Hua; Darnay, Bryant G.; de Crombrugghe, Benoit

    2010-01-01

    The transcription factor Osterix (Osx) is required for osteoblast differentiation and bone formation during embryonic development, but it is not known whether Osx has an essential function in postnatal bone growth and in bone homeostasis. Conditional deletion of Osx at several time points postnatally revealed that Osx was essential for osteoblast differentiation and new bone formation in growing and adult bones. Additionally, inactivation of Osx in bones severely disrupted the maturation, morphology, and function of osteocytes. These findings identify Osx as having an essential role in the cell-specific genetic program of osteocytes. Interestingly, Osx inactivation also led to the massive accumulation of unresorbed calcified cartilage in a large area below the growth plate of endochondral bones. This specific area was also marked by an unanticipated almost complete lack of bone marrow cells and a marked decrease in the density and size of osteoclasts. This diminished density of osteoclasts could contribute to the lack of resorption of mineralized cartilage. In addition, we speculate that the abnormally accumulated, mainly naked cartilage represents an unfavorable substrate for osteoclasts. Our study identifies Osx as an essential multifunctional player in postnatal bone growth and homeostasis. PMID:20615976

  5. Slower postnatal growth is associated with delayed cerebral cortical maturation in preterm newborns.

    PubMed

    Vinall, Jillian; Grunau, Ruth E; Brant, Rollin; Chau, Vann; Poskitt, Kenneth J; Synnes, Anne R; Miller, Steven P

    2013-01-16

    Slower postnatal growth is an important predictor of adverse neurodevelopmental outcomes in infants born preterm. However, the relationship between postnatal growth and cortical development remains largely unknown. Therefore, we examined the association between neonatal growth and diffusion tensor imaging measures of microstructural cortical development in infants born very preterm. Participants were 95 neonates born between 24 and 32 weeks gestational age studied twice with diffusion tensor imaging: scan 1 at a median of 32.1 weeks (interquartile range, 30.4 to 33.6) and scan 2 at a median of 40.3 weeks (interquartile range, 38.7 to 42.7). Fractional anisotropy and eigenvalues were recorded from 15 anatomically defined cortical regions. Weight, head circumference, and length were recorded at birth and at the time of each scan. Growth between scans was examined in relation to diffusion tensor imaging measures at scans 1 and 2, accounting for gestational age, birth weight, sex, postmenstrual age, known brain injury (white matter injury, intraventricular hemorrhage, and cerebellar hemorrhage), and neonatal illness (patent ductus arteriosus, days intubated, infection, and necrotizing enterocolitis). Impaired weight, length, and head growth were associated with delayed microstructural development of the cortical gray matter (fractional anisotropy: P < 0.001), but not white matter (fractional anisotropy: P = 0.529), after accounting for prenatal growth, neonatal illness, and brain injury. Avoiding growth impairment during neonatal care may allow cortical development to proceed optimally and, ultimately, may provide an opportunity to reduce neurological disabilities related to preterm birth.

  6. Activation of β-Catenin Signaling in CD133-Positive Dermal Papilla Cells Drives Postnatal Hair Growth

    PubMed Central

    Zhou, Linli; Xu, Mingang; Yang, Yongguang; Yang, Kun; Wickett, Randall R.; Andl, Thomas; Millar, Sarah E.

    2016-01-01

    The hair follicle dermal papilla (DP) contains a unique prominin-1/CD133-positive (CD133+) cell subpopulation, which has been shown to possess hair follicle-inducing capability. By assaying for endogenous CD133 expression and performing lineage tracing using CD133-CreERT2; ZsGreen1 reporter mice, we find that CD133 is expressed in a subpopulation of DP cells during the growth phase of the murine hair cycle (anagen), but is absent at anagen onset. However, how CD133+ DP cells interact with keratinocytes to induce hair regenerative growth remains unclear. Wnt/β-catenin has long been recognized as a major signaling pathway required for hair follicle morphogenesis, development, and regeneration. Nuclear Wnt/β-catenin activity is observed in the DP during the hair growth phase. Here we show that induced expression of a stabilized form of β-catenin in CD133+ DP cells significantly accelerates spontaneous and depilation-induced hair growth. However, hair follicle regression is not affected in these mutants. Further analysis indicates that CD133+ DP-expressed β-catenin increases proliferation and differentiation of epithelial matrix keratinocytes. Upregulated Wnt/β-catenin activity in CD133+ DP cells also increases the number of proliferating DP cells in each anagen follicle. Our data demonstrate that β-catenin signaling potentiates the capability of CD133+ DP cells to promote postnatal hair growth. PMID:27472062

  7. Activation of β-Catenin Signaling in CD133-Positive Dermal Papilla Cells Drives Postnatal Hair Growth.

    PubMed

    Zhou, Linli; Xu, Mingang; Yang, Yongguang; Yang, Kun; Wickett, Randall R; Andl, Thomas; Millar, Sarah E; Zhang, Yuhang

    2016-01-01

    The hair follicle dermal papilla (DP) contains a unique prominin-1/CD133-positive (CD133+) cell subpopulation, which has been shown to possess hair follicle-inducing capability. By assaying for endogenous CD133 expression and performing lineage tracing using CD133-CreERT2; ZsGreen1 reporter mice, we find that CD133 is expressed in a subpopulation of DP cells during the growth phase of the murine hair cycle (anagen), but is absent at anagen onset. However, how CD133+ DP cells interact with keratinocytes to induce hair regenerative growth remains unclear. Wnt/β-catenin has long been recognized as a major signaling pathway required for hair follicle morphogenesis, development, and regeneration. Nuclear Wnt/β-catenin activity is observed in the DP during the hair growth phase. Here we show that induced expression of a stabilized form of β-catenin in CD133+ DP cells significantly accelerates spontaneous and depilation-induced hair growth. However, hair follicle regression is not affected in these mutants. Further analysis indicates that CD133+ DP-expressed β-catenin increases proliferation and differentiation of epithelial matrix keratinocytes. Upregulated Wnt/β-catenin activity in CD133+ DP cells also increases the number of proliferating DP cells in each anagen follicle. Our data demonstrate that β-catenin signaling potentiates the capability of CD133+ DP cells to promote postnatal hair growth. PMID:27472062

  8. Pericytes in the myovascular niche promote post-natal myofiber growth and satellite cell quiescence.

    PubMed

    Kostallari, Enis; Baba-Amer, Yasmine; Alonso-Martin, Sonia; Ngoh, Pamela; Relaix, Frederic; Lafuste, Peggy; Gherardi, Romain K

    2015-04-01

    The satellite cells, which serve as adult muscle stem cells, are both located beneath myofiber basement membranes and closely associated with capillary endothelial cells. We observed that 90% of capillaries were associated with pericytes in adult mouse and human muscle. During post-natal growth, newly formed vessels with their neuroglial 2 proteoglycan (NG2)-positive pericytes became progressively associated with the post-natal muscle stem cells, as myofibers increased in size and satellite cells entered into quiescence. In vitro, human muscle-derived pericytes promoted myogenic cell differentiation through insulin-like growth factor 1 (IGF1) and myogenic cell quiescence through angiopoietin 1 (ANGPT1). Diphtheria toxin-induced ablation of muscle pericytes in growing mice led both to myofiber hypotrophy and to impaired establishment of stem cells quiescence. Similar effects were observed following conditional in vivo deletion of pericyte Igf1 and Angpt1 genes, respectively. Our data therefore demonstrate that, by promoting post-natal myogenesis and stem cell quiescence, pericytes play a key role in the microvascular niche of satellite cells.

  9. Regional structural and biomechanical alterations of the ovine main pulmonary artery during postnatal growth.

    PubMed

    Fata, Bahar; Carruthers, Christopher A; Gibson, Gregory; Watkins, Simon C; Gottlieb, Danielle; Mayer, John E; Sacks, Michael S

    2013-02-01

    The engineering foundation for novel approaches for the repair of congenital defects that involve the main pulmonary artery (PA) must rest on an understanding of changes in the structure-function relationship that occur during postnatal maturation. In the present study, we quantified the postnatal growth patterns in structural and biomechanical behavior in the ovine PA in the juvenile and adult stages. The biaxial mechanical properties and collagen and elastin fiber architecture were studied in four regions of the PA wall, with the collagen recruitment of the medial region analyzed using a custom biaxial mechanical-multiphoton microscopy system. Circumferential residual strain was also quantified at the sinotubular junction and bifurcation locations, which delimit the PA. The PA wall demonstrated significant mechanical anisotropy, except in the posterior region where it was nearly isotropic. Overall, we observed only moderate changes in regional mechanical properties with growth. We did observe that the medial and lateral locations experience a moderate increase in anisotropy. There was an average of about 24% circumferential residual stain present at the luminal surface in the juvenile stage that decreased to 16% in the adult stage with a significant decrease at the bifurcation, implying that the PA wall remodels toward the bifurcation with growth. There were no measurable changes in collagen and elastin content of the tunica media with growth. On average, the collagen fiber recruited more rapidly with strain in the adult compared to the juvenile. Interestingly, the PA thickness remained constant with growth. When this fact is combined with the observed stable overall mechanical behavior and increase in vessel diameter with growth, a simple Laplace Law wall stress estimate suggests an increase in effective PA wall stress with postnatal maturation. This observation is contrary to the accepted theory of maintenance of homeostatic stress levels in the regulation of

  10. The prognostic significance of postnatal growth in very low--birth weight infants.

    PubMed

    Hack, M; Merkatz, I R; Gordon, D; Jones, P K; Fanaroff, A A

    1982-07-15

    To examine the relative importance of intrauterine growth failure, extrauterine growth failure before or after term, and the prognostic significance of catch-up growth, 192 very low--birth weight infants (less than 1.5 kg) were followed prospectively to 8 months corrected age. One hundred fifty-four appropriate--for--gestational age (AGA) and 38 small--for--gestational age (SGA) infants were categorized into normal and subnormal (less than -2 SD) weight for age groups at term (40 weeks) and at 8 months corrected age. By term, 71 AGA infants had subnormal weight; 41 of these caught up by 8 months, and an additional 13 AGA infants failed to thrive between term and 8 months. Of the SGA infants, three caught up in weight by term, and an additional 16 caught up by 8 months. Significant correlates of subnormal weight included neonatal risk score, incidence of chronic disease, and extended hospitalization. The AGA and SGA infants who failed to thrive or failed to catch up in weight by 8 months had lower mean Bayley developmental quotients (p less than 0.005), smaller head circumferences (p less than 0.005), and a higher rate of neurosensory impairment (p less than 0.01) than the AGA infants with normal fetal and postnatal growth. Intrauterine and/or postnatal growth failure prior to term was not of sinister prognostic significance if catch up occurred thereafter.

  11. Post-natal growth of the gastrointestinal tract of the Siberian hamster: morphometric analysis.

    PubMed

    Wołczuk, K; Kobak, J

    2014-12-01

    Post-natal growth of the gastrointestinal tract of the Siberian hamster was studied in newborn and 3-, 7-, 14-, 21-, 42- and 90-day-old animals. Morphometric measurements and calculations were carried out: length and internal surface of gastrointestinal tract segments, size (height, width, surface) and density of villi as well as allometric growth rate of the length and internal surface of the segments with respect to the body mass. The fastest growth rate of the gastrointestinal tract segments was noticed during the first 3 days of the post-natal life. Nevertheless, significant regional differences in their growth rate were found. The increase in the length and internal surface of the large intestine was fastest, while the smallest increase was observed in the oesophagus. All segments of the gastrointestinal tract except oesophagus exhibited a positive allometric relationship to the body mass from birth till final weaning, whereas during the post-weaning period, the increase was isometric. Thus, at birth, the gastrointestinal tract segments were relatively smaller compared with those observed in adults, but then, the gastrointestinal tract grew faster than the rest of the body and reached its adult proportions just before the transition to solid food. Most probably, reaching the adult structure of the gastrointestinal tract before the final weaning is an essential condition for the proper growth of an organism after the weaning.

  12. Neuropsychological development in preschool children born with asymmetrical intrauterine growth restriction and impact of postnatal head growth.

    PubMed

    Klaric, Andrea Simić; Galić, Slavka; Kolundzić, Zdravko; Bosnjak, Vlatka Mejaski

    2013-07-01

    Neuropsychological development and the impact of postnatal head growth were studied in preschool children with asymmetrical intrauterine growth restriction. Examinees born at term with a birth weight below the 10th percentile were matched to the control group according to chronological and gestational age, gender, and maternal education. Fifty children were in each group, with a mean age of 6 years, 4 months. The Touwen neurological examination, the Čuturić developmental test, an imitative hand positions test, and a visual attention test were performed. There were significant differences (P< .03) in motor variables, the developmental quotient, and the imitative hand positions test. Fine motor skills had the most discriminative power. Relative growth of the head in relation to weight gain was positively correlated to neurocognitive outcome. Intrauterine growth-restricted children with a current head circumference ≤10th percentile had poorer outcomes. Conclusively, intrauterine growth restriction has a negative impact on neurocognitive development. Slow postnatal head growth is correlated with a poorer neuropsychological outcome.

  13. BMP Receptor 1A Determines the Cell Fate of the Postnatal Growth Plate

    PubMed Central

    Jing, Junjun; Ren, Yinshi; Zong, Zhaowen; Liu, Chuanju; Kamiya, Nobuhiro; Mishina, Yuji; Liu, Ying; Zhou, Xuedong; Feng, Jian Q.

    2013-01-01

    Bone morphogenic proteins (BMPs) are critical for both chondrogenesis and osteogenesis. Previous studies reported that embryos deficient in Bmp receptor (Bmpr)1a or Bmpr1b in cartilage display subtle skeletal defects; however, double mutant embryos develop severe skeletal defects, suggesting a functional redundancy that is essential for early chondrogenesis. In this study, we examined the postnatal role of Bmpr1a in cartilage. In the Bmpr1a conditional knockout (cKO, a cross between Bmpr1a flox and aggrecan-CreERT2 induced by a one-time-tamoxifen injection at birth and harvested at ages of 2, 4, 8 and 20 weeks), there was essentially no long bone growth with little expression of cartilage markers such as SOX9, IHH and glycoproteins. Unexpectedly, the null growth plate was replaced by bone-like tissues, supporting the notions that the progenitor cells in the growth plate, which normally form cartilage, can form other tissues such as bone and fibrous; and that BMPR1A determines the cell fate. A working hypothesis is proposed to explain the vital role of BMPR1A in postnatal chondrogenesis. PMID:24163588

  14. Growth of alveoli during postnatal development in humans based on stereological estimation.

    PubMed

    Herring, Matt J; Putney, Lei F; Wyatt, Gregory; Finkbeiner, Walter E; Hyde, Dallas M

    2014-08-15

    Alveolarization in humans and nonhuman primates begins during prenatal development. Advances in stereological counting techniques allow accurate assessment of alveolar number; however, these techniques have not been applied to the developing human lung. Based on the recent American Thoracic Society guidelines for stereology, lungs from human autopsies, ages 2 mo to 15 yr, were fractionated and isometric uniform randomly sampled to count the number of alveoli. The number of alveoli was compared with age, weight, and height as well as growth between right and left lungs. The number of alveoli in the human lung increased exponentially during the first 2 yr of life but continued to increase albeit at a reduced rate through adolescence. Alveolar numbers also correlated with the indirect radial alveolar count technique. Growth curves for human alveolarization were compared using historical data of nonhuman primates and rats. The alveolar growth rate in nonhuman primates was nearly identical to the human growth curve. Rats were significantly different, showing a more pronounced exponential growth during the first 20 days of life. This evidence indicates that the human lung may be more plastic than originally thought, with alveolarization occurring well into adolescence. The first 20 days of life in rats implies a growth curve that may relate more to prenatal growth in humans. The data suggest that nonhuman primates are a better laboratory model for studies of human postnatal lung growth than rats.

  15. Non-imprinted epigenetics in fetal and postnatal development and growth.

    PubMed

    Godfrey, Keith M; Lillycrop, Karen A; Burdge, Graham C; Gluckman, Peter D; Hanson, Mark A

    2013-01-01

    Recent evidence demonstrates that the environment in early life can have important effects on fetal and postnatal growth, on development and on risk of developing common non-communicable diseases in later life. In animals, the environment during early life induces altered phenotypes in ways which are influenced or mediated by epigenetic mechanisms. The latter include DNA methylation, covalent modifications of histones and non-coding RNAs. Most is known about DNA methylation changes, which are gene specific, include effects on non-imprinted genes and function at the level of individual CpG dinucleotides to alter gene expression. Preliminary evidence from human studies suggests a similar important role for epigenetic processes. Tuning of phenotype by the developmental environment has adaptive value because it attempts to match an individual's responses to the environment predicted to be experienced later; hence, such processes have been selected during evolution as conferring fitness advantage. When the phenotype is mismatched, e.g. from inaccurate nutritional cues from the mother or placenta before birth, or from rapid environmental change through improved socioeconomic conditions, risk of non-communicable diseases increases. Evidence is accruing that endocrine or nutritional interventions during early postnatal life can reverse epigenetic and phenotypic changes induced, for example, by unbalanced maternal diet during pregnancy. Elucidation of epigenetic processes may enable early intervention strategies to improve early development and growth.

  16. Radiological trace of mandibular primary growth center in postnatal human mandibles.

    PubMed

    Lee, Young Joon; Lee, Sang Shin; Park, Byoung Geol; Woo, Sang Doo; Kim, Eun Cheol; Kim, Yeon Sook; Lee, Suk Keun; Chi, Je Geun

    2006-12-01

    The mandibular primary growth center (MdPGC) of human fetus was conspicuously defined in the soft X-ray view of fetal mandibles. As the peripheral adaptive growth of mandible advances during the postnatal period, the MdPGC image became overshadowed by condensed cortical bones in soft X-ray view. In this study, we traced a sclerotic sequela of MdPGC during the postnatal period. Panoramic radiograms of 200 adults and soft X-ray views of 30 dried adult mandibles were analyzed by statistical methods. The former clearly showed an MdPGC below the middle portion of apices of canine and first premolar, which was distinguishable from mental foramen, and the latter also showed the MdPGC at the same area as a radiating and condensed radiopaque image, measuring 0.5-1.0 cm in diameter. This MdPGC position was seldom changed in the elderly people, even in the edentulous mandibles. Additionally, in the radiological examination, the benign tumors including odontogenic cysts hardly involved the MdPGC, while the malignant tumors of both primary and metastatic cancer frequently destroyed the MdPGC.

  17. Effects of Low-Dose Drinking Water Arsenic on Mouse Fetal and Postnatal Growth and Development

    PubMed Central

    Kozul-Horvath, Courtney D.; Zandbergen, Fokko; Jackson, Brian P.; Enelow, Richard I.; Hamilton, Joshua W.

    2012-01-01

    Background Arsenic (As) exposure is a significant worldwide environmental health concern. Chronic exposure via contaminated drinking water has been associated with an increased incidence of a number of diseases, including reproductive and developmental effects. The goal of this study was to identify adverse outcomes in a mouse model of early life exposure to low-dose drinking water As (10 ppb, current U.S. EPA Maximum Contaminant Level). Methodology and Findings C57B6/J pups were exposed to 10 ppb As, via the dam in her drinking water, either in utero and/or during the postnatal period. Birth outcomes, the growth of the F1 offspring, and health of the dams were assessed by a variety of measurements. Birth outcomes including litter weight, number of pups, and gestational length were unaffected. However, exposure during the in utero and postnatal period resulted in significant growth deficits in the offspring after birth, which was principally a result of decreased nutrients in the dam's breast milk. Cross-fostering of the pups reversed the growth deficit. Arsenic exposed dams displayed altered liver and breast milk triglyceride levels and serum profiles during pregnancy and lactation. The growth deficits in the F1 offspring resolved following separation from the dam and cessation of exposure in male mice, but did not resolve in female mice up to six weeks of age. Conclusions/Significance Exposure to As at the current U.S. drinking water standard during critical windows of development induces a number of adverse health outcomes for both the dam and offspring. Such effects may contribute to the increased disease risks observed in human populations. PMID:22693606

  18. Prenatal and Postnatal Exposure to Persistent Organic Pollutants and Infant Growth: A Pooled Analysis of Seven European Birth Cohorts

    PubMed Central

    Iszatt, Nina; Stigum, Hein; Verner, Marc-André; White, Richard A.; Govarts, Eva; Murinova, Lubica Palkovicova; Schoeters, Greet; Trnovec, Tomas; Legler, Juliette; Pelé, Fabienne; Botton, Jérémie; Chevrier, Cécile; Wittsiepe, Jürgen; Ranft, Ulrich; Vandentorren, Stéphanie; Kasper-Sonnenberg, Monika; Klümper, Claudia; Weisglas-Kuperus, Nynke; Polder, Anuschka

    2015-01-01

    Background Infant exposure to persistent organic pollutants (POPs) may contribute to obesity. However, many studies so far have been small, focused on transplacental exposure, used an inappropriate measure to assess postnatal exposure through breastfeeding if any, or did not discern between prenatal and postnatal effects. Objectives We investigated prenatal and postnatal exposure to POPs and infant growth (a predictor of obesity). Methods We pooled data from seven European birth cohorts with biomarker concentrations of polychlorinated biphenyl 153 (PCB-153) (n = 2,487), and p,p´-dichlorodiphenyldichloroethylene (p,p´-DDE) (n = 1,864), estimating prenatal and postnatal POPs exposure using a validated pharmacokinetic model. Growth was change in weight-for-age z-score between birth and 24 months. Per compound, multilevel models were fitted with either POPs total exposure from conception to 24 months or prenatal or postnatal exposure. Results We found a significant increase in growth associated with p,p´-DDE, seemingly due to prenatal exposure (per interquartile increase in exposure, adjusted β = 0.12; 95% CI: 0.03, 0.22). Due to heterogeneity across cohorts, this estimate cannot be considered precise, but does indicate that an association with infant growth is present on average. In contrast, a significant decrease in growth was associated with postnatal PCB-153 exposure (β = –0.10; 95% CI: –0.19, –0.01). Conclusion To our knowledge, this is the largest study to date of POPs exposure and infant growth, and it contains state-of-the-art exposure modeling. Prenatal p,p´-DDE was associated with increased infant growth, and postnatal PCB-153 with decreased growth at European exposure levels. Citation Iszatt N, Stigum H, Verner MA, White RA, Govarts E, Palkovicova Murinova L, Schoeters G, Trnovec T, Legler J, Pelé F, Botton J, Chevrier C, Wittsiepe J, Ranft U, Vandentorren S, Kasper-Sonnenberg M, Klümper C, Weisglas-Kuperus N, Polder A, Eggesbø M, OBELIX

  19. Conditional overexpression of connective tissue growth factor disrupts postnatal lung development.

    PubMed

    Wu, Shu; Platteau, Astrid; Chen, Shaoyi; McNamara, George; Whitsett, Jeffrey; Bancalari, Eduardo

    2010-05-01

    Connective tissue growth factor (CTGF) is a member of an emerging family of immediate-early gene products that coordinates complex biological processes during development, differentiation, and tissue repair. Overexpression of CTGF is associated with mechanical ventilation with high tidal volume and oxygen exposure in newborn lungs. However, the role of CTGF in postnatal lung development and remodeling is not well understood. In the present study, a double-transgenic mouse model was generated with doxycycline-inducible overexpression of CTGF in respiratory epithelial cells. Overexpression of CTGF from Postnatal Days 1-14 resulted in thicker alveolar septa and decreased secondary septal formation. This is correlated with increased myofibroblast differentiation and disorganized elastic fiber deposition in alveolar septa. Overexpression of CTGF also decreased alveolar capillary network formation. There were increased alpha-smooth muscle actin expression and collagen deposition, and dramatic thickening in the peribronchial/peribronchiolar and perivascular regions in the double-transgenic lungs. Furthermore, overexpression of CTGF increased integrin-linked kinase expression, activated its downstream signaling target, Akt, as well as increased mRNA expression of fibronectin. These data demonstrate that overexpression of CTGF disrupts alveologenesis and capillary formation, and induces fibrosis during the critical period of alveolar development. These histologic changes are similar to those observed in lungs of infants with bronchopulmonary dysplasia.

  20. [Postnatal growth patterns in eight species of herons and egrets (Ciconiiformes: Ardeidae)].

    PubMed

    Avila, Dennis Denis

    2011-06-01

    Avian postnatal growth has received considerable attention and its ecological implications have been deeply analyzed. In this current paper, I describe the patterns of culmen and tarsus growth, as well as of weight gain patterns in eight species of herons and egrets (Aves: Ardeidae) found in the Birama Swamp in Eastern Cuba. Between 1998 and 2006,714 nestlings of the following species were measured every two days: Butorides virescens, Bubulcus ibis, Egretta thula, E. tricolor, E. caerulea, E. rufescens, Ardea alba and Nycticorax nycticorax. Logistic and Gompertz equations were adjusted to data using non-lineal regression models with adult values as the asymptote. For each species, the following were determined and recorded: growth rate, age at inflexion, instantaneous growth rates at each age interval, and time taken to reach 90% of adult size. Reported hatchling sizes were similar in other localities, with a variation coefficient ranging between 10-19%. At hatch, each species exhibited differing sizes relative to adult values. In all cases, Gompertz equations were best fitted to explain more variance and lesser residuals. Rates of weight change and tarsus growth were alometrically related to the log of adult weight. Two main growth processes were identified: a physical extension in dimensions of each measurement reflecting inter-specific morphometric differences, and a lineal increase of the growth period from Green Heron to Great Egret. The Black-crowned Night Heron, Cattle Egret and Reddish Egret exhibited some unique measurement characteristics in comparison to the remaining members of the family. All results support the hypothesis that hypermorphosis, as the main evolutionary process in the microevolution of Ardeidae, is caused by a delayed final moment of growth.

  1. Myocardial macronutrient transporter adaptations in the adult pregestational female intrauterine and postnatal growth-restricted offspring

    PubMed Central

    Abbasi, Afshan; Thamotharan, Manikkavasagar; Shin, Bo-Chul; Jordan, Maria C.; Roos, Kenneth P.; Stahl, Andreas

    2012-01-01

    Associations between exponential childhood growth superimposed on low birth weight and adult onset cardiovascular disease with glucose intolerance/type 2 diabetes mellitus exist in epidemiological investigations. To determine the metabolic adaptations that guard against myocardial failure on subsequent exposure to hypoxia, we compared with controls (CON), the effect of intrauterine (IUGR), postnatal (PNGR), and intrauterine and postnatal (IPGR) calorie and growth restriction (n = 6/group) on myocardial macronutrient transporter (fatty acid and glucose) -mediated uptake in pregestational young female adult rat offspring. A higher myocardial FAT/CD36 protein expression in IUGR, PNGR, and IPGR, with higher FATP1 in IUGR, FATP6 in PNGR, FABP-c in PNGR and IPGR, and no change in GLUT4 of all groups was observed. These adaptive macronutrient transporter protein changes were associated with no change in myocardial [3H]bromopalmitate accumulation but a diminution in 2-deoxy-[14C]glucose uptake. Examination of the sarcolemmal subfraction revealed higher basal concentrations of FAT/CD36 in PNGR and FATP1 and GLUT4 in IUGR, PNGR, and IPGR vs. CON. Exogenous insulin uniformly further enhanced sarcolemmal association of these macronutrient transporter proteins above that of basal, with the exception of insulin resistance of FATP1 and GLUT4 in IUGR and FAT/CD36 in PNGR. The basal sarcolemmal macronutrient transporter adaptations proved protective against subsequent chronic hypoxic exposure (7 days) only in IUGR and PNGR, with notable deterioration in IPGR and CON of the echocardiographic ejection fraction. We conclude that the IUGR and PNGR pregestational adult female offspring displayed a resistance to insulin-induced translocation of FATP1, GLUT4, or FAT/CD36 to the myocardial sarcolemma due to preexistent higher basal concentrations. This basal adaptation of myocardial macronutrient transporters ensured adequate fatty acid uptake, thereby proving protective against chronic

  2. Meat science and muscle biology symposium: In utero factors that influence postnatal muscle growth, carcass composition, and meat quality

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Meat Science and Muscle Biology Symposium titled “In utero factors that influence postnatal muscle growth, carcass composition, and meat quality” was held at the Joint Annual Meeting in Phoenix, AZ, July 15 to 19, 2012. The goal of this symposium was to highlight research on the impact of fetal...

  3. Maternal stress affects postnatal growth and the pituitary expression of prolactin in mouse offspring.

    PubMed

    Gao, Pengfei; Ishige, Atsushi; Murakami, Yu; Nakata, Hideyuki; Oka, Jun-Ichiro; Munakata, Kaori; Yamamoto, Masahiro; Nishimura, Ko; Watanabe, Kenji

    2011-03-01

    Maternal stress exerts long-lasting psychiatric and somatic on offspring, which persist into adulthood. However, the effect of maternal stress on the postnatal growth of pups has not been widely reported. In this study, we found that maternal immobilization stress (IS) during lactation resulted in low body weight of male mouse offspring, which persisted after weaning. Despite free access to chow, IS induced maternal malnutrition and decreased the serum insulin-like growth factor-1 (IGF-1) levels in the mothers and in the pups. mRNA expression analysis of anterior pituitary hormones in the pups revealed that growth hormone (GH) and prolactin (PRL), but no other hormones, were decreased by IS. Expression of the pituitary transcription factor PIT1 and isoforms of PITX2, which are essential for the development and function of GH-producing somatotropes and PRL-producing lactotropes, was decreased, whereas that of PROP1, which is critical for the earlier stages of pituitary development, was unchanged. Immunohistochemistry also showed a decrease in pituitary PRL protein expression. These results suggest that stress in a postpartum mother has persistent effects on the body weight of the offspring. Reduced PRL expression in the offspring's pituitary gland may play a role in these effects.

  4. Postnatal Anthropometric and Body Composition Profiles in Infants with Intrauterine Growth Restriction Identified by Prenatal Doppler

    PubMed Central

    Mazarico, E.; Martinez-Cumplido, R.; Díaz, M.; Sebastiani, G.; Ibáñez, L.; Gómez-Roig, M. D.

    2016-01-01

    Introduction Infant anthropometry and body composition have been previously assessed to gauge the impact of intrauterine growth restriction (IUGR) at birth, but the interplay between prenatal Doppler measurements and postnatal development has not been studied in this setting. The present investigation was performed to assess the significance of prenatal Doppler findings relative to postnatal anthropometrics and body composition in IUGR newborns over the first 12 months of life. Patients and Methods Consecutive cases of singleton pregnancies with suspected IUGR were prospectively enrolled over 12 months. Fetal biometry and prenatal Doppler ultrasound examinations were performed. Body composition was assessed by absorptiometry at ages 10 days, and at 4 and12 months. Results A total of 48 pregnancies qualifying as IUGR were studied. Doppler parameters were normal in 26 pregnancies. The remaining 22 deviated from normal, marked by an Umbilical Artery Pulsatility Index (UA-PI) >95th centil or Cerebro-placental ratio (CPR) <5th centile. No significant differences emerged when comparing anthropometry and body composition at each time point, in relation to Doppler findings. Specifically, those IUGR newborns with and without abnormal Doppler findings had similar weight, length, body mass index, lean and fat mass, and bone mineral content throughout the first 12 months of life. In a separate analysis, when comparing IUGR newborns by Doppler (abnormal UA-PI vs. abnormal CPR), anthropometry and body composition did not differ significantly. Conclusions Infants with IUGR maintain a pattern of body composition during the first year of life that is independent of prenatal Doppler findings. Future studies with larger sample sizes and correlating with hormonal status are warranted to further extend the phenotypic characterization of the various conditions now classified under the common label of IUGR. PMID:26938993

  5. Modification of nutrition strategy for improvement of postnatal growth in very low birth weight infants

    PubMed Central

    Choi, Ah Young; Lee, Yong Wook

    2016-01-01

    Purpose To identify the effects of modified parenteral nutrition (PN) and enteral nutrition (EN) regimens on the growth of very low birth weight (VLBW) infants. Methods The study included VLBW infants weighing <1,500 g, admitted to Chungnam National University Hospital between October 2010 and April 2014, who were alive at the time of discharge. Subjects were divided according to 3 periods: period 1 (n=37); prior to the PN and EN regimen being modified, period 2 (n=50); following the PN-only regimen modification, period 3 (n=37); following both PN and EN regimen modification. The modified PN regimen provided 3 g/kg/day of protein and 1 g/kg/day of lipid on the first day of life. The modified EN regimen provided 3.5-4.5 g/kg/day of protein and 150 kcal/kg/day of energy. We investigated growth rate, anthropometric measurements at 40 weeks postconceptional age (PCA) and the incidence of extrauterine growth restriction (EUGR) at 40 weeks PCA. Results Across the 3 periods, clinical characteristics, including gestational age, anthropometric measurements at birth, multiple births, sex, Apgar score, surfactant use and PDA treatment, were similar. Growth rates for weight and height, from time of full enteral feeding to 40 weeks PCA, were higher in period 3. Anthropometric measurements at 40 weeks PCA were greatest in period 3. Incidence of weight, height and head circumference EUGR at 40 weeks PCA decreased in period 3. Conclusion Beginning PN earlier, with a greater supply of protein and energy during PN and EN, is advantageous for postnatal growth in VLBW infants. PMID:27186226

  6. Antenatal and early infant predictors of postnatal growth in rural Vietnam: a prospective cohort study

    PubMed Central

    Hanieh, Sarah; Ha, Tran T; De Livera, Alysha M; Simpson, Julie A; Thuy, Tran T; Khuong, Nguyen C; Thoang, Dang D; Tran, Thach D; Tuan, Tran; Fisher, Jane; Biggs, Beverley-Ann

    2015-01-01

    Objective To determine which antenatal and early-life factors were associated with infant postnatal growth in a resource-poor setting in Vietnam. Study design Prospective longitudinal study following infants (n=1046) born to women who had previously participated in a cluster randomised trial of micronutrient supplementation (ANZCTR:12610000944033), Ha Nam province, Vietnam. Antenatal and early infant factors were assessed for association with the primary outcome of infant length-for-age z scores at 6 months of age using multivariable linear regression and structural equation modelling. Results Mean length-for-age z score was −0.58 (SD 0.94) and stunting prevalence was 6.4%. Using structural equation modelling, we highlighted the role of infant birth weight as a predictor of infant growth in the first 6 months of life and demonstrated that maternal body mass index (estimated coefficient of 45.6 g/kg/m2; 95% CI 34.2 to 57.1), weight gain during pregnancy (21.4 g/kg; 95% CI 12.6 to 30.1) and maternal ferritin concentration at 32 weeks' gestation (−41.5 g per twofold increase in ferritin; 95% CI −78 to −5.0) were indirectly associated with infant length-for-age z scores at 6 months of age via birth weight. A direct association between 25-(OH) vitamin D concentration in late pregnancy and infant length-for-age z scores (estimated coefficient of −0.06 per 20 nmol/L; 95% CI −0.11 to −0.01) was observed. Conclusions Maternal nutritional status is an important predictor of early infant growth. Elevated antenatal ferritin levels were associated with suboptimal infant growth in this setting, suggesting caution with iron supplementation in populations with low rates of iron deficiency. PMID:25246090

  7. Heterochrony and post-natal growth in mammals--an examination of growth plates in limbs.

    PubMed

    Geiger, M; Forasiepi, A M; Koyabu, D; Sánchez-Villagra, M R

    2014-01-01

    Mammals display a broad spectrum of limb specializations coupled with different locomotor strategies and habitat occupation. This anatomical diversity reflects different patterns of development and growth, including the timing of epiphyseal growth plate closure in the long bones of the skeleton. We investigated the sequence of union in 15 growth plates in the limbs of about 400 specimens, representing 58 mammalian species: 34 placentals, 23 marsupials and one monotreme. We found a common general pattern of growth plate closure sequence, but one that is universal neither between species nor in higher-order taxa. Locomotor habitat has no detectable correlation with the growth plate closure sequence, but observed patterns indicate that growth plate closure sequence is determined more strongly through phylogenetic factors. For example, the girdle elements (acetabulum and coracoid process) always ossify first in marsupials, whereas the distal humerus is fused before the girdle elements in some placentals. We also found that heterochronic shifts (changes in timing) in the growth plate closure sequence of marsupials occur with a higher rate than in placentals. This presents a contrast with the more limited variation in timing and morphospace occupation typical for marsupial development. Moreover, unlike placentals, marsupials maintain many epiphyses separated throughout life. However, as complete union of all epiphyseal growth plates is recorded in monotremes, the marsupial condition might represent the derived state. PMID:24251599

  8. Post-natal growth in the rat pineal gland: a stereological study.

    PubMed

    Erbagci, H; Kizilkan, N; Ozbag, D; Erkilic, S; Kervancioglu, P; Canan, S; Gumusburun, E

    2012-10-01

    The purpose was to observe the changes in a rat pineal gland using stereological techniques during lactation and post-weaning periods. Thirty Wistar albino rats were studied during different post-natal periods using light microscopy. Pineal gland volume was estimated using the Cavalieri Method. Additionally, the total number of pinealocytes was estimated using the optical fractionator technique. Pineal gland volume displayed statistically significant changes between lactation and after weaning periods. A significant increase in pineal gland volume was observed from post-natal day 10 to post-natal day 90. The numerical density of pinealocytes became stabilized during lactation and decreased rapidly after weaning. However, the total number of pinealocytes continuously increased during post-natal life of all rats in the study. However, this increment was not statistically significant when comparing the lactation and after weaning periods. The increase in post-natal pineal gland volume may depend on increment of immunoreactive fibres, capsule thickness or new synaptic bodies.

  9. Effect of Maternal Factors and Fetomaternal Glucose Homeostasis on Birth Weight and Postnatal Growth

    PubMed Central

    Özbörü Aşkan, Öykü; Bozaykut, Abdülkadir; Sezer, Rabia Gönül; Güran, Tülay; Bereket, Abdullah

    2015-01-01

    Objective: It is important to identify the possible risk factors for the occurrence of large for gestational age (LGA) in newborns and to determine the effect of birth weight and metabolic parameters on subsequent growth. We aimed to determine the effects of maternal weight, weight gain during pregnancy, maternal hemoglobin A1c (HbA1c), C-peptide and insulin as well as cord C-peptide and insulin levels on birth weight and postnatal growth during the first two years of life. Methods: Healthy, non-diabetic mothers and term singleton newborns were included in this prospective case-control cohort study. Fasting maternal glucose, HbA1c, C-peptide and insulin levels were studied. Cord blood was analyzed for C-peptide and insulin. At birth, newborns were divided into two groups according to birth size: LGA and appropriate for GA (AGA). Infants were followed at six-month intervals for two years and their length and weight were recorded. Results: Forty LGA and 43 AGA infants were included in the study. Birth weight standard deviation score (SDS) was positively correlated with maternal body mass index (BMI) before delivery (r=0.2, p=0.04) and with weight gain during pregnancy (r=0.2, p=0.04). In multivariate analyses, the strongest association with macrosomia was a maternal C-peptide level >3.85 ng/mL (OR=20). Although the LGA group showed decreased growth by the 6-month of follow-up, the differences between the LGA and AGA groups in weight and length SDS persisted over the 2 years of follow-up. Conclusion: The control of maternal BMI and prevention of overt weight gain during pregnancy may prevent excessive birth weight. The effect of the in utero metabolic environment on the weight and length SDS of infants born LGA persists until at least two years of age. PMID:26831549

  10. Food, growth and time: Elsie Widdowson's and Robert McCance's research into prenatal and early postnatal growth.

    PubMed

    Buklijas, Tatjana

    2014-09-01

    Cambridge scientists Robert McCance and Elsie Widdowson are best known for their work on the British food tables and wartime food rations, but it is their research on prenatal and early postnatal growth that is today seen as a foundation of the fields studying the impact of environment upon prenatal development and, consequently, adult disease. In this essay I situate McCance's and Widdowson's 1940s human and 1950s experimental studies in the context of pre-war concerns with fetal growth and development, especially within biochemistry, physiology and agriculture; and the Second World War and post-war focus on the effects of undernutrition during pregnancy upon the fetus. I relate Widdowson's and McCance's research on the long-term effects of early undernutrition to the concern with recovery from early trauma so pertinent in post-war Europe and with sensitive (critical) periods, a concept of high importance across different fields. Finally I discuss how, following a hiatus in which fetal physiology engaged with different questions and stressed fetal autonomy, interest in the impact of environment upon prenatal growth and development revived towards the end of the twentieth century. The new field of "developmental origins of health and disease", I suggest, has provided a context in which Widdowson's and McCance's work has regained importance. PMID:24378592

  11. Postnatal growth of broilers in response to in ovo administration of chicken growth hormone.

    PubMed

    Kocamis, H; Yeni, Y N; Kirkpatrick-Keller, D C; Killefer, J

    1999-08-01

    The effect of in ovo administration of chicken growth hormone (cGH) on growth rate and efficiency of gain, organ, and long bone growth of 42-d-old broiler chickens was investigated. Eggs were injected once with 100 microL vehicle (0.03 M NaHCO3, 0.15 M NaCl, pH 8.3) per embryo or vehicle containing 100 ng cGH/100 microL per embryo (n = 630 eggs total) on one of the following Days: 1, 4, or 7 through 18 of embryogenesis. There was no significant difference in hatchability between control and cGH treatment groups on any given injection day. Cumulative feed conversion of all treatment groups was improved relative to their respective control groups (P < 0.05). In ovo administration of cGH on Day 15 or 16 of incubation increased body weights (P < 0.01) of female broilers. On the other hand, body weights of male broilers were significantly increased by treatment on Day 1 (P < 0.04). Breast weights of female broilers from treatment groups Day 15 or 16 were increased (P < 0.01, P < 0.05, respectively). Liver weights of female broilers from treatment groups Day 1 and 15 were increased (P < 0.05, P < 0.01, respectively). In contrast, in ovo administration of cGH on Day 11 of incubation increased liver weights of male broilers (P < 0.03). There was no significant difference between control and treatment groups, in terms of heart or leg weights, or in Warner-Bratzler shear force of Pectoralis profundus muscle. Hydroxyproline concentration and cross-sectional area of female broiler tibias from treatment groups Day 11 or Day 16 were increased (P < 0.05), and ultimate breaking strength (stress) of tibias from the same groups was reduced (P < 0.05). In ovo administration of cGH altered growth and tissue development of broiler chickens in a time by sex dependent fashion.

  12. Rotary plant growth accelerating apparatus. [weightlessness

    NASA Technical Reports Server (NTRS)

    Dedolph, R. D. (Inventor)

    1975-01-01

    Rotary plant growth accelerating apparatus for increasing plant yields by effectively removing the growing plants from the constraints of gravity and increasing the plant yield per unit of space is described. The apparatus is comprised of cylindrical plant beds supported radially removed from a primary axis of rotation, with each plant bed being driven about its own secondary axis of rotation and simultaneously moved in a planetary path about the primary axis of rotation. Each plant bed is formed by an apertured outer cylinder, a perforated inner cylinder positioned coaxially, and rooting media disposed in the space between. A rotatable manifold distributes liquid nutrients and water to the rooting media through the perforations in the inner cylinders as the plant beds are continuously rotated by suitable drive means.

  13. Effect of nebivolol treatment during pregnancy on the genital circulation, fetal growth and postnatal development in the Wistar rat.

    PubMed

    Altoama, Kassem; Yassine Mallem, Mohamed; Thorin, Chantal; Betti, Eric; Desfontis, Jean-Claude

    2015-07-01

    The aim of study was to evaluate the effects of nebivolol, a cardioselective beta-1 adrenergic receptor blocker of the third generation with vasodilatory properties, vs. bisoprolol on the genital circulation, uterine vasculature, fetal growth and postnatal development in pregnant Wistar rats. Non invasive measurements of systolic and diastolic blood pressure (SBP and DBP) and heart rate (HR), and invasive measurement of genital blood flow (GBF) were taken in pregnant rats, by tail cuff and transonic probe methods respectively, after an oral treatment by gastric gavage with nebivolol (8mg/kg/day) or bisoprolol (10mg/kg/day) from day 11 to day 18 of pregnancy. Other morphometrical and histological measurements were performed on the ovarian and uterine arteries to evaluate the effect of nebivolol on the uterine vasculature. Furthermore, postnatal mortality and pup growth were recorded. The data demonstrated that nebivolol (compared with bisoprolol) induced a significant decrease in SBP, HR and GBF while DBP remained unchanged. Moreover, nebivolol increased the diameter and the length of ovarian and uterine arteries and the number of uterine artery segmental branches. The results also showed that the body weight gain of newborns in the nebivolol group was significantly lower vs. bisoprolol and vs. control with a higher mortality rate. The nebivolol action is not only limited to its favorable hemodynamic effects represented by a decrease in blood pressure, but it also produces adverse effects on fetal growth and postnatal development that may limit its therapeutic use in females during pregnancy.

  14. Systematic review of the effects of iodised salt and iodine supplements on prenatal and postnatal growth: study protocol

    PubMed Central

    Farebrother, Jessica; Naude, Celeste E; Nicol, Liesl; Sang, Zhongna; Yang, Zhenyu; Andersson, Maria; Jooste, Pieter L; Zimmermann, Michael B

    2015-01-01

    Introduction Iodine is an essential micronutrient and component of the thyroid hormones. Sufficient ingestion of iodine is necessary for normal growth and development. If iodine requirements are not met, growth can be impaired. Salt iodisation and supplementation with iodine can prevent iodine deficiency disorders and stunted growth. No systematic review has yet collated the evidence linking iodine to growth. With an increased emphasis on stunting within the WHO Global Nutrition Targets for 2025, we propose a systematic review to address this question. Methods and analysis We will undertake a systematic review, and if appropriate, meta-analyses, evaluating the effects of iodised salt or iodine supplements on prenatal and postnatal somatic growth, until age 18. We will search a number of databases, including MEDLINE, EMBASE, Web of Science, CINAHL, PsychINFO, the Cochrane Library, including the CENTRAL register of Controlled Trials and also the WHO library and ICTRP (International Clinical Trials Registry Platform), which includes the Clinicaltrials.gov repository. We will also search Wanfang Data and the China Knowledge Resource Integrated Database. Included studies must have compared exposure to iodised salt, iodine supplements or iodised oil, to placebo, non-iodised salt or no intervention. Primary outcomes will be continuous and categorical markers of prenatal and postnatal somatic growth. Secondary outcomes will cover further measures of growth, including growth rates and indirect markers of growth such as insulin-like growth factor-1 (IGF-1). Ethics and dissemination The systematic review will be published in a peer-reviewed journal, and will be sent directly to the WHO, United Nations Children's Fund, International Council for the Control of Iodine Deficiency Disorders and other stakeholders. The results generated from this systematic review will provide evidence to support future programme recommendations regarding iodine fortification or supplementation and

  15. Fetal dexamethasone exposure accelerates development of renal function: relationship to dose, cell differentiation and growth inhibition.

    PubMed

    Slotkin, T A; Seidler, F J; Kavlock, R J; Gray, J A

    1992-02-01

    Fetal exposure to high doses of glucocorticoids slows cellular development and impairs organ performance, in association with growth retardation. Nevertheless, low doses of glucocorticoids may enhance cell differentiation and accelerate specific functions. The current study examined this apparent paradox in the developing rat kidney, using doses of dexamethasone that span the threshold for growth impairment: 0.05 or 0.2 mg/kg given on gestational days 17, 18 and 19. At the lower dose, which did not significantly retard body growth, the postnatal development of tubular reabsorptive capabilities for sodium, potassium, osmotic particles, water and urea was accelerated. These effects were less notable at the higher dose, which caused initial body growth impairment. The selectivity toward promotion of tubular function was evidenced by the absence of effect of either dose of dexamethasone on development of glomerular filtration rate. Because of the wide spectrum of dexamethasone's effects on tubular function, we also assessed fetal kidney adenylate cyclase as a means of detecting altered cell differentiation in the prenatal period during which dexamethasone was given. Either glucocorticoid dose increased the total adenylate cyclase catalytic activity (assessed with forskolin). Thus, the net effect of fetal dexamethasone exposure on development of renal excretory capabilities probably represents the summation of promoted cell differentiation and slowed development consequent to growth retardation. At low dose levels, the former effect predominates, leading to enhanced functional development, whereas higher doses that interfere with general growth and development can offset the direct promotional effect.

  16. Effects of ethanol consumption during pregnancy and lactation on the outcome and postnatal growth of the offspring.

    PubMed

    Flores-Huerta, S; Hernández-Montes, H; Argote, R M; Villalpando, S

    1992-01-01

    Although information about the pregnancy outcome of alcoholic mothers is relatively abundant, no information is available about the effects of ethanol consumption on the infant's postnatal growth. This investigation aims to describe the physical growth of 32 infants born to mothers accustomed to drinking pulque, a mild alcoholic beverage, on a daily basis during pregnancy and lactation and to quantitate the ethanol disposed through the milk, as well as to identify cases of newborns with fetal alcohol syndrome. No full-blown cases of the syndrome were found: birth weight was similar to their non-drinking counterpart, but the relative risk of newborns to drinking mothers to have a low birth weight was 3.39. Ethanol found in milk accounted for 40 mg/day available to the infant. The postnatal growth of infants of ethanol drinkers was similar to that of controls. Further studies on their mental development are required in order to understand the extent of the effects of such a habit.

  17. Disentangling prenatal and postnatal maternal genetic effects reveals persistent prenatal effects on offspring growth in mice.

    PubMed

    Wolf, Jason B; Leamy, Larry J; Roseman, Charles C; Cheverud, James M

    2011-11-01

    Mothers are often the most important determinant of traits expressed by their offspring. These "maternal effects" (MEs) are especially crucial in early development, but can also persist into adulthood. They have been shown to play a role in a diversity of evolutionary and ecological processes, especially when genetically based. Although the importance of MEs is becoming widely appreciated, we know little about their underlying genetic basis. We address the dearth of genetic data by providing a simple approach, using combined genotype information from parents and offspring, to identify "maternal genetic effects" (MGEs) contributing to natural variation in complex traits. Combined with experimental cross-fostering, our approach also allows for the separation of pre- and postnatal MGEs, providing rare insights into prenatal effects. Applying this approach to an experimental mouse population, we identified 13 ME loci affecting body weight, most of which (12/13) exhibited prenatal effects, and nearly half (6/13) exhibiting postnatal effects. MGEs contributed more to variation in body weight than the direct effects of the offsprings' own genotypes until mice reached adulthood, but continued to represent a major component of variation through adulthood. Prenatal effects always contributed more variation than postnatal effects, especially for those effects that persisted into adulthood. These results suggest that MGEs may be an important component of genetic architecture that is generally overlooked in studies focused on direct mapping from genotype to phenotype. Our approach can be used in both experimental and natural populations, providing a widely practicable means of expanding our understanding of MGEs.

  18. Disentangling Prenatal and Postnatal Maternal Genetic Effects Reveals Persistent Prenatal Effects on Offspring Growth in Mice

    PubMed Central

    Wolf, Jason B.; Leamy, Larry J.; Roseman, Charles C.; Cheverud, James M.

    2011-01-01

    Mothers are often the most important determinant of traits expressed by their offspring. These “maternal effects” (MEs) are especially crucial in early development, but can also persist into adulthood. They have been shown to play a role in a diversity of evolutionary and ecological processes, especially when genetically based. Although the importance of MEs is becoming widely appreciated, we know little about their underlying genetic basis. We address the dearth of genetic data by providing a simple approach, using combined genotype information from parents and offspring, to identify “maternal genetic effects” (MGEs) contributing to natural variation in complex traits. Combined with experimental cross-fostering, our approach also allows for the separation of pre- and postnatal MGEs, providing rare insights into prenatal effects. Applying this approach to an experimental mouse population, we identified 13 ME loci affecting body weight, most of which (12/13) exhibited prenatal effects, and nearly half (6/13) exhibiting postnatal effects. MGEs contributed more to variation in body weight than the direct effects of the offsprings’ own genotypes until mice reached adulthood, but continued to represent a major component of variation through adulthood. Prenatal effects always contributed more variation than postnatal effects, especially for those effects that persisted into adulthood. These results suggest that MGEs may be an important component of genetic architecture that is generally overlooked in studies focused on direct mapping from genotype to phenotype. Our approach can be used in both experimental and natural populations, providing a widely practicable means of expanding our understanding of MGEs. PMID:21890739

  19. Prenatal Exposure to Perfluorocarboxylic Acids (PFCAs) and Fetal and Postnatal Growth in the Taiwan Maternal and Infant Cohort Study

    PubMed Central

    Wang, Yan; Adgent, Margaret; Su, Pen-Hua; Chen, Hsiao-Yen; Chen, Pau-Chung; Hsiung, Chao A.; Wang, Shu-Li

    2016-01-01

    Background: Perfluorocarboxylic acids (PFCAs) are environmentally and biologically persistent synthetic chemicals. PFCAs include perfluorooctanoic acid (PFOA; C8) and long-chain PFCAs (C9–C20). Studies examining long-chain PFCAs and fetal and postnatal growth are limited. Objectives: We investigated the associations of prenatal exposure to long-chain PFCAs with fetal and postnatal growth. Methods: For 223 Taiwanese mothers and their term infants, we measured PFOA and four long-chain PFCAs (ng/mL) in third-trimester maternal serum; infant weight (kg), length and head circumference (cm) at birth; and childhood weight and height at approximately 2, 5, 8, and 11 years of age. For each sex, we used multivariable linear regression to examine associations between ln-transformed prenatal PFCAs and continuous infant measures, and logistic regression to examine small for gestational age (SGA). Linear mixed models were applied to prenatal PFCAs and childhood weight and height z-scores. Results: In girls, prenatal perfluorononanoic acid (PFNA), perfluorodecanoic acid (PFDeA), perfluoroundecanoic acid (PFUnDA), and perfluorododecanoic acid (PFDoDA) concentrations were inversely associated with birth weight [e.g., βbirth weight (kg) = –0.06, 95% CI: –0.11, –0.01 per 1 ln-unit PFUnDA increase]; prenatal PFDeA and PFUnDA were associated with elevated odds of SGA; and PFDeA, PFUnDA, and PFDoDA were associated with lower average childhood height z-score. In boys, prenatal PFNA, and PFDoDA were associated with reductions in height at certain ages in childhood, but not with size at birth. Conclusions: Prenatal exposure to long-chain PFCAs may interfere with fetal and childhood growth in girls, and childhood growth in boys. Citation: Wang Y, Adgent M, Su PH, Chen HY, Chen PC, Hsiung CA, Wang SL. 2016. Prenatal exposure to perfluorocarboxylic acids (PFCAs) and fetal and postnatal growth in the Taiwan Maternal and Infant Cohort Study. Environ Health Perspect 124:1794–1800;

  20. Acceleration of Fatigue Crack Growth after Overload in Carbon Steel

    NASA Astrophysics Data System (ADS)

    Yamauchi, A.; Miyahara, H.; Makabe, C.; Miyazaki, T.

    The effects of an overload on fatigue crack growth behavior have been investigated by using carbon steel. Delayed retardation and acceleration of crack growth were both observed. These phenomena depended not only on overload conditions but also on the baseline stress conditions. Moreover, the mechanical properties of the materials affected the crack growth rate after overload. It was found that crack growth accelerated when tensile residual stress was distributed in front of the crack tip. The residual stress distribution is related to the crack opening geometry at the overload stage.

  1. Postnatal Growth Velocity and Overweight in Early Adolescents: A Comparison of Rural and Urban African Boys and Girls

    PubMed Central

    Chirwa, ED; Griffiths, P; Maleta, K; Ashorn, P; Pettifor, JM; Norris, SA

    2014-01-01

    Objectives To compare growth velocity of two African child cohorts and examine the relationship between postnatal growth velocity in infancy/early childhood and the risk of overweight/stunting in early adolescence. Methods The study used data from two child cohorts from urban (Birth to Twenty Cohort, South Africa) and rural (Lungwena Child Survival Study, Malawi) African settings. Mixed effect modelling was used to derive growth and peak growth velocities. T-tests were used to compare growth parameters and velocities between the two cohorts. Linear and logistic regression models were used to determine the relationship between growth velocity and early adolescent (ages 9–11 years) body mass index and odds of being overweight. Results Children in the BH cohort were significantly taller and heavier than those in the Lungwena cohort, and exhibited faster weight and height growth velocity especially in the first year of life (P < 0.05). No significant association was shown between baseline weight (αw) and overweight in early adolescence (OR = 1.25, CI = 0.67, 2.34). The weight growth velocity parameter βw was highly associated with odds of being overweight. Association between overweight in adolescence and weight velocity was stronger in infancy than in early childhood (OR at 3 months = 4.80, CI = 2.49, 9.26; OR at 5 years = 2.39, CI = 1.65, 3.47). Conclusion High weight and height growth velocity in infancy, independent of size at birth, is highly associated with overweight in early adolescence. However, the long term effects of rapid growth in infancy may be dependent on a particular population's socio-economic status and level of urbanization. Am. J. Hum. Biol. 26:643–651, 2014. © 2014 The Authors American Journal of Human Biology Published by Wiley Periodicals, Inc. PMID:24948025

  2. Accelerated growth of calcium silicate hydrates: Experiments and simulations

    SciTech Connect

    Nicoleau, Luc

    2011-12-15

    Despite the usefulness of isothermal calorimetry in cement analytics, without any further computations this brings only little information on the nucleation and growth of hydrates. A model originally developed by Garrault et al. is used in this study in order to simulate hydration curves of cement obtained by calorimetry with different known hardening accelerators. The limited basis set of parameters used in this model, having a physical or chemical significance, is valuable for a better understanding of mechanisms underlying in the acceleration of C-S-H precipitation. Alite hydration in presence of four different types of hardening accelerators was investigated. It is evidenced that each accelerator type plays a specific role on one or several growth parameters and that the model may support the development of new accelerators. Those simulations supported by experimental observations enable us to follow the formation of the C-S-H layer around grains and to extract interesting information on its apparent permeability.

  3. Fibronectin accelerates the growth and differentiation of ameloblast lineage cells in vitro.

    PubMed

    Tabata, Makoto J; Matsumura, Tatsushi; Fujii, Takafumi; Abe, Makoto; Kurisu, Kojiro

    2003-12-01

    During tooth development, the growth and differentiation of ameloblast lineage (AL) cells are regulated by epithelial-mesenchymal interactions. To examine the dynamic effects of components of the basement membrane, which is the extracellular matrix (ECM) lying between the epithelium and mesenchyme, we prepared AL cells from the epithelial layer sheet of mandibular incisors of postnatal day 7 rats and cultured them on plates coated with type IV collagen, laminin-1, or fibronectin. The growth of AL cells was supported by type IV collagen and fibronectin but not by laminin-1 in comparison with that on type I collagen as a reference. Clustering and differentiation of AL cells were observed on all matrices examined. AL cells showed normal growth and differentiation at low cell density on fibronectin but not on type I collagen. Furthermore, the population of cytokeratin 14-positive cells on fibronectin was lower than that on other ECM components, suggesting that fibronectin may be a modulator to accelerate the differentiation of AL cells. After the cells had been cultured for 9 days on fibronectin, crystal-like structures were observed. These structures overlaid the cell clusters and were positive for von Kossa staining. These findings indicate that each matrix component has a regulative role in the proliferation and differentiation of AL cells and that fibronectin causes the greatest acceleration of AL cell differentiation.

  4. Exposure to omega-3 fatty acids at early age accelerate bone growth and improve bone quality.

    PubMed

    Koren, Netta; Simsa-Maziel, Stav; Shahar, Ron; Schwartz, Betty; Monsonego-Ornan, Efrat

    2014-06-01

    Omega-3 fatty acids (FAs) are essential nutritional components that must be obtained from foods. Increasing evidence validate that omega-3 FAs are beneficial for bone health, and several mechanisms have been suggested to mediate their effects on bone, including alterations in calcium absorption and urinary calcium loss, prostaglandin synthesis, lipid oxidation, osteoblast formation and inhibition of osteoclastogenesis. However, to date, there is scant information regarding the effect of omega-3 FAs on the developing skeleton during the rapid growth phase. In this study we aim to evaluate the effect of exposure to high levels of omega-3 FAs on bone development and quality during prenatal and early postnatal period. For this purpose, we used the fat-1 transgenic mice that have the ability to convert omega-6 to omega-3 fatty acids and the ATDC5 chondrogenic cell line as models. We show that exposure to high concentrations of omega-3 FAs at a young age accelerates bone growth through alterations of the growth plate, associated with increased chondrocyte proliferation and differentiation. We further propose that those effects are mediated by the receptors G-protein coupled receptor 120 (GPR120) and hepatic nuclear factor 4α, which are expressed by chondrocytes in culture. Additionally, using a combined study on the structural and mechanical bone parameters, we show that high omega-3 levels contribute to superior trabecular and cortical structure, as well as to stiffer bones and improved bone quality. Most interestingly, the fat-1 model allowed us to demonstrate the role of maternal high omega-3 concentration on bone growth during the gestation and postnatal period.

  5. Post-natal growth and development of Simmental calves derived from in vivo or in vitro embryos.

    PubMed

    McEvoy, T G; Sinclair, K D; Broadbent, P J; Goodhand, K L; Robinson, J J

    1998-01-01

    Large fetuses arising from embryos produced in vitro have been shown to exhibit altered organ development in utero, but it is not known whether this persists post natally. Post-natal growth and development was examined in 18 Simmental bulls derived from in vivo frozen-thawed (n = 6), in vitro frozen-thawed (n = 6) or in vitro fresh (n = 6) embryos and reared together post weaning on an ad libitum diet until slaughter at approximately 13 months old. Calves weighing less than 60 kg at birth (n = 11) were classified as normal, and heavier calves (n = 7; all from in vitro embryos) as oversize. Lifetime growth rates and slaughter weights apparently were unaffected by embryo source or birthweight. Mean (+/- s.e.m.) post mortem liver and kidney weights were unaffected by embryo source, but hearts of bulls from in vitro frozen embryos were heavier than those of bulls from in vivo frozen embryos (2.7 +/- 0.04 v 2.3 +/- 0.07 kg, P<0.025). Heart weight per kilogram body weight at slaughter for the 7 perinatally oversize males (4.01 +/- 0.08 g) exceeded that of the other 5 bulls from in vitro embryos (3.60 +/- 0.10 g kg(-1); P<0.04) and the 6 in vivo males (3.56 +/- 0.12 g kg(-1); P<0.02). Overall, one-third of the variation in heart weight at slaughter (r2 = 0.35; P = 0.01) was due to variation in birthweight. This is the first study to demonstrate birthweight-related developmental effects on post-natal organ weight following the transfer of embryos produced in vitro. PMID:10588375

  6. Accelerated protein crystal growth by protein thin film template

    NASA Astrophysics Data System (ADS)

    Pechkova, Eugenia; Nicolini, Claudio

    2001-11-01

    A new method based on Langmuir-Blodgett (LB) technology is presented for the template stimulation of protein crystal growth. The new approach allows the acceleration of the hen egg white lysozyme (HEWL) crystal growth rate in comparison with such a classical vapour diffusion method as hanging drop. Protein thin films were coated on the cover slide of the common crystallization plates. Lysozyme crystal growth was observed on the LB thin films of HEWL.

  7. Effects of prenatal irradiation with accelerated heavy-ion beams on postnatal development in rats: III. Testicular development and breeding activity

    NASA Astrophysics Data System (ADS)

    Wang, B.; Murakami, M.; Eguchi-Kasai, K.; Nojima, K.; Shang, Y.; Tanaka, K.; Watanabe, K.; Fujita, K.; Moreno, S. G.; Coffigny, H.; Hayata, I.

    With a significant increase in human activities dealing with space missions, potential teratogenic effects on the mammalian reproductive system from prenatal exposure to space radiation have become a hot topic that needs to be addressed. However, even for the ground experiments, such effects from exposure to high LET ionizing radiation are not as well studied as those for low LET ionizing radiations such as X-rays. Using the Heavy-Ion Medical Accelerator in Chiba (HIMAC) and Wistar rats, effects on gonads in prenatal male fetuses, on postnatal testicular development and on breeding activity of male offspring were studied following exposure of the pregnant animals to either accelerated carbon-ion beams with a LET value of about 13 keV/μm or neon-ion beams with a LET value of about 30 keV/μm at a dose range from 0.1 to 2.0 Gy on gestation day 15. The effects of X-rays at 200 kVp estimated for the same biological end points were studied for comparison. A significantly dose-dependent increase of apoptosis in gonocytes appeared 6 h after irradiations with a dose of 0.5 Gy or more. Measured delayed testis descent and malformed testicular seminiferous tubules were observed to be significantly different from the control animals at a dose of 0.5 Gy. These effects are observed to be dose- and LET-dependent. Markedly reduced testicular weight and testicular weight to body weight ratio were scored at postnatal day 30 even in the offspring that were prenatally irradiated with neon-ions at a dose of 0.1 Gy. A dose of 0.5 Gy from neon-ion beams induced a marked decrease in breeding activity in the prenatally irradiated male rats, while for the carbon-ion beams or X-rays, the significantly reduced breeding activity was observed only when the prenatal dose was at 1.0 Gy or more. These findings indicated that prenatal irradiations with heavy-ion beams on gestation day 15 generally induced markedly detrimental effects on prenatal gonads, postnatal testicular development and male

  8. Effects of prenatal irradiation with an accelerated heavy-ion beam on postnatal development in rats: II. Further study on neurophysiologic alterations

    NASA Astrophysics Data System (ADS)

    Wang, B.; Murakami, M.; Eguchi-Kasai, K.; Nojima, K.; Shang, Y.; Tanaka, K.; Watanabe, K.; Fujita, K.; Moreno, S. G.; Coffigny, H.; Hayata, I.

    Organogenesis is a highly radiosensitive period, study of prenatal exposure to high LET heavy ion beams on postnatal development is important for clarifying the radiation risk in space and promoting the evidence-based mechanism research. The effects from heavy ion irradiations are not well studied as those for low LET radiations such as X-rays in this field, even the ground-based investigations remain to be addressed. Using the Heavy Ion Medical Accelerator in Chiba (HIMAC) and Wistar rats, postnatal neurophysiological development in offspring was investigated following exposure of pregnant rats to accelerated neon-ion beams with a LET value of about 30 keV/μm at a dose range from 0.1 to 2.0 Gy on the 15th day of gestation. The age for appearance of four physiologic markers and attainment of five neonatal reflexes, and gain in body weight were monitored. Male offspring were evaluated as young adults using two behavioral tests including open field and hole-board dipping tests. The effects of X-rays at 200 kVp measured for the same biological end points were studied for comparison. For most of the endpoints at early age, significant neurophysiological alteration was observed even in offspring receiving 0.1 Gy of accelerated neon ions but not X-rays. All offspring receiving 2.0 Gy of accelerated neon ions died prior to weaning. Offspring prenatally irradiated with neon ions generally showed higher incidences of prenatal death, increased preweaning mortality, markedly delayed accomplishment in physiological markers and reflexes, significantly lower body weight and reduced ratios of main organ weight to body weight, and altered behavior compared to those exposed to X-rays at doses of 0.1 1.5 Gy. These findings indicate that irradiations with neon ions at 0.1 1.5 Gy on day 15 of gestation caused varied developmental alterations in offspring, and efficient dose leading to the detrimental effects seemed to be lower than that of X-rays.

  9. Postnatal growth hormone deficiency in growing rats causes marked decline in the activity of spinal cord acetylcholinesterase but not butyrylcholinesterase.

    PubMed

    Koohestani, Faezeh; Brown, Chester M; Meisami, Esmail

    2012-11-01

    The effects of growth hormone (GH) deficiency on the developmental changes in the abundance and activity of cholinesterase enzymes were studied in the developing spinal cord (SC) of postnatal rats by measuring the specific activity of acetylcholinesterase (AChE), a marker for cholinergic neurons and their synaptic compartments, and butyrylcholinesterase (BuChE), a marker for glial cells and neurovascular cells. Specific activities of these two enzymes were measured in SC tissue of 21- and 90 day-old (P21, weaning age; P90, young adulthood) GH deficient spontaneous dwarf (SpDwf) mutant rats which lack anterior pituitary and circulating plasma GH, and were compared with SC tissue of normal age-matched control animals. Assays were carried out for AChE and BuChE activity in the presence of their specific chemical inhibitors, BW284C51 and iso-OMPA, respectively. Results revealed that mean AChE activity was markedly and significantly reduced [28% at P21, 49% at P90, (p<0.01)] in the SC of GH deficient rats compared to age-matched controls. GH deficiency had a higher and more significant effect on AChE activity of the older (P90) rats than the younger ones (P21) ones. In contrast, BuChE activity in SC showed no significant changes in GH deficient rats at either of the two ages studied. Results imply that, in the absence of pituitary GH, the postnatal proliferation of cholinergic synapses in the rat SC, a CNS structure, where AChE activity is abundant, is markedly reduced during both the pre- and postweaning periods; more so in the postweaning than preweaning ages. In contrast, the absence of any effects on BuChE activity implies that GH does not affect the development of non-neuronal elements, e.g., glia, as much as the neuronal and synaptic compartments of the developing rat SC. PMID:22922167

  10. Vascular Endothelial Growth Factor (VEGF) Bioavailability Regulates Angiogenesis and Intestinal Stem and Progenitor Cell Proliferation during Postnatal Small Intestinal Development

    PubMed Central

    Holoyda, Kathleen A.; Hou, Xiaogang; Fowler, Kathryn L.; Grikscheit, Tracy C.

    2016-01-01

    Background Vascular endothelial growth factor (VEGF) is a highly conserved, master regulatory molecule required for endothelial cell proliferation, organization, migration and branching morphogenesis. Podocoryne carnea and drosophila, which lack endothelial cells and a vascular system, express VEGF homologs, indicating potential roles beyond angiogenesis and vasculogenesis. The role of VEGF in the development and homeostasis of the postnatal small intestine is unknown. We hypothesized regulating VEGF bioavailability in the postnatal small intestine would exhibit effects beyond the vasculature and influence epithelial cell stem/progenitor populations. Methods VEGF mutant mice were created that overexpressed VEGF in the brush border of epithelium via the villin promotor following doxycycline treatment. To decrease VEGF bioavailability, sFlt-1 mutant mice were generated that overexpressed the soluble VEGF receptor sFlt-1 upon doxycycline administration in the intestinal epithelium. Mice were analyzed after 21 days of doxycycline administration. Results Increased VEGF expression was confirmed by RT-qPCR and ELISA in the intestine of the VEGF mutants compared to littermates. The VEGF mutant duodenum demonstrated increased angiogenesis and vascular leak as compared to littermate controls. The VEGF mutant duodenum revealed taller villi and increased Ki-67-positive cells in the transit-amplifying zone with reduced Lgr5 expression. The duodenum of sFlt-1 mutants revealed shorter villi and longer crypts with reduced proliferation in the transit-amplifying zone, reduced expression of Dll1, Bmp4 and VE-cadherin, and increased expression of Sox9 and EphB2. Conclusions Manipulating VEGF bioavailability leads to profound effects on not only the intestinal vasculature, but epithelial stem and progenitor cells in the intestinal crypt. Elucidation of the crosstalk between VEGF signaling in the vasculature, mesenchyme and epithelial stem/progenitor cell populations may direct future

  11. Postnatal growth hormone deficiency in growing rats causes marked decline in the activity of spinal cord acetylcholinesterase but not butyrylcholinesterase.

    PubMed

    Koohestani, Faezeh; Brown, Chester M; Meisami, Esmail

    2012-11-01

    The effects of growth hormone (GH) deficiency on the developmental changes in the abundance and activity of cholinesterase enzymes were studied in the developing spinal cord (SC) of postnatal rats by measuring the specific activity of acetylcholinesterase (AChE), a marker for cholinergic neurons and their synaptic compartments, and butyrylcholinesterase (BuChE), a marker for glial cells and neurovascular cells. Specific activities of these two enzymes were measured in SC tissue of 21- and 90 day-old (P21, weaning age; P90, young adulthood) GH deficient spontaneous dwarf (SpDwf) mutant rats which lack anterior pituitary and circulating plasma GH, and were compared with SC tissue of normal age-matched control animals. Assays were carried out for AChE and BuChE activity in the presence of their specific chemical inhibitors, BW284C51 and iso-OMPA, respectively. Results revealed that mean AChE activity was markedly and significantly reduced [28% at P21, 49% at P90, (p<0.01)] in the SC of GH deficient rats compared to age-matched controls. GH deficiency had a higher and more significant effect on AChE activity of the older (P90) rats than the younger ones (P21) ones. In contrast, BuChE activity in SC showed no significant changes in GH deficient rats at either of the two ages studied. Results imply that, in the absence of pituitary GH, the postnatal proliferation of cholinergic synapses in the rat SC, a CNS structure, where AChE activity is abundant, is markedly reduced during both the pre- and postweaning periods; more so in the postweaning than preweaning ages. In contrast, the absence of any effects on BuChE activity implies that GH does not affect the development of non-neuronal elements, e.g., glia, as much as the neuronal and synaptic compartments of the developing rat SC.

  12. Postnatal growth and development in the preterm and small for gestational age infant.

    PubMed

    Cooke, Richard J

    2010-01-01

    A clear relationship exists between undernutrition, poorer growth and poor development in term and preterm infants. However, preterm infants are at greater risk than term infants. Undernutrition is more common and 'programmed' growth rates are almost six times faster. Thus, even short periods of nutritional deprivation may have significant effects. Recent advances have led to an improvement in early growth but very low birthweight infants remain small for gestational age at hospital discharge. Studies suggest that a 'window of opportunity' exists after hospital discharge, in that better growth between discharge and 2-3 months corrected age is paralleled by better development, and poorer growth is associated with poorer development. However, interventions aimed at improving growth and development have yielded varying results. This may partly be related to differences in study design as well as the composition of the nutrient-enriched formulas. Irrespective, one point is concerning, i.e. infant boys appear to be at a developmental disadvantage when fed a term infant formula after discharge. A single study has also suggested that dietary intervention can improve brain growth in term and preterm infants with perinatal brain injury. However, concern has been expressed about rapid 'catch-up' growth in preterm infants and the development of insulin resistance and visceral adiposity. Data from our group do not support the idea of increased or altered adiposity in preterm infants fed a nutrient-enriched formula after hospital discharge.

  13. Metabolism correlates with variation in post-natal growth rate among songbirds at three latitudes

    USGS Publications Warehouse

    Ton, Riccardo; Martin, Thomas E.

    2015-01-01

    4. Our results suggest that variation in metabolic rates has an important influence on broad patterns of avian growth rates at a global scale. We suggest further studies that address the ecological and physiological costs and consequences of variation in metabolism and growth rates.

  14. Enhanced or Reduced Fetal Growth Induced by Embryo Transfer into Smaller or Larger Breeds Alters Post-Natal Growth and Metabolism in Pre-Weaning Horses

    PubMed Central

    Peugnet, Pauline; Wimel, Laurence; Duchamp, Guy; Sandersen, Charlotte; Camous, Sylvaine; Guillaume, Daniel; Dahirel, Michèle; Dubois, Cédric; Jouneau, Luc; Reigner, Fabrice; Berthelot, Valérie; Chaffaux, Stéphane; Tarrade, Anne; Serteyn, Didier; Chavatte-Palmer, Pascale

    2014-01-01

    In equids, placentation is diffuse and nutrient supply to the fetus is determined by uterine size. This correlates with maternal size and affects intra-uterine development and subsequent post-natal growth, as well as insulin sensitivity in the newborn. Long-term effects remain to be described. In this study, fetal growth was enhanced or restricted through ET using pony (P), saddlebred (S) and draft (D) horses. Control P-P (n = 21) and S-S (n = 28) pregnancies were obtained by AI. Enhanced and restricted pregnancies were obtained by transferring P or S embryos into D mares (P-D, n = 6 and S-D, n = 8) or S embryos into P mares (S-P, n = 6), respectively. Control and experimental foals were raised by their dams and recipient mothers, respectively. Weight gain, growth hormones and glucose homeostasis were investigated in the foals from birth to weaning. Fetal growth was enhanced in P-D and these foals remained consistently heavier, with reduced T3 concentrations until weaning compared to P-P. P-D had lower fasting glucose from days 30 to 200 and higher insulin secretion than P-P after IVGTT on day 3. Euglycemic clamps in the immediate post-weaning period revealed no difference in insulin sensitivity between P-D and P-P. Fetal growth was restricted in S-P and these foals remained consistently lighter until weaning compared to S-D, with elevated T3 concentrations in the newborn compared to S-S. S-P exhibited higher fasting glycemia than S-S and S-D from days 30 to 200. They had higher maximum increment in plasma glucose than S-D after IVGTT on day 3 and clamps on day 200 demonstrated higher insulin sensitivity compared to S-D. Neither the restricted nor the enhanced fetal environment affected IGF-1 concentrations. Thus, enhanced and restricted fetal and post-natal environments had combined effects that persisted until weaning. They induced different adaptive responses in post-natal glucose metabolism: an early insulin-resistance was induced in

  15. Postnatal changes in the growth dynamics of the human face revealed from bone modelling patterns

    PubMed Central

    Martinez-Maza, Cayetana; Rosas, Antonio; Nieto-Díaz, Manuel

    2013-01-01

    Human skull morphology results from complex processes that involve the coordinated growth and interaction of its skeletal components to keep a functional and structural balance. Previous histological works have studied the growth of different craniofacial regions and their relationship to functional spaces in humans up to 14 years old. Nevertheless, how the growth dynamics of the facial skeleton and the mandible are related and how this relationship changes through the late ontogeny remain poorly understood. To approach these two questions, we have compared the bone modelling activities of the craniofacial skeleton from a sample of subadult and adult humans. In this study, we have established for the first time the bone modelling pattern of the face and the mandible from adult humans. Our analyses reveal a patchy distribution of the bone modelling fields (overemphasized by the presence of surface islands with no histological information) reflecting the complex growth dynamics associated to the individual morphology. Subadult and adult specimens show important differences in the bone modelling patterns of the anterior region of the facial skeleton and the posterior region of the mandible. These differences indicate developmental changes in the growth directions of the whole craniofacial complex, from a predominantly downward growth in subadults that turns to a forward growth observed in the adult craniofacial skeleton. We hypothesize that these ontogenetic changes would respond to the physiological and physical requirements to enlarge the oral and nasal cavities once maturation of the brain and the closure of the cranial sutures have taken place during craniofacial development. PMID:23819603

  16. Consequences of a low litter birth weight phenotype for postnatal lean growth performance and neonatal testicular morphology in the pig.

    PubMed

    Smit, M N; Spencer, J D; Almeida, F R C L; Patterson, J L; Chiarini-Garcia, H; Dyck, M K; Foxcroft, G R

    2013-10-01

    The consequences of a low litter average birth weight phenotype for postnatal growth performance and carcass quality of all progeny, and testicular development in male offspring, were investigated. Using data from 25 sows with one, and 223 sows with two consecutive farrowing events, individual birth weight (BW) was measured and each litter between 9 and 16 total pigs born was classified as low (LBW), medium (MBW) or high (HBW) birth weight: low and high BW being defined as >1 standard deviation below or above, respectively, the population mean for each litter size. Litter average BW was repeatable within sows. At castration, testicular tissue was collected from 40 male pigs in LBW and HBW litters with individual BW close to their litter average BW and used for histomorphometric analysis. LBW piglets had a lower absolute number of germ cells, Sertoli cells and Leydig cells in their testes and a higher brain : testis weight ratio than HBW piglets. Overall, LBW litters had lower placental weight and higher brain : liver, brain : intestine and brain : Semitendinosus muscle weight ratios than MBW and HBW litters. In the nursery and grow-finish (GF) phase, pigs were kept in pens by BW classification (9 HBW, 17 MBW and 10 LBW pens) with 13 males and 13 females per pen. Average daily gain tended to be lower in LBW than HBW litters in lactation (P = 0.06) and throughout the nursery and GF phases (P < 0.01), resulting in an increasing difference in body weight between LBW, MBW and HBW litters (P < 0.05). Average daily feed intake was lower (P < 0.001) in LBW than HBW litters in the nursery and GF phases. Feed utilization efficiency (feed/gain) was similar for LBW and HBW litters in the nursery, but was lower (P < 0.001) in HBW than LBW litters in the GF phase. By design, slaughter weight was similar between BW classifications; however, LBW litters needed 9 more days to reach the same slaughter weight than HBW litters (P < 0.001). BW classification did not affect carcass

  17. The influence of ovarian factors on the somatostatin-growth hormone system during the postnatal growth and sexual development in lambs.

    PubMed

    Wańkowska, Marta; Polkowska, Jolanta; Misztal, Tomasz; Romanowicz, Katarzyna

    2012-07-01

    The aim of the study was to elucidate the effects of ovarian hormones on somatostatin in the hypothalamic neurons and growth hormone (GH) secretion during the postnatal growth and development of sheep. The study was performed on 9-week-old (infantile) lambs that were ovary-intact (OVI) or ovariectomized (OVX) at 39 days of age, and on 16-week-old (juvenile) lambs that were OVI or OVX at 88 days of age. Hormones in neurons and somatotropic cells were assayed with immunohistochemistry and radioimmunoassay. Following ovariectomy, immunoreactive somatostatin was more abundant (p<0.05) in the hypothalamus of infantile lambs, whereas in juvenile lambs it was more abundant (p<0.05) in the periventricular nucleus but reduced (p<0.01) in the median eminence. In contrast to somatostatin in the hypothalamus, the content of immunoreactive GH in the hypophysis was less in OVX infantile lambs, but greater in OVX juvenile lambs (p<0.05). Basal blood serum concentrations of GH were greater (p<0.05) in OVX infantile lambs, whereas in OVX juvenile lambs, mean and basal concentrations of GH and amplitude of GH pulses were less than in OVI lambs (p<0.05). The postnatal increase in body weight was greatest in middle-late infancy (p<0.01). The body weight did not differ (p>0.05) between OVI and OVX lambs. In conclusion, ovarian factors may inhibit the GH secretion in infantile lambs but enhance the GH secretion in juvenile lambs. Transition to puberty, as related to the growth rate, appears to be due mainly to change in gonadal influence on the somatostatin neurosecretion. A stimulation of somatostatin output in the median eminence by gonadal factors in infancy is followed by a stimulation of somatostatin accumulation after infancy. Thus, ovarian factors modulate mechanisms within the somatotropic system of lambs to synchronize the somatic growth with sexual development.

  18. The postnatal growth of ICRP target organs in reference humans: Spleen and liver

    SciTech Connect

    Walker, J.T. )

    1989-12-01

    Attempts to improve radiation dose estimates to infants and children are hampered because of the lack of mathematical models that describe the age variation in anatomical and physiological parameters. Specifically, for one anatomical parameter, organ size, there are no growth models available to the health physics community. In this paper, an empirical mathematical model is introduced for estimating age-specific masses of two ICRP target organs: the spleen and liver. That model, the Power Logistic Additive (PLA) growth model, is fitted to ICRP 23 organ growth data to determine five growth parameters. This model assumes that organs grow under the influence of two main processes: a primary (power function) and a sexual maturation (logistic function) process, which are additive from birth to adulthood. The results show that the model describes the ICRP growth data quite well. Growth parameters and tables listing the predicted masses and mass velocities as a function of age for each organ are provided for application in the ICRP modeling system.

  19. For debate: Fetal and early postnatal growth restriction lead to diabetes, the metabolic syndrome and renal failure.

    PubMed

    Hales, C N; Ozanne, S E

    2003-07-01

    We review the progress in testing the thrifty phenotype hypothesis. Many human epidemiological studies both by ourselves and others have confirmed and extended the original observations on which the hypothesis was based. We are not aware of any contradictory findings and we emphasise the strength of the association between birth weight and the subsequent development of the metabolic syndrome. We have worked extensively experimentally to test the hypothesis in a rat model in which pregnant and/or lactating dams are fed a diet moderately restricted in proteins. The range of programming effects that we have discovered in this example of fetal and early postnatal growth restriction is listed and includes changes in hormone receptors, signalling molecules and regulatory enzymes. We have shown the model to develop diabetes, the metabolic syndrome and signs of premature renal failure. We summarise these and other similarities between the phenotype of this model and human Type 2 diabetes and the metabolic syndrome. The number of insults during early development which can lead to a similar outcome is discussed and the suggestion is made that the early life response to stress is limited in its flexibility with outcomes including ageing and decreased longevity. Our preliminary results indicate that some MODY genes could suggest pathways whereby the changes occur and that epigenetic changes during development are involved. We conclude that the way is now clear to discover early human markers of programming by early life growth restriction and to use these to devise strategies for the prevention of Type 2 diabetes.

  20. Craniotubular dysplasia with severe postnatal growth retardation, mental retardation, ectodermal dysplasia, and loose skin: Lenz-Majewski-like syndrome.

    PubMed

    Nishimura, G; Harigaya, A; Kuwashima, M; Kuwashima, S

    1997-07-11

    The heterogeneous group of craniotubular dysplasias is characterized by modeling errors of the craniofacial and tubular bones. Some conditions in this category cause not only skeletal abnormalities but also a variety of mesoectodermal dysplasias, as exemplified in Lenz-Majewski syndrome (MIM 151050), which comprises craniodiaphyseal dysplasia, failure to thrive, mental retardation, proximal symphalangism, enamel hypoplasia, and loose skin. We report on a boy with a hitherto unknown multisystem disorder, including skeletal changes that were regarded as a form of craniotubular dysplasia. The patient had a large head, exophthalmos, a broad nasal root, anteverted nostrils, large auricles, thick lips, micrognathia, severe postnatal growth retardation with emaciation, severe mental retardation, sparse hair growth, enamel hypoplasia, and thin, loose skin with hyperlaxity. Skeletal changes consisted of thickened calvaria, sclerosis of the skull base and facial bones, thick ribs, and metaphyseal undermodeling of the tubular bones. In addition, generalized osteopenia was evident. The present disorder overlaps phenotypically with Lenz-Majewski syndrome; nevertheless, the absence of diaphyseal hyperostosis and proximal symphalangism in the present patient was not consistent with Lenz-Majewski syndrome.

  1. Education and Technology Accelerate Economic Growth for Newly Emerging Economies.

    ERIC Educational Resources Information Center

    Workforce Economics Trends, 2001

    2001-01-01

    Technology provides a new and effective tool for accelerating economic growth, and developing countries are embracing technology and education as the means toward attaining economic parity with the United States and other developed nations. Evidence suggests that this strategy is paying off. Developing countries are building a technology…

  2. Experimental selection for calving ease and postnatal growth in seven cattle populations. II. Phenotypic differences

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Effects of selection for 2-yr-old heifer calving ease (reduced calving difficulty score) on phenotypic differences between select and control lines of cattle for birth, growth, yearling hip height, and pelvic measurements were estimated. The selection objective was to decrease calving difficulty sc...

  3. Differential effects of intrauterine and postnatal brain growth failure in infants of very low birth weight.

    PubMed

    Hack, M; Breslau, N; Fanaroff, A A

    1989-01-01

    We investigated the contribution of brain growth failure to outcome in infants of very low birth weight (VLBW; less than 1.5 kg) who were appropriate for gestational age (AGA; n = 379) or small for gestational age (SGA; n = 102). Growth was assessed at birth, term, and 8 and 20 months' corrected age and results of a Bayley Mental Developmental Index (MDI) and neurologic examination were evaluated at 20 months of age. Both groups had similar 20-month MDI scores (93 vs 90) and similar rates of neurologic impairment (14% vs 10%). More SGA infants (25%) than AGA infants (14%) had a subnormal head circumference at 8 months' corrected age, indicating failure to catch up in head growth. Subnormal head size at 8 months predicted the 20-month MDI score for both groups. However, multivariate analysis indicated that, whereas subnormal 8-month head size was directly associated with the MDI score in AGA children, in SGA children 8-month head size was not significantly related to the MDI score when neonatal illness, neurologic impairment, socioeconomic status, and race were controlled for. We conclude that in AGA VLBW infants, subnormal head size at 8 months results from major neonatal illness and has adverse later effects. In SGA infants, subnormal head size at 8 months has many causes, including growth retardation in utero, which may not have an adverse effect on outcome; if subnormal head size is superimposed with neonatal illness, a poorer outcome is likely.

  4. Cell and matrix modulation in prenatal and postnatal equine growth cartilage, zones of Ranvier and articular cartilage.

    PubMed

    Löfgren, Maria; Ekman, Stina; Svala, Emilia; Lindahl, Anders; Ley, Cecilia; Skiöldebrand, Eva

    2014-11-01

    Formation of synovial joints includes phenotypic changes of the chondrocytes and the organisation of their extracellular matrix is regulated by different factors and signalling pathways. Increased knowledge of the normal processes involved in joint development may be used to identify similar regulatory mechanisms during pathological conditions in the joint. Samples of the distal radius were collected from prenatal and postnatal equine growth plates, zones of Ranvier and articular cartilage with the aim of identifying Notch signalling components and cells with stem cell-like characteristics and to follow changes in matrix protein localisation during joint development. The localisation of the Notch signalling components Notch1, Delta4, Hes1, Notch dysregulating protein epidermal growth factor-like domain 7 (EGFL7), the stem cell-indicating factor Stro-1 and the matrix molecules cartilage oligomeric matrix protein (COMP), fibromodulin, matrilin-1 and chondroadherin were studied using immunohistochemistry. Spatial changes in protein localisations during cartilage maturation were observed for Notch signalling components and matrix molecules, with increased pericellular localisation indicating new synthesis and involvement of these proteins in the formation of the joint. However, it was not possible to characterise the phenotype of the chondrocytes based on their surrounding matrix during normal chondrogenesis. The zone of Ranvier was identified in all horses and characterised as an area expressing Stro-1, EGFL7 and chondroadherin with an absence of COMP and Notch signalling. Stro-1 was also present in cells close to the perichondrium, in the articular cartilage and in the fetal resting zone, indicating stem cell-like characteristics of these cells. The presence of stem cells in the articular cartilage will be of importance for the repair of damaged cartilage. Perivascular chondrocytes and hypertrophic cells of the cartilage bone interface displayed positive staining for

  5. Cell and matrix modulation in prenatal and postnatal equine growth cartilage, zones of Ranvier and articular cartilage

    PubMed Central

    Löfgren, Maria; Ekman, Stina; Svala, Emilia; Lindahl, Anders; Ley, Cecilia; Skiöldebrand, Eva

    2014-01-01

    Formation of synovial joints includes phenotypic changes of the chondrocytes and the organisation of their extracellular matrix is regulated by different factors and signalling pathways. Increased knowledge of the normal processes involved in joint development may be used to identify similar regulatory mechanisms during pathological conditions in the joint. Samples of the distal radius were collected from prenatal and postnatal equine growth plates, zones of Ranvier and articular cartilage with the aim of identifying Notch signalling components and cells with stem cell-like characteristics and to follow changes in matrix protein localisation during joint development. The localisation of the Notch signalling components Notch1, Delta4, Hes1, Notch dysregulating protein epidermal growth factor-like domain 7 (EGFL7), the stem cell-indicating factor Stro-1 and the matrix molecules cartilage oligomeric matrix protein (COMP), fibromodulin, matrilin-1 and chondroadherin were studied using immunohistochemistry. Spatial changes in protein localisations during cartilage maturation were observed for Notch signalling components and matrix molecules, with increased pericellular localisation indicating new synthesis and involvement of these proteins in the formation of the joint. However, it was not possible to characterise the phenotype of the chondrocytes based on their surrounding matrix during normal chondrogenesis. The zone of Ranvier was identified in all horses and characterised as an area expressing Stro-1, EGFL7 and chondroadherin with an absence of COMP and Notch signalling. Stro-1 was also present in cells close to the perichondrium, in the articular cartilage and in the fetal resting zone, indicating stem cell-like characteristics of these cells. The presence of stem cells in the articular cartilage will be of importance for the repair of damaged cartilage. Perivascular chondrocytes and hypertrophic cells of the cartilage bone interface displayed positive staining for

  6. Postnatal Growth Patterns in a Chilean Cohort: The Role of SES and Family Environment.

    PubMed

    Kang Sim, D E; Cappiello, M; Castillo, M; Lozoff, B; Martinez, S; Blanco, E; Gahagan, S

    2012-01-01

    Objective. This study examined how family environmental characteristics served as mediators in the relationship between socioeconomic conditions and infant growth in a cohort of Chilean infants. Methods. We studied 999 infants, born between 1991 and 1996, from a longitudinal cohort which began as an iron deficiency anemia preventive trial. SES (Graffar Index), the Life Experiences Survey, and the Home Observation for Measurement of the Environment (HOME) were assessed in infancy. Using path analysis, we assessed the relationships between the social factors, home environment, and infant growth. Results. During the first year, weight and length gain averaged 540 grams/month and 6.5 cm/month, respectively. In the path analysis model for weight gain, higher SES and a better physical environment were positively related to higher maternal warmth, which in turn was associated with higher average weight gain. Higher SES was directly related to higher average length gain. Conclusions. In our cohort, a direct relationship between SES and length gain developed during infancy. Higher SES was indirectly related to infant weight gain through the home environment and maternal warmth. As the fastest growing infants are at risk for later obesity, new strategies are needed to encourage optimal rather than maximal growth. PMID:22666275

  7. Postnatal Growth Patterns in a Chilean Cohort: The Role of SES and Family Environment.

    PubMed

    Kang Sim, D E; Cappiello, M; Castillo, M; Lozoff, B; Martinez, S; Blanco, E; Gahagan, S

    2012-01-01

    Objective. This study examined how family environmental characteristics served as mediators in the relationship between socioeconomic conditions and infant growth in a cohort of Chilean infants. Methods. We studied 999 infants, born between 1991 and 1996, from a longitudinal cohort which began as an iron deficiency anemia preventive trial. SES (Graffar Index), the Life Experiences Survey, and the Home Observation for Measurement of the Environment (HOME) were assessed in infancy. Using path analysis, we assessed the relationships between the social factors, home environment, and infant growth. Results. During the first year, weight and length gain averaged 540 grams/month and 6.5 cm/month, respectively. In the path analysis model for weight gain, higher SES and a better physical environment were positively related to higher maternal warmth, which in turn was associated with higher average weight gain. Higher SES was directly related to higher average length gain. Conclusions. In our cohort, a direct relationship between SES and length gain developed during infancy. Higher SES was indirectly related to infant weight gain through the home environment and maternal warmth. As the fastest growing infants are at risk for later obesity, new strategies are needed to encourage optimal rather than maximal growth.

  8. Modeling Nonlinear Change via Latent Change and Latent Acceleration Frameworks: Examining Velocity and Acceleration of Growth Trajectories

    ERIC Educational Resources Information Center

    Grimm, Kevin; Zhang, Zhiyong; Hamagami, Fumiaki; Mazzocco, Michele

    2013-01-01

    We propose the use of the latent change and latent acceleration frameworks for modeling nonlinear growth in structural equation models. Moving to these frameworks allows for the direct identification of "rates of change" and "acceleration" in latent growth curves--information available indirectly through traditional growth curve models when change…

  9. Effects of HCFC-123 exposure to maternal and infant rhesus monkeys on hepatic biochemistry, lactational parameters and postnatal growth.

    PubMed

    Cappon, G D; Keller, D A; Brock, W J; Slauter, R W; Hurtt, M E

    2002-11-01

    Peroxisome proliferators are a class of nongenotoxic rodent hepatocarcinogens that cause peroxisome proliferation and liver tumors when administered to rats and mice; but other species, including guinea pigs, dogs, and primates are less sensitive or refractory to the induction of peroxisome proliferation. Therefore, rodent peroxisome proliferators are not believed to pose a hepatocarcinogenic hazard to humans. Some peroxisome proliferators produce developmental toxicity in rats that is expressed as suppressed postnatal growth. To evaluate the relevance of the rat developmental effect to primates, groups of 4 lactating female Rhesus monkeys and their infants were exposed for 6 h/day, 7 days/week for 3 weeks to air or 1000 ppm HCFC-123. Animals were evaluated for clinical signs, body weights, clinical pathology parameters, and biochemical and pathological evaluations of liver biopsy samples. The effect of HCFC-123 exposure on milk quality (protein and fat concentration) was evaluated. The concentrations of HCFC-123 and the major metabolite, trifluoroacetic acid (TFA), were measured in the blood of the mothers and infants and in the milk. Exposure of monkeys to 1000 ppm HCFC-123 did not result in exposure-related clinical observations, or changes in body weight, appetence and behavior. There were no exposure-related effects on serum triglycerides, cholesterol, or glucose levels. HCFC-123 and TFA were present in milk, although maternal HCFC-123 exposure did not affect milk protein and fat content. In general, HCFC-123 was not detected in maternal or infant blood. TFA was detected in the majority of the mothers and TFA levels in infants ranged from 2 to 6 times higher than levels in the corresponding maternal blood. A pharmacokinetic analysis in a maternal animal indicated a peak concentration of TFA at approximately 1 h post-exposure, with a half-life of approximately 20 h. Liver microsomal P450 and peroxisome oxidase activities showed exposure-related decreases in CYP

  10. Fast and efficient: postnatal growth and energy expenditure in an Arctic-breeding waterbird, the Red-throated Loon (Gavia stellata)

    USGS Publications Warehouse

    Rizzolo, Daniel; Schmutz, Joel A.; Speakman, John R.

    2015-01-01

    Environmental conditions can exert a strong influence on the growth and energy demands of chicks. We hypothesized that postnatal growth in a cold, aquatic environment would require a high level of energy metabolism in semiprecocial Red-throated Loon (Gavia stellata) chicks. We measured body-mass growth and daily energy expenditure (DEE) of free-ranging chicks in the Arctic. We used daily gains in body mass and DEE to estimate daily metabolizable energy (DME, kJ day-1) and total metabolizable energy (TME, kJ chick-1). Chicks gained body mass quickly, with a logistic growth rate constant 57% greater than the allometric prediction, yet were at only 60% of adult body mass at fledging. Males grew at a rate similar to that of females but for a slightly longer duration and so reached an asymptotic body mass 23% greater, and tarsus length 8% longer, than that of females. Chick growth performance was similar between first- and second-hatched chicks within broods of 2, which suggests that food availability was not limited. DEE increased in proportion to body mass, and DME peaked at 1,214 kJ day-1 on day 25 posthatching. Over the average 49-day postnatal period, TME was 49.0 MJ, which is within the range of error of the allometric prediction. Parents provided 58.6 MJ as food to meet this energy requirement. Given this chick energy requirement and the range of energy content of prey observed in the chick diet, selecting prey with higher energy content would greatly reduce adult provisioning effort. Red-throated Loon chicks did not have a high postnatal energy requirement, but rather grew quickly and fledged at a small size-with the effect of reducing the length of the postnatal period and, consequently, parental energy investment in chicks.

  11. Impact of accelerated plant growth on seed variety development

    NASA Astrophysics Data System (ADS)

    Christophersen, Eric

    1998-01-01

    The commercial lives of agricultural seed products have steadily declined in recent years. The introduction of genetically engineered crop seeds in 1966 has accentuated that trend. Widespread grower demand for genetically engineered seed requires competitive response by industry followers in order to avert market share losses to the industry leaders. Limitations on plant transformation technology, regulatory requirements and patent impediments require companies to rapidly convert transformed lines into elite commercial products. Massive multigenerational backcrossing efforts are required to distribute genetically engineered traits into a broad product mix. Significant incidents of expression failures, or ``gene silencing,'' have occurred unexpectedly, requiring product substitution strategies. First-to-market strategies, competitive response, broad germplasm conversion and rescue of product failures all share the element of urgency. Technologies which reliably accelerate product development rates can expect favorable reception by commercial seed developers. A growth chamber which dramatically accelerates the rate of plant growth is described.

  12. Postnatal growth rate, but not mild preterm birth, influences airway structure in adult sheep challenged with house dust mite.

    PubMed

    Snibson, Ken; Harding, Richard

    2008-02-01

    The authors recently showed that preterm birth per se, in the absence of assisted ventilation or elevated inhaled oxygen levels, alters the structure of the airway walls in young lambs. The initial aim of the present study was to determine whether these changes persist into adulthood. Preterm (P; n = 7) lambs were delivered 14 days before term and compared with control lambs (C; n = 8) born at term ( approximately 147 days). After weaning, the sheep were kept as a flock with daily exposure to pasture until approximately 1.2 years old. All sheep were sensitized to house dust mite extract and then given aerosol challenges with house dust mite 10 to 12 weeks before autopsy. At autopsy, the right lung was fixed in neutral-buffered formalin at an inflation pressure of 20 cm H(2)O. The architecture of the walls of airway generations 4, 6, and 8 and the bronchioles was assessed by computer-aided image analysis of histological sections of airway walls cut in cross-section. Morphometric analysis showed that preterm birth per se had no significant effect on airway wall structure. Within both groups (preterm and term), we identified animals that grew at different growth rates after birth; a second aim, therefore, was to determine the influence of postnatal growth rates on airway structure at maturity. The 15 sheep were divided into 2 groups based on nonoverlapping growth rates between birth and 200 days of age: slower growing sheep (SG; n = 7) gained 102 +/- 5 g/day and faster growing sheep (FG; n = 8) gained 197 +/- 14 g/day (P < .01). In SG sheep, the pulmonary airways had thinner walls and less smooth muscle in relation to basement membrane perimeter. The airway epithelium was also thinner in the SG sheep. In the bronchiolar epithelium, there were fewer goblet cells and Clara cells in SG compared to FG sheep. We conclude that the early effects of preterm birth on the airway epithelium do not persist to maturity. However, slow growth after birth results in altered airway

  13. Roles of the lactogens and somatogens in perinatal and postnatal metabolism and growth: studies of a novel mouse model combining lactogen resistance and growth hormone deficiency.

    PubMed

    Fleenor, Donald; Oden, Jon; Kelly, Paul A; Mohan, Subburaman; Alliouachene, Samira; Pende, Mario; Wentz, Sabrina; Kerr, Jennifer; Freemark, Michael

    2005-01-01

    To delineate the roles of the lactogens and GH in the control of perinatal and postnatal growth, fat deposition, insulin production, and insulin action, we generated a novel mouse model that combines resistance to all lactogenic hormones with a severe deficiency of pituitary GH. The model was created by breeding PRL receptor (PRLR)-deficient (knockout) males with GH-deficient (little) females. In contrast to mice with isolated GH or PRLR deficiencies, double-mutant (lactogen-resistant and GH-deficient) mice on d 7 of life had growth failure and hypoglycemia. These findings suggest that lactogens and GH act in concert to facilitate weight gain and glucose homeostasis during the perinatal period. Plasma insulin and IGF-I and IGF-II concentrations were decreased in both GH-deficient and double-mutant neonates but were normal in PRLR-deficient mice. Body weights of the double mutants were reduced markedly during the first 3-4 months of age, and adults had striking reductions in femur length, plasma IGF-I and IGF binding protein-3 concentrations, and femoral bone mineral density. By age 6-12 months, however, the double-mutant mice developed obesity, hyperleptinemia, fasting hyperglycemia, relative hypoinsulinemia, insulin resistance, and glucose intolerance; males were affected to a greater degree than females. The combination of perinatal growth failure and late-onset obesity and insulin resistance suggests that the lactogen-resistant/GH-deficient mouse may serve as a model for the development of the metabolic syndrome.

  14. A comparison of postnatal arterial patterns in a growth series of giraffe (Artiodactyla: Giraffa camelopardalis)

    PubMed Central

    Gignac, Paul M.; Hieronymus, Tobin L.; Witmer, Lawrence M.

    2016-01-01

    Nearly all living artiodactyls (even-toed ungulates) possess a derived cranial arterial pattern that is highly distinctive from most other mammals. Foremost among a suite of atypical arterial configurations is the functional and anatomical replacement of the internal carotid artery with an extensive, subdural arterial meshwork called the carotid rete. This interdigitating network branches from the maxillary artery and is housed within the cavernous venous sinus. As the cavernous sinus receives cooled blood draining from the nasal mucosa, heat rapidly dissipates across the high surface area of the rete to be carried away from the brain by the venous system. This combination yields one of the most effective mechanisms of selective brain cooling. Although arterial development begins from the same embryonic scaffolding typical of mammals, possession of a rete is typically accompanied by obliteration of the internal carotid artery. Among taxa with available ontogenetic data, the point at which the internal carotid obliterates is variable throughout development. In small-bodied artiodactyls, the internal carotid typically obliterates prior to parturition, but in larger species, the vessel may remain patent for several years. In this study, we use digital anatomical data collection methods to describe the cranial arterial patterns for a growth series of giraffe (Giraffa camelopardalis), from parturition to senescence. Giraffes, in particular, have unique cardiovascular demands and adaptations owing to their exceptional body form and may not adhere to previously documented stages of cranial arterial development. We find the carotid arterial system to be conserved between developmental stages and that obliteration of the giraffe internal carotid artery occurs prior to parturition. PMID:26925324

  15. A comparison of postnatal arterial patterns in a growth series of giraffe (Artiodactyla: Giraffa camelopardalis).

    PubMed

    O'Brien, Haley D; Gignac, Paul M; Hieronymus, Tobin L; Witmer, Lawrence M

    2016-01-01

    Nearly all living artiodactyls (even-toed ungulates) possess a derived cranial arterial pattern that is highly distinctive from most other mammals. Foremost among a suite of atypical arterial configurations is the functional and anatomical replacement of the internal carotid artery with an extensive, subdural arterial meshwork called the carotid rete. This interdigitating network branches from the maxillary artery and is housed within the cavernous venous sinus. As the cavernous sinus receives cooled blood draining from the nasal mucosa, heat rapidly dissipates across the high surface area of the rete to be carried away from the brain by the venous system. This combination yields one of the most effective mechanisms of selective brain cooling. Although arterial development begins from the same embryonic scaffolding typical of mammals, possession of a rete is typically accompanied by obliteration of the internal carotid artery. Among taxa with available ontogenetic data, the point at which the internal carotid obliterates is variable throughout development. In small-bodied artiodactyls, the internal carotid typically obliterates prior to parturition, but in larger species, the vessel may remain patent for several years. In this study, we use digital anatomical data collection methods to describe the cranial arterial patterns for a growth series of giraffe (Giraffa camelopardalis), from parturition to senescence. Giraffes, in particular, have unique cardiovascular demands and adaptations owing to their exceptional body form and may not adhere to previously documented stages of cranial arterial development. We find the carotid arterial system to be conserved between developmental stages and that obliteration of the giraffe internal carotid artery occurs prior to parturition.

  16. Chondrocytes Transdifferentiate into Osteoblasts in Endochondral Bone during Development, Postnatal Growth and Fracture Healing in Mice

    PubMed Central

    Zhou, Xin; von der Mark, Klaus; Henry, Stephen; Norton, William; Adams, Henry; de Crombrugghe, Benoit

    2014-01-01

    One of the crucial steps in endochondral bone formation is the replacement of a cartilage matrix produced by chondrocytes with bone trabeculae made by osteoblasts. However, the precise sources of osteoblasts responsible for trabecular bone formation have not been fully defined. To investigate whether cells derived from hypertrophic chondrocytes contribute to the osteoblast pool in trabecular bones, we genetically labeled either hypertrophic chondrocytes by Col10a1-Cre or chondrocytes by tamoxifen-induced Agc1-CreERT2 using EGFP, LacZ or Tomato expression. Both Cre drivers were specifically active in chondrocytic cells and not in perichondrium, in periosteum or in any of the osteoblast lineage cells. These in vivo experiments allowed us to follow the fate of cells labeled in Col10a1-Cre or Agc1-CreERT2 -expressing chondrocytes. After the labeling of chondrocytes, both during prenatal development and after birth, abundant labeled non-chondrocytic cells were present in the primary spongiosa. These cells were distributed throughout trabeculae surfaces and later were present in the endosteum, and embedded within the bone matrix. Co-expression studies using osteoblast markers indicated that a proportion of the non-chondrocytic cells derived from chondrocytes labeled by Col10a1-Cre or by Agc1-CreERT2 were functional osteoblasts. Hence, our results show that both chondrocytes prior to initial ossification and growth plate chondrocytes before or after birth have the capacity to undergo transdifferentiation to become osteoblasts. The osteoblasts derived from Col10a1-expressing hypertrophic chondrocytes represent about sixty percent of all mature osteoblasts in endochondral bones of one month old mice. A similar process of chondrocyte to osteoblast transdifferentiation was involved during bone fracture healing in adult mice. Thus, in addition to cells in the periosteum chondrocytes represent a major source of osteoblasts contributing to endochondral bone formation in vivo

  17. Chondrocytes transdifferentiate into osteoblasts in endochondral bone during development, postnatal growth and fracture healing in mice.

    PubMed

    Zhou, Xin; von der Mark, Klaus; Henry, Stephen; Norton, William; Adams, Henry; de Crombrugghe, Benoit

    2014-12-01

    One of the crucial steps in endochondral bone formation is the replacement of a cartilage matrix produced by chondrocytes with bone trabeculae made by osteoblasts. However, the precise sources of osteoblasts responsible for trabecular bone formation have not been fully defined. To investigate whether cells derived from hypertrophic chondrocytes contribute to the osteoblast pool in trabecular bones, we genetically labeled either hypertrophic chondrocytes by Col10a1-Cre or chondrocytes by tamoxifen-induced Agc1-CreERT2 using EGFP, LacZ or Tomato expression. Both Cre drivers were specifically active in chondrocytic cells and not in perichondrium, in periosteum or in any of the osteoblast lineage cells. These in vivo experiments allowed us to follow the fate of cells labeled in Col10a1-Cre or Agc1-CreERT2 -expressing chondrocytes. After the labeling of chondrocytes, both during prenatal development and after birth, abundant labeled non-chondrocytic cells were present in the primary spongiosa. These cells were distributed throughout trabeculae surfaces and later were present in the endosteum, and embedded within the bone matrix. Co-expression studies using osteoblast markers indicated that a proportion of the non-chondrocytic cells derived from chondrocytes labeled by Col10a1-Cre or by Agc1-CreERT2 were functional osteoblasts. Hence, our results show that both chondrocytes prior to initial ossification and growth plate chondrocytes before or after birth have the capacity to undergo transdifferentiation to become osteoblasts. The osteoblasts derived from Col10a1-expressing hypertrophic chondrocytes represent about sixty percent of all mature osteoblasts in endochondral bones of one month old mice. A similar process of chondrocyte to osteoblast transdifferentiation was involved during bone fracture healing in adult mice. Thus, in addition to cells in the periosteum chondrocytes represent a major source of osteoblasts contributing to endochondral bone formation in vivo

  18. A comparison of postnatal arterial patterns in a growth series of giraffe (Artiodactyla: Giraffa camelopardalis).

    PubMed

    O'Brien, Haley D; Gignac, Paul M; Hieronymus, Tobin L; Witmer, Lawrence M

    2016-01-01

    Nearly all living artiodactyls (even-toed ungulates) possess a derived cranial arterial pattern that is highly distinctive from most other mammals. Foremost among a suite of atypical arterial configurations is the functional and anatomical replacement of the internal carotid artery with an extensive, subdural arterial meshwork called the carotid rete. This interdigitating network branches from the maxillary artery and is housed within the cavernous venous sinus. As the cavernous sinus receives cooled blood draining from the nasal mucosa, heat rapidly dissipates across the high surface area of the rete to be carried away from the brain by the venous system. This combination yields one of the most effective mechanisms of selective brain cooling. Although arterial development begins from the same embryonic scaffolding typical of mammals, possession of a rete is typically accompanied by obliteration of the internal carotid artery. Among taxa with available ontogenetic data, the point at which the internal carotid obliterates is variable throughout development. In small-bodied artiodactyls, the internal carotid typically obliterates prior to parturition, but in larger species, the vessel may remain patent for several years. In this study, we use digital anatomical data collection methods to describe the cranial arterial patterns for a growth series of giraffe (Giraffa camelopardalis), from parturition to senescence. Giraffes, in particular, have unique cardiovascular demands and adaptations owing to their exceptional body form and may not adhere to previously documented stages of cranial arterial development. We find the carotid arterial system to be conserved between developmental stages and that obliteration of the giraffe internal carotid artery occurs prior to parturition. PMID:26925324

  19. Embryo development, fetal growth and postnatal phenotype of eGFP lambs generated by lentiviral transgenesis.

    PubMed

    Crispo, M; Vilariño, M; dos Santos-Neto, P C; Núñez-Olivera, R; Cuadro, F; Barrera, N; Mulet, A P; Nguyen, T H; Anegón, I; Menchaca, A

    2015-02-01

    Lentiviral technology has been recently proposed to generate transgenic farm animals more efficiently and easier than traditional techniques. The objective was to evaluate several parameters of lambs obtained by lentiviral transgenesis in comparison with non-transgenic counterparts. In vitro produced embryos were microinjected (TG group) at two-cell stage with a lentiviral construct containing enhanced green fluorescent protein (eGFP) gene, while embryos produced by in vitro fertilization (IVF group) or intrauterine insemination (IUI group) were not microinjected. Microinjection technique efficiently generated eight-cell transgenic embryos (97.4%; 114/117). Development rate on day 5 after fertilization was similar for TG (39.3%, 46/117) and IVF embryos (39.6%, 44/111). Pregnancy rate was detected in 50.0% (6/12) of recipient ewes with TG embryos, in 46.7% (7/15) with IVF embryos, and in 65.0% (13/20) of IUI ewes (P = NS). Nine lambs were born in TG group, six lambs in IVF group, and 16 lambs in IUI group. All TG lambs (9/9) were GFP positive to real-time PCR and eight (88.9%) showed a strong and evident GFP expression in mucosae, eyes and keratin tissues. Fetal growth monitored every 15 day by ultrasonography did not show significant differences. Transgenic lambs neither differ in morphometric variables in comparison with non transgenic IVF lambs within 3 months after birth. Transmission of the transgene to the progeny was observed in green fluorescent embryos produced by IVF using semen from the TG founder lambs. In conclusion, this study demonstrates the high efficiency of lentiviral technology to produce transgenic sheep, with no clinic differences in comparison with non transgenic lambs.

  20. Experimental selection for calving ease and postnatal growth in seven cattle populations. II. Phenotypic differences.

    PubMed

    Bennett, G L; Thallman, R M; Snelling, W M; Kuehn, L A

    2008-09-01

    Effects of selection for 2-yr-old heifer calving ease (reduced calving difficulty score) on phenotypic differences between select and control lines of cattle for birth, growth, yearling hip height, and pelvic measurements were estimated. The selection objective was to decrease calving difficulty score in 2-yr-old heifers, while either maintaining or increasing yearling weight. The control line objective was to maintain or increase yearling weight by the same amount as the select lines and to maintain or proportionally increase birth weight. Select and control lines were formed in 4 purebred and 3 composite populations. Selection began in 1992 and select (n = 6,926) and control (n = 2,043) line calves were born from 1993 through 1999. Selection was based on EBV calculated from a 4-trait BLUP with observations on 2-yr-old calving difficulty scores, birth weight, weaning weight, and postweaning gain. Calving difficulty was scored on a scale from 1 (unassisted) to 7 (caesarean). All birth traits in select lines differed significantly from control lines. Averaged over 7 yr, select lines calved 3.0 +/- 0.5 d earlier, had 1.8 +/- 0.5 d shorter gestations, were 2.99 +/- 0.32 kg lighter at birth, had 5.6 +/- 1.5% fewer calves assisted at birth (averaged across dam ages), and 2-yr-old heifers had 0.80 +/- 0.08 lower calving difficulty score. Select lines averaged 19.8% lower 2-yr-old heifer calving assistance, but there was no difference in calving assistance of older cows, resulting in a highly significant interaction of selection and dam classification. Preweaning ADG was increased 15 +/- 9 g/d (1.7%) in select lines. Increased preweaning gain offset decreased birth weights in select lines, resulting in weaning weights that did not differ (P = 0.71). Postweaning ADG (P = 0.16) and yearling weight (P = 0.41) also did not differ. Increased preweaning ADG in select lines was not maintained after weaning. Select line hip heights were 0.70 +/- 0.21 cm shorter when measured as

  1. Effects of pre- and postnatal nutrition interventions on child growth and body composition: the MINIMat trial in rural Bangladesh

    PubMed Central

    Khan, Ashraful Islam

    2013-01-01

    interventions on postnatal growth suggest programming effects in early fetal life. PMID:24331714

  2. Accelerated growth in early life and obesity in preschool Chilean children.

    PubMed

    Kain, Juliana; Corvalán, Camila; Lera, Lydia; Galván, Marcos; Uauy, Ricardo

    2009-08-01

    In Chile, childhood obesity rates are high. The purpose of this article is to compare BMI growth characteristics of normal (N), overweight (OW), and obese (OB) 5-year olds from 0 to 5 years and explore the influence of some prenatal factors on these patterns of growth. The study was done on a retrospective cohort of 1,089 5-year olds with birth weight >2,500 g. Weight and height were obtained from records at nine occasions (0-36 months); at 52 and 60 months, we measured them. At 60 months, children were classified as N, OW, and OB. At each age, BMI and z-score of BMI (BMI Z) differences were compared among groups. The influence of birth weight, pre-pregnancy BMI, and prenatal variables (weight gain, smoking, and presence of diabetes and preeclampsia) on BMI Z differences between N and OB was also explored. Adiposity rebound (AR) was not observed for the N, although for the OW, it occurred approximately 52 months and for the OB at approximately 24 months. BMI Z differences between N and OB were significant from birth, but were greatest between 6-12 and 36-52 months. Additional adjustment by birth weight, pre-pregnancy BMI, and prenatal variables decreased the BMI Z differences for the first 24 months with virtually no effect after this age. Accelerated growth in OB children from post-transition countries occurs immediately after birth, much earlier than the AR. The influence of prenatal factors on adiposity acquisition may extend at most until 2 years of life, although BMI gains thereafter are more related to postnatal variables.

  3. Pregnancy associated plasma protein A2 (PAPP-A2) affects bone size and shape and contributes to natural variation in postnatal growth in mice.

    PubMed

    Christians, Julian Kenneth; de Zwaan, Devin Rhys; Fung, Sunny Ho Yeung

    2013-01-01

    Pregnancy associated plasma protein A2 (PAPP-A2) is a protease of insulin-like growth factor binding protein 5 and is receiving increasing attention for its roles in pregnancy and postnatal growth. The goals of the present study were to characterize the effects of PAPP-A2 deletion on bone size and shape in mice at 10 weeks of age, and to determine whether Pappa2 is the gene responsible for a previously-identified quantitative trait locus (QTL) contributing to natural variation in postnatal growth in mice. Mice homozygous for constitutive PAPP-A2 deletion were lighter than wild-type littermates, and had smaller mandible dimensions and shorter skull, humerus, femur, tibia, pelvic girdle, and tail bone. Furthermore, PAPP-A2 deletion reduced mandible dimensions and the lengths of the skull, femur, pelvic girdle, and tail bone more than would be expected due to the effect on body mass. In addition to its effects on bone size, PAPP-A2 deficiency also altered the shape of the mandible and pelvic girdle, as assessed by geometric morphometrics. Mice homozygous for the PAPP-A2 deletion had less deep mandibles, and pelvic girdles with a more feminine shape. Using a quantitative complementation test, we confirmed that Pappa2 is responsible for the effects of the previously-identified QTL, demonstrating that natural variation in the Pappa2 gene contributes to variation in postnatal growth in mice. If similar functional variation in the Pappa2 gene exists in other species, effects of this variation on the shape of the pelvic girdle might explain the previously-reported associations between Pappa2 SNPs and developmental dysplasia of the hip in humans, and birthing in cattle.

  4. An epidemiological study of urban and rural children in Pakistan: examining the relationship between delayed psychomotor development, low birth weight and postnatal growth failure

    PubMed Central

    Avan, Bilal I.; Raza, Syed A.; Kirkwood, Betty R.

    2015-01-01

    Background Low birth weight is known to be associated with postnatal growth failure. It is not yet established that both conditions are determinants of psychomotor development. The study investigated whether or not low birth weight leads to delayed psychomotor development of a child, and whether it can be mitigated by adequate postnatal growth. Methods A cross-sectional study was conducted in 2002 in 15 rural and 11 urban communities of Sindh province, Pakistan. Assessment of 1234 children less than 3 years of age included Bayley's Scale of Infant Development II, socioeconomic questionnaire and anthropometry; WHO standards were used to calculate z-scores of height-for-age, weight-for-height and weight-for-age. The underlying study hypotheses were tested through multiple regression modelling. Results Out of 1219 children, 283 (23.2%) had delayed psychomotor development and 639 (52.4%) were undernourished according to the composite index of anthropometric failure. Strong negative associations with the psychomotor development index were detected between stunting and being underweight, with a larger magnitude of effect for stunting (p<0.001). The strong relationship persisted even when the analysis was restricted to non-malnourished children. The psychomotor index increased by 2.07 points with every unit increase in height-for-age z-score. Conclusions The relationship between low birth weight and psychomotor development appears to be mediated largely by postnatal growth and nutritional status. This association suggests that among undernourished children there is significant likelihood of a group that is developmentally delayed. It is important to emphasize developmental needs in programmes that target underprivileged children. PMID:25354850

  5. Overcoming challenges to accelerating linear growth in Indian children.

    PubMed

    Sachdev, H P S

    2012-04-01

    This policy review highlights the need to focus on stunting as an indicator of under-five undernutrition and explores the major challenges and priority public health options for accelerating linear growth in children. Early childhood stunting predicts poor human capital including shorter adult height, lower attained schooling, reduced adult income, and decreased offspring birth weight. The current prevalence of stunting is disconcerting but there has been a relatively faster decline recently. It is imperative to intervene before birth to address stunting. Pertinent ongoing interventions (delaying early child birth, adequate antenatal care and maternal iron-folate supplementation) are beneficial but have sub-optimal coverage. There is only a narrow window of opportunity in early life--the first two years. Effective coverage of children below two years of age with a package of interventions (breastfeeding; immunization; appropriate complementary feeding; treatment of infections, especially diarrhea; safe water supply; and sanitation) merits urgent investigation for greater impact.

  6. Protein intake during gestation affects postnatal bovine skeletal muscle growth and relative expression of IGF1, IGF1R, IGF2 and IGF2R.

    PubMed

    Micke, G C; Sullivan, T M; McMillen, I C; Gentili, S; Perry, V E A

    2011-01-30

    Expression of insulin-like growth factor (IGF)1 and IGF2 and their receptor (IGF1R and IGF2R) mRNA in fetal skeletal muscle are changed by variations in maternal nutrient intake. The persistence of these effects into postnatal life and their association with phenotype in beef cattle is unknown. Here we report that the cross-sectional areas of longissimus dorsi and semitendinosus (ST) muscles were greater for mature male progeny born to heifers fed low protein diets (70% vs. 240% of recommended) during the first trimester. In ST, this was accompanied by greater IGF1, IGF2 and IGF2R mRNA at 680 d. Females exposed to low protein diets during the first trimester had decreased IGF2 mRNA in ST at 680 d, however this did not result in an effect to phenotype. Exposure to low protein diets during the second trimester increased IGF1R mRNA in ST of all progeny at 680 d. Changes to expression of IGF genes in progeny skeletal muscle resulting from variations to maternal protein intake during gestation may have permanent and sex-specific effect on postnatal skeletal muscle growth.

  7. Effects of maternal nutrition and porcine growth hormone (pGH) treatment during gestation on endocrine and metabolic factors in sows, fetuses and pigs, skeletal muscle development, and postnatal growth.

    PubMed

    Rehfeldt, Charlotte; Nissen, Pia M; Kuhn, Gerda; Vestergaard, Mogens; Ender, Klaus; Oksbjerg, Niels

    2004-10-01

    Prenatal growth is very complex and a highly integrated process. Both maternal nutrition and the maternal somatotropic axis play a significant role in coordinating nutrient partitioning and utilization between maternal, placental and fetal tissues. Maternal nutrition may alter the nutrient concentrations and in turn the expression of growth regulating factors such as IGFs and IGFBPs in the blood and tissues, while GH acts in parallel via changing IGFs/IGFBPs and nutrient availability. The similarity in the target components implies that maternal nutrition and the somatotropic axis are closely related to each other and may induce similar effects on placental and fetal growth. Severe restriction of nutrients throughout gestation has a permanent negative effect on fetal and postnatal growth, whereas the effects of both temporary restriction and feeding above requirements during gestation seem to be of transitional character. Advantages in fetal growth gained by maternal growth hormone treatment during early to mid-gestation are not maintained to term, whereas treatment during late or greatest part of gestation increases progeny size at birth, which could be of advantage for postnatal growth. This review summarizes the available knowledge on the effects of different maternal feeding strategies and maternal GH administration during pregnancy and their interactions on metabolic and hormonal (especially IGFs/IGFBPs) status in the feto-maternal unit, skeletal muscle development and growth of the offspring in pigs.

  8. Effects of nutrient restriction of bovine dams during early gestation on postnatal growth, carcass and organ characteristics, and gene expression in adipose tissue and muscle.

    PubMed

    Long, N M; Prado-Cooper, M J; Krehbiel, C R; DeSilva, U; Wettemann, R P

    2010-10-01

    Angus x Hereford heifers (15 mo and artificially inseminated to a single sire) were used to evaluate the effect of prenatal nutritional restriction on postnatal growth and development. At d 32 of gestation, dams were stratified by BW and BCS and allotted to a low-nutrition [55% of NRC (1996) requirements, n = 10] or moderate-nutrition [100% of NRC (1996) requirements, n = 10] diet. After 83 d of feeding, dams were commingled and received a diet in excess of requirements. Dams were allowed to calve naturally, and birth weights and growth of calves were recorded. Bulls were castrated at birth. Steers (16 mo of age, 5 per treatment) received a high-concentrate diet ad libitum to a constant age (88 ± 1 wk). Steers were slaughtered and weights of the empty body and organs were recorded. Samples of organs, muscle (complexus), and perirenal and subcutaneous adipose tissue were stored at -80 degrees C, and then DNA and protein concentrations were quantified and expression of genes associated with fatty acid metabolism and glucose uptake were measured in adipose and muscle tissue. Dams had similar (P > 0.33) BW and BCS at the beginning of the experiment. At the end of restriction, dams on the low-nutrition diet weighed less (P ≤ 0.01) and had less BCS (P < 0.001) than those on the moderate-nutrition diet. Length of gestation was 274 ± 2 d for dams in the low-nutrition treatment and 278 ± 2 d (P = 0.05) for dams in the moderate-nutrition treatment. Nutrient restriction during gestation did not influence birth weight or postnatal growth of calves. Lungs and trachea of steers whose dams were fed the low-nutrition diet weighed less (P = 0.05) at slaughter than those of steers whose dams were fed the moderate-nutrition diet; weights of other organs were not influenced by treatment. Complexus muscle from steers whose dams were fed the low-nutrition diet had a greater (P = 0.04) concentration of DNA and larger muscle fiber area compared with steers whose dams were fed the

  9. Milk is not just food but most likely a genetic transfection system activating mTORC1 signaling for postnatal growth.

    PubMed

    Melnik, Bodo C; John, Swen Malte; Schmitz, Gerd

    2013-07-25

    Milk has been recognized to represent a functionally active nutrient system promoting neonatal growth of mammals. Cell growth is regulated by the nutrient-sensitive kinase mechanistic target of rapamycin complex 1 (mTORC1). There is still a lack of information on the mechanisms of mTORC1 up-regulation by milk consumption. This review presents milk as a materno-neonatal relay system functioning by transfer of preferential amino acids, which increase plasma levels of glucose-dependent insulinotropic polypeptide (GIP), glucagon-like peptide-1 (GLP-1), insulin, growth hormone (GH) and insulin-like growth factor-1 (IGF-1) for mTORC1 activation. Importantly, milk exosomes, which regularly contain microRNA-21, most likely represent a genetic transfection system enhancing mTORC1-driven metabolic processes. Whereas human breast milk is the ideal food for infants allowing appropriate postnatal growth and species-specific metabolic programming, persistent high milk signaling during adolescence and adulthood by continued cow´s milk consumption may promote mTORC1-driven diseases of civilization.

  10. Milk is not just food but most likely a genetic transfection system activating mTORC1 signaling for postnatal growth

    PubMed Central

    2013-01-01

    Milk has been recognized to represent a functionally active nutrient system promoting neonatal growth of mammals. Cell growth is regulated by the nutrient-sensitive kinase mechanistic target of rapamycin complex 1 (mTORC1). There is still a lack of information on the mechanisms of mTORC1 up-regulation by milk consumption. This review presents milk as a materno-neonatal relay system functioning by transfer of preferential amino acids, which increase plasma levels of glucose-dependent insulinotropic polypeptide (GIP), glucagon-like peptide-1 (GLP-1), insulin, growth hormone (GH) and insulin-like growth factor-1 (IGF-1) for mTORC1 activation. Importantly, milk exosomes, which regularly contain microRNA-21, most likely represent a genetic transfection system enhancing mTORC1-driven metabolic processes. Whereas human breast milk is the ideal food for infants allowing appropriate postnatal growth and species-specific metabolic programming, persistent high milk signaling during adolescence and adulthood by continued cow´s milk consumption may promote mTORC1-driven diseases of civilization. PMID:23883112

  11. Accelerated Molecular Dynamics studies of He Bubble Growth in Tungsten

    NASA Astrophysics Data System (ADS)

    Uberuaga, Blas; Sandoval, Luis; Perez, Danny; Voter, Arthur

    2015-11-01

    Understanding how materials respond to extreme environments is critical for predicting and improving performance. In materials such as tungsten exposed to plasmas for nuclear fusion applications, novel nanoscale fuzzes, comprised of tendrils of tungsten, form as a consequence of the implantation of He into the near surface. However, the detailed mechanisms that link He bubble formation to the ultimate development of fuzz are unclear. Molecular dynamics simulations provide insight into the He implantation process, but are necessarily performed at implantation rates that are orders of magnitudes faster than experiment. Here, using accelerated molecular dynamics methods, we examine the role of He implantation rates on the physical evolution of He bubbles in tungsten. We find that, as the He rate is reduced, new types of events involving the response of the tungsten matrix to the pressure in the bubble become competitive and change the overall evolution of the bubble as well as the subsequent morphology of the tungsten surface. We have also examined how bubble growth differs at various microstructural features. These results highlight the importance of performing simulations at experimentally relevant conditions in order to correctly capture the contributions of the various significant kinetic processes and predict the overall response of the material.

  12. Accelerated Near-Threshold Fatigue Crack Growth Behavior of an Aluminum Powder Metallurgy Alloy

    NASA Technical Reports Server (NTRS)

    Piascik, Robert S.; Newman, John A.

    2002-01-01

    Fatigue crack growth (FCG) research conducted in the near threshold regime has identified a room temperature creep crack growth damage mechanism for a fine grain powder metallurgy (PM) aluminum alloy (8009). At very low DK, an abrupt acceleration in room temperature FCG rate occurs at high stress ratio (R = Kmin/Kmax). The near threshold accelerated FCG rates are exacerbated by increased levels of Kmax (Kmax less than 0.4 KIC). Detailed fractographic analysis correlates accelerated FCG with the formation of crack-tip process zone micro-void damage. Experimental results show that the near threshold and Kmax influenced accelerated crack growth is time and temperature dependent.

  13. Hepatic transcriptome profiling identifies differences in expression of genes associated with changes in metabolism and postnatal growth between Hereford and Holstein-Friesian bulls.

    PubMed

    Lisowski, Pawel; Kościuczuk, Ewa M; Gościk, Joanna; Pierzchała, Mariusz; Rowińska, Barbara; Zwierzchowski, Lech

    2014-04-01

    This study examined liver transcriptomic profiles of cattle distinctly different in meat and milk production capacity. It was performed on bulls of two different genetic backgrounds: Herefords (H), a meat breed, and Holstein-Friesians (HF), a dairy breed. Using bovine long oligo-microarrays and qPCR, we identified 128 genes that are differentially expressed between the two breeds. In H bulls, we observed up-regulation of genes involved in fatty acid biosynthesis and lipid metabolism (CD36, CAT, HSD3B1, FABP1, ACAA1) and involved in insulin signaling (INSR, INSIG2, NR4A1) and down-regulation of genes involved in somatotropic axis signaling (IGF1, GHR, IGFBP3) as compared to HF. Transcriptome profiling of these two breeds allowed us to pinpoint the transcriptional differences between Holstein and Hereford bulls at hepatic level associated with changes in metabolism and postnatal growth. PMID:24304134

  14. Effects of postnatal interventions for the reduction of vertical HIV transmission on infant growth and non-HIV infections: a systematic review

    PubMed Central

    Zunza, Moleen; Mercer, Gareth D; Thabane, Lehana; Esser, Monika; Cotton, Mark F

    2013-01-01

    Introduction Guidelines in resource-poor settings have progressively included interventions to reduce postnatal HIV transmission through breast milk. In addition to HIV-free survival, infant growth and non-HIV infections should be considered. Determining the effect of these interventions on infant growth and non-HIV infections will inform healthcare decisions about feeding HIV-exposed infants. We synthesize findings from studies comparing breast to formula feeding, early weaning to standard-duration breastfeeding, breastfeeding with extended antiretroviral (ARV) to short-course ARV prophylaxis, and alternative preparations of infant formula to standard formula in HIV-exposed infants, focusing on infant growth and non-HIV infectious morbidity outcomes. The review objectives were to collate and appraise evidence of interventions to reduce postnatal vertical HIV transmission, and to estimate their effect on growth and non-HIV infections from birth to two years of age among HIV-exposed infants. Methods We searched PubMed, SCOPUS, and Cochrane CENTRAL Controlled Trials Register. We included randomized trials and prospective cohort studies. Two authors independently extracted data and evaluated risk of bias. Rate ratios and mean differences were used as effect measures for dichotomous and continuous outcomes, respectively. Where pooling was possible, we used fixed-effects meta-analysis to pool results across studies. Quality of evidence was assessed using the GRADE approach. Results and discussion Prospective cohort studies comparing breast- versus formula-fed HIV-exposed infants found breastfeeding to be protective against diarrhoea in early life [risk ratio (RR)=0.31; 95% confidence interval (CI)=0.13 to 0.74]. The effect of breastfeeding against diarrhoea [hazard ratio (HR)=0.74; 95% CI=0.57 to 0.97] and respiratory infections (HR=0.65; 95% CI=0.41 to 1.00) was significant through two years of age. The only randomized controlled trial (RCT) available showed that

  15. Degree of methylation of ZAC1 (PLAGL1) is associated with prenatal and post-natal growth in healthy infants of the EDEN mother child cohort.

    PubMed

    Azzi, Salah; Sas, Theo C J; Koudou, Yves; Le Bouc, Yves; Souberbielle, Jean-Claude; Dargent-Molina, Patricia; Netchine, Irène; Charles, Marie-Aline

    2014-03-01

    The ZAC1 gene, mapped to the 6q24 region, is part of a network of co-regulated imprinted genes involved in the control of embryonic growth. Loss of methylation at the ZAC1 differentially methylated region (DMR) is associated with transient neonatal diabetes mellitus, a developmental disorder involving growth retardation and diabetes in the first weeks of post-natal life. We assessed whether the degree of methylation of the ZAC1 DMR in leukocytes DNA extracted from cord blood is associated with fetal, birth and post-natal anthropometric measures or with C-peptide concentrations in cord serum. We also searched for an influence of dietary intake and maternal parameters on ZAC1 DMR methylation. We found positive correlations between the ZAC1 DMR methylation index (MI) and estimated fetal weight (EFW) at 32 weeks of gestation, weight at birth and weight at one year of age (respectively, r = 0.15, 0.09, 0.14; P values = 0.01, 0.15, 0.03). However, there were no significant correlations between the ZAC1 DMR MI and cord blood C-peptide levels. Maternal intakes of alcohol and of vitamins B2 were positively correlated with ZAC1 DMR methylation (respectively, r = 0.2 and 0.14; P = 0.004 and 0.04). The influence of ZAC1 seems to start in the second half of pregnancy and continue at least until the first year of life. The maternal environment also appears to contribute to the regulation of DNA methylation.

  16. Frequency of wet brewers grains supplementation during late gestation of beef cows and its effects on offspring postnatal growth and immunity.

    PubMed

    Moriel, P; Artioli, L F A; Piccolo, M B; Marques, R S; Poore, M H; Cooke, R F

    2016-06-01

    Our objectives were to evaluate postnatal growth and measurements of innate and humoral immunity of beef calves born to dams fed wet brewers grains (WBG) daily or 3 times weekly during late gestation. On d 0 (approximately 60 d before calving), 28 multiparous, spring-calving Angus cows (BW = 578 ± 19 kg; age = 4.7 ± 0.65 yr; BCS = 7.0 ± 0.18) were stratified by sire, age, BW, and BCS and then randomly allocated into 1 of 14 drylot pens (2 cows/pen; 18 by 3 m; 27 m/cow). Cows were offered ground tall fescue hay ad libitum and received similar weekly WBG supplementation (DMI = 0.5% of BW multiplied by 7 d). Treatments were randomly assigned to pens (7 pens/treatment) and consisted of cows receiving WBG supplementation daily (S7; weekly DMI of WBG divided by 7 d) or 3 times weekly (S3; weekly DMI of WBG divided by 3 d; Mondays, Wednesdays, and Fridays) from d 0 until calving. Cow-calf pairs were managed as a single group on tall fescue pastures from calving to weaning (d 226). Calves were immediately submitted to a preconditioning period from d 226 to 266 and vaccinated against infectious bovine rhinotracheitis, bovine viral diarrhea virus, , and on d 231 and 245. Decreasing the frequency of WBG supplementation did not impact ( ≥ 0.21) precalving intake of total DM, CP, and TDN; BW and BCS change; overall plasma cortisol concentrations; and postcalving growth and pregnancy rate of cows. Overall plasma concentrations of glucose and insulin did not differ ( ≥ 0.28) between S3 and S7 cows, whereas S3 cows had greater ( = 0.002) plasma glucose concentrations and tended ( = 0.06) to have greater plasma insulin concentrations on days they were not fed WBG vs. days of WBG supplementation. Calf plasma concentrations of haptoglobin and cortisol at birth but not serum IgG ( = 0.63) tended ( = 0.10) to be greater for S3 vs. S7 calves. However, additional calf growth and immunity variables obtained during pre- and postweaning phases did not differ between S3 and S7 calves

  17. National health expenditure projections: modest annual growth until coverage expands and economic growth accelerates.

    PubMed

    Keehan, Sean P; Cuckler, Gigi A; Sisko, Andrea M; Madison, Andrew J; Smith, Sheila D; Lizonitz, Joseph M; Poisal, John A; Wolfe, Christian J

    2012-07-01

    For 2011-13, US health spending is projected to grow at 4.0 percent, on average--slightly above the historically low growth rate of 3.8 percent in 2009. Preliminary data suggest that growth in consumers' use of health services remained slow in 2011, and this pattern is expected to continue this year and next. In 2014, health spending growth is expected to accelerate to 7.4 percent as the major coverage expansions from the Affordable Care Act begin. For 2011 through 2021, national health spending is projected to grow at an average rate of 5.7 percent annually, which would be 0.9 percentage point faster than the expected annual increase in the gross domestic product during this period. By 2021, federal, state, and local government health care spending is projected to be nearly 50 percent of national health expenditures, up from 46 percent in 2011, with federal spending accounting for about two-thirds of the total government share. Rising government spending on health care is expected to be driven by faster growth in Medicare enrollment, expanded Medicaid coverage, and the introduction of premium and cost-sharing subsidies for health insurance exchange plans. PMID:22692089

  18. National health expenditure projections: modest annual growth until coverage expands and economic growth accelerates.

    PubMed

    Keehan, Sean P; Cuckler, Gigi A; Sisko, Andrea M; Madison, Andrew J; Smith, Sheila D; Lizonitz, Joseph M; Poisal, John A; Wolfe, Christian J

    2012-07-01

    For 2011-13, US health spending is projected to grow at 4.0 percent, on average--slightly above the historically low growth rate of 3.8 percent in 2009. Preliminary data suggest that growth in consumers' use of health services remained slow in 2011, and this pattern is expected to continue this year and next. In 2014, health spending growth is expected to accelerate to 7.4 percent as the major coverage expansions from the Affordable Care Act begin. For 2011 through 2021, national health spending is projected to grow at an average rate of 5.7 percent annually, which would be 0.9 percentage point faster than the expected annual increase in the gross domestic product during this period. By 2021, federal, state, and local government health care spending is projected to be nearly 50 percent of national health expenditures, up from 46 percent in 2011, with federal spending accounting for about two-thirds of the total government share. Rising government spending on health care is expected to be driven by faster growth in Medicare enrollment, expanded Medicaid coverage, and the introduction of premium and cost-sharing subsidies for health insurance exchange plans.

  19. Brain Insulin-Like Growth Factor-I Directs the Transition from Stem Cells to Mature Neurons During Postnatal/Adult Hippocampal Neurogenesis.

    PubMed

    Nieto-Estévez, Vanesa; Oueslati-Morales, Carlos O; Li, Lingling; Pickel, James; Morales, Aixa V; Vicario-Abejón, Carlos

    2016-08-01

    The specific actions of insulin-like growth factor-I (IGF-I) and the role of brain-derived IGF-I during hippocampal neurogenesis have not been fully defined. To address the influence of IGF-I on the stages of hippocampal neurogenesis, we studied a postnatal/adult global Igf-I knockout (KO) mice (Igf-I(-/-) ) and a nervous system Igf-I conditional KO (Igf-I(Δ/Δ) ). In both KO mice we found an accumulation of Tbr2(+) -intermediate neuronal progenitors, some of which were displaced in the outer granule cell layer (GCL) and the molecular layer (ML) of the dentate gyrus (DG). Similarly, more ectopic Ki67(+) - cycling cells were detected. Thus, the GCL was disorganized with significant numbers of Prox1(+) -granule neurons outside this layer and altered morphology of radial glial cells (RGCs). Dividing progenitors were also generated in greater numbers in clonal hippocampal stem cell (HPSC) cultures from the KO mice. Indeed, higher levels of Hes5 and Ngn2, transcription factors that maintain the stem and progenitor cell state, were expressed in both HPSCs and the GCL-ML from the Igf-I(Δ/Δ) mice. To determine the impact of Igf-I deletion on neuronal generation in vivo, progenitors in Igf-I(-/-) and Igf-I(+/+) mice were labeled with a GFP-expressing vector. This revealed that in the Igf-I(-/-) mice more GFP(+) -immature neurons were formed and they had less complex dendritic trees. These findings indicate that local IGF-I plays critical roles during postnatal/adult hippocampal neurogenesis, regulating the transition from HPSCs and progenitors to mature granule neurons in a cell stage-dependent manner. Stem Cells 2016;34:2194-2209. PMID:27144663

  20. Role of Insulinlike Growth Factor 1 in Fetal Development and in the Early Postnatal Life of Premature Infants.

    PubMed

    Hellström, Ann; Ley, David; Hansen-Pupp, Ingrid; Hallberg, Boubou; Ramenghi, Luca A; Löfqvist, Chatarina; Smith, Lois E H; Hård, Anna-Lena

    2016-09-01

    The neonatal period of very preterm infants is often characterized by a difficult adjustment to extrauterine life, with an inadequate nutrient supply and insufficient levels of growth factors, resulting in poor growth and a high morbidity rate. Long-term multisystem complications include cognitive, behavioral, and motor dysfunction as a result of brain damage as well as visual and hearing deficits and metabolic disorders that persist into adulthood. Insulinlike growth factor 1 (IGF-1) is a major regulator of fetal growth and development of most organs especially the central nervous system including the retina. Glucose metabolism in the developing brain is controlled by IGF-1 which also stimulates differentiation and prevents apoptosis. Serum concentrations of IGF-1 decrease to very low levels after very preterm birth and remain low for most of the perinatal development. Strong correlations have been found between low neonatal serum concentrations of IGF-1 and poor brain and retinal growth as well as poor general growth with multiorgan morbidities, such as intraventricular hemorrhage, retinopathy of prematurity, bronchopulmonary dysplasia, and necrotizing enterocolitis. Experimental and clinical studies indicate that early supplementation with IGF-1 can improve growth in catabolic states and reduce brain injury after hypoxic/ischemic events. A multicenter phase II study is currently underway to determine whether intravenous replacement of human recombinant IGF-1 up to normal intrauterine serum concentrations can improve growth and development and reduce prematurity-associated morbidities.

  1. Role of Insulinlike Growth Factor 1 in Fetal Development and in the Early Postnatal Life of Premature Infants.

    PubMed

    Hellström, Ann; Ley, David; Hansen-Pupp, Ingrid; Hallberg, Boubou; Ramenghi, Luca A; Löfqvist, Chatarina; Smith, Lois E H; Hård, Anna-Lena

    2016-09-01

    The neonatal period of very preterm infants is often characterized by a difficult adjustment to extrauterine life, with an inadequate nutrient supply and insufficient levels of growth factors, resulting in poor growth and a high morbidity rate. Long-term multisystem complications include cognitive, behavioral, and motor dysfunction as a result of brain damage as well as visual and hearing deficits and metabolic disorders that persist into adulthood. Insulinlike growth factor 1 (IGF-1) is a major regulator of fetal growth and development of most organs especially the central nervous system including the retina. Glucose metabolism in the developing brain is controlled by IGF-1 which also stimulates differentiation and prevents apoptosis. Serum concentrations of IGF-1 decrease to very low levels after very preterm birth and remain low for most of the perinatal development. Strong correlations have been found between low neonatal serum concentrations of IGF-1 and poor brain and retinal growth as well as poor general growth with multiorgan morbidities, such as intraventricular hemorrhage, retinopathy of prematurity, bronchopulmonary dysplasia, and necrotizing enterocolitis. Experimental and clinical studies indicate that early supplementation with IGF-1 can improve growth in catabolic states and reduce brain injury after hypoxic/ischemic events. A multicenter phase II study is currently underway to determine whether intravenous replacement of human recombinant IGF-1 up to normal intrauterine serum concentrations can improve growth and development and reduce prematurity-associated morbidities. PMID:27603537

  2. The association of maternal vitamin D status with infant birth outcomes, postnatal growth and adiposity in the first 2 years of life in a multi-ethnic Asian population: the Growing Up in Singapore Towards healthy Outcomes (GUSTO) cohort study.

    PubMed

    Ong, Yi Lin; Quah, Phaik Ling; Tint, Mya Thway; Aris, Izzuddin M; Chen, Ling Wei; van Dam, Rob M; Heppe, Denise; Saw, Seang-Mei; Godfrey, Keith M; Gluckman, Peter D; Chong, Yap Seng; Yap, Fabian; Lee, Yung Seng; Foong-Fong Chong, Mary

    2016-08-01

    Maternal vitamin D status during pregnancy has been associated with infant birth and postnatal growth outcomes, but reported findings have been inconsistent, especially in relation to postnatal growth and adiposity outcomes. In a mother-offspring cohort in Singapore, maternal plasma vitamin D was measured between 26 and 28 weeks of gestation, and anthropometric measurements were obtained from singleton offspring during the first 2 years of life with 3-month follow-up intervals to examine birth, growth and adiposity outcomes. Associations were analysed using multivariable linear regression. Of a total of 910 mothers, 13·2 % were vitamin D deficient (<50 nmol/l) and 26·5 % were insufficient (50-75 nmol/l). After adjustment for potential confounders and multiple testing, no statistically significant associations were observed between maternal vitamin D status and any of the birth outcomes - small for gestational age (OR 1·00; 95 % CI 0·56, 1·79) and pre-term birth (OR 1·16; 95 % CI 0·64, 2·11) - growth outcomes - weight-for-age z-scores, length-for-age z-scores, circumferences of the head, abdomen and mid-arm at birth or postnatally - and adiposity outcomes - BMI, and skinfold thickness (triceps, biceps and subscapular) at birth or postnatally. Maternal vitamin D status in pregnancy did not influence infant birth outcomes, postnatal growth and adiposity outcomes in this cohort, perhaps due to the low prevalence (1·6 % of the cohort) of severe maternal vitamin D deficiency (defined as of <30·0 nmol/l) in our population. PMID:27339329

  3. Temporal expression patterns of insulin-like growth factor binding protein-4 in the embryonic and postnatal rat brain

    PubMed Central

    2013-01-01

    Background IGFBP-4 has been considered as a factor involving in development of the central nervous system (CNS), but its role needs to be further clarified. In present study, the localization of IGFBP-4 expression in the embryonic forebrain, midbrain and hindbrain was determined using immunohistochemistry, and the levels of IGFBP-4 protein and mRNA were semi-quantified using RT-PCR and Western blot in the embryonic (forebrain, midbrain and hindbrain) and postnatal brain (cerebral cortex, cerebellum and midbrain). Results A clear immunoreactivity of IGFBP-4 covered almost the entire embryonic brain (forebrain, midbrain, hindbrain) from E10.5 to E18.5, except for the area near the ventricle from E14.5. The change of IGFBP-4 mRNA level was regularly from E10.5 to E18.5: its expression peaked at E13.5 and E14.5, followed by gradual decreasing from E15.5. The expression of IGFBP-4 protein was similar to that of mRNA in embryonic stage. After birth, the pattern of IGFBP-4 expression was shown to be rather divergent in different brain areas. In the cerebral cortex, the IGFBP-4 mRNA increased gradually after birth (P0), while the protein showed little changes from P0 to P28, but decreased significantly at P70. In the cerebellum, the IGFBP-4 mRNA decreased gradually from P0, reached the lowest level at P21, and then increased again. However, its protein level gradually increased from P0 to P70. In the midbrain, the IGFBP-4 mRNA first decreased and reached its lowest level at P28 before it increased, while the protein remained constant from P0 to P70. At P7, P14, P21, P28 and P70, the levels of IGFBP-4 mRNA in the cerebral cortex were significantly higher than that in the cerebellum or in the midbrain. Differently, the protein levels in the cerebellum were significantly higher than that either in the cerebral cortex or in the midbrain at P14, P21, P28 and P70. Conclusions The temporal expression pattern of IGFBP-4 in the embryonic brain from E10.5 to E18.5 was consistent

  4. A Longitudinal Assessment of Early Acceleration of Students in Mathematics on Growth in Mathematics Achievement

    ERIC Educational Resources Information Center

    Ma, X.

    2005-01-01

    Early acceleration of students in mathematics (in the form of early access to formal abstract algebra) has been a controversial educational issue. The current study examined the rate of growth in mathematics achievement of accelerated gifted, honors, and regular students across the entire secondary years (Grades 7-12), in comparison to their…

  5. Essential Role of STAT3 in Postnatal Survival and Growth Revealed by Mice Lacking STAT3 Serine 727 Phosphorylation

    PubMed Central

    Shen, Yuhong; Schlessinger, Karni; Zhu, Xuejun; Meffre, Eric; Quimby, Fred; Levy, David E.; Darnell, J. E.

    2004-01-01

    A large number of extracellular polypeptides bound to their cognate receptors activate the transcription factor STAT3 by phosphorylation of tyrosine 705. Supplemental activation occurs when serine 727 is also phosphorylated. STAT3 deletion in mice leads to embryonic lethality. We have produced mice with alanine substituted for serine 727 in STAT3 (the SA allele) to examine the function of serine 727 phosphorylation in vivo. Embryonic fibroblasts from SA/SA mice had ∼50% of the transcriptional response of wild-type cells. However, SA/SA mice were viable and grossly normal. STAT3 wild-type/null (+/−) animals were also normal and were interbred with SA/SA mice to study SA/− mice. The SA/− mice progressed through gestation, showing 10 to 15% reduced birth weight, three-fourths died soon after birth, and the SA/− survivors reached only 50 to 60% of normal size at 1 week of age. The lethality and decreased growth were accompanied by altered insulin-like growth factor 1 (IGF-1) levels in serum, establishing a role for the STAT3 serine phosphorylation acting through IGF-1 in embryonic and perinatal growth. The SA/− survivors have decreased thymocyte number associated with increased apoptosis, but unexpectedly normal STAT3-dependent liver acute phase response. These animals offer the opportunity to study defined reductions in the transcriptional capacity of a widely used signaling pathway. PMID:14673173

  6. The long-term effect of alpha-ketoglutarate, given early in postnatal life, on both growth and various bone parameters in pigs.

    PubMed

    Andersen, N K; Tatara, M R; Krupski, W; Majcher, P; Harrison, A P

    2008-10-01

    The long-term effect of alpha-ketoglutarate (AKG) given for 21-24 days post-partum, on the skeleton of commercial pigs, was investigated. In experiment A, 12 pigs were given AKG [0.1 g/kg of body weight (b.w.) per day per os], while 12 controls were administered vehicle. At day 169, the left and right femur, humerus and sixth ribs were analysed for mechanical and geometrical properties and quantitative computed tomography. In experiment B, 32 piglets were divided equally into an AKG group (0.3 g/kg of b.w. per day) or a control group. Blood, taken at days 24 and 53 was analysed for plasma 17 beta-oestradiol. The main bone effect of AKG was to increase bone length in the sixth rib (7.3%, p < 0.01), ultimate strength (23%, p < 0.05), Young s modulus (52%, p < 0.001) and maximum elastic strength (31%, p = 0.056) compared with controls. In both experiments, AKG preferentially increased the growth of female piglets, whilst for male piglets AKG had the opposite effect. In addition, AKG elevated plasma 17 beta-oestradiol levels compared to those of controls at the end of the period of treatment (20%, p = 0.002). It is concluded that AKG has long-term effects on rib properties when given early in postnatal life whilst it elevates plasma 17 beta-oestradiol levels only so long as it is being administered.

  7. CCAAT-enhancer binding protein (C/EBP) β regulates insulin-like growth factor (IGF) 1 expression in porcine liver during prenatal and postnatal development.

    PubMed

    Tang, Yiting; Xiong, Kai; Shen, Ming; Mu, Yulian; Li, Kui; Liu, Honglin

    2015-03-01

    IGF1 expression regulation attracts numerous interests because of its important role during mammalian growth and development. Domestic pig can be used as a valuable animal model to investigate human development since they share the high similarity in general physiology and metabolism. In this study, we examined the expression pattern of IGF1 and found it associated with liver C/EBP β expression pattern in porcine liver during embryonic and postnatal development. Both IGF1 and C/EBP β expression in liver maintained at low levels before birth and increased after birth. Correspondingly, C/EBP β demonstrated high binding activity to two sites at IGF1 promoter region in liver after birth. Additionally, IGF1 expression can be activated by C/EBP β overexpression in porcine primary hepatocytes. These results indicated that C/EBP β can activate IGF1 expression after birth by binding to IGF1 promoter. Our study may contribute to a better understanding of mammalian development and bring a novel anti-aging pathway in human.

  8. Accelerated Threshold Fatigue Crack Growth Effect-Powder Metallurgy Aluminum Alloy

    NASA Technical Reports Server (NTRS)

    Piascik, R. S.; Newman, J. A.

    2002-01-01

    Fatigue crack growth (FCG) research conducted in the near threshold regime has identified a room temperature creep crack growth damage mechanism for a fine grain powder metallurgy (PM) aluminum alloy (8009). At very low (Delta) K, an abrupt acceleration in room temperature FCG rate occurs at high stress ratio (R = K(sub min)/K(sub max)). The near threshold accelerated FCG rates are exacerbated by increased levels of K(sub max) (K(sub max) = 0.4 K(sub IC)). Detailed fractographic analysis correlates accelerated FCG with the formation of crack-tip process zone micro-void damage. Experimental results show that the near threshold and K(sub max) influenced accelerated crack growth is time and temperature dependent.

  9. Rayleigh-Taylor instability growth control by an oscillating acceleration in heavy ion inertial fusion

    NASA Astrophysics Data System (ADS)

    Kawata, S.; Kodera, T.; Hisatomi, Y.; Ogoyski, A. I.; Koseki, S.; Barada, D.

    2010-08-01

    Uniformity of heavy ion beam (HIB) illumination is one of key issues in HIB inertial confinement fusion (HIF) in order to compress a fuel sufficiently and release fusion energy effectively. In this paper a new mitigation method of the Rayleigh-Taylor (R-T) instability growth is presented to make a HIF target robust against a non-uniform implosion. In this study a new mitigation method of the R-T instability growth is proposed based on an oscillating perturbed acceleration, which can be realized by a rotation or oscillation of the HIB illumination axis onto a fuel pellet. The R-T instability analyses and fluid simulations demonstrate that the oscillating acceleration reduces the R-T instability growth significantly. In this paper a baseline steady acceleration g0 is perturbed by a perturbed oscillating acceleration δg, which is spatially non-uniform and oscillates in time (g0 >> δg). An example result shows an 84% reduction of the R-T instability growth. In the analytical work two stratified inviscid fluids are treated under the perturbed oscillating acceleration. The linear analysis shows that the R-T instability growth rate does not change from the standard expression of γ. However, the R-T instability growth is strongly affected and mitigated by the oscillating acceleration; The transverse velocity of w is derived at the interface of the two stratified fluids. The R-T instability is induced by δg. The result presents that the perturbed oscillating acceleration reduces the R-T instability growth significantly depending on the magnitude of the HIB oscillation frequency.

  10. Impact of maternal probiotic-supplemented dietary counselling on pregnancy outcome and prenatal and postnatal growth: a double-blind, placebo-controlled study.

    PubMed

    Luoto, Raakel; Laitinen, Kirsi; Nermes, Merja; Isolauri, Erika

    2010-06-01

    The perinatal nutritional environment impacts upon the health and well-being of mother and child also in the long term. The aim of the present study was to determine the safety and efficacy of perinatal probiotic-supplemented dietary counselling by evaluating pregnancy outcome and fetal and infant growth during the 24 months' follow-up. Altogether, 256 women were randomised at their first trimester of pregnancy into a control and a dietary intervention group. The intervention group received intensive dietary counselling provided by a nutritionist and were further randomised, double-blind to receive probiotics (Lactobacillus rhamnosus GG and Bifidobacterium lactis Bb12; diet/probiotics) or placebo (diet/placebo). Firstly, probiotic intervention reduced the frequency of gestational diabetes mellitus (GDM); 13 % (diet/probiotics) v. 36 % (diet/placebo) and 34 % (control); P = 0.003. Secondly, the safety of this approach was attested by normal duration of pregnancies with no adverse events in mothers or children. No significant differences in prenatal or postnatal growth rates among the study groups were detected. Thirdly, distinctive effects of the two interventions were detected; probiotic intervention reduced the risk of GDM and dietary intervention diminished the risk of larger birth size in affected cases; P = 0.035 for birth weight and P = 0.028 for birth length. The results of the present study show that probiotic-supplemented perinatal dietary counselling could be a safe and cost-effective tool in addressing the metabolic epidemic. In view of the fact that birth size is a risk marker for later obesity, the present results are of significance for public health in demonstrating that this risk is modifiable. PMID:20128938

  11. [Effect of ladasten on antenatal and postnatal development].

    PubMed

    Bugaeva, L I; Denisova, T D; Spasov, A A

    2012-01-01

    Positive effects of ladasten on both antenatal and postnatal development have been established in experiments on pregnant female rats. Under the action of this drug, the number of resorption events decreases and process of antenatal development of fetuses is activated. In the postnatal period, increased weight gain and accelerated physical development has been observed in the progeny of rats treated with ladasten. PMID:22702107

  12. Accelerated fatigue crack growth behavior of PWA 1480

    NASA Technical Reports Server (NTRS)

    Telesman, Jack; Ghosn, Louis J.

    1988-01-01

    An investigation of the fatigue crack growth (FCG) behavior of PWA 1480 single crystal nickel base superalloy was conducted. Typical Paris region behavior was observed above a delta K of 8 MPa sq rt of m. However, below that stress intensity range, the alloy exhibited highly unusual behavior. This behavior consisted of a region where the crack growth rate became essentially independent of the applied stress intensity. The transition in the FCG behavior was related to a change in the observed crack growth mechanisms. In the Paris region, fatigue failure occurred along (111) facets; however, at the lower stress intensities, (001) fatigue failure was observed. A mechanism was proposed, based on barriers to dislocation motion, to explain the changes in the observed FCG behavior. The FCG data were also evaluated in terms of a recently proposed stress intensity parameter, K sub rss. This parameter, based on the resolved shear stresses on the slip planes, quantified the crack driving force as well as the mode I delta K, and at the same time was also able to predict the microscopic crack path under different stress states.

  13. Arabidopsis thaliana root growth kinetics and lunisolar tidal acceleration.

    PubMed

    Fisahn, Joachim; Yazdanbakhsh, Nima; Klingele, Emile; Barlow, Peter

    2012-07-01

    • All living organisms on Earth are continually exposed to diurnal variations in the gravitational tidal force due to the Sun and Moon. • Elongation of primary roots of Arabidopsis thaliana seedlings maintained at a constant temperature was monitored for periods of up to 14 d using high temporal- and spatial-resolution video imaging. The time-course of the half-hourly elongation rates exhibited an oscillation which was maintained when the roots were placed in the free-running condition of continuous illumination. • Correlation between the root growth kinetics collected from seedlings initially raised under several light protocols but whose roots were subsequently in the free-running condition and the lunisolar tidal profiles enabled us to identify that the latter is the probable exogenous determinant of the rhythmic variation in root elongation rate. Similar observations and correlations using roots of Arabidopsis starch mutants suggest a central function of starch metabolism in the response to the lunisolar tide. The periodicity of the lunisolar tidal signal and the concomitant adjustments in root growth rate indicate that an exogenous timer exists for the modulation of root growth and development. • We propose that, in addition to the sensitivity to Earthly 1G gravity, which is inherent to all animals and plants, there is another type of responsiveness which is attuned to the natural diurnal variations of the lunisolar tidal force. PMID:22583121

  14. Arabidopsis thaliana root growth kinetics and lunisolar tidal acceleration.

    PubMed

    Fisahn, Joachim; Yazdanbakhsh, Nima; Klingele, Emile; Barlow, Peter

    2012-07-01

    • All living organisms on Earth are continually exposed to diurnal variations in the gravitational tidal force due to the Sun and Moon. • Elongation of primary roots of Arabidopsis thaliana seedlings maintained at a constant temperature was monitored for periods of up to 14 d using high temporal- and spatial-resolution video imaging. The time-course of the half-hourly elongation rates exhibited an oscillation which was maintained when the roots were placed in the free-running condition of continuous illumination. • Correlation between the root growth kinetics collected from seedlings initially raised under several light protocols but whose roots were subsequently in the free-running condition and the lunisolar tidal profiles enabled us to identify that the latter is the probable exogenous determinant of the rhythmic variation in root elongation rate. Similar observations and correlations using roots of Arabidopsis starch mutants suggest a central function of starch metabolism in the response to the lunisolar tide. The periodicity of the lunisolar tidal signal and the concomitant adjustments in root growth rate indicate that an exogenous timer exists for the modulation of root growth and development. • We propose that, in addition to the sensitivity to Earthly 1G gravity, which is inherent to all animals and plants, there is another type of responsiveness which is attuned to the natural diurnal variations of the lunisolar tidal force.

  15. The first 1000 days of life: prenatal and postnatal risk factors for morbidity and growth in a birth cohort in southern India

    PubMed Central

    Kattula, Deepthi; Sarkar, Rajiv; Sivarathinaswamy, Prabhu; Velusamy, Vasanthakumar; Venugopal, Srinivasan; Naumova, Elena N; Muliyil, Jayaprakash; Ward, Honorine; Kang, Gagandeep

    2014-01-01

    Objective To estimate the burden and assess prenatal and postnatal determinants of illnesses experienced by children residing in a semiurban slum, during the first 1000 days of life. Design Community-based birth cohort Setting Southern India Participants Four hundred and ninety-seven children of 561 pregnant women recruited and followed for 2 years with surveillance and anthropometry. Main outcome measure Incidence rates of illness; rates of clinic visits and hospitalisations; factors associated with low birth weight, various illnesses and growth. Results Data on 10 377.7 child-months of follow-up estimated an average rate of 14.8 illnesses/child-year. Gastrointestinal and respiratory illnesses were 20.6% and 47.8% of the total disease burden, respectively. The hospitalisation rate reduced from 46/100 child-years during infancy to 19/100 child-years in the second year. Anaemia during pregnancy (OR=2.3, 95% CI=1.08 to 5.18), less than four antenatal visits (OR=6.8, 95% CI=2.1 to 22.5) and preterm birth (OR=3.3, 95% CI=1.1 to 9.7) were independent prenatal risk factors for low birth weight. Female gender (HR=0.88, 95% CI=0.79 to 0.99) and 6 months of exclusive breast feeding (HR=0.76, 95% CI=0.66 to 0.88) offered protection against all morbidity. Average monthly height and weight gain were lower in female child and children exclusively breast fed for 6 months. Conclusions The high morbidity in Indian slum children in the first 1000 days of life was mainly due to prenatal factors and gastrointestinal and respiratory illness. Policymakers need disease prevalence and pathways to target high-risk groups with appropriate interventions in the community. PMID:25056979

  16. Practical postnatal care.

    PubMed

    Smibert, J

    1989-05-01

    This second paper by the author presents an experienced obstetrician's viewpoint of a very practical and perhaps provocative approach to postnatal care, especially considering the rights and emotional factors of the new parents.

  17. Increased diffuse radiation fraction does not significantly accelerate plant growth

    NASA Astrophysics Data System (ADS)

    Angert, Alon; Krakauer, Nir

    2010-05-01

    A recent modelling study (Mercado et al., 2009) claims that increased numbers of scattering aerosols are responsible for a substantial fraction of the terrestrial carbon sink in recent decades because higher diffuse light fraction enhances plant net primary production (NPP). Here we show that observations of atmospheric CO2 seasonal cycle and tree ring data indicate that the relation between diffuse light and NPP is actually quite weak on annual timescales. The inconsistency of these data with the modelling results may arise because the relationships used to quantify the enhancement of NPP were calibrated with eddy covariance measurements of hourly carbon uptake. The effect of diffuse-light fraction on carbon uptake could depend on timescale, since this effect varies rapidly as sun angle and cloudiness change, and since plants can respond dynamically over various timescales to change in incoming radiation. Volcanic eruptions, such as the eruption of Mount Pinatubo in 1991, provide the best available tests for the effect of an annual-scale increase in the diffuse light fraction. Following the Pinatubo Eruption, in 1992 and 1993, a sharp decrease in the atmospheric CO2 growth rate was observed. This could have resulted from enhanced plant carbon uptake. Mercado et al. (2009) argue that largely as a result of the (volcanic aerosol driven) increase in diffuse light fraction, NPP was elevated in 1992, particularly between 25° N-45° N where annual NPP was modelled to be ~0.8 PgC (~10%) above average. In a previous study (Angert et al., 2004) a biogeochemical model (CASA) linked to an atmospheric tracer model (MATCH), was used to show that a diffuse-radiation driven increase in NPP in the extratropics will enhance carbon uptake mostly in summer, leading to a lower CO2 seasonal minimum. Here we use a 'toy model' to show that this conclusion is general and model-independent. The model shows that an enhanced sink of 0.8 PgC, similar to that modelled by Mercado et al. (2009

  18. Expression of the CTCFL Gene during Mouse Embryogenesis Causes Growth Retardation, Postnatal Lethality, and Dysregulation of the Transforming Growth Factor β Pathway

    PubMed Central

    Sati, Leyla; Zeiss, Caroline; Yekkala, Krishna; Demir, Ramazan

    2015-01-01

    CTCFL, a paralog of CTCF, also known as BORIS (brother of regulator of imprinted sites), is a testis-expressed gene whose function is largely unknown. Its product is a cancer testis antigen (CTA), and it is often expressed in tumor cells and also seen in two benign human vascular malformations, juvenile angiofibromas and infantile hemangiomas. To understand the function of Ctcfl, we created tetracycline-inducible Ctcfl transgenic mice. We show that Ctcfl expression during embryogenesis results in growth retardation, eye malformations, multiorgan pathologies, vascular defects, and neonatal death. This phenotype resembles prior mouse models that perturb the transforming growth factor β (TGFB) pathway. Embryonic stem (ES) cells with the Ctcfl transgene reproduce the phenotype in ES cell-tetraploid chimeras. Transcriptome sequencing of the Ctcfl ES cells revealed 14 genes deregulated by Ctcfl expression. Bioinformatic analysis revealed the TGFB pathway as most affected by embryonic Ctcfl expression. Understanding the consequence of Ctcfl expression in nontesticular cells and elucidating downstream targets of Ctcfl could explain the role of its product as a CTA and its involvement in two, if not more, human vascular malformations. PMID:26169830

  19. A Study of the Effects of the Accelerated Reader Program on Fifth Grade Students' Reading Achievement Growth

    ERIC Educational Resources Information Center

    Melton, Cindy M.; Smothers, Bobbie C.; Anderson, Eugene; Fulton, Ray; Replogle, William H.; Thomas, Lisa

    2004-01-01

    The purpose of this study was to compare the reading achievement growth of fifth grade students following a year of participation in the Accelerated Reader program with the reading achievement growth of fifth grade students who did not participate in the Accelerated Reader program. The Terra Nova standardized achievement test was used as the…

  20. Maximizing oyster-reef growth supports green infrastructure with accelerating sea-level rise.

    PubMed

    Ridge, Justin T; Rodriguez, Antonio B; Joel Fodrie, F; Lindquist, Niels L; Brodeur, Michelle C; Coleman, Sara E; Grabowski, Jonathan H; Theuerkauf, Ethan J

    2015-01-01

    Within intertidal communities, aerial exposure (emergence during the tidal cycle) generates strong vertical zonation patterns with distinct growth boundaries regulated by physiological and external stressors. Forecasted accelerations in sea-level rise (SLR) will shift the position of these critical boundaries in ways we cannot yet fully predict, but landward migration will be impaired by coastal development, amplifying the importance of foundation species' ability to maintain their position relative to rising sea levels via vertical growth. Here we show the effects of emergence on vertical oyster-reef growth by determining the conditions at which intertidal reefs thrive and the sharp boundaries where reefs fail, which shift with changes in sea level. We found that oyster reef growth is unimodal relative to emergence, with greatest growth rates occurring between 20-40% exposure, and zero-growth boundaries at 10% and 55% exposures. Notably, along the lower growth boundary (10%), increased rates of SLR would outpace reef accretion, thereby reducing the depth range of substrate suitable for reef maintenance and formation, and exacerbating habitat loss along developed shorelines. Our results identify where, within intertidal areas, constructed or natural oyster reefs will persist and function best as green infrastructure to enhance coastal resiliency under conditions of accelerating SLR. PMID:26442712

  1. Maximizing oyster-reef growth supports green infrastructure with accelerating sea-level rise

    PubMed Central

    Ridge, Justin T.; Rodriguez, Antonio B.; Joel Fodrie, F.; Lindquist, Niels L.; Brodeur, Michelle C.; Coleman, Sara E.; Grabowski, Jonathan H.; Theuerkauf, Ethan J.

    2015-01-01

    Within intertidal communities, aerial exposure (emergence during the tidal cycle) generates strong vertical zonation patterns with distinct growth boundaries regulated by physiological and external stressors. Forecasted accelerations in sea-level rise (SLR) will shift the position of these critical boundaries in ways we cannot yet fully predict, but landward migration will be impaired by coastal development, amplifying the importance of foundation species’ ability to maintain their position relative to rising sea levels via vertical growth. Here we show the effects of emergence on vertical oyster-reef growth by determining the conditions at which intertidal reefs thrive and the sharp boundaries where reefs fail, which shift with changes in sea level. We found that oyster reef growth is unimodal relative to emergence, with greatest growth rates occurring between 20–40% exposure, and zero-growth boundaries at 10% and 55% exposures. Notably, along the lower growth boundary (10%), increased rates of SLR would outpace reef accretion, thereby reducing the depth range of substrate suitable for reef maintenance and formation, and exacerbating habitat loss along developed shorelines. Our results identify where, within intertidal areas, constructed or natural oyster reefs will persist and function best as green infrastructure to enhance coastal resiliency under conditions of accelerating SLR. PMID:26442712

  2. Maximizing oyster-reef growth supports green infrastructure with accelerating sea-level rise.

    PubMed

    Ridge, Justin T; Rodriguez, Antonio B; Joel Fodrie, F; Lindquist, Niels L; Brodeur, Michelle C; Coleman, Sara E; Grabowski, Jonathan H; Theuerkauf, Ethan J

    2015-10-07

    Within intertidal communities, aerial exposure (emergence during the tidal cycle) generates strong vertical zonation patterns with distinct growth boundaries regulated by physiological and external stressors. Forecasted accelerations in sea-level rise (SLR) will shift the position of these critical boundaries in ways we cannot yet fully predict, but landward migration will be impaired by coastal development, amplifying the importance of foundation species' ability to maintain their position relative to rising sea levels via vertical growth. Here we show the effects of emergence on vertical oyster-reef growth by determining the conditions at which intertidal reefs thrive and the sharp boundaries where reefs fail, which shift with changes in sea level. We found that oyster reef growth is unimodal relative to emergence, with greatest growth rates occurring between 20-40% exposure, and zero-growth boundaries at 10% and 55% exposures. Notably, along the lower growth boundary (10%), increased rates of SLR would outpace reef accretion, thereby reducing the depth range of substrate suitable for reef maintenance and formation, and exacerbating habitat loss along developed shorelines. Our results identify where, within intertidal areas, constructed or natural oyster reefs will persist and function best as green infrastructure to enhance coastal resiliency under conditions of accelerating SLR.

  3. Withaferin A inhibits in vivo growth of breast cancer cells accelerated by Notch2 knockdown.

    PubMed

    Kim, Su-Hyeong; Hahm, Eun-Ryeong; Arlotti, Julie A; Samanta, Suman K; Moura, Michelle B; Thorne, Stephen H; Shuai, Yongli; Anderson, Carolyn J; White, Alexander G; Lokshin, Anna; Lee, Joomin; Singh, Shivendra V

    2016-05-01

    The present study offers novel insights into the molecular circuitry of accelerated in vivo tumor growth by Notch2 knockdown in triple-negative breast cancer (TNBC) cells. Therapeutic vulnerability of Notch2-altered growth to a small molecule (withaferin A, WA) is also demonstrated. MDA-MB-231 and SUM159 cells were used for the xenograft studies. A variety of technologies were deployed to elucidate the mechanisms underlying tumor growth augmentation by Notch2 knockdown and its reversal by WA, including Fluorescence Molecular Tomography for measurement of tumor angiogenesis in live mice, Seahorse Flux analyzer for ex vivo measurement of tumor metabolism, proteomics, and Luminex-based cytokine profiling. Stable knockdown of Notch2 resulted in accelerated in vivo tumor growth in both cells reflected by tumor volume and/or latency. For example, the wet tumor weight from mice bearing Notch2 knockdown MDA-MB-231 cells was about 7.1-fold higher compared with control (P < 0.0001). Accelerated tumor growth by Notch2 knockdown was highly sensitive to inhibition by a promising steroidal lactone (WA) derived from a medicinal plant. Molecular underpinnings for tumor growth intensification by Notch2 knockdown included compensatory increase in Notch1 activation, increased cellular proliferation and/or angiogenesis, and increased plasma or tumor levels of growth stimulatory cytokines. WA administration reversed many of these effects providing explanation for its remarkable anti-cancer efficacy. Notch2 functions as a tumor growth suppressor in TNBC and WA offers a novel therapeutic strategy for restoring this function. PMID:27097807

  4. Temporal pattern of accelerated lung growth after tracheal occlusion in the fetal rabbit.

    PubMed Central

    De Paepe, M. E.; Johnson, B. D.; Papadakis, K.; Sueishi, K.; Luks, F. I.

    1998-01-01

    Tracheal occlusion in utero is a potent stimulus of fetal lung growth. We describe the early growth mechanics of fetal lungs and type II pneumocytes after tracheal ligation (TL). Fetal rabbits underwent TL at 24 days gestational age (DGA; late pseudoglandular stage; term = 31 to 33 days) and were sacrificed at time intervals ranging from 1 to 5 days after TL. Lung growth was measured by stereological volumetry and bromodeoxyuridine (BrdU) pulse labeling. Pneumocyte II population kinetics were analyzed using a combination of anti-surfactant protein A and BrdU immunohistochemistry and computer-assisted morphometry. Nonoperated littermates served as controls. TL resulted in dramatically enhanced lung growth (lung weight/body weight was 5.00 +/- 0.81% in TL versus 2.52 +/- 0.13% in controls at 29 DGA; P < 0.001, unpaired Student's t-test). Post-TL lung growth was characterized by a 3-day lag-phase typified by relative stagnation of growth, followed by distension of airspaces, increased cell proliferation, and accelerated architectural and cellular maturation by postligation days 4 and 5. During the proliferation phase, the replicative activity of type II cells was markedly increased (type II cell BrdU labeling index was 10.0 +/- 4.1% in TL versus 1.1 +/- 0.3% for controls at 29 DGA; P < 0.02), but their numerical density decreased (3.0 +/- 0.5 x 10(-3)/microm2 in TL versus 4.5 +/- 0.3 x 10(-3)/microm2 in controls at 29 DGA; P < 0.02), suggesting accelerated terminal differentiation to type I cells. In conclusion, post-TL lung development is characterized by a well defined temporal pattern of lung growth and maturation. The rabbit model lends itself well to study the regulatory mechanisms underlying accelerated fetal lung growth after TL. Images Figure 2 Figure 4 Figure 6 Figure 8 Figure 9 PMID:9422535

  5. Bcl-2 accelerates retinoic acid-induced growth arrest and recovery in human gastric cancer cells.

    PubMed Central

    Chou, H K; Chen, S L; Hsu, C T; Chao, Y C; Tsao, Y P

    2000-01-01

    The role of Bcl-2 as an anti-apoptotic protein has been well documented. In the present work, we present evidence that Bcl-2 may also be involved in cell growth regulation. SC-M1 is an unique cell line which responds to retinoic acid (RA) treatment with reversible growth arrest [Shyu, Jiang, Huang, Chang, Wu, Roffler and Yeh (1995) Eur. J. Cancer 31, 237-243]. In this study, when treated with RA, SC-M1/Bcl2 cells, which were generated by transfecting SC-M1 cells with bcl-2 DNA, were growth-arrested two days earlier than SC-M1/neo cells, which were generated by transfecting SC-M1 cells with vector DNA. This indicates that Bcl-2 accelerates RA-induced growth arrest. In addition to the accelerated growth arrest, RA-treated SC-M1/Bcl2 cells also recovered from growth arrest two days faster than SC-M1/neo cells after the removal of RA. Previously, we had identified the cyclin-dependent kinase inhibitor p21((WAF1/CIP1)) (p21) as a mediator of RA-induced growth arrest [Tsao, Li, Kuo, Liu and Chen (1996) Biochem. J. 317, 707-711]. In a search for the mechanism by which Bcl-2 affects growth regulation, we found that p21 gene expression was more prominent in SC-M1/Bcl2 cells than in SC-M1/neo cells in the presence of RA, but when RA was removed, p21 gene expression levels in SC-M1/Bcl2 cells were also reduced earlier than in SC-M1/neo cells. The present report is the first to show that Bcl-2 accelerates not only growth arrest but also recovery from growth arrest. Moreover, the close correlation between the effect of Bcl-2 on both RA-induced growth arrest and RA-induced p21 gene expression suggests the possibility that Bcl-2 affects cell growth through the mechanism of p21. PMID:10816444

  6. Post-natal imprinting: evidence from marsupials

    PubMed Central

    Stringer, J M; Pask, A J; Shaw, G; Renfree, M B

    2014-01-01

    Genomic imprinting has been identified in therian (eutherian and marsupial) mammals but not in prototherian (monotreme) mammals. Imprinting has an important role in optimising pre-natal nutrition and growth, and most imprinted genes are expressed and imprinted in the placenta and developing fetus. In marsupials, however, the placental attachment is short-lived, and most growth and development occurs post-natally, supported by a changing milk composition tailor-made for each stage of development. Therefore there is a much greater demand on marsupial females during post-natal lactation than during pre-natal placentation, so there may be greater selection for genomic imprinting in the mammary gland than in the short-lived placenta. Recent studies in the tammar wallaby confirm the presence of genomic imprinting in nutrient-regulatory genes in the adult mammary gland. This suggests that imprinting may influence infant post-natal growth via the mammary gland as it does pre-natally via the placenta. Similarly, an increasing number of imprinted genes have been implicated in regulating feeding and nurturing behaviour in both the adult and the developing neonate/offspring in mice. Together these studies provide evidence that genomic imprinting is critical for regulating growth and subsequently the survival of offspring not only pre-natally but also post-natally. PMID:24595366

  7. Early Acceleration of Mathematics Students and its Effect on Growth in Self-esteem: A Longitudinal Study

    NASA Astrophysics Data System (ADS)

    Ma, Xin

    2002-11-01

    The Longitudinal Study of American Youth (LSAY) database was employed to examine the educational practice of early acceleration of students of mathematics on the development of their self-esteem across the entire secondary grade levels. Students were classified into three different academic categories (gifted, honors, and regular). Results indicated that, in terms of the development of their self-esteem, gifted students benefited from early acceleration, honors students neither benefited nor were harmed by early acceleration, and regular students were harmed by early acceleration. Early acceleration in mathematics promoted significant growth in self-esteem among gifted male students and among gifted, honors, and regular minority students. When students were accelerated, schools showed similar average growth in self-esteem among gifted students and regular students and a large effect of general support for mathematics on the average growth in self-esteem among honors students.

  8. Consequences of bounds on longitudinal emittance growth for the design of recirculating linear accelerators

    SciTech Connect

    Berg, J. S.

    2015-05-03

    Recirculating linear accelerators (RLAs) are a cost-effective method for the acceleration of muons for a muon collider in energy ranges from a couple GeV to a few 10s of GeV. Muon beams generally have longitudinal emittances that are large for the RF frequency that is used, and it is important to limit the growth of that longitudinal emittance. This has particular consequences for the arc design of the RLAs. I estimate the longitudinal emittance growth in an RLA arising from the RF nonlinearity. Given an emittance growth limitation and other design parameters, one can then compute the maximum momentum compaction in the arcs. I describe how to obtain an approximate arc design satisfying these requirements based on the deisgn in [1]. Longitudinal dynamics also determine the energy spread in the beam, and this has consequences on the transverse phase advance in the linac. This in turn has consequences for the arc design due to the need to match beta functions. I combine these considerations to discuss design parameters for the acceleration of muons for a collider in an RLA from 5 to 63 GeV.

  9. Early rapid growth, early birth: Accelerated fetal growth and spontaneous late preterm birth

    PubMed Central

    Kusanovic, Juan Pedro; Erez, Offer; Espinoza, Jimmy; Gotsch, Francesca; Goncalves, Luis; Hassan, Sonia; Gomez, Ricardo; Nien, Jyh Kae; Frongillo, Edward A.; Romero, Roberto

    2011-01-01

    The past two decades in the United States have seen a 24 % rise in spontaneous late preterm delivery (34 to 36 weeks) of unknown etiology. This study tested the hypothesis that fetal growth was identical prior to spontaneous preterm (n=221, median gestational age at birth 35.6 weeks) and term (n=3706) birth among pregnancies followed longitudinally in Santiago, Chile. The hypothesis was not supported: Preterm-delivered fetuses were significantly larger than their term-delivered peers by mid-second trimester in estimated fetal weight, head, limb and abdominal dimensions, and they followed different growth trajectories. Piecewise regression assessed time-specific differences in growth rates at 4-week intervals from 16 weeks. Estimated fetal weight and abdominal circumference growth rates faltered at 20 weeks among the preterm-delivered, only to match and/or exceed their term-delivered peers at 24–28 weeks. After an abrupt decline at 28 weeks attenuating growth rates in all dimensions, fetuses delivered preterm did so at greater population-specific sex and age-adjusted weight than their peers from uncomplicated pregnancies (p<0.01). Growth rates predicted birth timing: one standard score of estimated fetal weight increased the odds ratio for preterm birth from 2.8 prior to 23 weeks, to 3.6 (95% confidence interval, 1.82–7.11, p<0.05) between 23 and 27 weeks. After 27 weeks, increasing size was protective (OR: 0.56, 95% confidence interval, 0.38–0.82, p=0.003). These data document, for the first time, a distinctive fetal growth pattern across gestation preceding spontaneous late preterm birth, identify the importance of mid-gestation for alterations in fetal growth, and add perspective on human fetal biological variability. PMID:18988282

  10. Tuning calcite morphology and growth acceleration by a rational design of highly stable protein-mimetics

    SciTech Connect

    Chen, Chunlong; Qi, Jiahui; Tao, Jinhui; Zuckermann, Ronald; De Yoreo, James J.

    2014-09-05

    In nature, proteins play a significant role in biomineral formation. One of the ultimate goals of bioinspired materials science is to develop highly stable synthetic molecules that mimic the function of these natural proteins by controlling crystal formation. Here, we demonstrate that both the morphology and the degree of acceleration or inhibition observed during growth of calcite in the presence of peptoids can be rationally tuned by balancing the electrostatic interactions (EI) and hydrophobic interactions (HI), with HI playing the dominant role. While either strong EI or HI inhibit growth and suppress (104) face expression, correlations between peptoid-crystal binding energies and observed changes in calcite growth indicate moderate EI allow peptoids to weakly adsorb while moderate HI cause disruption of surface-adsorbed water layers, leading to growth acceleration with retained expression of (104) faces. This study provides fundamental principles for designing peptoids as crystallization promoters, and offers a straightforward screening method based on macroscopic crystal morphology. Because peptoids are sequence-specific, highly stable, and easily synthesized, peptoid-enhanced crystallization offers a broad range of potential applications.

  11. Tuning calcite morphology and growth acceleration by a rational design of highly stable protein-mimetics

    NASA Astrophysics Data System (ADS)

    Chen, Chun-Long; Qi, Jiahui; Tao, Jinhui; Zuckermann, Ronald N.; Deyoreo, James J.

    2014-09-01

    In nature, proteins play a significant role in biomineral formation. One of the ultimate goals of bioinspired materials science is to develop highly stable synthetic molecules that mimic the function of these natural proteins by controlling crystal formation. Here, we demonstrate that both the morphology and the degree of acceleration or inhibition observed during growth of calcite in the presence of peptoids can be rationally tuned by balancing the electrostatic and hydrophobic interactions, with hydrophobic interactions playing the dominant role. While either strong electrostatic or hydrophobic interactions inhibit growth and reduces expression of the {104} faces, correlations between peptoid-crystal binding energies and observed changes in calcite growth indicate moderate electrostatic interactions allow peptoids to weakly adsorb while moderate hydrophobic interactions cause disruption of surface-adsorbed water layers, leading to growth acceleration with retained expression of the {104} faces. This study provides fundamental principles for designing peptoids as crystallization promoters, and offers a straightforward screening method based on macroscopic crystal morphology. Because peptoids are sequence-specific, highly stable, and easily synthesized, peptoid-enhanced crystallization offers a broad range of potential applications.

  12. Network effect of knowledge spillover: Scale-free networks stimulate R&D activities and accelerate economic growth

    NASA Astrophysics Data System (ADS)

    Konno, Tomohiko

    2016-09-01

    We study how knowledge spillover networks affect research and development (R&D) activities and economic growth. For this purpose, we extend a Schumpeterian growth model to the one on networks that depict the knowledge spillover relationships of R&D. We show that scale-free networks stimulate R&D activities and accelerate economic growth.

  13. Acceleration and deceleration phase nonlinear Rayleigh-Taylor growth at spherical interfaces

    SciTech Connect

    Clark, D S; Tabak, M

    2005-04-08

    The Layzer model for the nonlinear evolution of bubbles in the Rayleigh-Taylor instability has recently been generalized to the case of spherically imploding interfaces [D. S. Clark and M. Tabak, to appear, PRE (2005).]. The spherical case is more relevant to, e.g., inertial confinement fusion or various astrophysical phenomena when the convergence is strong or the perturbation wavelength is comparable to the interface curvature. Here, the model is further extended to the case of bubble growth during the deceleration (stagnation) phase of a spherical implosion and to the growth of spikes during both the acceleration and deceleration phases. Differences in the nonlinear growth rates for both bubbles and spikes are found when compared with planar results. The model predictions are verified by comparison with numerical hydrodynamics simulations.

  14. Education and Skills for Development in South Africa: Reflections on the Accelerated and Shared Growth Initiative for South Africa

    ERIC Educational Resources Information Center

    McGrath, S.; Akoojee, Salim

    2007-01-01

    In July 2005, President Mbeki announced the launch of the Accelerated and Shared Growth Initiative for South Africa (AsgiSA), a new development strategy designed to help the South African state meet the ANC's 2004 election pledges, namely: (1) halve unemployment; (2) halve poverty; (3) accelerate employment equity; and (4) improve broad-based…

  15. Plant growth promoting rhizobacteria and endophytes accelerate phytoremediation of metalliferous soils.

    PubMed

    Ma, Y; Prasad, M N V; Rajkumar, M; Freitas, H

    2011-01-01

    Technogenic activities (industrial-plastic, textiles, microelectronics, wood preservatives; mining-mine refuse, tailings, smelting; agrochemicals-chemical fertilizers, farm yard manure, pesticides; aerosols-pyrometallurgical and automobile exhausts; biosolids-sewage sludge, domestic waste; fly ash-coal combustion products) are the primary sources of heavy metal contamination and pollution in the environment in addition to geogenic sources. During the last two decades, bioremediation has emerged as a potential tool to clean up the metal-contaminated/polluted environment. Exclusively derived processes by plants alone (phytoremediation) are time-consuming. Further, high levels of pollutants pose toxicity to the remediating plants. This situation could be ameliorated and accelerated by exploring the partnership of plant-microbe, which would improve the plant growth by facilitating the sequestration of toxic heavy metals. Plants can bioconcentrate (phytoextraction) as well as bioimmobilize or inactivate (phytostabilization) toxic heavy metals through in situ rhizospheric processes. The mobility and bioavailability of heavy metal in the soil, particularly at the rhizosphere where root uptake or exclusion takes place, are critical factors that affect phytoextraction and phytostabilization. Developing new methods for either enhancing (phytoextraction) or reducing the bioavailability of metal contaminants in the rhizosphere (phytostabilization) as well as improving plant establishment, growth, and health could significantly speed up the process of bioremediation techniques. In this review, we have highlighted the role of plant growth promoting rhizo- and/or endophytic bacteria in accelerating phytoremediation derived benefits in extensive tables and elaborate schematic sketches.

  16. Plant growth promoting rhizobacteria and endophytes accelerate phytoremediation of metalliferous soils.

    PubMed

    Ma, Y; Prasad, M N V; Rajkumar, M; Freitas, H

    2011-01-01

    Technogenic activities (industrial-plastic, textiles, microelectronics, wood preservatives; mining-mine refuse, tailings, smelting; agrochemicals-chemical fertilizers, farm yard manure, pesticides; aerosols-pyrometallurgical and automobile exhausts; biosolids-sewage sludge, domestic waste; fly ash-coal combustion products) are the primary sources of heavy metal contamination and pollution in the environment in addition to geogenic sources. During the last two decades, bioremediation has emerged as a potential tool to clean up the metal-contaminated/polluted environment. Exclusively derived processes by plants alone (phytoremediation) are time-consuming. Further, high levels of pollutants pose toxicity to the remediating plants. This situation could be ameliorated and accelerated by exploring the partnership of plant-microbe, which would improve the plant growth by facilitating the sequestration of toxic heavy metals. Plants can bioconcentrate (phytoextraction) as well as bioimmobilize or inactivate (phytostabilization) toxic heavy metals through in situ rhizospheric processes. The mobility and bioavailability of heavy metal in the soil, particularly at the rhizosphere where root uptake or exclusion takes place, are critical factors that affect phytoextraction and phytostabilization. Developing new methods for either enhancing (phytoextraction) or reducing the bioavailability of metal contaminants in the rhizosphere (phytostabilization) as well as improving plant establishment, growth, and health could significantly speed up the process of bioremediation techniques. In this review, we have highlighted the role of plant growth promoting rhizo- and/or endophytic bacteria in accelerating phytoremediation derived benefits in extensive tables and elaborate schematic sketches. PMID:21147211

  17. The expression pattern and inhibitory influence of Tenascin-C on the growth of spiral ganglion neurons suggest a regulatory role as boundary formation molecule in the postnatal mouse inner ear.

    PubMed

    Kwiatkowska, M; Reinhard, J; Roll, L; Kraft, N; Dazert, S; Faissner, A; Volkenstein, S

    2016-04-01

    Sensorineural hearing loss, as a consequence of acoustic trauma, aging, genetic defects or ototoxic drugs, is highly associated with irreversible damage of cochlear hair cells (HCs) and secondary degeneration of spiral ganglion (SG) cells. Cochlear implants (CIs), which bypass the lost HC function by direct electrical stimulation of the remaining auditory neurons, offer an effective therapy option. Several studies imply that components of the extracellular matrix (ECM) have a great impact on the adhesion and growth of spiral ganglion neurons (SGNs) during development. Based on these findings, ECM proteins might act as bioactive CI substrates to optimize the electrode-nerve interface and to improve efficacy of these implants. In the present study, we focused on the ECM glycoproteins Tenascin-C (TN-C), Laminin (LN), and Fibronectin (FN), which show a prominent expression along the growth route of SGNs and the niche around HCs during murine postnatal development in vivo. We compared their influence on adhesion, neurite length, and neurite number of SGNs in vitro. Moreover, we studied the expression of the chondroitin sulfate proteoglycan (CSPG) dermatan sulfate-dependent proteoglycan-1 (DSD-1-PG), an interaction partner of TN-C. In sum, our in vitro data suggest that TN-C acts as an anti-adhesive and inhibitory factor for the growth of SGNs. The DSD-1 carbohydrate epitope is specifically localized to HC stereocilia and SG fibers. Interestingly, TN-C and the DSD-1-PG exhibit a mutually exclusive expression pattern, with the exception of a very restricted region beneath the habenula perforata, where SG neurites grow through the basilar membrane (BM) toward the HCs. The complementary expression of TN-C, LN, FN, and the DSD-1 epitope suggests that TN-C may act as an important boundary formation molecule in the developing postnatal mouse inner ear, which makes it a promising candidate to regulate neurite outgrowth in the light of CIs.

  18. A role for pectin de-methylesterification in a developmentally regulated growth acceleration in dark-grown Arabidopsis hypocotyls.

    PubMed

    Pelletier, Sandra; Van Orden, Jürgen; Wolf, Sebastian; Vissenberg, Kris; Delacourt, Julien; Ndong, Yves Assoumou; Pelloux, Jérôme; Bischoff, Volker; Urbain, Aurélie; Mouille, Grégory; Lemonnier, Gaëtan; Renou, Jean-Pierre; Höfte, Herman

    2010-11-01

    • We focused on a developmentally regulated growth acceleration in the dark-grown Arabidopsis hypocotyl to study the role of changes in cell wall metabolism in the control of cell elongation. • To this end, precise transcriptome analysis on dissected dark-grown hypocotyls, Fourier transform infrared (FT-IR) microspectroscopy and kinematic analysis were used. • Using a cellulose synthesis inhibitor, we showed that the growth acceleration marks a developmental transition during which growth becomes uncoupled from cellulose synthesis. We next investigated the cellular changes that take place during this transition. FT-IR microspectroscopy revealed significant changes in cell wall composition during, but not after, the growth acceleration. Transcriptome analysis suggested a role for cell wall remodeling, in particular pectin modification, in this growth acceleration. This was confirmed by the overexpression of a pectin methylesterase inhibitor, which caused a delay in the growth acceleration. • This study shows that the acceleration of cell elongation marks a developmental transition in dark-grown hypocotyl cells and supports a role for pectin de-methylesterification in the timing of this event.

  19. Closing the Gap between Experiment and Theory: Crystal Growth by Temperature Accelerated Dynamics

    SciTech Connect

    Montalenti, F.; Sorensen, M. R.; Voter, A. F.

    2001-09-17

    We present atomistic simulations of crystal growth where realistic experimental deposition rates are reproduced, without needing any a priori information on the relevant diffusion processes. Using the temperature accelerated dynamics method, we simulate the deposition of 4 monolayers (ML) of Ag/Ag(100) at the rate of 0.075 ML/s, thus obtaining a boost of several orders of magnitude with respect to ordinary molecular dynamics. In the temperature range analyzed (0--70 K), steering and activated mechanisms compete in determining the surface roughness.

  20. In-Situ Monitoring of Particle Growth at PEMFC Cathode under Accelerated Cycling Conditions

    SciTech Connect

    Billinge S. J.; Redmond, E.L.; Setzler, B.P.; Juhas, P.; Fullera, T.F.

    2012-05-01

    An in-situ method to measure changes in catalyst particle size at the cathode of a proton exchange membrane fuel cell is demonstrated. Synchrotron X-rays, 58 keV, were used to measure the pair distribution function on an operating fuel cell and observe the growth of catalyst particles under accelerated degradation conditions. The stability of Pt/C and PtCo/C with different initial particle sizes was monitored over 3000 potential cycles. The increase in particle size was fit to a linear trend as a function of cycles. The most stable electrocatalyst was found to be the alloyed PtCo with the larger initial particle size.

  1. Effect of the accelerating growth of communications networks on their structure.

    PubMed

    Dorogovtsev, S N; Mendes, J F

    2001-02-01

    Motivated by data on the evolution of the Internet and World Wide Web we consider scenarios of self-organization of nonlinearly growing networks into free-scale structures. We find that the accelerating growth of networks establishes their structure. For growing networks with preferential linking and increasing density of links, two scenarios are possible. In one of them, the value of the exponent gamma of the distribution of the number of incoming links is between 3/2 and 2. In the other scenario, gamma>2 and the distribution is necessarily nonstationary.

  2. Acceleration and localization of subcritical crack growth in a natural composite material

    NASA Astrophysics Data System (ADS)

    Lennartz-Sassinek, S.; Main, I. G.; Zaiser, M.; Graham, C. C.

    2014-11-01

    Catastrophic failure of natural and engineered materials is often preceded by an acceleration and localization of damage that can be observed indirectly from acoustic emissions (AE) generated by the nucleation and growth of microcracks. In this paper we present a detailed investigation of the statistical properties and spatiotemporal characteristics of AE signals generated during triaxial compression of a sandstone sample. We demonstrate that the AE event amplitudes and interevent times are characterized by scaling distributions with shapes that remain invariant during most of the loading sequence. Localization of the AE activity on an incipient fault plane is associated with growth in AE rate in the form of a time-reversed Omori law with an exponent near 1. The experimental findings are interpreted using a model that assumes scale-invariant growth of the dominating crack or fault zone, consistent with the Dugdale-Barenblatt "process zone" model. We determine formal relationships between fault size, fault growth rate, and AE event rate, which are found to be consistent with the experimental observations. From these relations, we conclude that relatively slow growth of a subcritical fault may be associated with a significantly more rapid increase of the AE rate and that monitoring AE rate may therefore provide more reliable predictors of incipient failure than direct monitoring of the growing fault.

  3. Acceleration and localization of subcritical crack growth in a natural composite material.

    PubMed

    Lennartz-Sassinek, S; Main, I G; Zaiser, M; Graham, C C

    2014-11-01

    Catastrophic failure of natural and engineered materials is often preceded by an acceleration and localization of damage that can be observed indirectly from acoustic emissions (AE) generated by the nucleation and growth of microcracks. In this paper we present a detailed investigation of the statistical properties and spatiotemporal characteristics of AE signals generated during triaxial compression of a sandstone sample. We demonstrate that the AE event amplitudes and interevent times are characterized by scaling distributions with shapes that remain invariant during most of the loading sequence. Localization of the AE activity on an incipient fault plane is associated with growth in AE rate in the form of a time-reversed Omori law with an exponent near 1. The experimental findings are interpreted using a model that assumes scale-invariant growth of the dominating crack or fault zone, consistent with the Dugdale-Barenblatt "process zone" model. We determine formal relationships between fault size, fault growth rate, and AE event rate, which are found to be consistent with the experimental observations. From these relations, we conclude that relatively slow growth of a subcritical fault may be associated with a significantly more rapid increase of the AE rate and that monitoring AE rate may therefore provide more reliable predictors of incipient failure than direct monitoring of the growing fault.

  4. TP508 accelerates fracture repair by promoting cell growth over cell death

    SciTech Connect

    Li Xinmin; Wang Hali; Touma, Edward; Qi Yuchen; Rousseau, Emma; Quigg, Richard J.; Ryaby, James T.

    2007-12-07

    TP508 is a synthetic 23-amino acid peptide representing a receptor-binding domain of human thrombin. We have previously shown that a single injection of TP508 accelerates fracture healing in a rat femoral fracture model. To understand how TP508 acts at the protein level during fracture healing, we compared the translational profiles between saline-control and fractured femur at six time points after TP508 treatment using the second generation of BD Clontech{sup TM} Antibody Microarray. Here, we demonstrate that TP508 accelerates fracture healing by modulating expression levels of proteins primarily involved in the functional categories of cell cycle, cellular growth and proliferation, and cell death. The majority of those proteins are physically interrelated and functionally overlapped. The action of those proteins is highlighted by a central theme of promoting cell growth via balance of cell survival over cell death signals. This appears to occur through the stimulation of several bone healing pathways including cell cycle-G1/S checkpoint regulation, apoptosis, JAK/STAT, NF-{kappa}B, PDGF, PI3K/AKT, PTEN, and ERK/MAPK.

  5. The trade-off between maturation and growth during accelerated development in frogs.

    PubMed

    Mueller, Casey A; Augustine, Starrlight; Kooijman, Sebastiaan A L M; Kearney, Michael R; Seymour, Roger S

    2012-09-01

    Developmental energetics are crucial to a species' life history and ecology but are poorly understood from a mechanistic perspective. Traditional energy and mass budgeting does not distinguish between costs of growth and maturation, making it difficult to account for accelerated development. We apply a metabolic theory that uniquely considers maturation costs (Dynamic Energy Budget theory, DEB) to interpret empirical data on the energetics of accelerated development in amphibians. We measured energy use until metamorphosis in two related frogs, Crinia georgiana and Pseudophryne bibronii. Mass and energy content of fresh ova were comparable between the species. However, development to metamorphosis was 1.7 times faster in C. georgiana while P. bibronii produced nine times the dry biomass at metamorphosis and had lower mass-specific oxygen requirements. DEB theory explained these patterns through differences in ontogenetic energy allocation to maturation. P. bibronii partitioned energy in the same (constant) way throughout development whereas C. georgiana increased the fraction of energy allocated to maturation over growth between hatching and the onset of feeding. DEB parameter estimation for additional, direct-developing taxa suggests that a change in energy allocation during development may result from a selective pressure to increase development rate, and not as a result of development mode.

  6. Radiology of postnatal skeletal development. Pt. 7

    SciTech Connect

    Ogden, J.A.; Phillips, S.B.

    1983-02-01

    Twenty-four pairs of scapulae from fetal specimens and 35 pairs of scapulae from postnatal cadavers ranging in age from full-term neonates to 14 years, were studied morphologically and roentgenographically. Air-cartilage interfacing was used to demonstrate both the osseous and cartilaginous contours. When the entire chondro-osseous dimensions, rather than just the osseous dimensions, were measured, the scapula had a height-width ratio ranging from 1.36 to 1.52 (average 1.44) during most of fetal development. The exceptions were three stillborns with camptomelic, thanatophoric, and achondrogenic dwarfism in which the ratio averaged 0.6. At no time during fetal development was the glenoid cavity convex; it always had a concave articular surface. However, the osseous subchrondral countour was often flat or slightly convex. In the postnatal period the height-width ratio averaged 1.49. The ratio remained virtually unchanged throughout skeletal growth and maturation. In a patient with unilateral Sprengel's deformity the ratio for the normal side was 1.5, while the abnormal was 1.0. The cartilaginous glenoid cavity was always concave during postnatal development, even in the specimens with major structural deformities, although the subchondral osseous contour was usually flat or convex during the first few years of postnatal development. Ossification of the coracoid process began with the development of a primary center at three to four months. A bipolar physis was present between the primary coracoid center and the primary scapular center until late adolescence.

  7. Tree growth acceleration and expansion of alpine forests: The synergistic effect of atmospheric and edaphic change.

    PubMed

    Silva, Lucas C R; Sun, Geng; Zhu-Barker, Xia; Liang, Qianlong; Wu, Ning; Horwath, William R

    2016-08-01

    Many forest ecosystems have experienced recent declines in productivity; however, in some alpine regions, tree growth and forest expansion are increasing at marked rates. Dendrochronological analyses at the upper limit of alpine forests in the Tibetan Plateau show a steady increase in tree growth since the early 1900s, which intensified during the 1930s and 1960s, and have reached unprecedented levels since 1760. This recent growth acceleration was observed in small/young and large/old trees and coincided with the establishment of trees outside the forest range, reflecting a connection between the physiological performance of dominant species and shifts in forest distribution. Measurements of stable isotopes (carbon, oxygen, and nitrogen) in tree rings indicate that tree growth has been stimulated by the synergistic effect of rising atmospheric CO2 and a warming-induced increase in water and nutrient availability from thawing permafrost. These findings illustrate the importance of considering soil-plant-atmosphere interactions to understand current and anticipate future changes in productivity and distribution of forest ecosystems. PMID:27652334

  8. Tree growth acceleration and expansion of alpine forests: The synergistic effect of atmospheric and edaphic change.

    PubMed

    Silva, Lucas C R; Sun, Geng; Zhu-Barker, Xia; Liang, Qianlong; Wu, Ning; Horwath, William R

    2016-08-01

    Many forest ecosystems have experienced recent declines in productivity; however, in some alpine regions, tree growth and forest expansion are increasing at marked rates. Dendrochronological analyses at the upper limit of alpine forests in the Tibetan Plateau show a steady increase in tree growth since the early 1900s, which intensified during the 1930s and 1960s, and have reached unprecedented levels since 1760. This recent growth acceleration was observed in small/young and large/old trees and coincided with the establishment of trees outside the forest range, reflecting a connection between the physiological performance of dominant species and shifts in forest distribution. Measurements of stable isotopes (carbon, oxygen, and nitrogen) in tree rings indicate that tree growth has been stimulated by the synergistic effect of rising atmospheric CO2 and a warming-induced increase in water and nutrient availability from thawing permafrost. These findings illustrate the importance of considering soil-plant-atmosphere interactions to understand current and anticipate future changes in productivity and distribution of forest ecosystems.

  9. Tree growth acceleration and expansion of alpine forests: The synergistic effect of atmospheric and edaphic change

    PubMed Central

    Silva, Lucas C. R.; Sun, Geng; Zhu-Barker, Xia; Liang, Qianlong; Wu, Ning; Horwath, William R.

    2016-01-01

    Many forest ecosystems have experienced recent declines in productivity; however, in some alpine regions, tree growth and forest expansion are increasing at marked rates. Dendrochronological analyses at the upper limit of alpine forests in the Tibetan Plateau show a steady increase in tree growth since the early 1900s, which intensified during the 1930s and 1960s, and have reached unprecedented levels since 1760. This recent growth acceleration was observed in small/young and large/old trees and coincided with the establishment of trees outside the forest range, reflecting a connection between the physiological performance of dominant species and shifts in forest distribution. Measurements of stable isotopes (carbon, oxygen, and nitrogen) in tree rings indicate that tree growth has been stimulated by the synergistic effect of rising atmospheric CO2 and a warming-induced increase in water and nutrient availability from thawing permafrost. These findings illustrate the importance of considering soil-plant-atmosphere interactions to understand current and anticipate future changes in productivity and distribution of forest ecosystems.

  10. Tree growth acceleration and expansion of alpine forests: The synergistic effect of atmospheric and edaphic change

    PubMed Central

    Silva, Lucas C. R.; Sun, Geng; Zhu-Barker, Xia; Liang, Qianlong; Wu, Ning; Horwath, William R.

    2016-01-01

    Many forest ecosystems have experienced recent declines in productivity; however, in some alpine regions, tree growth and forest expansion are increasing at marked rates. Dendrochronological analyses at the upper limit of alpine forests in the Tibetan Plateau show a steady increase in tree growth since the early 1900s, which intensified during the 1930s and 1960s, and have reached unprecedented levels since 1760. This recent growth acceleration was observed in small/young and large/old trees and coincided with the establishment of trees outside the forest range, reflecting a connection between the physiological performance of dominant species and shifts in forest distribution. Measurements of stable isotopes (carbon, oxygen, and nitrogen) in tree rings indicate that tree growth has been stimulated by the synergistic effect of rising atmospheric CO2 and a warming-induced increase in water and nutrient availability from thawing permafrost. These findings illustrate the importance of considering soil-plant-atmosphere interactions to understand current and anticipate future changes in productivity and distribution of forest ecosystems. PMID:27652334

  11. Implications of Post-Natal Cortical Development for Creativity Research.

    ERIC Educational Resources Information Center

    Gordon, Marjory; Dacey, John

    Man's long period of cerebral growth has important implications for education. The brain goes through major developmental changes after birth, and researchers have suggested that this growth process presents an opportunity for fostering the plasticity of genetically determined connections. Animal studies show that postnatal growth of the brain is…

  12. Effects of ambient oxygen concentration on the growth and antioxidant defenses of of human cell cultures established from fetal and postnatal skin.

    PubMed

    Balin, Arthur K; Pratt, Loretta; Allen, R G

    2002-02-01

    Oxygen toxicity is believed to arise from changes in the rates at which cells generate reactive oxygen species (ROS). Sensitivity to hyperoxia has been postulated to depend on levels of antioxidant defense. Human cells obtained from fetal tissues have lower antioxidant defenses than those obtained from adult tissue. The present study was performed to determine whether the differences in fetal and adult antioxidant defense levels modulated their responses to changes in the ambient oxygen concentration. Our results demonstrate that oxygen modulates the proliferation of human fetal and adult skin fibroblasts in a similar fashion. In general, skin fibroblasts grew better at approximately 31 mm Hg, regardless of donor age. Manganese superoxide dismutase, catalase, and glutathione peroxidase activities were lower in fetal cells than in adult fibroblasts. Copper/zinc superoxide dismutase and glucose-6-phosphate dehydrogenase were similar in fetal and postnatal tissues and were unaltered appreciably by hyperoxic exposure. Glutathione concentration increased at higher oxygen tensions; however, the increase was much greater in fetal cells than in cultures derived from adult skin. These observations demonstrate that the capacity of fetal and adult cells to cope with oxidative stress, while similar, result from distinct mechanisms. PMID:11827751

  13. Functionality, growth and accelerated aging of tissue engineered living autologous vascular grafts.

    PubMed

    Kelm, Jens M; Emmert, Maximilian Y; Zürcher, Armin; Schmidt, Dörthe; Begus Nahrmann, Yvonne; Rudolph, Karl L; Weber, Benedikt; Brokopp, Chad E; Frauenfelder, Thomas; Leschka, Sebastian; Odermatt, Bernhard; Jenni, Rolf; Falk, Volkmar; Zünd, Gregor; Hoerstrup, Simon P

    2012-11-01

    Living autologous tissue engineered vascular-grafts (TEVGs) with growth-capacity may overcome the limitations of contemporary artificial-prostheses. However, the multi-step in vitro production of TEVGs requires extensive ex vivo cell-manipulations with unknown effects on functionality and quality of TEVGs due to an accelerated biological age of the cells. Here, the impact of biological cell-age and tissue-remodeling capacity of TEVGs in relation to their clinical long-term functionality are investigated. TEVGs were implanted as pulmonary-artery (PA) replacements in juvenile sheep and followed for up to 240 weeks (∼4.5years). Telomere length and telomerase activity were compared amongst TEVGs and adjacent native tissue. Telomerase-activity of in vitro expanded autologous vascular-cells prior to seeding was <5% as compared to a leukemic cell line, indicating biological-aging associated with decreasing telomere-length with each cellular-doubling. Up to 100 weeks, the cells in the TEVGs had consistently shorter telomeres compared to the native counterpart, whereas no significant differences were detectable at 240 weeks. Computed tomography (CT) analysis demonstrated physiological wall-pressures, shear-stresses, and flow-pattern comparable to the native PA. There were no signs of degeneration detectable and continuous native-analogous growth was confirmed by vessel-volumetry. TEVGs exhibit a higher biological age compared to their native counterparts. However, despite of this tissue engineering technology related accelerated biological-aging, growth-capacity and long-term functionality was not compromised. To the contrary, extensive in-vivo remodeling processes with substantial endogenous cellular turnover appears to result in "TEVG rejuvenation" and excellent clinical performance. As these large-animal results can be extrapolated to approximately 20 human years, this study suggests long-term clinical-safety of cardiovascular in vitro tissue engineering and may

  14. Carcinogenic Parasite Secretes Growth Factor That Accelerates Wound Healing and Potentially Promotes Neoplasia.

    PubMed

    Smout, Michael J; Sotillo, Javier; Laha, Thewarach; Papatpremsiri, Atiroch; Rinaldi, Gabriel; Pimenta, Rafael N; Chan, Lai Yue; Johnson, Michael S; Turnbull, Lynne; Whitchurch, Cynthia B; Giacomin, Paul R; Moran, Corey S; Golledge, Jonathan; Daly, Norelle; Sripa, Banchob; Mulvenna, Jason P; Brindley, Paul J; Loukas, Alex

    2015-10-01

    Infection with the human liver fluke Opisthorchis viverrini induces cancer of the bile ducts, cholangiocarcinoma (CCA). Injury from feeding activities of this parasite within the human biliary tree causes extensive lesions, wounds that undergo protracted cycles of healing, and re-injury over years of chronic infection. We show that O. viverrini secreted proteins accelerated wound resolution in human cholangiocytes, an outcome that was compromised following silencing of expression of the fluke-derived gene encoding the granulin-like growth factor, Ov-GRN-1. Recombinant Ov-GRN-1 induced angiogenesis and accelerated mouse wound healing. Ov-GRN-1 was internalized by human cholangiocytes and induced gene and protein expression changes associated with wound healing and cancer pathways. Given the notable but seemingly paradoxical properties of liver fluke granulin in promoting not only wound healing but also a carcinogenic microenvironment, Ov-GRN-1 likely holds marked potential as a therapeutic wound-healing agent and as a vaccine against an infection-induced cancer of major public health significance in the developing world. PMID:26485648

  15. Recombinant Human Epidermal Growth Factor Accelerates Recovery of Mouse Small Intestinal Mucosa After Radiation Damage

    SciTech Connect

    Lee, Kang Kyoo; Jo, Hyang Jeong; Hong, Joon Pio; Lee, Sang-wook Sohn, Jung Sook; Moon, Soo Young; Yang, Sei Hoon; Shim, Hyeok; Lee, Sang Ho; Ryu, Seung-Hee; Moon, Sun Rock

    2008-07-15

    Purpose: To determine whether systemically administered recombinant human epidermal growth factor (rhEGF) accelerates the recovery of mouse small intestinal mucosa after irradiation. Methods and Materials: A mouse mucosal damage model was established by administering radiation to male BALB/c mice with a single dose of 15 Gy applied to the abdomen. After irradiation, rhEGF was administered subcutaneously at various doses (0.04, 0.2, 1.0, and 5.0 mg/kg/day) eight times at 2- to 3-day intervals. The evaluation methods included histologic changes of small intestinal mucosa, change in body weight, frequency of diarrhea, and survival rate. Results: The recovery of small intestinal mucosa after irradiation was significantly improved in the mice treated with a high dose of rhEGF. In the mice that underwent irradiation without rhEGF treatment, intestinal mucosal ulceration, mucosal layer damage, and severe inflammation occurred. The regeneration of villi was noticeable in mice treated with more than 0.2 mg/kg rhEGF, and the villi recovered fully in mice given more than 1 mg/kg rhEGF. The frequency of diarrhea persisting for more than 3 days was significantly greater in the radiation control group than in the rhEGF-treated groups. Conclusions: Systemic administration of rhEGF accelerates recovery from mucosal damage induced by irradiation. We suggest that rhEGF treatment shows promise for the reduction of small intestinal damage after irradiation.

  16. Carcinogenic Parasite Secretes Growth Factor That Accelerates Wound Healing and Potentially Promotes Neoplasia

    PubMed Central

    Smout, Michael J.; Sotillo, Javier; Laha, Thewarach; Papatpremsiri, Atiroch; Rinaldi, Gabriel; Pimenta, Rafael N.; Chan, Lai Yue; Johnson, Michael S.; Turnbull, Lynne; Whitchurch, Cynthia B.; Giacomin, Paul R.; Moran, Corey S.; Golledge, Jonathan; Daly, Norelle; Sripa, Banchob; Mulvenna, Jason P.

    2015-01-01

    Abstract Infection with the human liver fluke Opisthorchis viverrini induces cancer of the bile ducts, cholangiocarcinoma (CCA). Injury from feeding activities of this parasite within the human biliary tree causes extensive lesions, wounds that undergo protracted cycles of healing, and re-injury over years of chronic infection. We show that O. viverrini secreted proteins accelerated wound resolution in human cholangiocytes, an outcome that was compromised following silencing of expression of the fluke-derived gene encoding the granulin-like growth factor, Ov-GRN-1. Recombinant Ov-GRN-1 induced angiogenesis and accelerated mouse wound healing. Ov-GRN-1 was internalized by human cholangiocytes and induced gene and protein expression changes associated with wound healing and cancer pathways. Given the notable but seemingly paradoxical properties of liver fluke granulin in promoting not only wound healing but also a carcinogenic microenvironment, Ov-GRN-1 likely holds marked potential as a therapeutic wound-healing agent and as a vaccine against an infection-induced cancer of major public health significance in the developing world. PMID:26485648

  17. TUSC3 Loss Alters the ER Stress Response and Accelerates Prostate Cancer Growth in vivo

    NASA Astrophysics Data System (ADS)

    Horak, Peter; Tomasich, Erwin; Vaňhara, Petr; Kratochvílová, Kateřina; Anees, Mariam; Marhold, Maximilian; Lemberger, Christof E.; Gerschpacher, Marion; Horvat, Reinhard; Sibilia, Maria; Pils, Dietmar; Krainer, Michael

    2014-01-01

    Prostate cancer is the most prevalent cancer in males in developed countries. Tumor suppressor candidate 3 (TUSC3) has been identified as a putative tumor suppressor gene in prostate cancer, though its function has not been characterized. TUSC3 shares homologies with the yeast oligosaccharyltransferase (OST) complex subunit Ost3p, suggesting a role in protein glycosylation. We provide evidence that TUSC3 is part of the OST complex and affects N-linked glycosylation in mammalian cells. Loss of TUSC3 expression in DU145 and PC3 prostate cancer cell lines leads to increased proliferation, migration and invasion as well as accelerated xenograft growth in a PTEN negative background. TUSC3 downregulation also affects endoplasmic reticulum (ER) structure and stress response, which results in increased Akt signaling. Together, our findings provide first mechanistic insight in TUSC3 function in prostate carcinogenesis in general and N-glycosylation in particular.

  18. The Impact of Variable Accelerations on Crystal Growth onboard Spacecraft by the Floating Zone Method

    NASA Astrophysics Data System (ADS)

    Feonychev, A. I.; Kalachinskaya, I. S.

    2001-07-01

    The numerical investigation of the impact of time-dependent accelerations (vibrations) on the flow and heat and mass transfer in the melt is carried out for the case of modeling the crystal growth by the floating zone method under conditions of microgravity that exist onboard spacecraft. The effects of the Archimedean buoyancy force and of vibrations of the free surface of fluid are considered separately. When solving the problem of the effect of the vibrations of the free surface of fluid, the previously obtained data were used. It is shown that vibrations of the free surface have a much stronger effect on the processes under consideration than the buoyancy. Some problems that are related to the newly discovered effects are discussed. The use of vibroprotected systems and a rotating magnetic field can help solve these problems. We plan to continue our investigations in future spacecraft experiments, in particular, at the International Space Station, which is under construction at the moment.

  19. Osteogenic growth peptide accelerates bone healing during distraction osteogenesis in rabbit tibia.

    PubMed

    Zhao, Z-Y; Shao, L; Zhao, H-M; Zhong, Z-H; Liu, J-Y; Hao, C-G

    2011-01-01

    Distraction osteogenesis is a valuable treatment method that allows limb lengthening or reconstruction of large bone defects. However, its major disadvantage is the long period required for the consolidation of a distraction callus. Osteogenic growth peptide (OGP) stimulates endochondral bone formation in fracture callus, but its capacity to promote regenerate ossification during distraction osteogenesis has not been evaluated. This study investigated whether intravenously administered OGP accelerated bone healing during distraction osteogenesis in 36 male New Zealand White rabbits, randomized into two groups. The treatment group received OGP (200 ng/kg body weight) in phosphate-buffered saline (PBS), intravenously, each day; the control group received PBS alone. A 15-mm lengthening of the right lower leg was performed using the method of Ilizarov. Evidence from biomechanical, histological and radiographic evaluations demonstrated that systemic OGP treatment promoted optimal new bone formation during distraction osteogenesis in this rabbit model.

  20. Genetic disorders associated with postnatal microcephaly.

    PubMed

    Seltzer, Laurie E; Paciorkowski, Alex R

    2014-06-01

    Several genetic disorders are characterized by normal head size at birth, followed by deceleration in head growth resulting in postnatal microcephaly. Among these are classic disorders such as Angelman syndrome and MECP2-related disorder (formerly Rett syndrome), as well as more recently described clinical entities associated with mutations in CASK, CDKL5, CREBBP, and EP300 (Rubinstein-Taybi syndrome), FOXG1, SLC9A6 (Christianson syndrome), and TCF4 (Pitt-Hopkins syndrome). These disorders can be identified clinically by phenotyping across multiple neurodevelopmental and neurobehavioral realms, and enough data are available to recognize these postnatal microcephaly disorders as separate diagnostic entities in their own right. A second diagnostic grouping, comprised of Warburg MICRO syndrome, Cockayne syndrome, and Cerebral-oculo-facial skeletal syndrome, share similar features of somatic growth failure, ophthalmologic, and dysmorphologic features. Many postnatal microcephaly syndromes are caused by mutations in genes important in the regulation of gene expression in the developing forebrain and hindbrain, although important synaptic structural genes also play a role. This is an emerging group of disorders with a fascinating combination of brain malformations, specific epilepsies, movement disorders, and other complex neurobehavioral abnormalities. PMID:24839169

  1. Postnatal growth rates covary weakly with embryonic development rates and do not explain adult mortality probability among songbirds on four continents

    USGS Publications Warehouse

    Martin, Thomas E.; Oteyza, Juan C.; Mitchell, Adam E.; Potticary, Ahva L.; Lloyd, P.

    2016-01-01

    Growth and development rates may result from genetic programming of intrinsic processes that yield correlated rates between life stages. These intrinsic rates are thought to affect adult mortality probability and longevity. However, if proximate extrinsic factors (e.g., temperature, food) influence development rates differently between stages and yield low covariance between stages, then development rates may not explain adult mortality probability. We examined these issues based on study of 90 songbird species on four continents to capture the diverse life-history strategies observed across geographic space. The length of the embryonic period explained little variation (ca. 13%) in nestling periods and growth rates among species. This low covariance suggests that the relative importance of intrinsic and extrinsic influences on growth and development rates differs between stages. Consequently, nestling period durations and nestling growth rates were not related to annual adult mortality probability among diverse songbird species within or among sites. The absence of a clear effect of faster growth on adult mortality when examined in an evolutionary framework across species may indicate that species that evolve faster growth also evolve physiological mechanisms for ameliorating costs on adult mortality. Instead, adult mortality rates of species in the wild may be determined more strongly by extrinsic environmental causes.

  2. Postnatal growth rates covary weakly with embryonic development rates and do not explain adult mortality probability among songbirds on four continents.

    PubMed

    Martin, Thomas E; Oteyza, Juan C; Mitchell, Adam E; Potticary, Ahva L; Lloyd, Penn

    2015-03-01

    Growth and development rates may result from genetic programming of intrinsic processes that yield correlated rates between life stages. These intrinsic rates are thought to affect adult mortality probability and longevity. However, if proximate extrinsic factors (e.g., temperature, food) influence development rates differently between stages and yield low covariance between stages, then development rates may not explain adult mortality probability. We examined these issues based on study of 90 songbird species on four continents to capture the diverse life-history strategies observed across geographic space. The length of the embryonic period explained little variation (ca. 13%) in nestling periods and growth rates among species. This low covariance suggests that the relative importance of intrinsic and extrinsic influences on growth and development rates differs between stages. Consequently, nestling period durations and nestling growth rates were not related to annual adult mortality probability among diverse songbird species within or among sites. The absence of a clear effect of faster growth on adult mortality when examined in an evolutionary framework across species may indicate that species that evolve faster growth also evolve physiological mechanisms for ameliorating costs on adult mortality. Instead, adult mortality rates of species in the wild may be determined more strongly by extrinsic environmental causes.

  3. Postnatal weight and height growth velocities at different ages between birth and 5 y and body composition in adolescent boys and girls

    PubMed Central

    Botton, Jérémie; Heude, Barbara; Maccario, Jean; Ducimetière, Pierre; Charles, Marie-Aline

    2008-01-01

    Background Rapid weight gain in the first years of life is associated with adult obesity. Whether there are critical windows for this long term effect is unclear. Objective To study anthropometry in adolescence by gender according to weight and height growth velocities at different ages between birth and five years. Design Anthropometric parameters, including fat and fat-free mass by bipodal impedancemetry, were measured in 468 8–17 year old adolescents. We retrospectively collected early infancy data and individually estimated weight and height growth velocities in 69.4% of them using a mathematical model. Associations between birth parameters, growth velocities and anthropometric parameters in adolescence were studied. Results Weight growth velocity at three months was associated with overweight (OR for a 1 SD increase [95% CI]=1.52[1.04–2.22]), fat mass and waist circumference in adolescence in both genders, and with fat-free mass only in boys (r=0.29, P<0.001 versus r=−0.01, ns in girls). Weight growth velocities after 2 years were associated with all anthropometric parameters in adolescence, in both genders. Between 6 months and 2 years, weight growth velocities were significantly associated only with adolescent height in boys; in girls, associations with fat mass in adolescence were weaker. Discussion Our results support the hypothesis of two critical windows in early childhood associated with the later risk of obesity: up to 6 months and from 2 years onwards. The study of the determinants of growth during these two periods is of major importance for the prevention of obesity in adolescence. PMID:18541566

  4. Possible mechanism by which stress accelerates growth of virally derived tumors.

    PubMed Central

    Romero, L M; Raley-Susman, K M; Redish, D M; Brooke, S M; Horner, H C; Sapolsky, R M

    1992-01-01

    Stress accelerates the growth of certain types of tumors. Here we report a possible metabolic mechanism underlying this phenomenon. Some early features of transformation include increased number of glucose transporters and greatly enhanced rates of glucose uptake; this adaptation accommodates the vast energy demands needed for neoplastic growth. In contrast, glucocorticoids, a class of steroid hormones secreted during stress, inhibit glucose transport in various tissues; this is one route by which circulating glucose concentrations are raised during stress. We reasoned that should transformed cells become resistant to this inhibitory action of glucocorticoids, such cells would gain preferential access to these elevated concentrations of glucose. In agreement with this, we observed that Fujinami sarcoma virus-transformed fibroblasts became resistant to this glucocorticoid action both in vitro and in the rat. As a result, under conditions where glucocorticoids exerted catabolic effects upon nontransformed fibroblasts (inhibition of metabolism and ATP concentrations), the opposite occurred in the virally transformed cells. We observe that this glucocorticoid resistance upon transformation cannot be explained by depletion of glucocorticoid receptors; previous studies have suggested that transformation causes an alteration in trafficking of such receptors. Because of this resistance of transformed fibroblasts to the inhibitory effects of glucocorticoids upon glucose transport, glucose stores throughout the body are, in effect, preferentially shunted to such tumors during stress. Images PMID:1438318

  5. Sulforaphane promotes murine hair growth by accelerating the degradation of dihydrotestosterone.

    PubMed

    Sasaki, Mari; Shinozaki, Shohei; Shimokado, Kentaro

    2016-03-25

    Dihydrotestosterone (DHT) causes the regression of human hair follicles in the parietal scalp, leading to androgenic alopecia (AGA). Sulforaphane (SFN) increases the expression of DHT degrading enzymes, such as 3α-hydroxysteroid dehydrogenases (3α-HSDs), and, therefore, SFN treatment may improve AGA. To determine the effects of SFN on hair growth, we administered SFN (10 mg/kg BW, IP) or vehicle (DMSO) to ob/ob mice for six weeks and examined hair regeneration and the plasma levels of testosterone and DHT. We also tested the effects of SFN on the expression of two forms of 3α-HSD, aldo-keto reductase 1c21 and dehydrogenase/reductase (SDR family) member 9, both in vitro and in vivo. SNF significantly enhanced hair regeneration in ob/ob mice. The mice treated with SFN showed lower plasma levels of testosterone and DHT than those treated with vehicle. SFN increased the mRNA and protein levels of the two forms of 3α-HSD in the liver of the mice and in cultured murine hepatocyte Hepa1c1c7 cells. These results suggest that SFN treatment increases the amount of 3α-HSDs in the liver, accelerates the degradation of blood DHT, and subsequently blocks the suppression of hair growth by DHT. PMID:26923074

  6. Sulforaphane promotes murine hair growth by accelerating the degradation of dihydrotestosterone.

    PubMed

    Sasaki, Mari; Shinozaki, Shohei; Shimokado, Kentaro

    2016-03-25

    Dihydrotestosterone (DHT) causes the regression of human hair follicles in the parietal scalp, leading to androgenic alopecia (AGA). Sulforaphane (SFN) increases the expression of DHT degrading enzymes, such as 3α-hydroxysteroid dehydrogenases (3α-HSDs), and, therefore, SFN treatment may improve AGA. To determine the effects of SFN on hair growth, we administered SFN (10 mg/kg BW, IP) or vehicle (DMSO) to ob/ob mice for six weeks and examined hair regeneration and the plasma levels of testosterone and DHT. We also tested the effects of SFN on the expression of two forms of 3α-HSD, aldo-keto reductase 1c21 and dehydrogenase/reductase (SDR family) member 9, both in vitro and in vivo. SNF significantly enhanced hair regeneration in ob/ob mice. The mice treated with SFN showed lower plasma levels of testosterone and DHT than those treated with vehicle. SFN increased the mRNA and protein levels of the two forms of 3α-HSD in the liver of the mice and in cultured murine hepatocyte Hepa1c1c7 cells. These results suggest that SFN treatment increases the amount of 3α-HSDs in the liver, accelerates the degradation of blood DHT, and subsequently blocks the suppression of hair growth by DHT.

  7. A critical point of male gonad development: neuroendocrine correlates of accelerated testicular growth in rats during early life.

    PubMed

    Dygalo, Nikolay N; Shemenkova, Tatjana V; Kalinina, Tatjana S; Shishkina, Galina T

    2014-01-01

    Testis growth during early life is important for future male fertility and shows acceleration during the first months of life in humans. This acceleration coincides with the peak in gonadotropic hormones in the blood, while the role of hypothalamic factors remains vague. Using neonatal rats to assess this issue, we found that day 9 of life is likely critical for testis development in rats. Before this day, testicular growth was proportional to body weight gain, but after that the testes showed accelerated growth. Hypothalamic kisspeptin and its receptor mRNA levels begin to elevate 2 days later, at day 11. A significant increase in the mRNA levels for gonadotropin-releasing hormone (GnRH) receptors in the hypothalamus between days 5 and 7 was followed by a 3-fold decrease in GnRH mRNA levels in this brain region during the next 2 days. Starting from day 9, hypothalamic GnRH mRNA levels increased significantly and positively correlated with accelerated testicular growth. Triptorelin, an agonist of GnRH, at a dose that had no effect on testicular growth during "proportional" period, increased testis weights during the period of accelerated growth. The insensitivity of testicular growth to GnRH during "proportional" period was supported by inability of a 2.5-fold siRNA knockdown of GnRH expression in the hypothalamus of the 7-day-old animals to produce any effect on their testis weights. GnRH receptor blockade with cetrorelix was also without effect on testis weights during "proportional" period but the same doses of this GnRH antagonist significantly inhibited "accelerated" testicular growth. GnRH receptor mRNA levels in the pituitary as well as plasma LH concentrations were higher during "accelerated" period of testicular growth than during "proportional" period. In general, our data defined two distinct periods in rat testicular development that are primarily characterized by different responses to GnRH signaling.

  8. Effect of placental restriction and neonatal exendin-4 treatment on postnatal growth, adult body composition, and in vivo glucose metabolism in the sheep

    PubMed Central

    Liu, Hong; Schultz, Christopher G.; De Blasio, Miles J.; Peura, Anita M.; Heinemann, Gary K.; Harryanto, Himawan; Hunter, Damien S.; Wooldridge, Amy L.; Kind, Karen L.; Giles, Lynne C.; Simmons, Rebecca A.; Owens, Julie A.

    2015-01-01

    Intrauterine growth restriction (IUGR) increases the risk of adult type 2 diabetes (T2D) and obesity. Neonatal exendin-4 treatment can prevent diabetes in the IUGR rat, but whether this will be effective in a species where the pancreas is more mature at birth is unknown. Therefore, we evaluated the effects of neonatal exendin-4 administration after experimental restriction of placental and fetal growth on growth and adult metabolic outcomes in sheep. Body composition, glucose tolerance, and insulin secretion and sensitivity were assessed in singleton-born adult sheep from control (CON; n = 6 females and 4 males) and placentally restricted pregnancies (PR; n = 13 females and 7 males) and in sheep from PR pregnancies that were treated with exendin-4 as neonates (daily sc injections of 1 nmol/kg exendin-4; PR + exendin-4; n = 11 females and 7 males). Placental restriction reduced birth weight (by 29%) and impaired glucose tolerance in the adult but did not affect adult adiposity, insulin secretion, or insulin sensitivity. Neonatal exendin-4 suppressed growth during treatment, followed by delayed catchup growth and unchanged adult adiposity. Neonatal exendin-4 partially restored glucose tolerance in PR progeny but did not affect insulin secretion or sensitivity. Although the effects on glucose tolerance are promising, the lack of effects on adult body composition, insulin secretion, and insulin sensitivity suggest that the neonatal period may be too late to fully reprogram the metabolic consequences of IUGR in species that are more mature at birth than rodents. PMID:26219868

  9. Adolescent idiopathic scoliosis (AIS), environment, exposome and epigenetics: a molecular perspective of postnatal normal spinal growth and the etiopathogenesis of AIS with consideration of a network approach and possible implications for medical therapy

    PubMed Central

    2011-01-01

    Genetic factors are believed to play an important role in the etiology of adolescent idiopathic scoliosis (AIS). Discordant findings for monozygotic (MZ) twins with AIS show that environmental factors including different intrauterine environments are important in etiology, but what these environmental factors may be is unknown. Recent evidence for common chronic non-communicable diseases suggests epigenetic differences may underlie MZ twin discordance, and be the link between environmental factors and phenotypic differences. DNA methylation is one important epigenetic mechanism operating at the interface between genome and environment to regulate phenotypic plasticity with a complex regulation across the genome during the first decade of life. The word exposome refers to the totality of environmental exposures from conception onwards, comprising factors in external and internal environments. The word exposome is used here also in relation to physiologic and etiopathogenetic factors that affect normal spinal growth and may induce the deformity of AIS. In normal postnatal spinal growth we propose a new term and concept, physiologic growth-plate exposome for the normal processes particularly of the internal environments that may have epigenetic effects on growth plates of vertebrae. In AIS, we propose a new term and concept pathophysiologic scoliogenic exposome for the abnormal processes in molecular pathways particularly of the internal environment currently expressed as etiopathogenetic hypotheses; these are suggested to have deforming effects on the growth plates of vertebrae at cell, tissue, structure and/or organ levels that are considered to be epigenetic. New research is required for chromatin modifications including DNA methylation in AIS subjects and vertebral growth plates excised at surgery. In addition, consideration is needed for a possible network approach to etiopathogenesis by constructing AIS diseasomes. These approaches may lead through screening

  10. Postnatal growth of infants of less than 1.3 kg birth weight: effects of metabolic acidosis, of caloric intake, and of calcium, sodium, and phosphate supplementation.

    PubMed

    Chance, G W; Radde, I C; Willis, D M; Roy, R N; Park, E; Ackerman, I

    1977-11-01

    Weekly increments of length, weight, head circumference, and skinfold thickness in response to a series of dietary changes were measured in 108 healthy infants who weighed less than 1.3 kg at birth. The serial manipulations included prevention of late metabolic acidosis, increased caloric intake, and calcium, sodium, and phosphorus supplementation. The study comprised four phases; the infants were divided into ten groups according to dietary regimen. AGA and SGA infants were studied separately. Growth in length was primarily influenced by a change to a formula providing a higher caloric intake and a 60:40 whey protein/casein ratio. Correction of late metabolic acidosis, sodium, and phosphorus supplementation had minor additive effects on growth in length. Increased caloric intake also influenced growth of head circumference, but only in AGA infants. Only the sodium intake was shown to influence body weight increments significantly with the range of caloric intake used in the study (132 to 160 calories/kg/day).

  11. Effects of sire breed, gender, and postnatal litter size on plasma concentrations of acyl ghrelin and its relationship with growth traits and feeding behavior in swine

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Feeding behavior is an important component of growth and feed efficiency in swine. Acyl ghrelin is a peptide produced in the stomach that is orexigenic. The role of ghrelin in regulating feeding behavior in swine under commercial conditions is unknown. The objective of this study was to determine th...

  12. Post-natal myogenic and adipogenic developmental

    PubMed Central

    Konings, Gonda; van Weeghel, Michel; van den Hoogenhof, Maarten MG; Gijbels, Marion; van Erk, Arie; Schoonderwoerd, Kees; van den Bosch, Bianca; Dahlmans, Vivian; Calis, Chantal; Houten, Sander M; Misteli, Tom

    2011-01-01

    A-type lamins are a major component of the nuclear lamina. Mutations in the LMNA gene, which encodes the A-type lamins A and C, cause a set of phenotypically diverse diseases collectively called laminopathies. While adult LMNA null mice show various symptoms typically associated with laminopathies, the effect of loss of lamin A/C on early post-natal development is poorly understood. Here we developed a novel LMNA null mouse (LMNAGT−/−) based on genetrap technology and analyzed its early post-natal development. We detect LMNA transcripts in heart, the outflow tract, dorsal aorta, liver and somites during early embryonic development. Loss of A-type lamins results in severe growth retardation and developmental defects of the heart, including impaired myocyte hypertrophy, skeletal muscle hypotrophy, decreased amounts of subcutaneous adipose tissue and impaired ex vivo adipogenic differentiation. These defects cause death at 2 to 3 weeks post partum associated with muscle weakness and metabolic complications, but without the occurrence of dilated cardiomyopathy or an obvious progeroid phenotype. Our results indicate that defective early post-natal development critically contributes to the disease phenotypes in adult laminopathies. PMID:21818413

  13. Metabolic programming in the immediate postnatal life.

    PubMed

    Patel, Mulchand S; Srinivasan, Malathi

    2011-01-01

    The metabolic programming effects of nutritional modifications in the immediate postnatal life are increasingly recognized to independently contribute to the development of metabolic syndrome in later life. Adjustment of litter size in rodents has been used to induce either under- or overnourishment in the immediate postnatal life of the offspring. While undernourishment led to growth retardation in the offspring, overnourishment produced increased body weight gains, hyperinsulinemia and hyperleptinemia. Overnourishment during the suckling period induced several adaptations in the energy circuitry in the hypothalamus of the offspring predisposing them for the onset of obesity later in life. Another approach for a nutritional modification in the immediate postnatal period is the artificial rearing of newborn rat pups on a high-carbohydrate (HC) milk formula without changes in the total calorie availability. Hyperinsulinemia, immediately evident in the HC pups, persisted in the post-weaning period even after withdrawal of the HC milk. Significant alterations in pancreatic islets supported chronic hyperinsulinemia in the HC rats. Alterations in the gene expression of hypothalamic neuropeptides predisposing to hyperphagia were evident during the period of the HC dietary modification. The persistence of these hypothalamic adaptations supported the obese phenotype in adult HC rats. A transgenerational effect gave rise to the development of chronic hyperinsulinemia and adult-onset obesity in the offspring of the HC female rats. Other studies have shown that lactation by a diabetic, obese or malnourished mother resulted in predisposition for the onset of metabolic disorders in the offspring. These observations from animal studies on the metabolic programming effects due to altered nutritional experiences in the immediate postnatal life strongly suggest that altered feeding practices for infants (formula feeding and early introduction of infant foods) could contribute to

  14. Gestational Dietary Protein Is Associated with Sex Specific Decrease in Blood Flow, Fetal Heart Growth and Post-Natal Blood Pressure of Progeny

    PubMed Central

    2015-01-01

    Study Overview The incidence of adverse pregnancy outcomes is higher in pregnancies where the fetus is male. Sex specific differences in feto-placental perfusion indices identified by Doppler assessment have recently been associated with placental insufficiency and fetal growth restriction. This study aims to investigate sex specific differences in placental perfusion and to correlate these changes with fetal growth. It represents the largest comprehensive study under field conditions of uterine hemodynamics in a monotocous species, with a similar long gestation period to the human. Primiparous 14mo heifers in Australia (n=360) and UK (n=180) were either individually or group fed, respectively, diets with differing protein content (18, 14, 10 or 7% crude protein (CP)) from 60d prior to 98 days post conception (dpc). Fetuses and placentae were excised at 98dpc (n = 48). Fetal development an median uterine artery blood flow were assessed monthly from 36dpc until term using B-mode and Doppler ultrasonography. MUA blood flow to the male feto-placental unit increased in early pregnancy associated with increased fetal growth. Protein restriction before and shortly after conception (-60d up to 23dpc) increased MUA diameter and indices of velocity during late pregnancy, reduced fetal heart weight in the female fetus and increased heart rate at birth, but decreased systolic blood pressure at six months of age. Conclusion and Significance Sex specific differences both in feto-placental Doppler perfusion indices and response of these indices to dietary perturbations were observed. Further, maternal diet affected development of fetal cardiovascular system associated with altered fetal haemodynamics in utero, with such effects having a sex bias. The results from this study provide further insight into the gender specific circulatory differences present in the fetal period and developing cardiovascular system. PMID:25915506

  15. Accelerated Aging Experiments for Prognostics of Damage Growth in Composite Materials

    NASA Technical Reports Server (NTRS)

    Saxena, Abhinav; Goebel, Kai Frank; Larrosa, Cecilia C.; Janapati, Vishnuvardhan; Roy, Surajit; Chang, Fu-Kuo

    2011-01-01

    Composite structures are gaining importance for use in the aerospace industry. Compared to metallic structures their behavior is less well understood. This lack of understanding may pose constraints on their use. One possible way to deal with some of the risks associated with potential failure is to perform in-situ monitoring to detect precursors of failures. Prognostic algorithms can be used to predict impending failures. They require large amounts of training data to build and tune damage model for making useful predictions. One of the key aspects is to get confirmatory feedback from data as damage progresses. These kinds of data are rarely available from actual systems. The next possible resource to collect such data is an accelerated aging platform. To that end this paper describes a fatigue cycling experiment with the goal to stress carbon-carbon composite coupons with various layups. Piezoelectric disc sensors were used to periodically interrogate the system. Analysis showed distinct differences in the signatures of growing failures between data collected at conditions. Periodic X-radiographs were taken to assess the damage ground truth. Results after signal processing showed clear trends of damage growth that were correlated to damage assessed from the X-ray images.

  16. Postnatal histomorphogenesis of the mandible in the house mouse

    PubMed Central

    Martinez-Maza, Cayetana; Montes, Laëtitia; Lamrous, Hayat; Ventura, Jacint; Cubo, Jorge

    2012-01-01

    The mandible of the house mouse, Mus musculus, is a model structure for the study of the development and evolution of complex morphological systems. This research describes the histomorphogenesis of the house mouse mandible and analyses its biological significance from the first to the eighth postnatal weeks. Histological data allowed us to test a hypothesis concerning modularity in this structure. We measured the bone growth rates by fluorescent labelling and identified the bone tissue types through microscopic analysis of histological cross-sections of the mandible during its postnatal development. The results provide evidence for a modular structure of the mouse mandible, as the alveolar region and the ascending ramus show histological differences throughout ontogeny. The alveolar region increases in length during the first two postnatal weeks by bone growth in the posterior region, while horizontally positioned incisors preclude bone growth in the anterior region. In the fourth postnatal week, growth dynamics shows a critical change. The alveolar region drifts laterally and the ramus becomes more vertical due to the medial growth direction of the coronoid region and the lateral growth of the ventral region of the ramus. Diet changes after weaning are probably involved in these morphological changes. In this way, the development of the masticatory muscles that insert on the ascending ramus may be particularly related to this shape modeling of the house mouse mandible. PMID:22372819

  17. Behaviour and physiology shape the growth accelerations associated with predation risk, high temperatures and southern latitudes in Ischnura damselfly larvae.

    PubMed

    Stoks, Robby; Swillen, Ine; De Block, Marjan

    2012-09-01

    1. To better predict effects of climate change and predation risk on prey animals and ecosystems, we need studies documenting not only latitudinal patterns in growth rate but also growth plasticity to temperature and predation risk and the underlying proximate mechanisms: behaviour (food intake) and digestive physiology (growth efficiency). The mechanistic underpinnings of predator-induced growth increases remain especially poorly understood. 2. We reared larvae from replicated northern and southern populations of the damselfly Ischnura elegans in a common garden experiment manipulating temperature and predation risk and quantified growth rate, food intake and growth efficiency. 3. The predator-induced and temperature-induced growth accelerations were the same at both latitudes, despite considerably faster growth rates in the southern populations. While the higher growth rates in the southern populations and the high rearing temperature were driven by both an increased food intake and a higher growth efficiency, the higher growth rates under predation risk were completely driven by a higher growth efficiency, despite a lowered food intake. 4. The emerging pattern that higher growth rates associated with latitude, temperature and predation risk were all (partly or completely) mediated by a higher growth efficiency has two major implications. First, it indicates that energy allocation trade-offs and the associated physiological costs play a major role both in shaping large-scale geographic variation in growth rates and in shaping the extent and direction of growth rate plasticity. Secondly, it suggests that the efficiency of energy transfer in aquatic food chains, where damselfly larvae are important intermediate predators, will be higher in southern populations, at higher temperatures and under predation risk. This may eventually contribute to the lengthening of food chains under these conditions and highlights that the prey identity may determine the influence of

  18. Behaviour and physiology shape the growth accelerations associated with predation risk, high temperatures and southern latitudes in Ischnura damselfly larvae.

    PubMed

    Stoks, Robby; Swillen, Ine; De Block, Marjan

    2012-09-01

    1. To better predict effects of climate change and predation risk on prey animals and ecosystems, we need studies documenting not only latitudinal patterns in growth rate but also growth plasticity to temperature and predation risk and the underlying proximate mechanisms: behaviour (food intake) and digestive physiology (growth efficiency). The mechanistic underpinnings of predator-induced growth increases remain especially poorly understood. 2. We reared larvae from replicated northern and southern populations of the damselfly Ischnura elegans in a common garden experiment manipulating temperature and predation risk and quantified growth rate, food intake and growth efficiency. 3. The predator-induced and temperature-induced growth accelerations were the same at both latitudes, despite considerably faster growth rates in the southern populations. While the higher growth rates in the southern populations and the high rearing temperature were driven by both an increased food intake and a higher growth efficiency, the higher growth rates under predation risk were completely driven by a higher growth efficiency, despite a lowered food intake. 4. The emerging pattern that higher growth rates associated with latitude, temperature and predation risk were all (partly or completely) mediated by a higher growth efficiency has two major implications. First, it indicates that energy allocation trade-offs and the associated physiological costs play a major role both in shaping large-scale geographic variation in growth rates and in shaping the extent and direction of growth rate plasticity. Secondly, it suggests that the efficiency of energy transfer in aquatic food chains, where damselfly larvae are important intermediate predators, will be higher in southern populations, at higher temperatures and under predation risk. This may eventually contribute to the lengthening of food chains under these conditions and highlights that the prey identity may determine the influence of

  19. Effects of an acidic fibroblast growth factor fragment analog on learning and memory and on medial septum cholinergic neurons in senescence-accelerated mice.

    PubMed

    Sasaki, K; Tooyama, I; Li, A J; Oomura, Y; Kimura, H

    1999-01-01

    We examined the effects of repeated subcutaneous injections of an acidic fibroblast growth factor fragment analog, [Ala16] acidic fibroblast growth factor (1-29), on learning and memory and on the choline acetyltransferase immunoreactivity of forebrain neurons in senescence-accelerated mice. One group of accelerated senescence-prone mice (accelerated senescence-prone-8) received [Ala16] acidic fibroblast growth factor (1-29), whereas the other group of accelerated senescence-prone-8 mice and a group of accelerated senescence-resistant mice (control) received vehicle solution. Injections began at three weeks after birth and were given weekly for 10 months. In a passive avoidance test, the mean retention latency at three, six and nine months of age was significantly longer in controls (vehicle-treated accelerated senescence-resistant-1) and acidic fibroblast growth factor fragment-treated accelerated senescence-prone-8 than in vehicle-treated accelerated senescence-prone-8 mice, and the latency in acidic fibroblast growth factor fragment-treated accelerated senescence-prone-8 mice was significantly shorter than that in controls only at nine months of age. In the Morris water maze task, the mean latency to climb onto the platform was significantly longer in acidic fibroblast growth factor fragment- and vehicle-treated accelerated senescence-prone-8 mice than in controls. However, the mean latency in the third and fourth trial blocks was significantly shorter for acidic fibroblast growth factor fragment-treated accelerated senescence-prone-8 than for vehicle-treated accelerated senescence-prone-8 mice. In the probe trials, controls and acidic fibroblast growth factor fragment-treated accelerated senescence-prone-8 mice spent significantly more time in the quadrant in which the platform had previously been located than in the other three quadrants. In acidic fibroblast growth factor fragment-treated accelerated senescence-prone-8 mice, the density of medial septum

  20. Effect of Residual Accelerations on the Crystal Growth of II-VI Semiconductors in Low Earth Orbit

    NASA Technical Reports Server (NTRS)

    Gillies, D. C.; Su, C.-H.; Szofran, F. R.; Scripa, R. N.; Cobb, S. D.; Lehoczky, S. L.; Curreri, Peter A. (Technical Monitor)

    2002-01-01

    The paper compares and summarizes the effects of residual acceleration during crystal growth on the compositional variation of two II-VI solid solution binary alloys (Hg(0.8)Cd(0.2)Te and Hg(0.84)Zn(0.16)Te). The crystals were grown by directional solidification on the second United States Microgravity Payload (USMP-2) and the first United States Microgravity Laboratory (USML-1) missions, respectively. For both alloys, changes in the direction and magnitude of the quasisteady acceleration vector (approximately 0.4- 1 mu g) caused large changes in the radial compositional distribution that demonstrates the importance of residual accelerations, even in the submicrogravity range, for large density gradients in the melt and slow solidification rates. The observed compositional variations will be correlated to changes in the radial flow velocities ahead of the solidification interface.

  1. Accelerated Schools Centers: How To Address Challenges to Institutionalization and Growth.

    ERIC Educational Resources Information Center

    Meza, James, Jr.

    The Accelerated Schools Project (ASP) at the University of New Orleans (UNO) was established in spring 1990, funded by a 3-year grant from Chevron. Beginning with 1 pilot school in 1991, the UNO Accelerated Schools Center has expanded to 36 schools representing 19 school districts in Louisiana and 3 schools from the Memphis City Schools district.…

  2. Accelerating 21st Century Economic Growth by Implementation of the Lunar Solar Power System

    NASA Astrophysics Data System (ADS)

    Criswell, D. R.

    2002-01-01

    The World Energy Council (1) makes this declaration. "Given this dramatically uneven distribution and the limited evidence of improvement in economic growth in many developing countries, WEC at the 17th World Congress in Houston in September 1998 concluded that the number one priority in sustainable energy development today for all decision-makers in all countries is to extend access to commercial energy services to the people who do not now have it and to those who will come into the world in the next two decades, largely in developing countries, without such access." By ~2050 the global systems should supply 10 billion people approximately 6.7 kilowatts of thermal power per person or 61,360 kWt-h/y-person of energy. The economic equivalent is ~2 - 3 kWe of electric power per person. The energy must be environmentally clean. The energy must be sufficiently low in cost that the 2 billion poorest people, who now make 1,000 /y-person, can be provided with the new power. A survey of twenty-five options for providing adequate commercial electric power, including solar power satellites in orbit about Earth, concludes that only the Lunar Solar Power System can meet the WEC challenge (2, 3, 4, 5). Maurice Strong is the former CEO of Ontario Hydro and organizer of the 1992 Rio Environmental Summit. Quoting Strong - "I have checked it (LSP System) out with a number of experts, all of whom confirmed that the idea, which has been mooted for some time, may now be ripe to carry forward. --- The project would deliver net new energy to the Earth that is independent of the biosphere, would produce no CO2 or other polluting emissions and have minimal environmental impact compared with other energy sources." (6). Electric energy provided by the LSP System can accelerate terrestrial economic growth in several ways. A cost of less than 1 cent per kilowatt electric hour seems achievable. This allows poor nations to buy adequate energy. Increasing per capita use of electric power is

  3. The effect of acceleration on the growth and shedding of laminar separation bubbles

    NASA Astrophysics Data System (ADS)

    Bhattacharya, Samik; Rival, David

    2015-11-01

    It has been observed that when a laminar boundary layer separates, the shear layer undergoes transition to turbulence and subsequently reattaches to form a laminar separation bubble (LSB). In this work, a SD7003 airfoil, held at an angle of attack of 8 degree, is towed with different acceleration profiles starting from rest. The separation region is then analyzed with time-resolved, planar PIV at short convective times during the initial acceleration phase. The aim of this work is to characterize the variation in size and shedding frequency of the laminar separation bubble with increasing acceleration. We show that the formation and shedding process in the LSB depends on the rate of vorticity-containing mass transported by the separated shear layer. Consequently, any changes in the structure of the shear layer affect the formation of the LSB downstream. Finally, attempts are also made to characterize the shedding frequency of the bubble with increasing acceleration. Here the unsteadiness of the LSB is found to be closely linked to the degree of boundary-layer acceleration on the airfoil surface.

  4. Coxsackievirus B3 adapted to growth in RD cells binds to decay-accelerating factor (CD55).

    PubMed Central

    Bergelson, J M; Mohanty, J G; Crowell, R L; St John, N F; Lublin, D M; Finberg, R W

    1995-01-01

    A coxsackievirus B3 (CB3) isolate adapted to growth in RD cells shows an alteration in cell tropism as a result of its capacity to bind a 70-kDa cell surface molecule expressed on these cells. We now show that this molecule is the complement regulatory protein, decay-accelerating factor (DAF) (CD55). Anti-DAF antibodies prevented CB3 attachment to the cell surface. Radiolabeled CB3 adapted to growth in RD cells bound to CHO cells transfected with human DAF, whereas CB3 (strain Nancy), the parental strain, did not bind to DAF transfectants. These results indicate that growth of CB3 in RD cells selected for a virus strain that uses DAF for cell surface attachment. PMID:7531780

  5. The influence of acceleration forces on dendritic growth and grain structure

    NASA Technical Reports Server (NTRS)

    Johnston, M. H.; Parr, R. A.

    1982-01-01

    The results of experiments on the tin-15 wt pct lead system are presented, showing the effects on microstructure of solidification in the presence of acceleration forces from 0.0001 to 5 g for three cooling rates. An increase in the acceleration level is shown to drive fluid flow and cause dendrite remelting, fragmentation, and macrosegregation. The cooling rate impacts the final structure through its control of dendrite arm spacings and permeability to fluid flow. At the low (0.0001 g) acceleration, dendrite arm spacings deviated from the predicted relationship to cooling rate. An explanation for this anomaly is given which considers the temperature and concentration gradients in the low-gravity environment.

  6. Low energy emulsion-based fermentation enabling accelerated methane mass transfer and growth of poly(3-hydroxybutyrate)-accumulating methanotrophs.

    PubMed

    Myung, Jaewook; Kim, Minkyu; Pan, Ming; Criddle, Craig S; Tang, Sindy K Y

    2016-05-01

    Methane is a low-cost feedstock for the production of polyhydroxyalkanoate biopolymers, but methanotroph fermentations are limited by the low solubility of methane in water. To enhance mass transfer of methane to water, vigorous mixing or agitation is typically used, which inevitably increases power demand and operational costs. This work presents a method for accelerating methane mass transfer without agitation by growing methanotrophs in water-in-oil emulsions, where the oil has a higher solubility for methane than water does. In systems without agitation, the growth rate of methanotrophs in emulsions is five to six times that of methanotrophs in the medium-alone incubations. Within seven days, cells within the emulsions accumulate up to 67 times more P3HB than cells in the medium-alone incubations. This is achieved due to the increased interfacial area of the aqueous phase, and accelerated methane diffusion through the oil phase. PMID:26896714

  7. Accelerated Growth Rate and Increased Drought Stress Resilience of the Model Grass Brachypodium distachyon Colonized by Bacillus subtilis B26

    PubMed Central

    Charron, Jean-Benoit; Vali, Hojatollah; Bertrand, Annick; Jabaji, Suha

    2015-01-01

    Plant growth-promoting bacteria (PGB) induce positive effects in plants, for instance, increased growth and reduced abiotic stresses susceptibility. The mechanisms by which these bacteria impact the host plant are numerous, diverse and often specific. Here, we studied the agronomical, molecular and biochemical effects of the endophytic PGB Bacillus subtilis B26 on the full life cycle of Brachypodium distachyon Bd21, an established model species for functional genomics in cereal crops and temperate grasses. Inoculation of Brachypodium with B. subtilis strain B26 increased root and shoot weights, accelerated growth rate and seed yield as compared to control plants. B. subtilis strain B26 efficiently colonized the plant and was recovered from roots, stems and blades as well as seeds of Brachypodium, indicating that the bacterium is able to migrate, spread systemically inside the plant, establish itself in the aerial plant tissues and organs, and is vertically transmitted to seeds. The presence of B. subtilis strain B26 in the seed led to systemic colonization of the next generation of Brachypodium plants. Inoculated Brachypodium seedlings and mature plants exposed to acute and chronic drought stress minimized the phenotypic effect of drought compared to plants not harbouring the bacterium. Protection from the inhibitory effects of drought by the bacterium was linked to upregulation of the drought-response genes, DREB2B-like, DHN3-like and LEA-14-A-like and modulation of the DNA methylation genes, MET1B-like, CMT3-like and DRM2-like, that regulate the process. Additionally, total soluble sugars and starch contents increased in stressed inoculated plants, a biochemical indication of drought tolerance. In conclusion, we show a single inoculation of Brachypodium with a PGB affected the whole growth cycle of the plant, accelerating its growth rates, shortening its vegetative period, and alleviating drought stress effects. These effects are relevant to grasses and cereal

  8. Identification and characterization of a non-satellite cell muscle resident progenitor during postnatal development.

    PubMed

    Mitchell, Kathryn J; Pannérec, Alice; Cadot, Bruno; Parlakian, Ara; Besson, Vanessa; Gomes, Edgar R; Marazzi, Giovanna; Sassoon, David A

    2010-03-01

    Satellite cells are resident myogenic progenitors in postnatal skeletal muscle involved in muscle postnatal growth and adult regenerative capacity. Here, we identify and describe a population of muscle-resident stem cells, which are located in the interstitium, that express the cell stress mediator PW1 but do not express other markers of muscle stem cells such as Pax7. PW1(+)/Pax7(-) interstitial cells (PICs) are myogenic in vitro and efficiently contribute to skeletal muscle regeneration in vivo as well as generating satellite cells and PICs. Whereas Pax7 mutant satellite cells show robust myogenic potential, Pax7 mutant PICs are unable to participate in myogenesis and accumulate during postnatal growth. Furthermore, we found that PICs are not derived from a satellite cell lineage. Taken together, our findings uncover a new and anatomically identifiable population of muscle progenitors and define a key role for Pax7 in a non-satellite cell population during postnatal muscle growth. PMID:20118923

  9. Evidence of accelerated beak growth associated with avian keratin disorder in Black-capped Chickadees (Poecile atricapillus)

    USGS Publications Warehouse

    Van Hemert, Caroline; Handel, Colleen M.; O'Hara, Todd M.

    2012-01-01

    We recently documented an epizootic of beak deformities in more than 2,000 Blackcapped Chickadees (Poecile atricapillus) and other wild bird species in North America. This emerging avian disease, which has been termed avian keratin disorder, results in gross overgrowth of the rhamphotheca, the outer, keratinized layer of the beak. To test the hypothesis that the beak deformities characteristic of this disorder are associated with accelerated keratin production, we measured rates of beak growth and wear in affected Black-capped Chickadees (n=16) and a control sample of unaffected chickadees (n=14) collected from south-central (61°09′−61°38′N, 149°11′ −149°48′W) and interior Alaska (64°51′ −64°53′N, 147°49′ −147°59′W). Rates of absolute growth were 50–100% higher in affected birds than they were in control birds and exceeded records from other passerine species. These results suggest that abnormally rapid epidermal growth is the primary physical mechanism by which beak deformities develop and are maintained in affected chickadees. Although beak overgrowth typically worsened over time, differential patterns of wear influenced the severity and morphology of deformities. In some cases, the effects of accelerated keratin growth were partially mitigated by frequent breakage of rhamphothecal tips. However, mortalities occurred in 9 of 16 birds (56%) with beak deformities during the study, suggesting that avian keratin disorder results in severe health consequences for affected birds. Additional study of factors that control beak keratin production is needed to understand the pathogenesis of this debilitating disease in wild birds.

  10. Evidence of accelerated beak growth associated with avian keratin disorder in black-capped chickadees (Poecile atricapillus)

    USGS Publications Warehouse

    Van Hemert, Caroline R.; Handel, Colleen M.; O'Hara, Todd M.

    2012-01-01

    We recently documented an epizootic of beak deformities in more than 2,000 Blackcapped Chickadees (Poecile atricapillus) and other wild bird species in North America. This emerging avian disease, which has been termed avian keratin disorder, results in gross overgrowth of the rhamphotheca, the outer, keratinized layer of the beak. To test the hypothesis that the beak deformities characteristic of this disorder are associated with accelerated keratin production, we measured rates of beak growth and wear in affected Black-capped Chickadees (n=16) and a control sample of unaffected chickadees (n=14) collected from south-central (61°09'-61°38'N, 149°11' -149°48'W) and interior Alaska (64°51' -64°53'N, 147°49' -147°59'W). Rates of absolute growth were 50-100% higher in affected birds than they were in control birds and exceeded records from other passerine species. These results suggest that abnormally rapid epidermal growth is the primary physical mechanism by which beak deformities develop and are maintained in affected chickadees. Although beak overgrowth typically worsened over time, differential patterns of wear influenced the severity and morphology of deformities. In some cases, the effects of accelerated keratin growth were partially mitigated by frequent breakage of rhamphothecal tips. However, mortalities occurred in 9 of 16 birds (56%) with beak deformities during the study, suggesting that avian keratin disorder results in severe health consequences for affected birds. Additional study of factors that control beak keratin production is needed to understand the pathogenesis of this debilitating disease in wild birds.

  11. Attenuation of actinomyosinII contractile activity in growth cones accelerates filopodia-guided and microtubule-based neurite elongation.

    PubMed

    Rösner, Harald; Möller, Wolfgang; Wassermann, Torsten; Mihatsch, Julia; Blum, Martin

    2007-10-24

    The myosinII-specific inhibitor blebbistatin was used to attenuate actinomyosinII contractility in E7-chicken retina explant, medulla and spinal cord neuronal cell cultures. Addition of 20-100 microM blebbistatin, a concentration range that reversibly disrupts actin stress fibers, led to a reduction of growth cone lamellipodial areas and to an elongation of filopodia within 5 to 10 min. These morphological changes were completely reversed after removing the inhibitor. In the continued presence of blebbistatin for several hours, a dose-dependent acceleration (up to 6-fold) of neurite outgrowth was observed. The rapidly elongating neuritic processes displayed narrowed growth cones with one to three long filopodia at the leading edge. At the same time, thin neuritic branches emerged in a "push"-like fashion guided by filopodial extensions. Immunocytochemical characterization of these thin sprouts revealed that they contained actin filaments, myosinIIA, phosphorylated neurofilament/tau epitopes, MAP2, NCAM-PSA, and microtubules, demonstrating that these processes presented neurites and not filopodia. The crucial involvement of microtubules in blebbistatin-induced accelerated neurite extension was confirmed by its inhibition in the presence of nocodazole or taxol. The promotion by blebbistatin of neurite outgrowth occurred on polylysine, laminin, as well as on fibronectin as substrate. The presence of the Rho/ROCK-inhibitor Y-27632 also caused a dose-dependent promotion of neurite growth which was, however, 3-fold less pronounced as compared to blebbistatin. In contrast to blebbistatin, Y-27632 led to the enlargement of growth cone lamellipodial extensions. Our data demonstrate that neurite outgrowth and branching are inversely correlated with the degree of actinomyosinII contractility which determines the speed of retrograde flow and turnover of actin filaments and, by this, microtubule extension.

  12. Silencing of PMEPA1 accelerates the growth of prostate cancer cells through AR, NEDD4 and PTEN.

    PubMed

    Li, Hua; Mohamed, Ahmed A; Sharad, Shashwat; Umeda, Elizabeth; Song, Yingjie; Young, Denise; Petrovics, Gyorgy; McLeod, David G; Sesterhenn, Isabell A; Sreenath, Taduru; Dobi, Albert; Srivastava, Shiv

    2015-06-20

    Androgen Receptor (AR) is the male hormone receptor and a nuclear transcription factor which plays a central role in the growth of normal and malignant prostate gland. Our earlier studies defined a mechanistic model for male hormone dependent regulation of AR protein levels in prostate cancer (CaP) cells through a negative feed-back loop between AR and PMEPA1, an androgen induced NEDD4 E3 ubiquitin ligase binding protein. This report focuses on the impact of PMEPA1 silencing on CaP biology. PMEPA1 knockdown accelerated the growth of CaP tumor cells in athymic nude mice. In cell culture models knockdown of PMEPA1 resulted in resistance to AR inhibitors enzalutamide and bicalutamide. While, AR protein down regulation by NEDD4 was PMEPA1 dependent, we also noted a PMEPA1 independent downregulation of PTEN by NEDD4. In a subset of human CaP, decreased PMEPA1 mRNA expression significantly correlated with increased levels of AR transcription target PSA, as a surrogate for elevated AR. This study highlights that silencing of PMEPA1 accelerates the growth of CaP cells through AR, NEDD4 and PTEN. Thus, the therapeutic restoration of PMEPA1 represents a promising complementary strategy correcting for AR and PTEN defects in CaP. Statement of significance: Here we define that silencing of PMEPA1 facilitates the growth of CaP cells and modulates AR through NEDD4 and PTEN. The restoration of PMEPA1 represents a promising complementary therapeutic strategy correcting for AR and PTEN defects.

  13. Enterococcus faecium LKE12 Cell-Free Extract Accelerates Host Plant Growth via Gibberellin and Indole-3-Acetic Acid Secretion.

    PubMed

    Lee, Ko-Eun; Radhakrishnan, Ramalingam; Kang, Sang-Mo; You, Young-Hyun; Joo, Gil-Jae; Lee, In-Jung; Ko, Jae-Hwan; Kim, Jin-Ho

    2015-09-01

    The use of microbial extracts containing plant hormones is a promising technique to improve crop growth. Little is known about the effect of bacterial cell-free extracts on plant growth promotion. This study, based on phytohormonal analyses, aimed at exploring the potential mechanisms by which Enterococcus faecium LKE12 enhances plant growth in oriental melon. A bacterial strain, LKE12, was isolated from soil, and further identified as E. faecium by 16S rDNA sequencing and phylogenetic analysis. The plant growth-promoting ability of an LKE12 bacterial culture was tested in a gibberellin (GA)-deficient rice dwarf mutant (waito-C) and a normal GA biosynthesis rice cultivar (Hwayongbyeo). E. faecium LKE12 significantly improved the length and biomass of rice shoots in both normal and dwarf cultivars through the secretion of an array of gibberellins (GA1, GA3, GA7, GA8, GA9, GA12, GA19, GA20, GA24, and GA53), as well as indole-3-acetic acid (IAA). To the best of our knowledge, this is the first study indicating that E. faecium can produce GAs. Increases in shoot and root lengths, plant fresh weight, and chlorophyll content promoted by E. faecium LKE12 and its cell-free extract inoculated in oriental melon plants revealed a favorable interaction of E. faecium LKE12 with plants. Higher plant growth rates and nutrient contents of magnesium, calcium, sodium, iron, manganese, silicon, zinc, and nitrogen were found in cell-free extract-treated plants than in control plants. The results of the current study suggest that E. faecium LKE12 promotes plant growth by producing GAs and IAA; interestingly, the exogenous application of its cell-free culture extract can be a potential strategy to accelerate plant growth.

  14. Impact of stochastic accelerations on dopant segregation in microgravity semiconductor crystal growth

    NASA Astrophysics Data System (ADS)

    Ruiz, X.; Bitlloch, P.; Ramírez-Piscina, L.; Casademunt, J.

    2012-09-01

    The residual accelerations that are typically present in microgravity environments (g-jitters) contain a broad spectrum of frequencies and may be modeled as stochastic processes. Their effects on the quality of the semiconductor crystals are analyzed here quantitatively with direct numerical simulation. In particular we focus on the dopant segregation effects due to thermosolutal convection as a function of the parameters characterizing the statistics of the stochastic force. The numerical simulation is specified for material parameters of two doped semiconductors (Ge:Ga and GaAs:Se) in realistic conditions of actual microgravity environments. As a general result, we show that the segregation response is strongly dominated by the low-frequency part of the g-jitter spectrum. In addition, we develop a simplified model of the problem based on linear response theory that projects the dynamics into very few effective modes. The model captures remarkably well the segregation effects for an arbitrary time-dependent acceleration of small amplitude, while it implies an enormous reduction of computer demands. This model could be helpful to analyze results from real accelerometric signals and also as a predictive tool for experimental design.

  15. Micro-structured, spontaneously eroding hydrogels accelerate endothelialization through presentation of conjugated growth factors.

    PubMed

    Jensen, Bettina E B; Edlund, Katrine; Zelikin, Alexander N

    2015-05-01

    Growth factors represent highly potent and highly efficacious means of communication to cells. At the same time, these proteins are fragile and relatively small sized--rendering their immobilization and controlled release from biomaterials challenging. In this work, we establish a method to incorporate growth factors into the physical hydrogels based on poly(vinyl alcohol), PVA. The latter have a long and successful history of biomedical applications and approval for diverse use in human patients, but are also characterized with scant opportunities for bioconjugation and functionalization. Herein, we develop the conjugation of growth factors to the micro-structured, spontaneously eroding physical hydrogels based on PVA. Protein conjugation was elaborated using model substrates, albumin and lysozyme, which aided to reveal specificity of chemical reactions and benign, non-harmful nature of the established protocols. Surface-adhered format of hydrogel analyses allowed to quantify bioconjugation reactions and enzymatic activity of the immobilized proteins and to visualize the hydrogels with immobilized cargo. In cell culture, immobilized growth factors were effective in communicating to adhering cells and specifically enhanced proliferation rates of the cells containing the corresponding receptors. At the same time, proliferation of the cells devoid of these receptors was un-altered. PMID:25725560

  16. Soft Graphene Nanofibers Designed for the Acceleration of Nerve Growth and Development.

    PubMed

    Feng, Zhang-Qi; Wang, Ting; Zhao, Bin; Li, Jiacheng; Jin, Lin

    2015-11-01

    Soft graphene nanofibers with recoverable electrical conductivity and excellent physicochemical stability are prepared by a controlled assembly technique. By using the soft graphene nanofibers for cellular electrical stimulation, the common inhibitory effect of long-term electrical stimulation on nerve growth and development is avoided, which usually happens with traditional 2D conductive materials.

  17. Micro-structured, spontaneously eroding hydrogels accelerate endothelialization through presentation of conjugated growth factors.

    PubMed

    Jensen, Bettina E B; Edlund, Katrine; Zelikin, Alexander N

    2015-05-01

    Growth factors represent highly potent and highly efficacious means of communication to cells. At the same time, these proteins are fragile and relatively small sized--rendering their immobilization and controlled release from biomaterials challenging. In this work, we establish a method to incorporate growth factors into the physical hydrogels based on poly(vinyl alcohol), PVA. The latter have a long and successful history of biomedical applications and approval for diverse use in human patients, but are also characterized with scant opportunities for bioconjugation and functionalization. Herein, we develop the conjugation of growth factors to the micro-structured, spontaneously eroding physical hydrogels based on PVA. Protein conjugation was elaborated using model substrates, albumin and lysozyme, which aided to reveal specificity of chemical reactions and benign, non-harmful nature of the established protocols. Surface-adhered format of hydrogel analyses allowed to quantify bioconjugation reactions and enzymatic activity of the immobilized proteins and to visualize the hydrogels with immobilized cargo. In cell culture, immobilized growth factors were effective in communicating to adhering cells and specifically enhanced proliferation rates of the cells containing the corresponding receptors. At the same time, proliferation of the cells devoid of these receptors was un-altered.

  18. Asymptotic growth of cumulative and regenerative beam break-up instabilities in accelerators

    NASA Astrophysics Data System (ADS)

    Lau, Y. Y.

    1988-06-01

    It is found that the asymptotic growth of the cumulative beam break up instability is independent of the focusing magnetic field, according to the model of Panofsky and Bander. The analysis is extended to include the transition from the cumulative to the regenerative type, both in the presence and absence of a focusing magnetic field.

  19. Midwives benefit from good postnatal care, too.

    PubMed

    Cameron, Helen

    2014-01-01

    Appropriate, timely and responsive postnatal care can help women and families negotiate the major life transition that childbirth brings. However, women's experiences of postnatal care are often negative and our increasingly biomedical approach to birth means that greater emphasis is placed on antenatal and intrapartum care at the expense of postnatal care. Good postnatal care is essential not only for women, but for midwives too, and our failure to acknowledge the significance of birth, and our contribution to that event can diminish us as people and midwives.

  20. Ocean Acidification Accelerates the Growth of Two Bloom-Forming Macroalgae.

    PubMed

    Young, Craig S; Gobler, Christopher J

    2016-01-01

    While there is growing interest in understanding how marine life will respond to future ocean acidification, many coastal ecosystems currently experience intense acidification in response to upwelling, eutrophication, or riverine discharge. Such acidification can be inhibitory to calcifying animals, but less is known regarding how non-calcifying macroalgae may respond to elevated CO2. Here, we report on experiments performed during summer through fall with North Atlantic populations of Gracilaria and Ulva that were grown in situ within a mesotrophic estuary (Shinnecock Bay, NY, USA) or exposed to normal and elevated, but environmentally realistic, levels of pCO2 and/or nutrients (nitrogen and phosphorus). In nearly all experiments, the growth rates of Gracilaria were significantly increased by an average of 70% beyond in situ and control conditions when exposed to elevated levels of pCO2 (p<0.05), but were unaffected by nutrient enrichment. In contrast, the growth response of Ulva was more complex as this alga experienced significantly (p<0.05) increased growth rates in response to both elevated pCO2 and elevated nutrients and, in two cases, pCO2 and nutrients interacted to provide a synergistically enhanced growth rate for Ulva. Across all experiments, elevated pCO2 significantly increased Ulva growth rates by 30% (p<0.05), while the response to nutrients was smaller (p>0.05). The δ13C content of both Gracilaria and Ulva decreased two-to-three fold when grown under elevated pCO2 (p<0.001) and mixing models demonstrated these macroalgae experienced a physiological shift from near exclusive use of HCO3- to primarily CO2 use when exposed to elevated pCO2. This shift in carbon use coupled with significantly increased growth in response to elevated pCO2 suggests that photosynthesis of these algae was limited by their inorganic carbon supply. Given that eutrophication can yield elevated levels of pCO2, this study suggests that the overgrowth of macroalgae in eutrophic

  1. Ocean Acidification Accelerates the Growth of Two Bloom-Forming Macroalgae

    PubMed Central

    Young, Craig S.; Gobler, Christopher J.

    2016-01-01

    While there is growing interest in understanding how marine life will respond to future ocean acidification, many coastal ecosystems currently experience intense acidification in response to upwelling, eutrophication, or riverine discharge. Such acidification can be inhibitory to calcifying animals, but less is known regarding how non-calcifying macroalgae may respond to elevated CO2. Here, we report on experiments performed during summer through fall with North Atlantic populations of Gracilaria and Ulva that were grown in situ within a mesotrophic estuary (Shinnecock Bay, NY, USA) or exposed to normal and elevated, but environmentally realistic, levels of pCO2 and/or nutrients (nitrogen and phosphorus). In nearly all experiments, the growth rates of Gracilaria were significantly increased by an average of 70% beyond in situ and control conditions when exposed to elevated levels of pCO2 (p<0.05), but were unaffected by nutrient enrichment. In contrast, the growth response of Ulva was more complex as this alga experienced significantly (p<0.05) increased growth rates in response to both elevated pCO2 and elevated nutrients and, in two cases, pCO2 and nutrients interacted to provide a synergistically enhanced growth rate for Ulva. Across all experiments, elevated pCO2 significantly increased Ulva growth rates by 30% (p<0.05), while the response to nutrients was smaller (p>0.05). The δ13C content of both Gracilaria and Ulva decreased two-to-three fold when grown under elevated pCO2 (p<0.001) and mixing models demonstrated these macroalgae experienced a physiological shift from near exclusive use of HCO3- to primarily CO2 use when exposed to elevated pCO2. This shift in carbon use coupled with significantly increased growth in response to elevated pCO2 suggests that photosynthesis of these algae was limited by their inorganic carbon supply. Given that eutrophication can yield elevated levels of pCO2, this study suggests that the overgrowth of macroalgae in eutrophic

  2. Accelerated crack growth, residual stress, and a cracked zinc coated pressure shell

    NASA Technical Reports Server (NTRS)

    Dittman, Daniel L.; Hampton, Roy W.; Nelson, Howard G.

    1987-01-01

    During a partial inspection of a 42 year old, operating, pressurized wind tunnel at NASA-Ames Research Center, a surface connected defect 114 in. long having an indicated depth of a 0.7 in. was detected. The pressure shell, constructed of a medium carbon steel, contains approximately 10 miles of welds and is cooled by flowing water over its zinc coated external surface. Metallurgical and fractographic analysis showed that the actual detect was 1.7 in. deep, and originated from an area of lack of weld penetration. Crack growth studies were performed on the shell material in the laboratory under various loading rates, hold times, and R-ratios with a simulated shell environment. The combination of zinc, water with electrolyte, and steel formed an electrolytic cell which resulted in an increase in cyclic crack growth rate by as much as 500 times over that observed in air. It was concluded that slow crack growth occurred in the pressure shell by a combination of stress corrosion cracking due to the welding residual stress and corrosion fatigue due to the cyclic operating stress.

  3. Accelerated Growth Plate Mineralization and Foreshortened Proximal Limb Bones in Fetuin-A Knockout Mice

    PubMed Central

    Gupta, Himadri S.; Schäfer, Cora; Krauss, Stefanie; Dunlop, John W. C.; Masic, Admir; Kerschnitzki, Michael; Zaslansky, Paul; Boesecke, Peter; Catalá-Lehnen, Philip; Schinke, Thorsten; Fratzl, Peter; Jahnen-Dechent, Willi

    2012-01-01

    The plasma protein fetuin-A/alpha2-HS-glycoprotein (genetic symbol Ahsg) is a systemic inhibitor of extraskeletal mineralization, which is best underscored by the excessive mineral deposition found in various tissues of fetuin-A deficient mice on the calcification-prone genetic background DBA/2. Fetuin-A is known to accumulate in the bone matrix thus an effect of fetuin-A on skeletal mineralization is expected. We examined the bones of fetuin-A deficient mice maintained on a C57BL/6 genetic background to avoid bone disease secondary to renal calcification. Here, we show that fetuin-A deficient mice display normal trabecular bone mass in the spine, but increased cortical thickness in the femur. Bone material properties, as well as mineral and collagen characteristics of cortical bone were unaffected by the absence of fetuin-A. In contrast, the long bones especially proximal limb bones were severely stunted in fetuin-A deficient mice compared to wildtype littermates, resulting in increased biomechanical stability of fetuin-A deficient femora in three-point-bending tests. Elevated backscattered electron signal intensities reflected an increased mineral content in the growth plates of fetuin-A deficient long bones, corroborating its physiological role as an inhibitor of excessive mineralization in the growth plate cartilage matrix - a site of vigorous physiological mineralization. We show that in the case of fetuin-A deficiency, active mineralization inhibition is a necessity for proper long bone growth. PMID:23091616

  4. Accelerated growth plate mineralization and foreshortened proximal limb bones in fetuin-A knockout mice.

    PubMed

    Seto, Jong; Busse, Björn; Gupta, Himadri S; Schäfer, Cora; Krauss, Stefanie; Dunlop, John W C; Masic, Admir; Kerschnitzki, Michael; Zaslansky, Paul; Boesecke, Peter; Catalá-Lehnen, Philip; Schinke, Thorsten; Fratzl, Peter; Jahnen-Dechent, Willi

    2012-01-01

    The plasma protein fetuin-A/alpha2-HS-glycoprotein (genetic symbol Ahsg) is a systemic inhibitor of extraskeletal mineralization, which is best underscored by the excessive mineral deposition found in various tissues of fetuin-A deficient mice on the calcification-prone genetic background DBA/2. Fetuin-A is known to accumulate in the bone matrix thus an effect of fetuin-A on skeletal mineralization is expected. We examined the bones of fetuin-A deficient mice maintained on a C57BL/6 genetic background to avoid bone disease secondary to renal calcification. Here, we show that fetuin-A deficient mice display normal trabecular bone mass in the spine, but increased cortical thickness in the femur. Bone material properties, as well as mineral and collagen characteristics of cortical bone were unaffected by the absence of fetuin-A. In contrast, the long bones especially proximal limb bones were severely stunted in fetuin-A deficient mice compared to wildtype littermates, resulting in increased biomechanical stability of fetuin-A deficient femora in three-point-bending tests. Elevated backscattered electron signal intensities reflected an increased mineral content in the growth plates of fetuin-A deficient long bones, corroborating its physiological role as an inhibitor of excessive mineralization in the growth plate cartilage matrix--a site of vigorous physiological mineralization. We show that in the case of fetuin-A deficiency, active mineralization inhibition is a necessity for proper long bone growth.

  5. Accelerated adhesion of grafted skins by laser-induced stress wave-based gene transfer of hepatocyte growth factor

    NASA Astrophysics Data System (ADS)

    Aizawa, Kazuya; Sato, Shunichi; Saitoh, Daizoh; Tsuda, Hitoshi; Ashida, Hiroshi; Obara, Minoru

    2009-02-01

    In our previous study, we delivered plasmid DNA coding for human hepatocyto growth factor (hHGF) to rat skin grafts based on laser-induced stress wave (LISW), by which production of CD31-positive cells in the grafted skins was found to be enhanced, suggesting improved angiogenesis. In this study, we validated the efficacy of this method to accelerate adhesion of grafted skins; reperfusion and reepithelialization in the grafted skins were examined. As a graft, dorsal skin of a rat was exsected and its subcutaneous fat was removed. Plasmid DNA expression vector for hHGF was injected into the graft; on its back surface a laser target with a transparent sheet for plasma confinement was placed, and irradiated with three nanosecond laser pulses at a laser fluence of 1.2 J/cm2 (532 nm; spot diameter, 3 mm) to generate LISWs. After the application of LISWs, the graft was transplanted onto its donor site. We evaluated blood flow by laser Doppler imaging and analyzed reepithelialization based on immunohistochemistry as a function of postgrafting time. It was found that both reperfusion and reepithelialization were significantly enhanced for the grafts with gene transfection than for normal grafts; reepithelialization was completed within 7 days after transplantation with the transfected grafts. These findings demonstrate that adhesion of grafted skins can be accelerated by delivering HGF gene to the grafts based on LISWs.

  6. Involvement of {gamma}-secretase in postnatal angiogenesis

    SciTech Connect

    Hayashi, Hiroki; Nakagami, Hironori Takami, Yoichi; Sato, Naoyuki; Saito, Yukihiro; Nishikawa, Tomoyuki; Mori, Masaki; Koriyama, Hiroshi; Tamai, Katsuto; Morishita, Ryuichi; Kaneda, Yasufumi

    2007-11-23

    {gamma}-Secretase cleaves the transmembrane domains of several integral membrane proteins involved in vasculogenesis. Here, we investigated the role of {gamma}-secretase in the regulation of postnatal angiogenesis using {gamma}-secretase inhibitors (GSI). In endothelial cell (EC), {gamma}-secretase activity was up-regulated under hypoxia or the treatment of vascular endothelial growth factor (VEGF). The treatment of GSI significantly attenuated growth factor-induced EC proliferation and migration as well as c-fos promoter activity in a dose-dependent manner. In vascular smooth muscle cell (VSMC), treatment of GSI significantly attenuated growth factor-induced VEGF and fibroblast growth factor-2 (FGF-2) expression. Indeed, GSI attenuated VEGF-induced tube formation and inhibited FGF-2-induced angiogenesis on matrigel in mice as quantified by FITC-lectin staining of EC. Overall, we demonstrated that {gamma}-secretase may be key molecule in postnatal angiogenesis which may be downstream molecule of growth factor-induced growth and migration in EC, and regulate the expression of angiogenic growth factors in VSMC.

  7. Involvement of gamma-secretase in postnatal angiogenesis.

    PubMed

    Hayashi, Hiroki; Nakagami, Hironori; Takami, Yoichi; Sato, Naoyuki; Saito, Yukihiro; Nishikawa, Tomoyuki; Mori, Masaki; Koriyama, Hiroshi; Tamai, Katsuto; Morishita, Ryuichi; Kaneda, Yasufumi

    2007-11-23

    gamma-Secretase cleaves the transmembrane domains of several integral membrane proteins involved in vasculogenesis. Here, we investigated the role of gamma-secretase in the regulation of postnatal angiogenesis using gamma-secretase inhibitors (GSI). In endothelial cell (EC), gamma-secretase activity was up-regulated under hypoxia or the treatment of vascular endothelial growth factor (VEGF). The treatment of GSI significantly attenuated growth factor-induced EC proliferation and migration as well as c-fos promoter activity in a dose-dependent manner. In vascular smooth muscle cell (VSMC), treatment of GSI significantly attenuated growth factor-induced VEGF and fibroblast growth factor-2 (FGF-2) expression. Indeed, GSI attenuated VEGF-induced tube formation and inhibited FGF-2-induced angiogenesis on matrigel in mice as quantified by FITC-lectin staining of EC. Overall, we demonstrated that gamma-secretase may be key molecule in postnatal angiogenesis which may be downstream molecule of growth factor-induced growth and migration in EC, and regulate the expression of angiogenic growth factors in VSMC. PMID:17888873

  8. Arabidopsis thaliana root elongation growth is sensitive to lunisolar tidal acceleration and may also be weakly correlated with geomagnetic variations

    PubMed Central

    Barlow, Peter W.; Fisahn, Joachim; Yazdanbakhsh, Nima; Moraes, Thiago A.; Khabarova, Olga V.; Gallep, Cristiano M.

    2013-01-01

    Background Correlative evidence suggests a relationship between the lunisolar tidal acceleration and the elongation rate of arabidopsis roots grown under free-running conditions of constant low light. Methods Seedlings of Arabidopsis thaliana were grown in a controlled-climate chamber maintained at a constant temperature and subjected to continuous low-level illumination from fluorescent tubes, conditions that approximate to a ‘free-running’ state in which most of the abiotic factors that entrain root growth rates are excluded. Elongation of evenly spaced, vertical primary roots was recorded continuously over periods of up to 14 d using high temporal- and spatial-resolution video imaging and were analysed in conjunction with geophysical variables. Key Results and Conclusions The results confirm the lunisolar tidal/root elongation relationship. Also presented are relationships between the hourly elongation rates and the contemporaneous variations in geomagnetic activity, as evaluated from the disturbance storm time and ap indices. On the basis of time series of root elongation rates that extend over ≥4 d and recorded at different seasons of the year, a provisional conclusion is that root elongation responds to variation in the lunisolar force and also appears to adjust in accordance with variations in the geomagnetic field. Thus, both lunisolar tidal acceleration and the geomagnetic field should be considered as modulators of root growth rate, alongside other, stronger and more well-known abiotic environmental regulators, and perhaps unexplored factors such as air ions. Major changes in atmospheric pressure are not considered to be a factor contributing to oscillations of root elongation rate. PMID:23532042

  9. The demographic effects of income redistribution and accelerated economic growth revisited.

    PubMed

    Flegg, A T

    1988-05-01

    The statistical basis of Winegarden's conclusions, i.e., that an egalitarian redistribution of incomes in a typical low-income country would cause a substantial increase in fertility, was examined in detail in that it casts doubt about the validity of all previous econometric studies based on international cross-sectional data. Winegarden's model is reproduced as are his findings. The reexamination of Winegarden's (1984) findings revealed 3 areas which suggest that his conclusions may require modification. In regard to family planning, Winegarden's results indicated that the introduction of a state-supported family planning program would cause a large decline in natality after about a decade. A much weaker relationship emerged when the fertility equation was recomputed using a more appropriate economic method. Further, the results were highly sensitive to changes in the threshold year used to classify countries with regard to family planning programs. It is argued that a qualitative index devised by Mauldin and Berelson (1978) provides a more reliable way to measure the effects of such programs than the binary variable Winegarden used. The use of this index fundamentally altered the findings regarding economic growth and income distribution. According to Winegarden's calculations, faster economic growth would have a pronatal impact in the more economically advanced nations yet help to reduce fertility for those countries in the early stages of development. In contrast, it was found that variations in the rate of economic growth had no discernible impact on natality. Winegarden's results suggested that an egalitarian redistribution of incomes would cause substantial increase in fertility in a typical low-income country, but it was found here that these distributional effects would be fairly modest over a wide range of incomes. Consequently, it appears that any concern about the demographic effects of greater equality in less-developed countries is not well

  10. Circadian Disruption Accelerates Tumor Growth and Angio/Stromagenesis through a Wnt Signaling Pathway

    PubMed Central

    Yasuniwa, Yoshihiro; Izumi, Hiroto; Wang, Ke-Yong; Shimajiri, Shohei; Sasaguri, Yasuyuki; Kawai, Kazuaki; Kasai, Hiroshi; Shimada, Takashi; Miyake, Koichi; Kashiwagi, Eiji; Hirano, Gen; Kidani, Akihiko; Akiyama, Masaki; Han, Bin; Wu, Ying; Ieiri, Ichiro; Higuchi, Shun; Kohno, Kimitoshi

    2010-01-01

    Epidemiologic studies show a high incidence of cancer in shift workers, suggesting a possible relationship between circadian rhythms and tumorigenesis. However, the precise molecular mechanism played by circadian rhythms in tumor progression is not known. To identify the possible mechanisms underlying tumor progression related to circadian rhythms, we set up nude mouse xenograft models. HeLa cells were injected in nude mice and nude mice were moved to two different cases, one case is exposed to a 24-hour light cycle (L/L), the other is a more “normal” 12-hour light/dark cycle (L/D). We found a significant increase in tumor volume in the L/L group compared with the L/D group. In addition, tumor microvessels and stroma were strongly increased in L/L mice. Although there was a hypervascularization in L/L tumors, there was no associated increase in the production of vascular endothelial cell growth factor (VEGF). DNA microarray analysis showed enhanced expression of WNT10A, and our subsequent study revealed that WNT10A stimulates the growth of both microvascular endothelial cells and fibroblasts in tumors from light-stressed mice, along with marked increases in angio/stromagenesis. Only the tumor stroma stained positive for WNT10A and WNT10A is also highly expressed in keloid dermal fibroblasts but not in normal dermal fibroblasts indicated that WNT10A may be a novel angio/stromagenic growth factor. These findings suggest that circadian disruption induces the progression of malignant tumors via a Wnt signaling pathway. PMID:21203463

  11. A Novel Aldehyde Dehydrogenase-3 Activator (Alda-89) Protects Submandibular Gland Function from Irradiation without Accelerating Tumor Growth

    PubMed Central

    Xiao, Nan; Cao, Hongbin; Chen, Che-Hong; Kong, Christina S.; Ali, Rehan; Chan, Cato; Sirjani, Davud; Graves, Edward; Koong, Albert; Giaccia, Amato; Mochly-Rosen, Daria; Le, Quynh-Thu

    2013-01-01

    Purpose To determine the effect of Alda-89 (an ALDH3 activitor) on (1) the function of irradiated (RT) submandibular gland (SMG) in mice, (2) its toxicity profile and (3) its effect on the growth of head and neck cancer (HNC) in vitro and in vivo. Experimental Design Adult mice were infused with Alda-89 or vehicle before, during and after RT. Saliva secretion was monitored weekly. Hematology, metabolic profile and post-mortem evaluation for toxicity were examined at the time of sacrifice. Alda-89 or vehicle was applied to HNC cell lines in vitro, and SCID mice transplanted with HNC in vivo with or without radiation; HNC growth was monitored. The ALDH3A1 and ALDH3A2 protein expression was evaluated in 89 HNC patients and correlated to freedom from relapse (FFR) and overall survival (OS). Results Alda-89 infusion significantly resulted in more whole saliva production and a higher percentage of preserved acini after RT compared to vehicle control. There was no difference in the complete blood count, metabolic profile, and major organ morphology between the Alda-89 and vehicle groups. Compared to vehicle control, Alda-89 treatment did not accelerate HNC cell proliferation in vitro, nor did it affect tumor growth in vivo with or without RT. Higher expression of ALDH3A1 or ALDH3A2 was not significantly associated with worse FFR or OS in either HPV-positive or HPV-negative group. Conclusion Alda-89 preserves salivary function after RT without affecting HNC growth or causing measurable toxicity in mice. It is a promising candidate to mitigate RT-related xerostomia. PMID:23812668

  12. The probiotic mixture VSL#3 accelerates gastric ulcer healing by stimulating vascular endothelial growth factor.

    PubMed

    Dharmani, Poonam; De Simone, Claudio; Chadee, Kris

    2013-01-01

    Studies assessing the effect and mechanism of probiotics on diseases of the upper gastrointestinal tract (GI) including gastric ulcers are limited despite extensive work and promising results of this therapeutic option for other GI diseases. In this study, we investigated the mechanisms by which the probiotic mixture VSL#3 (a mixture of eight probiotic bacteria including Lactobacilli, Bifidobacteria and Streptococcus species) heals acetic acid induced gastric ulcer in rats. VSL#3 was administered orally at low (6 × 10(9) bacteria) or high (1.2 × 10(10) bacteria) dosages from day 3 after ulcer induction for 14 consecutive days. VSL#3 treatments significantly enhanced gastric ulcer healing in a dose-dependent manner. To assess the mechanism(s) whereby VSL#3 exerted its protective effects, we quantified the gene expression of several pro-inflammatory cytokines, protein and expression of stomach mucin-Muc5ac, regulatory cytokine-IL-10, COX-2 and various growth factors. Of all the components examined, only expression and protein production of VEGF was increased 332-fold on day 7 in the ulcerated tissues of animals treated with VSL#3. Predictably, animals treated with VEGF neutralizing antibody significantly delayed gastric ulcer healing in VSL#3 treated animals. This is the first report to demonstrate high efficacy of the probiotic mixture VSL#3 in enhancing gastric ulcer healing. Probiotic efficacy was effective at higher concentrations of VSL#3 by specifically increasing the expression and production of angiogenesis promoting growth factors, primarily VEGF. PMID:23484048

  13. Bigger mothers are better mothers: disentangling size-related prenatal and postnatal maternal effects.

    PubMed

    Steiger, Sandra

    2013-09-01

    Despite a vast literature on the factors controlling adult size, few studies have investigated how maternal size affects offspring size independent of direct genetic effects, thereby separating prenatal from postnatal influences. I used a novel experimental design that combined a cross-fostering approach with phenotypic manipulation of maternal body size that allowed me to disentangle prenatal and postnatal maternal effects. Using the burying beetle Nicrophorus vespilloides as model organism, I found that a mother's body size affected egg size as well as the quality of postnatal maternal care, with larger mothers producing larger eggs and raising larger offspring than smaller females. However, with respect to the relative importance of prenatal and postnatal maternal effects on offspring growth, only the postnatal effects were important in determining offspring body size. Thus, prenatal effects can be offset by the quality of postnatal maternal care. This finding has implications for the coevolution of prenatal and postnatal maternal effects as they arise as a consequence of maternal body size. In general, my study provides evidence that there can be transgenerational phenotypic plasticity, with maternal size determining offspring size leading to a resemblance between mothers and their offspring above and beyond any direct genetic effects.

  14. Carbon dioxide enrichment alters plant community structure and accelerates shrub growth in the shortgrass steppe.

    PubMed

    Morgan, Jack A; Milchunas, Daniel G; LeCain, Daniel R; West, Mark; Mosier, Arvin R

    2007-09-11

    A hypothesis has been advanced that the incursion of woody plants into world grasslands over the past two centuries has been driven in part by increasing carbon dioxide concentration, [CO(2)], in Earth's atmosphere. Unlike the warm season forage grasses they are displacing, woody plants have a photosynthetic metabolism and carbon allocation patterns that are responsive to CO(2), and many have tap roots that are more effective than grasses for reaching deep soil water stores that can be enhanced under elevated CO(2). However, this commonly cited hypothesis has little direct support from manipulative experimentation and competes with more traditional theories of shrub encroachment involving climate change, management, and fire. Here, we show that, although doubling [CO(2)] over the Colorado shortgrass steppe had little impact on plant species diversity, it resulted in an increasingly dissimilar plant community over the 5-year experiment compared with plots maintained at present-day [CO(2)]. Growth at the doubled [CO(2)] resulted in an approximately 40-fold increase in aboveground biomass and a 20-fold increase in plant cover of Artemisia frigida Willd, a common subshrub of some North American and Asian grasslands. This CO(2)-induced enhancement of plant growth, among the highest yet reported, provides evidence from a native grassland suggesting that rising atmospheric [CO(2)] may be contributing to the shrubland expansions of the past 200 years. Encroachment of shrubs into grasslands is an important problem facing rangeland managers and ranchers; this process replaces grasses, the preferred forage of domestic livestock, with species that are unsuitable for domestic livestock grazing. PMID:17785422

  15. Adding Biotin to Parenteral Nutrition Solutions Without Lipid Accelerates the Growth of Candida albicans

    PubMed Central

    Kuwahara, Takashi; Kaneda, Shinya; Shimono, Kazuyuki

    2016-01-01

    Background: We have previously demonstrated that Candida albicans requires multivitamins (MVs) or lipid to increase rapidly in parenteral nutrition (PN) solutions. In this study, in detail, the effects of vitamins on the growth of C. albicans in PN solutions without lipid were investigated. Methods: In the 1st experiment, a commercial PN solution without lipid was supplemented with water-soluble vitamins (SVs: vitamins B1, B2, B6, B12 and C, folic acid, nicotinamide, biotin and panthenol), water-insoluble vitamins (IVs: vitamins A, D, E and K) or both (MVs). In the 2nd experiment, the test solutions were prepared by supplementing the PN solution with one of each or all of the SVs. In the 3rd experiment, another commercial peripheral PN (PPN) solution without lipid was supplemented with SVs, nicotinic acid, biotin or both nicotinic acid and biotin. In each of the experiments, a specified number of C. albicans organisms was added to each test solution, and all of the test solutions were allowed to stand at room temperature (23-26ºC). The number of C. albicans was counted at 0, 24, 48 and 72 hours after the addition of the organism. Results: In the 1st experiment, the C. albicans increased rapidly in the PN solution supplemented with the SVs, but increased slowly without the SVs, regardless of the addition of the IVs. In the 2nd experiment, the C. albicans increased rapidly in the PN solution supplemented with the SVs or biotin, but increased slowly with each of the other water-soluble vitamins. In the 3rd experiment, the C. albicans increased rapidly in the PPN solution supplemented with the SVs or biotin, but increased slowly with the addition of nicotinic acid. Conclusions: These results suggested that adding MVs or SVs to PN solutions without lipid promotes the growth of C. albicans, and that this effect is mostly attributable to biotin. PMID:27648003

  16. Adding Biotin to Parenteral Nutrition Solutions Without Lipid Accelerates the Growth of Candida albicans

    PubMed Central

    Kuwahara, Takashi; Kaneda, Shinya; Shimono, Kazuyuki

    2016-01-01

    Background: We have previously demonstrated that Candida albicans requires multivitamins (MVs) or lipid to increase rapidly in parenteral nutrition (PN) solutions. In this study, in detail, the effects of vitamins on the growth of C. albicans in PN solutions without lipid were investigated. Methods: In the 1st experiment, a commercial PN solution without lipid was supplemented with water-soluble vitamins (SVs: vitamins B1, B2, B6, B12 and C, folic acid, nicotinamide, biotin and panthenol), water-insoluble vitamins (IVs: vitamins A, D, E and K) or both (MVs). In the 2nd experiment, the test solutions were prepared by supplementing the PN solution with one of each or all of the SVs. In the 3rd experiment, another commercial peripheral PN (PPN) solution without lipid was supplemented with SVs, nicotinic acid, biotin or both nicotinic acid and biotin. In each of the experiments, a specified number of C. albicans organisms was added to each test solution, and all of the test solutions were allowed to stand at room temperature (23-26ºC). The number of C. albicans was counted at 0, 24, 48 and 72 hours after the addition of the organism. Results: In the 1st experiment, the C. albicans increased rapidly in the PN solution supplemented with the SVs, but increased slowly without the SVs, regardless of the addition of the IVs. In the 2nd experiment, the C. albicans increased rapidly in the PN solution supplemented with the SVs or biotin, but increased slowly with each of the other water-soluble vitamins. In the 3rd experiment, the C. albicans increased rapidly in the PPN solution supplemented with the SVs or biotin, but increased slowly with the addition of nicotinic acid. Conclusions: These results suggested that adding MVs or SVs to PN solutions without lipid promotes the growth of C. albicans, and that this effect is mostly attributable to biotin.

  17. Accelerated adhesion of grafted skin by laser-induced stress wave-based gene transfer of hepatocyte growth factor

    NASA Astrophysics Data System (ADS)

    Aizawa, Kazuya; Sato, Shunichi; Terakawa, Mitsuhiro; Saitoh, Daizoh; Tsuda, Hitoshi; Ashida, Hiroshi; Obara, Minoru

    2009-11-01

    Gene therapy using wound healing-associated growth factor gene has received much attention as a new strategy for improving the outcome of tissue transplantation. We delivered plasmid DNA coding for human hepatocyte growth factor (hHGF) to rat free skin grafts by the use of laser-induced stress waves (LISWs); autografting was performed with the grafts. Systematic analysis was conducted to evaluate the adhesion properties of the grafted tissue; angiogenesis, cell proliferation, and reepithelialization were assessed by immunohistochemistry, and reperfusion was measured by laser Doppler imaging as a function of time after grafting. Both the level of angiogenesis on day 3 after grafting and the increased ratio of blood flow on day 4 to that on day 3 were significantly higher than those in five control groups: grafting with hHGF gene injection alone, grafting with control plasmid vector injection alone, grafting with LISW application alone, grafting with LISW application after control plasmid vector injection, and normal grafting. Reepithelialization was almost completed on day 7 even at the center of the graft with LISW application after hHGF gene injection, while it was not for the grafts of the five control groups. These findings demonstrate the validity of our LISW-based HGF gene transfection to accelerate the adhesion of grafted skins.

  18. Postnatal Exposure History and Airways

    PubMed Central

    Murphy, Shannon R.; Schelegle, Edward S.; Edwards, Patricia C.; Miller, Lisa A.; Hyde, Dallas M.

    2012-01-01

    Postnatally, the lung continues to grow and differentiate while interacting with the environment. Exposure to ozone (O3) and allergens during postnatal lung development alters structural elements of conducting airways, including innervation and neurokinin abundance. These changes have been linked with development of asthma in a rhesus monkey model. We hypothesized that O3 exposure resets the ability of the airways to respond to oxidant stress and that this is mediated by changes in the neurokinin-1 receptor (NK-1R). Infant rhesus monkeys received episodic exposure to O3 biweekly with or without house dust mite antigen (HDMA) from 6 to 12 months of age. Age-matched monkeys were exposed to filtered air (FA). Microdissected airway explants from midlevel airways (intrapulmonary generations 5–8) for four to six animals in each of four groups (FA, O3, HDMA, and HDMA+O3) were tested for NK-1R gene responses to acute oxidant stress using exposure to hydrogen peroxide (1.2 mM), a lipid ozonide (10 μM), or sham treatment for 4 hours in vitro. Airway responses were measured using real-time quantitative RT-PCR of NK-1R and IL-8 gene expression. Basal NK-1R gene expression levels were not different between the exposure groups. Treatment with ozonide or hydrogen peroxide did not change NK-1R gene expression in animals exposed to FA, HDMA, or HDMA+O3. However, treatment in vitro with lipid ozonide significantly increased NK-1R gene expression in explants from O3–exposed animals. We conclude that a history of prior O3 exposure resets the steady state of the airways to increase the NK-1R response to subsequent acute oxidant stresses. PMID:22962062

  19. Overexpression of poplar cellulase accelerates growth and disturbs the closing movements of leaves in sengon.

    PubMed

    Hartati, Sri; Sudarmonowati, Enny; Park, Yong Woo; Kaku, Tomomi; Kaida, Rumi; Baba, Kei'ichi; Hayashi, Takahisa

    2008-06-01

    In this study, poplar (Populus alba) cellulase (PaPopCel1) was overexpressed in a tropical Leguminosae tree, sengon (Paraserianthes falcataria), by the Agrobacterium tumefaciens method. PaPopCel1 overexpression increased the length and width of stems with larger leaves, which showed a moderately higher density of green color than leaves of the wild type. The pairs of leaves on the transgenic plants closed more slowly during sunset than those on the wild-type plants. When main veins from each genotype were excised and placed on a paper towel, however, the leaves of the transgenic plants closed more rapidly than those of the wild-type plant. Based on carbohydrate analyses of cell walls, the leaves of the transgenic plants contained less wall-bound xyloglucan than those of the wild-type plants. In situ xyloglucan endotransglucosylase activity showed that the incorporation of whole xyloglucan, potentially for wall tightening, occurred in the parenchyma cells (motor cells) of the petiolule pulvinus attached to the main vein, although the transgenic plant incorporated less whole xyloglucan than the wild-type plant. These observations support the hypothesis that the paracrystalline sites of cellulose microfibrils are attacked by poplar cellulase, which loosens xyloglucan intercalation, resulting in an irreversible wall modification. This process could be the reason why the overexpression of poplar cellulase both promotes plant growth and disturbs the biological clock of the plant by altering the closing movements of the leaves of the plant. PMID:18417637

  20. Hepatocyte Growth Factor Prevents Acute Renal Failure of Accelerates Renal Regeneration in mice

    NASA Astrophysics Data System (ADS)

    Kawaida, Kouichi; Matsumoto, Kunio; Shimazu, Hisaaki; Nakamura, Toshikazu

    1994-05-01

    Although acute renal failure is encountered with administration of nephrotoxic drugs, ischemia, or unilateral nephrectomy, there has been no effective drug which can be used in case of acute renal failure. Hepatocyte growth factor (HGF) is a potent hepatotropic factor for liver regeneration and is known to have mitogenic, motogenic, and morphogenic activities for various epithelial cells, including renal tubular cells. Intravenous injection of recombinant human HGF into mice remarkably suppressed increases in blood urea nitrogen and serum creatinine caused by administration of cisplatin, a widely used antitumor drug, or HgCl_2, thereby indicating that HGF strongly prevented the onset of acute renal dysfunction. Moreover, exogenous HGF stimulated DNA synthesis of renal tubular cells after renal injuries caused by HgCl_2 administration and unilateral nephrectomy and induced reconstruction of the normal renal tissue structure in vivo. Taken together with our previous finding that expression of HGF was rapidly induced after renal injuries, these results allow us to conclude that HGF may be the long-sought renotropic factor for renal regeneration and may prove to be effective treatment for patients with renal dysfunction, especially that caused by cisplatin.

  1. Chile confronts its environmental health future after 25 years of accelerated growth

    PubMed Central

    Pino, Paulina; Iglesias, Verónica; Garreaud, René; Cortés, Sandra; Canals, Mauricio; Folch, Walter; Burgos, Soledad; Levy, Karen; Naeher, Luke P.; Steenland, Kyle

    2015-01-01

    Background Chile has recently been reclassified by the World Bank from an upper middle income country to a higher income country. There has been great progress in the last 20–30 years in relation to air and water pollution in Chile. Yet after 25 years of unrestrained growth there remain clear challenges posed by air and water, as well as climate change. Methods: In late 2013 a three-day workshop on environmental health was held in Santiago, bringing together researchers and government policy makers. As a follow-up to that workshop, here we review the progress made in environmental health in the past 20–30 years, and discuss the challenges of the future. We focus on air and water pollution, and climate change, which we believe are among the most important areas of environmental health in Chile. Results Air pollution in some cities remains among the highest in the continent. Potable water is generally available, but weak state supervision has led to serious outbreaks of infectious disease and ongoing issues with arsenic exposure in some regions. Climate change modeling in Chile is quite sophisticated, and a number of the impacts of climate change can be reasonably predicted in terms of which areas of the country are most likely to be affected by increased temperature and decreased availability of water, as well as expansion of vector territory. Some health effects, including change vector-borne diseases and excess heat mortality, can be predicted. However, there has yet to be an integration of such research with government planning. Conclusion While great progress has been made, currently there are a number of problems. We suspect that the Chilean experience in environmental health may be of some use for other Latin American countries with rapid economic development. PMID:26615070

  2. Accelerated growth in outgoing links in evolving networks: deterministic versus stochastic picture.

    PubMed

    Sen, Parongama

    2004-04-01

    In several real-world networks such as the Internet, World Wide Web, etc., the number of links grow in time in a nonlinear fashion. We consider growing networks in which the number of outgoing links is a nonlinear function of time but new links between older nodes are forbidden. The attachments are made using a preferential attachment scheme. In the deterministic picture, the number of outgoing links m (t) at any time t is taken as N (t)(theta) where N (t) is the number of nodes present at that time. The continuum theory predicts a power-law decay of the degree distribution: P (k) proportional to k-(1-2/ (1-theta ) ), while the degree of the node introduced at time t(i) is given by k(t(i),t)=t(theta)(i) [t/t(i) ]((1+theta)/2) when the network is evolved till time t. Numerical results show a growth in the degree distribution for small k values at any nonzero theta. In the stochastic picture, m (t) is a random variable. As long as is independent of time, the network shows a behavior similar to the Barabási-Albert (BA) model. Different results are obtained when is time dependent, e.g., when m (t) follows a distribution P (m) proportional to m(-lambda). The behavior of P (k) changes significantly as lambda is varied: for lambda>3, the network has a scale-free distribution belonging to the BA class as predicted by the mean field theory; for smaller values of lambda it shows different behavior. Characteristic features of the clustering coefficients in both models have also been discussed.

  3. Accelerated growth in outgoing links in evolving networks:Deterministic versus stochastic picture

    NASA Astrophysics Data System (ADS)

    Sen, Parongama

    2004-04-01

    In several real-world networks such as the Internet, World Wide Web, etc., the number of links grow in time in a nonlinear fashion. We consider growing networks in which the number of outgoing links is a nonlinear function of time but new links between older nodes are forbidden. The attachments are made using a preferential attachment scheme. In the deterministic picture, the number of outgoing links m (t) at any time t is taken as N (t)θ where N (t) is the number of nodes present at that time. The continuum theory predicts a power-law decay of the degree distribution: P (k) ∝ k-1-2/ ( 1-θ ) , while the degree of the node introduced at time ti is given by k(ti,t)=tθi [t/ ti ](1+θ)/2 when the network is evolved till time t . Numerical results show a growth in the degree distribution for small k values at any nonzero θ . In the stochastic picture, m (t) is a random variable. As long as < m (t) > is independent of time, the network shows a behavior similar to the Barabási-Albert (BA) model. Different results are obtained when < m (t) > is time dependent, e.g., when m (t) follows a distribution P (m) ∝ m-λ . The behavior of P (k) changes significantly as λ is varied: for λ>3 , the network has a scale-free distribution belonging to the BA class as predicted by the mean field theory; for smaller values of λ it shows different behavior. Characteristic features of the clustering coefficients in both models have also been discussed.

  4. Recombinant growth factor mixtures induce cell cycle progression and the upregulation of type I collagen in human skin fibroblasts, resulting in the acceleration of wound healing processes.

    PubMed

    Lee, Do Hyun; Choi, Kyung-Ha; Cho, Jae-We; Kim, So Young; Kwon, Tae Rin; Choi, Sun Young; Choi, Yoo Mi; Lee, Jay; Yoon, Ho Sang; Kim, Beom Joon

    2014-05-01

    Application of growth factor mixtures has been used for wound healing and anti-wrinkles agents. The aim of this study was to evaluate the effect of recombinant growth factor mixtures (RGFM) on the expression of cell cycle regulatory proteins, type I collagen, and wound healing processes of acute animal wound models. The results showed that RGFM induced increased rates of cell proliferation and cell migration of human skin fibroblasts (HSF). In addition, expression of cyclin D1, cyclin E, cyclin-dependent kinase (Cdk)4, and Cdk2 proteins was markedly increased with a growth factor mixtures treatment in fibroblasts. Expression of type I collagen was also increased in growth factor mixtures-treated HSF. Moreover, growth factor mixtures-induced the upregulation of type I collagen was associated with the activation of Smad2/3. In the animal model, RGFM-treated mice showed accelerated wound closure, with the closure rate increasing as early as on day 7, as well as re-epithelization and reduced inflammatory cell infiltration than phosphate-buffered saline (PBS)-treated mice. In conclusion, the results indicated that RGFM has the potential to accelerate wound healing through the upregulation of type I collagen, which is partly mediated by activation of Smad2/3-dependent signaling pathway as well as cell cycle progression in HSF. The topical application of growth factor mixtures to acute and chronic skin wound may accelerate the epithelization process through these molecular mechanisms.

  5. Allen's rule revisited: temperature influences bone elongation during a critical period of postnatal development.

    PubMed

    Serrat, Maria A

    2013-10-01

    Limbs of animals raised at warm ambient temperature are significantly and permanently longer than those of siblings housed in the cold. These highly reproducible lab results closely parallel the ecogeographical tenet described by Allen's extremity size rule, which states that appendage length correlates with temperature and latitude. It is unclear what mechanisms underlie these differences and in what pattern they emerge, since the morphology is traditionally thought to reflect naturally selected genomic adaptations for thermoregulation. This study tests the a posteriori hypothesis that adult extremity length is subject to substantial modification by temperature during a brief but critical period of early postnatal development. Weanling mice (N = 28) were divided into three groups and housed at 7°C, 21°C, or 27°C for eight weeks. Tail lengths and body mass were measured weekly. Mass did not differ at any age. Analysis of tail elongation curves revealed two distinct phases: an initial period of rapid temperature-sensitive growth in which elongation rate was directly impacted by temperature; and a second phase of continued growth in which rates were identical among groups. Comparable growth reactions occur in response to other environmental variables such as exercise, suggesting that the skeleton is most responsive to external stimuli during a window of heightened sensitivity when growth occurs most rapidly. Knowledge of the timing and degree to which growth plasticity permits mammals to immediately adjust to novel temperature conditions will be important for analyzing skeletal variation in fluctuating climates, particularly for assessing factors that may accelerate skeletal evolution at temperature extremes.

  6. Lung fibroblasts accelerate wound closure in human alveolar epithelial cells through hepatocyte growth factor/c-Met signaling

    PubMed Central

    Correll, Kelly; Schiel, John A.; Finigan, Jay H.; Prekeris, Rytis; Mason, Robert J.

    2014-01-01

    There are 190,600 cases of acute lung injury/acute respiratory distress syndrome (ALI/ARDS) each year in the United States, and the incidence and mortality of ALI/ARDS increase dramatically with age. Patients with ALI/ARDS have alveolar epithelial injury, which may be worsened by high-pressure mechanical ventilation. Alveolar type II (ATII) cells are the progenitor cells for the alveolar epithelium and are required to reestablish the alveolar epithelium during the recovery process from ALI/ARDS. Lung fibroblasts (FBs) migrate and proliferate early after lung injury and likely are an important source of growth factors for epithelial repair. However, how lung FBs affect epithelial wound healing in the human adult lung has not been investigated in detail. Hepatocyte growth factor (HGF) is known to be released mainly from FBs and to stimulate both migration and proliferation of primary rat ATII cells. HGF is also increased in lung tissue, bronchoalveolar lavage fluid, and serum in patients with ALI/ARDS. Therefore, we hypothesized that HGF secreted by FBs would enhance wound closure in alveolar epithelial cells (AECs). Wound closure was measured using a scratch wound-healing assay in primary human AEC monolayers and in a coculture system with FBs. We found that wound closure was accelerated by FBs mainly through HGF/c-Met signaling. HGF also restored impaired wound healing in AECs from the elderly subjects and after exposure to cyclic stretch. We conclude that HGF is the critical factor released from FBs to close wounds in human AEC monolayers and suggest that HGF is a potential strategy for hastening alveolar repair in patients with ALI/ARDS. PMID:24748602

  7. Revealing tact within postnatal care.

    PubMed

    Smythe, Elizabeth; Payne, Deborah; Wilson, Sally; Paddy, Ann; Heard, Kate

    2014-02-01

    In this article, we explore the nature of good postnatal care through a hermeneutic unpacking of the notion of tact, drawing on the philosophical writings of Heidegger, Gadamer, and van Manen. The tactful encounters considered were from a hermeneutic research study within a small, rural birthing center in New Zealand. Insights drawn from the analysis were as follows: the openness of listening, watching and being attuned that builds a positive mode of engagement, recognizing that the distance the woman needs from her nurse/midwife is a call of tact, that tact is underpinned by a spirit of care, within tact there are moods and tact might require firmness, and that all of these factors come together to build trust. We conclude that the attunement of tact requires that the staff member has time to spend with a woman, enough energy to engage, and a spirit of care. Women know that tactful practice builds their confidence and affects their mothering experience. Tact cannot be assumed; it needs to be nurtured and sheltered.

  8. Overexpression of vascular endothelial growth factor accelerates early vascularization and improves healing of genetically modified cultured skin substitutes.

    PubMed

    Supp, Dorothy M; Boyce, Steven T

    2002-01-01

    Cultured skin substitutes (CSS) lack a vascular plexus, leading to slower vascularization after grafting than split-thickness skin autograft. CSS containing keratinocytes genetically modified to overexpress vascular endothelial growth factor (VEGF) were previously shown to exhibit enhanced vascularization up to 2 weeks after grafting to athymic mice. The present study examines whether enhanced vascularization compared with controls persists after stable engraftment is achieved and analyzes VEGF expression, wound contraction, and engraftment. Control and VEGF-modified (VEGF+) CSS were grafted onto full-thickness wounds in athymic mice. VEGF expression was detected in VEGF+ CSS 14 weeks after grafting. Graft contraction was significantly lower in VEGF+ CSS compared with controls, suggesting more stable engraftment and better tissue development. Positive HLA-ABC staining, indicating persistence of human cells, was seen in 86.7% (13/15) of grafted VEGF+ CSS, compared with 58.3% (7/12) of controls. Differences in dermal vascularization between control and VEGF+ grafts were significant 1 week after surgery, but not at later times. However, the distribution of vessels was different, with more vessels in the upper dermis of VEGF+ grafts. These results suggest that VEGF overexpression in genetically modified CSS acts to accelerate early graft vascularization and can contribute to improved healing of full-thickness skin wounds.

  9. MIIP accelerates epidermal growth factor receptor protein turnover and attenuates proliferation in non-small cell lung cancer

    PubMed Central

    Wen, Jing; Fu, Jianhua; Ling, Yihong; Zhang, Wei

    2016-01-01

    The migration and invasion inhibitory protein (MIIP) has been discovered recently to have inhibitory functions in cell proliferation and migration. Overexpression of MIIP reduced the intracellular steady-state level of epidermal growth factor receptor (EGFR) protein in lung cancer cells with no effect on EGFR mRNA expression compared to that in the control cells. This MIIP-promoted EGFR protein degradation was reversed by proteasome and lysosome inhibitors, suggesting the involvement of both proteasomal and lysosomal pathways in this degradation. This finding was further validated by pulse-chase experiments using 35S-methionine metabolic labeling. We found that MIIP accelerates EGFR protein turnover via proteasomal degradation in the endoplasmic reticulum and then via the lysosomal pathway after its entry into endocytic trafficking. MIIP-stimulated downregulation of EGFR inhibits downstream activation of Ras and blocks the MEK signal transduction pathway, resulting in inhibition of cell proliferation. The negative correlation between MIIP and EGFR protein expression was validated in lung adenocarcinoma samples. Furthermore, the higher MIIP protein expression predicts a better overall survival of Stage IA-IIIA lung adenocarcinoma patients who underwent radical surgery. These findings reveal a new mechanism by which MIIP inhibits cell proliferation. PMID:26824318

  10. Accelerated tissue integration into porous materials by immobilizing basic fibroblast growth factor using a biologically safe three-step reaction.

    PubMed

    Kakinoki, Sachiro; Sakai, Yusuke; Fujisato, Toshia; Yamaoka, Tetsuji

    2015-12-01

    Soft tissue integration into a porous structure is important to prevent bacterial infection of percutaneous devices and improve tissue regeneration using porous scaffolds. Here, basic fibroblast growth factor (bFGF) was immobilized on porous polymer materials using a mild and biologically safe three-step reaction: (1) modification with a novel surface-modification peptide (penta-lysine-mussel adhesive sequence, which reacts with various matrices), (2) electrostatic binding of heparin with introduced penta-lysine, and (3) biologically specific binding of bFGF to heparin. Porous polyethylene specimens (PPSs) (D = 6.0 mm, H = 2.0 mm) with a good size for tissue integration were selected as a base material, immobilized with bFGF, and subcutaneously implanted into mice. Half of the unmodified PPSs extruded out of the body on day 112 postimplantation; however, the three-step reaction completely prevented sample rejection. Tissue integration was greatly accelerated by immobilizing bFGF. Direct physical coating of bFGF on PPS resulted in greater immobilization but lesser tissue integration than that after the three-step bFGF immobilization, indicating that heparin binds and enhances bFGF efficacy. This three-step bFGF immobilization reaction will be applicable to various polymeric, metallic, and ceramic materials and is a simple strategy to integrate tissue on porous medical devices or scaffolds for tissue regeneration. PMID:26034014

  11. Accelerated tissue integration into porous materials by immobilizing basic fibroblast growth factor using a biologically safe three-step reaction.

    PubMed

    Kakinoki, Sachiro; Sakai, Yusuke; Fujisato, Toshia; Yamaoka, Tetsuji

    2015-12-01

    Soft tissue integration into a porous structure is important to prevent bacterial infection of percutaneous devices and improve tissue regeneration using porous scaffolds. Here, basic fibroblast growth factor (bFGF) was immobilized on porous polymer materials using a mild and biologically safe three-step reaction: (1) modification with a novel surface-modification peptide (penta-lysine-mussel adhesive sequence, which reacts with various matrices), (2) electrostatic binding of heparin with introduced penta-lysine, and (3) biologically specific binding of bFGF to heparin. Porous polyethylene specimens (PPSs) (D = 6.0 mm, H = 2.0 mm) with a good size for tissue integration were selected as a base material, immobilized with bFGF, and subcutaneously implanted into mice. Half of the unmodified PPSs extruded out of the body on day 112 postimplantation; however, the three-step reaction completely prevented sample rejection. Tissue integration was greatly accelerated by immobilizing bFGF. Direct physical coating of bFGF on PPS resulted in greater immobilization but lesser tissue integration than that after the three-step bFGF immobilization, indicating that heparin binds and enhances bFGF efficacy. This three-step bFGF immobilization reaction will be applicable to various polymeric, metallic, and ceramic materials and is a simple strategy to integrate tissue on porous medical devices or scaffolds for tissue regeneration.

  12. Relation of nitrite to structural and mechanical adaptation of arteries during postnatal development.

    PubMed

    Huang, Yi; Guo, Xiaomei; Kassab, Ghassan S

    2008-12-01

    Mammalian arteries undergo rapid remodeling during postnatal growth and development. The high wall shear stress at birth is an important mediator of postnatal endothelial nitric oxide (NO) and consequently of growth and remodeling. The objective of this study was to quantify the NO production in relation to geometric and mechanical remodeling of aorta and pulmonary artery during postnatal development. Fifty-one C57BL/6 mice aged from 1 to 33 days were divided into 8 age groups for measurements of nitrite (NO(x)). Systematic measurements of NO(x) in each rings were made in the main pulmonary artery and primary branch as well as along the length of aorta using the combination of a diazo coupling method and high-performance liquid chromatography. The NO(x) data on the aorta were correlated with data on the geometry (diameter, wall thickness) and mechanical properties (stress, strain, elastic modulus) in the same strain of mice under the same conditions. Our findings show postnatal age and vessel size affects the NO production; i.e., the NO(x) decreased with age and diameter. Furthermore, there is a significant positive correlation between strain and NO(x) but negative correlation between both wall thickness and elastic modulus and NO(x) levels. These findings suggest an important interplay between NO(x) and geometric and mechanical remodeling during postnatal growth and development. PMID:18807188

  13. Utilization of postnatal care among Nepalese women.

    PubMed

    Neupane, Subas; Doku, David

    2013-12-01

    This study investigated risk factors associated with the type of birth attendants and timing of postnatal care among a nationally representative sample of Nepalese women. The 2006 Nepalese Demographic and Health Survey on women age 15-49 years old who had delivered within 3 years prior to the survey (N = 4,136) was used. Multivariate logistic regression was employed to study the association between socio-demographic variables and type of birth attendants and timing of postnatal care. Only 23 % deliveries were assisted by skilled attendants. A majority of Nepalese women did not have postnatal check-ups. Education (OR = 1.46, 95 % CI = 1.11-1.92), wealth (OR = 2.57, 95 % CI = 1.59-4.15) and sufficiency of advice during pregnancy (OR = 3.09, 95 % CI = 2.16-4.41), were all independently associated with having postnatal check-ups. Similarly, maternal age, education, parity, wealth, sufficiency of advice and place of delivery were associated with having delivery assisted by a skilled attendant. The utilization of postnatal services is still very low in Nepal. Public health interventions are needed to increase the utilization of postnatal care as well as delivery assisted by skilled attendants. Such interventions should target poor women, the less educated and those in rural areas in Nepal.

  14. Acceleration of wound healing in gastric ulcers by local injection of neutralising antibody to transforming growth factor beta 1.

    PubMed Central

    Ernst, H; Konturek, P; Hahn, E G; Brzozowski, T; Konturek, S J

    1996-01-01

    BACKGROUND: Application of neutralising antibodies (NAs) to transforming growth factor beta 1 (TGF beta 1) improves wound healing in experimental glomerulonephritis and dermal incision wounds. TGF beta 1 has been detected in the stomach, but despite the fact that this cytokine plays a central part in wound healing no information is available to determine if modulation of the TGF beta 1 profile influences the healing of gastric ulcers. This study examines gastric ulcer healing in the rat after local injection of NAs to TGF beta 1. METHOD: Chronic gastric ulcers were induced in Wistar rats by the application of 100% acetic acid to the serosal surface of the stomach. Immediately after ulcer induction and on day 2, NAs to TGF beta 1 (50 micrograms), TGF beta 1 (50 ng), saline or control antibodies (IgG; 50 micrograms) were locally injected into the subserosa. Controls received no subserosal injections. Animals were killed on day 5 or 11, the ulcer area was measured planimetrically, sections were embedded in paraffin wax, and stained with trichrome or haematoxylin and eosin. Depth of residual ulcer was assessed on day 11 by a scale of 0-3, the percentage of connective tissue was determined by a semiquantitative matrix score and granulocytes and macrophages in the ulcer bed were also assessed. RESULTS: The application of NAs to TGF beta 1 led to a significant acceleration of gastric ulcer healing on day 11 (0.6 (SD 0.8) v 3.7 (SD 2.6) mm2), a reduction in macrophages (23.7 (SD 22.6) v 38 (26) per 40 x power field) and granulocytes (8.5 (SD 5.6) v 20 (10) per 40 x power field), fewer histological residual ulcers (mean 1 (SD 0.9) v 2 (1.1)), a reduced matrix score, and a regenerative healing pattern. Excessive scarring was seen in the TGF beta 1 treated group. CONCLUSION: Further treatment of gastric ulcers may induce a new treatment modality by local injection of NA to TGF beta 1 in an attempt to accelerate and improve ulcer healing. Images Figure 2 Figure 3 PMID:8991853

  15. Accelerated Tumor Growth Mediated by Sub-lytic Levels of Antibody-Induced Complement Activation is Associated with Activation of the PI3K/AKT Survival Pathway

    PubMed Central

    Wu, Xiaohong; Ragupathi, Govind; Panageas, Katherine; Hong, Feng; Livingston, Philip O.

    2013-01-01

    Purpose We addressed the possibility that low levels of tumor cell bound antibodies targeting gangliosides might accelerate tumor growth. Experimental Design To test this hypothesis, we treated mice with a range of mAb doses against GM2, GD2, GD3 and CD20 after challenge with tumors expressing these antigens and tested the activity of the same mAbs in-vitro. We also explored the mechanisms behind the complement-mediated tumor growth acceleration that we observed and an approach to overcome it. Results Serologically detectable levels of IgM-mAb against GM2 are able to delay or prevent tumor growth of high GM2-expressing cell lines both in-vitro and in a SCID mouse model, while very low levels of this mAb resulted in slight but consistent acceleration of tumor growth in both settings. Surprisingly, this is not restricted to IgM antibodies targeting GM2 but consistent against IgG-mAb targeting GD3 as well. These findings were mirrored by in-vitro studies with antibodies against these antigens as well as GD2 and CD20 (with Rituxan), and shown to be complement-dependent in all cases. Complement-mediated accelerated growth of cultured tumor cell lines initiated by low mAb levels was associated with activation of the PI3K/AKT survival pathway and significantly elevated levels of both p-AKT and p-PRAS40. This complement-mediated PI3K-activation and accelerated tumor growth in-vitro and in-vivo are eliminated by PI3K-inhibitors NVP-BEZ235 and Wortmannin. These PI3K-inhibitors also significantly increased efficacy of high doses of these 4 mAbs. Conclusion Our findings suggest that manipulation of the PI3K/AKT pathway and its signaling network can significantly increase the potency of passively administered mAbs and vaccine-induced-antibodies targeting a variety of tumor-cell-surface-antigens. PMID:23833306

  16. A three-dimensional phase field model coupled with lattice kinetics solver for modeling crystal growth in furnaces with accelerated crucible rotation and traveling magnetic field

    SciTech Connect

    Lin, Guang; Bao, Jie; Xu, Zhijie

    2014-11-01

    In this study, which builds on other related work, we present a new three-dimensional numerical model for crystal growth in a vertical solidification system. This model accounts for buoyancy, accelerated crucible rotation technique (ACRT), and traveling magnetic field (TMF) induced convective flow and their effect on crystal growth and the chemical component's transport process. The evolution of the crystal growth interface is simulated using the phase field method. A semi-implicit lattice kinetics solver based on the Boltzmann equation is employed to model the unsteady incompressible flow. A one-way coupled concentration transport model is used to simulate the component fraction variation in both the liquid and solid phases, which can be used to check the quality of the crystal growth.

  17. Congenital lung lesions: Postnatal management and outcome.

    PubMed

    Parikh, Dakshesh H; Rasiah, Shree Vishna

    2015-08-01

    Antenatal diagnosis of lung lesion has become more accurate resulting in dilemma and controversies of its antenatal and postnatal management. Majority of antenatally diagnosed congenital lung lesions are asymptomatic in the neonatal age group. Large lung lesions cause respiratory compromise and inevitably require urgent investigations and surgery. The congenital lung lesion presenting with hydrops requires careful postnatal management of lung hypoplasia and persistent pulmonary hypertension. Preoperative stabilization with gentle ventilation with permissive hypercapnia and delayed surgery similar to congenital diaphragmatic hernia management has been shown to result in good outcome. The diagnostic investigations and surgical management of the asymptomatic lung lesions remain controversial. Postnatal management and outcome of congenital cystic lung lesions are discussed. PMID:26051048

  18. Postnatal care from an international perspective.

    PubMed

    Steinhauer, Suyai

    2016-01-01

    The postnatal period, defined as beginning with birth and ending after six weeks, is a time of major adaptation at all levels physically, emotionally, socially and psychologically. In the United Kingdom (UK), we put a lot of emphasis on birth preparation and how to look after yourself optimally before the birth, but once the new baby has arrived there is little support or emphasis on self-care. The focus after childbirth is primarily on the baby, with not much thought given to the mother, who is usually discharged from midwifery care on day 10, and whose partner is often back at work after a week or two. In other cultures there is much more emphasis on caring for new mothers, and this article will explore some of the different attitudes and approaches to postnatal care around the world, exploring the postnatal period from an international perspective.

  19. Postnatal care from an international perspective.

    PubMed

    Steinhauer, Suyai

    2016-01-01

    The postnatal period, defined as beginning with birth and ending after six weeks, is a time of major adaptation at all levels physically, emotionally, socially and psychologically. In the United Kingdom (UK), we put a lot of emphasis on birth preparation and how to look after yourself optimally before the birth, but once the new baby has arrived there is little support or emphasis on self-care. The focus after childbirth is primarily on the baby, with not much thought given to the mother, who is usually discharged from midwifery care on day 10, and whose partner is often back at work after a week or two. In other cultures there is much more emphasis on caring for new mothers, and this article will explore some of the different attitudes and approaches to postnatal care around the world, exploring the postnatal period from an international perspective. PMID:27652442

  20. Air pollutant effects on fetal and early postnatal development.

    PubMed

    Wang, Lei; Pinkerton, Kent E

    2007-09-01

    Numerical research on the health effects of air pollution has been published in the last decade. Epidemiological studies have shown that children's exposure to air pollutants during fetal development and early postnatal life is associated with many types of health problems including abnormal development (low birth weight [LBW], very low birth weight [VLBW], preterm birth [PTB], intrauterine growth restriction [IUGR], congenital defects, and intrauterine and infant mortality), decreased lung growth, increased rates of respiratory tract infections, childhood asthma, behavioral problems, and neurocognitive decrements. This review focuses on the health effects of major outdoor air pollutants including particulates, carbon monoxide (CO), sulfur and nitrogen oxides (SO(2), NOx), ozone, and one common indoor air pollutant, environmental tobacco smoke (ETS). Animal data is presented that demonstrate perinatal windows of susceptibility to sidestream smoke, a surrogate for ETS, resulting in altered airway sensitivity and cell type frequency. A study of neonatal monkeys exposed to sidestream smoke during the perinatal period and/or early postnatal period that resulted in an altered balance of Th1-/Th2-cytokine secretion, skewing the immune response toward the allergy-associated Th2 cytokine phenotype, is also discussed. PMID:17963272

  1. Prenatal and early postnatal stress exposure influences long bone length in adult rat offspring

    PubMed Central

    Dancause, Kelsey Needham; Cao, Xiu Jing; Veru, Franz; Xu, Susan; Long, Hong; Yu, Chunbo; Laplante, David P.; Walker, Claire Dominique; King, Suzanne

    2012-01-01

    Stress during the prenatal and early postnatal periods (perinatal stress, PS) is known to impact offspring cognitive, behavioral, and physical development, but effects on skeletal growth are not clear. Our objective was to analyze effects of variable, mild, daily PS exposure on adult offspring long bone length. Twelve pregnant rat dams were randomly assigned to receive variable stress from gestational days 14-21 (Prenatal group), postpartum days 2-9 (Postnatal), both periods (Pre-Post), or no stress (Control). Differences in adult offspring tibia and femur length were analyzed among treatment groups. Mean tibia length differed among groups for males (p=0.016) and females (p=0.009), and differences for femur length approached significance for males (p=0.051). Long bone length was shorter among PS-exposed offspring, especially those exposed to postnatal stress (Postnatal and Pre-Post groups). Results persisted when controlling for nose-tail length. These differences might reflect early stunting that is maintained in adulthood, or delayed growth among PS-exposed offspring. This study suggests that PS results in shorter long bones in adulthood, independently of effects on overall body size. Stunting and growth retardation are major global health burdens. Our study adds to a growing body of evidence suggesting that PS is a risk factor for poor linear growth. PMID:22826037

  2. Postnatal breast development of preterm infants. An index of gonadal function.

    PubMed Central

    McKiernan, J

    1984-01-01

    Development of breast nodules after birth was examined in 17 preterm infants; nodules developed regularly in girls but not boys. It is concluded that the pituitary-gonadal axis of preterm infants is active in the months after birth and that in preterm infants there is a definite phase of breast growth in early postnatal life. PMID:6508344

  3. Accelerated solvent extraction of animal feedingstuffs for microbial growth inhibition screening for the presence of antimicrobial feed additives.

    PubMed

    Higgins, H C; McEvoy, J D G

    2002-09-01

    Three plate systems (combinations of indicator organism and growth medium) were evaluated for the detection of analytical standards of the banned feed additives avoparcin, bacitracin zinc, spiramycin, tylosin and virginiamycin. When authorized in the EU, the previously recommended minimum inclusion rate (MIR) for each compound was 5 mg kg(-1). One of the plate systems (Micrococcus luteus ATCC 10240, nutrient agar) detected all five additives. This plate was used in a further study that evaluated the suitability of accelerated solvent extraction (ASE) as a first step in the development of a rapid single-plate screening assay. A drug-free (negative control) feedingstuff was fortified with the compounds (0-50 mg kg(-1)), extracted by ASE and the extracts applied to the plate at each of three pH ranges - unadjusted extract (pH 5.7-5.9), pH 6.5 and 8.0. At pH 6.5, sub-MIR concentrations of virginiamycin and tylosin were detectable. Avoparcin was detectable at 6.3 mg kg(-1). The detection of zinc bacitracin was#10; pH-independent (10 mg kg(-1)). At pH 8.0, spiramycin was detectable at 5.4 mg kg(-1). Mean +/- SD analytical recoveries from fortified feedingstuffs (n = 10) ranged from 57 +/- 1.5% for avoparcin to 96 +/- 4% for virginiamycin. The five additives were also detectable following ASE extraction from a range of different feedingstuffs fortified with each of the drugs. A further 24 compounds permitted for use in animal feeds were tested. Of these, nine were detectable at their recommended MIR. It is concluded that ASE is a versatile technique suitable for the automated extraction of a range of antimicrobials from animal feedingstuffs. Employing ASE with this single-plate detection system permits the rapid antimicrobial screening of animal feedingstuffs and allows the detection of the banned additives. Whilst the method is applicable as a screening test, more specific postscreening methods would be necessary for subsequent identification (and quantification) of

  4. Postnatal Development of the Craniofacial Skeleton in Male C57BL/6J Mice

    PubMed Central

    2016-01-01

    C57BL/6J is one of the most commonly used inbred mouse strains in biomedical research, including studies of craniofacial development and teratogenic studies of craniofacial malformation. The current study quantitatively assessed the development of the skull in male C57BL/6J mice by using high-resolution 3D imaging of 55 landmarks from 48 male mice over 10 developmental time points from postnatal day 0 to 90. The growth of the skull plateaued at approximately postnatal day 60, and the shape of the skull did not change markedly thereafter. The amount of asymmetry in the craniofacial skeleton seemed to peak at birth, but considerable variation persisted in all age groups. For C57BL/6J male mice, postnatal day 60 is the earliest time point at which the skull achieves its adult shape and proportions. In addition, C57BL/6J male mice appear to have an inherent susceptibility to craniofacial malformation. PMID:27025802

  5. Morphological observations on the metanephros in the postnatal opossum, Didelphis virginiana.

    PubMed

    Krause, W J; Cutts, J H; Leeson, C R

    1979-10-01

    The metanephros of the newborn opossum is very immature, consisting only of collecting tubules and a few immature nephrons. Development during the postnatal period can be divided into two distinct phases. The initial phase occurs during the first 60 days of postnatal life and is concerned with nephronogenesis and the differentiation of nephrons that have formed during this period. The second phase lasts through the remainder of the postnatal period and is concerned with further differentiation and growth of established nephrons. During this latter period the tubular portion of the nephron increases in length and the renal corpuscle increases in diameter. Ultrastructural observations suggest that metanephric nephrons are not functional during the first 4 days of postnatal life, while the mesonephros reaches the height of its development during this period: there may be some functional overlap between the mesonephros and metanephros during the latter part of the first week of postnatal life. The pattern of nephron induction and differentiation in the opossum is discussed.

  6. In vitro growth factor-induced bio engineering of mature articular cartilage

    PubMed Central

    Khan, Ilyas M.; Francis, Lewis; Theobald, Peter S.; Perni, Stefano; Young, Robert D.; Prokopovich, Polina; Conlan, R. Steven; Archer, Charles W.

    2013-01-01

    Articular cartilage maturation is the postnatal development process that adapts joint surfaces to their site-specific biomechanical demands. Maturation involves gross morphological changes that occur through a process of synchronised growth and resorption of cartilage and generally ends at sexual maturity. The inability to induce maturation in biomaterial constructs designed for cartilage repair has been cited as a major cause for their failure in producing persistent cell-based repair of joint lesions. The combination of growth factors FGF2 and TGFβ1 induces accelerated articular cartilage maturation in vitro such that many molecular and morphological characteristics of tissue maturation are observable. We hypothesised that experimental growth factor-induced maturation of immature cartilage would result in a biophysical and biochemical composition consistent with a mature phenotype. Using native immature and mature cartilage as reference, we observed that growth factor-treated immature cartilages displayed increased nano-compressive stiffness, decreased surface adhesion, decreased water content, increased collagen content and smoother surfaces, correlating with a convergence to the mature cartilage phenotype. Furthermore, increased gene expression of surface structural protein collagen type I in growth factor-treated explants compared to reference cartilages demonstrates that they are still in the dynamic phase of the postnatal developmental transition. These data provide a basis for understanding the regulation of postnatal maturation of articular cartilage and the application of growth factor-induced maturation in vitro and in vivo in order to repair and regenerate cartilage defects. PMID:23182922

  7. Coadaptation of prenatal and postnatal maternal effects.

    PubMed

    Lock, Judith E; Smiseth, Per T; Moore, Patricia J; Moore, Allen J

    2007-11-01

    In a wide variety of species, a female's age of first reproduction influences offspring size and survival, suggesting that there exists an optimal timing of reproduction. Mothers in many species also influence offspring size and survival after birth through variation in parental care. We experimentally separated these effects in the burying beetle Nicrophorus vespilloides to test for coadaptation between prenatal and postnatal maternal effects associated with age at first reproduction. Females that reproduced early produced offspring with lower birth weight. The amount of parental care depended on the age of first reproduction of the caretaker, as did the extent of offspring begging. As predicted for a coadaptation of maternal effects, prenatal and postnatal effects were opposite for different-aged mothers, and larval weight gain and survival was greatest when the age of the caretaker and birth mother matched. Thus, prenatal effects intrinsically associated with age of first reproduction can be ameliorated by innate plasticity in postnatal care. A coadaptation of prenatal and postnatal maternal effects may evolve to allow variable timing of the first reproductive attempt. Such a coadaptation might be particularly valuable when females are constrained from reproducing at an optimal age, as, for example, in species that breed on scarce and unpredictable resources.

  8. Postnatal Testosterone Concentrations and Male Social Development

    PubMed Central

    Alexander, Gerianne M.

    2014-01-01

    Converging evidence from over 40 years of behavioral research indicates that higher testicular androgens in prenatal life and at puberty contribute to the masculinization of human behavior. However, the behavioral significance of the transient activation of the hypothalamic–pituitary–gonadal (HPG) axis in early postnatal life remains largely unknown. Although early research on non-human primates indicated that suppression of the postnatal surge in testicular androgens had no measurable effects on the later expression of the male behavioral phenotype, recent research from our laboratory suggests that postnatal testosterone concentrations influence male infant preferences for larger social groups and temperament characteristics associated with the later development of aggression. In later assessment of gender-linked behavior in the second year of life, concentrations of testosterone at 3–4 months of age were unrelated to toy choices and activity levels during toy play. However, higher concentrations of testosterone predicted less vocalization in toddlers and higher parental ratings on an established screening measure for autism spectrum disorder. These findings suggest a role of the transient activation of the HPG axis in the development of typical and atypical male social relations and suggest that it may be useful in future research on the exaggerated rise in testosterone secretion in preterm infants or exposure to hormone disruptors in early postnatal life to include assessment of gender-relevant behavioral outcomes, including childhood disorders with sex-biased prevalence rates. PMID:24600437

  9. Postnatal testosterone concentrations and male social development.

    PubMed

    Alexander, Gerianne M

    2014-01-01

    Converging evidence from over 40 years of behavioral research indicates that higher testicular androgens in prenatal life and at puberty contribute to the masculinization of human behavior. However, the behavioral significance of the transient activation of the hypothalamic-pituitary-gonadal (HPG) axis in early postnatal life remains largely unknown. Although early research on non-human primates indicated that suppression of the postnatal surge in testicular androgens had no measurable effects on the later expression of the male behavioral phenotype, recent research from our laboratory suggests that postnatal testosterone concentrations influence male infant preferences for larger social groups and temperament characteristics associated with the later development of aggression. In later assessment of gender-linked behavior in the second year of life, concentrations of testosterone at 3-4 months of age were unrelated to toy choices and activity levels during toy play. However, higher concentrations of testosterone predicted less vocalization in toddlers and higher parental ratings on an established screening measure for autism spectrum disorder. These findings suggest a role of the transient activation of the HPG axis in the development of typical and atypical male social relations and suggest that it may be useful in future research on the exaggerated rise in testosterone secretion in preterm infants or exposure to hormone disruptors in early postnatal life to include assessment of gender-relevant behavioral outcomes, including childhood disorders with sex-biased prevalence rates.

  10. Indian hedgehog roles in post-natal TMJ development and organization.

    PubMed

    Ochiai, T; Shibukawa, Y; Nagayama, M; Mundy, C; Yasuda, T; Okabe, T; Shimono, K; Kanyama, M; Hasegawa, H; Maeda, Y; Lanske, B; Pacifici, M; Koyama, E

    2010-04-01

    Indian hedgehog (Ihh) is essential for embryonic mandibular condylar growth and disc primordium formation. To determine whether it regulates those processes during post-natal life, we ablated Ihh in cartilage of neonatal mice and assessed the consequences on temporomandibular joint (TMJ) growth and organization over age. Ihh deficiency caused condylar disorganization and growth retardation and reduced polymorphic cell layer proliferation. Expression of Sox9, Runx2, and Osterix was low, as was that of collagen II, collagen I, and aggrecan, thus altering the fibrocartilaginous nature of the condyle. Though a disc formed, it exhibited morphological defects, partial fusion with the glenoid bone surface, reduced synovial cavity space, and, unexpectedly, higher lubricin expression. Analysis of the data shows, for the first time, that continuous Ihh action is required for completion of post-natal TMJ growth and organization. Lubricin overexpression in mutants may represent a compensatory response to sustain TMJ movement and function. PMID:20200412

  11. Septoclast Deficiency Accompanies Postnatal Growth Plate Chondrodysplasia in the Toothless (tl) Osteopetrotic, Colony-Stimulating Factor-1 (CSF-1)-Deficient Rat and Is Partially Responsive to CSF-1 Injections

    PubMed Central

    Gartland, Alison; Mason-Savas, April; Yang, Meiheng; MacKay, Carole A.; Birnbaum, Mark J.; Odgren, Paul R.

    2009-01-01

    The septoclast is a specialized, cathepsin B-rich, perivascular cell type that accompanies invading capillaries on the metaphyseal side of the growth plate during endochondral bone growth. The putative role of septoclasts is to break down the terminal transverse septum of growth plate cartilage and permit capillaries to bud into the lower hypertrophic zone. This process fails in osteoclast-deficient, osteopetrotic animal models, resulting in a progressive growth plate dysplasia. The toothless rat is severely osteopetrotic because of a frameshift mutation in the colony-stimulating factor-1 (CSF-1) gene (Csf1tl). Whereas CSF-1 injections quickly restore endosteal osteoclast populations, they do not improve the chondrodysplasia. We therefore investigated septoclast populations in Csf1tl/Csf1tl rats and wild-type littermates, with and without CSF-1 treatment, at 2 weeks, before the dysplasia is pronounced, and at 4 weeks, by which time it is severe. Tibial sections were immunolabeled for cathepsin B and septoclasts were counted. Csf1tl/Csf1tl mutants had significant reductions in septoclasts at both times, although they were more pronounced at 4 weeks. CSF-1 injections increased counts in wild-type and mutant animals at both times, restoring mutants to normal levels at 2 weeks. In all of the mutants, septoclasts seemed misoriented and had abnormal ultrastructure. We conclude that CSF-1 promotes angiogenesis at the chondroosseous junction, but that, in Csf1tl/Csf1tl rats, septoclasts are unable to direct their degradative activity appropriately, implying a capillary guidance role for locally supplied CSF-1. PMID:19893052

  12. Postnatal outcomes of prenatally diagnosed 45,X/46,XX.

    PubMed

    Tokita, Mari J; Sybert, Virginia P

    2016-05-01

    High quality information is critical for informed decision-making in pregnancy following a prenatal diagnosis of sex chromosome aneuploidy. The goal of this study was to define the spectrum of outcomes in patients with prenatally diagnosed 45,X/46,XX mosaic Turner syndrome in order to provide a better basis for genetic counseling at the time of intrauterine diagnosis. Phenotype data for twenty-five patients with prenatally diagnosed 45,X/46,XX mosaicism were collected by retrospective chart review and, when possible, semi-structured telephone interview. Existing data from a cohort of 58 patients with postnatally diagnosed 45,X/46,XX mosaicism were used for comparison. Relative to those diagnosed postnatally, prenatal patients were more likely to have normal growth and normal secondary sexual development, less likely to manifest distinctive Turner syndrome features such as nuchal webbing and edema, and had significantly fewer renal defects. These differences underscore the need for a nuanced approach to prenatal counseling in cases of 45,X/46,XX mosaicism.

  13. Integrative Analysis of the Developing Postnatal Mouse Heart Transcriptome

    PubMed Central

    Gan, Jingyi; Sonntag, Hans-Joachim; Tang, Mei kuen; Cai, Dongqing; Lee, Kenneth Ka Ho

    2015-01-01

    In mammals, cardiomyocytes rapidly proliferate in the fetus and continue to do so for a few more days after birth. These cardiomyocytes then enter into growth arrest but the detailed molecular mechanisms involved have not been fully elucidated. We have addressed this issue by comparing the transcriptomes of 2-day-old (containing dividing cardiomyocytes) with 13-day-old (containing growth arrested cardiomyocytes) postnatal mouse hearts. We performed comparative microarray analysis on the heart tissues and then conducted Functional annotation, Gene ontology, KEGG pathway and Gene Set enrichment analyses on the differentially expressed genes. The bioinformatics analysis revealed that gene ontology categories associated with the “cell cycle”, “DNA replication”, “chromosome segregation” and “microtubule cytoskeleton” were down-regulated. Inversely, “immune response”, “extracellular matrix”, “cell differentiation” and “cell membrane” were up-regulated. Ingenuity Pathways Analysis (IPA) has revealed that GATA4, MYH7 and IGF1R were the key drivers of the gene interaction networks. In addition, Regulator Effects network analysis suggested that TASP1, TOB1, C1orf61, AIF1, ROCK1, TFF2 and miR503-5p may be acting on the cardiomyocytes in 13-day-old mouse hearts to inhibit cardiomyocyte proliferation and G1/S phase transition. RT-qPCR was used to validate genes which were differentially expressed and genes that play a prominent role in the pathways and interaction networks that we identified. In sum, our integrative analysis has provided more insights into the transcriptional regulation of cardiomyocyte exit from the cell cycle during postnatal heart development. The results also pinpoint potential regulators that could be used to induce growth arrested cardiomyocytes to proliferate in the infarcted heart. PMID:26200114

  14. Age-dependent capacity to accelerate protein synthesis dictates the extent of compensatory growth in skeletal muscle following undernutrition

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In both humans and animals, impaired growth during early life compromises adult lean body mass and muscle strength despite skeletal muscle’s large regenerative capacity. To identify the significance of developmental age on skeletal muscle’s capacity for catch-up growth following an episode of under ...

  15. Bax-deficiency prolongs cerebellar neurogenesis, accelerates medulloblastoma formation and paradoxically increases both malignancy and differentiation

    PubMed Central

    Garcia, Idoia; Crowther, Andrew J.; Gama, Vivian; Miller, C. Ryan; Deshmukh, Mohanish; Gershon, Timothy R.

    2012-01-01

    Neurogenesis requires negative regulation through differentiation of progenitors or their programmed cell death (PCD). Growth regulation is particularly important in the postnatal cerebellum, where excessive progenitor proliferation promotes medulloblastoma, the most common malignant brain tumor in children. We present evidence that PCD operates alongside differentiation to regulate cerebellar granule neuron progenitors (CGNPs) and to prevent medulloblastoma. Here we show that genetic deletion of pro-apoptotic Bax disrupts regulation of cerebellar neurogenesis and promotes medulloblastoma formation. In Bax−/− mice, the period of neurogenesis was extended into the third week of postnatal life, and ectopic neurons and progenitors collected in the molecular layer of the cerebellum and adjacent tectum. Importantly, genetic deletion of Bax in medulloblastoma-prone ND2:SmoA1 transgenic mice greatly accelerated tumorigenesis. Bax-deficient medulloblastomas exhibited strikingly distinct pathology, with reduced apoptosis, increased neural differentiation and tectal migration. Comparing Bax+/+ and Bax−/− medulloblastomas, we were able to identify up-regulation of Bcl-2 and nuclear exclusion of p27 as tumorigenic changes that are required to mitigate the tumor suppressive effect of Bax. Studies on human tumors confirmed the importance of modulating Bax in medulloblastoma pathogenesis. Our results demonstrate that Bax-dependent apoptosis regulates postnatal cerebellar neurogenesis, suppresses medulloblastoma formation, and imposes selective pressure on tumors that form. Functional resistance to Bax-mediated apoptosis, required for medulloblastoma tumorigenesis, may be a tumor-specific vulnerability to be exploited for therapeutic benefit. PMID:22710714

  16. Linear Accelerators

    SciTech Connect

    Sidorin, Anatoly

    2010-01-05

    In linear accelerators the particles are accelerated by either electrostatic fields or oscillating Radio Frequency (RF) fields. Accordingly the linear accelerators are divided in three large groups: electrostatic, induction and RF accelerators. Overview of the different types of accelerators is given. Stability of longitudinal and transverse motion in the RF linear accelerators is briefly discussed. The methods of beam focusing in linacs are described.

  17. Postnatal Treatment in Antenatally Diagnosed Meconium Peritonitis.

    PubMed

    Ionescu, S; Andrei, B; Oancea, M; Licsandru, E; Ivanov, M; Marcu, V; Popa-Stanila, R; Mocanu, M

    2015-01-01

    Meconium peritonitis is a rare prenatal disease with an increased rate of morbidity and mortality in the neonatal period. Distinctive features revealed by prenatal and postnatal ultrasoundmay be present: abdominal calcifications, ascites, polyhydramnios, meconium pseudocyst, echogenic mass and dilated bowel or intestinal obstruction. Establishing clear postnatal treatment and prognosis is difficult because of the heterogeneity of the results obtained by ultrasound. The aim of the study is to determine how prenatal diagnosis of meconium peritonitis is associated with perinatal management and further evolution. Clinical results are different depending on the presence of antenatal diagnosis of meconium peritonitis and its form, which can be mild or severe. Surgical treatment and management of meconium peritonitis depend on the clinical presentation of the newborn. Meconium peritonitis diagnosed prenatally differs from that of the newborn, not only concerning the mortality rates but also through reduced morbidity and overall better prognosis.

  18. 5. Accelerated Fracture Healing Targeting Periosteal Cells: Possibility of Combined Therapy of Low-Intensity Pulsed Ultrasound (LIPUS), Bone Graft, and Growth Factor (bFGF).

    PubMed

    Uchida, Kentaro; Urabe, Ken; Naruse, Koji; Mikuni-Takagaki, Yuko; Inoue, Gen; Takaso, Masashi

    2016-08-01

    We have studied the mechanism of fracture healing, and the effect of LIPUS, bone graft and growth factor on accelerating fracture healing. We present here the results of our research. To examine callus formation cells in fracture healing, we made marrow GFP chimera mice and a fracture model of marrow mesenchymal stem cell GFP chimera mice. It was demonstrated that periosteal cells were essential for callus formation. We focused on periosteal cells and examined the effect of LIPUS. In an in vitro experiment using a cultured part of the femur, LIPUS promoted ossification of the periosteal tissue. Further, LIPUS accelerated VEGF expression in the experiment using the femoral fracture model of mice. From these results, it was suggested that activation of periosteal cells might play a role in the fracture healing mechanism of LIPUS. Next, we discussed the possibility of combined therapy of LIPUS, bone graft and growth factor. Therapy involving the topical administration of bFGF using a controlled release system and bone graft could promote callus formation. In addition, LIPUS was able to promote membranaceous ossification after the bone graft. It was suggested that combined therapy of LIPUS, bone graft and bFGF could be a new option for treating fractures. PMID:27441766

  19. Emittance growth and instability induced by space charge effect during final beam bunching in HIF accelerator system

    NASA Astrophysics Data System (ADS)

    Kikuchi, T.; Someya, T.; Kawata, S.; Nakajima, M.; Horioka, K.

    2006-06-01

    Beam dynamics and emittance growth are investigated by using particle-in-cell simulations during a final beam bunching for a driver system of inertial fusion driven by intense heavy ion beams. Space-charge-dominated beams are transported by a transverse confinement lattice with longitudinal compression, and the emittance increases along the longitudinal beam bunching. Dipole oscillations are excited due to the initial displacement of the beam center. The displacement causes the additional emittance growth during the final beam bunching.

  20. Silencing SlELP2L, a tomato Elongator complex protein 2-like gene, inhibits leaf growth, accelerates leaf, sepal senescence, and produces dark-green fruit.

    PubMed

    Zhu, Mingku; Li, Yali; Chen, Guoping; Ren, Lijun; Xie, Qiaoli; Zhao, Zhiping; Hu, Zongli

    2015-01-09

    The multi-subunit complex Elongator interacts with elongating RNA polymerase II (RNAPII) and is thought to facilitate transcription through histone acetylation. Elongator is highly conserved in eukaryotes, yet has multiple kingdom-specific functions in diverse organisms. Recent genetic studies performed in Arabidopsis have demonstrated that Elongator functions in plant growth and development, and in response to biotic and abiotic stress. However, little is known about its roles in other plant species. Here, we study the function of an Elongator complex protein 2-like gene in tomato, here designated as SlELP2L, through RNAi-mediated gene silencing. Silencing SlELP2L in tomato inhibits leaf growth, accelerates leaf and sepal senescence, and produces dark-green fruit with reduced GA and IAA contents in leaves, and increased chlorophyll accumulation in pericarps. Gene expression analysis indicated that SlELP2L-silenced plants had reduced transcript levels of ethylene- and ripening-related genes during fruit ripening with slightly decreased carotenoid content in fruits, while the expression of DNA methyltransferase genes was up-regulated, indicating that SlELP2L may modulate DNA methylation in tomato. Besides, silencing SlELP2L increases ABA sensitivity in inhibiting seedling growth. These results suggest that SlELP2L plays important roles in regulating plant growth and development, as well as in response to ABA in tomato.

  1. Accelerated Growth Rate Induced by Neonatal High-Protein Milk Formula Is Not Supported by Increased Tissue Protein Synthesis in Low-Birth-Weight Piglets

    PubMed Central

    Jamin, Agnès; Sève, Bernard; Thibault, Jean-Noël; Floc'h, Nathalie

    2012-01-01

    Low-birth-weight neonates are routinely fed a high-protein formula to promote catch-up growth and antibiotics are usually associated to prevent infection. Yet the effects of such practices on tissue protein metabolism are unknown. Baby pigs were fed from age 2 to 7 or 28 d with high protein formula with or without amoxicillin supplementation, in parallel with normal protein formula, to determine tissue protein metabolism modifications. Feeding high protein formula increased growth rate between 2 and 28 days of age when antibiotic was administered early in the first week of life. This could be explained by the occurrence of diarrhea when piglets were fed the high protein formula alone. Higher growth rate was associated with higher feed conversion and reduced protein synthesis rate in the small intestine, muscle and carcass, whereas proteolytic enzyme activities measured in these tissues were unchanged. In conclusion, accelerated growth rate caused by high protein formula and antibiotics was not supported by increased protein synthesis in muscle and carcass. PMID:22315674

  2. Postnatal development of northern fulmar chicks, Fulmarus glacialis.

    PubMed

    Phillips, R A; Hamer, K C

    2000-01-01

    The slow growth and large fat stores characteristic of many pelagic seabird chicks were generally assumed to reflect infrequent and unpredictable food provisioning by parents. Much less attention has been focused on the importance of intrinsic physiological processes in shaping patterns of development. In this study, we examined postnatal growth and changes in water content of different organs in fulmar chicks, Fulmarus glacialis, from Fair Isle, United Kingdom. After correcting for body size, mass growth rate was as high as in inshore-feeding species, which did not support the notion of an external constraint on growth imposed by the unpredictability of pelagic prey. Pectoral muscles and plumage grew more rapidly than other tissues. Pectorals also had a high water index, probably indicating slower maturation compared with leg muscles, which need to generate heat earlier on to free adults from brooding requirements. Lean dry mass of liver, kidney, and gut decreased markedly toward fledging, presumably because of high energetic costs of maintaining large metabolic machinery in older chicks and analogous to the situation in adult waders before migration. These results suggest that the general pattern of development of fulmars may be linked to changes in resource allocation as chicks grow and possibly a compromise at the tissue level between cell division and the attainment of mature function. PMID:11073795

  3. Contributions to accelerating atmospheric CO2 growth from economic activity, carbon intensity, and efficiency of natural sinks

    PubMed Central

    Canadell, Josep G.; Le Quéré, Corinne; Raupach, Michael R.; Field, Christopher B.; Buitenhuis, Erik T.; Ciais, Philippe; Conway, Thomas J.; Gillett, Nathan P.; Houghton, R. A.; Marland, Gregg

    2007-01-01

    The growth rate of atmospheric carbon dioxide (CO2), the largest human contributor to human-induced climate change, is increasing rapidly. Three processes contribute to this rapid increase. Two of these processes concern emissions. Recent growth of the world economy combined with an increase in its carbon intensity have led to rapid growth in fossil fuel CO2 emissions since 2000: comparing the 1990s with 2000–2006, the emissions growth rate increased from 1.3% to 3.3% y−1. The third process is indicated by increasing evidence (P = 0.89) for a long-term (50-year) increase in the airborne fraction (AF) of CO2 emissions, implying a decline in the efficiency of CO2 sinks on land and oceans in absorbing anthropogenic emissions. Since 2000, the contributions of these three factors to the increase in the atmospheric CO2 growth rate have been ≈65 ± 16% from increasing global economic activity, 17 ± 6% from the increasing carbon intensity of the global economy, and 18 ± 15% from the increase in AF. An increasing AF is consistent with results of climate–carbon cycle models, but the magnitude of the observed signal appears larger than that estimated by models. All of these changes characterize a carbon cycle that is generating stronger-than-expected and sooner-than-expected climate forcing. PMID:17962418

  4. Accelerating Forest Growth Enhancement due to Climate and Atmospheric Changes in British Colombia, Canada over 1956-2001

    NASA Astrophysics Data System (ADS)

    Wu, Chaoyang; Hember, Robbie A.; Chen, Jing M.; Kurz, Werner A.; Price, David T.; Boisvenue, Céline; Gonsamo, Alemu; Ju, Weimin

    2014-03-01

    Changes in climate and atmospheric CO2 and nitrogen (N) over the last several decades have induced significant effects on forest carbon (C) cycling. However, contributions of individual factors are largely unknown because of the lack of long observational data and the undifferentiating between intrinsic factors and external forces in current ecosystem models. Using over four decades (1956-2001) of forest inventory data at 3432 permanent samples in maritime and boreal regions of British Columbia (B.C.), Canada, growth enhancements were reconstructed and partitioned into contributions of climate, CO2 and N after removal of age effects. We found that climate change contributed a particularly large amount (over 70%) of the accumulated growth enhancement, while the remaining was attributed to CO2 and N, respectively. We suggest that climate warming is contributing a widespread growth enhancement in B.C.'s forests, but ecosystem models should consider CO2 and N fertilization effects to fully explain inventory-based observations.

  5. Accelerating forest growth enhancement due to climate and atmospheric changes in British Colombia, Canada over 1956-2001.

    PubMed

    Wu, Chaoyang; Hember, Robbie A; Chen, Jing M; Kurz, Werner A; Price, David T; Boisvenue, Céline; Gonsamo, Alemu; Ju, Weimin

    2014-01-01

    Changes in climate and atmospheric CO2 and nitrogen (N) over the last several decades have induced significant effects on forest carbon (C) cycling. However, contributions of individual factors are largely unknown because of the lack of long observational data and the undifferentiating between intrinsic factors and external forces in current ecosystem models. Using over four decades (1956-2001) of forest inventory data at 3432 permanent samples in maritime and boreal regions of British Columbia (B.C.), Canada, growth enhancements were reconstructed and partitioned into contributions of climate, CO2 and N after removal of age effects. We found that climate change contributed a particularly large amount (over 70%) of the accumulated growth enhancement, while the remaining was attributed to CO2 and N, respectively. We suggest that climate warming is contributing a widespread growth enhancement in B.C.'s forests, but ecosystem models should consider CO2 and N fertilization effects to fully explain inventory-based observations.

  6. Can Accelerators Accelerate Learning?

    NASA Astrophysics Data System (ADS)

    Santos, A. C. F.; Fonseca, P.; Coelho, L. F. S.

    2009-03-01

    The 'Young Talented' education program developed by the Brazilian State Funding Agency (FAPERJ) [1] makes it possible for high-schools students from public high schools to perform activities in scientific laboratories. In the Atomic and Molecular Physics Laboratory at Federal University of Rio de Janeiro (UFRJ), the students are confronted with modern research tools like the 1.7 MV ion accelerator. Being a user-friendly machine, the accelerator is easily manageable by the students, who can perform simple hands-on activities, stimulating interest in physics, and getting the students close to modern laboratory techniques.

  7. Can Accelerators Accelerate Learning?

    SciTech Connect

    Santos, A. C. F.; Fonseca, P.; Coelho, L. F. S.

    2009-03-10

    The 'Young Talented' education program developed by the Brazilian State Funding Agency (FAPERJ)[1] makes it possible for high-schools students from public high schools to perform activities in scientific laboratories. In the Atomic and Molecular Physics Laboratory at Federal University of Rio de Janeiro (UFRJ), the students are confronted with modern research tools like the 1.7 MV ion accelerator. Being a user-friendly machine, the accelerator is easily manageable by the students, who can perform simple hands-on activities, stimulating interest in physics, and getting the students close to modern laboratory techniques.

  8. Association of Maternal Antiangiogenic Profile at Birth With Early Postnatal Loss of Microvascular Density in Offspring of Hypertensive Pregnancies

    PubMed Central

    Yu, Grace Z.; Aye, Christina Y.L.; Lewandowski, Adam J.; Davis, Esther F.; Khoo, Cheen P.; Newton, Laura; Yang, Cheng T.; Al Haj Zen, Ayman; Simpson, Lisa J.; O’Brien, Kathryn; Cook, David A.; Granne, Ingrid; Kyriakou, Theodosios; Channon, Keith M.; Watt, Suzanne M.

    2016-01-01

    Offspring of hypertensive pregnancies are more likely to have microvascular rarefaction and increased blood pressure in later life. We tested the hypothesis that maternal angiogenic profile during a hypertensive pregnancy is associated with fetal vasculogenic capacity and abnormal postnatal microvascular remodeling. Infants (n=255) born after either hypertensive or normotensive pregnancies were recruited for quantification of postnatal dermal microvascular structure at birth and 3 months of age. Vasculogenic cell potential was assessed in umbilical vein endothelial cells from 55 offspring based on in vitro microvessel tube formation and proliferation assays. Maternal angiogenic profile (soluble fms-like tyrosine kinase-1, soluble endoglin, vascular endothelial growth factor, and placental growth factor) was measured from postpartum plasma samples to characterize severity of pregnancy disorder. At birth, offspring born after hypertensive pregnancy had similar microvessel density to those born after a normotensive pregnancy, but during the first 3 postnatal months, they had an almost 2-fold greater reduction in total vessel density (−17.7±16.4% versus −9.9±18.7%; P=0.002). This postnatal loss varied according to the vasculogenic capacity of the endothelial cells of the infant at birth (r=0.49; P=0.02). The degree of reduction in both in vitro and postnatal in vivo vascular development was proportional to levels of antiangiogenic factors in the maternal circulation. In conclusion, our data indicate that offspring born to hypertensive pregnancies have reduced vasculogenic capacity at birth that predicts microvessel density loss over the first 3 postnatal months. Degree of postnatal microvessel reduction is proportional to levels of antiangiogenic factors in the maternal circulation at birth. PMID:27456522

  9. Association of Maternal Antiangiogenic Profile at Birth With Early Postnatal Loss of Microvascular Density in Offspring of Hypertensive Pregnancies.

    PubMed

    Yu, Grace Z; Aye, Christina Y L; Lewandowski, Adam J; Davis, Esther F; Khoo, Cheen P; Newton, Laura; Yang, Cheng T; Al Haj Zen, Ayman; Simpson, Lisa J; O'Brien, Kathryn; Cook, David A; Granne, Ingrid; Kyriakou, Theodosios; Channon, Keith M; Watt, Suzanne M; Leeson, Paul

    2016-09-01

    Offspring of hypertensive pregnancies are more likely to have microvascular rarefaction and increased blood pressure in later life. We tested the hypothesis that maternal angiogenic profile during a hypertensive pregnancy is associated with fetal vasculogenic capacity and abnormal postnatal microvascular remodeling. Infants (n=255) born after either hypertensive or normotensive pregnancies were recruited for quantification of postnatal dermal microvascular structure at birth and 3 months of age. Vasculogenic cell potential was assessed in umbilical vein endothelial cells from 55 offspring based on in vitro microvessel tube formation and proliferation assays. Maternal angiogenic profile (soluble fms-like tyrosine kinase-1, soluble endoglin, vascular endothelial growth factor, and placental growth factor) was measured from postpartum plasma samples to characterize severity of pregnancy disorder. At birth, offspring born after hypertensive pregnancy had similar microvessel density to those born after a normotensive pregnancy, but during the first 3 postnatal months, they had an almost 2-fold greater reduction in total vessel density (-17.7±16.4% versus -9.9±18.7%; P=0.002). This postnatal loss varied according to the vasculogenic capacity of the endothelial cells of the infant at birth (r=0.49; P=0.02). The degree of reduction in both in vitro and postnatal in vivo vascular development was proportional to levels of antiangiogenic factors in the maternal circulation. In conclusion, our data indicate that offspring born to hypertensive pregnancies have reduced vasculogenic capacity at birth that predicts microvessel density loss over the first 3 postnatal months. Degree of postnatal microvessel reduction is proportional to levels of antiangiogenic factors in the maternal circulation at birth.

  10. Association of Maternal Antiangiogenic Profile at Birth With Early Postnatal Loss of Microvascular Density in Offspring of Hypertensive Pregnancies.

    PubMed

    Yu, Grace Z; Aye, Christina Y L; Lewandowski, Adam J; Davis, Esther F; Khoo, Cheen P; Newton, Laura; Yang, Cheng T; Al Haj Zen, Ayman; Simpson, Lisa J; O'Brien, Kathryn; Cook, David A; Granne, Ingrid; Kyriakou, Theodosios; Channon, Keith M; Watt, Suzanne M; Leeson, Paul

    2016-09-01

    Offspring of hypertensive pregnancies are more likely to have microvascular rarefaction and increased blood pressure in later life. We tested the hypothesis that maternal angiogenic profile during a hypertensive pregnancy is associated with fetal vasculogenic capacity and abnormal postnatal microvascular remodeling. Infants (n=255) born after either hypertensive or normotensive pregnancies were recruited for quantification of postnatal dermal microvascular structure at birth and 3 months of age. Vasculogenic cell potential was assessed in umbilical vein endothelial cells from 55 offspring based on in vitro microvessel tube formation and proliferation assays. Maternal angiogenic profile (soluble fms-like tyrosine kinase-1, soluble endoglin, vascular endothelial growth factor, and placental growth factor) was measured from postpartum plasma samples to characterize severity of pregnancy disorder. At birth, offspring born after hypertensive pregnancy had similar microvessel density to those born after a normotensive pregnancy, but during the first 3 postnatal months, they had an almost 2-fold greater reduction in total vessel density (-17.7±16.4% versus -9.9±18.7%; P=0.002). This postnatal loss varied according to the vasculogenic capacity of the endothelial cells of the infant at birth (r=0.49; P=0.02). The degree of reduction in both in vitro and postnatal in vivo vascular development was proportional to levels of antiangiogenic factors in the maternal circulation. In conclusion, our data indicate that offspring born to hypertensive pregnancies have reduced vasculogenic capacity at birth that predicts microvessel density loss over the first 3 postnatal months. Degree of postnatal microvessel reduction is proportional to levels of antiangiogenic factors in the maternal circulation at birth. PMID:27456522

  11. Locally accelerated growth is part of the innate immune response and repair mechanisms in reef-building corals as detected by green fluorescent protein (GFP)-like pigments

    NASA Astrophysics Data System (ADS)

    D'Angelo, C.; Smith, E. G.; Oswald, F.; Burt, J.; Tchernov, D.; Wiedenmann, J.

    2012-12-01

    Homologs of the green fluorescent protein (GFP) are a prevalent group of host pigments responsible for the green, red and purple-blue colours of many reef-building corals. They have been suggested to contribute to the striking coloration changes of different corals species in response to wounding and infestation with epibionts/parasites. In order to elucidate the physiological processes underlying the potentially disease-related colour changes, we have analysed spatial and temporal expression patterns of GFP-like proteins and other biomarkers in corals from the Red Sea, the Arabian/Persian Gulf and Fiji both in their natural habitat and under specific laboratory conditions. The expression of distinct GFP-like proteins and the growth marker proliferating cell nuclear antigen was upregulated in growing branch tips and margins of healthy coral colonies as well as in disturbed colony parts. Furthermore, phenoloxidase activity increased in these proliferating tissues. It is thus demonstrated that locally accelerated growth is part of the innate immune response and repair mechanisms in reef-building corals and, moreover, these processes can be detected utilizing the excellent biomarker properties of GFP-like proteins. Finally, the results of this work suggest an additional vulnerability of corals in predicted future scenarios of increased ocean acidification, warming and eutrophication that are anticipated to reduce coral growth capacity.

  12. Prenatal immunotoxicant exposure and postnatal autoimmune disease.

    PubMed Central

    Holladay, S D

    1999-01-01

    Reports in humans and rodents indicate that immune development may be altered following perinatal exposure to immunotoxic compounds, including chemotherapeutics, corticosteroids, polycyclic hydrocarbons, and polyhalogenated hydrocarbons. Effects from such exposure may be more dramatic or persistent than following exposure during adult life. For example, prenatal exposure to the insecticide chlordane or to the polycyclic aromatic hydrocarbon benzo[(italic)a(/italic)]pyrene produces what appears to be lifelong immunosuppression in mice. Whether prenatal immunotoxicant exposure may predispose the organism to postnatal autoimmune disease remains largely unknown. In this regard, the therapeutic immunosuppressant cyclosporin A (CsA) crosses the placenta poorly. However, lethally irradiated rodents exposed to CsA postsyngeneic bone marrow transplant (i.e., during re-establishment of the immune system) develop T-cell-mediated autoimmune disease, suggesting this drug may produce a fundamental disruption in development of self-tolerance by T cells. The environmental contaminant 2,3,7, 8-tetrachlorodibenzo-(italic)p(/italic)-dioxin (TCDD) crosses the placenta and produces fetal thymic effects (italic)in vivo(/italic) similar to effects of CsA in fetal thymic organ culture, including inhibited thymocyte maturation and reduced expression of thymic major histocompatability complex class II molecules. These observations led to the suggestion that gestational exposure to TCDD may interfere with normal development of self-tolerance. Possibly supporting this hypothesis, when mice predisposed to development of autoimmune disease were treated with TCDD during gestation, postnatal autoimmunity was exacerbated. Similar results have been reported for mice exposed to diethylstilbestrol during development. These reports suggest that prenatal exposure to certain immunotoxicants may play a role in postnatal expression of autoimmunity. PMID:10502532

  13. Accelerated Stem Growth Rates and Improved Fiber Properties of Loblolly Pine: Functional Analysis Of CyclinD from Pinus taeda

    SciTech Connect

    Dr. John Cairney, School of Biology and Institute of Paper Science and Technology @ Georgia Tech, Georgia Institute of Technology; Dr. Gary Peter, University of Florida; Dr. Ulrika Egertsdotter, Dept. of Forestry, Virgina Tech; Dr. Armin Wagner, New Zealand Forest Research Institute Ltd.

    2005-11-30

    A sustained supply of low-cost, high quality raw materials is essential for the future success of the U.S. forest products industry. To maximize stem (trunk) growth, a fundamental understanding of the molecular mechanisms that regulate cell divisions within the cambial meristem is essential. We hypothesize that auxin levels within the cambial meristem regulate cyclin gene expression and this in turn controls cell cycle progression as occurs in all eukaryotic cells. Work with model plant species has shown that ectopic overexpression of cyclins promotes cell division thereby increasing root growth > five times. We intended to test whether ectopic overexpression of cambial cyclins in the cambial zone of loblolly pine also promotes cell division rates that enhance stem growth rates. Results generated in model annual angiosperm systems cannot be reliably extrapolated to perennial gymnosperms, thus while the generation and development of transgenic pine is time consuming, this is the necessary approach for meaningful data. We succeeded in isolating a cyclin D gene and Clustal analysis to the Arabidopsis cyclin D gene family indicates that it is more closely related to cyclin D2 than D1 or D3 Using this gene as a probe we observed a small stimulation of cyclin D expression in somatic embryo culture upon addition of auxin. We hypothesized that trees with more cells in the vascular cambial and expansion zones will have higher cyclin mRNA levels. We demonstrated that in trees under compressive stress where the rates of cambial divisions are increased on the underside of the stem relative to the top or opposite side, there was a 20 fold increase in the level of PtcyclinD1 mRNA on the compressed side of the stem relative to the opposite. This suggests that higher secondary growth rates correlate with PtcyclinD1 expression. We showed that larger diameter trees show more growth during each year and that the increased growth in loblolly pine trees correlates with more cell

  14. Gastric pentadecapeptide BPC 157 accelerates healing of transected rat Achilles tendon and in vitro stimulates tendocytes growth.

    PubMed

    Staresinic, M; Sebecic, B; Patrlj, L; Jadrijevic, S; Suknaic, S; Perovic, D; Aralica, G; Zarkovic, N; Borovic, S; Srdjak, M; Hajdarevic, K; Kopljar, M; Batelja, L; Boban-Blagaic, A; Turcic, I; Anic, T; Seiwerth, S; Sikiric, P

    2003-11-01

    In studies intended to improve healing of transected Achilles tendon, effective was a stable gastric pentadecapeptide BPC 157 (GEPPPGKPADDAGLV, M.W. 1419). Currently in clinical trials for inflammatory bowel disease (PLD-116, PL 14736, Pliva), it ameliorates internal and external wound healing. In rats, the right Achilles tendon transected (5 mm proximal to its calcaneal insertion) presents with a large tendon defect between cut ends. Agents (/kg b.w., i.p., once time daily) (BPC 157 (dissolved in saline, with no carrier addition) (10 microg, 10 ng or 10 pg) or saline (5.0 ml)), were firstly applied at 30 min after surgery, the last application at 24 h before autopsy. Achilles functional index (AFI) was assessed once time daily. Biomechanical, microscopical and macroscopical assessment was on day 1, 4, 7, 10 and 14. Controls generally have severely compromised healing. In comparison, pentadecapeptide BPC 157 fully improves recovery: (i) biomechanically, increased load of failure, load of failure per area and Young's modulus of elasticity; (ii) functionally, significantly higher AFI-values; (iii) microscopically, more mononuclears and less granulocytes, superior formation of fibroblasts, reticulin and collagen; (iv) macroscopically, smaller size and depth of tendon defect, and subsequently the reestablishment of full tendon integrity. Likewise, unlike TGF-beta, pentadecapeptide BPC 157, presenting with no effect on the growth of cultured cell of its own, consistently opposed 4-hydroxynonenal (HNE), a negative modulator of the growth. HNE-effect is opposed in both combinations: BPC 157+HNE (HNE growth inhibiting effect reversed into growth stimulation of cultured tendocytes) and HNE+BPC 157(abolished inhibiting activity of the aldehyde), both in the presence of serum and serum deprived conditions. In conclusion, these findings, particularly, Achilles tendon transection fully recovered in rats, peptide stability suitable delivery, usefully favor gastric

  15. Postnatal Evaluation and Outcome of Prenatal Hydronephrosis

    PubMed Central

    Sadeghi-Bojd, Simin; Kajbafzadeh, Abdol-Mohammad; Ansari-Moghadam, Alireza; Rashidi, Somaye

    2016-01-01

    Background: Prenatal hydronephrosis (PNH) is dilation in urinary collecting system and is the most frequent neonatal urinary tract abnormality with an incidence of 1% to 5% of all pregnancies. PNH is defined as anteroposterior diameter (APD) of renal pelvis ≥ 4 mm at gestational age (GA) of < 33 weeks and APD ≥ 7 mm at GA of ≥ 33 weeks to 2 months after birth. All patients need to be evaluated after birth by postnatal renal ultrasonography (US). In the vast majority of cases, watchful waiting is the only thing to do; others need medical or surgical therapy. Objectives: There is a direct relationship between APD of renal pelvis and outcome of PNH. Therefore we were to find the best cutoff point APD of renal pelvis which leads to surgical outcome. Patients and Methods: In this retrospective cohort study we followed 200 patients 1 to 60 days old with diagnosis of PNH based on before or after birth ultrasonography; as a prenatal or postnatal detected, respectively. These patients were referred to the nephrology clinic in Zahedan Iran during 2011 to 2013. The first step of investigation was a postnatal renal US, by the same expert radiologist and classifying the patients into 3 groups; normal, mild/moderate and severe. The second step was to perform voiding cystourethrogram (VCUG) for mild/moderate to severe cases at 4 - 6 weeks of life. Tc-diethylene triamine-pentaacetic acid (DTPA) was the last step and for those with normal VCUG who did not show improvement in follow-up examination, US to evaluate obstruction and renal function. Finally all patients with mild/moderate to severe PNH received conservative therapy and surgery was preserved only for progressive cases, obstruction or renal function ≤35%. All patients’ data and radiologic information was recorded in separate data forms, and then analyzed by SPSS (version 22). Results: 200 screened PNH patients with male to female ratio 3.5:1 underwent first postnatal control US, of whom 65% had normal, 18% mild

  16. Accelerated fatigue crack growth behavior of PWA 1480 single crystal alloy and its dependence on the deformation mode

    NASA Technical Reports Server (NTRS)

    Telesman, Jack; Ghosn, Louis J.

    1988-01-01

    An investigation of the fatigue crack growth (FCG) behavior of PWA 1480 single crystal nickel base superalloy was conducted. Typical Paris region behavior was observed above a delta K of 8 MPa sq rt of m. However, below that stress intensity range, the alloy exhibited highly unusual behavior. This behavior consisted of a region where the crack growth rate became essentially independent of the applied stress intensity. The transition in the FCG behavior was related to a change in the observed crack growth mechanisms. In the Paris region, fatigue failure occurred along (111) facets; however, at the lower stress intensities, (001) fatigue failure was observed. A mechanism was proposed, based on barriers to dislocation motion, to explain the changes in the observed FCG behavior. The FCG data were also evaluated in terms of a recently proposed stress intensity parameter, K sub rss. This parameter, based on the resolved shear stresses on the slip planes, quantified the crack driving force as well as the mode I delta K, and at the same time was also able to predict the microscopic crack path under different stress states.

  17. Innovation:CBT-based support groups for postnatal depression.

    PubMed

    Alexander, Pat

    Postnatal depression can have serious implications for mother/child bonding and damage relationships between parents. Approaches to treat it need to overcome barriers that have led to high attrition in some group or clinic-based postnatal depression treatment studies. This retrospective evaluation explored the benefits of offering postnatally depressed mothers group support based on cognitive behavioural therapy. It helped to improve women's self-esteem and self-worth and to make them feel safe and supported.

  18. Epidermal growth factor enhances renal tubule cell regeneration and repair and accelerates the recovery of renal function in postischemic acute renal failure.

    PubMed Central

    Humes, H D; Cieslinski, D A; Coimbra, T M; Messana, J M; Galvao, C

    1989-01-01

    To determine the timing and location of renal cell regeneration after ischemic injury to the kidney and to assess whether exogenous epidermal growth factor (EGF) enhances this regenerative repair process to accelerate recovery of renal function, experiments were undertaken in rats undergoing 30 min of bilateral renal artery clamp ischemia followed by reperfusion for varying time intervals. Renal cell regeneration, as reflected by incorporation of radiolabeled thymidine within the kidney, began between 24 to 48 h and reached a peak at 72 h after renal ischemia. As demonstrated by histoautoradiography, renal thymidine incorporation was essentially confined to tubule cells. Morphometric analysis of histoautoradiograph sections of renal tissue demonstrated that the majority of labeled cells were found in renal cortex, but some labeled cells were also located in the inner stripe of the outer medulla, suggesting that injury to medullary thick ascending limbs also occurs in this ischemic model. Exogenous EGF administration produced increases in renal thymidine incorporation compared with non-treated animals at 24, 48, and 72 h after ischemic injury. This accelerated DNA replicative process was associated with significantly lower peak blood urea nitrogen (BUN) and serum creatinine levels, averaging 63 +/- 20 and 3.1 +/- 0.4 mg/dl in EGF-treated ischemic rats compared with 149 +/- 20 and 5.1 +/- 0.1 mg/dl, respectively, in nontreated ischemic rats, and was also associated with a return to near normal BUN and serum creatinine levels in EGF-treated animals approximately 4 d earlier than that observed in nontreated animals. This report is the first demonstration that EGF accelerates the repair process of a visceral organ after an injurious insult. Images PMID:2592559

  19. Reduced Notch signalling leads to postnatal skeletal muscle hypertrophy in Pofut1cax/cax mice.

    PubMed

    Al Jaam, Bilal; Heu, Katy; Pennarubia, Florian; Segelle, Alexandre; Magnol, Laetitia; Germot, Agnès; Legardinier, Sébastien; Blanquet, Véronique; Maftah, Abderrahman

    2016-09-01

    Postnatal skeletal muscle growth results from the activation of satellite cells and/or an increase in protein synthesis. The Notch signalling pathway maintains satellite cells in a quiescent state, and once activated, sustains their proliferation and commitment towards differentiation. In mammals, POFUT1-mediated O-fucosylation regulates the interactions between NOTCH receptors and ligands of the DELTA/JAGGED family, thus initiating the activation of canonical Notch signalling. Here, we analysed the consequences of downregulated expression of the Pofut1 gene on postnatal muscle growth in mutant Pofut1(cax/cax) (cax, compact axial skeleton) mice and differentiation of their satellite cell-derived myoblasts (SCDMs). Pofut1(cax/cax) mice exhibited muscle hypertrophy, no hyperplasia and a decrease in satellite cell numbers compared with wild-type C3H mice. In agreement with these observations, Pofut1(cax/cax) SCDMs differentiated earlier concomitant with reduced Pax7 expression and decrease in PAX7(+)/MYOD(-) progenitor cells. In vitro binding assays showed a reduced interaction of DELTA-LIKE 1 ligand (DLL1) with NOTCH receptors expressed at the cell surface of SCDMs, leading to a decreased Notch signalling as seen by the quantification of cleaved NICD and Notch target genes. These results demonstrated that POFUT1-mediated O-fucosylation of NOTCH receptors regulates myogenic cell differentiation and affects postnatal muscle growth in mice. PMID:27628322

  20. Reduced Notch signalling leads to postnatal skeletal muscle hypertrophy in Pofut1cax/cax mice

    PubMed Central

    Al Jaam, Bilal; Heu, Katy; Pennarubia, Florian; Segelle, Alexandre; Magnol, Laetitia; Germot, Agnès; Blanquet, Véronique; Maftah, Abderrahman

    2016-01-01

    Postnatal skeletal muscle growth results from the activation of satellite cells and/or an increase in protein synthesis. The Notch signalling pathway maintains satellite cells in a quiescent state, and once activated, sustains their proliferation and commitment towards differentiation. In mammals, POFUT1-mediated O-fucosylation regulates the interactions between NOTCH receptors and ligands of the DELTA/JAGGED family, thus initiating the activation of canonical Notch signalling. Here, we analysed the consequences of downregulated expression of the Pofut1 gene on postnatal muscle growth in mutant Pofut1cax/cax (cax, compact axial skeleton) mice and differentiation of their satellite cell-derived myoblasts (SCDMs). Pofut1cax/cax mice exhibited muscle hypertrophy, no hyperplasia and a decrease in satellite cell numbers compared with wild-type C3H mice. In agreement with these observations, Pofut1cax/cax SCDMs differentiated earlier concomitant with reduced Pax7 expression and decrease in PAX7+/MYOD− progenitor cells. In vitro binding assays showed a reduced interaction of DELTA-LIKE 1 ligand (DLL1) with NOTCH receptors expressed at the cell surface of SCDMs, leading to a decreased Notch signalling as seen by the quantification of cleaved NICD and Notch target genes. These results demonstrated that POFUT1-mediated O-fucosylation of NOTCH receptors regulates myogenic cell differentiation and affects postnatal muscle growth in mice. PMID:27628322

  1. Early Stages Of Biome Shift in Boreal Alaska: Climate Sensitivity of Tree Growth and Accelerated Tree Mortality

    NASA Astrophysics Data System (ADS)

    Juday, G. P.; Grant, T.; Alix, C. M.; Spencer, D. L.; Beck, P. S.

    2012-12-01

    The boreal forest region of Alaska is characterized by a major east-west climate gradient, in addition to a widely appreciated north-south gradient. Low elevations of the eastern and central Interior experience warm summer temperatures and low annual precipitation, while coastal western Alaska has cool summer temperatures and greater precipitation. In the Interior the four dominant tree species of white and black spruce, aspen, and Alaska birch on low elevation sites nearly all register a strong negative radial growth relationship to summer temperatures, concentrated in May and July. Precipitation, particularly in late winter and midsummer, plays a supplemental role as a positive factor in growth. Floodplain white spruce along the Yukon and Kuskokwim Rivers transition from negative temperature response to positive response in western Alaska near the tree limit. Populations of white spruce on treeline sites display both negative growth response to July temperature and positive response to spring temperatures, with the negative response dominant in the east and the positive response dominant in the west. Across boreal Alaska summer temperatures increased abruptly in 1974, and have remained at historically high levels since. Correspondingly, climatic favorability for radial growth of Interior trees on most low elevation sites has been at extreme low levels particularly in the 21st century. Satellite-based NDVI coverage confirms that forest growth reduction is widespread in boreal Alaska since the 1980s. Defoliating and wood boring insects have reached outbreak population levels across most of boreal Alaska, partly from release of direct temperature control on the insects and partly from increased tree host susceptibility. Major outbreak species include aspen leaf miner, spruce engraver beetle, and spruce budworm. About a dozen tall willow species have been subjected to widespread attack by willow leaf blotch miner, and a new disease and defoliating insect have spread

  2. Small particles disrupt postnatal airway development

    PubMed Central

    Lee, DongYoub; Wallis, Chris; Schelegle, Edward S.; Van Winkle, Laura S.; Plopper, Charles G.; Fanucchi, Michelle V.; Kumfer, Ben; Kennedy, Ian M.; Chan, Jackie K. W.

    2010-01-01

    Increasing numbers of epidemiologic studies associate air pollution exposure in children with decreased lung function development. The objective of this study was to examine the effects of exposure to combustion-generated fine [230 and 212 nm number mean aerodynamic particle diameter (NMAD)] to ultrafine (73 nm NMAD) particles differing in elemental (EC) and organic (OC) carbon content on postnatal airway development in rats. Neonatal Sprague-Dawley rats were exposed from postnatal day 7 through 25, and lung function and airway architecture were evaluated 81 days of age. In a separate group of rats, cell proliferation was examined after a single particle exposure at 7 days of age. Early life exposure to 73 nm high OC/EC particles altered distal airway architecture and resulted in subtle changes in lung mechanics. Early life exposure to 212 nm high OC/EC particles did not alter lung architecture but did alter lung mechanics in a manner suggestive of central airway changes. In contrast, early life exposure to 230 nm low OC/EC particles did not alter lung architecture or mechanics. A single 6-h exposure to 73 nm high OC/EC particle decreased airway cell proliferation, whereas 212 nm high OC/EC particles increased it and 230 nm low OC/EC particles did not. The early life exposure to ultrafine, high OC/EC particles results in persistent alterations in distal airway architecture that is characterized by an initial decrease in airway cell proliferation. PMID:20634362

  3. Fetal and postnatal ovine mesenteric vascular reactivity

    PubMed Central

    Nair, Jayasree; Gugino, Sylvia F.; Nielsen, Lori C.; Caty, Michael G.; Lakshminrusimha, Satyan

    2016-01-01

    BACKGROUND Intestinal circulation and mesenteric arterial (MA) reactivity may play a role in preparing the fetus for enteral nutrition. We hypothesized that MA vasoreactivity changes with gestation and vasodilator pathways predominate in the postnatal period. METHODS Small distal MA rings (0.5-mm diameter) were isolated from fetal (116-d, 128-d, 134-d, and 141-d gestation, term ~ 147 d) and postnatal lambs. Vasoreactivity was evaluated using vasoconstrictors (norepinephrine (NE) after pretreatment with propranolol and endothelin-1(ET-1)) and vasodilators (NO donors A23187 and s-nitrosopenicillamine (SNAP)). Protein and mRNA assays for receptors and enzymes (endothelin receptor A, alpha-adrenergic receptor 1A (ADRA1A), endothelial NO synthase (eNOS), soluble guanylyl cyclase (sGC), and phosphodiesterase5 (PDE5)) were performed in mesenteric arteries. RESULTS MA constriction to NE and ET-1 peaked at 134 d. Relaxation to A23187 and SNAP was maximal after birth. Basal eNOS activity was low at 134 d. ADRA1A mRNA and protein increasedsignificantlyat134danddecreasedpostnatally.sGC and PDE5 protein increased from 134 to 141 d. CONCLUSION Mesenteric vasoconstriction predominates in late-preterm gestation (134 d; the postconceptional age with the highest incidence of necrotizing enterocolitis (NEC)) followed by a conversion to vasodilatory influences near the time of full-term birth. Perturbations in this ontogenic mechanism, including preterm birth, may be a risk factor for NEC. PMID:26672733

  4. Loss of E2F1 Extends Survival and Accelerates Oral Tumor Growth in HPV-Positive Mice.

    PubMed

    Zhong, Rong; Bechill, John; Spiotto, Michael T

    2015-01-01

    The Human Papillomavirus (HPV) is associated with several human cancers, including head and neck squamous cell carcinomas (HNSCCs). HPV expresses the viral oncogene E7 that binds to the retinoblastoma protein (RB1) in order to activate the E2F pathway. RB1 can mediate contradictory pathways-cell growth and cell death via E2F family members. Here, we assessed the extent to which E2F1 mediates lethality of HPV oncogenes. Ubiquitous expression of the HPV oncogenes E6 and E7 caused lethality in mice that was associated with focal necrosis in hepatocytes and pancreatic tissues. Furthermore, all organs expressing HPV oncogenes displayed up-regulation of several E2F1 target genes. The E2F1 pathway mediated lethality in HPV-positive mice because deletion of E2F1 increased survival of mice ubiquitously expressing HPV oncogenes. E2F1 similarly functioned as a tumor suppressor in HPV-positive oral tumors as tumors grew faster with homozygous loss of E2F1 compared to tumors with heterozygous loss of E2F1. Re-expression of E2F1 caused decreased clonogenicity in HPV-positive cancer cells. Our results indicate that HPV oncogenes activated the E2F1 pathway to cause lethality in normal mice and to suppress oral tumor growth. These results suggest that selective modulation of the E2F1 pathway, which is activated in HPV tumors, may facilitate tumor regression.

  5. Chronic stress accelerates pancreatic cancer growth and invasion: a critical role for beta-adrenergic signaling in the pancreatic microenvironment.

    PubMed

    Kim-Fuchs, Corina; Le, Caroline P; Pimentel, Matthew A; Shackleford, David; Ferrari, Davide; Angst, Eliane; Hollande, Frédéric; Sloan, Erica K

    2014-08-01

    Pancreatic cancer cells intimately interact with a complex microenvironment that influences pancreatic cancer progression. The pancreas is innervated by fibers of the sympathetic nervous system (SNS) and pancreatic cancer cells have receptors for SNS neurotransmitters which suggests that pancreatic cancer may be sensitive to neural signaling. In vitro and non-orthotopic in vivo studies showed that neural signaling modulates tumour cell behavior. However the effect of SNS signaling on tumor progression within the pancreatic microenvironment has not previously been investigated. To address this, we used in vivo optical imaging to non-invasively track growth and dissemination of primary pancreatic cancer using an orthotopic mouse model that replicates the complex interaction between pancreatic tumor cells and their microenvironment. Stress-induced neural activation increased primary tumor growth and tumor cell dissemination to normal adjacent pancreas. These effects were associated with increased expression of invasion genes by tumor cells and pancreatic stromal cells. Pharmacological activation of β-adrenergic signaling induced similar effects to chronic stress, and pharmacological β-blockade reversed the effects of chronic stress on pancreatic cancer progression. These findings indicate that neural β-adrenergic signaling regulates pancreatic cancer progression and suggest β-blockade as a novel strategy to complement existing therapies for pancreatic cancer.

  6. Accelerated bone growth in vitro by the conjugation of BMP2 peptide with hydroxyapatite on titanium alloy.

    PubMed

    Cai, Yanli; Wang, Xiaoyan; Poh, Chye Khoon; Tan, Hark Chuan; Soe, Min Tun; Zhang, Sam; Wang, Wilson

    2014-04-01

    Titanium alloys have been widely used in orthopedic practice due to their inherent bioactivity, however it is still insufficient to truly and reliably incorporate into living bone. In this work, polydopamine film was employed to induce the growth of hydroxyapatite (HA) on titanium alloy to enhance its osteoconductivity. Bone morphogenetic protein-2 (BMP2) peptide was absorbed into the HA particles for osteoinductivity. The precipitation of HA and the existence of BMP2 peptide were examined by X-ray diffraction, X-ray photoelectron spectroscopy and fluorescence microscopy. The dissolution of HA and the release of BMP2 peptide were monitored by measuring the concentrations of calcium ions and BMP2 peptide in phosphate buffered saline solution, respectively. The effect of BMP2 peptide incorporated into HA coating on bone growth was evaluated in vitro by cell culture tests, including cell attachment, alkaline phosphatase (ALP) activity, and gene expression. The results show that the HA particles grown on the substrate are mediated by the polydopamine film. The BMP2 peptide is distributed uniformly on HA-coated substrate and released in a sustained manner. Moreover, the conjunction of HA and BMP2 peptide increases cell adhesion, ALP activity and gene expression of osteogenic markers, which are potentially useful in the development of enhanced orthopedic medical devices.

  7. Overexpression of AtGRDP2, a novel glycine-rich domain protein, accelerates plant growth and improves stress tolerance

    PubMed Central

    Ortega-Amaro, María A.; Rodríguez-Hernández, Aída A.; Rodríguez-Kessler, Margarita; Hernández-Lucero, Eloísa; Rosales-Mendoza, Sergio; Ibáñez-Salazar, Alejandro; Delgado-Sánchez, Pablo; Jiménez-Bremont, Juan F.

    2015-01-01

    Proteins with glycine-rich signatures have been reported in a wide variety of organisms including plants, mammalians, fungi, and bacteria. Plant glycine-rich protein genes exhibit developmental and tissue-specific expression patterns. Herein, we present the characterization of the AtGRDP2 gene using Arabidopsis null and knockdown mutants and, Arabidopsis and lettuce over-expression lines. AtGRDP2 encodes a short glycine-rich domain protein, containing a DUF1399 domain and a putative RNA recognition motif (RRM). AtGRDP2 transcript is mainly expressed in Arabidopsis floral organs, and its deregulation in Arabidopsis Atgrdp2 mutants and 35S::AtGRDP2 over-expression lines produces alterations in development. The 35S::AtGRDP2 over-expression lines grow faster than the WT, while the Atgrdp2 mutants have a delay in growth and development. The over-expression lines accumulate higher levels of indole-3-acetic acid and, have alterations in the expression pattern of ARF6, ARF8, and miR167 regulators of floral development and auxin signaling. Under salt stress conditions, 35S::AtGRDP2 over-expression lines displayed higher tolerance and increased expression of stress marker genes. Likewise, transgenic lettuce plants over-expressing the AtGRDP2 gene manifest increased growth rate and early flowering time. Our data reveal an important role for AtGRDP2 in Arabidopsis development and stress response, and suggest a connection between AtGRDP2 and auxin signaling. PMID:25653657

  8. Estrogen deprivation and excess energy supply accelerate 7,12-dimethylbenz(a)anthracene-induced mammary tumor growth in C3H/HeN mice

    PubMed Central

    Kim, Jin; Lee, Yoon Hee; Park, Jung Han Yoon

    2015-01-01

    BACKGROUND/OBJECTIVES Obesity is a risk factor of breast cancer in postmenopausal women. Estrogen deprivation has been suggested to cause alteration of lipid metabolism thereby creating a cellular microenvironment favoring tumor growth. The aim of this study is to investigate the effects of estrogen depletion in combination with excess energy supply on breast tumor development. MATERIALS/METHODS Ovariectomized (OVX) or sham-operated C3H/HeN mice at 4 wks were provided with either a normal diet or a high-fat diet (HD) for 16 weeks. Breast tumors were induced by administration of 7,12-dimethylbenz(a)anthracene once a week for six consecutive weeks. RESULTS Study results showed higher serum concentrations of free fatty acids and insulin in the OVX+HD group compared to other groups. The average tumor volume was significantly larger in OVX+HD animals than in other groups. Expressions of mammary tumor insulin receptor and mammalian target of rapamycin proteins as well as the ratio of pAKT/AKT were significantly increased, while pAMPK/AMPK was decreased in OVX+HD animals compared to the sham-operated groups. Higher relative expression of liver fatty acid synthase mRNA was observed in OVX+HD mice compared with other groups. CONCLUSIONS These results suggest that excess energy supply affects the accelerated mammary tumor growth in estrogen deprived mice. PMID:26634052

  9. Expanding the spectrum of phenotypes associated with germline PIGA mutations: a child with developmental delay, accelerated linear growth, facial dysmorphisms, elevated alkaline phosphatase, and progressive CNS abnormalities.

    PubMed

    van der Crabben, Saskia N; Harakalova, Magdalena; Brilstra, Eva H; van Berkestijn, Frédérique M C; Hofstede, Floris C; van Vught, Adrianus J; Cuppen, Edwin; Kloosterman, Wigard; Ploos van Amstel, Hans Kristian; van Haaften, Gijs; van Haelst, Mieke M

    2014-01-01

    Phosphatidyl inositol glycan (PIG) enzyme subclasses are involved in distinct steps of glycosyl phosphatidyl inositol anchor protein biosynthesis. Glycolsyl phosphatidyl inositol-anchored proteins have heterogeneous functions; they can function as enzymes, adhesion molecules, complement regulators and co-receptors in signal transduction pathways. Germline mutations in genes encoding different members of the PIG family result in diverse conditions with (severe) developmental delay, (neonatal) seizures, hypotonia, CNS abnormalities, growth abnormalities, and congenital abnormalities as hallmark features. The variability of clinical features resembles the typical diversity of other glycosylation pathway deficiencies such as the congenital disorders of glycosylation. Here, we report the first germline missense mutation in the PIGA gene associated with accelerated linear growth, obesity, central hypotonia, severe refractory epilepsy, cardiac anomalies, mild facial dysmorphic features, mildly elevated alkaline phosphatase levels, and CNS anomalies consisting of progressive cerebral atrophy, insufficient myelinization, and cortical MRI signal abnormalities. X-exome sequencing in the proband identified a c.278C>T (p.Pro93Leu) mutation in the PIGA gene. The mother and maternal grandmother were unaffected carriers and the mother showed 100% skewing of the X-chromosome harboring the mutation. These results together with the clinical similarity of the patient reported here and the previously reported patients with a germline nonsense mutation in PIGA support the determination that this mutation caused the phenotype in this family.

  10. Expanding the spectrum of phenotypes associated with germline PIGA mutations: a child with developmental delay, accelerated linear growth, facial dysmorphisms, elevated alkaline phosphatase, and progressive CNS abnormalities.

    PubMed

    van der Crabben, Saskia N; Harakalova, Magdalena; Brilstra, Eva H; van Berkestijn, Frédérique M C; Hofstede, Floris C; van Vught, Adrianus J; Cuppen, Edwin; Kloosterman, Wigard; Ploos van Amstel, Hans Kristian; van Haaften, Gijs; van Haelst, Mieke M

    2014-01-01

    Phosphatidyl inositol glycan (PIG) enzyme subclasses are involved in distinct steps of glycosyl phosphatidyl inositol anchor protein biosynthesis. Glycolsyl phosphatidyl inositol-anchored proteins have heterogeneous functions; they can function as enzymes, adhesion molecules, complement regulators and co-receptors in signal transduction pathways. Germline mutations in genes encoding different members of the PIG family result in diverse conditions with (severe) developmental delay, (neonatal) seizures, hypotonia, CNS abnormalities, growth abnormalities, and congenital abnormalities as hallmark features. The variability of clinical features resembles the typical diversity of other glycosylation pathway deficiencies such as the congenital disorders of glycosylation. Here, we report the first germline missense mutation in the PIGA gene associated with accelerated linear growth, obesity, central hypotonia, severe refractory epilepsy, cardiac anomalies, mild facial dysmorphic features, mildly elevated alkaline phosphatase levels, and CNS anomalies consisting of progressive cerebral atrophy, insufficient myelinization, and cortical MRI signal abnormalities. X-exome sequencing in the proband identified a c.278C>T (p.Pro93Leu) mutation in the PIGA gene. The mother and maternal grandmother were unaffected carriers and the mother showed 100% skewing of the X-chromosome harboring the mutation. These results together with the clinical similarity of the patient reported here and the previously reported patients with a germline nonsense mutation in PIGA support the determination that this mutation caused the phenotype in this family. PMID:24259184

  11. Postnatal Weight Gain in Preterm Infants with Severe Bronchopulmonary Dysplasia

    PubMed Central

    Natarajan, Girija; Johnson, Yvette R.; Brozanski, Beverly; Farrow, Kathryn N.; Zaniletti, Isabella; Padula, Michael A.; Asselin, Jeanette M.; Durand, David J.; Short, Billie L.; Pallotto, Eugenia K.; Dykes, Francine D.; Reber, Kristina M.; Evans, Jacquelyn R.; Murthy, Karna

    2015-01-01

    Objectives To characterize postnatal growth failure (PGF), defined as weight < 10th percentile for postmenstrual age (PMA) in preterm (≤27 weeks’ gestation) infants with severe bronchopulmonary dysplasia (sBPD) at specified time points during hospitalization, and to compare these in subgroups of infants who died/underwent tracheostomy and others. Study Design Retrospective review of data from the multicenter Children’s Hospital Neonatal Database (CHND). Results Our cohort (n = 375) had a mean ± standard deviation gestation of 25 ± 1.2 weeks and birth weight of 744 ± 196 g. At birth, 20% of infants were small for gestational age (SGA); age at referral to the CHND neonatal intensive care unit (NICU) was 46 ± 50 days. PGF rates at admission and at 36, 40, 44, and 48 weeks’ PMA were 33, 53, 67, 66, and 79% of infants, respectively. Tube feedings were administered to > 70% and parenteral nutrition to a third of infants between 36 and 44 weeks’ PMA. At discharge, 34% of infants required tube feedings and 50% had PGF. A significantly greater (38 versus 17%) proportion of infants who died/underwent tracheostomy (n = 69) were SGA, compared with those who did not (n = 306; p < 0.01). Conclusions Infants with sBPD commonly had progressive PGF during their NICU hospitalization. Fetal growth restriction may be a marker of adverse outcomes in this population. PMID:23690052

  12. Postnatal Depression. A Review. EUR/HFA Target 8.

    ERIC Educational Resources Information Center

    World Health Organization, Copenhagen (Denmark). Regional Office for Europe.

    This document contains three reports on postnatal depression. The first, "The Maternity Blues," by Flemming Warborg Larsen, presents a literature review on the topic. It concludes that most women look back at the "blues" as an episode that was brief, unpleasant, and difficult to explain. The second report, "Postnatal Depressions," by Lene Lier,…

  13. Extrapituitary growth hormone and growth?

    PubMed

    Harvey, Steve; Baudet, Marie-Laure

    2014-09-01

    While growth hormone (GH) is obligatory for postnatal growth, it is not required for a number of growth-without-GH syndromes, such as early embryonic or fetal growth. Instead, these syndromes are thought to be dependent upon local growth factors, rather than pituitary GH. The GH gene is, however, also expressed in many extrapituitary tissues, particularly during early development and extrapituitary GH may be one of the local growth factors responsible for embryonic or fetal growth. Moreover, as the expression of the GH receptor (GHR) gene mirrors that of GH in extrapituitary tissues the actions of GH in early development are likely to be mediated by local autocrine or paracrine mechanisms, especially as extrapituitary GH expression occurs prior to the ontogeny of pituitary somatotrophs or the appearance of GH in the circulation. The extrapituitary expression of pituitary somatotrophs or the appearance of GH in the circulation. The extrapituitary expression of GH in embryos has also been shown to be of functional relevance in a number of species, since the immunoneutralization of endogenous GH or the blockade of GH production is accompanied by growth impairment or cellular apoptosis. The extrapituitary expression of the GH gene also persists in some central and peripheral tissues postnatally, which may reflect its continued functional importance and physiological or pathophysiological significance. The expression and functional relevance of extrapituitary GH, particularly during embryonic growth, is the focus of this brief review.

  14. Collagen Hydrogel Scaffold and Fibroblast Growth Factor-2 Accelerate Periodontal Healing of Class II Furcation Defects in Dog

    PubMed Central

    Momose, Takehito; Miyaji, Hirofumi; Kato, Akihito; Ogawa, Kosuke; Yoshida, Takashi; Nishida, Erika; Murakami, Syusuke; Kosen, Yuta; Sugaya, Tsutomu; Kawanami, Masamitsu

    2016-01-01

    Objective: Collagen hydrogel scaffold exhibits bio-safe properties and facilitates periodontal wound healing. However, regenerated tissue volume is insufficient. Fibroblast growth factor-2 (FGF2) up-regulates cell behaviors and subsequent wound healing. We evaluated whether periodontal wound healing is promoted by application of collagen hydrogel scaffold in combination with FGF2 in furcation defects in beagle dogs. Methods: Collagen hydrogel was fabricated from bovine type I collagen with an ascorbate-copper ion cross-linking system. Collagen hydrogel was mingled with FGF2 and injected into sponge-form collagen. Subsequently, FGF2 (50 µg)/collagen hydrogel scaffold and collagen hydrogel scaffold alone were implanted into class II furcation defects in dogs. In addition, no implantation was performed as a control. Histometric parameters were assessed at 10 days and 4 weeks after surgery. Result: FGF2 application to scaffold promoted considerable cell and tissue ingrowth containing numerous cells and blood vessel-like structure at day 10. At 4 weeks, reconstruction of alveolar bone was stimulated by implantation of scaffold loaded with FGF2. Furthermore, periodontal attachment, consisting of cementum-like tissue, periodontal ligament-like tissue and Sharpey’s fibers, was also repaired, indicating that FGF2-loaded scaffold guided self-assembly and then re-established the function of periodontal organs. Aberrant healing, such as ankylosis and root resorption, was not observed. Conclusion: FGF2-loaded collagen hydrogel scaffold possessed excellent biocompatibility and strongly promoted periodontal tissue engineering, including periodontal attachment re-organization. PMID:27583044

  15. Angiopoietin-like protein 2 increases renal fibrosis by accelerating transforming growth factor-β signaling in chronic kidney disease.

    PubMed

    Morinaga, Jun; Kadomatsu, Tsuyoshi; Miyata, Keishi; Endo, Motoyoshi; Terada, Kazutoyo; Tian, Zhe; Sugizaki, Taichi; Tanigawa, Hiroki; Zhao, Jiabin; Zhu, Shunshun; Sato, Michio; Araki, Kimi; Iyama, Ken-ichi; Tomita, Kengo; Mukoyama, Masashi; Tomita, Kimio; Kitamura, Kenichiro; Oike, Yuichi

    2016-02-01

    Renal fibrosis is a common pathological consequence of chronic kidney disease (CKD) with tissue fibrosis closely associated with chronic inflammation in numerous pathologies. However, molecular mechanisms underlying that association, particularly in the kidney, remain unclear. Here, we determine whether there is a molecular link between chronic inflammation and tissue fibrosis in CKD progression. Histological analysis of human kidneys indicated abundant expression of angiopoietin-like protein 2 (ANGPTL2) in renal tubule epithelial cells during progression of renal fibrosis. Numerous ANGPTL2-positive renal tubule epithelial cells colocalized with cells positive for transforming growth factor (TGF)-β1, a critical mediator of tissue fibrosis. Analysis of M1 collecting duct cells in culture showed that TGF-β1 increases ANGPTL2 expression by attenuating its repression through microRNA-221. Conversely, ANGPTL2 increased TGF-β1 expression through α5β1 integrin-mediated activation of extracellular signal-regulated kinase. Furthermore, ANGPTL2 deficiency in a mouse unilateral ureteral obstruction model significantly reduced renal fibrosis by decreasing TGF-β1 signal amplification in kidney. Thus, ANGPTL2 and TGF-β1 positively regulate each other as renal fibrosis progresses. Our study provides insight into molecular mechanisms underlying chronic inflammation and tissue fibrosis and identifies potential therapeutic targets for CKD treatment.

  16. Effects of in utero heat stress on postnatal body composition in pigs: I. Growing phase.

    PubMed

    Johnson, J S; Sanz Fernandez, M V; Gutierrez, N A; Patience, J F; Ross, J W; Gabler, N K; Lucy, M C; Safranski, T J; Rhoads, R P; Baumgard, L H

    2015-01-01

    Environmentally induced heat stress (HS) negatively influences production variables in agriculturally important species. However, the extent to which HS experienced in utero affects nutrient partitioning during the rapid lean tissue accretion phase of postnatal growth is unknown. Study objectives were to compare future whole-body tissue accretion rates in pigs exposed to differing in utero and postnatal thermal environments when lean tissue deposition is likely maximized. Pregnant sows were exposed to thermoneutral (TN; cyclical 15°C nighttime and 22°C daytime; n = 9) or HS (cyclical 27°C nighttime and 37°C daytime; n = 12) conditions during their entire gestation. Twenty-four offspring from in utero TN (IUTN; n = 6 gilts and 6 barrows; 30.8 ± 0.2 kg BW) and in utero HS (IUHS; n = 6 gilts and 6 barrows; 30.3 ± 0.2 kg BW) were euthanized as an initial slaughter group (ISG). Following the ISG, 48 pigs from IUTN (n = 12 gilts and 12 barrows; 34.1 ± 0.5 kg BW) and IUHS (n = 12 gilts and 12 barrows; 33.3 ± 0.3 kg BW) were exposed to constant HS (34.1 ± 2.4°C) or TN (21.5 ± 2.0°C) conditions until they reached 61.5 ± 0.8 kg BW, at which point they were sacrificed and their whole-body composition was determined. Homogenized carcasses were analyzed for N, crude fat, ash, water, and GE content. Data were analyzed using PROC MIXED in SAS 9.3. Rectal temperature and respiration rate increased (P < 0.01) during postnatal HS compared to TN (39.4 vs. 39.0°C and 94 vs. 49 breaths per minute, respectively). Regardless of in utero environment, postnatal HS reduced (P < 0.01) feed intake (2.06 vs. 2.37 kg/d) and ADG (0.86 vs. 0.98 kg/d) compared to TN conditions. Postnatal HS did not alter water, protein, and ash accretion rates but reduced lipid accretion rates (198 vs. 232 g/d; P < 0.04) compared to TN-reared pigs. In utero environment had no effect on future tissue deposition rates; however, IUHS pigs from the ISG had reduced liver weight (P < 0.04; 17.9%) compared

  17. Oligomeric proanthocyanidins improve memory and enhance phosphorylation of vascular endothelial growth factor receptor-2 in senescence-accelerated mouse prone/8.

    PubMed

    Lee, Young A; Cho, Eun Ju; Yokozawa, Takako

    2010-02-01

    Senescence-accelerated mouse prone/8 (SAMP8), a murine model of accelerated senescence, shows age-related deficits in learning and memory. We investigated the effect of oligomeric proanthocyanidins (oligomers) on memory impairment using the SAMP8 model involving the oral administration of oligomers for 5 weeks. To analyse memory improvement in SAMP8, we performed Morris water maze, object location and object recognition tests. The oral administration of oligomers improved spatial and object recognition impairment in SAMP8. Expressions of phosphorylated neurofilament-H (P-NF-H, axon marker), microtubule-associated proteins (MAP) 2a and 2b (MAP2; dendrite marker) and synaptophysin were increased in the brains of SAMP8-administered oligomers. In particular, the expression of P-NF-H was significantly elevated in the hippocampal CA1. This indicates that oligomers result in an increase in the densities of axons, dendrites and synapses. To investigate the protective mechanisms of oligomers against brain dysfunction with ageing, we carried out a receptor tyrosine kinase phosphorylation antibody array, and clarified that the administration of oligomers led to an increase in the phosphorylation of vascular endothelial growth factor receptor (VEGFR)-2, suggesting the neuroprotective role of oligomers. The phosphorylation of VEGFR-2 was more greatly increased in the hypothalamus and choroid plexus than in other brain regions of SAMP8. Memory in oligomer-treated mice was impaired by SU1498, a VEGFR-2-specific antagonist. Elucidating the relationship between memory impairment with ageing and VEGFR-2 signalling may provide new suggestions for protection against memory deficit in the ageing brain.

  18. A mutein of human basic fibroblast growth factor TGP-580 accelerates colonic ulcer healing by stimulating angiogenesis in the ulcer bed in rats.

    PubMed

    Satoh, H; Szabo, S

    2015-10-01

    Previously, we reported that TGP-580, a mutein of human basic fibroblast growth factor (bFGF), accelerated the healing of gastric and duodenal ulcers in rats. In the present study, we examined the effect of TGP-580 on the healing of colonic ulcers. In male Sprague Dawley rats, ulcers were induced in the colon 6 cm from the anus by enema of 50 μl of 3% N-ethylmaleimide, a sulfhydryl alkylator. The lesions were examined under a dissecting microscope (x10). The concentration of bFGF in the ulcerated colon was measured by enzyme immunoassay, and both the distribution of bFGF and the density of microvessels in the ulcer bed were examined by immunohistochemical staining. The content of bFGF in the ulcerated colon was markedly increased associated with ulcer healing, and ulcer healing was significantly delayed by intravenous administration of a monoclonal antibody for bFGF (MAb 3H3) once daily for 10 days. In the ulcer bed, many cells such as fibroblasts, vascular endothelial cells and macrophages were positively stained with bFGF antiserum. TGP-580, human bFGF or dexamethasone was given intracolonally twice daily for 10 days, starting the day after ulcer induction. TGP-580 (0.2 - 20 μg/ml, 200 μl/rat) dose-dependently accelerated ulcer healing, and its effect was more than 10 times stronger than that of human bFGF. Density (μm/0.01 mm(2)) of microvessels in the ulcer bed was significantly increased by treatment with TGP-580, and there was a good correlation between the density of microvessels and the decrease of ulcerated area (R(2) = 0.633). On the other hand dexamethasone (20 μg/ml) inhibited angiogenesis in the ulcer bed and delayed ulcer healing. These results suggest that angiogenesis in the ulcer bed plays an important role in ulcer healing, and that bFGF mutein TGP-580 accelerated colonic ulcer healing, at least in part, by stimulating angiogenesis, whereas glucocorticoids may delay the healing by inhibiting angiogenesis.

  19. Commercially available topical platelet-derived growth factor as a novel agent to accelerate burn-related wound healing.

    PubMed

    Travis, Taryn E; Mauskar, Neil A; Mino, Matthew J; Prindeze, Nick; Moffatt, Lauren T; Fidler, Philip E; Jordan, Marion H; Shupp, Jeffrey W

    2014-01-01

    The authors investigated whether the application of platelet-derived growth factor (PDGF) to donor site wounds would speed healing in a porcine model. In a red duroc pig model, three wounds that were 3 inches × 3 inches were created with a dermatome (0.06-inch depth) on one side of two different animals. These wounds were digitally and laser Doppler (LDI) imaged and biopsied immediately pre- and postwound creation and every 2 days for 2 weeks. A set of identical wounds were subsequently created on the opposite side of the same animals and treated with topical PDGF (becaplermin gel 0.01%, 4 g/wound) immediately on wounding. PDGF-treated wounds were imaged and biopsied as above. Digital images of wounds were assessed for epithelialization by clinicians using an ordinal scale. Perfusion units (PU) were evaluated by LDI. Wound healing was evaluated by hematoxylin and eosin histological visualization of an epithelium and intact basement membrane. First evidence of partial epithelialization was seen in control and PDGF-treated wounds within 7.7 ± 1.4 and 6.4 ± 1.1 days postwounding, respectively (P=.03). Completely epithelialized biopsies were seen in control and PDGF-treated wounds at 11.7 ± 2.6 and 9.6 ± 1.5 days, respectively (P=.02). Clinician evaluation of digital images showed that on day 9, control wounds were, on average, 48.3 ± 18.5% epithelialized vs 57.2 ± 20.2% epithelialized for PDGF-treated wounds. At day 16, control wounds showed an average of 72.9 ± 14.6% epithelialization and PDGF-treated wounds showed an average of 90 ± 11.8%epithelialization. Overall, PDGF-treated wounds had statistically significantly higher scores across all timepoints (P=.02). Average perfusion units as measured by LDI were similar for control and PDGF-treated wounds at time of excision (225 ± 81and 257 ± 100, respectively). On day 2 postwounding, average PU for control wounds were 803 and were 764 for PDGF-treated wounds. Control wounds maintained higher PU values

  20. Postnatal Hyperoxia Exposure Differentially Affects Hepatocytes and Liver Haemopoietic Cells in Newborn Rats

    PubMed Central

    Marconi, Guya Diletta; Zara, Susi; De Colli, Marianna; Di Valerio, Valentina; Rapino, Monica; Zaramella, Patrizia; Dedja, Arben; Macchi, Veronica; De Caro, Raffaele; Porzionato, Andrea

    2014-01-01

    Premature newborns are frequently exposed to hyperoxic conditions and experimental data indicate modulation of liver metabolism by hyperoxia in the first postnatal period. Conversely, nothing is known about possible modulation of growth factors and signaling molecules involved in other hyperoxic responses and no data are available about the effects of hyperoxia in postnatal liver haematopoiesis. The aim of the study was to analyse the effects of hyperoxia in the liver tissue (hepatocytes and haemopoietic cells) and to investigate possible changes in the expression of Vascular Endothelial Growth Factor (VEGF), Matrix Metalloproteinase 9 (MMP-9), Hypoxia-Inducible Factor-1α (HIF-1α), endothelial Nitric Oxide Synthase (eNOS), and Nuclear Factor-kB (NF-kB). Experimental design of the study involved exposure of newborn rats to room air (controls), 60% O2 (moderate hyperoxia), or 95% O2 (severe hyperoxia) for the first two postnatal weeks. Immunohistochemical and Western blot analyses were performed. Severe hyperoxia increased hepatocyte apoptosis and MMP-9 expression and decreased VEGF expression. Reduced content in reticular fibers was found in moderate and severe hyperoxia. Some other changes were specifically produced in hepatocytes by moderate hyperoxia, i.e., upregulation of HIF-1α and downregulation of eNOS and NF-kB. Postnatal severe hyperoxia exposure increased liver haemopoiesis and upregulated the expression of VEGF (both moderate and severe hyperoxia) and eNOS (severe hyperoxia) in haemopoietic cells. In conclusion, our study showed different effects of hyperoxia on hepatocytes and haemopoietic cells and differential involvement of the above factors. The involvement of VEGF and eNOS in the liver haemopoietic response to hyperoxia may be hypothesized. PMID:25115881

  1. Environmental effects on thermoregulation and breathing patterns during early postnatal development in hand-reared lambs.

    PubMed

    Symonds, M E; Andrews, D C; Buss, D S; Clarke, L; Darby, C J; Johnson, P; Lomax, M A

    1995-09-01

    This study examines the effect of hand-rearing developing lambs in a warm (WR; 25 degrees C) or cool (CR; 10-15 degrees C) ambient temperature on the control of thermoregulation and breathing patterns, when maintained at a fixed level of nutrition over the first month of postnatal life. Measurements were made during non-rapid eye movement sleep whilst lambs were maintained for at least 1 h at warm (28-19 degrees C) and cold (14-5 degrees C) ambient temperatures at 1, 7, 14 and 30 days of age. All lambs were able to maintain normal body temperature, but oxygen consumption was higher in CR lambs at 14 and 30 days of age. At 1 day of age shivering was rarely observed in any lambs, but at 7 and 14 days of age more WR than CR lambs responded to cold exposure via shivering. Plasma concentrations of triiodothyronine were higher at 7 and 14 days of age in CR lambs. Breathing frequencies were similar in WR and CR lambs, and from 7 days of age the incidence of expiratory laryngeal braking was higher in warm compared with cold study temperatures. By 30 days of age the recruitment of this mechanism was greater in CR lambs. Mean growth rate was slower over the first week of postnatal life in CR compared with WR lambs. This difference decreased over the first month of life, as growth rate increased from 83 to 130 g day-1 in the CR group but remained constant at approximately 150 g day-1 in the WR lambs. Total weight of the lungs and heart, but not the liver, were lower at 1 month but not at 1 week of postnatal life in CR lambs. It is concluded that a modest decrease in the ambient temperature in which postnatal lambs are reared, when on a fixed feed intake, alters lung size, the recruitment of laryngeal braking and the control of body temperature.

  2. Outcome of Preterm Infants With Postnatal Cytomegalovirus Infection via Breast Milk

    PubMed Central

    Jim, Wai-Tim; Chiu, Nan-Chang; Ho, Che-Sheng; Shu, Chyong-Hsin; Chang, Jui-Hsing; Hung, Han-Yang; Kao, Hsin-An; Chang, Hung-Yang; Peng, Chun-Chih; Yui, Bey-Hwa; Chuu, Chih-Pin

    2015-01-01

    Abstract Approximately 15% of preterm infants may develop postnatal cytomegalovirus (CMV) infection from seropositive mothers via breast milk and are at risk for neurological sequelae in childhood. The aims of this study were to assess the effects and outcomes on growth, neurodevelopmental status, and hearing in very low birth weight (VLBW) premature infants with postnatal CMV infection via breast milk at the corrected age of 12 and 24 months. The prospective follow-up study population comprised all living preterm children (n = 55) with a birth weight ≤1500 g and gestational age of ≤35 weeks, who had been participated in our “postnatal CMV infection via breast milk” studies in 2000 and 2009, respectively. The cohort of children was assessed at 12 and 24 months. Clinical outcomes were documented during hospitalization and after discharge. Long-term outcomes included anthropometry, audiologic tests, gross motor quotient, Infant International Battery, and neurodevelopmental outcomes; all were assessed at postcorrected age in 12 and 24 months during follow-up visits. Of the 55 infants enrolled in the study (4 noninfected infants were excluded because their parents did not join this follow-up program later), 14 infants postnatally acquired CMV infection through breast-feeding (infected group) and were compared with 41 infants without CMV infection (control group). No significant differences were observed between the groups with regard to baseline characteristics, clinical outcomes, anthropometry, or psychomotor and mental development on the Bayley scale of infant development. None of the infants had CMV-related death or permanent sensorineural hearing loss. Transmission of CMV from seropositive mother via breast milk to preterm infants does not appear at this time to have major adverse effects on clinical outcomes, growth, neurodevelopmental status, and hearing function at 12 and 24 months corrected age. PMID:26512588

  3. Future accelerators (?)

    SciTech Connect

    John Womersley

    2003-08-21

    I describe the future accelerator facilities that are currently foreseen for electroweak scale physics, neutrino physics, and nuclear structure. I will explore the physics justification for these machines, and suggest how the case for future accelerators can be made.

  4. A review of longitudinal studies on antenatal and postnatal depression.

    PubMed

    Underwood, Lisa; Waldie, Karen; D'Souza, Stephanie; Peterson, Elizabeth R; Morton, Susan

    2016-10-01

    Antenatal depression is a known risk factor for postnatal depression; both are common disorders associated with negative impacts on child development. Few studies have followed up women from pregnancy and through the postnatal period to explore how rates of depression change. This review evaluates recent evidence on depression during pregnancy and after childbirth. A search of Embase, PsychINFO, MEDLINE and Cochrane Reviews was carried out to identify longitudinal studies on antenatal and postnatal depression. Studies that measured depression during pregnancy and up to 1 year after childbirth were evaluated against a set of criteria (e.g. less than 50 % attrition). Of the initial 523 studies identified, 16 studies met the final inclusion criteria with a total of 35,419 women. The average rate of antenatal depression across these studies was 17 and 13 % postnatal depression. The longitudinal nature of the studies revealed that on average 39 % of those who experienced antenatal depression went on to have postnatal depression. Similarly, on average, 47 % of those with postnatal depression had also experienced antenatal depression. On average, almost 7 % of women reported significant depressive symptoms in pregnancy that persisted after childbirth. The review provided evidence that rates of depression tend to be higher during pregnancy than in the first year following childbirth. Furthermore, the longitudinal data show that there is much movement between the groups categorised as depressed or not depressed. There is evidence that postnatal depression is often a continuation of existing antenatal depression.

  5. Growth outcome: nutritionist perspective.

    PubMed

    Agostoni, Carlo; Fattore, Giovanni

    2013-01-01

    Increasing evidence points to a fundamental role of early nutrition on rates of growth and development, and later health. We may identify three major fields of scientific interest and clinical application. (1) In developing countries poor growth is associated with greater risk of morbidity and mortality from infectious diseases, mainly lower respiratory infections and diarrhea. In these settings, failure to promote compensatory growth may have negative short-term consequences, and the nutritionist's task is the primary prevention of nutrient deficiencies to promote the full expression of the individual genetic potential, while allowing for recovery of early secondary functional deficiencies. (2) A second challenge for nutritionists is represented by the approach to growth impairments in rare disorders, ranging from congenital disorders to chronic infections. Most disorders are favorably influenced by improved nutritional status and better growth, and patients may satisfactorily reach adolescence, pubertal and reproductive age, up to ageing. Even for the less positive conditions, an improvement in the quality of life for families is in any case a rewarding aim. (3) A third challenge is represented by the definition of the role of nutrition on growth in physiological conditions for all individuals. Concern has been raised about the potential adverse long-term consequences of accelerated child growth rates, possibly resulting in a predisposition to develop non-communicable chronic diseases in the adult age. Accordingly, this hypothesis might explain the benefits of breastfeeding in terms of slower early growth, and the fetal origins hypothesis in terms of adverse postnatal catch-up growth in infants born small. Therefore, growth as viewed by a pediatric nutritionist perspective is a complex matter, ranging from the early stages of intrauterine development up to adult ages and ageing processes. Cost/benefit analyses of interventions on growth such as cost per DALYs

  6. Improving the growth of Ge/Si islands by modulating the spacing between screen and accelerator grids in ion beam sputtering deposition system

    NASA Astrophysics Data System (ADS)

    Yang, Jie; Zhao, Bo; Wang, Chong; Qiu, Feng; Wang, Rongfei; Yang, Yu

    2016-11-01

    Ge islands were fabricated on Si buffer layer by ion beam sputtering deposition with a spacing between the screen and accelerator grids of either 1 mm or 2 mm. The Si buffer layer exhibits mixed-phase microcrystallinity for samples grown with 1 mm spacing and crystallinity for those with 2 mm spacing. Ge islands are larger and less dense than those grown on the crystalline buffer because of the selective growth mechanism on the microcrystalline buffer. Moreover, the nucleation site of Ge islands formed on the crystalline Si buffer is random. Ge islands grown at different grid-to-grid gaps are characterized by two key factors, namely, divergence half angle of ion beam and crystallinity of buffer layer. High grid-to-grid spacing results in small divergence half angle, thereby enhancing the sputtering energy and redistribution of sputtered atoms. The crystalline volume fraction of the microcrystalline Si buffer was obtained based on the integrated intensity ratio of Raman peaks. The islands show decreased density with decreasing crystalline volume fraction and are difficult to observe at crystalline volume fractions lower than 72%.

  7. Accelerated fracture healing in the geriatric, osteoporotic rat with recombinant human platelet-derived growth factor-BB and an injectable beta-tricalcium phosphate/collagen matrix.

    PubMed

    Hollinger, Jeffrey O; Onikepe, Andrew O; MacKrell, Jim; Einhorn, Thomas; Bradica, Gino; Lynch, Samuel; Hart, Charles E

    2008-01-01

    Aging and osteoporosis contribute to decreased bone mass and bone mineral density as well as compromised fracture healing rates and bone repair quality. Consequently, the purpose of this study was to determine if recombinant human platelet-derived growth factor-BB (rhPDGF-BB) delivered in an injectable beta-tricalcium phosphate/collagen matrix would enhance tibial fracture healing in geriatric (>2 years of age), osteoporotic rats. A total of 80 rats were divided equally among four groups: Fracture alone; Fracture plus matrix; Fracture plus matrix and either 0.3 mg/mL or 1.0 mg/mL rhPDGF-BB. At 3 and 5 weeks, rats were euthanized and treatment outcome was assessed histologically, radiographically, biomechanically, and by micro-CT. Results indicated rhPDGF-BB-treated fractures in osteoporotic, geriatric rats caused a statistically significant time-dependent increase in torsional strength 5 weeks after treatment. The healed fractures were equivalent in torsional strength to the contralateral, unoperated tibiae. Data from the study are the first, to our knowledge, to underscore rhPDGF-BB efficacy in an injectable beta-tricalcium phosphate/collagen matrix accelerated fracture repair in a geriatric, osteoporotic rat model.

  8. Postnatal changes in sialylation of glycoproteins in rat liver.

    PubMed Central

    Oda-Tamai, S; Kato, S; Akamatsu, N

    1991-01-01

    difference was abolished by treating transferase I with neuraminidase, suggesting that transferase II may be a desialylated form of transferase I. These changes in the sialylation of membrane glycoproteins, including sialyltransferase, may be related to the control of liver growth during postnatal development. PMID:1741745

  9. Activated WNT signaling in postnatal SOX2-positive dental stem cells can drive odontoma formation

    PubMed Central

    Xavier, Guilherme M.; Patist, Amanda L.; Healy, Chris; Pagrut, Ankita; Carreno, Gabriela; Sharpe, Paul T.; Pedro Martinez-Barbera, Juan; Thavaraj, Selvam; Cobourne, Martyn T.; Andoniadou, Cynthia L.

    2015-01-01

    In common with most mammals, humans form only two dentitions during their lifetime. Occasionally, supernumerary teeth develop in addition to the normal complement. Odontoma represent a small group of malformations containing calcified dental tissues of both epithelial and mesenchymal origin, with varying levels of organization, including tooth-like structures. The specific cell type responsible for the induction of odontoma, which retains the capacity to re-initiate de novo tooth development in postnatal tissues, is not known. Here we demonstrate that aberrant activation of WNT signaling by expression of a non-degradable form of β-catenin specifically in SOX2-positive postnatal dental epithelial stem cells is sufficient to generate odontoma containing multiple tooth-like structures complete with all dental tissue layers. Genetic lineage-tracing confirms that odontoma form in a similar manner to normal teeth, derived from both the mutation-sustaining epithelial stem cells and adjacent mesenchymal tissues. Activation of the WNT pathway in embryonic SOX2-positive progenitors results in ectopic expression of secreted signals that promote odontogenesis throughout the oral cavity. Significantly, the inductive potential of epithelial dental stem cells is retained in postnatal tissues, and up-regulation of WNT signaling specifically in these cells is sufficient to promote generation and growth of ectopic malformations faithfully resembling human odontoma. PMID:26411543

  10. Activated WNT signaling in postnatal SOX2-positive dental stem cells can drive odontoma formation.

    PubMed

    Xavier, Guilherme M; Patist, Amanda L; Healy, Chris; Pagrut, Ankita; Carreno, Gabriela; Sharpe, Paul T; Martinez-Barbera, Juan Pedro; Thavaraj, Selvam; Cobourne, Martyn T; Andoniadou, Cynthia L

    2015-09-28

    In common with most mammals, humans form only two dentitions during their lifetime. Occasionally, supernumerary teeth develop in addition to the normal complement. Odontoma represent a small group of malformations containing calcified dental tissues of both epithelial and mesenchymal origin, with varying levels of organization, including tooth-like structures. The specific cell type responsible for the induction of odontoma, which retains the capacity to re-initiate de novo tooth development in postnatal tissues, is not known. Here we demonstrate that aberrant activation of WNT signaling by expression of a non-degradable form of β-catenin specifically in SOX2-positive postnatal dental epithelial stem cells is sufficient to generate odontoma containing multiple tooth-like structures complete with all dental tissue layers. Genetic lineage-tracing confirms that odontoma form in a similar manner to normal teeth, derived from both the mutation-sustaining epithelial stem cells and adjacent mesenchymal tissues. Activation of the WNT pathway in embryonic SOX2-positive progenitors results in ectopic expression of secreted signals that promote odontogenesis throughout the oral cavity. Significantly, the inductive potential of epithelial dental stem cells is retained in postnatal tissues, and up-regulation of WNT signaling specifically in these cells is sufficient to promote generation and growth of ectopic malformations faithfully resembling human odontoma.

  11. Postnatal Leptin Promotes Organ Maturation and Development in IUGR Piglets

    PubMed Central

    Attig, Linda; Brisard, Daphné; Larcher, Thibaut; Mickiewicz, Michal; Guilloteau, Paul; Boukthir, Samir; Niamba, Claude-Narcisse; Gertler, Arieh; Djiane, Jean; Monniaux, Danielle; Abdennebi-Najar, Latifa

    2013-01-01

    Babies with intra-uterine growth restriction (IUGR) are at increased risk for experiencing negative neonatal outcomes due to their general developmental delay. The present study aimed to investigate the effects of a short postnatal leptin supply on the growth, structure, and functionality of several organs at weaning. IUGR piglets were injected from day 0 to day 5 with either 0.5 mg/kg/d leptin (IUGRLep) or saline (IUGRSal) and euthanized at day 21. Their organs were collected, weighed, and sampled for histological, biochemical, and immunohistochemical analyses. Leptin induced an increase in body weight and the relative weights of the liver, spleen, pancreas, kidneys, and small intestine without any changes in triglycerides, glucose and cholesterol levels. Notable structural and functional changes occurred in the ovaries, pancreas, and secondary lymphoid organs. The ovaries of IUGRLep piglets contained less oogonia but more oocytes enclosed in primordial and growing follicles than the ovaries of IUGRSal piglets, and FOXO3A staining grade was higher in the germ cells of IUGRLep piglets. Within the exocrine parenchyma of the pancreas, IUGRLep piglets presented a high rate of apoptotic cells associated with a higher trypsin activity. In the spleen and the Peyer’s patches, B lymphocyte follicles were much larger in IUGRLep piglets than in IUGRSal piglets. Moreover, IUGRLep piglets showed numerous CD79+cells in well-differentiated follicle structures, suggesting a more mature immune system. This study highlights a new role for leptin in general developmental processes and may provide new insight into IUGR pathology. PMID:23741353

  12. Risk factors for antenatal depression, postnatal depression and parenting stress

    PubMed Central

    Leigh, Bronwyn; Milgrom, Jeannette

    2008-01-01

    Background Given that the prevalence of antenatal and postnatal depression is high, with estimates around 13%, and the consequences serious, efforts have been made to identify risk factors to assist in prevention, identification and treatment. Most risk factors associated with postnatal depression have been well researched, whereas predictors of antenatal depression have been less researched. Risk factors associated with early parenting stress have not been widely researched, despite the strong link with depression. The aim of this study was to further elucidate which of some previously identified risk factors are most predictive of three outcome measures: antenatal depression, postnatal depression and parenting stress and to examine the relationship between them. Methods Primipara and multiparae women were recruited antenatally from two major hoitals as part of the beyondblue National Postnatal Depression Program [1]. In this subsidiary study, 367 women completed an additional large battery of validated questionnaires to identify risk factors in the antenatal period at 26–32 weeks gestation. A subsample of these women (N = 161) also completed questionnaires at 10–12 weeks postnatally. Depression level was measured by the Beck Depression Inventory (BDI). Results Regression analyses identified significant risk factors for the three outcome measures. (1). Significant predictors for antenatal depression: low self-esteem, antenatal anxiety, low social support, negative cognitive style, major life events, low income and history of abuse. (2). Significant predictors for postnatal depression: antenatal depression and a history of depression while also controlling for concurrent parenting stress, which was a significant variable. Antenatal depression was identified as a mediator between seven of the risk factors and postnatal depression. (3). Postnatal depression was the only significant predictor for parenting stress and also acted as a mediator for other risk factors

  13. Identification of Active Retinaldehyde Dehydrogenase Isoforms in the Postnatal Human Eye

    PubMed Central

    Harper, Angelica R.; Wiechmann, Allan F.; Moiseyev, Gennadiy; Ma, Jian-Xing; Summers, Jody A.

    2015-01-01

    Background/Objectives Retinaldehyde dehydrogenase 2 (RALDH2) has been implicated in regulating all-trans-retinoic acid (atRA) synthesis in response to visual signals in animal models of myopia. To explore the potential role of retinaldehyde dehydrogenase (RALDH) enzymes and atRA in human postnatal ocular growth, RALDH activity, along with the distribution of RALDH1, RALDH2, and RALDH3 in the postnatal eye was determined. Methodology Retina, retinal pigment epithelium (RPE), choroid, and sclera were isolated from donor human eyes. RALDH catalytic activity was measured in tissue homogenates using an in vitro atRA synthesis assay together with HPLC quantification of synthesized atRA. Homogenates were compared by western blotting for RALDH1, RALDH2, and RALDH3 protein. Immunohistochemistry was used to determine RALDH1 and RALDH2 localization in posterior fundal layers of the human eye. Principal Findings In the postnatal human eye, RALDH catalytic activity was detected in the choroid (6.84 ± 1.20 pmol/hr/ug), RPE (5.46 ± 1.18 pmol/hr/ug), and retina (4.21 ± 1.55 pmol/hr/ug), indicating the presence of active RALDH enzymes in these tissues. RALDH2 was most abundant in the choroid and RPE, in moderate abundance in the retina, and in relatively low abundance in sclera. RALDH1 was most abundant in the choroid, in moderate abundance in the sclera, and substantially reduced in the retina and RPE. RALDH3 was undetectable in human ocular fundal tissues. In the choroid, RALDH1 and RALDH2 localized to slender cells in the stroma, some of which were closely associated with blood vessels. Conclusions/Significance Results of this study demonstrated that: 1) Catalytically active RALDH is present in postnatal human retina, RPE, and choroid, 2) RALDH1 and RALDH2 isoforms are present in these ocular tissues, and 3) RALDH1 and RALDH2 are relatively abundant in the choroid and/or RPE. Taken together, these results suggest that RALDH1 and 2 may play a role in the regulation of

  14. [Postnatal skeletal and body weight in beagles].

    PubMed

    Salomon, F V; Schulze, A; Böhme, U; Arnold, U; Gericke, A; Gille, U

    1999-08-01

    Growth of beagles is described on the basis of body weight and 14 bone measures. Eighteen male and 19 female dogs were investigated at 14 different ages from birth to the 13th month of life. Characteristics of the growth curves were evaluated using the modified Janoschek growth curve. For the classification into dwarfish, low, normal, big and gigantic growth, the growth curves are presented with percentiles. The arithmetic means and standard deviations for both sexes are presented in tables. Additionally, the degrees of maturity at birth (relative proportion of final weight or bone measure), the point of inflection for the growth curve, the times to grow to 50 and 95% of the final measures, and the asymptotic measures are also presented in tables. Sex differences in growth for the body weight and bone measures are discussed. Growth differences between large and small dog breeds are considered. The conclusion is drawn that the feeding of dogs has to be adapted to the growth course. PMID:10488625

  15. Postnatal testosterone levels and temperament in early infancy.

    PubMed

    Alexander, Gerianne M; Saenz, Janet

    2011-12-01

    Recent research showing associations between behavior and postnatal testosterone levels in male infants has suggested that the transient activation of the hypothalamic-pituitary-gonadal axis in early infancy may influence the expression of gender phenotypes in later development (i.e., the postnatal hormone hypothesis). As a further test of the relationship between postnatal hormones and behavior in infancy, we measured digit ratios and salivary testosterone in 76 male and female infants (3-4 months of age) and parents completed the Infant Behavior Questionnaire-Revised, a well-established measure of temperament in the first year of life. Consistent with our earlier findings, there were no significant sex differences in salivary testosterone levels and testosterone levels were unrelated to measures of behavior in female infants. However, in male infants, higher androgen levels predicted greater Negative Affectivity. Further examination of the four scales contributing to the measure of Negative Affectivity showed testosterone levels were a significant predictor of scores on the Distress to Limitations scale, but not of scores on Fear, Sadness, or Reactivity scales. This sex-specific association between salivary testosterone and behavior in infants is consistent with animal research showing higher prenatal androgens associated with typical male development lower the threshold of sensitivity to endogenous testosterone in postnatal life. In sum, these data provide additional support for the postnatal hormone hypothesis and suggest postnatal testosterone levels may influence the development of emotional regulation in male infants.

  16. Postnatal care: a cross-cultural and historical perspective.

    PubMed

    Eberhard-Gran, Malin; Garthus-Niegel, Susan; Garthus-Niegel, Kristian; Eskild, Anne

    2010-12-01

    Childbirth and the immediate postpartum period represent a major transition in a woman's life. This period is considered a vulnerable time for the mother and child in most societies, and rituals for this transition are common. In this study, we present some examples of postpartum customs in a cross-cultural and historical perspective. Also, we present the current knowledge on the possible impact of postnatal care on mental health. Systematic literature searches were performed in Medline, PsycINFO, and the Science Citation Index Expanded (ISI) for the time period 1966 through May 2010. Reference lists in books on pregnancy and childbirth from the University Library in Oslo were used to obtain additional information. We found that the postnatal period seems to be universally defined as 40 days. Most cultures have special postnatal customs, including special diet, isolation, rest, and assistance for the mother. The uniformity of customs across different cultures is striking. However, many postnatal customs that were common before 1950 are no longer existent. The focus on rest and assistance for the mother after delivery has gradually decreased. Studies of associations of postnatal care and mental health in the mother are limited and show inconsistent results. More knowledge is needed on postnatal care and mental health.

  17. Gestational heat stress alters postnatal offspring body composition indices and metabolic parameters in pigs.

    PubMed

    Boddicker, Rebecca L; Seibert, Jacob T; Johnson, Jay S; Pearce, Sarah C; Selsby, Joshua T; Gabler, Nicholas K; Lucy, Matthew C; Safranski, Timothy J; Rhoads, Robert P; Baumgard, Lance H; Ross, Jason W

    2014-01-01

    The study objectives were to test the hypothesis that heat stress (HS) during gestational development alters postnatal growth, body composition, and biological response to HS conditions in pigs. To investigate this, 14 first parity crossbred gilts were exposed to one of four environmental treatments (TNTN, TNHS, HSTN, or HSHS) during gestation. TNTN and HSHS dams were exposed to thermal neutral (TN, cyclical 18-22°C) or HS conditions (cyclical 28-34°C) during the entire gestation, respectively. Dams assigned to HSTN and TNHS treatments were heat-stressed for the first or second half of gestation, respectively. Postnatal offspring were exposed to one of two thermal environments for an acute (24 h) or chronic (five weeks) duration in either constant TN (21°C) or HS (35°C) environment. Exposure to chronic HS during their growth phase resulted in decreased longissimus dorsi cross-sectional area (LDA) in offspring from HSHS and HSTN treated dams whereas LDA was larger in offspring from dams in TNTN and TNHS conditions. Irrespective of HS during prepubertal postnatal growth, pigs from dams that experienced HS during the first half of gestation (HSHS and HSTN) had increased (13.9%) subcutaneous fat thickness compared to pigs from dams exposed to TN conditions during the first half of gestation. This metabolic repartitioning towards increased fat deposition in pigs from dams heat-stressed during the first half of gestation was accompanied by elevated blood insulin concentrations (33%; P = 0.01). Together, these results demonstrate HS during the first half of gestation altered metabolic and body composition parameters during future development and in biological responses to a subsequent HS challenge.

  18. Gestational Heat Stress Alters Postnatal Offspring Body Composition Indices and Metabolic Parameters in Pigs

    PubMed Central

    Boddicker, Rebecca L.; Seibert, Jacob T.; Johnson, Jay S.; Pearce, Sarah C.; Selsby, Joshua T.; Gabler, Nicholas K.; Lucy, Matthew C.; Safranski, Timothy J.; Rhoads, Robert P.; Baumgard, Lance H.; Ross, Jason W.

    2014-01-01

    The study objectives were to test the hypothesis that heat stress (HS) during gestational development alters postnatal growth, body composition, and biological response to HS conditions in pigs. To investigate this, 14 first parity crossbred gilts were exposed to one of four environmental treatments (TNTN, TNHS, HSTN, or HSHS) during gestation. TNTN and HSHS dams were exposed to thermal neutral (TN, cyclical 18–22°C) or HS conditions (cyclical 28–34°C) during the entire gestation, respectively. Dams assigned to HSTN and TNHS treatments were heat-stressed for the first or second half of gestation, respectively. Postnatal offspring were exposed to one of two thermal environments for an acute (24 h) or chronic (five weeks) duration in either constant TN (21°C) or HS (35°C) environment. Exposure to chronic HS during their growth phase resulted in decreased longissimus dorsi cross-sectional area (LDA) in offspring from HSHS and HSTN treated dams whereas LDA was larger in offspring from dams in TNTN and TNHS conditions. Irrespective of HS during prepubertal postnatal growth, pigs from dams that experienced HS during the first half of gestation (HSHS and HSTN) had increased (13.9%) subcutaneous fat thickness compared to pigs from dams exposed to TN conditions during the first half of gestation. This metabolic repartitioning towards increased fat deposition in pigs from dams heat-stressed during the first half of gestation was accompanied by elevated blood insulin concentrations (33%; P = 0.01). Together, these results demonstrate HS during the first half of gestation altered metabolic and body composition parameters during future development and in biological responses to a subsequent HS challenge. PMID:25383953

  19. Late Pleistocene-Holocene acceleration of uplift rate in southwest Erromango Island, Southern Vanuatu, South Pacific: relation to the growth of the Vanuatuan Mid Sedimentary Basin

    SciTech Connect

    Neef, G.; Hendy, C.

    1988-07-01

    Late Quaternary and Holocene raised coral reefs are well developed in southwestern Erromango Island, which lies in the frontal arc area of the Vanuatuan Island Arc. Eight uranium series ages and one /sup 14/C age from samples from coral reefs at three localities range in age from 4800 B.P. to about 320,000 B.P. Six of the samples dated are from the Matiwo Point area. Here the youngest reef has given a /sup 230/Th//sup 234/U age of 4800 B.P. and a slightly older reef, 4.3 m higher in elevation, has a /sup 14/C age of 5270 B.P. Inland of a cliff the youngest three of four northeastward-tilted raised reefs have given /sup 230/Th//sup 234/U ages ranging from 104,000 B.P. to about 320,000 B.P. These data indicate accelerating uplift rates for southwest Erromango: during the periods 320,000-133,000 B.P., 133,000-6000 B.P., and 6000 - 0 B.P. average uplift rates were 0.33 mm/yr, 0.65 mm/yr, and about 1 mm/yr respectively. These data are interpreted to indicate the growth of the Mid Sedimentary Basin, which lies within the frontal and volcanic arc part of the island arc complex. This increase in uplift/eastward-tilting could represent a Quaternary-Late Pleistocene increase in the subduction rate of the Australian Plate beneath Erromango.

  20. Current Topics in Postnatal Behavioral Testing.

    PubMed

    Henck, Judith W; Elayan, Ikram; Vorhees, Charles; Fisher, J Edward; Morford, LaRonda L

    2016-09-01

    The study of developmental neurotoxicity (DNT) continues to be an important component of safety evaluation of candidate therapeutic agents and of industrial and environmental chemicals. Developmental neurotoxicity is considered to be an adverse change in the central and/or peripheral nervous system during development of an organism and has been primarily evaluated by studying functional outcomes, such as changes in behavior, neuropathology, neurochemistry, and/or neurophysiology. Neurobehavioral evaluations are a component of a wide range of toxicology studies in laboratory animal models, whereas neurochemistry and neurophysiology are less commonly employed. Although the primary focus of this article is on neurobehavioral evaluation in pre- and postnatal development and juvenile toxicology studies used in pharmaceutical development, concepts may also apply to adult nonclinical safety studies and Environmental Protection Agency/chemical assessments. This article summarizes the proceedings of a symposium held during the 2015 American College of Toxicology annual meeting and includes a discussion of the current status of DNT testing as well as potential issues and recommendations. Topics include the regulatory context for DNT testing; study design and interpretation; behavioral test selection, including a comparison of core learning and memory systems; age of testing; repeated testing of the same animals; use of alternative animal models; impact of findings; and extrapolation of animal results to humans. Integration of the regulatory experience and scientific concepts presented during this symposium, as well as from subsequent discussion and input, provides a synopsis of the current state of DNT testing in safety assessment, as well as a potential roadmap for future advancement.

  1. Programming Effects of Prenatal Glucocorticoid Exposure with a Postnatal High-Fat Diet in Diabetes Mellitus

    PubMed Central

    Sheen, Jiunn-Ming; Hsieh, Chih-Sung; Tain, You-Lin; Li, Shih-Wen; Yu, Hong-Ren; Chen, Chih-Cheng; Tiao, Miao-Meng; Chen, Yu-Chieh; Huang, Li-Tung

    2016-01-01

    Increasing evidence has shown that many chronic diseases originate from early life, even before birth, through what are termed as fetal programming effects. Glucocorticoids are frequently used prenatally to accelerate the maturation of the lungs of premature infants. High-fat diets are associated with insulin resistance, but the effects of prenatal glucocorticoid exposure plus a postnatal high-fat diet in diabetes mellitus remain unclear. We administered pregnant Sprague-Dawley rats’ intraperitoneal dexamethasone (0.1 mg/kg body weight) or vehicle at gestational days 14–20. Male offspring were administered a normal or high-fat diet starting from weaning. We assessed the effects of prenatal steroid exposure plus postnatal high-fat diet on the liver, pancreas, muscle and fat at postnatal day 120. At 15 and 30 min, sugar levels were higher in the dexamethasone plus high-fat diet (DHF) group than the vehicle plus high-fat diet (VHF) group in the intraperitoneal glucose tolerance test (IPGTT). Serum insulin levels at 15, 30 and 60 min were significantly higher in the VHF group than in the vehicle and normal diet group. Liver insulin receptor and adenosine monophosphate-activated protein kinase mRNA expressions and protein levels were lower in the DHF group. Insulin receptor and insulin receptor substrate-1 mRNA expressions were lower in the epididymal adipose tissue in the VHF and DHF groups. “Programming” of liver or epididymal adipose tissue resulted from prenatal events. Prenatal steroid exposure worsened insulin resistance in animals fed a high-fat diet. PMID:27070590

  2. Programming Effects of Prenatal Glucocorticoid Exposure with a Postnatal High-Fat Diet in Diabetes Mellitus.

    PubMed

    Sheen, Jiunn-Ming; Hsieh, Chih-Sung; Tain, You-Lin; Li, Shih-Wen; Yu, Hong-Ren; Chen, Chih-Cheng; Tiao, Miao-Meng; Chen, Yu-Chieh; Huang, Li-Tung

    2016-04-08

    Increasing evidence has shown that many chronic diseases originate from early life, even before birth, through what are termed as fetal programming effects. Glucocorticoids are frequently used prenatally to accelerate the maturation of the lungs of premature infants. High-fat diets are associated with insulin resistance, but the effects of prenatal glucocorticoid exposure plus a postnatal high-fat diet in diabetes mellitus remain unclear. We administered pregnant Sprague-Dawley rats' intraperitoneal dexamethasone (0.1 mg/kg body weight) or vehicle at gestational days 14-20. Male offspring were administered a normal or high-fat diet starting from weaning. We assessed the effects of prenatal steroid exposure plus postnatal high-fat diet on the liver, pancreas, muscle and fat at postnatal day 120. At 15 and 30 min, sugar levels were higher in the dexamethasone plus high-fat diet (DHF) group than the vehicle plus high-fat diet (VHF) group in the intraperitoneal glucose tolerance test (IPGTT). Serum insulin levels at 15, 30 and 60 min were significantly higher in the VHF group than in the vehicle and normal diet group. Liver insulin receptor and adenosine monophosphate-activated protein kinase mRNA expressions and protein levels were lower in the DHF group. Insulin receptor and insulin receptor substrate-1 mRNA expressions were lower in the epididymal adipose tissue in the VHF and DHF groups. "Programming" of liver or epididymal adipose tissue resulted from prenatal events. Prenatal steroid exposure worsened insulin resistance in animals fed a high-fat diet.

  3. Postnatal ontogenesis of molecular clock in mouse striatum.

    PubMed

    Cai, Yanning; Liu, Shu; Li, Ning; Xu, Shengli; Zhang, Yanli; Chan, Piu

    2009-04-01

    Striatum is an important brain area whose function is related to motor, emotion and motivation. Interestingly, biological and physiological circadian rhythms have been found in the striatum extensively, suggesting molecular clock machinery works efficiently therein. However, the striatal expression profiles of clock genes have not been characterized systematically. In addition, little is known about when the expression rhythms start during postnatal ontogenesis. In the present study, 24 h mRNA oscillations of 6 principle clock genes (Bmal1, Clock, Npas2, Cry1, Per1 and Rev-erb alpha) were examined in mouse striatum, at early postnatal stage (postnatal day 3), pre-weaning stage (postnatal day 14) and in adult (postnatal day 60). At P3, no daily oscillation was found for all clock genes. At P14, a significant time effect was identified only for Rev-erb alpha and Npas2. At P60, the daily oscillations of these clock genes were at least borderline significant, with peak time at Circadian time (CT) 01 for Bmal1, Clock, Npas2 and Cry1; at CT 13 for Per1; and at CT 07 for Rev-erb alpha. In addition, the overall mean mRNA levels of these clock genes also underwent a dynamic change postnatally. For Bmal1, Clock, Npas2, Per1 and Rev-erb alpha, the expression level increased throughout the postnatal ontogenesis from P3, P14 to P60. For Cry1, however, the abundance at P3 and P60 were similar while that at P14 was much lower. In conclusion, the striatal molecular clock machinery, although works efficiently in adult, develops gradually after birth in mice.

  4. Supplementation with fish oil and coconut fat prevents prenatal stress-induced changes in early postnatal development.

    PubMed

    Borsonelo, Elizabethe C; Suchecki, Deborah; Calil, Helena Maria; Galduróz, José Carlos F

    2011-08-01

    Adequate development of the central nervous system depends on prenatal and postnatal factors. On one hand, prenatal stress (PNS) has been implicated in impaired development of the offspring. On other hand, nutritional factors during pregnancy and lactation can influence fetal and postnatal growth. This study assessed the postnatal development of rat offspring exposed to PNS, which consisted of restraint and bright lights, 3 times/day, from days 14 to 20 of pregnancy, whose mothers were fed different diets during pregnancy and lactation: regular diet, diet supplemented with coconut fat or fish oil. When pregnancy was confirmed, they were distributed into control (CTL) or PNS groups. At birth, PNS males and females weighed less than those in the group CTL. At 21 days of age, this alteration was no longer observed with fish oil and coconut fat groups. PNS and coconut fat diet induced increased locomotor activity in 13 day old male and female pups, and this effect was prevented by fish oil supplementation only in females. In conclusion, postnatal development from birth to weaning was influenced by PNS and diet and some of those alterations were prevented by coconut fat and fish oil.

  5. Impact of Early Postnatal Androgen Exposure on Voice Development

    PubMed Central

    Grisa, Leila; Leonel, Maria L.; Gonçalves, Maria I. R.; Pletsch, Francisco; Sade, Elis R.; Custódio, Gislaine; Zagonel, Ivete P. S.; Longui, Carlos A.; Figueiredo, Bonald C.

    2012-01-01

    Background The impact of early postnatal androgen exposure on female laryngeal tissue may depend on certain characteristics of this exposure. We assessed the impact of the dose, duration, and timing of early androgen exposure on the vocal development of female subjects who had been treated for adrenocortical tumor (ACT) in childhood. Methods The long-term effects of androgen exposure on the fundamental vocal frequency (F0), vocal pitch, and final height and the presence of virilizing signs were examined in 9 adult (age, 18.4 to 33.5 years) and 10 adolescent (13.6 to 17.8 years) female ACT patients. We also compared the current values with values obtained 0.9 years to 7.4 years after these subjects had undergone ACT surgery, a period during which they had shown normal androgen levels. Results Of the 19 subjects, 17 (89%) had been diagnosed with ACT before 4 years of age, 1 (5%) at 8.16 years, and 1 (5%) at 10.75 years. Androgen exposure (2 to 30 months) was sufficiently strong to cause pubic hair growth in all subjects and clitoromegaly in 74% (14/19) of the subjects, but did not reduce their height from the target value. Although androgen exposure induced a remarkable reduction in F0 (132 Hz) and moderate pitch virilization in 1 subject and partial F0 virilization, resulting in F0 of 165 and 169 Hz, in 2 subjects, the majority had normal F0 ranging from 189 to 245 Hz. Conclusions Female laryngeal tissue is less sensitive to androgen exposure between birth and adrenarche than during other periods. Differential larynx sensitivity to androgen exposure in childhood and F0 irreversibility in adulthood are age-, concentration-, duration-, and timing-dependent events that may also be affected by exposure to inhibitory or stimulatory hormones. Further studies are required to better characterize each of these factors. PMID:23284635

  6. The neurogenic competence of progenitors from the postnatal rat retina in vitro.

    PubMed

    Engelhardt, Maren; Wachs, Frank-Peter; Couillard-Despres, Sebastien; Aigner, Ludwig

    2004-05-01

    differences in growth and differentiation potential of adult neural stem cells and postnatal and adult retinal progenitors are presented. PMID:15051483

  7. Growth

    NASA Astrophysics Data System (ADS)

    Waag, Andreas

    This chapter is devoted to the growth of ZnO. It starts with various techniques to grow bulk samples and presents in some detail the growth of epitaxial layers by metal organic chemical vapor deposition (MOCVD), molecular beam epitaxy (MBE), and pulsed laser deposition (PLD). The last section is devoted to the growth of nanorods. Some properties of the resulting samples are also presented. If a comparison between GaN and ZnO is made, very often the huge variety of different growth techniques available to fabricate ZnO is said to be an advantage of this material system. Indeed, growth techniques range from low cost wet chemical growth at almost room temperature to high quality MOCVD growth at temperatures above 1, 000∘C. In most cases, there is a very strong tendency of c-axis oriented growth, with a much higher growth rate in c-direction as compared to other crystal directions. This often leads to columnar structures, even at relatively low temperatures. However, it is, in general, not straight forward to fabricate smooth ZnO thin films with flat surfaces. Another advantage of a potential ZnO technology is said to be the possibility to grow thin films homoepitaxially on ZnO substrates. ZnO substrates are mostly fabricated by vapor phase transport (VPT) or hydrothermal growth. These techniques are enabling high volume manufacturing at reasonable cost, at least in principle. The availability of homoepitaxial substrates should be beneficial to the development of ZnO technology and devices and is in contrast to the situation of GaN. However, even though a number of companies are developing ZnO substrates, only recently good quality substrates have been demonstrated. However, these substrates are not yet widely available. Still, the situation concerning ZnO substrates seems to be far from low-cost, high-volume production. The fabrication of dense, single crystal thin films is, in general, surprisingly difficult, even when ZnO is grown on a ZnO substrate. However

  8. Post-natal depression: the relevance of sociological approaches.

    PubMed

    Thurtle, V

    1995-09-01

    Post-natal depression is much discussed yet definitions and approaches are not homogenous, neither in terms of the cause of post-partum mental ill health, its treatment or how further research in the area should proceed. This paper seeks to examine post-natal 'upsets' and to consider the different explanations that have been and could be made of post-partum mental ill health. The paper reviews the dominant biomedical and psychological approaches, evaluating their ability to explain post-natal mental illness. The writer believes biological and psychological approaches are in the ascendance but seeks to demonstrate that they do not present a full picture. Sociological approaches drawing upon stress, labelling and feminist models are examined, exploring new ways of looking at post-natal illness. The paper concludes that biological and psychological approaches do not provide complete explanations and a multidisciplinary approach is needed. Most significantly the woman's own perception of post-natal ill health is largely absent from the literature. The need for an approach using ethnographic methods is highlighted. PMID:7499607

  9. Wakefield accelerators

    SciTech Connect

    Simpson, J.D.

    1990-01-01

    The search for new methods to accelerate particle beams to high energy using high gradients has resulted in a number of candidate schemes. One of these, wakefield acceleration, has been the subject of considerable R D in recent years. This effort has resulted in successful proof of principle experiments and in increased understanding of many of the practical aspects of the technique. Some wakefield basics plus the status of existing and proposed experimental work is discussed, along with speculations on the future of wake field acceleration. 10 refs., 6 figs.

  10. LINEAR ACCELERATOR

    DOEpatents

    Colgate, S.A.

    1958-05-27

    An improvement is presented in linear accelerators for charged particles with respect to the stable focusing of the particle beam. The improvement consists of providing a radial electric field transverse to the accelerating electric fields and angularly introducing the beam of particles in the field. The results of the foregoing is to achieve a beam which spirals about the axis of the acceleration path. The combination of the electric fields and angular motion of the particles cooperate to provide a stable and focused particle beam.

  11. Comparative analysis of cytosolic and mitochondrial ATP synthesis in embryonic and postnatal hippocampal neuronal cultures

    PubMed Central

    Surin, Alexander M.; Khiroug, Serguei; Gorbacheva, Lubov R.; Khodorov, Boris I.; Pinelis, Vsevolod G.; Khiroug, Leonard

    2013-01-01

    ATP in neurons is commonly believed to be synthesized mostly by mitochondria via oxidative phosphorylation. Neuronal mitochondria have been studied primarily in culture, i.e., in neurons isolated either from embryos or from neonatal pups. Although it is generally assumed that both embryonic and postnatal cultured neurons derive their ATP from mitochondrial oxidative phosphorylation, this has never been tested experimentally. We expressed the FRET-based ATP sensor AT1.03 in cultured hippocampal neurons isolated either from E17 to E18 rat embryos or from P1 to P2 rat pups and monitored [ATP]c simultaneously with mitochondrial membrane potential (ΔΨm; TMRM) and NAD(P)H autofluorescence. In embryonic neurons, transient glucose deprivation induced a near-complete decrease in [ATP]c, which was partially reversible and was accelerated by inhibition of glycolysis with 2-deoxyglucose. In the absence of glucose, pyruvate did not cause any significant increase in [ATP]c in 84% of embryonic neurons, and inhibition of mitochondrial ATP synthase with oligomycin failed to decrease [ATP]c. Moreover, ΔΨm was significantly reduced by oligomycin, indicating that mitochondria acted as consumers rather than producers of ATP in embryonic neurons. In sharp contrast, in postnatal neurons pyruvate added during glucose deprivation significantly increased [ATP]c (by 54 ± 8%), whereas oligomycin induced a sharp decline in [ATP]c and increased ΔΨm. These signs of oxidative phosphorylation were observed in all tested P1–P2 neurons. Measurement of ΔΨm with the potential-sensitive probe JC-1 revealed that neuronal mitochondrial membrane potential was significantly reduced in embryonic cultures compared to the postnatal ones, possibly due to increased proton permeability of inner mitochondrial membrane. We conclude that, in embryonic, but not postnatal neuronal cultures, ATP synthesis is predominantly glycolytic and the oxidative phosphorylation-mediated synthesis of ATP by

  12. ION ACCELERATOR

    DOEpatents

    Bell, J.S.

    1959-09-15

    An arrangement for the drift tubes in a linear accelerator is described whereby each drift tube acts to shield the particles from the influence of the accelerating field and focuses the particles passing through the tube. In one embodiment the drift tube is splii longitudinally into quadrants supported along the axis of the accelerator by webs from a yoke, the quadrants. webs, and yoke being of magnetic material. A magnetic focusing action is produced by energizing a winding on each web to set up a magnetic field between adjacent quadrants. In the other embodiment the quadrants are electrically insulated from each other and have opposite polarity voltages on adjacent quadrants to provide an electric focusing fleld for the particles, with the quadrants spaced sufficienily close enough to shield the particles within the tube from the accelerating electric field.

  13. Acceleration switch

    DOEpatents

    Abbin, J.P. Jr.; Devaney, H.F.; Hake, L.W.

    1979-08-29

    The disclosure relates to an improved integrating acceleration switch of the type having a mass suspended within a fluid filled chamber, with the motion of the mass initially opposed by a spring and subsequently not so opposed.

  14. Acceleration switch

    DOEpatents

    Abbin, Jr., Joseph P.; Devaney, Howard F.; Hake, Lewis W.

    1982-08-17

    The disclosure relates to an improved integrating acceleration switch of the type having a mass suspended within a fluid filled chamber, with the motion of the mass initially opposed by a spring and subsequently not so opposed.

  15. Prenatal stimulation and postnatal testosterone affects infanticide in female rats.

    PubMed

    Miley, W M; Blustein, J; Kennedy, K

    1982-04-01

    Prenatal handling, prenatal stress, and early postnatal exogeneous testosterone were examined in female rats for their effects on rat pup-killing and pup retrieval. During each of the last 5 days of pregnancy. Long-Evans rats received either 3 minutes of handling, 45 minutes of restraint and intense illumination or remained untouched. Half of the offspring of each group received testosterone from Day 1 after birth to Day 30. In adulthood, animals that received handling prenatally and testosterone postnatally killed pups more rapidly than any other group and a larger proportion did so than in the control groups. Animals not manipulated at any time retrieved pups more rapidly and a larger proportion did so than the combined other groups. The study suggests that prenatal handling interacts with testosterone presented immediately postnatally to increase infanticide in female rats. A variety of perinatal manipulations seem to suppress pup retrieval. PMID:7200619

  16. A woman-led approach to improving postnatal care.

    PubMed

    Fryer-Croxall, Claire; Bailey, Elizabeth

    2014-01-01

    As a large NHS teaching trust we see 6,000 women a year who birth with us. Newly appointed as a modern matron, I noted that poor experience on our postnatal ward has always been a key issue in the complaints we receive and from the feedback that our women give to us. The ImPosE (improving postnatal experience) project was launched in December 2013. This brought together members of the multidisciplinary team who were committed to developing our postnatal ward and improving it for our women and their families. We used a quality management approach, putting 'customer' experience at the core, and implemented a varied package of changes as directed by feedback from service users. PMID:25109071

  17. A woman-led approach to improving postnatal care.

    PubMed

    Fryer-Croxall, Claire; Bailey, Elizabeth

    2014-01-01

    As a large NHS teaching trust we see 6,000 women a year who birth with us. Newly appointed as a modern matron, I noted that poor experience on our postnatal ward has always been a key issue in the complaints we receive and from the feedback that our women give to us. The ImPosE (improving postnatal experience) project was launched in December 2013. This brought together members of the multidisciplinary team who were committed to developing our postnatal ward and improving it for our women and their families. We used a quality management approach, putting 'customer' experience at the core, and implemented a varied package of changes as directed by feedback from service users.

  18. LINEAR ACCELERATOR

    DOEpatents

    Christofilos, N.C.; Polk, I.J.

    1959-02-17

    Improvements in linear particle accelerators are described. A drift tube system for a linear ion accelerator reduces gap capacity between adjacent drift tube ends. This is accomplished by reducing the ratio of the diameter of the drift tube to the diameter of the resonant cavity. Concentration of magnetic field intensity at the longitudinal midpoint of the external sunface of each drift tube is reduced by increasing the external drift tube diameter at the longitudinal center region.

  19. Environmental factors influencing growth and pubertal development.

    PubMed Central

    Delemarre-van de Waal, H A

    1993-01-01

    Postnatal growth is based on hereditary signals and environmental factors in a complex regulatory network. Each factor must be in an optimal state for normal growth of the child. Fetal conditions may also have consequences on postnatal height. Intrauterine growth retardation can be recovered postnatally, although postnatal growth remains depressed in about one-third of cases. After birth, the environment may exert either a positive or negative effect on growth. In underdeveloped countries, malnutrition plays a major role in inhibiting the growth process. Children from families of higher socioeconomic classes are taller than their coevals in the lower socioeconomic groups. Urbanization also has a positive effect on growth. Better child care is supported by sufficient food supply, appropriate health and sanitation services, and a higher level of education. Over the last century, these factors have induced a taller stature and a more rapid maturity in Europe, North America, and Australia; a phenomenon which has been referred to as "the secular trend" in growth. Recently, a secular trend has also been reported in some developing countries. Although urbanization in general appears to be associated with better conditions of living, this is not the case in the slums of South America or in Africa where rural children are better off than children living in the poor cities. This paper describes in more detail the different hereditary and environmental factors that act during the fetal period and postnatally, and which play a role in human growth and pubertal development. PMID:8243404

  20. Running in pregnancy transiently increases postnatal hippocampal neurogenesis in the offspring

    PubMed Central

    Bick-Sander, Anika; Steiner, Barbara; Wolf, Susanne A.; Babu, Harish; Kempermann, Gerd

    2006-01-01

    Voluntary wheel running of mice in pregnancy and lactation led to a twofold increase in hippocampal precursor-cell proliferation and in the number of Prox1-expressing lineage-determined cells at postnatal day 8 (P8). At P36, the number of newly generated granule cells approximately doubled, resulting in a 40% higher total number of granule cells in pups from running dams as compared with controls. Cell proliferation at embryonic day 15 (E15), in contrast, was decreased in the progeny of exercising mice, and the birth weight was reduced. At P49, body weight had normalized, and hippocampal neurogenesis was not different between the two groups. mRNA for FGF2 was expressed at higher levels at E15 and P8 in runner pups, whereas VEGF was increased only at E15. Insulin-like growth factor did not show differences at any time point. At P36, no differences for any of the factors were found. Our data indicate that maternal behavior and physical activity affects infantile growth-factor expression and can transiently stimulate postnatal hippocampal development in the offspring. PMID:16537457

  1. Lack of toxic effect of technical azadirachtin during postnatal development of rats.

    PubMed

    Srivastava, M K; Raizada, R B

    2007-03-01

    Azadirachtin, a biopesticide has been evaluated for its possible toxic effects during postnatal development of rats over two generations. Rats were fed 100, 500 and 1000ppm technical azadirachtin through diet which is equivalent to 5, 25 and 50mg/kg body weight of rats. Technical azadirachtin has not produced any adverse effects on reproductive function and data were comparable to control animals over two generations. There were no toxicological effect in parent rats as evidenced by clinical signs of toxicity, enzymatic parameters like AST, ALT, ALP, S. bilirubin, S. cholesterol, total protein and histopathology of liver, brain, kidney and testes/ovary. The litters of F(1B) and F(2B) generations were devoid of any morphological, visceral and teratological changes. The percent cumulative loss and growth index of pups were also comparable to respective controls in successive growth period of 0, 4, 7, 14 and 21 days in two generations. There were no major malformations in fetuses while some insignificant minor skeletal variations like missing 5th sternebrae and bipartite thoracic centre found were not compound or dose related. No significant pathomorphological changes were observed in liver, kidney, brain and gonads of F(2B) pups. In conclusion rats fed technical azadirachtin showed no evidence of cumulative effects on postnatal development and reproductive performance over two generations. Absence of any major adverse reproductive effects in adults as well as in 21 days old pups of F(2B) generation suggest the safe use of technical azadirachtin as a biopesticide. PMID:17084955

  2. Running in pregnancy transiently increases postnatal hippocampal neurogenesis in the offspring.

    PubMed

    Bick-Sander, Anika; Steiner, Barbara; Wolf, Susanne A; Babu, Harish; Kempermann, Gerd

    2006-03-01

    Voluntary wheel running of mice in pregnancy and lactation led to a twofold increase in hippocampal precursor-cell proliferation and in the number of Prox1-expressing lineage-determined cells at postnatal day 8 (P8). At P36, the number of newly generated granule cells approximately doubled, resulting in a 40% higher total number of granule cells in pups from running dams as compared with controls. Cell proliferation at embryonic day 15 (E15), in contrast, was decreased in the progeny of exercising mice, and the birth weight was reduced. At P49, body weight had normalized, and hippocampal neurogenesis was not different between the two groups. mRNA for FGF2 was expressed at higher levels at E15 and P8 in runner pups, whereas VEGF was increased only at E15. Insulin-like growth factor did not show differences at any time point. At P36, no differences for any of the factors were found. Our data indicate that maternal behavior and physical activity affects infantile growth-factor expression and can transiently stimulate postnatal hippocampal development in the offspring. PMID:16537457

  3. Decreased beige adipocyte number and mitochondrial respiration coincide with reduced FGF21 gene expression in Sprague Dawley rats fed prenatal low protein and postnatal high fat diets

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We have shown that protein malnutrition during fetal growth followed by postnatal high-fat diets results in a rapid increase in subcutaneous adipose tissue mass in the offspring contributing to development of obesity and insulin resistance. Recent studies have shown that the absence of a key transcr...

  4. Microwave inverse Cerenkov accelerator

    NASA Astrophysics Data System (ADS)

    Zhang, T. B.; Marshall, T. C.; LaPointe, M. A.; Hirshfield, J. L.

    1997-03-01

    A Microwave Inverse Cerenkov Accelerator (MICA) is currently under construction at the Yale Beam Physics Laboratory. The accelerating structure in MICA consists of an axisymmetric dielectrically lined waveguide. For the injection of 6 MeV microbunches from a 2.856 GHz RF gun, and subsequent acceleration by the TM01 fields, particle simulation studies predict that an acceleration gradient of 6.3 MV/m can be achieved with a traveling-wave power of 15 MW applied to the structure. Synchronous injection into a narrow phase window is shown to allow trapping of all injected particles. The RF fields of the accelerating structure are shown to provide radial focusing, so that longitudinal and transverse emittance growth during acceleration is small, and that no external magnetic fields are required for focusing. For 0.16 nC, 5 psec microbunches, the normalized emittance of the accelerated beam is predicted to be less than 5πmm-mrad. Experiments on sample alumina tubes have been conducted that verify the theoretical dispersion relation for the TM01 mode over a two-to-one range in frequency. No excitation of axisymmetric or non-axisymmetric competing waveguide modes was observed. High power tests showed that tangential electric fields at the inner surface of an uncoated sample of alumina pipe could be sustained up to at least 8.4 MV/m without breakdown. These considerations suggest that a MICA test accelerator can be built to examine these predictions using an available RF power source, 6 MeV RF gun and associated beam line.

  5. Congenital salivary gland anlage tumor - in utero and postnatal imaging.

    PubMed

    Radhakrishnan, Rupa; Calvo-Garcia, Maria A; Lim, Foong-Yen; Elluru, Ravindhra G; Koch, Bernadette L

    2015-03-01

    We present a case of an infant with congenital salivary gland anlage tumor, with fetal and postnatal imaging. To the best of our knowledge, this is the first case describing the in utero imaging findings of salivary gland anlage tumor. A fetal MRI was performed secondary to the clinical finding of polyhydramnios, which identified a nasopharyngeal mass. Because findings were concerning for airway obstruction, the fetus was delivered by ex utero intrapartum treatment (EXIT) to airway procedure. A postnatal CT confirmed the findings of the fetal MRI. The lesion was resected when the baby was 4 days old and recovery was uneventful.

  6. High-fat/fructose feeding during prenatal and postnatal development in female rats increases susceptibility to renal and metabolic injury later in life.

    PubMed

    Flynn, Elizabeth R; Alexander, Barbara T; Lee, Jonathan; Hutchens, Zachary M; Maric-Bilkan, Christine

    2013-02-15

    Accumulating evidence suggests that both an adverse prenatal and early postnatal environment increase susceptibility to renal and metabolic dysfunction later in life; however, whether exposure to adverse conditions during both prenatal and postnatal development act synergistically to potentiate the severity of renal and metabolic injury remains unknown. Sprague-Dawley rats were fed either a standard diet or a diet high in fat/fructose throughout pregnancy and lactation. After being weaned, female offspring were randomized to either standard diet or the high-fat/high-fructose diet, resulting in the following treatment groups: NF-NF, offspring of mothers fed a standard diet and fed a standard diet postnatally; NF-HF, offspring of mothers fed a standard diet and fed a high-fat/fructose diet postnatally; HF-NF, offspring of mothers fed a high-fat/fructose diet and fed a standard diet postnatally; HF-HF, offspring of mothers fed a high-fat/fructose diet and fed a high-fat/fructose diet postnatally. At the time of euthanasia (17 wk of age), HF-HF offspring weighed 30% more and had 110% more visceral fat than NF-NF offspring. The HF-HF offspring also had elevated blood glucose levels, glucose intolerance, 286% increase in urine albumin excretion, and 60% increase in glomerulosclerosis compared with NF-NF. In addition, HF-HF offspring exhibited a 100% increase in transforming growth factor-β protein expression and 116% increase in the abundance of infiltrated macrophages compared with the NF-NF offspring. These observations suggest that high-fat/fructose feeding during prenatal and throughout postnatal life increases the susceptibility to renal and metabolic injury later in life.

  7. Perturbations for transient acceleration

    SciTech Connect

    Vargas, Cristofher Zuñiga; Zimdahl, Winfried; Hipólito-Ricaldi, Wiliam S. E-mail: hipolito@ceunes.ufes.br

    2012-04-01

    According to the standard ΛCDM model, the accelerated expansion of the Universe will go on forever. Motivated by recent observational results, we explore the possibility of a finite phase of acceleration which asymptotically approaches another period of decelerated expansion. Extending an earlier study on a corresponding homogeneous and isotropic dynamics, in which interactions between dark matter and dark energy are crucial, the present paper also investigates the dynamics of the matter perturbations both on the Newtonian and General Relativistic (GR) levels and quantifies the potential relevance of perturbations of the dark-energy component. In the background, the model is tested against the Supernova type Ia (SNIa) data of the Constitution set and on the perturbative level against growth rate data, among them those of the WiggleZ survey, and the data of the 2dFGRS project. Our results indicate that a transient phase of accelerated expansion is not excluded by current observations.

  8. The temporal dynamics of consolidation and reconsolidation decrease during postnatal development

    PubMed Central

    Languille, Solène; Gruest, Nadège; Richer, Paullette; Hars, Bernard

    2008-01-01

    The temporal dynamics of consolidation and reconsolidation of taste/odor aversion memory are evaluated during rat pup growth at postnatal days 3, 10, and 18. This is assessed through the temporal gradients of efficacy of a protein synthesis inhibitor (anisomycin) in inducing amnesia after either acquisition (consolidation) or reactivation (reconsolidation). The results show a progressive reduction with age of the delay during which the inhibitor is able to induce amnesia. Control experiments rule out a reduction of anisomycin efficacy due to blood brain barrier growth or decrease in protein synthesis inhibition. Thus, these results present the first evidence that the protein synthesis-dependent phase of memory stabilization requires less time with age. This decrease occurs in parallel for consolidation and reconsolidation. Such changes in the dynamics of memory processing could contribute to the cognitive improvement associated with development. PMID:18519544

  9. Relevé postnatal Rourke 2014

    PubMed Central

    Riverin, Bruno; Li, Patricia; Rourke, Leslie; Leduc, Denis; Rourke, James

    2015-01-01

    Résumé Objectif Mettre à jour la version de 2011 du Relevé postnatal Rourke (RPR) à la suite d’une révision des meilleures données probantes récentes sur le suivi de la santé des nourrissons et des enfants de la naissance jusqu’à l’âge de 5 ans. Qualité des données La qualité des données a été cotée en fonction de l’ancien système de classification du Groupe d’étude canadien sur les soins de santé préventifs (jusqu’à 2006) et l’approche de détermination, d’élaboration et d’évaluation des recommandations (GRADE). Message principal De nouveaux faits scientifiques ont été pris en compte dans les recommandations du RPR 2014 en ce qui a trait au suivi de la croissance, à la nutrition, à l’éducation et aux conseils, au développement, à l’examen physique et à l’immunisation. La croissance est surveillée à l’aide des courbes de l’Organisation mondiale de la Santé qui ont été révisées en 2014. On devrait introduire les aliments solides en fonction de l’état de préparation du nourrisson et ces produits devraient contenir du fer. Il n’est actuellement plus recommandé de retarder l’introduction des allergènes alimentaires courants pour prévenir les allergies. Il faut promouvoir l’utilisation d’une tasse sans couvercle au lieu d’une tasse à bec dès l’âge de 12 mois. La section sur l’éducation et les conseils porte sur les blessures causées par du mobilier instable, ainsi que l’utilisation d’un siège d’auto orienté vers l’arrière jusqu’à 2 ans. Elle comporte aussi de l’information sur les saines habitudes de sommeil, la prévention de la maltraitance des enfants, la vie saine et active et la sédentarité de la famille, de même que l’hygiène buccale. On a aussi ajouté à cette section une nouvelle catégorie consacrée à la santé environnementale pour tenir compte des effets des dangers environnementaux sur la santé des enfants. Le RPR a recours à une

  10. Sonic hedgehog cascade is required for penile postnatal morphogenesis, differentiation, and adult homeostasis.

    PubMed

    Podlasek, Carol A; Zelner, David J; Jiang, Hong Bin; Tang, Yi; Houston, John; McKenna, Kevin E; McVary, Kevin T

    2003-02-01

    The penis is unique in that it undergoes morphogenesis and differentiation primarily in the postnatal period. For complex structures such as the penis to be made from undifferentiated precursor cells, proliferation, differentiation, and patterning are required. This process involves coordinated activity of multiple signals. Sonic hedgehog (Shh) forms part of a regulatory cascade that is essential for growth and morphogenesis of many tissues. It is hypothesized that the penis utilizes regulatory mechanisms similar to those of the limb and accessory sex organs to pattern penile postnatal morphogenesis and differentiation and that the Shh cascade is critical to this process. To test this hypothesis, Shh, BMP-4, Ptc, and Hoxa-10 localization and function were examined in Sprague-Dawley rat penes by means of quantitative reverse transcription polymerase chain reaction, in situ hybridization, immunohistochemistry, and Western blotting. These genes were expressed in the penis during postnatal morphogenesis in a spatially and temporally restricted manner in adjacent layers of the corpora cavernosal sinusoids. The function of Shh and BMP-4 is to establish and maintain corpora cavernosal sinusoids. The data suggest that Ptc and Hoxa-10 are also important in penile morphogenesis. The continuing function of Shh and targets of its signaling in maintaining penile homeostasis in the adult is significant because disruption of Shh signaling affects erectile function. This is the first report that demonstrates the significant role that Shh plays in establishing and maintaining penile homeostasis and how this relates to erectile function. These studies provide valuable insight that may be applied to improve treatment options for erectile dysfunction. PMID:12533405

  11. Polysialylation of NCAM characterizes the proliferation period of contractile elements during postnatal development of the epididymis.

    PubMed

    Simon, Peter; Feuerstacke, Caroline; Kaese, Miriam; Saboor, Farhan; Middendorff, Ralf; Galuska, Sebastian P

    2015-01-01

    Polysialic acid (polySia) attached to the neural cell adhesion molecule (NCAM) regulates inter alia the proliferation and differentiation via the interactions with neurotrophins. Since in postnatal epididymis neurotrophins and their receptors like the Low-Affinity Nerve Growth Factor Receptor p75 and TrK B receptor are expressed, we wanted to analyze if the polysialylation of NCAM is also involved during the development of the epididymis. To this end, we monitored the developmental changes in the expression of the polysialyltransferases and NCAM polysialylation using murine epididymis at different time points during postnatal development. Our results revealed that during postnatal development of the epididymis both polysialyltransferases, ST8SiaII and ST8SiaIV, were expressed and that the expression levels dropped with increasing age. In agreement with the expression levels of the polysialyltransferases the highest content of polysialylated NCAM was present during the first 10 days after birth. Interestingly, proliferating smooth muscle cell populations prevalently expressed polysialylated NCAM. Furthermore, we observed that inverse to the decrease in polysialylation of smooth muscle cells a strong up-regulation of collagen takes place suggesting a functional relationship since collagen was recently described to induce the turnover of polysialylated NCAM via an induction of endocytosis in cellulo. The same time course of polySia and collagen synthesis was also observed in other regions of the male reproductive system e.g. vas deferens and tunica albuginea (testis). Together, we identified a spatio-temporal expression pattern of polySia-NCAM characterized by high proliferation rate of smooth muscle cells and low collagen content.

  12. A Critical Period for Postnatal Adaptive Plasticity in a Model of Motor Axon Miswiring

    PubMed Central

    Castiblanco-Urbina, Maria A.; Winzeck, Stefan; Sundermeier, Julia; Theis, Fabian J.; Fouad, Karim; Huber, Andrea B.

    2015-01-01

    The correct wiring of neuronal circuits is of crucial importance for precise neuromuscular functionality. Therefore, guidance cues provide tight spatiotemporal control of axon growth and guidance. Mice lacking the guidance cue Semaphorin 3F (Sema3F) display very specific axon wiring deficits of motor neurons in the medial aspect of the lateral motor column (LMCm). While these deficits have been investigated extensively during embryonic development, it remained unclear how Sema3F mutant mice cope with these errors postnatally. We therefore investigated whether these animals provide a suitable model for the exploration of adaptive plasticity in a system of miswired neuronal circuitry. We show that the embryonically developed wiring deficits in Sema3F mutants persist until adulthood. As a consequence, these mutants display impairments in motor coordination that improve during normal postnatal development, but never reach wildtype levels. These improvements in motor coordination were boosted to wildtype levels by housing the animals in an enriched environment starting at birth. In contrast, a delayed start of enriched environment housing, at 4 weeks after birth, did not similarly affect motor performance of Sema3F mutants. These results, which are corroborated by neuroanatomical analyses, suggest a critical period for adaptive plasticity in neuromuscular circuitry. Interestingly, the formation of perineuronal nets, which are known to close the critical period for plastic changes in other systems, was not altered between the different housing groups. However, we found significant changes in the number of excitatory synapses on limb innervating motor neurons. Thus, we propose that during the early postnatal phase, when perineuronal nets have not yet been formed around spinal motor neurons, housing in enriched environment conditions induces adaptive plasticity in the motor system by the formation of additional synaptic contacts, in order to compensate for coordination

  13. Prenatal exposure of a novel antipsychotic aripiprazole: impact on maternal, fetal and postnatal body weight modulation in rats.

    PubMed

    Singh, K P; Tripathi, Nidhi

    2014-03-01

    Nearly all atypical antipsychotic drugs (AAPDs) of second- generation are associated with body weight gain in adults with prolonged exposure; but reports on third-generation AAPDs like Aripiprazole (ARI) and weight gain are scanty and ambiguous. This may be attributed to some unknown mechanism of action, the study of which is essential to investigate gestational exposure of equivalent therapeutic doses of ARI on maternal and fetal weight gain and its longlasting impact on postnatal development and growth of offspring in rodent model. 30 pregnant Wistar rats were exposed to selected doses (2mg, 3mg and 5mg/kg BW) of ARI from GD3-21 orally, with control subjects. Half of the pregnant subjects of each group were sacrificed at GD22 and rest dams were allowed to deliver normally and pups were reared postnatally up to 10 weeks of age. In ARI treated groups, there was no substantial alteration of body weight gain and food intake in pregnant subjects while significant reduction was found in fetal and postnatal (pre-and post weaning) body weight gain. ARI was found neutral for substantial weight gain in pregnant rats but may induce significant weight loss in fetuses, creating long-lasting negative impact on offspring growth (in weight) till PND70. Therefore, ARI could be a good alternative of second- generation AAPDs for adult females but may not be safe for developing fetuses and offspring.

  14. Intracortical distribution of number and volume of glomeruli during postnatal maturation in the dog

    PubMed Central

    Horster, Michael; Kemler, Barry J.; Valtin, Heinz

    1971-01-01

    Morphometric analysis was carried out on kidneys of neonatal dogs in which function of the entire kidney and of single nephrons had been evaluated. Measurements were begun after neogenesis of nephrons had been completed, i.e., at the end of the 3rd postnatal wk. They were continued to 74 days by which time glomerular function, expressed per unit of renal weight, had reached the mature level. For statistical analysis, the cortical histogram at each age was divided into eight zones of equal depth between the capsule and corticomedullary junction. The mean total number of glomeruli in this beagle strain was 589 × 103 per kidney. The fraction of the total number of glomeruli was lowest in the subcapsular layer (3.9%) and highest (24.5%) in the zone immediately beneath from where it decreased almost linearly to a value of 4.5% in the juxtamedullary region. This numerical distribution did not change with age, which suggests that growth of nonglomerular structures proceeded at the same rate in all cortical layers. Volume of the glomerular tuft rose slightly between the subcapsular and next layer and remained constant down to the juxtamedullary region where it increased sharply. The juxtamedullary glomerulus was about 45% larger in volume than the other glomeruli. This intracortical distribution of glomerular volume did not vary between 23 and 74 days, although the volume of an individual glomerulus at each level increased slightly with age. Total glomerular volume increased by 33% during the postnatal period studied, whereas simultaneously nonglomerular cortical volume rose by 235%. On the assumption that nonglomerular tissue consists mainly of tubules, the data suggest that the rate of tubular growth far exceeded that of glomerular growth. Despite this difference in glomerular and tubular growth rates, analysis of single nephrons in these dogs demonstrates constant and mature proximal fractional reabsorption of sodium and water. Images PMID:5547276

  15. Adverse metabolic phenotype in low-birth-weight lambs and its modification by postnatal nutrition.

    PubMed

    Wallace, Jacqueline M; Milne, John S; Adam, Clare L; Aitken, Raymond P

    2012-02-01

    Both high and low maternal dietary intakes adversely affect fetal nutrient supply in adolescent sheep pregnancies. Aims were: (a) to assess the impact of prenatal nutrition on pregnancy outcome, offspring growth and offspring glucose metabolism and (b) to determine whether the offspring metabolic phenotype could then be altered by modifying postnatal nutrition. Dams carrying a single fetus were offered either an optimal control (C) intake to maintain adiposity throughout pregnancy, undernourished to maintain weight at conception but deplete maternal reserves (UN), or overnourished to promote rapid maternal growth and adiposity (ON). Placental weight and gestation length were reduced in ON dams and lamb birth weights were C>UN>ON (P < 0·001). All offspring were fed ad libitum from weaning to 6 months of age. ON offspring exhibited rapid catch-up growth and had increased fasting glucose and relative glucose intolerance compared with C offspring (P < 0·05). Irrespective of prenatal diet and sex, birth weight correlated negatively with these indices of glucose metabolism. From 7 to 12 months offspring either had continued ad libitum diet (ADLIB; to induce an obesogenic state) or a decreased ration appropriate for normal growth (NORM). At 12 months, the negative relationship between birth weight and indices of glucose metabolism persisted in ADLIB females (for example, fasting glucose, r - 0·632; P < 0·03) but was absent in NORM females and in both male groups. Therefore, low-birth-weight offspring from differentially achieved prenatal malnutrition exhibit an early adverse metabolic phenotype, and this can apparently be ameliorated by postnatal nutrition in females but not in males.

  16. Overexpression of Dlx2 leads to postnatal condyle degradation

    PubMed Central

    Dai, Jiewen; Si, Jiawen; Zhu, Xiaofang; Zhang, Lei; Wu, Dandan; Lu, Jingting; Ouyang, Ningjuan; Wang, Xudong; Shen, Guofang

    2016-01-01

    Distal-less homeobox 2 (Dlx2), a member of the Dlx family of transcription factors, is important for the development of craniofacial tissues. Previous studies based on knock-out mutant mice revealed that Dlx2 primarily disturbed the development of tissues from maxillary arch. The present study used a transgenic mouse model to specifically overexpress Dlx2 in neural crest cells in order to investigate the role of Dlx2 overexpression in post-natal condyle in mice. The model was constructed and the phenotype observed using gross observation, micro-CT scan and histological examination. The model determined that overexpression of Dlx2 may lead to postnatal condyle malformation, subchondral bone degradation and irregular histological structure of the condylar cartilage. In addition, the expression of osteocalcin in the condyle region was markedly downregulated, whereas expression of msh homeobox 2 was upregulated. The results of the present study suggest that Dlx2 overexpression in cranial neural crest cells would disrupt the development of post-natal condyle, which demonstrates that the expression level and the spatiotemporal expression patterns of Dlx2 may be important in regulating the development of post-natal condyle in mice, and also offered a possible temporal-mandibular joint osteoarthritis model animal for future studies. PMID:27315306

  17. Cell migration in the normal and pathological postnatal mammalian brain

    PubMed Central

    Canoll, Peter; Goldman, James E.

    2009-01-01

    In the developing brain, cell migration is a crucial process for structural organization, and is therefore highly regulated to allow the correct formation of complex networks, wiring neurons, and glia. In the early postnatal brain, late developmental processes such as the production and migration of astrocyte and oligodendrocyte progenitors still occur. Although the brain is completely formed and structured few weeks after birth, it maintains a degree of plasticity throughout life, including axonal remodeling, synaptogenesis, but also neural cell birth, migration and integration. The subventricular zone (SVZ) and the dentate gyrus of the hippocampus (DG) are the two main neurogenic niches in the adult brain. Neural stem cells reside in these structures and produce progenitors that migrate toward their ultimate location: the olfactory bulb and granular cell layer of the DG respectively. The aim of this review is to synthesize the increasing information concerning the organization, regulation and function of cell migration in a mature brain. In a normal brain, protein involved in cell-cell or cell-matrix interactions together with secreted proteins acting as chemoattractant or chemorepellant play key roles in the regulation of neural progenitor cell migration. In addition, recent data suggest that gliomas arise from the transformation of neural stem cells or progenitor cells and that glioma cell infiltration recapitulates key aspects of glial progenitor migration. Thus, we will consider glioma migration in the context of progenitor migration. Finally, many observations show that brain lesions and neurological diseases trigger neural stem/progenitor cell activation and migration towards altered structures. The factors involved in such cell migration/recruitment are just beginning to be understood. Inflammation which has long been considered as thoroughly disastrous for brain repair is now known to produce some positive effects on stem/progenitor cell recruitment via

  18. Time for Me: the arts as therapy in postnatal depression.

    PubMed

    Perry, Catherine; Thurston, Miranda; Osborn, Thelma

    2008-02-01

    Time for Me describes a creative arts group for mothers with children under two years of age, who were experiencing mild to moderate postnatal depression or anxiety. This paper reports on findings from a small-scale qualitative study designed to explore and evaluate the extent to which the brief intervention of eight weekly sessions of creative arts was able to support these women. Traditionally, severe postnatal depression has been treated with medication or cognitive behavioural therapy and in mild to moderate postnatal depression non-directive counselling ('the listening visit'), extra social and emotional support and group psychological therapies have been used. More recently, the use of complementary therapies in the treatment of depression has been explored and it has been reported that the arts can have positive effects on patients with mental health problems; for example, by helping their relationships, providing new ways of expression and by bringing about behavioural changes. There is, however, limited research relating specifically to postnatal depression and complementary therapies. The study found that the Time for Me programme created a relaxed, safe space which was experienced as supportive by women who participated in the sessions. Work in various areas of mental health care suggests that creative arts can be used to complement conventional therapy and that complementary therapies may a valuable adjunct to conventional interventions for women with postnatal depression and anxiety. It would, however, be naïve to imagine that a brief intervention such as Time for Me could be a solution for women with more severe depression but it does offer an area worth exploring in more detail.

  19. Outcome of Preterm Infants With Postnatal Cytomegalovirus Infection via Breast Milk: A Two-Year Prospective Follow-Up Study.

    PubMed

    Jim, Wai-Tim; Chiu, Nan-Chang; Ho, Che-Sheng; Shu, Chyong-Hsin; Chang, Jui-Hsing; Hung, Han-Yang; Kao, Hsin-An; Chang, Hung-Yang; Peng, Chun-Chih; Yui, Bey-Hwa; Chuu, Chih-Pin

    2015-10-01

    Approximately 15% of preterm infants may develop postnatal cytomegalovirus (CMV) infection from seropositive mothers via breast milk and are at risk for neurological sequelae in childhood. The aims of this study were to assess the effects and outcomes on growth, neurodevelopmental status, and hearing in very low birth weight (VLBW) premature infants with postnatal CMV infection via breast milk at the corrected age of 12 and 24 months.The prospective follow-up study population comprised all living preterm children (n = 55) with a birth weight ≤1500 g and gestational age of ≤35 weeks, who had been participated in our "postnatal CMV infection via breast milk" studies in 2000 and 2009, respectively. The cohort of children was assessed at 12 and 24 months. Clinical outcomes were documented during hospitalization and after discharge. Long-term outcomes included anthropometry, audiologic tests, gross motor quotient, Infant International Battery, and neurodevelopmental outcomes; all were assessed at postcorrected age in 12 and 24 months during follow-up visits.Of the 55 infants enrolled in the study (4 noninfected infants were excluded because their parents did not join this follow-up program later), 14 infants postnatally acquired CMV infection through breast-feeding (infected group) and were compared with 41 infants without CMV infection (control group). No significant differences were observed between the groups with regard to baseline characteristics, clinical outcomes, anthropometry, or psychomotor and mental development on the Bayley scale of infant development. None of the infants had CMV-related death or permanent sensorineural hearing loss.Transmission of CMV from seropositive mother via breast milk to preterm infants does not appear at this time to have major adverse effects on clinical outcomes, growth, neurodevelopmental status, and hearing function at 12 and 24 months corrected age.

  20. Outcome of Preterm Infants With Postnatal Cytomegalovirus Infection via Breast Milk: A Two-Year Prospective Follow-Up Study.

    PubMed

    Jim, Wai-Tim; Chiu, Nan-Chang; Ho, Che-Sheng; Shu, Chyong-Hsin; Chang, Jui-Hsing; Hung, Han-Yang; Kao, Hsin-An; Chang, Hung-Yang; Peng, Chun-Chih; Yui, Bey-Hwa; Chuu, Chih-Pin

    2015-10-01

    Approximately 15% of preterm infants may develop postnatal cytomegalovirus (CMV) infection from seropositive mothers via breast milk and are at risk for neurological sequelae in childhood. The aims of this study were to assess the effects and outcomes on growth, neurodevelopmental status, and hearing in very low birth weight (VLBW) premature infants with postnatal CMV infection via breast milk at the corrected age of 12 and 24 months.The prospective follow-up study population comprised all living preterm children (n = 55) with a birth weight ≤1500 g and gestational age of ≤35 weeks, who had been participated in our "postnatal CMV infection via breast milk" studies in 2000 and 2009, respectively. The cohort of children was assessed at 12 and 24 months. Clinical outcomes were documented during hospitalization and after discharge. Long-term outcomes included anthropometry, audiologic tests, gross motor quotient, Infant International Battery, and neurodevelopmental outcomes; all were assessed at postcorrected age in 12 and 24 months during follow-up visits.Of the 55 infants enrolled in the study (4 noninfected infants were excluded because their parents did not join this follow-up program later), 14 infants postnatally acquired CMV infection through breast-feeding (infected group) and were compared with 41 infants without CMV infection (control group). No significant differences were observed between the groups with regard to baseline characteristics, clinical outcomes, anthropometry, or psychomotor and mental development on the Bayley scale of infant development. None of the infants had CMV-related death or permanent sensorineural hearing loss.Transmission of CMV from seropositive mother via breast milk to preterm infants does not appear at this time to have major adverse effects on clinical outcomes, growth, neurodevelopmental status, and hearing function at 12 and 24 months corrected age. PMID:26512588

  1. Impact of placental insufficiency on fetal skeletal muscle growth.

    PubMed

    Brown, Laura D; Hay, William W

    2016-11-01

    Intrauterine growth restriction (IUGR) caused by placental insufficiency is one of the most common and complex problems in perinatology, with no known cure. In pregnancies affected by placental insufficiency, a poorly functioning placenta restricts nutrient supply to the fetus and prevents normal fetal growth. Among other significant deficits in organ development, the IUGR fetus characteristically has less lean body and skeletal muscle mass than their appropriately-grown counterparts. Reduced skeletal muscle growth is not fully compensated after birth, as individuals who were born small for gestational age (SGA) from IUGR have persistent reductions in muscle mass and strength into adulthood. The consequences of restricted muscle growth and accelerated postnatal "catch-up" growth in the form of adiposity may contribute to the increased later life risk for visceral adiposity, peripheral insulin resistance, diabetes, and cardiovascular disease in individuals who were formerly IUGR. This review will discuss how an insufficient placenta results in impaired fetal skeletal muscle growth and how lifelong reductions in muscle mass might contribute to increased metabolic disease risk in this vulnerable population.

  2. Particle acceleration

    NASA Technical Reports Server (NTRS)

    Vlahos, L.; Machado, M. E.; Ramaty, R.; Murphy, R. J.; Alissandrakis, C.; Bai, T.; Batchelor, D.; Benz, A. O.; Chupp, E.; Ellison, D.

    1986-01-01

    Data is compiled from Solar Maximum Mission and Hinothori satellites, particle detectors in several satellites, ground based instruments, and balloon flights in order to answer fundamental questions relating to: (1) the requirements for the coronal magnetic field structure in the vicinity of the energization source; (2) the height (above the photosphere) of the energization source; (3) the time of energization; (4) transistion between coronal heating and flares; (5) evidence for purely thermal, purely nonthermal and hybrid type flares; (6) the time characteristics of the energization source; (7) whether every flare accelerates protons; (8) the location of the interaction site of the ions and relativistic electrons; (9) the energy spectra for ions and relativistic electrons; (10) the relationship between particles at the Sun and interplanetary space; (11) evidence for more than one acceleration mechanism; (12) whether there is single mechanism that will accelerate particles to all energies and also heat the plasma; and (13) how fast the existing mechanisms accelerate electrons up to several MeV and ions to 1 GeV.

  3. Accelerated Achievement

    ERIC Educational Resources Information Center

    Ford, William J.

    2010-01-01

    This article focuses on the accelerated associate degree program at Ivy Tech Community College (Indiana) in which low-income students will receive an associate degree in one year. The three-year pilot program is funded by a $2.3 million grant from the Lumina Foundation for Education in Indianapolis and a $270,000 grant from the Indiana Commission…

  4. ACCELERATION INTEGRATOR

    DOEpatents

    Pope, K.E.

    1958-01-01

    This patent relates to an improved acceleration integrator and more particularly to apparatus of this nature which is gyrostabilized. The device may be used to sense the attainment by an airborne vehicle of a predetermined velocitv or distance along a given vector path. In its broad aspects, the acceleration integrator utilizes a magnetized element rotatable driven by a synchronous motor and having a cylin drical flux gap and a restrained eddy- current drag cap deposed to move into the gap. The angular velocity imparted to the rotatable cap shaft is transmitted in a positive manner to the magnetized element through a servo feedback loop. The resultant angular velocity of tae cap is proportional to the acceleration of the housing in this manner and means may be used to measure the velocity and operate switches at a pre-set magnitude. To make the above-described dcvice sensitive to acceleration in only one direction the magnetized element forms the spinning inertia element of a free gyroscope, and the outer housing functions as a gimbal of a gyroscope.

  5. Plasma accelerator

    DOEpatents

    Wang, Zhehui; Barnes, Cris W.

    2002-01-01

    There has been invented an apparatus for acceleration of a plasma having coaxially positioned, constant diameter, cylindrical electrodes which are modified to converge (for a positive polarity inner electrode and a negatively charged outer electrode) at the plasma output end of the annulus between the electrodes to achieve improved particle flux per unit of power.

  6. Postnatal Depression and Infant Health Practices among High-Risk Women

    ERIC Educational Resources Information Center

    Zajicek-Farber, Michaela L.

    2009-01-01

    Women's postnatal depressive symptoms have been associated with many adverse outcomes for children. The current study examined the frequency association with relative risk between postnatal depressive symptoms and mothers' use of preventative infant health practices. The study used the Edinburgh Postnatal Depression Scale (EPDS) and Parental…

  7. Myosin heavy chain expression in rabbit masseter muscle during postnatal development.

    PubMed Central

    Bredman, J J; Weijs, W A; Korfage, H A; Brugman, P; Moorman, A F

    1992-01-01

    The expression of isoforms of myosin heavy chain (MHC) during postnatal development was studied in the masseter muscle of the rabbit. Evidence is presented that in addition to adult fast and slow myosin, the rabbit masseter contains neonatal and 'cardiac' alpha-MHC. During postnatal growth myosin transitions take place from neonatal and fast (IIA, IIA/IIB--referring to a fibre containing both IIA and IIB MHCs) MHC to adult 'cardiac' alpha-MHC and I/alpha-MHC. Since there is a temporary population of fibres containing IIA/alpha-MHC during the first 4 wk of development with a peak in the 3rd to 4th wk, the transition from IIA-MHC to alpha-MHC may occur in these IIA/alpha-MHC-containing fibres. The appearance of 'cardiac' alpha-MHC coincides with the timing of weaning, suggesting that the changes in MHC content, that probably result in a transition to a lower speed of contraction, have functional significance related to weaning. The finding of neonatal MHC in adult rabbits indicates that the masseter develops at a rate and in a way that is distinct from most other skeletal muscles. A spatiotemporal variation in expression of myosin isozymes within the masseter was observed, with many fibres containing more than one myosin type, indicating developmentally regulated spatial differences in function. Images Fig. 2 Fig. 3 Fig. 4 Fig. 7 PMID:1387129

  8. Sampling of prenatal and postnatal offspring from individual rat dams enhances animal use without compromising development

    NASA Technical Reports Server (NTRS)

    Alberts, J. R.; Burden, H. W.; Hawes, N.; Ronca, A. E.

    1996-01-01

    To assess prenatal and postnatal developmental status in the offspring of a group of animals, it is typical to examine fetuses from some of the dams as well as infants born to the remaining dams. Statistical limitations often arise, particularly when the animals are rare or especially precious, because all offspring of the dam represent only a single statistical observation; littermates are not independent observations (biologically or statistically). We describe a study in which pregnant laboratory rats were laparotomized on day 7 of gestation (GD7) to ascertain the number and distribution of uterine implantation sites and were subjected to a simulated experience on a 10-day space shuttle flight. After the simulated landing on GD18, rats were unilaterally hysterectomized, thus providing a sample of fetuses from 10 independent uteruses, followed by successful vaginal delivery on GD22, yielding postnatal samples from 10 uteruses. A broad profile of maternal and offspring morphologic and physiologic measures indicated that these novel sampling procedures did not compromise maternal well-being and maintained normal offspring development and function. Measures included maternal organ weights and hormone concentrations, offspring body size, growth, organ weights, sexual differentiation, and catecholamine concentrations.

  9. Housing system influences abundance of Pax3 and Pax7 in postnatal chicken skeletal muscles.

    PubMed

    Yin, H D; Li, D Y; Zhang, L; Yang, M Y; Zhao, X L; Wang, Y; Liu, Y P; Zhu, Q

    2014-06-01

    Paired box (Pax) proteins 3 and 7 are associated with activation of muscle satellite cells and play a major role in hyperplastic and hypertrophic growth in postnatal skeletal muscle fibers. The objective of this study was to evaluate the effect of housing system on abundance of Pax3 and Pax7 in postnatal chicken skeletal muscles. At 42 d, 1,200 chickens with similar BW were randomly assigned to cage, pen, and free-range group. The mRNA abundance was measured in pectoralis major and thigh muscle at d 56, 70, and 84, and the protein expression was quantified at d 84. Increases in mRNA abundance of PAX3 and PAX7 with age were less pronounced in caged system chickens than in pen and free-range chickens from d 56 to 84, and free-range chickens showed a more pronounced increase in gene expression with age compared with penned chickens. At d 84, quantities of PAX3 and PAX7 mRNA and protein were highest in both pectoralis major and thigh muscle of chickens raised in the free-range group, lowest in penned chickens, and intermediate in caged chickens (P < 0.05). These data indicate that housing system may influence muscle fiber muscle accretion by coordinating the expression of Pax3 and Pax7 in adult chicken skeletal muscles.

  10. Postnatal leptin is necessary for maturation of numerous organs in newborn rats

    PubMed Central

    Larcher, Thibaut; Gertler, Arieh; Abdennebi-Najar, Latifa

    2011-01-01

    The postnatal leptin surge, described particularly in rodents, has been demonstrated to be crucial for hypothalamic maturation and brain development. In the present study, the possible general effects of this hormone on maturation of numerous peripheral organs have been explored. To test this hypothesis, we used a leptin antagonist (L39A/D40A/F41A) to investigate the effects of the blockage of postnatal leptin action on neonatal growth and maturation of organs involved in metabolism regulation, reproduction and immunity. For that purpose, newborn female pups were subcutaneously injected from days 2–13 with either saline or leptin antagonist and sacrificed at weaning. Organs were submitted to histological and immunohistochemical analyses. Leptin antagonist treatment clearly impaired the maturation of pancreas, kidney, thymus and ovary. All these alterations, at the organ level, occurred without changes in the whole-body mass of the animals. Leptin antagonist treatment induced: (1) a reduction in β cell area and a concomitant increase of α cells in Langherans islets in the pancreas, (2) a reduction in the number of glomeruli and a persistence of immature glomeruli in kidney, (3) an increase in the thymic cortical layer thickness, reflecting an unmatured stage, (4) a drastic reduction of the pool of primordial follicles, in ovaries. All these results strongly argue for a crucial role of leptin for the achievement of organ maturation, opening new perspectives in the field of leptin physiology and organ development. PMID:21378499

  11. Effects of postnatal alcohol exposure on hippocampal gene expression and learning in adult mice.

    PubMed

    Lee, Dong Hoon; Moon, Jihye; Ryu, Jinhyun; Jeong, Joo Yeon; Roh, Gu Seob; Kim, Hyun Joon; Cho, Gyeong Jae; Choi, Wan Sung; Kang, Sang Soo

    2016-04-28

    Fetal alcohol syndrome (FAS) is a condition resulting from excessive drinking by pregnant women. Symptoms of FAS include abnormal facial features, stunted growth, intellectual deficits and attentional dysfunction. Many studies have investigated FAS, but its underlying mechanisms remain unknown. This study evaluated the relationship between alcohol exposure during the synaptogenesis period in postnatal mice and subsequent cognitive function in adult mice. We delivered two injections, separated by 2 h, of ethanol (3 g/kg, ethanol/saline, 20% v/v) to ICR mice on postnatal day 7. After 10 weeks, we conducted a behavioral test, sacrificed the animals, harvested brain tissue and analyzed hippocampal gene expression using a microarray. In ethanol-treated mice, there was a reduction in brain size and decreased neuronal cell number in the cortex, and also cognitive impairment. cDNA microarray results indicated that 1,548 genes showed a > 2-fold decrease in expression relative to control, whereas 974 genes showed a > 2-fold increase in expression relative to control. Many of these genes were related to signal transduction, synaptogenesis and cell membrane formation, which are highlighted in our findings. PMID:26960969

  12. A structure-based extracellular matrix expansion mechanism of fibrous tissue growth.

    PubMed

    Kalson, Nicholas S; Lu, Yinhui; Taylor, Susan H; Starborg, Tobias; Holmes, David F; Kadler, Karl E

    2015-01-01

    Embryonic growth occurs predominately by an increase in cell number; little is known about growth mechanisms later in development when fibrous tissues account for the bulk of adult vertebrate mass. We present a model for fibrous tissue growth based on 3D-electron microscopy of mouse tendon. We show that the number of collagen fibrils increases during embryonic development and then remains constant during postnatal growth. Embryonic growth was explained predominately by increases in fibril number and length. Postnatal growth arose predominately from increases in fibril length and diameter. A helical crimp structure was established in embryogenesis, and persisted postnatally. The data support a model where the shape and size of tendon is determined by the number and position of embryonic fibroblasts. The collagen fibrils that these cells synthesise provide a template for postnatal growth by structure-based matrix expansion. The model has important implications for growth of other fibrous tissues and fibrosis. PMID:25992598

  13. Compact accelerator

    DOEpatents

    Caporaso, George J.; Sampayan, Stephen E.; Kirbie, Hugh C.

    2007-02-06

    A compact linear accelerator having at least one strip-shaped Blumlein module which guides a propagating wavefront between first and second ends and controls the output pulse at the second end. Each Blumlein module has first, second, and third planar conductor strips, with a first dielectric strip between the first and second conductor strips, and a second dielectric strip between the second and third conductor strips. Additionally, the compact linear accelerator includes a high voltage power supply connected to charge the second conductor strip to a high potential, and a switch for switching the high potential in the second conductor strip to at least one of the first and third conductor strips so as to initiate a propagating reverse polarity wavefront(s) in the corresponding dielectric strip(s).

  14. BICEP's acceleration

    SciTech Connect

    Contaldi, Carlo R.

    2014-10-01

    The recent Bicep2 [1] detection of, what is claimed to be primordial B-modes, opens up the possibility of constraining not only the energy scale of inflation but also the detailed acceleration history that occurred during inflation. In turn this can be used to determine the shape of the inflaton potential V(φ) for the first time — if a single, scalar inflaton is assumed to be driving the acceleration. We carry out a Monte Carlo exploration of inflationary trajectories given the current data. Using this method we obtain a posterior distribution of possible acceleration profiles ε(N) as a function of e-fold N and derived posterior distributions of the primordial power spectrum P(k) and potential V(φ). We find that the Bicep2 result, in combination with Planck measurements of total intensity Cosmic Microwave Background (CMB) anisotropies, induces a significant feature in the scalar primordial spectrum at scales k∼ 10{sup -3} Mpc {sup -1}. This is in agreement with a previous detection of a suppression in the scalar power [2].

  15. Development of a novel postnatal neurobehavioral scale for evaluation of common marmoset monkeys.

    PubMed

    Braun, Katarina; Schultz-Darken, Nancy; Schneider, Mary; Moore, Colleen F; Emborg, Marina E

    2015-04-01

    Common marmoset (Callithrix jacchus) monkeys when compared to rhesus macaques (Macaca mullatta) present several advantages for disease modeling, especially transgenic initiatives, as they commonly give birth to twins, which increases sample size, have accelerated development and a shorter life span that facilitates the analysis of the onset of age-related diseases. Yet, no tools are currently available to assess marmoset neurodevelopment during the initial first month of life. Here we report the creation of a novel Primate Postnatal Neurobehavioral Assessment Scale for marmoset monkeys (PPNAS-M) that was based on currently available scales for human and rhesus monkeys. Twenty-four healthy marmoset infants (12 females, 12 males) from 12 families were evaluated. The infant assessments involved 10-minute testing administered at 15 and 30 days after birth. The PPNAS-M consists of 41 noninvasive tests grouped into 5 testing categories: visual orienting, auditory and spatial orienting, motor responses, righting and body strength, and temperament tests. Testing at these two ages did not affect the overall health of the infants, suggesting that the PPNAS-M is a non-invasive testing tool. Significant maturation was demonstrated by increased scores in each of the five testing categories from postnatal day 15 to 30, with developmental patterns unique to marmosets. Principal component analysis defined 4 item groups (Orientation, State Control, Motor Maturity and Sensory Sensitivity) with 5 variables each. Orientation and State Control factors were highly similar to each other at both ages and correlated highly with previous item groupings used with rhesus macaques. Our results indicate that the PPNAS-M is a useful assessment tool for detecting neuromotor, attention, and temperament status of infant marmosets and that it is sensitive to developmental effects. Further studies to validate the PPNAS-M for the assessment of normal development versus early effects of developmental

  16. DEVELOPMENT OF A NOVEL POSTNATAL NEUROBEHAVIORAL SCALE FOR EVALUATION OF COMMON MARMOSET MONKEYS

    PubMed Central

    Schneider, Mary; Moore, Colleen F.; Emborg, Marina E.

    2014-01-01

    Common marmoset (Callithrix jacchus) monkeys when compared to rhesus macaques (Macaca mullatta) present several advantages for disease modeling, especially transgenic initiatives, as they commonly give birth to twins, which increases sample size, have accelerated development and a shorter life span that facilitates the analysis of the onset of age-related diseases. Yet, no tools are currently available to assess marmoset neurodevelopment during the initial first month of life. Here we report the creation of a novel Primate Postnatal Neurobehavioral Assessment Scale for marmoset monkeys (PPNAS-M) that was based on currently available scales for human and rhesus monkeys. Twenty-four healthy marmoset infants (12 females, 12 males) from 12 families were evaluated. The infant assessments involved 10-minute testing administered at 15 and 30 days after birth. The PPNAS-M consists of 41 noninvasive tests grouped into 5 testing categories: visual orienting, auditory and spatial orienting, motor responses, righting and body strength, and temperament tests. Testing at these two ages did not affect the overall health of the infants, suggesting that the PPNAS-M is a non-invasive testing tool. Significant maturation was demonstrated by increased scores in each of the five testing categories from postnatal day 15 to 30, with developmental patterns unique to marmosets. Principal component analysis defined 4 item groups (Orientation, State Control, Motor Maturity and Sensory Sensitivity) with 5 variables each. Orientation and State Control factors were highly similar at both ages and correlated highly with previous item groupings used with rhesus macaques. Our results indicate that the PPNAS-M is a useful assessment tool for detecting neuromotor, attention, and temperament status of infant marmosets and that it is sensitive to developmental effects. Further studies to validate the PPNAS-M for the assessment of normal development versus early effects of developmental perturbations

  17. Interaction of naltrexone with postnatal administration of testosterone and estrogen on neurobehavioral sexual differentiation in rats.

    PubMed

    McGivern, R F; Henschel, D M

    1990-03-01

    The present study examined whether some effects of gonadal sex hormones on neurobehavioral sexual differentiation might be mediated by endogenous opioids. Male and female pups were administered sesame oil, testosterone propionate (TP; 25 micrograms) or estradiol benzoate (EB; 10 micrograms) on postnatal Days 2 and 3. Half of each group was also administered naltrexone (N; 50 micrograms) twice daily on these two days. Females were studied for effects of the treatments on puberty. Males and females were studied in adulthood for open field behavior, daily water intake, and saccharin consumption and preference for 0.125, 0.25, and 0.50% saccharin solutions. TP treatment significantly delayed the date of vaginal opening, whereas EB treatment significantly accelerated the date. N treatment potentiated this effect of TP, but had no effect in EB treated females, nor did it influence the anovulatory sterility produced by both hormone treatments. N treatment alone had no effect on puberty in females or open field behavior of either sex. The drug produced an overall increase in female saccharin consumption and preference, but no effect was observed in males on these measures. Both TP and EB treatment produced marked increases in daily water consumption in females, an effect which was significantly attenuated by N treatment. Effects of both hormones on saccharin consumption were sex dependent and partially antagonized by N treatment. Finally, we observed a sex difference in daily water intake wherein females were found to consume approximately 20% more water on a body weight basis in a 24-hr period than males. Postnatal TP and EB treatment increased adult daily water consumption in females above the level of controls. This increase was partially antagonized by N. Treatment with N alone had no effect on female water consumption, but produced a small decrease in male consumption. Overall, these results provide preliminary evidence that some organizational effects of TP and EB on

  18. Accumulation of SOD1 mutants in postnatal motoneurons does not cause motoneuron pathology or motoneuron disease.

    PubMed

    Lino, Maria Maddalena; Schneider, Corinna; Caroni, Pico

    2002-06-15

    Transgenic mice expressing high levels of familial amyotrophic lateral sclerosis (FALS)-associated mutant superoxide dismutase 1 (SOD1) under the control of a human SOD1 minigene (hMg) accumulate mutant protein ubiquitously and develop motoneuron disease. However, restricted expression of SOD1 mutants in neurons apparently does not cause motor impairments in mice. Here, we investigated the possible pathogenic roles of mutant SOD1 accumulation in motoneurons. First, we used a Thy1 expression cassette to drive high constitutive expression of transgene in postnatal mouse neurons, including upper and lower motoneurons. Second, we expressed human (h) SOD1(G93A) and hSOD1(G85R) as transgenes (i.e., two SOD1 mutants with aggressive pathogenic properties in inducing FALS). Third, in addition to clinical signs of disease, we monitored early signs of disease onset and pathogenesis, including muscle innervation, astrogliosis in the spinal cord, and accumulation of ubiquitinated deposits in motoneurons and astrocytes. We report that high-level expression and accumulation of the mutant proteins in neurons failed to produce any detectable sign of pathology or disease in these transgenic mice. Crossing hMg-SOD1(G93A) mice (Gurney et al., 1994) with Thy1-SOD1(G93A) mice produced double-transgenic mice with spinal cord SOD1(G93A) levels that were approximately twofold higher than in the hMg-SOD1(G93A) single transgenics but did not affect the onset or progression of pathology or motoneuron disease. The accumulation of mutant SOD1 in postnatal motoneurons is thus not sufficient and probably also not critical to induce or accelerate motoneuron disease in FALS mice. The pathogenic process in FALS may involve non-neuronal cells, and selective vulnerability of motoneurons to this process may lead to motoneuron pathology and disease.

  19. Early-postnatal changes in adiposity and lipids profile by transgenerational developmental programming in swine with obesity/leptin resistance.

    PubMed

    Gonzalez-Bulnes, Antonio; Astiz, Susana; Ovilo, Cristina; Lopez-Bote, Clemente J; Sanchez-Sanchez, Raul; Perez-Solana, Maria L; Torres-Rovira, Laura; Ayuso, Miriam; Gonzalez, Jorge

    2014-10-01

    Maternal malnutrition during pregnancy, both deficiency and excess, induces changes in the intrauterine environment and the metabolic status of the offspring, playing a key role in the growth, status of fitness/obesity and appearance of metabolic disorders during postnatal life. There is increasing evidence that these effects may not be only limited to the first generation of descendants, the offspring directly exposed to metabolic challenges, but to subsequent generations. This study evaluated, in a swine model of obesity/leptin resistance, the existence and extent of transgenerational developmental programming effects. Pre- and postnatal development, adiposity and metabolic features were assessed in the second generation of piglets, descendant of sows exposed to either undernutrition or overnutrition during pregnancy. The results indicated that these piglets exhibited early-postnatal increases in adiposity and disturbances in lipid profiles compatible with the early prodrome of metabolic syndrome, with liver tissue also displaying evidence of paediatric liver disease. These features indicative of early-life metabolic disorders were more evident in the males that were descended from overfed grandmothers and during the transition from milk to solid feeding. Thus, this study provides evidence supporting transgenerational developmental programming and supports the necessity for the development of strategies for avoiding the current epidemics of childhood overweight and obesity.

  20. Notch-Dependent Pituitary SOX2(+) Stem Cells Exhibit a Timed Functional Extinction in Regulation of the Postnatal Gland.

    PubMed

    Zhu, Xiaoyan; Tollkuhn, Jessica; Taylor, Havilah; Rosenfeld, Michael G

    2015-12-01

    Although SOX2(+) stem cells are present in the postnatal pituitary gland, how they are regulated molecularly and whether they are required for pituitary functions remain unresolved questions. Using a conditional knockout animal model, here we demonstrate that ablation of the canonical Notch signaling in the embryonic pituitary gland leads to progressive depletion of the SOX2(+) stem cells and hypoplastic gland. Furthermore, we show that the SOX2(+) stem cells initially play a significant role in contributing to postnatal pituitary gland expansion by self-renewal and differentiating into distinct lineages in the immediate postnatal period. However, we found that within several weeks postpartum, the SOX2(+) stem cells switch to an essentially dormant state and are no longer required for homeostasis/tissue adaptation. Our results present a dynamic tissue homeostatic model in which stem cells provide an initial contribution to the growth of the neonatal pituitary gland, whereas the mature gland can be maintained in a stem cell-independent fashion.

  1. Fetal and postnatal lung defects reveal a novel and required role for Fgf8 in lung development.

    PubMed

    Yu, Shibin; Poe, Bryan; Schwarz, Margaret; Elliot, Sarah A; Albertine, Kurt H; Fenton, Stephen; Garg, Vidu; Moon, Anne M

    2010-11-01

    The fibroblast growth factor, FGF8, has been shown to be essential for vertebrate cardiovascular, craniofacial, brain and limb development. Here we report that Fgf8 function is required for normal progression through the late fetal stages of lung development that culminate in alveolar formation. Budding, lobation and branching morphogenesis are unaffected in early stage Fgf8 hypomorphic and conditional mutant lungs. Excess proliferation during fetal development disrupts distal airspace formation, mesenchymal and vascular remodeling, and Type I epithelial cell differentiation resulting in postnatal respiratory failure and death. Our findings reveal a previously unknown, critical role for Fgf8 function in fetal lung development and suggest that this factor may also contribute to postnatal alveologenesis. Given the high number of premature infants with alveolar dysgenesis and lung dysplasia, and the accumulating evidence that short-term benefits of available therapies may be outweighed by long-term detrimental effects on postnatal alveologenesis, the therapeutic implications of identifying a factor or pathway that can be targeted to stimulate normal alveolar development are profound.

  2. Protein Expression Dynamics During Postnatal Mouse Brain Development

    PubMed Central

    Laeremans, Annelies; Van de Plas, Babs; Clerens, Stefan; Van den Bergh, Gert; Arckens, Lutgarde; Hu, Tjing-Tjing

    2013-01-01

    We explored differential protein expression profiles in the mouse forebrain at different stages of postnatal development, including 10-day (P10), 30-day (P30), and adult (Ad) mice, by large-scale screening of proteome maps using two-dimensional difference gel electrophoresis. Mass spectrometry analysis resulted in the identification of 251 differentially expressed proteins. Most molecular changes were observed between P10 compared to both P30 and Ad. Computational ingenuity pathway analysis (IPA) confirmed these proteins as crucial molecules in the biological function of nervous system development. Moreover, IPA revealed Semaphorin signaling in neurons and the protein ubiquitination pathway as essential canonical pathways in the mouse forebrain during postnatal development. For these main biological pathways, the transcriptional regulation of the age-dependent expression of selected proteins was validated by means of in situ hybridization. In conclusion, we suggest that proteolysis and neurite outgrowth guidance are key biological processes, particularly during early brain maturation. PMID:25157209

  3. Delayed postnatal neurogenesis in the cerebral cortex of lizards.

    PubMed

    Lopez-Garcia, C; Molowny, A; Garcia-Verdugo, J M; Ferrer, I

    1988-10-01

    Labelled cells were consistently observed in the medial cortex of the lizard brain after i.p. injections of tritiated thymidine (5 microCi/g b. wt.), 1, 7, 18 or 28 days of survival and posterior autoradiographic evaluation. In 3 groups of specimens (postnatal, young and adult) of the species Podarcis hispanica, after one day of survival, labelled cells were located in the ependymal cell layer underlying the medial cortex. After intermediate survival times (7, 18 days), labelled cells were found in 3 zones: the ependymal layer, the inner plexiform layer and the granular layer. After one month of survival, most labelled cells were observed in the granular layer. In the granular layer, these cells were distributed at random. These results show that postnatal neurogenesis in the medial cortex of the lizard occurs following a spatio-temporal pattern reminiscent of that found in the fascia dentata of the mammalian hippocampus.

  4. The maternal microbiota drives early postnatal innate immune development.

    PubMed

    Gomez de Agüero, Mercedes; Ganal-Vonarburg, Stephanie C; Fuhrer, Tobias; Rupp, Sandra; Uchimura, Yasuhiro; Li, Hai; Steinert, Anna; Heikenwalder, Mathias; Hapfelmeier, Siegfried; Sauer, Uwe; McCoy, Kathy D; Macpherson, Andrew J

    2016-03-18

    Postnatal colonization of the body with microbes is assumed to be the main stimulus to postnatal immune development. By transiently colonizing pregnant female mice, we show that the maternal microbiota shapes the immune system of the offspring. Gestational colonization increases intestinal group 3 innate lymphoid cells and F4/80(+)CD11c(+) mononuclear cells in the pups. Maternal colonization reprograms intestinal transcriptional profiles of the offspring, including increased expression of genes encoding epithelial antibacterial peptides and metabolism of microbial molecules. Some of these effects are dependent on maternal antibodies that potentially retain microbial molecules and transmit them to the offspring during pregnancy and in milk. Pups born to mothers transiently colonized in pregnancy are better able to avoid inflammatory responses to microbial molecules and penetration of intestinal microbes. PMID:26989247

  5. Prospects for Accelerator Technology

    NASA Astrophysics Data System (ADS)

    Todd, Alan

    2011-02-01

    Accelerator technology today is a greater than US$5 billion per annum business. Development of higher-performance technology with improved reliability that delivers reduced system size and life cycle cost is expected to significantly increase the total accelerator technology market and open up new application sales. Potential future directions are identified and pitfalls in new market penetration are considered. Both of the present big market segments, medical radiation therapy units and semiconductor ion implanters, are approaching the "maturity" phase of their product cycles, where incremental development rather than paradigm shifts is the norm, but they should continue to dominate commercial sales for some time. It is anticipated that large discovery-science accelerators will continue to provide a specialty market beset by the unpredictable cycles resulting from the scale of the projects themselves, coupled with external political and economic drivers. Although fraught with differing market entry difficulties, the security and environmental markets, together with new, as yet unrealized, industrial material processing applications, are expected to provide the bulk of future commercial accelerator technology growth.

  6. Early postnatal stress and neural circuit underlying emotional regulation.

    PubMed

    Matsumoto, Machiko; Yoshioka, Mitsuhiro; Togashi, Hiroko

    2009-01-01

    Several lines of evidence have shown that traumatic events during the early postnatal period precipitate long-lasting alterations in the functional properties underlying emotional expression that are attributable to the pathophysiology of stress-related disorders. In this chapter, we summarize our recent work elucidating whether early postnatal stress alters the neural circuits underlying emotional regulation. Rats exposed to footshock stress (FS) during the second (2W) or the third (3W) postnatal week were subjected to unconditioned and conditioned stresses at the postadolescent period (10-12 weeks). No differences in locomotor activity or hippocampal synaptic changes were observed between the FS-groups and non-FS controls during exposure to open field stress. Fear-related freezing behavior during exposure to contextual fear conditioning (CFC) was markedly attenuated in the 2W-FS group, presumably due to disturbance of the retention for fear memory, an effect that was attributable to synaptic changes in the hippocampal CA1 field. The 3W-FS group exhibited attenuation of the decreases in freezing behavior induced by CFC extinction trials. The deficits in extinction was abolished by repeated treatment with the partial N-methyl-d-aspartate receptor agonist d-cycloserine, suggesting that aversive stress exposure during the third postnatal week impaired extinction of context-dependent fear memory. Taken together, the altered behavior observed in adulthood is likely the result of neurodevelopmental perturbations elicited by early life stress. Thus, a "critical period" exists for neural circuits involved in emotional expression that may contribute to lifelong susceptibility to stress.

  7. Prenatal and Postnatal Maternal Stress and Wheeze in Urban Children

    PubMed Central

    Mathilda Chiu, Yueh-Hsiu; Coull, Brent A.; Cohen, Sheldon; Wooley, Alana

    2012-01-01

    Rationale: Critical periods for programming early wheeze risk may include pregnancy and infancy. Effects of timing remain poorly understood. Objectives: Associations among prenatal and postnatal maternal stress and children’s wheeze were prospectively examined in 653 families. Effect modification by maternal sensitization was also examined. Methods: Stress was indexed by a maternal negative life events (NLEs) score (range, 0–9) ascertained during pregnancy and between 1 and 2 years postpartum. Mothers reported child wheeze every 3 months up to age 2 years. Relationships of prenatal and postnatal maternal NLEs with repeated wheeze (≥2 episodes) were examined using logistic regression adjusting for covariates. Penalized splines were implemented to explore possible nonlinear associations. We also examined the interaction between prenatal stress and maternal sensitization indexed by allergen-specific IgE from maternal prenatal serum. Measurements and Main Results: Adjusted models considering prenatal or postnatal NLEs alone both showed an exposure-response relationship between higher stress and child wheeze. When considering prenatal and postnatal stress concurrently, only children of mothers with high stress in both periods were significantly more likely to wheeze (adjusted odds ratio, 3.04; 95% confidence interval, 1.67–5.53) than children of mothers reporting low stress in both periods. Associations between high prenatal stress and wheeze were significant in children born to nonsensitized mothers (any IgE <0.35 kU/L) but not in the sensitized group (P for interaction = 0.03). Conclusions: Although children have heightened sensitivity to maternal stress in utero and in early childhood, those with higher stress in both periods were particularly at risk for wheeze. The prenatal maternal immune milieu modified effects. PMID:22582161

  8. Neurotoxicity from prenatal and postnatal exposure to methylmercury

    PubMed Central

    Grandjean, Philippe; Weihe, Pal; Debes, Frodi; Choi, Anna L.; Budtz-Jørgensen, Esben

    2014-01-01

    The extent to which postnatal methylmercury exposure contributes to neurobehavioral delays is uncertain. Confounding may occur because the child's dietary exposure likely correlates with the mother's. This conundrum was examined in the Faroese birth cohort 1 born in 1986–1987. Exposure parameters included mercury concentrations in maternal hair at parturition, cord blood, and child blood and hair at the age-7 clinical examination (N = 923). In regression analyses, the child's current blood-mercury at age 7 (N = 694) showed only weak associations with the neuropsychological test variables, but visuospatial memory revealed a significant negative association. Mutual adjustment caused decreases of the apparent effect of the prenatal exposure. However, such adjustment may lead to underestimations due to the presence of correlated, error-prone exposure variables. In structural equation models, all methylmercury exposure parameters were instead entered into a latent exposure variable that reflected the total methylmercury load. This latent exposure showed significant associations with neurodevelopmental deficits, with prenatal exposure providing the main information. However, postnatal methylmercury exposure appeared to contribute to neurotoxic effects, in particular in regard to visuospatial processing and memory. Thus, addition in the regression analysis of exposure information obtained at a different point in time was not informative and should be avoided. Further studies with better information on exposure profiles are needed to characterize the effects of postnatal methylmercury exposure. PMID:24681285

  9. Postnatal TLR2 activation impairs learning and memory in adulthood.

    PubMed

    Madar, Ravit; Rotter, Aviva; Waldman Ben-Asher, Hiba; Mughal, Mohamed R; Arumugam, Thiruma V; Wood, W H; Becker, K G; Mattson, Mark P; Okun, Eitan

    2015-08-01

    Neuroinflammation in the central nervous system is detrimental for learning and memory, as evident form epidemiological studies linking developmental defects and maternal exposure to harmful pathogens. Postnatal infections can also induce neuroinflammatory responses with long-term consequences. These inflammatory responses can lead to motor deficits and/or behavioral disabilities. Toll like receptors (TLRs) are a family of innate immune receptors best known as sensors of microbial-associated molecular patterns, and are the first responders to infection. TLR2 forms heterodimers with either TLR1 or TLR6, is activated in response to gram-positive bacterial infections, and is expressed in the brain during embryonic development. We hypothesized that early postnatal TLR2-mediated neuroinflammation would adversely affect cognitive behavior in the adult. Our data indicate that postnatal TLR2 activation affects learning and memory in adult mice in a heterodimer-dependent manner. TLR2/6 activation improved motor function and fear learning, while TLR2/1 activation impaired spatial learning and enhanced fear learning. Moreover, developmental TLR2 deficiency significantly impairs spatial learning and enhances fear learning, stressing the involvement of the TLR2 pathway in learning and memory. Analysis of the transcriptional effects of TLR2 activation reveals both common and unique transcriptional programs following heterodimer-specific TLR2 activation. These results imply that adult cognitive behavior could be influenced in part, by activation or alterations in the TLR2 pathway at birth. PMID:26021559

  10. Postnatal TLR2 activation impairs learning and memory in adulthood

    PubMed Central

    Madar, Ravit; Rotter, Aviva; Ben-Asher, Hiba Waldman; Mughal, Mohamed R.; Arumugam, Thiruma V.; Wood, WH; Becker, KG; Mattson, Mark P.; Okun, Eitan

    2015-01-01

    Neuroinflammation in the central nervous system is detrimental for learning and memory, as evident form epidemiological studies linking developmental defects and maternal exposure to harmful pathogens. Postnatal infections can also induce neuroinflammatory responses with long-term consequences. These inflammatory responses can lead to motor deficits and/or behavioral disabilities. Toll like receptors (TLRs) are a family of innate immune receptors best known as sensors of microbial-associated molecular patterns, and are the first responders to infection. TLR2 forms heterodimers with either TLR1 or TLR6, is activated in response to gram-positive bacterial infections, and is expressed in the brain during embryonic development. We hypothesized that early postnatal TLR2-mediated neuroinflammation would adversely affect cognitive behavior in the adult. Our data indicate that postnatal TLR2 activation affects learning and memory in adult mice in a heterodimer-dependent manner. TLR2/6 activation improved motor function and fear learning, while TLR2/1 activation impaired spatial learning and enhanced fear learning. Moreover, developmental TLR2 deficiency significantly impairs spatial learning and enhances fear learning, stressing the involvement of the TLR2 pathway in learning and memory. Analysis of the transcriptional effects of TLR2 activation reveals both common and unique transcriptional programs following heterodimer-specific TLR2 activation. These results imply that adult cognitive behavior could be influenced in part, by activation or alterations in the TLR2 pathway at birth. PMID:26021559

  11. Postnatal TLR2 activation impairs learning and memory in adulthood.

    PubMed

    Madar, Ravit; Rotter, Aviva; Waldman Ben-Asher, Hiba; Mughal, Mohamed R; Arumugam, Thiruma V; Wood, W H; Becker, K G; Mattson, Mark P; Okun, Eitan

    2015-08-01

    Neuroinflammation in the central nervous system is detrimental for learning and memory, as evident form epidemiological studies linking developmental defects and maternal exposure to harmful pathogens. Postnatal infections can also induce neuroinflammatory responses with long-term consequences. These inflammatory responses can lead to motor deficits and/or behavioral disabilities. Toll like receptors (TLRs) are a family of innate immune receptors best known as sensors of microbial-associated molecular patterns, and are the first responders to infection. TLR2 forms heterodimers with either TLR1 or TLR6, is activated in response to gram-positive bacterial infections, and is expressed in the brain during embryonic development. We hypothesized that early postnatal TLR2-mediated neuroinflammation would adversely affect cognitive behavior in the adult. Our data indicate that postnatal TLR2 activation affects learning and memory in adult mice in a heterodimer-dependent manner. TLR2/6 activation improved motor function and fear learning, while TLR2/1 activation impaired spatial learning and enhanced fear learning. Moreover, developmental TLR2 deficiency significantly impairs spatial learning and enhances fear learning, stressing the involvement of the TLR2 pathway in learning and memory. Analysis of the transcriptional effects of TLR2 activation reveals both common and unique transcriptional programs following heterodimer-specific TLR2 activation. These results imply that adult cognitive behavior could be influenced in part, by activation or alterations in the TLR2 pathway at birth.

  12. Programming of Mice Circadian Photic Responses by Postnatal Light Environment

    PubMed Central

    Brooks, Elisabeth; Patel, Dhruval; Canal, Maria Mercè

    2014-01-01

    Early life programming has important consequences for future health and wellbeing. A key new aspect is the impact of perinatal light on the circadian system. Postnatal light environment will program circadian behavior, together with cell morphology and clock gene function within the suprachiasmatic nucleus (SCN) of the hypothalamus, the principal circadian clock in mammals. Nevertheless, it is still not clear whether the observed changes reflect a processing of an altered photic input from the retina, rather than an imprinting of the intrinsic molecular clock mechanisms. Here, we addressed the issue by systematically probing the mouse circadian system at various levels. Firstly, we used electroretinography, pupillometry and histology protocols to show that gross retinal function and morphology in the adult are largely independent of postnatal light experiences that modulate circadian photosensitivity. Secondly, we used circadian activity protocols to show that only the animal's behavioral responses to chronic light exposure, but not to constant darkness or the acute responses to a light stimulus depend on postnatal light experience. Thirdly, we used real-time PER2::LUC rhythm recording to show long-term changes in clock gene expression in the SCN, but also heart, lung and spleen. The data showed that perinatal light mainly targets the long-term adaptive responses of the circadian clock to environmental light, rather than the retina or intrinsic clock mechanisms. Finally, we found long-term effects on circadian peripheral clocks, suggesting far-reaching consequences for the animal's overall physiology. PMID:24842115

  13. Postnatal Development of the Mouse Enteric Nervous System.

    PubMed

    Foong, Jaime Pei Pei

    2016-01-01

    Owing to over three decades of research, we now have a good understanding of the genetic and molecular control of enteric nervous system (ENS) development during embryonic and prenatal stages. On the other hand, it has only just become clear that a substantial process of ENS maturation occurs after birth (Hao et al. 2013a). During postnatal stages, in addition to genetic influences, ENS development is also potentially affected by the external environment. Thus it is possible that manipulating certain environmental factors could help prevent or reduce motility disorders. However the genetic and environmental factors that regulate postnatal ENS development remain unknown. Researchers have used a variety of animal models that are easy to manipulate genetically or experimentally, and have short gestational periods, to understand the development of the ENS. Notably, due to the availability of mouse models for several human enteric neuropathies, many studies have used the mature and developing murine ENS as a model. Here, I will discuss recent advances in knowledge about postnatal development of the murine ENS, and highlight future directions for this emerging research field. PMID:27379641

  14. ESET histone methyltransferase regulates osteoblastic differentiation of mesenchymal stem cells during postnatal bone development

    PubMed Central

    Lawson, Kevin A.; Teteak, Colin J.; Gao, Jidi; Li, Ning; Hacquebord, Jacques; Ghatan, Andrew; Zielinska-Kwiatkowska, Anna; Song, Guangchun; Chansky, Howard A.; Yang, Liu

    2014-01-01

    To investigate the effects of histone methyltransferase ESET (also known as SETDB1) on bone metabolism, we analyzed osteoblasts and osteoclasts in ESET knockout animals, and performed osteogenesis assays using ESET-null mesenchymal stem cells. We found that ESET deletion severely impairs osteoblast differentiation but has no effect on osteoclastogenesis, that co-transfection of ESET represses Runx2-mediated luciferase reporter while siRNA knockdown of ESET activates the luciferase reporter in mesenchymal cells, and that ESET is required for postnatal expression of Indian hedgehog protein in the growth plate. As the bone phenotype in ESET-null mice is 100% penetrant, these results support ESET as a critical regulator of osteoblast differentiation during bone development. PMID:24188826

  15. Quantitative study of the dorsal lateral geniculate nucleus of the rat during the postnatal development.

    PubMed

    Villena, A; Díaz, F; Requena, V; Vidal, L; Pérez de Vargas, I

    1989-01-01

    The chronology of dLGN development was studied in the rat from birth to 90 days postnatal (dpn). Our results indicate the faster dLGN growth occurs from 1 dpn to 21 dpn. The neuronal number and density was calculated. No significant neuronal loss was detected in the period investigated but the present study shows evidence of an important decrease (of 75%) in the neuronal density between 7 dpn and 21 dpn. Immediately the study of neuronal sizes and shapes was undertaken. Approximately at 14 dpn the deep neurons get a size significantly bigger than the marginal neurons. Finally, the different neuronal sizes were used for determining the successive phases of the neuronal development.

  16. Role of the pre- and post-natal environment in developmental programming of health and productivity.

    PubMed

    Reynolds, Lawrence P; Caton, Joel S

    2012-05-01

    The concept that developmental insults (for example, poor pre- or postnatal nutrition) can have long-term consequences on health and well-being of the offspring has been termed developmental programming. In livestock, developmental programming affects production traits, including growth, body composition, and reproduction. Although low birth weight was used as a proxy for compromised fetal development in the initial epidemiological studies, based on controlled studies using livestock and other animal models in the last two decades we now know that developmental programming can occur independently of any effects on birth weight. Studies in humans, rodents, and livestock also have confirmed the critical role of the placenta in developmental programming. In addition, the central role of epigenetic regulation in developmental programming has been confirmed. Lastly, relatively simple therapeutic/management strategies designed to 'rescue' placental development and function are being developed to minimize the effects of developmental programming on health and productivity of humans, livestock, and other mammals.

  17. Advanced concepts for acceleration

    SciTech Connect

    Keefe, D.

    1986-07-01

    Selected examples of advanced accelerator concepts are reviewed. Such plasma accelerators as plasma beat wave accelerator, plasma wake field accelerator, and plasma grating accelerator are discussed particularly as examples of concepts for accelerating relativistic electrons or positrons. Also covered are the pulsed electron-beam, pulsed laser accelerator, inverse Cherenkov accelerator, inverse free-electron laser, switched radial-line accelerators, and two-beam accelerator. Advanced concepts for ion acceleration discussed include the electron ring accelerator, excitation of waves on intense electron beams, and two-wave combinations. (LEW)

  18. Accelerators and the Accelerator Community

    SciTech Connect

    Malamud, Ernest; Sessler, Andrew

    2008-06-01

    In this paper, standing back--looking from afar--and adopting a historical perspective, the field of accelerator science is examined. How it grew, what are the forces that made it what it is, where it is now, and what it is likely to be in the future are the subjects explored. Clearly, a great deal of personal opinion is invoked in this process.

  19. Early Postnatal Respiratory Viral Infection Induces Structural and Neurochemical Changes in the Neonatal Piglet Brain

    PubMed Central

    Conrad, Matthew S.; Sutton, Bradley P.; Larsen, Ryan; Van Alstine, William G.; Johnson, Rodney W.

    2015-01-01

    Infections that cause inflammation during the postnatal period are common, yet little is known about their impact on brain development in gyrencephalic species. To address this issue, we investigated brain development in domestic piglets which have brain growth and morphology similar to human infants, after experimentally infecting them with porcine reproductive and respiratory syndrome virus (PRRSV) to induce an interstitial pneumonia Piglets were inoculated with PRRSV on postnatal day (PD) 7 and magnetic resonance imaging (MRI) was used to assess brain macrostructure (voxel-based morphometry), microstructure (diffusion tensor imaging) and neurochemistry (MR-spectroscopy) at PD 29 or 30. PRRSV piglets exhibited signs of infection throughout the post-inoculation period and had elevated plasma levels of TNFα at the end of the study. PRRSV infection increased the volume of several components of the ventricular system including the cerebral aqueduct, fourth ventricle, and the lateral ventricles. Group comparisons between control and PRRSV piglets defined 8 areas where PRRSV piglets had less gray matter volume; 5 areas where PRRSV piglets had less white matter volume; and 4 relatively small areas where PRRSV piglets had more white matter. Of particular interest was a bilateral reduction in gray and white matter in the primary visual cortex. PRRSV piglets tended to have reduced fractional anisotropy in the corpus callosum. Additionally, N-acetylaspartate, creatine, and myo-inositol were decreased in the hippocampus of PRRSV piglets suggesting disrupted neuronal and glial health and energy imbalances. These findings show in a gyrencephalic species that early-life infection can affect brain growth and development. PMID:25967923

  20. Role of thyroid hormone in postnatal circulatory and metabolic adjustments.

    PubMed Central

    Breall, J A; Rudolph, A M; Heymann, M A

    1984-01-01

    To assess the role of the early postnatal surge in plasma thyroid hormone concentrations on cardiovascular and metabolic adaptations, we measured cardiac output, total oxygen consumption, and plasma triiodothyronine (T3) concentrations in three groups of lambs in the first 6 h after delivery. 15 fetal lambs were prepared at gestational ages of 128-129 d by placing catheters in the brachiocephalic artery, descending aorta, distal inferior vena cava, left atrium, and pulmonary artery so that measurements could be made soon after delivery. They were divided into three groups: Group I comprised five control animals; Group II consisted of five fetuses in which thyroidectomy was performed at surgery at 129 d gestation; and Group III consisted of five animals in which thyroidectomy was performed at term gestation during delivery by caesarian section, prior to severing the umbilical cord. The lambs in Group I exhibited a rapid postnatal rise in T3 concentrations, similar to that described previously, reaching a peak value of about 5 ng/ml. Although the postnatal surge in T3 concentration was arrested in Group II and III animals, Group II had no detectable plasma T3, while the Group III animals had T3 concentrations of about 0.8 ng/ml, which were within the range previously reported for term lamb fetuses. The lambs in group II showed 40-50% lower left ventricular outputs (190 vs. 297 ml/kg per min), systemic blood flows (155 vs. 286 ml/kg per min), and oxygen consumptions (9.8 vs. 20.2 ml/kg per min) as compared with Group I animals over the entire 6-h period. The lambs in Group II also had significantly lower heart rates (131 vs. 192 beats/min) and mean systemic arterial pressures (56 vs. 72 torr). However, there were no significant differences for any of these measurements between the Group III and Group I lambs. The reduction in cardiac output in the Group II animals were reflected in a significantly lower blood flow to the peripheral circulation, but there were no

  1. A Latent Growth Curve Modeling Approach Using an Accelerated Longitudinal Design: The Ontogeny of Boys' and Girls' Talent Perceptions and Intrinsic Values through Adolescence

    ERIC Educational Resources Information Center

    Watt, Helen M. G.

    2008-01-01

    This article presents latent growth modeling, a particular application of multilevel modeling, to examine the development of adolescents' math- and English-related talent perceptions and intrinsic values which are emphasized by Expectancy-Value theory as important precursors to a range of achievement-related outcomes. The longitudinal…

  2. Pre- and Postnatal Transplantation of Fetal Mesenchymal Stem Cells in Osteogenesis Imperfecta: A Two-Center Experience

    PubMed Central

    Westgren, Magnus; Shaw, S.W. Steven; Åström, Eva; Biswas, Arijit; Byers, Peter H.; Mattar, Citra N.Z.; Graham, Gail E.; Taslimi, Jahan; Ewald, Uwe; Fisk, Nicholas M.; Yeoh, Allen E.J.; Lin, Ju-Li; Cheng, Po-Jen; Choolani, Mahesh; Le Blanc, Katarina; Chan, Jerry K.Y.

    2014-01-01

    Osteogenesis imperfecta (OI) can be recognized prenatally with ultrasound. Transplantation of mesenchymal stem cells (MSCs) has the potential to ameliorate skeletal damage. We report the clinical course of two patients with OI who received prenatal human fetal MSC (hfMSC) transplantation and postnatal boosting with same-donor MSCs. We have previously reported on prenatal transplantation for OI type III. This patient was retransplanted with 2.8 × 106 same-donor MSCs per kilogram at 8 years of age, resulting in low-level engraftment in bone and improved linear growth, mobility, and fracture incidence. An infant with an identical mutation who did not receive MSC therapy succumbed at 5 months despite postnatal bisphosphonate therapy. A second fetus with OI type IV was also transplanted with 30 × 106 hfMSCs per kilogram at 31 weeks of gestation and did not suffer any new fractures for the remainder of the pregnancy or during infancy. The patient followed her normal growth velocity until 13 months of age, at which time longitudinal length plateaued. A postnatal infusion of 10 × 106 MSCs per kilogram from the same donor was performed at 19 months of age, resulting in resumption of her growth trajectory. Neither patient demonstrated alloreactivity toward the donor hfMSCs or manifested any evidence of toxicities after transplantation. Our findings suggest that prenatal transplantation of allogeneic hfMSCs in OI appears safe and is of likely clinical benefit and that retransplantation with same-donor cells is feasible. However, the limited experience to date means that it is not possible to be conclusive and that further studies are required. PMID:24342908

  3. Accelerated Wound Closure In Vitro by Fibroblasts from a Subgroup of Cleft Lip/Palate Patients: Role of Transforming Growth Factor-α

    PubMed Central

    Beyeler, Joël; Schnyder, Isabelle; Katsaros, Christos; Chiquet, Matthias

    2014-01-01

    In a fraction of patients surgically treated for cleft lip/palate, excessive scarring disturbs maxillary growth and dento-alveolar development. Since certain genes are involved in craniofacial morphogenesis as well as tissue repair, a primary defect causing cleft lip/palate could lead to altered wound healing. We performed in vitro wound healing assays with primary lip fibroblasts from 16 cleft lip/palate patients. Nine foreskin fibroblast strains were included for comparison. Cells were grown to confluency and scratch wounds were applied; wound closure was monitored morphometrically over time. Wound closure rate showed highly significant differences between fibroblast strains. Statistically, fibroblast strains from the 25 individuals could be divided into three migratory groups, namely “fast”, “intermediate”, and “slow”. Most cleft lip/palate fibroblasts were distributed between the “fast” (5 strains) and the “intermediate” group (10 strains). These phenotypes were stable over different cell passages from the same individual. Expression of genes involved in cleft lip/palate and wound repair was determined by quantitative PCR. Transforming growth factor-α mRNA was significantly up-regulated in the “fast” group. 5 ng/ml transforming growth factor-α added to the culture medium increased the wound closure rate of cleft lip/palate strains from the “intermediate” migratory group to the level of the “fast”, but had no effect on the latter group. Conversely, antibody to transforming growth factor-α or a specific inhibitor of its receptor most effectively reduced the wound closure rate of “fast” cleft lip/palate strains. Thus, fibroblasts from a distinct subgroup of cleft lip/palate patients exhibit an increased migration rate into wounds in vitro, which is linked to higher transforming growth factor-α expression and attenuated by interfering with its signaling. PMID:25360592

  4. Accelerating Commercial Remote Sensing

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Through the Visiting Investigator Program (VIP) at Stennis Space Center, Community Coffee was able to use satellites to forecast coffee crops in Guatemala. Using satellite imagery, the company can produce detailed maps that separate coffee cropland from wild vegetation and show information on the health of specific crops. The data can control coffee prices and eventually may be used to optimize application of fertilizers, pesticides and irrigation. This would result in maximal crop yields, minimal pollution and lower production costs. VIP is a mechanism involving NASA funding designed to accelerate the growth of commercial remote sensing by promoting general awareness and basic training in the technology.

  5. Epiphyseal abnormalities, trabecular bone loss and articular chondrocyte hypertrophy develop in the long bones of postnatal Ext1-deficient mice.

    PubMed

    Sgariglia, Federica; Candela, Maria Elena; Huegel, Julianne; Jacenko, Olena; Koyama, Eiki; Yamaguchi, Yu; Pacifici, Maurizio; Enomoto-Iwamoto, Motomi

    2013-11-01

    Long bones are integral components of the limb skeleton. Recent studies have indicated that embryonic long bone development is altered by mutations in Ext genes and consequent heparan sulfate (HS) deficiency, possibly due to changes in activity and distribution of HS-binding/growth plate-associated signaling proteins. Here we asked whether Ext function is continuously required after birth to sustain growth plate function and long bone growth and organization. Compound transgenic Ext1(f/f);Col2CreERT mice were injected with tamoxifen at postnatal day 5 (P5) to ablate Ext1 in cartilage and monitored over time. The Ext1-deficient mice exhibited growth retardation already by 2weeks post-injection, as did their long bones. Mutant growth plates displayed a severe disorganization of chondrocyte columnar organization, a shortened hypertrophic zone with low expression of collagen X and MMP-13, and reduced primary spongiosa accompanied, however, by increased numbers of TRAP-positive osteoclasts at the chondro-osseous border. The mutant epiphyses were abnormal as well. Formation of a secondary ossification center was significantly delayed but interestingly, hypertrophic-like chondrocytes emerged within articular cartilage, similar to those often seen in osteoarthritic joints. Indeed, the cells displayed a large size and round shape, expressed collagen X and MMP-13 and were surrounded by an abundant Perlecan-rich pericellular matrix not seen in control articular chondrocytes. In addition, ectopic cartilaginous outgrowths developed on the lateral side of mutant growth plates over time that resembled exostotic characteristic of children with Hereditary Multiple Exostoses, a syndrome caused by Ext mutations and HS deficiency. In sum, the data do show that Ext1 is continuously required for postnatal growth and organization of long bones as well as their adjacent joints. Ext1 deficiency elicits defects that can occur in human skeletal conditions including trabecular bone loss

  6. Excitatory-inhibitory imbalance in hypoglossal neurons during the critical period of postnatal development in the rat.

    PubMed

    Gao, Xiu-ping; Liu, Qing-song; Liu, Qiuli; Wong-Riley, Margaret T T

    2011-04-15

    Hypoglossal motoneurons (HMs) innervate tongue muscles and are critical in maintaining patency of the upper airway during respiration. Abnormalities in HMs have been implicated in sudden infant death syndrome (SIDS) and obstructive sleep apnoea. Previously, we found a critical period in respiratory network development in rats around postnatal day (P) 12-13, when abrupt neurochemical, metabolic and physiological changes occurred. To test our hypothesis that an imbalance between inhibitory and excitatory synaptic transmission exists during the critical period, whole-cell patch-clamp recordings of HMs were done in brainstem slices of rats daily from P0 to P16. The results indicated that: (1) the amplitude and charge transfer of miniature excitatory postsynaptic currents (mEPSCs) were significantly reduced at P12-13; (2) the amplitude, mean frequency and charge transfer of miniature inhibitory postsynaptic currents (mIPSCs) were significantly increased at P12-13; (3) the kinetics (rise time and decay time) of both mEPSCs and mIPSCs accelerated with age; (4) the amplitude and frequency of spontaneous EPSCs were significantly reduced at P12-13, whereas those of spontaneous IPSCs were significantly increased at P12-13; and (5) both glycine and GABA contributed to mIPSCs. However, GABAergic currents fluctuated within a narrow range during the first three postnatal weeks, whereas glycinergic ones exhibited age-dependent changes comparable to those of total mIPSCs, indicating a reversal in dominance from GABA to glycine with development. Thus, our results provide strong electrophysiological evidence for an excitatory-inhibitory imbalance in HMs during the critical period of postnatal development in rats that may have significant implications for SIDS. PMID:21486774

  7. Accelerator system and method of accelerating particles

    NASA Technical Reports Server (NTRS)

    Wirz, Richard E. (Inventor)

    2010-01-01

    An accelerator system and method that utilize dust as the primary mass flux for generating thrust are provided. The accelerator system can include an accelerator capable of operating in a self-neutralizing mode and having a discharge chamber and at least one ionizer capable of charging dust particles. The system can also include a dust particle feeder that is capable of introducing the dust particles into the accelerator. By applying a pulsed positive and negative charge voltage to the accelerator, the charged dust particles can be accelerated thereby generating thrust and neutralizing the accelerator system.

  8. Detailed comparative anatomy of the extrinsic cardiac nerve plexus and postnatal reorganization of the cardiac position and innervation in the great apes: orangutans, gorillas, and chimpanzees.

    PubMed

    Kawashima, Tomokazu; Sato, Fumi

    2012-03-01

    To speculate how the extrinsic cardiac nerve plexus (ECNP) evolves phyletically and ontogenetically within the primate lineage, we conducted a comparative anatomical study of the ECNP, including an imaging examination in the great apes using 20 sides from 11 bodies from three species and a range of postnatal stages from newborns to mature adults. Although the position of the middle cervical ganglion (MG) in the great apes tended to be relatively lower than that in humans, the morphology of the ECNP in adult great apes was almost consistent with that in adult humans but essentially different from that in the lesser apes or gibbons. Therefore, the well-argued anatomical question of when did the MG acquire communicating branches with the spinal cervical nerves and appear constantly in all sympathetic cardiac nerves during primate evolution is clearly considered to be after the great apes and gibbons split. Moreover, a horizontal four-chambered heart and a lifted cardiac apex with a relatively large volume in newborn great apes rapidly changed its position downward, as seen in humans during postnatal growth and was associated with a reduction in the hepatic volume by imaging diagnosis and gross anatomy. In addition, our observation using a range of postnatal stages exhibits that two sympathetic ganglia, the middle cervical and cervicothoracic ganglia, differed between the early and later postnatal stages.

  9. Expression of GABA transporters, GAT-1 and GAT-3, in the cerebral cortex and thalamus of the rat during postnatal development.

    PubMed

    Vitellaro-Zuccarello, L; Calvaresi, N; De Biasi, S

    2003-09-01

    The cellular and subcellular localization of two GABA transporters, GAT-1 and GAT-3, was investigated using immunocytochemical methods in the rat cerebral cortex and thalamus during postnatal development. The distribution of the transporters is compared with that of the neuronal marker GABA, and with that of vimentin and of glial fibrillary acidic protein, which identify immature and mature astrocytes, respectively. Our observations show that the two transporters are already expressed at birth in both brain areas with the same cellular localization as in adult rats, as GAT-1 is present in growth cones and terminals only in the cortex, whereas both transporters are expressed in astrocytes in the cortex and thalamus. The distribution of GAT-1 and GAT-3 undergoes postnatal changes reflecting in general the neurogenetic events of the neocortex and thalamus and, more specifically, the maturation of GABAergic innervation. The adult-like pattern of expression is achieved in the third postnatal week in the cortex and in the second postnatal week in the thalamus. The early expression of GAT-1 in GABAergic terminals confirms previous studies showing the existence of neuronal mechanisms of GABA uptake from the embryonic stages. As for the glial localization, the precocious existence of two astrocytic GABA transporters suggests that they operate through different functional mechanisms from birth, whereas their exclusively glial expression in the thalamus indicates that the astroglia plays a major role in the transport, recycling and metabolism of thalamic GABA.

  10. DOE Solar Energy Technologies Program TPP Final Report - A Value Chain Partnership to Accelerate U.S. PV Industry Growth, GE Global Research

    SciTech Connect

    Todd Tolliver; Danielle Merfeld; Charles Korman; James Rand; Tom McNulty; Neil Johnson; Dennis Coyle

    2009-07-31

    General Electric’s (GE) DOE Solar Energy Technologies TPP program encompassesd development in critical areas of the photovoltaic value chain that affected the LCOE for systems in the U.S. This was a complete view across the value chain, from materials to rooftops, to identify opportunities for cost reductions in order to realize the Department of Energy’s cost targets for 2010 and 2015. GE identified a number of strategic partners with proven leadership in their respective technology areas to accelerate along the path to commercialization. GE targeted both residential and commercial rooftop scale systems. To achieve these goals, General Electric and its partners investigated three photovoltaic pathways that included bifacial high-efficiency silicon cells and modules, low-cost multicrystalline silicon cells and modules and flexible thin film modules. In addition to these technologies, the balance of system for residential and commercial installations were also investigated. Innovative system installation strategies were pursed as an additional avenue for cost reduction.

  11. Assessment of women's perspectives and experiences of childbirth and postnatal care using Q-methodology.

    PubMed

    Shabila, N P; Ahmed, H M; Yasin, M Y

    2015-10-02

    To complement standard measures of maternity care outcomes, an assessment of women's satisfaction with care is needed. The aim of this study was to elicit the perspectives and experiences of Iraqi women about childbirth and postnatal care services. The study participants were a sample of 37 women of different educational and socioeconomic status who had given birth during the previous 6 months. Q-methodology was used for data collection and analysis. Three distinct viewpoints and experiences of childbirth and postnatal care services were identified: a general perception of poor childbirth and postnatal care with lack of appropriate interpersonal care and support; a high satisfaction and positive experience with childbirth and postnatal care services among the confident and well-supported women; and poor satisfaction with the childbirth and postnatal care services in terms of meeting traditional cultural practices. Needs assessment around providers' skills and attitudes and the wider sociocultural environment of childbirth and postnatal care is necessary in Iraq.

  12. Accelerator structure work for NLC

    SciTech Connect

    Miller, R.H.; Adolphsen, C.; Bane, K.L.F.; Deruyter, H.; Farkas, Z.D.; Hoag, H.A.; Holtkamp, N.; Lavine, T.; Loew, G.A.; Nelson, E.M.; Palmer, R.B.; Paterson, J.M.; Ruth, R.D.; Thompson, K.A.; Vlieks, A.; Wang, J.W.; Wilson, P.B.; Gluckstern, R.; Ko, K.; Kroll, N. |

    1992-07-01

    The NLC design achieves high luminosity with multiple bunches in each RF pulse. Acceleration of a train of bunches without emittance growth requires control of long range dipole wakefields. SLAC is pursuing a structure design which suppresses the effect of wakefields by varying the physical dimensions of successive cells of the disk-loaded traveling wave structure in a manner which spreads the frequencies of the higher mode while retaining the synchronism between the electrons and the accelerating mode. The wakefields of structures incorporating higher mode detuning have been measured at the Accelerator Test Facility at Argonne. Mechanical design and brazing techniques which avoid getting brazing alloy into the interior of the accelerator are being studied. A test facility for high-power testing of these structures is complete and high power testing has begun.

  13. Melatonin, But not auxin, affects postnatal reproductive development in the marsh rice rat (Oryzomys palustris).

    PubMed

    Edmonds, Kent E

    2013-06-01

    Melatonin and the plant hormone auxin (indole-3-acetic acid) have some structural similarity and, may thus exert comparable physiological effects on reproduction and growth. To test this possibility, I examined the effects of melatonin and auxin administration on reproductive and non-reproductive organ development in an animal model, the marsh rice rat Oryzomys palustris. Juvenile males housed under 14L:10D conditions were injected daily for four weeks with saline, melatonin, auxin, or melatonin and auxin, and the development of the testes and other organs was assessed. Melatonin alone significantly inhibited the development of the testes, seminal vesicles, Harderian glands, and overall somatic growth, but not the spleen. Auxin did not affect any endpoint measured. When melatonin was administered simultaneously with auxin, the melatonin effects dominated in suppressing reproduction and growth. The administration of melatonin or auxin in the drinking water produced results similar to the effects of melatonin and auxin injections reported herein. Lastly, both melatonin and auxin in the drinking water failed to alter any short photoperiod-induced reproductive inhibition. These data suggest that structural similarities between melatonin and auxin do not result in similar postnatal effects on reproductive and non-reproductive organ development on a long photoperiod and further suggest that melatonin and auxin do not operate through a common physiological mechanism.

  14. Cytokine gene expression during postnatal small intestinal development: regulation by glucocorticoids

    PubMed Central

    Schaeffer, C; Diab-Assef, M; Plateroti, M; Laurent-Huck, F; Reimund, J; Kedinger, M; Foltzer-Jourdainn..., C

    2000-01-01

    BACKGROUND—In the intestinal mucosa, numerous cytokines produced by the epithelium, fibroblasts, and immune cells were shown to affect epithelial differentiation and proliferation through epithelial-mesenchymal and epithelial-immune cell interactions. To date, the importance of cytokines in postnatal development of the rat small intestine has not been established.
AIM—To investigate the developmental changes in expression of mucosal cytokines in the postnatal maturation of the rat small intestinal epithelium and their regulation by glucocorticoids (GC).
METHODS—Mucosal maturation was assessed by the onset of sucrase-isomaltase (SI) mRNA, analysed by in situ hybridisation. The amount of transforming growth factor β1 (TGF-β1), β2 (TGF-β2), tumour necrosis factor α (TNF-α), interleukin 1β (IL-1β), and TGF-α was analysed by reverse transcription-polymerase chain reaction (RT-PCR) in mucosal extracts from weaning (14-21 days old) and adult rats, or one day after an injection of hydrocortisone (HC) in 11 day old rats. Similarly, expression of cytokines and the regulatory effect of GC were studied on cultured subepithelial myofibroblasts cloned from postnatal jejunum and ileum cultured in the absence or presence of dexamethasone (DX).
RESULTS—TGF-β1, TGF-β2, and IL-1β decreased during the third week of life while levels of TNF-α increased and TGF-α remained constant. In parallel, SI transcripts increased and showed a progressive accumulation in the apical part of the enterocytes first localised at the base of the villi from 18 days onwards. Interestingly, precocious induction of SI mRNA by HC paralleled the decrease in expression of TGF-β isoforms and of IL-1β. All cytokines were expressed in the myofibroblast cell lines. In addition, the results showed that TNF-α was differentially expressed in basal culture conditions and after DX stimulation in jejunal and ileal myofibroblasts. DX decreased IL-1β but not the TGF-β isoforms, similar

  15. Nociceptin and meiosis during spermatogenesis in postnatal testes.

    PubMed

    Eto, Ko

    2015-01-01

    Phosphorylated Rec8, a key component of cohesin, mediates the association and disassociation, "dynamics," of chromosomes occurring in synaptonemal complex formation, crossover recombination, and sister chromatid cohesion during meiosis in germ cells. Yet, the extrinsic factors triggering meiotic chromosome dynamics remained unclear. In postnatal testes, follicle-stimulating hormone (FSH) acts directly on somatic Sertoli cells to activate gene expression via an intracellular signaling pathway composed of cAMP, cAMP-dependent protein kinase (PKA), and cAMP-response element-binding protein (CREB), and promotes germ cell development and spermatogenesis indirectly. Yet, the paracrine factors mediating the FSH effects to germ cells remained elusive. We have shown that nociceptin, known as a neuropeptide, is upregulated by FSH signaling through cAMP/PKA/CREB pathway in Sertoli cells of postnatal murine testes. Chromatin immunoprecipitation from Sertoli cells demonstrated that CREB phosphorylated at Ser133 associates with prepronociceptin gene encoding nociceptin. Analyses with Sertoli cells and testes revealed that both prepronociceptin mRNA and the nociceptin peptide are induced after FSH signaling is activated. In addition, the nociceptin peptide is induced in testes after 9 days post partum following FSH surge. Thus, our findings may identify nociceptin as a novel paracrine mediator of the FSH effects in the regulation of spermatogenesis; however, very little has known about the functional role of nociceptin in spermatogenesis. We have shown that nociceptin induces Rec8 phosphorylation, triggering chromosome dynamics, during meiosis in spermatocytes of postnatal murine testes. The nociceptin receptor Oprl-1 is exclusively expressed in the plasma membrane of testicular germ cells, mostly spermatocytes. Treatment of testes with nociceptin resulted in a rapid phosphorylation of Rec8. Injection of nociceptin into mice stimulated Rec8 phosphorylation and meiotic chromosome

  16. Body composition in human infants at birth and postnatally.

    PubMed

    Koo, W W; Walters, J C; Hockman, E M

    2000-09-01

    The predictive values of anthropometric measurements, race, gender, gestational and postnatal ages, and season at birth and at study for the total body dual energy X-ray absorptiometry (DXA)-derived lean mass (LM), fat mass (FM) and fat mass as a percentage of body weight (%FM) were determined in 214 singleton appropriate birth weight for gestational age infants [101 Caucasian (60 boys, 41 girls) and 113 African American (55 boys, 58 girls)]. Gestational ages were 27-42 wk and the infants were studied between birth and 391 d, weighing between 851 and 13446 g. In addition, predictive value of body weight, LM and FM for DXA bone measurements was also determined. Scan acquisition used Hologic QDR 1000/W densitometer and infant platform and scans without significant movement artifacts were analyzed using software 5.64p. Body weight, length, gender and postnatal age were significant predictors of LM (adjusted R:(2) >0. 94) and FM (adjusted R:(2) >0.85). Physiologic variables had little predictive value for %FM except in the newborns (adjusted R:(2) 0. 69). Body weight was the dominant predictor of LM and FM, although length had similar predictive value for LM with increasing postnatal age. Female infants had less LM and more FM throughout infancy (P: < 0.01). LM or FM offered no advantage over body weight in the prediction of bone mass measurements. DXA is a useful means with which to determine body composition, and our data are important in the design and assessment of nutritional intervention studies.

  17. Effects of in utero heat stress on postnatal body composition in pigs: II. Finishing phase.

    PubMed

    Johnson, J S; Sanz Fernandez, M V; Patience, J F; Ross, J W; Gabler, N K; Lucy, M C; Safranski, T J; Rhoads, R P; Baumgard, L H

    2015-01-01

    The detrimental effects of heat stress (HS) on animal productivity have been well documented. However, whether in utero HS interacts with a future thermal insult to alter tissue deposition during the finishing phase of pig growth is unknown. Study objectives were to compare the subsequent rate and quantity of whole-body tissue accretion in pigs exposed to differing in utero and postnatal thermal environments. Pregnant sows were exposed to thermoneutral (TN; cyclical 15°C nighttime and 22°C daytime; n = 9) or HS (cyclical 27°C nighttime and 37°C daytime; n = 11) conditions during their entire gestation. Twenty-four offspring from in utero TN (IUTN; n = 6 gilts and 6 barrows; 62.4 ± 0.7 kg BW) and in utero HS (IUHS; n = 6 gilts and 6 barrows; 61.9 ± 0.8 kg BW) were euthanized as part of an initial slaughter group (ISG). After the ISG, 48 pigs from IUTN (n = 12 gilts and 12 barrows; 66.1 ± 1.0 kg BW) and IUHS (n = 12 gilts and 12 barrows; 63.4 ± 0.7 kg BW) were exposed to constant HS (34.4 ± 1.8°C) or TN (22.7 ± 2.5°C) conditions until they reached 80.5 ± 1.5 kg BW, at which point they were sacrificed and their whole-body composition was determined. Homogenized carcasses were analyzed for N, crude fat, ash, water, and GE content. Data were analyzed using PROC MIXED in SAS 9.3. Rectal temperature and respiration rate increased during postnatal HS compared to TN (39.6 vs. 39.3°C and 92 vs. 58 breaths per minute, respectively; P < 0.01). Postnatal HS decreased (P < 0.01) feed intake (2.13 vs. 2.65 kg/d) and ADG (0.70 vs. 0.94 kg/d) compared to TN conditions, but neither variable was influenced by in utero environment. Whole-body protein and lipid accretion rates were reduced in HS pigs compared to TN controls (126 vs. 164 g/d and 218 vs. 294 g/d, respectively; P < 0.04). Independent of postnatal environments, IUHS reduced future protein accretion rates (16%; P < 0.01) and tended to increase lipid accretion rates (292 vs. 220 g/d; P < 0.07) compared to IUTN

  18. Effects of in utero heat stress on postnatal body composition in pigs: II. Finishing phase.

    PubMed

    Johnson, J S; Sanz Fernandez, M V; Patience, J F; Ross, J W; Gabler, N K; Lucy, M C; Safranski, T J; Rhoads, R P; Baumgard, L H

    2015-01-01

    The detrimental effects of heat stress (HS) on animal productivity have been well documented. However, whether in utero HS interacts with a future thermal insult to alter tissue deposition during the finishing phase of pig growth is unknown. Study objectives were to compare the subsequent rate and quantity of whole-body tissue accretion in pigs exposed to differing in utero and postnatal thermal environments. Pregnant sows were exposed to thermoneutral (TN; cyclical 15°C nighttime and 22°C daytime; n = 9) or HS (cyclical 27°C nighttime and 37°C daytime; n = 11) conditions during their entire gestation. Twenty-four offspring from in utero TN (IUTN; n = 6 gilts and 6 barrows; 62.4 ± 0.7 kg BW) and in utero HS (IUHS; n = 6 gilts and 6 barrows; 61.9 ± 0.8 kg BW) were euthanized as part of an initial slaughter group (ISG). After the ISG, 48 pigs from IUTN (n = 12 gilts and 12 barrows; 66.1 ± 1.0 kg BW) and IUHS (n = 12 gilts and 12 barrows; 63.4 ± 0.7 kg BW) were exposed to constant HS (34.4 ± 1.8°C) or TN (22.7 ± 2.5°C) conditions until they reached 80.5 ± 1.5 kg BW, at which point they were sacrificed and their whole-body composition was determined. Homogenized carcasses were analyzed for N, crude fat, ash, water, and GE content. Data were analyzed using PROC MIXED in SAS 9.3. Rectal temperature and respiration rate increased during postnatal HS compared to TN (39.6 vs. 39.3°C and 92 vs. 58 breaths per minute, respectively; P < 0.01). Postnatal HS decreased (P < 0.01) feed intake (2.13 vs. 2.65 kg/d) and ADG (0.70 vs. 0.94 kg/d) compared to TN conditions, but neither variable was influenced by in utero environment. Whole-body protein and lipid accretion rates were reduced in HS pigs compared to TN controls (126 vs. 164 g/d and 218 vs. 294 g/d, respectively; P < 0.04). Independent of postnatal environments, IUHS reduced future protein accretion rates (16%; P < 0.01) and tended to increase lipid accretion rates (292 vs. 220 g/d; P < 0.07) compared to IUTN

  19. Preliminary Morphological and Immunohistochemical Changes in Rat Hippocampus Following Postnatal Exposure to Sodium Arsenite

    PubMed Central

    Kaler, Saroj; Dhar, Pushpa; Bhattacharya, Arnab; Mehra, Raj D.

    2013-01-01

    The effects of arsenic exposure during rapid brain growth period (RBGP) (postnatal period 4-11) on pyramidal neurons of cornu ammonis (specifically CA1 and CA3 regions) and granule cells of dentate gyrus (DG) of rat hippocampus were studied. Wistar rat pups, subdivided into the control (group I) and the experimental groups (group II, III, and IV), received distilled water and sodium arsenite (aqueous solution of 1.0, 1.5, and 2.0 mg/kg bo