Sample records for accelerated sea level

  1. Timescales for detecting a significant acceleration in sea level rise

    PubMed Central

    Haigh, Ivan D.; Wahl, Thomas; Rohling, Eelco J.; Price, René M.; Pattiaratchi, Charitha B.; Calafat, Francisco M.; Dangendorf, Sönke

    2014-01-01

    There is observational evidence that global sea level is rising and there is concern that the rate of rise will increase, significantly threatening coastal communities. However, considerable debate remains as to whether the rate of sea level rise is currently increasing and, if so, by how much. Here we provide new insights into sea level accelerations by applying the main methods that have been used previously to search for accelerations in historical data, to identify the timings (with uncertainties) at which accelerations might first be recognized in a statistically significant manner (if not apparent already) in sea level records that we have artificially extended to 2100. We find that the most important approach to earliest possible detection of a significant sea level acceleration lies in improved understanding (and subsequent removal) of interannual to multidecadal variability in sea level records. PMID:24728012

  2. What can we learn from the self-attraction and loading fingerprints about pre-GRACE mass-loss acceleration from Greenland and Antarctica?

    NASA Astrophysics Data System (ADS)

    Davis, J. L.; Vinogradova, N. T.

    2017-12-01

    Tide-gauge records from the North Atlantic reveal significant acceleration in sea level starting in the late 20th century. We have analyzed the tide-gauge data using a model in which the accelerations are assumed to be zero prior to 1990. The estimated accelerations range from -1 to +3 m cy-2 and exhibit a systematic spatial variability. Davis and Vinogradova [2017] demonstrated that to model this variability in sea-level acceleration requires contributions from several distinct physical processes: accelerated mass loss from the Greenland and Antarctic Ice Sheets and acceleration associated with ocean circulation and heat uptake. Atmospheric pressure also contributes to the observed changes in sea level, at a much smaller amplitude. Because we are focusing on sea-level accelerations (i.e., sea-level rate changes), the contribution from Glacial Isostatic Adjustment (GIA) is negligible. Modeling of observed sea-level acceleration is achieved using external constraints for the important physical processes. Using GRACE results, we can calculate the sea-level "fingerprints" for Greenland and Antarctica associated with mass loading and gravitational perturbations. For the North Atlantic, Greenland induces a significant spatial variation in sea-level change—dominated by the solid-Earth response to the mass loss—whereas Antarctica contributes a spatially constant acceleration. The observations prefer a scaling of the solid-Earth/gravitational response, and we present the implications of this result for ice-mass changes prior to the onset of GRACE observations (2002-3).

  3. Coastal marsh response to historical and future sea-level acceleration

    USGS Publications Warehouse

    Kirwan, M.; Temmerman, S.

    2009-01-01

    We consider the response of marshland to accelerations in the rate of sea-level rise by utilizing two previously described numerical models of marsh elevation. In a model designed for the Scheldt Estuary (Belgium-SW Netherlands), a feedback between inundation depth and suspended sediment concentrations allows marshes to quickly adjust their elevation to a change in sea-level rise rate. In a model designed for the North Inlet Estuary (South Carolina), a feedback between inundation and vegetation growth allows similar adjustment. Although the models differ in their approach, we find that they predict surprisingly similar responses to sea-level change. Marsh elevations adjust to a step change in the rate of sea-level rise in about 100 years. In the case of a continuous acceleration in the rate of sea-level rise, modeled accretion rates lag behind sea-level rise rates by about 20 years, and never obtain equilibrium. Regardless of the style of acceleration, the models predict approximately 6-14 cm of marsh submergence in response to historical sea-level acceleration, and 3-4 cm of marsh submergence in response to a projected scenario of sea-level rise over the next century. While marshes already low in the tidal frame would be susceptible to these depth changes, our modeling results suggest that factors other than historical sea-level acceleration are more important for observations of degradation in most marshes today.

  4. What Causes the North Sea Level to Rise Faster over the Last Decade ?

    NASA Astrophysics Data System (ADS)

    Karpytchev, Mikhail; Letetrel, Camille

    2013-04-01

    We combined tide gauge records (PSMSL) and satellite altimetry data (TOPEX/POSEIDON-JASON 1-2) to reconstruct the mean level of the North Sea and the Norwegian Sea Shelf (NS-NSS) over 1950-2012. The reconstructed NS-NSS mean sea level fluctuations reveal a pronounced interannual variability and a strong sea level acceleration since the mid-1990's. In order to understand the causes of this acceleration, the NS-NSS mean sea level was cross-correlated with the North Atlantic Oscillation and Arctic Oscillation indices. While the interannual variability of the mean sea level correlates well with the NAO/AO indices, the observed acceleration in the NS-NSS mean level is not linked linearly to the NAO/AO fluctuations. On the other hand, the Empirical Orthogonal Functions (EOF) analysis of steric sea level variations in the eastern North Atlantic gives a dominant EOF pattern (55% of variance explained) that varies on a decadal scale very closely to the NS-NSS mean level flcutuations. Also, the amplification in the temporal amplitude of the dominant steric sea level EOF corresponds to the acceleration observed in the NS-NSS mean sea level signal. This suggests that decadal variations in the mean level of the North Sea - the Norwegian Sea Shelf reflect changes in the Subpolar Front currents (Rossby, 1996).

  5. A heuristic evaluation of long-term global sea level acceleration

    NASA Astrophysics Data System (ADS)

    Spada, Giorgio; Olivieri, Marco; Galassi, Gaia

    2015-05-01

    In view of the scientific and social implications, the global mean sea level rise (GMSLR) and its possible causes and future trend have been a challenge for so long. For the twentieth century, reconstructions generally indicate a rate of GMSLR in the range of 1.5 to 2.0 mm yr-1. However, the existence of nonlinear trends is still debated, and current estimates of the secular acceleration are subject to ample uncertainties. Here we use various GMSLR estimates published on scholarly journals since the 1940s for a heuristic assessment of global sea level acceleration. The approach, alternative to sea level reconstructions, is based on simple statistical methods and exploits the principles of meta-analysis. Our results point to a global sea level acceleration of 0.54 ± 0.27 mm/yr/century (1σ) between 1898 and 1975. This supports independent estimates and suggests that a sea level acceleration since the early 1900s is more likely than currently believed.

  6. Sea Level Budget along the East Coast of North America

    NASA Astrophysics Data System (ADS)

    Pease, A. M.; Davis, J. L.; Vinogradova, N. T.

    2016-12-01

    We analyzed tide gauge data, taken from 1955 to 2015, from 29 locations along the east coast of North America. A well-documented period of sea-level acceleration began around 1990. The sea level rate (referenced to epoch 1985.0) and acceleration (post-1990) are spatially and temporally variable, due to various physical processes, each of which is also spatially and temporally variable. To determine the sea-level budgets for rate and acceleration, we considered a number of major contributors to sea level change: ocean density and dynamics, glacial isostatic adjustment (GIA), the inverted barometer effect, and mass change associated with the Greenland Ice Sheet (GIS) and the Antarctic Ice Sheet (AIS). The geographic variability in the budgets for sea-level rate is dominated by GIA. At some sites, GIA is the largest contributor to the rate. The geographic variability in the budgets for sea-level acceleration is dominated by ocean dynamics and density and GIS mass loss. The figure below shows budgets for sea-level rate (left) and acceleration (right) for Key West, Fla., (top) and The Battery in New York City (bottom). The blue represents values (with error bar shown) estimated from tide gauge observations, and the yellow represents the total values estimated from the individual model contributions (each in red, green, cyan, pink, and black). The estimated totals for rate and acceleration are good matches to the tide-gauge inferences. To achieve a reasonable fit, a scaling factor (admittance) for the combined contribution of ocean dynamics and density was estimated; this admittance may reflect the low spatial sampling of the GECCO2 model we used, or other problems in modeling coastal sea-level. The significant contributions of mass loss to the acceleration enable us to predict that, if such mass-loss continues or increases, the character of sea-level change on the North American east coast will change in the next 50-100 years. In particular, whereas GIA presently dominates the spatial variability of sea-level change, mass loss from Greenland and Antarctica will dominate it by 2050-2100. However, the long-term contribution of ocean dynamics and density remain more of a question.

  7. A new perspective on global mean sea level (GMSL) acceleration

    NASA Astrophysics Data System (ADS)

    Watson, Phil J.

    2016-06-01

    The vast body of contemporary climate change science is largely underpinned by the premise of a measured acceleration from anthropogenic forcings evident in key climate change proxies -- greenhouse gas emissions, temperature, and mean sea level. By virtue, over recent years, the issue of whether or not there is a measurable acceleration in global mean sea level has resulted in fierce, widespread professional, social, and political debate. Attempts to measure acceleration in global mean sea level (GMSL) have often used comparatively crude analysis techniques providing little temporal instruction on these key questions. This work proposes improved techniques to measure real-time velocity and acceleration based on five GMSL reconstructions spanning the time frame from 1807 to 2014 with substantially improved temporal resolution. While this analysis highlights key differences between the respective reconstructions, there is now more robust, convincing evidence of recent acceleration in the trend of GMSL.

  8. Intermittent sea-level acceleration

    NASA Astrophysics Data System (ADS)

    Olivieri, M.; Spada, G.

    2013-10-01

    Using instrumental observations from the Permanent Service for Mean Sea Level (PSMSL), we provide a new assessment of the global sea-level acceleration for the last ~ 2 centuries (1820-2010). Our results, obtained by a stack of tide gauge time series, confirm the existence of a global sea-level acceleration (GSLA) and, coherently with independent assessments so far, they point to a value close to 0.01 mm/yr2. However, differently from previous studies, we discuss how change points or abrupt inflections in individual sea-level time series have contributed to the GSLA. Our analysis, based on methods borrowed from econometrics, suggests the existence of two distinct driving mechanisms for the GSLA, both involving a minority of tide gauges globally. The first effectively implies a gradual increase in the rate of sea-level rise at individual tide gauges, while the second is manifest through a sequence of catastrophic variations of the sea-level trend. These occurred intermittently since the end of the 19th century and became more frequent during the last four decades.

  9. Anomalous secular sea-level acceleration in the Baltic Sea caused by glacial isostatic adjustment

    NASA Astrophysics Data System (ADS)

    Spada, Giorgio; Galassi, Gaia; Olivieri, Marco

    2014-05-01

    Observations from the global array of tide gauges show that global sea-level has been rising at an average rate of 1.5-2 mm/yr during the last ˜ 150 years (Spada & Galassi, 2012). Although a global sea-level acceleration was initially ruled out, subsequent studies have coherently proposed values of ˜1 mm/year/century (Olivieri & Spada, 2012). More complex non-linear trends and abrupt sea-level variations have now also been recognized. Globally, they could manifest a regime shift between the late Holocene and the current rhythms of sea-level rise, while locally they result from ocean circulation anomalies, steric effects and wind stress (Bromirski et al. 2011). Although isostatic readjustment affects the local rates of secular sea-level change, a possible impact on regional acceleration have been so far discounted (Woodworth et al., 2009) since the process evolves on a millennium scale. Here we report a previously unnoticed anomaly in the long-term sea-level acceleration of the Baltic Sea tide gauge records, and we explain it by the classical post-glacial rebound theory and numerical modeling of glacial isostasy. Contrary to previous assumptions, our findings demonstrate that isostatic compensation plays a role in the regional secular sea-level acceleration. In response to glacial isostatic adjustment (GIA), tide gauge records located along the coasts of the Baltic Sea exhibit a small - but significant - long-term sea-level acceleration in excess to those in the far field of previously glaciated regions. The sign and the amplitude of the anomaly is consistent with the post-glacial rebound theory and with realistic numerical predictions of GIA models routinely employed to decontaminate the tide gauges observations from the GIA effects (Peltier, 2004). Model computations predict the existence of anomalies of similar amplitude in other regions of the globe where GIA is still particularly vigorous at present, but no long-term instrumental observations are available to support their existence. We confirm that a GIA correction for secular sea-level acceleration is not required in GSLA assessments because its average value is vanishingly small at the locations of the PSMSL tide gauges (Douglas, 1992). Nevertheless, GIA is contributing significantly on a regional scale, and therefore it should be recognized as one of the processes responsible for local, long-term sea-level acceleration. Reference: Bromirski, P.D., Miller, A.J., Flick, R.E. & Auad, G., 2011, J. Geoph. Res. 116, C07005; Douglas, B.C., 1992, J. Geoph. Res. 97, 12,699-12,706; Olivieri, M. & Spada, G., 2013, Global Planet. Change 109, 64-72; Peltier, W.R., 2004, Annu. Rev. Earth. Pl. Sc. 32, 111-149; Spada, G. & Galassi, G., 2012, Geophys. J. Int. 191, 1067-1094; Woodworth, P.L., White, N. J., Jevrejeva, S., Holgate, S. J., Church, J. A. & Gehrels, W. R., 2009, Int. J. Climatol. 29, 777-789.

  10. Acceleration in U.S. Mean Sea Level? A New Insight using Improved Tools

    NASA Astrophysics Data System (ADS)

    Watson, Phil J.

    2016-08-01

    The detection of acceleration in mean sea level around the data-rich margins of the United States has been a keen endeavour of sea-level researchers following the seminal work of Bruce Douglas in 1992. Over the past decade, such investigations have taken on greater prominence given mean sea level remains a key proxy by which to measure a changing climate system. The physics-based climate projection models are forecasting that the current global average rate of mean sea-level rise (≈3 mm/y) might climb to rates in the range of 10020 mm/y by 2100. Most research in this area has centred on reconciling current rates of rise with the significant accelerations required to meet the forecast projections of climate models. The analysis in this paper is based on a recently developed analytical package titled "msltrend," specifically designed to enhance estimates of trend, real-time velocity and acceleration in the relative mean sea-level signal derived from long annual average ocean-water-level time series. Key findings are that at the 95% confidence level, no consistent or substantial evidence (yet) exists that recent rates of rise are higher or abnormal in the context of the historical records available for the United States, nor does any evidence exist that geocentric rates of rise are above the global average. It is likely that a further 20 years of data will identify whether recent increases east of Galveston and along the east coast are evidence of the onset of climate change induced acceleration.

  11. Sea level variation

    NASA Technical Reports Server (NTRS)

    Douglas, Bruce C.

    1992-01-01

    Published values for the long-term, global mean sea level rise determined from tide gauge records range from about one to three mm per year. The scatter of the estimates appears to arise largely from the use of data from gauges located at convergent tectonic plate boundaries where changes of land elevation give fictitious sea level trends, and the effects of large interdecadal and longer sea level variations on short (less than 50+ years) or sappy records. In addition, virtually all gauges undergo subsidence or uplift due to isostatic rebound from the last deglaciation at a rate comparable to or greater than the secular rise of sea level. Modeling rebound by the ICE-3G model of Tushingham and Peltier (1990) and avoiding tide gauge records in areas of converging tectonic plates produces a highly consistent set of long sea level records. A global set of 21 such stations in nine oceanic regions with an average record length of 76 years during the period 1880-1980 yields the global sea level rise value 1.8 mm/year +/- 0.1. Greenhouse warming scenarios commonly forecast an additional acceleration of global sea level in the next 5 or 6+ decades in the range 0.1-0.2 mm/yr2. Because of the large power at low frequencies in the sea level spectrum, very long tide gauge records (75 years minimum) have been examined for past apparent sea level acceleration. For the 80-year period 1905-1985, 23 essentially complete tide gauge records in 10 geographic groups are available for analysis. These yielded the apparent global acceleration -0.011 (+/- 0.012) mm/yr2. A larger, less uniform set of 37 records in the same 10 groups with 92 years average length covering the 141 years from 1850-1991 gave 0.001 (+/- 0.008) mm/yr2. Thus there is no evidence for an apparent acceleration in the past 100+ years that is significant either statistically, or in comparison to values associated with global warming. Unfortunately, the large interdecadal fluctuations of sea level severely affect estimates of global sea level acceleration for time spans of less than about 50 years. This means that tide gauges alone cannot serve as a reliable leading indicator of climate change in less than many decades. This time required can be significantly reduced if the interdecadal fluctuations of sea level can be understood in terms of their forcing mechanisms, and then removed from the tide gauge records.

  12. Sea-Level Acceleration Hotspot along the Atlantic Coast of North America

    NASA Astrophysics Data System (ADS)

    Sallenger, A. H.; Doran, K. J.; Howd, P.

    2012-12-01

    Spatial variations of sea level rise (SLR) can be forced by dynamic processes arising from circulation and variations in temperature and/or salinity, and by static equilibrium processes arising from mass re-distributions changing gravity and the earth's rotation and shape. The sea-level variations can form unique spatial patterns, yet there are very few field observations verifying predicted patterns, or fingerprints. We present evidence of SLR acceleration in a 1,000-km-long hotspot on the North American Atlantic coast north of Cape Hatteras, North Carolina to above Boston, Massachusetts. By using accelerations, or rate differences, sea level signals that are linear over sub-century records, like the relative sea level changes arising from vertical land movements of glacial isostatic adjustment, do not affect our results. For a 60-yr regression window (between 1950-1979 and 1980-2009), mean increase in the rate of SLR in the hotspot was 1.97 ± 0.64 mm/yr. (For a 40-yr window, the mean rate increase was 3.80 ± 1.06 mm/yr.) South of Cape Hatteras to Key West, Florida, rate differences for either 60 yr or 40 yr windows were not statistically different from zero (e.g. for 60 yr window: mean= 0.11 ± 0.92 mm/yr). This pattern is similar to a fingerprint of dynamic SLR established by sea-level projections in several climate model studies. Correlations were consistent with accelerated SLR associated with a slowdown of Atlantic Meridional Overturning Current.

  13. Detection time for global and regional sea level trends and accelerations

    NASA Astrophysics Data System (ADS)

    Jordà, G.

    2014-10-01

    Many studies analyze trends on sea level data with the underlying purpose of finding indications of a long-term change that could be interpreted as the signature of anthropogenic climate change. The identification of a long-term trend is a signal-to-noise problem where the natural variability (the "noise") can mask the long-term trend (the "signal"). The signal-to-noise ratio depends on the magnitude of the long-term trend, on the magnitude of the natural variability, and on the length of the record, as the climate noise is larger when averaged over short time scales and becomes smaller over longer averaging periods. In this paper, we evaluate the time required to detect centennial sea level linear trends and accelerations at global and regional scales. Using model results and tide gauge observations, we find that the averaged detection time for a centennial linear trend is 87.9, 76.0, 59.3, 40.3, and 25.2 years for trends of 0.5, 1.0, 2.0, 5.0, and 10.0 mm/yr, respectively. However, in regions with large decadal variations like the Gulf Stream or the Circumpolar current, these values can increase up to a 50%. The spatial pattern of the detection time for sea level accelerations is almost identical. The main difference is that the length of the records has to be about 40-60 years longer to detect an acceleration than to detect a linear trend leading to an equivalent change after 100 years. Finally, we have used a new sea level reconstruction, which provides a more accurate representation of interannual variability for the last century in order to estimate the detection time for global mean sea level trends and accelerations. Our results suggest that the signature of natural variability in a 30 year global mean sea level record would be less than 1 mm/yr. Therefore, at least 2.2 mm/yr of the recent sea level trend estimated by altimetry cannot be attributed to natural multidecadal variability. This article was corrected on 19 NOV 2014. See the end of the full text for details.

  14. Glaciers dominate eustatic sea-level rise in the 21st century

    USGS Publications Warehouse

    Meier, Mark Frederick; Dyurgerov, M.B.; Rick, Ursula K.; Pfeffer, William Tad; Anderson, Suzanne P.; Glazovsky, Andrey F.

    2007-01-01

    Ice loss to the sea currently accounts for virtually all of the sea-level rise that is not attributable to ocean warming, and about 60% of the ice loss is from glaciers and ice caps rather than from the two ice sheets. The contribution of these smaller glaciers has accelerated over the past decade, in part due to marked thinning and retreat of marine-terminating glaciers associated with a dynamic instability that is generally not considered in mass-balance and climate modeling. This acceleration of glacier melt may cause 0.1 to 0.25 meter of additional sea-level rise by 2100.

  15. Increased Flooding Risk - Accelerating Threat and Stakeholder Response

    NASA Astrophysics Data System (ADS)

    Atkinson, L. P.; Ezer, T.; De Young, R.; McShane, M. K.; McFarlane, B.

    2012-12-01

    Coastal cities have been adapting to coastal flooding for centuries. Now, with increased population along the coast combined with increased flooding because of sea level rise (SLR) the vulnerability of coastal cities has increased significantly. In this paper we will discuss the physical threat of accelerating sea level rise and the response of stakeholders. Sallenger et al (2012) stated "... we present evidence of recently accelerated SLR in a unique 1,000-km-long hotspot on the highly populated North American Atlantic coast north of Cape Hatteras and show that it is consistent with a modeled fingerprint of dynamic SLR." In the Northeast Hotspot (NEH) dynamic processes such as Gulf Stream transport can cause local sea level differences (Ezer, 2001). Sweet et al (2009) attributed the anomalously high sea level along the mid-Atlantic in 2009 to dynamic SLR. A recent paper (Ezer and Corlett, 2012 submitted), focused on Chesapeake Bay, confirms Sallenger et al. These accelerations suggest that the higher estimates of SLR in IPCC reports may be better estimates. The combination of local sea level rise and acceleration, even with average coastal storm surge, results in increased vulnerability and economic losses. We will use three examples of stakeholder response to this threat: shipbuilding, cities and insurance. Nuclear aircraft carrier drydock in Newport News, VA - The only drydock where nuclear powered aircraft carriers are built flooded during Hurricane Isabel. A study showed that with a 1 meter sea level rise and no change in storm severity they would have 'Major Flooding' every 4 months rather than every 27 years. Cities infrastructure - In a recent report on sea level rise, the Hampton Roads Planning District Commission (representing nearly 2m people) found that "sea level rise will be a major issue", "there is not yet official state or federal guidance for addressing sea level rise", "…the "…U.S. Army Corps of Engineers has developed guidance…" for their projects, and "…subsidence …. is not well-documented". Studies sponsored by the City of Norfolk for example suggest massive tidal barriers. Flood insurance - Flood insurance is available only from the National Flood Insurance Program (NFIP), not from private insurers. NFIP has a current deficit of about 18B, which is estimated to increase by about 2B annually. The rates are subsidized and do not reflect the true risk of coastal flooding and do not incorporate the likelihood of future sea-level rise. In effect, the subsidy promotes increased building on the coast, leading to increased deficits in the tax-payer financed program. Risk-based flood insurance pricing would lead to less coastal development, therefore decreasing the tax base of the community. Stakeholder needs - Planning for increased flooding due to sea level rise extends 50 to 100 years given the lifetime of infrastructure. Planners need guidance and error estimates. To make adequate predictions for users we must understand the various components of sea level rise including subsidence, global sea level rise and regional and local dynamic sea level rise. Predictions of regional sea level rise will be presented in the context of existing infrastructure such as NASA research facilities and the city of Norfolk, Virginia.

  16. Projecting Future Sea Level Rise for Water Resources Planning in California

    NASA Astrophysics Data System (ADS)

    Anderson, J.; Kao, K.; Chung, F.

    2008-12-01

    Sea level rise is one of the major concerns for the management of California's water resources. Higher water levels and salinity intrusion into the Sacramento-San Joaquin Delta could affect water supplies, water quality, levee stability, and aquatic and terrestrial flora and fauna species and their habitat. Over the 20th century, sea levels near San Francisco Bay increased by over 0.6ft. Some tidal gauge and satellite data indicate that rates of sea level rise are accelerating. Sea levels are expected to continue to rise due to increasing air temperatures causing thermal expansion of the ocean and melting of land-based ice such as ice on Greenland and in southeastern Alaska. For water planners, two related questions are raised on the uncertainty of future sea levels. First, what is the expected sea level at a specific point in time in the future, e.g., what is the expected sea level in 2050? Second, what is the expected point of time in the future when sea levels will exceed a certain height, e.g., what is the expected range of time when the sea level rises by one foot? To address these two types of questions, two factors are considered: (1) long term sea level rise trend, and (2) local extreme sea level fluctuations. A two-step approach will be used to develop sea level rise projection guidelines for decision making that takes both of these factors into account. The first step is developing global sea level rise probability distributions for the long term trends. The second step will extend the approach to take into account the effects of local astronomical tides, changes in atmospheric pressure, wind stress, floods, and the El Niño/Southern Oscillation. In this paper, the development of the first step approach is presented. To project the long term sea level rise trend, one option is to extend the current rate of sea level rise into the future. However, since recent data indicate rates of sea level rise are accelerating, methods for estimating sea level rise that account for this acceleration are needed. One such method is an empirical relationship between air temperatures and global sea levels. The air temperature-sea level rise relationship was applied to the 12 climate change projections selected by the California Climate Action Team to estimate future sea levels. The 95% confidence level developed from the historical data was extrapolated to estimate the uncertainties in the future projections. To create sea level rise trend probability distributions, a lognormal probability distribution and a generalized extreme value probability distribution are used. Parameter estimations for these distributions are subjective and inevitably involve uncertainties, which will be improved as more research is conducted in this area.

  17. Climate-change-driven accelerated sea-level rise detected in the altimeter era.

    PubMed

    Nerem, R S; Beckley, B D; Fasullo, J T; Hamlington, B D; Masters, D; Mitchum, G T

    2018-02-27

    Using a 25-y time series of precision satellite altimeter data from TOPEX/Poseidon, Jason-1, Jason-2, and Jason-3, we estimate the climate-change-driven acceleration of global mean sea level over the last 25 y to be 0.084 ± 0.025 mm/y 2 Coupled with the average climate-change-driven rate of sea level rise over these same 25 y of 2.9 mm/y, simple extrapolation of the quadratic implies global mean sea level could rise 65 ± 12 cm by 2100 compared with 2005, roughly in agreement with the Intergovernmental Panel on Climate Change (IPCC) 5th Assessment Report (AR5) model projections. Copyright © 2018 the Author(s). Published by PNAS.

  18. Is the detection of accelerated sea level rise imminent?

    DOE PAGES

    Fasullo, J. T.; Nerem, R. S.; Hamlington, B.

    2016-08-10

    Global mean sea level rise estimated from satellite altimetry provides a strong constraint on climate variability and change and is expected to accelerate as the rates of both ocean warming and cryospheric mass loss increase over time. In stark contrast to this expectation however, current altimeter products show the rate of sea level rise to have decreased from the first to second decades of the altimeter era. Here, a combined analysis of altimeter data and specially designed climate model simulations shows the 1991 eruption of Mt Pinatubo to likely have masked the acceleration that would have otherwise occurred. This maskingmore » arose largely from a recovery in ocean heat content through the mid to late 1990 s subsequent to major heat content reductions in the years following the eruption. As a result, a consequence of this finding is that barring another major volcanic eruption, a detectable acceleration is likely to emerge from the noise of internal climate variability in the coming decade.« less

  19. Is the detection of accelerated sea level rise imminent?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fasullo, J. T.; Nerem, R. S.; Hamlington, B.

    Global mean sea level rise estimated from satellite altimetry provides a strong constraint on climate variability and change and is expected to accelerate as the rates of both ocean warming and cryospheric mass loss increase over time. In stark contrast to this expectation however, current altimeter products show the rate of sea level rise to have decreased from the first to second decades of the altimeter era. Here, a combined analysis of altimeter data and specially designed climate model simulations shows the 1991 eruption of Mt Pinatubo to likely have masked the acceleration that would have otherwise occurred. This maskingmore » arose largely from a recovery in ocean heat content through the mid to late 1990 s subsequent to major heat content reductions in the years following the eruption. As a result, a consequence of this finding is that barring another major volcanic eruption, a detectable acceleration is likely to emerge from the noise of internal climate variability in the coming decade.« less

  20. Acceleration of Sea Level Rise Over Malaysian Seas from Satellite Altimeter

    NASA Astrophysics Data System (ADS)

    Hamid, A. I. A.; Din, A. H. M.; Khalid, N. F.; Omar, K. M.

    2016-09-01

    Sea level rise becomes our concern nowadays as a result of variously contribution of climate change that cause by the anthropogenic effects. Global sea levels have been rising through the past century and are projected to rise at an accelerated rate throughout the 21st century. Due to this change, sea level is now constantly rising and eventually will threaten many low-lying and unprotected coastal areas in many ways. This paper is proposing a significant effort to quantify the sea level trend over Malaysian seas based on the combination of multi-mission satellite altimeters over a period of 23 years. Eight altimeter missions are used to derive the absolute sea level from Radar Altimeter Database System (RADS). Data verification is then carried out to verify the satellite derived sea level rise data with tidal data. Eight selected tide gauge stations from Peninsular Malaysia, Sabah and Sarawak are chosen for this data verification. The pattern and correlation of both measurements of sea level anomalies (SLA) are evaluated over the same period in each area in order to produce comparable results. Afterwards, the time series of the sea level trend is quantified using robust fit regression analysis. The findings clearly show that the absolute sea level trend is rising and varying over the Malaysian seas with the rate of sea level varies and gradually increase from east to west of Malaysia. Highly confident and correlation level of the 23 years measurement data with an astonishing root mean square difference permits the absolute sea level trend of the Malaysian seas has raised at the rate 3.14 ± 0.12 mm yr-1 to 4.81 ± 0.15 mm yr-1 for the chosen sub-areas, with an overall mean of 4.09 ± 0.12 mm yr-1. This study hopefully offers a beneficial sea level information to be applied in a wide range of related environmental and climatology issue such as flood and global warming.

  1. A search for scale in sea-level studies

    USGS Publications Warehouse

    Larsen, C.E.; Clark, I.

    2006-01-01

    Many researchers assume a proportional relationship among the atmospheric CO2 concentration, temperature, and sea level. Thus, the rate of sea-level rise should increase in concert with the documented exponential increase in CO2. Although sea surface temperature has increased in places over the past century and short-term sea level rose abruptly during the 1990s, it is difficult to demonstrate a proportional relationship using existing geologic or historic records. Tide gauge records in the United States cover too short a time interval to verify acceleration in the rate of sea-level rise, although multicentury tide gauge and staff records from the Netherlands and Sweden suggest a mid-19th-century acceleration in sea-level rise. Reconstructions of sea-level changes for the past 1000 years derived using benthic foraminifer data from salt marshes along the East Coast of the United States suggest an increased rate of relative sea-level rise beginning in the 1600s. Geologic records of relative sea-level rise for the past 6000 years are available for several sites along the US East Coast from 14C-dated basal peat below salt marshes and estuarine sediments. When these three scales of sea-level variation are integrated, adjusted for postglacial isostatic movement, and replotted, the range of variation in sea level suggested by basal peat ages is within ??1 meter of the long-term trend. The reconstruction from Long Island Sound data shows a linear rise in sea level beginning in the mid-1600s at a rate consistent with the historic record of mean high water. Long-term tide gauge records from Europe and North America show similar trends since the mid-19th century. There is no clear proportional exponential increase in the rate of sea-level rise. If proportionality exists among sea level, atmospheric CO2, and temperature, there may be a significant time lag before an anthropogenic increase in the rate of sea-level rise occurs.

  2. Development of a Geographic Information System (GIS) tool for the preliminary assessment of the effects of predicted sea level and tidal change on transportation infrastructure : [summary].

    DOT National Transportation Integrated Search

    2013-01-01

    The longest record of sea levels in the Western Hemisphere began in 1846 in Key West, Florida. It shows a steady and gradually accelerating sea level rise (SLR) nine inches since 1900. The increasing rate of recent years has implications for Flor...

  3. Geologic effects and coastal vulnerability to sea-level rise, erosion, and storms

    USGS Publications Warehouse

    Williams, S.J.; Gutierrez, B.T.; Thieler, E.R.; Pendleton, E.

    2008-01-01

    A combination of natural and human factors are driving coastal change and making coastal regions and populations increasingly vulnerable. Sea level, a major agent of coastal erosion, has varied greatly from -120 m below present during glacial period low-stands to + 4 to 6 m above present during interglacial warm periods. Geologic and tide gauge data show that global sea level has risen about 12 to 15 cm during the past century with satellite measurements indicating an acceleration since the early 1990s due to thermal expansion and ice-sheet melting. Land subsidence due to tectonic forces and sediment compaction in regions like the mid-Atlantic and Louisiana increase the rate of relative sea-level rise to 40 cm to 100 cm per century. Sea- level rise is predicted to accelerate significantly in the near future due to climate change, resulting in pervasive impacts to coastal regions and putting populations increasingly at risk. The full implications of climate change for coastal systems need to be understood better and long-term plans are needed to manage coasts in order to protect natural resources and mitigate the effects of sea-level rise and increased storms on human infrastructure. 

  4. Maximizing oyster-reef growth supports green infrastructure with accelerating sea-level rise.

    PubMed

    Ridge, Justin T; Rodriguez, Antonio B; Joel Fodrie, F; Lindquist, Niels L; Brodeur, Michelle C; Coleman, Sara E; Grabowski, Jonathan H; Theuerkauf, Ethan J

    2015-10-07

    Within intertidal communities, aerial exposure (emergence during the tidal cycle) generates strong vertical zonation patterns with distinct growth boundaries regulated by physiological and external stressors. Forecasted accelerations in sea-level rise (SLR) will shift the position of these critical boundaries in ways we cannot yet fully predict, but landward migration will be impaired by coastal development, amplifying the importance of foundation species' ability to maintain their position relative to rising sea levels via vertical growth. Here we show the effects of emergence on vertical oyster-reef growth by determining the conditions at which intertidal reefs thrive and the sharp boundaries where reefs fail, which shift with changes in sea level. We found that oyster reef growth is unimodal relative to emergence, with greatest growth rates occurring between 20-40% exposure, and zero-growth boundaries at 10% and 55% exposures. Notably, along the lower growth boundary (10%), increased rates of SLR would outpace reef accretion, thereby reducing the depth range of substrate suitable for reef maintenance and formation, and exacerbating habitat loss along developed shorelines. Our results identify where, within intertidal areas, constructed or natural oyster reefs will persist and function best as green infrastructure to enhance coastal resiliency under conditions of accelerating SLR.

  5. Detecting sea-level hazards: Simple regression-based methods for calculating the acceleration of sea level

    USGS Publications Warehouse

    Doran, Kara S.; Howd, Peter A.; Sallenger,, Asbury H.

    2016-01-04

    Recent studies, and most of their predecessors, use tide gage data to quantify SL acceleration, ASL(t). In the current study, three techniques were used to calculate acceleration from tide gage data, and of those examined, it was determined that the two techniques based on sliding a regression window through the time series are more robust compared to the technique that fits a single quadratic form to the entire time series, particularly if there is temporal variation in the magnitude of the acceleration. The single-fit quadratic regression method has been the most commonly used technique in determining acceleration in tide gage data. The inability of the single-fit method to account for time-varying acceleration may explain some of the inconsistent findings between investigators. Properly quantifying ASL(t) from field measurements is of particular importance in evaluating numerical models of past, present, and future SLR resulting from anticipated climate change.

  6. Rhode Island Salt Marshes: Elevation Capital and Resilience to Sea Level Rise

    EPA Science Inventory

    Tidal salt marsh is especially sensitive to deterioration due to the effects of accelerated sea level rise when combined with other anthropogenically linked stressors, including crab herbivory, changes in tidal hydrology, nutrient loading, dam construction, changes in temperature...

  7. Observed mean sea level changes around the North Sea coastline from 1800 to present

    NASA Astrophysics Data System (ADS)

    Wahl, T.; Haigh, I. D.; Woodworth, P. L.; Albrecht, F.; Dillingh, D.; Jensen, J.; Nicholls, R. J.; Weisse, R.; Wöppelmann, G.

    2013-09-01

    This paper assesses historic changes in mean sea level around the coastline of the North Sea, one of the most densely populated coasts in the world. Typically, such analyses have been conducted at a national level, and detailed geographically wider analyses have not been undertaken for about 20 years. We analyse long records (up to 200 years) from 30 tide gauge sites, which are reasonably uniformly distributed along the coastline, and: (1) calculate relative sea level trends; (2) examine the inter-annual and decadal variations; (3) estimate regional geocentric (sometimes also referred to as 'absolute') sea level rise throughout the 20th century; and (4) assess the evidence for regional acceleration of sea-level rise. Relative sea level changes are broadly consistent with known vertical land movement patterns. The inter-annual and decadal variability is partly coherent across the region, but with some differences between the Inner North Sea and the English Channel. Data sets from various sources are used to provide estimates of the geocentric sea level changes. The long-term geocentric mean sea level trend for the 1900 to 2011 period is estimated to be 1.5 ± 0.1 mm/yr for the entire North Sea region. The trend is slightly higher for the Inner North Sea (i.e. 1.6 ± 0.1 mm/yr), and smaller but not significantly different on the 95% confidence level for the English Channel (i.e. 1.2 ± 0.1 mm/yr). The uncertainties in the estimates of vertical land movement rates are still large, and the results from a broad range of approaches for determining these rates are not consistent. Periods of sea level rise acceleration are detected at different times throughout the last 200 years and are to some extent related to air pressure variations. The recent rates of sea level rise (i.e. over the last two to three decades) are high compared to the long-term average, but are comparable to those which have been observed at other times in the late 19th and 20th century.

  8. Examining effects of sea level rise and marsh crabs on Spartina patens using mesocosms

    EPA Science Inventory

    Coastal salt marshes provide essential ecosystem services but face increasing threats from habitat loss, eutrophication, changing precipitation patterns, and accelerating rates of sea level rise (SLR). Recent studies have suggested that herbivory and burrowing by native salt mars...

  9. Sea level rise, drought and the decline of Spartina patens in New England marshes

    EPA Science Inventory

    Already heavily impacted by coastal development, estuarine vegetated habitats (seagrasses, salt marshes, and mangroves) are increasingly affected by climate change via accelerated sea level rise, changes in the frequency and intensity of precipitation and storms, and warmer ocean...

  10. Maximizing oyster-reef growth supports green infrastructure with accelerating sea-level rise

    PubMed Central

    Ridge, Justin T.; Rodriguez, Antonio B.; Joel Fodrie, F.; Lindquist, Niels L.; Brodeur, Michelle C.; Coleman, Sara E.; Grabowski, Jonathan H.; Theuerkauf, Ethan J.

    2015-01-01

    Within intertidal communities, aerial exposure (emergence during the tidal cycle) generates strong vertical zonation patterns with distinct growth boundaries regulated by physiological and external stressors. Forecasted accelerations in sea-level rise (SLR) will shift the position of these critical boundaries in ways we cannot yet fully predict, but landward migration will be impaired by coastal development, amplifying the importance of foundation species’ ability to maintain their position relative to rising sea levels via vertical growth. Here we show the effects of emergence on vertical oyster-reef growth by determining the conditions at which intertidal reefs thrive and the sharp boundaries where reefs fail, which shift with changes in sea level. We found that oyster reef growth is unimodal relative to emergence, with greatest growth rates occurring between 20–40% exposure, and zero-growth boundaries at 10% and 55% exposures. Notably, along the lower growth boundary (10%), increased rates of SLR would outpace reef accretion, thereby reducing the depth range of substrate suitable for reef maintenance and formation, and exacerbating habitat loss along developed shorelines. Our results identify where, within intertidal areas, constructed or natural oyster reefs will persist and function best as green infrastructure to enhance coastal resiliency under conditions of accelerating SLR. PMID:26442712

  11. Anthropocene Survival of Southern New England’s Salt Marshes

    EPA Science Inventory

    In southern New England, salt marshes are exceptionally vulnerable to the impacts of accelerated sea level rise. Regional rates of sea level rise have been as much as 50 % greater than the global average over past decades, a more than fourfold increase over late Holocene backgrou...

  12. Nonlinear responses of coastal salt marshes to nutrient additions and sea level rise

    EPA Science Inventory

    Increasing nutrients and accelerated sea level rise (SLR) can cause marsh loss in some coastal systems. Responses to nutrients and SLR are complex and vary with soil matrix, marsh elevation, sediment inputs, and hydroperiod. We describe field and greenhouse studies examining sing...

  13. Sea-Level Trend Uncertainty With Pacific Climatic Variability and Temporally-Correlated Noise

    NASA Astrophysics Data System (ADS)

    Royston, Sam; Watson, Christopher S.; Legrésy, Benoît; King, Matt A.; Church, John A.; Bos, Machiel S.

    2018-03-01

    Recent studies have identified climatic drivers of the east-west see-saw of Pacific Ocean satellite altimetry era sea level trends and a number of sea-level trend and acceleration assessments attempt to account for this. We investigate the effect of Pacific climate variability, together with temporally-correlated noise, on linear trend error estimates and determine new time-of-emergence (ToE) estimates across the Indian and Pacific Oceans. Sea-level trend studies often advocate the use of auto-regressive (AR) noise models to adequately assess formal uncertainties, yet sea level often exhibits colored but non-AR(1) noise. Standard error estimates are over- or under-estimated by an AR(1) model for much of the Indo-Pacific sea level. Allowing for PDO and ENSO variability in the trend estimate only reduces standard errors across the tropics and we find noise characteristics are largely unaffected. Of importance for trend and acceleration detection studies, formal error estimates remain on average up to 1.6 times those from an AR(1) model for long-duration tide gauge data. There is an even chance that the observed trend from the satellite altimetry era exceeds the noise in patches of the tropical Pacific and Indian Oceans and the south-west and north-east Pacific gyres. By including climate indices in the trend analysis, the time it takes for the observed linear sea-level trend to emerge from the noise reduces by up to 2 decades.

  14. Soil organic matter decomposition follows plant productivity response to sea-level rise

    NASA Astrophysics Data System (ADS)

    Mueller, Peter; Jensen, Kai; Megonigal, James Patrick

    2015-04-01

    The accumulation of soil organic matter (SOM) is an important mechanism for many tidal wetlands to keep pace with sea-level rise. SOM accumulation is governed by the rates of production and decomposition of organic matter. While plant productivity responses to sea-level rise are well understood, far less is known about the response of SOM decomposition to accelerated sea-level rise. Here we quantified the effects of sea-level rise on SOM decomposition by exposing planted and unplanted tidal marsh monoliths to experimentally manipulated flood duration. The study was performed in a field-based mesocosm facility at the Smithsonian Global Change Research Wetland, a micro tidal brackish marsh in Maryland, US. SOM decomposition was quantified as CO2 efflux, with plant- and SOM-derived CO2 separated using a stable carbon isotope approach. Despite the dogma that decomposition rates are inversely related to flooding, SOM mineralization was not sensitive to varying flood duration over a 35 cm range in surface elevation in unplanted mesocoms. In the presence of plants, decomposition rates were strongly and positively related to aboveground biomass (p≤0.01, R2≥0.59). We conclude that rates of soil carbon loss through decomposition are driven by plant responses to sea level in this intensively studied tidal marsh. If our result applies more generally to tidal wetlands, it has important implications for modeling carbon sequestration and marsh accretion in response to accelerated sea-level rise.

  15. Overestimation of marsh vulnerability to sea level rise

    USGS Publications Warehouse

    Kirwan, Matthew L.; Temmerman, Stijn; Skeehan, Emily E.; Guntenspergen, Glenn R.; Fagherazzi, Sergio

    2016-01-01

    Coastal marshes are considered to be among the most valuable and vulnerable ecosystems on Earth, where the imminent loss of ecosystem services is a feared consequence of sea level rise. However, we show with a meta-analysis that global measurements of marsh elevation change indicate that marshes are generally building at rates similar to or exceeding historical sea level rise, and that process-based models predict survival under a wide range of future sea level scenarios. We argue that marsh vulnerability tends to be overstated because assessment methods often fail to consider biophysical feedback processes known to accelerate soil building with sea level rise, and the potential for marshes to migrate inland.

  16. Created mangrove wetlands store belowground carbon and surface elevation change enables them to adjust to sea-level rise.

    PubMed

    Krauss, Ken W; Cormier, Nicole; Osland, Michael J; Kirwan, Matthew L; Stagg, Camille L; Nestlerode, Janet A; Russell, Marc J; From, Andrew S; Spivak, Amanda C; Dantin, Darrin D; Harvey, James E; Almario, Alejandro E

    2017-04-21

    Mangrove wetlands provide ecosystem services for millions of people, most prominently by providing storm protection, food and fodder. Mangrove wetlands are also valuable ecosystems for promoting carbon (C) sequestration and storage. However, loss of mangrove wetlands and these ecosystem services are a global concern, prompting the restoration and creation of mangrove wetlands as a potential solution. Here, we investigate soil surface elevation change, and its components, in created mangrove wetlands over a 25 year developmental gradient. All created mangrove wetlands were exceeding current relative sea-level rise rates (2.6 mm yr -1 ), with surface elevation change of 4.2-11.0 mm yr -1 compared with 1.5-7.2 mm yr -1 for nearby reference mangroves. While mangrove wetlands store C persistently in roots/soils, storage capacity is most valuable if maintained with future sea-level rise. Through empirical modeling, we discovered that properly designed creation projects may not only yield enhanced C storage, but also can facilitate wetland persistence perennially under current rates of sea-level rise and, for most sites, for over a century with projected medium accelerations in sea-level rise (IPCC RCP 6.0). Only the fastest projected accelerations in sea-level rise (IPCC RCP 8.5) led to widespread submergence and potential loss of stored C for created mangrove wetlands before 2100.

  17. Created mangrove wetlands store belowground carbon and surface elevation change enables them to adjust to sea-level rise

    USGS Publications Warehouse

    Krauss, Ken W.; Cormier, Nicole; Osland, Michael J.; Kirwan, Matthew L.; Stagg, Camille L.; Nestlerode, Janet A.; Russell, Marc J.; From, Andrew; Spivak, Amanda C.; Dantin, Darrin D.; Harvey, James E.; Almario, Alejandro E.

    2017-01-01

    Mangrove wetlands provide ecosystem services for millions of people, most prominently by providing storm protection, food and fodder. Mangrove wetlands are also valuable ecosystems for promoting carbon (C) sequestration and storage. However, loss of mangrove wetlands and these ecosystem services are a global concern, prompting the restoration and creation of mangrove wetlands as a potential solution. Here, we investigate soil surface elevation change, and its components, in created mangrove wetlands over a 25 year developmental gradient. All created mangrove wetlands were exceeding current relative sea-level rise rates (2.6 mm yr−1), with surface elevation change of 4.2–11.0 mm yr−1 compared with 1.5–7.2 mm yr−1 for nearby reference mangroves. While mangrove wetlands store C persistently in roots/soils, storage capacity is most valuable if maintained with future sea-level rise. Through empirical modeling, we discovered that properly designed creation projects may not only yield enhanced C storage, but also can facilitate wetland persistence perennially under current rates of sea-level rise and, for most sites, for over a century with projected medium accelerations in sea-level rise (IPCC RCP 6.0). Only the fastest projected accelerations in sea-level rise (IPCC RCP 8.5) led to widespread submergence and potential loss of stored C for created mangrove wetlands before 2100.

  18. Consequences of sea level variability and sea level rise for Cuban territory

    NASA Astrophysics Data System (ADS)

    Hernández, M.; Martínez, C. A.; Marzo, O.

    2015-03-01

    The objective of the present paper was to determine a first approximation of coastal zone flooding by 2100, taking into account the more persistent processes of sea level variability and non-accelerated linear sea level rise estimation to assess the main impacts. The annual linear rate of mean sea level rise in the Cuban archipelago, obtained from the longest tide gauge records, has fluctuated between 0.005 cm/year at Casilda and 0.214 cm/year at Siboney. The main sea level rise effects for the Cuban coastal zone due to climate change and global warming are shown. Monthly and annual mean sea level anomalies, some of which are similar to or higher than the mean sea level rise estimated for halfway through the present century, reinforce the inland seawater penetration due to the semi-daily high tide. The combination of these different events will result in the loss of goods and services, and require expensive investments for adaption.

  19. Nutrient enrichment and precipitation changes do not enhance resiliency of salt marshes to sea level rise in the Northeastern U.S.

    EPA Science Inventory

    In the U.S. Northeast, salt marshes are exceptionally vulnerable to the effects of accelerated sea level rise as compensatory mechanisms relying on positive feedbacks between inundation and sediment deposition are insufficient to counter inundation increases in low turbidity tida...

  20. Coastal Impact Underestimated From Rapid Sea Level Rise

    NASA Astrophysics Data System (ADS)

    Anderson, John; Milliken, Kristy; Wallace, Davin; Rodriguez, Antonio; Simms, Alexander

    2010-06-01

    A primary effect of global warming is accelerated sea level rise, which will eventually drown low-lying coastal areas, including some of the world's most populated cities. Predictions from the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC) suggest that sea level may rise by as much as 0.6 meter by 2100 [Solomon et al., 2007]. However, uncertainty remains about how projected melting of the Greenland and Antarctic ice sheets will contribute to sea level rise. Further, considerable variability is introduced to these calculations due to coastal subsidence, especially along the northern Gulf of Mexico (see http://tidesandcurrents.noaa.gov/sltrends/sltrends.shtml).

  1. The impact of sea-level rise on organic matter decay rates in Chesapeake Bay brackish tidal marshes

    USGS Publications Warehouse

    Kirwanm, M.L.; Langley, J.A.; Guntenspergen, Gleen R.; Megonigal, J.P.

    2013-01-01

    The balance between organic matter production and decay determines how fast coastal wetlands accumulate soil organic matter. Despite the importance of soil organic matter accumulation rates in influencing marsh elevation and resistance to sea-level rise, relatively little is known about how decomposition rates will respond to sea-level rise. Here, we estimate the sensitivity of decomposition to flooding by measuring rates of decay in 87 bags filled with milled sedge peat, including soil organic matter, roots and rhizomes. Experiments were located in field-based mesocosms along 3 mesohaline tributaries of the Chesapeake Bay. Mesocosm elevations were manipulated to influence the duration of tidal inundation. Although we found no significant influence of inundation on decay rate when bags from all study sites were analyzed together, decay rates at two of the sites increased with greater flooding. These findings suggest that flooding may enhance organic matter decay rates even in water-logged soils, but that the overall influence of flooding is minor. Our experiments suggest that sea-level rise will not accelerate rates of peat accumulation by slowing the rate of soil organic matter decay. Consequently, marshes will require enhanced organic matter productivity or mineral sediment deposition to survive accelerating sea-level rise.

  2. The impact of sea-level rise on organic matter decay rates in Chesapeake Bay brackish tidal marshes

    NASA Astrophysics Data System (ADS)

    Kirwan, M. L.; Langley, J. A.; Guntenspergen, G. R.; Megonigal, J. P.

    2013-03-01

    The balance between organic matter production and decay determines how fast coastal wetlands accumulate soil organic matter. Despite the importance of soil organic matter accumulation rates in influencing marsh elevation and resistance to sea-level rise, relatively little is known about how decomposition rates will respond to sea-level rise. Here, we estimate the sensitivity of decomposition to flooding by measuring rates of decay in 87 bags filled with milled sedge peat, including soil organic matter, roots and rhizomes. Experiments were located in field-based mesocosms along 3 mesohaline tributaries of the Chesapeake Bay. Mesocosm elevations were manipulated to influence the duration of tidal inundation. Although we found no significant influence of inundation on decay rate when bags from all study sites were analyzed together, decay rates at two of the sites increased with greater flooding. These findings suggest that flooding may enhance organic matter decay rates even in water-logged soils, but that the overall influence of flooding is minor. Our experiments suggest that sea-level rise will not accelerate rates of peat accumulation by slowing the rate of soil organic matter decay. Consequently, marshes will require enhanced organic matter productivity or mineral sediment deposition to survive accelerating sea-level rise.

  3. The impact of sea-level rise on organic matter decay rates in Chesapeake Bay brackish tidal marshes

    NASA Astrophysics Data System (ADS)

    Kirwan, M. L.; Langley, J. A.; Guntenspergen, G. R.; Megonigal, J. P.

    2012-10-01

    The balance between organic matter production and decay determines how fast coastal wetlands accumulate soil organic matter. Despite the importance of soil organic matter accumulation rates in influencing marsh elevation and resistance to sea-level rise, relatively little is known about how decomposition rates will respond to sea-level rise. Here, we estimate the sensitivity of decomposition to flooding by measuring rates of decay in 87 bags filled with milled sedge peat, including soil organic matter, roots and rhizomes. Experiments were located in field-based mesocosms along 3 mesohaline tributaries of the Chesapeake Bay. Mesocosm elevations were manipulated to influence the duration of tidal inundation. Although we found no significant influence of inundation on decay rate when bags from all study sites were analyzed together, decay rates at two of the sites increased with greater flooding. These findings suggest that flooding may enhance organic matter decay rates even in water-logged soils, but that the overall influence of flooding is minor. Our experiments suggest that sea-level rise will not accelerate rates of peat accumulation by slowing the rate of soil organic matter decay. Consequently, marshes will require enhanced organic matter productivity or mineral sediment deposition to survive accelerating sea-level rise.

  4. The Potential Effect of Sea Level Rise on Coastal Property Values

    NASA Astrophysics Data System (ADS)

    O'Donnell, J.

    2015-12-01

    It is well established that one consequence of increasing global sea level is that the frequency of flooding at low-lying coastal sites will increase. We review recent evidence that the effects coastal geometry will create substantial spatial variations in the changes in flooding frequency with scales of order 100km. Using a simple model of the evolution of coastal property values we demonstrate that a consequence of sea level rise is that the appreciation of coastal properties will peak, and then decline relative to higher properties. The time when the value reach a maximum is shown to depend upon the demand for the coastal property, and the local rate of change of flooding frequency due to sea level rise. The simple model is then extended to include, in an elementary manner, the effects on the value of adjacent but higher properties. We show that the effect of increased flooding frequency of the lower properties leads to an accelerated appreciation of the value of upland properties and an accelerated decline in the value of the coastal properties. We then provide some example calculations for selected sites. We conclude with a discussion of comparisons of the prediction of the analyses to recent data, and then comments on the impact of sea level rise on tax base of coastal communities.

  5. Modeling tidal marsh distribution with sea-level rise: evaluating the role of vegetation, sediment, and upland habitat in marsh resiliency.

    PubMed

    Schile, Lisa M; Callaway, John C; Morris, James T; Stralberg, Diana; Parker, V Thomas; Kelly, Maggi

    2014-01-01

    Tidal marshes maintain elevation relative to sea level through accumulation of mineral and organic matter, yet this dynamic accumulation feedback mechanism has not been modeled widely in the context of accelerated sea-level rise. Uncertainties exist about tidal marsh resiliency to accelerated sea-level rise, reduced sediment supply, reduced plant productivity under increased inundation, and limited upland habitat for marsh migration. We examined marsh resiliency under these uncertainties using the Marsh Equilibrium Model, a mechanistic, elevation-based soil cohort model, using a rich data set of plant productivity and physical properties from sites across the estuarine salinity gradient. Four tidal marshes were chosen along this gradient: two islands and two with adjacent uplands. Varying century sea-level rise (52, 100, 165, 180 cm) and suspended sediment concentrations (100%, 50%, and 25% of current concentrations), we simulated marsh accretion across vegetated elevations for 100 years, applying the results to high spatial resolution digital elevation models to quantify potential changes in marsh distributions. At low rates of sea-level rise and mid-high sediment concentrations, all marshes maintained vegetated elevations indicative of mid/high marsh habitat. With century sea-level rise at 100 and 165 cm, marshes shifted to low marsh elevations; mid/high marsh elevations were found only in former uplands. At the highest century sea-level rise and lowest sediment concentrations, the island marshes became dominated by mudflat elevations. Under the same sediment concentrations, low salinity brackish marshes containing highly productive vegetation had slower elevation loss compared to more saline sites with lower productivity. A similar trend was documented when comparing against a marsh accretion model that did not model vegetation feedbacks. Elevation predictions using the Marsh Equilibrium Model highlight the importance of including vegetation responses to sea-level rise. These results also emphasize the importance of adjacent uplands for long-term marsh survival and incorporating such areas in conservation planning efforts.

  6. Limits on the adaptability of coastal marshes to rising sea level

    USGS Publications Warehouse

    Kirwan, Matthew L.; Guntenspergen, Glenn R.; D'Alpaos, Andrea; Morris, James T.; Mudd, Simon M.; Temmerman, Stijn

    2010-01-01

    Assumptions of a static landscape inspire predictions that about half of the world's coastal wetlands will submerge during this century in response to sea-level acceleration. In contrast, we use simulations from five numerical models to quantify the conditions under which ecogeomorphic feedbacks allow coastal wetlands to adapt to projected changes in sea level. In contrast to previous sea-level assessments, we find that non-linear feedbacks among inundation, plant growth, organic matter accretion, and sediment deposition, allow marshes to survive conservative projections of sea-level rise where suspended sediment concentrations are greater than ~20 mg/L. Under scenarios of more rapid sea-level rise (e.g., those that include ice sheet melting), marshes will likely submerge near the end of the 21st century. Our results emphasize that in areas of rapid geomorphic change, predicting the response of ecosystems to climate change requires consideration of the ability of biological processes to modify their physical environment.

  7. Barriers to and opportunities for landward migration of coastal wetlands with sea-level rise

    USGS Publications Warehouse

    Enwright, Nicholas M.; Griffith, Kereen T.; Osland, Michael J.

    2016-01-01

    In the 21st century, accelerated sea-level rise and continued coastal development are expected to greatly alter coastal landscapes across the globe. Historically, many coastal ecosystems have responded to sea-level fluctuations via horizontal and vertical movement on the landscape. However, anthropogenic activities, including urbanization and the construction of flood-prevention infrastructure, can produce barriers that impede ecosystem migration. Here we show where tidal saline wetlands have the potential to migrate landward along the northern Gulf of Mexico coast, one of the most sea-level rise sensitive and wetland-rich regions of the world. Our findings can be used to identify migration corridors and develop sea-level rise adaptation strategies to help ensure the continued availability of wetland-associated ecosystem goods and services.

  8. 20 Years of sea-levels, accretion, and vegetation on two Long Island Sound salt marshes

    EPA Science Inventory

    The long-term 1939-2013 rate of RSLR (Relative Sea-Level Rise) at the New London, CT tide gauge is ~2.6 mm/yr, near the maximum rate of salt marsh accretion reported in eastern Long Island Sound salt marshes. Consistent with recent literature RSLR at New London has accelerated si...

  9. On the relationship between sea level and Spartina alterniflora production

    USGS Publications Warehouse

    Kirwan, Matthew L.; Christian, Robert R.; Blum, Linda K.; Brinson, Mark M.

    2012-01-01

    A positive relationship between interannual sea level and plant growth is thought to stabilize many coastal landforms responding to accelerating rates of sea level rise. Numerical models of delta growth, tidal channel network evolution, and ecosystem resilience incorporate a hump-shaped relationship between inundation and plant primary production, where vegetation growth increases with sea level up to an optimum water depth or inundation frequency. In contrast, we use decade-long measurements of Spartina alterniflora biomass in seven coastal Virginia (USA) marshes to demonstrate that interannual sea level is rarely a primary determinant of vegetation growth. Although we find tepid support for a hump-shaped relationship between aboveground production and inundation when marshes of different elevation are considered, our results suggest that marshes high in the intertidal zone and low in relief are unresponsive to sea level fluctuations. We suggest existing models are unable to capture the behavior of wetlands in these portions of the landscape, and may underestimate their vulnerability to sea level rise because sea level rise will not be accompanied by enhanced plant growth and resultant sediment accumulation.

  10. Plants Regulate Soil Organic Matter Decomposition in Response to Sea Level Rise

    NASA Astrophysics Data System (ADS)

    Megonigal, P.; Mueller, P.; Jensen, K.

    2014-12-01

    Tidal wetlands have a large capacity for producing and storing organic matter, making their role in the global carbon budget disproportionate to their land area. Most of the organic matter stored in these systems is in soils where it contributes 2-5 times more to surface accretion than an equal mass of minerals. Soil organic matter (SOM) sequestration is the primary process by which tidal wetlands become perched high in the tidal frame, decreasing their vulnerability to accelerated sea level rise. Plant growth responses to sea level rise are well understood and represented in century-scale forecast models of soil surface elevation change. We understand far less about the response of soil organic matter decomposition to rapid sea level rise. Here we quantified the effects of sea level on SOM decomposition rates by exposing planted and unplanted tidal marsh monoliths to experimentally manipulated flood duration. The study was performed in a field-based mesocosm facility at the Smithsonian's Global Change Research Wetland. SOM decomposition rate was quantified as CO2 efflux, with plant- and SOM-derived CO2 separated with a two end-member δ13C-CO2 model. Despite the dogma that decomposition rates are inversely related to flooding, SOM mineralization was not sensitive to flood duration over a 35 cm range in soil surface elevation. However, decomposition rates were strongly and positively related to aboveground biomass (R2≥0.59, p≤0.01). We conclude that soil carbon loss through decomposition is driven by plant responses to sea level in this intensively studied tidal marsh. If this result applies more generally to tidal wetlands, it has important implications for modeling soil organic matter and surface elevation change in response to accelerated sea level rise.

  11. Do we have to take an acceleration of sea level rise into account?

    NASA Astrophysics Data System (ADS)

    Dillingh, D.; Baart, F.; de Ronde, J.

    2012-04-01

    In view of preservation of safety against inundation and of the many values and functions of the coastal zone, coastal retreat is no longer acceptable. That is why it was decided to maintain the Dutch coastline on its position in 1990. Later the preservation concept was extended to the Dutch coastal foundation, which is the area that encompasses all dune area's and hard sea defences and reaches seawards until the 20m depth contour line. Present Dutch coastal policy is to grow with sea level by means of sand nourishments. A main issue for the planning of sand nourishments is the rate of sea level rise, because that is the main parameter for the volume of the sand needed. The question is than relevant if we already have to take into account an acceleration of sea level rise. Six stations with long water level records, well spread along the Dutch coast, were analysed. Correction of the measured data was considered necessary for an adaptation of the NAP in 2005 as a consequence of movements of the top of the pleistoceen, on which the NAP bench marks have been founded, and for the 18.6 year (nodal) cycle in the time series of yearly mean sea levels. It has been concluded that along the Dutch coast no significant acceleration of sea level rise could be detected yet. Over the last 120 years sea level rose with an average speed of 19 cm per century relative to NAP (the Dutch ordnance datum). Time series shorter than about 50 years showed less robust estimates of sea level rise. Future sea level rise also needs consideration in view of the estimate of future sand nourishment volumes. Scenario's for sea level rise have been derived for the years 2050 and 2100 relative to 1990 by the KNMI (Dutch Met Office) in 2006 for the Dutch situation. Plausible curves have been drawn from 1990 tangent to the linear regression line in 1990 and forced through the high and low scenario projections for 2050 and 2100. These curves show discrepancies with measurements of the last decade, particularly for the high scenario. Dutch design levels for coastal water defence structures (dikes and dunes) are based on extreme value statistics of long time series of high water levels. These design levels have typically return periods of 2000, 4000 and 10.000 years, depending on the importance of the protected dike ring. The last statistical analysis for the update of the design levels refers to the sea level situation of 1985. According to the Water Act Dutch design levels must be tested periodically (every 6 years). Due to sea level rise and tidal changes the design levels are corrected for the rise of the mean high waters from 1985 until the end of the testing period under consideration. This demands a tailoring approach for different regions or locations instead of a national average as for coastal preservation. Runs with climate models and coupled hydrodynamic models in the framework of the Essence project and the Delta Committee 2008 showed no indication for a change in the statistics of extreme storm surge levels. For the estimation of sea level rise over the last 120 years a linear regression gives the most robust estimate. Showing decadal variability needs more sophisticated models. For the last update of the design levels the elegant Whittaker smoother has been applied. Dutch policy prescribes to account for a future sea level rise of 60 cm per century for the design of new dikes or dike reinforcements and 85 cm per century for the long term (200 years) allocation of space for future reinforcements, in agreement with the KNMI'06 scenario's for sea level rise (central value and upper limit).

  12. Wetland Accretion Rate Model of Ecosystem Resilience (WARMER) and its application to habitat sustainability for endangered species in the San Francisco Estuary

    USGS Publications Warehouse

    Swanson, Kathleen M.; Drexler, Judith Z.; Schoellhamer, David H.; Thorne, Karen M.; Casazza, Michael L.; Overton, Cory T.; Callaway, John C.; Takekawa, John Y.

    2014-01-01

    Salt marsh faunas are constrained by specific habitat requirements for marsh elevation relative to sea level and tidal range. As sea level rises, changes in relative elevation of the marsh plain will have differing impacts on the availability of habitat for marsh obligate species. The Wetland Accretion Rate Model for Ecosystem Resilience (WARMER) is a 1-D model of elevation that incorporates both biological and physical processes of vertical marsh accretion. Here, we use WARMER to evaluate changes in marsh surface elevation and the impact of these elevation changes on marsh habitat for specific species of concern. Model results were compared to elevation-based habitat criteria developed for marsh vegetation, the endangered California clapper rail (Rallus longirostris obsoletus), and the endangered salt marsh harvest mouse (Reithrodontomys raviventris) to determine the response of marsh habitat for each species to predicted >1-m sea-level rise by 2100. Feedback between vertical accretion mechanisms and elevation reduced the effect of initial elevation in the modeled scenarios. Elevation decreased nonlinearly with larger changes in elevation during the latter half of the century when the rate of sea-level rise increased. Model scenarios indicated that changes in elevation will degrade habitat quality within salt marshes in the San Francisco Estuary, and degradation will accelerate in the latter half of the century as the rate of sea-level rise accelerates. A sensitivity analysis of the model results showed that inorganic sediment accumulation and the rate of sea-level rise had the greatest influence over salt marsh sustainability.

  13. Evidence of a Weakening Gulf Stream from In-situ Expendable Bathythermograph Data, 1996-2013

    NASA Astrophysics Data System (ADS)

    Roupe, L.; Baringer, M. O.

    2014-12-01

    A weakening of the Gulf Stream, the upper branch of the Atlantic Meridional Overturning Circulation system, has been hypothesized to accelerate sea level rise on the east coast of the United States, caused by changes in the Gulf Stream strength and, hence, sea level difference across the current. It still remains unclear if the Gulf Stream has in fact weakened or remains stable, along with the potential role of natural long-term variability. Tide gauges along the east coast show an accelerated sea level rise from Cape Hatteras to Cape Cod that is 3-4 times higher than global sea level rise. Satellite altimetry shows a weakening gradient in Gulf Stream sea surface height that is highly correlated (r=-0.85) with east coast sea level rise, however, direct velocity measurements showed no significant decrease in Gulf Stream strength over a similar time period. We introduce another in-situ dataset to examine the issues between these conflicting results. Expendable bathythermographs (XBTs) measure temperature at depth directly, and then depth and salinity can be inferred, along with geostrophic velocity and transport. XBT data has been used to measure transport in various current systems, however, the Gulf Stream transport has not been analyzed using the newest high-density XBT data made available since 1996. The trend in sea level difference is determined to be 3.3 +/- 3.2 mm/yr, resulting in an overall decrease of 5.2 cm in sea level from 1996-2013. This result agrees with satellite altimetry results that show a significant decrease in recent years. This data also shows a changing Gulf Stream core position, based on the 15°C isotherm at 200 m, of 0.03°N/yr that is negatively correlated with surface transport (r=-0.25). Issues remain in defining the core and width of the Gulf Stream and with eliminating the possibility of natural variability in the current system.

  14. Development of sea level rise scenarios for climate change assessments of the Mekong Delta, Vietnam

    USGS Publications Warehouse

    Doyle, Thomas W.; Day, Richard H.; Michot, Thomas C.

    2010-01-01

    Rising sea level poses critical ecological and economical consequences for the low-lying megadeltas of the world where dependent populations and agriculture are at risk. The Mekong Delta of Vietnam is one of many deltas that are especially vulnerable because much of the land surface is below mean sea level and because there is a lack of coastal barrier protection. Food security related to rice and shrimp farming in the Mekong Delta is currently under threat from saltwater intrusion, relative sea level rise, and storm surge potential. Understanding the degree of potential change in sea level under climate change is needed to undertake regional assessments of potential impacts and to formulate adaptation strategies. This report provides constructed time series of potential sea level rise scenarios for the Mekong Delta region by incorporating (1) aspects of observed intra- and inter-annual sea level variability from tide records and (2) projected estimates for different rates of regional subsidence and accelerated eustacy through the year 2100 corresponding with the Intergovernmental Panel on Climate Change (IPCC) climate models and emission scenarios.

  15. Global climate change and sea level rise: potential losses of intertidal habitat for shorebirds

    Treesearch

    H. Galbraith; R. Jones; R. Park; J. Clough; S. Herrod-Julius; B. Harrington; G. Page

    2005-01-01

    Global warming is expected to result in an acceleration of current rates of sea level rise, inundating many low-lying coastal and intertidal areas. This could have important implications for organisms that depend on these sites, including shorebirds that rely on them for foraging habitat during their migrations and in winter. We modeled the potential changes in the...

  16. Sea level driven marsh expansion in a coupled model of marsh erosion and migration

    USGS Publications Warehouse

    Kirwan, Matthew L.; Walters, David C.; Reay, William G.; Carr, Joel

    2016-01-01

    Coastal wetlands are among the most valuable ecosystems on Earth, where ecosystem services such as flood protection depend nonlinearly on wetland size and are threatened by sea level rise and coastal development. Here we propose a simple model of marsh migration into adjacent uplands and couple it with existing models of seaward edge erosion and vertical soil accretion to explore how ecosystem connectivity influences marsh size and response to sea level rise. We find that marsh loss is nearly inevitable where topographic and anthropogenic barriers limit migration. Where unconstrained by barriers, however, rates of marsh migration are much more sensitive to accelerated sea level rise than rates of edge erosion. This behavior suggests a counterintuitive, natural tendency for marsh expansion with sea level rise and emphasizes the disparity between coastal response to climate change with and without human intervention.

  17. Oceanic Low Blows Hitting Ice Sheets Where It Hurts

    NASA Technical Reports Server (NTRS)

    Bindschadler, Robert

    2006-01-01

    The recent acceleration, thinning and retreat of large outlet glaciers in both Antarctica and Greenland is altering the mass balance of these two large ice sheets and increasing their contribution to rising sea level. In this short Perspective solicited by Science for a special March 24th issue on sea level change, I argue that the cause of these bihemispheric changes is that warmer water has gained access to the undersides of these glaciers where they come afloat from the continent. This process is particularly effective at accelerating glaciers because the beds of the large outlet glaciers are well below sea level (1000 meters or more) but "guarded" downstream by a shallow moraine formed when the glacier was more advanced. Once warmer water can breach this moraine, it sinks in the colder, fresh water behind the moraine and reaches the submarine front of the glacier. The pressure melting effect lowers the melting point of this deep ice allowing the warmer water to melt ice at rates of many tens of meters per year. This melting reduces . the frictional hold of the bed on the ice, allowing the ice to accelerate in agreement with the observations, Hansen has discussed the likelihood that approximately half of the Earth's radiation imbalance is manifesting in warmer ocean waters and Levitus et al. have seen warming in ocean temperature measurements at mid and low latitudes. The behavior of these outlet glaciers indicates this ocean warmth is reaching polar waters. The prognosis is for a continuation of this process, more negative ice sheet mass balances and increased rates of sea level rise.

  18. Plants mediate soil organic matter decomposition in response to sea level rise.

    PubMed

    Mueller, Peter; Jensen, Kai; Megonigal, James Patrick

    2016-01-01

    Tidal marshes have a large capacity for producing and storing organic matter, making their role in the global carbon budget disproportionate to land area. Most of the organic matter stored in these systems is in soils where it contributes 2-5 times more to surface accretion than an equal mass of minerals. Soil organic matter (SOM) sequestration is the primary process by which tidal marshes become perched high in the tidal frame, decreasing their vulnerability to accelerated relative sea level rise (RSLR). Plant growth responses to RSLR are well understood and represented in century-scale forecast models of soil surface elevation change. We understand far less about the response of SOM decomposition to accelerated RSLR. Here we quantified the effects of flooding depth and duration on SOM decomposition by exposing planted and unplanted field-based mesocosms to experimentally manipulated relative sea level over two consecutive growing seasons. SOM decomposition was quantified as CO2 efflux, with plant- and SOM-derived CO2 separated via δ(13) CO2 . Despite the dominant paradigm that decomposition rates are inversely related to flooding, SOM decomposition in the absence of plants was not sensitive to flooding depth and duration. The presence of plants had a dramatic effect on SOM decomposition, increasing SOM-derived CO2 flux by up to 267% and 125% (in 2012 and 2013, respectively) compared to unplanted controls in the two growing seasons. Furthermore, plant stimulation of SOM decomposition was strongly and positively related to plant biomass and in particular aboveground biomass. We conclude that SOM decomposition rates are not directly driven by relative sea level and its effect on oxygen diffusion through soil, but indirectly by plant responses to relative sea level. If this result applies more generally to tidal wetlands, it has important implications for models of SOM accumulation and surface elevation change in response to accelerated RSLR. © 2015 John Wiley & Sons Ltd.

  19. Mass Evolution of Mediterranean, Black, Red, and Caspian Seas from GRACE and Altimetry: Accuracy Assessment and Solution Calibration

    NASA Technical Reports Server (NTRS)

    Loomis, B. D.; Luthcke, S. B.

    2016-01-01

    We present new measurements of mass evolution for the Mediterranean, Black, Red, and Caspian Seas as determined by the NASA Goddard Space Flight Center (GSFC) GRACE time-variable global gravity mascon solutions. These new solutions are compared to sea surface altimetry measurements of sea level anomalies with steric corrections applied. To assess their accuracy, the GRACE and altimetry-derived solutions are applied to the set of forward models used by GSFC for processing the GRACE Level-1B datasets, with the resulting inter-satellite range acceleration residuals providing a useful metric for analyzing solution quality.

  20. Impact of accelerated future global mean sea level rise on hypoxia in the Baltic Sea

    NASA Astrophysics Data System (ADS)

    Meier, H. E. M.; Höglund, A.; Eilola, K.; Almroth-Rosell, E.

    2017-07-01

    Expanding hypoxia is today a major threat for many coastal seas around the world and disentangling its drivers is a large challenge for interdisciplinary research. Using a coupled physical-biogeochemical model we estimate the impact of past and accelerated future global mean sea level rise (GSLR) upon water exchange and oxygen conditions in a semi-enclosed, shallow sea. As a study site, the Baltic Sea was chosen that suffers today from eutrophication and from dead bottom zones due to (1) excessive nutrient loads from land, (2) limited water exchange with the world ocean and (3) perhaps other drivers like global warming. We show from model simulations for the period 1850-2008 that the impacts of past GSLR on the marine ecosystem were relatively small. If we assume for the end of the twenty-first century a GSLR of +0.5 m relative to today's mean sea level, the impact on the marine ecosystem may still be small. Such a GSLR corresponds approximately to the projected ensemble-mean value reported by the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. However, we conclude that GSLR should be considered in future high-end projections (>+1 m) for the Baltic Sea and other coastal seas with similar hydrographical conditions as in the Baltic because GSLR may lead to reinforced saltwater inflows causing higher salinity and increased vertical stratification compared to present-day conditions. Contrary to intuition, reinforced ventilation of the deep water does not lead to overall improved oxygen conditions but causes instead expanded dead bottom areas accompanied with increased internal phosphorus loads from the sediments and increased risk for cyanobacteria blooms.

  1. Assessing the response of the Gulf Coast to global change

    NASA Astrophysics Data System (ADS)

    Anderson, John B.; Törnqvist, Torbjörn E.; Day, John

    2012-11-01

    Gulf Coastal Science Consortium Workshop;Houston, Texas, 28-29 June 2012 The newly formed Gulf Coastal Science Consortium held its first workshop at Rice University. The creation of the consortium was prompted by two recent incidents. One incident involved censorship of a book chapter on Galveston Bay by the Texas Commission on Environmental Quality that omitted all references to climate change and accelerated sea-level rise. The other incident was the adoption of legislation in North Carolina that requires planners and developers to assume a linear sea-level rise projection, despite compelling scientific evidence for a multifold increase in sea-level rise in historical time.

  2. Coastal Louisiana in Crisis: Subsidence or Sea Level Rise?

    NASA Astrophysics Data System (ADS)

    González, Juan L.; Törnqvist, Torbjörn E.

    2006-11-01

    The drowning of wetlands and barrier islands in coastal Louisiana has become a widely publicized environmental catastrophe in the wake of hurricanes Katrina and Rita in 2005. The devastation caused by these storms has reenergized the debate about restoring the natural coastal-defense system and building higher and sturdier levees, in anticipation of future storms. Understanding the contributions of land subsidence and eustatic (global) sea level rise to Louisiana's wetland loss is crucial to the success of any plan designed to protect coastal communities. It is argued here that accelerated sea level rise in the future may pose a larger threat than subsidence for considerable portions of coastal Louisiana.

  3. Contemporary sea level rise.

    PubMed

    Cazenave, Anny; Llovel, William

    2010-01-01

    Measuring sea level change and understanding its causes has considerably improved in the recent years, essentially because new in situ and remote sensing observations have become available. Here we report on most recent results on contemporary sea level rise. We first present sea level observations from tide gauges over the twentieth century and from satellite altimetry since the early 1990s. We next discuss the most recent progress made in quantifying the processes causing sea level change on timescales ranging from years to decades, i.e., thermal expansion of the oceans, land ice mass loss, and land water-storage change. We show that for the 1993-2007 time span, the sum of climate-related contributions (2.85 +/- 0.35 mm year(-1)) is only slightly less than altimetry-based sea level rise (3.3 +/- 0.4 mm year(-1)): approximately 30% of the observed rate of rise is due to ocean thermal expansion and approximately 55% results from land ice melt. Recent acceleration in glacier melting and ice mass loss from the ice sheets increases the latter contribution up to 80% for the past five years. We also review the main causes of regional variability in sea level trends: The dominant contribution results from nonuniform changes in ocean thermal expansion.

  4. Sea level change since 2005: importance of salinity

    NASA Astrophysics Data System (ADS)

    Llovel, W.; Purkey, S.; Meyssignac, B.; Kolodziejczyk, N.; Blazquez, A.; Bamber, J. L.

    2017-12-01

    Sea level rise is one of the most important consequences of the actual global warming. Global mean sea level has been rising at a faster rate since 1993 (over the satellite altimetry era) than previous decades. This rise is expected to accelerate over the coming decades and century. At global scale, sea level rise is caused by a combination of freshwater increase from land ice melting and land water changes (mass component) and ocean warming (thermal expansion). Estimating the causes is of great interest not only to understand the past sea level changes but also to validate projections based on climate models. In this study, we investigate the global mass contribution to recent sea level changes with an alternative approach by estimating the global ocean freshening. For that purpose, we consider the unprecedented amount of salinity measurements from Argo floats for the past decade (2005-2015). We compare our results to the ocean mass inferred by GRACE data and based on a sea level budget approach. Our results bring new constrains on the global water cycle (ocean freshening) and energy budget (ocean warming) as well as on the global ocean mass directly inferred from GRACE data.

  5. Sea level variations during rapid changing Arctic Ocean from tide gauge and satellite altimetry

    NASA Astrophysics Data System (ADS)

    Du, Ling; Xu, Daohuan

    2016-04-01

    Sea level variations can introduce the useful information under the circumstance of the rapid changing Arctic. Based on tide gauge records and the satellite altimetry data in the Arctic Ocean, the sea level variations in the 20th century are analyzed with the stochastic dynamic method. The average secular trend of the sea level record is about 1 mm/yr, which is smaller than the global mean cited by the IPCC climate assessment report. The secular trend in the coastal region differs from that in the deep water. After the mid-1970s, a weak acceleration of sea level rise is found along the coasts of the Siberian and Aleutian Islands. Analysis of synchronous TOPEX/Poseidon altimetry data indicates that the amplitude of the seasonal variation is less than that of the inter-annual variation, whose periods vary from 4.7 to 6 years. This relationship is different from that in the mid-latitudes. The climate indices are the pre-cursors of the sea level variations on multi-temporal scales. The model results show that while steric effects contribute significantly to the seasonal variation, the influence of atmospheric wind forcing is an important factor of sea level during ice free region.

  6. Assessing coastal wetland vulnerability to sea-level rise along the northern Gulf of Mexico coast: Gaps and opportunities for developing a coordinated regional sampling network

    PubMed Central

    Griffith, Kereen T.; Larriviere, Jack C.; Feher, Laura C.; Cahoon, Donald R.; Enwright, Nicholas M.; Oster, David A.; Tirpak, John M.; Woodrey, Mark S.; Collini, Renee C.; Baustian, Joseph J.; Breithaupt, Joshua L.; Cherry, Julia A.; Conrad, Jeremy R.; Cormier, Nicole; Coronado-Molina, Carlos A.; Donoghue, Joseph F.; Graham, Sean A.; Harper, Jennifer W.; Hester, Mark W.; Howard, Rebecca J.; Krauss, Ken W.; Kroes, Daniel E.; Lane, Robert R.; McKee, Karen L.; Mendelssohn, Irving A.; Middleton, Beth A.; Moon, Jena A.; Piazza, Sarai C.; Rankin, Nicole M.; Sklar, Fred H.; Steyer, Greg D.; Swanson, Kathleen M.; Swarzenski, Christopher M.; Vervaeke, William C.; Willis, Jonathan M.; Wilson, K. Van

    2017-01-01

    Coastal wetland responses to sea-level rise are greatly influenced by biogeomorphic processes that affect wetland surface elevation. Small changes in elevation relative to sea level can lead to comparatively large changes in ecosystem structure, function, and stability. The surface elevation table-marker horizon (SET-MH) approach is being used globally to quantify the relative contributions of processes affecting wetland elevation change. Historically, SET-MH measurements have been obtained at local scales to address site-specific research questions. However, in the face of accelerated sea-level rise, there is an increasing need for elevation change network data that can be incorporated into regional ecological models and vulnerability assessments. In particular, there is a need for long-term, high-temporal resolution data that are strategically distributed across ecologically-relevant abiotic gradients. Here, we quantify the distribution of SET-MH stations along the northern Gulf of Mexico coast (USA) across political boundaries (states), wetland habitats, and ecologically-relevant abiotic gradients (i.e., gradients in temperature, precipitation, elevation, and relative sea-level rise). Our analyses identify areas with high SET-MH station densities as well as areas with notable gaps. Salt marshes, intermediate elevations, and colder areas with high rainfall have a high number of stations, while salt flat ecosystems, certain elevation zones, the mangrove-marsh ecotone, and hypersaline coastal areas with low rainfall have fewer stations. Due to rapid rates of wetland loss and relative sea-level rise, the state of Louisiana has the most extensive SET-MH station network in the region, and we provide several recent examples where data from Louisiana’s network have been used to assess and compare wetland vulnerability to sea-level rise. Our findings represent the first attempt to examine spatial gaps in SET-MH coverage across abiotic gradients. Our analyses can be used to transform a broadly disseminated and unplanned collection of SET-MH stations into a coordinated and strategic regional network. This regional network would provide data for predicting and preparing for the responses of coastal wetlands to accelerated sea-level rise and other aspects of global change. PMID:28902904

  7. Assessing coastal wetland vulnerability to sea-level rise along the northern Gulf of Mexico coast: Gaps and opportunities for developing a coordinated regional sampling network

    USGS Publications Warehouse

    Osland, Michael J.; Griffith, Kereen T.; Larriviere, Jack C.; Feher, Laura C.; Cahoon, Donald R.; Enwright, Nicholas M.; Oster, David A.; Tirpak, John M.; Woodrey, Mark S.; Collini, Renee C.; Baustian, Joseph J.; Breithaupt, Joshua L.; Cherry, Julia A; Conrad, Jeremy R.; Cormier, Nicole; Coronado-Molina, Carlos A.; Donoghue, Joseph F.; Graham, Sean A.; Harper, Jennifer W.; Hester, Mark W.; Howard, Rebecca J.; Krauss, Ken W.; Kroes, Daniel; Lane, Robert R.; Mckee, Karen L.; Mendelssohn, Irving A.; Middleton, Beth A.; Moon, Jena A.; Piazza, Sarai; Rankin, Nicole M.; Sklar, Fred H.; Steyer, Gregory D.; Swanson, Kathleen M.; Swarzenski, Christopher M.; Vervaeke, William; Willis, Jonathan M; Van Wilson, K.

    2017-01-01

    Coastal wetland responses to sea-level rise are greatly influenced by biogeomorphic processes that affect wetland surface elevation. Small changes in elevation relative to sea level can lead to comparatively large changes in ecosystem structure, function, and stability. The surface elevation table-marker horizon (SET-MH) approach is being used globally to quantify the relative contributions of processes affecting wetland elevation change. Historically, SET-MH measurements have been obtained at local scales to address site-specific research questions. However, in the face of accelerated sea-level rise, there is an increasing need for elevation change network data that can be incorporated into regional ecological models and vulnerability assessments. In particular, there is a need for long-term, high-temporal resolution data that are strategically distributed across ecologically-relevant abiotic gradients. Here, we quantify the distribution of SET-MH stations along the northern Gulf of Mexico coast (USA) across political boundaries (states), wetland habitats, and ecologically-relevant abiotic gradients (i.e., gradients in temperature, precipitation, elevation, and relative sea-level rise). Our analyses identify areas with high SET-MH station densities as well as areas with notable gaps. Salt marshes, intermediate elevations, and colder areas with high rainfall have a high number of stations, while salt flat ecosystems, certain elevation zones, the mangrove-marsh ecotone, and hypersaline coastal areas with low rainfall have fewer stations. Due to rapid rates of wetland loss and relative sea-level rise, the state of Louisiana has the most extensive SET-MH station network in the region, and we provide several recent examples where data from Louisiana’s network have been used to assess and compare wetland vulnerability to sea-level rise. Our findings represent the first attempt to examine spatial gaps in SET-MH coverage across abiotic gradients. Our analyses can be used to transform a broadly disseminated and unplanned collection of SET-MH stations into a coordinated and strategic regional network. This regional network would provide data for predicting and preparing for the responses of coastal wetlands to accelerated sea-level rise and other aspects of global change.

  8. Assessing coastal wetland vulnerability to sea-level rise along the northern Gulf of Mexico coast: Gaps and opportunities for developing a coordinated regional sampling network.

    PubMed

    Osland, Michael J; Griffith, Kereen T; Larriviere, Jack C; Feher, Laura C; Cahoon, Donald R; Enwright, Nicholas M; Oster, David A; Tirpak, John M; Woodrey, Mark S; Collini, Renee C; Baustian, Joseph J; Breithaupt, Joshua L; Cherry, Julia A; Conrad, Jeremy R; Cormier, Nicole; Coronado-Molina, Carlos A; Donoghue, Joseph F; Graham, Sean A; Harper, Jennifer W; Hester, Mark W; Howard, Rebecca J; Krauss, Ken W; Kroes, Daniel E; Lane, Robert R; McKee, Karen L; Mendelssohn, Irving A; Middleton, Beth A; Moon, Jena A; Piazza, Sarai C; Rankin, Nicole M; Sklar, Fred H; Steyer, Greg D; Swanson, Kathleen M; Swarzenski, Christopher M; Vervaeke, William C; Willis, Jonathan M; Wilson, K Van

    2017-01-01

    Coastal wetland responses to sea-level rise are greatly influenced by biogeomorphic processes that affect wetland surface elevation. Small changes in elevation relative to sea level can lead to comparatively large changes in ecosystem structure, function, and stability. The surface elevation table-marker horizon (SET-MH) approach is being used globally to quantify the relative contributions of processes affecting wetland elevation change. Historically, SET-MH measurements have been obtained at local scales to address site-specific research questions. However, in the face of accelerated sea-level rise, there is an increasing need for elevation change network data that can be incorporated into regional ecological models and vulnerability assessments. In particular, there is a need for long-term, high-temporal resolution data that are strategically distributed across ecologically-relevant abiotic gradients. Here, we quantify the distribution of SET-MH stations along the northern Gulf of Mexico coast (USA) across political boundaries (states), wetland habitats, and ecologically-relevant abiotic gradients (i.e., gradients in temperature, precipitation, elevation, and relative sea-level rise). Our analyses identify areas with high SET-MH station densities as well as areas with notable gaps. Salt marshes, intermediate elevations, and colder areas with high rainfall have a high number of stations, while salt flat ecosystems, certain elevation zones, the mangrove-marsh ecotone, and hypersaline coastal areas with low rainfall have fewer stations. Due to rapid rates of wetland loss and relative sea-level rise, the state of Louisiana has the most extensive SET-MH station network in the region, and we provide several recent examples where data from Louisiana's network have been used to assess and compare wetland vulnerability to sea-level rise. Our findings represent the first attempt to examine spatial gaps in SET-MH coverage across abiotic gradients. Our analyses can be used to transform a broadly disseminated and unplanned collection of SET-MH stations into a coordinated and strategic regional network. This regional network would provide data for predicting and preparing for the responses of coastal wetlands to accelerated sea-level rise and other aspects of global change.

  9. Sea level change in Great Britain between 1859 and the present

    NASA Astrophysics Data System (ADS)

    Woodworth, Philip L.

    2018-04-01

    Short records of sea level measurements by the Ordnance Survey at 31 locations in 1859-1860, together with recent Mean Sea Level (MSL) information from the UK tide gauge network, have been used to estimate the average rates of sea level change around the coast of Great Britain since the mid-19th century. Rates are found to be approximately 1 mm yr-1 in excess of those expected for the present day based on geological information, providing evidence for a climate-change related component of the increase in UK sea level. In turn, the rates of change of MSL for the past 60 yr are estimated to be ˜1 mm yr-1 in excess of the long-term rates since 1859, suggesting an acceleration in the rate of sea level rise between the 19th and 20th/21st centuries. Although the historical records are very short (approximately a fortnight), this exercise in `data archaeology' shows how valuable to research even the shortest records can be, as long as the measurements were made by competent people and the datums of the measurements were fully documented.

  10. On the regional characteristics of past and future sea-level change (Invited)

    NASA Astrophysics Data System (ADS)

    Timmermann, A.; McGregor, S.

    2010-12-01

    Global sea-level rise due to the thermal expansion of the warming oceans and freshwater input from melting glaciers and ice-sheets is threatening to inundate low-lying islands and coast-lines worldwide. At present global mean sea level rises at 3.1 ± 0.7 mm/yr with an accelerating tendency. However, the magnitude of recent decadal sea-level trends varies greatly spatially attaining values of up to 10 mm/yr in some areas of the western tropical Pacific. Identifying the causes of recent regional sea-level trends and understanding the patterns of future projected sea-level change is of crucial importance. Using a wind-forced simplified dynamical ocean model, we show that the regional features of recent decadal and multidecadal sea-level trends in the tropical Indo-Pacific can be attributed to changes in the prevailing wind-regimes. Furthermore it is demonstrated that within an ensemble of ten state-of-the art coupled general circulation models, forced by increasing atmospheric CO2 concentrations over the next century, wind-induced re-distributions of upper-ocean water play a key role in establishing the spatial characteristics of projected regional sea-level rise. Wind-related changes in near- surface mass and heat convergence near the Solomon Islands, Tuvalu, Kiribati, the Cook Islands and French Polynesia oppose, but can not cancel the regional signal of global mean sea-level rise.

  11. Contemporary Arctic Sea Level

    NASA Astrophysics Data System (ADS)

    Cazenave, A. A.

    2017-12-01

    During recent decades, the Arctic region has warmed at a rate about twice the rest of the globe. Sea ice melting is increasing and the Greenland ice sheet is losing mass at an accelerated rate. Arctic warming, decrease in the sea ice cover and fresh water input to the Arctic ocean may eventually impact the Arctic sea level. In this presentation, we review our current knowledge of contemporary Arctic sea level changes. Until the beginning of the 1990s, Arctic sea level variations were essentially deduced from tide gauges located along the Russian and Norwegian coastlines. Since then, high inclination satellite altimetry missions have allowed measuring sea level over a large portion of the Arctic Ocean (up to 80 degree north). Measuring sea level in the Arctic by satellite altimetry is challenging because the presence of sea ice cover limits the full capacity of this technique. However adapted processing of raw altimetric measurements significantly increases the number of valid data, hence the data coverage, from which regional sea level variations can be extracted. Over the altimetry era, positive trend patterns are observed over the Beaufort Gyre and along the east coast of Greenland, while negative trends are reported along the Siberian shelf. On average over the Arctic region covered by satellite altimetry, the rate of sea level rise since 1992 is slightly less than the global mea sea level rate (of about 3 mm per year). On the other hand, the interannual variability is quite significant. Space gravimetry data from the GRACE mission and ocean reanalyses provide information on the mass and steric contributions to sea level, hence on the sea level budget. Budget studies show that regional sea level trends over the Beaufort Gyre and along the eastern coast of Greenland, are essentially due to salinity changes. However, in terms of regional average, the net steric component contributes little to the observed sea level trend. The sea level budget in the Arctic indicates a dominant mass contribution, especially in the Greenland, Norwegian, and Barents Seas sector.

  12. Contribution of the Greenland Ice Sheet to Sea-Level over the Next Millennium

    NASA Astrophysics Data System (ADS)

    Aschwanden, A.; Fahnestock, M. A.; Truffer, M.

    2017-12-01

    The contribution of Greenland's outlet glaciers to sea-level remains a wild card in global sea level predictions but progress in mapping ice thickness combined with high-resolution flow modeling now allow to revisit questions about the long-term stability of the ice sheet. Here we present the first outlet glacier resolving assessment of Greenland's contribution to sea-level over the next millennium. We find that increased ice discharge resulting from acceleration of outlet glaciers due to ice melt at tidewater glacier margins dominates mass loss during the 21st century. However, as the ice sheet surfaces lowers, surface melt increases and over the course of the millennium, the relative contribution of ice discharge to total mass loss decreases. By the end of the 22nd century, most outlet glaciers in the north-west will have retreated out of tide-water, while in south-east enhanced precipitation partially offsets high ice discharge. The outlet glaciers of the central west coast, most notably Jakobshavn Isbrae, play a key role in dynamic mass loss due to their submarine connection to the interior reservoir. We find that coast-ward advection of cold ice from the interior counteracts outlet glacier acceleration by increasing ice viscosity and thereby reducing vertical shearing. Under the RCP 8.5 scenario, the ice margin in north and north-east Greenland retreats far enough to reach the vast interior where the subglacial topography is below sea level. This leads to a dramatic retreat in the second part of the millenium, and Greenland could shrink to 10% of its current volume by the end of the millennium.

  13. Dynamically balanced absolute sea level of the global ocean derived from near-surface velocity observations

    NASA Astrophysics Data System (ADS)

    Niiler, Pearn P.; Maximenko, Nikolai A.; McWilliams, James C.

    2003-11-01

    The 1992-2002 time-mean absolute sea level distribution of the global ocean is computed for the first time from observations of near-surface velocity. For this computation, we use the near-surface horizontal momentum balance. The velocity observed by drifters is used to compute the Coriolis force and the force due to acceleration of water parcels. The anomaly of horizontal pressure gradient is derived from satellite altimetry and corrects the temporal bias in drifter data distribution. NCEP reanalysis winds are used to compute the force due to Ekman currents. The mean sea level gradient force, which closes the momentum balance, is integrated for mean sea level. We find that our computation agrees, within uncertainties, with the sea level computed from the geostrophic, hydrostatic momentum balance using historical mean density, except in the Antarctic Circumpolar Current. A consistent horizontally and vertically dynamically balanced, near-surface, global pressure field has now been derived from observations.

  14. Evaluation of marsh development processes at Fire Island National Seashore: Recent and historic perspectives

    USGS Publications Warehouse

    Roman, C.T.; King, D.R.; Cahoon, D.R.; Lynch, J.C.; Appleby, P.G.

    2007-01-01

    Purpose and significance of the study: Salt marshes are dynamic environments, increasing in vertical elevation and migrating, often landward, as sea level rises. With sea level rise greater than marsh elevation increase, marshes can be submerged, marsh soils become waterlogged, and plant growth becomes stressed, often resulting in conversion of vegetation-dominated marsh to mudflat or open water habitat. Given that the rate of sea level rise is expected to accelerate over the next century and that some marshes in the northeast are becoming submerged (e.g., Jamaica Bay, NY), it is important to understand the processes that control marsh development. More specifically, the objectives of this project were to quantify vertical marsh elevation change in relation to recent rates of sea-level rise and to investigate factors or processes that are most influential in controlling the development and maintenance of Fire Island salt marshes.

  15. A new method to estimate global mass transport and its implication for sea level rise

    NASA Astrophysics Data System (ADS)

    Yi, S.; Heki, K.

    2017-12-01

    Estimates of changes in global land mass by using GRACE observations can be achieved by two methods, a mascon method and a forward modeling method. However, results from these two methods show inconsistent secular trend. Sea level budget can be adopted to validate the consistency among observations of sea level rise by altimetry, steric change by the Argo project, and mass change by GRACE. Mascon products from JPL, GSFC and CSR are compared here, we find that all these three products cannot achieve a reconciled sea level budget, while this problem can be solved by a new forward modeling method. We further investigate the origin of this difference, and speculate that it is caused by the signal leakage from the ocean mass. Generally, it is well recognized that land signals leak into oceans, but it also happens the other way around. We stress the importance of correction of leakage from the ocean in the estimation of global land masses. Based on a reconciled sea level budget, we confirmed that global sea level rise has been accelerating significantly over 2005-2015, as a result of the ongoing global temperature increase.

  16. Integrating spatial data and shorebird nesting locations to predict the potential future impact of global warming on coastal habitats: A case study on Farasan Islands, Saudi Arabia.

    PubMed

    Alrashidi, Monif; Shobrak, Mohammed; Al-Eissa, Mohammed S; Székely, Tamás

    2012-07-01

    One of the expected effects of the global warming is changing coastal habitats by accelerating the rate of sea level rise. Coastal habitats support large number of marine and wetland species including shorebirds (plovers, sandpipers and allies). In this study, we investigate how coastal habitats may be impacted by sea level rise in the Farasan Islands, Kingdom of Saudi Arabia. We use Kentish plover Charadrius alexandrinus - a common coastal breeding shorebird - as an ecological model species to predict the influence of sea level rise. We found that any rise of sea level is likely to inundate 11% of Kentish plover nests. In addition, 5% of the coastal areas of Farasan Islands, which support 26% of Kentish plover nests, will be flooded, if sea level rises by one metre. Our results are constrained by the availability of data on both elevation and bird populations. Therefore, we recommend follow-up studies to model the impacts of sea level rise using different elevation scenarios, and the establishment of a monitoring programme for breeding shorebirds and seabirds in Farasan Islands to assess the impact of climate change on their populations.

  17. A policy hackathon for analysing impacts and solutions up to 20 metres sea-level rise

    NASA Astrophysics Data System (ADS)

    Haasnoot, Marjolijn; Bouwer, Laurens; Kwadijk, Jaap

    2017-04-01

    We organised a policy hackathon in order to quantify the impacts accelerated and high-end sea-level rise up to 20 metres on the coast of the Netherlands, and develop possible solutions. This was done during one day, with 20 experts that had a wide variety of disciplines, including hydrology, geology, coastal engineering, economics, and public policy. During the process the problem was divided up into several sub-sets of issues that were analysed and solved within small teams of between 4 to 8 people. Both a top-down impact analysis and bottom-up vulnerability analysis was done by answering the questions: What is the impact of sea level rise of x meter?; and How much sea level rise can be accommodated with before transformative actions are needed? Next, adaptation tipping points were identified that describe conditions under which the coastal system starts to perform unacceptably. Reasons for an adaptation tipping point can be technical (technically not possible), economic (cost-benefits are negative), or resources (available space, sand, energy production, financial). The results are presented in a summary document, and through an infographic displaying different adaptation tipping points and milestones that occur when the sea level rises up to 20 m. No technical limitations were found for adaptation, but many important decisions need to be taken. Although accelerated sea level rise seems far away it can have important consequences for short-term decisions that are required for transformative actions. Such extensive actions require more time for implementation. Also, other action may become ineffective before their design life. This hackathon exercise shows that it is possible to map within a short time frame the issues at hand, as well as potentially effective solutions. This can be replicated for other problems, and can be useful for several decision-makers that require quick but in-depth analysis of their long-term planning problems.

  18. Projecting future sea level

    USGS Publications Warehouse

    Cayan, Daniel R.; Bromirski, Peter; Hayhoe, Katharine; Tyree, Mary; Dettinger, Mike; Flick, Reinhard

    2006-01-01

    California’s coastal observations and global model projections indicate that California’s open coast and estuaries will experience increasing sea levels over the next century. Sea level rise has affected much of the coast of California, including the Southern California coast, the Central California open coast, and the San Francisco Bay and upper estuary. These trends, quantified from a small set of California tide gages, have ranged from 10–20 centimeters (cm) (3.9–7.9 inches) per century, quite similar to that estimated for global mean sea level. So far, there is little evidence that the rate of rise has accelerated, and the rate of rise at California tide gages has actually flattened since 1980, but projections suggest substantial sea level rise may occur over the next century. Climate change simulations project a substantial rate of global sea level rise over the next century due to thermal expansion as the oceans warm and runoff from melting land-based snow and ice accelerates. Sea level rise projected from the models increases with the amount of warming. Relative to sea levels in 2000, by the 2070–2099 period, sea level rise projections range from 11–54 cm (4.3–21 in) for simulations following the lower (B1) greenhouse gas (GHG) emissions scenario, from 14–61 cm (5.5–24 in) for the middle-upper (A2) emission scenario, and from 17–72 cm (6.7–28 in) for the highest (A1fi) scenario. In addition to relatively steady secular trends, sea levels along the California coast undergo shorter period variability above or below predicted tide levels and changes associated with long-term trends. These variations are caused by weather events and by seasonal to decadal climate fluctuations over the Pacific Ocean that in turn affect the Pacific coast. Highest coastal sea levels have occurred when winter storms and Pacific climate disturbances, such as El Niño, have coincided with high astronomical tides. This study considers a range of projected future global sea level rises in examining possible impacts at California coastal and estuarine stations. Two climate models and three scenarios considered in this scenarios study provide a set of possible future weather and short-period climate fluctuations, and a range of potential long-term sea level rise values. A range of mean sea level rise was considered in combination with weather and El Niño fluctuations extracted from two global climate models and two GHG emissions scenarios. The mean sea level rise values, determined from a survey of several climate models, range from approximately 10–80 cm (3.9–31 in) between 2000 and 2100. The middle to higher end of this range would substantially exceed the historical rate of sea level rise of 15–20 cm (5.9–7.9 in)per century observed at San Francisco and San Diego during the last 100 years. Gradual sea level rise progressively worsens the impacts of high tides and the surge and waves associated with storms. The potential for impacts of future sea level rise was assessed from the occurrence of hourly sea level extremes. The occurrence of extreme events follows a sharply escalating pattern as the magnitude of future sea level rise increases. The confluence of Low barometric pressures from storms and the presence large waves at the same time substantially increases the likelihood of high, damaging sea levels along the California coast. Similarly, astronomical tides and disturbances in sea level that are caused by weather and climate fluctuations are x transmitted into the San Francisco Bay and Delta, and on into the lower reaches of the Sacramento River. In addition to elevating Bay and Delta sea levels directly through inverse barometer and wind effects, storms may generate heavy precipitation and high fresh water runoff and cause floods in the Sacramento/San Joaquin Delta, increasing the potential for inundation of levees and other structures. There may also be increased risk of levee failure due to the hydraulics and geometry of these structures. Rising sea levels from climate change will increase the frequency and duration of extreme high water levels, causing historical coastal and San Francisco Bay/Delta structure design criteria to be exceeded.

  19. Vulnerability assessment of the impact of sea-level rise and flooding on the Moroccan coast: The case of the Mediterranean eastern zone

    NASA Astrophysics Data System (ADS)

    Snoussi, Maria; Ouchani, Tachfine; Niazi, Saïda

    2008-04-01

    The eastern part of the Mediterranean coast of Morocco is physically and socio-economically vulnerable to accelerated sea-level rise, due to its low topography and its high ecological and touristic value. Assessment of the potential land loss by inundation has been based on empirical approaches using a minimum inundation level of 2 m and a maximum inundation level of 7 m, where scenarios for future sea-level rise range from 200 to 860 mm, with a 'best estimate' of 490 mm. The socio-economic impacts have been based on two possible alternative futures: (1) a 'worst-case' scenario, obtained by combining the 'economic development first' scenario with the maximum inundation level; and (2) a 'best-case' scenario, by combining the 'sustainability first' scenario with the minimum inundation level. Inundation analysis, based on Geographical Information Systems and a modelling approach to erosion, has identified both locations and the socioeconomic sectors that are most at risk to accelerated sea-level rise. Results indicate that 24% and 59% of the area will be lost by flooding at minimum and maximum inundation levels, respectively. The most severely impacted sectors are expected to be the residential and recreational areas, agricultural land, and the natural ecosystem. Shoreline erosion will affect 50% and 70% of the total area in 2050 and 2100, respectively. Potential strategies to ameliorate the impact of seawater inundation include: wetland preservation; beach nourishment at tourist resorts; and the afforestation of dunes. As this coast is planned to become one of the most developed tourist resorts in Morocco by 2010, measures such as building regulation, urban growth planning and development of an Integrated Coastal Zone Management Plan, are recommended for the region.

  20. Reconstructing Common Era relative sea-level change on the Gulf Coast of Florida

    USGS Publications Warehouse

    Gerlach, Matthew J.; Engelhart, Simon E.; Kemp, Andrew C.; Moyer, Ryan P.; Smoak, Joseph M.; Bernhardt, Christopher E.; Cahill, Niamh

    2017-01-01

    To address a paucity of Common Era data in the Gulf of Mexico, we reconstructed ~ 1.1 m of relative sea-level (RSL) rise over the past ~ 2000 years at Little Manatee River (Gulf Coast of Florida, USA). We applied a regional-scale foraminiferal transfer function to fossil assemblages preserved in a core of salt-marsh peat and organic silt that was dated using radiocarbon and recognition of pollution, 137Cs and pollen chronohorizons. Our proxy reconstruction was combined with tide-gauge data from four nearby sites spanning 1913–2014 CE. Application of an Errors-in-Variables Integrated Gaussian Process (EIV-IGP) model to the combined proxy and instrumental dataset demonstrates that RSL fell from ~ 350 to 100 BCE, before rising continuously to present. This initial RSL fall was likely the result of local-scale processes (e.g., silting up of a tidal flat or shallow sub-tidal shoal) as salt-marsh development at the site began. Since ~ 0 CE, we consider the reconstruction to be representative of regional-scale RSL trends. We removed a linear rate of 0.3 mm/yr from the RSL record using the EIV-IGP model to estimate climate-driven sea-level trends and to facilitate comparison among sites. This analysis demonstrates that since ~ 0 CE sea level did not deviate significantly from zero until accelerating continuously from ~ 1500 CE to present. Sea level was rising at 1.33 mm/yr in 1900 CE and accelerated until 2014 CE when a rate of 2.02 mm/yr was attained, which is the fastest, century-scale trend in the ~ 2000-year record. Comparison to existing reconstructions from the Gulf coast of Louisiana and the Atlantic coast of northern Florida reveal similar sea-level histories at all three sites. We explored the influence of compaction and fluvial processes on our reconstruction and concluded that compaction was likely insignificant. Fluvial processes were also likely insignificant, but further proxy evidence is needed to fully test this hypothesis. Our results indicate that no significant Common Era sea-level changes took place on the Gulf and southeastern Atlantic U.S. coasts until the onset of modern sea-level rise in the late 19th century.

  1. The complex reality of sea-level rise in an atoll nation

    NASA Astrophysics Data System (ADS)

    Donner, S. D.

    2012-12-01

    Sea-level rise famously poses an existential threat to island nations like Kiribati, Tuvalu and the Maldives. Yet as the global mean sea-level rises, the response of any one location at any given time will depend on the natural variability in regional sea-level and other impact of local human activities on coastal processes. As with climate warming, the state of an individual shoreline or the extent of flooding on a given day is not proof of a sea-level trend, nor is a global sea-level trend a good predictor of individual flooding or erosion events. Failure to consider the effect of natural variability and local human activity on coastal processes often leads to misattribution of flooding events and even some long-term shoreline changes to global sea level rise. Moreover, unverified attribution of individual events or changes to specific islets to sea level rise can inflame or invite scepticism of the strong scientific evidence for an accelerating increase in the global sea level due to the impacts of human activity on the climate system. This is particularly important in developing nations like Kiribati, which are depending on international financial support to adapt to rising sea levels. In this presentation, I use gauge data and examples from seven years of field work in Tarawa Atoll, the densely populated capital of Kiribati, to examine the complexity of local sea level and shoreline change in one of the world's most vulnerable countries. First, I discuss how the combination of El Nino-driven variability in sea-level and the astronomical tidal cycle leads to flooding and erosion events which can be mistaken for evidence of sea-level rise. Second, I show that human modification to shorelines has redirected sediment supply, leading, in some cases, to expansion of islets despite rising sea levels. Taken together, the analysis demonstrates the challenge of attributing particular coastal events to global mean sea-level rise and the impact on decision-making. The presentation concludes with a discussion of the implications for attribution research, discourse about sea-level rise, and adaptation planning.

  2. Thresholds of sea-level rise rate and sea-level acceleration rate in a vulnerable coastal wetland

    NASA Astrophysics Data System (ADS)

    Wu, W.; Biber, P.; Bethel, M.

    2017-12-01

    Feedback among inundation, sediment trapping, and vegetation productivity help maintain coastal wetlands facing sea-level rise (SLR). However, when the SLR rate exceeds a threshold, coastal wetlands can collapse. Understanding the threshold help address the key challenge in ecology - nonlinear response of ecosystems to environmental change, and promote communication between ecologists and policy makers. We studied the threshold of SLR rate and developed a new threshold of SLR acceleration rate on sustainability of coastal wetlands as SLR is likely to accelerate due to the enhanced anthropogenic forces. We developed a mechanistic model to simulate wetland change and derived the SLR thresholds for Grand Bay, MS, a micro-tidal estuary with limited upland freshwater and sediment input in the northern Gulf of Mexico. The new SLR acceleration rate threshold complements the threshold of SLR rate and can help explain the temporal lag before the rapid decline of wetland area becomes evident after the SLR rate threshold is exceeded. Deriving these two thresholds depends on the temporal scale, the interaction of SLR with other environmental factors, and landscape metrics, which have not been fully accounted for before this study. The derived SLR rate thresholds range from 7.3 mm/yr to 11.9 mm/yr. The thresholds of SLR acceleration rate are 3.02×10-4 m/yr2 and 9.62×10-5 m/yr2 for 2050 and 2100 respectively. Based on the thresholds developed, predicted SLR that will adversely impact the coastal wetlands in Grand Bay by 2100 will fall within the likely range of SLR under a high warming scenario (RCP8.5), and beyond the very likely range under a low warming scenario (RCP2.6 or 3), highlighting the need to avoid the high warming scenario in the future if these marshes are to be preserved.

  3. Looking Back to the Future: Insight on Anthropocene beaches from Holocene and Pleistocene barriers

    NASA Astrophysics Data System (ADS)

    Dougherty, A. J.; Choi, J. H.; Turney, C. S.; Dosseto, A.

    2017-12-01

    `Super' storms and accelerated rates of sea-level rise are forecast in the Anthropocene, but how coasts will respond (or even if they have started to be impacted) remain uncertain. The onset of this new anthropogenic age is considered mid-1900s when multiple indices including sea level exceed previous Holocene measurements. Centuries of sea surface elevation data, used to project an increase of up to 2m by 2100, show that the current rise started 200 years ago. Similar records of storms or shoreline evolution over these centennial time-scales do not exist. With empirical studies of coastal morphodynamics concentrated during decades of accelerated sea-level rise, present-day beaches can be considered Anthropocene features. To determine the future of vulnerable sandy shorelines, climate change scenarios of increased sea level and storm intensity have been combined with computer models integrating short-term process data with large-scale coastal evolution. The uncertainty in these models can be reduced with longer sea level and storm records as well as filling the gap between detailed beach profile/wave buoy data and generalized barrier stratigraphy. High-resolution chronostratigraphic models necessary to achieve this can be constructed using Light Detection And Ranging (LiDAR), Ground Penetrating Radar (GPR), and Optically Stimulated Luminescence (OSL). Combined GPR, OSL and LiDAR (GOaL) on prograded barriers enables analysis of shorelines back through time, by comparing behaviour since the onset of anthropogenic global warming to that in the preceding millennia. Extracting a record of coastal evolution prior to and since seas began to rise two centuries ago offers the opportunity to detect any difference indicating if/how shorelines have responded. In double barrier systems with composite Holocene and Pleistocene components GOaL can extend the Anthropocene record back to when seas were known to have been higher than today. To demonstrate the potential of GOaL, data collected over the past twenty years from North America and the South Pacific are presented; including some classic prograded barriers studied initially in the 1960s and extensively the 1980s. The resulting records of sea level, storms and sediment supply provide insight on, and input for modelling of, climate change and coastal evolution.

  4. Sea-Level Rise and Subsidence: Implications for Flooding in New Orleans, Louisiana

    USGS Publications Warehouse

    Burkett, V.R.; Zilkoski, D.B.; Hart, D.A.

    2003-01-01

    Global sea-level rise is projected to accelerate two-to four-fold during the next century, increasing storm surge and shoreline retreat along low-lying, unconsolidated coastal margins. The Mississippi River Deltaic Plain in southeastern Louisiana is particularly vulnerable to erosion and inundation due to the rapid deterioration of coastal barriers combined with relatively high rates of land subsidence. Land-surface altitude data collected in the leveed areas of the New Orleans metropolitan region during five survey epochs between 1951 and 1995 indicated mean annual subsidence of 5 millimeters per year. Preliminary results of other studies detecting the regional movement of the north-central Gulf Coast indicate that the rate may be as much as 1 centimeter per year. Considering the rate of subsidence and the mid-range estimate of sea-level rise during the next 100 years (480 millimeters), the areas of New Orleans and vicinity that are presently 1.5 to 3 meters below mean sea level will likely be 2.5 to 4.0 meters or more below mean sea level by 2100.

  5. Enhanced decomposition offsets enhanced productivity and soil carbon accumulation in coastal wetlands responding to climate change

    USGS Publications Warehouse

    Kirwan, M.L.; Blum, L.K.

    2011-01-01

    Coastal wetlands are responsible for about half of all carbon burial in oceans, and their persistence as a valuable ecosystem depends largely on the ability to accumulate organic material at rates equivalent to relative sea level rise. Recent work suggests that elevated CO2 and temperature warming will increase organic matter productivity and the ability of marshes to survive sea level rise. However, we find that organic decomposition rates increase by about 12% per degree of warming. Our measured temperature sensitivity is similar to studies from terrestrial systems, twice as high as the response of salt marsh productivity to temperature warming, and roughly equivalent to the productivity response associated with elevated CO2 in C3 marsh plants. Therefore, enhanced CO2 and warmer temperatures may actually make marshes less resilient to sea level rise, and tend to promote a release of soil carbon. Simple projections indicate that elevated temperatures will increase rates of sea level rise more than any acceleration in organic matter accumulation, suggesting the possibility of a positive feedback between climate, sea level rise, and carbon emissions in coastal environments.

  6. Warming Seas and Melting Ice Sheets

    NASA Image and Video Library

    2017-12-08

    Sea level rise is a natural consequence of the warming of our planet. We know this from basic physics. When water heats up, it expands. So when the ocean warms, sea level rises. When ice is exposed to heat, it melts. And when ice on land melts and water runs into the ocean, sea level rises. For thousands of years, sea level has remained relatively stable and human communities have settled along the planet’s coastlines. But now Earth’s seas are rising. Globally, sea level has risen about eight inches since the beginning of the 20th century and more than two inches in the last 20 years alone. All signs suggest that this rise is accelerating. Read more: go.nasa.gov/1heZn29 Caption: An iceberg floats in Disko Bay, near Ilulissat, Greenland, on July 24, 2015. The massive Greenland ice sheet is shedding about 300 gigatons of ice a year into the ocean, making it the single largest source of sea level rise from melting ice. Credits: NASA/Saskia Madlener NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  7. Modeling Tidal Wetland Resiliency in the Face of Predicted Accelerated Sea-Level Rise

    NASA Astrophysics Data System (ADS)

    Schile, L. M.; Callaway, J.; Morris, J. T.; Kelly, M.

    2014-12-01

    Tidal wetland ecosystems are dynamic coastal habitats that, in California, often occur at the complex nexus of aquatic environments, diked and leveed baylands, and modified upland habitat. Because of their prime location and rich peat soil, many wetlands have been reduced, degraded, and/or destroyed, and yet their important role in carbon sequestration, nutrient and sediment filtering, and as habitat requires us to further examine their sustainability in light of predicted climate change. Predictions of climate change effects for the San Francisco Bay Estuary present a future with reduced summer freshwater input and increased sea levels. We examined the applicability and accuracy of the Marsh Equilibrium Model (MEM), a zero-dimensional model that models organic and inorganic accretion rates under a given rate of sea-level rise. MEM was calibrated using data collected from salt and brackish marshes in the San Francisco Bay Estuary to examine wetland resiliency under a range of sea-level rise and suspended sediment concentration scenarios. At sea-level rise rates 100 cm/century and lower, wetlands remained vegetated. Once sea levels rise above 100 cm, marshes begin to lose ability to maintain elevation, and the presence of adjacent upland habitat becomes increasingly important for marsh migration. The negative effects of sea-level rise on elevations were compounded as suspended sediment concentrations decreased. Results from this study emphasize that the wetland landscape in the bay is threatened with rising sea levels, and there are a limited number of wetlands that will be able to migrate to higher ground as sea levels rise.

  8. Uncertainty of the 20th century sea-level rise due to vertical land motion errors

    NASA Astrophysics Data System (ADS)

    Santamaría-Gómez, Alvaro; Gravelle, Médéric; Dangendorf, Sönke; Marcos, Marta; Spada, Giorgio; Wöppelmann, Guy

    2017-09-01

    Assessing the vertical land motion (VLM) at tide gauges (TG) is crucial to understanding global and regional mean sea-level changes (SLC) over the last century. However, estimating VLM with accuracy better than a few tenths of a millimeter per year is not a trivial undertaking and many factors, including the reference frame uncertainty, must be considered. Using a novel reconstruction approach and updated geodetic VLM corrections, we found the terrestrial reference frame and the estimated VLM uncertainty may contribute to the global SLC rate error by ± 0.2 mmyr-1. In addition, a spurious global SLC acceleration may be introduced up to ± 4.8 ×10-3 mmyr-2. Regional SLC rate and acceleration errors may be inflated by a factor 3 compared to the global. The difference of VLM from two independent Glacio-Isostatic Adjustment models introduces global SLC rate and acceleration biases at the level of ± 0.1 mmyr-1 and 2.8 ×10-3 mmyr-2, increasing up to 0.5 mm yr-1 and 9 ×10-3 mmyr-2 for the regional SLC. Errors in VLM corrections need to be budgeted when considering past and future SLC scenarios.

  9. Middle Holocene marine flooding and human response in the south Yangtze coastal plain, East China

    NASA Astrophysics Data System (ADS)

    Wang, Zhanghua; Ryves, David B.; Lei, Shao; Nian, Xiaomei; Lv, Ye; Tang, Liang; Wang, Long; Wang, Jiehua; Chen, Jie

    2018-05-01

    Coastal flooding catastrophes have affected human societies on coastal plains around the world on several occasions in the past, and are threatening 21st century societies under global warming and sea-level rise. However, the role of coastal flooding in the interruption of the Neolithic Liangzhu culture in the lower Yangtze valley, East China coast has been long contested. In this study, we used a well-dated Neolithic site (the Yushan site) close to the present coastline to demonstrate a marine drowning event at the terminal stage of the Liangzhu culture and discuss its linkage to relative sea-level rise. We analysed sedimentology, chronology, organic elemental composition, diatoms and dinoflagellate cysts for several typical profiles at the Yushan site. The field and sedimentary data provided clear evidence of a palaeo-typhoon event that overwhelmed the Yushan site at ∼2560 BCE, which heralded a period of marine inundation and ecological deterioration at the site. We also infer an acceleration in sea-level rise at 2560-2440 BCE from the sedimentary records at Yushan, which explains the widespread signatures of coastal flooding across the south Yangtze coastal plain at that time. The timing of this mid-Holocene coastal flooding coincided with the sudden disappearance of the advanced and widespread Liangzhu culture along the lower Yangtze valley. We infer that extreme events and flooding accompanying accelerated sea-level rise were major causes of vulnerability for prehistoric coastal societies.

  10. Quantifying and Projecting Relative Sea-Level Rise At The Regional Scale: The Bangladesh Sea-Level Project (BanD-AID)

    NASA Astrophysics Data System (ADS)

    Shum, C. K.; Kuo, C. Y.; Guo, J.; Shang, K.; Tseng, K. H.; Wan, J.; Calmant, S.; Ballu, V.; Valty, P.; Kusche, J.; Hossain, F.; Khan, Z. H.; Rietbroek, R.; Uebbing, B.

    2014-12-01

    The potential for accelerated sea-level rise under anthropogenic warming is a significant societal problem, in particular in world's coastal deltaic regions where about half of the world's population resides. Quantifying geophysical sources of sea-level rise with the goal of improved projection at local scales remains a complex and challenging interdisciplinary research problem. These processes include ice-sheet/glacier ablations, steric sea-level, solid Earth uplift or subsidence due to GIA, tectonics, sediment loading or anthropogenic causes, hydrologic imbalance, and human processes including water retention in reservoirs and aquifer extraction. The 2013 IPCC AR5 concluded that the observed and explained geophysical causes of global geocentric sea-level rise, 1993-2010, is closer towards closure. However, the discrepancy reveals that circa 1.3→37.5% of the observed sea-level rise remains unexplained. This relatively large discrepancy is primarily attributable to the wide range of estimates of respective contributions of Greenland and Antarctic ice-sheets and mountain/peripheral glaciers to sea-level rise. Understanding and quantifying the natural and anthropogenic processes governing solid Earth (land, islands and sea-floor) uplift or subsidence at the regional and local scales remain elusive to enable addressing coastal vulnerability due to relative sea-level rise hazards, such as the Bangladesh Delta. This study focuses on addressing coastal vulnerability of Bangladesh, a Belmont Forum/IGFA project, BanD-AID (http://Belmont-SeaLevel.org). Sea-level rise, along with tectonic, sediment load and groundwater extraction induced land uplift/subsidence, have exacerbated Bangladesh's coastal vulnerability, affecting 150 million people in one of the world's most densely populated regions. Here we present preliminary results using space geodetic observations, including satellite radar and laser altimetry, GRACE gravity, tide gauge, hydrographic, and GPS/InSAR observed land subsidence, and via fingerprint sea-level adjustment and reconstructed sea-level approaches, for improved quantification of major contributions to, and the projection of relative sea-level rise at the Bangladesh delta, towards addressing its coastal vulnerability and sustainability.

  11. Tidal marsh plant responses to elevated CO2 , nitrogen fertilization, and sea level rise.

    PubMed

    Adam Langley, J; Mozdzer, Thomas J; Shepard, Katherine A; Hagerty, Shannon B; Patrick Megonigal, J

    2013-05-01

    Elevated CO2 and nitrogen (N) addition directly affect plant productivity and the mechanisms that allow tidal marshes to maintain a constant elevation relative to sea level, but it remains unknown how these global change drivers modify marsh plant response to sea level rise. Here we manipulated factorial combinations of CO2 concentration (two levels), N availability (two levels) and relative sea level (six levels) using in situ mesocosms containing a tidal marsh community composed of a sedge, Schoenoplectus americanus, and a grass, Spartina patens. Our objective is to determine, if elevated CO2 and N alter the growth and persistence of these plants in coastal ecosystems facing rising sea levels. After two growing seasons, we found that N addition enhanced plant growth particularly at sea levels where plants were most stressed by flooding (114% stimulation in the + 10 cm treatment), and N effects were generally larger in combination with elevated CO2 (288% stimulation). N fertilization shifted the optimal productivity of S. patens to a higher sea level, but did not confer S. patens an enhanced ability to tolerate sea level rise. S. americanus responded strongly to N only in the higher sea level treatments that excluded S. patens. Interestingly, addition of N, which has been suggested to accelerate marsh loss, may afford some marsh plants, such as the widespread sedge, S. americanus, the enhanced ability to tolerate inundation. However, if chronic N pollution reduces the availability of propagules of S. americanus or other flood-tolerant species on the landscape scale, this shift in species dominance could render tidal marshes more susceptible to marsh collapse. © 2013 Blackwell Publishing Ltd.

  12. Ice2sea - the future glacial contribution to sea-level rise

    NASA Astrophysics Data System (ADS)

    Vaughan, D. G.; Ice2sea Consortium

    2009-04-01

    The melting of continental ice (glaciers, ice caps and ice sheets) is a substantial source of current sea-level rise, and one that is accelerating more rapidly than was predicted even a few years ago. Indeed, the most recent report from Intergovernmental Panel on Climate Change highlighted that the uncertainty in projections of future sea-level rise is dominated by uncertainty concerning continental ice, and that understanding of the key processes that will lead to loss of continental ice must be improved before reliable projections of sea-level rise can be produced. Such projections are urgently required for effective sea-defence management and coastal adaptation planning. Ice2sea is a consortium of European institutes and international partners seeking European funding to support an integrated scientific programme to improve understanding concerning the future glacial contribution to sea-level rise. This includes improving understanding of the processes that control, past, current and future sea-level rise, and generation of improved estimates of the contribution of glacial components to sea-level rise over the next 200 years. The programme will include targeted studies of key processes in mountain glacier systems and ice caps (e.g. Svalbard), and in ice sheets in both polar regions (Greenland and Antarctica) to improve understanding of how these systems will respond to future climate change. It will include fieldwork and remote sensing studies, and develop a suite of new, cross-validated glacier and ice-sheet model. Ice2sea will deliver these results in forms accessible to scientists, policy-makers and the general public, which will include clear presentations of the sources of uncertainty. Our aim is both, to provide improved projections of the glacial contribution to sea-level rise, and to leave a legacy of improved tools and techniques that will form the basis of ongoing refinements in sea-level projection. Ice2sea will provide exciting opportunities for many early-career glaciologists and ice-modellers in a variety of host institutes.

  13. Self-accelerated development of salt karst during flash floods along the Dead Sea Coast, Israel

    NASA Astrophysics Data System (ADS)

    Avni, Yoav; Lensky, Nadav; Dente, Elad; Shviro, Maayan; Arav, Reuma; Gavrieli, Ittai; Yechieli, Yoseph; Abelson, Meir; Lutzky, Hallel; Filin, Sagi; Haviv, Itai; Baer, Gidon

    2016-01-01

    We document and analyze the rapid development of a real-time karst system within the subsurface salt layers of the Ze'elim Fan, Dead Sea, Israel by a multidisciplinary study that combines interferometric synthetic aperture radar and light detection and ranging measurements, sinkhole mapping, time-lapse camera monitoring, groundwater level measurements and chemical and isotopic analyses of surface runoff and groundwater. The >1 m/yr drop of Dead Sea water level and the subsequent change in the adjacent groundwater system since the 1960s resulted in flushing of the coastal aquifer by fresh groundwater, subsurface salt dissolution, gradual land subsidence and formation of sinkholes. Since 2010 this process accelerated dramatically as flash floods at the Ze'elim Fan were drained by newly formed sinkholes. During and immediately after these flood events the dissolution rates of the subsurface salt layer increased dramatically, the overlying ground surface subsided, a large number of sinkholes developed over short time periods (hours to days), and salt-saturated water resurged downstream. Groundwater flow velocities increased by more than 2 orders of magnitudes compared to previously measured velocities along the Dead Sea. The process is self-accelerating as salt dissolution enhances subsidence and sinkhole formation, which in turn increase the ponding areas of flood water and generate additional draining conduits to the subsurface. The rapid terrain response is predominantly due to the highly soluble salt. It is enhanced by the shallow depth of the salt layer, the low competence of the newly exposed unconsolidated overburden and the moderate topographic gradients of the Ze'elim Fan.

  14. Impact of the Rhône and Durance valleys on sea-breeze circulation in the Marseille area

    NASA Astrophysics Data System (ADS)

    Bastin, Sophie; Drobinski, Philippe; Dabas, Alain; Delville, Patricia; Reitebuch, Oliver; Werner, Christian

    2005-03-01

    Sea-breeze dynamics in the Marseille area, in the south of France, is investigated in the framework of the ESCOMPTE experiment conducted during summer 2001 in order to evaluate the role of thermal circulations on pollutant transport and ventilation. Under particular attention in this paper is the sea-breeze channelling by the broad Rhône valley and the narrow Durance valley, both oriented nearly-north-south, i.e., perpendicular to the coastline, and its possible impact on the sea-breeze penetration, intensity and depth, which are key information for air pollution issues. One situation of slight synoptic pressure gradient leading to a northerly flow in the Rhône valley (25 June 2001) and one situation of a weak onshore prevailing synoptic wind (26 June 2001) are compared. The impact of the Rhône and Durance valleys on the sea-breeze dynamics on these two typical days is generalized to the whole ESCOMPTE observing period. The present study shows by combining simple scaling analysis with wind data from meteorological surface stations and Doppler lidars that (i) the Durance valley always affects the sea breeze by accelerating the flow. A consequence is that the Durance valley contributes to weaken the temperature gradient along the valley and thus the sea-breeze circulation. In some cases, the acceleration of the channelled flow in the Durance valley suppresses the sea-breeze flow by temperature gradient inhibition; (ii) the Rhône valley does not generally affect the sea breeze significantly. However, if the sea breeze is combined with an onshore flow, it leads to further penetration inland and intensification of the low-level southerly flow. In this situation, lateral constriction may accelerate the sea breeze. Simple scaling analysis suggests that Saint Paul (44.35°N, about 100 km from the coastline) is the lower limit where sea breeze can be affected by the Rhône valley. These conclusions have implications in air quality topics as channelled sea breeze may advect far inland pollutants which may be incorporated into long-range transport, particularly in the Durance valley.

  15. Recent accelerated warming of the continental shelf off New Jersey: Observations from the CMV Oleander expendable bathythermograph line

    NASA Astrophysics Data System (ADS)

    Forsyth, Jacob Samuel Tse; Andres, Magdalena; Gawarkiewicz, Glen G.

    2015-03-01

    Expendable bathythermographs (XBTs) have been launched along a repeat track from New Jersey to Bermuda from the CMV Oleander through the NOAA/NEFSC Ship of Opportunity Program about 14 times per year since 1977. The XBT temperatures on the Middle Atlantic Bight shelf are binned with 10 km horizontal and 5 m vertical resolution to produce monthly, seasonally, and annually averaged cross-shelf temperature sections. The depth-averaged shelf temperature, Ts, calculated from annually averaged sections that are spatially averaged across the shelf, increases at 0.026 ± 0.001°C yr-1 from 1977 to 2013, with the recent trend substantially larger than the overall 37 year trend (0.11 ± 0.02°C yr-1 since 2002). The Oleander temperature sections suggest that the recent acceleration in warming on the shelf is not confined to the surface, but occurs throughout the water column with some contribution from interactions between the shelf and the adjacent Slope Sea reflected in cross-shelf motions of the shelfbreak front. The local warming on the shelf cannot explain the region's amplified rate of sea level rise relative to the global mean. Additionally, Ts exhibits significant interannual variability with the warmest anomalies increasing in intensity over the 37 year record even as the cold anomalies remain relatively uniform throughout the record. Ts anomalies are not correlated with annually averaged coastal sea level anomalies at zero lag. However, positive correlation is found between 2 year lagged Ts anomalies and coastal sea level anomalies, suggesting that the region's sea level anomalies may serve as a predictor of shelf temperature.

  16. Increasing the highest storm surge in Busan harbor

    NASA Astrophysics Data System (ADS)

    Oh, Sang Myeong; Moon, Il-Ju; Kwon, Suk Jae

    2017-04-01

    One of the most pronounced effects of climate change in coastal regions is sea level rise and storm surges. Busan in particular, the fifth largest container handling port in the world, has suffered from serious storm surges and experienced a remarkable mean sea level (MSL) rise. This study investigates a long-term variation of annual maximum surge height (AMSH) using sea level data observed in Busan over 53 years (1962 2014). The decomposition of astronomical tides and surge components shows that the AMSH has increased 18 cm over 53 years (i.e., 3.5 mm/year), which is much larger than the MSL trend (2.5 mm/year) in Busan. This significant increase in AMSH is mostly explained by the increased intensity of landfall typhoons over the Korean peninsula (KP), which is associated with the increase of sea surface temperature and the decrease of vertical wind shear at mid-latitudes of the western North Pacific. In a projected future warming environment, the combination of an increasing MSL and AMSH will accelerate the occurrence of record-breaking extreme sea levels, which will be a potential threat in Busan harbor.

  17. Glacier mass loss. Dynamic thinning of glaciers on the Southern Antarctic Peninsula.

    PubMed

    Wouters, B; Martin-Español, A; Helm, V; Flament, T; van Wessem, J M; Ligtenberg, S R M; van den Broeke, M R; Bamber, J L

    2015-05-22

    Growing evidence has demonstrated the importance of ice shelf buttressing on the inland grounded ice, especially if it is resting on bedrock below sea level. Much of the Southern Antarctic Peninsula satisfies this condition and also possesses a bed slope that deepens inland. Such ice sheet geometry is potentially unstable. We use satellite altimetry and gravity observations to show that a major portion of the region has, since 2009, destabilized. Ice mass loss of the marine-terminating glaciers has rapidly accelerated from close to balance in the 2000s to a sustained rate of -56 ± 8 gigatons per year, constituting a major fraction of Antarctica's contribution to rising sea level. The widespread, simultaneous nature of the acceleration, in the absence of a persistent atmospheric forcing, points to an oceanic driving mechanism. Copyright © 2015, American Association for the Advancement of Science.

  18. Numerical Simulation of the RTA Combustion Rig

    NASA Technical Reports Server (NTRS)

    Davoudzadeh, Farhad; Buehrle, Robert; Liu, Nan-Suey; Winslow, Ralph

    2005-01-01

    The Revolutionary Turbine Accelerator (RTA)/Turbine Based Combined Cycle (TBCC) project is investigating turbine-based propulsion systems for access to space. NASA Glenn Research Center and GE Aircraft Engines (GEAE) planned to develop a ground demonstrator engine for validation testing. The demonstrator (RTA-1) is a variable cycle, turbofan ramjet designed to transition from an augmented turbofan to a ramjet that produces the thrust required to accelerate the vehicle from Sea Level Static (SLS) to Mach 4. The RTA-1 is designed to accommodate a large variation in bypass ratios from sea level static to Mach 4 conditions. Key components of this engine are new, such as a nickel alloy fan, advanced trapped vortex combustor, a Variable Area Bypass Injector (VABI), radial flameholders, and multiple fueling zones. A means to mitigate risks to the RTA development program was the use of extensive component rig tests and computational fluid dynamics (CFD) analysis.

  19. Final report for sea-level rise response modeling for San Francisco Bay estuary tidal marshes

    USGS Publications Warehouse

    Takekawa, John Y.; Thorne, Karen M.; Buffington, Kevin J.; Spragens, Kyle A.; Swanson, Kathleen M.; Drexler, Judith Z.; Schoellhamer, David H.; Overton, Cory T.; Casazza, Michael L.

    2013-01-01

    The International Panel on Climate Change has identified coastal ecosystems as areas that will be disproportionally affected by climate change. Current sea-level rise projections range widely with 0.57 to 1.9 meters increase in mea sea level by 2100. The expected accelerated rate of sea-level rise through the 21st century will put many coastal ecosystems at risk, especially those in topographically low-gradient areas. We assessed marsh accretion and plant community state changes through 2100 at 12 tidal salt marshes around San Francisco Bay estuary with a sea-level rise response model. Detailed ground elevation, vegetation, and water level data were collected at all sites between 2008 and 2011 and used as model inputs. Sediment cores (taken by Callaway and others, 2012) at four sites around San Francisco Bay estuary were used to estimate accretion rates. A modification of the Callaway and others (1996) model, the Wetland Accretion Rate Model for Ecosystem Resilience (WARMER), was utilized to run sea-level rise response models for all sites. With a mean sea level rise of 1.24 m by 2100, WARMER projected that the vast majority, 95.8 percent (1,942 hectares), of marsh area in our study will lose marsh plant communities by 2100 and to transition to a relative elevation range consistent with mudflat habitat. Three marshes were projected to maintain marsh vegetation to 2100, but they only composed 4.2 percent (85 hectares) of the total marsh area surveyed.

  20. Analysis of the most recent data of Cascais Tide Gauge

    NASA Astrophysics Data System (ADS)

    Antunes, Carlos; Taborda, Rui; Mendes, Virgílio B.

    2010-05-01

    In order to meet international standards and to integrate sea level changes and tsunami monitoring networks, Cascais tide gauge, one of the oldest in the world, has been upgraded in 2003 with new acoustic equipment with digital data acquisition, temperature and air-pressure sensors, and internet connection for real time data. The new tide gauge is located very close to the old analogical gauge, which is still working. Datum links between both gauges and the permanent GPS station of Cascais were made and height differences between gauges and the GPS station have been monitored to verify site stability and to estimate the absolute vertical velocity of the site, and therefore, the absolute sea level changes. Tide gauge data from 2000 to 2009 has been analyzed and relative and absolute sea level rise rates have been estimated. The estimation of sea level rise rate with the short baseline of 10 years is made with the daily mean sea level data corrected from the inverse barometric effect. The relative sea level trend is obtained from a 60-day moving average run over the corrected daily mean sea level. The estimated rate has shown greater stability in contrast to the analysis of daily mean sea level raw data, which shows greater variability and uncertainty. Our results show a sea level rise rate of 2.6 mm/year (± 0.3 mm/year), higher than previous rates (2.1 mm/year for 1990 decade and 1.6 mm/year from 1920 to 2000), which is compatible with a sea level rise acceleration scenario. From the analysis of Cascais GPS data, for the period 1990.0 to 2010.0 we obtain an uplift rate of 0.3 mm/year leading to an absolute sea level rise of 2.9 mm/year for Cascais, under the assumption, as predicted by the ICE-5G model, that Cascais has no vertical displacement caused by the post-glacial isostatic adjustment.

  1. Sea Level Driven Marsh Expansion in a Coupled Model of Marsh Erosion, Forest Retreat, and Human Impacts

    NASA Astrophysics Data System (ADS)

    Kirwan, M. L.; Walters, D. C.; Reay, W.; Carr, J.

    2016-12-01

    Salt marsh ecosystem services depend nonlinearly on wetland size and are threatened by sea level rise and coastal development. Here, we present a simple model of marsh migration into adjacent uplands, and couple it with existing models of seaward edge erosion and vertical soil accretion to explore how connectivity between adjacent ecosystems influences marsh size and response to sea level rise. We find that ecogeomorphic feedbacks tend to stabilize soil elevations relative to sea level rise so that changes in marsh size are determined mostly by the competition between ecological transitions at the upland boundary, and physical erosion at the seaward boundary. Salt marsh loss and natural flood protection is nearly inevitable under rapid sea level rise rates where topographic and anthropogenic barriers limit marsh migration into uplands. Where unconstrained by barriers, however, rates of marsh migration are much more sensitive to accelerated sea level rise than rates of edge erosion. Together, this behavior suggests a counterintuitive, natural tendency for marsh expansion with sea level rise, and emphasizes the disparity between coastal response to climate change with and without human intervention. Analysis of 19th century maps and modern photographs from the Chesapeake Bay region confirm that migration rates are more sensitive to sea level rise than erosion rate, and indicate that transgression has thus far allowed marshes to survive the fastest rates of relative sea level rise on the Atlantic Coast. This work suggests that the flux of organisms and sediment across adjacent ecosystems leads to an increase in system resilience that could not be inferred from studies that consider individual components of landscape change.

  2. Potential effects of sea-level rise on coastal wetlands in southeastern Louisiana

    USGS Publications Warehouse

    Glick, Patty; Clough, Jonathan; Polaczyk, Amy; Couvillion, Brady R.; Nunley, Brad

    2013-01-01

    Coastal Louisiana wetlands contain about 37% of the estuarine herbaceous marshes in the conterminous United States. The long-term stability of coastal wetlands is often a function of a wetland's ability to maintain elevation equilibrium with mean sea level through processes such as primary production and sediment accretion. However, Louisiana has sustained more coastal wetland loss than all other states in the continental United States combined due to a combination of natural and anthropogenic factors, including sea-level rise. This study investigates the potential impact of current and accelerating sea-level rise rates on key coastal wetland habitats in southeastern Louisiana using the Sea Level Affecting Marshes Model (SLAMM). Model calibration was conducted using a 1956–2007 observation period and hindcasting results predicted 35% versus observed 39% total marsh loss. Multiple sea-level-rise scenarios were then simulated for the period of 2007–2100. Results indicate a range of potential wetland losses by 2100, from an additional 2,188.97 km2 (218,897 ha, 9% of the 2007 wetland area) under the lowest sea-level-rise scenario (0.34 m), to a potential loss of 5,875.27 km2 (587,527 ha, 24% of the 2007 wetland area) in the highest sea-level-rise scenario (1.9 m). Model results suggest that one area of particular concern is the potential vulnerability of the region's baldcypress-water tupelo (Taxodium distichum-Nyssa aquatica) swamp habitat, much of which is projected to become permanently flooded (affecting regeneration) under all modeled scenarios for sea-level rise. These findings will aid in the development of ecosystem management plans that support the processes and conditions that result in sustainable coastal ecosystems.

  3. How much can Greenland melt? An upper bound on mass loss from the Greenland Ice Sheet through surface melting

    NASA Astrophysics Data System (ADS)

    Liu, X.; Bassis, J. N.

    2015-12-01

    With observations showing accelerated mass loss from the Greenland Ice Sheet due to surface melt, the Greenland Ice Sheet is becoming one of the most significant contributors to sea level rise. The contribution of the Greenland Ice Sheet o sea level rise is likely to accelerate in the coming decade and centuries as atmospheric temperatures continue to rise, potentially triggering ever larger surface melt rates. However, at present considerable uncertainty remains in projecting the contribution to sea level of the Greenland Ice Sheet both due to uncertainty in atmospheric forcing and the ice sheet response to climate forcing. Here we seek an upper bound on the contribution of surface melt from the Greenland to sea level rise in the coming century using a surface energy balance model coupled to an englacial model. We use IPCC Representative Concentration Pathways (RCP8.5, RCP6, RCP4.5, RCP2.6) climate scenarios from an ensemble of global climate models in our simulations to project the maximum rate of ice volume loss and related sea-level rise associated with surface melting. To estimate the upper bound, we assume the Greenland Ice Sheet is perpetually covered in thick clouds, which maximize longwave radiation to the ice sheet. We further assume that deposition of black carbon darkens the ice substantially turning it nearly black, substantially reducing its albedo. Although assuming that all melt water not stored in the snow/firn is instantaneously transported off the ice sheet increases mass loss in the short term, refreezing of retained water warms the ice and may lead to more melt in the long term. Hence we examine both assumptions and use the scenario that leads to the most surface melt by 2100. Preliminary models results suggest that under the most aggressive climate forcing, surface melt from the Greenland Ice Sheet contributes ~1 m to sea level by the year 2100. This is a significant contribution and ignores dynamic effects. We also examined a lower bound, assuming negligible longwave radiation and albedo near the maximum observed for freshly fallen snow. Even under this scenarios preliminary estimates suggest tens of centimeters of sea level rise by 2100.

  4. NASA Sea Level Change Portal - It not just another portal site

    NASA Astrophysics Data System (ADS)

    Huang, T.; Quach, N.; Abercrombie, S. P.; Boening, C.; Brennan, H. P.; Gill, K. M.; Greguska, F. R., III; Jackson, R.; Larour, E. Y.; Shaftel, H.; Tenenbaum, L. F.; Zlotnicki, V.; Moore, B.; Moore, J.; Boeck, A.

    2017-12-01

    The NASA Sea Level Change Portal (https://sealevel.nasa.gov) is designed as a "one-stop" source for current sea level change information, including interactive tools for accessing and viewing regional data, a virtual dashboard of sea level indicators, and ongoing updates through a suite of editorial products that include content articles, graphics, videos, and animations. With increasing global temperatures warming the ocean and melting ice sheets and glaciers, there is an immediate need both for accelerating sea level change research and for making this research accessible to scientists in disparate discipline, to the general public, to policy makers and business. The immersive and innovative NASA portal debuted at the 2015 AGU attracts thousands of daily visitors and over 30K followers on Facebook®. Behind its intuitive interface is an extensible architecture that integrates site contents, data for various sources, visualization, horizontal-scale geospatial data analytic technology (called NEXUS), and an interactive 3D simulation platform (called the Virtual Earth System Laboratory). We will present an overview of our NASA portal and some of our architectural decisions along with discussion on our open-source, cloud-based data analytic technology that enables on-the-fly analysis of heterogeneous data.

  5. Enhanced decomposition offsets enhanced productivity and soil carbon accumulation in coastal wetlands responding to climate change

    USGS Publications Warehouse

    Kirwan, M.L.; Blum, L.K.

    2011-01-01

    Coastal wetlands are responsible for about half of all carbon burial in oceans, and their persistence as a valuable ecosystem depends largely on the ability to accumulate organic material at rates equivalent to relative sea level rise. Recent work suggests that elevated CO2 and temperature warming will increase organic matter productivity and the ability of marshes to survive sea level rise. However, we find that organic decomposition rates increase by about 12% per degree of warming. Our measured temperature sensitivity is similar to studies from terrestrial systems, twice as high as the response of salt marsh productivity to temperature warming, and roughly equivalent to the productivity response associated with elevated CO2 in C3 marsh plants. Therefore, enhanced CO2 and warmer temperatures may actually make marshes less resilient to sea level rise, and tend to promote a release of soil carbon. Simple projections indicate that elevated temperatures will increase rates of sea level rise more than any acceleration in organic matter accumulation, suggesting the possibility of a positive feedback between climate, sea level rise, and carbon emissions in coastal environments. ?? 2011 Author(s).

  6. Mean and extreme sea level changes in the southwestern Baltic Sea

    NASA Astrophysics Data System (ADS)

    Schmidt, Jessica; Patzke, Justus; Dangendorf, Sönke; Arns, Arne; Jensen, Jürgen; Fröhle, Peter

    2016-04-01

    In this contribution an overview over the BMBF project AMSeL_Ostsee (2015-2018) for the assessment of mean and extreme sea level changes over the past 150 years in the southwestern Baltic Sea is presented. We compile several high resolution tide gauge records provided by the Water and Shipping Administration (WSV) along the German Baltic Sea coastline and merge them in internationally available data bases (UHSLC, PSMSL, and data officially available at national authorities). In addition, we make efforts in digitizing historical records to expand the number of available data sets in this complex and vulnerable coastal region. To separate absolute from relative long-term changes in sea level the vertical land motion (VLM) at specific sites is assessed. Possible sources of VLM are independently assessed by using different state-of-the-art approaches, that is: Glacial Isostatic Adjustment (GIA) modelled by viscoelastic Earth models, GPS derived VLM, and the difference between tide gauge and nearby satellite altimetry. The VLM corrected tide gauge records are further assessed for linear and non-linear trends as well as possible acceleration/deceleration patterns by applying advanced time series models such as Singular System Analysis (SSA) combined with a Monte-Carlo-Autoregressive-Padding approach (Wahl et al., 2010). These trend assessments are applied to mean and extreme sea levels independently to prove whether observed changes in extremes are either due to an underlying trend on mean sea levels or changes in storminess. References: Wahl, T., Jensen, J., Frank, T. (2011): On analysing sea level rise in the German Bight since 1844, NHESS, 10, 171-179.

  7. Hotspot of accelerated sea-level rise on the Atlantic coast of North America

    USGS Publications Warehouse

    Sallenger,, Asbury H.; Doran, Kara S.; Howd, Peter A.

    2012-01-01

    Climate warming does not force sea-level rise (SLR) at the same rate everywhere. Rather, there are spatial variations of SLR superimposed on a global average rise. These variations are forced by dynamic processes, arising from circulation and variations in temperature and/or salinity, and by static equilibrium processes, arising from mass redistributions changing gravity and the Earth's rotation and shape. These sea-level variations form unique spatial patterns, yet there are very few observations verifying predicted patterns or fingerprints. Here, we present evidence of recently accelerated SLR in a unique 1,000-km-long hotspot on the highly populated North American Atlantic coast north of Cape Hatteras and show that it is consistent with a modelled fingerprint of dynamic SLR. Between 1950–1979 and 1980–2009, SLR rate increases in this northeast hotspot were ~ 3–4 times higher than the global average. Modelled dynamic plus steric SLR by 2100 at New York City ranges with Intergovernmental Panel on Climate Change scenario from 36 to 51 cm (ref. 3); lower emission scenarios project 24–36 cm (ref. 7). Extrapolations from data herein range from 20 to 29 cm. SLR superimposed on storm surge, wave run-up and set-up will increase the vulnerability of coastal cities to flooding, and beaches and wetlands to deterioration.

  8. Water input requirements of the rapidly shrinking Dead Sea

    NASA Astrophysics Data System (ADS)

    Abu Ghazleh, Shahrazad; Hartmann, Jens; Jansen, Nils; Kempe, Stephan

    2009-05-01

    The deepest point on Earth, the Dead Sea level, has been dropping alarmingly since 1978 by 0.7 m/a on average due to the accelerating water consumption in the Jordan catchment and stood in 2008 at 420 m below sea level. In this study, a terrain model of the surface area and water volume of the Dead Sea was developed from the Shuttle Radar Topography Mission data using ArcGIS. The model shows that the lake shrinks on average by 4 km2/a in area and by 0.47 km3/a in volume, amounting to a cumulative loss of 14 km3 in the last 30 years. The receding level leaves almost annually erosional terraces, recorded here for the first time by Differential Global Positioning System field surveys. The terrace altitudes were correlated among the different profiles and dated to specific years of the lake level regression, illustrating the tight correlation between the morphology of the terrace sequence and the receding lake level. Our volume-level model described here and previous work on groundwater inflow suggest that the projected Dead Sea-Red Sea channel or the Mediterranean-Dead Sea channel must have a carrying capacity of >0.9 km3/a in order to slowly re-fill the lake to its former level and to create a sustainable system of electricity generation and freshwater production by desalinization. Moreover, such a channel will maintain tourism and potash industry on both sides of the Dead Sea and reduce the natural hazard caused by the recession.

  9. The Future of the Mississippi Delta: Shifting Baselines, Diminishing Resilience, and Growing Non-Sustainability

    NASA Astrophysics Data System (ADS)

    Detrick, R. S.; Hafner, K.; Davis, J. P.; Wilson, D.; Woodward, R.

    2016-12-01

    Ecosystems and human communities of the Mississippi delta developed with predictable basin inputs, stable sea level, and as an open system with a high degree of interaction among drainage basin inputs, deltaic plain, and the coastal sea. Human activity changed altered the coast and lowered predictability. Management has become very energy intensive and dependent on cheap resources with more hard engineering and less ecological engineering. Pervasive alteration of the basin and delta and global change have altered the baseline and change is accelerating. Climate change projections include not only sea-level rise, but also more stronger hurricanes, increased large river floods, and more intense rainfall events and droughts. A sustainable Mississippi is outside of the boundaries of the current CMP.

  10. The Future of the Mississippi Delta: Shifting Baselines, Diminishing Resilience, and Growing Non-Sustainability

    NASA Astrophysics Data System (ADS)

    Day, J.

    2017-12-01

    Ecosystems and human communities of the Mississippi delta developed with predictable basin inputs, stable sea level, and as an open system with a high degree of interaction among drainage basin inputs, deltaic plain, and the coastal sea. Human activity changed altered the coast and lowered predictability. Management has become very energy intensive and dependent on cheap resources with more hard engineering and less ecological engineering. Pervasive alteration of the basin and delta and global change have altered the baseline and change is accelerating. Climate change projections include not only sea-level rise, but also more stronger hurricanes, increased large river floods, and more intense rainfall events and droughts. A sustainable Mississippi is outside of the boundaries of the current CMP.

  11. Sea-level rise: towards understanding local vulnerability

    NASA Astrophysics Data System (ADS)

    Rahmstorf, Stefan

    2012-06-01

    Projections of global sea-level rise into the future have become more pessimistic over the past five years or so. A global rise by more than one metre by the year 2100 is now widely accepted as a serious possibility if greenhouse gas emissions continue unabated. That is witnessed by the scientific assessments that were made since the last IPCC report was published in 2007. The Delta Commission of the Dutch government projected up to 1.10 m as a 'high-end' scenario (Vellinga et al 2009). The Scientific Committee on Antarctic Research (SCAR) projected up to 1.40 m (Scientific Committee on Antarctic Research 2009), and the Arctic Monitoring and Assessment Programme (AMAP) gives a range of 0.90-1.60 m in its 2011 report (Arctic Monitoring and Assessment Programme 2011). And recently the US Army Corps of Engineers recommends using a 'low', an 'intermediate' and a 'high' scenario for global sea-level rise when planning civil works programmes, with the high one corresponding to a 1.50 m rise by 2100 (US Army Corps of Engineers 2011). This more pessimistic view is based on a number of observations, most importantly perhaps the fact that sea level has been rising at least 50% faster in the past decades than projected by the IPCC (Rahmstorf et al 2007, IPCC 2007). Also, the rate of rise (averaged over two decades) has accelerated threefold, from around 1 mm yr-1 at the start of the 20th century to around 3 mm yr-1 over the past 20 years (Church and White 2006), and this rate increase closely correlates with global warming (Rahmstorf et al 2011). The IPCC projections, which assume almost no further acceleration in the 20th century, thus look less plausible. And finally the observed net mass loss of the two big continental ice sheets (Van den Broeke et al 2011) calls into question the assumption that ice accumulation in Antarctica would largely balance ice loss from Greenland in the course of further global warming (IPCC 2007). With such a serious sea-level rise on the horizon, experts are increasingly looking at its potential impacts on coasts to facilitate local adaptation planning. This is a more complex issue than one might think, because different stretches of coast can be affected in very different ways. First of all, the sea-level response to global warming will not be globally uniform, since factors like changes in ocean currents (Levermann et al 2005) and the changing gravitational pull of continental ice (Mitrovica et al 2001) affect the local rise. Secondly, superimposed on the climatic trend is natural variability in sea level, which regionally can be as large as the climatic signal on multi-decadal timescales. Over the past decades, sea level has dropped in sizable parts of the world ocean, although it has of course risen in global mean (IPCC 2007). Thirdly, local land uplift or subsidence affects the local sea-level change relative to the coast, both for natural reasons (post-glacial isostatic adjustment centred on regions that were covered by ice sheets during the last ice age) and artificial ones (e.g., extraction of water or oil as in the Gulf of Mexico). Finally, local vulnerability to sea-level rise depends on many factors. Two interesting new studies in this journal (Tebaldi et al 2012, Strauss et al 2012) make important steps towards understanding sea-level vulnerability along the coasts of the United States, with methods that could also be applied elsewhere. The first, by Strauss and colleagues, merges high-resolution topographic data and a newly available tidal model together with population and housing data in order to estimate what land area and population would be at risk given certain increments in sea level. The results are mapped and tabulated at county and city level. They reveal the 'hot spots' along the US coast where sea-level rise is of the highest concern because of large populations living near the high-tide line: New York City and Long Island; the New Jersey shore; the Norfolk, Virginia, area; near Charleston, South Carolina; coastal cities across Florida, especially its southeast and the Tampa area; New Orleans; the San Francisco Bay Area and San Joaquin Delta; and greater Los Angeles. Overall, 3.7 million people across the US are estimated to live within 1 m of the present high-tide line. The second paper, by Tebaldi et al, specifically looks at storm surges and how their frequency is expected to change along the US coastline in the coming four decades due to rising sea levels. They first estimate future local sea-level rise relative to the land by combining the observed local trend of the past fifty years with a future acceleration due to global warming as estimated by a semi-empirical model (Vermeer and Rahmstorf 2009). Then they use past storm surge statistics for many different locations and shift the return level curves according to the projected sea-level rise. The authors find that by mid-century, in some locations what is now a once-per-century flooding event could become an annual event. Those are exceptional places—but at about a third of the sites investigated, a century flood could become a once-per-decade flood. Of course, many of these events need not have dramatic impacts: in fact, locations where rare floods are quite small in amplitude (and hence presumably modest in their impacts) are precisely those where the return period decreases most dramatically. In a place where the once-per-century flood is only 50 cm higher than the annual flood, a typical 30 cm rise in sea level makes a bigger difference than one in a place where the century flood is 2 m higher than the annual flood. Nevertheless, the expected large changes in return periods and return levels of storm surges clearly demonstrate that accounting for accelerating sea-level rise is vital in the planning and design of coastal infrastructure. But most importantly, these studies highlight the fact that the modern world, with many millions of people living right by the coast, is highly vulnerable to even modest sea-level rise. Losing just 1% of the present continental ice would raise sea level globally by about 75 cm—a tiny amount in the perspective of palaeoclimate history, e.g. the 120 m rise at the end of the last ice age, but a large amount in terms of impacts on human society. We should do everything we can to limit global warming and thereby sea-level rise to a manageable level. References Arctic Monitoring and Assessment Programme 2011 Snow, Water, Ice and Permafrost in the Arctic (Oslo: AMAP) Church J A and White N J 2006 A 20th century acceleration in global sea-level rise Geophys. Res. Lett. 33 L01602 IPCC 2007 Climate Change 2007: The Physical Science Basis. The Fourth Assessment Report of the Intergovernmental Panel on Climate Change ed S Solomon et al (Cambridge: Cambridge University Press) Levermann A, Griesel A, Hofmann M, Montoya M and Rahmstorf S 2005 Dynamic sea level changes following changes in the thermohaline circulation Clim. Dyn. 24 347-54 Mitrovica J X, Tamisiea M E, Davis J L and Milne G A 2001 Recent mass balance of polar ice sheets inferred from patterns of global sea-level change Nature 409 1026-9 Rahmstorf S, Cazenave A, Church J A, Hansen J E, Keeling R F, Parker D E and Somerville C J 2007 Recent climate observations compared to projections Science 316 709 Rahmstorf S, Perrette M and Vermeer M 2011 Testing the robustness of semi-empirical sea level projections Clim. Dyn. at press (doi:10.1007/s00382-011-1226-7) Scientific Committee on Antarctic Research 2009 Antarctic Climate Change and the Environment (Cambridge: Scott Polar Research Institute) Strauss B, Ziemlinski R, Weiss J and Overpeck J T 2012 Tidally-adjusted estimates of topographic vulnerability to sea level rise and flooding for the contiguous United States Environ. Res. Lett. 7 014033 Tebaldi C, Strauss B and Zervas C 2012 Modelling sea level rise impacts on storm surges along US coasts Environ. Res. Lett. 7 014032 US Army Corps of Engineers 2011 Sea-Level Change Considerations for Civil Works Programs (Washington, DC: Department of the Army) Van den Broeke M R, Bamber J, Lenaerts J and Rignot E 2011 Ice sheets and sea level: thinking outside the box Sur. Geophys. 32 495-505 Vellinga P, Katsman C A, Sterl A and Beersma J J 2009 Exploring high-end climate change scenarios for flood protection of the Netherlands International Scientific Assessment Carried out at the Request of the Delta Committee (De Bilt: KNMI) Vermeer M and Rahmstorf S 2009 Global sea level linked to global temperature Proc. Natl Acad. Sci. USA 106 21527-32

  12. Ghost forest creation and the conversion of uplands to wetlands

    NASA Astrophysics Data System (ADS)

    Kirwan, M. L.; Schieder, N. W.; Reay, W.

    2017-12-01

    Global sea level rise rates began accelerating sharply in the late 19th century, with an approximate tripling in sea level rise rates in many regions of the world. Some portions of the coastal landscape, such as marshes and barrier islands, survive relative sea level rise by natural eco-geomorphic processes that allow them to build elevation vertically and migrate landward. In contrast, adjacent uplands typically occupied by forests and agricultural fields have limited ability to resist the impacts of sea level rise. This portion of the coastal landscape consists of mostly salt intolerant plants, receives little mineral sediment deposition, and rarely builds elevation through the accumulation of soil organic matter. Thus, ghost forests- dead trees surrounded by marshland- are a prominent feature of many low-relief coastal landscapes, and represent a striking visual indicator of upland to wetland conversion. Here, we report preliminary results of several efforts designed to quantify rates and drivers of upland to wetland conversion in the mid-Atlantic region of the United States. Drone based canopy monitoring and ground-based seedling experiments suggest that ghost forests are created by episodic, storm-driven adult tree mortality paired with continuous seedling mortality. Preliminary comparisons between sediment cores and historical photographs from 5 sites in Maryland, Virginia, and North Carolina suggest that modern coastal forest retreat is 2-10 times faster than late-Holocene retreat rates, and that rates have accelerated in most decades since the 1930's. Finally, historical T-Sheet maps suggest that approximately 100,000 acres (400 km2) of uplands have converted to wetlands in the Chesapeake region, and that about 1/3 of all present-day marsh was created by upland drowning since the late 19th Century. Together, these observations indicate rapid coastal transgression, where low-relief, terrestrial portions of the coastal landscape are perhaps more sensitive to sea level rise than better studied, more seaward portions.

  13. Pleistocene reduction of polar ice caps: Evidence from Cariaco Basin marine sediments

    USGS Publications Warehouse

    Poore, R.Z.; Dowsett, H.J.

    2001-01-01

    Sea level is projected to rise between 13 and 94 cm over the next 100 yr due to continued climate warming. The sea-level projections assume that polar ice sheets will remain stable or even increase on time scales of centuries, but controversial geologic evidence suggests that current polar ice sheets have been eliminated or greatly reduced during previous Pleistocene interglacials indicating that modern polar ice sheets have become unstable within the natural range of interglacial climates. Sea level may have been more than 20 m higher than today during a presumably very warm interglacial about 400 ka during marine isotope stage 11. Because of the implications for future sea level rise, additional study of the conflicting evidence for warmer conditions and higher sea level during marine isotope stage 11 is needed. Here we present microfossil and isotopic data from marine sediments of the Cariaco Basin supporting the interpretation that global sea level was 10-20 m higher than today during marine isotope stage 11. The increased sea level requires reduction in modern polar ice sheets and is consistent with the interpretation that the West Antarctic ice sheet and the Greenland ice sheet were absent or greatly reduced during marine isotope stage 11. Our results show a warm marine isotope stage 11 interglacial climate with sea level as high as or above modern sea level that lasted for 25 to 30 k.y. Variations in Earth's orbit around the sun (Milankovitch cycles) are considered to be a primary external force driving glacial-interglacial cycles. Current and marine isotope stage 11 Milankovitch forcing are very similar, suggesting that the present interglacial (Holocene) that began ca. 10 ka will continue for another 15 to 20 k.y. Therefore any anthropogenic climate warming will accelerate the natural process toward reduction in polar ice sheets. The potential for increased rates of sea level rise related to polar ice sheet decay should be considered as a potential natural hazard on centennial time scales.

  14. Airborne gravity measurement over sea-ice: The western Weddel Sea

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brozena, J.; Peters, M.; LaBrecque, J.

    1990-10-01

    An airborne gravity study of the western Weddel Sea, east of the Antarctic Peninsula, has shown that floating pack-ice provides a useful radar altimetric reference surface for altitude and vertical acceleration corrections surface for alititude and vertical acceleration corrections to airborne gravimetry. Airborne gravimetry provides an important alternative to satellite altimetry for the sea-ice covered regions of the world since satellite alimeters are not designed or intended to provide accurate geoidal heights in areas where significant sea-ice is present within the radar footprint. Errors in radar corrected airborne gravimetry are primarily sensitive to the variations in the second derivative ofmore » the sea-ice reference surface in the frequency pass-band of interest. With the exception of imbedded icebergs the second derivative of the pack-ice surface closely approximates that of the mean sea-level surface at wavelengths > 10-20 km. With the airborne method the percentage of ice coverage, the mixture of first and multi-year ice and the existence of leads and pressure ridges prove to be unimportant in determining gravity anomalies at scales of geophysical and geodetic interest, provided that the ice is floating and not grounded. In the Weddell study an analysis of 85 crosstrack miss-ties distributed over 25 data tracks yields an rms error of 2.2 mGals. Significant structural anomalies including the continental shelf and offsets and lineations interpreted as fracture zones recording the early spreading directions within the Weddell Sea are observed in the gravity map.« less

  15. Using simulations to forecast homeowner response to sea level rise in South Florida: Will they stay or will they go?

    NASA Astrophysics Data System (ADS)

    Treuer, G.

    2017-12-01

    Sea level rise threatens coastal communities around the world, including South Florida which may be the most financially vulnerable region in the world. Proactive investments in sea level rise adaptive flood protections could reduce South Florida's financial vulnerability. However, it is unclear if local governments and homeowners will be willing to make those investments before it is too late. Our research explores this issue by reporting the results of a novel online simulation that accelerates 348 South Florida homeowners thirty-five years into the future so that they can `live' the effects of sea level rise. The results contain a mix of optimism and caution for the prospects of future adaptation. On the positive side over 75% of participants indicated a willingness to support bond issues to pay for adaptation, even as the costs of the measures and effects of sea level rise increased over the years. Likewise, we find little evidence that politically conservative residents who normally have more skeptical views about climate change would be any less inclined to support adaptation, or only look to information sources that downplay the threat. On the negative side, homeowner interest in moving out of the region increases steadily over time as the sea level rises. This is driven by an increase in worry associated with viewing more information within the simulation.

  16. Intensification of decadal and multi-decadal sea level variability in the western tropical Pacific during recent decades

    NASA Astrophysics Data System (ADS)

    Han, Weiqing; Meehl, Gerald A.; Hu, Aixue; Alexander, Michael A.; Yamagata, Toshio; Yuan, Dongliang; Ishii, Masayoshi; Pegion, Philip; Zheng, Jian; Hamlington, Benjamin D.; Quan, Xiao-Wei; Leben, Robert R.

    2014-09-01

    Previous studies have linked the rapid sea level rise (SLR) in the western tropical Pacific (WTP) since the early 1990s to the Pacific decadal climate modes, notably the Pacific Decadal Oscillation in the north Pacific or Interdecadal Pacific Oscillation (IPO) considering its basin wide signature. Here, the authors investigate the changing patterns of decadal (10-20 years) and multidecadal (>20 years) sea level variability (global mean SLR removed) in the Pacific associated with the IPO, by analyzing satellite and in situ observations, together with reconstructed and reanalysis products, and performing ocean and atmosphere model experiments. Robust intensification is detected for both decadal and multidecadal sea level variability in the WTP since the early 1990s. The IPO intensity, however, did not increase and thus cannot explain the faster SLR. The observed, accelerated WTP SLR results from the combined effects of Indian Ocean and WTP warming and central-eastern tropical Pacific cooling associated with the IPO cold transition. The warm Indian Ocean acts in concert with the warm WTP and cold central-eastern tropical Pacific to drive intensified easterlies and negative Ekman pumping velocity in western-central tropical Pacific, thereby enhancing the western tropical Pacific SLR. On decadal timescales, the intensified sea level variability since the late 1980s or early 1990s results from the "out of phase" relationship of sea surface temperature anomalies between the Indian and central-eastern tropical Pacific since 1985, which produces "in phase" effects on the WTP sea level variability.

  17. Antarctic ice-sheet loss driven by basal melting of ice shelves.

    PubMed

    Pritchard, H D; Ligtenberg, S R M; Fricker, H A; Vaughan, D G; van den Broeke, M R; Padman, L

    2012-04-25

    Accurate prediction of global sea-level rise requires that we understand the cause of recent, widespread and intensifying glacier acceleration along Antarctic ice-sheet coastal margins. Atmospheric and oceanic forcing have the potential to reduce the thickness and extent of floating ice shelves, potentially limiting their ability to buttress the flow of grounded tributary glaciers. Indeed, recent ice-shelf collapse led to retreat and acceleration of several glaciers on the Antarctic Peninsula. But the extent and magnitude of ice-shelf thickness change, the underlying causes of such change, and its link to glacier flow rate are so poorly understood that its future impact on the ice sheets cannot yet be predicted. Here we use satellite laser altimetry and modelling of the surface firn layer to reveal the circum-Antarctic pattern of ice-shelf thinning through increased basal melt. We deduce that this increased melt is the primary control of Antarctic ice-sheet loss, through a reduction in buttressing of the adjacent ice sheet leading to accelerated glacier flow. The highest thinning rates occur where warm water at depth can access thick ice shelves via submarine troughs crossing the continental shelf. Wind forcing could explain the dominant patterns of both basal melting and the surface melting and collapse of Antarctic ice shelves, through ocean upwelling in the Amundsen and Bellingshausen seas, and atmospheric warming on the Antarctic Peninsula. This implies that climate forcing through changing winds influences Antarctic ice-sheet mass balance, and hence global sea level, on annual to decadal timescales.

  18. Prediction of South China sea level using seasonal ARIMA models

    NASA Astrophysics Data System (ADS)

    Fernandez, Flerida Regine; Po, Rodolfo; Montero, Neil; Addawe, Rizavel

    2017-11-01

    Accelerating sea level rise is an indicator of global warming and poses a threat to low-lying places and coastal countries. This study aims to fit a Seasonal Autoregressive Integrated Moving Average (SARIMA) model to the time series obtained from the TOPEX and Jason series of satellite radar altimetries of the South China Sea from the year 2008 to 2015. With altimetric measurements taken in a 10-day repeat cycle, monthly averages of the satellite altimetry measurements were taken to compose the data set used in the study. SARIMA models were then tried and fitted to the time series in order to find the best-fit model. Results show that the SARIMA(1,0,0)(0,1,1)12 model best fits the time series and was used to forecast the values for January 2016 to December 2016. The 12-month forecast using SARIMA(1,0,0)(0,1,1)12 shows that the sea level gradually increases from January to September 2016, and decreases until December 2016.

  19. Improvement of TOPEX/POSEIDON and Jason-1 Geophysical Data Record for Global Change Studies and Coastal Applications

    NASA Technical Reports Server (NTRS)

    Shum, C. K.

    1999-01-01

    The Earth's modem climate change has been characterized by interlinked changes in temperature, CO2, ice sheets and sea level. Global sea level change is a critical indicator for study of contemporary climate change. Sea level rise appears to have accelerated since the ice sheet retreats have stopped some 5000 years ago and it is estimated that the sea level rise has been approx. 15 cm over the last century. Contemporary radar altimeters represent the only technique capable of monitoring global sea level change with accuracy approaching 1 mm/yr and with a temporal scale of days and a spatial scale of 100 km or longer. This report highlights the major accomplishments of the TOPEX/POSEIDON (T/P) Extended Mission and Jason-1 science investigation. The primary objectives of the investigation include the calibration and improvement of T/P and Jason-1 altimeter data for global sea level change and coastal tide and circulation studies. The scientific objectives of the investigation include: (1) the calibration and improvement of T/P and Jason-1 data as a reference measurement system for the accurate cross-linking with other altimeter systems (Seasat, Geosat, ERS-1, ERS-2, GFO-1, and Envisat), (2) the improved determination and the associated uncertainties of the long-term (15-year) global mean sea level change using multiple altimeters, (3) the characterization of the sea level change by analyses of independent data, including tide gauges, sea surface temperature, and (4) the improvement coastal radar altimetry for studies including coastal ocean tide modeling and coastal circulation. Major accomplishments of the investigation include the development of techniques for low-cost radar altimeter absolute calibration (including the associated GPS-buoy technology), coastal ocean tide modeling, and the linking of multiple altimeter systems and the resulting determination of the 15-year (1985-1999) global mean sea level variations. The current rate of 15-year sea level rise observed by multiple satellite altimetry is +2.3 +/- 1.2 mm/yr, which is in general agreement with the analysis of sparsely distributed tide gauge measurements for the same data span, and represents the first such determination of sea level change in its kind.

  20. Inverted Barometer Contributions to Accelerated and Extreme Annual Mean Sea Level Changes Along the East Coast of North America

    NASA Astrophysics Data System (ADS)

    Piecuch, C. G.; Ponte, R. M.

    2015-12-01

    Recent works have interpreted accelerated and extreme sea level (SL) changes along the northeast coast of North America primarily in terms of dynamic changes related to the meridional overturning or coastal circulations. Isostatic changes related to surface atmospheric pressure loading —the inverted barometer (IB) effect— have been deemed relatively unimportant, but a comprehensive analysis of the IB effect has been lacking. In this work, we use five different atmospheric pressure products to analyze the influence of the IB effect on annual mean SL from tide gauge records. Consistently across all products, the IB effect accounts for about 50% of the magnitude of a recent extreme event of SL rise in 2009 along Atlantic Canada and New England. In fact, the unique nature of the event was largely a result of the extreme IB signal. Estimated IB effects also amount to about 10-30% of recent multidecadal SL accelerations over the Mid-Atlantic Bight and Southern New England. These findings reiterate the need for careful estimation of IB effects for studies that want to interpret observed SL in terms of dynamic ocean circulation changes.

  1. Dynamic and static equilibrium sea level effects of Greenland Ice Sheet melt: An assessment of partially-coupled idealized water hosing experiments (Invited)

    NASA Astrophysics Data System (ADS)

    Kopp, R. E.; Mitrovica, J. X.; Griffies, S. M.; Yin, J.; Hay, C. C.; Stouffer, R. J.

    2010-12-01

    Regional sea level can deviate from mean global sea level because of both dynamic sea level (DSL) effects, resulting from oceanic and atmospheric circulation and temperature and salinity distributions, and changes in the static equilibrium (SE) sea level configuration, produced by the gravitational, elastic, and rotational effects of mass redistribution. Both effects will contribute to future sea level change, but because they are studied by two different subdisciplines -- climate modeling and glacial rebound modeling -- projections that attempt to combine both have to date been scarce. To compare their magnitude, we simulated the effects of Greenland Ice Sheet (GIS) melt by conducting idealized North Atlantic "water-hosing" experiments in a climate model unidirectionally coupled to a SE sea level model. At current rates of GIS melt, freshwater hosing experiments in fully coupled atmosphere-ocean general circulation models (AOGCMs) do not yield clear DSL trends but do generate DSL variability; comparing that variability to expected static equilibrium "fingerprints" suggests that at least about 40 years of observations are needed to detect the "fingerprints" of ice sheet melt at current Greenland melt rates of about 0.3 mm equivalent sea level (esl)/year. Accelerated melt rates of about 2--6 mm esl/y, as may occur later in the century, should be detectable above background DSL variability within less than a decade of their onset. At these higher melt rates, AOGCMs do yield clear DSL trends. In the GFDL CM 2.1 model, DSL trends are strongest in the western North Atlantic, while SE effects come to dominate in most of the ocean when melt exceeds about 20 cm esl.

  2. Impacts of past climate and sea level change on Everglades wetlands: placing a century of anthropogenic change into a late-Holocene context

    USGS Publications Warehouse

    Willard, D.A.; Bernhardt, C.E.

    2011-01-01

    We synthesize existing evidence on the ecological history of the Florida Everglades since its inception ~7 ka (calibrated kiloannum) and evaluate the relative impacts of sea level rise, climate variability, and human alteration of Everglades hydrology on wetland plant communities. Initial freshwater peat accumulation began between 6 and 7 ka on the platform underlying modern Florida Bay when sea level was ~6.2 m below its current position. By 5 ka, sawgrass and waterlily peats covered the area bounded by Lake Okeechobee to the north and the Florida Keys to the south. Slower rates of relative sea level rise ~3 ka stabilized the south Florida coastline and initiated transitions from freshwater to mangrove peats near the coast. Hydrologic changes in freshwater marshes also are indicated ~3 ka. During the last ~2 ka, the Everglades wetland was affected by a series of hydrologic fluctuations related to regional to global-scale fluctuations in climate and sea level. Pollen evidence indicates that regional-scale droughts lasting two to four centuries occurred ~1 ka and ~0.4 ka, altering wetland community composition and triggering development of characteristic Everglades habitats such as sawgrass ridges and tree islands. Intercalation of mangrove peats with estuarine muds ~1 ka indicates a temporary slowing or stillstand of sea level. Although sustained droughts and Holocene sea level rise played large roles in structuring the greater Everglades ecosystem, twentieth century reductions in freshwater flow, compartmentalization of the wetland, and accelerated rates of sea level rise had unprecedented impacts on oxidation and subsidence of organic soils, changes/loss of key Everglades habitats, and altered distribution of coastal vegetation.

  3. Accelerated relative sea-level rise and rapid coastal erosion: Testing a causal relationship for the Louisiana barrier islands

    USGS Publications Warehouse

    List, J.H.; Sallenger, A.H.; Hansen, M.E.; Jaffe, B.E.

    1997-01-01

    The role of relative sea-level rise as a cause for the rapid erosion of Louisiana's barrier island coast is investigated through a numerical implementation of a modified Bruun rule that accounts for the low percentage of sand-sized sediment in the eroding Louisiana shoreface. Shore-normal profiles from 150 km of coastline west of the Mississippi delta are derived from bathymetric surveys conducted during the 1880s. 1930s and 1980s. An RMS difference criterion is employed to test whether an equilibrium profile form is maintained between survey years. Only about half the studied profiles meet the equilibrium Criterion this represents a significant limitation on the potential applicability of the Bruun rule. The profiles meeting the equilibrium criterion, along with measured rates of relative sea-level rise, are used to hindcast shoreline retreat rates at 37 locations within the study area. Modeled and observed shoreline retreat rates show no significant correlation. Thus in terms of the Bruun approach relative sea-level rise has no power for hindcasting (and presumably forecasting) rates of coastal erosion for the Louisiana barrier islands.

  4. Science Support for Climate Change Adaptation in South Florida

    USGS Publications Warehouse

    Early, Laura M.; Harvey, Rebecca G.

    2010-01-01

    Earth's changing climate is among the foremost conservation challenges of the 21st century, threatening to permanently alter entire ecosystems and contribute to extinctions of species. Lying only a few feet above sea level and already suffering effects of anthropogenic stressors, south Florida's ecosystems are particularly vulnerable to negative impacts of climate change. Recent research accounting for the gravitational effects of melting ice sheets predicts that sea level rise on U.S. coastlines will be much higher than global averages (Gomez et al. 2010), and the Miami-Dade Climate Change Advisory Task Force predicts that local sea level rise will be at least 3 to 5 ft. (0.9 m to 1.5 m) by 2100 (MDCCATF 2008). In a 5 ft. scenario, up to 873 additional square miles of the Everglades would be inundated with saltwater (see maps below). Accelerated sea level rise is likely to be accompanied by increasing temperatures (IPCC 2007a) and more intense tropical storms and hurricanes (Webster et al. 2005). In addition, changes in amount, timing, and distribution of rainfall in south Florida may lead to more severe droughts and floods (SFWMD 2009).

  5. Advanced Regional and Decadal Predictions of Coastal Inundation for the U.S. Atlantic and Gulf Coasts (Invited)

    NASA Astrophysics Data System (ADS)

    Horton, B.; Corbett, D. R.; Donnelly, J. P.; Kemp, A.; Lin, N.; Lindeman, K.; Mann, M. E.; Peltier, W. R.; Rahmstorf, S.

    2013-12-01

    Future inundation of the U.S. Atlantic and Gulf coasts will depend upon sea-level rise and the intensity and frequency of tropical cyclones, each of which will be affected by climate change. Through ongoing, collaborative research we are employing new interdisciplinary approaches to bring about a step change in the reliability of predictions of such inundation. The rate of sea level rise along the U.S. Atlantic and Gulf coasts increased throughout the 20th century. Whilst there is widespread agreement that it continue to accelerate during the 21st century, great uncertainty surrounds its magnitude and geographic variability. Key uncertainties include the role of continental ice sheets, mountain glaciers, and ocean density changes. Insufficient understanding of these complex physical processes precludes accurate prediction of sea-level rise. New approaches using semi-empirical models that relate instrumental records of climate and sea-level rise have projected up to 2 m of sea-level rise by AD 2100. But the time span of instrumental sea-level records is insufficient to adequately constrain the climate:sea-level relationship. We produced new, high-resolution proxy sea-level reconstructions to provide crucial additional constraints to such semi-empirical models. Our dataset spans the alternation between the 'Medieval Climate Anomaly' and 'Little Ice Age'. Before the models can provide appropriate data for coastal management and planning, they must be complemented with regional estimates of sea-level rise. Therefore, the proxy sea-level data has been collected from four study areas (Connecticut, New Jersey, North Carolina and Florida) to accommodate the required extent of regional variability. In the case of inundation arising from tropical cyclones, the historical and observational records are insufficient for predicting their nature and recurrence, because they are such extreme and rare events. Moreover, future storm surges will be superimposed on background sea-level rise. To overcome these problems, we coupled regional sea-level rise projections with hurricane simulations and storm surge models to map coastal inundation for the current climate and the best and worst case climate scenarios of the IPCC AR4. With agency, NGO, and business partners, we have integrated these findings into coastal policy initiatives, including the first ever adoption of sea level Adaptation Action Areas in a Florida city land use plan.

  6. Losing ground - scenarios of land loss as consequence of shifting sediment budgets in the Mekong Delta

    NASA Astrophysics Data System (ADS)

    Schmitt, R. J. P.; Rubin, Z.; Kondolf, G. M.

    2017-10-01

    With changing climate and rising seas, proliferation of hydroelectric dams, instream sand mining, dyking of floodplains, accelerated subsidence from groundwater pumping, accelerated sea-level rise, and other anthropic impacts, it is certain that the Mekong Delta will undergo large changes in the coming decades. These changes will threaten the very existence of the landform itself. The multiplicity of compounding drivers and lack of reliable data lead to large uncertainties in forecasting changes in the sediment budget of the Mekong Delta, its morphology, and the ecosystems and human livelihoods it supports. We compile information on key drivers affecting the sediment budget of the Mekong Delta and compare them to quantify the magnitude of effects from different drivers. We develop a set of likely scenarios for the future development of these drivers and quantify implications for the future of the Mekong Delta using a simplified model of the delta's geometry. If sediment supply to the delta is nearly completely cut off, as would be the case with full buildout of planned dams and current rates of sediment mining, and with continued groundwater pumping at current rates, our model forecasts that the delta will almost completely disappear by the end of this century due to increased rates of delta subsidence and rising sea levels. While local management cannot prevent global sea level rise, model results suggest that there are important management steps that could prolong the persistence of the delta ecosystem and the livelihoods it supports, including a reduction in ground water pumping and maintaining sediment connectivity between the basin and the delta.

  7. Expansion of Pannes

    EPA Science Inventory

    For the Long Island, New Jersey, and southern New England region, one facet of marsh drowning as a result of accelerated sea level rise is the expansion of salt marsh ponds and pannes. Over the past century, marsh ponds and pannes have formed and expanded in areas of poor drainag...

  8. Assessment of Roots, Rhizomes, and Soil Respiration in Disturbed Wetlands

    EPA Science Inventory

    Accelerated sea level rise and cultural eutrophication are anthropogenic stressors known to alter the structure and function of salt marsh ecosystems. Many salt marshes in Jamaica Bay (NY) are reported to be disappearing at an alarming rate, approximately 35 - 40 acres per year....

  9. Observing large-scale temporal variability of ocean currents by satellite altimetry - With application to the Antarctic circumpolar current

    NASA Technical Reports Server (NTRS)

    Fu, L.-L.; Chelton, D. B.

    1985-01-01

    A new method is developed for studying large-scale temporal variability of ocean currents from satellite altimetric sea level measurements at intersections (crossovers) of ascending and descending orbit ground tracks. Using this method, sea level time series can be constructed from crossover sea level differences in small sample areas where altimetric crossovers are clustered. The method is applied to Seasat altimeter data to study the temporal evolution of the Antarctic Circumpolar Current (ACC) over the 3-month Seasat mission (July-October 1978). The results reveal a generally eastward acceleration of the ACC around the Southern Ocean with meridional disturbances which appear to be associated with bottom topographic features. This is the first direct observational evidence for large-scale coherence in the temporal variability of the ACC. It demonstrates the great potential of satellite altimetry for synoptic observation of temporal variability of the world ocean circulation.

  10. Informatics and computational method for inundation and land use study in Arctic Sea eastern Siberia, Russia

    NASA Astrophysics Data System (ADS)

    Boori, Mukesh Singh; Choudhary, Komal; Kupriyanov, Alexander; Sugimoto, Atsuko

    2016-11-01

    Eastern Siberia, Russia is physically and socio-economically vulnerable to accelerated Arctic sea level rise due to low topography, high ecological value, harsh climatic conditions, erosion and flooding of coastal area and destruction of harbor constructions and natural coastal hazards. A 1 to 10m inundation land loss scenarios for surface water and sea level rise (SLR) were developed using digital elevation models of study site topography through remote sensing and GIS techniques by ASTER GDEM and Landsat OLI data. Results indicate that 10.82% (8072.70km2) and 29.73% (22181.19km2) of the area will be lost by flooding at minimum and maximum inundation levels, respectively. The most severely impacted sectors are expected to be the vegetation, wetland and the natural ecosystem. Improved understanding of the extent and response of SLR will help in preparing for mitigation and adaptation.

  11. A global standard for monitoring coastal wetland vulnerability to accelerated sea-level rise

    USGS Publications Warehouse

    Webb, Edward L.; Friess, Daniel A.; Krauss, Ken W.; Cahoon, Donald R.; Guntenspergen, Glenn R.; Phelps, Jacob

    2013-01-01

    Sea-level rise threatens coastal salt-marshes and mangrove forests around the world, and a key determinant of coastal wetland vulnerability is whether its surface elevation can keep pace with rising sea level. Globally, a large data gap exists because wetland surface and shallow subsurface processes remain unaccounted for by traditional vulnerability assessments using tide gauges. Moreover, those processes vary substantially across wetlands, so modelling platforms require relevant local data. The low-cost, simple, high-precision rod surface-elevation table–marker horizon (RSET-MH) method fills this critical data gap, can be paired with spatial data sets and modelling and is financially and technically accessible to every country with coastal wetlands. Yet, RSET deployment has been limited to a few regions and purposes. A coordinated expansion of monitoring efforts, including development of regional networks that could support data sharing and collaboration, is crucial to adequately inform coastal climate change adaptation policy at several scales.

  12. Arctic polynya and glacier interactions

    NASA Astrophysics Data System (ADS)

    Edwards, Laura

    2013-04-01

    Major uncertainties surround future estimates of sea level rise attributable to mass loss from the polar ice sheets and ice caps. Understanding changes across the Arctic is vital as major potential contributors to sea level, the Greenland Ice Sheet and the ice caps and glaciers of the Canadian Arctic archipelago, have experienced dramatic changes in recent times. Most ice mass loss is currently focused at a relatively small number of glacier catchments where ice acceleration, thinning and calving occurs at ocean margins. Research suggests that these tidewater glaciers accelerate and iceberg calving rates increase when warming ocean currents increase melt on the underside of floating glacier ice and when adjacent sea ice is removed causing a reduction in 'buttressing' back stress. Thus localised changes in ocean temperatures and in sea ice (extent and thickness) adjacent to major glacial catchments can impact hugely on the dynamics of, and hence mass lost from, terrestrial ice sheets and ice caps. Polynyas are areas of open water within sea ice which remain unfrozen for much of the year. They vary significantly in size (~3 km2 to > ~50,000 km2 in the Arctic), recurrence rates and duration. Despite their relatively small size, polynyas play a vital role in the heat balance of the polar oceans and strongly impact regional oceanography. Where polynyas develop adjacent to tidewater glaciers their influence on ocean circulation and water temperatures may play a major part in controlling subsurface ice melt rates by impacting on the water masses reaching the calving front. Areas of open water also play a significant role in controlling the potential of the atmosphere to carry moisture, as well as allowing heat exchange between the atmosphere and ocean, and so can influence accumulation on (and hence thickness of) glaciers and ice caps. Polynya presence and size also has implications for sea ice extent and therefore potentially the buttressing effect on neighbouring tidewater glaciers. The work presented discusses preliminary satellite observations of concurrent changes in the North Water and Nares Strait polynyas and neighbouring tidewater glaciers in Greenland and the Canadian Arctic where notable thinning and acceleration of glaciers have been observed. Also included is an outline of how these observations will fit into a much wider project on the topic involving ocean, atmosphere and sea ice modelling and short-term and longer-term in-situ measurements.

  13. Destabilisation of an Arctic ice cap triggered by a hydro-thermodynamic feedback to summer-melt

    NASA Astrophysics Data System (ADS)

    Dunse, T.; Schellenberger, T.; Kääb, A.; Hagen, J. O.; Schuler, T. V.; Reijmer, C. H.

    2014-05-01

    Mass loss from glaciers and ice sheets currently accounts for two-thirds of the observed global sea-level rise and has accelerated since the 1990s, coincident with strong atmospheric warming in the Polar Regions. Here we present continuous GPS measurements and satellite synthetic aperture radar based velocity maps from the Austfonna ice cap, Svalbard, that demonstrate strong links between surface-melt and multiannual ice-flow acceleration. We identify a hydro-thermodynamic feedback that successively mobilizes stagnant ice regions, initially frozen to their bed, thereby facilitating fast basal motion over an expanding area. By autumn 2012, successive destabilization of the marine terminus escalated in a surge of the ice cap's largest drainage basin, Basin-3. The resulting iceberg discharge of 4.2 ± 1.6 Gt a-1 over the period April 2012 to May 2013 triples the calving loss from the entire ice cap. After accounting for the terminus advance, the related sea-level rise contribution of 7.2 ± 2.6 Gt a-1 matches the recent annual ice-mass loss from the entire Svalbard archipelago. Our study highlights the importance of dynamic glacier wastage and illuminates mechanisms that may trigger a sustained increase in dynamic glacier wastage or the disintegration of ice-sheets in response to climate warming, which is acknowledged but not quantified in global projections of sea-level rise.

  14. Decadal-timescale estuarine geomorphic change under future scenarios of climate and sediment supply

    USGS Publications Warehouse

    Ganju, N.K.; Schoellhamer, D.H.

    2010-01-01

    Future estuarine geomorphic change, in response to climate change, sea-level rise, and watershed sediment supply, may govern ecological function, navigation, and water quality. We estimated geomorphic changes in Suisun Bay, CA, under four scenarios using a tidal-timescale hydrodynamic/sediment transport model. Computational expense and data needs were reduced using the morphological hydrograph concept and the morphological acceleration factor. The four scenarios included (1) present-day conditions; (2) sea-level rise and freshwater flow changes of 2030; (3) sea-level rise and decreased watershed sediment supply of 2030; and (4) sea-level rise, freshwater flow changes, and decreased watershed sediment supply of 2030. Sea-level rise increased water levels thereby reducing wave-induced bottom shear stress and sediment redistribution during the wind-wave season. Decreased watershed sediment supply reduced net deposition within the estuary, while minor changes in freshwater flow timing and magnitude induced the smallest overall effect. In all future scenarios, net deposition in the entire estuary and in the shallowest areas did not keep pace with sea-level rise, suggesting that intertidal and wetland areas may struggle to maintain elevation. Tidal-timescale simulations using future conditions were also used to infer changes in optical depth: though sea-level rise acts to decrease mean light irradiance, decreased suspended-sediment concentrations increase irradiance, yielding small changes in optical depth. The modeling results also assisted with the development of a dimensionless estuarine geomorphic number representing the ratio of potential sediment import forces to sediment export forces; we found the number to be linearly related to relative geomorphic change in Suisun Bay. The methods implemented here are widely applicable to evaluating future scenarios of estuarine change over decadal timescales. ?? The Author(s) 2009.

  15. Rates of subsidence and relative sea level rise in the Hawaii Islands

    NASA Astrophysics Data System (ADS)

    Parker, Albert

    2016-12-01

    The major cause of the Hawaiian Islands coastal erosion is shown to be not global warming, but the sinking of the volcanic islands. The geologic "circle-of-life" beyond the Hawaiian hot spot is the true explanation of the beach erosion. The sea levels are slow rising and not accelerating worldwide as well as in the United States. In the specific of the Hawaii Islands, they have been decelerating over the last 3 decades because of the phasing of the multi-decadal oscillations for this area of the Pacific. There is therefore no evidence coastal erosion will double in the Hawaii by 2050 because of global warming.

  16. Comparison of Bottomless Lift Nets and Breder Traps for Sampling Salt-Marsh Nekton

    EPA Science Inventory

    Vegetated salt-marsh surfaces provide refuge, forage, and spawning habitat for estuarine nekton, yet are threatened by accelerating rates of sea-level rise in southern New England and elsewhere. Nekton responses to ongoing marsh surface changes need to be evaluated with effective...

  17. Growth and photosynthesis responses of two co-occurring marsh grasses to inundation and varied nutrients

    EPA Science Inventory

    For southern New England tidal marshes, the late twentieth century decline of Spartina patens has been attributed to increased flooding associated with accelerated sea level rise and nitrogen over-enrichment from cultural eutrophication, either singly or in combination. The obje...

  18. Geoethics: IPCC disgraced by violation of observational facts and physical laws in their sea level scenario

    NASA Astrophysics Data System (ADS)

    Mörner, Nils-Axel

    2014-05-01

    Sea level may rise due to glacier melting, heat expansion of the oceanic water column, and redistribution of the waster masses - all these factors can be handled as to rates and amplitudes (provided one knows what one is talking about). In key areas over the entire Indian Ocean and in many Pacific Islands there are no traces of and sea level rise over the last 40-50 years. This is also the case for test-areas like Venice and the North Sea coasts. In the Kattegatt Sea one can fix the sea level factor to a maximum rise of 1.0-0.9 mm/year over the last century. The 204 tide gauges selected by NOAA for their global sea level monitoring provide a strong and sharp maximum (of 182 sites) in the range of 0.0-2.0 mm/yr. Satellite altimetry is said to give a rise of 3.2 mm/yr; this, however, is a value achieved after a quite subjective and surely erroneous "correction". The IPCC is talking about exceptionally much higher rates, and even worse are some "boy scouts" desperate try to launce real horror ratios. Physical laws set the frames of the rate and amount of ice melting, and so do records of events in the past (i.e. the geological records). During the Last Ice Age so much ice was accumulated on land, that the sea level dropped by about 120 m. When the process was reversed and ice melted under exceptionally strong climate forcing, sea level rose at a maximum rate of about 10 mm/yr (a meter per century). This can never happen under today's climate conditions. Even with IPCC's hypothetical scenarios, the true sea rise must be far less. When people like Rahmstorf (claiming 1 m or more by 2100) and Hansen (claiming a 4 m rise from 2080 to 2100) give their values, they exceed what is possible according to physical laws and accumulated geological knowledge. The expansion of the oceanic water column may reach amounts of sea level rise in the order of a few centimetres, at the most a decimetre. Old temperature measurements may record a temperature rise over the last 50 years in the order of 0.4o C. The improved ARGO measurements starting 2004 give virtually no change, however. The physically possible amount of expansion decreases, of course, with the decreasing water columns towards the coasts, and at the coasts it is zero (±0.0 mm). The redistribution of water masses in response to the Earth's rotation, surface current beat, wind stress, air pressure, etc. is an important factor. It gives local to regional changes, cancelled out on the global scale, however. From a geoethical point of view, it is of course quite blameworthy that IPCC excels in spreading these horror scenarios of a rapid, even accelerating, sea level rise. Besides, modern understanding of the planetary-solar-terrestrial interaction shows that we are now on our way into grand solar minimum with severely colder climate - that is just the opposite to IPCC's talk about an accelerating warming. In science we should debate - but we should not dictate (as IPCC insist upon), and it is here the perspectives of geoethics comes into the picture.

  19. Modeled Tradeoffs between Developed Land Protection and Tidal Habitat Maintenance during Rising Sea Levels

    PubMed Central

    Cadol, Daniel; Elmore, Andrew J.; Guinn, Steven M.; Engelhardt, Katharina A. M.; Sanders, Geoffrey

    2016-01-01

    Tidal habitats host a diversity of species and provide hydrological services such as shoreline protection and nutrient attenuation. Accretion of sediment and biomass enables tidal marshes and swamps to grow vertically, providing a degree of resilience to rising sea levels. Even if accelerating sea level rise overcomes this vertical resilience, tidal habitats have the potential to migrate inland as they continue to occupy land that falls within the new tide range elevations. The existence of developed land inland of tidal habitats, however, may prevent this migration as efforts are often made to dyke and protect developments. To test the importance of inland migration to maintaining tidal habitat abundance under a range of potential rates of sea level rise, we developed a spatially explicit elevation tracking and habitat switching model, dubbed the Marsh Accretion and Inundation Model (MAIM), which incorporates elevation-dependent net land surface elevation gain functions. We applied the model to the metropolitan Washington, DC region, finding that the abundance of small National Park Service units and other public open space along the tidal Potomac River system provides a refuge to which tidal habitats may retreat to maintain total habitat area even under moderate sea level rise scenarios (0.7 m and 1.1 m rise by 2100). Under a severe sea level rise scenario associated with ice sheet collapse (1.7 m by 2100) habitat area is maintained only if no development is protected from rising water. If all existing development is protected, then 5%, 10%, and 40% of the total tidal habitat area is lost by 2100 for the three sea level rise scenarios tested. PMID:27788209

  20. Modeled Tradeoffs between Developed Land Protection and Tidal Habitat Maintenance during Rising Sea Levels.

    PubMed

    Cadol, Daniel; Elmore, Andrew J; Guinn, Steven M; Engelhardt, Katharina A M; Sanders, Geoffrey

    2016-01-01

    Tidal habitats host a diversity of species and provide hydrological services such as shoreline protection and nutrient attenuation. Accretion of sediment and biomass enables tidal marshes and swamps to grow vertically, providing a degree of resilience to rising sea levels. Even if accelerating sea level rise overcomes this vertical resilience, tidal habitats have the potential to migrate inland as they continue to occupy land that falls within the new tide range elevations. The existence of developed land inland of tidal habitats, however, may prevent this migration as efforts are often made to dyke and protect developments. To test the importance of inland migration to maintaining tidal habitat abundance under a range of potential rates of sea level rise, we developed a spatially explicit elevation tracking and habitat switching model, dubbed the Marsh Accretion and Inundation Model (MAIM), which incorporates elevation-dependent net land surface elevation gain functions. We applied the model to the metropolitan Washington, DC region, finding that the abundance of small National Park Service units and other public open space along the tidal Potomac River system provides a refuge to which tidal habitats may retreat to maintain total habitat area even under moderate sea level rise scenarios (0.7 m and 1.1 m rise by 2100). Under a severe sea level rise scenario associated with ice sheet collapse (1.7 m by 2100) habitat area is maintained only if no development is protected from rising water. If all existing development is protected, then 5%, 10%, and 40% of the total tidal habitat area is lost by 2100 for the three sea level rise scenarios tested.

  1. Corals record long-term Leeuwin current variability including Ningaloo Niño/Niña since 1795

    PubMed Central

    Zinke, J.; Rountrey, A.; Feng, M.; Xie, S.-P.; Dissard, D.; Rankenburg, K.; Lough, J.M.; McCulloch, M.T.

    2014-01-01

    Variability of the Leeuwin current (LC) off Western Australia is a footprint of interannual and decadal climate variations in the tropical Indo-Pacific. La Niña events often result in a strengthened LC, high coastal sea levels and unusually warm sea surface temperatures (SSTs), termed Ningaloo Niño. The rarity of such extreme events and the response of the southeastern Indian Ocean to regional and remote climate forcing are poorly understood owing to the lack of long-term records. Here we use well-replicated coral SST records from within the path of the LC, together with a reconstruction of the El Niño-Southern Oscillation to hindcast historical SST and LC strength from 1795 to 2010. We show that interannual and decadal variations in SST and LC strength characterized the past 215 years and that the most extreme sea level and SST anomalies occurred post 1980. These recent events were unprecedented in severity and are likely aided by accelerated global ocean warming and sea-level rise. PMID:24686736

  2. Contrasting Decadal-Scale Changes in Elevation and Vegetation in Two Long Island Sound Salt Marshes

    EPA Science Inventory

    Northeastern US salt marshes face multiple co-stressors, including accelerating rates of relative sea level rise (RSLR), elevated nutrient inputs, and low sediment supplies. In order to evaluate how marsh surface elevations respond to such factors, we used surface elevation table...

  3. Development of a Climate-Change Adaptation Strategy for Management of Coastal Marsh Systems in Southern New England USA

    EPA Science Inventory

    Sea level rise is accelerating throughout the U.S. Northeast causing shoreline erosion, increased coastal flooding, and marsh vulnerability to the impact of storms. Coastal marshes provide flood abatement, carbon and nutrient sequestration, water quality maintenance, and habitat ...

  4. Development of a Climate Change Adaptation Strategy for Management of Coastal Marsh Systems in Southern New England USA

    EPA Science Inventory

    Sea level rise is accelerating throughout the U.S. Northeast causing shoreline erosion, increased coastal flooding, and marsh vulnerability to the impact of storms. Coastal marshes provide flood abatement, carbon and nutrient sequestration, water quality maintenance, and habitat ...

  5. Responses of Spartina alterniflora to Multiple Stressors: Changing Precipitation Patterns, Accelerated Sea Level Rise, and Nutrient Enrichment

    EPA Science Inventory

    Coastal wetlands, well recognized for their ecosystem services, have faced many threats throughout the United States and elsewhere. Managers require good information on responses of wetlands to the combined stressors that these habitats experience, or may in the future as a resul...

  6. Nitrogen retention in salt marsh systems across nutrient-enrichment, elevation, and precipitation regimes: a multiple stressor experiment

    EPA Science Inventory

    In the Northeastern U.S., multiple anthropogenic stressors, including changing nutrient loads, accelerated sea-level rise, and altered climactic patterns are co-occurring, and are likely to influence salt marsh nitrogen (N) dynamics. We conducted a multiple stressor mesocosm expe...

  7. NASA Science Flights Target Melting Arctic Sea Ice

    NASA Image and Video Library

    2017-12-08

    This summer, with sea ice across the Arctic Ocean shrinking to below-average levels, a NASA airborne survey of polar ice just completed its first flights. Its target: aquamarine pools of melt water on the ice surface that may be accelerating the overall sea ice retreat. NASA’s Operation IceBridge completed the first research flight of its new 2016 Arctic summer campaign on July 13. The science flights, which continue through July 25, are collecting data on sea ice in a year following a record-warm winter in the Arctic. Read more: go.nasa.gov/29T6mxc Caption: A large pool of melt water over sea ice, as seen from an Operation IceBridge flight over the Beaufort Sea on July 14, 2016. During this summer campaign, IceBridge will map the extent, frequency and depth of melt ponds like these to help scientists forecast the Arctic sea ice yearly minimum extent in September. Credit: NASA/Operation IceBridge

  8. A framework for sea level rise vulnerability assessment for southwest U.S. military installations

    USGS Publications Warehouse

    Chadwick, B.; Flick, Reinhard; Helly, J.; Nishikawa, Tracy; Pei, Fang Wang; O'Reilly, W.; Guza, R.; Bromirski, Peter; Young, A.; Crampton, W.; Wild, B.; Canner, I.

    2011-01-01

    We describe an analysis framework to determine military installation vulnerabilities under increases in local mean sea level as projected over the next century. The effort is in response to an increasing recognition of potential climate change ramifications for national security and recommendations that DoD conduct assessments of the impact on U.S. military installations of climate change. Results of the effort described here focus on development of a conceptual framework for sea level rise vulnerability assessment at coastal military installations in the southwest U.S. We introduce the vulnerability assessment in the context of a risk assessment paradigm that incorporates sources in the form of future sea level conditions, pathways of impact including inundation, flooding, erosion and intrusion, and a range of military installation specific receptors such as critical infrastructure and training areas. A unique aspect of the methodology is the capability to develop wave climate projections from GCM outputs and transform these to future wave conditions at specific coastal sites. Future sea level scenarios are considered in the context of installation sensitivity curves which reveal response thresholds specific to each installation, pathway and receptor. In the end, our goal is to provide a military-relevant framework for assessment of accelerated SLR vulnerability, and develop the best scientifically-based scenarios of waves, tides and storms and their implications for DoD installations in the southwestern U.S.

  9. Sea-Level Rise and Land Subsidence in Deltas: Estimating Future Flood Risk Through Integrated Natural and Human System Modeling

    NASA Astrophysics Data System (ADS)

    Tessler, Z. D.; Vorosmarty, C. J.

    2016-12-01

    Deltas are highly sensitive to local human activities, land subsidence, regional water management, global sea-level rise, and climate extremes. We present a new delta flood exposure and risk framework for estimating the sensitivity of deltas to relative sea-level rise. We have applied this framework to a set of global environmental, geophysical, and social indicators over 48 major river deltas to quantify how contemporary risks vary across delta systems. The risk modeling framework incorporates upstream sediment flux and coastal land subsidence models, global empirical estimates of contemporary storm surge exposure, and population distribution and growth. Future scenarios are used to test the impacts on coastal flood risk of upstream dam construction, coastal population growth, accelerated sea-level rise, and enhanced storm surge. Results suggest a wide range of outcomes across different delta systems within each scenario. Deltas in highly engineered watersheds (Mississippi, Rhine) exhibit less sensitivity to increased dams due to saturation of sediment retention effects, though planned or under-construction dams are expected to have a substantial impact in the Yangtze, Irrawaddy, and Magdalena deltas. Population growth and sea-level rise are expected to be the dominant drivers of increased human risk in most deltas, with important exceptions in several countries, particularly China, where population are forecast to contract over the next several decades.

  10. Influence of tidal range on the stability of coastal marshland

    USGS Publications Warehouse

    Kirwan, Matthew L.; Guntenspergen, Glenn R.

    2010-01-01

    Early comparisons between rates of vertical accretion and sea level rise across marshes in different tidal ranges inspired a paradigm that marshes in high tidal range environments are more resilient to sea level rise than marshes in low tidal range environments. We use field-based observations to propose a relationship between vegetation growth and tidal range and to adapt two numerical models of marsh evolution to explicitly consider the effect of tidal range on the response of the marsh platform channel network system to accelerating rates of sea level rise. We find that the stability of both the channel network and vegetated platform increases with increasing tidal range. Our results support earlier hypotheses that suggest enhanced stability can be directly attributable to a vegetation growth range that expands with tidal range. Accretion rates equilibrate to the rate of sea level rise in all experiments regardless of tidal range, suggesting that comparisons between accretion rate and tidal range will not likely produce a significant relationship. Therefore, our model results offer an explanation to widely inconsistent field-based attempts to quantify this relationship while still supporting the long-held paradigm that high tidal range marshes are indeed more stable.

  11. Potential Inundation due to Rising Sea Levels in the San Francisco Bay Region

    USGS Publications Warehouse

    Knowles, Noah

    2009-01-01

    An increase in the rate of sea level rise is one of the primary impacts of projected global climate change. To assess potential inundation associated with a continued acceleration of sea level rise, the highest resolution elevation data available were assembled from various sources and mosaicked to cover the land surfaces of the San Francisco Bay region. Next, to quantify high water levels throughout the bay, a hydrodynamic model of the San Francisco Estuary was driven by a projection of hourly water levels at the Presidio. This projection was based on a combination of climate model outputs and empirical models and incorporates astronomical, storm surge, El Niño, and long-term sea level rise influences. Based on the resulting data, maps of areas vulnerable to inundation were produced, corresponding to specific amounts of sea level rise and recurrence intervals. These maps portray areas where inundation will likely be an increasing concern. In the North Bay, wetland survival and developed fill areas are at risk. In Central and South bays, a key feature is the bay-ward periphery of developed areas that would be newly vulnerable to inundation. Nearly all municipalities adjacent to South Bay face this risk to some degree. For the Bay as a whole, as early as 2050 under this scenario, the one-year peak event nearly equals the 100-year peak event in 2000. Maps of vulnerable areas are presented and some implications discussed.

  12. The role of surface and subsurface processes in keeping pace with sea level rise in intertidal wetlands of Moreton Bay, Queensland, Australia

    USGS Publications Warehouse

    Lovelock, Catherine E.; Bennion, Vicki; Grinham, Alistair; Cahoon, Donald R.

    2011-01-01

    Increases in the elevation of the soil surfaces of mangroves and salt marshes are key to the maintenance of these habitats with accelerating sea level rise. Understanding the processes that give rise to increases in soil surface elevation provides science for management of landscapes for sustainable coastal wetlands. Here, we tested whether the soil surface elevation of mangroves and salt marshes in Moreton Bay is keeping up with local rates of sea level rise (2.358 mm y-1) and whether accretion on the soil surface was the most important process for keeping up with sea level rise. We found variability in surface elevation gains, with sandy areas in the eastern bay having the highest surface elevation gains in both mangrove and salt marsh (5.9 and 1.9 mm y-1) whereas in the muddier western bay rates of surface elevation gain were lower (1.4 and -0.3 mm y-1 in mangrove and salt marsh, respectively). Both sides of the bay had similar rates of surface accretion (~7–9 mm y-1 in the mangrove and 1–3 mm y-1 in the salt marsh), but mangrove soils in the western bay were subsiding at a rate of approximately 8 mm y-1, possibly due to compaction of organic sediments. Over the study surface elevation increments were sensitive to position in the intertidal zone (higher when lower in the intertidal) and also to variation in mean sea level (higher at high sea level). Although surface accretion was the most important process for keeping up with sea level rise in the eastern bay, subsidence largely negated gains made through surface accretion in the western bay indicating a high vulnerability to sea level rise in these forests.

  13. Infilling and flooding of the Mekong River incised valley during deglacial sea-level rise

    NASA Astrophysics Data System (ADS)

    Tjallingii, Rik; Stattegger, Karl; Wetzel, Andreas; Van Phach, Phung

    2010-06-01

    The abrupt transition from fluvial to marine deposition of incised-valley-fill sediments retrieved from the southeast Vietnamese shelf, accurately records the postglacial transgression after 14 ka before present (BP). Valley-filling sediments consist of fluvial mud, whereas sedimentation after the transgression is characterized by shallow-marine carbonate sands. This change in sediment composition is accurately marked in high-resolution X-ray fluorescence (XRF) core scanning records. Rapid aggradation of fluvial sediments at the river mouth nearly completely filled the Mekong incised valley prior to flooding. However, accumulation rates strongly reduced in the valley after the river-mouth system flooded and stepped back. This also affected the sediment supply to deeper parts of the southeast Vietnamese shelf. Comparison of the Mekong valley-filling with the East Asian sea-level history of sub- and inter-tidal sediment records shows that the transgressive surface preserved in the incised-valley-fill records is a robust sea-level indicator. The valley was nearly completely filled with fluvial sediments between 13.0 and 9.5 ka BP when sea-level rose rather constantly with approximately 10 mm/yr, as indicated by the East Asian sea-level record. At shallower parts of the shelf, significant sediment reworking and the establishment of estuarine conditions at the final stage of infilling complicates accurate dating of the transgressive surface. Nevertheless, incised-valley-fill records and land-based drill sites indicate a vast and rapid flooding of the shelf from the location of the modern Vietnamese coastline to the Cambodian lowlands between 9.5 ka and 8.5 ka BP. Fast flooding of this part of the shelf is related with the low shelf gradient and a strong acceleration of the East Asian sea-level rise from 34 to 9 meter below modern sea level (mbsl) corresponding to the sea-level jump of melt water pulse (MWP) 1C.

  14. Quantifying and Projecting Relative Sea-Level Rise in The Deltaic Regions

    NASA Astrophysics Data System (ADS)

    Shum, C. K.; Chung-Yen, K.; Calmant, S.; Yang, T. Y.; Guo, Q.; Jia, Y.; Ballu, V.; Guo, J.; Karptychev, M.; Krien, Y.; Kusche, J.; Tseng, K. H.; Wan, J.; Uebbing, B.

    2017-12-01

    Half of the world's population lives within 200 km of coastlines. Accelerated sea-level rise, compounded by effects of population growth, severe land subsidence due to fluvial sediment compaction/load, and anthropogenic oil and natural gas and ground water extraction, tectonic motion, and the increasing threat of more intense and more frequent cyclone-driven storm surges, have exacerbated the vulnerability of many of world's deltaic regions, including the Bangladesh and the Mississippi River Deltas. At present, understanding and quantifying the natural and anthropogenic processes governing these solid Earth vertical motion processes remain elusive to enable addressing coastal vulnerability due to current and future projection of relative sea-level rise for deltaic regions at the regional scales. Bangladesh, a low-lying and one of the most densely populated countries in the world located at the Bay of Bengal, is prone to transboundary monsoonal flooding, and is believed to be aggravated by more frequent and intensified cyclones resulting from anthropogenic climate change. The Mississippi River Deltaic region has been severely subsiding due primarily to fluvial sediment compaction and load during the last 10 centuries, oil/gas and groundwater extractions, and commercial developments, making it vulnerable to sea-level rise hazards. Here we present results of global geocentric sea-level rise, 1950-2016, separating vertical land motion at global tide gauge datum, by integrating tide gauge and radar altimeter records in a novel sea-level reconstruction scheme, focusing on the Mississippi River and the Bangladesh Deltas. We then integrate the resulting sea level estimates with historic imageries, GPS and InSAR data, as well as sediment isostatic and load model predicted present-day land subsidence, to constrain the 3D land motion to study the impacts of various scenarios of future relative sea level projections on the Bangladesh Delta to the end of the 21st Century and beyond.

  15. Changes in ice dynamics and mass balance of the Antarctic ice sheet.

    PubMed

    Rignot, Eric

    2006-07-15

    The concept that the Antarctic ice sheet changes with eternal slowness has been challenged by recent observations from satellites. Pronounced regional warming in the Antarctic Peninsula triggered ice shelf collapse, which led to a 10-fold increase in glacier flow and rapid ice sheet retreat. This chain of events illustrated the vulnerability of ice shelves to climate warming and their buffering role on the mass balance of Antarctica. In West Antarctica, the Pine Island Bay sector is draining far more ice into the ocean than is stored upstream from snow accumulation. This sector could raise sea level by 1m and trigger widespread retreat of ice in West Antarctica. Pine Island Glacier accelerated 38% since 1975, and most of the speed up took place over the last decade. Its neighbour Thwaites Glacier is widening up and may double its width when its weakened eastern ice shelf breaks up. Widespread acceleration in this sector may be caused by glacier ungrounding from ice shelf melting by an ocean that has recently warmed by 0.3 degrees C. In contrast, glaciers buffered from oceanic change by large ice shelves have only small contributions to sea level. In East Antarctica, many glaciers are close to a state of mass balance, but sectors grounded well below sea level, such as Cook Ice Shelf, Ninnis/Mertz, Frost and Totten glaciers, are thinning and losing mass. Hence, East Antarctica is not immune to changes.

  16. Orbit-related sea level errors for TOPEX altimetry at seasonal to decadal timescales

    NASA Astrophysics Data System (ADS)

    Esselborn, Saskia; Rudenko, Sergei; Schöne, Tilo

    2018-03-01

    Interannual to decadal sea level trends are indicators of climate variability and change. A major source of global and regional sea level data is satellite radar altimetry, which relies on precise knowledge of the satellite's orbit. Here, we assess the error budget of the radial orbit component for the TOPEX/Poseidon mission for the period 1993 to 2004 from a set of different orbit solutions. The errors for seasonal, interannual (5-year), and decadal periods are estimated on global and regional scales based on radial orbit differences from three state-of-the-art orbit solutions provided by different research teams: the German Research Centre for Geosciences (GFZ), the Groupe de Recherche de Géodésie Spatiale (GRGS), and the Goddard Space Flight Center (GSFC). The global mean sea level error related to orbit uncertainties is of the order of 1 mm (8 % of the global mean sea level variability) with negligible contributions on the annual and decadal timescales. In contrast, the orbit-related error of the interannual trend is 0.1 mm yr-1 (27 % of the corresponding sea level variability) and might hamper the estimation of an acceleration of the global mean sea level rise. For regional scales, the gridded orbit-related error is up to 11 mm, and for about half the ocean the orbit error accounts for at least 10 % of the observed sea level variability. The seasonal orbit error amounts to 10 % of the observed seasonal sea level signal in the Southern Ocean. At interannual and decadal timescales, the orbit-related trend uncertainties reach regionally more than 1 mm yr-1. The interannual trend errors account for 10 % of the observed sea level signal in the tropical Atlantic and the south-eastern Pacific. For decadal scales, the orbit-related trend errors are prominent in a several regions including the South Atlantic, western North Atlantic, central Pacific, South Australian Basin, and the Mediterranean Sea. Based on a set of test orbits calculated at GFZ, the sources of the observed orbit-related errors are further investigated. The main contributors on all timescales are uncertainties in Earth's time-variable gravity field models and on annual to interannual timescales discrepancies of the tracking station subnetworks, i.e. satellite laser ranging (SLR) and Doppler Orbitography and Radiopositioning Integrated by Satellite (DORIS).

  17. Mean sea-level rise impacts on Santos Bay, Southeastern Brazil--physical modelling study.

    PubMed

    Alfredini, Paolo; Arasaki, Emilia; do Amaral, Rogério Fernando

    2008-09-01

    The greenhouse effect and resulting increase in the Earth's temperature may accelerate the mean sea-level rise. The natural response of bays and estuaries to this rise, such as this case study of Santos Bay (Brazil), will include change in shoreline position, land flooding and wetlands impacts. The main impacts of this scenario were studied in a physical model built in the Coastal and Harbour Division of Hydraulic Laboratory, University of São Paulo, and the main conclusions are presented in this paper. The model reproduces near 1,000 km(2) of the study area, including Santos, São Vicente, Praia Grande, Cubatão, Guarujá and Bertioga cities.

  18. Multiproxy assessment of Holocene relative sea-level changes in the western Mediterranean: sea-level variability and improvements in the definition of the isostatic signal

    NASA Astrophysics Data System (ADS)

    Vacchi, Matteo; Rovere, Alessio; Marriner, Nick; Morhange, Christophe; Spada, Giorgio; Fontana, Alessandro

    2016-04-01

    After the review of 918 radiocarbon dated Relative Sea-Level (RSL) data-points we present here the first quality-controlled database constraining the Holocene sea-level histories of the western Mediterranean Sea (Spain, France, Italy, Slovenia, Croatia, Malta and Tunisia). We reviewed and standardized the geological RSL data-points using a new multi-proxy methodology based on: (1) modern taxa assemblages in Mediterranean lagoons and marshes; (2) beachrock characteristics (cement fabric and chemistry, sedimentary structures); and (3) the modern distribution of Mediterranean fixed biological indicators. These RSL data-points were coupled with the large number of archaeological RSL indicators available for the western Mediterranean. We assessed the spatial variability of RSL histories for 22 regions and compared these with the ICE-5G VM2 GIA model. In the western Mediterranean, RSL rose continuously for the whole Holocene with a sudden slowdown at ~7.5 ka BP and a further deceleration during the last ~4.0 ka BP, after which time observed RSL changes are mainly related to variability in isostatic adjustment. The sole exception is southern Tunisia, where data show evidence of a mid-Holocene high-stand compatible with the isostatic impacts of the melting history of the remote Antarctic ice sheet. Our results indicate that late-Holocene sea-level rise was significantly slower than the current one. First estimates of GIA contribution indicate that, at least in the northwestern sector, it accounts at least for the 25-30% of the ongoing sea-level rise recorded by Mediterranean tidal gauges. Such contribution is less constrained at lower latitudes due to the lower quality of the late Holocene index points. Future applications of spatio-temporal statistical techniques are required to better quantify the gradient of the isostatic contribution and to provide improved context for the assessment of 20th century acceleration of Mediterranean sea-level rise.

  19. Relative Sea Level, Tidal Range, and Extreme Water Levels in Boston Harbor from 1825 to 2016

    NASA Astrophysics Data System (ADS)

    Talke, S. A.; Kemp, A.; Woodruff, J. D.

    2017-12-01

    Long time series of water-level measurements made by tide gauges provide a rich and valuable observational history of relative sea-level change, the frequency and height of extreme water levels and evolving tidal regimes. However, relatively few locations have available tide-gauge records longer than 100 years and most of these places are in northern Europe. This spatio-temporal distribution hinders efforts to understand global-, regional- and local-scale trends. Using newly-discovered archival measurements, we constructed a 200 year, instrumental record of water levels, tides, and storm surges in Boston Harbor. We detail the recovery, datum reconstruction, digitization, quality assurance, and analysis of this extended observational record. Local, decadally-averaged relative sea-level rose by 0.28 ± 0.05 m since the 1820s, with an acceleration of 0.023 ±0.009 mm/yr2. Approximately 0.13 ± 0.02 m of the observed RSL rise occurred due to ongoing glacial isostatic adjustment, and the remainder occurred due to changes in ocean mass and volume associated with the onset of modern mean sea-level rise. Change-point analysis of the new relative sea level record confirms that anthropogenic rise began in 1924-1932, which is in agreement with global mean sea level estimates from the global tide gauge network. Tide range decreased by 5.5% between 1830 and 1910, likely due in large part to anthropogenic development. Storm tides in Boston Harbor are produced primarily by extratropical storms during the November-April time frame. The three largest storm tides occurred in 1851, 1909, and 1978. Because 90% of the top 20 storm tides since 1825 occurred during a spring tide, the secular change in tide range contributes to a slight reduction in storm tide magnitudes. However, non-stationarity in storm hazard was historically driven primarily by local relative sea-level rise; a modest 0.2 m increase in relative sea level reduces the 100 year high water mark to a once-in-10 year event.

  20. Wetland loss patterns and inundation-productivity relationships prognosticate widespread salt marsh loss for southern New England

    EPA Science Inventory

    Tidal salt marsh is a key defense against, yet is especially vulnerable to, the effects of accelerated sea level rise. To determine whether salt marshes in southern New England will be stable given increasing inundation over the coming decades, we examined current loss patterns, ...

  1. Wetland Loss Patterns and Inundation-Productivity Relationships Prognosticate Widespread Salt Marsh Loss for Southern New England

    EPA Science Inventory

    Tidal salt marsh is a key defense against, yet is especially vulnerable to, the effects of accelerated sea level rise. To determine whether salt marshes in southern New England will be stable given increasing inundation over the coming decades, we examined current loss patterns, ...

  2. Effect of design over-all compressor pressure ratio division on acceleration characteristics of three hypothetical two-spool turbojet engines

    NASA Technical Reports Server (NTRS)

    Filippi, Richard E; Dugan, James F , Jr

    1956-01-01

    The engines, each with a compressor overall total-pressure ratio of 12 and a design inner-turbine-inlet temperature of 2500 degrees R, were investigated at static sea-level conditions to determine the effect on transient performance of varying the desitn pressure ratio divisions 2-6, 3-4, and 4-3 between the outer and inner compressors. The transient considered was an acceleration from 40 to 100 percent design thrust. When the outer compressor of each engine reached design speed, the inner compressors were overspeeding, the maximum being only 1.7 over design mechanical speed. Acceleration times for the three engines were equal.

  3. Oyster reefs can outpace sea-level rise

    NASA Astrophysics Data System (ADS)

    Rodriguez, Antonio B.; Fodrie, F. Joel; Ridge, Justin T.; Lindquist, Niels L.; Theuerkauf, Ethan J.; Coleman, Sara E.; Grabowski, Jonathan H.; Brodeur, Michelle C.; Gittman, Rachel K.; Keller, Danielle A.; Kenworthy, Matthew D.

    2014-06-01

    In the high-salinity seaward portions of estuaries, oysters seek refuge from predation, competition and disease in intertidal areas, but this sanctuary will be lost if vertical reef accretion cannot keep pace with sea-level rise (SLR). Oyster-reef abundance has already declined ~85% globally over the past 100 years, mainly from over harvesting, making any additional losses due to SLR cause for concern. Before any assessment of reef response to accelerated SLR can be made, direct measures of reef growth are necessary. Here, we present direct measurements of intertidal oyster-reef growth from cores and terrestrial lidar-derived digital elevation models. On the basis of our measurements collected within a mid-Atlantic estuary over a 15-year period, we developed a globally testable empirical model of intertidal oyster-reef accretion. We show that previous estimates of vertical reef growth, based on radiocarbon dates and bathymetric maps, may be greater than one order of magnitude too slow. The intertidal reefs we studied should be able to keep up with any future accelerated rate of SLR (ref. ) and may even benefit from the additional subaqueous space allowing extended vertical accretion.

  4. Enhanced wintertime greenhouse effect reinforcing Arctic amplification and initial sea-ice melting.

    PubMed

    Cao, Yunfeng; Liang, Shunlin; Chen, Xiaona; He, Tao; Wang, Dongdong; Cheng, Xiao

    2017-08-16

    The speeds of both Arctic surface warming and sea-ice shrinking have accelerated over recent decades. However, the causes of this unprecedented phenomenon remain unclear and are subjects of considerable debate. In this study, we report strong observational evidence, for the first time from long-term (1984-2014) spatially complete satellite records, that increased cloudiness and atmospheric water vapor in winter and spring have caused an extraordinary downward longwave radiative flux to the ice surface, which may then amplify the Arctic wintertime ice-surface warming. In addition, we also provide observed evidence that it is quite likely the enhancement of the wintertime greenhouse effect caused by water vapor and cloudiness has advanced the time of onset of ice melting in mid-May through inhibiting sea-ice refreezing in the winter and accelerating the pre-melting process in the spring, and in turn triggered the positive sea-ice albedo feedback process and accelerated the sea ice melting in the summer.

  5. A Model Assessment of Satellite Observed Trends in Polar Sea Ice Extents

    NASA Technical Reports Server (NTRS)

    Vinnikov, Konstantin Y.; Cavalieri, Donald J.; Parkinson, Claire L.

    2005-01-01

    For more than three decades now, satellite passive microwave observations have been used to monitor polar sea ice. Here we utilize sea ice extent trends determined from primarily satellite data for both the Northern and Southern Hemispheres for the period 1972(73)-2004 and compare them with results from simulations by eleven climate models. In the Northern Hemisphere, observations show a statistically significant decrease of sea ice extent and an acceleration of sea ice retreat during the past three decades. However, from the modeled natural variability of sea ice extents in control simulations, we conclude that the acceleration is not statistically significant and should not be extrapolated into the future. Observations and model simulations show that the time scale of climate variability in sea ice extent in the Southern Hemisphere is much larger than in the Northern Hemisphere and that the Southern Hemisphere sea ice extent trends are not statistically significant.

  6. Sea-level variability over the Common Era

    NASA Astrophysics Data System (ADS)

    Kopp, Robert; Horton, Benjamin; Kemp, Andrew; Engelhart, Simon; Little, Chris

    2017-04-01

    The Common Era (CE) sea-level response to climate forcing, and its relationship to centennial-timescale climate variability such as the Medieval Climate Anomaly (MCA) and the Little Ice Age (LIA), is fragmentary relative to other proxy-derived climate records (e.g. atmospheric surface temperature). However, the Atlantic coast of North America provides a rich sedimentary record of CE relative sea level with sufficient spatial and temporal resolution to inform mechanisms underlying regional and global sea level variability and their relationship to other climate proxies. This coast has a small tidal range, improving the precision of sea-level reconstructions. Coastal subsidence (from glacial isostatic adjustment, GIA) creates accommodation space that is filled by salt-marsh peat and preserves accurate and precise sea-level indicators and abundant material for radiocarbon dating. In addition to longer term GIA induced land-level change from ongoing collapse of the Laurentide forebulge, these records are ideally situated to capture climate-driven sea level changes. The western North Atlantic Ocean sea level is sensitive to static equilibrium effects from melting of the Greenland Ice Sheet, as well as large-scale changes in ocean circulation and winds. Our reconstructions reveal two distinct patterns in sea-level during the CE along the United States Atlantic coast: (1) South of Cape Hatteras, North Carolina, to Florida sea-level rise is essentially flat, with the record dominated by long-term geological processes until the onset of historic rates of rise in the late 19th century; (2) North of Cape Hatteras to Connecticut, sea level rise to maximum around 1000CE, a sea-level minimum around 1500 CE, and a long-term sea-level rise through the second half of the second millennium. The northern-intensified sea-level fall beginning 1000 is coincident with shifts toward persistent positive NAO-like atmospheric states inferred from other proxy records and is consistent with climate model simulations forced with sustained NAO-like heat fluxes. Changes in the wind-driven ocean circulation may also contribute to alongshore sea level variability over the CE. To reveal global mean sea level variability, we combine the salt-marsh data from North American Atlantic coast with tide-gauge records and other high resolution proxies from the northern and southern hemispheres. All reconstructions are from coasts that are tectonically stable and are based on four types of proxy archives (archaeological indicators, coral microatolls, salt marsh sediments and vermetid [mollusk] bioconstructions) that are best capable of capturing submeter-scale RSL changes. The database consists of reconstructions from Australasia (n = 2), Europe (n=5), Greenland (n = 3), North America (n = 6), the northern Gulf of Mexico (n = 3), the Mediterranean (n = 1), South Africa (n = 2), South America (n =2) and the South Pacific (n =3). We apply a noisy-input Gaussian process spatio-temporal modeling framework, which identifies a long-term falling global mean sea-level, interrupted in the middle of the 19th century by an acceleration yielding a 20th century rate of rise extremely likely (probability P = 0:95) faster than any previous century in the CE.

  7. Glacier-surge mechanisms promoted by a hydro-thermodynamic feedback to summer melt

    NASA Astrophysics Data System (ADS)

    Dunse, T.; Schellenberger, T.; Hagen, J. O.; Kääb, A.; Schuler, T. V.; Reijmer, C. H.

    2015-02-01

    Mass loss from glaciers and ice sheets currently accounts for two-thirds of the observed global sea-level rise and has accelerated since the 1990s, coincident with strong atmospheric warming in the polar regions. Here we present continuous GPS measurements and satellite synthetic-aperture-radar-based velocity maps from Basin-3, the largest drainage basin of the Austfonna ice cap, Svalbard. Our observations demonstrate strong links between surface-melt and multiannual ice-flow acceleration. We identify a hydro-thermodynamic feedback that successively mobilizes stagnant ice regions, initially frozen to their bed, thereby facilitating fast basal motion over an expanding area. By autumn 2012, successive destabilization of the marine terminus escalated in a surge of Basin-3. The resulting iceberg discharge of 4.2±1.6 Gt a-1 over the period April 2012 to May 2013 triples the calving loss from the entire ice cap. With the seawater displacement by the terminus advance accounted for, the related sea-level rise contribution amounts to 7.2±2.6 Gt a-1. This rate matches the annual ice-mass loss from the entire Svalbard archipelago over the period 2003-2008, highlighting the importance of dynamic mass loss for glacier mass balance and sea-level rise. The active role of surface melt, i.e. external forcing, contrasts with previous views of glacier surges as purely internal dynamic instabilities. Given sustained climatic warming and rising significance of surface melt, we propose a potential impact of the hydro-thermodynamic feedback on the future stability of ice-sheet regions, namely at the presence of a cold-based marginal ice plug that restricts fast drainage of inland ice. The possibility of large-scale dynamic instabilities such as the partial disintegration of ice sheets is acknowledged but not quantified in global projections of sea-level rise.

  8. Advanced Regional and Decadal Predictions of Coastal Inundation for the U.S. Atlantic and Gulf Coasts

    NASA Astrophysics Data System (ADS)

    Horton, B. P.; Donnelly, J. P.; Corbett, D. R.; Kemp, A.; Lindeman, K.; Mann, M. E.; Peltier, W. R.; Rahmstorf, S.

    2012-12-01

    Future inundation of the US Atlantic and Gulf coasts will depend upon both sea-level rise and the intensity and frequency of tropical cyclones, each of which will be affected by climate change. In this proposal, we will employ new interdisciplinary approaches to bring about a step change in the reliability of predictions of such inundation. The rate of sea-level rise along the US Atlantic and Gulf coasts has increased throughout the 20th century. Whilst there is widespread agreement that it continue to accelerate during the 21st century, great uncertainty surrounds its magnitude and geographic distribution. Key uncertainties include the role of continental ice sheets, mountain glaciers and ocean density changes. Insufficient understanding of these complex physical processes precludes accurate prediction of sea-level rise. New approaches using semi-empirical models that relate instrumental records of climate and sea-level rise have projected up to 2 m of sea-level rise by AD 2100. But the time span of instrumental sea-level records is insufficient to adequately constrain the climate:sea-level relationship. Here, we produce new high resolution proxy data of sea-level and temperature to provide crucial additional constraints to such semi-empirical models. Our dataset will span the alternation between the "Medieval Climate Anomaly" and "Little Ice Age". Before the models can provide appropriate data for coastal management and planning, they must be complemented with regional estimates of sea-level rise. Therefore, the proxy sea-level data has been collected from six study areas (Massachusetts, New Jersey, North Carolina, Georgia and Atlantic and Gulf coasts of Florida) to accommodate the required extent of regional variability. In the case of inundation arising from tropical cyclones, the historical and observational records are insufficient for predicting their nature and recurrence, because they are such extreme and rare events. Moreover, in the future, the resultant storm surges will be superimposed on background sea-level rise. To overcome these problems, we couple regional sea-level rise projections with hurricane simulations and storm surge models to map coastal inundation for the current climate and the best and worst case climate scenarios of the IPCC AR4. The products of this proposal will raise the bar for the scientific prediction of region-specific inundation probabilities in terms of coordinated semi-empirical proxy data, hindcast- and forecast-driven sea-level modeling and tropical cyclone forecasting. To optimize transfer of this often complex information for effective adaptive decision-making by managers and planners, we will systematically review >800 adaptation reports and consult early and often with primary endusers to identify their exact needs. We will produce high penetration print and web products for diverse audiences, specific to each region.

  9. Non-Linear Interactions Determine the Impact of Sea-Level Rise on Estuarine Benthic Biodiversity and Ecosystem Processes

    PubMed Central

    Yamanaka, Tsuyuko; Raffaelli, David; White, Piran C. L.

    2013-01-01

    Sea-level rise induced by climate change may have significant impacts on the ecosystem functions and ecosystem services provided by intertidal sediment ecosystems. Accelerated sea-level rise is expected to lead to steeper beach slopes, coarser particle sizes and increased wave exposure, with consequent impacts on intertidal ecosystems. We examined the relationships between abundance, biomass, and community metabolism of benthic fauna with beach slope, particle size and exposure, using samples across a range of conditions from three different locations in the UK, to determine the significance of sediment particle size beach slope and wave exposure in affecting benthic fauna and ecosystem function in different ecological contexts. Our results show that abundance, biomass and oxygen consumption of intertidal macrofauna and meiofauna are affected significantly by interactions among sediment particle size, beach slope and wave exposure. For macrofauna on less sloping beaches, the effect of these physical constraints is mediated by the local context, although for meiofauna and for macrofauna on intermediate and steeper beaches, the effects of physical constraints dominate. Steeper beach slopes, coarser particle sizes and increased wave exposure generally result in decreases in abundance, biomass and oxygen consumption, but these relationships are complex and non-linear. Sea-level rise is likely to lead to changes in ecosystem structure with generally negative impacts on ecosystem functions and ecosystem services. However, the impacts of sea-level rise will also be affected by local ecological context, especially for less sloping beaches. PMID:23861863

  10. Critical width of tidal flats triggers marsh collapse in the absence of sea-level rise

    PubMed Central

    Mariotti, Giulio; Fagherazzi, Sergio

    2013-01-01

    High rates of wave-induced erosion along salt marsh boundaries challenge the idea that marsh survival is dictated by the competition between vertical sediment accretion and relative sea-level rise. Because waves pounding marshes are often locally generated in enclosed basins, the depth and width of surrounding tidal flats have a pivoting control on marsh erosion. Here, we show the existence of a threshold width for tidal flats bordering salt marshes. Once this threshold is exceeded, irreversible marsh erosion takes place even in the absence of sea-level rise. This catastrophic collapse occurs because of the positive feedbacks among tidal flat widening by wave-induced marsh erosion, tidal flat deepening driven by wave bed shear stress, and local wind wave generation. The threshold width is determined by analyzing the 50-y evolution of 54 marsh basins along the US Atlantic Coast. The presence of a critical basin width is predicted by a dynamic model that accounts for both horizontal marsh migration and vertical adjustment of marshes and tidal flats. Variability in sediment supply, rather than in relative sea-level rise or wind regime, explains the different critical width, and hence erosion vulnerability, found at different sites. We conclude that sediment starvation of coastlines produced by river dredging and damming is a major anthropogenic driver of marsh loss at the study sites and generates effects at least comparable to the accelerating sea-level rise due to global warming. PMID:23513219

  11. Critical width of tidal flats triggers marsh collapse in the absence of sea-level rise.

    PubMed

    Mariotti, Giulio; Fagherazzi, Sergio

    2013-04-02

    High rates of wave-induced erosion along salt marsh boundaries challenge the idea that marsh survival is dictated by the competition between vertical sediment accretion and relative sea-level rise. Because waves pounding marshes are often locally generated in enclosed basins, the depth and width of surrounding tidal flats have a pivoting control on marsh erosion. Here, we show the existence of a threshold width for tidal flats bordering salt marshes. Once this threshold is exceeded, irreversible marsh erosion takes place even in the absence of sea-level rise. This catastrophic collapse occurs because of the positive feedbacks among tidal flat widening by wave-induced marsh erosion, tidal flat deepening driven by wave bed shear stress, and local wind wave generation. The threshold width is determined by analyzing the 50-y evolution of 54 marsh basins along the US Atlantic Coast. The presence of a critical basin width is predicted by a dynamic model that accounts for both horizontal marsh migration and vertical adjustment of marshes and tidal flats. Variability in sediment supply, rather than in relative sea-level rise or wind regime, explains the different critical width, and hence erosion vulnerability, found at different sites. We conclude that sediment starvation of coastlines produced by river dredging and damming is a major anthropogenic driver of marsh loss at the study sites and generates effects at least comparable to the accelerating sea-level rise due to global warming.

  12. Non-linear interactions determine the impact of sea-level rise on estuarine benthic biodiversity and ecosystem processes.

    PubMed

    Yamanaka, Tsuyuko; Raffaelli, David; White, Piran C L

    2013-01-01

    Sea-level rise induced by climate change may have significant impacts on the ecosystem functions and ecosystem services provided by intertidal sediment ecosystems. Accelerated sea-level rise is expected to lead to steeper beach slopes, coarser particle sizes and increased wave exposure, with consequent impacts on intertidal ecosystems. We examined the relationships between abundance, biomass, and community metabolism of benthic fauna with beach slope, particle size and exposure, using samples across a range of conditions from three different locations in the UK, to determine the significance of sediment particle size beach slope and wave exposure in affecting benthic fauna and ecosystem function in different ecological contexts. Our results show that abundance, biomass and oxygen consumption of intertidal macrofauna and meiofauna are affected significantly by interactions among sediment particle size, beach slope and wave exposure. For macrofauna on less sloping beaches, the effect of these physical constraints is mediated by the local context, although for meiofauna and for macrofauna on intermediate and steeper beaches, the effects of physical constraints dominate. Steeper beach slopes, coarser particle sizes and increased wave exposure generally result in decreases in abundance, biomass and oxygen consumption, but these relationships are complex and non-linear. Sea-level rise is likely to lead to changes in ecosystem structure with generally negative impacts on ecosystem functions and ecosystem services. However, the impacts of sea-level rise will also be affected by local ecological context, especially for less sloping beaches.

  13. Predicting the retreat and migration of tidal forests along the northern Gulf of Mexico under sea-level rise

    USGS Publications Warehouse

    Doyle, T.W.; Krauss, K.W.; Conner, W.H.; From, A.S.

    2010-01-01

    Tidal freshwater forests in coastal regions of the southeastern United States are undergoing dieback and retreat from increasing tidal inundation and saltwater intrusion attributed to climate variability and sea-level rise. In many areas, tidal saltwater forests (mangroves) contrastingly are expanding landward in subtropical coastal reaches succeeding freshwater marsh and forest zones. Hydrological characteristics of these low-relief coastal forests in intertidal settings are dictated by the influence of tidal and freshwater forcing. In this paper, we describe the application of the Sea Level Over Proportional Elevation (SLOPE) model to predict coastal forest retreat and migration from projected sea-level rise based on a proxy relationship of saltmarsh/mangrove area and tidal range. The SLOPE model assumes that the sum area of saltmarsh/mangrove habitat along any given coastal reach is determined by the slope of the landform and vertical tide forcing. Model results indicated that saltmarsh and mangrove migration from sea-level rise will vary by county and watershed but greater in western Gulf States than in the eastern Gulf States where millions of hectares of coastal forest will be displaced over the next century with a near meter rise in relative sea level alone. Substantial losses of coastal forests will also occur in the eastern Gulf but mangrove forests in subtropical zones of Florida are expected to replace retreating freshwater forest and affect regional biodiversity. Accelerated global eustacy from climate change will compound the degree of predicted retreat and migration of coastal forests with expected implications for ecosystem management of State and Federal lands in the absence of adaptive coastal management.

  14. Soccer activity profile of altitude versus sea-level natives during acclimatisation to 3600 m (ISA3600)

    PubMed Central

    Aughey, Robert J; Hammond, Kristal; Varley, Matthew C; Schmidt, Walter F; Bourdon, Pitre C; Buchheit, Martin; Simpson, Ben; Garvican-Lewis, Laura A; Kley, Marlen; Soria, Rudy; Sargent, Charli; Roach, Gregory D; Claros, Jesus C Jimenez; Wachsmuth, Nadine; Gore, Christopher J

    2013-01-01

    Objectives We investigated the effect of high altitude on the match activity profile of elite youth high altitude and sea level residents. Methods Twenty Sea Level (Australian) and 19 Altitude-resident (Bolivian) soccer players played five games, two near sea level (430 m) and three in La Paz (3600 m). Match activity profile was quantified via global positioning system with the peak 5 min period for distance ((D5peak)) and high velocity running (>4.17 m/s, HIVR5peak); as well as the 5 min period immediately subsequent to the peak for both distance (D5sub) and high-velocity running (HIVR5sub) identified using a rolling 5 min epoch. The games at 3600 m were compared with the average of the two near sea-level games. Results The total distance per minute was reduced by a small magnitude in the first match at altitude in both teams, without any change in low-velocity running. There were variable changes in HiVR, D5peak and HiVR5peak from match to match for each team. There were within-team reductions in D5peak in each game at altitude compared with those at near sea level, and this reduction was greater by a small magnitude in Australians than Bolivians in game 4. The effect of altitude on HiVR5peak was moderately lower in Australians compared with Bolivians in game 3. There was no clear difference in the effect of altitude on maximal accelerations between teams. Conclusions High altitude reduces the distance covered by elite youth soccer players during matches. Neither 13 days of acclimatisation nor lifelong residence at high altitude protects against detrimental effects of altitude on match activity profile. PMID:24282196

  15. Future sea-level rise from tidewater and ice-shelf tributary glaciers of the Antarctic Peninsula

    NASA Astrophysics Data System (ADS)

    Schannwell, Clemens; Barrand, Nicholas E.; Radić, Valentina

    2016-11-01

    Iceberg calving and increased ice discharge from ice-shelf tributary glaciers contribute significant amounts to global sea-level rise (SLR) from the Antarctic Peninsula (AP). Owing to ongoing ice dynamical changes (collapse of buttressing ice shelves), these contributions have accelerated in recent years. As the AP is one of the fastest warming regions on Earth, further ice dynamical adjustment (increased ice discharge) is expected over the next two centuries. In this paper, the first regional SLR projection of the AP from both iceberg calving and increased ice discharge from ice-shelf tributary glaciers in response to ice-shelf collapse is presented. An ice-sheet model forced by temperature output from 13 global climate models (GCMs), in response to the high greenhouse gas emission scenario (RCP8.5), projects AP contribution to SLR of 28 ± 16 to 32 ± 16 mm by 2300, partitioned approximately equally between contributions from tidewater glaciers and ice-shelf tributary glaciers. In the RCP4.5 scenario, sea-level rise projections to 2300 are dominated by tidewater glaciers (∼8-18 mm). In this cooler scenario, 2.4 ± 1 mm is added to global sea levels from ice-shelf tributary drainage basins as fewer ice-shelves are projected to collapse. Sea-level projections from ice-shelf tributary glaciers are dominated by drainage basins feeding George VI Ice Shelf, accounting for ∼70% of simulated SLR. Combined total ice dynamical SLR projections to 2300 from the AP vary between 11 ± 2 and 32 ± 16 mm sea-level equivalent (SLE), depending on the emission scenario used. These simulations suggest that omission of tidewater glaciers could lead to a substantial underestimation of the ice-sheet's contribution to regional SLR.

  16. Soccer activity profile of altitude versus sea-level natives during acclimatisation to 3600 m (ISA3600).

    PubMed

    Aughey, Robert J; Hammond, Kristal; Varley, Matthew C; Schmidt, Walter F; Bourdon, Pitre C; Buchheit, Martin; Simpson, Ben; Garvican-Lewis, Laura A; Kley, Marlen; Soria, Rudy; Sargent, Charli; Roach, Gregory D; Claros, Jesus C Jimenez; Wachsmuth, Nadine; Gore, Christopher J

    2013-12-01

    We investigated the effect of high altitude on the match activity profile of elite youth high altitude and sea level residents. Twenty Sea Level (Australian) and 19 Altitude-resident (Bolivian) soccer players played five games, two near sea level (430 m) and three in La Paz (3600 m). Match activity profile was quantified via global positioning system with the peak 5 min period for distance ((D₅(peak)) and high velocity running (>4.17 m/s, HIVR₅(peak)); as well as the 5 min period immediately subsequent to the peak for both distance (D₅(sub)) and high-velocity running (HIVR₅(sub)) identified using a rolling 5 min epoch. The games at 3600 m were compared with the average of the two near sea-level games. The total distance per minute was reduced by a small magnitude in the first match at altitude in both teams, without any change in low-velocity running. There were variable changes in HiVR, D₅(peak) and HiVR₅(peak) from match to match for each team. There were within-team reductions in D₅(peak) in each game at altitude compared with those at near sea level, and this reduction was greater by a small magnitude in Australians than Bolivians in game 4. The effect of altitude on HiVR₅(peak) was moderately lower in Australians compared with Bolivians in game 3. There was no clear difference in the effect of altitude on maximal accelerations between teams. High altitude reduces the distance covered by elite youth soccer players during matches. Neither 13 days of acclimatisation nor lifelong residence at high altitude protects against detrimental effects of altitude on match activity profile.

  17. Quantifying Land and People Exposed to Sea-Level Rise with No Mitigation and 1.5°C and 2.0°C Rise in Global Temperatures to Year 2300

    NASA Astrophysics Data System (ADS)

    Brown, S.; Nicholls, R. J.; Goodwin, P.; Haigh, I. D.; Lincke, D.; Vafeidis, A. T.; Hinkel, J.

    2018-03-01

    We use multiple synthetic mitigation sea-level scenarios, together with a non-mitigation sea-level scenario from the Warming Acidification and Sea-level Projector model. We find sea-level rise (SLR) continues to accelerate post-2100 for all but the most aggressive mitigation scenarios indicative of 1.5°C and 2.0°C. Using the Dynamic Interactive Vulnerability Assessment modeling framework, we project land and population exposed in the 1 in 100 year coastal flood plain under SLR and population change. In 2000, the flood plain is estimated at 540 × 103 km2. By 2100, under the mitigation scenarios, it ranges between 610 × 103 and 640 × 103 km2 (580 × 103 and 700 × 103 km2 for the 5th and 95th percentiles). Thus differences between the mitigation scenarios are small in 2100. However, in 2300, flood plains are projected to increase to between 700 × 103 and 960 × 103 km2 in 2300 (610 × 103 and 1290 × 103 km2) for the mitigation scenarios, but 1630 × 103 km2 (1190 × 103 and 2220 × 103 km2) for the non-mitigation scenario. The proportion of global population exposed to SLR in 2300 is projected to be between 1.5% and 5.4% (1.2%-7.6%) (assuming no population growth after 2100) for the aggressive mitigation and the non-mitigation scenario, respectively. Hence over centennial timescales there are significant benefits to climate change mitigation and temperature stabilization. However, sea-levels will continue to rise albeit at lower rates. Thus potential impacts will keep increasing necessitating adaptation to existing coastal infrastructure and the careful planning of new coastal developments.

  18. Improved estimate of accelerated Antarctica ice mass loses from GRACE, Altimetry and surface mass balance from regional climate model output

    NASA Astrophysics Data System (ADS)

    Velicogna, I.; Sutterley, T. C.; A, G.; van den Broeke, M. R.; Ivins, E. R.

    2016-12-01

    We use Gravity Recovery and Climate Experiment (GRACE) monthly gravity fields to determine the regional acceleration in ice mass loss in Antarctica for 2002-2016. We find that the total mass loss is controlled by only a few regions. In Antarctica, the Amundsen Sea (AS) sector and the Antarctic Peninsula account for 65% and 18%, respectively, of the total loss (186 ± 10 Gt/yr) mainly from ice dynamics. The AS sector contributes most of the acceleration in loss (9 ± 1 Gt/yr2 ), and Queen Maud Land, East Antarctica, is the only sector with a significant mass gain due to a local increase in SMB (57 ± 5 Gt/yr). We compare GRACE regional mass balance estimates with independent estimates from ICESat-1 and Operation IceBridge laser altimetry, CryoSat-2 radar altimetry, and surface mass balance outputs from RACMO2.3. In the Amundsen Sea Embayment of West Antarctica, an area experiencing rapid retreat and mass loss to the sea, we find good agreement between GRACE and altimetry estimates. Comparison of GRACE with these independent techniques in East Antarctic shows that GIA estimates from the new regional ice deglaciation models underestimate the GIA correction in the EAIS interior, which implies larger losses of the Antarctica ice sheet by about 70 Gt/yr. Sectors where we are observing the largest losses are closest to warm circumpolar water, and with polar constriction of the westerlies enhanced by climate warming, we expect these sectors to contribute more and more to sea level as the ice shelves that protect these glaciers will melt faster in contact with more heat from the surrounding oc

  19. Future sea-level rise from tidewater and ice-shelf tributary glaciers of the Antarctic Peninsula

    NASA Astrophysics Data System (ADS)

    Schannwell, C.; Barrand, N. E.; Radic, V.

    2016-12-01

    Iceberg calving and increased ice discharge from ice-shelf tributary glaciers contribute significant amounts to global sea-level rise (SLR) from the Antarctic Peninsula (AP). Owing to ongoing ice dynamical changes (collapse of buttressing ice shelves), these contributions have accelerated in recent years. As the AP is one of the fastest warming regions on Earth, further ice dynamical adjustment (increased ice discharge) is expected over the next two centuries. Here the first regional SLR projection of the AP from both iceberg calving and increased ice discharge from ice-shelf tributary glaciers in response to ice-shelf collapse is presented. The British Antarctic Survey Antarctic Peninsula Ice Sheet Model (BAS-APISM), previously shown to be suitable for the unique topographic setting from the AP, is forced by temperature output from 13 global climate models (GCMs) from the Coupled Model Intercomparison Project Phase 5 (CMIP5). In response to the high greenhouse gas emission scenario (Representative Concentration Pathway (RCP)8.5), simulations project contribution to SLR of 28±16 to 32±16 mm by 2300, partitioned approximately equally between contributions from tidewater glaciers and ice-shelf tributary glaciers. In the RCP4.5 scenario, sea-level rise projections to 2300 are dominated by tidewater glaciers ( ˜8-18 mm). In this cooler scenario, 2.4±1 mm is added to global sea levels from ice-shelf tributary drainage basins as fewer ice-shelves are projected to collapse. Sea-level projections from ice-shelf tributary glaciers are dominated by drainage basins feeding George VI Ice Shelf, accounting for ˜70% of simulated SLR. Combined total ice dynamical SLR projections to 2300 from the AP vary between 11±2 and 32±16 mm sea-level equivalent (SLE), depending on the emission scenario used. These simulations suggest that omission of tidewater glaciers could lead to a substantial underestimation of the ice-sheet's contribution to regional SLR. Iceberg calving and increased ice discharge from ice-shelf tributary glaciers contribute significant amounts to global sea-level rise (SLR) from the Antarctic Peninsula (AP). Owing to ongoing ice dynamical changes (collapse of buttressing ice shelves), these contributions have accelerated in recent years. As the AP is one of the fastest warming regions on Earth, further ice dynamical adjustment (increased ice discharge) is expected over the next two centuries. Here the first regional SLR projection of the AP from both iceberg calving and increased ice discharge from ice-shelf tributary glaciers in response to ice-shelf collapse is presented. The British Antarctic Survey Antarctic Peninsula Ice Sheet Model (BAS-APISM), previously shown to be suitable for the unique topographic setting from the AP, is forced by temperature output from 13 global climate models (GCMs) from the Coupled Model Intercomparison Project Phase 5 (CMIP5). In response to the high greenhouse gas emission scenario (Representative Concentration Pathway (RCP)8.5), simulations project contribution to SLR of 28±16 to 32±16 mm by 2300, partitioned approximately equally between contributions from tidewater glaciers and ice-shelf tributary glaciers. In the RCP4.5 scenario, sea-level rise projections to 2300 are dominated by tidewater glaciers ( ˜8-18 mm). In this cooler scenario, 2.4±1 mm is added to global sea levels from ice-shelf tributary drainage basins as fewer ice-shelves are projected to collapse. Sea-level projections from ice-shelf tributary glaciers are dominated by drainage basins feeding George VI Ice Shelf, accounting for ˜70% of simulated SLR. Combined total ice dynamical SLR projections to 2300 from the AP vary between 11±2 and 32±16 mm sea-level equivalent (SLE), depending on the emission scenario used. These simulations suggest that omission of tidewater glaciers could lead to a substantial underestimation of the ice-sheet's contribution to regional SLR.

  20. Sea Level Rise Drove Enhanced Coastal Erosion following the Last Glacial Maximum, Southern California, U.S.A.

    NASA Astrophysics Data System (ADS)

    Sharman, G.; Covault, J. A.; Stockli, D. F.; Sickmann, Z.; Malkowski, M. A.; Johnstone, S.

    2017-12-01

    Seacliff erosion poses a major threat to southern California coastal communities, including the propensity for episodic cliff failure and damage to residential and commercial property. Rising sea level is predicted to accelerate seacliff retreat, yet few constraints exist on how rapid sea level rise influenced coastal erosion rates in pre-modern timescales. Here we look to the geologic record in submarine fans to investigate changes in relative sediment supply from rivers and coastal erosion, the latter including seacliff retreat and bluffland erosion. To understand how sea level rise driven by past global warming impacted coastal erosion rates, we sampled modern rivers of the Peninsular Ranges and latest Pleistocene-Holocene submarine canyon-fan systems in southern California for detrital zircon U-Pb geochronology (1369 analyses from 10 samples). Modern river samples show a systematic north-south change in grain age populations broadly distributed across Cretaceous time (ca. 70-135 Ma) to a predominance of middle Cretaceous grain ages (ca. 95-115 Ma), reflecting variations in the geologic age of units within each river catchment. The Carlsbad and La Jolla submarine canyon-fan systems, deposited during sea level lowstand and highstand, respectively, exhibit detrital zircon age distributions consistent with derivation from upstream rivers, with mixing in the littoral zone. However, a sample from the Oceanside fan, deposited during rapid sea level rise at ca. 13 ka, is dominated by detrital ages that lack a local source in the northern Peninsular Ranges, including latest Cretaceous, late Jurassic, and Proterozoic ages. However, such grain ages are widespread in Paleogene sedimentary rocks that comprise the shelf and coastal area, suggesting increased sediment supply from coastal and shelf erosion. Assuming that the Oceanside sample is representative of sediment production during sea level rise, sediment mixing calculations suggest a one to two orders of magnitude increase in sediment from coastal erosion relative to river-supplied sediment. Our results thus suggest a significant increase in coastal erosion rates following the Last Glacial Maximum, highlighting the risk that future sea level rise poses to coastal communities.

  1. Sea-level rise modeling handbook: Resource guide for coastal land managers, engineers, and scientists

    USGS Publications Warehouse

    Doyle, Thomas W.; Chivoiu, Bogdan; Enwright, Nicholas M.

    2015-08-24

    Global sea level is rising and may accelerate with continued fossil fuel consumption from industrial and population growth. In 2012, the U.S. Geological Survey conducted more than 30 training and feedback sessions with Federal, State, and nongovernmental organization (NGO) coastal managers and planners across the northern Gulf of Mexico coast to evaluate user needs, potential benefits, current scientific understanding, and utilization of resource aids and modeling tools focused on sea-level rise. In response to the findings from the sessions, this sea-level rise modeling handbook has been designed as a guide to the science and simulation models for understanding the dynamics and impacts of sea-level rise on coastal ecosystems. The review herein of decision-support tools and predictive models was compiled from the training sessions, from online research, and from publications. The purpose of this guide is to describe and categorize the suite of data, methods, and models and their design, structure, and application for hindcasting and forecasting the potential impacts of sea-level rise in coastal ecosystems. The data and models cover a broad spectrum of disciplines involving different designs and scales of spatial and temporal complexity for predicting environmental change and ecosystem response. These data and models have not heretofore been synthesized, nor have appraisals been made of their utility or limitations. Some models are demonstration tools for non-experts, whereas others require more expert capacity to apply for any given park, refuge, or regional application. A simplified tabular context has been developed to list and contrast a host of decision-support tools and models from the ecological, geological, and hydrological perspectives. Criteria were established to distinguish the source, scale, and quality of information input and geographic datasets; physical and biological constraints and relations; datum characteristics of water and land components; utility options for setting sea-level rise and climate change scenarios; and ease or difficulty of storing, displaying, or interpreting model output. Coastal land managers, engineers, and scientists can benefit from this synthesis of tools and models that have been developed for projecting causes and consequences of sea-level change on the landscape and seascape.

  2. Impacts of sea-level rise on the Moroccan coastal zone: Quantifying coastal erosion and flooding in the Tangier Bay

    NASA Astrophysics Data System (ADS)

    Snoussi, Maria; Ouchani, Tachfine; Khouakhi, Abdou; Niang-Diop, Isabelle

    2009-06-01

    As part of a broad assessment of climate change impacts in Morocco, an assessment of vulnerability and adaptation of coastal zones to sea-level rise was conducted. Tangier Bay which is the most important socio-economic pole in Northern Morocco represents one of the cases studies. Using a GIS-based inundation analysis and an erosion modelling approach, the potential physical vulnerability to accelerated sea-level rise was investigated, and the most vulnerable socio-economic sectors were assessed. Results indicate that 10% and 24% of the area will be at risk of flooding respectively for minimum (4 m) and maximum (11 m) inundation levels. The most severely impacted sectors are expected to be the coastal defences and the port, the urban area, tourist coastal infrastructures, the railway, and the industrial area. Shoreline erosion would affect nearly 20% and 45% of the total beach areas respectively in 2050 and 2100. Potential response strategies and adaptation options identified include: sand dune fixation, beach nourishment and building of seawalls to protect the urban and industrial areas of high value. It was also recommended that an Integrated Coastal Zone Management Plan for the region, including upgrading awareness, building regulation and urban growth planning should be the most appropriate tool to ensure a long-term sustainable development, while addressing the vulnerability of the coast to future sea-level rise.

  3. Mechanisms of long-term mean sea level variability in the North Sea

    NASA Astrophysics Data System (ADS)

    Dangendorf, Sönke; Calafat, Francisco; Øie Nilsen, Jan Even; Richter, Kristin; Jensen, Jürgen

    2015-04-01

    We examine mean sea level (MSL) variations in the North Sea on timescales ranging from months to decades under the consideration of different forcing factors since the late 19th century. We use multiple linear regression models, which are validated for the second half of the 20th century against the output of a state-of-the-art tide+surge model (HAMSOM), to determine the barotropic response of the ocean to fluctuations in atmospheric forcing. We demonstrate that local atmospheric forcing mainly triggers MSL variability on timescales up to a few years, with the inverted barometric effect dominating the variability along the UK and Norwegian coastlines and wind (piling up the water along the coast) controlling the MSL variability in the south from Belgium up to Denmark. However, in addition to the large inter-annual sea level variability there is also a considerable fraction of decadal scale variability. We show that on decadal timescales MSL variability in the North Sea mainly reflects steric changes, which are mostly remotely forced. A spatial correlation analysis of altimetry observations and baroclinic ocean model outputs suggests evidence for a coherent signal extending from the Norwegian shelf down to the Canary Islands. This supports the theory of longshore wind forcing along the eastern boundary of the North Atlantic causing coastally trapped waves to propagate along the continental slope. With a combination of oceanographic and meteorological measurements we demonstrate that ~80% of the decadal sea level variability in the North Sea can be explained as response of the ocean to longshore wind forcing, including boundary wave propagation in the Northeast Atlantic. These findings have important implications for (i) detecting significant accelerations in North Sea MSL, (ii) the conceptual set up of regional ocean models in terms of resolution and boundary conditions, and (iii) the development of adequate and realistic regional climate change projections.

  4. Practical analysis of tide gauges records from Antarctica

    NASA Astrophysics Data System (ADS)

    Galassi, Gaia; Spada, Giorgio

    2015-04-01

    We have collected and analyzed in a basic way the currently available time series from tide gauges deployed along the coasts of Antarctica. The database of the Permanent Service for Mean Sea Level (PSMSL) holds relative sea level information for 17 stations, which are mostly concentrated in the Antarctic Peninsula (8 out of 17). For 7 of the PSMSL stations, Revised Local Reference (RLR) monthly and yearly observations are available, spanning from year 1957.79 (Almirante Brown) to 2013.95 (Argentine Islands). For the remaining 11 stations, only metric monthly data can be obtained during the time window 1957-2013. The record length of the available time series is not generally exceeding 20 years. Remarkable exceptions are the RLR station of Argentine Island, located in the Antarctic Peninsula (AP) (time span: 1958-2013, record length: 54 years, completeness=98%), and the metric station of Syowa in East Antarctica (1975-2012, 37 years, 92%). The general quality (geographical coverage and length of record) of the time series hinders a coherent geophysical interpretation of the relative sea-level data along the coasts of Antarctica. However, in an attempt to characterize the relative sea level signals available, we have stacked (i.e., averaged) the RLR time series for the AP and for the whole Antarctica. The so obtained time series have been analyzed using simple regression in order to estimate a trend and a possible sea-level acceleration. For the AP, the the trend is 1.8 ± 0.2 mm/yr and for the whole Antarctica it is 2.1 ± 0.1 mm/yr (both during 1957-2013). The modeled values of Glacial Isostatic Adjustment (GIA) obtained with ICE-5G(VM2) using program SELEN, range between -0.7 and -1.6 mm/yr, showing that the sea-level trend recorded by tide gauges is strongly influenced by GIA. Subtracting the average GIA contribution (-1.1 mm/yr) to observed sea-level trend from the two stacks, we obtain 3.2 and 2.9 mm/yr for Antarctica and AP respectively, which are interpreted as the effect of current ice melting and steric ocean contributions. By the Ensemble Empirical Mode Decomposition method, we have detected different oscillations embedded in the sea-level signals for Antarctica and AP. This confirms previously recognized connections between the sea-level variations in Antarctica and ocean modes like the ENSO.

  5. Parasites and Holocene sea-level rise: Recurrent upsurges in trematode infestation linked to repeated flooding events in the Adriatic Sea

    NASA Astrophysics Data System (ADS)

    Scarponi, Daniele; Azzarone, Michele; Kowalewski, Michał; Huntley, John Warren

    2017-04-01

    The accelerating increase in global temperature and concomitant sea level rise may result in an increased prevalence (i.e. infestation frequency) of many pathogens and parasites. Using the Holocene brackish deposits of the Po Plain, we evaluate this issue from a historical perspective by documenting temporal changes in trematode infestation of mollusk hosts during high-frequency (102-103 yrs) sea-level fluctuations that took place over the most recent millennia. During that time interval, the dominant bivalve species, Abra segmentum, was frequently infested by trematodes. Median body size was significantly larger in infested individuals (p = 2.21*10-34), likely reflecting accumulation of parasites with ontogenetic age. Prevalence estimates were significantly elevated (p < 0.01) in samples of A. segmentum associated with flooding surfaces and significantly depressed (p < 0.01) in intervening samples. In contrast, temporal trends in host body size, host availability, salinity, diversity, turnover, and community structure did not correlate significantly with parasite prevalence. The results reported here reinforce the recently proposed hypothesis that increasing trematode prevalence is linked to flooding events, a pattern now documented in shallow marine and estuarine settings on two continents, in both modern and fossil taxa. Consequently, the ongoing anthropogenic warming and sea-level rise is expected to trigger a significant upsurge in trematode prevalence, resulting in suppressed fecundity of common benthic organisms and negative impacts on marine ecosystems and ecosystem services.

  6. Sea Level History in 3D: Early results of an ultra-high resolution MCS survey across IODP Expedition 313 drillsites

    NASA Astrophysics Data System (ADS)

    Mountain, G. S.; Kucuk, H. M.; Nedimovic, M. R.; Austin, J. A., Jr.; Fulthorpe, C.; Newton, A.; Baldwin, K.; Johnson, C.; Stanley, J. N.; Bhatnagar, T.

    2015-12-01

    Although globally averaged sea level is rising at roughly 3 mm/yr (and is accelerating), rates of local sea-level change measured at coastlines may differ from this number by a factor of two or more; at some locations, sea level may even be falling. This is due to local processes that can match or even reverse the global trend, making it clear that reliable predictions of future impacts of sea-level rise require a firm understanding of processes at the local level. The history of local sea-level change and shoreline response is contained in the geologic record of shallow-water sediments. We report on a continuing study of sea-level history in sediments at the New Jersey continental margin, where compaction and glacial isostatic adjustment are currently adding 2 mm/yr to the globally averaged rise. We collected 570 sq km of ultra-high resolution 3D MCS data aboard the R/V Langseth in June-July 2015; innovative recording and preliminary results are described by Nedimovic et al. in this same session. The goal was to provide regional context to coring and logging at IODP Exp 313 sites 27-29 that were drilled 750 m into the New Jersey shelf in 2009. These sites recovered a nearly continuous record of post-Eocene sediments from non-marine soils, estuaries, shoreface, delta front, pro-delta and open marine settings. Existing seismic data are good but are 2D high-resolution profiles at line spacings too wide to enable mapping of key nearshore features. The Langseth 3D survey used shallow towing of a tuned air gun array to preserve high frequencies, and twenty-four 50-m PCables each 12.5 apart provided 6.25 x 3.125 m common-midpoint bins along seventy-seven 50-km sail lines. With this especially dense spatial resolution of a pre-stack time migrated volume we expect to map rivers, incised valleys, barrier islands, inlets and bays, pro-delta clinoforms, tidal deltas, sequence boundaries, debris flow aprons, and more. Seismic attributes linked to sedimentary facies and geochronology at Exp 313 drill sites will be extended throughout the volume to map the local response to global sea-level change. These analyses will provide an unrivaled opportunity to gauge the local expression of sea-level change for much of the last 40 Ma and lead to informed predictions regarding impacts of a global rise of sea level expected to continue well into the future.

  7. 30-Year Satellite Record Reveals Accelerated Arctic Sea Ice Loss, Antarctic Sea Ice Trend Reversal

    NASA Technical Reports Server (NTRS)

    Cavalieri, Donald J.; Parkinson, C. L.; Vinnikov, K. Y.

    2003-01-01

    Arctic sea ice extent decreased by 0.30 plus or minus 0.03 x 10(exp 6) square kilometers per decade from 1972 through 2002, but decreased by 0.36 plus or minus 0.05 x 10(exp 6) square kilometers per decade from 1979 through 2002, indicating an acceleration of 20% in the rate of decrease. In contrast to the Arctic, the Antarctic sea ice extent decreased dramatically over the period 1973-1977, then gradually increased, with an overall 30-year trend of -0.15 plus or minus 0.08 x 10(exp 6) square kilometers per 10yr. The trend reversal is attributed to a large positive anomaly in Antarctic sea ice extent observed in the early 1970's.

  8. Temperature-driven global sea-level variability in the Common Era.

    PubMed

    Kopp, Robert E; Kemp, Andrew C; Bittermann, Klaus; Horton, Benjamin P; Donnelly, Jeffrey P; Gehrels, W Roland; Hay, Carling C; Mitrovica, Jerry X; Morrow, Eric D; Rahmstorf, Stefan

    2016-03-15

    We assess the relationship between temperature and global sea-level (GSL) variability over the Common Era through a statistical metaanalysis of proxy relative sea-level reconstructions and tide-gauge data. GSL rose at 0.1 ± 0.1 mm/y (2σ) over 0-700 CE. A GSL fall of 0.2 ± 0.2 mm/y over 1000-1400 CE is associated with ∼ 0.2 °C global mean cooling. A significant GSL acceleration began in the 19th century and yielded a 20th century rise that is extremely likely (probability [Formula: see text]) faster than during any of the previous 27 centuries. A semiempirical model calibrated against the GSL reconstruction indicates that, in the absence of anthropogenic climate change, it is extremely likely ([Formula: see text]) that 20th century GSL would have risen by less than 51% of the observed [Formula: see text] cm. The new semiempirical model largely reconciles previous differences between semiempirical 21st century GSL projections and the process model-based projections summarized in the Intergovernmental Panel on Climate Change's Fifth Assessment Report.

  9. Temperature-driven global sea-level variability in the Common Era

    PubMed Central

    Kopp, Robert E.; Kemp, Andrew C.; Bittermann, Klaus; Horton, Benjamin P.; Donnelly, Jeffrey P.; Gehrels, W. Roland; Hay, Carling C.; Mitrovica, Jerry X.; Morrow, Eric D.; Rahmstorf, Stefan

    2016-01-01

    We assess the relationship between temperature and global sea-level (GSL) variability over the Common Era through a statistical metaanalysis of proxy relative sea-level reconstructions and tide-gauge data. GSL rose at 0.1 ± 0.1 mm/y (2σ) over 0–700 CE. A GSL fall of 0.2 ± 0.2 mm/y over 1000–1400 CE is associated with ∼0.2 °C global mean cooling. A significant GSL acceleration began in the 19th century and yielded a 20th century rise that is extremely likely (probability P≥0.95) faster than during any of the previous 27 centuries. A semiempirical model calibrated against the GSL reconstruction indicates that, in the absence of anthropogenic climate change, it is extremely likely (P=0.95) that 20th century GSL would have risen by less than 51% of the observed 13.8±1.5 cm. The new semiempirical model largely reconciles previous differences between semiempirical 21st century GSL projections and the process model-based projections summarized in the Intergovernmental Panel on Climate Change’s Fifth Assessment Report. PMID:26903659

  10. The Sea Level Rise Tipping Point of Delta Survival

    NASA Astrophysics Data System (ADS)

    Turner, R. E.; Kearney, M.; Parkinson, R. W.

    2017-12-01

    The estimated rate of global eustatic sea-level rise (RSLR) associated with the formation of thirty-six of the world's coastal deltas was calculated for the last 22,000 years. These deltas are located in a variety of environmental settings in respect to tidal range, isostasy, and climate. After correcting the original uncalibrated radiocarbon age estimates to calibrated years, 90% of the deltas appear to have formed at an average age of 8,109 ± 122 BP and a median age of 7,967 BP. This age corresponds to a period of significant deceleration in the RSLR to between 5 mm yr-1 and 10 mm yr-1, and is in agreement with two regional estimates of vegetation growth limits with respect to RSLR. This RSLR tipping point for delta formation can be used to inform forecasts of delta resiliency under conditions of climate change and concomitant sea level rise. The RSLR is accelerating and will likely be several times higher than the formation tipping point by the end of this century. Hence, the demise of the world's deltaic environments are likely to occur within the same time frame.

  11. Associations between accelerated glacier mass wastage and increased summer temperature in coastal regions

    USGS Publications Warehouse

    Dyurgerov, M.; McCabe, G.J.

    2006-01-01

    Low-elevation glaciers in coastal regions of Alaska, the Canadian Arctic, individual ice caps around the Greenland ice sheet, and the Patagonia Ice Fields have an aggregate glacier area of about 332 ?? 103 km 2 and account for approximately 42% of all the glacier area outside the Greenland and Antarctic ice sheets. They have shown volume loss, especially since the end of the 1980s, increasing from about 45% in the 1960s to nearly 67% in 2003 of the total wastage from all glaciers on Earth outside those two largest ice sheets. Thus, a disproportionally large contribution of coastal glacier ablation to sea level rise is evident. We examine cumulative standardized departures (1961-2000 reference period) of glacier mass balances and air temperature data in these four coastal regions. Analyses indicate a strong association between increases in glacier volume losses and summer air temperature at regional and global scales. Increases in glacier volume losses in the coastal regions also coincide with an accelerated rate of ice discharge from outlet glaciers draining the Greenland and West Antarctic ice sheets. These processes imply further increases in sea level rise. ?? 2006 Regents of the University of Colorado.

  12. Evolving Understanding of Antarctic Ice-Sheet Physics and Ambiguity in Probabilistic Sea-Level Projections

    NASA Astrophysics Data System (ADS)

    Kopp, Robert E.; DeConto, Robert M.; Bader, Daniel A.; Hay, Carling C.; Horton, Radley M.; Kulp, Scott; Oppenheimer, Michael; Pollard, David; Strauss, Benjamin H.

    2017-12-01

    Mechanisms such as ice-shelf hydrofracturing and ice-cliff collapse may rapidly increase discharge from marine-based ice sheets. Here, we link a probabilistic framework for sea-level projections to a small ensemble of Antarctic ice-sheet (AIS) simulations incorporating these physical processes to explore their influence on global-mean sea-level (GMSL) and relative sea-level (RSL). We compare the new projections to past results using expert assessment and structured expert elicitation about AIS changes. Under high greenhouse gas emissions (Representative Concentration Pathway [RCP] 8.5), median projected 21st century GMSL rise increases from 79 to 146 cm. Without protective measures, revised median RSL projections would by 2100 submerge land currently home to 153 million people, an increase of 44 million. The use of a physical model, rather than simple parameterizations assuming constant acceleration of ice loss, increases forcing sensitivity: overlap between the central 90% of simulations for 2100 for RCP 8.5 (93-243 cm) and RCP 2.6 (26-98 cm) is minimal. By 2300, the gap between median GMSL estimates for RCP 8.5 and RCP 2.6 reaches >10 m, with median RSL projections for RCP 8.5 jeopardizing land now occupied by 950 million people (versus 167 million for RCP 2.6). The minimal correlation between the contribution of AIS to GMSL by 2050 and that in 2100 and beyond implies current sea-level observations cannot exclude future extreme outcomes. The sensitivity of post-2050 projections to deeply uncertain physics highlights the need for robust decision and adaptive management frameworks.

  13. Early-to-middle Holocene sea-level fluctuations, coastal progradation and the Neolithic occupations in Yaojiang valley of southern Hangzhou bay, eastern China

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Sun, Q.; Fan, D.; Chen, Z.

    2017-12-01

    The formation of Holocene coast in eastern China provided material base for the development of Neolithic civilizations. The coastal Yaojiang valley of south Hangzhou bay was one of the examples where the well-known Neolithic Hemudu Culture (HC) of Eastern China initiated. Here, we studied the early-to-middle Holocene environment changes in relation to sea-level fluctuations on the basis of a serial of sediment cores based on a set of new Accelerator Mass Spectrometry radiocarbon (AMS 14C) chronology. The result indicated that relative sea-level rose rapidly in the Yaojiang valley at the early Holocene, reaching its maximum at ca. 8000-7800 cal yr BP and then decelerated at ca. 7800-7500 cal yr BP. The alluvial plain in Yaojiang valley began to form at the foothills first and then grew towards the valley center accompanying with the sea-level stabilization after ca. 7500 cal yr BP. This progressive progradation of alluvial plain would attract the early arrivals of foragers to dwell at the foothills to engaging in rice farming after ca.7000 cal yr BP and starting the epic Hemudu Culture. The HC people then move down to the valley center as more land became available thanks to sediment aggregation and progradation. The rise and development of HC were closely associated with the sea-level induced landscape changes in Yaojiang valley at the early-middle Holocene, and the unstable hydraulic condition in the valley after 5000 cal yr BP could be accountable for the cultural termination.

  14. Experimental Investigation of River Avulsion and Land-Loss on a Backwater-Influenced Delta Undergoing Sea Level Rise

    NASA Astrophysics Data System (ADS)

    Sikes, K.; Chadwick, A. J.; Lamb, M. P.; Fuller, B. M.

    2016-12-01

    Predicting the frequency of river channel avulsions and the rate of land-loss on deltas is important for hazard mitigation, ecological protection, and coastal sustainability, especially given modern rates of relative sea level rise. Previous work has investigated the effect of hydrodynamic backwater in mediating sedimentation patterns and channel avulsions on deltas, but the effect of sea-level rise on backwater-influenced deltas has yet to be explored in experiments. We will present preliminary results from a flume experiment designed to explore the role of sea-level rise on the evolution of a backwater-mediated delta. The experiment was conducted in the river-ocean facility at Caltech, where a 7m long, 14cm wide alluvial river drains into a 6m by 3m "ocean" basin under subcritical flow conditions. We used periodic flood events with different discharges to produce persistent non-uniform flow with a backwater length of 1m. Using a combination of image processing and topographic scans, we will characterize the frequency of backwater-mediated avulsions and the evolution of discrete deltaic lobes under a series of steady sea-level rise rates of different magnitude. We predict that, under moderate rise rates, enhanced aggradation will cause channels to avulse at an accelerated pace, replenishing inactive lobes more quickly and naturally acting to mitigate the extent of drowning along the delta shoreline. However, for higher rise rates, we hypothesize that rapid shoreline retreat may shift the backwater zone upstream, leading to the complete abandonment of deltaic lobes.

  15. Evolving Understanding of Antarctic Ice-Sheet Physics and Ambiguity in Probabilistic Sea-Level Projections

    NASA Technical Reports Server (NTRS)

    Kopp, Robert E.; DeConto, Robert M.; Bader, Daniel A.; Hay, Carling C.; Horton, Radley M.; Kulp, Scott; Oppenheimer, Michael; Pollard, David; Strauss, Benjamin

    2017-01-01

    Mechanisms such as ice-shelf hydrofracturing and ice-cliff collapse may rapidly increase discharge from marine-based ice sheets. Here, we link a probabilistic framework for sea-level projections to a small ensemble of Antarctic ice-sheet (AIS) simulations incorporating these physical processes to explore their influence on global-mean sea-level (GMSL) and relative sea-level (RSL). We compare the new projections to past results using expert assessment and structured expert elicitation about AIS changes. Under high greenhouse gas emissions (Representative Concentration Pathway [RCP] 8.5), median projected 21st century GMSL rise increases from 79 to 146 cm. Without protective measures, revised median RSL projections would by 2100 submerge land currently home to 153 million people, an increase of 44 million. The use of a physical model, rather than simple parameterizations assuming constant acceleration of ice loss, increases forcing sensitivity: overlap between the central 90% of simulations for 2100 for RCP 8.5 (93-243 cm) and RCP 2.6 (26-98 cm) is minimal. By 2300, the gap between median GMSL estimates for RCP 8.5 and RCP 2.6 reaches >10 m, with median RSL projections for RCP 8.5 jeopardizing land now occupied by 950 million people (versus 167 million for RCP 2.6). The minimal correlation between the contribution of AIS to GMSL by 2050 and that in 2100 and beyond implies current sea-level observations cannot exclude future extreme outcomes. The sensitivity of post-2050 projections to deeply uncertain physics highlights the need for robust decision and adaptive management frameworks.

  16. Contemporary crustal deformations in the Izu peninsula, Honshu, Japan and acceleration of plate bending in the northernmost part of the Philippine Sea plate

    NASA Astrophysics Data System (ADS)

    Fujii, Yoichiro

    1991-07-01

    Since the beginning of the anomalous vertical crustal movement in the Izu peninsul, Honshu, Japan, many repeated precise levellings have been carried out by the Geographical Survey Institute. Trilaterations covering the entire Izu peninsula have also been carried out by the Geographical Survey Institute. A new technique is developed to adjust the results of levellings, because they had been carried out for different epochs along each levelling route and because of rapid vertical crustal movements. In conventional least-squares adjustment of levelling network, only corrections to the approximate height are assumed to be unknown, while in the present analysis a special model in which rates of vertical deformation at any bench marks are also assumed to be unknown, is adopted. In addition, tidal stations along the coast of the Izu peninsula yield the rate of vertical crustal movement from analysis of tidal data independent of levelling data. We select several special bench marks in which rates of vertical movement are determined by tidal analysis, thereafter special adjustment is applied according to the type of network. The results show that the peninsula is inclined to the south-west. Uplift in the northeastern part of the peninsula is accompanied by remarkable subsidence in the southwest. The rate of contemporary inclination is many times higher than the rate during the period from 1929 to 1972. The deformation is concentrated in the area where Nakamura (1979, 1980) pointed out the bending of the Philippine Sea plate. The mode and rate of the detected crustal deformation suggest the accelerated bending of the peninsula. There are some local “uplift” that deviate from the general pattern of deformation. The most remarkable land uplift was observed near Ito, a city within the peninsula, and the focus of this uplift migrated with time. The accelerated plate bending will produce an extension at the earth's surface and contraction in the deeper part of the subcrustal layer, additionally it triggered the intrusion of magma from the deeper part to the shallower. Moreover, the accelerated plate bending also triggered seismic swarms and destructive, earthquakes in and around the peninsula.

  17. Spatio-temporal development of sinkholes on the eastern shore of the Dead Sea

    NASA Astrophysics Data System (ADS)

    Holohan, Eoghan; Saberi, Leila; Al-Halbouni, Djamil; Sawarieh, Ali; Closson, Damien; Alrshdan, Hussam; Walter, Thomas; Dahm, Torsten

    2017-04-01

    The ongoing, largely anthropogenically-forced decline of the Dead Sea is associated with the most prolific development of sinkholes worldwide. The fall in hydrological base level since the 1960s is thought to enable relatively fresh ground waters to dissolve underground salt deposits that were previously in equilibrium with hypersaline Dead Sea brine. Sinkhole development in response to this dissolution began in the 1980s and is still ongoing; it represents a significant geohazard in the Dead Sea region. We present new research undertaken within the Dead Sea Research Venue (DESERVE) on the spatio-temporal evolution of the main sinkhole-affected site on the Eastern shore of the Dead Sea, at Ghor Al-Haditha in Jordan. Our data set includes optical satellite imagery, aerial survey photographs and drone-based photogrammetric surveys with high spatial (< 1 m2 - 0.05 m per pixel) and temporal (decadal from 1970-2010, annual from 2004-2016) resolution. These enable new quantitative insights into this, the largest of all the Dead Sea sinkhole sites. Our analysis shows that there are now over 800 sinkholes at Ghor al-Haditha. Sinkholes initiated as spatially distinct clusters in the late 1980's to early 1990s. While some clusters have since become inactive, most have expanded and merged with time. New clusters have also developed, mainly in the more recently exposed north of the area. With the retreat of the Dead Sea, the roughly coastline-parallel zone of sinkhole formation has expanded unevenly but systematically seawards. Such a seaward migration of sinkhole formation is predicted from hydrogeological theory, but as yet not consistently observed elsewhere at the Dead Sea. The rate of sinkhole formation at Ghor Haditha accelerated markedly during the late 2000s to a peak of about 100 per year in 2009. Similar accelerations are observed on the western shore, but differ in timing. The rate of sinkhole formation on the Eastern shore has since declined to about 50 per year. Such differences in the overall spatio-temporal evolution of sinkholes on the eastern and western shores of the Dead Sea likely highlights the important role of local hydrogeological conditions and processes in governing sinkhole development.

  18. Importance of coastal change variables in determining vulnerability to sea- and lake-level change

    USGS Publications Warehouse

    Pendleton, E.A.; Thieler, E.R.; Williams, S.J.

    2010-01-01

    In 2001, the U.S. Geological Survey began conducting scientific assessments of coastal vulnerability to potential future sea- and lake-level changes in 22 National Park Service sea- and lakeshore units. Coastal park units chosen for the assessment included a variety of geological and physical settings along the U.S. Atlantic, Pacific, Gulf of Mexico, Gulf of Alaska, Caribbean, and Great Lakes shorelines. This research is motivated by the need to understand and anticipate coastal changes caused by accelerating sea-level rise, as well as lake-level changes caused by climate change, over the next century. The goal of these assessments is to provide information that can be used to make long-term (decade to century) management decisions. Here we analyze the results of coastal vulnerability assessments for several coastal national park units. Index-based assessments quantify the likelihood that physical changes may occur based on analysis of the following variables: tidal range, ice cover, wave height, coastal slope, historical shoreline change rate, geomorphology, and historical rate of relative sea- or lake-level change. This approach seeks to combine a coastal system's susceptibility to change with its natural ability to adapt to changing environmental conditions, and it provides a measure of the system's potential vulnerability to the effects of sea- or lake-level change. Assessments for 22 park units are combined to evaluate relationships among the variables used to derive the index. Results indicate that Atlantic and Gulf of Mexico parks have the highest vulnerability rankings relative to other park regions. A principal component analysis reveals that 99% of the index variability can be explained by four variables: geomorphology, regional coastal slope, water-level change rate, and mean significant wave height. Tidal range, ice cover, and historical shoreline change are not as important when the index is evaluated at large spatial scales (thousands of kilometers). ?? 2010 Coastal Education and Research Foundation.

  19. Can beaches survive climate change?

    USGS Publications Warehouse

    Vitousek, Sean; Barnard, Patrick L.; Limber, Patrick W.

    2017-01-01

    Anthropogenic climate change is driving sea level rise, leading to numerous impacts on the coastal zone, such as increased coastal flooding, beach erosion, cliff failure, saltwater intrusion in aquifers, and groundwater inundation. Many beaches around the world are currently experiencing chronic erosion as a result of gradual, present-day rates of sea level rise (about 3 mm/year) and human-driven restrictions in sand supply (e.g., harbor dredging and river damming). Accelerated sea level rise threatens to worsen coastal erosion and challenge the very existence of natural beaches throughout the world. Understanding and predicting the rates of sea level rise and coastal erosion depends on integrating data on natural systems with computer simulations. Although many computer modeling approaches are available to simulate shoreline change, few are capable of making reliable long-term predictions needed for full adaption or to enhance resilience. Recent advancements have allowed convincing decadal to centennial-scale predictions of shoreline evolution. For example, along 500 km of the Southern California coast, a new model featuring data assimilation predicts that up to 67% of beaches may completely erode by 2100 without large-scale human interventions. In spite of recent advancements, coastal evolution models must continue to improve in their theoretical framework, quantification of accuracy and uncertainty, computational efficiency, predictive capability, and integration with observed data, in order to meet the scientific and engineering challenges produced by a changing climate.

  20. Forecasting sea cliff retreat in Southern California using process-based models and artificial neural networks

    NASA Astrophysics Data System (ADS)

    Limber, P. W.; Barnard, P.; Erikson, L. H.

    2016-02-01

    Modeling coastal geomorphic change over multi-decadal time and regional spatial scales (i.e. >20 km alongshore) is in high demand due to rising global sea levels and heavily populated coastal zones, but is challenging for several reasons: adequate geomorphic and oceanographic data often does not exist over the entire study area or time period; models can be too computationally expensive; and model uncertainty is high. In the absence of rich datasets and unlimited computer processing power, researchers are forced to leverage existing data, however sparse, and find analytical methods that minimize computation time without sacrificing (too much) model reliability. Machine learning techniques, such as artificial neural networks, can assimilate and efficiently extrapolate geomorphic model behavior over large areas. They can also facilitate ensemble model forecasts over a broad range of parameter space, which is useful when a paucity of observational data inhibits the constraint of model parameters. Here, we assimilate the behavior of two established process-based sea cliff erosion and retreat models into a neural network to forecast the impacts of sea level rise on sea cliff retreat in Southern California ( 400 km) through the 21st century. Using inputs such as historical cliff retreat rates, mean wave power, and whether or not a beach is present, the neural network independently reproduces modeled sea cliff retreat as a function of sea level rise with a high degree of confidence (R2 > 0.9, mean squared error < 0.1 m yr-1). Results will continuously improve as more model scenarios are assimilated into the neural network, and more field data (i.e., cliff composition and rock hardness) becomes available to tune the cliff retreat models. Preliminary results suggest that sea level rise rates of 2 to 20 mm yr-1 during the next century could accelerate historical cliff retreat rates in Southern California by an average of 0.10 - 0.56 m yr-1.

  1. Predictions of turbidity due to enhanced sediment resuspension resulting from sea-level rise on a fringing Coral Reef: Evidence from Molokai, Hawaii

    USGS Publications Warehouse

    Ogston, A.S.; Field, M.E.

    2010-01-01

    Accelerating sea-level rise associated with global climate change will affect sedimentary processes on coral reefs and other shoreline environments by increasing energy and sediment resuspension. On reefs, sedimentation is known to increase coral stress and bleaching as particles that settle on coral surfaces interfere with photosynthesis and feeding, and turbidity induced by suspended sediment reduces incident light levels. Using relationships developed from observations of wave orbital velocity, water-surface elevation, and suspended-sediment concentration on a fringing reef flat of Molokai, Hawaii, predictions of the average daily maximum in suspended-sediment concentration increase from ~11 mg/l to ~20 mg/l with 20 cm sea-level rise. The duration of time concentrations exceeds 10 mg/l increases from 9 to 37. An evaluation of the reduction of wave energy flux through breaking and frictional dissipation across the reef flat shows an increase of ~80 relative to the present will potentially reach the shoreline as sea level increases by 20 cm. Where the shoreline exists on low, flat terrain, the increased energy could cause significant erosion of the shoreline. Considering the sediment budget, the sediment flux is predicted to increase and removal of fine-grained sediment may be expedited on some fringing reefs, and sediment in storage on the inner reef could ultimately be reduced. However, increased shoreline erosion may add sediment and offset removal from the reef flat. The shifts in sediment availability and transport that will occur as result of a modest increase in sea level have wide application to fringing coral reefs elsewhere, as well as other shoreline environments. ?? 2010 the Coastal Education & Research Foundation (CERF).

  2. Ocean-bottom pressure changes above a fault area for tsunami excitation and propagation observed by a submarine dense network

    NASA Astrophysics Data System (ADS)

    Yomogida, K.; Saito, T.

    2017-12-01

    Conventional tsunami excitation and propagation have been formulated by incompressible fluid with velocity components. This approach is valid in most cases because we usually analyze tunamis as "long gravity waves" excited by submarine earthquakes. Newly developed ocean-bottom tsunami networks such as S-net and DONET have dramatically changed the above situation for the following two reasons: (1) tsunami propagations are now directly observed in a 2-D array manner without being suffered by complex "site effects" of sea shore, and (2) initial tsunami features can be directly detected just above a fault area. Removing the incompressibility assumption of sea water, we have formulated a new representation of tsunami excitation based on not velocity but displacement components. As a result, not only dynamics but static term (i.e., the component of zero frequency) can be naturally introduced, which is important for the pressure observed on the ocean floor, which ocean-bottom tsunami stations are going to record. The acceleration on the ocean floor should be combined with the conventional tsunami height (that is, the deformation of the sea level above a given station) in the measurement of ocean-bottom pressure although the acceleration exists only during fault motions in time. The M7.2 Off Fukushima earthquake on 22 November 2016 was the first event that excited large tsunamis within the territory of S-net stations. The propagation of tsunamis is found to be highly non-uniform, because of the strong velocity (i.e., sea depth) gradient perpendicular to the axis of Japan Trench. The earthquake was located in a shallow sea close to the coast, so that all the tsunami energy is reflected by the trench region of high velocity. Tsunami records (pressure gauges) within its fault area recorded clear slow motions of tsunamis (i.e., sea level changes) but also large high-frequency signals, as predicted by our theoretical result. That is, it may be difficult to extract tsunami motions from near-fault pressure gauge data immediately after the earthquake occurs, in the sense of tsunami early warning systems.

  3. Observational Evidence for Enhanced Greenhouse Effect Reinforcing Wintertime Arctic Amplification and Sea Ice Melting Onset

    NASA Astrophysics Data System (ADS)

    Cao, Y.; Liang, S.

    2017-12-01

    Despite an apparent hiatus in global warming, the Arctic climate continues to experience unprecedented changes. Summer sea ice is retreating at an accelerated rate, and surface temperatures in this region are rising at a rate double that of the global average, a phenomenon known as Arctic amplification. Although a lot of efforts have been made, the causes this unprecedented phenomenon remain unclear and are subjects of considerable debate. In this study, we report strong observational evidence, for the first time from long-term (1984-2014) spatially complete satellite records, that increased cloudiness and atmospheric water vapor in winter and spring have caused an extraordinary downward longwave radiative flux to the ice surface, which may then amplify the Arctic wintertime ice-surface warming. In addition, we also provide observed evidence that it is quite likely the enhancement of the wintertime greenhouse effect caused by water vapor and cloudiness has advanced the time of onset of ice melting in mid-May through inhibiting sea-ice refreezing in the winter and accelerating the pre-melting process in the spring, and in turn triggered the positive sea-ice albedo feedback process and accelerated the sea ice melting in the summer.

  4. Project summary

    NASA Technical Reports Server (NTRS)

    1991-01-01

    California Polytechnic State University's design project for the 1990-91 school year was the design of a close air support aircraft. There were eight design groups that participated and were given requests for proposals. These proposals contained mission specifications, particular performance and payload requirements, as well as the main design drivers. The mission specifications called for a single pilot weighing 225 lb with equipment. The design mission profile consisted of the following: (1) warm-up, taxi, take off, and accelerate to cruise speed; (2) dash at sea level at 500 knots to a point 250 nmi from take off; (3) combat phase, requiring two combat passes at 450 knots that each consist of a 360 deg turn and an energy increase of 4000 ft. - at each pass, half of air-to-surface ordnance is released; (4) dash at sea level at 500 knots 250 nmi back to base; and (5) land with 20 min of reserve fuel. The request for proposal also specified the following performance requirements with 50 percent internal fuel and standard stores: (1) the aircraft must be able to accelerate from Mach 0.3 to 0.5 at sea level in less than 20 sec; (2) required turn rates are 4.5 sustained g at 450 knots at sea level; (3) the aircraft must have a reattack time of 25 sec or less (reattack time was defined as the time between the first and second weapon drops); (4) the aircraft is allowed a maximum take off and landing ground roll of 2000 ft. The payload requirements were 20 Mk 82 general-purpose free-fall bombs and racks; 1 GAU-8A 30-mm cannon with 1350 rounds; and 2 AIM-9L Sidewinder missiles and racks. The main design drivers expressed in the request for proposal were that the aircraft should be survivable and maintainable. It must be able to operate in remote areas with little or no maintenance. Simplicity was considered the most important factor in achieving the former goal. In addition, the aircraft must be low cost both in acquisition and operation. The summaries of the aircraft configurations developed by the eight groups are presented.

  5. Dynamics of the last glacial maximum Antarctic ice-sheet and its response to ocean forcing

    PubMed Central

    Golledge, Nicholas R.; Fogwill, Christopher J.; Mackintosh, Andrew N.; Buckley, Kevin M.

    2012-01-01

    Retreat of the Last Glacial Maximum (LGM) Antarctic ice sheet is thought to have been initiated by changes in ocean heat and eustatic sea level propagated from the Northern Hemisphere (NH) as northern ice sheets melted under rising atmospheric temperatures. The extent to which spatial variability in ice dynamics may have modulated the resultant pattern and timing of decay of the Antarctic ice sheet has so far received little attention, however, despite the growing recognition that dynamic effects account for a sizeable proportion of mass-balance changes observed in modern ice sheets. Here we use a 5-km resolution whole-continent numerical ice-sheet model to assess whether differences in the mechanisms governing ice sheet flow could account for discrepancies between geochronological studies in different parts of the continent. We first simulate the geometry and flow characteristics of an equilibrium LGM ice sheet, using pan-Antarctic terrestrial and marine geological data for constraint, then perturb the system with sea level and ocean heat flux increases to investigate ice-sheet vulnerability. Our results identify that fast-flowing glaciers in the eastern Weddell Sea, the Amundsen Sea, central Ross Sea, and in the Amery Trough respond most rapidly to ocean forcings, in agreement with empirical data. Most significantly, we find that although ocean warming and sea-level rise bring about mainly localized glacier acceleration, concomitant drawdown of ice from neighboring areas leads to widespread thinning of entire glacier catchments—a discovery that has important ramifications for the dynamic changes presently being observed in modern ice sheets. PMID:22988078

  6. Dynamics of the last glacial maximum Antarctic ice-sheet and its response to ocean forcing.

    PubMed

    Golledge, Nicholas R; Fogwill, Christopher J; Mackintosh, Andrew N; Buckley, Kevin M

    2012-10-02

    Retreat of the Last Glacial Maximum (LGM) Antarctic ice sheet is thought to have been initiated by changes in ocean heat and eustatic sea level propagated from the Northern Hemisphere (NH) as northern ice sheets melted under rising atmospheric temperatures. The extent to which spatial variability in ice dynamics may have modulated the resultant pattern and timing of decay of the Antarctic ice sheet has so far received little attention, however, despite the growing recognition that dynamic effects account for a sizeable proportion of mass-balance changes observed in modern ice sheets. Here we use a 5-km resolution whole-continent numerical ice-sheet model to assess whether differences in the mechanisms governing ice sheet flow could account for discrepancies between geochronological studies in different parts of the continent. We first simulate the geometry and flow characteristics of an equilibrium LGM ice sheet, using pan-Antarctic terrestrial and marine geological data for constraint, then perturb the system with sea level and ocean heat flux increases to investigate ice-sheet vulnerability. Our results identify that fast-flowing glaciers in the eastern Weddell Sea, the Amundsen Sea, central Ross Sea, and in the Amery Trough respond most rapidly to ocean forcings, in agreement with empirical data. Most significantly, we find that although ocean warming and sea-level rise bring about mainly localized glacier acceleration, concomitant drawdown of ice from neighboring areas leads to widespread thinning of entire glacier catchments-a discovery that has important ramifications for the dynamic changes presently being observed in modern ice sheets.

  7. Sea-level rise and its possible impacts given a 'beyond 4°C world' in the twenty-first century.

    PubMed

    Nicholls, Robert J; Marinova, Natasha; Lowe, Jason A; Brown, Sally; Vellinga, Pier; de Gusmão, Diogo; Hinkel, Jochen; Tol, Richard S J

    2011-01-13

    The range of future climate-induced sea-level rise remains highly uncertain with continued concern that large increases in the twenty-first century cannot be ruled out. The biggest source of uncertainty is the response of the large ice sheets of Greenland and west Antarctica. Based on our analysis, a pragmatic estimate of sea-level rise by 2100, for a temperature rise of 4°C or more over the same time frame, is between 0.5 m and 2 m--the probability of rises at the high end is judged to be very low, but of unquantifiable probability. However, if realized, an indicative analysis shows that the impact potential is severe, with the real risk of the forced displacement of up to 187 million people over the century (up to 2.4% of global population). This is potentially avoidable by widespread upgrade of protection, albeit rather costly with up to 0.02 per cent of global domestic product needed, and much higher in certain nations. The likelihood of protection being successfully implemented varies between regions, and is lowest in small islands, Africa and parts of Asia, and hence these regions are the most likely to see coastal abandonment. To respond to these challenges, a multi-track approach is required, which would also be appropriate if a temperature rise of less than 4°C was expected. Firstly, we should monitor sea level to detect any significant accelerations in the rate of rise in a timely manner. Secondly, we need to improve our understanding of the climate-induced processes that could contribute to rapid sea-level rise, especially the role of the two major ice sheets, to produce better models that quantify the likely future rise more precisely. Finally, responses need to be carefully considered via a combination of climate mitigation to reduce the rise and adaptation for the residual rise in sea level. In particular, long-term strategic adaptation plans for the full range of possible sea-level rise (and other change) need to be widely developed.

  8. Revisiting the contemporary sea-level budget on global and regional scales

    PubMed Central

    Brunnabend, Sandra-Esther; Kusche, Jürgen; Schröter, Jens; Dahle, Christoph

    2016-01-01

    Dividing the sea-level budget into contributions from ice sheets and glaciers, the water cycle, steric expansion, and crustal movement is challenging, especially on regional scales. Here, Gravity Recovery And Climate Experiment (GRACE) gravity observations and sea-level anomalies from altimetry are used in a joint inversion, ensuring a consistent decomposition of the global and regional sea-level rise budget. Over the years 2002–2014, we find a global mean steric trend of 1.38 ± 0.16 mm/y, compared with a total trend of 2.74 ± 0.58 mm/y. This is significantly larger than steric trends derived from in situ temperature/salinity profiles and models which range from 0.66 ± 0.2 to 0.94 ± 0.1 mm/y. Mass contributions from ice sheets and glaciers (1.37 ± 0.09 mm/y, accelerating with 0.03 ± 0.02 mm/y2) are offset by a negative hydrological component (−0.29 ± 0.26 mm/y). The combined mass rate (1.08 ± 0.3 mm/y) is smaller than previous GRACE estimates (up to 2 mm/y), but it is consistent with the sum of individual contributions (ice sheets, glaciers, and hydrology) found in literature. The altimetric sea-level budget is closed by coestimating a remaining component of 0.22 ± 0.26 mm/y. Well above average sea-level rise is found regionally near the Philippines (14.7 ± 4.39 mm/y) and Indonesia (8.3 ± 4.7 mm/y) which is dominated by steric components (11.2 ± 3.58 mm/y and 6.4 ± 3.18 mm/y, respectively). In contrast, in the central and Eastern part of the Pacific, negative steric trends (down to −2.8 ± 1.53 mm/y) are detected. Significant regional components are found, up to 5.3 ± 2.6 mm/y in the northwest Atlantic, which are likely due to ocean bottom pressure variations. PMID:26811469

  9. Revisiting the contemporary sea-level budget on global and regional scales.

    PubMed

    Rietbroek, Roelof; Brunnabend, Sandra-Esther; Kusche, Jürgen; Schröter, Jens; Dahle, Christoph

    2016-02-09

    Dividing the sea-level budget into contributions from ice sheets and glaciers, the water cycle, steric expansion, and crustal movement is challenging, especially on regional scales. Here, Gravity Recovery And Climate Experiment (GRACE) gravity observations and sea-level anomalies from altimetry are used in a joint inversion, ensuring a consistent decomposition of the global and regional sea-level rise budget. Over the years 2002-2014, we find a global mean steric trend of 1.38 ± 0.16 mm/y, compared with a total trend of 2.74 ± 0.58 mm/y. This is significantly larger than steric trends derived from in situ temperature/salinity profiles and models which range from 0.66 ± 0.2 to 0.94 ± 0.1 mm/y. Mass contributions from ice sheets and glaciers (1.37 ± 0.09 mm/y, accelerating with 0.03 ± 0.02 mm/y(2)) are offset by a negative hydrological component (-0.29 ± 0.26 mm/y). The combined mass rate (1.08 ± 0.3 mm/y) is smaller than previous GRACE estimates (up to 2 mm/y), but it is consistent with the sum of individual contributions (ice sheets, glaciers, and hydrology) found in literature. The altimetric sea-level budget is closed by coestimating a remaining component of 0.22 ± 0.26 mm/y. Well above average sea-level rise is found regionally near the Philippines (14.7 ± 4.39 mm/y) and Indonesia (8.3 ± 4.7 mm/y) which is dominated by steric components (11.2 ± 3.58 mm/y and 6.4 ± 3.18 mm/y, respectively). In contrast, in the central and Eastern part of the Pacific, negative steric trends (down to -2.8 ± 1.53 mm/y) are detected. Significant regional components are found, up to 5.3 ± 2.6 mm/y in the northwest Atlantic, which are likely due to ocean bottom pressure variations.

  10. Stratigraphic controls on seawater intrusion and implications for groundwater management, Dominguez Gap area of Los Angeles, California, USA

    USGS Publications Warehouse

    Nishikawa, T.; Siade, A.J.; Reichard, E.G.; Ponti, D.J.; Canales, A.G.; Johnson, T.A.

    2009-01-01

    Groundwater pumping has led to extensive water-level declines and seawater intrusion in coastal Los Angeles, California (USA). A SUTRA-based solute-transport model was developed to test the hydraulic implications of a sequence-stratigraphic model of the Dominguez Gap area and to assess the effects of water-management scenarios. The model is two-dimensional, vertical and follows an approximate flow line extending from the Pacific Ocean through the Dominguez Gap area. Results indicate that a newly identified fault system can provide a pathway for transport of seawater and that a stratigraphic boundary located between the Bent Spring and Upper Wilmington sequences may control the vertical movement of seawater. Three 50-year water-management scenarios were considered: (1) no change in water-management practices; (2) installation of a slurry wall; and (3) raising inland water levels to 7.6 m above sea level. Scenario 3 was the most effective by reversing seawater intrusion. The effects of an instantaneous 1-m sea-level rise were also tested using water-management scenarios 1 and 3. Results from two 100-year simulations indicate that a 1-m sea-level rise may accelerate seawater intrusion for scenario 1; however, scenario 3 remains effective for controlling seawater intrusion. ?? Springer-Verlag 2009.

  11. Bangladesh Delta: Assessment of the Causes of Sea-level Rise Hazards and Integrated Development of Predictive Modeling Towards Mitigation and Adaptation (BanD-AID)

    NASA Astrophysics Data System (ADS)

    Kusche, J.; Shum, C. K.; Jenkins, C. J.; Chen, J.; Guo, J.; Hossain, F.; Braun, B.; Calmant, S.; Ballu, V.; Papa, F.; Kuhn, M.; Ahmed, R.; Khan, Z. H.; Hossain, M.; Bernzen, A.; Dai, C.; Jia, Y.; Krien, Y.; Kuo, C. Y.; Liibusk, A.; Shang, K.; Testut, L.; Tseng, K. H.; Uebbing, B.; Rietbroek, R.; Valty, P.; Wan, J.

    2016-12-01

    As a low-lying and the largest coastal deltaic region in the world, Bangladesh already faces tremendous vulnerability. Accelerated sea-level rise, along with tectonic, sediment load and groundwater extraction induced land uplift/subsidence, have exacerbated Bangladesh's coastal vulnerability. Climate change has further intensified these risks with increasing temperatures, greater rainfall volatility, and increased incidence of intensified cyclones, in addition to its seasonal transboundary monsoonal flooding. Our Belmont Forum/IGFA G8 project BanD-AiD, http://Belmont-BanDAiD.org, or http://Blemont-SeaLevel.org, comprises of an international cross-disciplinary team including stakeholders in Bangladesh, aims at a joint assessment of the physical and social science knowledge of the physical and social dynamics which govern coastal vulnerability and societal resilience in Bangladesh. We have built a prototype observational system, following the Belmont Challenge identified Earth System Analysis & Prediction System (ESAPS) for the Bangladesh Delta, to achieve the physical science objectives of the project. The prototype observational system is exportable to other regions of the world. We studied the physical causes of relative sea-level rise in coastal Bangladesh, with the goal to separate and quantify land subsidence and geocentric sea-level rise signals at adequate spatial scales using contemporary space geodetic and remote sensing data. We used a social and natural science integrative approach to investigate the various social and economic drivers behind land use change, population increase migration and community resilience to understand the social dynamics of this complex region and to forecast likely and alternative scenarios for maintaining the societal resilience of this vital region which currently houses a quarter of Bangladesh's 160 million people.

  12. Evaluating the Impact of Sea Level Rise and Coastal Flooding on NASA Centers and Facilities by Implementing Terrestrial Laser Scanning Surveys to Improve Coastal Digital Elevation and Inundation Models

    NASA Astrophysics Data System (ADS)

    Bell, L. J.; Nerem, R. S.; Williams, K.; Meertens, C.; Lestak, L.; Masters, D.

    2014-12-01

    Sea level is rising in response to climate change. Currently the global mean rate is a little over 3 mm/year, but it is expected to accelerate significantly over this century. This will have a profound impact on coastal populations and infrastructure, including NASA centers and facilities. A detailed study proposed by the University of Colorado's Center for Astrodynamics Research on the impact of sea level rise on several of NASA's most vulnerable facilities was recently funded by NASA. Individual surveys at several high-risk NASA centers were conducted and used as case studies for a broader investigation that needs to be done for coastal infrastructure around the country. The first two years of this study included implementing and conducting a terrestrial laser scanning (TLS) and GPS survey at Kennedy Space Center, Cape Canaveral, Florida, Wallops Flight Facility, Wallops Island, Virginia, Langley Research Center, Hampton, Virginia, and Ames Research Center, Moffett Field, California. We are currently using airborne LiDAR (Light Detection and Ranging) data and TLS (Terrestrial Laser Scanning) data to construct detailed digital elevation models (DEMs) of the facilities that we have assessed. The TLS data acquired at each center provides a very dense point cloud that is being used to improve the detail and accuracy of the digital elevation models currently available. We are also using GPS data we acquired at each center to assess the rate of vertical land movement at the facilities and to tie the DEM to tide gauges and other reference points. With completed, detailed DEMs of the topography and facilities at each center, a series of simple inundation models will then be applied to each area. We will use satellite altimeter data from TOPEX, Jason-1, and Jason-2 to assess the sea level changes observed near these NASA facilities over the last 20 years along with sea level projections from global climate models (GCMs) and semi-empirical projections to make detailed maps of sea level inundation through and up to the years 2050 and 2100 for varying amounts of sea level rise. We will also work with other selected investigators to assess the effects of tidal variations and storm surge when coupled with changes in mean sea level, as storm surge is likely when initial damage due to sea level rise will occur.

  13. A gyro-stabilized platform leveling loop for marine gravimeter.

    PubMed

    Wu, P F; Liu, L T; Wang, L; Wang, Y; Zhong, M; Zhou, Z B; Zou, Z

    2017-06-01

    An ultra-low-frequency platform leveling loop based on a mixed sensitivity H ∞ approach, which considers both the system bandwidth and response speed, was designed and applied to a prototype, two-axis gyro-stabilized platform marine gravimeter CHZ-II. The instrument was developed for regional surveys in deep ocean areas where high-resolution gravity measurements with accuracy 1 mGal are required. Horizontal accelerations in the surge and sway directions are suppressed about 60 dB in the frequency range 0.05 to 0.5 Hz. This typically improves the quality of the gravity data before any processing corrections. The time required for stabilizing the platform at the beginning of a survey line or course change is about 3 min, which improves the data collection efficiency. In May 2015, the first test was conducted in open sea conditions aboard the Chinese State Oceanic Administration's R/V Xiangyanghong 10. Sixteen traverses were run in the South China Sea to evaluate the loop performance. Platform motion tracks and gravity data from the survey were of satisfactory quality. According to analyses of 16 sets of calculated errors, the root mean square repeatability of the pitch and roll off-level angles were less than 10 and 20 arc sec, respectively, with a horizontal acceleration of about 50 Gal. Errors derived from the inability of the platform to maintain perfect sensor leveling during the survey cruise were less than 0.3 mGal.

  14. Sea ice roughness: the key for predicting Arctic summer ice albedo

    NASA Astrophysics Data System (ADS)

    Landy, J.; Ehn, J. K.; Tsamados, M.; Stroeve, J.; Barber, D. G.

    2017-12-01

    Although melt ponds on Arctic sea ice evolve in stages, ice with smoother surface topography typically allows the pond water to spread over a wider area, reducing the ice-albedo and accelerating further melt. Building on this theory, we simulated the distribution of meltwater on a range of statistically-derived topographies to develop a quantitative relationship between premelt sea ice surface roughness and summer ice albedo. Our method, previously applied to ICESat observations of the end-of-winter sea ice roughness, could account for 85% of the variance in AVHRR observations of the summer ice-albedo [Landy et al., 2015]. Consequently, an Arctic-wide reduction in sea ice roughness over the ICESat operational period (from 2003 to 2008) explained a drop in ice-albedo that resulted in a 16% increase in solar heat input to the sea ice cover. Here we will review this work and present new research linking pre-melt sea ice surface roughness observations from Cryosat-2 to summer sea ice albedo over the past six years, examining the potential of winter roughness as a significant new source of sea ice predictability. We will further evaluate the possibility for high-resolution (kilometre-scale) forecasts of summer sea ice albedo from waveform-level Cryosat-2 roughness data in the landfast sea ice zone of the Canadian Arctic. Landy, J. C., J. K. Ehn, and D. G. Barber (2015), Albedo feedback enhanced by smoother Arctic sea ice, Geophys. Res. Lett., 42, 10,714-10,720, doi:10.1002/2015GL066712.

  15. Recent Changes in High-Latitude Glaciers, Ice Caps, and Ice Sheets

    NASA Technical Reports Server (NTRS)

    Abdalati, Waleed

    2006-01-01

    The glaciers and ice sheets of the world contain enough ice to raise sea level by approximately 70 meters if they were to disappear entirely, and most of this ice is located in the climatically sensitive polar regions. Fortunately changes of this magnitude would probably take many thousands of years to occur, but recent discoveries indicate that these ice masses are responding to changes in today s climate more rapidly than previously thought. These responses are likely to be of great societal significance, primarily in terms of their implications for sea level, but also in terms of how their discharge of freshwater, through melting or calving, may impact ocean circulation. For millions of years, oceans have risen and fallen as the Earth has warmed and cooled, and ice on land has shrunk and grown. Today is no different in that respect, as sea levels have been rising at a rate of nearly 2 m per year during the last century (Miller and Douglas 2004), and 3 mm/yr in the last 12 years (Leuliette et al. 2004). What is different today, however, is that tens - perhaps hundreds - of millions of people live in coastal areas that are vulnerable to changes in sea level. Rising seas erode beaches, increase flood potential, and reduce the ability of barrier islands and coastal wetlands to mitigate the effects of major storms and hurricanes. The costs associated with a one-meter rise in sea level are estimated to be in the hundreds of billions of dollars in the United States alone. The worldwide costs in human terms would be far greater as some vulnerable low-lying coastal regions would become inundated, especially in poorer nations that do not have the resources to deal with such changes. Such considerations are particularly important in light of the fact that a one meter sea level rise is not significantly outside the 0.09 to 0.88 range of predictions for this century (IPCC 2001), and rises of this magnitude have occurred in the past in as little as 20 years (Fairbanks 1989). While the expansion of the warming oceans is estimated to be about a third of recent sea level rise, (Miller and Douglas 2004) the greatest potential for significantly increasing sea level lies in the Greenland and Antarctic ice sheets. For different reasons, each exhibits characteristics that suggest they are potentially unstable. In Antarctica, large portions of the ice cover rest on a soft bed that lies below sea level, making it vulnerable to runaway retreat. The Greenland ice sheet experiences considerable melt, which has the potential to rapidly accelerate the flow of ice toward the sea. While smaller ice masses, such as the Alaskan Glaciers and the Canadian ice caps, do not have anywhere near the same potential to impact sea level as the vast ice sheets do, many are melting rapidly, posing a significant near-term threat.

  16. Extensive Liquid Meltwater Storage in Firn Within the Greenland Ice Sheet

    NASA Technical Reports Server (NTRS)

    Forster, Richard R.; Box, Jason E.; vandenBroeke, Michael R.; Miege, Clement; Burgess, Evan W.; vanAngelen, Jan H.; Lenaerts, Jan T. M.; Koenig, Lora S.; Paden, John; Lewis, Cameron; hide

    2013-01-01

    The accelerating loss of mass from the Greenland ice sheet is a major contribution to current sea level rise. Increased melt water runoff is responsible for half of Greenlands mass loss increase. Surface melt has been increasing in extent and intensity, setting a record for surface area melt and runoff in 2012. The mechanisms and timescales involved in allowing surface melt water to reach the ocean where it can contribute to sea level rise are poorly understood. The potential capacity to store this water in liquid or frozen form in the firn (multi-year snow layer) is significant, and could delay its sea-level contribution. Here we describe direct observation of water within a perennial firn aquifer persisting throughout the winter in the southern ice sheet,where snow accumulation and melt rates are high. This represents a previously unknown storagemode for water within the ice sheet. Ice cores, groundairborne radar and a regional climatemodel are used to estimate aquifer area (70 plue or minus 10 x 10(exp 3) square kilometers ) and water table depth (5-50 m). The perennial firn aquifer represents a new glacier facies to be considered 29 in future ice sheet mass 30 and energy budget calculations.

  17. Performance Characterization of a Novel Plasma Thruster to Provide a Revolutionary Operationally Responsive Space Capability with Micro- and Nano-Satellites

    DTIC Science & Technology

    2011-03-24

    and radiation resistance of rare earth permanent magnets for applications such as ion thrusters and high efficiency Stirling Radioisotope Generators...from Electron Transitioning Discharge Current Discharge Power Discharge Voltage Θ Divergence Angle Earths Gravity at Sea Level...Hall effect thruster HIVAC High Voltage Hall Accelerator LEO Low Earth Orbit LDS Laser Displacement System LVDT Linear variable differential

  18. Wetland Loss Patterns and Inundation-Productivity ...

    EPA Pesticide Factsheets

    Tidal salt marsh is a key defense against, yet is especially vulnerable to, the effects of accelerated sea level rise. To determine whether salt marshes in southern New England will be stable given increasing inundation over the coming decades, we examined current loss patterns, inundation-productivity feedbacks, and sustaining processes. A multi-decadal analysis of salt marsh aerial extent using historic imagery and maps revealed that salt marsh vegetation loss is both widespread and accelerating, with vegetation loss rates over the past four decades summing to 17.3 %. Landward retreat of the marsh edge, widening and headward expansion of tidal channel networks, loss of marsh islands, and the development and enlargement of interior depressions found on the marsh platform contributed to vegetation loss. Inundation due to sea level rise is strongly suggested as a primary driver: vegetation loss rates were significantly negatively correlated with marsh elevation (r2 = 0.96; p = 0.0038), with marshes situated below mean high water (MHW) experiencing greater declines than marshes sitting well above MHW. Growth experiments with Spartina alterniflora, the Atlantic salt marsh ecosystem dominant, across a range of elevations and inundation regimes further established that greater inundation decreases belowground biomass production of S. alterniflora and, thus, negatively impacts organic matter accumulation. These results suggest that southern New England salt ma

  19. Towards a macrosystems approach for successful coastal ...

    EPA Pesticide Factsheets

    Managing coastal resources for resiliency and sustainability often requires integrative, multi-disciplinary approaches across varying spatial and temporal scales to engage stakeholders and inform decision-makers. We discuss case studies integrating wetland ecology, economics, sociology and other disciplines to help solve management problems, especially those concerning increasing nutrient loads and climate change (e.g., accelerated sea level rise, increased flooding, warming temperatures). One goal of the macrosystems approach is to provide the science necessary to assess tradeoffs for different management, restoration, and climate adaptation actions. In the first case study we examine the conversion of a cranberry farm in New England to a freshwater wetland with connectivity to Cape Cod Bay (MA). A second example examines climate adaptation actions in coastal wetlands of the northeastern US to mitigate accelerated sea level rise. Various restoration actions (e.g., dam removal, hydrological engineering) and climate adaptation interventions (e.g., living shoreline, thin layer sediment application) are underway, and we discuss the adaptive management and macrosystems approaches for each example. One focus of management actions is the provision of select ecosystem services. For each study, we discuss tradeoffs in the provision of services from different actions. By presenting examples of how a macrosystems approach works in practice, we hope to show its transferabi

  20. Can human activities alter the drowning fate of barrier islands?

    NASA Astrophysics Data System (ADS)

    Lorenzo-Trueba, J.; Ashton, A. D.; Jin, D.; Hoagland, P.; Kite-Powell, H.

    2012-12-01

    Low-lying coastal barriers face an uncertain future over the coming century and beyond as sea levels rise, with many projections suggesting end-of-century rates of sea-level rise as high or higher than 1 cm/yr. Geologically, such rates of sea-level rise have been experienced several thousand years ago and we can use our understanding of geological processes and sedimentary evidence to help unravel the dynamics of natural barriers experiencing sea-level rise. Along many modern coastal barriers, however, anthropic change, such as beach nourishment, dune construction, and emplacement of hard structures, plays a dominant role in coastline dynamics. A fundamental question to be addressed is whether human activities intended to preserve infrastructure and beach recreation may make wholesale collapse, or 'drowning,' of barrier systems more likely. Here we present a numerical modeling tool that couples natural processes and the human responses to these changes (and the subsequent of human responses on natural processes). Recent theoretical model development suggests that barriers are intrinsically morphodynamic features, responding to sea-level rise in complex ways through the interactions of marine processes and barrier overwash. Undeveloped coastal barriers would therefore respond to an accelerated sea-level rise in complex, less predictable manners than suggested by existing long-term models. We have developed a model that examines non-equilibrium cross-shore evolution of barrier systems at decadal to centennial temporal scales, focusing on the interactions between processes of shoreface evolution and overwash deposition. Model responses demonstrate two means of barrier collapse during sea-level rise: 'height drowning', which occurs when overwash fluxes are insufficient to maintain the landward migration rate required to keep in pace with sea-level rise, and 'width drowning', which occurs when the shoreface response is insufficient to maintain the barrier geometry during landward migration. The model also demonstrates the potential for discontinuous shoreline retreat, with alternating periods of barrier stability and rapid migration, even for constant rates of sea-level rise. Anthropic activities can strongly interact with these behaviors. In particular, considering only cross-shore processes, beach nourishment activities widen the beach and can affect shoreface fluxes, and dune building, which curtails the overwash process, can potentially enhance barrier drowning by reducing overwash fluxes. Furthermore, coastal protection activities of adjacent communities or even individual property holders can be uncoordinated or coordinated, with their effects coupled along the coast through coastal reorientation and gradients in alongshore sediment transport. In the coordinated framework, owners act in concert to alter the barrier based upon community benefits, whereas in the non-coordinated framework owners alter only their own property. Another important role in management is the perception of future sea-level-rise-associated losses—communities manage their coast differently depending on their adopted forecast for sea-level rise. We find that coordinated behavior coupled with natural processes can substantially affect the drowning scenarios from the individual decision-making process.

  1. Modeling Costal Zone Responses to Sea-Level Rise Using MoCCS: A Model of Complex Coastal System

    NASA Astrophysics Data System (ADS)

    Dai, H.; Niedoroda, A. W.; Ye, M.; Saha, B.; Donoghue, J. F.; Kish, S.

    2011-12-01

    Large-scale coastal systems consisting of several morphological components (e.g. beach, surf zone, dune, inlet, shoreface, and estuary) can be expected to exhibit complex and interacting responses to changes in the rate of sea level rise and storm climate. We have developed a numerical model of complex coastal systems (MoCCS), derived from earlier morphdynamic models, to represent the large-scale time-averaged physical processes that shape each component and govern the component interactions. These control the ongoing evolution of the barrier islands, beach and dune erosion, shoal formation and sand withdrawal at tidal inlets, depth changes in the bay, and changes in storm flooding. The model has been used to study the response of an idealized coastal system with physical characteristics and storm climatology similar to Santa Rosa Island on the Florida Panhandle coast. Five SLR scenarios have been used, covering the range of recently published projections for the next century. Each scenario has been input with a constant and then a time-varying storm climate. The results indicate that substantial increases in the rate of beach erosion are largely due to increased sand transfer to inlet shoals with increased rates of sea level rise. The barrier island undergoes cycles of dune destruction and regrowth, leading to sand deposition. This largely maintains island freeboard but is progressively less effective in offsetting bayside inundation and marsh habitat loss at accelerated sea level rise rates.

  2. The effects of crab bioturbation on Mid-Atlantic saltmarsh tidal creek extension: Geotechnical and geochemical changes

    NASA Astrophysics Data System (ADS)

    Wilson, C. A.; Hughes, Z. J.; FitzGerald, D. M.

    2012-06-01

    Understanding saltmarsh response to sea-level rise is critical for management and mitigation of these valuable coastal areas. However, comprehensive field studies of sea-level driven changes to the marsh landscape that consider combined biological, geological, and hydrodynamic interactions are rare. This study analyzes ecophysical feedbacks from crab colonization and bioturbation on geotechnical and geochemical properties of the soil in a Mid-Atlantic Spartina alterniflora saltmarsh. The study area is within a marsh that is experiencing creek extension due to accelerated sea-level rise and increasing periods of marsh inundation. Measurements of redox potential, pH, belowground biomass, and soil strength reveal that intense crab bioturbation by Sesarma reticulatum significantly changes the biogeochemical properties of the soil. Oxidized conditions in the upper 10-15 cm of the marsh induced by burrowing causes enhanced degradation of S. alterniflora belowground biomass (roots and rhizomes, reduction from 1.9 ± 0.6 kg/m2 to 1.1 ± 0.4 kg/m2), which reduces the structural integrity of the soil. This process ultimately increases the erosion potential of the sediment in creek head areas (documented by a reduction in shear strength from 10 ± 7 kPa to 2 ± 1 kPa), facilitating creek extension in order to accommodate tidal flows. The pervasiveness of similar tidal creek morphology in southeast Atlantic saltmarshes suggests this process is occurring in other marshes with a moderate tidal range undergoing sea-level rise.

  3. Hematology of southern Beaufort Sea polar bears (2005-2007): biomarker for an Arctic ecosystem health sentinel.

    PubMed

    Kirk, Cassandra M; Amstrup, Steven; Swor, Rhonda; Holcomb, Darce; O'Hara, Todd M

    2010-09-01

    Declines in sea-ice habitats have resulted in declining stature, productivity, and survival of polar bears in some regions. With continuing sea-ice declines, negative population effects are projected to expand throughout the polar bear's range. Precise causes of diminished polar bear life history performance are unknown, however, climate and sea-ice condition change are expected to adversely impact polar bear (Ursus maritimus) health and population dynamics. As apex predators in the Arctic, polar bears integrate the status of lower trophic levels and are therefore sentinels of ecosystem health. Arctic residents feed at the apex of the ecosystem, thus polar bears can serve as indicators of human health in the Arctic. Despite their value as indicators of ecosystem welfare, population-level health data for U.S. polar bears are lacking. We present hematological reference ranges for southern Beaufort Sea polar bears. Hematological parameters in southern Beaufort Sea polar bears varied by age, geographic location, and reproductive status. Total leukocytes, lymphocytes, monocytes, eosinophils, and serum immunoglobulin G were significantly greater in males than females. These measures were greater in nonlactating females ages ≥5, than lactating adult females ages ≥5, suggesting that females encumbered by young may be less resilient to new immune system challenges that may accompany ongoing climate change. Hematological values established here provide a necessary baseline for anticipated changes in health as arctic temperatures warm and sea-ice declines accelerate. Data suggest that females with dependent young may be most vulnerable to these changes and should therefore be a targeted cohort for monitoring in this sentinel.

  4. Continuous Wavelet Transform Analysis of Acceleration Signals Measured from a Wave Buoy

    PubMed Central

    Chuang, Laurence Zsu-Hsin; Wu, Li-Chung; Wang, Jong-Hao

    2013-01-01

    Accelerometers, which can be installed inside a floating platform on the sea, are among the most commonly used sensors for operational ocean wave measurements. To examine the non-stationary features of ocean waves, this study was conducted to derive a wavelet spectrum of ocean waves and to synthesize sea surface elevations from vertical acceleration signals of a wave buoy through the continuous wavelet transform theory. The short-time wave features can be revealed by simultaneously examining the wavelet spectrum and the synthetic sea surface elevations. The in situ wave signals were applied to verify the practicality of the wavelet-based algorithm. We confirm that the spectral leakage and the noise at very-low-frequency bins influenced the accuracies of the estimated wavelet spectrum and the synthetic sea surface elevations. The appropriate thresholds of these two factors were explored. To study the short-time wave features from the wave records, the acceleration signals recorded from an accelerometer inside a discus wave buoy are analysed. The results from the wavelet spectrum show the evidence of short-time nonlinear wave events. Our study also reveals that more surface profiles with higher vertical asymmetry can be found from short-time nonlinear wave with stronger harmonic spectral peak. Finally, we conclude that the algorithms of continuous wavelet transform are practical for revealing the short-time wave features of the buoy acceleration signals. PMID:23966188

  5. Global Climate Change Consequences Changing the Middle Sea Level in the Brazilian Coast: Impacts on Ceará State

    NASA Astrophysics Data System (ADS)

    Lacerda, E. G.; Pires, L. B. M.; Pinto, V. K. E.

    2015-12-01

    Since the Industrial Revolution, man started to generate increasing amounts of waste and pollutants, which on a large scale in the long term is causing a series of climate change consequences, both globally as well as locally. One of the many effects of these changes has been reflected in the ocean levels, depending on various factors. Thus, the population living in coastal areas suffers from the negative effects of the advancement of ocean waters. The coast of northeastern Brazil is an example of this, especially the state of Ceará coast. The state of Ceará has 573 km of coastline, a region that has suffered extensive erosion, in which the Middle Sea Level (MSL) changes exert a significant influence. The coastal plain is a strip of land of small extent, with an average width of 2.5 km, formed depending on the availability of high sediment stocks provided through the action of wind, marine, or river processes, individually in combination with each other. In many beaches it is observed that the strip of beach is narrow due to the presence of topographic elevations carved into sharp cliffs. Between periods of high tide and low tide, often rocky beach features are observed that have recently formed. The waves control the stretches of beach which are mostly sandy. This paper presents a survey about the evidence already apparent on the rise in the MSL and correlates it with the advance of the sea on the coast of Ceará, as well as assesses the possible consequences of this process. Therefore, a literature search was conducted in relevant scientific publications. The data used are from the station "Global Sea Level Observing System - GLOSS" which maintains a tide gauge installed in Ceará in Fortaleza. The analyses show that the phenomenon has caused a lot of inconvenience to the people, streets have disappeared, as well as several buildings located along the coast. The sea advances destroyed beaches and have promoted an accelerated level of erosion, changing the landscape of the region significantly. Data collected between 1996 and 2006 show that the sea height demonstrated a significant increase, especially from 2000. Keywords: Climate Change, Middle Sea Level, Ceará Coastline.Since the Industrial Revolution, man started to generate increasing amounts of waste and pollutants, which on a large scale in the long term is causing a series of climate change consequences, both globally as well as locally. One of the many effects of these changes has been reflected in the ocean levels, depending on various factors. Thus, the population living in coastal areas suffers from the negative effects of the advancement of ocean waters. The coast of northeastern Brazil is an example of this, especially the state of Ceará coast. The state of Ceará has 573 km of coastline, a region that has suffered extensive erosion, in which the Middle Sea Level (MSL) changes exert a significant influence. The coastal plain is a strip of land of small extent, with an average width of 2.5 km, formed depending on the availability of high sediment stocks provided through the action of wind, marine, or river processes, individually in combination with each other. In many beaches it is observed that the strip of beach is narrow due to the presence of topographic elevations carved into sharp cliffs. Between periods of high tide and low tide, often rocky beach features are observed that have recently formed. The waves control the stretches of beach which are mostly sandy. This paper presents a survey about the evidence already apparent on the rise in the MSL and correlates it with the advance of the sea on the coast of Ceará, as well as assesses the possible consequences of this process. Therefore, a literature search was conducted in relevant scientific publications. The data used are from the station "Global Sea Level Observing System - GLOSS" which maintains a tide gauge installed in Ceará in Fortaleza. The analyses show that the phenomenon has caused a lot of inconvenience to the people, streets have disappeared, as well as several buildings located along the coast. The sea advances destroyed beaches and have promoted an accelerated level of erosion, changing the landscape of the region significantly. Data collected between 1996 and 2006 show that the sea height demonstrated a significant increase, especially from 2000. Keywords: Climate Change, Middle Sea Level, Ceará Coastline.

  6. Rift in Antarctic Glacier: a Unique Chance to Study Ice Shelf Retreat

    NASA Technical Reports Server (NTRS)

    Howat, Ian M.; Jezek, Ken; Studinger, Michael; Macgregor, Joseph A.; Paden, John; Floricioiu, Dana; Russell, Rob; Linkswiler, Matt; Dominguez, Roseanne T.

    2012-01-01

    It happened again, but this time it was caught in the act. During the last week of September 2011 a large transverse rift developed across thefloating terminus of West Antarcticas PineIsland Glacier, less than 5 years after its lastlarge calving event, in 2007 (Figure 1). PineIsland Glaciers retreat has accelerated substantiallyin the past 2 decades, and it is nowlosing 50 gigatons of ice per year, or roughly 25 of Antarcticas total annual contributionto sea level rise [Rignot et al., 2008]. The glaciers recent accelerated retreat is likely triggered by ocean warming and increased submarine melting. As such, it is of significant interest to glaciologists and of heightened societal relevance.

  7. Saugus River and Tributaries, Lynn, Malden, Revere and Saugus, Massachusetts. Flood Damage Reduction. Volume 7. Appendix J. Feasibility Study and EIS/EIR Comments and Responses. Section A.

    DTIC Science & Technology

    1989-12-01

    project nor affect significantly the projects econmic efficiency. These effects are described in the Feasibility Report, EIS/EIR and suportin...modifications beca necesary. To insure the econmic efficiency of the project using the accelerated rise rate in NRc Case III, the Regional Project was...is a str econmic candidate. 23 Table 14 RICtOALL P3ECr ECONaMEC FEABILIY WI H SEA LEVEL RISE (1988 Price Level) Oticon 3 Historical NRC Project

  8. The Immediacy of Arctic Change: New 2016-17 Extremes

    NASA Astrophysics Data System (ADS)

    Overland, J. E.; Kattsov, V.; Olsen, M. S.; Walsh, J. E.

    2017-12-01

    Additional recent observations add increased certainty to cryospheric Arctic changes, and trends are very likely to continue past mid-century. Observed and projected Arctic changes are large compared with those at mid-latitude, driven by greenhouse gas (GHG) increase and Arctic feedbacks. Sea ice has undergone a regime shift from mostly multi-year to first-year sea ice, and summer sea ice is likely to be esentially gone within the next few decades. Spring snow cover is decreasing, and Arctic greening is increasing, although somewhat variable. There are potential emerging impacts of Arctic change on mid-latitude weather and sea level rise. Model assessments under different future GHG concentration scenarios show that stabilizing global temperatures near 2° C compliant with Paris agreement could slow, but not halt further major changes in the Arctic before mid- 21st century; foreseeable Arctic temperature changes are 4-5° C for fall/winter by 2040-2050. Substantial and immediate mitigation reductions in GHG emissions (at least at the level of the RCP 4.5 emission scenario) should reduce the risk of further change for most cryospheric components after mid-century, and reduce the likelyhood of potential runaway loss of ice sheets and glaciers and their impact on sea level rise. Extreme winter 2016 Arctic temperatures and a large winter 2017 sea ice deficit demonstrate contemporary climate states outside the envelope of previous experience. While there is confidence in the sign of Arctic changes, recent observations increase uncertainty in projecting the rate for future real world scenarios. Do events return to mean conditions, represent irreversible changes, or contribute to accelerating trends beyond those provided by climate models? Such questions highlight the need for improved quantitative prediction of the cryosphere and its global impacts, crucial for adaptation actions and risk management at local to global scales.

  9. Short communication: Massive erosion in monsoonal central India linked to late Holocene land cover degradation

    NASA Astrophysics Data System (ADS)

    Giosan, Liviu; Ponton, Camilo; Usman, Muhammed; Blusztajn, Jerzy; Fuller, Dorian Q.; Galy, Valier; Haghipour, Negar; Johnson, Joel E.; McIntyre, Cameron; Wacker, Lukas; Eglinton, Timothy I.

    2017-12-01

    Soil erosion plays a crucial role in transferring sediment and carbon from land to sea, yet little is known about the rhythm and rates of soil erosion prior to the most recent few centuries. Here we reconstruct a Holocene erosional history from central India, as integrated by the Godavari River in a sediment core from the Bay of Bengal. We quantify terrigenous fluxes, fingerprint sources for the lithogenic fraction and assess the age of the exported terrigenous carbon. Taken together, our data show that the monsoon decline in the late Holocene significantly increased soil erosion and the age of exported organic carbon. This acceleration of natural erosion was later exacerbated by the Neolithic adoption and Iron Age extensification of agriculture on the Deccan Plateau. Despite a constantly elevated sea level since the middle Holocene, this erosion acceleration led to a rapid growth of the continental margin. We conclude that in monsoon conditions aridity boosts rather than suppresses sediment and carbon export, acting as a monsoon erosional pump modulated by land cover conditions.

  10. Coral ages and island subsidence, Hilo drill hole

    USGS Publications Warehouse

    Moore, J.G.; Ingram, B.L.; Ludwig, K. R.; Clague, D.A.

    1996-01-01

    A 25.8-m-thick sedimentary section containing coral fragments occurs directly below a surface lava flow (the ???1340 year old Panaewa lava flow) at the Hilo drill hole. Ten coral samples from this section dated by accelerator mass spectrometry (AMS) radiocarbon and five by thermal infrared multispectral scanner (TIMS) 230Th/U methods show good agreement. The calcareous unit is 9790 years old at the bottom and 1690 years old at the top and was deposited in a shallow lagoon behind an actively growing reef. This sedimentary unit is underlain by a 34-m-thick lava flow which in turn overlies a thin volcaniclastic silt with coral fragments that yield a single 14C date of 10,340 years. The age-depth relations of the dated samples can be compared with proposed eustatic sea level curves after allowance for island subsidence is taken. Island subsidence averages 2.2 mm/yr for the last 47 years based on measurements from a tide gage near the drill hole or 2.5-2.6 mm/yr for the last 500,000 years based on the ages and depths of a series of drowned coral reefs offshore from west Hawaii. The age-depth measurements of coral fragments are more consistent with eustatic sea levels as determined by coral dating at Barbados and Albrolhos Islands than those based on oxygen isotopic data from deep sea cores. The Panaewa lava flow entered a lagoon underlain by coral debris and covered the drill site with 30.9 m of lava of which 11 m was above sea level. This surface has now subsided to 4.2 m above sea level, but it demonstrates how a modern lava flow entering Hilo Bay would not only change the coastline but could extensively modify the offshore shelf.

  11. Late Holocene paleoseismicity, tsunamis and relative sea- level changes along the south-central Cascadia subduction zone, southern Oregon, United States of America

    NASA Astrophysics Data System (ADS)

    Witter, Robert Carleton

    1999-10-01

    This dissertation investigates stratigraphic evidence for great (M w >= 8) earthquakes, tsunamis and relative sea-level change at three coastal sites above the Cascadia subduction zone (CSZ). Accelerator mass spectrometry radiocarbon analyses, diatom analyses and vibracoring techniques were employed. Euchre Creek marsh stratigraphic sequences contain four sand beds deposited by extreme storm waves within the last 600 years and a tsunami ~300 years ago. A 150- year recurrence interval for sand deposition compared to an average recurrence interval of 500-540 years for great Cascadia, earthquakes precludes local tsunamis that accompany Cascadia earthquakes as the only candidate depositional mechanism for the sand beds. Alternatively, magnitude-frequency analyses of extreme ocean levels generated during El Niño years suggest that storm- wave runup is a more likely mechanism for sand deposition in washover settings than either locally or remotely generated tsunamis. Late Holocene stratigraphic sequences at the Coquille River estuary provide a ~6600-year record of twelve great Cascadia earthquakes and attendant tsunamis in southern Oregon. A relative sea-level history chronicles repeated sudden expansion followed by gradual emergence of the Coquille estuary in response to the earthquake cycle. The average earthquake-recurrence interval for the central CSZ (~570-590 yrs) overlaps similar estimates for northern Oregon estuaries. In contrast, more inferred earthquakes recorded at Willapa and Humboldt Bays in the last ~2000 years compared to the earthquake record at Coquille suggest that segmented rupture of the CSZ occurs. Late Holocene (since 6.3 ka) relative sea-level data generated within the Coquille estuary allow 20 m of vertical deformation across the Coquille anticline in the last 80 ky. Contrasting relative sea-level histories in southern Oregon provide evidence for late Holocene contraction on upper-plate anticlines. Two relative sea-level curves, 35 km apart, show 0.5-0.6 m/ka difference in uplift rate, although both sites demonstrate long-term tectonic uplift. Upper-plate structures above the central CSZ probably deform during megathrust events. The Cape Blanco and Coquille anticlines overlie a candidate segment boundary because they separate subduction zone segments with different earthquake histories. This dissertation includes co-authored material.

  12. Observations reveal external driver for Arctic sea-ice retreat

    NASA Astrophysics Data System (ADS)

    Notz, Dirk; Marotzke, Jochem

    2012-04-01

    The very low summer extent of Arctic sea ice that has been observed in recent years is often casually interpreted as an early-warning sign of anthropogenic global warming. For examining the validity of this claim, previously IPCC model simulations have been used. Here, we focus on the available observational record to examine if this record allows us to identify either internal variability, self-acceleration, or a specific external forcing as the main driver for the observed sea-ice retreat. We find that the available observations are sufficient to virtually exclude internal variability and self-acceleration as an explanation for the observed long-term trend, clustering, and magnitude of recent sea-ice minima. Instead, the recent retreat is well described by the superposition of an externally forced linear trend and internal variability. For the externally forced trend, we find a physically plausible strong correlation only with increasing atmospheric CO2 concentration. Our results hence show that the observed evolution of Arctic sea-ice extent is consistent with the claim that virtually certainly the impact of an anthropogenic climate change is observable in Arctic sea ice already today.

  13. Temperature sensitivity of organic-matter decay in tidal marshes

    USGS Publications Warehouse

    Kirwan, Matthew L.; Guntenspergen, Glenn R.; Langley, J.A.

    2014-01-01

    Approximately half of marine carbon sequestration takes place in coastal wetlands, including tidal marshes, where organic matter contributes to soil elevation and ecosystem persistence in the face of sea-level rise. The long-term viability of marshes and their carbon pools depends, in part, on how the balance between productivity and decay responds to climate change. Here, we report the sensitivity of labile soil organic-matter decay in tidal marshes to seasonal and latitudinal variations in temperature measured over a 3-year period. We find a moderate increase in decay rate at warmer temperatures (3-6% per °C, Q10 = 1.3-1.5). Despite the profound differences between microbial metabolism in wetlands and uplands, our results indicate a strong conservation of temperature sensitivity. Moreover, simple comparisons with organic-matter production suggest that elevated atmospheric CO2 and warmer temperatures will accelerate carbon accumulation in marsh soils, and potentially enhance their ability to survive sea-level rise.

  14. Building a Community Framework for Adaptation to Sea Level Rise and Inundation

    NASA Astrophysics Data System (ADS)

    Culver, M. E.; Schubel, J.; Davidson, M. A.; Haines, J.

    2010-12-01

    Sea level rise and inundation pose a substantial risk to many coastal communities, and the risk is projected to increase because of continued development, changes in the frequency and intensity of inundation events, and acceleration in the rate of sea-level rise. Calls for action at all levels acknowledge that a viable response must engage federal, state and local expertise, perspectives, and resources in a coordinated and collaborative effort. Representatives from a variety of these agencies and organizations have developed a shared framework to help coastal communities structure and facilitate community-wide adaptation processes and to help agencies determine where investments should be made to enable states and local governments to assess impacts and initiate adaptation strategies over the next decade. For sea level rise planning and implementation, the requirements for high-quality data and information are vast and the availability is limited. Participants stressed the importance of data interoperability to ensure that users are able to apply data from a variety of sources and to improve availability and confidence in the data. Participants were able to prioritize the following six categories of data needed to support future sea level rise planning and implementation: - Data to understand land forms and where and how water will flow - Monitoring data and environmental drivers - Consistent sea level rise scenarios and projections across agencies to support local planning - Data to characterize vulnerabilities and impacts of sea level rise - Community characteristics - Legal frameworks and administrative structure. To develop a meaningful and effective sea level rise adaptation plan, state and local planners must understand how the availability, scale, and uncertainty of these types of data will impact new guidelines or adaptation measures. The tools necessary to carry-out the adaptation planning process need to be understood in terms of data requirements, assumptions of the method, and the reliability and utility of the outputs. This type of information will assist the community in choosing among the available options. Communities have experience with storm and hazardous events, and the response typically is to return to pre-event conditions. With sea level rise, there will need to be a shift in perception and response from storm events, and the people must collectively arrive at a new vision for their community in light of a changing environment. Understanding the possible scenarios and the uncertainty or probability of those scenarios is a critical component in the adaptation process. Although there is a broad constituency that does not know the issue well, many communities are savvy about the impacts of sea level rise. Armed with the available information and resources and an understanding of the uncertainties, many communities are ready to take action. Successful adaptation planning will require that all sectors — local, state, federal, academic, nongovernmental, and the private sector — work together throughout the process to provide local communities with resources, scientific and political support.

  15. Simulation of the Deployment and Orbit Operations of the NPS-SCAT CubeSat

    DTIC Science & Technology

    2008-04-01

    Vehicle EPF Extended Payload Fairings ESPA EELV Secondary Payload Adapter g Gravitational acceleration constant at sea level on the Earth GSO...Cell Measurement System SOC State Of Charge SPL Secondary Payload SRB Solid Rocket Booster XEPF Extended EPF xvii ACKNOWLEDGMENTS...incorporates the flight proven 4 m diameter Atlas V 12.0 m Large Payload Fairing (LPF), the 12.9 m Extended Payload Fairing ( EPF ), or the 13.8 m

  16. Red Maca (Lepidium meyenii), a Plant from the Peruvian Highlands, Promotes Skin Wound Healing at Sea Level and at High Altitude in Adult Male Mice.

    PubMed

    Nuñez, Denisse; Olavegoya, Paola; Gonzales, Gustavo F; Gonzales-Castañeda, Cynthia

    2017-12-01

    Nuñez, Denisse, Paola Olavegoya, Gustavo F. Gonzales, and Cynthia Gonzales-Castañeda. Red maca (Lepidium meyenii), a plant from the Peruvian highlands, promotes skin wound healing at sea level and at high altitude in adult male mice. High Alt Med Biol 18:373-383, 2017.-Wound healing consists of three simultaneous phases: inflammation, proliferation, and remodeling. Previous studies suggest that there is a delay in the healing process in high altitude, mainly due to alterations in the inflammatory phase. Maca (Lepidium meyenii) is a Peruvian plant with diverse biological properties, such as the ability to protect the skin from inflammatory lesions caused by ultraviolet radiation, as well as its antioxidant and immunomodulatory properties. The aim of this study was to determine the effect of high altitude on tissue repair and the effect of the topical administration of the spray-dried extract of red maca (RM) in tissue repair. Studies were conducted in male Balb/c mice at sea level and high altitude. Lesions were inflicted through a 10 mm-diameter excisional wound in the skin dorsal surface. Treatments consisted of either (1) spray-dried RM extract or (2) vehicle (VH). Animals wounded at high altitude had a delayed healing rate and an increased wound width compared with those at sea level. Moreover, wounding at high altitude was associated with an increase in inflammatory cells. Treatment with RM accelerated wound closure, decreased the level of epidermal hyperplasia, and decreased the number of inflammatory cells at the wound site. In conclusion, RM at high altitude generate a positive effect on wound healing, decreasing the number of neutrophils and increasing the number of macrophages in the wound healing at day 7 postwounding. This phenomenon is not observed at sea level.

  17. The importance of vegetation change in the prediction of future tropical cyclone flood statistics

    NASA Astrophysics Data System (ADS)

    Irish, J. L.; Resio, D.; Bilskie, M. V.; Hagen, S. C.; Weiss, R.

    2015-12-01

    Global sea level rise is a near certainty over the next century (e.g., Stocker et al. 2013 [IPCC] and references therein). With sea level rise, coastal topography and land cover (hereafter "landscape") is expected to change and tropical cyclone flood hazard is expected to accelerate (e.g., Irish et al. 2010 [Ocean Eng], Woodruff et al. 2013 [Nature], Bilskie et al. 2014 [Geophys Res Lett], Ferreira et al. 2014 [Coast Eng], Passeri et al. 2015 [Nat Hazards]). Yet, the relative importance of sea-level rise induced landscape change on future tropical cyclone flood hazard assessment is not known. In this paper, idealized scenarios are used to evaluate the relative impact of one class of landscape change on future tropical cyclone extreme-value statistics in back-barrier regions: sea level rise induced vegetation migration and loss. The joint probability method with optimal sampling (JPM-OS) (Resio et al. 2009 [Nat Hazards]) with idealized surge response functions (e.g., Irish et al. 2009 [Nat Hazards]) is used to quantify the present-day and future flood hazard under various sea level rise scenarios. Results are evaluated in terms of their impact on the flood statistics (a) when projected flood elevations are included directly in the JPM analysis (Figure 1) and (b) when represented as additional uncertainty within the JPM integral (Resio et al. 2013 [Nat Hazards]), i.e., as random error. Findings are expected to aid in determining the level of effort required to reasonably account for future landscape change in hazard assessments, namely in determining when such processes are sufficiently captured by added uncertainty and when sea level rise induced vegetation changes must be considered dynamically, via detailed modeling initiatives. Acknowledgements: This material is based upon work supported by the National Science Foundation under Grant No. CMMI-1206271 and by the National Sea Grant College Program of the U.S. Department of Commerce's National Oceanic and Atmospheric Administration under Grant No. NA10OAR4170099. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of these organizations. The STOKES ARCC at the University of Central Florida provided computational resources for storm surge simulations.

  18. Estuarine wetland evolution including sea-level rise and infrastructure effects.

    NASA Astrophysics Data System (ADS)

    Rodriguez, Jose Fernando; Trivisonno, Franco; Rojas, Steven Sandi; Riccardi, Gerardo; Stenta, Hernan; Saco, Patricia Mabel

    2015-04-01

    Estuarine wetlands are an extremely valuable resource in terms of biotic diversity, flood attenuation, storm surge protection, groundwater recharge, filtering of surface flows and carbon sequestration. On a large scale the survival of these systems depends on the slope of the land and a balance between the rates of accretion and sea-level rise, but local man-made flow disturbances can have comparable effects. Climate change predictions for most of Australia include an accelerated sea level rise, which may challenge the survival of estuarine wetlands. Furthermore, coastal infrastructure poses an additional constraint on the adaptive capacity of these ecosystems. Numerical models are increasingly being used to assess wetland dynamics and to help manage some of these situations. We present results of a wetland evolution model that is based on computed values of hydroperiod and tidal range that drive vegetation preference. Our first application simulates the long term evolution of an Australian wetland heavily constricted by infrastructure that is undergoing the effects of predicted accelerated sea level rise. The wetland presents a vegetation zonation sequence mudflats - mangrove - saltmarsh from the seaward margin and up the topographic gradient but is also affected by compartmentalization due to internal road embankments and culverts that effectively attenuates tidal input to the upstream compartments. For this reason, the evolution model includes a 2D hydrodynamic module which is able to handle man-made flow controls and spatially varying roughness. It continually simulates tidal inputs into the wetland and computes annual values of hydroperiod and tidal range to update vegetation distribution based on preference to hydrodynamic conditions of the different vegetation types. It also computes soil accretion rates and updates roughness coefficient values according to evolving vegetation types. In order to explore in more detail the magnitude of flow attenuation due to roughness and its effects on the computation of tidal range and hydroperiod, we performed numerical experiments simulating floodplain flow on the side of a tidal creek using different roughness values. Even though the values of roughness that produce appreciable changes in hydroperiod and tidal range are relatively high, they are within the range expected for some of the wetland vegetation. Both applications of the model show that flow attenuation can play a major role in wetland hydrodynamics and that its effects must be considered when predicting wetland evolution under climate change scenarios, particularly in situations where existing infrastructure affects the flow.

  19. Averaged Propulsive Body Acceleration (APBA) Can Be Calculated from Biologging Tags That Incorporate Gyroscopes and Accelerometers to Estimate Swimming Speed, Hydrodynamic Drag and Energy Expenditure for Steller Sea Lions

    PubMed Central

    Trites, Andrew W.; Rosen, David A. S.; Potvin, Jean

    2016-01-01

    Forces due to propulsion should approximate forces due to hydrodynamic drag for animals horizontally swimming at a constant speed with negligible buoyancy forces. Propulsive forces should also correlate with energy expenditures associated with locomotion—an important cost of foraging. As such, biologging tags containing accelerometers are being used to generate proxies for animal energy expenditures despite being unable to distinguish rotational movements from linear movements. However, recent miniaturizations of gyroscopes offer the possibility of resolving this shortcoming and obtaining better estimates of body accelerations of swimming animals. We derived accelerations using gyroscope data for swimming Steller sea lions (Eumetopias jubatus), and determined how well the measured accelerations correlated with actual swimming speeds and with theoretical drag. We also compared dive averaged dynamic body acceleration estimates that incorporate gyroscope data, with the widely used Overall Dynamic Body Acceleration (ODBA) metric, which does not use gyroscope data. Four Steller sea lions equipped with biologging tags were trained to swim alongside a boat cruising at steady speeds in the range of 4 to 10 kph. At each speed, and for each dive, we computed a measure called Gyro-Informed Dynamic Acceleration (GIDA) using a method incorporating gyroscope data with accelerometer data. We derived a new metric—Averaged Propulsive Body Acceleration (APBA), which is the average gain in speed per flipper stroke divided by mean stroke cycle duration. Our results show that the gyro-based measure (APBA) is a better predictor of speed than ODBA. We also found that APBA can estimate average thrust production during a single stroke-glide cycle, and can be used to estimate energy expended during swimming. The gyroscope-derived methods we describe should be generally applicable in swimming animals where propulsive accelerations can be clearly identified in the signal—and they should also prove useful for dead-reckoning and improving estimates of energy expenditures from locomotion. PMID:27285467

  20. Discussion on common errors in analyzing sea level accelerations, solar trends and global warming

    NASA Astrophysics Data System (ADS)

    Scafetta, N.

    2013-05-01

    Herein I discuss common errors in applying regression models and wavelet filters used to analyze geophysical signals. I demonstrate that: (1) multidecadal natural oscillations (e.g. the quasi 60 yr Multidecadal Atlantic Oscillation (AMO), North Atlantic Oscillation (NAO) and Pacific Decadal Oscillation (PDO)) need to be taken into account for properly quantifying anomalous background accelerations in tide gauge records such as in New York City; (2) uncertainties and multicollinearity among climate forcing functions also prevent a proper evaluation of the solar contribution to the 20th century global surface temperature warming using overloaded linear regression models during the 1900-2000 period alone; (3) when periodic wavelet filters, which require that a record is pre-processed with a reflection methodology, are improperly applied to decompose non-stationary solar and climatic time series, Gibbs boundary artifacts emerge yielding misleading physical interpretations. By correcting these errors and using optimized regression models that reduce multicollinearity artifacts, I found the following results: (1) the relative sea level in New York City is not accelerating in an alarming way, and may increase by about 350 ± 30 mm from 2000 to 2100 instead of the previously projected values varying from 1130 ± 480 mm to 1550 ± 400 mm estimated using the methods proposed, e.g., by Sallenger Jr. et al. (2012) and Boon (2012), respectively; (2) the solar activity increase during the 20th century contributed at least about 50% of the 0.8 °C global warming observed during the 20th century instead of only 7-10% (e.g.: IPCC, 2007; Benestad and Schmidt, 2009; Lean and Rind, 2009; Rohde et al., 2013). The first result was obtained by using a quadratic polynomial function plus a 60 yr harmonic to fit a required 110 yr-long sea level record. The second result was obtained by using solar, volcano, greenhouse gases and aerosol constructors to fit modern paleoclimatic temperature reconstructions (e.g.: Moberg et al., 2005; Mann et al., 2008; Christiansen and Ljungqvist, 2012) since the Medieval Warm Period, which show a large millennial cycle that is well correlated to the millennial solar cycle (e.g.: Kirkby, 2007; Scafetta and West, 2007; Scafetta, 2012c). These findings stress the importance of natural oscillations and of the sun to properly interpret climatic changes.

  1. Hematology of southern Beaufort Sea polar bears (2005-2007): Biomarker for an arctic ecosystem health sentinel

    USGS Publications Warehouse

    Kirk, Cassandra M.; Amstrup, Steven C.; Swor, Rhonda; Holcomb, Darce; O'Hara, T. M.

    2010-01-01

    Declines in sea-ice habitats have resulted in declining stature, productivity, and survival of polar bears in some regions. With continuing sea-ice declines, negative population effects are projected to expand throughout the polar bear's range. Precise causes of diminished polar bear life history performance are unknown, however, climate and sea-ice condition change are expected to adversely impact polar bear (Ursus maritimus) health and population dynamics. As apex predators in the Arctic, polar bears integrate the status of lower trophic levels and are therefore sentinels of ecosystem health. Arctic residents feed at the apex of the ecosystem, thus polar bears can serve as indicators of human health in the Arctic. Despite their value as indicators of ecosystem welfare, population-level health data for U.S. polar bears are lacking. We present hematological reference ranges for southern Beaufort Sea polar bears. Hematological parameters in southern Beaufort Sea polar bears varied by age, geographic location, and reproductive status. Total leukocytes, lymphocytes, monocytes, eosinophils, and serum immunoglobulin G were significantly greater in males than females. These measures were greater in nonlactating females ages ???5, than lactating adult females ages ???5, suggesting that females encumbered by young may be less resilient to new immune system challenges that may accompany ongoing climate change. Hematological values established here provide a necessary baseline for anticipated changes in health as arctic temperatures warm and sea-ice declines accelerate. Data suggest that females with dependent young may be most vulnerable to these changes and should therefore be a targeted cohort for monitoring in this sentinel. ?? 2010 International Association for Ecology and Health.

  2. Effects of altitude on the energetics of human best performances in 100 m running: a theoretical analysis.

    PubMed

    Arsac, Laurent M

    2002-05-01

    The present study was designed to investigate the role of reduced air density on the energetics of 100 m running at altitude. A mathematical supply-demand model was used where supply had two components, aerobic and anaerobic and demand had three components: the cost of overcoming non-aerodynamic forces (C(na)), the cost of overcoming air resistance (C(aero)), and the cost due to changes in the runner's kinetic energy (C(kin)). Actual instantaneous-speed curves recorded in 100 m world champions were modelled at sea level. Then I calculated improvements in 100 m running times and changes in the components of the energy cost with changes in altitude from 0 m to 4,000 m. For the 100 m world championship for men, the model predicted times of 9.88 s at sea level, 9.80 s at 1,000 m, 9.73 s at 2,000 m, 9.64 s at 4,000 m and 9.15 s in the hypothetical situation where the air resistance was nil. In the counterpart for women the corresponding times were 10.85 s, 10.76 s, 10.70 s, 10.60 s and 10.04 s. The C(aero) was 12%-13% of demand at sea level, 10%-11% at 2,000 m and 8%-9% at 4,000 m. When C(aero) decreased this led to better performance by making more energy available for acceleration. Accordingly, C(kin) increased from 20%-24% at sea level to 23%-27% at 4,000 m. There was no effect of altitude specific to body size.

  3. National Security and the Accelerating Risks of Climate Change

    DTIC Science & Technology

    2014-05-01

    future. A second “wild card” is the ability of the ocean to adapt to increased acidification . The oceans are the world’s largest carbon “sinks,” as they...support systems The projected impacts of climate change—heat waves, intense rainfall, floods and droughts, rising sea levels, more acidic oceans , and...and they had never seen this. That, to me, was pretty profound.” Titley and other scientists say overall ocean temperatures have responded more

  4. Gamma rays made on Earth have unexpectedly high energies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, Johanna

    Terrestrial gamma-ray flashes (TGFs) are the source of the highest-energy nonanthropogenic photons produced on Earth. Associated with thunder-storms - and in fact, with individual lightning discharges - they are presumed to be the bremsstrahlung produced when relativistic electrons, accelerated by the storms' strong electric fields, collide with air molecules some 10-20 km above sea level. The TGFs last up to a few milliseconds and contain photons with energies on the order of MeV.

  5. A model ensemble for projecting multi‐decadal coastal cliff retreat during the 21st century

    USGS Publications Warehouse

    Limber, Patrick; Barnard, Patrick; Vitousek, Sean; Erikson, Li

    2018-01-01

    Sea cliff retreat rates are expected to accelerate with rising sea levels during the 21st century. Here we develop an approach for a multi‐model ensemble that efficiently projects time‐averaged sea cliff retreat over multi‐decadal time scales and large (>50 km) spatial scales. The ensemble consists of five simple 1‐D models adapted from the literature that relate sea cliff retreat to wave impacts, sea level rise (SLR), historical cliff behavior, and cross‐shore profile geometry. Ensemble predictions are based on Monte Carlo simulations of each individual model, which account for the uncertainty of model parameters. The consensus of the individual models also weights uncertainty, such that uncertainty is greater when predictions from different models do not agree. A calibrated, but unvalidated, ensemble was applied to the 475 km‐long coastline of Southern California (USA), with 4 SLR scenarios of 0.5, 0.93, 1.5, and 2 m by 2100. Results suggest that future retreat rates could increase relative to mean historical rates by more than two‐fold for the higher SLR scenarios, causing an average total land loss of 19 – 41 m by 2100. However, model uncertainty ranges from +/‐ 5 – 15 m, reflecting the inherent difficulties of projecting cliff retreat over multiple decades. To enhance ensemble performance, future work could include weighting each model by its skill in matching observations in different morphological settings

  6. Forecasting consequences of changing sea ice availability for Pacific walruses

    USGS Publications Warehouse

    Udevitz, Mark S.; Jay, Chadwick V.; Taylor, Rebecca; Fischbach, Anthony S.; Beatty, William S.; Noren, Shawn R.

    2017-01-01

    The accelerating rate of anthropogenic alteration and disturbance of environments has increased the need for forecasting effects of environmental change on fish and wildlife populations. Models linking projections of environmental change with behavioral responses and bioenergetic effects can provide a basis for these forecasts. There is particular interest in forecasting effects of projected reductions in sea ice availability on Pacific walruses (Odobenus rosmarus divergens). Declining extent of summer sea ice in the Chukchi Sea has caused Pacific walruses to increase use of coastal haulouts and decrease use of more productive offshore feeding areas. Such climate-induced changes in distribution and behavior could ultimately affect the status of the population. We developed behavioral models to relate changes in sea ice availability to adult female walrus movements and activity levels, and adapted previously developed bioenergetics models to relate those activity levels to energy requirements and the ability to meet those requirements. We then linked these models to general circulation model projections of future ice availability to forecast autumn body condition for female walruses during mid- and late-century time periods. Our results suggest that as sea ice becomes less available in the Chukchi Sea, female walruses will spend more time in the southwestern region of that sea, less time resting, and less time foraging. Median forecasted autumn body masses were 7–12% lower in future scenarios than during recent times, but posterior distributions broadly overlapped and median forecasted seasonal mass losses (15–34%) were comparable to seasonal mass losses routinely experienced by other pinnipeds. These seasonal reductions in body condition would be unlikely to result in demographic effects, but if walruses were unable to rebuild endogenous reserves while wintering in the Bering Sea, cumulative effects could have implications for reproduction and survival, ultimately affecting the status of the Pacific walrus population. Our approach provides a general framework for forecasting consequences of the broad range of environmental changes and anthropogenic disturbances that may affect bioenergetics through behavioral responses or changes in prey availability.

  7. Predicting the persistence of coastal wetlands to global change stressors

    USGS Publications Warehouse

    Guntenspergen, G.; McKee, K.; Cahoon, D.; Grace, J.; Megonigal, P.

    2006-01-01

    Despite progress toward understanding the response of coastal wetlands to increases in relative sea-level rise and an improved understanding of the effect of elevated CO2 on plant species allocation patterns, we are limited in our ability to predict the response of coastal wetlands to the effects associated with global change. Static simulations of the response of coastal wetlands to sea-level rise using LIDAR and GIS lack the biological and physical feedback mechanisms present in such systems. Evidence from current research suggests that biotic processes are likely to have a major influence on marsh vulnerability to future accelerated rates of sea-level rise and the influence of biotic processes likely varies depending on hydrogeomorphic setting and external stressors. We have initiated a new research approach using a series of controlled mesocosm and field experiments, landscape scale studies, a comparative network of brackish coastal wetland monitoring sites and a suite of predictive models that address critical questions regarding the vulnerability of coastal brackish wetland systems to global change. Specifically, this research project evaluates the interaction of sea level rise and elevated CO2 concentrations with flooding, nutrient enrichment and disturbance effects. The study is organized in a hierarchical structure that links mesocosm, field, landscape and biogeographic levels so as to provide important new information that recognizes that coastal wetland systems respond to multiple interacting drivers and feedback effects controlling wetland surface elevation, habitat stability and ecosystem function. We also present a new statistical modelling technique (Structural Equation Modelling) that synthesizes and integrates our environmental and biotic measures in a predictive framework that forecasts ecosystem change and informs managers to consider adaptive shifts in strategies for the sustainable management of coastal wetlands.

  8. An Organochronology and Deep History of a North Carolina Tidal Marsh

    NASA Astrophysics Data System (ADS)

    Morris, J. T.; Kemp, A.; Horton, B.

    2016-12-01

    Tidal marshes have survived for millennia in a dynamic equilibrium with sea level. A record of their history can be found in the sediments underlying modern marshes. Since the industrial revolution the rate of relative sea-level rise has been increasing and the equilibrium is changing. To reconstruct the history of these marshes we analyzed a 1000 year record of soil organic matter content (SOM) from Tump Point, Cedar Island, North Carolina. SOM concentration is a function of the standing biomass at the time of its creation, its subsequent preservation, and annual input of inorganic matter. SOM and inorganic concentration determine the soil bulk density and volume. The standing biomass, sediment organic matter input, and consequent carbon sequestration are functions of hydroperiod or, by proxy, the paleo-marsh elevation (PME) below mean high water. The annual input of inorganic matter is determined by the depth, duration, and frequency of flooding, concentration of total suspended solids (TSS), and settling velocity. Using an inverse modeling technique we were able to solve the Marsh Equilibrium Model (MEM) for PME and relative sea level that would have resulted in the observed SOM chronologies. The TSS was inferred from the accretion rates derived from dated core sections. Consistent with foraminifera-derived relative sea-level reconstructions, the MEM-derived rate of SLR doubled after 1700 CE compared with the previous 900 years, and the PME has declined and is approaching the lower limit of the vegetation. We estimate that C-sequestration prior to 1260 varied between 15 and 40 (average 30) g C m-2 y-1, but has since declined to a range of 5 to 33 (average 16) g C m-2 y-1. The decline in carbon sequestration can be attributed to the acceleration in rate of sea-level rise and is a trend that probably will characterize most tidal wetlands in the future.

  9. Coastal wetland adaptation to sea level rise: Quantifying potential for landward migration and coastal squeeze

    USGS Publications Warehouse

    Borchert, Sinéad M.; Osland, Michael J.; Enwright, Nicholas M.; Griffith, Kereen

    2018-01-01

    Coastal wetland ecosystems are expected to migrate landwards in response to rising seas. However, due to differences in topography and coastal urbanization, estuaries vary in their ability to accommodate migration. Low‐lying urban areas can constrain migration and lead to wetland loss (i.e. coastal squeeze), especially where existing wetlands cannot keep pace with rising seas via vertical adjustments. In many estuaries, there is a pressing need to identify landward migration corridors and better quantify the potential for landward migration and coastal squeeze.We quantified and compared the area available for landward migration of tidal saline wetlands and the area where urban development is expected to prevent migration for 39 estuaries along the wetland‐rich USA Gulf of Mexico coast. We did so under three sea level rise scenarios (0.5, 1.0, and 1.5 m by 2100).Within the region, the potential for wetland migration is highest within certain estuaries in Louisiana and southern Florida (e.g. Atchafalaya/Vermilion Bays, Mermentau River, Barataria Bay, and the North and South Ten Thousand Islands estuaries).The potential for coastal squeeze is highest in estuaries containing major metropolitan areas that extend into low‐lying lands. The Charlotte Harbor, Tampa Bay, and Crystal‐Pithlachascotee estuaries (Florida) have the highest amounts of urban land expected to constrain wetland migration. Urban barriers to migration are also high in the Galveston Bay (Texas) and Atchafalaya/Vermilion Bays (Louisiana) estuaries.Synthesis and applications. Coastal wetlands provide many ecosystem services that benefit human health and well‐being, including shoreline protection and fish and wildlife habitat. As the rate of sea level rise accelerates in response to climate change, coastal wetland resources could be lost in areas that lack space for landward migration. Migration corridors are particularly important in highly urbanized estuaries where, due to low‐lying coastal development, there is not space for wetlands to move and adapt to sea level rise. Future‐focused landscape conservation plans that incorporate the protection of wetland migration corridors can increase the adaptive capacity of these valuable ecosystems and simultaneously decrease the vulnerability of coastal human communities to the harmful effects of rising seas.

  10. Ocean impact on decadal Atlantic climate variability revealed by sea-level observations.

    PubMed

    McCarthy, Gerard D; Haigh, Ivan D; Hirschi, Joël J-M; Grist, Jeremy P; Smeed, David A

    2015-05-28

    Decadal variability is a notable feature of the Atlantic Ocean and the climate of the regions it influences. Prominently, this is manifested in the Atlantic Multidecadal Oscillation (AMO) in sea surface temperatures. Positive (negative) phases of the AMO coincide with warmer (colder) North Atlantic sea surface temperatures. The AMO is linked with decadal climate fluctuations, such as Indian and Sahel rainfall, European summer precipitation, Atlantic hurricanes and variations in global temperatures. It is widely believed that ocean circulation drives the phase changes of the AMO by controlling ocean heat content. However, there are no direct observations of ocean circulation of sufficient length to support this, leading to questions about whether the AMO is controlled from another source. Here we provide observational evidence of the widely hypothesized link between ocean circulation and the AMO. We take a new approach, using sea level along the east coast of the United States to estimate ocean circulation on decadal timescales. We show that ocean circulation responds to the first mode of Atlantic atmospheric forcing, the North Atlantic Oscillation, through circulation changes between the subtropical and subpolar gyres--the intergyre region. These circulation changes affect the decadal evolution of North Atlantic heat content and, consequently, the phases of the AMO. The Atlantic overturning circulation is declining and the AMO is moving to a negative phase. This may offer a brief respite from the persistent rise of global temperatures, but in the coupled system we describe, there are compensating effects. In this case, the negative AMO is associated with a continued acceleration of sea-level rise along the northeast coast of the United States.

  11. Elevated CO2 stimulates marsh elevation gain, counterbalancing sea-level rise

    USGS Publications Warehouse

    Langley, J.A.; McKee, K.L.; Cahoon, D.R.; Cherry, J.A.; Megonigala, J.P.

    2009-01-01

    Tidal wetlands experiencing increased rates of sea-level rise (SLR) must increase rates of soil elevation gain to avoid permanent conversion to open water. The maximal rate of SLR that these ecosystems can tolerate depends partly on mineral sediment deposition, but the accumulation of organic matter is equally important for many wetlands. Plant productivity drives organic matter dynamics and is sensitive to global change factors, such as rising atmospheric CO2 concentration. It remains unknown how global change will influence organic mechanisms that determine future tidal wetland viability. Here, we present experimental evidence that plant response to elevated atmospheric [CO2] stimulates biogenic mechanisms of elevation gain in a brackish marsh. Elevated CO2 (ambient + 340 ppm) accelerated soil elevation gain by 3.9 mm yr−1in this 2-year field study, an effect mediated by stimulation of below-ground plant productivity. Further, a companion greenhouse experiment revealed that the CO2 effect was enhanced under salinity and flooding conditions likely to accompany future SLR. Our results indicate that by stimulating biogenic contributions to marsh elevation, increases in the greenhouse gas, CO2, may paradoxically aid some coastal wetlands in counterbalancing rising seas.

  12. Elevated CO2 stimulates marsh elevation gain, counterbalancing sea-level rise.

    PubMed

    Langley, J Adam; McKee, Karen L; Cahoon, Donald R; Cherry, Julia A; Megonigal, J Patrick

    2009-04-14

    Tidal wetlands experiencing increased rates of sea-level rise (SLR) must increase rates of soil elevation gain to avoid permanent conversion to open water. The maximal rate of SLR that these ecosystems can tolerate depends partly on mineral sediment deposition, but the accumulation of organic matter is equally important for many wetlands. Plant productivity drives organic matter dynamics and is sensitive to global change factors, such as rising atmospheric CO(2) concentration. It remains unknown how global change will influence organic mechanisms that determine future tidal wetland viability. Here, we present experimental evidence that plant response to elevated atmospheric [CO(2)] stimulates biogenic mechanisms of elevation gain in a brackish marsh. Elevated CO(2) (ambient + 340 ppm) accelerated soil elevation gain by 3.9 mm yr(-1) in this 2-year field study, an effect mediated by stimulation of below-ground plant productivity. Further, a companion greenhouse experiment revealed that the CO(2) effect was enhanced under salinity and flooding conditions likely to accompany future SLR. Our results indicate that by stimulating biogenic contributions to marsh elevation, increases in the greenhouse gas, CO(2), may paradoxically aid some coastal wetlands in counterbalancing rising seas.

  13. Elevated CO2 stimulates marsh elevation gain, counterbalancing sea-level rise

    PubMed Central

    Langley, J. Adam; McKee, Karen L.; Cahoon, Donald R.; Cherry, Julia A.; Megonigal, J. Patrick

    2009-01-01

    Tidal wetlands experiencing increased rates of sea-level rise (SLR) must increase rates of soil elevation gain to avoid permanent conversion to open water. The maximal rate of SLR that these ecosystems can tolerate depends partly on mineral sediment deposition, but the accumulation of organic matter is equally important for many wetlands. Plant productivity drives organic matter dynamics and is sensitive to global change factors, such as rising atmospheric CO2 concentration. It remains unknown how global change will influence organic mechanisms that determine future tidal wetland viability. Here, we present experimental evidence that plant response to elevated atmospheric [CO2] stimulates biogenic mechanisms of elevation gain in a brackish marsh. Elevated CO2 (ambient + 340 ppm) accelerated soil elevation gain by 3.9 mm yr−1 in this 2-year field study, an effect mediated by stimulation of below-ground plant productivity. Further, a companion greenhouse experiment revealed that the CO2 effect was enhanced under salinity and flooding conditions likely to accompany future SLR. Our results indicate that by stimulating biogenic contributions to marsh elevation, increases in the greenhouse gas, CO2, may paradoxically aid some coastal wetlands in counterbalancing rising seas. PMID:19325121

  14. Accelerated warming of the Southern Ocean and its impacts on the hydrological cycle and sea ice.

    PubMed

    Liu, Jiping; Curry, Judith A

    2010-08-24

    The observed sea surface temperature in the Southern Ocean shows a substantial warming trend for the second half of the 20th century. Associated with the warming, there has been an enhanced atmospheric hydrological cycle in the Southern Ocean that results in an increase of the Antarctic sea ice for the past three decades through the reduced upward ocean heat transport and increased snowfall. The simulated sea surface temperature variability from two global coupled climate models for the second half of the 20th century is dominated by natural internal variability associated with the Antarctic Oscillation, suggesting that the models' internal variability is too strong, leading to a response to anthropogenic forcing that is too weak. With increased loading of greenhouse gases in the atmosphere through the 21st century, the models show an accelerated warming in the Southern Ocean, and indicate that anthropogenic forcing exceeds natural internal variability. The increased heating from below (ocean) and above (atmosphere) and increased liquid precipitation associated with the enhanced hydrological cycle results in a projected decline of the Antarctic sea ice.

  15. Temporal and Spatial Variability in Relative Sea Level from Narragansett Bay, Rhode Island (USA)

    NASA Astrophysics Data System (ADS)

    Halavik, B. T.; Engelhart, S. E.

    2017-12-01

    Geological reconstructions of past relative sea level (RSL) provide observations to compare to instrumental measurements of land-level changes (e.g., GPS) and to provide constraints on Glacial Isostatic Adjustment (GIA) models. Given the importance of the east coast of the United States to our understanding of GIA (due to its proximity and orientation to the collapsing forebulge of the Laurentide ice sheet), we set out to reconstruct the first compaction-free late Holocene RSL record for Rhode Island, USA. We sought to quantify and compare RSL changes at multiple sites within Rhode Island's Narragansett Bay. Previous work suggests Narragansett Bay may span a gradient in GIA. The small tidal range (0.9-1.4m) in Narragansett Bay permits the development of high-resolution sea-level index points that have the potential to identify small differences in RSL between sites. To address our research goals we collected a south to north transect of salt marsh basal peats from four Rhode Island salt marshes at Fox Hill, Nag Creek, Touisset, and Osamequin. We reconstructed paleomarsh elevations utilizing a multi-proxy approach using salt-marsh foraminifera and bulk sediment δ13C. Sample age was determined using accelerated mass spectrometry (AMS) radiocarbon of identifiable in-situ plant macrofossils. Basal peats in Rhode Island typically form within the tidal frame as indicated by foraminifera within close proximity (<5cm) to the underlying glacial deposits. Our current database of RSL consists of 30 new sea-level index points that document changes in RSL since 3200 cal yrs BP. At our southerly Fox Hill site, 12 sea-level index points demonstrate that RSL rose from -3.87 ± 0.24 m at 3,140 ± 69 cal yrs BP. Conversely, at the northerly Touisset site, six sea-level index points demonstrate that salt marshes developed later in this region with RSL rising from -1.65 ± 0.22 m at 1,246 ± 56 cal yrs BP. An additional 12 sea-level index points have been reconstructed from Osamequin and Nag Pond. A preliminary comparison of RSL records from Fox Hill, Nag Cove and Touisset demonstrates that, within error, they record similar RSL histories with late Holocene rates of rise of 1 mm/yr; significantly less than the 2.73 ± 0.16 mm/yr recorded by the Newport tide gauge (1930-2016). We compare our RSL reconstructions with a suite of GIA models for the region.

  16. Potential Influence of Arctic Sea Ice to the Inter-annual Variations of East Asian Spring Precipitation

    NASA Astrophysics Data System (ADS)

    Li, Xinxin; Wu, Zhiwei; Li, Yanjie

    2016-04-01

    Arctic sea ice (ASI) and its potential climatic impacts have received increasing attention during the past decades, yet the relevant mechanisms are far from being understood, particularly on how anomalous ASI affects climate in midlatitudes. The spring precipitation takes up as much as 30% of the annual total and has significant influences to agriculture in East Asia. Here, observed evidence and numerical experiment results manifest that the ASI variability in the Norwegian Sea and the Barents Sea in preceding winter is intimately connected with interannual variations of the East Asian spring precipitation (EAP). The former can explain about 14% of the total variances of the latter. The ASI anomalies persist from winter through the ensuing spring and excite downstream tele-connections of a distinct Rossby wave train prevailing over the Eurasian continent. For the reduced ASI, such a wave train pattern is usually associated with an anomalous low pressure center over Mongolian Plateau, which accelerates the East Asian subtropical westerly jet. The intensified subtropical westerly jet, concurrent with lower-level convergence and upper-level divergence, enhances the local convection and consequently favors rich spring precipitation over East Asia. For the excessive ASI, the situation tends to be opposite. Given that seasonal prediction of the EAP remains a challenging issue, the winter ASI variability may provide another potential predictability source besides El Niño-Southern Oscillation.

  17. Glacier Changes in the Russian High Arctic.

    NASA Astrophysics Data System (ADS)

    Pritchard, M. E.; Willis, M. J.; Melkonian, A. K.; Golos, E. M.; Stewart, A.; Ornelas, G.; Ramage, J. M.

    2014-12-01

    We provide new surveys of ice speeds and surface elevation changes for ~40,000 km2 of glaciers and ice caps at the Novaya Zemlya (NovZ) and Severnaya Zemlya (SevZ) Archipelagoes in the Russian High Arctic. The contribution to sea level rise from this ice is expected to increase as the region continues to warm at above average rates. We derive ice speeds using pixel-tracking on radar and optical imagery, with additional information from InSAR. Ice speeds have generally increased at outlet glaciers compared to those measured using interferometry from the mid-1990s'. The most pronounced acceleration is at Inostrantseva Glacier, one of the northernmost glaciers draining into the Barents Sea on NovZ. Thinning rates over the last few decades are derived by regressing stacked elevations from multiple Digital Elevations Models (DEMs) sourced from ASTER and Worldview stereo-imagery and cartographically derived DEMs. DEMs are calibrated and co-registered using ICESat returns over bedrock. On NovZ thinning of between 60 and 100 meters since the 1950s' is common. Similar rates between the late 1980s' and the present are seen at SevZ. We examine in detail the response of the outlet glaciers of the Karpinsky and Russanov Ice Caps on SevZ to the rapid collapse of the Matusevich Ice Shelf in the late summer of 2012. We do not see a dynamic thinning response at the largest feeder glaciers. This may be due to the slow response of the cold polar glaciers to changing boundary conditions, or the glaciers may be grounded well above sea level. Speed increases in the interior are difficult to assess with optical imagery as there are few trackable features. We therefore use pixel tracking on Terra SARX acquisitions before and after the collapse of the ice shelf to compute rates of flow inland, at slow moving ice. Interior ice flow has not accelerated in response to the collapse of the ice shelf but interior rates at the Karpinsky Ice Cap have increased by about 50% on the largest outlet glacier compared to rates found using ERS data in the mid-90s. Speeds have at least doubled at some of the smaller glaciers that feed the Matusevich from the south. We investigate the causes of acceleration at both archipelagoes by comparing sea surface temperatures and passive microwave observations of the timing and duration of ice surface melting.

  18. Acceleration of modern acidification in the South China Sea driven by anthropogenic CO2

    PubMed Central

    Liu, Yi; Peng, Zicheng; Zhou, Renjun; Song, Shaohua; Liu, Weiguo; You, Chen-Feng; Lin, Yen-Po; Yu, Kefu; Wu, Chung-Che; Wei, Gangjian; Xie, Luhua; Burr, George S.; Shen, Chuan-Chou

    2014-01-01

    Modern acidification by the uptake of anthropogenic CO2 can profoundly affect the physiology of marine organisms and the structure of ocean ecosystems. Centennial-scale global and regional influences of anthropogenic CO2 remain largely unknown due to limited instrumental pH records. Here we present coral boron isotope-inferred pH records for two periods from the South China Sea: AD 1048–1079 and AD 1838–2001. There are no significant pH differences between the first period at the Medieval Warm Period and AD 1830–1870. However, we find anomalous and unprecedented acidification during the 20th century, pacing the observed increase in atmospheric CO2. Moreover, pH value also varies in phase with inter-decadal changes in Asian Winter Monsoon intensity. As the level of atmospheric CO2 keeps rising, the coupling global warming via weakening the winter monsoon intensity could exacerbate acidification of the South China Sea and threaten this expansive shallow water marine ecosystem. PMID:24888785

  19. Acceleration of modern acidification in the South China Sea driven by anthropogenic CO2

    NASA Astrophysics Data System (ADS)

    Liu, Yi; Peng, Zicheng; Zhou, Renjun; Song, Shaohua; Liu, Weiguo; You, Chen-Feng; Lin, Yen-Po; Yu, Kefu; Wu, Chung-Che; Wei, Gangjian; Xie, Luhua; Burr, George S.; Shen, Chuan-Chou

    2014-06-01

    Modern acidification by the uptake of anthropogenic CO2 can profoundly affect the physiology of marine organisms and the structure of ocean ecosystems. Centennial-scale global and regional influences of anthropogenic CO2 remain largely unknown due to limited instrumental pH records. Here we present coral boron isotope-inferred pH records for two periods from the South China Sea: AD 1048-1079 and AD 1838-2001. There are no significant pH differences between the first period at the Medieval Warm Period and AD 1830-1870. However, we find anomalous and unprecedented acidification during the 20th century, pacing the observed increase in atmospheric CO2. Moreover, pH value also varies in phase with inter-decadal changes in Asian Winter Monsoon intensity. As the level of atmospheric CO2 keeps rising, the coupling global warming via weakening the winter monsoon intensity could exacerbate acidification of the South China Sea and threaten this expansive shallow water marine ecosystem.

  20. Design and Installation of a Field Ionization Test Chamber for Ion Thrusters

    DTIC Science & Technology

    2011-12-01

    where F is thrust, m& is the mass flow rate of the propellant, and go is the standard acceleration due to gravity at sea level [1]. It provides a...only one graphene wall, and multi- walled CNT ( MWCNT ), which consist of multiple, concentric walls of graphene (Figure 9). One of the most unique...ionization chamber to ensure the mass flow rate going into the chamber matches the mass flow rate leaving it. 46 B. FIELD EMISSION AND FIELD

  1. The kinematics of the California sea lion foreflipper during forward swimming.

    PubMed

    Friedman, C; Leftwich, M C

    2014-11-07

    To determine the two-dimensional kinematics of the California sea lion foreflipper during thrust generation, a digital, high-definition video is obtained using a non-research female sea lion at the Smithsonian National Zoological Park in Washington, DC. The observational videos are used to extract maneuvers of interest--forward acceleration from rest using the foreflippers and banked turns. Single camera videos are analyzed to digitize the flipper during the motions using 10 points spanning root to tip in each frame. Digitized shapes were then fitted with an empirical function that quantitatively allows for both comparison between different claps, and for extracting kinematic data. The resulting function shows a high degree of curvature (with a camber of up to 32%). Analysis of sea lion acceleration from rest shows thrust production in the range of 150-680 N and maximum flipper angular velocity (for rotation about the shoulder joint) as high as 20 rad s⁻¹. Analysis of turning maneuvers indicate extreme agility and precision of movement driven by the foreflipper surfaces.

  2. The role of ocean currents for carbonate platform stratigraphy (Invited)

    NASA Astrophysics Data System (ADS)

    Betzler, C.; Lindhorst, S.; Luedmann, T.; Eberli, G. P.; Reijmer, J.; Huebscher, C. P.

    2013-12-01

    Breaks and turnovers in carbonate bank growth and development record fluctuations in sea-level and environmental changes. For the carbonate banks of the Bahamas, the Maldives, the Queensland, and the Marion Plateau, sea-level changes and synchronous oceanographic and atmospheric circulation events were recorded through compositional and architectural changes. Most of these major carbonate edifices contain drift deposits, indicating that oceanic currents were a major driver of carbonate-bank evolution. It is proposed that such currents have a larger imprint on the growth patterns and the stratigraphic packaging of carbonates than previously thought. In the Bahamas, slope facies of carbonate banks exposed to deep oceanic currents are not arranged into sediment-texture controlled and depth-dependant strike-continuous facies belts. Facies patterns are controlled by the interplay of shallow-water input, succeeding sediment sorting as well as redistribution and erosion processes. This complements the classical windward - leeward classification of carbonate platform slopes and accounts for the significant and potentially dominant process of alongslope sediment transport and dispersal. Deep oceanic currents also have the potential to steepen the carbonate bank slopes, through sediment winnowing at the distal slope, such as for example in the Maldives. This process can be enhanced as the bank grows and expands in size which may accelerate currents. Oceanic current onset or amplification, however, may also account for slope steepening as an externally, i.e. climate-driven agent, thus forcing the banks into an aggradation mode of growth which is not a response to sea-level fluctuations or a result of the windward / leeward exposure of the bank edge. Ignorance of the impact of currents on platforms and platform slopes may lead to an erroneous conclusion that changes in sediment production, distribution, and morphologies of sediment bodies are features solely related to sea-level changes.

  3. Mapping Relative Sea Level Influences of the Cape Fear Arch in southern North Carolina

    NASA Astrophysics Data System (ADS)

    Hawkes, A.; Kemp, A.; Capar, P.

    2017-12-01

    Long-term relative sea-level (RSL) records are a necessary benchmark by which to gauge present accelerated rates of sea-level rise, future sea-level predictions, and their implications to the coastal zone. The east coast of the United States functions as a significant region of latitudinal RSL variability due to the continuous recovery of land from the deglaciation of the Laurentide Ice Sheet since the Last Glacial Maximum. Differential glacial isostatic adjustment (GIA) along the coastline has caused higher rates of subsidence in areas around the former forbulge maxima near New Jersey and Delaware and lower rates to the north and south of this maxima. However, the coast between southern North Carolina and northern South Carolina is experiencing a slower rate of RSL rise then is seen in reconstructed GIA latitudinal trends along the U.S. east coast. It was thought that this could have been attributed to non-isostatic, long-term tectonic processes causing less GIA subsidence of the lithosphere within the region impacted by uplift from the Cape Fear Arch (CFA), an underlying crystalline basement high. A recent study suggests that RSL rise is slower around the CFA than areas to the north and south due to suggested CFA uplift rates of 0.24+0.15mm a-1. An absence of RSL records for 200km north of the CFA make mapping of its influence difficult. Additional RSL records to the north of the CFA allow for a better understanding of the asymmetrical distribution in the rate of RSL rise in this region. Because the distribution in the rate of RSLR between records is not linear it is important for these low-lying coastal communities to better understand their risk to future RSLR.

  4. Greenland Ice Sheet Surface Temperature, Melt, and Mass Loss: 2000-2006

    NASA Technical Reports Server (NTRS)

    Hall, Dorothy K.; Williams, Richard S., Jr.; Luthcke, Scott B.; DiGirolamo, Nocolo

    2007-01-01

    Extensive melt on the Greenland Ice Sheet has been documented by a variety of ground and satellite measurements in recent years. If the well-documented warming continues in the Arctic, melting of the Greenland Ice Sheet will likely accelerate, contributing to sea-level rise. Modeling studies indicate that an annual or summer temperature rise of 1 C on the ice sheet will increase melt by 20-50% therefore, surface temperature is one of the most important ice-sheet parameters to study for analysis of changes in the mass balance of the ice-sheet. The Greenland Ice Sheet contains enough water to produce a rise in eustatic sea level of up to 7.0 m if the ice were to melt completely. However, even small changes (centimeters) in sea level would cause important economic and societal consequences in the world's major coastal cities thus it is extremely important to monitor changes in the ice-sheet surface temperature and to ultimately quantify these changes in terms of amount of sea-level rise. We have compiled a high-resolution, daily time series of surface temperature of the Greenland Ice Sheet, using the I-km resolution, clear-sky land-surface temperature (LST) standard product from the Moderate-Resolution Imaging Spectroradiometer (MODIS), from 2000 - 2006. We also use Gravity Recovery and Climate Experiment (GRACE) data, averaged over 10-day periods, to measure change in mass of the ice sheet as it melt and snow accumulates. Surface temperature can be used to determine frequency of surface melt, timing of the start and the end of the melt season, and duration of melt. In conjunction with GRACE data, it can also be used to analyze timing of ice-sheet mass loss and gain.

  5. The Cool Hand Luke Effect: Failure to Communicate Effectively (Invited)

    NASA Astrophysics Data System (ADS)

    Davidson, M. A.

    2010-12-01

    There is a growing concern with the accelerating rate of local sea level change and its implications for local and regional planning and development. While there are a growing number of local governments that are beginning to seriously consider their adaptation options, the vast majority of local leaders have not yet developed confidence in the various scenarios that are currently available. To adequately address the range of possible impacts and options for addressing local sea level change, one must have more than high resolution data, model output and decision support tools. We need to have a better understandin of the range of likely impacts upon and the value of local ecosystem services as well as as understanding of the foundations of the local economies. A sound scientific foundation must exist to support 'decision making under uncertainty' but we also need to understand the very local specific cultural frameworks within which decision makers must work. This is why working with local civic organizations, NGOs and other boundary organizations is increasingly important.

  6. Clouds enhance Greenland ice sheet meltwater runoff.

    PubMed

    Van Tricht, K; Lhermitte, S; Lenaerts, J T M; Gorodetskaya, I V; L'Ecuyer, T S; Noël, B; van den Broeke, M R; Turner, D D; van Lipzig, N P M

    2016-01-12

    The Greenland ice sheet has become one of the main contributors to global sea level rise, predominantly through increased meltwater runoff. The main drivers of Greenland ice sheet runoff, however, remain poorly understood. Here we show that clouds enhance meltwater runoff by about one-third relative to clear skies, using a unique combination of active satellite observations, climate model data and snow model simulations. This impact results from a cloud radiative effect of 29.5 (±5.2) W m(-2). Contrary to conventional wisdom, however, the Greenland ice sheet responds to this energy through a new pathway by which clouds reduce meltwater refreezing as opposed to increasing surface melt directly, thereby accelerating bare-ice exposure and enhancing meltwater runoff. The high sensitivity of the Greenland ice sheet to both ice-only and liquid-bearing clouds highlights the need for accurate cloud representations in climate models, to better predict future contributions of the Greenland ice sheet to global sea level rise.

  7. Real-time soft error rate measurements on bulk 40 nm SRAM memories: a five-year dual-site experiment

    NASA Astrophysics Data System (ADS)

    Autran, J. L.; Munteanu, D.; Moindjie, S.; Saad Saoud, T.; Gasiot, G.; Roche, P.

    2016-11-01

    This paper reports five years of real-time soft error rate experimentation conducted with the same setup at mountain altitude for three years and then at sea level for two years. More than 7 Gbit of SRAM memories manufactured in CMOS bulk 40 nm technology have been subjected to the natural radiation background. The intensity of the atmospheric neutron flux has been continuously measured on site during these experiments using dedicated neutron monitors. As the result, the neutron and alpha component of the soft error rate (SER) have been very accurately extracted from these measurements, refining the first SER estimations performed in 2012 for this SRAM technology. Data obtained at sea level evidence, for the first time, a possible correlation between the neutron flux changes induced by the daily atmospheric pressure variations and the measured SER. Finally, all of the experimental data are compared with results obtained from accelerated tests and numerical simulation.

  8. Clouds enhance Greenland ice sheet meltwater runoff

    PubMed Central

    Van Tricht, K.; Lhermitte, S.; Lenaerts, J. T. M.; Gorodetskaya, I. V.; L'Ecuyer, T. S.; Noël, B.; van den Broeke, M. R.; Turner, D. D.; van Lipzig, N. P. M.

    2016-01-01

    The Greenland ice sheet has become one of the main contributors to global sea level rise, predominantly through increased meltwater runoff. The main drivers of Greenland ice sheet runoff, however, remain poorly understood. Here we show that clouds enhance meltwater runoff by about one-third relative to clear skies, using a unique combination of active satellite observations, climate model data and snow model simulations. This impact results from a cloud radiative effect of 29.5 (±5.2) W m−2. Contrary to conventional wisdom, however, the Greenland ice sheet responds to this energy through a new pathway by which clouds reduce meltwater refreezing as opposed to increasing surface melt directly, thereby accelerating bare-ice exposure and enhancing meltwater runoff. The high sensitivity of the Greenland ice sheet to both ice-only and liquid-bearing clouds highlights the need for accurate cloud representations in climate models, to better predict future contributions of the Greenland ice sheet to global sea level rise. PMID:26756470

  9. Rapid Holocene thinning of an East Antarctic outlet glacier driven by marine ice sheet instability

    PubMed Central

    Jones, R. S.; Mackintosh, A. N.; Norton, K. P.; Golledge, N. R.; Fogwill, C. J.; Kubik, P. W.; Christl, M.; Greenwood, S. L.

    2015-01-01

    Outlet glaciers grounded on a bed that deepens inland and extends below sea level are potentially vulnerable to ‘marine ice sheet instability'. This instability, which may lead to runaway ice loss, has been simulated in models, but its consequences have not been directly observed in geological records. Here we provide new surface-exposure ages from an outlet of the East Antarctic Ice Sheet that reveal rapid glacier thinning occurred approximately 7,000 years ago, in the absence of large environmental changes. Glacier thinning persisted for more than two and a half centuries, resulting in hundreds of metres of ice loss. Numerical simulations indicate that ice surface drawdown accelerated when the otherwise steadily retreating glacier encountered a bedrock trough. Together, the geological reconstruction and numerical simulations suggest that centennial-scale glacier thinning arose from unstable grounding line retreat. Capturing these instability processes in ice sheet models is important for predicting Antarctica's future contribution to sea level change. PMID:26608558

  10. Antarctic contribution to meltwater pulse 1A from reduced Southern Ocean overturning.

    PubMed

    Golledge, N R; Menviel, L; Carter, L; Fogwill, C J; England, M H; Cortese, G; Levy, R H

    2014-09-29

    During the last glacial termination, the upwelling strength of the southern polar limb of the Atlantic Meridional Overturning Circulation varied, changing the ventilation and stratification of the high-latitude Southern Ocean. During the same period, at least two phases of abrupt global sea-level rise--meltwater pulses--took place. Although the timing and magnitude of these events have become better constrained, a causal link between ocean stratification, the meltwater pulses and accelerated ice loss from Antarctica has not been proven. Here we simulate Antarctic ice sheet evolution over the last 25 kyr using a data-constrained ice-sheet model forced by changes in Southern Ocean temperature from an Earth system model. Results reveal several episodes of accelerated ice-sheet recession, the largest being coincident with meltwater pulse 1A. This resulted from reduced Southern Ocean overturning following Heinrich Event 1, when warmer subsurface water thermally eroded grounded marine-based ice and instigated a positive feedback that further accelerated ice-sheet retreat.

  11. Seismic hazard in the Istanbul metropolitan area: A preliminary re-evaluation

    USGS Publications Warehouse

    Kalkan, E.; Gulkan, Polat; Ozturk, N.Y.; Celebi, M.

    2008-01-01

    In 1999, two destructive earthquakes (M7.4 Kocaeli and M7.2 Duzce) occurred in the north west of Turkey and resulted in major stress-drops on the western segment of the North Anatolian Fault system where it continues under the Marmara Sea. These undersea fault segments were recently explored using bathymetric and reflection surveys. These recent findings helped to reshape the seismotectonic environment of the Marmara basin, which is a perplexing tectonic domain. Based on collected new information, seismic hazard of the Marmara region, particularly Istanbul Metropolitan Area and its vicinity, were re-examined using a probabilistic approach. Two seismic source and alternate recurrence models combined with various indigenous and foreign attenuation relationships were adapted within a logic tree formulation to quantify and project the regional exposure on a set of hazard maps. The hazard maps show the peak horizontal ground acceleration and spectral acceleration at 1.0 s. These acceleration levels were computed for 2 and 10 % probabilities of transcendence in 50 years.

  12. Decadal-scale variations of sedimentary dinoflagellate cyst records from the Yellow Sea over the last 400 years

    NASA Astrophysics Data System (ADS)

    Kim, So-Young; Roh, Youn Ho; Shin, Hyeon Ho; Huh, Sik; Kang, Sung-Ho; Lim, Dhongil

    2018-01-01

    In recent decades, the Yellow Sea has experienced severe environmental deterioration due to increasing input of anthropogenic pollutants and consequently accelerated eutrophication. Whilst there have been significant advances in documenting historical records of metal pollution in the Yellow Sea region, changes in phytoplankton community structures affected by eutrophication remain understudied. Here, we present a new record of dinoflagellate cyst-based signals in age-dated sediment cores from the Yellow Sea mud deposits to provide better insight into eutrophication history and identification of associated responses of the regional phytoplankton community. It is worthy of note that there were significant variations in abundances and community structures of dinoflagellate cysts in three historical stages in association with increasing anthropogenic activity over the last 400 years. Pervasive effects of human interference altering the Yellow Sea environments are recognized by: 1) an abrupt increase of organic matter, including the diatom-produced biogenic opal concentrations (∼1850); 2) a distinct shift in phytoplankton composition towards dinoflagellate dominance (∼1940), and 3) recent acceleration of dinoflagellate cyst accumulation (∼1990). Particularly in the central Yellow Sea shelf, the anomalously high deposition of dinoflagellate cysts (especially Alexandrium species) is suggested to be a potentially important source of inoculum cells serving as a seed population for localized and recurrent blooms in coastal areas around the Yellow Sea.

  13. Atmospheric Influences on the Anomalous 2016 Antarctic Sea Ice Decay

    NASA Astrophysics Data System (ADS)

    Raphael, M. N.; Schlosser, E.; Haumann, A.

    2017-12-01

    Over the past three decades, a small but significant increase in sea ice extent (SIE) has been observed in the Antarctic. However, in 2016 there was a surprisingly early onset of the melt season. The maximum Antarctic SIE was reached in August rather than end of September, and was followed by a rapid decrease. The decline of the sea ice area (SIA) started even earlier, in July. The retreat of the ice was particularly large in November where Antarctic SIE exhibited a negative anomaly (compared to the 1981-2010 average) of almost 2 Mio. km2, which, combined with reduced Arctic SIE, led to a distinct minimum in global SIE. And, satellite observations show that from November 2016 to February 2017, the daily Antarctic SIE has been at record low levels. We use sea level pressure and geopotential height data from the ECMWF- Interim reanalysis, in conjunction with sea ice data obtained from the National Snow and Ice Data Centre (NSIDC), to investigate possible atmospheric influences on the observed phenomena. Indications are that both the onset of the melt in July and the rapid decrease in SIA and SIE in November were triggered by atmospheric flow patterns related to a positive Zonal Wave 3 index, i.e. synoptic situations leading to strong meridional flow. Additionally the Southern Annular Mode (SAM) index reached its second lowest November value since the beginning of the satellite observations. It is likely that the SIE decrease was preconditioned by SIA decrease. Positive feedback effects led to accelerated melt and consequently to the extraordinary low November SIE.

  14. Monitoring and Management of Coastal Zones Which are Under Flooding Risk with Remote Sensing and GIS

    NASA Astrophysics Data System (ADS)

    Direk, S.; Seker, D. Z.; Musaoglu, N.; Gazioglu, C.

    2012-12-01

    Coastal zone areas play an important role in value to the welfare of nations and provides natural, social, cultural and economic benefits and increased quality of life. A great majority of the earth population live in coastal zone areas and they are under flooding risk due to tsunamies, storm surge, typhoon, sea level rise, precipitation and dam destruction. Global warming from the grenhouse effect raises sea level by expanding seawater, melting water and causing ice sheets to melt. Based on a selection of nine long, high quality tide gauge records, Holgate analyzed that the Mean Sea Level (MSL) rise over the period of 1904-2003 was found to be 1.74 ± 0.16 mm/year. Consider the whole century showed that the high decadal rates of change in global MSL was observed during the last 20 years of the records. Based on 4 tide gauge records in Marmara Sea, Aegean Sea and Eastern Mediterranean, Yildiz analyzed that MSL rise during 1984-2002 was found to be 9.6 ± 0.9 mm/year, 5.1 ± 1 mm/year and 8.7 ± 0.8 mm/year respectively. By analyzing the whole recorded data, it is found that the annual MSL rise in eastern mediterranean was 4-7 mm/year which was higher than the global prediction. A rise in sea level would accelerate coastal erosion, aggravate flooding, threaten coastal area structures and inundate wetlands. The salinity of rivers and bays would increase. A 1 meter in sea level rise would enable a 15-20 year storm to flood many areas. Higher water levels would reduce coastal drainage which would cause an increase flooding by rain storms. Finally, a rise in sea level would raise water tables and would flood basements. Geographic Information System (GIS) is a state of art technology and operationally being used more frequently by commercial and scientific society. GIS system provides a stable platform for the integration of data from different sources, allows a large quantity of data to be stored and processed, provides a seamless geographical database and provides a great flexibility for the display and visualization of data to a wider audience. Today GIS, plays a key role in monitoring and management procedures and re-shaping the environment. The capability of GIS in handling spatial data, presented new opportunities for adaptation of more cost-effective and efficient procedures. By using remote sensing and GIS, coastal zone could be monitored and managed more easily. The map/chart of interested coastal areas could be done more accurately and rapidly. Maps/charts of areas before and after flooding could be done by using satellites or areal images and the effect of damage could be analyzed in a short time.

  15. Global-change effects on early-stage decomposition processes in tidal wetlands - implications from a global survey using standardized litter

    NASA Astrophysics Data System (ADS)

    Mueller, Peter; Schile-Beers, Lisa M.; Mozdzer, Thomas J.; Chmura, Gail L.; Dinter, Thomas; Kuzyakov, Yakov; de Groot, Alma V.; Esselink, Peter; Smit, Christian; D'Alpaos, Andrea; Ibáñez, Carles; Lazarus, Magdalena; Neumeier, Urs; Johnson, Beverly J.; Baldwin, Andrew H.; Yarwood, Stephanie A.; Montemayor, Diana I.; Yang, Zaichao; Wu, Jihua; Jensen, Kai; Nolte, Stefanie

    2018-05-01

    Tidal wetlands, such as tidal marshes and mangroves, are hotspots for carbon sequestration. The preservation of organic matter (OM) is a critical process by which tidal wetlands exert influence over the global carbon cycle and at the same time gain elevation to keep pace with sea-level rise (SLR). The present study assessed the effects of temperature and relative sea level on the decomposition rate and stabilization of OM in tidal wetlands worldwide, utilizing commercially available standardized litter. While effects on decomposition rate per se were minor, we show strong negative effects of temperature and relative sea level on stabilization, as based on the fraction of labile, rapidly hydrolyzable OM that becomes stabilized during deployment. Across study sites, OM stabilization was 29 % lower in low, more frequently flooded vs. high, less frequently flooded zones. Stabilization declined by ˜ 75 % over the studied temperature gradient from 10.9 to 28.5 °C. Additionally, data from the Plum Island long-term ecological research site in Massachusetts, USA, show a pronounced reduction in OM stabilization by > 70 % in response to simulated coastal eutrophication, confirming the potentially high sensitivity of OM stabilization to global change. We therefore provide evidence that rising temperature, accelerated SLR, and coastal eutrophication may decrease the future capacity of tidal wetlands to sequester carbon by affecting the initial transformations of recent OM inputs to soil OM.

  16. Assessing the Effects of Sea Level Rise on Plum Island Estuary Marshes Using a Hydrodynamic-marsh Modeling Tool

    NASA Astrophysics Data System (ADS)

    Demissie, H. K.; Bilskie, M. V.; Hagen, S. C.; Morris, J. T.; Alizad, K.

    2015-12-01

    Sea level rise (SLR) can significantly impact both human and ecological habitats in coastal and inland regions. Studies show that coastal estuaries and marsh systems are at the risk of losing their productivity under increasing rates of SLR (Donnelly and Bertness, 2001; Warren and Niering, 1993). The integrated hydrodynamic-marsh model (Hagen et al., 2013 & Alizad et al., 2015) uses a set of parameters and conditions to simulate tidal flow through the salt marsh of Plum Island Estuary, Massachusetts. The hydrodynamic model computes mean high water (MHW) and mean low water (MLW) and is coupled to the zero-dimensional Marsh Equilibrium Model (Morris et al. 2002) to estimate changes in biomass productivity and accretion. The coupled hydrodynamic-marsh model was used to examine the effects of different scenarios of SLR (Parris et al., 2012) on salt marsh productivity for the year 2100 in the Plum Island Estuary. In this particular study, responses of salt marsh production for different scenarios of SLR were compared. The study shows higher productivity of salt marsh under a low SLR scenario and lower productivity under the higher SLR. The study also demonstrates the migration of salt marshes under higher SLR scenarios. References: Alizad, K., S. C. Hagen, Morris, J.T., Bacopoulos, P., Bilskie, M.V., and John, F.W. 2015. A coupled, two-dimensional hydrodynamic-marsh model with biological feedback. Limnology and Oceanography, In review. Donnelly, J.P., and M.D. Bertness. 2001. Rapid shoreward encroachment of salt marsh cordgrass in response to accelerated sea-level rise. Proceedings of the National Academy of Sciences 98: 14218-14223.Hagen, S.C., J.T. Morris, P. Bacopoulos, and J. Weishampel. 2013. Sea-Level Rise Impact on a Salt Marsh System of the Lower St. Johns River. ASCE Journal of Waterway, Port, Coastal, and Ocean Engineering, Vol. 139, No. 2, March/April 2013, pp. 118-125.Morris, J.T., P.V. Sundareshwar, C.T. Nietch, B. Kjerfve, and D.R. Cahoon. 2002. Responses of coastal wetlands to rising sea level. Ecology 83: 2869-2877.Parris, A., P. Bromirski, V. Burkett, D. Cayan, M. Culver, J. Hall, R. Horton, K. Knuuti, R. Moss, J. Obeysekera, A. Sallenger, and J. Weiss. 2012. Global Sea Level Rise Scenarios for the US National Climate Assessment. In NOAA Tech Memo OAR CPO, 1-37.

  17. Spatial distirbution of Antarctic mass flux due to iceberg transport

    NASA Astrophysics Data System (ADS)

    Comeau, Darin; Hunke, Elizabeth; Turner, Adrian

    Under a changing climate that sees amplified warming in the polar regions, the stability of the West Antarctic ice sheet and its impact on sea level rise is of great importance. Icebergs are at the interface of the land-ice, ocean, and sea ice systems, and represent approximately half of the mass flux from the Antarctic ice sheet to the ocean. Calved icebergs transport freshwater away from the coast and exchange heat with the ocean, thereby affecting stratification and circulation, with subsequent indirect thermodynamic effects to the sea ice system. Icebergs also dynamically interact with surrounding sea ice pack, as well as serving as nutrient sources for biogeochemical activity. The spatial pattern of these fluxes transported from the continent to the ocean is generally poorly represented in current global climate models. We are implementing an iceberg model into the new Accelerated Climate Model for Energy (ACME) within the MPAS-Seaice model, which uses a variable resolution, unstructured grid framework. This capability will allow for full coupling with the land ice model to inform calving fluxes, and the ocean model for freshwater and heat exchange, giving a complete representation of the iceberg lifecycle and increasing the fidelity of ACME southern cryosphere simulations.

  18. Antarctica, Greenland and Gulf of Alaska Land-ice Evolution from an Iterated GRACE Global Mascon Solution

    NASA Technical Reports Server (NTRS)

    Luthcke, Scott B.; Sabaka, T. J.; Loomis, B. D.; Arendt, A. A.; McCarthy, J. J.; Camp, J.

    2013-01-01

    We have determined the ice mass evolution of the Antarctica and Greenland ice sheets (AIS and GIS) and Gulf of Alaska (GOA) glaciers from a new GRACE global solution of equal-area surface mass concentration parcels (mascons) in equivalent height of water. The mascons were estimated directly from the reduction of the inter-satellite K-band range-rate (KBRR) observations, taking into account the full noise covariance, and formally iterating the solution. The new solution increases signal recovery while reducing the GRACE KBRR observation residuals. The mascons were estimated with 10 day and 1 arc degree equal-area sampling, applying anisotropic constraints. An ensemble empirical mode decomposition adaptive filter was applied to the mascon time series to compute annual mass balances. The details and causes of the spatial and temporal variability of the land-ice regions studied are discussed. The estimated mass trend over the total GIS, AIS and GOA glaciers for the time period 1 December 2003 to 1 December 2010 is -380 plus or minus 31 Gt a(exp -1), equivalent to -1.05 plus or minus 0.09 mma(exp -1) sea-level rise. Over the same time period we estimate the mass acceleration to be -41 plus or minus 27 Gt a(exp -2), equivalent to a 0.11 plus or minus 0.08 mm a(exp -2) rate of change in sea level. The trends and accelerations are dependent on significant seasonal and annual balance anomalies.

  19. Antarctica, Greenland and Gulf of Alaska Land-Ice Evolution from an Iterated GRACE Global Mascon Solution

    NASA Technical Reports Server (NTRS)

    Luthcke, Scott B.; Sabaka, T. J.; Loomis, B. D.; Arendt, A. A.; McCarthy, J. J.; Camp, J.

    2013-01-01

    We have determined the ice mass evolution of the Antarctica and Greenland ice sheets (AIS and GIS) and Gulf of Alaska (GOA) glaciers from a new GRACE global solution of equal-area surface mass concentration parcels (mascons) in equivalent height of water. The mascons were estimated directly from the reduction of the inter-satellite K-band range-rate (KBRR) observations, taking into account the full noise covariance, and formally iterating the solution. The new solution increases signal recovery while reducing the GRACE KBRR observation residuals. The mascons were estimated with 10 day and 1 arc degree equal-area sampling, applying anisotropic constraints. An ensemble empirical mode decomposition adaptive filter was applied to the mascon time series to compute annual mass balances. The details and causes of the spatial and temporal variability of the land-ice regions studied are discussed. The estimated mass trend over the total GIS, AIS and GOA glaciers for the time period 1 December 2003 to 1 December 2010 is -380 plus or minus 31 Gt a(exp -1), equivalent to -1.05 plus or minus 0.09 mma(exp -1) sea-level rise. Over the same time period we estimate the mass acceleration to be -41 plus or minus 27 Gt a(exp -2), equivalent to a 0.11 plus or minus 0.08 mm a(exp -2) rate of change in sea level. The trends and accelerations are dependent on significant seasonal and annual balance anomalies.

  20. Characterizing and minimizing the effects of noise in tide gauge time series: relative and geocentric sea level rise around Australia

    NASA Astrophysics Data System (ADS)

    Burgette, Reed J.; Watson, Christopher S.; Church, John A.; White, Neil J.; Tregoning, Paul; Coleman, Richard

    2013-08-01

    We quantify the rate of sea level rise around the Australian continent from an analysis of tide gauge and Global Positioning System (GPS) data sets. To estimate the underlying linear rates of sea level change in the presence of significant interannual and decadal variability (treated here as noise), we adopt and extend a novel network adjustment approach. We simultaneously estimate time-correlated noise as well as linear model parameters and realistic uncertainties from sea level time series at individual gauges, as well as from time-series differences computed between pairs of gauges. The noise content at individual gauges is consistent with a combination of white and time-correlated noise. We find that the noise in time series from the western coast of Australia is best described by a first-order Gauss-Markov model, whereas east coast stations generally exhibit lower levels of time-correlated noise that is better described by a power-law process. These findings suggest several decades of monthly tide gauge data are needed to reduce rate uncertainties to <0.5 mm yr-1 for undifferenced single site time series with typical noise characteristics. Our subsequent adjustment strategy exploits the more precise differential rates estimated from differenced time series from pairs of tide gauges to estimate rates among the network of 43 tide gauges that passed a stability analysis. We estimate relative sea level rates over three temporal windows (1900-2011, 1966-2011 and 1993-2011), accounting for covariance between time series. The resultant adjustment reduces the rate uncertainty across individual gauges, and partially mitigates the need for century-scale time series at all sites in the network. Our adjustment reveals a spatially coherent pattern of sea level rise around the coastline, with the highest rates in northern Australia. Over the time periods beginning in 1900, 1966 and 1993, we find weighted average rates of sea level rise of 1.4 ± 0.6, 1.7 ± 0.6 and 4.6 ± 0.8 mm yr-1, respectively. While the temporal pattern of the rate estimates is consistent with acceleration in sea level rise, it may not be significant, as the uncertainties for the shorter analysis periods may not capture the full range of temporal variation. Analysis of the available continuous GPS records that have been collected within 80 km of Australian tide gauges suggests that rates of vertical crustal motion are generally low, with the majority of sites showing motion statistically insignificant from zero. A notable exception is the significant component of vertical land motion that contributes to the rapid rate of relative sea level change (>4 mm yr-1) at the Hillarys site in the Perth area. This corresponds to crustal subsidence that we estimate in our GPS analysis at a rate of -3.1 ± 0.7 mm yr-1, and appears linked to groundwater withdrawal. Uncertainties on the rates of vertical displacement at GPS sites collected over a decade are similar to what we measure in several decades of tide gauge data. Our results motivate continued observations of relative sea level using tide gauges, maintained with high-accuracy terrestrial and continuous co-located satellite-based surveying.

  1. Glacier velocity Changes at Novaya Zemlya revealed by ALOS1 and ALOS2

    NASA Astrophysics Data System (ADS)

    Konuma, Y.; Furuya, M.

    2016-12-01

    Matsuo and Heki (2013) revealed substantial ice-mass loss at Novaya Zemlya by Gravity Recovery And Climate Experiment (GRACE). In addition, the elevation thinning (Moholdt et al., 2012) and glacier retreat (Carr et al., 2014) has been reported. Melkonian et al. (2016) showed velocities map at coastal area of Novaya Zemlya by using Worldview, Landsat, ASTER and TerraSAR-X images. However, the entire distributions of ice speed and the temporal evolution remain unclear. In this study, we measured the glacier velocities using L-band SAR sensor onboard ALOS1 and ALOS2. We analyzed the data using pixel-offset tracking technique. We could observe the entire glaciated region in 2007-2008 winter and 2008-2009 winter. In particular, we could examine the velocities at middle of the glaciated region from 2006 to 2015 due to the availability of high-temporal resolution SAR data. As a result, we found the most glaciers in Novaya Zemlya have been accelerating since 1990s (Strozzi et al., 2008). Specially, Shokalskogo glacier has dramatically accelerated from the maximum of 300 ma-1 in 1998 to maximum of 600 ma-1 in 2015. Additionally, it turns out that there are marked differences in the glacier's velocities between the Barents Sea side and the Kara Sea side. The averaged maximum speed of the glaciers in Barents Sea side were approximately two times faster than that in Kara Sea side. We speculate the causes as the difference of topography under the calving front and sea-ice concentration. While each side has many calving glaciers, the fjord distribution in the Barents Sea side is much broader than in the Kara Sea side. Moreover, sea-ice concentration in the Barents Sea is lower than the Kara Sea, which might affect the glaciers' speed distribution.

  2. The Contribution of Mangrove Expansion to Salt Marsh Loss on the Texas Gulf Coast

    PubMed Central

    Brody, Samuel D.; Louchouarn, Patrick

    2015-01-01

    Landscape-level shifts in plant species distribution and abundance can fundamentally change the ecology of an ecosystem. Such shifts are occurring within mangrove-marsh ecotones, where over the last few decades, relatively mild winters have led to mangrove expansion into areas previously occupied by salt marsh plants. On the Texas (USA) coast of the western Gulf of Mexico, most cases of mangrove expansion have been documented within specific bays or watersheds. Based on this body of relatively small-scale work and broader global patterns of mangrove expansion, we hypothesized that there has been a recent regional-level displacement of salt marshes by mangroves. We classified Landsat-5 Thematic Mapper images using artificial neural networks to quantify black mangrove (Avicennia germinans) expansion and salt marsh (Spartina alterniflora and other grass and forb species) loss over 20 years across the entire Texas coast. Between 1990 and 2010, mangrove area grew by 16.1 km2, a 74% increase. Concurrently, salt marsh area decreased by 77.8 km2, a 24% net loss. Only 6% of that loss was attributable to mangrove expansion; most salt marsh was lost due to conversion to tidal flats or water, likely a result of relative sea level rise. Our research confirmed that mangroves are expanding and, in some instances, displacing salt marshes at certain locations. However, this shift is not widespread when analyzed at a larger, regional level. Rather, local, relative sea level rise was indirectly implicated as another important driver causing regional-level salt marsh loss. Climate change is expected to accelerate both sea level rise and mangrove expansion; these mechanisms are likely to interact synergistically and contribute to salt marsh loss. PMID:25946132

  3. The contribution of mangrove expansion to salt marsh loss on the Texas Gulf Coast.

    PubMed

    Armitage, Anna R; Highfield, Wesley E; Brody, Samuel D; Louchouarn, Patrick

    2015-01-01

    Landscape-level shifts in plant species distribution and abundance can fundamentally change the ecology of an ecosystem. Such shifts are occurring within mangrove-marsh ecotones, where over the last few decades, relatively mild winters have led to mangrove expansion into areas previously occupied by salt marsh plants. On the Texas (USA) coast of the western Gulf of Mexico, most cases of mangrove expansion have been documented within specific bays or watersheds. Based on this body of relatively small-scale work and broader global patterns of mangrove expansion, we hypothesized that there has been a recent regional-level displacement of salt marshes by mangroves. We classified Landsat-5 Thematic Mapper images using artificial neural networks to quantify black mangrove (Avicennia germinans) expansion and salt marsh (Spartina alterniflora and other grass and forb species) loss over 20 years across the entire Texas coast. Between 1990 and 2010, mangrove area grew by 16.1 km(2), a 74% increase. Concurrently, salt marsh area decreased by 77.8 km(2), a 24% net loss. Only 6% of that loss was attributable to mangrove expansion; most salt marsh was lost due to conversion to tidal flats or water, likely a result of relative sea level rise. Our research confirmed that mangroves are expanding and, in some instances, displacing salt marshes at certain locations. However, this shift is not widespread when analyzed at a larger, regional level. Rather, local, relative sea level rise was indirectly implicated as another important driver causing regional-level salt marsh loss. Climate change is expected to accelerate both sea level rise and mangrove expansion; these mechanisms are likely to interact synergistically and contribute to salt marsh loss.

  4. Physiological implications of altitude training for endurance performance at sea level: a review.

    PubMed Central

    Bailey, D M; Davies, B

    1997-01-01

    Acclimatisation to environmental hypoxia initiates a series of metabolic and musculocardio-respiratory adaptations that influence oxygen transport and utilisation, or better still, being born and raised at altitude, is necessary to achieve optimal physical performance at altitude, scientific evidence to support the potentiating effects after return to sea level is at present equivocal. Despite this, elite athletes continue to spend considerable time and resources training at altitude, misled by subjective coaching opinion and the inconclusive findings of a large number of uncontrolled studies. Scientific investigation has focused on the optimisation of the theoretically beneficial aspects of altitude acclimatisation, which include increases in blood haemoglobin concentration, elevated buffering capacity, and improvements in the structural and biochemical properties of skeletal muscle. However, not all aspects of altitude acclimatisation are beneficial; cardiac output and blood flow to skeletal muscles decrease, and preliminary evidence has shown that hypoxia in itself is responsible for a depression of immune function and increased tissue damage mediated by oxidative stress. Future research needs to focus on these less beneficial aspects of altitude training, the implications of which pose a threat to both the fitness and the health of the elite competitor. Paul Bert was the first investigator to show that acclimatisation to a chronically reduced inspiratory partial pressure of oxygen (P1O2) invoked a series of central and peripheral adaptations that served to maintain adequate tissue oxygenation in healthy skeletal muscle, physiological adaptations that have been subsequently implicated in the improvement in exercise performance during altitude acclimatisation. However, it was not until half a century later that scientists suggested that the additive stimulus of environmental hypoxia could potentially compound the normal physiological adaptations to endurance training and accelerate performance improvements after return to sea level. This has stimulated an exponential increase in scientific research, and, since 1984, 22 major reviews have summarised the physiological implications of altitude training for both aerobic and anaerobic performance at altitude and after return to sea level. Of these reviews, only eight have specifically focused on physical performance changes after return to sea level, the most comprehensive of which was recently written by Wolski et al. Few reviews have considered the potentially less favourable physiological responses to moderate altitude exposure, which include decreases in absolute training intensity, decreased plasma volume, depression of haemopoiesis and increased haemolysis, increases in sympathetically mediated glycogen depletion at altitude, and increased respiratory muscle work after return to sea level. In addition, there is a risk of developing more serious medical complications at altitude, which include acute mountain sickness, pulmonary oedema, cardiac arrhythmias, and cerebral hypoxia. The possible implications of changes in immune function at altitude have also been largely ignored, despite accumulating evidence of hypoxia mediated immunosuppression. In general, altitude training has been shown to improve performance at altitude, whereas no unequivocal evidence exists to support the claim that performance at sea level is improved. Table 1 summarises the theoretical advantages and disadvantages of altitude training for sea level performance. This review summarises the physiological rationale for altitude training as a means of enhancing endurance performance after return to sea level. Factors that have been shown to affect the acclimatisation process and the subsequent implications for exercise performance at sea level will also be discussed. Studies were located using five major database searches, which included Medline, Embase, Science Citation Index, Sports Discus, and Sport, in Images Figure 1 Figure 2 PMID:9298550

  5. Cerebrosides from Sea Cucumber Protect Against Oxidative Stress in SAMP8 Mice and PC12 Cells.

    PubMed

    Che, Hongxia; Du, Lei; Cong, Peixu; Tao, Suyuan; Ding, Ning; Wu, Fengjuan; Xue, Changhu; Xu, Jie; Wang, Yuming

    2017-04-01

    Alzheimer's disease (AD) is a neurodegenerative disorder. Emerging evidence implicates β-amyloid (Aβ) plays a critical role in the progression of AD. In this study, we investigated the protective effect of cerebrosides obtained from sea cucumber against senescence-accelerated mouse prone 8 (SAMP8) mice in vivo. We also studied the effect of cerebrosides on Aβ-induced cytotoxicity on the rat pheochromocytoma cell (PC12) and the underlying molecular mechanisms. Cerebrosides ameliorated learning and memory deficits and the Aβ accumulation in demented mice, decreased the content of malondialdehyde (MDA), 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-OHdG), 8-hydroxy-2'-deoxyguanosine (8-oxo-G), and nitric oxide (NO), and enhanced the superoxide dismutase (SOD) activity significantly. The neuroprotective effect of sea cucumber cerebrosides (SCC) was also verified in vitro: the cerebrosides increased the survival rate of PC12 cells, recovered the cellular morphology, downregulated the protein levels of Caspase-9, cleaved Caspase-3, total Caspase-3, and Bax, and upregulated the protein level of Bcl-2, revealing that cerebrosides could inhibit Aβ-induced cell apoptosis. The results showed the protective effect of SCC was regulated by the mitochondria-dependent apoptotic pathway. Our results provide a new approach to developing the marine organisms as functional foods for neuroprotection.

  6. Influence of the sea-ice edge on the Arctic nearshore environment

    NASA Astrophysics Data System (ADS)

    Barnhart, K. R.; Overeem, I.; Anderson, R. S.

    2013-12-01

    Coasts form the dynamic interface of the terrestrial and oceanic systems. In the Arctic, and in much of the world, the coast is a zone of relatively high population, infrastructure, biodiversity, and ecosystem services. A significant difference between Arctic and temperate coasts is the presence of sea ice. Sea ice influences Arctic coasts in two main ways: (1) the length of the sea ice-free season controls the length of time over which nearshore water can interact with the land, and (2) the sea ice edge controls the fetch over which storm winds can blow over open water, resulting in changes in nearshore water level and wave field. The resulting nearshore hydrodynamic environment impacts all aspects of the coastal system. Here, we use satellite records of sea ice along with a simple model for wind-driven storm surge and waves to document how changes in the length and character of the sea ice-free season have impacted the nearshore hydrodynamic environment. For our sea ice analysis we primarily use the Bootstrap Sea Ice Concentrations from Nimbus-7 SMMR and DMSP SSM/I-SSMIS. We make whole-Arctic maps of sea ice change in the coastal zone. In addition to evaluating changes in length of the sea ice-free season at the coast, we look at changes segmented by azimuth. This allows us to consider changes in the sea ice in the context of the wind field. For our storm surge and wave field analysis we focus on the Beaufort Sea region. This region has experienced some of the greatest changes in both sea ice cover and coastal erosion rates in the Arctic and is anticipated to experience significant change in the future. In addition, the NOAA ESRL GMD has observed the wind field at Barrow since extends to 1977. In our past work on the rapid and accelerating coastal erosion, we have shown that one may model storm surge with a 2D numerical bathystrophic model, and that waves are well represented by the Shore Protection Manual methods for shallow-water fetch-limited waves. We use these models to explore the effect of increasing fetch on water level set up and wave generation. As increasing the fetch is one of the main effects of the changing sea ice cover, this allows us to connect changes in the sea ice cover to changes in the nearshore hydrodynamic environment. The long wind record allows for us to investigate changes in extreme wind and associated storm events. Preliminary analysis of Barrow and Drew Point indicate that at Drew Point the sea ice-free season has expanded by ˜17 days/decade while at Barrow it has expanded by ˜22 days/decade. We find the increase in the number of days when the sea ice edge is far away from the coast makes up a large proportion of the total increase in the duration of the sea ice-free season. For these days the sea ice edge does not provide a limit on the fetch over which water level set up and waves are generated.

  7. Rewriting Ice Sheet "Glacier-ology"

    NASA Astrophysics Data System (ADS)

    Bindschadler, R.

    2006-12-01

    The revolution in glaciology driven by the suite of increasingly sophisticated satellite instruments has been no more extreme than in the area of ice dynamics. Years ago, glaciologists were (probably unwittingly) selective in what properties of mountain glaciers were also applied to ice sheets. This reinforced the view that they responded slowly to their environment. Notions of rapid response driven by the ideas of John Mercer, Bill Budd and Terry Hughes were politely rejected by the centrists of mainstream glaciological thought. How the tables have turned--and by the ice sheets themselves, captured in the act of rapidly changing by modern remote sensors! The saw-toothed record of sea-level change over past glacial-interglacial cycles required the existence of rapid ice loss processes. Satellite based observations, supported by hard-earned field observations have extended the time scale over which ice sheets can suddenly change to ever shorter intervals: from centuries, to decades, to years to even minutes. As changes continue to be observed, the scientific community is forced to consider new or previously ignored processes to explain these observations. The penultimate goal of ice-sheet dynamics is to credibly predict the future of both the Greenland and Antarctic ice sheets. In this important endeavor, there is no substitute for our ability to observe. Without the extensive data sets provided by remote sensing, numerical models can be neither tested nor improved. The impact of remote sensing on our existing ability to predict the future must be compared to our probable state of knowledge and ability were these data never collected. Among many satellite observed phenomena we would be largely or wholly ignorant of are the recent acceleration of ice throughout much of coastal Greenland; the sudden disintegration of multiple ice shelves along the Antarctic Peninsula; and the dramatic thinning and acceleration of the Amundsen Sea sector of West Antarctica. These observations are driving increased concern about rapidly increasing sea level, a process dominated by ice-sheet dynamics and largely identified, quantified, studied and monitored by satellite sensors.

  8. Extensive dynamic thinning on the margins of the Greenland and Antarctic ice sheets.

    PubMed

    Pritchard, Hamish D; Arthern, Robert J; Vaughan, David G; Edwards, Laura A

    2009-10-15

    Many glaciers along the margins of the Greenland and Antarctic ice sheets are accelerating and, for this reason, contribute increasingly to global sea-level rise. Globally, ice losses contribute approximately 1.8 mm yr(-1) (ref. 8), but this could increase if the retreat of ice shelves and tidewater glaciers further enhances the loss of grounded ice or initiates the large-scale collapse of vulnerable parts of the ice sheets. Ice loss as a result of accelerated flow, known as dynamic thinning, is so poorly understood that its potential contribution to sea level over the twenty-first century remains unpredictable. Thinning on the ice-sheet scale has been monitored by using repeat satellite altimetry observations to track small changes in surface elevation, but previous sensors could not resolve most fast-flowing coastal glaciers. Here we report the use of high-resolution ICESat (Ice, Cloud and land Elevation Satellite) laser altimetry to map change along the entire grounded margins of the Greenland and Antarctic ice sheets. To isolate the dynamic signal, we compare rates of elevation change from both fast-flowing and slow-flowing ice with those expected from surface mass-balance fluctuations. We find that dynamic thinning of glaciers now reaches all latitudes in Greenland, has intensified on key Antarctic grounding lines, has endured for decades after ice-shelf collapse, penetrates far into the interior of each ice sheet and is spreading as ice shelves thin by ocean-driven melt. In Greenland, glaciers flowing faster than 100 m yr(-1) thinned at an average rate of 0.84 m yr(-1), and in the Amundsen Sea embayment of Antarctica, thinning exceeded 9.0 m yr(-1) for some glaciers. Our results show that the most profound changes in the ice sheets currently result from glacier dynamics at ocean margins.

  9. Fluvial system response to late Pleistocene-Holocene sea-level change on Santa Rosa Island, Channel Islands National Park, California

    NASA Astrophysics Data System (ADS)

    Schumann, R. Randall; Pigati, Jeffrey S.; McGeehin, John P.

    2016-09-01

    Santa Rosa Island (SRI) is one of four east-west aligned islands forming the northern Channel Islands chain, and one of the five islands in Channel Islands National Park, California, USA. The island setting provides an unparalleled environment in which to record the response of fluvial systems to major changes of sea level. Many of the larger streams on the island occupy broad valleys that have been filled with alluvium and later incised to form steep- to vertical-walled arroyos, leaving a relict floodplain as much as 12-14 m above the present channel. The period of falling sea level between the end of the last interglacial highstand at 80 ka and the last glacial lowstand at 21 ka was marked by erosion and incision in the uplands and by deposition of alluvial sediment on the exposed marine shelf. Sea level rose relatively rapidly following the last glacial lowstand of - 106 m, triggering a shift from an erosional to a depositional sedimentary regime. Accumulation of sediment occurred first through vertical and lateral accretion in broad, shallow channels on the shelf. Channel avulsion and delta sedimentation produced widespread deposition, creating lobes or wedges of sediment distributed across relatively large areas of the shelf during the latest Pleistocene. Backfilling of valleys onshore (landward of present sea level) appears to have progressed in a more orderly and predictable fashion throughout the Holocene primarily because the streams were confined to their valleys. Vertical aggradation locally reduced stream gradients, causing frequent overbank flooding and lateral channel shift by meandering and/or avulsion. Local channel gradient and morphology, short-term climate variations, and intrinsic controls also affected the timing and magnitudes of these cut, fill, and flood events, and are reflected in the thickness and spacing of the episodic alluvial sequences. Floodplain aggradation within the valleys continued until at least 500 years ago, followed by intensive arroyo cutting that abandoned the relict floodplains, forming alluvial terraces. Sedimentary evidence points to overgrazing and drought, followed by catastrophic flooding, in the mid-nineteenth century as factors that may have accelerated and dramatically enhanced arroyo formation on the island.

  10. The global signature of post-1900 land ice wastage on vertical land motion

    NASA Astrophysics Data System (ADS)

    Riva, Riccardo; Frederikse, Thomas; King, Matt; Marzeion, Ben; van den Broeke, Michiel

    2017-04-01

    The amount of ice stored on land has strongly declined during the 20th century, and melt rates showed a significant acceleration over the last two decades. Land ice wastage is well known to be one of the main drivers of global mean sea-level rise, as widely discussed in the literature and reflected in the last assessment report of the IPCC. A less obvious effect of melting land ice is the response of the solid earth to mass redistribution on its surface, which, in the first approximation, results in land uplift where the load reduces (e.g., close to the meltwater sources) and land subsidence where the load increases (e.g., under the rising oceans). This effect is nowadays well known within the cryospheric and sea level communities. However, what is often not realized is that the solid earth response is a truly global effect: a localized mass change does cause a large deformation signal in its proximity, but also causes a change of the position of every other point on the Earth's surface. The theory of the Earth's elastic response to changing surface loads forms the basis of the 'sea-level equation', which allows sea-level fingerprints of continental mass change to be computed. In this paper, we provide the first dedicated analysis of global vertical land motion driven by land ice wastage. By means of established techniques to compute the solid earth elastic response to surface load changes and the most recent datasets of glacier and ice sheet mass change, we show that land ice loss currently leads to vertical deformation rates of several tenths of mm per year at mid-latitudes, especially over the Northern Hemisphere where most sources are located. In combination with the improved accuracy of space geodetic techniques (e.g., Global Navigation Satellite Systems), this means that the effect of ice melt is non-negligible over a large part of the continents. In particular, we show how deformation rates have been strongly varying through the last century, which implies that they should be properly modelled before interpreting and extrapolating recent observations of vertical land motion and sea level change.

  11. Divergence of seafloor elevation and sea level rise in coral reef ecosystems

    USGS Publications Warehouse

    Yates, Kimberly K.; Zawada, David G.; Smiley, Nathan A.; Tiling-Range, Ginger

    2017-01-01

    Coral reefs serve as natural barriers that protect adjacent shorelines from coastal hazards such as storms, waves, and erosion. Projections indicate global degradation of coral reefs due to anthropogenic impacts and climate change will cause a transition to net erosion by mid-century. Here, we provide a comprehensive assessment of the combined effect of all of the processes affecting seafloor accretion and erosion by measuring changes in seafloor elevation and volume for five coral reef ecosystems in the Atlantic, Pacific, and Caribbean over the last several decades. Regional-scale mean elevation and volume losses were observed at all five study sites and in 77 % of the 60 individual habitats that we examined across all study sites. Mean seafloor elevation losses for whole coral reef ecosystems in our study ranged from −0.09 to −0.8 m, corresponding to net volume losses ranging from 3.4  ×  106 to 80.5  ×  106 m3 for all study sites. Erosion of both coral-dominated substrate and non-coral substrate suggests that the current rate of carbonate production is no longer sufficient to support net accretion of coral reefs or adjacent habitats. We show that regional-scale loss of seafloor elevation and volume has accelerated the rate of relative sea level rise in these regions. Current water depths have increased to levels not predicted until near the year 2100, placing these ecosystems and nearby communities at elevated and accelerating risk to coastal hazards. Our results set a new baseline for projecting future impacts to coastal communities resulting from degradation of coral reef systems and associated losses of natural and socioeconomic resources.

  12. Divergence of seafloor elevation and sea level rise in coral reef ecosystems

    NASA Astrophysics Data System (ADS)

    Yates, Kimberly K.; Zawada, David G.; Smiley, Nathan A.; Tiling-Range, Ginger

    2017-04-01

    Coral reefs serve as natural barriers that protect adjacent shorelines from coastal hazards such as storms, waves, and erosion. Projections indicate global degradation of coral reefs due to anthropogenic impacts and climate change will cause a transition to net erosion by mid-century. Here, we provide a comprehensive assessment of the combined effect of all of the processes affecting seafloor accretion and erosion by measuring changes in seafloor elevation and volume for five coral reef ecosystems in the Atlantic, Pacific, and Caribbean over the last several decades. Regional-scale mean elevation and volume losses were observed at all five study sites and in 77 % of the 60 individual habitats that we examined across all study sites. Mean seafloor elevation losses for whole coral reef ecosystems in our study ranged from -0.09 to -0.8 m, corresponding to net volume losses ranging from 3.4 × 106 to 80.5 × 106 m3 for all study sites. Erosion of both coral-dominated substrate and non-coral substrate suggests that the current rate of carbonate production is no longer sufficient to support net accretion of coral reefs or adjacent habitats. We show that regional-scale loss of seafloor elevation and volume has accelerated the rate of relative sea level rise in these regions. Current water depths have increased to levels not predicted until near the year 2100, placing these ecosystems and nearby communities at elevated and accelerating risk to coastal hazards. Our results set a new baseline for projecting future impacts to coastal communities resulting from degradation of coral reef systems and associated losses of natural and socioeconomic resources.

  13. Salton Sea ecosystem monitoring and assessment plan

    USGS Publications Warehouse

    Case(compiler), H. L.; Boles, Jerry; Delgado, Arturo; Nguyen, Thang; Osugi, Doug; Barnum, Douglas A.; Decker, Drew; Steinberg, Steven; Steinberg, Sheila; Keene, Charles; White, Kristina; Lupo, Tom; Gen, Sheldon; Baerenklau, Ken A.

    2013-01-01

    The Salton Sea, California’s largest lake, provides essential habitat for several fish and wildlife species and is an important cultural and recreational resource. It has no outlet, and dissolved salts contained in the inflows concentrate in the Salton Sea through evaporation. The salinity of the Salton Sea, which is currently nearly one and a half times the salinity of ocean water, has been increasing as a result of evaporative processes and low freshwater inputs. Further reductions in inflows from water conservation, recycling, and transfers will lower the level of the Salton Sea and accelerate the rate of salinity increases, reduce the suitability of fish and wildlife habitat, and affect air quality by exposing lakebed playa that could generate dust. Legislation enacted in 2003 to implement the Quantification Settlement Agreement (QSA) stated the Legislature’s intent for the State of California to undertake the restoration of the Salton Sea ecosystem. As required by the legislation, the California Resources Agency (now California Natural Resources Agency) produced the Salton Sea Ecosystem Restoration Study and final Programmatic Environmental Impact Report (PEIR; California Resources Agency, 2007) with the stated purpose to “develop a preferred alternative by exploring alternative ways to restore important ecological functions of the Salton Sea that have existed for about 100 years.” A decision regarding a preferred alternative currently resides with the California State Legislature (Legislature), which has yet to take action. As part of efforts to identify an ecosystem restoration program for the Salton Sea, and in anticipation of direction from the Legislature, the California Department of Water Resources (DWR), California Department of Fish and Wildlife (CDFW), U.S. Bureau of Reclamation (Reclamation), and U.S. Geological Survey (USGS) established a team to develop a monitoring and assessment plan (MAP). This plan is the product of that effort. The goal of the MAP is to provide a guide for data collection, analysis, management, and reporting to inform management actions for the Salton Sea ecosystem. Monitoring activities are directed at species and habitats that could be affected by or drive future restoration activities. The MAP is not intended to be a prescriptive document. Rather, it is envisioned to be a flexible, program-level guide that articulates high-level goals and objectives, and establishes broad sideboards within which future project-level investigations and studies will be evaluated and authorized. As such, the MAP, by design, does not, for example, include detailed protocols describing how investigations will be implemented. It is anticipated that detailed study proposals will be prepared as part of an implementation plan that will include such things as specific sampling objectives, sampling schemes, and statistical and spatial limits.

  14. Human Impacts On The Bengal Delta's Response To Rapid Climate And Sea-Level Changes: Who Threatens Whom? (Invited)

    NASA Astrophysics Data System (ADS)

    Goodbred, S. L.

    2009-12-01

    The densely populated country of Bangladesh is often cited as being severely threatened by predicted changes in climate and accelerated sea-level rise. Justification for this grave assessment is founded in part on the low-lying nation's frequent inundation by river floods and storm surges, which affect millions of people annually. Indeed, nearly 50% of the delta system lies <3 m above sea level, and the 2001 IPCC report suggested that a 1.5 m rise could inundate 22,000 km2 of coastal lowland and displace 17 million people. However, these signs of pending trouble contrast in many ways with patterns of delta behavior observed in the geological record. Sedimentary deposits from the early Holocene demonstrate that the Bengal delta remained largely stable in the face of very rapid sea-level rise, owing to a strengthened Asian monsoon, enhanced fluvial sediment fluxes, and an effective dispersal system. So how can we assess this system's likely response to environmental change based on such seemingly contradictory patterns from the modern and Holocene delta? A first step would be to acknowledge that flooding and land loss are very different processes, and often negatively correlated. For the Bengal delta in particular, coastal and upland flooding is the very process that maintains the system's stability in the facing of rising seas. While such flooding is a strain on humans, for the natural environment it speaks more to a healthful future than decline. Here I present field-based observations of sediment dispersal in the modern Bengal delta, which demonstrate how the system may remain relatively stable over the next century. However, this potentially acceptable outcome becomes increasingly unlikely if human interferences are considered. For example, short-term strategies to mitigate flooding would likely involve artificial leveeing of the river and the diking of coastal lowlands, both of which would limit sedimentation and diminish relative elevation of the delta surface. Threats upstream of the delta also include river damming to address demands for hydroelectric power and water resources in India, with a resulting decline in sediment discharge to the coast. Ultimately, it may be the impacts of such direct human-modification to the Bengal delta and river systems that outpace - in time and severity - those resulting from climate and sea-level changes alone.

  15. Recent Changes in Arctic Glaciers, Ice Caps, and the Greenland Ice Sheet: Cold Facts About Warm Ice

    NASA Astrophysics Data System (ADS)

    Abdalati, W.

    2005-12-01

    One of the major manifestations of Arctic change can be observed in the state of balance of Arctic glaciers and ice caps and the Greenland ice sheet. These ice masses are estimated to contain nearly 3 million cubic kilometers of ice, which is more than six times greater than all the water stored in the Earth's lakes, rivers, and snow combined and is the equivalent of over 7 meters of sea level. Most of these ice masses have been shrinking in recent in years, but their mass balance is highly variable on a wide range of spatial and temporal scales. On the Greenland ice sheet most of the coastal regions have thinned substantially as melt has increased and some of its outlet glaciers have accelerated. Near the equilibrium line in West Greenland, we have seen evidence of summer acceleration that is linked to surface meltwater production, suggesting a relatively rapid response mechanism of the ice sheet change to a warming climate. At the same time, however, the vast interior regions of the Greenland ice sheet have shown little change or slight growth, as accumulation in these areas may have increased. Throughout much of the rest of the Arctic, many glaciers and ice caps have been shrinking in the past few decades, and in Canada and Alaska, the rate of ice loss seems to have accelerated during the late 1990s. These recent observations offer only a snapshot in time of the long-term behavior, but they are providing crucial information about the current state of ice mass balance and the mechanisms that control it in one of the most climatically sensitive regions on Earth. As we continue to learn more through a combination of remote sensing observations, in situ measurements and improved modeling capabilities, it is important that we coordinate and integrate these approaches effectively in order to predict future changes and their impact on sea level, freshwater discharge, and ocean circulation.

  16. A Design for Maintaining Maritime Superiority. Version 1.0

    DTIC Science & Technology

    2016-01-01

    global force is the traffic on the oceans, seas, and waterways, including the sea floor – the classic maritime system. For millennia, the seas have...turn driving an accelerating rate of change – from music to medicine, from microfinance to missiles. 2 The third interrelated force is the...continues to grow. Why a “Design?” The scope and complexity of the challenges we face demand a different approach than that offered by a classic

  17. Acceleration performance of individual European sea bass Dicentrarchus labrax measured with a sprint performance chamber: comparison with high-speed cinematography and correlates with ecological performance.

    PubMed

    Vandamm, Joshua P; Marras, Stefano; Claireaux, Guy; Handelsman, Corey A; Nelson, Jay A

    2012-01-01

    Locomotor performance can influence the ecological and evolutionary success of a species. For fish, favorable outcomes of predator-prey encounters are often presumably due to robust acceleration ability. Although escape-response or "fast-start" studies utilizing high-speed cinematography are prevalent, little is known about the contribution of relative acceleration performance to ecological or evolutionary success in a species. This dearth of knowledge may be due to the time-consuming nature of analyzing film, which imposes a practical limit on sample sizes. Herein, we present a high-throughput potential alternative for measuring fish acceleration performance using a sprint performance chamber (SPC). The acceleration performance of a large number of juvenile European sea bass (Dicentrarchus labrax) from two populations was analyzed. Animals from both hatchery and natural ontogenies were assessed, and animals of known acceleration ability had their ecological performance measured in a mesocosm environment. Individuals from one population also had their acceleration performance assessed by both high-speed cinematography and an SPC. Acceleration performance measured in an SPC was lower than that measured by classical high-speed video techniques. However, short-term repeatability and interindividual variation of acceleration performance were similar between the two techniques, and the SPC recorded higher sprint swimming velocities. Wild fish were quicker to accelerate in an SPC and had significantly greater accelerations than all groups of hatchery-raised fish. Acceleration performance had no significant effect on ecological performance (as assessed through animal growth and survival in the mesocosms). However, it is worth noting that wild animals did survive predation in the mesocosm better than farmed ones. Moreover, the hatchery-originated fish that survived the mesocosm experiment, when no predators were present, displayed significantly increased acceleration performance during their 6 mo in the mesocosm; this performance was found to be inversely proportional to growth rate.

  18. Evaluating Potential Tipping Points of Antarctic basins

    NASA Astrophysics Data System (ADS)

    Durand, G.; Sainan, S.; Pattyn, F.; Jourdain, N.

    2017-12-01

    Antarctica is currently loosing mass and its forthcoming contribution to sea-level rise could substantially increase during the coming centuries. This is essentially due to geometrical constraints, i.e., in regions where grounded ice lies on a bedrock below sea-level sloping down towards the interior of the ice sheet (retrograde slope). For such a configuration the ice sheet is considered potentially unstable, as suggested by theory. However, recent observations on accelerated grounding-line retreat and new insights in modeling Pine Island and Thwaites glaciers give evidence that such self-sustained retreat, called marine ice sheet instability (MISI), has already been on its way. Although West Antarctica appears to be the most vulnerable region for MISI occurrence, similar topographic configurations are also observed in East Antarctica, in the Wilkes Basin in particular. Therefore, evaluating the MISI potential at a pan-Antarctic scale is becoming a priority. Here, using the f.ETISh ice sheet model, an ensemble of simulations of the entire contemporary Antarctic ice sheet has been carried out. In particular, we investigate the debuttressing of ice shelves required to initiate MISI for each coastal region around Antarctica by forcing the model with realistic sub-shelf melt pulses of varying duration and amplitude. We further identify the currently grounded areas where the outlet glaciers could hardly stabilize, the Amundsen Sea Sector being the more prone to large self-sustained retreats. On the contrary, the ability of Cook and Ninnis ice shelves to recover after large perturbations and enough buttress upstream outlet glaciers tends to limit self-sustained retreat of the sector. For each basin, rates of contribution to sea-level rise are discussed together with the RCPs and time when tipping points could be reached and MISI triggered.

  19. Sediment provenance and paleoenvironmental changes in the northwestern shelf mud area of the South China Sea since the mid-Holocene

    NASA Astrophysics Data System (ADS)

    Xu, Fangjian; Hu, Bangqi; Dou, Yanguang; Liu, Xiting; Wan, Shiming; Xu, Zhaokai; Tian, Xu; Liu, Zhaoqing; Yin, Xuebo; Li, Anchun

    2017-07-01

    The late Quaternary paleoceanography and paleoenvironment of the South China Sea (SCS) have been well reconstructed over the last decade. In contrast, the provenance of the terrigenous sediments that have accumulated in the northwestern continental shelf mud area remains enigmatic. This study investigated the provenance of these sediments and the paleoenvironmental changes archived in Core X2 via the analysis of geochemical elements, grain size, and accelerator mass spectrometry (AMS) 14C ages. Based on the upper continental crust (UCC)-normalized REE patterns and REE fractionation parameters, southwestern and western Taiwanese rivers and the Pearl River were identified as the main sources of the fine-grained sediment deposited in the northwestern shelf mud area off Hainan Island. This finding further confirms the long-distance transport (> 1000 km) of fine-grained sediment from Taiwanese rivers to the northern SCS shelf and slope. Obvious changes in the grain size and Chemical Index of Alteration (CIA) record occurred at approximately 4.0 cal kyr BP and were likely caused by increased Hainan Island inputs due to sea level changes.

  20. The Impact of Sea Ice Loss on Wave Dynamics and Coastal Erosion Along the Arctic Coast

    NASA Astrophysics Data System (ADS)

    Overeem, I.; Anderson, R. S.; Wobus, C. W.; Matell, N.; Urban, F. E.; Clow, G. D.; Stanton, T. P.

    2010-12-01

    The extent of Arctic sea ice has been shrinking rapidly over the past few decades, and attendant acceleration of erosion is now occurring along the Arctic coast. This both brings coastal infrastructure into harm’s way and promotes a complex response of the adjacent landscape to global change. We quantify the effects of declining sea ice extent on coastal erosion rates along a 75-km stretch of coastal permafrost bluffs adjacent to the Beaufort Sea, Alaska, where present-day erosion rates are among the highest in the world at ~14 m yr-1. Our own observations reinforce those of others, and suggest that the rate-limiting process is thermal erosion at the base of the several-meter tall bluffs. Here we focus on the interaction between the nearshore sea ice concentration, the location of the sea ice margin, and the fetch-limited, shallow water wave field, since these parameters ultimately control both sea surface temperatures and the height to which these waters can bathe the frozen bluffs. Thirty years of daily or bi-daily passive microwave data from Nimbus-7 SMMR and DMSP SSM/I satellites reveal that the nearshore open water season lengthened ~54 days over 1979-2009. The open water season, centered in August, expands more rapidly into the fall (September and October~0.92 day yr-1) than into the early summer (July~0.71 days yr-1). Average fetch, defined for our purposes as the distance from the sea ice margin to the coast over which the wind is blowing, increased by a factor 1.7 over the same time-span. Given these time series, we modeled daily nearshore wave heights during the open water season for each year, which we integrated to provide a quantitative metric for the annual exposure of the coastal bluffs to thermal erosion. This “annual wave exposure” increased by 250% during 1979-2009. In the same interval, coastal erosion rates reconstructed from satellite and aerial photo records show less acceleration. We attribute this to a disproportionate extension of the open-water season toward the fall than toward the early summer. This asymmetry fails to tap into the high insolation portion of the summer; expansion into the fall exerts less leverage on coastal change, as sea surface temperatures have significantly declined by late fall. Should the extension of ice-free conditions more strongly advance into the middle of summer, when insolation peaks, we suspect that sea surface temperatures will warm even faster and hence erosion may accelerate yet more strongly.

  1. Change Leadership: Innovation in State Education Agencies

    ERIC Educational Resources Information Center

    Redding, Sam

    2012-01-01

    This paper presents a Change Leadership Framework and applies the framework to the role of leadership in a State Education Agency (SEA) in setting the conditions for change to accelerate student learning. These conditions include the way the SEA directs its own change and the way it inspires and leads constructive change in districts and schools.…

  2. Environmental Data Collection Using Autonomous Wave Gliders

    DTIC Science & Technology

    2014-12-01

    Observing System IMU Inertial Measurement Unit LRI Liquid Robotics, Inc. MASFlux Marine-Air-Sea-Flux METOC meteorological and oceanographic...position, velocity, heading, pitch, roll , and six-axis acceleration rates (Figure 11). A separate temperature probe also provides sea surface...Position, Velocity, and Magnetic declination True North Revolution Technologies GS Gyro Stabilized Electronic Compass Heading, Pitch, and Roll

  3. A vulnerability assessment of 300 species in Florida: threats from sea level rise, land use, and climate change.

    PubMed

    Reece, Joshua Steven; Noss, Reed F; Oetting, Jon; Hoctor, Tom; Volk, Michael

    2013-01-01

    Species face many threats, including accelerated climate change, sea level rise, and conversion and degradation of habitat from human land uses. Vulnerability assessments and prioritization protocols have been proposed to assess these threats, often in combination with information such as species rarity; ecological, evolutionary or economic value; and likelihood of success. Nevertheless, few vulnerability assessments or prioritization protocols simultaneously account for multiple threats or conservation values. We applied a novel vulnerability assessment tool, the Standardized Index of Vulnerability and Value, to assess the conservation priority of 300 species of plants and animals in Florida given projections of climate change, human land-use patterns, and sea level rise by the year 2100. We account for multiple sources of uncertainty and prioritize species under five different systems of value, ranging from a primary emphasis on vulnerability to threats to an emphasis on metrics of conservation value such as phylogenetic distinctiveness. Our results reveal remarkable consistency in the prioritization of species across different conservation value systems. Species of high priority include the Miami blue butterfly (Cyclargus thomasi bethunebakeri), Key tree cactus (Pilosocereus robinii), Florida duskywing butterfly (Ephyriades brunnea floridensis), and Key deer (Odocoileus virginianus clavium). We also identify sources of uncertainty and the types of life history information consistently missing across taxonomic groups. This study characterizes the vulnerabilities to major threats of a broad swath of Florida's biodiversity and provides a system for prioritizing conservation efforts that is quantitative, flexible, and free from hidden value judgments.

  4. Intake of high levels of vitamin A and polyunsaturated fatty acids during different developmental periods modifies the expression of morphogenesis genes in European sea bass (Dicentrarchus labrax).

    PubMed

    Villeneuve, Laure A N; Gisbert, Enric; Moriceau, Jacques; Cahu, Chantal L; Zambonino Infante, José L

    2006-04-01

    The effect of the feeding period on larval development was investigated in European sea bass larvae by considering the expression level of some genes involved in morphogenesis. Larvae were fed a control diet except during three different periods (period A: from 8 to 13 d post-hatching (dph); period B: from 13 to 18 dph; period C: from 18 to 23 dph) with two compound diets containing high levels of vitamin A or PUFA. European sea bass morphogenesis was affected by these two dietary nutrients during the early stages of development. The genes involved in morphogenesis could be modulated between 8 and 13 dph, and our results indicated that retinoids and fatty acids influenced two different molecular pathways that in turn implicated two different gene cascades, resulting in two different kinds of malformation. Hypervitaminosis A delayed development, reducing the number of vertebral segments and disturbing bone formation in the cephalic region. These malformations were correlated to an upregulation of retinoic acid receptor gamma, retinoid X receptor (RXR) alpha and bone morphogenetic protein (BMP)4. An excess of PUFA accelerated the osteoblast differentiation process through the upregulation of RXRalpha and BMP4, leading to a supernumerary vertebra. These results suggest that the composition of diets devoted to marine fish larvae has a particularly determining effect before 13 dph on the subsequent development of larvae and juvenile fish.

  5. Contrasting Decadal-Scale Changes in Elevation and ...

    EPA Pesticide Factsheets

    Northeastern US salt marshes face multiple co-stressors, including accelerating rates of relative sea level rise (RSLR), elevated nutrient inputs, and low sediment supplies. In order to evaluate how marsh surface elevations respond to such factors, we used surface elevation tables (SETs) and surface elevation pins to measure changes in marsh surface elevation in two eastern Long Island Sound salt marshes, Barn Island and Mamacoke marshes. We compare marsh elevation change at these two systems with recent rates of RSLR and find evidence of differences between the two sites; Barn Island is maintaining its historic rate of elevation gain (2.3 ± 0.24 mm year−1 from 2003 to 2013) and is no longer keeping pace with RSLR, while Mamacoke shows evidence of a recent increase in rates (4.2 ± 0.52 mm year−1 from 1994 to 2014) to maintain its elevation relative to sea level. In addition to data on short-term elevation responses at these marshes, both sites have unusually long and detailed data on historic vegetation species composition extending back more than half a century. Over this study period, vegetation patterns track elevation change relative to sea levels, with the Barn Island plant community shifting towards those plants that are found at lower elevations and the Mamacoke vegetation patterns showing little change in plant composition. We hypothesize that the apparent contrasting trend in marsh elevation at the sites is due to differences in sediment a

  6. Temporal variability of the Antarctic Ice sheet observed from space-based geodesy

    NASA Astrophysics Data System (ADS)

    Memin, A.; King, M. A.; Boy, J. P.; Remy, F.

    2017-12-01

    Quantifying the Antarctic Ice Sheet (AIS) mass balance still remains challenging as several processes compete to differing degrees at the basin scale with regional variations, leading to multiple mass redistribution patterns. For instance, analysis of linear trends in surface-height variations from 1992-2003 and 2002-2006 shows that the AIS is subject to decimetric scale variability over periods of a few years. Every year, snowfalls in Antarctica represent the equivalent of 6 mm of the mean sea level. Therefore, any fluctuation in precipitation can lead to changes in sea level. Besides, over the last decade, several major glaciers have been thinning at an accelerating rate. Understanding the processes that interact on the ice sheet is therefore important to precisely determine the response of the ice sheet to a rapid changing climate and estimate its contribution to sea level changes. We estimate seasonal and interannual changes of the AIS between January 2003 and October 2010 and to the end of 2016 from a combined analysis of surface-elevation and surface-mass changes derived from Envisat data and GRACE solutions, and from GRACE solutions only, respectively. While we obtain a good correlation for the interannual signal between the two techniques, important differences (in amplitude, phase, and spatial pattern) are obtained for the seasonal signal. We investigate these discrepancies by comparing the crustal motion observed by GPS and those predicted using monthly surface mass balance derived from the regional atmospheric climate model RACMO.

  7. Potential effects of elevated atmospheric carbon dioxide (CO2) on coastal wetlands

    USGS Publications Warehouse

    McKee, Karen

    2006-01-01

    Carbon dioxide (CO2) concentration in the atmosphere has steadily increased from 280 parts per million (ppm) in preindustrial times to 381 ppm today and is predicted by some models to double within the next century. Some of the important pathways whereby changes in atmospheric CO2 may impact coastal wetlands include changes in temperature, rainfall, and hurricane intensity (fig. 1). Increases in CO2 can contribute to global warming, which may (1) accelerate sea-level rise through melting of polar ice fields and steric expansion of oceans, (2) alter rainfall patterns and salinity regimes, and (3) change the intensity and frequency of tropical storms and hurricanes. Sea-level rise combined with changes in storm activity may affect erosion and sedimentation rates and patterns in coastal wetlands and maintenance of soil elevations.Feedback loops between plant growth and hydroedaphic conditions also contribute to maintenance of marsh elevations through accumulation of organic matter. Although increasing CO2 concentration may contribute to global warming and climate changes, it may also have a direct impact on plant growth and development by stimulating photosynthesis or improving water use efficiency. Scientists with the U.S. Geological Survey are examining responses of wetland plants to elevated CO2 concentration and other factors. This research will lead to a better understanding of future changes in marsh species composition, successional rates and patterns, ecological functioning, and vulnerability to sea-level rise and other global change factors.

  8. The MOSO field experiment - Overview of findings

    NASA Astrophysics Data System (ADS)

    Ólafsson, Haraldur; Jonassen, Marius O.; Ágústsson, Hálfdán; Rögnvaldsson, Ólafur; Hjarðar, Bjarni G. Þ.; Rasol, Dubravka; Reuder, Joachim; Jónsson, Sigurður; Líf Kristinsdóttir, Birta

    2013-04-01

    In 2009 and 2011, the MOSO I and MOSO II meteorological field experiments took place in SW-Iceland. The main objectives were to describe the low level atmospheric coastal flows in the vicinity of mountains. The observations for the MOSO dataset were made using a large number of automatic weather stations, microbarographs, radiosoundings and a remotely piloted aircraft. The highlights of the findings include a four-dimensional description of the sea-breeze in Iceland, weak downslope acceleration, summer- and winter-time mountain wake flow, transition between wake flow and sea-breeze. The orographic drag force is explored and shown to be not so high most of the time in the predicted high-drag state. The observations from the remotely piloted aircraft have been used successfully to nudge simulations of the flow and are shown to be promising for operational use in numerical prediction of mesoscale coastal and orographic flows.

  9. Climate Informatics

    NASA Technical Reports Server (NTRS)

    Monteleoni, Claire; Schmidt, Gavin A.; Alexander, Francis J.; Niculescu-Mizil, Alexandru; Steinhaeuser, Karsten; Tippett, Michael; Banerjee, Arindam; Blumenthal, M. Benno; Ganguly, Auroop R.; Smerdon, Jason E.; hide

    2013-01-01

    The impacts of present and potential future climate change will be one of the most important scientific and societal challenges in the 21st century. Given observed changes in temperature, sea ice, and sea level, improving our understanding of the climate system is an international priority. This system is characterized by complex phenomena that are imperfectly observed and even more imperfectly simulated. But with an ever-growing supply of climate data from satellites and environmental sensors, the magnitude of data and climate model output is beginning to overwhelm the relatively simple tools currently used to analyze them. A computational approach will therefore be indispensable for these analysis challenges. This chapter introduces the fledgling research discipline climate informatics: collaborations between climate scientists and machine learning researchers in order to bridge this gap between data and understanding. We hope that the study of climate informatics will accelerate discovery in answering pressing questions in climate science.

  10. Challenges of climate change: an Arctic perspective.

    PubMed

    Corell, Robert W

    2006-06-01

    Climate change is being experienced particularly intensely in the Arctic. Arctic average temperature has risen at almost twice the rate as that of the rest of the world in the past few decades. Widespread melting of glaciers and sea ice and rising permafrost temperatures present additional evidence of strong Arctic warming. These changes in the Arctic provide an early indication of the environmental and societal significance of global consequences. The Arctic also provides important natural resources to the rest of the world (such as oil, gas, and fish) that will be affected by climate change, and the melting of Arctic glaciers is one of the factors contributing to sea level rise around the globe. An acceleration of these climatic trends is projected to occur during this century, due to ongoing increases in concentrations of greenhouse gases in the Earth's atmosphere. These Arctic changes will, in turn, impact the planet as a whole.

  11. The impact of climate change on coastal ecosystems: chapter 6

    USGS Publications Warehouse

    Burkett, Virginia; Woodroffe, Colin D.; Nicholls, Robert J.; Forbes, Donald L.

    2014-01-01

    In this chapter we stress two important features of coasts and coastal ecosystems. First, these are dynamic systems which continually undergo adjustments, especially through erosion and re-deposition, in response to a range of processes. Many coastal ecosystems adjust naturally at a range of time scales and their potential for response is examined partly by reconstructing how such systems have coped with natural changes of climate and sea level in the geological past. Second, coasts have changed profoundly through the 20th Century due to the impacts of human development (such as urbanisation, port and industrial expansion, shore protection, and the draining and conversion of coastal wetlands), with these development-related drivers closely linked to a growing global population and economy. It remains a challenge to isolate the impacts of climate change and sea-level rise from either the natural trajectory of shoreline change, or the accelerated pathway resulting from other human-related stressors. There exists a danger of overstating the importance of climate change, or overlooking significant interactions of climate change with other drivers.

  12. Prognosis for a sick planet.

    PubMed

    Maslin, Mark

    2008-12-01

    Global warming is the most important science issue of the 21st century, challenging the very structure of our global society. The study of past climate has shown that the current global climate system is extremely sensitive to human-induced climate change. The burning of fossil fuels since the beginning of the industrial revolution has already caused changes with clear evidence for a 0.75 degrees C rise in global temperatures and 22 cm rise in sea level during the 20th century. The Intergovernmental Panel on Climate Change synthesis report (2007) predicts that global temperatures by 2100 could rise by between 1.1 degrees C and 6.4 degrees C. Sea level could rise by between 28 cm and 79 cm, more if the melting of the polar ice caps accelerates. In addition, weather patterns will become less predictable and the occurrence of extreme climate events, such as storms, floods, heat waves and droughts, will increase. The potential effects of global warming on human society are devastating. We do, however, already have many of the technological solutions to cure our sick planet.

  13. Distribution of Reynolds stress carried by mesoscale variability in the Antarctic Circumpolar Current

    NASA Technical Reports Server (NTRS)

    Johnson, Thomas J.; Stewart, Robert H.; Shum, C. K.; Tapley, Byron D.

    1992-01-01

    Satellite altimeter data collected by the Geosat Exact Repeat Mission were used to investigate turbulent stress resulting from the variability of surface geostrophic currents in the Antarctic Circumpolar Current. The altimeter measured sea level along the subsatellite track. The variability of the along-track slope of sea level is directly proportional to the variability of surface geostrophic currents in the cross-track direction. Because the grid of crossover points is dense at high latitudes, the satellite data could be used for mapping the temporal and spatial variability of the current. Two and a half years of data were used to compute the statistical structure of the variability. The statistics included the probability distribution functions for each component of the current, the time-lagged autocorrelation functions of the variability, and the Reynolds stress produced by the variability. The results demonstrate that stress is correlated with bathymetry. In some areas the distribution of negative stress indicate that eddies contribute to an acceleration of the mean flow, strengthening the hypothesis that baroclinic instability makes important contributions to strong oceanic currents.

  14. Control Performance of General Electric Fuel and Torque Regulator Operating on T31-3 Turbine-Propeller Engine in Sea-Level Test Stand

    NASA Technical Reports Server (NTRS)

    Oppenheimer, Frank L.; Lazar, James

    1951-01-01

    A .General Electric fuel and torque regulator was tested in conjunction with a T31-3 turbine-propeller engine in the sea-level static test stand at the NACA Lewis laboratory. The engine and control were operated over the entire speed range: 11,000 rpm, nominal flight idle, to 13,000 rpm, full power. Steady-state and transient data were recorded and are presented with a description of the four control loops being used in the system. Results of this investigation indicated that single-lever control operation was satisfactory under conditions of test. Transient data presented showed that turbine-outlet temperature did overshoot maximum operating value on acceleration but that the time duration of overshoot did not exceed approximately 1 second. This temperature limiting resulted from a control on fuel flow as a function of engine speed. Speed and torque first reached their desired values 0.4 second from the time of change in power-setting lever position. Maximum speed overshoot was 3 percent.

  15. Time Course and Variability of Polycythemic Response in Men at High Altitude

    NASA Technical Reports Server (NTRS)

    Grover, R. F.; Seiland, M.; McCullough, R. G.; Greenleaf, J. E.; Dahms, T. E.; Wolfel, E.; Reeves, J. T.

    2000-01-01

    Ten young men were exposed to 4,300 m (PB 460 Torr) for three weeks. Plasma volume (PV, Evans Blue dye). and blood volume (BV, carbon monoxide) measured simultaneously, and red cell volume (RCV) calculated from hematocrit, were determined twice at sea level and after 9-11 and 19-20 days at high altitude. After 19-20 days. half the subjects increased RCV +19.4 +/- 1.8% (p<0.001); the other 5 subjects had no significant change in RCV. All 10 subjects had a sustained decrease in PV (-16.2 +/- 1.9%, p<0.05) at altitude. Consequently, compared with sea level values, BV was unchanged (-3.1 +/- 1.8%) in the group with increased RCV, but BV decreased significantly (-12.2 +/- 1.4%, p<0.05) in the other group. Variability in RCV response was not explained by differences, in hypoxemic stimulus or the erythropoictin and reticulocyte responses. Since RCV reflects the balance between red cell. production and destruction, accelerated red cell destruction may have occurred in those individuals with no net change in RCV.

  16. Impact of weather events on Arctic sea ice albedo evolution

    NASA Astrophysics Data System (ADS)

    Arntsen, A. E.; Perovich, D. K.; Polashenski, C.; Stwertka, C.

    2015-12-01

    Arctic sea ice undergoes a seasonal evolution from cold snow-covered ice to melting snow to bare ice with melt ponds. Associated with this physical evolution is a decrease in the albedo of the ice cover. While the change in albedo is often considered as a steady seasonal decrease, weather events during melt, such as rain or snow, can impact the albedo evolution. Measurements on first year ice in the Chukchi Sea showed a decrease in visible albedo to 0.77 during the onset of melt. New snow from 4 - 6 June halted melting and increased the visible albedo to 0.87. It took 12 days for the albedo to decrease to levels prior to the snowfall. Incident solar radiation is large in June and thus a change in albedo has a large impact on the surface heat budget. The snowfall increased the albedo by 0.1 and reduced the absorbed sunlight from 5 June to 17 June by approximately 32 MJ m-2. The total impact of the snowfall will be even greater, since the delay in albedo reduction will be propagated throughout the entire summer. A rain event would have the opposite impact, increasing solar heat input and accelerating melting. Snow or rain in May or June can impact the summer melt cycle of Arctic sea ice.

  17. Reassessment of probabilistic seismic hazard in the Marmara region

    USGS Publications Warehouse

    Kalkan, Erol; Gulkan, Polat; Yilmaz, Nazan; Çelebi, Mehmet

    2009-01-01

    In 1999, the eastern coastline of the Marmara region (Turkey) witnessed increased seismic activity on the North Anatolian fault (NAF) system with two damaging earthquakes (M 7.4 Kocaeli and M 7.2 D??zce) that occurred almost three months apart. These events have reduced stress on the western segment of the NAF where it continues under the Marmara Sea. The undersea fault segments have been recently explored using bathymetric and reflection surveys. These recent findings helped scientists to understand the seismotectonic environment of the Marmara basin, which has remained a perplexing tectonic domain. On the basis of collected new data, seismic hazard of the Marmara region is reassessed using a probabilistic approach. Two different earthquake source models: (1) the smoothed-gridded seismicity model and (2) fault model and alternate magnitude-frequency relations, Gutenberg-Richter and characteristic, were used with local and imported ground-motion-prediction equations. Regional exposure is computed and quantified on a set of hazard maps that provide peak horizontal ground acceleration (PGA) and spectral acceleration at 0.2 and 1.0 sec on uniform firm-rock site condition (760 m=sec average shear wave velocity in the upper 30 m). These acceleration levels were computed for ground motions having 2% and 10% probabilities of exceedance in 50 yr, corresponding to return periods of about 2475 and 475 yr, respectively. The maximum PGA computed (at rock site) is 1.5g along the fault segments of the NAF zone extending into the Marmara Sea. The new maps generally show 10% to 15% increase for PGA, 0.2 and 1.0 sec spectral acceleration values across much of Marmara compared to previous regional hazard maps. Hazard curves and smooth design spectra for three site conditions: rock, soil, and soft-soil are provided for the Istanbul metropolitan area as possible tools in future risk estimates.

  18. Complex Greenland outlet glacier flow captured

    PubMed Central

    Aschwanden, Andy; Fahnestock, Mark A.; Truffer, Martin

    2016-01-01

    The Greenland Ice Sheet is losing mass at an accelerating rate due to increased surface melt and flow acceleration in outlet glaciers. Quantifying future dynamic contributions to sea level requires accurate portrayal of outlet glaciers in ice sheet simulations, but to date poor knowledge of subglacial topography and limited model resolution have prevented reproduction of complex spatial patterns of outlet flow. Here we combine a high-resolution ice-sheet model coupled to uniformly applied models of subglacial hydrology and basal sliding, and a new subglacial topography data set to simulate the flow of the Greenland Ice Sheet. Flow patterns of many outlet glaciers are well captured, illustrating fundamental commonalities in outlet glacier flow and highlighting the importance of efforts to map subglacial topography. Success in reproducing present day flow patterns shows the potential for prognostic modelling of ice sheets without the need for spatially varying parameters with uncertain time evolution. PMID:26830316

  19. Late Quaternary paleoceanographic changes in the southwestern Okhotsk Sea: Evidence from geochemical, radiolarian, and diatom records

    NASA Astrophysics Data System (ADS)

    Okazaki, Yusuke; Takahashi, Kozo; Katsuki, Kota; Ono, Ayumu; Hori, Joichi; Sakamoto, Tatsuhiko; Uchida, Masao; Shibata, Yasuyuki; Ikehara, Minoru; Aoki, Kaori

    2005-08-01

    High-resolution analyses of geochemical parameters (biogenic opal, calcium carbonate, organic carbon, and nitrogen) and microfossil assemblages (diatoms and radiolarians) on Core MD01-2412 clarified detailed paleoceanographic changes such as sea-ice cover and biological production in the southwestern Okhotsk Sea during the last 115 kyr. An age model of Core MD01-2412 was established based on δ 18O stratigraphy, accelerator mass spectrometer (AMS) 14C, and tephrochronology. Sea-ice history reconstructed by siliceous microplankton records indicated that the present sea-ice condition was formed during the last 8 kyr. Only during Marine Isotope Stage (MIS) 2 was the duration of sea-ice cover in this region much longer than that of today (4-5 months a year). Two diatom species, Thalassionema nitzschioides and Fragilariopsis doliolus, revealed that the Soya Warm Current Water (SWCW) flowed into the Okhotsk Sea near the site of Core MD01-2412 during the last 12-14 kyr and during MIS 5a, and was associated with sea-level rise. Biological productivity rapidly increased during MIS 1, associated with sea-ice retreat. Two major increases of organic carbon (OC) contents (wt%) and C org/N ratios were observed, and the timings of these events were 15.8-16.7 ka (Event 1) and 13.1-13.6 ka (Event 2). Corresponding to these events, the abundance of Cycladophora davisiana, an intermediate water dwelling radiolarian species, increased. This high C. davisiana abundance can be correlated to the input of terrestrial organic matter from the submerged shelf to the intermediate water. Apart from the radiolarians, the production of diatoms in the surface waters was suppressed by the development of well-stratified surface water along with sea-ice melting during the early Holocene. Diatom production increased gradually during the last 10 kyr with enhanced vertical mixing.

  20. The role of the cold Okhotsk Sea in strengthening of the Pacific subtropical high and Baiu precipitation

    NASA Astrophysics Data System (ADS)

    Kawasaki, K.; Tachibana, Y.; Nakamura, T.; Yamazaki, K.; Kodera, K.

    2016-12-01

    It is commonly known that the formation of a stationery precipitation zone in association with the Baiu front is influenced by the existence of the warm Tibetan Plateau. Some GCM studies in which the Tibetan Plateau is removed pointed out that without the Tibetan Plateau, the Baiu front wound not appear. The cold Okhotsk Sea, which is located to the north of Japan, is also important in forming cold air for the Bai front. This study focused on the role of the Okhotsk Sea in the formation of the Baiu front by using an atmospheric GCM. One GCM is executed without the Okhotsk Sea, in which was changed to an eastern part of the Eurasian continent as if the Okhotsk Sea was totally landfilled (land run). The other (sea run) is a control run under the boundary condition of climatic seasonal changes of the SST over the globe. The comparison of the land run with the sea run showed that precipitation over Japan would weaken in the Baiu season without the Okhotsk Sea, indicating that the existence of the Okhotsk Sea has an impact on the increase in precipitation. The precipitation increase in the sea run is directly accounted by the strengthening of southeast wind in association with the strengthening of the subtropical high located over the Pacific Ocean (Fig. 1). The westerly jet, which is located at the northern part of the subtropical high, was also accelerated in the sea run. The subtropical high in association with the accelerated jet was strengthened by meridional atmospheric thermal gradient caused by underlying cold Okhotsk Sea and the warm Pacific Ocean. The strengthened thermal gradient also activated the storm track that extends zonally over the Okhotsk Sea, and the activated storm track further strengthened the jet and subtropical high by wave-mean flow feedback. This feedback loop could further strengthen the Baiu precipitation. In consequence, the Okhotsk plays a significant role in the strengthening the subtropical high and its associated Baiu precipitation.

  1. Regional strategies for the accelerating global problem of groundwater depletion

    NASA Astrophysics Data System (ADS)

    Aeschbach-Hertig, Werner; Gleeson, Tom

    2012-12-01

    Groundwater--the world's largest freshwater resource--is critically important for irrigated agriculture and hence for global food security. Yet depletion is widespread in large groundwater systems in both semi-arid and humid regions of the world. Excessive extraction for irrigation where groundwater is slowly renewed is the main cause of the depletion, and climate change has the potential to exacerbate the problem in some regions. Globally aggregated groundwater depletion contributes to sea-level rise, and has accelerated markedly since the mid-twentieth century. But its impacts on water resources are more obvious at the regional scale, for example in agriculturally important parts of India, China and the United States. Food production in such regions can only be made sustainable in the long term if groundwater levels are stabilized. To this end, a transformation is required in how we value, manage and characterize groundwater systems. Technical approaches--such as water diversion, artificial groundwater recharge and efficient irrigation--have failed to balance regional groundwater budgets. They need to be complemented by more comprehensive strategies that are adapted to the specific social, economic, political and environmental settings of each region.

  2. The Larsen Ice Shelf in Antarctica viewed from NASA's DC-8 aircraft during the AirSAR 2004 campaign

    NASA Image and Video Library

    2004-03-16

    The Larsen Ice Shelf in Antarctica viewed from NASA's DC-8 aircraft during the AirSAR 2004 campaign. AirSAR 2004 is a three-week expedition in Central and South America by an international team of scientists that is using an all-weather imaging tool, called the Airborne Synthetic Aperture Radar (AirSAR), located onboard NASA's DC-8 airborne laboratory. Scientists from many parts of the world are combining ground research with NASA's AirSAR technology to improve and expand on the quality of research they are able to conduct. These photos are from the DC-8 aircraft while flying an AirSAR mission over Antarctica. The Antarctic Peninsula is more similar to Alaska and Patagonia than to the rest of the Antarctic continent. It is drained by fast glaciers, receives abundant precipitation, and melts significantly in the summer months. In recent decades, the Peninsula has experienced significant atmospheric warming (about 2 degrees C since 1950), which has triggered a vast and spectacular retreat of its floating ice shelves, glacier reduction, a decrease in permanent snow cover and a lengthening of the melt season. As a result, the contribution to sea level from this region could be rapid and substantial. With an area of 120,000 km, or ten times the Patagonia ice fields, the Peninsula could contribute as much as 0.4mm/yr sea level rise, which would be the largest single contribution to sea level from anywhere in the world. This region is being studied by NASA using a DC-8 equipped with the Airborne Synthetic Aperture Radar developed by scientists from NASA’s Jet Propulsion Laboratory. AirSAR will provide a baseline model and unprecedented mapping of the region. This data will make it possible to determine whether the warming trend is slowing, continuing or accelerating. AirSAR will also provide reliable information on ice shelf thickness to measure the contribution of the glaciers to sea level.

  3. The Larsen Ice Shelf in Antarctica viewed from NASA's DC-8 aircraft during the AirSAR 2004 campaign

    NASA Image and Video Library

    2004-03-13

    The Larsen Ice Shelf in Antarctica viewed from NASA's DC-8 aircraft during the AirSAR 2004 campaign. AirSAR 2004 is a three-week expedition in Central and South America by an international team of scientists that is using an all-weather imaging tool, called the Airborne Synthetic Aperture Radar (AirSAR), located onboard NASA's DC-8 airborne laboratory. Scientists from many parts of the world are combining ground research with NASA's AirSAR technology to improve and expand on the quality of research they are able to conduct. These photos are from the DC-8 aircraft while flying an AirSAR mission over Antarctica. The Antarctic Peninsula is more similar to Alaska and Patagonia than to the rest of the Antarctic continent. It is drained by fast glaciers, receives abundant precipitation, and melts significantly in the summer months. In recent decades, the Peninsula has experienced significant atmospheric warming (about 2 degrees C since 1950), which has triggered a vast and spectacular retreat of its floating ice shelves, glacier reduction, a decrease in permanent snow cover and a lengthening of the melt season. As a result, the contribution to sea level from this region could be rapid and substantial. With an area of 120,000 km, or ten times the Patagonia ice fields, the Peninsula could contribute as much as 0.4mm/yr sea level rise, which would be the largest single contribution to sea level from anywhere in the world. This region is being studied by NASA using a DC-8 equipped with the Airborne Synthetic Aperture Radar developed by scientists from NASA’s Jet Propulsion Laboratory. AirSAR will provide a baseline model and unprecedented mapping of the region. This data will make it possible to determine whether the warming trend is slowing, continuing or accelerating. AirSAR will also provide reliable information on ice shelf thickness to measure the contribution of the glaciers to sea level.

  4. The Larsen Ice Shelf in Antarctica viewed from NASA's DC-8 aircraft during the AirSAR 2004 campaign

    NASA Image and Video Library

    2004-03-16

    The Larsen Ice Shelf in Antarctica viewed from NASA's DC-8 aircraft during the AirSAR 2004 campaign. AirSAR 2004 is a three-week expedition in Central and South America by an international team of scientists that is using an all-weather imaging tool, called the Airborne Synthetic Aperture Radar (AirSAR), located onboard NASA's DC-8 airborne laboratory. Scientists from many parts of the world are combining ground research with NASA's AirSAR technology to improve and expand on the quality of research they are able to conduct. These photos are from the DC-8 aircraft while flying an AirSAR mission over Antarctica. The Antarctic Peninsula is more similar to Alaska and Patagonia than to the rest of the Antarctic continent. It is drained by fast glaciers, receives abundant precipitation, and melts significantly in the summer months. In recent decades, the Peninsula has experienced significant atmospheric warming (about 2 degrees C since 1950), which has triggered a vast and spectacular retreat of its floating ice shelves, glacier reduction, a decrease in permanent snow cover and a lengthening of the melt season. As a result, the contribution to sea level from this region could be rapid and substantial. With an area of 120,000 km, or ten times the Patagonia ice fields, the Peninsula could contribute as much as 0.4mm/yr sea level rise, which would be the largest single contribution to sea level from anywhere in the world. This region is being studied by NASA using a DC-8 equipped with an Airborne Synthetic Aperture Radar (AirSAR) developed by scientists from NASA’s Jet Propulsion Laboratory. AirSAR will provide a baseline model and unprecedented mapping of the region. This data will make it possible to determine whether the warming trend is slowing, continuing or accelerating. AirSAR will also provide reliable information on ice shelf thickness to measure the contribution of the glaciers to sea level.

  5. Regional, holocene records of the human dimension of global change: sea-level and land-use change in prehistoric Mexico

    NASA Astrophysics Data System (ADS)

    Sluyter, Andrew

    1997-02-01

    Regional, Holocene records hold particular relevance for understanding the reciprocal nature of global environmental change and one of its major human dimensions: "sustainable agriculture", i.e., food production strategies which entail fewer causes of and are less susceptible to environmental change. In an epoch of accelerating anthropogenic transformation, those records reveal the protracted regional causes and consequences of change (often agricultural) in the global system as well as informing models of prehistoric, intensive agriculture which, because of long tenures and high productivities, suggest strategies for sustainable agricultural in the present. This study employs physiographic analysis and the palynological, geochemical record from cores of basin fill to understand the reciprocal relation between environmental and land-use change in the Gulf of Mexico tropical lowland, focusing on a coastal basin sensitive to sea-level change and containing vestiges of prehistoric settlement and wetland agriculture. Fossil pollen reveals that the debut of maize cultivation in the Laguna Catarina watershed dates to ca. 4100 BC, predating the earliest evidence for that cultivar anywhere else in the lowlands of Middle America. Such an early date for a cultivar so central to Neotropical agroecology and environmental change, suggests the urgency of further research in the study region. Moreover, the longest period of continuous agriculture in the basin lasted nearly three millennia (ca. 2400 BC-AD 550) despite eustatic sea-level rise. Geochemical fluxes reveal the reciprocity between land-use and environmental change: slope destabilization, basin aggradation, and eutrophication. The consequent theoretical implications pertain to both applied and basic research. Redeploying ancient agroecologies in dynamic environments necessitates reconstructing the changing operational contexts of putative high productivity and sustainability. Adjusting land use in the face of global warming and eustatic sea-level rise necessitates understanding sediment influxes to coastal basins which, in turn, depend on vegetation, climate, and land use in watersheds.

  6. Right ventricular morphology and function in chronic obstructive pulmonary disease patients living at high altitude.

    PubMed

    Güvenç, Tolga Sinan; Erer, Hatice Betül; Kul, Seref; Perinçek, Gökhan; Ilhan, Sami; Sayar, Nurten; Yıldırım, Binnaz Zeynep; Doğan, Coşkun; Karabağ, Yavuz; Balcı, Bahattin; Eren, Mehmet

    2013-01-01

    Pulmonary vasculature is affected in patients with chronic pulmonary obstructive disease (COPD). As a result of increased pulmonary resistance, right ventricular morphology and function are altered in COPD patients. High altitude and related hypoxia causes pulmonary vasoconstriction, thereby affecting the right ventricle. We aimed to investigate the combined effects of COPD and altitude-related chronic hypoxia on right ventricular morphology and function. Forty COPD patients living at high altitude (1768 m) and 41 COPD patients living at sea level were enrolled in the study. All participants were diagnosed as COPD by a pulmonary diseases specialist depending on symptoms, radiologic findings and pulmonary function test results. Detailed two-dimensional echocardiography was performed by a cardiologist at both study locations. Oxygen saturation and mean pulmonary artery pressure were higher in the high altitude group. Right ventricular end diastolic diameter, end systolic diameter, height and end systolic area were significantly higher in the high altitude group compared to the sea level group. Parameters of systolic function, including tricuspid annular systolic excursion, systolic velocity of tricuspid annulus and right ventricular isovolumic acceleration were similar between groups, while fractional area change was significantly higher in the sea level groups compared to the high altitude group. Indices of diastolic function and myocardial performance index were similar between groups. An increase in mean pulmonary artery pressure and right ventricular dimensions are observed in COPD patients living at high altitude. Despite this increase, systolic and diastolic functions of the right ventricle, as well as global right ventricular performance are similar in COPD patients living at high altitude and sea level. Altitude-related adaptation to chronic hypoxia could explain these findings. Copyright © 2012 Australian and New Zealand Society of Cardiac and Thoracic Surgeons (ANZSCTS) and the Cardiac Society of Australia and New Zealand (CSANZ). Published by Elsevier B.V. All rights reserved.

  7. Validating the relationship between 3-dimensional body acceleration and oxygen consumption in trained Steller sea lions.

    PubMed

    Volpov, Beth L; Rosen, David A S; Trites, Andrew W; Arnould, John P Y

    2015-08-01

    We tested the ability of overall dynamic body acceleration (ODBA) to predict the rate of oxygen consumption ([Formula: see text]) in freely diving Steller sea lions (Eumetopias jubatus) while resting at the surface and diving. The trained sea lions executed three dive types-single dives, bouts of multiple long dives with 4-6 dives per bout, or bouts of multiple short dives with 10-12 dives per bout-to depths of 40 m, resulting in a range of activity and oxygen consumption levels. Average metabolic rate (AMR) over the dive cycle or dive bout calculated was calculated from [Formula: see text]. We found that ODBA could statistically predict AMR when data from all dive types were combined, but that dive type was a significant model factor. However, there were no significant linear relationships between AMR and ODBA when data for each dive type were analyzed separately. The potential relationships between AMR and ODBA were not improved by including dive duration, food consumed, proportion of dive cycle spent submerged, or number of dives per bout. It is not clear whether the lack of predictive power within dive type was due to low statistical power, or whether it reflected a true absence of a relationship between ODBA and AMR. The average percent error for predicting AMR from ODBA was 7-11 %, and standard error of the estimated AMR was 5-32 %. Overall, the extensive range of dive behaviors and physiological conditions we tested indicated that ODBA was not suitable for estimating AMR in the field due to considerable error and the inconclusive effects of dive type.

  8. Accelerated degradation of polyetheretherketone and its composites in the deep sea

    NASA Astrophysics Data System (ADS)

    Liu, Hao; Wang, Jianzhang; Jiang, Pengfei; Yan, Fengyuan

    2018-04-01

    The performance of polymer composites in seawater, under high hydrostatic pressure (typically few tens of MPa), for simulating exposures at great depths in seas and oceans, has been little studied. In this paper, polyetheretherketone (PEEK) and its composites reinforced by carbon fibres and glass fibres were prepared. The seawater environment with different seawater hydrostatic pressure ranging from normal pressure to 40 MPa was simulated with special equipment, in which the seawater absorption and wear behaviour of PEEK and PEEK-based composites were examined in situ. The effects of seawater hydrostatic pressure on the mechanical properties, wear resistance and microstructure of PEEK and its composites were focused on. The results showed that seawater absorption of PEEK and its composites were greatly accelerated by increased hydrostatic pressure in the deep sea. Affected by seawater absorption, both for neat PEEK and composites, the degradation on mechanical properties, wear resistance and crystallinity were induced, the degree of which was increasingly serious with the increase of hydrostatic pressure of seawater environment. There existed a good correlation in an identical form of exponential function between the wear rate and the seawater hydrostatic pressure. Moreover, the corresponding mechanisms of the effects of deep-sea hydrostatic pressure were also discussed.

  9. Determination of 21 antibiotics in sea cucumber using accelerated solvent extraction with in-cell clean-up coupled to ultra-performance liquid chromatography-tandem mass spectrometry.

    PubMed

    Zhu, Minghua; Zhao, Hongxia; Xia, Deming; Du, Juan; Xie, Huaijun; Chen, Jingwen

    2018-08-30

    An accelerated solvent extraction (ASE) with in-cell clean-up method coupled to ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) was developed to determine 21 antibiotics in sea cucumber. The analytes include 10 sulfonamides, 4 fluoroquinolones, 3 amphenicols, 2 beta-lactams, 1 lincosamide and trimethoprim. Optimal parameters of ASE method were obtained at 80 °C, 1 static cycle of 5 min with methanol/acetonitrile (1/1, v/v) using 2 g of C18 as adsorbent. Recoveries at 50.1-129.2% were achieved with RSD under 20%. Method detection limits ranged from 0.03 to 2.9 μg kg -1 . Compared to the reported ultrasound-assisted extraction method, the proposed method offered comparable extraction efficiency for sulfonamides from sea cucumber, but higher for other categories of antibiotics. This validated method was then successfully applied to sea cucumber samples and 9 antibiotics were detected with the highest concentration up to 57.7 μg kg -1 for norfloxacin. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Antarctic ice sheet discharge driven by atmosphere-ocean feedbacks at the Last Glacial Termination.

    PubMed

    Fogwill, C J; Turney, C S M; Golledge, N R; Etheridge, D M; Rubino, M; Thornton, D P; Baker, A; Woodward, J; Winter, K; van Ommen, T D; Moy, A D; Curran, M A J; Davies, S M; Weber, M E; Bird, M I; Munksgaard, N C; Menviel, L; Rootes, C M; Ellis, B; Millman, H; Vohra, J; Rivera, A; Cooper, A

    2017-01-05

    Reconstructing the dynamic response of the Antarctic ice sheets to warming during the Last Glacial Termination (LGT; 18,000-11,650 yrs ago) allows us to disentangle ice-climate feedbacks that are key to improving future projections. Whilst the sequence of events during this period is reasonably well-known, relatively poor chronological control has precluded precise alignment of ice, atmospheric and marine records, making it difficult to assess relationships between Antarctic ice-sheet (AIS) dynamics, climate change and sea level. Here we present results from a highly-resolved 'horizontal ice core' from the Weddell Sea Embayment, which records millennial-scale AIS dynamics across this extensive region. Counterintuitively, we find AIS mass-loss across the full duration of the Antarctic Cold Reversal (ACR; 14,600-12,700 yrs ago), with stabilisation during the subsequent millennia of atmospheric warming. Earth-system and ice-sheet modelling suggests these contrasting trends were likely Antarctic-wide, sustained by feedbacks amplified by the delivery of Circumpolar Deep Water onto the continental shelf. Given the anti-phase relationship between inter-hemispheric climate trends across the LGT our findings demonstrate that Southern Ocean-AIS feedbacks were controlled by global atmospheric teleconnections. With increasing stratification of the Southern Ocean and intensification of mid-latitude westerly winds today, such teleconnections could amplify AIS mass loss and accelerate global sea-level rise.

  11. Recent acceleration in coastal cliff retreat rates on the south coast of Great Britain.

    PubMed

    Hurst, Martin D; Rood, Dylan H; Ellis, Michael A; Anderson, Robert S; Dornbusch, Uwe

    2016-11-22

    Rising sea levels and increased storminess are expected to accelerate the erosion of soft-cliff coastlines, threatening coastal infrastructure and livelihoods. To develop predictive models of future coastal change we need fundamentally to know how rapidly coasts have been eroding in the past, and to understand the driving mechanisms of coastal change. Direct observations of cliff retreat rarely extend beyond 150 y, during which humans have significantly modified the coastal system. Cliff retreat rates are unknown in prior centuries and millennia. In this study, we derived retreat rates of chalk cliffs on the south coast of Great Britain over millennial time scales by coupling high-precision cosmogenic radionuclide geochronology and rigorous numerical modeling. Measured 10 Be concentrations on rocky coastal platforms were compared with simulations of coastal evolution using a Monte Carlo approach to determine the most likely history of cliff retreat. The 10 Be concentrations are consistent with retreat rates of chalk cliffs that were relatively slow (2-6 cm⋅y -1 ) until a few hundred years ago. Historical observations reveal that retreat rates have subsequently accelerated by an order of magnitude (22-32 cm⋅y -1 ). We suggest that acceleration is the result of thinning of cliff-front beaches, exacerbated by regional storminess and anthropogenic modification of the coast.

  12. Can Satellite Geodesy Disentangle Holocene Rebound and Present-Day Glacier Balance Signatures?

    NASA Technical Reports Server (NTRS)

    Irvins, E.; James, T.; Yoder, C.

    1995-01-01

    The secular drift of the precession of the ascending node of the LAGOES -1 satellite is apparently linked to the Earth s paleoclimate through the slow viscous response of the mantle to ice sheet/ocean mass transfer during the last great continental deglaciation . The secular node acceleration is particularly sensitive to the longest wavelengths of the paleo -surface loading that have been memorized by the mantle glacio -isostatic flow. Tide gauge records for the last 130 years show a post-glacial rebound-corrected sea-level rise of 2.4 n 0.9 mm yr-1.

  13. Marine traffic model based on cellular automaton: Considering the change of the ship's velocity under the influence of the weather and sea

    NASA Astrophysics Data System (ADS)

    Qi, Le; Zheng, Zhongyi; Gang, Longhui

    2017-10-01

    It was found that the ships' velocity change, which is impacted by the weather and sea, e.g., wind, sea wave, sea current, tide, etc., is significant and must be considered in the marine traffic model. Therefore, a new marine traffic model based on cellular automaton (CA) was proposed in this paper. The characteristics of the ship's velocity change are taken into account in the model. First, the acceleration of a ship was divided into two components: regular component and random component. Second, the mathematical functions and statistical distribution parameters of the two components were confirmed by spectral analysis, curve fitting and auto-correlation analysis methods. Third, by combining the two components, the acceleration was regenerated in the update rules for ships' movement. To test the performance of the model, the ship traffic flows in the Dover Strait, the Changshan Channel and the Qiongzhou Strait were studied and simulated. The results show that the characteristics of ships' velocities in the simulations are consistent with the measured data by Automatic Identification System (AIS). Although the characteristics of the traffic flow in different areas are different, the velocities of ships can be simulated correctly. It proves that the velocities of ships under the influence of weather and sea can be simulated successfully using the proposed model.

  14. Is Global Warming Accelerating?

    NASA Astrophysics Data System (ADS)

    Shukla, J.; Delsole, T. M.; Tippett, M. K.

    2009-12-01

    A global pattern that fluctuates naturally on decadal time scales is identified in climate simulations and observations. This newly discovered component, called the Global Multidecadal Oscillation (GMO), is related to the Atlantic Meridional Oscillation and shown to account for a substantial fraction of decadal fluctuations in the observed global average sea surface temperature. IPCC-class climate models generally underestimate the variance of the GMO, and hence underestimate the decadal fluctuations due to this component of natural variability. Decomposing observed sea surface temperature into a component due to anthropogenic and natural radiative forcing plus the GMO, reveals that most multidecadal fluctuations in the observed global average sea surface temperature can be accounted for by these two components alone. The fact that the GMO varies naturally on multidecadal time scales implies that it can be predicted with some skill on decadal time scales, which provides a scientific rationale for decadal predictions. Furthermore, the GMO is shown to account for about half of the warming in the last 25 years and hence a substantial fraction of the recent acceleration in the rate of increase in global average sea surface temperature. Nevertheless, in terms of the global average “well-observed” sea surface temperature, the GMO can account for only about 0.1° C in transient, decadal-scale fluctuations, not the century-long 1° C warming that has been observed during the twentieth century.

  15. Fluvial system response to late Pleistocene-Holocene sea-level change on Santa Rosa Island, Channel Islands National Park, California

    USGS Publications Warehouse

    Schumann, R. Randall; Pigati, Jeffery S.; McGeehin, John P.

    2016-01-01

    Santa Rosa Island (SRI) is one of four east-west aligned islands forming the northern Channel Islands chain, and one of the five islands in Channel Islands National Park, California, USA. The island setting provides an unparalleled environment in which to record the response of fluvial systems to major changes of sea level. Many of the larger streams on the island occupy broad valleys that have been filled with alluvium and later incised to form steep- to vertical-walled arroyos, leaving a relict floodplain as much as 12–14 m above the present channel. The period of falling sea level between the end of the last interglacial highstand at ~ 80 ka and the last glacial lowstand at ~ 21 ka was marked by erosion and incision in the uplands and by deposition of alluvial sediment on the exposed marine shelf. Sea level rose relatively rapidly following the last glacial lowstand of − 106 m, triggering a shift from an erosional to a depositional sedimentary regime. Accumulation of sediment occurred first through vertical and lateral accretion in broad, shallow channels on the shelf. Channel avulsion and delta sedimentation produced widespread deposition, creating lobes or wedges of sediment distributed across relatively large areas of the shelf during the latest Pleistocene. Backfilling of valleys onshore (landward of present sea level) appears to have progressed in a more orderly and predictable fashion throughout the Holocene primarily because the streams were confined to their valleys. Vertical aggradation locally reduced stream gradients, causing frequent overbank flooding and lateral channel shift by meandering and/or avulsion. Local channel gradient and morphology, short-term climate variations, and intrinsic controls also affected the timing and magnitudes of these cut, fill, and flood events, and are reflected in the thickness and spacing of the episodic alluvial sequences. Floodplain aggradation within the valleys continued until at least 500 years ago, followed by intensive arroyo cutting that abandoned the relict floodplains, forming alluvial terraces. Sedimentary evidence points to overgrazing and drought, followed by catastrophic flooding, in the mid-nineteenth century as factors that may have accelerated and dramatically enhanced arroyo formation on the island.

  16. Constraining Holocene Evolution of Shelf Bayhead Delta Deposits Offshore Mississippi, USA

    NASA Astrophysics Data System (ADS)

    Hollis, R. J.; Wallace, D. J.; Miner, M. D.

    2017-12-01

    The slowly subsiding inner shelf of Mississippi-Alabama (MS-AL) has a complex network of Late Quaternary paleofluvial and deltaic deposits driven by fluctuating sea levels. Since the Last Glacial Maximum, sea-level rise (SLR) has lead to transgressive reworking of these lithosomes. In rare instances, typically when the rate of relative sea-level rise was particularly rapid or sediment supply was high, these deposits are preserved. Results from studies in Texas and Alabama suggest bayhead deltas (or upper-estuarine units) backstepped kilometers landward in response to periods of rapid sea-level rise (i.e. 9.8-9.5 ka, 8.9-8.5 ka, 8.4-8.0 ka, 7.9-7.5 ka, and 7.4-6.8 ka). Bayhead delta backstepping depends on relative SLR rates, accommodation space, shelf slope, wave climate and sediment supply. While at least one preserved bayhead delta deposit has been identified on the inner shelf of MS-AL, the flooding and abandonment chronology is currently unknown. The previously quantified sandy bayhead delta deposit (>100.4 x106 m3) is roughly twice the combined volume of the subaerial Petit Bois barrier island, located two miles to the north, and the three western offshore shelf sand shoals (55.9 x106 m3). The sediment supply needed for the shoal's genesis requires further exploration and likely has many contributors, but transgressive ravinement of the sandy bayhead delta seems like a logical source. This study builds on previous work that has extensively mapped the stratigraphy of the eastern MS-AL inner shelf using geophysical and core data by adding a robust number of radiocarbon ages and macro-/micro- faunal analysis from new cores as a proxy for depositional environments. This source-to-sink approach helps to detail the evolution of ancient Pascagoula/Escatawpa, La Batre and Fowl paleo rivers, and their roles in the formation of the large inner shelf, shore-oblique shoals as well as Petit Bois Island. Correlating the new ages with previously published high-resolution sea level curves will be a valuable resource toward predicting future barrier island responses with accelerated SLR in the Gulf of Mexico by understanding the Holocene evolution of Petit Bois Island, adjacent bayhead deltas, and offshore sand shoals.

  17. Predictors of specialist avifaunal decline in coastal marshes.

    PubMed

    Correll, Maureen D; Wiest, Whitney A; Hodgman, Thomas P; Shriver, W Gregory; Elphick, Chris S; McGill, Brian J; O'Brien, Kathleen M; Olsen, Brian J

    2017-02-01

    Coastal marshes are one of the world's most productive ecosystems. Consequently, they have been heavily used by humans for centuries, resulting in ecosystem loss. Direct human modifications such as road crossings and ditches and climatic stressors such as sea-level rise and extreme storm events have the potential to further degrade the quantity and quality of marsh along coastlines. We used an 18-year marsh-bird database to generate population trends for 5 avian species (Rallus crepitans, Tringa semipalmata semipalmata, Ammodramus nelsonii subvirgatus, Ammodramus caudacutus, and Ammodramus maritimus) that breed almost exclusively in tidal marshes, and are potentially vulnerable to marsh degradation and loss as a result of anthropogenic change. We generated community and species trends across 3 spatial scales and explored possible drivers of the changes we observed, including marsh ditching, tidal restriction through road crossings, local rates of sea-level rise, and potential for extreme flooding events. The specialist community showed negative trends in tidally restricted marshes (-2.4% annually from 1998 to 2012) but was stable in unrestricted marshes across the same period. At the species level, we found negative population trends in 3 of the 5 specialist species, ranging from -4.2% to 9.0% annually. We suggest that tidal restriction may accelerate degradation of tidal marsh resilience to sea-level rise by limiting sediment supply necessary for marsh accretion, resulting in specialist habitat loss in tidally restricted marshes. Based on our findings, we predict a collapse of the global population of Saltmarsh Sparrows (A. caudacutus) within the next 50 years and suggest that immediate conservation action is needed to prevent extinction of this species. We also suggest mitigation actions to restore sediment supply to coastal marshes to help sustain this ecosystem into the future. © 2016 Society for Conservation Biology.

  18. A Vulnerability Assessment of 300 Species in Florida: Threats from Sea Level Rise, Land Use, and Climate Change

    PubMed Central

    Reece, Joshua Steven; Noss, Reed F.; Oetting, Jon; Hoctor, Tom; Volk, Michael

    2013-01-01

    Species face many threats, including accelerated climate change, sea level rise, and conversion and degradation of habitat from human land uses. Vulnerability assessments and prioritization protocols have been proposed to assess these threats, often in combination with information such as species rarity; ecological, evolutionary or economic value; and likelihood of success. Nevertheless, few vulnerability assessments or prioritization protocols simultaneously account for multiple threats or conservation values. We applied a novel vulnerability assessment tool, the Standardized Index of Vulnerability and Value, to assess the conservation priority of 300 species of plants and animals in Florida given projections of climate change, human land-use patterns, and sea level rise by the year 2100. We account for multiple sources of uncertainty and prioritize species under five different systems of value, ranging from a primary emphasis on vulnerability to threats to an emphasis on metrics of conservation value such as phylogenetic distinctiveness. Our results reveal remarkable consistency in the prioritization of species across different conservation value systems. Species of high priority include the Miami blue butterfly (Cyclargus thomasi bethunebakeri), Key tree cactus (Pilosocereus robinii), Florida duskywing butterfly (Ephyriades brunnea floridensis), and Key deer (Odocoileus virginianus clavium). We also identify sources of uncertainty and the types of life history information consistently missing across taxonomic groups. This study characterizes the vulnerabilities to major threats of a broad swath of Florida’s biodiversity and provides a system for prioritizing conservation efforts that is quantitative, flexible, and free from hidden value judgments. PMID:24260447

  19. Quantifying the mass loss of peripheral Greenland glaciers and ice caps (1958-2014).

    NASA Astrophysics Data System (ADS)

    Noël, Brice; van de Berg, Willem Jan; Machguth, Horst; van den Broeke, Michiel

    2016-04-01

    Since the 2000s, mass loss from Greenland peripheral glaciers and ice caps (GICs) has accelerated, becoming an important contributor to sea level rise. Under continued warming throughout the 21st century, GICs might yield up to 7.5 to 11 mm sea level rise, with increasing dominance of surface runoff at the expense of ice discharge. However, despite multiple observation campaigns, little remains known about the contribution of GICs to total Greenland mass loss. Furthermore, the relatively coarse resolutions in regional climate models, i.e. 5 km to 20 km, fail to represent the small scale patterns of surface mass balance (SMB) components over these topographically complex regions including also narrow valley glaciers. Here, we present a novel approach to quantify the contribution of GICs to surface melt and runoff, based on an elevation dependent downscaling method. GICs daily SMB components at 1 km resolution are obtained by statistically downscaling the outputs of RACMO2.3 at 11 km resolution to a down-sampled version of the GIMP DEM for the period 1958-2014. This method has recently been successfully validated over the Greenland ice sheet and is now applied to GICs. In this study, we first evaluate the 1 km daily downscaled GICs SMB against a newly available and comprehensive dataset of ablation stake measurements. Then, we investigate present-day trends of meltwater production and SMB for different regions and estimate GICs contribution to total Greenland mass loss. These data are considered valuable for model evaluation and prediction of future sea level rise.

  20. Consequences of rapid ice sheet melting on the Sahelian population vulnerability

    PubMed Central

    Ramstein, Gilles; Charbit, Sylvie; Vrac, Mathieu; Famien, Adjoua Moïse; Sultan, Benjamin; Swingedouw, Didier; Dumas, Christophe; Gemenne, François; Alvarez-Solas, Jorge; Vanderlinden, Jean-Paul

    2017-01-01

    The acceleration of ice sheet melting has been observed over the last few decades. Recent observations and modeling studies have suggested that the ice sheet contribution to future sea level rise could have been underestimated in the latest Intergovernmental Panel on Climate Change report. The ensuing freshwater discharge coming from ice sheets could have significant impacts on global climate, and especially on the vulnerable tropical areas. During the last glacial/deglacial period, megadrought episodes were observed in the Sahel region at the time of massive iceberg surges, leading to large freshwater discharges. In the future, such episodes have the potential to induce a drastic destabilization of the Sahelian agroecosystem. Using a climate modeling approach, we investigate this issue by superimposing on the Representative Concentration Pathways 8.5 (RCP8.5) baseline experiment a Greenland flash melting scenario corresponding to an additional sea level rise ranging from 0.5 m to 3 m. Our model response to freshwater discharge coming from Greenland melting reveals a significant decrease of the West African monsoon rainfall, leading to changes in agricultural practices. Combined with a strong population increase, described by different demography projections, important human migration flows could be potentially induced. We estimate that, without any adaptation measures, tens to hundreds million people could be forced to leave the Sahel by the end of this century. On top of this quantification, the sea level rise impact over coastal areas has to be superimposed, implying that the Sahel population could be strongly at threat in case of rapid Greenland melting. PMID:28584113

  1. Rise and Fall of one of World's largest deltas; the Mekong delta in Vietnam

    NASA Astrophysics Data System (ADS)

    Minderhoud, P. S. J.; Eslami Arab, S.; Pham, H. V.; Erkens, G.; van der Vegt, M.; Oude Essink, G.; Stouthamer, E.; Hoekstra, P.

    2017-12-01

    The Mekong delta is the third's largest delta in the world. It is home to almost 20 million people and an important region for the food security in South East Asia. As most deltas, the Mekong delta is the dynamic result of a balance of sediment supply, sea level rise and subsidence, hosting a system of fresh and salt water dynamics. Ongoing urbanization, industrialization and intensification of agricultural practices in the delta, during the past decades, resulted in growing domestic, agricultural and industrial demands, and have led to a dramatic increase of fresh water use. Since the year 2000, the amount of fresh groundwater extracted from the subsurface increased by 500%. This accelerated delta subsidence as the groundwater system compacts, with current sinking rates exceeding global sea level rise up to an order of magnitude. These high sinking rates have greatly altered the sediment budget of the delta and, with over 50% of the Mekong delta surface elevated less than 1 meter above sea level, greatly increase vulnerability to flooding and storm surges and ultimately, permanent inundation. Furthermore, as the increasingly larger extractions rapidly reduce the fresh groundwater reserves, groundwater salinization subsequently increases. On top of that, dry season low-flows by the Mekong river cause record salt water intrusion in the delta's estuarine system, creating major problems for rice irrigation. We present the work of three years research by the Dutch-Vietnamese `Rise and Fall' project on land subsidence and salinization in both groundwater and surface water in the Vietnamese Mekong delta.

  2. Consequences of rapid ice sheet melting on the Sahelian population vulnerability.

    PubMed

    Defrance, Dimitri; Ramstein, Gilles; Charbit, Sylvie; Vrac, Mathieu; Famien, Adjoua Moïse; Sultan, Benjamin; Swingedouw, Didier; Dumas, Christophe; Gemenne, François; Alvarez-Solas, Jorge; Vanderlinden, Jean-Paul

    2017-06-20

    The acceleration of ice sheet melting has been observed over the last few decades. Recent observations and modeling studies have suggested that the ice sheet contribution to future sea level rise could have been underestimated in the latest Intergovernmental Panel on Climate Change report. The ensuing freshwater discharge coming from ice sheets could have significant impacts on global climate, and especially on the vulnerable tropical areas. During the last glacial/deglacial period, megadrought episodes were observed in the Sahel region at the time of massive iceberg surges, leading to large freshwater discharges. In the future, such episodes have the potential to induce a drastic destabilization of the Sahelian agroecosystem. Using a climate modeling approach, we investigate this issue by superimposing on the Representative Concentration Pathways 8.5 (RCP8.5) baseline experiment a Greenland flash melting scenario corresponding to an additional sea level rise ranging from 0.5 m to 3 m. Our model response to freshwater discharge coming from Greenland melting reveals a significant decrease of the West African monsoon rainfall, leading to changes in agricultural practices. Combined with a strong population increase, described by different demography projections, important human migration flows could be potentially induced. We estimate that, without any adaptation measures, tens to hundreds million people could be forced to leave the Sahel by the end of this century. On top of this quantification, the sea level rise impact over coastal areas has to be superimposed, implying that the Sahel population could be strongly at threat in case of rapid Greenland melting.

  3. A Powerful Method of Measuring Sea Wave Spectra and their Direction

    NASA Astrophysics Data System (ADS)

    Blasi, Christoph; Mai, Stephan; Wilhelmi, Jens; Zenz, Theodor; Barjenbruch, Ulrich

    2014-05-01

    Besides the need of precise measurements of water levels of the sea, there is an increasing demand for assessing waves in height and direction for different purposes like sea-wave modelling and coastal engineering. The design of coastal structures such as piles, breakwaters, and offshore structures like wind farms must take account of the direction of the impacting waves. To date, records of wave directions are scarce. The reason for this might be the high costs of purchasing and operating such measuring devices. These are usually buoys, which require regular maintenance. Against this background, the German Federal Institute of Hydrology (BfG) developed a low-cost directional sea-wave monitoring system that is based on commercially available liquid-level radar sensors. These sensors have the advantage that they have no contact to the fluid, i.e. the corrosive sea water. The newly developed device was tested on two sites. One is the tide gauge 'Borkum Südstrand' that is located in the southern North Sea off the island of Borkum. The other one is the 'Research Platform FINO1' approximately 45 km north of the island of Borkum. The main focus of these tests is the comparison of the data measured by the radar-based system with those of a conventional Directional Wave Rider Buoy. The general conditions at the testing sites are good for the tests. At the tide gauge 'Borkum Südstrand' waves propagate in different directions, strongly influenced by the morphological conditions like shallow waters of the Wadden Seas and the coast of the island of Borkum. Whereas on the open sea, at the site FINO1, the full physical conditions of the sea state, like heavy storms etc. play an important role. To determine and measure the direction of waves, the device has to be able to assess the wave movements in two dimensions. Therefore, an array of several radar sensors is required. Radar sensors are widely used and well established in measuring water levels, e.g. in tanks and basins. They operate by emitting a chain of electromagnetic pulses at a frequency of 26 GHz twice per second and, in turn, detect the backscatter information from the water surface. As the travelling time of each pulse is proportional to the distance between water surface and sensor, the height of the water surface can be easily calculated. To obtain the directional information of the sea state, all four radar sensors in the array have to collect simultaneously the wave profiles at fixed points. The Wave Rider Buoy works in a completely different way. Here, the wave height is calculated by the double integration of the measured vertical acceleration. By correlating the three-dimensional motion data, which are gained from gravity-stabilized vertical and horizontal accelerometers, the directional wave spectrum can be derived. Data of both devices were collected and analysed. During the hurricane Xaver, extreme water levels and heavy sea hit the North Sea coast on 5 and 6 December 2013. The radar array at the testing site FINO1 measured wave heights in the order of 15.5 meters. Furthermore, it was possible to detect significant wave heights, the mean wave direction, and the spread of the sea state. For the first time the accuracy of the wave height distribution could be determined as well.

  4. The safety band of Antarctic ice shelves

    NASA Astrophysics Data System (ADS)

    Fürst, Johannes Jakob; Durand, Gaël; Gillet-Chaulet, Fabien; Tavard, Laure; Rankl, Melanie; Braun, Matthias; Gagliardini, Olivier

    2016-05-01

    The floating ice shelves along the seaboard of the Antarctic ice sheet restrain the outflow of upstream grounded ice. Removal of these ice shelves, as shown by past ice-shelf recession and break-up, accelerates the outflow, which adds to sea-level rise. A key question in predicting future outflow is to quantify the extent of calving that might precondition other dynamic consequences and lead to loss of ice-shelf restraint. Here we delineate frontal areas that we label as `passive shelf ice’ and that can be removed without major dynamic implications, with contrasting results across the continent. The ice shelves in the Amundsen and Bellingshausen seas have limited or almost no `passive’ portion, which implies that further retreat of current ice-shelf fronts will yield important dynamic consequences. This region is particularly vulnerable as ice shelves have been thinning at high rates for two decades and as upstream grounded ice rests on a backward sloping bed, a precondition to marine ice-sheet instability. In contrast to these ice shelves, Larsen C Ice Shelf, in the Weddell Sea, exhibits a large `passive’ frontal area, suggesting that the imminent calving of a vast tabular iceberg will be unlikely to instantly produce much dynamic change.

  5. A Consistent Wave Impact Load Model for Studying Structure, Equipment Ruggedness, Shock Isolation Seats, and Human Comfort in Small High Speed Craft

    DTIC Science & Technology

    2016-11-01

    acceleration at a cross-section was used as a measure of the wave impact load in units of g. Later developments included publication of the envelope...Republic, 4 – 7 October 2004. PICKFORD, E.V., MAHONE, R.R., WOLK, H.L. (1975). Slam/Shock Isolation Pedestal, United States Patent Number, 3,912,248, 14...accelerations. The rigid body peak acceleration is a measure of the impact load in units of g. In the following plots the data corresponds to head-sea

  6. Deep-sea vent chemoautotrophs: diversity, biochemistry and ecological significance.

    PubMed

    Nakagawa, Satoshi; Takai, Ken

    2008-07-01

    Deep-sea vents support productive ecosystems driven primarily by chemoautotrophs. Chemoautotrophs are organisms that are able to fix inorganic carbon using a chemical energy obtained through the oxidation of reduced compounds. Following the discovery of deep-sea vent ecosystems in 1977, there has been an increasing knowledge that deep-sea vent chemoautotrophs display remarkable physiological and phylogenetic diversity. Cultivation-dependent and -independent studies have led to an emerging view that the majority of deep-sea vent chemoautotrophs have the ability to derive energy from a variety of redox couples other than the conventional sulfur-oxygen couple, and fix inorganic carbon via the reductive tricarboxylic acid cycle. In addition, recent genomic, metagenomic and postgenomic studies have considerably accelerated the comprehensive understanding of molecular mechanisms of deep-sea vent chemoautotrophy, even in yet uncultivable endosymbionts of vent fauna. Genomic analysis also suggested that there are previously unrecognized evolutionary links between deep-sea vent chemoautotrophs and important human/animal pathogens. This review summarizes chemoautotrophy in deep-sea vents, highlighting recent biochemical and genomic discoveries.

  7. High-acceleration cable deployment

    NASA Technical Reports Server (NTRS)

    Barns, C. E.; Canning, T. N.; Gin, B.; King, R. W.; Murphy, J. P.

    1980-01-01

    Prototype high-acceleration umbilical-cable deployment allows electrical communication between above-ground instrumentation and ballistic projectile below surface. Cable deployment is made up of forebody and afterbody. Foreboy can be separated from afterbody by rocket, or they can be fired as unit at target that stops afterbody on impact (forebody would continue, deploying cable). Similar design could be used in study of sea ice and in other surface-penetration studies.

  8. Standardized Laboratory Test Requirements for Hardening Equipment to Withstand Wave Impact Shock in Small High Speed Craft

    DTIC Science & Technology

    2017-02-06

    and methodology for transitioning craft acceleration data to laboratory shock test requirements are summarized and example requirements for...engineering rationale, assumptions, and methodology for transitioning craft acceleration data to laboratory shock test requirements are summarized and... Methodologies for Small High-Speed Craft Structure, Equipment, Shock Isolation Seats, and Human Performance At-Sea, 10 th Symposium on High

  9. Antarctic Mass Loss from GRACE from Space- and Time-Resolved Modeling with Slepian Functions

    NASA Astrophysics Data System (ADS)

    Simons, F. J.; Harig, C.

    2013-12-01

    The melting of polar ice sheets is a major contributor to global sea-level rise. Antarctica is of particular interest since most of the mass loss has occurred in West Antarctica, however updated glacial isostatic adjustment (GIA) models and recent mass gains in East Antarctica have reduced the continent-wide integrated decadal trend of mass loss. Here we present a spatially and temporally resolved estimation of the Antarctic ice mass change using Slepian localization functions. With a Slepian basis specifically for Antarctica, the basis functions maximize their energy on the continent and we can project the geopotential fields into a sparse set of orthogonal coefficients. By fitting polynomial functions to the limited basis coefficients we maximize signal-to-noise levels and need not perform smoothing or destriping filters common to other approaches. In addition we determine an empirical noise covariance matrix from the GRACE data to estimate the uncertainty of mass estimation. When applied to large ice sheets, as in our own recent Greenland work, this technique is able to resolve both the overall continental integrated mass trend, as well as the spatial distribution of the mass changes over time. Using CSR-RL05 GRACE data between Jan. 2003 and Jan 2013, we estimate the regional accelerations in mass change for several sub-regions and examine how the spatial pattern of mass has changed. The Amundsen Sea coast of West Antarctica has experienced a large acceleration in mass loss (-26 Gt/yr^2). While mass loss is concentrated near Pine Island and Thwaites glaciers, it has also increased along the coast further towards the Ross ice shelf.

  10. The sensitivity of the Greenland Ice Sheet to glacial-interglacial oceanic forcing

    NASA Astrophysics Data System (ADS)

    Tabone, Ilaria; Blasco, Javier; Robinson, Alexander; Alvarez-Solas, Jorge; Montoya, Marisa

    2018-04-01

    Observations suggest that during the last decades the Greenland Ice Sheet (GrIS) has experienced a gradually accelerating mass loss, in part due to the observed speed-up of several of Greenland's marine-terminating glaciers. Recent studies directly attribute this to warming North Atlantic temperatures, which have triggered melting of the outlet glaciers of the GrIS, grounding-line retreat and enhanced ice discharge into the ocean, contributing to an acceleration of sea-level rise. Reconstructions suggest that the influence of the ocean has been of primary importance in the past as well. This was the case not only in interglacial periods, when warmer climates led to a rapid retreat of the GrIS to land above sea level, but also in glacial periods, when the GrIS expanded as far as the continental shelf break and was thus more directly exposed to oceanic changes. However, the GrIS response to palaeo-oceanic variations has yet to be investigated in detail from a mechanistic modelling perspective. In this work, the evolution of the GrIS over the past two glacial cycles is studied using a three-dimensional hybrid ice-sheet-shelf model. We assess the effect of the variation of oceanic temperatures on the GrIS evolution on glacial-interglacial timescales through changes in submarine melting. The results show a very high sensitivity of the GrIS to changing oceanic conditions. Oceanic forcing is found to be a primary driver of GrIS expansion in glacial times and of retreat in interglacial periods. If switched off, palaeo-atmospheric variations alone are not able to yield a reliable glacial configuration of the GrIS. This work therefore suggests that considering the ocean as an active forcing should become standard practice in palaeo-ice-sheet modelling.

  11. Measuring Energy Expenditure in Sub-Adult and Hatchling Sea Turtles via Accelerometry

    PubMed Central

    Halsey, Lewis G.; Jones, T. Todd; Jones, David R.; Liebsch, Nikolai; Booth, David T.

    2011-01-01

    Measuring the metabolic of sea turtles is fundamental to understanding their ecology yet the presently available methods are limited. Accelerometry is a relatively new technique for estimating metabolic rate that has shown promise with a number of species but its utility with air-breathing divers is not yet established. The present study undertakes laboratory experiments to investigate whether rate of oxygen uptake ( o 2) at the surface in active sub-adult green turtles Chelonia mydas and hatchling loggerhead turtles Caretta caretta correlates with overall dynamic body acceleration (ODBA), a derivative of acceleration used as a proxy for metabolic rate. Six green turtles (25–44 kg) and two loggerhead turtles (20 g) were instrumented with tri-axial acceleration logging devices and placed singly into a respirometry chamber. The green turtles were able to submerge freely within a 1.5 m deep tank and the loggerhead turtles were tethered in water 16 cm deep so that they swam at the surface. A significant prediction equation for mean o 2 over an hour in a green turtle from measures of ODBA and mean flipper length (R2 = 0.56) returned a mean estimate error across turtles of 8.0%. The range of temperatures used in the green turtle experiments (22–30°C) had only a small effect on o 2. A o 2-ODBA equation for the loggerhead hatchling data was also significant (R2 = 0.67). Together these data indicate the potential of the accelerometry technique for estimating energy expenditure in sea turtles, which may have important applications in sea turtle diving ecology, and also in conservation such as assessing turtle survival times when trapped underwater in fishing nets. PMID:21829613

  12. Sea-ice induced growth decline in Arctic shrubs.

    PubMed

    Forchhammer, Mads

    2017-08-01

    Measures of increased tundra plant productivity have been associated with the accelerating retreat of the Arctic sea-ice. Emerging studies document opposite effects, advocating for a more complex relationship between the shrinking sea-ice and terrestrial plant productivity. I introduce an autoregressive plant growth model integrating effects of biological and climatic conditions for analysing individual ring-width growth time series. Using 128 specimens of Salix arctica , S. glauca and Betula nana sampled across Greenland to Svalbard, an overall negative effect of the retreating June sea-ice extent was found on the annual growth. The negative effect of the retreating June sea-ice was observed for younger individuals with large annual growth allocations and with little or no trade-off between previous and current year's growth. © 2017 The Author(s).

  13. Anthropocene Survival of Southern New England's Salt ...

    EPA Pesticide Factsheets

    In southern New England, salt marshes are exceptionally vulnerable to the impacts of accelerated sea level rise. Regional rates of sea level rise have been as much as 50 % greater than the global average over past decades, a more than fourfold increase over late Holocene background values. In addition, coastal development blocks many potential marsh migration routes, and compensatory mechanisms relying on positive feedbacks between inundation and sediment deposition are insufficient to counter inundation increases in extreme low-turbidity tidal waters. Accordingly, multiple lines of evidence suggest that marsh submergence is occurring in southern New England. A combination of monitoring data, field re-surveys, radiometric dating, and analysis of peat composition have established that, beginning in the early and mid-twentieth century, the dominant low-marsh plant, Spartina alterniflora, has encroached upward in tidal marshes, and typical high-marsh plants, including Juncus gerardii and Spartina patens, have declined, providing strong evidence that vegetation changes are being driven, at least in part, by higher water levels. Additionally, aerial and satellite imagery show shoreline retreat, widening and headward extension of channels, and new and expanded interior depressions. Papers in this special section highlight changes in marsh-building processes, patterns of vegetation loss, and shifts in species composition. The final papers turn to strategies for minimiz

  14. COREDAR: COmmunicating Risk of sea level rise and Engaging stakeholDers in framing community based Adaptation stRategies

    NASA Astrophysics Data System (ADS)

    Amsad Ibrahim Khan, S. K.; Chen, R. S.; de Sherbinin, A. M.; Andimuthu, R.; Kandasamy, P.

    2015-12-01

    Accelerated sea-level rise (SLR) is a major long term outcome of climate change leading to increased inundation of low-lying areas. Particularly, global cities that are located on or near the coasts are often situated in low lying areas and these locations put global cities at greater risk to SLR. Localized flooding will profoundly impact vulnerable communities located in high-risk urban areas. Building community resilience and adapting to SLR is increasingly a high priority for cities. On the other hand, Article 6 of the United Nations Framework Convention on Climate Change addresses the importance of climate change communication and engaging stakeholders in decision making process. Importantly, Community Based Adaptation (CBA) experiences emphasize that it is important to understand a community's unique perceptions of their adaptive capacities to identify useful solutions and that scientific and technical information on anticipated coastal climate impacts needs to be translated into a suitable language and format that allows people to be able to participate in adaptation planning. To address this challenge, this study has put forth three research questions from the lens of urban community engagement in SLR adaptation, (1) What, if any, community engagement in addressing SLR occurring in urban areas; (2) What information do communities need and how does it need to be communicated, in order to be better prepared and have a greater sense of agency? and (3) How can government agencies from city to federal levels facilitate community engagement and action?. To answer these questions this study has evolved a framework "COREDAR" (COmmunicating Risk of sea level rise and Engaging stakeholDers in framing community based Adaptation StRategies) to communicate and transfer complex climate data and information such as projected SLR under different scenarios of IPCC AR5, predicted impact of SLR, prioritizing vulnerability, etc. to concerned stakeholders and local communities, and to engage them in framing actionable urban CBA adaptation strategies to rising sea-level. Thus, this study seeks to provide insights on communicating risk of climate change (SLR) and to develop a robust picture of urban CBA through effective decision making that are grounded in pressing community priorities in a case study approach.

  15. Regionally Optimized GRACE Processing and Inter-comparison on the Antarctic Ice Sheet

    NASA Astrophysics Data System (ADS)

    Mohajerani, Y.; Velicogna, I.; Sutterley, T. C.; Rignot, E. J.

    2017-12-01

    The Antarctic ice sheet is losing mass at an accelerating rate, with a sea level contribution that changed from 0.08mm/yr from 1992 to 2001 to 0.4mm/yr from 2002 to 2011. While most of this contribution comes from West Antarctica, Totten Glacier has the largest discharge of ice in East Antarctica, with a sea level rise potential of 3.9 m. Furthermore, the drainage basin of Totten Glacier, along the neighboring Moscow University Glacier are below sea level, extending hundreds of kilometers inland. Therefore, obtaining regional estimates of both western and eastern Antarctic basins are of critical importance. The GRACE (Gravity Recovery and Climate Experiment) satellite has been providing mass balance time-series from geoid changes since 2002. Several mascon and harmonic GRACE solutions are available from different processing centers. Here, we evaluate the various solutions across the ice sheet and a new set of regionally optimized mascons to study the mass balance of Totten and Moscow University glaciers. We obtain a trend of -16.5±4.1Gt/yr with an acceleration of -2.0±1.8Gt/yr2 for the two glaciers for the period April 2002 to December 2016 using the Ivins et al (2013) GIA model (errors include leakage, GIA, and regression errors). We compare the results with the Mass Budget Method that combines ice discharge (D) and surface mass balance (SMB) from two models: 1) RACMO2.3, and 2) MAR3.6.4. MBM/RACMO2.3 shows the best agreement with the GRACE estimates. Within the common period from April 2002 to December 2015, the MBM/RACMO2.3 and MAR3.6.4 results are -15.6±1.8Gt/yr and -6.7±1.5Gt/yr respectively, while the GRACE time-series has a trend of -14.8±2.7 Gt/yr. We extend the study to the Getz Ice Shelf, the third largest ice shelf in West Antarctica after Ronne and Ross West ice shelves. We compare our gravity-derived mass estimates, the mass budget estimates, and the volume changes from altimetry data to compare the estimates and obtain a multi-sensor assessment of ice sheet mass balance.

  16. Evolution of potentially eroding events along the northern coast of the Iberian Peninsula

    NASA Astrophysics Data System (ADS)

    Rasilla Álvarez, D.; García Codrón, J. C.

    2009-09-01

    The anthropogenic global warming is expected to result in a rise in sea-level, accompanied by changes in extreme climate events, such as the frequency and intensity of storms. Such scenario would result in an acceleration of coastal erosion. The aim of the present study is to assess the temporal evolution of potentially eroding events along the northern coast of the Iberian Peninsula during the second half of the 20th century, and to investigate changes in forcing processes such as the frequency and magnitude of storm surges and high wave events. To characterize the potentially eroding events, the total elevation of the water level was selected, being calculated as the sum of the contributions of the average water level, wave run up and the storm surges. Potentially eroding events were identified and quantified following a two-step procedure. Through the first step the potential flood induced by a given storm was estimated by simulating its effects on a theoretical beach profile (intermediate) using an empirical parameterization for extreme run-up approach. The second step consisted on characterizing the maximum storm surge registered during a storm. Those parameters were calculated from hindcasted data (storm surge, wave heights and period, wind speed and direction), retrieved from the SIMAR-44 database (Puertos del Estado), and validated against actual tide gauge measurements and buoy data (RedMar and RedExt networks). Analyses of total water levels showed a long term increase since 1958, resulting from the increase of mean sea level; conversely, a reduction of the frequency and the intensity of the storm events were deduced from the analysis of meteorological records. Since the impact of the storms on macro- and meso- tidal coast closely depend on the tides, a storm impact index was computed taking into account the storm surge magnitude, the wave heights and time duration during which a predefined threshold was exceeded by the sea level. The results are consistent with the analysis of the shoreline evolution on a specific sector of Cantabria (Oyambre) through the comparison of aerial photographs taken between 1957 and 2005. From the late 50´s to late 70’s, the shoreline significantly retreated, in correspondence with the period of maximum storm activity. Conversely, shoreline retreat slowed down during the late 1980s and 1990s while storm activity considerably decreased. Thus long-term coastal erosion, due to the occurrences of high water levels embedded into a long trend term of sea level rise, has been balanced by the reduction of the frequency and intensity of the Atlantic storms. Since relative sea-level will continue rising in the future, most of the coastal morphologies will probably be more frequently reached by the sea, increasing the flooding risk in low-lying sectors and promoting landslides along the cliffs.

  17. Measurements of Form and Frictional Drags over a Rough Topographic Bank

    DTIC Science & Technology

    2014-09-01

    processes, Topographic effects Unclassified Unclassified Unclassified UU 24 Hemantha Wijesekera (228) 688-4845 Reset I PAI!fElNTATION RELEASE...sea surface height associated with the sea surface slope resulting from rota- tional effects . Here barotropic pressure gradients associ- ated with...surface elevation are balanced by the Coriolis force; hTi(x, y, t) is the surface elevation resulting from accelerations/decelerations of flow over the

  18. Accelerated degradation of polyetheretherketone and its composites in the deep sea

    PubMed Central

    Wang, Jianzhang; Jiang, Pengfei; Yan, Fengyuan

    2018-01-01

    The performance of polymer composites in seawater, under high hydrostatic pressure (typically few tens of MPa), for simulating exposures at great depths in seas and oceans, has been little studied. In this paper, polyetheretherketone (PEEK) and its composites reinforced by carbon fibres and glass fibres were prepared. The seawater environment with different seawater hydrostatic pressure ranging from normal pressure to 40 MPa was simulated with special equipment, in which the seawater absorption and wear behaviour of PEEK and PEEK-based composites were examined in situ. The effects of seawater hydrostatic pressure on the mechanical properties, wear resistance and microstructure of PEEK and its composites were focused on. The results showed that seawater absorption of PEEK and its composites were greatly accelerated by increased hydrostatic pressure in the deep sea. Affected by seawater absorption, both for neat PEEK and composites, the degradation on mechanical properties, wear resistance and crystallinity were induced, the degree of which was increasingly serious with the increase of hydrostatic pressure of seawater environment. There existed a good correlation in an identical form of exponential function between the wear rate and the seawater hydrostatic pressure. Moreover, the corresponding mechanisms of the effects of deep-sea hydrostatic pressure were also discussed. PMID:29765645

  19. Accelerated degradation of polyetheretherketone and its composites in the deep sea.

    PubMed

    Liu, Hao; Wang, Jianzhang; Jiang, Pengfei; Yan, Fengyuan

    2018-04-01

    The performance of polymer composites in seawater, under high hydrostatic pressure (typically few tens of MPa), for simulating exposures at great depths in seas and oceans, has been little studied. In this paper, polyetheretherketone (PEEK) and its composites reinforced by carbon fibres and glass fibres were prepared. The seawater environment with different seawater hydrostatic pressure ranging from normal pressure to 40 MPa was simulated with special equipment, in which the seawater absorption and wear behaviour of PEEK and PEEK-based composites were examined in situ . The effects of seawater hydrostatic pressure on the mechanical properties, wear resistance and microstructure of PEEK and its composites were focused on. The results showed that seawater absorption of PEEK and its composites were greatly accelerated by increased hydrostatic pressure in the deep sea. Affected by seawater absorption, both for neat PEEK and composites, the degradation on mechanical properties, wear resistance and crystallinity were induced, the degree of which was increasingly serious with the increase of hydrostatic pressure of seawater environment. There existed a good correlation in an identical form of exponential function between the wear rate and the seawater hydrostatic pressure. Moreover, the corresponding mechanisms of the effects of deep-sea hydrostatic pressure were also discussed.

  20. Non-linearity of geocentre motion and its impact on the origin of the terrestrial reference frame

    NASA Astrophysics Data System (ADS)

    Dong, Danan; Qu, Weijing; Fang, Peng; Peng, Dongju

    2014-08-01

    The terrestrial reference frame is a cornerstone for modern geodesy and its applications for a wide range of Earth sciences. The underlying assumption for establishing a terrestrial reference frame is that the motion of the solid Earth's figure centre relative to the mass centre of the Earth system on a multidecadal timescale is linear. However, past international terrestrial reference frames (ITRFs) showed unexpected accelerated motion in their translation parameters. Based on this underlying assumption, the inconsistency of relative origin motions of the ITRFs has been attributed to data reduction imperfection. We investigated the impact of surface mass loading from atmosphere, ocean, snow, soil moisture, ice sheet, glacier and sea level from 1983 to 2008 on the geocentre variations. The resultant geocentre time-series display notable trend acceleration from 1998 onward, in particular in the z-component. This effect is primarily driven by the hydrological mass redistribution in the continents (soil moisture, snow, ice sheet and glacier). The acceleration is statistically significant at the 99 per cent confidence level as determined using the Mann-Kendall test, and it is highly correlated with the satellite laser ranging determined translation series. Our study, based on independent geophysical and hydrological models, demonstrates that, in addition to systematic errors from analysis procedures, the observed non-linearity of the Earth-system behaviour at interannual timescales is physically driven and is able to explain 42 per cent of the disparity between the origins of ITRF2000 and ITRF2005, as well as the high level of consistency between the ITRF2005 and ITRF2008 origins.

  1. Loss of sea ice in the Arctic.

    PubMed

    Perovich, Donald K; Richter-Menge, Jacqueline A

    2009-01-01

    The Arctic sea ice cover is in decline. The areal extent of the ice cover has been decreasing for the past few decades at an accelerating rate. Evidence also points to a decrease in sea ice thickness and a reduction in the amount of thicker perennial sea ice. A general global warming trend has made the ice cover more vulnerable to natural fluctuations in atmospheric and oceanic forcing. The observed reduction in Arctic sea ice is a consequence of both thermodynamic and dynamic processes, including such factors as preconditioning of the ice cover, overall warming trends, changes in cloud coverage, shifts in atmospheric circulation patterns, increased export of older ice out of the Arctic, advection of ocean heat from the Pacific and North Atlantic, enhanced solar heating of the ocean, and the ice-albedo feedback. The diminishing Arctic sea ice is creating social, political, economic, and ecological challenges.

  2. Past and present Aral Sea

    NASA Astrophysics Data System (ADS)

    Dukhovniy, Viktor; Stulina, Galina; Eshchanov, Odylbek

    2013-04-01

    The tragedy of disappearing of Aral Sea is well known to the World. Before and after collapse of Soviet Union, a huge quantity of scientific and popular editions described with grief the situation around the Aral Sea. After the NIS states became independent, World Bank, UNDP, UNEP in proper competition with each other had provided some assessment of the situation through presentation of some small and medium grants, but after 2000, the local population remained alone with own problems. Although on the eyes of the present generation a unique transformation of great water body into deserts took place, the global scientific community did not find forces and financing for real and detail investigation of the processes accompanying the Sea shrinking and land formation. We should acknowledge and give big respect to NATO, later to German Government that through GTZ (now GIZ) - German International Collaboration Agency - and GFZ (Potzdam) paid attention to this area of environment crisis and organized scientific and protective design in the so-called Priaralie - the territory around the drying Sea and delta of the two rivers - Amudarya and Syrdarya. Thank to this assistance, the local specialists in collaboration with limited a number of foreign scientists (N.Aladin, P.Zavialov, Joop de Schutter, Hans Wilps, Hedi Oberhansli) organized significant works for detail socioeconomic, ecological and hydrological assessment situation in Priaralie and on the Aral sea coast. On this base, Ministry of Agriculture and Water resources of Uzbekistan and State Committee of Water resources of Kazakhstan developed a plan of rehabilitation of Amudarya and Syrdarya deltas and started implementation of these projects. If Kazakh water authority moved ahead in wetland restoration faster, a forestation of delta and drying bed of Aral Sea got big success in Uzbek territory. 244 thousands hectares of saxsaul and tamarix were planted for protection of the Priaralie. By request of GTZ SIC, ICWC organized in 2005-2009 sixth expeditions for complex remote sensing and ground investigations Aral Sea former bottom that were complemented in 2010 -2011 by two expeditions with GFZ. As a result, the landscape, soils and environment mapping was done with determination of ecologically unstable zones and assessment total change of lands situation compared with the pre-independence time. Moreover - methodic of monitoring water, environment and hydro geological indicators on the all deltas area was elaborated, organized its testing and combined with remote sensing data on Amudarya delta for 2009-2012. It permits to SIC ICWC to organize systematic permanent (decadal) monitoring and recording of size, volume and level of water in Aral Sea. Since the beginning of regular observations over the Aral Sea level, 2 periods can be emphasized: 1. Conditionally natural period - 1911-1960 - characterized by a relatively stable hydrological regime, with fluctuations in the level around 53 m and the range of inter-annual fluctuations at no more than 1 m., when the sea received annually about a half of the run-off in the Syrdarya and Amudarya Rivers, i.e. 50-60 km3/yr. 2. Intensive anthropogenic impact period - since the 1960s, a vast extension of irrigable land was carried out in Central Asia that resulted in intensive diversion of river run-off. Since then, the sea level has been falling steadily, causing a dramatic reduction in the water surface area, a decrease in water volume and depths, great changes in shoreline configuration and an expansion of the desert areas adjacent to the Aral Sea. From 1960-1985, when the sea was an integral water body, slight lowering in the sea level took place until the 1970s, when the sea-level decreased with the mean level lowering 1 m. The desiccation process accelerated visibly from the mid 1970s. In 1975-1980, the level decreased by 0.65 m a year on average. Moreover, the level dropped greatly, when the run-off of the Amudarya did not reach the Aral Sea any more (1980-1990). Kokaral was the first of the large islands becoming a peninsula, separating the Small Aral Sea in the north-east by joining the shoreline in the west. By 1986, the peninsula practically detached the small Aral Sea from the large Aral Sea, leaving only a narrow flow passage in the east. Since that time, the hydrological regimes of the Small and Large Seas have become separated. The construction of Kokaral dam in Kazakhstan, 12 km long and 8 m high, then completely separated the small Aral Sea from the large Aral Sea and changed the hydrological regimes of the water bodies. Level of this part of Sea became from this moment permanently higher than in the large Aral Sea on 42 m a.s.l. The eastern part of the sea, where the bed is much shallower and the slope is gentler is more subjected to shrinking then the western part. 2005 year became threshold, from which Eastern Aral Sea began new story - deviation from almost empty water body to almost 4 meters depth. Present assessment of water balance of Aral Sea and delta at whole dependent from delivery water river and drainage flow through control section of Samanbay on the Amudarya and some cross sections on the enter main collectors to the delta boundary. These hydrological characteristics accepted on the base of information from BWO Amudarya and our monitoring of allocation of different waters on the delta. Water volume and water surface area of Eastern and Western Aral Sea bowls were definite on the result RS data from Landsat. Bathymetric curves gave ability to assess dynamic levels of Seas. After series of enough water years 2002 - 2005 with average water income to south Priaralie 12.5 km3 period of water scarce years lead to sharp decrease of surface water area of the Eastern bowl from 1010,5 th.ha on average on two time with failure of level from 31,1 m up to average 28,5 m. But phase of permanent reducing all indicators water body changed in 2008 on deviation in range from 26.3 m to 29.5 m. Some time sharp changes in the level of water in 2.0 m take place in time one year. These changes same as degree of deltas' watering depends fully from inflow water to boundary of deltas. At the same time, the Western bowl remained more or less stable and without direct flow of surface water supported own water stability based on balance between evaporation and precipitation plus presumably the inflow of deep ground water.

  3. Absolute Sea-level Changes Derived from Integrated Geodetic Datasets (1955-2016) in the Caribbean Sea

    NASA Astrophysics Data System (ADS)

    Yang, L.; Wang, G.; Liu, H.

    2017-12-01

    Rising sea level has important direct impacts on coastal and island regions such as the Caribbean where the influence of sea-level rise is becoming more apparent. The Caribbean Sea is a semi-enclosed sea adjacent to the landmasses of South and Central America to the south and west, and the Greater Antilles and the Lesser Antilles separate it from the Atlantic Ocean to the north and east. The work focus on studying the relative and absolute sea-level changes by integrating tide gauge, GPS, and satellite altimetry datasets (1955-2016) within the Caribbean Sea. Further, the two main components of absolute sea-level change, ocean mass and steric sea-level changes, are respectively studied using GRACE, temperature, and salinity datasets (1955-2016). According to the analysis conducted, the sea-level change rates have considerable temporal and spatial variations, and estimates may be subject to the techniques used and observation periods. The average absolute sea-level rise rate is 1.8±0.3 mm/year for the period from 1955 to 2015 according to the integrated tide gauge and GPS observations; the average absolute sea-level rise rate is 3.5±0.6 mm/year for the period from 1993 to 2016 according to the satellite altimetry observations. This study shows that the absolute sea-level change budget in the Caribbean Sea is closed in the periods from 1955 to 2016, in which ocean mass change dominates the absolute sea-level rise. The absolute sea-level change budget is also closed in the periods from 2004 to 2016, in which steric sea-level rise dominates the absolute sea-level rise.

  4. Continuity and change in subsistence harvests in five Bering Sea communities: Akutan, Emmonak, Savoonga, St. Paul, and Togiak

    NASA Astrophysics Data System (ADS)

    Fall, James A.; Braem, Nicole S.; Brown, Caroline L.; Hutchinson-Scarbrough, Lisa B.; Koster, David S.; Krieg, Theodore M.

    2013-10-01

    To document and quantify subsistence harvests of fish and wildlife resources, and provide topics for subsequent key respondent interviews to collect local and traditional knowledge (LTK) about the Bering Sea ecosystem, comprehensive household harvest surveys were conducted in four Bering Sea Alaska Native communities: Akutan, Emmonak, Savoonga, and Togiak. In a fifth community, St. Paul, annual programs to document two key subsistence resources, fur seals and sea lions, continued. Surveys documented relatively high and diverse subsistence harvests, consistent with earlier research that demonstrated the continuing economic, social, and cultural importance of subsistence uses of wild resources. The research also found differences in subsistence use patterns compared to previous years' studies, such as harvest levels, harvest composition, and diversity of resources used, although differences between study years were not uniform across communities. Survey respondents, as well as key respondents in subsequent interviews, identified a complex range of personal, economic, and environmental factors when comparing subsistence uses in the study year with other years, such as increasing costs of fuel and purchased food, commercial fisheries harvests and bycatch, more persistent storms and less predictable winds, and reduced sea ice. Such conditions affect resource abundance and locations as well as access to fish and wildlife populations, and may shape long-term trends. So far, as in the past, families and communities have adapted to changing economic, social, and environmental conditions, but the future is less clear if such changes intensify or accelerate. Local community residents should be essential partners in future efforts to understand these complex processes that affect the natural resources of the Bering Sea.

  5. School children from Punta Arenas, Chile, talk with Dr. David Imel, an AirSAR scientist from NASA JPL, during AirSAR 2004

    NASA Image and Video Library

    2004-03-10

    School children from Punta Arenas, Chile, talk with Dr. David Imel, an AirSAR scientist from NASA JPL, during AirSAR 2004. AirSAR 2004 is a three-week expedition by an international team of scientists that uses an all-weather imaging tool, called the Airborne Synthetic Aperture Radar (AirSAR) which is located onboard NASA's DC-8 airborne laboratory. Scientists from many parts of the world including NASA's Jet Propulsion Laboratory are combining ground research done in several areas in Central and South America with NASA's AirSAR technology to improve and expand on the quality of research they are able to conduct. In South America and Antarctica, AirSAR collected imagery and data to help determine the contribution of Southern Hemisphere glaciers to sea level rise due to climate change. In Patagonia, researchers found this contribution had more than doubled from 1995 to 2000, compared to the previous 25 years. AirSAR data will make it possible to determine whether that trend is continuing or accelerating. AirSAR will also provide reliable information on ice shelf thickness to measure the contribution of the glaciers to sea level.

  6. NASA Dryden Mission Manager Walter Klein poses with school children that visited the DC-8 during AirSAR 2004 in Punta Arenas, Chile

    NASA Image and Video Library

    2004-03-10

    NASA Dryden Mission Manager Walter Klein poses with school children that visited the DC-8 during AirSAR 2004 in Punta Arenas, Chile. AirSAR 2004 is a three-week expedition by an international team of scientists that uses an all-weather imaging tool, called the Airborne Synthetic Aperture Radar (AirSAR) which is located onboard NASA's DC-8 airborne laboratory. Scientists from many parts of the world including NASA's Jet Propulsion Laboratory are combining ground research done in several areas in Central and South America with NASA's AirSAR technology to improve and expand on the quality of research they are able to conduct. In South America and Antarctica, AirSAR collected imagery and data to help determine the contribution of Southern Hemisphere glaciers to sea level rise due to climate change. In Patagonia, researchers found this contribution had more than doubled from 1995 to 2000, compared to the previous 25 years. AirSAR data will make it possible to determine whether that trend is continuing or accelerating. AirSAR will also provide reliable information on ice shelf thickness to measure the contribution of the glaciers to sea level.

  7. Mass Balance Changes and Ice Dynamics of Greenland and Antarctic Ice Sheets from Laser Altimetry

    NASA Astrophysics Data System (ADS)

    Babonis, G. S.; Csatho, B.; Schenk, T.

    2016-06-01

    During the past few decades the Greenland and Antarctic ice sheets have lost ice at accelerating rates, caused by increasing surface temperature. The melting of the two big ice sheets has a big impact on global sea level rise. If the ice sheets would melt down entirely, the sea level would rise more than 60 m. Even a much smaller rise would cause dramatic damage along coastal regions. In this paper we report about a major upgrade of surface elevation changes derived from laser altimetry data, acquired by NASA's Ice, Cloud and land Elevation Satellite mission (ICESat) and airborne laser campaigns, such as Airborne Topographic Mapper (ATM) and Land, Vegetation and Ice Sensor (LVIS). For detecting changes in ice sheet elevations we have developed the Surface Elevation Reconstruction And Change detection (SERAC) method. It computes elevation changes of small surface patches by keeping the surface shape constant and considering the absolute values as surface elevations. We report about important upgrades of earlier results, for example the inclusion of local ice caps and the temporal extension from 1993 to 2014 for the Greenland Ice Sheet and for a comprehensive reconstruction of ice thickness and mass changes for the Antarctic Ice Sheets.

  8. Risk evaluation for staphylococcal food poisoning in processed milk produced with skim milk powder.

    PubMed

    Soejima, T; Nagao, E; Yano, Y; Yamagata, H; Kagi, H; Shinagawa, K

    2007-04-01

    The growth of S. aureus and the production of staphylococcal enterotoxin A (SEA) in skim milk concentrates stored at inappropriate temperatures in a recovery milk tank (tank for excess concentrated skim milk) used in the manufacture of skimmed milk powder were investigated. Also, it was estimated if a possible outbreak of food poisoning would occur if the contaminated skimmed milk powder was used in the manufacture of processed milk. Skim milk concentrates with milk solid content of 15, 25, and 35% were inoculated with S. aureus at 1-2 log CFU/ml and incubated at 15, 25, or 35 degrees C for 0 to 24 h with or without shaking. Bacterial growth and the level of SEA production were measured. At 35 degrees C with shaking, there was a significant difference (p<0.05) in one way layout analysis of variance, and it was demonstrated that the growth of S. aureus and SEA production could be milk solid content-dependent. Shaking accelerated the growth of S. aureus and SEA production at 35 degrees C. Generally, skim milk powder is produced by mixing a set percentage of skim milk concentrates (recovery milk) from the recovery milk tank into raw milk. If recovery milk contaminated with S. aureus at levels of 1-2 log CFU/ml is kept at 15 to 35 degrees C due to a power failure, it was estimated that processed milk consumption of 670-1200 ml, 420-1500 ml and 18-83 ml would trigger the onset of food poisoning symptoms when skim milk concentrates (recovery milk) are stored at 25 degrees C for 24 h, 35 degrees C for 10 h, and 35 degrees C for 24 h, respectively, during the production of the skim milk powder. Based on these consumption levels, it was concluded that, if recovery milk cannot be refrigerated and is stored at room temperature (25 to 35 degrees C), it must be used within 8 h and preferably within 6 h.

  9. Acquisition of Ice Thickness and Ice Surface Characteristics in the Seasonal Ice Zone by CULPIS-X during the US Coast Guard’s Arctic Domain Awareness Program

    DTIC Science & Technology

    2014-09-30

    OBJECTIVES • What is the volume of sea ice in the Beaufort Sea Seasonal Ice Zone (SIZ) and how does this evolve during summer as the ice edge...retreats? Recent observations suggest that the remaining ice in the Beaufort Sea is younger and thinner in recent years in part because even the oldest...surrounding ice . Recent analyses have indicated that ponds on thinner ice are often darker, accelerating the ice - albedo feedback over thin ice in summer

  10. Acquisition of Ice Thickness and Ice Surface Characteristics in the Seasonal Ice Zone by CULPIS-X During the US Coast Guard’s Arctic Domain Awareness Program

    DTIC Science & Technology

    2013-09-30

    What is the volume of sea ice in the Beaufort Sea SIZ and how does this evolve during summer as the ice edge retreats? Recent observations...suggest that the remaining ice in the Beaufort Sea is younger and thinner in recent years in part because even the oldest ice advected into the region does...indicated that ponds on thinner ice are often darker, accelerating the ice - albedo feedback over thin ice in summer. During winter, leads and very

  11. Ice Melt, Sea Level Rise and Superstorms: Evidence from Paleoclimate Data, Climate Modeling, and Modern Observations that 2C Global Warming Could Be Dangerous

    NASA Technical Reports Server (NTRS)

    Hansen, J.; Sato, Makiko; Hearty, Paul; Ruedy, Reto; Kelley, Maxwell; Masson-Delmotte, Valerie; Russell, Gary; Tselioudis, George; Cao, Junji; Rignot, Eric; hide

    2016-01-01

    We use numerical climate simulations, paleoclimate data, and modern observations to study the effect of growing ice melt from Antarctica and Greenland. Meltwater tends to stabilize the ocean column, inducing amplifying feedbacks that increase subsurface ocean warming and ice shelf melting. Cold meltwater and induced dynamical effects cause ocean surface cooling in the Southern Ocean and North Atlantic, thus increasing Earth's energy imbalance and heat flux into most of the global ocean's surface. Southern Ocean surface cooling, while lower latitudes are warming, increases precipitation on the Southern Ocean, increasing ocean stratification, slowing deepwater formation, and increasing ice sheet mass loss. These feedbacks make ice sheets in contact with the ocean vulnerable to accelerating disintegration. We hypothesize that ice mass loss from the most vulnerable ice, sufficient to raise sea level several meters, is better approximated as exponential than by a more linear response. Doubling times of 10, 20 or 40 years yield multi-meter sea level rise in about 50, 100 or 200 years. Recent ice melt doubling times are near the lower end of the 10-40-year range, but the record is too short to confirm the nature of the response. The feedbacks, including subsurface ocean warming, help explain paleoclimate data and point to a dominant Southern Ocean role in controlling atmospheric CO2, which in turn exercised tight control on global temperature and sea level. The millennial (500-2000-year) timescale of deep-ocean ventilation affects the timescale for natural CO2 change and thus the timescale for paleo-global climate, ice sheet, and sea level changes, but this paleo-millennial timescale should not be misinterpreted as the timescale for ice sheet response to a rapid, large, human-made climate forcing. These climate feedbacks aid interpretation of events late in the prior interglacial, when sea level rose to C6-9m with evidence of extreme storms while Earth was less than 1 C warmer than today. Ice melt cooling of the North Atlantic and Southern oceans increases atmospheric temperature gradients, eddy kinetic energy and baroclinicity, thus driving more powerful storms. The modeling, paleoclimate evidence, and ongoing observations together imply that 2 C global warming above the preindustrial level could be dangerous. Continued high fossil fuel emissions this century are predicted to yield (1) cooling of the Southern Ocean, especially in the Western Hemisphere; (2) slowing of the Southern Ocean overturning circulation, warming of the ice shelves, and growing ice sheet mass loss; (3) slowdown and eventual shutdown of the Atlantic overturning circulation with cooling of the North Atlantic region; (4) increasingly powerful storms; and (5) nonlinearly growing sea level rise, reaching several meters over a timescale of 50-150 years. These predictions, especially the cooling in the Southern Ocean and North Atlantic with markedly reduced warming or even cooling in Europe, differ fundamentally from existing climate change assessments. We discuss observations and modeling studies needed to refute or clarify these assertions.

  12. Ice melt, sea level rise and superstorms: evidence from paleoclimate data, climate modeling, and modern observations that 2 °C global warming could be dangerous

    NASA Astrophysics Data System (ADS)

    Hansen, James; Sato, Makiko; Hearty, Paul; Ruedy, Reto; Kelley, Maxwell; Masson-Delmotte, Valerie; Russell, Gary; Tselioudis, George; Cao, Junji; Rignot, Eric; Velicogna, Isabella; Tormey, Blair; Donovan, Bailey; Kandiano, Evgeniya; von Schuckmann, Karina; Kharecha, Pushker; Legrande, Allegra N.; Bauer, Michael; Lo, Kwok-Wai

    2016-03-01

    We use numerical climate simulations, paleoclimate data, and modern observations to study the effect of growing ice melt from Antarctica and Greenland. Meltwater tends to stabilize the ocean column, inducing amplifying feedbacks that increase subsurface ocean warming and ice shelf melting. Cold meltwater and induced dynamical effects cause ocean surface cooling in the Southern Ocean and North Atlantic, thus increasing Earth's energy imbalance and heat flux into most of the global ocean's surface. Southern Ocean surface cooling, while lower latitudes are warming, increases precipitation on the Southern Ocean, increasing ocean stratification, slowing deepwater formation, and increasing ice sheet mass loss. These feedbacks make ice sheets in contact with the ocean vulnerable to accelerating disintegration. We hypothesize that ice mass loss from the most vulnerable ice, sufficient to raise sea level several meters, is better approximated as exponential than by a more linear response. Doubling times of 10, 20 or 40 years yield multi-meter sea level rise in about 50, 100 or 200 years. Recent ice melt doubling times are near the lower end of the 10-40-year range, but the record is too short to confirm the nature of the response. The feedbacks, including subsurface ocean warming, help explain paleoclimate data and point to a dominant Southern Ocean role in controlling atmospheric CO2, which in turn exercised tight control on global temperature and sea level. The millennial (500-2000-year) timescale of deep-ocean ventilation affects the timescale for natural CO2 change and thus the timescale for paleo-global climate, ice sheet, and sea level changes, but this paleo-millennial timescale should not be misinterpreted as the timescale for ice sheet response to a rapid, large, human-made climate forcing. These climate feedbacks aid interpretation of events late in the prior interglacial, when sea level rose to +6-9 m with evidence of extreme storms while Earth was less than 1 °C warmer than today. Ice melt cooling of the North Atlantic and Southern oceans increases atmospheric temperature gradients, eddy kinetic energy and baroclinicity, thus driving more powerful storms. The modeling, paleoclimate evidence, and ongoing observations together imply that 2 °C global warming above the preindustrial level could be dangerous. Continued high fossil fuel emissions this century are predicted to yield (1) cooling of the Southern Ocean, especially in the Western Hemisphere; (2) slowing of the Southern Ocean overturning circulation, warming of the ice shelves, and growing ice sheet mass loss; (3) slowdown and eventual shutdown of the Atlantic overturning circulation with cooling of the North Atlantic region; (4) increasingly powerful storms; and (5) nonlinearly growing sea level rise, reaching several meters over a timescale of 50-150 years. These predictions, especially the cooling in the Southern Ocean and North Atlantic with markedly reduced warming or even cooling in Europe, differ fundamentally from existing climate change assessments. We discuss observations and modeling studies needed to refute or clarify these assertions.

  13. Regional sea level projections with observed gauge, altimeter and reconstructed data along China coast

    NASA Astrophysics Data System (ADS)

    Du, L.; Shi, H.; Zhang, S.

    2017-12-01

    Acting as the typical shelf seas in northwest Pacific Ocean, regional sea level along China coasts exhibits complicated and multiscale spatial-temporal characteristics under circumstance of global change. In this paper, sea level variability is investigated with tide gauges records, satellite altimetry data, reconstructed sea surface height, and CMIP simulation fields. Sea level exhibits the interannual variability imposing on a remarkable sea level rising in the China seas and coastal region, although its seasonal signals are significant as the results of global ocean. Sea level exhibits faster rising rate during the satellite altimetry era, nearly twice to the rate during the last sixty years. AVISO data and reconstructed sea surface heights illustrate good correlation coefficient, more than 0.8. Interannual sea level variation is mainly modulated by the low-frequency variability of wind fields over northern Pacific Ocean by local and remote processes. Meanwhile sea level varies obviously by the transport fluctuation and bimodality path of Kuroshio. Its variability possibly linked to internal variability of the ocean-atmosphere system influenced by ENSO oscillation. China Sea level have been rising during the 20th century, and are projected to continue to rise during this century. Sea level can reach the highest extreme level in latter half of 21st century. Modeled sea level including regional sea level projection combined with the IPCC climate scenarios play a significant role on coastal storm surge evolution. The vulnerable regions along the ECS coast will suffer from the increasing storm damage with sea level variations.

  14. Stratified coastal ocean interactions with tropical cyclones

    PubMed Central

    Glenn, S. M.; Miles, T. N.; Seroka, G. N.; Xu, Y.; Forney, R. K.; Yu, F.; Roarty, H.; Schofield, O.; Kohut, J.

    2016-01-01

    Hurricane-intensity forecast improvements currently lag the progress achieved for hurricane tracks. Integrated ocean observations and simulations during hurricane Irene (2011) reveal that the wind-forced two-layer circulation of the stratified coastal ocean, and resultant shear-induced mixing, led to significant and rapid ahead-of-eye-centre cooling (at least 6 °C and up to 11 °C) over a wide swath of the continental shelf. Atmospheric simulations establish this cooling as the missing contribution required to reproduce Irene's accelerated intensity reduction. Historical buoys from 1985 to 2015 show that ahead-of-eye-centre cooling occurred beneath all 11 tropical cyclones that traversed the Mid-Atlantic Bight continental shelf during stratified summer conditions. A Yellow Sea buoy similarly revealed significant and rapid ahead-of-eye-centre cooling during Typhoon Muifa (2011). These findings establish that including realistic coastal baroclinic processes in forecasts of storm intensity and impacts will be increasingly critical to mid-latitude population centres as sea levels rise and tropical cyclone maximum intensities migrate poleward. PMID:26953963

  15. Climate Adaptation and Policy-Induced Inflation of Coastal Property Value

    PubMed Central

    McNamara, Dylan E.; Gopalakrishnan, Sathya; Smith, Martin D.; Murray, A. Brad

    2015-01-01

    Human population density in the coastal zone and potential impacts of climate change underscore a growing conflict between coastal development and an encroaching shoreline. Rising sea-levels and increased storminess threaten to accelerate coastal erosion, while growing demand for coastal real estate encourages more spending to hold back the sea in spite of the shrinking federal budget for beach nourishment. As climatic drivers and federal policies for beach nourishment change, the evolution of coastline mitigation and property values is uncertain. We develop an empirically grounded, stochastic dynamic model coupling coastal property markets and shoreline evolution, including beach nourishment, and show that a large share of coastal property value reflects capitalized erosion control. The model is parameterized for coastal properties and physical forcing in North Carolina, U.S.A. and we conduct sensitivity analyses using property values spanning a wide range of sandy coastlines along the U.S. East Coast. The model shows that a sudden removal of federal nourishment subsidies, as has been proposed, could trigger a dramatic downward adjustment in coastal real estate, analogous to the bursting of a bubble. We find that the policy-induced inflation of property value grows with increased erosion from sea level rise or increased storminess, but the effect of background erosion is larger due to human behavioral feedbacks. Our results suggest that if nourishment is not a long-run strategy to manage eroding coastlines, a gradual removal is more likely to smooth the transition to more climate-resilient coastal communities. PMID:25806944

  16. Climate adaptation and policy-induced inflation of coastal property value.

    PubMed

    McNamara, Dylan E; Gopalakrishnan, Sathya; Smith, Martin D; Murray, A Brad

    2015-01-01

    Human population density in the coastal zone and potential impacts of climate change underscore a growing conflict between coastal development and an encroaching shoreline. Rising sea-levels and increased storminess threaten to accelerate coastal erosion, while growing demand for coastal real estate encourages more spending to hold back the sea in spite of the shrinking federal budget for beach nourishment. As climatic drivers and federal policies for beach nourishment change, the evolution of coastline mitigation and property values is uncertain. We develop an empirically grounded, stochastic dynamic model coupling coastal property markets and shoreline evolution, including beach nourishment, and show that a large share of coastal property value reflects capitalized erosion control. The model is parameterized for coastal properties and physical forcing in North Carolina, U.S.A. and we conduct sensitivity analyses using property values spanning a wide range of sandy coastlines along the U.S. East Coast. The model shows that a sudden removal of federal nourishment subsidies, as has been proposed, could trigger a dramatic downward adjustment in coastal real estate, analogous to the bursting of a bubble. We find that the policy-induced inflation of property value grows with increased erosion from sea level rise or increased storminess, but the effect of background erosion is larger due to human behavioral feedbacks. Our results suggest that if nourishment is not a long-run strategy to manage eroding coastlines, a gradual removal is more likely to smooth the transition to more climate-resilient coastal communities.

  17. Heat and Freshwater Convergence Anomalies in the Atlantic Ocean Inferred from Observations

    NASA Astrophysics Data System (ADS)

    Kelly, K. A.; Drushka, K.; Thompson, L.

    2015-12-01

    Observations of thermosteric and halosteric sea level from hydrographic data, ocean mass from GRACE and altimetric sea surface height are used to infer meridional heat transport (MHT) and freshwater convergence (FWC) anomalies for the Atlantic Ocean. An "unknown control" version of a Kalman filter in each of eight regions extracts smooth estimates of heat transport convergence (HTC) and FWC from discrepancies between the sea level response to monthly surface heat and freshwater fluxes and observed heat and freshwater content. The model is run for 1993-2014. Estimates of MHT anomalies are derived by summing the HTC from north to south and adding a spatially uniform, time-varying MHT derived from updated MHT estimates at 41N (Willis 2010). Estimated anomalies in MHT are comparable to those recently observed at the RAPID/MOCHA line at 26.5N. MHT estimates are relatively insensitive to the choice of heat flux products and are highly coherent spatially. MHT anomalies at 35S resemble estimates of Agulhas Leakage derived from altimeter (LeBars et al 2014) suggesting that the Indian Ocean is the source of the anomalous heat inflow. FWC estimates in the Atlantic Ocean (67N to 35S) resemble estimates of Atlantic river inflow (de Couet and Maurer, GRDC 2009). Increasing values of FWC after 2002 at a time when MHT was decreasing may indicate a feedback between the Atlantic Meridional Overturning Circulation and FWC that would accelerate the AMOC slowdown.

  18. Researchers focus attention on coastal response to climate change

    NASA Astrophysics Data System (ADS)

    Anderson, John; Rodriguez, Antonio; Fletcher, Charles; Fitzgerald, Duncan

    The world's population has been steadily migrating toward coastal cities, resulting in severe stress on coastal environments. But the most severe human impact on coastal regions may lie ahead as the rate of global sea-level rise accelerates and the impacts of global warming on coastal climates and oceanographic dynamics increase [Varekamp and Thomas, 1998; Hinrichsen, 1999; Goodwin et al., 2000]. Little is currently being done to forecast the impact of global climate change on coasts during the next century and beyond. Indeed, there are still many politicians, and even some scientists, who doubt that global change is a real threat to society.

  19. Correlation of sea level falls interpreted from atoll stratigraphy with turbidites in adjacent basins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lincoln, J.M.

    Past sea levels can be derived from any atoll subsurface sediments deposited at or near sea level by determining the ages of deposition and correcting the present depths to the sediments for subsidence of the underlying edifice since the times of deposition. A sea level curve constructed by this method consists of discontinuous segments, each corresponding to a period of rising relative sea level and deposition of a discrete sedimentary package. Discontinuities in the sea level curve derived by this method correspond to relative sea level falls and stratigraphic hiatuses in the atoll subsurface. During intervals of relative sea levelmore » fall an atoll emerges to become a high limestone island. Sea level may fluctuate several times during a period of atoll emergence to become a high limestone island. Sea level may fluctuate several times during a period of atoll emergence without depositing sediments on top of the atoll. Furthermore, subaerial erosion may remove a substantial part of the depositional record of previous sea level fluctuations. For these reasons the authors must look to the adjacent basins to complement the incomplete record of sea level change recorded beneath atolls. During lowstands of sea level, faunas originally deposited near sea level on an atoll may be eroded and redeposited as turbidites in deep adjacent basins. Three such turbidites penetrated during deep-sea drilling at Sites 462 and 315 in the central Pacific correlate well with a late Tertiary sea level curve based on biostratigraphic ages and {sup 87}Sr/{sup 86}Sr chronostratigraphy for core from Enewetak Atoll in the northern Marshall Islands. Further drilling of the archipelagic aprons adjacent to atolls will improve the sea level history that may be inferred from atoll stratigraphy.« less

  20. Changes in the Earth's largest surge glacier system from satellite and airborne altimetry and imagery

    NASA Astrophysics Data System (ADS)

    Trantow, T.; Herzfeld, U. C.

    2015-12-01

    The Bering-Bagley Glacier System (BBGS), Alaska, one of the largest ice systems outside of Greenland and Antarctica, has recently surged (2011-2013), providing a rare opportunity to study the surge phenomenon in a large and complex system. Understanding fast-flowing glaciers and accelerations in ice flow, of which surging is one type, is critical to understanding changes in the cryosphere and ultimately changes in sea level. It is important to distinguish between types of accelerations and their consequences, especially between reversible or quasi-cyclic and irreversible forms of glacial acceleration, but current icesheet models treat all accelerating ice identically. Additionally, the surge provides an exceptional opportunity to study the influence of surface roughness and water content on return signals of altimeter systems. In this presentation, we analyze radar and laser altimeter data from CryoSat-2, NASA's Operation IceBridge (OIB), the ICESat Geoscience Laser Altimeter System (GLAS), ICESat-2's predecessor the Multiple Altimeter Beam Experimental Lidar (MABEL), and airborne laser altimeter and imagery campaigns by our research group. These measurements are used to study elevation, elevation change and crevassing throughout the glacier system. Analysis of the imagery from our airborne campaigns provides comprehensive characterizations of the BBGS surface over the course of the surge. Results from the data analysis are compared to numerical modeling experiments.

  1. Sea-Level Rise Implications for Coastal Protection from Southern Mediterranean to the U.S.A. Atlantic Coast

    NASA Astrophysics Data System (ADS)

    Ismail, Nabil; Williams, Jeffress

    2013-04-01

    This paper presents an assessment of global sea level rise and the need to incorporate projections of rise into management plans for coastal adaptation. It also discusses the performance of a shoreline revetment; M. Ali Seawall, placed to protect the land against flooding and overtopping at coastal site, within Abu Qir Bay, East of Alexandria, Egypt along the Nile Delta coast. The assessment is conducted to examine the adequacy of the seawall under the current and progressive effects of climate change demonstrated by the anticipated sea level rise during this century. The Intergovernmental Panel on Climate Change (IPCC, 2007) predicts that the Mediterranean will rise 30 cm to 1 meter this century. Coastal zone management of the bay coastline is of utmost significance to the protection of the low agricultural land and the industrial complex located in the rear side of the seawall. Moreover this joint research work highlights the similarity of the nature of current and anticipated coastal zone problems, at several locations around the world, and required adaptation and protection measures. For example many barrier islands in the world such as that in the Atlantic and Gulf of Mexico coasts of the U.S., lowland and deltas such as in Italy and the Nile Delta, and many islands are also experiencing significant levels of erosion and flooding that are exacerbated by sea level rise. Global Climatic Changes: At a global scale, an example of the effects of accelerated climate changes was demonstrated. In recent years, the impacts of natural disasters are more and more severe on coastal lowland areas. With the threats of climate change, sea level rise storm surge, progressive storm and hurricane activities and potential subsidence, the reduction of natural disasters in coastal lowland areas receives increased attention. Yet many of their inhabitants are becoming increasingly vulnerable to flooding, and conversions of land to open ocean. These global changes were recently demonstrated in autumn 2010 when the storm Becky reached the Santander Bay, Spain. As reported by THESEUS, the FP-7 EU project (2009-2013), the peak of nearshore significant wave height was about 8 m, the storm surge reached 0.6 m, with tidal level of 90% of the tidal range. The latest storm in December 2010, which hit the Nile Delta and which was the severest in the last decades showed that generated surges, up to 1.0 m as well as a maximum of 7.5 m wave height in the offshore of Alexandria presented a major natural hazard in coastal zones in terms of wave run up and overtopping. Along the US Atlantic Coast, where Hurricane Sandy this autumn and Hurricane Irene in 2011 left chaos in their wakes, a perfect storm of rising sea levels and dense coastal development at high risk . Super storm Sandy sent a storm surge of 4-5 m onto New Jersey's and New York's fragile barrier island and urban shorelines, causing an estimated 70 billion (USD) in damages and widespread misery for coastal inhabitants. Sea Level Rise and Impact on Upgrade of Coastal Structures: Williams (2013) highlights in his recent paper that adaptation planning on national scales in the USA for projected sea-level rise of 0.5-2 m by A.D. 2100 is advisable. Further he points out that sea-level rise, as a major driving force of change for coastal regions, is becoming increasingly important as a hazard to humans and urban areas in the coastal zone worldwide as global climate change takes effect. During the 20th century, sea level began rising at a global average rate of 1.7 mm/yr (). The current average rise rate is 3.1 mm/yr, a 50% increase over the past two decades. Many regions are experiencing even greater rise rates due to local geophysical (e.g., Louisiana, Chesapeake Bay) and oceanographic (mid-Atlantic coast) forces. Further the Mississippi River Delta plain region of Louisiana has much higher than average rates of LRSL rise due to geologic factors such as subsidence and man-made alterations to the delta plain, wetlands, and coast. As a result the entire coast is highly erosional and highly vulnerable to sea-level rise and storms. Detailed mapping studies over the past two decades show that subject to sea-level rise, subsidence, frequent major storms, and reduced sediment budget. Sea-level rise, with high regional variability, is exhibiting acceleration and is expected to continue for centuries unless mitigation is enacted to reduce atmospheric carbon. Low lying coastal plain regions, deltas, and most islands are highly vulnerable. The assessment of Abu-Qir seawall included the review of the current-2011design and past upgrades since 1830. Hydrodynamic analyses were conducted to estimate wave height distributions, wave run up and overtopping over the seawall. Use has been made of the Modified ImSedTran-2D model (Ismail et.al, 2012) as well as universal design standards (EurOtop, 2008). Comparison of the predicted overtopping with the observed wave overtopping volumes during the 8hrs-2010 storm, allowed the verification of the used universal design tools. Based on the results for worst wave design scenarios and anticipated sea level rise after 50 years (50 cm), recommendations are given to increase the height of the seawall cap, to strengthen the beach top and back slope with a facility to drain storm water to increase coastal resilience. Recommendations: Protection of coastal fringes requires that new design alternatives to protect eroding lowland shorelines of deltas and barrier islands should be explored. These soft engineering alternatives are such as beach nourishment, sand dunes stabilization, and storm barriers. Use of integrated barrier island and coastal lagoons & wetlands would act as a buffer zone to defend main land. The sustainability of the integrated natural systems would require (1) barrier island and shoreline restoration (2) hydrologic and vegetation restoration of coastal lagoons, and (3) relocation of development in highly vulnerable areas. Such adaptation planning and restoration projects will require a major undertaking by national governments and international institutions. Joint research projects between international organizations such as: USA research centers ( USGS, NOAA, Corps of Engineers), EU sponsored project groups, EU coastal marine centers as well as other world wide coastal research institutes (CoRI, Alexandria) are encouraged to advance the state of the art on managing coasts to adapt to sea level rise employing cost-effective coastal protection technologies. References 1.Williams, S.J.,"Sea-Level Rise Implications for Coastal Regions", Journal of Coastal Research, Vol. 63, 2013. 2.Ismail, N.,Wiegel, R., "Sustainable Solutions for Coastal Zone Management of Lowland and River Delta Coastlines", Proc. International Conference- Littoral 2012, Ostende, Belgium, November 27-29, 2012. 3.Ismail, N., Iskander, M., and El-Sayed, W. "Assessment of Coastal Flooding at Southern Mediterranean with Global Outlook for Lowland Coastal Zones", Proc. International Conference on Coastal Engineering, ASCE, July 1-6, 2012, Santander, Spain. 4.Moser, S. C., Williams,J.S., and Boesch, D. F., " Wicked Challenges at Land's End: Managing Coastal Vulnerability Under Climate Change'', Annual. Review of Environmental Resources, 37:51-78, 2012.

  2. Variations in the Arctic's multiyear sea ice cover: A neural network analysis of SMMR-SSM/I data, 1979-2004

    USGS Publications Warehouse

    Belchansky, G.I.; Douglas, David C.; Eremeev, V.A.; Platonov, Nikita G.

    2005-01-01

    A 26-year (1979-2004) observational record of January multiyear sea ice distributions, derived from neural network analysis of SMMR-SSM/I passive microwave satellite data, reveals dense and persistent cover in the central Arctic basin surrounded by expansive regions of highly fluctuating interannual cover. Following a decade of quasi equilibrium, precipitous declines in multiyear ice area commenced in 1989 when the Arctic Oscillation shifted to a pronounced positive phase. Although extensive survival of first-year ice during autumn 1996 fully replenished the area of multiyear ice, a subsequent and accelerated decline returned the depletion to record lows. The most dramatic multiyear sea ice declines occurred in the East Siberian, Chukchi, and Beaufort Seas.

  3. Accelerator/Experiment Operations - FY 2014

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Czarapata, P.; Geer, S.; Geesaman, D.

    2014-10-01

    This Technical Memorandum (TM) summarizes the Fermilab accelerator and accelerator experiment operations for FY 2014. It is one of a series of annual publications intended to gather information in one place. In this case, the information concerns the FY 2014 MINOS and MINERvA experiments using the Main Injector Neutrino Beam (NuMI), the MiniBooNE experiment running in the Booster Neutrino Beam (BNB), and the SeaQuest experiment and Meson Test Beam (MTest) activities in the 120 GeV external Switchyard beam (SY120). Each section was prepared by the relevant authors, and was somewhat edited for inclusion in this summary.

  4. Whither a Common Security for Southeast Asia?

    DTIC Science & Technology

    1998-06-05

    Southeast Asian countries to directly and indirectly influence any passage through them between the Pacific Ocean, North Asia, and Indian Ocean regions. A...most important of these sea-lanes is the Malacca Straits, which is the shortest route between the Indian and Pacific Oceans. The alternatives to the...accelerated via the sea routes. In the old days, the region straddled the major trade route between the Far East and Europe through the Indian Ocean

  5. Sea-level Fingerprinting, Vertical Crustal Motion from GIA, and Projections of Relative Sea-level Change in the Canadian Arctic

    NASA Astrophysics Data System (ADS)

    James, Thomas; Simon, Karen; Forbes, Donald; Dyke, Arthur; Mazzotti, Stephane

    2010-05-01

    We present projections of relative sea-level rise in the 21st century for communities in the Canadian Arctic. First, for selected communities, we determine the sea-level fingerprinting response from Antarctica, Greenland, and mountain glaciers and ice caps. Then, for various published projections of global sea-level change in the 21st century, we determine the local amount of "absolute" sea-level change. We next determine the vertical land motion arising from glacial isostatic adjustment (GIA) and incorporate this into the estimates of absolute sea-level change to obtain projections of relative sea-level change. The sea-level fingerprinting effect is especially important in the Canadian Arctic owing to proximity to Arctic ice caps and especially to the Greenland ice sheet. Its effect is to reduce the range of projected relative sea-level change compared to the range of global sea-level projections. Vertical crustal motion is assessed through empirically derived regional isobases, the Earth's predicted response to ice-sheet loading and unloading by the ICE-5G ice sheet reconstruction, and Global Positioning System vertical velocities. Owing to the large rates of crustal uplift from glacial isostatic adjustment across a large region of central Arctic Canada, many communities are projected to experience relative sea-level fall despite projections of global sea-level rise. Where uplift rates are smaller, such as eastern Baffin Island and the western Canadian Arctic, sea-level is projected to rise.

  6. Ground deformation associated with the precursory unrest and early phases of the January 2006 eruption of Augustine volcano, Alaska

    USGS Publications Warehouse

    Cervelli, P.F.; Fournier, T.; Freymueller, Jeffrey T.; Power, J.A.

    2006-01-01

    On January 11, 2006 Augustine Volcano erupted after nearly 20 years of quiescence. Global Positioning System (GPS) instrumentation at Augustine, consisting of six continuously recording, telemetered receivers, measured clear precursory deformation consistent with a source of inflation or pressurization beneath the volcano's summit at a depth of around sea level. Deformation began in early summer 2005, and was preceded by a subtle, but distinct, increase in seismicity, which began in May 2005. After remaining more or less constant, deformation rates accelerated on at least three stations beginning in late November 2005. After this date, GPS data suggest the upward propagation of a small dike into the edifice, which, based on the style of deformation and high levels of gas emission, appears to have ascended to shallow levels by mid-December 2005, about four weeks before the eruption began.

  7. Bathymetry of Patagonia glacier fjords and glacier ice thickness from high-resolution airborne gravity combined with other data

    NASA Astrophysics Data System (ADS)

    An, L.; Rignot, E.; Rivera, A.; Bunetta, M.

    2012-12-01

    The North and South Patagonia Ice fields are the largest ice masses outside Antarctica in the Southern Hemisphere. During the period 1995-2000, these glaciers lost ice at a rate equivalent to a sea level rise of 0.105 ± 0.001 mm/yr. In more recent years, the glaciers have been thinning more quickly than can be explained by warmer air temperatures and decreased precipitation. A possible cause is an increase in flow speed due to enhanced ablation of the submerged glacier fronts. To understand the dynamics of these glaciers and how they change with time, it is critical to have a detailed view of their ice thickness, the depth of the glacier bed below sea or lake level, how far inland these glaciers remain below sea or lake level, and whether bumps or hollows in the bed may slow down or accelerate their retreat. A grid of free-air gravity data over the Patagonia Glaciers was collected in May 2012 and October 2012, funded by the Gordon and Betty Moore Foundation (GBMF) to measure ice thickness and sea floor bathymetry. This survey combines the Sander Geophysics Limited (SGL) AIRGrav system, SGL laser altimetry and Chilean CECS/UCI ANDREA-2 radar. To obtain high-resolution and high-precision gravity data, the helicopter operates at 50 knots (25.7 m/s) with a grid spacing of 400m and collects gravity data at sub mGal level (1 Gal =1 Galileo = 1 cm/s2) near glacier fronts. We use data from the May 2012 survey to derive preliminarily high-resolution, high-precision thickness estimates and bathymetry maps of Jorge Montt Glacier and San Rafael Glacier. Boat bathymetry data is used to optimize the inversion of gravity over water and radar-derived thickness over glacier ice. The bathymetry maps will provide a breakthrough in our knowledge of the ice fields and enable a new era of glacier modeling and understanding that is not possible at present because ice thickness is not known.

  8. Hypobaric live high-train low does not improve aerobic performance more than live low-train low in cross-country skiers.

    PubMed

    Robach, P; Hansen, J; Pichon, A; Meinild Lundby, A-K; Dandanell, S; Slettaløkken Falch, G; Hammarström, D; Pesta, D H; Siebenmann, C; Keiser, S; Kérivel, P; Whist, J E; Rønnestad, B R; Lundby, C

    2018-06-01

    Live high-train low (LHTL) using hypobaric hypoxia was previously found to improve sea-level endurance performance in well-trained individuals; however, confirmatory controlled data in athletes are lacking. Here, we test the hypothesis that natural-altitude LHTL improves aerobic performance in cross-country skiers, in conjunction with expansion of total hemoglobin mass (Hb mass , carbon monoxide rebreathing technique) promoted by accelerated erythropoiesis. Following duplicate baseline measurements at sea level over the course of 2 weeks, nineteen Norwegian cross-country skiers (three women, sixteen men, age 20 ± 2 year, maximal oxygen uptake (VO 2 max) 69 ± 5 mL/min/kg) were assigned to 26 consecutive nights spent at either low (1035 m, control, n = 8) or moderate altitude (2207 m, daily exposure 16.7 ± 0.5 hours, LHTL, n = 11). All athletes trained together daily at a common location ranging from 550 to 1500 m (21.2% of training time at 550 m, 44.2% at 550-800 m, 16.6% at 800-1100 m, 18.0% at 1100-1500 m). Three test sessions at sea level were performed over the first 3 weeks after intervention. Despite the demonstration of nocturnal hypoxemia at moderate altitude (pulse oximetry), LHTL had no specific effect on serum erythropoietin, reticulocytes, Hb mass , VO 2 max, or 3000-m running performance. Also, LHTL had no specific effect on (a) running economy (VO 2 assessed during steady-state submaximal exercise), (b) respiratory capacities or efficiency of the skeletal muscle (biopsy), and (c) diffusing capacity of the lung. This study, showing similar physiological responses and performance improvements in the two groups following intervention, suggests that in young cross-country skiers, improvements in sea-level aerobic performance associated with LHTL may not be due to moderate-altitude acclimatization. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  9. NASA JPL scientists Yunling Lou and Dr. Eric Rignot work on line selection while flying AirSAR missions over the Antarctic Peninsula

    NASA Image and Video Library

    2004-03-16

    NASA JPL scientists Yunling Lou and Dr. Eric Rignot work on line selection while flying AirSAR missions over the Antarctic Peninsula. AirSAR 2004 is a three-week expedition in Central and South America by an international team of scientists that is using an all-weather imaging tool, called the Airborne Synthetic Aperture Radar (AirSAR), located onboard NASA's DC-8 airborne laboratory. Scientists from many parts of the world are combining ground research with NASA's AirSAR technology to improve and expand on the quality of research they are able to conduct. These photos are from the DC-8 aircraft while flying an AirSAR mission over Antarctica. The Antarctic Peninsula is more similar to Alaska and Patagonia than to the rest of the Antarctic continent. It is drained by fast glaciers, receives abundant precipitation, and melts significantly in the summer months. In recent decades, the Peninsula has experienced significant atmospheric warming (about 2 degrees C since 1950), which has triggered a vast and spectacular retreat of its floating ice shelves, glacier reduction, a decrease in permanent snow cover and a lengthening of the melt season. As a result, the contribution to sea level from this region could be rapid and substantial. With an area of 120,000 km, or ten times the Patagonia ice fields, the Peninsula could contribute as much as 0.4mm/yr sea level rise, which would be the largest single contribution to sea level from anywhere in the world. This region is being studied by NASA using a DC-8 equipped with the Airborne Synthetic Aperture Radar developed by scientists from NASA’s Jet Propulsion Laboratory. AirSAR will provide a baseline model and unprecedented mapping of the region. This data will make it possible to determine whether the warming trend is slowing, continuing or accelerating. AirSAR will also provide reliable information on ice shelf thickness to measure the contribution of the glaciers to sea level.

  10. NASA DC-8 Mission Manager Walter Klein and Chilean Air Force Advisor Captain Saez review maps of the Antarctic Peninsula during an AirSAR 2004 mission

    NASA Image and Video Library

    2004-03-13

    NASA DC-8 Mission Manager Walter Klein and Chilean Air Force Advisor Captain Saez review maps of the Antarctic Peninsula during an AirSAR 2004 mission. AirSAR 2004 is a three-week expedition in Central and South America by an international team of scientists that is using an all-weather imaging tool, called the Airborne Synthetic Aperture Radar (AirSAR), located onboard NASA's DC-8 airborne laboratory. Scientists from many parts of the world are combining ground research with NASA's AirSAR technology to improve and expand on the quality of research they are able to conduct. These photos are from the DC-8 aircraft while flying an AirSAR mission over Antarctica. The Antarctic Peninsula is more similar to Alaska and Patagonia than to the rest of the Antarctic continent. It is drained by fast glaciers, receives abundant precipitation, and melts significantly in the summer months. In recent decades, the Peninsula has experienced significant atmospheric warming (about 2 degrees C since 1950), which has triggered a vast and spectacular retreat of its floating ice shelves, glacier reduction, a decrease in permanent snow cover and a lengthening of the melt season. As a result, the contribution to sea level from this region could be rapid and substantial. With an area of 120,000 km, or ten times the Patagonia ice fields, the Peninsula could contribute as much as 0.4mm/yr sea level rise, which would be the largest single contribution to sea level from anywhere in the world. This region is being studied by NASA using a DC-8 equipped with the Airborne Synthetic Aperture Radar developed by scientists from NASA’s Jet Propulsion Laboratory. AirSAR will provide a baseline model and unprecedented mapping of the region. This data will make it possible to determine whether the warming trend is slowing, continuing or accelerating. AirSAR will also provide reliable information on ice shelf thickness to measure the contribution of the glaciers to sea level.

  11. An AirSAR 2004 view from the DC-8 as it approaches the Larsen Ice Shelf, which is part of the Antarctic Peninsula

    NASA Image and Video Library

    2004-03-13

    An AirSAR 2004 view from the DC-8 as it approaches the Larsen Ice Shelf, which is part of the Antarctic Peninsula. AirSAR 2004 is a three-week expedition in Central and South America by an international team of scientists that is using an all-weather imaging tool, called the Airborne Synthetic Aperture Radar (AirSAR), located onboard NASA's DC-8 airborne laboratory. Scientists from many parts of the world are combining ground research with NASA's AirSAR technology to improve and expand on the quality of research they are able to conduct. These photos are from the DC-8 aircraft while flying an AirSAR mission over Antarctica. The Antarctic Peninsula is more similar to Alaska and Patagonia than to the rest of the Antarctic continent. It is drained by fast glaciers, receives abundant precipitation, and melts significantly in the summer months. In recent decades, the Peninsula has experienced significant atmospheric warming (about 2 degrees C since 1950), which has triggered a vast and spectacular retreat of its floating ice shelves, glacier reduction, a decrease in permanent snow cover and a lengthening of the melt season. As a result, the contribution to sea level from this region could be rapid and substantial. With an area of 120,000 km, or ten times the Patagonia ice fields, the Peninsula could contribute as much as 0.4mm/yr sea level rise, which would be the largest single contribution to sea level from anywhere in the world. This region is being studied by NASA using a DC-8 equipped with the Airborne Synthetic Aperture Radar developed by scientists from NASA’s Jet Propulsion Laboratory. AirSAR will provide a baseline model and unprecedented mapping of the region. This data will make it possible to determine whether the warming trend is slowing, continuing or accelerating. AirSAR will also provide reliable information on ice shelf thickness to measure the contribution of the glaciers to sea level.

  12. Storm impacts and shoreline recovery: Mechanisms and controls in the southern North Sea

    NASA Astrophysics Data System (ADS)

    Brooks, S. M.; Spencer, T.; Christie, E. K.

    2017-04-01

    Storm impacts play a significant role in shoreline dynamics on barrier coastlines. Furthermore, inter-storm recovery is a key parameter determining long-term coastal resilience to climate change, storminess variability and sea level rise. Over the last decade, four extreme storms, with strong energetic waves and high still water levels resulting from high spring tides and large skew surge residuals, have impacted the shoreline of the southern North Sea. The 5th December 2013 storm, with the highest run-up levels recorded in the last 60 years, resulted in large sections of the frontline of the North Norfolk coast being translated inland by over 10 m. Storms in March and November 2007 also generated barrier scarping and shoreline retreat, although not on the scale of 2013. Between 2008 and 2013, a calm period, recovery dominated barrier position and elevation but was spatially differentiated alongshore. For one study area, Scolt Head Island, no recovery was seen; this section of the coast is being reset episodically landwards during storms. By contrast, the study area at Holkham Bay showed considerable recovery between 2008 and 2013, with barrier sections developing seaward through foredune recovery. The third study area, Brancaster Bay, showed partial recovery in barrier location and elevation. Results suggest that recovery is promoted by high sediment supply and onshore intertidal bar migration, at rates of 40 m a- 1. These processes bring sand to elevations where substrate drying enables aeolian processes to entrain and transport sand from upper foreshores to foredunes. We identify three potential sediment transport pathways that create a region of positive diffusivity at Holkham Bay. During calm periods, a general westward movement of sediment from the drift divide at Sheringham sources the intertidal bar and foredune development at Holkham Bay. However, during and following storms the drift switches to eastward, not only on the beach itself but also below the - 7 m isobath. Sediment from the eroding barrier at Brancaster Bay, and especially Scolt Head Island, also sources the sediment sink of Holkham Bay. Knowledge of foredune growth and barrier recovery in natural systems are vital aspects of future coastal management planning with accelerated sea-level rise and storminess variability.

  13. Calcification and Reef Building: Lessons from Recent History and The Holocene

    NASA Astrophysics Data System (ADS)

    Hubbard, D. K.

    2016-02-01

    Over the past four decades, coral abundance has declined while the rate of sea-level rise has accelerated. Calcification has also been negatively impacted due to changing ocean chemistry. As we consider the impact of these realities on the accretion rate of coral reefs and those who live near them, it is important to remember that the links between coral growth and reef accretion are complex. In the early 1980s a detailed carbonate budget was completed on the north coast of St. Croix in the US Virgin Islands. The study quantified coral cover, carbonate-production rates, bioerosion, sediment export and long-term reef accretion along two, shore-normal transects. A repeat of these measurements along one of the transects in 2014 revealed a 50% reduction in coral cover and a similar decline in the agents of bioerosion (primarily fish, sponges and urchins). When combined with modeling of increased sediment export as wave climate intensifies, these data suggest that Holocene reef-accretion rates will decline. To estimate the impact of this pattern on the ability of coral reefs to track rising sea level in the 21st century, Holocene accretion rates were compiled for 200 cores from 35 reefs representing all oceans. The accretion rates for over half of these were below the present rate of sea-level rise (3.3 mm/yr). Also, the rate of reef accretion was not strongly correlated with paleo-water depth. The declining carbonate budget from the US Virgin Islands (and elsewhere) suggests that many of the reefs that could have kept up with present-day sea-level rise can no longer do so. In addition, the lack of a consistent relationship between reef building and water depth suggests that biological factors (e.g., calcification and bioerosion) are insufficient to characterize reef building either in the past or the immediate future. The missing piece is the redistribution and export of sediment and rubble. While it is obvious that this will rise as storm intensity increases, we still need to do a better job of integrating what we know about the complex interplay between physical, biological and chemical controls of reef building.

  14. Hurricane Sandy: Caught in the eye of the storm and a city's adaptation response

    NASA Astrophysics Data System (ADS)

    Orton, P. M.; Horton, R. M.; Blumberg, A. F.; Rosenzweig, C.; Solecki, W.; Bader, D.

    2015-12-01

    The NOAA RISA program has funded the seven-institution Consortium for Climate Risk in the Urban Northeast (CCRUN) for the past five years to serve stakeholder needs in assessing and managing risks from climate variability and change. When Hurricane Sandy struck, we were in an ideal position, making flood forecasts and communicating NOAA forecasts to the public with dozens of media placements, translating the poorly understood flood forecasts into human dimensions. In 2013 and 2015, by request of New York City (NYC), we worked through the NYC Panel on Climate Change to deliver updated climate risk assessment reports, to be used in the post-Sandy rebuilding and resiliency efforts. These utilized innovative methodologies for probabilistic local and regional sea level change projections, and contrasted methods of dynamic versus (the more common) static flood mapping. We participated in a federal-academic partnership that developed a Sea Level Tool for Sandy Recovery that integrates CCRUN sea level rise projections with policy-relevant FEMA flood maps, and now several updated flood maps and coastal flood mapping tools (NOAA, FEMA, and USACE) incorporate our projections. For the adaptation response, we helped develop NYC's $20 billion flood adaptation plan, and we were on a winning team under the Housing and Urban Development Rebuild By Design (RBD) competition, a few of the many opportunities that arose with negligible additional funding and which CCRUN funds supported. Our work at times disrupted standard lines of thinking, but NYC showed an openness to altering course. In one case we showed that an NYC plan of wetland restoration in Jamaica Bay would provide no reduction in flooding unless deep-dredged channels circumventing them were shallowed or narrowed. In another, the lead author's RBD team challenged the notion at one location that levees were the solution to accelerating sea level rise, developing a plan to use ecological breakwaters and layered components of physical and social resilience. CCRUN has succeeded in winning another five years of RISA funding, and this will enable us to continue our climate risk and adaptation work for the entire Urban Northeast.

  15. A record of Appalachian denudation in postrift Mesozoic and Cenozoic sedimentary deposits of the U.S. Middle Atlantic continental margin

    USGS Publications Warehouse

    Poag, C.W.; Sevon, W.D.

    1989-01-01

    The complex interplay between source-terrain uplift, basin subsidence, paleoclimatic shifts, and sea-level change, left an extensive sedimentary record in the contiguous offshore basins of the U.S. middle Atlantic margin (Salisbury Embayment, Baltimore Canyon Trough, and Hatteras Basin). Isopach maps of 23 postrift (Lower Jurassic to Quaternary) a allostratigraphic units, coupled with a revised stratigraphic framework, reveal that tectonism, by regulating sediment supply (accumulation rate), dominated the interplay of forcing mechanisms. Tectonic pulses are evidenced by abruptly accelerated sediment accumulation, marked latitudinal shifts in the location of depocenters, and regional changes in lithofacies. Relatively rapid tectonic subsidence during the Early and Middle Jurassic history of the basins may have enhanced sediment accumulation rates. Beginning in the Late Jurassic, however, subsidence rates decreased significantly, though occasional short pulses of subsidence may have effected relative sea-level rises. Sea-level change heavily influenced the distribution and redistribution of sediments one they reached the basins, and paleoclimate regulated the relative abundance of carbonates and evaporites in the basins. We conclude that source terrains of the central Appalachian Highlands were tectonically uplifted, intensely weathered, and rapidly eroded three times since the Late Triassic: (1) Early to Middle Jurassic (Aalenian to Callovian); (2) mid-Early Cretaceous (Barremian); and (3) Late Cenozoic (Middle Miocene). Intervals of tectonic quiescence following these three tectonic pulses provided conditions suitable for the formation of regional erosion surfaces, geomorphic features commonly reported to characterize the central Appalachian Highlands. This series of three, irregularly spaced, tectonic/quiescent cycles does not, however, match the traditional four-cycle concept of post-Triassic Appalachian "peneplanation". ?? 1989.

  16. Evolution of Devonian carbonate-shelf margin, Nevada

    USGS Publications Warehouse

    Morrow, J.R.; Sandberg, C.A.

    2008-01-01

    The north-trending, 550-km-long Nevada segment of the Devonian carbonate-shelf margin, which fringed western North America, evidences the complex interaction of paleotectonics, eustasy, biotic changes, and bolide impact-related influences. Margin reconstruction is complicated by mid-Paleozoic to Paleogene compressional tectonics and younger extensional and strike-slip faulting. Reports published during the past three decades identify 12 important events that influenced development of shelf-margin settings; in chronological order, these are: (1) Early Devonian inheritance of Silurian stable shelf inargin, (2) formation of Early to early Middle 'Devonian shelf-margin basins, (3) propradation of later Middle Devonian shelf margin, (4) late Middle Devonian Taghanic ondap and continuing long-term Frasnian transgression, (5) initiation of latest Middle Devonian to early Frasnian proto-Antler orogenic forebulge, (6) mid-Frasnian Alamo Impact, (7) accelerated development of proto-Antler forebulge and backbulge Pilot basin, (8) global late Frasnian sentichatovae sea-level rise, (9) end-Frasnian sea-level fluctuations and ensuing mass extinction, (10) long-term Famennian regression and continept-wide erosion, (11) late Famennian emergence: of Ahtler orogenic highlands, and (12) end-Devonian eustatic sea-level fall. Although of considerable value for understanding facies relationships and geometries, existing standard carbonate platform-margin models developed for passive settings else-where do not adequately describe the diverse depositional and, structural settings along the Nevada Devonian platform margin. Recent structural and geochemical studies suggest that the Early to Middle Devonian-shelf-margin basins may have been fault-bound and controlled by inherited Precambrian structure. Subsequently, the migrating latest Middle to Late Devonian Antler orogenic forebulge exerted a dominant control on shelf-margin position, morphology, and sedimentation. ??Geological Society of America.

  17. Late winter under ice pelagic microbial communities in the high Arctic Ocean and the impact of short-term exposure to elevated CO2 levels

    PubMed Central

    Monier, Adam; Findlay, Helen S.; Charvet, Sophie; Lovejoy, Connie

    2014-01-01

    Polar Oceans are natural CO2 sinks because of the enhanced solubility of CO2 in cold water. The Arctic Ocean is at additional risk of accelerated ocean acidification (OA) because of freshwater inputs from sea ice and rivers, which influence the carbonate system. Winter conditions in the Arctic are of interest because of both cold temperatures and limited CO2 venting to the atmosphere when sea ice is present. Earlier OA experiments on Arctic microbial communities conducted in the absence of ice cover, hinted at shifts in taxa dominance and diversity under lowered pH. The Catlin Arctic Survey provided an opportunity to conduct in situ, under-ice, OA experiments during late Arctic winter. Seawater was collected from under the sea ice off Ellef Ringnes Island, and communities were exposed to three CO2 levels for 6 days. Phylogenetic diversity was greater in the attached fraction compared to the free-living fraction in situ, in the controls and in the treatments. The dominant taxa in all cases were Gammaproteobacteria but acidification had little effect compared to the effects of containment. Phylogenetic net relatedness indices suggested that acidification may have decreased the diversity within some bacterial orders, but overall there was no clear trend. Within the experimental communities, alkalinity best explained the variance among samples and replicates, suggesting subtle changes in the carbonate system need to be considered in such experiments. We conclude that under ice communities have the capacity to respond either by selection or phenotypic plasticity to heightened CO2 levels over the short term. PMID:25324832

  18. 20 Years of sea-levels, accretion, and vegetation on two Long ...

    EPA Pesticide Factsheets

    The long-term 1939-2013 rate of RSLR (Relative Sea-Level Rise) at the New London, CT tide gauge is ~2.6 mm/yr, near the maximum rate of salt marsh accretion reported in eastern Long Island Sound salt marshes. Consistent with recent literature RSLR at New London has accelerated since the 1980s; inter-annual variability can be high, but over the last three decades rates have averaged ~4.5 mm/yr, more than double the first 40 years of the New London record. Marsh surface elevation has been followed for 10 years with a SET array at the Barn Island system on Little Narragansett Bay and 20 years using an accretion pin array at Mamacoke Marsh on the Thames River. From 2003 – 2013 accretion averaged 2.3 mm/yr on the Barn Island marshes while RSLR increased 5.4 mm/yr. The increased hydroperiod is driving vegetation change at Barn Island, particularly in areas that started with lower “elevation capital”. Over two decades Mamacoke accretion closely matched RSLR: 4.7 vs 4.9 mm/yr, with no significant shifts in vegetation. For the 1st 12 years at Mamacoke, accretion was slower than RSLR: 3.2 vs 8.1 mm/yr. From 2006 to 2014, however elevation increase averaged 7.0 mm/yr while sea level rose just 7 mm. By 2014 accretion rates across the marsh ranged from 1.3 to 16.1 mm /yr. Preliminary core analysis confirms highly organic peat, but reveals sand concentrations at 2–4 cm in some areas, suggesting that Hurricanes Irene (2011) and Sandy (2012) may have contributed to Mama

  19. Integrated Climate Change Impacts Assessment in California

    NASA Astrophysics Data System (ADS)

    Cayan, D. R.; Franco, G.; Meyer, R.; Anderson, M.; Bromirski, P. D.

    2014-12-01

    This paper summarizes lessons learned from an ongoing series of climate change assessments for California, conducted by the scientific community and State and local agencies. A series of three Assessments have considered vulnerability and adaptation issues for both managed and natural systems. California's vulnerability is many faceted, arising because of an exceptionally drought prone climate, open coast and large estuary exposure to sea level rise, sensitive ecosystems and complex human footprint and economy. Key elements of the assessments have been a common set of climate and sea-level rise scenarios, based upon IPCC GCM simulations. Regionalized and localized output from GCM projections was provided to research teams investigating water supply, agriculture, coastal resources, ecosystem services, forestry, public health, and energy demand and hydropower generation. The assessment results are helping to investigate the broad range of uncertainty that is inherent in climate projections, and users are becoming better equipped to process an envelope of potential climate and impacts. Some projections suggest that without changes in California's present fresh-water delivery system, serious water shortages would take place, but that technical solutions are possible. Under a warmer climate, wildfire vulnerability is heightened markedly in some areas--estimated increases in burned area by the end of the 21st Century exceed 100% of the historical area burned in much of the forested areas of Northern California Along California coast and estuaries, projected rise in mean sea level will accelerate flooding occurrences, prompting the need for better education and preparedness. Many policymakers and agency personnel in California are factoring in results from the assessments and recognize the need for a sustained assessment process. An ongoing challenge, of course, is to achieve more engagement with a broader community of decision makers, and notably with the private sector.

  20. Scenario-based projections of future urban inundation within a coupled hydrodynamic model framework: A case study in Dongguan City, China

    NASA Astrophysics Data System (ADS)

    Wu, Xushu; Wang, Zhaoli; Guo, Shenglian; Liao, Weilin; Zeng, Zhaoyang; Chen, Xiaohong

    2017-04-01

    One major threat to cities at present is the increased inundation hazards owing to changes in climate and accelerated human activity. Future evolution of urban inundation is still an unsolved issue, given large uncertainties in future environmental conditions within urbanized areas. Developing model techniques and urban inundation projections are essential for inundation management. In this paper, we proposed a 2D hydrodynamic inundation model by coupling SWMM and LISFLOOD-FP models, and revealed how future urban inundation would evolve for different storms, sea level rise and subsidence scenarios based on the developed model. The Shiqiao Creek District (SCD) in Dongguan City was used as the case study. The model ability was validated against the June 13th, 2008 inundation event, which occurred in SCD, and proved capable of simulating dynamic urban inundation. Scenario analyses revealed a high degree of consistency in the inundation patterns among different storms, with larger magnitudes corresponding to greater return periods. Inundations across SCD generally vary as a function of storm intensity, but for lowlands or regions without drainage facilities inundations tend to aggravate over time. In riverfronts, inundations would exacerbate with sea level rise or subsidence; however, the inland inundations are seemingly insensitive to both factors. For the combined scenario of 100-yr storm, 0.5 m subsidence and 0.7 m sea level rise, the riverside inundations would occur much in advance, whilst catastrophic inundations sweep across SCD. Furthermore, the optimal low-impact development found for this case study includes 0.2 km2 of permeable pavements, 0.1 km2 of rain barrels and 0.7 km2 of green roofs.

  1. Wave-current interactions in megatidal environment

    NASA Astrophysics Data System (ADS)

    Bennis, A. C.; Pascal, B. D. B.; Feddy, A.; Garnier, V.; Accenti, M.; Dumas, F.; Ardhuin, F.

    2016-12-01

    The strongest tidal current in western Europe (up to 12 knots) occurs in Raz Blanchard (Normandy, France). High winds occur over six months which generate energetic wave conditions with breaking waves, hence the name of `Blanchard'. However, few studies have been conducted on the wave effects on the tidal current at this location because of the lack of measurements. Studies are now required to aid the creation of tidal farms. For this purpose, the 3D fully-coupled model MARS-WW3 is used with three nested ranks which are forced at boundaries by wave spectra from HOMERE database (Boudière et al., 2013) and by sea level from the French Navy (SHOM). The model is tested against ADCP data of IRSN at three locations near Raz Blanchard. Time series of current velocity and of mean sea level are consistent with ADCP data. A rephasing by waves of the tidal current is observed in comparison with simulations without waves, which fits the ADCP data. A strong dependence of the tidal current on bottom roughness is shown as well as the necessity to take into account its spatial heterogeneity. The simulated mean sea level is close to the measured one while it was underestimated for high tide in simulations without wave effects. The vertical shape of the tidal current is especially modified near the surface by waves as expected. Depending on the tidal cycle and wave direction, acceleration or deceleration of the surface current due to waves is observed. Lastly, several hydrodynamical scenarios for Raz Blanchard are carried out for different tidal and wave conditions pending the HYD2M'17 data (ADCP, ADV, drifting wave buoys, HF and VHF and X-Band radars). First results show the impacts of refractive, shoaling and blocking effects on the flood and ebb currents.

  2. Probabilistic assessment of sea level during the last interglacial stage.

    PubMed

    Kopp, Robert E; Simons, Frederik J; Mitrovica, Jerry X; Maloof, Adam C; Oppenheimer, Michael

    2009-12-17

    With polar temperatures approximately 3-5 degrees C warmer than today, the last interglacial stage (approximately 125 kyr ago) serves as a partial analogue for 1-2 degrees C global warming scenarios. Geological records from several sites indicate that local sea levels during the last interglacial were higher than today, but because local sea levels differ from global sea level, accurately reconstructing past global sea level requires an integrated analysis of globally distributed data sets. Here we present an extensive compilation of local sea level indicators and a statistical approach for estimating global sea level, local sea levels, ice sheet volumes and their associated uncertainties. We find a 95% probability that global sea level peaked at least 6.6 m higher than today during the last interglacial; it is likely (67% probability) to have exceeded 8.0 m but is unlikely (33% probability) to have exceeded 9.4 m. When global sea level was close to its current level (>or=-10 m), the millennial average rate of global sea level rise is very likely to have exceeded 5.6 m kyr(-1) but is unlikely to have exceeded 9.2 m kyr(-1). Our analysis extends previous last interglacial sea level studies by integrating literature observations within a probabilistic framework that accounts for the physics of sea level change. The results highlight the long-term vulnerability of ice sheets to even relatively low levels of sustained global warming.

  3. Two Sea-Level Challenges

    NASA Astrophysics Data System (ADS)

    Galvin, C.

    2008-12-01

    "No place on the sandy ocean shores of the world has been shown to be eroding because of sea level rise." This statement appeared nearly 19 years ago in bold print at the top of the page in a brief article published in Shore and Beach (Galvin,1990). The term "sea level rise" was defined in 1990 as follows: "In this statement, "sea level rise" has the meaning that the average person on the street usually attaches to that term. That is, sea level is rising; not, as in some places like the Mississippi River delta, land level is sinking." While still a subject of controversy, it is now (2008) increasingly plausible (Tornqvist et al,2008) that damage from Hurricane Katrina was significantly worse on the Mississippi River delta because floodwaters exploited wetlands and levees whose elevations had been lowered by decades of compaction in the underlying soil. (1) "Sea level" commonly appears in the literature as "relative sea level rise", occurring that way in 711 publications between 1980 and 2009 (GeoRef database on 8 Sep 08). "Relative sea level rise" does not appear in the 2005 AGI Glossary. The nearest Glossary term is "relative change in sea level", but that term occurs in only 12 publications between 1980 and 2009. The Glossary defines this term in a sequence stratigraphy sense, which infers that "relative sea level rise" is the sum of bottom subsidence and eustatic sea level rise. In plain English, "relative sea level rise" means "water depth increase". For present day coastal environments, "relative sea level rise" is commonly used where eustatic sea level rise is less than subsidence, that is, where the magnitude of actual sea level rise is smaller than the magnitude of subsidence. In that situation, "relative sea level rise" misleads both the average person and the scientist who is not a coastal geologist. Thus, the first challenge is to abandon "relative sea level rise" in favor of "water depth increase", in order that the words accurately descibe what happens. It would further clarify popular understanding if the term "actual sea level rise" were used in place of "eustatic sea level rise". (2)Geologists have approximated the the practice of paleontologists and biologists in establishing type examples of important geological features. This is a useful practice. A graduate geologist holds in mind clear conceptions of "beach cusps", "drumlin fields", "birdfoot deltas", and "igneous sills" based on seeing field examples accepted by professional geologists as representative of these features. However, although publications frequently report that sea level rise erodes a particular beach, no one identifies a type beach where that cause has been proven to produce the alleged effect. At the type beach, it is necessary to show that sea level is rising, and that the beach erodes primarily from this sea level rise, rather than from interrupted longshore transport. Thus, the second challenge is to identify a type ocean beach proven to erode because of sea level rise.

  4. Reconstruction of Local Sea Levels at South West Pacific Islands—A Multiple Linear Regression Approach (1988-2014)

    NASA Astrophysics Data System (ADS)

    Kumar, V.; Melet, A.; Meyssignac, B.; Ganachaud, A.; Kessler, W. S.; Singh, A.; Aucan, J.

    2018-02-01

    Rising sea levels are a critical concern in small island nations. The problem is especially serious in the western south Pacific, where the total sea level rise over the last 60 years has been up to 3 times the global average. In this study, we aim at reconstructing sea levels at selected sites in the region (Suva, Lautoka—Fiji, and Nouméa—New Caledonia) as a multilinear regression (MLR) of atmospheric and oceanic variables. We focus on sea level variability at interannual-to-interdecadal time scales, and trend over the 1988-2014 period. Local sea levels are first expressed as a sum of steric and mass changes. Then a dynamical approach is used based on wind stress curl as a proxy for the thermosteric component, as wind stress curl anomalies can modulate the thermocline depth and resultant sea levels via Rossby wave propagation. Statistically significant predictors among wind stress curl, halosteric sea level, zonal/meridional wind stress components, and sea surface temperature are used to construct a MLR model simulating local sea levels. Although we are focusing on the local scale, the global mean sea level needs to be adjusted for. Our reconstructions provide insights on key drivers of sea level variability at the selected sites, showing that while local dynamics and the global signal modulate sea level to a given extent, most of the variance is driven by regional factors. On average, the MLR model is able to reproduce 82% of the variance in island sea level, and could be used to derive local sea level projections via downscaling of climate models.

  5. Is the oceanic heat flux on the central Amundsen sea shelf caused by barotropic or baroclinic currents?

    NASA Astrophysics Data System (ADS)

    Kalén, Ola; Assmann, Karen M.; Wåhlin, Anna K.; Ha, Ho Kyung; Kim, Tae Wan; Lee, Sang Hoon

    2016-01-01

    The glaciers that drain the West Antarctic Ice Sheet into the Amundsen Sea are accelerating and experiencing increased basal melt of the floating ice shelves. Warm and salty deep water has been observed to flow southward in deep troughs leading from the shelf break to the inner shelf area where the glaciers terminate. It has been suggested that the melting induced by this warm water is responsible for the acceleration of the glaciers. Here we investigate the structure of the currents and the associated heat flow on the shelf using in-situ observations from 2008 to 2014 in Dotson Trough, the main channel in the western part of the Amundsen Sea shelf, together with output from a numerical model. The model is generally able to reproduce the observed velocities and temperatures in the trough, albeit with a thicker warm bottom layer. In the absence of measurements of sea surface height we define the barotropic component of the flow as the vertical average of the velocity. It is shown that the flow is dominated by warm barotropic inflows on the eastern side and colder and fresher barotropic outflows on the western side. The transport of heat appears to be primarily induced by this clockwise barotropic circulation in the trough, contrary to earlier studies emphasizing a bottom-intensified baroclinic inflow as the main contributor.

  6. Variability and change of sea level and its components in the Indo-Pacific region during the altimetry era

    NASA Astrophysics Data System (ADS)

    Wu, Quran; Zhang, Xuebin; Church, John A.; Hu, Jianyu

    2017-03-01

    Previous studies have shown that regional sea level exhibits interannual and decadal variations associated with the modes of climate variability. A better understanding of those low-frequency sea level variations benefits the detection and attribution of climate change signals. Nonetheless, the contributions of thermosteric, halosteric, and mass sea level components to sea level variability and trend patterns remain unclear. By focusing on signals associated with dominant climate modes in the Indo-Pacific region, we estimate the interannual and decadal fingerprints and trend of each sea level component utilizing a multivariate linear regression of two adjoint-based ocean reanalyses. Sea level interannual, decadal, and trend patterns primarily come from thermosteric sea level (TSSL). Halosteric sea level (HSSL) is of regional importance in the Pacific Ocean on decadal time scale and dominates sea level trends in the northeast subtropical Pacific. The compensation between TSSL and HSSL is identified in their decadal variability and trends. The interannual and decadal variability of temperature generally peak at subsurface around 100 m but that of salinity tend to be surface-intensified. Decadal temperature and salinity signals extend deeper into the ocean in some regions than their interannual equivalents. Mass sea level (MassSL) is critical for the interannual and decadal variability of sea level over shelf seas. Inconsistencies exist in MassSL trend patterns among various estimates. This study highlights regions where multiple processes work together to control sea level variability and change. Further work is required to better understand the interaction of different processes in those regions.

  7. Spatial and Temporal Means and Variability of Arctic Sea Ice Climate Indicators from Satellite Data

    NASA Astrophysics Data System (ADS)

    Peng, G.; Meier, W.; Bliss, A. C.; Steele, M.; Dickinson, S.

    2017-12-01

    Arctic sea ice has been undergoing rapid and accelerated loss since satellite-based measurements became available in late 1970s, especially the summer ice coverage. For the Arctic as a whole, the long-term trend for the annual sea ice extent (SIE) minimum is about -13.5±2.93 % per decade change relative to the 1979-2015 climate average, while the trends of the annual SIE minimum for the local regions can range from 0 to up to -42 % per decade. This presentation aims to examine and baseline spatial and temporal means and variability of Arctic sea ice climate indicators, such as the annual SIE minimum and maximum, snow/ice melt onset, etc., from a consistent, inter-calibrated, long-term time series of remote sensing sea ice data for understanding regional vulnerability and monitoring ice state for climate adaptation and risk mitigation.

  8. Female Listeners' Autonomic Responses to Dramatic Shifts Between Loud and Soft Music/Sound Passages: A Study of Heavy Metal Songs.

    PubMed

    Cheng, Tzu-Han; Tsai, Chen-Gia

    2016-01-01

    Although music and the emotion it conveys unfold over time, little is known about how listeners respond to shifts in musical emotions. A special technique in heavy metal music utilizes dramatic shifts between loud and soft passages. Loud passages are penetrated by distorted sounds conveying aggression, whereas soft passages are often characterized by a clean, calm singing voice and light accompaniment. The present study used heavy metal songs and soft sea sounds to examine how female listeners' respiration rates and heart rates responded to the arousal changes associated with auditory stimuli. The high-frequency power of heart rate variability (HF-HRV) was used to assess cardiac parasympathetic activity. The results showed that the soft passages of heavy metal songs and soft sea sounds expressed lower arousal and induced significantly higher HF-HRVs than the loud passages of heavy metal songs. Listeners' respiration rate was determined by the arousal level of the present music passage, whereas the heart rate was dependent on both the present and preceding passages. Compared with soft sea sounds, the loud music passage led to greater deceleration of the heart rate at the beginning of the following soft music passage. The sea sounds delayed the heart rate acceleration evoked by the following loud music passage. The data provide evidence that sound-induced parasympathetic activity affects listeners' heart rate in response to the following music passage. These findings have potential implications for future research on the temporal dynamics of musical emotions.

  9. Multicentennial record of Labrador Sea primary productivity and sea-ice variability archived in coralline algal barium

    PubMed Central

    Chan, P.; Halfar, J.; Adey, W.; Hetzinger, S.; Zack, T.; Moore, G.W.K.; Wortmann, U. G.; Williams, B.; Hou, A.

    2017-01-01

    Accelerated warming and melting of Arctic sea-ice has been associated with significant increases in phytoplankton productivity in recent years. Here, utilizing a multiproxy approach, we reconstruct an annually resolved record of Labrador Sea productivity related to sea-ice variability in Labrador, Canada that extends well into the Little Ice Age (LIA; 1646 AD). Barium-to-calcium ratios (Ba/Ca) and carbon isotopes (δ13C) measured in long-lived coralline algae demonstrate significant correlations to both observational and proxy records of sea-ice variability, and show persistent patterns of co-variability broadly consistent with the timing and phasing of the Atlantic Multidecadal Oscillation (AMO). Results indicate reduced productivity in the Subarctic Northwest Atlantic associated with AMO cool phases during the LIA, followed by a step-wise increase from 1910 to present levels—unprecedented in the last 363 years. Increasing phytoplankton productivity is expected to fundamentally alter marine ecosystems as warming and freshening is projected to intensify over the coming century. PMID:28569839

  10. Current state and future perspectives on coupled ice-sheet - sea-level modelling

    NASA Astrophysics Data System (ADS)

    de Boer, Bas; Stocchi, Paolo; Whitehouse, Pippa L.; van de Wal, Roderik S. W.

    2017-08-01

    The interaction between ice-sheet growth and retreat and sea-level change has been an established field of research for many years. However, recent advances in numerical modelling have shed new light on the precise interaction of marine ice sheets with the change in near-field sea level, and the related stability of the grounding line position. Studies using fully coupled ice-sheet - sea-level models have shown that accounting for gravitationally self-consistent sea-level change will act to slow down the retreat and advance of marine ice-sheet grounding lines. Moreover, by simultaneously solving the 'sea-level equation' and modelling ice-sheet flow, coupled models provide a global field of relative sea-level change that is consistent with dynamic changes in ice-sheet extent. In this paper we present an overview of recent advances, possible caveats, methodologies and challenges involved in coupled ice-sheet - sea-level modelling. We conclude by presenting a first-order comparison between a suite of relative sea-level data and output from a coupled ice-sheet - sea-level model.

  11. Robustness of observation-based decadal sea level variability in the Indo-Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Nidheesh, A. G.; Lengaigne, M.; Vialard, J.; Izumo, T.; Unnikrishnan, A. S.; Meyssignac, B.; Hamlington, B.; de Boyer Montegut, C.

    2017-07-01

    We examine the consistency of Indo-Pacific decadal sea level variability in 10 gridded, observation-based sea level products for the 1960-2010 period. Decadal sea level variations are robust in the Pacific, with more than 50% of variance explained by decadal modulation of two flavors of El Niño-Southern Oscillation (classical ENSO and Modoki). Amplitude of decadal sea level variability is weaker in the Indian Ocean than in the Pacific. All data sets indicate a transmission of decadal sea level signals from the western Pacific to the northwest Australian coast through the Indonesian throughflow. The southern tropical Indian Ocean sea level variability is associated with decadal modulations of ENSO in reconstructions but not in reanalyses or in situ data set. The Pacific-independent Indian Ocean decadal sea level variability is not robust but tends to be maximum in the southwestern tropical Indian Ocean. The inconsistency of Indian Ocean decadal variability across the sea level products calls for caution in making definitive conclusions on decadal sea level variability in this basin.

  12. New evidence for "far-field" Holocene sea level oscillations and links to global climate records

    NASA Astrophysics Data System (ADS)

    Leonard, N. D.; Welsh, K. J.; Clark, T. R.; Feng, Y.-x.; Pandolfi, J. M.; Zhao, J.-x.

    2018-04-01

    Rising sea level in the coming century is of significant concern, yet predicting relative sea level change in response to eustatic sea level variability is complex. Potential analogues are provided by the recent geological past but, until recently, many sea level reconstructions have been limited to millennial scale interpretations due to age uncertainties and paucity in proxy derived records. Here we present a sea level history for the tectonically stable "far-field" Great Barrier Reef, Australia, derived from 94 high precision uranium-thorium dates of sub-fossil coral microatolls. Our results provide evidence for at least two periods of relative sea level instability during the Holocene. These sea level oscillations are broadly synchronous with Indo-Pacific negative sea surface temperature anomalies, rapid global cooling events and glacial advances. We propose that the pace and magnitude of these oscillations are suggestive of eustatic/thermosteric processes operating in conjunction with regional climatic controls.

  13. Marsh vertical accretion in a Southern California Estuary, U.S.A

    USGS Publications Warehouse

    Cahoon, D.R.; Lynch, J.C.; Powell, A.N.

    1996-01-01

    Vertical accretion was measured between October 1992 and March 1994 in low and high saltmarsh zones in the north arm of Tijuana estuary from feldspar market horizons and soil corings. Accretion in the Spartina foliosa low marsh (2-8.5 cm) was related almost entirely to episodic storm-induced river flows between January and March 1993, with daily tidal flooding contributing little or no sediment during the subsequent 12 month period of no river flow. Accretion in the Salicornia subterminalis high marsh was low (~1-2 mm) throughout the 17-month measuring period. High water levels in the salt marsh associated with the storm flows were enhanced in early January 1993 by the monthly extreme high sea level, when the low and high marshes were flooded about 0.5 m above normal high tide levels. Storm flows in January-March 1993 mobilized about 5 million tons of sediment, of which the low salt marsh trapped an estimated 31,941 tonnes, including 971 tonnes of carbon and 77 tonnes of nitrogen. Sediment trapping by the salt marsh during episodic winter floods plays an important role in the long-term maintenance of productivity of Tijuana estuary through nutrient retention and maintenance of marsh surface elevation. The potential exists, however, for predicted accelerated rates of sea-level rise to out-pace marsh surface elevation gain during extended periods of drought (i.e. low sediment inputs) which are not uncommon for this arid region.

  14. Marsh Vertical Accretion in a Southern California Estuary, U.S.A.

    NASA Astrophysics Data System (ADS)

    Cahoon, Donald R.; Lynch, James C.; Powell, Abby N.

    1996-07-01

    Vertical accretion was measured between October 1992 and March 1994 in low and high saltmarsh zones in the north arm of Tijuana estuary from feldspar market horizons and soil corings. Accretion in the Spartina foliosalow marsh (2-8·5 cm) was related almost entirely to episodic storm-induced river flows between January and March 1993, with daily tidal flooding contributing little or no sediment during the subsequent 12-month period of no river flow. Accretion in the Salicornia subterminalishigh marsh was low (≈1-2 mm) throughout the 17-month measuring period. High water levels in the salt marsh associated with the storm flows were enhanced in early January 1993 by the monthly extreme high sea level, when the low and high marshes were flooded about 0·5 m above normal high tide levels. Storm flows in January-March 1993 mobilized about 5 million tonnes of sediment, of which the low salt marsh trapped an estimated 31 941 tonnes, including 971 tonnes of carbon and 77 tonnes of nitrogen. Sediment trapping by the salt marsh during episodic winter floods plays an important role in the long-term maintenance of productivity of Tijuana estuary through nutrient retention and maintenance of marsh surface elevation. The potential exists, however, for predicted accelerated rates of sea-level rise to out-pace marsh surface elevation gain during extended periods of drought (i.e. low sediment inputs) which are not uncommon for this arid region.

  15. Accelerated life assessment of coating on the radar structure components in coastal environment.

    PubMed

    Liu, Zhe; Ming, ZhiMao

    2016-07-04

    This paper aimed to build an accelerated life test scheme and carry out quantitative analysis between accelerated life test in the laboratory and actual service for the coating composed of epoxy primer and polyurethane paint on structure components of some kind of radar served in the coastal environment of South China Sea. The accelerated life test scheme was built based on the service environment and failure analysis of the coating. The quantitative analysis between accelerated life test and actual service was conducted by comparing the gloss loss, discoloration, chalking, blistering, cracking and electrochemical impedance spectroscopy of the coating. The main factors leading to the coating failure were ultraviolet radiation, temperature, moisture, salt fog and loads, the accelerated life test included ultraviolet radiation, damp heat, thermal shock, fatigue and salt spray. The quantitative relationship was that one cycle of the accelerated life test was equal to actual service for one year. It was established that one cycle of the accelerated life test was equal to actual service for one year. It provided a precise way to predict actual service life of newly developed coatings for the manufacturer.

  16. Accelerators for E-beam and X-ray processing

    NASA Astrophysics Data System (ADS)

    Auslender, V. L.; Bryazgin, A. A.; Faktorovich, B. L.; Gorbunov, V. A.; Kokin, E. N.; Korobeinikov, M. V.; Krainov, G. S.; Lukin, A. N.; Maximov, S. A.; Nekhaev, V. E.; Panfilov, A. D.; Radchenko, V. N.; Tkachenko, V. O.; Tuvik, A. A.; Voronin, L. A.

    2002-03-01

    During last years the demand for pasteurization and desinsection of various food products (meat, chicken, sea products, vegetables, fruits, etc.) had increased. The treatment of these products in industrial scale requires the usage of powerful electron accelerators with energy 5-10 MeV and beam power at least 50 kW or more. The report describes the ILU accelerators with energy range up to 10 MeV and beam power up to 150 kW.The different irradiation schemes in electron beam and X-ray modes for various products are described. The design of the X-ray converter and 90° beam bending system are also given.

  17. Integrating Thematic Web Portal Capabilities into the NASA Earthdata Web Infrastructure

    NASA Technical Reports Server (NTRS)

    Wong, Minnie; Baynes, Kathleen E.; Huang, Thomas; McLaughlin, Brett

    2015-01-01

    This poster will present the process of integrating thematic web portal capabilities into the NASA Earth data web infrastructure, with examples from the Sea Level Change Portal. The Sea Level Change Portal will be a source of current NASA research, data and information regarding sea level change. The portal will provide sea level change information through articles, graphics, videos and animations, an interactive tool to view and access sea level change data and a dashboard showing sea level change indicators.

  18. A new Arctic 25-year Altimetric Sea-level Record (1992-2016) and Initial look at Arctic Sea Level Budget Closure

    NASA Astrophysics Data System (ADS)

    Andersen, O. B.; Passaro, M.; Benveniste, J.; Piccioni, G.

    2016-12-01

    A new initiative within the ESA Sea Level Climate Change initiative (SL-cci) framework to improve the Arctic sea level record has been initiated as a combined effort to reprocess and retrack past altimetry to create a 25-year combined sea level record for sea level research studies. One of the objectives is to retracked ERS-2 dataset for the high latitudes based on the ALES retracking algorithm through adapting the ALES retracker for retracking of specular surfaces (leads). Secondly a reprocessing using tailored editing to Arctic Conditions will be carried out also focusing on the merging of the multi-mission data. Finally an effort is to combine physical and empirical retracked sea surface height information to derive an experimental spatio-temporal enhanced sea level product for high latitude. The first results in analysing Arctic Sea level variations on annual inter-annual scales for the 1992-2015 from a preliminar version of this dataset is presented. By including the GRACE water storage estimates and NOAA halo- and thermo-steric sea level variatios since 2002 a preliminary attempt to close the Arctic Sea level budget is presented here. Closing the Arctic sea level budget is by no mean trivial as both steric data and satellite altimetry is both sparse temporally and limited geographically.

  19. Wave breaking induced surface wakes and jets observed during a bora event

    NASA Astrophysics Data System (ADS)

    Jiang, Qingfang; Doyle, James D.

    2005-09-01

    An observational and modeling study of a bora event that occurred during the field phase of the Mesoscale Alpine Programme is presented. Research aircraft in-situ measurements and airborne remote-sensing observations indicate the presence of strong low-level wave breaking and alternating surface wakes and jets along the Croatian coastline over the Adriatic Sea. The observed features are well captured by a high-resolution COAMPS simulation. Analysis of the observations and modeling results indicate that the long-extending wakes above the boundary layer are induced by dissipation associated with the low-level wave breaking, which locally tends to accelerate the boundary layer flow beneath the breaking. Farther downstream of the high peaks, a hydraulic jump occurs in the boundary layer, which creates surface wakes. Downstream of lower-terrain (passes), the boundary layer flow stays strong, resembling supercritical flow.

  20. Contribution of atmospheric circulation to recent off-shore sea-level variations in the Baltic Sea and the North Sea

    NASA Astrophysics Data System (ADS)

    Karabil, Sitar; Zorita, Eduardo; Hünicke, Birgit

    2018-01-01

    The main purpose of this study is to quantify the contribution of atmospheric factors to recent off-shore sea-level variability in the Baltic Sea and the North Sea on interannual timescales. For this purpose, we statistically analysed sea-level records from tide gauges and satellite altimetry and several climatic data sets covering the last century. Previous studies had concluded that the North Atlantic Oscillation (NAO) is the main pattern of atmospheric variability affecting sea level in the Baltic Sea and the North Sea in wintertime. However, we identify a different atmospheric circulation pattern that is more closely connected to sea-level variability than the NAO. This circulation pattern displays a link to sea level that remains stable through the 20th century, in contrast to the much more variable link between sea level and the NAO. We denote this atmospheric variability mode as the Baltic Sea and North Sea Oscillation (BANOS) index. The sea-level pressure (SLP) BANOS pattern displays an SLP dipole with centres of action located over (5° W, 45° N) and (20° E, 70° N) and this is distinct from the standard NAO SLP pattern in wintertime. In summertime, the discrepancy between the SLP BANOS and NAO patterns becomes clearer, with centres of action of the former located over (30° E, 45° N) and (20° E, 60° N). This index has a stronger connection to off-shore sea-level variability in the study area than the NAO in wintertime for the period 1993-2013, explaining locally up to 90 % of the interannual sea-level variance in winter and up to 79 % in summer. The eastern part of the Gulf of Finland is the area where the BANOS index is most sensitive to sea level in wintertime, whereas the Gulf of Riga is the most sensitive region in summertime. In the North Sea region, the maximum sea-level sensitivity to the BANOS pattern is located in the German Bight for both winter and summer seasons. We investigated, and when possible quantified, the contribution of several physical mechanisms which may explain the link between the sea-level variability and the atmospheric pattern described by the BANOS index. These mechanisms include the inverse barometer effect (IBE), freshwater balance, net energy surface flux and wind-induced water transport. We found that the most important mechanism is the IBE in both wintertime and summertime. Assuming a complete equilibration of seasonal sea level to the SLP gradients over this region, the IBE can explain up to 88 % of the sea-level variability attributed to the BANOS index in wintertime and 34 % in summertime. The net energy flux at the surface is found to be an important factor for the variation of sea level, explaining 35 % of sea-level variance in wintertime and a very small amount in summer. The freshwater flux could only explain 27 % of the variability in summertime and a negligible part in winter. In contrast to the NAO, the direct wind forcing associated with the SLP BANOS pattern does not lead to transport of water from the North Sea into the Baltic Sea in wintertime.

  1. Multi-linear regression of sea level in the south west Pacific as a first step towards local sea level projections

    NASA Astrophysics Data System (ADS)

    Kumar, Vandhna; Meyssignac, Benoit; Melet, Angélique; Ganachaud, Alexandre

    2017-04-01

    Rising sea levels are a critical concern in small island nations. The problem is especially serious in the western south Pacific, where the total sea level rise over the last 60 years is up to 3 times the global average. In this study, we attempt to reconstruct sea levels at selected sites in the region (Suva, Lautoka, Noumea - Fiji and New Caledonia) as a mutiple-linear regression of atmospheric and oceanic variables. We focus on interannual-to-decadal scale variability, and lower (including the global mean sea level rise) over the 1979-2014 period. Sea levels are taken from tide gauge records and the ORAS4 reanalysis dataset, and are expressed as a sum of steric and mass changes as a preliminary step. The key development in our methodology is using leading wind stress curl as a proxy for the thermosteric component. This is based on the knowledge that wind stress curl anomalies can modulate the thermocline depth and resultant sea levels via Rossby wave propagation. The analysis is primarily based on correlation between local sea level and selected predictors, the dominant one being wind stress curl. In the first step, proxy boxes for wind stress curl are determined via regions of highest correlation. The proportion of sea level explained via linear regression is then removed, leaving a residual. This residual is then correlated with other locally acting potential predictors: halosteric sea level, the zonal and meridional wind stress components, and sea surface temperature. The statistically significant predictors are used in a multi-linear regression function to simulate the observed sea level. The method is able to reproduce between 40 to 80% of the variance in observed sea level. Based on the skill of the model, it has high potential in sea level projection and downscaling studies.

  2. The Adriatic Sea: A Long-Standing Laboratory for Sea Level Studies

    NASA Astrophysics Data System (ADS)

    Vilibić, Ivica; Šepić, Jadranka; Pasarić, Mira; Orlić, Mirko

    2017-10-01

    The paper provides a comprehensive review of all aspects of Adriatic Sea level research covered by the literature. It discusses changes occurring over millennial timescales and documented by a variety of natural and man-made proxies and post-glacial rebound models; mean sea level changes occurring over centennial to annual timescales and measured by modern instruments; and daily and higher-frequency changes (with periods ranging from minutes to a day) that are contributing to sea level extremes and are relevant for present-day flooding of coastal areas. Special tribute is paid to the historic sea level studies that shaped modern sea level research in the Adriatic, followed by a discussion of existing in situ and remote sensing observing systems operating in the Adriatic area, operational forecasting systems for Adriatic storm surges, as well as warning systems for tsunamis and meteotsunamis. Projections and predictions of sea level and related hazards are also included in the review. Based on this review, open issues and research gaps in the Adriatic Sea level studies are identified, as well as the additional research efforts needed to fill the gaps. The Adriatic Sea, thus, remains a laboratory for coastal sea level studies for semi-enclosed, coastal and marginal seas in the world ocean.

  3. Rapid increase in atmospheric iodine levels in the North Atlantic since the mid-20th century.

    PubMed

    Cuevas, Carlos A; Maffezzoli, Niccolò; Corella, Juan Pablo; Spolaor, Andrea; Vallelonga, Paul; Kjær, Helle A; Simonsen, Marius; Winstrup, Mai; Vinther, Bo; Horvat, Christopher; Fernandez, Rafael P; Kinnison, Douglas; Lamarque, Jean-François; Barbante, Carlo; Saiz-Lopez, Alfonso

    2018-04-13

    Atmospheric iodine causes tropospheric ozone depletion and aerosol formation, both of which have significant climate impacts, and is an essential dietary element for humans. However, the evolution of atmospheric iodine levels at decadal and centennial scales is unknown. Here, we report iodine concentrations in the RECAP ice-core (coastal East Greenland) to investigate how atmospheric iodine levels in the North Atlantic have evolved over the past 260 years (1750-2011), this being the longest record of atmospheric iodine in the Northern Hemisphere. The levels of iodine tripled from 1950 to 2010. Our results suggest that this increase is driven by anthropogenic ozone pollution and enhanced sub-ice phytoplankton production associated with the recent thinning of Arctic sea ice. Increasing atmospheric iodine has accelerated ozone loss and has considerably enhanced iodine transport and deposition to the Northern Hemisphere continents. Future climate and anthropogenic forcing may continue to amplify oceanic iodine emissions with potentially significant health and environmental impacts at global scale.

  4. The impact of half-a-degree Celsius upon the spatial pattern of future sea-level change.

    NASA Astrophysics Data System (ADS)

    Jackson, Luke

    2017-04-01

    It has been shown that the global thermal expansion of sea level and ocean dynamics are linearly related to global temperature change. On this basis one can estimate the difference in local sea-level change between a 1.5°C and 2.0°C world. The mitigation scenario RCP 2.6 shows an end-of-century global temperature range of 0.9 to 2.3°C (median 1.6°C). Additional sea-level components, such as mass changes in ice sheets, glaciers and land-water storage have unique spatial patterns that contribute to sea-level change and will be indirectly affected by global temperature change. We project local sea-level change for RCP 2.6 using sub-sets of models in the CMIP5 archive that follow different global temperature pathways. The method used to calculate local sea-level change is probabilistic and combines the normalised spatial patterns of sea-level components with global average projections of individual sea-level components.

  5. Sea-level rise caused by climate change and its implications for society

    PubMed Central

    MIMURA, Nobuo

    2013-01-01

    Sea-level rise is a major effect of climate change. It has drawn international attention, because higher sea levels in the future would cause serious impacts in various parts of the world. There are questions associated with sea-level rise which science needs to answer. To what extent did climate change contribute to sea-level rise in the past? How much will global mean sea level increase in the future? How serious are the impacts of the anticipated sea-level rise likely to be, and can human society respond to them? This paper aims to answer these questions through a comprehensive review of the relevant literature. First, the present status of observed sea-level rise, analyses of its causes, and future projections are summarized. Then the impacts are examined along with other consequences of climate change, from both global and Japanese perspectives. Finally, responses to adverse impacts will be discussed in order to clarify the implications of the sea-level rise issue for human society. PMID:23883609

  6. Incorporating Sediment Compaction Into a Gravitationally Self-consistent Model for Global Sea-level Change

    NASA Astrophysics Data System (ADS)

    Ferrier, K.; Mitrovica, J. X.

    2015-12-01

    In sedimentary deltas and fans, sea-level changes are strongly modulated by the deposition and compaction of marine sediment. The deposition of sediment and incorporation of water into the sedimentary pore space reduces sea level by increasing the elevation of the seafloor, which reduces the thickness of sea-water above the bed. In a similar manner, the compaction of sediment and purging of water out of the sedimentary pore space increases sea level by reducing the elevation of the seafloor, which increases the thickness of sea water above the bed. Here we show how one can incorporate the effects of sediment deposition and compaction into the global, gravitationally self-consistent sea-level model of Dalca et al. (2013). Incorporating sediment compaction requires accounting for only one additional quantity that had not been accounted for in Dalca et al. (2013): the mean porosity in the sediment column. We provide a general analytic framework for global sea-level changes including sediment deposition and compaction, and we demonstrate how sea level responds to deposition and compaction under one simple parameterization for compaction. The compaction of sediment generates changes in sea level only by changing the elevation of the seafloor. That is, sediment compaction does not affect the mass load on the crust, and therefore does not generate perturbations in crustal elevation or the gravity field that would further perturb sea level. These results have implications for understanding sedimentary effects on sea-level changes and thus for disentangling the various drivers of sea-level change. ReferencesDalca A.V., Ferrier K.L., Mitrovica J.X., Perron J.T., Milne G.A., Creveling J.R., 2013. On postglacial sea level - III. Incorporating sediment redistribution. Geophysical Journal International, doi: 10.1093/gji/ggt089.

  7. Reef productivity and preservation during the Late Neogene

    NASA Astrophysics Data System (ADS)

    Husson, Laurent; Pastier, Anne-Morwenn; Schmitt, Anais; Sarr, Anta-Clarisse; Elliot, Mary; Pedoja, Kevin; Bezos, Antoine

    2016-04-01

    During the glacial-interglacials cycles that prevailed during Plio-Pleistocence times, the pace of sea level oscillations exerts a major control on coral reef growth and expansion. We designed a numerical model to quantify reef productivity and carbonate preservation that accounts for sea level oscillations, reef growth, erosion and subsequent geomorphological carving. We carried out a parametric study of a variety of processes (reef growth, erosion, local slope, uplift and subsidence, relative sea level, etc) towards a probabilistic analysis of reef productivity and carbonate production. We further test the effect of the frequency and amplitude of sea level oscillations using sea level curves derived from both the 18O isotope record of past sea level change and synthetic sinusoidal sea level curves. Over a typical climate cycle, our model simulations confirm that the rate of sea level change is the primary controlling factor of reef production, as it modifies the productivity by several orders of magnitude. Most importantly, reef productivity increases during periods of sea level rise, and decreases during sea level stands, while conversely, the morphology records the opposite in a misleading fashion: Reef terraces expand during sea level stands due to the joint effects of erosion and patient reef growth at a stationary level until the accommodation space is filled up. On the long-term, over the Plio-Pleistocene period, vertical ground motion also significantly alters the production: moderate uplift or subsidence can boost reef productivity up to tenfold with respect to a stationary coastline. Last, the amplitude and frequency of the sea level oscillations (typically 40 kyrs vs. 100 kyrs periods) moderately impact reef productivity. These results can be ultimately converted into estimates of carbonate production and carbon sequestration during the Late Neogene, provided relative sea level is documented in the tectonically agitated intertropical zone.

  8. Stratigraphic evolution of Chandeleur Islands, Louisiana

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suter, J.R.; Penland, S.; Williams, S.J.

    1988-09-01

    Analyses of over 3000 km of high-resolution seismic profiles, supplemented by vibracores and soil borings, illustrate the evolution of the Chandeleur Islands through transgressive processes associated with the abandonment of the St. Bernard complex of the Mississippi delta some 1500 years ago. Historical maps show that the system has been eroding, migrating landward, and losing area for the last 100 years. At current rates, the subaerial integrity of the islands will be terminated in about 200 years. Hurricane impacts accelerate erosion and segment the islands, followed by limited recovery during fair weather periods. Relative sea level rise from both subsidencemore » and possible eustatic factors contributes to the loss of island area.« less

  9. A near uniform basin-wide sea level fluctuation over the Japan/East Sea: A semienclosed sea with multiple straits

    NASA Astrophysics Data System (ADS)

    Kim, Seung-Bum; Fukumori, Ichiro

    2008-06-01

    Sea level of the Japan/East Sea observed by the TOPEX/Poseidon (T/P) satellite altimeter is analyzed using a 1/4°-resolution ocean general circulation model. A significant fraction of the Japan/East Sea sea level variability is found to be spatially uniform with periods ranging from 20 d to a year. The model simulation is consistent with T/P records in terms of the basin-wide sea level fluctuation's spectral energy and coherence. The simulation indicates that the changes are barotropic in nature and controlled, notably at high frequencies, by the net mass transport through the straits of the Japan/East Sea driven by winds in the vicinity of the Korea/Tsushima and Soya Straits. A series of barotropic simulations suggest that the sea level fluctuations are the result of a dynamic balance at the straits among near-strait winds, friction, and geostrophic control. The basin-wide sea level response is a linear superposition of changes due to winds near the individual straits. In particular, a basin-wide sea level response can be established by winds near either one of the straits alone. For the specific geometry and winds, winds near the Soya Strait have a larger impact on the Japan/East Sea mean sea level than those near the Korea/Tsushima Strait.

  10. Accelerated Decompression from Saturation at 132 Feet of Sea Water With Isobaric oxygenation at 60 Feet of Sea Water

    DTIC Science & Technology

    2009-02-01

    catheterized with an external jugular catheter via the Seldinger technique and allowed to recover. Subjects were exposed to 132 feet of seawater (fsw) in...the external jugular vein of the animal was catheterized with a 16 gauge by 20.3 cm single lumen catheter (Braun Certofix; B. Braun Medical Inc... central cyanosis or the production of frothy white sputum. The onset of severe DCS (neurological or cardio-pulmonary dysfunction) and all behavioral

  11. Tourism's nitrogen footprint on a Mesoamerican coral reef

    NASA Astrophysics Data System (ADS)

    Baker, D. M.; Rodríguez-Martínez, R. E.; Fogel, M. L.

    2013-09-01

    Globally, the eutrophication of coastal marine environments is a worsening problem that is accelerating the loss of biodiversity and ecosystem services. Coral reefs are among the most sensitive to this change, as chronic inputs of agricultural and wastewater effluents and atmospheric deposition disrupt their naturally oligotrophic state. Often, anthropogenic alteration of the coastal nitrogen pool can proceed undetected as rapid mixing with ocean waters can mask chronic and ephemeral nitrogen inputs. Monitoring nitrogen stable isotope values ( δ 15N) of benthic organisms provides a useful solution to this problem. Through a 7-yr monitoring effort in Quintana Roo, Mexico, we show that δ 15N values of the common sea fan Gorgonia ventalina were more variable near a developed (Akumal) site than at an undeveloped (Mahahual) site. Beginning in 2007, the global recession decreased tourist visitations to Akumal, which corresponded with a pronounced 1.6 ‰ decline in sea fan δ 15N through 2009, at which time δ 15N values were similar to those from Mahahual. With the recovery of tourism, δ 15N values increased to previous levels. Overall, 84 % of the observed variation in δ 15N was explained by tourist visitations in the preceding year alone, indicating that variable nitrogen source contributions are correlated with sea fan δ 15N values. We also found that annual precipitation accounted for some variation in δ 15N, likely due to its role in groundwater flushing into the sea. Together, these factors accounted for 96 % of the variation in δ 15N. Using a mixing model, we estimate that sewage can account for up to 42 % of nitrogen in sea fan biomass. These findings illustrate the high connectivity between land-based activities and coral reef productivity and the measurable impact of the tourism industry on the ecosystem it relies on.

  12. A 300m-width sinkhole threatens the stability of the embankment of a saltpan in Jordan, Dead Sea Region

    NASA Astrophysics Data System (ADS)

    Closson, Damien; Abou Karaki, Najib; Pasquali, Paolo; Riccardi, Paolo

    2013-04-01

    Since the 1980s, the Dead Sea coastal zone is affected by sinkholes. The dynamic of the salt karst system is attested by a drastic increase of collapse events. The energy available for sub-surface erosion (or cavities genesis) is related to the head difference between the water table and the lake level which drop down at an accelerating rate of more than 1 m/yr. In the region of Ghor Al Haditha, Jordan, the size of the craters increased significantly during the last decade. Up to now, the greatest compound structure observed (association of metric subsidence, decametric sinkholes, and landslides) was about 150-200 m in diameter. End of December 2012, a single circular structure having 250-300 m in diameter was identified within a 10 km x 1.5 km saltpan of the Arab Potash Company. This finding raises questions regarding the origin of the underlying cavity and the capability of prediction of all models developed up to now in Israel and Jordan regarding the Dead Sea sinkholes. The analysis of satellite images of the past shows that the appearance of this unique depression is very recent (probably less than 5 years). Cosmo-SkyMed radar images have been processed to map the associated deformation field. Ground motions attest that the overall diameter could be around 600 m. Currently, this sinkhole is threatening the stability of more than one kilometer of a 12 km long dike holding 90 million m3 of Dead Sea brine. This case study underlines the great fragility of the Dead Sea salt karst and demonstrates the need for the setting up of an early warning system.

  13. Sources of Meridional Heat and Freshwater Transport Anomalies in the Atlantic Ocean

    NASA Astrophysics Data System (ADS)

    Kelly, K. A.; Thompson, L.; Drushka, K.

    2016-02-01

    Observations of thermosteric and halosteric sea level from hydrographic data, ocean mass from GRACE and altimetric sea surface height are used to infer meridional heat transport (MHT) and freshwater convergence (FWC) anomalies for the Atlantic Ocean for 1993-2014. A Kalman filter extracts smooth estimates of heat transport convergence (HTC) and FWC from discrepancies between the sea level response to monthly surface heat and freshwater fluxes and observed heat and freshwater content in each of eight regions. Estimates of MHT anomalies are derived by summing the HTC from north to south and adding an integration constant derived from updated MHT estimates at 41N (Willis 2010). MHT estimates are relatively insensitive to the choice of heat flux products and are highly coherent spatially. Anomalies in MHT are comparable to those observed at the RAPID/MOCHA line at 26.5N and show a continued recovery from the minimum in 2010 throughout the Atlantic. MHT anomalies resemble estimates of Agulhas Leakage derived from altimeter (LeBars et al 2014) suggesting that the Indian Ocean is the source of the anomalous heat inflow. FWC estimates are also insensitive to choice of flux products. Interannual anomalies of FWC integrated from 67N to 35S resemble estimates of Atlantic river inflow (de Couet and Maurer, GRDC 2009), whereas the trend is consistent with estimates of freshwater input from Greenland. Increasing values of FWC after 2002 at a time when MHT was decreasing may indicate a feedback between the Atlantic Meridional Overturning Circulation and FWC that would accelerate the AMOC slowdown.

  14. Sea Level Trend and Variability in the Straits of Singapore and Malacca

    NASA Astrophysics Data System (ADS)

    Luu, Q.; Tkalich, P.

    2013-12-01

    The Straits of Singapore and Malacca (SSM) connect the Andaman Sea located northeast of the Indian Ocean to the South China Sea, the largest marginal sea situated in the tropical Pacific Ocean. Consequently, sea level in the SSM is assumed to be governed by various regional phenomena associated with the adjacent parts of Indian and Pacific Oceans. At annual scale sea level variability is dominant by the Asian monsoon. Interannual sea level signals are modulated by the El Niño-Southern Oscillation (ENSO) and the Indian Ocean Dipole (IOD). In the long term, regional sea level is driven by the global climate change. However, relative impacts of these multi-scale phenomena on regional sea level in the SSM are yet to be quantified. In present study, publicly available tide gauge records and satellite altimetry data are used to derive long-term sea level trend and variability in SSM. We used the data from research-quality stations, including four located in the Singapore Strait (Tanjong Pagar, Raffles Lighthouse, Sultan Shoal and Sembawang) and seven situated in the Malacca Strait (Kelang, Keling, Kukup, Langkawji, Lumut, Penang and Ko Taphao Noi), each one having 25-39 year data up to the year 2011. Harmonic analysis is performed to filter out astronomic tides from the tide gauge records when necessary; and missing data are reconstructed using identified relationships between sea level and the governing phenomena. The obtained sea level anomalies (SLAs) and reconstructed mean sea level are then validated against satellite altimetry data from AVISO. At multi-decadal scale, annual measured sea level in the SSM is varying with global mean sea level, rising for the period 1984-2009 at the rate 1.8-2.3 mm/year in the Singapore Strait and 1.1-2.8 mm/year in the Malacca Strait. Interannual regional sea level drops are associated with El Niño events, while the rises are correlated with La Niña episodes; both variations are in the range of ×5 cm with correlation coefficient of -0.7 (in correspondence with the Multivariate ENSO Index). The IOD modulates interannual sea level variability only in the Malacca Strait in the range of ×3 cm with a correlation coefficient of -0.6 (with respect to the Dipole Mode Index). At annual scale, SLAs in the SSM are mainly monsoon-driven; of the order of 20 cm. Mean sea level in the Singapore Strait reach the peak during northeast monsoon and trough during southwest monsoon; while these in the Malacca Strait are highest at middle of both monsoons and lowest during their transitional monsoonal seasons. Global and regional signals are quantitatively captured in the SSM. In comparison with the global sea level trends, SSM sea level rise are larger for recent decades 1984-2009. Taking into account the rough estimate of land subsidence rates in Singapore (2006-2011) and Peninsular Malaysia (1994-2004), the trend of absolute sea level rise in SSM follows regional tendency. At interannual scale, ENSO modulates sea level variabilities in the entire SSM region, while IOD affects the Malacca Strait only. At annual scale, sea level responds differently to the Asian monsoon: quasi-periodic cycles are observed twice a year in the Malacca Strait, but once a year in the Singapore Strait. Such behavior implies that the narrow channel constriction between the Singapore and Malacca Straits may be a reason of different variability of sea level in the domains.

  15. The flooding of the San Matías Gulf: The Northern Patagonia sea-level curve

    NASA Astrophysics Data System (ADS)

    Isla, Federico Ignacio

    2013-12-01

    Northern Patagonia is characterised by tectonic depressions below present sea level. Some of them are today flooded by the sea; others remain emerged although they are at altitudes of - 50 m (Bajo del Gualicho), - 35 m (Salinas Grandes) and - 7 m (Salina La Piedra). San Matías Gulf also was such an emerged depression below contemporary mean sea level during the Late Pleistocene. It flooded between 11,500 and 11,000 years ago, when the sea level surpassed the sill of the gulf (today 50 m below mean sea level) during postglacial sea-level rise. In those days, shrublands extended on the slopes of the tectonic depression. In-situ pieces of woods dredged from the bottom of the gulf at depths of 70 m gave a conventional age of 11,310 ± 150 years BP. We used the wood, together with dated shells from the continental shelf, and shells and organic matter dated from the San Blas, Negro and Chubut coastal plains to construct a sea-level curve. Sea level rise surpassed the present level somewhat before 6000 years BP, reaching a maximum stand of + 6 m. It has since gently diminished towards present sea level.

  16. Implications of sediment redistribution on modeled sea-level changes over millennial timescales

    NASA Astrophysics Data System (ADS)

    Ferrier, Ken

    2016-04-01

    Sea level is a critical link in feedbacks among topography, tectonics, and climate. Over millennial timescales, changes in sea level reshape river networks, regulate organic carbon burial, influence sediment deposition, and set moving boundary conditions for landscape evolution. Sea-level changes influence tectonics by regulating rates and patterns of erosion and deposition, which perturb the surface loads that drive geodynamic processes at depth. These interactions are complex because sea-level changes are influenced by the geomorphic processes that they themselves modify, since sediment redistribution deforms the gravitational and crustal elevation fields that define sea level. A recent advance in understanding the coupling between sea level, tectonics, and topography was the incorporation of sediment redistribution into a gravitationally self-consistent sea-level model, which permits the computation of sea-level responses to erosion and deposition (Dalca et al., 2013, Geophysical Journal International). Here I use this model to quantify changes in sea level resulting from the erosion of some of the most rapidly eroding sites on Earth and the deposition of sediment offshore. These model results show that the sea-level fingerprints of sediment redistribution are strongly variable in space, and that they can represent a significant component of the total sea level change since the last interglacial. This work provides a basis for understanding a fundamental driver of landscape evolution at some of Earth's most geomorphically dynamic sites, and thus aids investigation of the couplings among tectonics, climate, and topography. References Dalca A.V., Ferrier K.L., Mitrovica J.X., Perron J.T., Milne G.A., Creveling J.R., 2013. On postglacial sea level - III. Incorporating sediment redistribution. Geophysical Journal International, doi: 10.1093/gji/ggt089.

  17. Dr. Tom Mace talks with a student from Punta Arenas, Chile, during a tour of the DC-8 aircraft

    NASA Image and Video Library

    2004-03-10

    Dr. Tom Mace, NASA DFRC Director of Airborne Sciences, talks with a student from Punta Arenas, Chile, during a tour of the DC-8 aircraft while it was in the country supporting the AirSAR 2004 campaign. AirSAR 2004 is a three-week expedition by an international team of scientists that uses an all-weather imaging tool, called the Airborne Synthetic Aperture Radar (AirSAR) which is located onboard NASA's DC-8 airborne laboratory. Scientists from many parts of the world including NASA's Jet Propulsion Laboratory are combining ground research done in several areas in Central and South America with NASA's AirSAR technology to improve and expand on the quality of research they are able to conduct. In South America and Antarctica, AirSAR collected imagery and data to help determine the contribution of Southern Hemisphere glaciers to sea level rise due to climate change. In Patagonia, researchers found this contribution had more than doubled from 1995 to 2000, compared to the previous 25 years. AirSAR data will make it possible to determine whether that trend is continuing or accelerating. AirSAR will also provide reliable information on ice shelf thickness to measure the contribution of the glaciers to sea level.

  18. NASA DC-8 Ground Support Technicians Mark Corlew and Mike Lakowski perform routine maintenance on the aircraft in Punta Arenas, Chile

    NASA Image and Video Library

    2004-03-17

    NASA DC-8 Ground Support Technicians Mark Corlew and Mike Lakowski perform routine maintenance on the aircraft at Carlos Ibanez del Campo International Airport in Punta Arenas, Chile. AirSAR 2004 is a three-week expedition by an international team of scientists that is using an all-weather imaging tool, called the Airborne Synthetic Aperture Radar (AirSAR) which is located onboard NASA's DC-8 airborne laboratory. Scientists from many parts of the world including NASA's Jet Propulsion Laboratory are combining ground research done in several areas in Central and South America with NASA's AirSAR technology to improve and expand on the quality of research they are able to conduct. In South America and Antarctica, AirSAR will collect imagery and data to help determine the contribution of Southern Hemisphere glaciers to sea level rise due to climate change. In Patagonia, researchers found this contribution had more than doubled from 1995 to 2000, compared to the previous 25 years. AirSAR data will make it possible to determine whether that trend is decreasing, continuing or accelerating. AirSAR will also provide reliable information on ice shelf thickness to measure the contribution of the glaciers to sea level.

  19. Pilot Bill Brockett (left) and Chilean Air Force Captain Saez with school children in the cockpit of NASA Dryden's DC-8 flying laboratory

    NASA Image and Video Library

    2004-03-10

    Pilot Bill Brockett (left) and Chilean Air Force Captain Saez with school children in the cockpit of NASA Dryden's DC-8 flying laboratory. Brockett explained NASA's AirSAR 2004 mission in Chile. AirSAR 2004 is a three-week expedition by an international team of scientists that uses an all-weather imaging tool, called the Airborne Synthetic Aperture Radar (AirSAR) which is located onboard NASA's DC-8 airborne laboratory. Scientists from many parts of the world including NASA's Jet Propulsion Laboratory are combining ground research done in several areas in Central and South America with NASA's AirSAR technology to improve and expand on the quality of research they are able to conduct. In South America and Antarctica, AirSAR collected imagery and data to help determine the contribution of Southern Hemisphere glaciers to sea level rise due to climate change. In Patagonia, researchers found this contribution had more than doubled from 1995 to 2000, compared to the previous 25 years. AirSAR data will make it possible to determine whether that trend is continuing or accelerating. AirSAR will also provide reliable information on ice shelf thickness to measure the contribution of the glaciers to sea level.

  20. NASA DC-8 Ground Support Technician Joe Niquette performs routine maintenance on the DC-8 aircraft in Punta Arenas, Chile

    NASA Image and Video Library

    2004-03-17

    NASA DC-8 Ground Support Technician Joe Niquette performs routine maintenance on the DC-8 aircraft at Carlos Ibanez del Campo International Airport in Punta Arenas, Chile. AirSAR 2004 is a three-week expedition by an international team of scientists that is using an all-weather imaging tool, called the Airborne Synthetic Aperture Radar (AirSAR) which is located onboard NASA's DC-8 airborne laboratory. Scientists from many parts of the world including NASA's Jet Propulsion Laboratory are combining ground research done in several areas in Central and South America with NASA's AirSAR technology to improve and expand on the quality of research they are able to conduct. In South America and Antarctica, AirSAR will collect imagery and data to help determine the contribution of Southern Hemisphere glaciers to sea level rise due to climate change. In Patagonia, researchers found this contribution had more than doubled from 1995 to 2000, compared to the previous 25 years. AirSAR data will make it possible to determine whether that trend is decreasing, continuing or accelerating. AirSAR will also provide reliable information on ice shelf thickness to measure the contribution of the glaciers to sea level.

  1. NASA DC-8 Pilots Craig Bomben and Bill Brockett explain the DC-8 cockpit to Chilean students onboard the DC-8 aircraft in Punta Arenas, Chile

    NASA Image and Video Library

    2004-03-17

    NASA DC-8 Pilots Craig Bomben and Bill Brockett explain the DC-8 cockpit to Chilean students onboard the DC-8 aircraft at Carlos Ibanez del Campo International Airport in Punta Arenas, Chile. AirSAR 2004 is a three-week expedition by an international team of scientists that is using an all-weather imaging tool, called the Airborne Synthetic Aperture Radar (AirSAR) which is located onboard NASA's DC-8 airborne laboratory. Scientists from many parts of the world including NASA's Jet Propulsion Laboratory are combining ground research done in several areas in Central and South America with NASA's AirSAR technology to improve and expand on the quality of research they are able to conduct. In South America and Antarctica, AirSAR will collect imagery and data to help determine the contribution of Southern Hemisphere glaciers to sea level rise due to climate change. In Patagonia, researchers found this contribution had more than doubled from 1995 to 2000, compared to the previous 25 years. AirSAR data will make it possible to determine whether that trend is decreasing, continuing or accelerating. AirSAR will also provide reliable information on ice shelf thickness to measure the contribution of the glaciers to sea level.

  2. NASA DC-8 Mission Manager Walter Klein poses with a group of Chilean Students onboard the aircraft in Punta Arenas, Chile

    NASA Image and Video Library

    2004-03-17

    NASA DC-8 Mission Manager Walter Klein poses with a group of Chilean Students onboard the aircraft at Carlos Ibanez del Campo International Airport in Punta Arenas, Chile. AirSAR 2004 is a three-week expedition by an international team of scientists that is using an all-weather imaging tool, called the Airborne Synthetic Aperture Radar (AirSAR) which is located onboard NASA's DC-8 airborne laboratory. Scientists from many parts of the world including NASA's Jet Propulsion Laboratory are combining ground research done in several areas in Central and South America with NASA's AirSAR technology to improve and expand on the quality of research they are able to conduct. In South America and Antarctica, AirSAR will collect imagery and data to help determine the contribution of Southern Hemisphere glaciers to sea level rise due to climate change. In Patagonia, researchers found this contribution had more than doubled from 1995 to 2000, compared to the previous 25 years. AirSAR data will make it possible to determine whether that trend is decreasing, continuing or accelerating. AirSAR will also provide reliable information on ice shelf thickness to measure the contribution of the glaciers to sea level.

  3. L to R; Walter Klein (in tan flight suit), Tim Miller, and David Bushman briefing press in Santiago, Chile, for NASA's AirSAR 2004 mission

    NASA Image and Video Library

    2004-03-10

    L to R; NASA Dryden Mission Manager Walter Klein (in tan flight suit), JPL AirSAR Scientist Tim Miller, and Mission Manager David Bushman briefing press in Santiago, Chile, for NASA's AirSAR 2004 mission. AirSAR 2004 is a three-week expedition by an international team of scientists that uses an all-weather imaging tool, called the Airborne Synthetic Aperture Radar (AirSAR) which is located onboard NASA's DC-8 airborne laboratory. Scientists from many parts of the world including NASA's Jet Propulsion Laboratory are combining ground research done in several areas in Central and South America with NASA's AirSAR technology to improve and expand on the quality of research they are able to conduct. In South America and Antarctica, AirSAR collected imagery and data to help determine the contribution of Southern Hemisphere glaciers to sea level rise due to climate change. In Patagonia, researchers found this contribution had more than doubled from 1995 to 2000, compared to the previous 25 years. AirSAR data will make it possible to determine whether that trend is continuing or accelerating. AirSAR will also provide reliable information on ice shelf thickness to measure the contribution of the glaciers to sea level.

  4. NASA Dryden Mission Manager Walter Klein talks with school children from Punta Arenas, Chile, during a tour of the DC-8 aircraft

    NASA Image and Video Library

    2004-03-10

    NASA Dryden Mission Manager Walter Klein talks with school children from Punta Arenas, Chile, during a tour of the DC-8 aircraft while it was in the country supporting the AirSAR 2004 campaign. AirSAR 2004 is a three-week expedition by an international team of scientists that uses an all-weather imaging tool, called the Airborne Synthetic Aperture Radar (AirSAR) which is located onboard NASA's DC-8 airborne laboratory. Scientists from many parts of the world including NASA's Jet Propulsion Laboratory are combining ground research done in several areas in Central and South America with NASA's AirSAR technology to improve and expand on the quality of research they are able to conduct. In South America and Antarctica, AirSAR collected imagery and data to help determine the contribution of Southern Hemisphere glaciers to sea level rise due to climate change. In Patagonia, researchers found this contribution had more than doubled from 1995 to 2000, compared to the previous 25 years. AirSAR data will make it possible to determine whether that trend is continuing or accelerating. AirSAR will also provide reliable information on ice shelf thickness to measure the contribution of the glaciers to sea level.

  5. Chilean Air Force Captain Saez and Dr. Tom Mace discuss airborne science during a DC-8 ferry flight from Santiago to Punta Arenas, Chile

    NASA Image and Video Library

    2004-03-10

    Chilean Air Force Captain Saez and Dr. Tom Mace, DFRC Director of Airborne Sciences, discuss airborne science during a DC-8 ferry flight from Santiago to Punta Arenas, Chile. AirSAR 2004 is a three-week expedition by an international team of scientists that uses an all-weather imaging tool, called the Airborne Synthetic Aperture Radar (AirSAR) which is located onboard NASA's DC-8 airborne laboratory. Scientists from many parts of the world including NASA's Jet Propulsion Laboratory are combining ground research done in several areas in Central and South America with NASA's AirSAR technology to improve and expand on the quality of research they are able to conduct. In South America and Antarctica, AirSAR collected imagery and data to help determine the contribution of Southern Hemisphere glaciers to sea level rise due to climate change. In Patagonia, researchers found this contribution had more than doubled from 1995 to 2000, compared to the previous 25 years. AirSAR data will make it possible to determine whether that trend is continuing or accelerating. AirSAR will also provide reliable information on ice shelf thickness to measure the contribution of the glaciers to sea level.

  6. Ice-Cliff Failure via Retrogressive Slumping

    NASA Astrophysics Data System (ADS)

    Parizek, B. R.; Christianson, K.; Alley, R. B.; Voytenko, D.; Vankova, I.; Dixon, T. H.; Holland, D.

    2016-12-01

    The magnitude and rate of future sea-level rise from warming-induced ice-sheet shrinkage remain notably uncertain. Removal of most of an ice sheet by surface melting alone requires centuries to millennia. Oceanic warming may accelerate loss by removing buttressing ice shelves and thereby speeding flow of non-floating ice into the ocean, but, until recently, modeled timescales for major dynamic ice-sheet shrinkage were centuries or longer. Beyond certain thresholds, however, observations show that warming removes floating ice shelves, leaving grounded ice cliffs from which icebergs break off directly. Cliffs higher than some limit experience rapid structural failure. Recent parameterization of this process in a comprehensive ice-flow model produced much faster sea-level rise from future rapid warming than in previous modeling studies, through formation and retreat of tall ice cliffs. Fully physical representations of this process are not yet available, however. Here, we use modeling guided by terrestrial radar data from Helheim Glacier, Greenland to show that cliffs will fail by slumping and trigger rapid retreat at a threshold height that, in crevassed ice with surface melting, may be only slightly above the 100-m maximum observed today, but may be roughly twice that (180-275 m) in mechanically-competent ice under well-drained or low-melt conditions.

  7. Spatial-temporal analysis of sea level changes in China seas and neighboring oceans by merged altimeter data

    NASA Astrophysics Data System (ADS)

    Xu, Yao; Zhou, Bin; Yu, Zhifeng; Lei, Hui; Sun, Jiamin; Zhu, Xingrui; Liu, Congjin

    2017-01-01

    The knowledge of sea level changes is critical important for social, economic and scientific development in coastal areas. Satellite altimeter makes it possible to observe long term and large scale dynamic changes in the ocean, contiguous shelf seas and coastal zone. In this paper, 1993-2015 altimeter data of Topex/Poseidon and its follow-on missions is used to get a time serious of continuous and homogeneous sea level anomaly gridding product. The sea level rising rate is 0.39 cm/yr in China Seas and the neighboring oceans, 0.37 cm/yr in the Bo and Yellow Sea, 0.29 cm/yr in the East China Sea and 0.40 cm/yr in the South China Sea. The mean sea level and its rising rate are spatial-temporal non-homogeneous. The mean sea level shows opposite characteristics in coastal seas versus open oceans. The Bo and Yellow Sea has the most significant seasonal variability. The results are consistent with in situ data observation by the Nation Ocean Agency of China. The coefficient of variability model is introduced to describe the spatial-temporal variability. Results show that the variability in coastal seas is stronger than that in open oceans, especially the seas off the entrance area of the river, indicating that the validation of altimeter data is less reasonable in these seas.

  8. Global change impacts on mangrove ecosystems

    USGS Publications Warehouse

    McKee, Karen L.

    2004-01-01

    Mangroves are tropical/subtropical communities of primarily tree species that grow in the intertidal zone. These tidal forests are important coastal ecosystems that are valued for a variety of ecological and societal goods and services. Major local threats to mangrove ecosystems worldwide include clearcutting and trimming of forests for urban, agricultural, or industrial expansion; hydrological alterations; toxic chemical spills; and eutrophication. In many countries with mangroves, much of the human population resides in the coastal zone, and their activities often negatively impact the integrity of mangrove forests. In addition, eutrophication, which is the process whereby nutrients build up to higher than normal levels in a natural system, is possibly one of the most serious threats to mangroves and associated ecosystems such as coral reefs. Scientists with the U.S. Geological Survey (USGS) at the National Wetlands Research Center are working to more fully understand global impacts on these significant ecosystems.Changes in climate and other factors may also affect mangroves, but in complex ways. Global warming may promote expansion of mangrove forests to higher latitudes and accelerate sea-level rise through melting of polar ice or steric expansion of oceans. Changes in sea level would alter flooding patterns and the structure and areal extent of mangroves. Climate change may also alter rainfall patterns, which would in turn change local salinity regimes and competitive interactions of mangroves with other wetland species. Increases in frequency or intensity of tropical storms and hurricanes in combination with sea-level rise may alter erosion and sedimentation rates in mangrove forests. Another global change factor that may directly affect mangrove growth is increased atmospheric carbon dioxide (CO2), caused by burning of fossil fuels and other factors. Elevated CO2 concentration may increase mangrove growth by stimulating photosynthesis or improving water use efficiency, but the consequences of this growth enhancement for the ecosystem are unknown.

  9. Understanding extreme sea levels for coastal impact and adaptation analysis

    NASA Astrophysics Data System (ADS)

    Wahl, T.; Haigh, I. D.; Nicholls, R. J.; Arns, A.; Hinkel, J.; Dangendorf, S.; Slangen, A.

    2016-12-01

    Coastal impact and adaptation assessments require detailed knowledge on extreme sea levels, because increasing damage due to extreme events, such as storm surges and tropical cyclones, is one of the major consequences of sea level rise and climate change. In fact, the IPCC has highlighted in its AR4 report that "societal impacts of sea level change primarily occur via the extreme levels rather than as a direct consequence of mean sea level changes". Over the last few decades, substantial research efforts have been directed towards improved understanding of past and future mean sea level; different scenarios were developed with process-based or semi-empirical models and used for coastal impact assessments at various spatial scales to guide coastal management and adaptation efforts. The uncertainties in future sea level rise are typically accounted for by analyzing the impacts associated with a range of scenarios leading to a vertical displacement of the distribution of extreme sea-levels. And indeed most regional and global studies find little or no evidence for changes in storminess with climate change, although there is still low confidence in the results. However, and much more importantly, there is still a limited understanding of present-day extreme sea-levels which is largely ignored in most impact and adaptation analyses. The two key uncertainties stem from: (1) numerical models that are used to generate long time series of extreme sea-levels. The bias of these models varies spatially and can reach values much larger than the expected sea level rise; but it can be accounted for in most regions making use of in-situ measurements; (2) Statistical models used for determining present-day extreme sea-level exceedance probabilities. There is no universally accepted approach to obtain such values for flood risk assessments and while substantial research has explored inter-model uncertainties for mean sea level, we explore here, for the first time, inter-model uncertainties for extreme sea-levels at large spatial scales and compare them to the uncertainties in mean sea level projections.

  10. A Poor Relationship Between Sea Level and Deep-Water Sand Delivery

    NASA Astrophysics Data System (ADS)

    Harris, Ashley D.; Baumgardner, Sarah E.; Sun, Tao; Granjeon, Didier

    2018-08-01

    The most commonly cited control on delivery of sand to deep water is the rate of relative sea-level fall. The rapid rate of accommodation loss on the shelf causes sedimentation to shift basinward. Field and experimental numerical modeling studies have shown that deep-water sand delivery can occur during any stage of relative sea level position and across a large range of values of rate of relative sea-level change. However, these studies did not investigate the impact of sediment transport efficiency on the relationship between rate of relative sea-level change and deep-water sand delivery rate. We explore this relationship using a deterministic nonlinear diffusion-based numerical stratigraphic forward model. We vary across three orders of magnitude the diffusion coefficient value for marine settings, which controls sediment transport efficiency. We find that the rate of relative sea-level change can explain no more than 1% of the variability in deep-water sand delivery rates, regardless of sediment transport efficiency. Model results show a better correlation with relative sea level, with up to 55% of the variability in deep water sand delivery rates explained. The results presented here are consistent with studies of natural settings which suggest stochastic processes such as avulsion and slope failure, and interactions among such processes, may explain the remaining variance. Relative sea level is a better predictor of deep-water sand delivery than rate of relative sea-level change because it is the sea-level fall itself which promotes sand delivery, not the rate of the fall. We conclude that the poor relationship between sea level and sand delivery is not an artifact of the modeling parameters but is instead due to the inadequacy of relative sea level and the rate of relative sea-level change to fully describe the dimensional space in which depositional systems reside. Subsequently, sea level itself is unable to account for the interaction of multiple processes that contribute to sand delivery to deep water.

  11. Flooded! An Investigation of Sea-Level Rise in a Changing Climate

    ERIC Educational Resources Information Center

    Gillette, Brandon; Hamilton, Cheri

    2011-01-01

    Explore how melting ice sheets affect global sea levels. Sea-level rise (SLR) is a rise in the water level of the Earth's oceans. There are two major kinds of ice in the polar regions: sea ice and land ice. Land ice contributes to SLR and sea ice does not. This article explores the characteristics of sea ice and land ice and provides some hands-on…

  12. Grain-size based sea-level reconstruction in the south Bohai Sea during the past 135 kyr

    NASA Astrophysics Data System (ADS)

    Yi, Liang; Chen, Yanping

    2013-04-01

    Future anthropogenic sea-level rise and its impact on coastal regions is an important issue facing human civilizations. Due to the short nature of the instrumental record of sea-level change, development of proxies for sea-level change prior to the advent of instrumental records is essential to reconstruct long-term background sea-level changes on local, regional and global scales. Two of the most widely used approaches for past sea-level changes are: (1) exploitation of dated geomorphologic features such as coastal sands (e.g. Mauz and Hassler, 2000), salt marsh (e.g. Madsen et al., 2007), terraces (e.g. Chappell et al., 1996), and other coastal sediments (e.g. Zong et al., 2003); and (2) sea-level transfer functions based on faunal assemblages such as testate amoebae (e.g. Charman et al., 2002), foraminifera (e.g. Chappell and Shackleton, 1986; Horton, 1997), and diatoms (e.g. Horton et al., 2006). While a variety of methods has been developed to reconstruct palaeo-changes in sea level, many regions, including the Bohai Sea, China, still lack detailed relative sea-level curves extending back to the Pleistocene (Yi et al., 2012). For example, coral terraces are absent in the Bohai Sea, and the poor preservation of faunal assemblages makes development of a transfer function for a relative sea-level reconstruction unfeasible. In contrast, frequent alternations between transgression and regression has presumably imprinted sea-level change on the grain size distribution of Bohai Sea sediments, which varies from medium silt to coarse sand during the late Quaternary (IOCAS, 1985). Advantages of grainsize-based relative sea-level transfer function approaches are that they require smaller sample sizes, allowing for replication, faster measurement and higher spatial or temporal resolution at a fraction of the cost of detail micro-palaeontological analysis (Yi et al., 2012). Here, we employ numerical methods to partition sediment grain size using a combined database of marine surface and core samples, and to quantitatively reconstruct sea-level variation since the late Pleistocene in the south Bohai Sea, China. New insights into regional relative sea-level changes since the late Pleistocene are obtained (Yi et al., 2012): (1) The grain size of surface and core samples can be mathematically partitioned using the Weibull distribution into four components. These four components with differing modal sizes and percentages could be interpreted as a long-term suspension component, which only settles under low turbulence conditions, sortable silt and very fine sand components transported by suspension during greater turbulence and bedload transport component, respectively. (2) Through regression and rigorous verification techniques, the reference water level could be reconstructed from sediment grain size. The reconstruction quantitatively extends the regional relative sea-level history to the late Pleistocene, providing a comparatively long dataset to evaluate regional sea-level variability. (3) We find no evidence of a sea-level high stand during MIS3 but rather a substantial regression during 70-30 cal kyr BP and potentially exposed land during 38-20 cal kyr BP. These results for the south Bohai Sea are in good agreement with published global sea-level records for the late Pleistocene, implying similarities between local and global sea-level patterns. Therefore, it is concluded that grain-size based sea-level reconstruction provide results that are comparable to other reconstruction methods and demonstrates great potential application for future works. (The data was shared on http://hurricane.ncdc.noaa.gov/) References Chappell, J., Omura, A., Esat, T., McCulloch, M., Pandolfi, J., Ota, Y., Pillans, B., 1996. Reconciliation of late Quaternary sea levels derived from coral terraces at Huon Peninsula with deep sea oxygen isotope records. Earth and Planetary Science Letters 141, 227-236. Chappell, J., Shackleton, N.J., 1986. Oxygen isotopes and sea level. Nature 324, 137-140. Charman, D.J., Roe, H.M., Roland Gehrels, W., 2002. Modern distribution of saltmarsh testate amoebae: regional variability of zonation and response to environmental variables. Journal of Quaternary Science 17, 387-409. Horton, B.P., 1997. Quantification of the indicative meaning of a range of Holocene sea-level index points from the western North Sea, Department of Geography. University of Durham, Durham City, UK, p. 509. Horton, B.P., Corbett, R., Culver, S.J., Edwards, R.J., Hillier, C., 2006. Modern saltmarsh diatom distributions of the Outer Banks, North Carolina, and the development of a transfer function for high resolution reconstructions of sea level. Estuarine, Coastal and Shelf Science 69, 381-394. IOCAS (Institute of Oceanology, Chinese Academy of Sciences), 1985. Bohai Sea Geology. Science Press, Beijing, China. Madsen, A.T., Murray, A.S., Andersen, T.J., Pejrup, M., 2007. Temporal changes of accretion rates on an estuarine salt marsh during the late Holocene -Reflection of local sea level changes? The Wadden Sea, Denmark. Marine Geology 242, 221-233. Mauz, B., Hassler, U., 2000. Luminescence chronology of Late Pleistocene raised beaches in southern Italy: new data of relative sea-level changes. Marine Geology 170, 187-203. Yi, L., Yu, H.J., Ortiz, J.D., Xu, X.Y., Qiang, X.K., Huang, H.J., Shi, X., Deng, C.L., 2012. A reconstruction of late Pleistocene relative sea level in the south Bohai Sea, China, based on sediment grain-size analysis. Sedimentary Geology 281, 88-100. Zong, Y., Shennan, I., Combellick, R.A., Hamilton, S.L., Rutherford, M.M., 2003. Microfossil evidence for land movements associated with the AD 1964 Alaska earthquake. The Holocene 13, 7-20.

  13. Accelerator/Experiment Operations - FY 2015

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Czarapata, P.

    2015-10-01

    This Technical Memorandum summarizes the Fermilab accelerator and experiment operations for FY 2015. It is one of a series of annual publications intended to gather information in one place. In this case, the information concerns the FY 2015 NOvA, MINOS+ and MINERvA experiments using the Main Injector Neutrino Beam (NuMI), the activities in the SciBooNE Hall using the Booster Neutrino Beam (BNB), and the SeaQuest experiment and Meson Test Beam (MTest) activities in the 120 GeV external Switchyard beam (SY120).

  14. Climate related sea-level variations over the past two millennia

    PubMed Central

    Kemp, Andrew C.; Horton, Benjamin P.; Donnelly, Jeffrey P.; Mann, Michael E.; Vermeer, Martin; Rahmstorf, Stefan

    2011-01-01

    We present new sea-level reconstructions for the past 2100 y based on salt-marsh sedimentary sequences from the US Atlantic coast. The data from North Carolina reveal four phases of persistent sea-level change after correction for glacial isostatic adjustment. Sea level was stable from at least BC 100 until AD 950. Sea level then increased for 400 y at a rate of 0.6 mm/y, followed by a further period of stable, or slightly falling, sea level that persisted until the late 19th century. Since then, sea level has risen at an average rate of 2.1 mm/y, representing the steepest century-scale increase of the past two millennia. This rate was initiated between AD 1865 and 1892. Using an extended semiempirical modeling approach, we show that these sea-level changes are consistent with global temperature for at least the past millennium. PMID:21690367

  15. Long-term sea level trends: Natural or anthropogenic?

    NASA Astrophysics Data System (ADS)

    Becker, M.; Karpytchev, M.; Lennartz-Sassinek, S.

    2014-08-01

    Detection and attribution of human influence on sea level rise are important topics that have not yet been explored in depth. We question whether the sea level changes (SLC) over the past century were natural in origin. SLC exhibit power law long-term correlations. By estimating Hurst exponent through Detrended Fluctuation Analysis and by applying statistics of Lennartz and Bunde, we search the lower bounds of statistically significant external sea level trends in longest tidal records worldwide. We provide statistical evidences that the observed SLC, at global and regional scales, is beyond its natural internal variability. The minimum anthropogenic sea level trend (MASLT) contributes to the observed sea level rise more than 50% in New York, Baltimore, San Diego, Marseille, and Mumbai. A MASLT is about 1 mm/yr in global sea level reconstructions that is more than half of the total observed sea level trend during the XXth century.

  16. Quantitative analysis of Paratethys sea level change during the Messinian Salinity Crisis

    NASA Astrophysics Data System (ADS)

    de la Vara, Alba; Meijer, Paul; van Baak, Christiaan; Marzocchi, Alice; Grothe, Arjen

    2016-04-01

    At the time of the Messinian Salinity Crisis in the Mediterranean Sea (i.e., the Pontian stage of the Paratethys), the Paratethys sea level dropped also. Evidence found in the sedimentary record of the Black Sea and the Caspian Sea has been interpreted to indicate that a sea level fall occurred between 5.6 and 5.5 Ma. Estimates for the magnitude of the fall range between tens of meters to more than 1500 m. The purpose of this study is to provide quantitative insight into the sensitivity of the water level of the Black Sea and the Caspian Sea to the hydrologic budget, for the case that the Paratethys is disconnected from the Mediterranean. Using a Late Miocene bathymetry based on a palaeographic map by Popov et al. (2004) we quantify the fall in sea level, the mean salinity, and the time to reach equilibrium for a wide range of negative hydrologic budgets. By combining our results with (i) estimates derived from a recent global Late Miocene climate simulation and (ii) reconstructed basin salinities, we are able to rule out a drop in sea level of the order of 1000 m in the Caspian Sea during this time period. In the Black Sea, however, such a large sea level fall cannot be fully discarded.

  17. PIGMENTS OF THE RETINA

    PubMed Central

    Wald, George

    1936-01-01

    1. Visual purple from the sea robin, sea bass, and scup is almost identical spectroscopically with that from frogs. The interrelations of this pigment with vitamin A and retinene are also the same as in the frog. 2. In strong acids or at pH > 11, the visual yellow of sea robin retinas is converted irreversibly into a pH indicator, yellow in acid and almost colorless in alkaline solution. Unlike neutral visual yellow, the indicator is not removed to form either vitamin A or visual purple. In the ammoniacal retina the reversion of visual yellow itself to purple is accelerated. 3. The combined pigment epithelium and choroid layer in these fishes contain vitamin A, flavine, and an unidentified xanthophyll. PMID:19872983

  18. Effects of low-intensity pulsed electromagnetic fields on the early development of sea urchins.

    PubMed Central

    Falugi, C; Grattarola, M; Prestipino, G

    1987-01-01

    The effects of weak electromagnetic signals on the early development of the sea urchin Paracentrotus lividus have been studied. The duration and repetition of the pulses were similar to those used for bone healing in clinical practice. A sequence of pulses, applied for a time ranging from 2 to 4 h, accelerates the cleavages of sea urchin embryo cells. This effect can be quantitatively assessed by determining the time shifts induced by the applied electromagnetic field on the completion of the first and second cleavages in a population of fertilized eggs. The exposed embryos were allowed to develop up to the pluteus stage, showing no abnormalities. Images FIGURE 3 FIGURE 4 PMID:3607217

  19. Synthetic sea water - An improved stress corrosion test medium for aluminum alloys

    NASA Technical Reports Server (NTRS)

    Humphries, T. S.; Nelson, E. E.

    1973-01-01

    A major problem in evaluating the stress corrosion cracking resistance of aluminum alloys by alternate immersion in 3.5 percent salt (NaCl) water is excessive pitting corrosion. Several methods were examined to eliminate this problem and to find an improved accelerated test medium. These included the addition of chromate inhibitors, surface treatment of specimens, and immersion in synthetic sea water. The results indicate that alternate immersion in synthetic sea water is a very promising stress corrosion test medium. Neither chromate inhibitors nor surface treatment (anodize and alodine) of the aluminum specimens improved the performance of alternate immersion in 3.5 percent salt water sufficiently to be classified as an effective stress corrosion test method.

  20. Sea level budget in the Arctic during the satellite altimetry era

    NASA Astrophysics Data System (ADS)

    Carret, Alice; Cazenave, Anny; Meyssignac, Benoît; Prandi, Pierre; Ablain, Michael; Andersen, Ole; Blazquez, Alejandro

    2016-04-01

    Studying sea level variations in the Arctic region is challenging because of data scarcity. Here we present results of the sea level budget in the Arctic (up to 82°N) during the altimetry era. We first investigate closure of the sea level budget since 2002 using altimetry data from Envisat and Cryosat for estimating sea level, temperature and salinity data from the ORAP5 reanalysis and GRACE space gravimetry to estimate the steric and mass components. Two altimetry sea level data sets are considered (from DTU and CLS), based on Envisat waveforms retracking. Regional sea level trends seen in the altimetric map, in particular over the Beaufort Gyre and along the eastern coast of Greenland are of steric origin. However, in terms of regional average, the steric component contributes very little to the observed sea level trend, suggesting a dominant mass contribution in the Arctic region. This is confirmed by GRACE-based ocean mass time series that agree very well with the altimetry-based sea level time series. Direct estimate of the mass component is not possible prior to GRACE. Thus we estimated the mass contribution over the whole altimetry era from the difference between altimetry-based sea level and the ORAP5 steric component. Finally we compared altimetry-based coastal sea level with tide gauge records available along Norwegian, Greenland and Siberian coastlines and investigated whether the Arctic Oscillation that was the main driver of coastal sea level in the Arctic during the past decades still plays a dominant role or if other factors (e.g., of anthropogenic origin) become detectable.

  1. Generalized Cauchy model of sea level fluctuations with long-range dependence

    NASA Astrophysics Data System (ADS)

    Li, Ming; Li, Jia-Yue

    2017-10-01

    This article suggests the contributions with two highlights. One is to propose a novel model of sea level fluctuations (sea level for short), which is called the generalized Cauchy (GC) process. It provides a new outlook for the description of local and global behaviors of sea level from a view of fractal in that the fractal dimension D that measures the local behavior of sea level and the Hurst parameter H which characterizes the global behavior of sea level are independent of each other. The other is to show that sea level appears multi-fractal in both spatial and time. Such a meaning of multi-fractal is new in the sense that a pair of fractal parameters (D, H) of sea level is varying with measurement sites and time. This research exhibits that the ranges of D and H of sea level, in general, are 1 ≤ D < 2 and 0 . 5 < H < 1, respectively but D is independent of H. With respect to the global behavior of sea level, we shall show that H > 0 . 96 for all data records at all measurement sites, implying that strong LRD may be a general phenomenon of sea level. On the other side, regarding with the local behavior, we will reveal that there appears D = 1 or D ≈ 1 for data records at a few stations and at some time, but D > 0 . 96 at most stations and at most time, meaning that sea level may appear highly local irregularity more frequently than weak local one.

  2. Inception of a global atlas of Holocene sea levels

    NASA Astrophysics Data System (ADS)

    Khan, Nicole; Rovere, Alessio; Engelhart, Simon; Horton, Benjamin

    2017-04-01

    Determining the rates, mechanisms and geographic variability of sea-level change is a priority science question for the next decade of ocean research. To address these research priorities, the HOLocene SEA-level variability (HOLSEA) working group is developing the first standardized global synthesis of Holocene relative sea-level data to: (1) estimate the magnitudes and rates of global mean sea-level change during the Holocene; and (2) identify trends in spatial variability and decipher the processes responsible for geographic differences in relative sea-level change. Here we present the preliminary efforts of the working group to compile the database, which includes sea-level index points and limiting data from a range of different indicators across seven continents from the Last Glacial Maximum to present. We follow a standard protocol that incorporates full consideration of vertical and temporal uncertainty for each sea-level index point, including uncertainties associated with the relationship of each indicator to past sea-level and the methods used to date each indicator. We describe the composition of the global database, identify gaps in data availability, and highlight our effort to create an online platform to access the data. These data will be made available in a special issue of Quaternary Science Reviews and archived on NOAA's National Centers for Environmental Information (NCEI) in early 2018. We also invite researchers who collect or model Holocene sea-level data to participate. Long-term, this effort will enhance predictions of 21st century sea-level rise, and provide a vital contribution to the assessment of natural hazards with respect to sea-level rise and coastal response.

  3. Sea-level and deep-sea-temperature variability over the past 5.3 million years.

    PubMed

    Rohling, E J; Foster, G L; Grant, K M; Marino, G; Roberts, A P; Tamisiea, M E; Williams, F

    2014-04-24

    Ice volume (and hence sea level) and deep-sea temperature are key measures of global climate change. Sea level has been documented using several independent methods over the past 0.5 million years (Myr). Older periods, however, lack such independent validation; all existing records are related to deep-sea oxygen isotope (δ(18)O) data that are influenced by processes unrelated to sea level. For deep-sea temperature, only one continuous high-resolution (Mg/Ca-based) record exists, with related sea-level estimates, spanning the past 1.5 Myr. Here we present a novel sea-level reconstruction, with associated estimates of deep-sea temperature, which independently validates the previous 0-1.5 Myr reconstruction and extends it back to 5.3 Myr ago. We find that deep-sea temperature and sea level generally decreased through time, but distinctly out of synchrony, which is remarkable given the importance of ice-albedo feedbacks on the radiative forcing of climate. In particular, we observe a large temporal offset during the onset of Plio-Pleistocene ice ages, between a marked cooling step at 2.73 Myr ago and the first major glaciation at 2.15 Myr ago. Last, we tentatively infer that ice sheets may have grown largest during glacials with more modest reductions in deep-sea temperature.

  4. In Brief: Deep-sea observatory

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2008-11-01

    The first deep-sea ocean observatory offshore of the continental United States has begun operating in the waters off central California. The remotely operated Monterey Accelerated Research System (MARS) will allow scientists to monitor the deep sea continuously. Among the first devices to be hooked up to the observatory are instruments to monitor earthquakes, videotape deep-sea animals, and study the effects of acidification on seafloor animals. ``Some day we may look back at the first packets of data streaming in from the MARS observatory as the equivalent of those first words spoken by Alexander Graham Bell: `Watson, come here, I need you!','' commented Marcia McNutt, president and CEO of the Monterey Bay Aquarium Research Institute, which coordinated construction of the observatory. For more information, see http://www.mbari.org/news/news_releases/2008/mars-live/mars-live.html.

  5. The role of atmospheric circulation patterns on short-term sea-level fluctuations along the eastern seaboard of the US

    NASA Astrophysics Data System (ADS)

    Sheridan, S. C.; Lee, C. C.; Pirhalla, D.; Ransi, V.

    2017-12-01

    Sea-level fluctuations over time are a product of short-term weather events, as well as long-term secular trends in sea-level rise. With sea-levl rise, these fluctuations increasingly have substantial impacts upon coastal ecosystems and impact society through coastal flooding events. In this research, we assess the impact of short-term events, combined with sea-level rise, through synoptic climatological analysis, exploring whether circulation pattern identification can be used to enhance probabilistic forecasts of flood likelihood. Self-organizing maps (SOMs) were created for two discrete atmospheric variables: 700-hPa geopotential height (700z) and sea-level pressure (SLP). For each variable, a SOM array of patterns was created based on data spanning 25°-50°N and 60°-90°W for the period 1979-2014. Sea-level values were derived from tidal gauges between Cape May, New Jersey and Charleston, South Carolina, along the mid-Atlantic coast of the US. Both anomalous sea-level values, as well as nuisance flood occurrence (defined using the local gauge threshold), were assessed. Results show the impacts of both the inverted barometer effect as well as surface wind forcing on sea levels. With SLP, higher sea levels are associated with either patterns that were indicative of on-shore flow or cyclones. At 700z, ridges situated along the east coast are associated with higher sea levels. As the SOM matrix arranges atmospheric patterns in a continuum, the nodes of each SOM show a clear spatial pattern in terms of anomalous sea level, including some significant sea-level anomalies associated with relatively ambiguous pressure patterns. Further, multi-day transitions are also analyzed, showing rapidly deepening cyclones, or persistent onshore flow, can be associated with the greatest likelihood of nuisance floods. Results are weaker with 700z than SLP; however, in some cases, it is clear that the mid-tropospheric circulation can modulate the connection between sea-level anomalies and surface circulation.

  6. Improving sea level simulation in Mediterranean regional climate models

    NASA Astrophysics Data System (ADS)

    Adloff, Fanny; Jordà, Gabriel; Somot, Samuel; Sevault, Florence; Arsouze, Thomas; Meyssignac, Benoit; Li, Laurent; Planton, Serge

    2017-08-01

    For now, the question about future sea level change in the Mediterranean remains a challenge. Previous climate modelling attempts to estimate future sea level change in the Mediterranean did not meet a consensus. The low resolution of CMIP-type models prevents an accurate representation of important small scales processes acting over the Mediterranean region. For this reason among others, the use of high resolution regional ocean modelling has been recommended in literature to address the question of ongoing and future Mediterranean sea level change in response to climate change or greenhouse gases emissions. Also, it has been shown that east Atlantic sea level variability is the dominant driver of the Mediterranean variability at interannual and interdecadal scales. However, up to now, long-term regional simulations of the Mediterranean Sea do not integrate the full sea level information from the Atlantic, which is a substantial shortcoming when analysing Mediterranean sea level response. In the present study we analyse different approaches followed by state-of-the-art regional climate models to simulate Mediterranean sea level variability. Additionally we present a new simulation which incorporates improved information of Atlantic sea level forcing at the lateral boundary. We evaluate the skills of the different simulations in the frame of long-term hindcast simulations spanning from 1980 to 2012 analysing sea level variability from seasonal to multidecadal scales. Results from the new simulation show a substantial improvement in the modelled Mediterranean sea level signal. This confirms that Mediterranean mean sea level is strongly influenced by the Atlantic conditions, and thus suggests that the quality of the information in the lateral boundary conditions (LBCs) is crucial for the good modelling of Mediterranean sea level. We also found that the regional differences inside the basin, that are induced by circulation changes, are model-dependent and thus not affected by the LBCs. Finally, we argue that a correct configuration of LBCs in the Atlantic should be used for future Mediterranean simulations, which cover hindcast period, but also for scenarios.

  7. Sea-level rise caused by climate change and its implications for society.

    PubMed

    Mimura, Nobuo

    2013-01-01

    Sea-level rise is a major effect of climate change. It has drawn international attention, because higher sea levels in the future would cause serious impacts in various parts of the world. There are questions associated with sea-level rise which science needs to answer. To what extent did climate change contribute to sea-level rise in the past? How much will global mean sea level increase in the future? How serious are the impacts of the anticipated sea-level rise likely to be, and can human society respond to them? This paper aims to answer these questions through a comprehensive review of the relevant literature. First, the present status of observed sea-level rise, analyses of its causes, and future projections are summarized. Then the impacts are examined along with other consequences of climate change, from both global and Japanese perspectives. Finally, responses to adverse impacts will be discussed in order to clarify the implications of the sea-level rise issue for human society.(Communicated by Kiyoshi HORIKAWA, M.J.A.).

  8. Regional characteristics of the effects of the El Niño-Southern Oscillation on the sea level in the China Sea

    NASA Astrophysics Data System (ADS)

    Wang, Hui; Liu, Kexiu; Wang, Aimei; Feng, Jianlong; Fan, Wenjing; Liu, Qiulin; Xu, Yao; Zhang, Zengjian

    2018-05-01

    Based on coastal tide level, satellite altimetry, and sea surface temperature (SST) data of offshore areas of China's coast and the equatorial Pacific Ocean, the regional characteristics of the effects of the El Niño-Southern Oscillation (ENSO) on the sea level in the China Sea were investigated. Singular value decomposition results show a significant teleconnection between the sea level in the China Sea and the SST of the tropical Pacific Ocean; the correlation coefficient decreases from south to north. Data from tide gauges along China's coast show that the seasonal sea-level variations are significantly correlated with the ENSO. In addition, China's coast was divided into three regions based on distinctive regional characteristics. Results obtained show that the annual amplitude of sea level was low during El Niño developing years, and especially so during the El Niño year. The ENSO intensity determined the response intensity of the annual amplitude of the sea level. The response region (amplitude) was relatively large for strong ENSO intensities. Significant oscillation periods at a timescale of 4-7 years existed in the sea level of the three regions. The largest amplitude of oscillation was 1.5 cm, which was the fluctuation with the 7-year period in the South China Sea. The largest amplitude of oscillation in the East China Sea was about 1.3 cm. The amplitude of oscillation with the 6-year period in the Bohai Sea and Yellow Sea was the smallest (less than 1 cm).

  9. The role of vertical land movements on late 19th century sea level rise at Cuxhaven, Germany

    NASA Astrophysics Data System (ADS)

    Niehüser, Sebastian; Jensen, Jürgen; Wahl, Thomas; Dangendorf, Sönke; Hofstede, Jacobus

    2015-04-01

    Tide gauges, located along the world's coastlines, represent one of the most important data sources with information about sea level change back into the 17th century, bridging the gap between paleo proxies and modern remote sensing data sources. While the worldwide coverage of tide gauges has increased considerably since the mid-20th century, there are only a few gauges available providing information about regional sea level changes before 1900. Furthermore, these tide gauge measurements are often contaminated by local vertical land movements (VLM) resulting from tectonic processes or local anthropogenic interventions. Such non-climatic effects need to be removed from the raw data to uncover climate signals, which are important, for instance, for answering the question whether and when sea level started to accelerate from the nearly constant rates over the past 2000 years. Here we focus on one of these long tide gauge records: Cuxhaven, which is located in the German Bight and provides uninterrupted digital time series of tidal high and low water levels since 1843. The record has been extensively studied during the past decades with respect to regional and global sea level rise. However, a question that still remains is the role of local subsidence before 1900 at the lighthouse of Cuxhaven, located close to the tide gauge. In 1855 Lentz installed a granite height mark at the lighthouse, which was later used as a proxy for VLMs of the tide gauge itself. The height of the control mark was derived by a levelling between Hamburg and Cuxhaven. These levellings were repeated five times between 1855 and 1900 and later evaluated by Siefert and Lassen (1985) with respect to the role of local subsidence. Based on a linear regression of individual levellings Siefert and Lassen (1985) concluded that the lighthouse subsided by an average rate of 2.8 mm/yr (1855-1875: 4.2 mm/yr; 1876-1890: 2 mm/yr; 1890-1900: 1.2 mm/yr). However, due to the massive uncertainties of these early levellings (especially the first by Lentz in 1855), the correction has been questioned several times in the recent years (e.g. Jensen et al. 1992; Wahl et al. 2011; Jensen et al. 2011). Here, we choose a different approach and compare the record of Cuxhaven to 18 nearby stations from the North and Baltic Sea region. Based on visual inspections, linear regression and correlation analyses before and after applying the correction we find that the Cuxhaven record compares best to the other sites if the correction is not applied. Therefore, we conclude that the correction remains still questionable and should not be applied to the raw data. References Jensen, J.; Mügge, H.-E. and Schönfeld, W.: Analyse der Wasserstandsentwicklung und Tidedynamik in der Deutschen Bucht, Die Küste, 53, 1992. Jensen, J.; Frank, T.; Wahl, T. and Dangendorf, S.: Analyse von hochaufgelösten Tidewasserständen und Ermittlung des MSL an der deutschen Nordseeküste (AMSeL), Abschlussbericht, Siegen, 2011. Siefert, W. and Lassen, H.: Gesamtdarstellung der Wasserstandsverhältnisse im Küstenvorfeld der Deutschen Bucht nach neuen Pegelaufzeichnungen, Die Küste, 42, 1985. Wahl, T.; Mudersbach, C. and Jensen J.: Assessing the hydrodynamic boundary conditions for risk analyses in coastal areas: A stochastic storm surge model, Nat. Hazards Earth Syst. Sci. 11, 2925-2939, doi:10.5194/nhess-11-2925-2011, 2011.

  10. Sponge bioerosion accelerated by ocean acidification across species and latitudes?

    NASA Astrophysics Data System (ADS)

    Wisshak, M.; Schönberg, C. H. L.; Form, A.; Freiwald, A.

    2014-06-01

    In many marine biogeographic realms, bioeroding sponges dominate the internal bioerosion of calcareous substrates such as mollusc beds and coral reef framework. They biochemically dissolve part of the carbonate and liberate so-called sponge chips, a process that is expected to be facilitated and accelerated in a more acidic environment inherent to the present global change. The bioerosion capacity of the demosponge Cliona celata Grant, 1826 in subfossil oyster shells was assessed via alkalinity anomaly technique based on 4 days of experimental exposure to three different levels of carbon dioxide partial pressure ( pCO2) at ambient temperature in the cold-temperate waters of Helgoland Island, North Sea. The rate of chemical bioerosion at present-day pCO2 was quantified with 0.08-0.1 kg m-2 year-1. Chemical bioerosion was positively correlated with increasing pCO2, with rates more than doubling at carbon dioxide levels predicted for the end of the twenty-first century, clearly confirming that C. celata bioerosion can be expected to be enhanced with progressing ocean acidification (OA). Together with previously published experimental evidence, the present results suggest that OA accelerates sponge bioerosion (1) across latitudes and biogeographic areas, (2) independent of sponge growth form, and (3) for species with or without photosymbionts alike. A general increase in sponge bioerosion with advancing OA can be expected to have a significant impact on global carbonate (re)cycling and may result in widespread negative effects, e.g. on the stability of wild and farmed shellfish populations, as well as calcareous framework builders in tropical and cold-water coral reef ecosystems.

  11. Long-term Internal Variability of the Tropical Pacific Atmosphere-Ocean System

    NASA Astrophysics Data System (ADS)

    Hadi Bordbar, Mohammad; Martin, Thomas; Park, Wonsun; Latif, Mojib

    2016-04-01

    The tropical Pacific has featured some remarkable trends during the recent decades such as an unprecedented strengthening of the Trade Winds, a strong cooling of sea surface temperatures (SST) in the eastern and central part, thereby slowing global warming and strengthening the zonal SST gradient, and highly asymmetric sea level trends with an accelerated rise relative to the global average in the western and a drop in the eastern part. These trends have been linked to an anomalously strong Pacific Walker Circulation, the major zonal atmospheric overturning cell in the tropical Pacific sector, but the origin of the strengthening is controversial. Here we address the question as to whether the recent decadal trends in the tropical Pacific atmosphere-ocean system are within the range of internal variability, as simulated in long unforced integrations of global climate models. We show that the recent trends are still within the range of long-term internal decadal variability. Further, such variability strengthens in response to enhanced greenhouse gas concentrations, which may further hinder detection of anthropogenic climate signals in that region.

  12. Climate Variability, Melt-Flow Acceleration, and Ice Quakes at the Western Slope of the Greenland Ice Sheet

    NASA Astrophysics Data System (ADS)

    Steffen, K.; Zwally, J. H.; Rial, J. A.; Behar, A.; Huff, R.

    2006-12-01

    The Greenland ice sheet experienced surface melt increase over the past 15 years with record melt years in 1987, 1991, 1998, 2002 and 2005. For the western part of the ice sheet the melt area increased by 30 percent (1979-2005). Monthly mean air temperatures increased in spring and fall by 0.23 deg. C per year since 1990, extending the length of melt and total ablation. Winter air temperatures increased by as much as 0.5 deg. C per year during the past 15 years. The equilibrium line altitude ranged between 400 and 1530 m above sea level at 70 deg. north along the western slope of the ice sheet for the past 15 years, equaling a horizontal distance of 100 km. The ELA has been below the Swiss Camp (1100 m elevation) in the nineties, and since 1997 moved above the Swiss Camp height. An increase in ELA leads to an increase in melt water run-off which has been verified by regional model studies (high-resolution re-analysis). Interannual variability of snow accumulation varies from 0.3 to 2.0 m, whereas snow and ice ablation ranges from 0 to 1.5 m water equivalent at Swiss Camp during 1990-2005. A GPS network (10 stations) monitors ice velocity, acceleration, and surface height change at high temporal resolution throughout the year. The network covers a range of 500 and 1500 m above sea level, close to the Ilulissat Icefjord World Heritage region. The ice sheet continued to accelerate during the height of the melt season with short-term velocity increases up to 100 percent, and vertical uplift rates of 0.5 m. There seems to be a good correlation between the change in ice velocity and total surface melt, suggesting that melt water penetrates to great depth through moulins and cracks, lubricating the bottom of the ice sheet. A new bore-hole video movie will be shown from a 110 m deep moulin close to Swiss Camp. A PASSCAL array of 10 portable, 3-component seismic stations deployed around Swiss Camp from May to August 2006 detected numerous microearthquakes within the ice sheet and possibly at its contact with the underlying bedrock some 60 km to the south of Swiss Camp. The seismic data collected will be discussed.

  13. Sea-level change during the last 2500 years in New Jersey, USA

    USGS Publications Warehouse

    Kemp, Andrew C.; Horton, Benjamin P.; Vane, Christopher H.; Bernhardt, Christopher E.; Corbett, D. Reide; Engelhart, Simon E.; Anisfeld, Shimon C.; Parnell, Andrew C.; Cahill, Niamh

    2013-01-01

    Relative sea-level changes during the last ∼2500 years in New Jersey, USA were reconstructed to test if late Holocene sea level was stable or included persistent and distinctive phases of variability. Foraminifera and bulk-sediment δ13C values were combined to reconstruct paleomarsh elevation with decimeter precision from sequences of salt-marsh sediment at two sites using a multi-proxy approach. The additional paleoenvironmental information provided by bulk-sediment δ13C values reduced vertical uncertainty in the sea-level reconstruction by about one third of that estimated from foraminifera alone using a transfer function. The history of sediment deposition was constrained by a composite chronology. An age–depth model developed for each core enabled reconstruction of sea level with multi-decadal resolution. Following correction for land-level change (1.4 mm/yr), four successive and sustained (multi-centennial) sea-level trends were objectively identified and quantified (95% confidence interval) using error-in-variables change point analysis to account for age and sea-level uncertainties. From at least 500 BC to 250 AD, sea-level fell at 0.11 mm/yr. The second period saw sea-level rise at 0.62 mm/yr from 250 AD to 733 AD. Between 733 AD and 1850 AD, sea level fell at 0.12 mm/yr. The reconstructed rate of sea-level rise since ∼1850 AD was 3.1 mm/yr and represents the most rapid period of change for at least 2500 years. This trend began between 1830 AD and 1873 AD. Since this change point, reconstructed sea-level rise is in agreement with regional tide-gauge records and exceeds the global average estimate for the 20th century. These positive and negative departures from background rates demonstrate that the late Holocene sea level was not stable in New Jersey.

  14. An Artist's Journey Through Endangered Lands; conveying hydrological changes and land loss informed and inspired by Science

    NASA Astrophysics Data System (ADS)

    Varisco, M. M.

    2017-12-01

    How do we live with nature? This simple question began a 10 year art-science journey into the dynamic and endangered wetlands of southeast Louisiana and its accelerated coastal decline. Since the 1930s, nearly 1,900 square miles of Louisiana's coast have been lost. How might artworks, informed by science, convey the seriousness and urgency of this loss to a wider public? Artist Michel Varisco engaged in dialogue with environmental scientist Doug Meffert and Dan Etheridge (of Meffert + Etheridge and The Center for Bioenvironmental Research at Tulane and Xavier) about the hydrological changes which have accelerated or mitigated Louisiana's land losses. She was also inspired by the unique underwater studies of biologist Suzanne Fredericq on pollutants in the Gulf from the BP oil spill and of marine ecologist Nancy Rabalais who assesses hypoxia dynamics and their impact on "dead zones." The art work that emerged includes Shifting and Fluid States, as well as current projects Below Sea Level and Turning: prayer wheels for the Mississippi River, an art commission awarded by the City of New Orleans on view during Prospect.4 Art Biennial and AGU. Shifting is a series of large-scale photos shot from the air and water that observe the dynamic movement of the Louisiana coastline over the course of a short but powerful geologic timeline and explores the consequences of human altercations to those lands and waters via land loss and sea level rise. Turning is based on the work of Kate Orff's maps from Petrochemical America and the 1944 maps of Harold Fisk. Fisk pioneered an understanding of alluvial and sedimentological processes of the Mississippi Valley, while Orff's maps describe the Mississippi River from Baton Rouge to New Orleans during three different eras: the wild un-leveed land building era; the plantation, slavery era; and the petrochemical era of present day land loss. Shifting has been exhibited around the world and Turning has already been seen by 50,000 people.

  15. Accelerated West Antarctic ice mass loss continues to outpace East Antarctic gains

    NASA Astrophysics Data System (ADS)

    Harig, Christopher; Simons, Frederik J.

    2015-04-01

    While multiple data sources have confirmed that Antarctica is losing ice at an accelerating rate, different measurement techniques estimate the details of its geographically highly variable mass balance with different levels of accuracy, spatio-temporal resolution, and coverage. Some scope remains for methodological improvements using a single data type. In this study we report our progress in increasing the accuracy and spatial resolution of time-variable gravimetry from the Gravity Recovery and Climate Experiment (GRACE). We determine the geographic pattern of ice mass change in Antarctica between January 2003 and June 2014, accounting for glacio-isostatic adjustment (GIA) using the IJ05_R2 model. Expressing the unknown signal in a sparse Slepian basis constructed by optimization to prevent leakage out of the regions of interest, we use robust signal processing and statistical estimation methods. Applying those to the latest time series of monthly GRACE solutions we map Antarctica's mass loss in space and time as well as can be recovered from satellite gravity alone. Ignoring GIA model uncertainty, over the period 2003-2014, West Antarctica has been losing ice mass at a rate of - 121 ± 8 Gt /yr and has experienced large acceleration of ice mass losses along the Amundsen Sea coast of - 18 ± 5 Gt /yr2, doubling the mass loss rate in the past six years. The Antarctic Peninsula shows slightly accelerating ice mass loss, with larger accelerated losses in the southern half of the Peninsula. Ice mass gains due to snowfall in Dronning Maud Land have continued to add about half the amount of West Antarctica's loss back onto the continent over the last decade. We estimate the overall mass losses from Antarctica since January 2003 at - 92 ± 10 Gt /yr.

  16. Paleocene-Eocene and Plio-Pleistocene sea-level changes as "species pumps" in Southeast Asia: Evidence from Althepus spiders.

    PubMed

    Li, Fengyuan; Li, Shuqiang

    2018-05-17

    Sea-level change has been viewed as a primary driver in the formation of biodiversity. Early studies confirmed that Plio-Pleistocene sea-level changes led to the isolation and subsequent genetic differentiation of Southeast (SE) Asian organisms over short geological timescales. However, long-time consequences of sea-level fluctuations remain unclear. Herein, we analyze the evolutionary history of Althepus (spiders) whose distribution encompasses Indo-Burma and the Sunda shelf islands to understand how sea-level changes over shallow and deep timescales effected their history. Our integrative analyses, including phylogeny, divergence times, ancestral area reconstruction and diversification dynamics, reveal an intricate pattern of diversification, probably triggered by sea-level fluctuations during the Paleocene-Eocene and Plio-Pleistocene. The timing of one early divergence between the Indo-Burmese and Sundaic species coincides with late Paleocene and early Eocene high global sea levels, which induced the formation of inland seaways in the Thai-Malay Peninsula. Subsequent lowered sea levels could have provided a land bridge for its dispersal colonization across the Isthmus of Kra. Analyses suggest that Plio-Pleistocene sea-level rises contributed to recent divergence of many species. Thus, our findings cannot reject the hypothesis that sea-level changes during the Paleocene-Eocene and Plio-Pleistocene played a major role in generating biodiversity in SE Asia; sea-level changes can act as "species pumps". Copyright © 2018 Elsevier Inc. All rights reserved.

  17. Potentiometric surface and water-level difference maps of selected confined aquifers in Southern Maryland and Maryland’s Eastern Shore, 1975-2015

    USGS Publications Warehouse

    Curtin, Stephen E.; Staley, Andrew W.; Andreasen, David C.

    2016-01-01

    Key Results This report presents potentiometric-surface maps of the Aquia and Magothy aquifers and the Upper Patapsco, Lower Patapsco, and Patuxent aquifer systems using water levels measured during September 2015. Water-level difference maps are also presented for these aquifers. The water-level differences in the Aquia aquifer are shown using groundwater-level data from 1982 and 2015, while the water-level differences are shown for the Magothy aquifer using data from 1975 and 2015. Water-level difference maps for both the Upper Patapsco and Lower Patapsco aquifer systems are shown using data from 1990 and 2015. The water-level differences in the Patuxent aquifer system are shown using groundwater-level data from 2007 and 2015. The potentiometric surface maps show water levels ranging from 53 feet above sea level to 164 feet below sea level in the Aquia aquifer, from 86 feet above sea level to 106 feet below sea level in the Magothy aquifer, from 115 feet above sea level to 115 feet below sea level in the Upper Patapsco aquifer system, from 106 feet above sea level to 194 feet below sea level in the Lower Patapsco aquifer system, and from 165 feet above sea level to 171 feet below sea level in the Patuxent aquifer system. Water levels have declined by as much as 116 feet in the Aquia aquifer since 1982, 99 feet in the Magothy aquifer since 1975, 66 and 83 feet in the Upper Patapsco and Lower Patapsco aquifer systems, respectively, since 1990, and 80 feet in the Patuxent aquifer system since 2007.

  18. Sea-Level Projections from the SeaRISE Initiative

    NASA Technical Reports Server (NTRS)

    Nowicki, Sophie; Bindschadler, Robert

    2011-01-01

    SeaRISE (Sea-level Response to Ice Sheet Evolution) is a community organized modeling effort, whose goal is to inform the fifth IPCC of the potential sea-level contribution from the Greenland and Antarctic ice sheets in the 21st and 22nd century. SeaRISE seeks to determine the most likely ice sheet response to imposed climatic forcing by initializing an ensemble of models with common datasets and applying the same forcing to each model. Sensitivity experiments were designed to quantify the sea-level rise associated with a change in: 1) surface mass balance, 2) basal lubrication, and 3) ocean induced basal melt. The range of responses, resulting from the multi-model approach, is interpreted as a proxy of uncertainty in our sea-level projections. http://websrv.cs .umt.edu/isis/index.php/SeaRISE_Assessment.

  19. Steric and mass-induced Mediterranean sea level trends from 14 years of altimetry data

    NASA Astrophysics Data System (ADS)

    Criado-Aldeanueva, Francisco; Del Río Vera, Jorge; García-Lafuente, Jesús

    2008-02-01

    Long-term series of almost 14 years of altimetry data (1992-2005) have been analysed along with Sea Surface Temperature (SST) and temperature and salinity profiles to investigate sea level trends over the Mediterranean Sea. Although sea level variations are mainly driven by the steric contribution, the mass-induced component plays some role in modulating its oscillation. A spatially averaged positive trend of 2.1 ± 0.6 mm/year has been observed, but a change in sign in 2001 seems to appear. Steric effects (mainly on thermal origin) account for ˜ 55% of sea level trend. Although Mediterranean Sea is a semi-enclosed basin, this value is comparable to that reported for the global ocean. Sea level rise is particularly important in the Levantine basin south of Crete with values up to 10 ± 1 mm/year. Other areas of sea level rise are localised throughout the Levantine basin and in the Adriatic and Alboran Seas, with more moderate values. Sea level drop areas are localised in the Algerian basin, between the Balearic Islands and the African coasts and, particularly, in the Ionian basin. In this area, negative trends as high as - 10 ± 0.8 mm/year are detected mainly due to the mass-induced contribution, which suggests decadal changes of surface circulation. The inferred sea level trends have been correlated with North Atlantic Oscillation (NAO) indices and a low but significant correlation has been detected between sea level in the Levantine and Balearic basins and NAO index.

  20. The sea-level fingerprints of ice-sheet collapse during interglacial periods

    NASA Astrophysics Data System (ADS)

    Hay, Carling; Mitrovica, Jerry X.; Gomez, Natalya; Creveling, Jessica R.; Austermann, Jacqueline; E. Kopp, Robert

    2014-03-01

    Studies of sea level during previous interglacials provide insight into the stability of polar ice sheets in the face of global climate change. Commonly, these studies correct ancient sea-level highstands for the contaminating effect of isostatic adjustment associated with past ice age cycles, and interpret the residuals as being equivalent to the peak eustatic sea level associated with excess melting, relative to present day, of ancient polar ice sheets. However, the collapse of polar ice sheets produces a distinct geometry, or fingerprint, of sea-level change, which must be accounted for to accurately infer peak eustatic sea level from site-specific residual highstands. To explore this issue, we compute fingerprints associated with the collapse of the Greenland Ice Sheet, West Antarctic Ice Sheet, and marine sectors of the East Antarctic Ice Sheet in order to isolate regions that would have been subject to greater-than-eustatic sea-level change for all three cases. These fingerprints are more robust than those associated with modern melting events, when applied to infer eustatic sea level, because: (1) a significant collapse of polar ice sheets reduces the sensitivity of the computed fingerprints to uncertainties in the geometry of the melt regions; and (2) the sea-level signal associated with the collapse will dominate the signal from steric effects. We evaluate these fingerprints at a suite of sites where sea-level records from interglacial marine isotopes stages (MIS) 5e and 11 have been obtained. Using these results, we demonstrate that previously discrepant estimates of peak eustatic sea level during MIS5e based on sea-level markers in Australia and the Seychelles are brought into closer accord.

  1. Sea-level responses to sediment transport over the last ice age cycle

    NASA Astrophysics Data System (ADS)

    Ferrier, K.; Mitrovica, J. X.

    2013-12-01

    Sea-level changes over the last ice age cycle were instrumental in steering Earth's topographic evolution. These sea-level variations were driven by changes in surface mass loads, including not only ice and ocean mass variations but also the transfer of rock from eroding mountains to sedimentary deposits. Here we use an extended numerical model of ice age sea level (Dalca et al., 2013) to explore how sediment erosion and deposition affected global sea-level variations over the last ice age cycle. The model takes histories of ice and sediment loads as inputs, and it computes gravitationally self-consistent sea level responses by accounting for the deformational, gravitational, and rotational perturbations in the Earth's viscoelastic form. In these model simulations, we use published estimates of erosion rates, sedimentation rates, and ice sheet variations to constrain sediment and ice loading since the Last Interglacial. We explore sea-level responses to several erosional and depositional scenarios, and in each we quantify the relative contributions of crustal deformation and gravitational perturbation to the computed sea-level change. We also present a case study to illustrate the effects that sediment transfer can have on sea level at the regional scale. In particular, we focus on the region surrounding the Indus River, where fluvial sediment fluxes are among the highest on Earth. Preliminary model results suggest that sediment fluxes from Asia to the ocean are large enough to produce a significant response in sea level along the northeastern coast of the Arabian Sea. Moreover, they suggest that modeled sea-level histories are sensitive to the timing and spatial distribution of sediment erosion and deposition. For instance, sediment deposition along the continental shelf - which may have been the primary site of Indus River sediment deposition during the Holocene - produces a different sea-level response than sediment deposition on the deep-sea Indus Fan, where most of the Indus sediment may have been deposited during the glacial period preceding the Holocene. These simulations highlight the role that massive continent-to-ocean sediment fluxes can play in driving sea-level patterns over thousands of years. References: Dalca A.V., Ferrier K.L., Mitrovica J.X., Perron J.T., Milne G.A., Creveling J.R., 2013. On postglacial sea level - III: Incorporating sediment redistribution. Geophys. J. Int., doi: 10.1093/gji/ggt089.

  2. An Ongoing Shift in Pacific Ocean Sea Level

    NASA Astrophysics Data System (ADS)

    Cheon, S. H.; Hamlington, B.; Thompson, P. R.; Merrifield, M. A.; Nerem, R. S.; Leben, R. R.; Kim, K. Y.

    2016-12-01

    According to the satellite altimeter data, local sea level trends have shown considerable diversity spatially as well as temporally. In particular, dramatic changes in sea level in the Pacific have been observed throughout the altimeter record, with high trends in the western tropical Pacific (WTP) and comparatively lower trends in the eastern Pacific. In recent years, however, a shift appears to be occurring, with falling trends in the (WTP) and rising trends in the eastern tropical and northeastern Pacific (ETP and NEP). From a planning perspective, it is important to figure out whether these sharp changes are part of a short-term shift or the beginning of a longer-term change in sea level. In this study, we distinguish the origins of the recent shift in Pacific Ocean sea level. Cyclostationary empirical orthogonal function (CSEOF) analysis is applied to separate the properties of the recent sea level change in the Pacific Ocean. From the CSEOF analysis results, we point out two dominant modes of sea level shift in the Pacific Ocean. The first mode is related to the biennial oscillation associated with El Nino-Southern Oscillation (ENSO) and the other is related to lower-frequency variability with a strong signal in the northern Pacific. Considering a relatively high correlation between recent sea level change and the low-frequency mode, we suggest that the low-frequency mode has played a dominant role in the sea level shift in the Pacific Ocean. Using a reconstructed sea level dataset, we examine the variability of this low-frequency mode in the past, and find similar periods of dramatic sea level change in the Pacific. Based on the sea level record of the last five years and according to the analysis, we conclude that in the coming decades, higher sea level trends off the U.S. West Coast should be expected, while reduced trends in the WTP will likely be observed.

  3. Effects of sediment transport and deposition on crustal loading, Earth's gravitational field, and sea level

    NASA Astrophysics Data System (ADS)

    Ferrier, K.; Mitrovica, J. X.; Perron, T.; Milne, G. A.; Wickert, A. D.

    2012-12-01

    Spatial patterns in static sea level are controlled by the interplay between the history of ice mass variations and the associated deformational, gravitational and rotational perturbations in the Earth's state. Over the last decade, there has been a renewed effort to extend classic treatments of ice-age sea-level change (Farrell and Clark, 1976) to incorporate effects such as shoreline migration due to the local onlap or offlap of seawater and changes in the extent of grounded, marine-based ice, as well as feedbacks between sea level and the orientation of Earth's rotation axis. To date, the impact of sediment transport - whether in the context of glacial processes, or other processes such as fluvial deposition - has not been incorporated into a gravitationally self-consistent sea-level theory. Here we briefly summarize the main elements of a new sea-level theory that includes sediment transport, and we apply this new theory to investigate crustal deformation and sea-level changes driven by sediment deposition on the Mississippi fan in the Gulf of Mexico. The calculations incorporate sediment transport from the start of the last glacial cycle through to the present and are constrained to conserve sediment and ocean mass. We compare relative sea level histories predicted with and without sediment transport at sites in and around the Gulf of Mexico, and we quantify the relative impacts of gravitational and deformational effects of sediment deposition. We also explore the extent to which sea-level changes associated with sediment transport impact the interpretation of paleo-sea-level records. Our new sea-level formulation provides an important component of a comprehensive coupling between sediment transfer and sea level on local, regional and global spatial scales, and on time scales extending from decades to tens of thousands of years. References: Farrell, W.E., and Clark, J.A., 1976. On postglacial sea level: Geophysical Journal of the Royal Astronomical Society, v. 46, p. 647-667.

  4. A fractal analysis of quaternary, Cenozoic-Mesozoic, and Late Pennsylvanian sea level changes

    NASA Technical Reports Server (NTRS)

    Hsui, Albert T.; Rust, Kelly A.; Klein, George D.

    1993-01-01

    Sea level changes are related to both climatic variations and tectonic movements. The fractal dimensions of several sea level curves were compared to a modern climatic fractal dimension of 1.26 established for annual precipitation records. A similar fractal dimension (1.22) based on delta(O-18/O-16) in deep-sea sediments has been suggested to characterize climatic change during the past 2 m.y. Our analysis indicates that sea level changes over the past 150,000 to 250,000 years also exhibit comparable fractal dimensions. Sea level changes for periods longer than about 30 m.y. are found to produce fractal dimensions closer to unity and Missourian (Late Pennsylvanian) sea level changes yield a fractal dimension of 1.41. The fact that these sea level curves all possess fractal dimensions less than 1.5 indicates that sea level changes exhibit nonperiodic, long-run persistence. The different fractal dimensions calculated for the various time periods could be the result of a characteristic overprinting of the sediment recored by prevailing processes during deposition. For example, during the Quaternary, glacio-eustatic sea level changes correlate well with the present climatic signature. During the Missourian, however, mechanisms such as plate reorganization may have dominated, resulting in a significantly different fractal dimension.

  5. Indo-Pacific sea level variability during recent decades

    NASA Astrophysics Data System (ADS)

    Yamanaka, G.; Tsujino, H.; Nakano, H.; Urakawa, S. L.; Sakamoto, K.

    2016-12-01

    Decadal variability of sea level in the Indo-Pacific region is investigated using a historical OGCM simulation. The OGCM driven by the atmospheric forcing removing long-term trends clearly exhibits decadal sea level variability in the Pacific Ocean, which is associated with eastern tropical Pacific thermal anomalies. During the period of 1977-1987, the sea level anomalies are positive in the eastern equatorial Pacific and show deviations from a north-south symmetric distribution, with strongly negative anomalies in the western tropical South Pacific. During the period of 1996-2006, in contrast, the sea level anomalies are negative in the eastern equatorial Pacific and show a nearly north-south symmetric pattern, with positive anomalies in both hemispheres. Concurrently, sea level anomalies in the south-eastern Indian Ocean vary with those in the western tropical Pacific. These sea level variations are closely related to large-scale wind fields. Indo-Pacific sea level distributions are basically determined by wind anomalies over the equatorial region as well as wind stress curl anomalies over the off-equatorial region.

  6. Regional Sea Level Scenarios for Coastal Risk Management: Managing the Uncertainty of Future Sea Level Change and Extreme Water Levels for Department of Defense Coastal Sites Worldwide

    DTIC Science & Technology

    2016-04-01

    SERDP NOAA USACE Ocean MANAGING THE UNCERTAINTY OF FUTURE SEA LEVEL CHANGE AND EXTREME WATER LEVELS FOR DEPARTMENT OF DEFENSE COASTAL SITES...WORLDWIDE APRIL 2016 REGIONAL SEA LEVEL SCENARIOS FOR COASTAL RISK MANAGEMENT: COVER PHOTOS, FROM LEFT TO RIGHT: - Overwash of the island of Roi-Namur on...J.A., S. Gill, J. Obeysekera, W. Sweet, K. Knuuti, and J. Marburger. 2016. Regional Sea Level Scenarios for Coastal Risk Management: Managing the

  7. Sea ice, rain-on-snow and tundra reindeer nomadism in Arctic Russia

    PubMed Central

    Kumpula, Timo; Meschtyb, Nina; Laptander, Roza; Macias-Fauria, Marc; Zetterberg, Pentti; Verdonen, Mariana; Kim, Kwang-Yul; Boisvert, Linette N.; Stroeve, Julienne C.; Bartsch, Annett

    2016-01-01

    Sea ice loss is accelerating in the Barents and Kara Seas (BKS). Assessing potential linkages between sea ice retreat/thinning and the region's ancient and unique social–ecological systems is a pressing task. Tundra nomadism remains a vitally important livelihood for indigenous Nenets and their large reindeer herds. Warming summer air temperatures have been linked to more frequent and sustained summer high-pressure systems over West Siberia, Russia, but not to sea ice retreat. At the same time, autumn/winter rain-on-snow (ROS) events have become more frequent and intense. Here, we review evidence for autumn atmospheric warming and precipitation increases over Arctic coastal lands in proximity to BKS ice loss. Two major ROS events during November 2006 and 2013 led to massive winter reindeer mortality episodes on the Yamal Peninsula. Fieldwork with migratory herders has revealed that the ecological and socio-economic impacts from the catastrophic 2013 event will unfold for years to come. The suggested link between sea ice loss, more frequent and intense ROS events and high reindeer mortality has serious implications for the future of tundra Nenets nomadism. PMID:27852939

  8. Sea ice, rain-on-snow and tundra reindeer nomadism in Arctic Russia.

    PubMed

    Forbes, Bruce C; Kumpula, Timo; Meschtyb, Nina; Laptander, Roza; Macias-Fauria, Marc; Zetterberg, Pentti; Verdonen, Mariana; Skarin, Anna; Kim, Kwang-Yul; Boisvert, Linette N; Stroeve, Julienne C; Bartsch, Annett

    2016-11-01

    Sea ice loss is accelerating in the Barents and Kara Seas (BKS). Assessing potential linkages between sea ice retreat/thinning and the region's ancient and unique social-ecological systems is a pressing task. Tundra nomadism remains a vitally important livelihood for indigenous Nenets and their large reindeer herds. Warming summer air temperatures have been linked to more frequent and sustained summer high-pressure systems over West Siberia, Russia, but not to sea ice retreat. At the same time, autumn/winter rain-on-snow (ROS) events have become more frequent and intense. Here, we review evidence for autumn atmospheric warming and precipitation increases over Arctic coastal lands in proximity to BKS ice loss. Two major ROS events during November 2006 and 2013 led to massive winter reindeer mortality episodes on the Yamal Peninsula. Fieldwork with migratory herders has revealed that the ecological and socio-economic impacts from the catastrophic 2013 event will unfold for years to come. The suggested link between sea ice loss, more frequent and intense ROS events and high reindeer mortality has serious implications for the future of tundra Nenets nomadism. © 2016 The Authors.

  9. GGOS Focus Area 3: Understanding and Forecasting Sea-Level Rise and Variability

    NASA Astrophysics Data System (ADS)

    Schöne, Tilo; Shum, Ck; Tamisiea, Mark; Woodworth, Philip

    2017-04-01

    Sea level and its change have been measured for more than a century. Especially for coastal nations, deltaic regions, and coastal-oriented industries, observations of tides, tidal extremes, storm surges, and sea level rise at the interannual or longer scales have substantial impacts on coastal vulnerability towards resilience and sustainability of world's coastal regions. To date, the observed global sea level rise is largely associated with climate related changes. To find the patterns and fingerprints of those changes, and to e.g., separate the land motion from sea level signals, different monitoring techniques have been developed. Some of them are local, e.g., tide gauges, while others are global, e.g., satellite altimetry. It is well known that sea level change and land vertical motion varies regionally, and both signals need to be measured in order to quantify relative sea level at the local scale. The Global Geodetic Observing System (GGOS) and its services contribute in many ways to the monitoring of the sea level. These includes tide gauge observations, estimation of gravity changes, satellite altimetry, InSAR/Lidar, GNSS-control of tide gauges, providing ground truth sites for satellite altimetry, and importantly the maintenance of the International Reference Frame. Focus Area 3 (Understanding and Forecasting Sea-Level Rise and Variability) of GGOS establishes a platform and a forum for researchers and authorities dealing with estimating global and local sea level changes in a 10- to 30-year time span, and its project to the next century or beyond. It presents an excellent opportunity to emphasize the global, through to regional and local, importance of GGOS to a wide range of sea-level related science and practical applications. Focus Area 3 works trough demonstration projects to highlight the value of geodetic techniques to sea level science and applications. Contributions under a call for participation (http://www.ggos.org/Applications/theme3_SL.html) are welcome. The present status of GGOS Focus Area 3 will be highlighted. http://www.ggos-portal.org/lang_en/GGOS-Portal/EN/Themes/SeaLevel/seaLevel.html

  10. Climate change impacts on tropical cyclones and extreme sea levels in the South Pacific — A regional assessment

    NASA Astrophysics Data System (ADS)

    Walsh, Kevin J. E.; McInnes, Kathleen L.; McBride, John L.

    2012-01-01

    This paper reviews the current understanding of the effect of climate change on extreme sea levels in the South Pacific region. This region contains many locations that are vulnerable to extreme sea levels in the current climate, and projections indicate that this vulnerability will increase in the future. The recent publication of authoritative statements on the relationship between global warming and global sea level rise, tropical cyclones and the El Niño-Southern Oscillation phenomenon has motivated this review. Confident predictions of global mean sea level rise are modified by regional differences in the steric (density-related) component of sea level rise and changing gravitational interactions between the ocean and the ice sheets which affect the regional distribution of the eustatic (mass-related) contribution to sea level rise. The most extreme sea levels in this region are generated by tropical cyclones. The intensity of the strongest tropical cyclones is likely to increase, but many climate models project a substantial decrease in tropical cyclone numbers in this region, which may lead to an overall decrease in the total number of intense tropical cyclones. This projection, however, needs to be better quantified using improved high-resolution climate model simulations of tropical cyclones. Future changes in ENSO may lead to large regional variations in tropical cyclone incidence and sea level rise, but these impacts are also not well constrained. While storm surges from tropical cyclones give the largest sea level extremes in the parts of this region where they occur, other more frequent high sea level events can arise from swell generated by distant storms. Changes in wave climate are projected for the tropical Pacific due to anthropogenically-forced changes in atmospheric circulation. Future changes in sea level extremes will be caused by a combination of changes in mean sea level, regional sea level trends, tropical cyclone incidence and wave climate. Recommendations are given for research to increase understanding of the response of these factors to climate change. Implications of the results for adaptation research are also discussed.

  11. 30-Year Satellite Record Reveals Contrasting Arctic and Antarctic Decadal Sea Ice Variability

    NASA Technical Reports Server (NTRS)

    Cavalieri, D. J.; Parkinson, C. L.; Vinnikov, K. Y.

    2003-01-01

    A 30-year satellite record of sea ice extents derived mostly from satellite microwave radiometer observations reveals that the Arctic sea ice extent decreased by 0.30+0.03 x 10(exp 6) square kilometers per 10 yr from 1972 through 2002, but by 0.36 plus or minus 0.05 x 10(exp 6) square kilometers per 10yr from 1979 through 2002, indicating an acceleration of 20% in the rate of decrease. In contrast, the Antarctic sea ice extent decreased dramatically over the period 1973-1977, then gradually increased. Over the full 30-year period, the Antarctic ice extent decreased by 0.15 plus or minus 0.08 x 10(exp 6) square kilometers per 10 yr. The trend reversal is attributed to a large positive anomaly in Antarctic sea ice extent in the early 1970's, an anomaly that apparently began in the late 1960's, as observed in early visible and infrared satellite images.

  12. Eustatic control of turbidites and winnowed turbidites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shanmugam, G.; Moiola, R.J.

    1982-05-01

    Global changes in sea level, primarily the results of tectonism and glaciation, control deep-sea sedimentation. During periods of low sea level the frequency of turbidity currents is greatly increased. Episodes of low sea level also cause vigorous contour currents, which winnow away the fines of turbidites. In the rock record, the occurrence of most turbidites and winnowed turbidities closely corresponds to global lowstands of paleo-sea level. This observation may be useful in predicting the occurrence of deep-sea reservoir facies in the geologic record.

  13. Potentiometric Surface of the Lower Patapsco Aquifer in Southern Maryland, September 2007

    USGS Publications Warehouse

    Curtin, Stephen E.; Andreasen, David C.; Staley, Andrew W.

    2009-01-01

    This report presents a map showing the potentiometric surface of the lower Patapsco aquifer in the Patapsco Formation of Early Cretaceous age in Southern Maryland during September 2007. The map is based on water-level measurements in 65 wells. The highest measured water level was 111 feet above sea level near the northwestern boundary and outcrop area of the aquifer in northern Prince George's County. From this area, the potentiometric surface declined towards well fields at Severndale and Arnold. The measured ground-water levels were 87 feet below sea level at Severndale, and 42 feet below sea level at Arnold. There was also a cone of depression covering a large area in Charles County that includes Waldorf, La Plata, Indian Head, and the Morgantown power plant. The ground-water levels measured were as low as 219 feet below sea level at Waldorf, 187 feet below sea level at La Plata, 106 feet below sea level at Indian Head, and 89 feet below sea level at the Morgantown power plant.

  14. Description and verification of a U.S. Naval Research Lab's loosely coupled data assimilation system for the Navy's Earth System Model

    NASA Astrophysics Data System (ADS)

    Barton, N. P.; Metzger, E. J.; Smedstad, O. M.; Ruston, B. C.; Wallcraft, A. J.; Whitcomb, T.; Ridout, J. A.; Zamudio, L.; Posey, P.; Reynolds, C. A.; Richman, J. G.; Phelps, M.

    2017-12-01

    The Naval Research Laboratory is developing an Earth System Model (NESM) to provide global environmental information to meet Navy and Department of Defense (DoD) operations and planning needs from the upper atmosphere to under the sea. This system consists of a global atmosphere, ocean, ice, wave, and land prediction models and the individual models include: atmosphere - NAVy Global Environmental Model (NAVGEM); ocean - HYbrid Coordinate Ocean Model (HYCOM); sea ice - Community Ice CodE (CICE); WAVEWATCH III™; and land - NAVGEM Land Surface Model (LSM). Data assimilation is currently loosely coupled between the atmosphere component using a 6-hour update cycle in the Naval Research Laboratory (NRL) Atmospheric Variational Data Assimilation System - Accelerated Representer (NAVDAS-AR) and the ocean/ice components using a 24-hour update cycle in the Navy Coupled Ocean Data Assimilation (NCODA) with 3 hours of incremental updating. This presentation will describe the US Navy's coupled forecast model, the loosely coupled data assimilation, and compare results against stand-alone atmosphere and ocean/ice models. In particular, we will focus on the unique aspects of this modeling system, which includes an eddy resolving ocean model and challenges associated with different update-windows and solvers for the data assimilation in the atmosphere and ocean. Results will focus on typical operational diagnostics for atmosphere, ocean, and ice analyses including 500 hPa atmospheric height anomalies, low-level winds, temperature/salinity ocean depth profiles, ocean acoustical proxies, sea ice edge, and sea ice drift. Overall, the global coupled system is performing with comparable skill to the stand-alone systems.

  15. Female Listeners’ Autonomic Responses to Dramatic Shifts Between Loud and Soft Music/Sound Passages: A Study of Heavy Metal Songs

    PubMed Central

    Cheng, Tzu-Han; Tsai, Chen-Gia

    2016-01-01

    Although music and the emotion it conveys unfold over time, little is known about how listeners respond to shifts in musical emotions. A special technique in heavy metal music utilizes dramatic shifts between loud and soft passages. Loud passages are penetrated by distorted sounds conveying aggression, whereas soft passages are often characterized by a clean, calm singing voice and light accompaniment. The present study used heavy metal songs and soft sea sounds to examine how female listeners’ respiration rates and heart rates responded to the arousal changes associated with auditory stimuli. The high-frequency power of heart rate variability (HF-HRV) was used to assess cardiac parasympathetic activity. The results showed that the soft passages of heavy metal songs and soft sea sounds expressed lower arousal and induced significantly higher HF-HRVs than the loud passages of heavy metal songs. Listeners’ respiration rate was determined by the arousal level of the present music passage, whereas the heart rate was dependent on both the present and preceding passages. Compared with soft sea sounds, the loud music passage led to greater deceleration of the heart rate at the beginning of the following soft music passage. The sea sounds delayed the heart rate acceleration evoked by the following loud music passage. The data provide evidence that sound-induced parasympathetic activity affects listeners’ heart rate in response to the following music passage. These findings have potential implications for future research on the temporal dynamics of musical emotions. PMID:26925009

  16. Wind-driven export of Weddell Sea slope water

    NASA Astrophysics Data System (ADS)

    Meijers, A. J. S.; Meredith, M. P.; Abrahamsen, E. P.; Morales Maqueda, M. A.; Jones, D. C.; Naveira Garabato, A. C.

    2016-10-01

    The export of waters from the Weddell Gyre to lower latitudes is an integral component of the southern subpolar contribution to the three-dimensional oceanic circulation. Here we use more than 20 years of repeat hydrographic data on the continental slope on the northern tip of the Antarctic Peninsula and 5 years of bottom lander data on the slope at 1000 m to show the intermittent presence of a relatively cold, fresh, westward flowing current. This is often bottom-intensified between 600 and 2000 dbar with velocities of over 20 cm s-1, transporting an average of 1.5 ± 1.5 Sv. By comparison with hydrography on the continental slope within the Weddell Sea and modeled tracer release experiments we show that this slope current is an extension of the Antarctic Slope Current that has crossed the South Scotia Ridge west of Orkney Plateau. On monthly to interannual time scales the density of the slope current is negatively correlated (r > 0.6 with a significance of over 95%) with eastward wind stress over the northern Weddell Sea, but lagging it by 6-13 months. This relationship holds in both the high temporal resolution bottom lander time series and the 20+ year annual hydrographic occupations and agrees with Weddell Sea export variability observed further east. We compare several alternative hypotheses for this wind stress/export relationship and find that it is most consistent with wind-driven acceleration of the gyre boundary current, possibly modulated by eddy dynamics, and represents a mechanism by which climatic perturbations can be rapidly transmitted as fluctuations in the supply of intermediate-level waters to lower latitudes.

  17. Plankton ecosystem functioning and nitrogen fluxes in the most oligotrophic waters of the Beaufort Sea, Arctic Ocean: a modeling study

    NASA Astrophysics Data System (ADS)

    Le Fouest, V.; Zakardjian, B.; Xie, H.; Raimbault, P.; Joux, F.; Babin, M.

    2012-10-01

    The Arctic Ocean (AO) undergoes profound changes of its physical and biotic environments due to climate change. The greater light exposure and stratification alter its plankton ecosystem structure, functioning and productivity promoting oligotrophy in some areas as the Beaufort Sea. A one-dimension (1-D) physical-biological coupled model based on the large multiparametric database of the Malina project in the Beaufort Sea was used (i) to infer the functioning and nitrogen fluxes within the summer plankton ecosystem and (ii) to assess the model sensitivity to key light-associated processes involved in nutrient recycling and phytoplankton growth. The coupled model suggested that ammonium photochemically produced from photosensitive dissolved organic nitrogen (i.e. photoammonification process) was a necessary nitrogen source to achieve the observed levels of microbial biomass and production. It contributed to ca. two-thirds and one-third of the simulated surface (0-10 m) and depth-integrated primary and bacterial production, respectively. The model also suggested that carbon to chlorophyll ratios for small (< 5 μm) phytoplankton (ca. 15-45 g g-1) lower than those commonly used in biogeochemical models applied to the AO were required to simulate the observed herbivorous versus microbial food web competition and realistic nitrogen fluxes in the Beaufort Sea oligotrophic waters. In face of accelerating Arctic warming, more attention should be paid in the future to the mechanistic processes involved in food webs and functional groups competition, nutrient recycling and primary production in poorly productive waters of the AO as they are expected to expand rapidly.

  18. Modeling plankton ecosystem functioning and nitrogen fluxes in the oligotrophic waters of the Beaufort Sea, Arctic Ocean: a focus on light-driven processes

    NASA Astrophysics Data System (ADS)

    Le Fouest, V.; Zakardjian, B.; Xie, H.; Raimbault, P.; Joux, F.; Babin, M.

    2013-07-01

    The Arctic Ocean (AO) undergoes profound changes of its physical and biotic environments due to climate change. In some areas of the Beaufort Sea, the stronger haline stratification observed in summer alters the plankton ecosystem structure, functioning and productivity, promoting oligotrophy. A one-dimension (1-D) physical-biological coupled model based on the large multiparametric database of the Malina project in the Beaufort Sea was used (i) to infer the plankton ecosystem functioning and related nitrogen fluxes and (ii) to assess the model sensitivity to key light-driven processes involved in nutrient recycling and phytoplankton growth. The coupled model suggested that ammonium photochemically produced from photosensitive dissolved organic nitrogen (i.e., photoammonification process) was a necessary nitrogen source to achieve the observed levels of microbial biomass and production. Photoammonification directly and indirectly (by stimulating the microbial food web activity) contributed to 70% and 18.5% of the 0-10 m and whole water column, respectively, simulated primary production (respectively 66% and 16% for the bacterial production). The model also suggested that variable carbon to chlorophyll ratios were required to simulate the observed herbivorous versus microbial food web competition and realistic nitrogen fluxes in the Beaufort Sea oligotrophic waters. In face of accelerating Arctic warming, more attention should be paid in the future to the mechanistic processes involved in food webs and functional group competition, nutrient recycling and primary production in poorly productive waters of the AO, as they are expected to expand rapidly.

  19. Sea Level Changes: Determination and Effects

    NASA Astrophysics Data System (ADS)

    Woodworth, P. L.; Pugh, D. T.; DeRonde, J. G.; Warrick, R. G.; Hannah, J.

    The measurement of sea level is of fundamental importance to a wide range of research in climatology, oceanography, geology and geodesy. This volume attempts to cover many aspects of the field. The volume opens with a description by Bolduc and Murty of one of the products stemming from the development of tide gauge networks in the northern and tropical Atlantic. This work is relevant to the growth of the Global Sea Level Observing System (GLOSS), the main goal of which is to provide the world with an efficient, coherent sea level monitoring system for océanographie and climatological research. The subsequent four papers present results from the analysis of existing tide gauge data, including those datasets available from the Permanent Service for Mean Sea Level and the TOGA Sea Level Center. Two of the four, by Wroblewski and by Pasaric and Orlic, are concerned with European sea level changes, while Yu Jiye et al. discuss inter-annual changes in the Pacific, and Wang Baocan et al. describe variability in the Changjiang estuary in China. The papers by El- Abd and A wad, on Red Sea levels, are the only contributions to the volume from the large research community of geologists concerned with sea level changes.

  20. Seasonal Sea-Level Variations in San Francisco Bay in Response to Atmospheric Forcing, 1980

    USGS Publications Warehouse

    Wang, Jingyuan; Cheng, R.T.; Smith, P.C.

    1997-01-01

    The seasonal response of sea level in San Francisco Bay (SFB) to atmospheric forcing during 1980 is investigated. The relations between sea-level data from the Northern Reach, Central Bay and South Bay, and forcing by local wind stresses, sea level pressure (SLP), runoff and the large scale sea level pressure field are examined in detail. The analyses show that the sea-level elevations and slopes respond to the along-shore wind stress T(V) at most times of the year, and to the cross-shore wind stress T(N) during two transition periods in spring and autumn. River runoff raises the sea-level elevation during winter. It is shown that winter precipitation in the SFB area is mainly attributed to the atmospheric circulation associated with the Alcutian Low, which transports the warm, moist air into the Bay area. A multiple linear regression model is employed to estimate the independent contributions of barometric pressure and wind stress to adjusted sea level. These calculations have a simple dynamical interpretation which confirms the importance of along-shore wind to both sea level and north-south slope within the Bay.

Top