Sample records for accelerated site technology

  1. The accelerated site technology deployment program presents the segmented gate system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    PATTESON,RAYMOND; MAYNOR,DOUG; CALLAN,CONNIE

    2000-02-24

    The Department of Energy (DOE) is working to accelerate the acceptance and application of innovative technologies that improve the way the nation manages its environmental remediation problems. The DOE Office of Science and Technology established the Accelerated Site Technology Deployment Program (ASTD) to help accelerate the acceptance and implementation of new and innovative soil and ground water remediation technologies. Coordinated by the Department of Energy's Idaho Office, the ASTD Program reduces many of the classic barriers to the deployment of new technologies by involving government, industry, and regulatory agencies in the assessment, implementation, and validation of innovative technologies. The papermore » uses the example of the Segmented Gate System (SGS) to illustrate how the ASTD program works. The SGS was used to cost effectively separate clean and contaminated soil for four different radionuclides: plutonium, uranium, thorium, and cesium. Based on those results, it has been proposed to use the SGS at seven other DOE sites across the country.« less

  2. Prospects for Accelerator Technology

    NASA Astrophysics Data System (ADS)

    Todd, Alan

    2011-02-01

    Accelerator technology today is a greater than US$5 billion per annum business. Development of higher-performance technology with improved reliability that delivers reduced system size and life cycle cost is expected to significantly increase the total accelerator technology market and open up new application sales. Potential future directions are identified and pitfalls in new market penetration are considered. Both of the present big market segments, medical radiation therapy units and semiconductor ion implanters, are approaching the "maturity" phase of their product cycles, where incremental development rather than paradigm shifts is the norm, but they should continue to dominate commercial sales for some time. It is anticipated that large discovery-science accelerators will continue to provide a specialty market beset by the unpredictable cycles resulting from the scale of the projects themselves, coupled with external political and economic drivers. Although fraught with differing market entry difficulties, the security and environmental markets, together with new, as yet unrealized, industrial material processing applications, are expected to provide the bulk of future commercial accelerator technology growth.

  3. 1993 UPDATE OF THE U.S. ENVIRONMENTAL PROTECTION AGENCY'S SITE EMERGING TECHNOLOGY PROGRAM

    EPA Science Inventory

    The Emerging Technology Program (ETP), part of the U.S. EPA`s Superfund Innovative Technology Evaluation (SITE) Program, is continuing to create an environment where technical innovation can accelerate into field and commercial applications for treatment of hazardous waste sites....

  4. Accelerator Technology Division annual report, FY 1989

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1990-06-01

    This paper discusses: accelerator physics and special projects; experiments and injectors; magnetic optics and beam diagnostics; accelerator design and engineering; radio-frequency technology; accelerator theory and simulation; free-electron laser technology; accelerator controls and automation; and high power microwave sources and effects.

  5. Does technology acceleration equate to mask cost acceleration?

    NASA Astrophysics Data System (ADS)

    Trybula, Walter J.; Grenon, Brian J.

    2003-06-01

    The technology acceleration of the ITRS Roadmap has many implications on both the semiconductor sup-plier community and the manufacturers. INTERNATIONAL SEMATECH has revaluated the projected cost of advanced technology masks. Building on the methodology developed in 1996 for mask costs, this work provided a critical review of mask yields and factors relating to the manufacture of photolithography masks. The impact of the yields provided insight into the learning curve for leading edge mask manufac-turing. The projected mask set cost was surprising, and the ability to provide first and second year cost estimates provided additional information on technology introduction. From this information, the impact of technology acceleration can be added to the projected yields to evaluate the impact on mask costs.

  6. Industrialization of Superconducting RF Accelerator Technology

    NASA Astrophysics Data System (ADS)

    Peiniger, Michael; Pekeler, Michael; Vogel, Hanspeter

    2012-01-01

    Superconducting RF (SRF) accelerator technology has basically existed for 50 years. It took about 20 years to conduct basic R&D and prototyping at universities and international institutes before the first superconducting accelerators were built, with industry supplying complete accelerator cavities. In parallel, the design of large scale accelerators using SRF was done worldwide. In order to build those accelerators, industry has been involved for 30 years in building the required cavities and/or accelerator modules in time and budget. To enable industry to supply these high tech components, technology transfer was made from the laboratories in the following three regions: the Americas, Asia and Europe. As will be shown, the manufacture of the SRF cavities is normally accomplished in industry whereas the cavity testing and module assembly are not performed in industry in most cases, yet. The story of industrialization is so far a story of customized projects. Therefore a real SRF accelerator product is not yet available in this market. License agreements and technology transfer between leading SRF laboratories and industry is a powerful tool for enabling industry to manufacture SRF components or turnkey superconducting accelerator modules for other laboratories and users with few or no capabilities in SRF technology. Despite all this, the SRF accelerator market today is still a small market. The manufacture and preparation of the components require a range of specialized knowledge, as well as complex and expensive manufacturing installations like for high precision machining, electron beam welding, chemical surface preparation and class ISO4 clean room assembly. Today, the involved industry in the US and Europe comprises medium-sized companies. In Japan, some big enterprises are involved. So far, roughly 2500 SRF cavities have been built by or ordered from industry worldwide. Another substantial step might come from the International Linear Collider (ILC) project

  7. Acceleration technologies for charged particles: an introduction

    NASA Astrophysics Data System (ADS)

    Carter, Richard G.

    2011-01-01

    Particle accelerators have many important uses in scientific experiments, in industry and in medicine. This paper reviews the variety of technologies which are used to accelerate charged particles to high energies. It aims to show how the capabilities and limitations of these technologies are related to underlying physical principles. The paper emphasises the way in which different technologies are used together to convey energy from the electrical supply to the accelerated particles.

  8. Community Petascale Project for Accelerator Science and Simulation: Advancing Computational Science for Future Accelerators and Accelerator Technologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spentzouris, P.; /Fermilab; Cary, J.

    The design and performance optimization of particle accelerators are essential for the success of the DOE scientific program in the next decade. Particle accelerators are very complex systems whose accurate description involves a large number of degrees of freedom and requires the inclusion of many physics processes. Building on the success of the SciDAC-1 Accelerator Science and Technology project, the SciDAC-2 Community Petascale Project for Accelerator Science and Simulation (ComPASS) is developing a comprehensive set of interoperable components for beam dynamics, electromagnetics, electron cooling, and laser/plasma acceleration modelling. ComPASS is providing accelerator scientists the tools required to enable the necessarymore » accelerator simulation paradigm shift from high-fidelity single physics process modeling (covered under SciDAC1) to high-fidelity multiphysics modeling. Our computational frameworks have been used to model the behavior of a large number of accelerators and accelerator R&D experiments, assisting both their design and performance optimization. As parallel computational applications, the ComPASS codes have been shown to make effective use of thousands of processors. ComPASS is in the first year of executing its plan to develop the next-generation HPC accelerator modeling tools. ComPASS aims to develop an integrated simulation environment that will utilize existing and new accelerator physics modules with petascale capabilities, by employing modern computing and solver technologies. The ComPASS vision is to deliver to accelerator scientists a virtual accelerator and virtual prototyping modeling environment, with the necessary multiphysics, multiscale capabilities. The plan for this development includes delivering accelerator modeling applications appropriate for each stage of the ComPASS software evolution. Such applications are already being used to address challenging problems in accelerator design and optimization. The Com

  9. Accelerator science and technology in Europe 2008-2017

    NASA Astrophysics Data System (ADS)

    Romaniuk, Ryszard S.

    2013-10-01

    European Framework Research Projects have recently added a lot of meaning to the building process of the ERA - the European Research Area. Inside this, the accelerator technology plays an essential role. Accelerator technology includes large infrastructure and intelligent, modern instrumentation embracing mechatronics, electronics, photonics and ICT. During the realization of the European research and infrastructure project FP6 CARE 2004-2008 (Coordinated Accelerator Research in Europe), concerning the development of large accelerator infrastructure in Europe, it was decided that a scientific editorial series of peer-reviewed monographs from this research area will be published in close relation with the projects. It was a completely new and quite brave idea to combine a kind of a strictly research publisher with a transient project, lasting only four or five years. Till then nobody did something like that. The idea turned out to be a real success. The publications now known and valued in the accelerator world, as the (CERN-WUT) Editorial Series on Accelerator Science and Technology, is successfully continued in already the third European project EuCARD2 and has logistic guarantees, for the moment, till the 2017, when it will mature to its first decade. During the realization of the European projects EuCARD (European Coordination for Accelerator R&D 2009-2013 and TIARA (Test Infrastructure of Accelerator Research Area in Europe) there were published 18 volumes in this series. The ambitious plans for the nearest years is to publish, hopefully, a few tens of new volumes. Accelerator science and technology is one of a key enablers of the developments in the particle physic, photon physics and also applications in medicine and industry. The paper presents a digest of the research results in the domain of accelerator science and technology in Europe, published in the monographs of the European Framework Projects (FP) on accelerator technology. The succession of CARE, Eu

  10. Better Particle Accelerators with SRF Technology

    ScienceCinema

    Padamsee, Hasan; Martinello, Martina; Ross, Marc; Peskin, Michael; Yamamoto, Akira

    2018-01-16

    The use of superconducting radio frequency (SRF) technology is a driving force in the development of particle accelerators. Scientists from around the globe are working together to develop the newest materials and techniques to improve the quality and efficiency of the SRF cavities that are essential for this technology.

  11. Better Particle Accelerators with SRF Technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Padamsee, Hasan; Martinello, Martina; Ross, Marc

    2017-02-20

    The use of superconducting radio frequency (SRF) technology is a driving force in the development of particle accelerators. Scientists from around the globe are working together to develop the newest materials and techniques to improve the quality and efficiency of the SRF cavities that are essential for this technology.

  12. Ultra-Compact Accelerator Technologies for Application in Nuclear Techniques

    NASA Astrophysics Data System (ADS)

    Sampayan, S.; Caporaso, G.; Chen, Y.-J.; Carazo, V.; Falabella, S.; Guethlein, G.; Guse, S.; Harris, J. R.; Hawkins, S.; Holmes, C.; Krogh, M.; Nelson, S.; Paul, A. C.; Pearson, D.; Poole, B.; Schmidt, R.; Sanders, D.; Selenes, K.; Sitaraman, S.; Sullivan, J.; Wang, L.; Watson, J.

    2009-12-01

    We report on compact accelerator technology development for potential use as a pulsed neutron source quantitative post verifier. The technology is derived from our on-going compact accelerator technology development program for radiography under the US Department of Energy and for a clinic sized compact proton therapy systems under an industry sponsored Cooperative Research and Development Agreement. The accelerator technique relies on the synchronous discharge of a prompt pulse generating stacked transmission line structure with the beam transit. The goal of this technology is to achieve ˜10 MV/m gradients for 10 s of nanoseconds pulses and ˜100 MV/m gradients for ˜1 ns systems. As a post verifier for supplementing existing x-ray equipment, this system can remain in a charged, stand-by state with little or no energy consumption. We describe the progress of our overall component development effort with the multilayer dielectric wall insulators (i.e., the accelerator wall), compact power supply technology, kHz repetition-rate surface flashover ion sources, and the prompt pulse generation system consisting of wide-bandgap switches and high performance dielectric materials.

  13. Accelerating Technologies: Consequences for the Future Wellbeing of Students

    ERIC Educational Resources Information Center

    Saltinski, Ronald

    2015-01-01

    Today's students, K-12 and beyond, will face an ominous future unless educators quickly invest in preparing student perspectives for the accelerating technologies that will have global implications for the wellbeing of all humanity. Accelerating technologies are quietly, almost insidiously, transforming the world with little fanfare and certainly…

  14. Commnity Petascale Project for Accelerator Science And Simulation: Advancing Computational Science for Future Accelerators And Accelerator Technologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spentzouris, Panagiotis; /Fermilab; Cary, John

    The design and performance optimization of particle accelerators are essential for the success of the DOE scientific program in the next decade. Particle accelerators are very complex systems whose accurate description involves a large number of degrees of freedom and requires the inclusion of many physics processes. Building on the success of the SciDAC-1 Accelerator Science and Technology project, the SciDAC-2 Community Petascale Project for Accelerator Science and Simulation (ComPASS) is developing a comprehensive set of interoperable components for beam dynamics, electromagnetics, electron cooling, and laser/plasma acceleration modelling. ComPASS is providing accelerator scientists the tools required to enable the necessarymore » accelerator simulation paradigm shift from high-fidelity single physics process modeling (covered under SciDAC1) to high-fidelity multiphysics modeling. Our computational frameworks have been used to model the behavior of a large number of accelerators and accelerator R&D experiments, assisting both their design and performance optimization. As parallel computational applications, the ComPASS codes have been shown to make effective use of thousands of processors.« less

  15. AmeriFlux US-IB2 Fermi National Accelerator Laboratory- Batavia (Prairie site)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matamala, Roser

    2016-01-01

    This is the AmeriFlux version of the carbon flux data for the site US-IB2 Fermi National Accelerator Laboratory- Batavia (Prairie site). Site Description - Two eddy correlation systems are installed at Fermi National Accelerator Laboratory: one on a restored prairie (established October 2004) and one on a corn/soybean rotation agricultural field (established in July 2005). The prairie site had been farmed for more than 100 years, but was converted to prairie in 1989. April annual to bi-annual prescribed burns have taken place from 1994 - 2007.

  16. Seismic site coefficients and acceleration design response spectra based on conditions in South Carolina : final report.

    DOT National Transportation Integrated Search

    2014-11-15

    The simplified procedure in design codes for determining earthquake response spectra involves : estimating site coefficients to adjust available rock accelerations to site accelerations. Several : investigators have noted concerns with the site coeff...

  17. Accelerator science and technology in Europe: EuCARD 2012

    NASA Astrophysics Data System (ADS)

    Romaniuk, Ryszard S.

    2012-05-01

    Accelerator science and technology is one of a key enablers of the developments in the particle physic, photon physics and also applications in medicine and industry. The paper presents a digest of the research results in the domain of accelerator science and technology in Europe, shown during the third annual meeting of the EuCARD - European Coordination of Accelerator Research and Development. The conference concerns building of the research infrastructure, including in this advanced photonic and electronic systems for servicing large high energy physics experiments. There are debated a few basic groups of such systems like: measurement - control networks of large geometrical extent, multichannel systems for large amounts of metrological data acquisition, precision photonic networks of reference time, frequency and phase distribution.

  18. 1985 Particle Accelerator Conference: Accelerator Engineering and Technology, 11th, Vancouver, Canada, May 13-16, 1985, Proceedings

    NASA Astrophysics Data System (ADS)

    Strathdee, A.

    1985-10-01

    The topics discussed are related to high-energy accelerators and colliders, particle sources and electrostatic accelerators, controls, instrumentation and feedback, beam dynamics, low- and intermediate-energy circular accelerators and rings, RF and other acceleration systems, beam injection, extraction and transport, operations and safety, linear accelerators, applications of accelerators, radiation sources, superconducting supercolliders, new acceleration techniques, superconducting components, cryogenics, and vacuum. Accelerator and storage ring control systems are considered along with linear and nonlinear orbit theory, transverse and longitudinal instabilities and cures, beam cooling, injection and extraction orbit theory, high current dynamics, general beam dynamics, and medical and radioisotope applications. Attention is given to superconducting RF structures, magnet technology, superconducting magnets, and physics opportunities with relativistic heavy ion accelerators.

  19. Self-shielded electron linear accelerators designed for radiation technologies

    NASA Astrophysics Data System (ADS)

    Belugin, V. M.; Rozanov, N. E.; Pirozhenko, V. M.

    2009-09-01

    This paper describes self-shielded high-intensity electron linear accelerators designed for radiation technologies. The specific property of the accelerators is that they do not apply an external magnetic field; acceleration and focusing of electron beams are performed by radio-frequency fields in the accelerating structures. The main characteristics of the accelerators are high current and beam power, but also reliable operation and a long service life. To obtain these characteristics, a number of problems have been solved, including a particular optimization of the accelerator components and the application of a variety of specific means. The paper describes features of the electron beam dynamics, accelerating structure, and radio-frequency power supply. Several compact self-shielded accelerators for radiation sterilization and x-ray cargo inspection have been created. The introduced methods made it possible to obtain a high intensity of the electron beam and good performance of the accelerators.

  20. Stellar Interferometer Technology Experiment (SITE)

    NASA Technical Reports Server (NTRS)

    Crawley, Edward F.; Miller, David; Laskin, Robert; Shao, Michael

    1995-01-01

    The MIT Space Engineering Research Center and the Jet Propulsion Laboratory stand ready to advance science sensor technology for discrete-aperture astronomical instruments such as space-based optical interferometers. The objective of the Stellar Interferometer Technology Experiment (SITE) is to demonstrate system-level functionality of a space-based stellar interferometer through the use of enabling and enhancing Controlled-Structures Technologies (CST). SITE mounts to the Mission Peculiar Experiment Support System inside the Shuttle payload bay. Starlight, entering through two apertures, is steered to a combining plate where it is interferred. Interference requires 27 nanometer pathlength (phasing) and 0.29 archsecond wavefront-tilt (pointing) control. The resulting 15 milli-archsecond angular resolution exceeds that of current earth-orbiting telescopes while maintaining low cost by exploiting active optics and structural control technologies. With these technologies, unforeseen and time-varying disturbances can be rejected while relaxing reliance on ground alignment and calibration. SITE will reduce the risk and cost of advanced optical space systems by validating critical technologies in their operational environment. Moreover, these technologies are directly applicable to commercially driven applications such as precision matching, optical scanning, and vibration and noise control systems for the aerospace, medical, and automotive sectors. The SITE team consists of experienced university, government, and industry researchers, scientists, and engineers with extensive expertise in optical interferometry, nano-precision opto-mechanical control and spaceflight experimentation. The experience exists and the technology is mature. SITE will validate these technologies on a functioning interferometer science sensor in order to confirm definitely their readiness to be baselined for future science missions.

  1. In Situ Oxalic Acid Injection to Accelerate Arsenic Remediation at a Superfund Site in New Jersey.

    PubMed

    Wovkulich, Karen; Stute, Martin; Mailloux, Brian J; Keimowitz, Alison R; Ross, James; Bostick, Benjamin; Sun, Jing; Chillrud, Steven N

    2014-09-25

    Arsenic is a prevalent contaminant at a large number of US Superfund sites; establishing techniques that accelerate As remediation could benefit many sites. Hundreds of tons of As were released into the environment by the Vineland Chemical Co. in southern New Jersey during its manufacturing lifetime (1949-1994), resulting in extensive contamination of surface and subsurface soils and sediments, groundwater, and the downstream watershed. Despite substantial intervention at this Superfund site, sufficient aquifer cleanup could require many decades if based on traditional pump and treat technologies only. Laboratory column experiments have suggested that oxalic acid addition to contaminated aquifer solids could promote significant As release from the solid phase. To evaluate the potential of chemical additions to increase As release in situ and boost treatment efficiency, a forced gradient pilot scale study was conducted on the Vineland site. During spring/summer 2009, oxalic acid and bromide tracer were injected into a small portion (~50 m 2 ) of the site for 3 months. Groundwater samples indicate that introduction of oxalic acid led to increased As release. Between 2.9 and 3.6 kg of As were removed from the sampled wells as a result of the oxalic acid treatment during the 3-month injection. A comparison of As concentrations on sediment cores collected before and after treatment and analyzed using X-ray fluorescence spectroscopy suggested reduction in As concentrations of ~36% (median difference) to 48% (mean difference). While further study is necessary, the addition of oxalic acid shows potential for accelerating treatment of a highly contaminated site and decreasing the As remediation time-scale.

  2. SITE EMERGING TECHNOLOGY Program

    EPA Science Inventory

    This document is intended as a reference guide for EPA Regional decision makers and others interested in tchnologies in the SITE Demonstration and Technologies programs. The Technologies are described in technology profiles presented in alphabetical order by developer name and se...

  3. Site Remediation Technology InfoBase: A Guide to Federal Programs, Information Resources, and Publications on Contaminated Site Cleanup Technologies. First Edition

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Table of Contents: Federal Cleanup Programs; Federal Site Remediation Technology Development Assistance Programs; Federal Site Remediation Technology Development Electronic Data Bases; Federal Electronic Resources for Site Remediation Technology Information; Other Electronic Resources for Site Remediation Technology Information; Other Electronic Resources for Site Remediation Technology Information; Selected Bibliography: Federal Publication on Alternative and Innovative Site Remediation; and Appendix: Technology Program Contacts.

  4. Pulsed electron accelerator for radiation technologies in the enviromental applications

    NASA Astrophysics Data System (ADS)

    Korenev, Sergey

    1997-05-01

    The project of pulsed electron accelerator for radiation technologies in the environmental applications is considered. An accelerator consists of high voltage generator with vacuum insulation and vacuum diode with plasma cathode on the basis discharge on the surface of dielectric of large dimensions. The main parameters of electron accelerators are following: kinetic energy 0.2 - 2.0 MeV, electron beam current 1 - 30 kA and pulse duration 1- 5 microseconds. The main applications of accelerator for decomposition of wastewaters are considered.

  5. History and Technology Developments of Radio Frequency (RF) Systems for Particle Accelerators

    NASA Astrophysics Data System (ADS)

    Nassiri, A.; Chase, B.; Craievich, P.; Fabris, A.; Frischholz, H.; Jacob, J.; Jensen, E.; Jensen, M.; Kustom, R.; Pasquinelli, R.

    2016-04-01

    This article attempts to give a historical account and review of technological developments and innovations in radio frequency (RF) systems for particle accelerators. The evolution from electrostatic field to the use of RF voltage suggested by R. Wideröe made it possible to overcome the shortcomings of electrostatic accelerators, which limited the maximum achievable electric field due to voltage breakdown. After an introduction, we will provide reviews of technological developments of RF systems for particle accelerators.

  6. The R/D of high power proton accelerator technology in China

    NASA Astrophysics Data System (ADS)

    Xialing, Guan

    2002-12-01

    In China, a multipurpose verification system as a first phase of our ADS program consists of a low energy accelerator (150 MeV/3 mA proton LINAC) and a swimming pool light water subcritical reactor. In this paper the activities of HPPA technology related to ADS in China, which includes the intense proton ECR source, the RFQ accelerator and some other technology of HPPA, are described.

  7. In Situ Oxalic Acid Injection to Accelerate Arsenic Remediation at a Superfund Site in New Jersey

    PubMed Central

    Wovkulich, Karen; Stute, Martin; Mailloux, Brian J.; Keimowitz, Alison R.; Ross, James; Bostick, Benjamin; Sun, Jing; Chillrud, Steven N.

    2015-01-01

    Arsenic is a prevalent contaminant at a large number of US Superfund sites; establishing techniques that accelerate As remediation could benefit many sites. Hundreds of tons of As were released into the environment by the Vineland Chemical Co. in southern New Jersey during its manufacturing lifetime (1949–1994), resulting in extensive contamination of surface and subsurface soils and sediments, groundwater, and the downstream watershed. Despite substantial intervention at this Superfund site, sufficient aquifer cleanup could require many decades if based on traditional pump and treat technologies only. Laboratory column experiments have suggested that oxalic acid addition to contaminated aquifer solids could promote significant As release from the solid phase. To evaluate the potential of chemical additions to increase As release in situ and boost treatment efficiency, a forced gradient pilot scale study was conducted on the Vineland site. During spring/summer 2009, oxalic acid and bromide tracer were injected into a small portion (~50 m2) of the site for 3 months. Groundwater samples indicate that introduction of oxalic acid led to increased As release. Between 2.9 and 3.6 kg of As were removed from the sampled wells as a result of the oxalic acid treatment during the 3-month injection. A comparison of As concentrations on sediment cores collected before and after treatment and analyzed using X-ray fluorescence spectroscopy suggested reduction in As concentrations of ~36% (median difference) to 48% (mean difference). While further study is necessary, the addition of oxalic acid shows potential for accelerating treatment of a highly contaminated site and decreasing the As remediation time-scale. PMID:25598701

  8. Terascale Computing in Accelerator Science and Technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ko, Kwok

    2002-08-21

    We have entered the age of ''terascale'' scientific computing. Processors and system architecture both continue to evolve; hundred-teraFLOP computers are expected in the next few years, and petaFLOP computers toward the end of this decade are conceivable. This ever-increasing power to solve previously intractable numerical problems benefits almost every field of science and engineering and is revolutionizing some of them, notably including accelerator physics and technology. At existing accelerators, it will help us optimize performance, expand operational parameter envelopes, and increase reliability. Design decisions for next-generation machines will be informed by unprecedented comprehensive and accurate modeling, as well as computer-aidedmore » engineering; all this will increase the likelihood that even their most advanced subsystems can be commissioned on time, within budget, and up to specifications. Advanced computing is also vital to developing new means of acceleration and exploring the behavior of beams under extreme conditions. With continued progress it will someday become reasonable to speak of a complete numerical model of all phenomena important to a particular accelerator.« less

  9. Site Characterization Technologies for DNAPL Investigations

    EPA Pesticide Factsheets

    This document is intended to help managers at sites with potential or confirmed DNAPL contamination identify suitable characterization technologies, screen the technologies for potential application, learn about applications at similar sites, and...

  10. Health technology assessment: Off-site sterilization

    PubMed Central

    Dehnavieh, Reza; Mirshekari, Nadia; Ghasemi, Sara; Goudarzi, Reza; Haghdoost, AliAkbar; Mehrolhassani, Mohammad Hossain; Moshkani, Zahra; Noori Hekmat, Somayeh

    2016-01-01

    Background: Every year millions of dollars are expended to equip and maintain the hospital sterilization centers, and our country is not an exception of this matter. According to this, it is important to use more effective technologies and methods in health system in order to reach more effectiveness and saving in costs. This study was conducted with the aim of evaluating the technology of regional sterilization centers. Methods: This study was done in four steps. At the first step, safety and effectiveness of technology was studied via systematic study of evidence. The next step was done to evaluate the economical aspect of off-site sterilization technology using gathered data from systematic review of the texts which were related to the technology and costs of off-site and in-site hospital sterilization. Third step was conducted to collect experiences of using technology in some selected hospitals around the world. And in the last step different aspects of acceptance and use of this technology in Iran were evaluated. Results: Review of the selected articles indicated that efficacy and effectiveness of this technology is Confirmed. The results also showed that using this method is not economical in Iran. Conclusion: According to the revealed evidences and also cost analysis, due to shortage of necessary substructures and economical aspect, installing the off-site sterilization health technology in hospitals is not possible currently. But this method can be used to provide sterilization services for clinics and outpatients centers. PMID:27390714

  11. Technology Diffusion. [SITE 2001 Section].

    ERIC Educational Resources Information Center

    Strudler, Neal, Ed.; Niederhauser, Dale S., Ed.

    This document contains the following papers on technology diffusion from the SITE (Society for Information Technology & Teacher Education) 2001 conference: (1) "A Response to Technology Integration in Teacher Education for Merit, Tenure, and Promotion" (Cindy L. Anderson and David Starrett); (2) "Online Technical Support…

  12. RADIO DIAGNOSTICS OF ELECTRON ACCELERATION SITES DURING THE ERUPTION OF A FLUX ROPE IN THE SOLAR CORONA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carley, Eoin P.; Gallagher, Peter T.; Vilmer, Nicole, E-mail: eoin.carley@obspm.fr

    Electron acceleration in the solar corona is often associated with flares and the eruption of twisted magnetic structures known as flux ropes. However, the locations and mechanisms of such particle acceleration during the flare and eruption are still subject to much investigation. Observing the exact sites of particle acceleration can help confirm how the flare and eruption are initiated and how they evolve. Here we use the Atmospheric Imaging Assembly to analyze a flare and erupting flux rope on 2014 April 18, while observations from the Nançay Radio Astronomy Facility allow us to diagnose the sites of electron acceleration duringmore » the eruption. Our analysis shows evidence of a pre-formed flux rope that slowly rises and becomes destabilized at the time of a C-class flare, plasma jet, and the escape of ≳75 keV electrons from the rope center into the corona. As the eruption proceeds, continued acceleration of electrons with energies of ∼5 keV occurs above the flux rope for a period over 5 minutes. At the flare peak, one site of electron acceleration is located close to the flare site, while another is driven by the erupting flux rope into the corona at speeds of up to 400 km s{sup −1}. Energetic electrons then fill the erupting volume, eventually allowing the flux rope legs to be clearly imaged from radio sources at 150–445 MHz. Following the analysis of Joshi et al. (2015), we conclude that the sites of energetic electrons are consistent with flux rope eruption via a tether cutting or flux cancellation scenario inside a magnetic fan-spine structure. In total, our radio observations allow us to better understand the evolution of a flux rope eruption and its associated electron acceleration sites, from eruption initiation to propagation into the corona.« less

  13. Technology Diffusion. [SITE 2002 Section].

    ERIC Educational Resources Information Center

    Niederhauser, Dale S., Ed.; Strudler, Neal, Ed.

    This document contains the following papers on technology diffusion from the SITE (Society for Information Technology & Teacher Education) 2002 conference: (1) "Faculty Technology Integration Project" (Comfort Akwaji); (2) "If It Is Broke, Then What?" (D. Lynnwood Belvin and Jennifer Leaderer); (3) "Developing Video-Based E-Learning Applications"…

  14. Stimulating Innovation and Accelerating the Development of Complex and Slowly Maturing Technologies Through Advanced Technology Prize Competitions

    DTIC Science & Technology

    2007-06-15

    technology prize competitions have been used since the 18th century to spur innovation and advance the development of complex and slowly maturing disruptive ... technologies The Defense Advanced Research Projects Agency (DARPA) has used advanced technology competitions in 2004 and 2005 to rapidly accelerate the

  15. Development of advanced technological systems for accelerator transmutation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Batskikh, G.I.; Bondarev, B.I.; Durkin, A.P.

    1995-10-01

    A development concept of the accelerator nuclear energy reactors is considered for energy generation and nuclear power plant waste conversion into short-lived nuclides along with the requirements imposed on the technological systems necessary for implementation of such projects. The state of art in the field is discussed.

  16. Acceleration of Binding Site Comparisons by Graph Partitioning.

    PubMed

    Krotzky, Timo; Klebe, Gerhard

    2015-08-01

    The comparison of protein binding sites is a prominent task in computational chemistry and has been studied in many different ways. For the automatic detection and comparison of putative binding cavities the Cavbase system has been developed which uses a coarse-grained set of pseudocenters to represent the physicochemical properties of a binding site and employs a graph-based procedure to calculate similarities between two binding sites. However, the comparison of two graphs is computationally quite demanding which makes large-scale studies such as the rapid screening of entire databases hardly feasible. In a recent work, we proposed the method Local Cliques (LC) for the efficient comparison of Cavbase binding sites. It employs a clique heuristic to detect the maximum common subgraph of two binding sites and an extended graph model to additionally compare the shape of individual surface patches. In this study, we present an alternative to further accelerate the LC method by partitioning the binding-site graphs into disjoint components prior to their comparisons. The pseudocenter sets are split with regard to their assigned phyiscochemical type, which leads to seven much smaller graphs than the original one. Applying this approach on the same test scenarios as in the former comprehensive way results in a significant speed-up without sacrificing accuracy. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Standard Modular Hydropower Technology Acceleration Workshop: Summary Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Brennan T.; DeNeale, Scott T.; Witt, Adam M.

    In support of the Department of Energy (DOE) funded Standard Modular Hydropower (SMH) Technology Acceleration project, Oak Ridge National Laboratory (ORNL) staff convened with five small hydropower technology entrepreneurs on June 14 and 15, 2017 to discuss gaps, challenges, and opportunities for small modular hydropower development. The workshop was designed to walk through SMH concepts, discuss the SMH research vision, assess how each participant’s technology aligns with SMH concepts and research, and identify future pathways for mutually beneficial collaboration that leverages ORNL expertise and entrepreneurial industry experience. The goal coming out of the workshop is to advance standardized, scalable, modularmore » hydropower technologies and development approaches with sustained and open dialogue among diverse stakeholder groups.« less

  18. Results of Measurements of Accelerations of Technological Devices onboard the FotonSpacecraft

    NASA Astrophysics Data System (ADS)

    Barmin, I. V.; Volkov, M. V.; Egorov, A. V.; Reut, E. F.; Senchenkov, A. S.

    2001-07-01

    This paper generalizes the results of measuring the residual accelerations arising when investigations in space materials science are carried out onboard the unmanned Fotonspacecraft. The levels of vibroaccelerations are analyzed in the frequency band of 1 500 Hz for the technological devices UZ01, UZ04, and POLIZON, developed by the Federal Unitary State Enterprise “Barmin Design Bureau of General Machine Building” (V.P. Barmin KBOM). The levels of accelerations are estimated in the frequency band of 0 1 Hz in the zone of technological operations of these facilities. The basic sources of vibroaccelerations acting upon the frames of devices are determined in the capsule zone, where technological processes of producing new materials take place. In the frequency band of 1 500 Hz the vibroaccelerations are shown to be generated by the operation of Fotonspacecraft units and a drive of capsule translation during the technological process. On the capsule frame they reach the values of (1 3) × 10 3 g. The level of linear accelerations in the infralow-frequency band is determined by rotational motions of the Fotonspacecraft. It depends on the device location with respect to the spacecraft center of mass and does not exceed (1 7) × 10 6 gin the steady-state regime in the zone of technological activity.

  19. Southern California Regional Technology Acceleration Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ochoa, Rosibel; Rasochova, Lada

    2014-09-30

    UC San Diego and San Diego State University are partnering to address these deficiencies in the renewable energy space in the greater San Diego region, accelerating the movement of clean energy innovation from the university laboratory into the marketplace, building on the proven model of the William J. von Liebig Center’s (vLC’s) Proof of Concept (POC) program and virtualizing the effort to enable a more inclusive environment for energy innovation and expansion of the number of clean energy start-ups and/or technology licenses in greater California.

  20. SITE TECHNOLOGY PROFILES, TENTH EDITION, VOLUME 2 - EMERGING TECHNOLOGY PROGRAM

    EPA Science Inventory

    The Superfund Innovative Technology Evaluation (SITE) Program, now in its thirteenth year, is an integral part of EPA's research into alternative cleanup methods for hazardous waste sites around the nation. The SITE Program was created to encourage the development and routine us...

  1. Accelerating innovation in information and communication technology for health.

    PubMed

    Crean, Kevin W

    2010-02-01

    Around the world, inventors are creating novel information and communication technology applications and systems that can improve health for people in disparate settings. However, it is very difficult to find investment funding needed to create business models to expand and develop the prototype technologies. A comprehensive, long-term investment strategy for e-health and m-health is needed. The field of social entrepreneurship offers an integrated approach to develop needed investment models, so that innovations can reach more patients, more effectively. Specialized financing techniques and sustained support from investors can spur the expansion of mature technologies to larger markets, accelerating global health impacts.

  2. Technologies for Cleaning Up Contaminated Sites

    EPA Pesticide Factsheets

    This site provides information on characterization, monitoring, and remediation technologies as well as serves a forum for the hazardous waste remediation community through several technology information transfer initiatives and partnerships.

  3. Ecological site-based assessments of wind and water erosion: informing accelerated soil erosion management in rangelands

    USGS Publications Warehouse

    Webb, Nicholas P.; Herrick, Jeffrey E.; Duniway, Michael C.

    2014-01-01

    Accelerated soil erosion occurs when anthropogenic processes modify soil, vegetation or climatic conditions causing erosion rates at a location to exceed their natural variability. Identifying where and when accelerated erosion occurs is a critical first step toward its effective management. Here we explore how erosion assessments structured in the context of ecological sites (a land classification based on soils, landscape setting and ecological potential) and their vegetation states (plant assemblages that may change due to management) can inform systems for reducing accelerated soil erosion in rangelands. We evaluated aeolian horizontal sediment flux and fluvial sediment erosion rates for five ecological sites in southern New Mexico, USA, using monitoring data and rangeland-specific wind and water erosion models. Across the ecological sites, plots in shrub-encroached and shrub-dominated vegetation states were consistently susceptible to aeolian sediment flux and fluvial sediment erosion. Both processes were found to be highly variable for grassland and grass-succulent states across the ecological sites at the plot scale (0.25 Ha). We identify vegetation thresholds that define cover levels below which rapid (exponential) increases in aeolian sediment flux and fluvial sediment erosion occur across the ecological sites and vegetation states. Aeolian sediment flux and fluvial erosion in the study area can be effectively controlled when bare ground cover is 100 cm in length is less than ~35%. Land use and management activities that alter cover levels such that they cross thresholds, and/or drive vegetation state changes, may increase the susceptibility of areas to erosion. Land use impacts that are constrained within the range of natural variability should not result in accelerated soil erosion. Evaluating land condition against the erosion thresholds identified here will enable identification of areas susceptible to accelerated soil erosion and the development of

  4. Development of the Accelerator Mass Spectrometry technology at the Comenius University in Bratislava

    NASA Astrophysics Data System (ADS)

    Povinec, Pavel P.; Masarik, Jozef; Ješkovský, Miroslav; Kaizer, Jakub; Šivo, Alexander; Breier, Robert; Pánik, Ján; Staníček, Jaroslav; Richtáriková, Marta; Zahoran, Miroslav; Zeman, Jakub

    2015-10-01

    An Accelerator Mass Spectrometry (AMS) laboratory has been established at the Centre for Nuclear and Accelerator Technologies (CENTA) at the Comenius University in Bratislava comprising of a MC-SNICS ion source, 3 MV Pelletron tandem accelerator, and an analyzer of accelerated ions. The preparation of targets for 14C and 129I AMS measurements is described in detail. The development of AMS techniques for potassium, uranium and thorium analysis in radiopure materials required for ultra-low background underground experiments is briefly mentioned.

  5. Homo sapiens-Specific Binding Site Variants within Brain Exclusive Enhancers Are Subject to Accelerated Divergence across Human Population.

    PubMed

    Zehra, Rabail; Abbasi, Amir Ali

    2018-03-01

    Empirical assessments of human accelerated noncoding DNA frgaments have delineated presence of many cis-regulatory elements. Enhancers make up an important category of such accelerated cis-regulatory elements that efficiently control the spatiotemporal expression of many developmental genes. Establishing plausible reasons for accelerated enhancer sequence divergence in Homo sapiens has been termed significant in various previously published studies. This acceleration by including closely related primates and archaic human data has the potential to open up evolutionary avenues for deducing present-day brain structure. This study relied on empirically confirmed brain exclusive enhancers to avoid any misjudgments about their regulatory status and categorized among them a subset of enhancers with an exceptionally accelerated rate of lineage specific divergence in humans. In this assorted set, 13 distinct transcription factor binding sites were located that possessed unique existence in humans. Three of 13 such sites belonging to transcription factors SOX2, RUNX1/3, and FOS/JUND possessed single nucleotide variants that made them unique to H. sapiens upon comparisons with Neandertal and Denisovan orthologous sequences. These variants modifying the binding sites in modern human lineage were further substantiated as single nucleotide polymorphisms via exploiting 1000 Genomes Project Phase3 data. Long range haplotype based tests laid out evidence of positive selection to be governing in African population on two of the modern human motif modifying alleles with strongest results for SOX2 binding site. In sum, our study acknowledges acceleration in noncoding regulatory landscape of the genome and highlights functional parts within it to have undergone accelerated divergence in present-day human population.

  6. Electron Densities in Solar Flare Loops, Chromospheric Evaporation Upflows, and Acceleration Sites

    NASA Technical Reports Server (NTRS)

    Aschwanden, Markus J.; Benz, Arnold O.

    1996-01-01

    We compare electron densities measured at three different locations in solar flares: (1) in Soft X-Ray (SXR) loops, determined from SXR emission measures and loop diameters from Yohkoh Soft X-Ray Telescope maps (n(sub e, sup SXR) = (0.2-2.5) x 10(exp 11)/ cu cm); (2) in chromospheric evaporation upflows, inferred from plasma frequency cutoffs of decimetric radio bursts detected with the 0.1-3 GHz spectrometer Phoenix of ETH Zuerich (n(sub e, sup upflow) = (0.3-11) x 10(exp 10)/cu cm; and (3) in acceleration sites, inferred from the plasma frequency at the separatrix between upward-accelerated (type III bursts) and downward-accelerated (reverse-drift bursts) electron beams [n(sub e, sup acc) = (0.6-10) x 10(exp 9)/cu cm]. The comparison of these density measurements, obtained from 44 flare episodes (during 14 different flares), demonstrates the compatibility of flare plasma density diagnostics with SXR and radio methods. The density in the upflowing plasma is found to be somewhat lower than in the filled loops, having ratios in a range n(sub e, sup upflow)/n(sub e, sup SXR) = 0.02-1.3, and a factor of 3.6 higher behind the upflow front. The acceleration sites are found to have a much lower density than the SXR-bright flare loops, i.e., n(sub e, sup acc)/n(sub e, sup SXR) = 0.005- 0.13, and thus must be physically displaced from the SXR-bright flare loops. The scaling law between electron time-of-flight distances l' and loop half-lengths s, l'/s = 1.4 +/- 0.3, recently established by Aschwanden et al. suggests that the centroid of the acceleration region is located above the SXR-bright flare loop, as envisioned in cusp geometries (e.g., in magnetic reconnection models).

  7. Detection of the Acceleration Site in a Solar Flare

    NASA Astrophysics Data System (ADS)

    Fleishman, Gregory D.; Kontar, E. P.; Nita, G. M.; Gary, D. E.

    2011-05-01

    We report the observation of an unusual cold, tenuous solar flare (ApJL, v. 731, p. L19, 2011), which reveals itself via numerous and prominent non-thermal manifestations, while lacking any noticeable thermal emission signature. RHESSI hard X-rays and 0.1-18 GHz radio data from OVSA and Phoenix-2 show copious electron acceleration (1035 electrons per second above 10 keV) typical for GOES M-class flares with electrons energies up to 100 keV, but GOES temperatures not exceeding 6.1 MK. The HXR footpoints and coronal radio sources belong, supposedly, to a single magnetic loop, which departs strongly from the corresponding potential loop (obtained from a photospheric extrapolation) in agreement with the apparent need of a non-potential magnetic field structure to produce a flare. The imaging, temporal, and spectral characteristics of the flare have led us to a firm conclusion that the bulk of the microwave continuum emission from this flare was produced directly in the acceleration region. We found that the electron acceleration efficiency is very high in the flare, so almost all available thermal electrons are eventually accelerated. However, given a relatively small flaring volume and rather low thermal density at the flaring loop, the total energy release turned out to be insufficient for a significant heating of the coronal plasma or for a prominent chromospheric response giving rise to chromospheric evaporation. Some sort of stochastic acceleration process is needed to account for an approximately energy-independent lifetime of about 3 s for the electrons in the acceleration region. This work was supported in part by NSF grants AGS-0961867, AST-0908344, and NASA grants NNX10AF27G and NNX11AB49G to New Jersey Institute of Technology. This work was supported by a UK STFC rolling grant, STFC/PPARC Advanced Fellowship, and the Leverhulme Trust, UK. Financial support by the European Commission through the SOLAIRE and HESPE Networks is gratefully acknowledged.

  8. Environmental Technology Verification (ETV) Program: Site Characterization and Monitoring Technologies Center

    EPA Pesticide Factsheets

    The ETV Site Characterization and Monitoring Technology Pilot is composed of EPA, DoD, DOE, other Federal agencies, state regulators, technology evaluation and verification entities, and potential end users of these technologies to facilitate independent..

  9. 1992 UPDATE OF U.S. EPA'S SUPERFUND INNOVATIVE TECHNOLOGY EVALUATION (SITE) EMERGING TECHNOLOGY PROGRAM

    EPA Science Inventory

    The Superfund Innovative Technology Evaluation (SITE) Emerging Technology Program (ETP) has encouraged and financially supported further development of bench- and pilot-scale testing and evaluation of innovative technologies suitable for use at hazardous waste sites for five year...

  10. SITE TECHNOLOGY PROFILES - 11TH EDITION, EMERGING TECHNOLOGY PROGRAM, VOLUME 2

    EPA Science Inventory

    The Superfund Innovative Technology Evaluation (SITE) Program, now in its eleventh year is an integral part of EPA's research into alternative cleanup methods for hazardous waste sites around the nation. The SITE Program was created to encourage the development and routine use o...

  11. A neural network based methodology to predict site-specific spectral acceleration values

    NASA Astrophysics Data System (ADS)

    Kamatchi, P.; Rajasankar, J.; Ramana, G. V.; Nagpal, A. K.

    2010-12-01

    A general neural network based methodology that has the potential to replace the computationally-intensive site-specific seismic analysis of structures is proposed in this paper. The basic framework of the methodology consists of a feed forward back propagation neural network algorithm with one hidden layer to represent the seismic potential of a region and soil amplification effects. The methodology is implemented and verified with parameters corresponding to Delhi city in India. For this purpose, strong ground motions are generated at bedrock level for a chosen site in Delhi due to earthquakes considered to originate from the central seismic gap of the Himalayan belt using necessary geological as well as geotechnical data. Surface level ground motions and corresponding site-specific response spectra are obtained by using a one-dimensional equivalent linear wave propagation model. Spectral acceleration values are considered as a target parameter to verify the performance of the methodology. Numerical studies carried out to validate the proposed methodology show that the errors in predicted spectral acceleration values are within acceptable limits for design purposes. The methodology is general in the sense that it can be applied to other seismically vulnerable regions and also can be updated by including more parameters depending on the state-of-the-art in the subject.

  12. Bioremediation in oil-contaminated sites: bacteria and surfactant accelerated remediation

    NASA Astrophysics Data System (ADS)

    Strong-Gunderson, Janet M.; Guzman, Francisco

    1996-11-01

    In Mexico, there are several environmental issues which are being addressed under the current governmental legislation. One important issue is restoring sites belonging to Petroleos Mexicanos (PEMEX). PEMEX is a large government owned oil company that regulates and manages the oil reserves. These sites are primarily contaminated with weathered hydrocarbons which are a consequence of extracting millions of barrels of oil. Within the southern regions of Mexico there are sites which were contaminated by activities and spills that have occurred during the past 30 years. PEMEX has taken the leadership in correcting environmental problems and is very concerned about cleaning up the contaminated sites as quickly as possible. The most significant contaminated sites are located to the north of Veracruz and south of Tabasco. These sites areas are close to refineries or locations of oil exploration. The primary category of contaminants are hydrocarbons, among them asphaltens, aromatic and other contaminants. The concentration of the contaminants varies depending on the location of the sites, but it can reach as high as 500,000 ppm. PEMEX has been searching for appropriate, and cost- effective technologies to clean up these sites. Biologically based remediation activities are of primary interest to PEMEX. However, other treatment technologies such as chemical-physical methods, encapsulation and incineration are also being considered. The present report summarizes preliminary experiments that measured the feasibility of bioremediation for a contaminated site in southern Mexico.

  13. Accelerated technology transfer: the UK quantum initiative

    NASA Astrophysics Data System (ADS)

    Bennett, Simon D.

    2016-10-01

    A new generation of quantum technology based systems, exploiting effects such as superposition and entanglement, will enable widespread, highly disruptive applications which are expected to be of great economic significance. However, the technology is only just emerging from the physics laboratory and generally remains at low TRLs. The question is: where, and when, will this impact be first manifest? The UK, with substantial Government backing, has embarked on an ambitious national program to accelerate the process of technology transfer with the objective of seizing a significant and sustainable share of the future economic benefit for the UK. Many challenges and uncertainties remain but the combined and co-ordinated efforts of Government, Industry and Academia are making great progress. The level of collaboration is unusually high and the goal of embedding a "QT Ecosystem" in the UK looks to be attainable. This paper describes the UK national programme, its key players, and their respective roles. It will illustrate some of the likely first commercial applications and provide a status update. Some of the challenges that might prevent realisation of the goal will be highlighted.

  14. A proton medical accelerator by the SBIR route — an example of technology transfer

    NASA Astrophysics Data System (ADS)

    Martin, R. L.

    1989-04-01

    Medical facilities for radiation treatment of cancer with protons have been established in many laboratories throughout the world. Essentially all of these have been designed as physics facilities, however, because of the requirement for protons up to 250 MeV. Most of the experience in this branch of accelerator technology lies in the national laboratories and a few large universities. A major issue is the transfer of this technology to the commercial sector to provide hospitals with simple, reliable and relatively inexpensive accelerators for this application. The author has chosen the SBIR route to accomplish this goal. ACCTEK Associates has received grants from the National Cancer Institute for development of the medical accelerator and beam delivery systems. Considerable encouragement and help has been received from Argonne National Laboratory and the Department of Energy. The experiences to date and the pros and cons on this approach to commercializing medical accelerators are described.

  15. DEVELOPMENT OF EMERGING TECHNOLOGIES WITHIN THE SITE PROGRAM

    EPA Science Inventory

    The Site Program is formed by five research programs: the Demonstration Program, the Emerging Technology Program, the Measurement and Monitoring Technology Development Program, the Innovative Technology Program, and the Technology Transfer Program. The Emerging Technology (ET) P...

  16. 78 FR 73144 - Acceleration of Broadband Deployment by Improving Wireless Facilities Siting Policies

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-05

    ..., ground-based enclosures, battery back-up power systems, grounding equipment, power transfer switch, and... No. 11-59; FCC 13-122] Acceleration of Broadband Deployment by Improving Wireless Facilities Siting... of new wireless facilities and on rules to implement statutory provisions governing State and local...

  17. A beamline systems model for Accelerator-Driven Transmutation Technology (ADTT) facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Todd, A.M.M.; Paulson, C.C.; Peacock, M.A.

    1995-10-01

    A beamline systems code, that is being developed for Accelerator-Driven Transmutation Technology (ADTT) facility trade studies, is described. The overall program is a joint Grumman, G.H. Gillespie Associates (GHGA) and Los Alamos National Laboratory effort. The GHGA Accelerator Systems Model (ASM) has been adopted as the framework on which this effort is based. Relevant accelerator and beam transport models from earlier Grumman systems codes are being adapted to this framework. Preliminary physics and engineering models for each ADTT beamline component have been constructed. Examples noted include a Bridge Coupled Drift Tube Linac (BCDTL) and the accelerator thermal system. A decisionmore » has been made to confine the ASM framework principally to beamline modeling, while detailed target/blanket, balance-of-plant and facility costing analysis will be performed externally. An interfacing external balance-of-plant and facility costing model, which will permit the performance of iterative facility trade studies, is under separate development. An ABC (Accelerator Based Conversion) example is used to highlight the present models and capabilities.« less

  18. A beamline systems model for Accelerator-Driven Transmutation Technology (ADTT) facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Todd, Alan M. M.; Paulson, C. C.; Peacock, M. A.

    1995-09-15

    A beamline systems code, that is being developed for Accelerator-Driven Transmutation Technology (ADTT) facility trade studies, is described. The overall program is a joint Grumman, G. H. Gillespie Associates (GHGA) and Los Alamos National Laboratory effort. The GHGA Accelerator Systems Model (ASM) has been adopted as the framework on which this effort is based. Relevant accelerator and beam transport models from earlier Grumman systems codes are being adapted to this framework. Preliminary physics and engineering models for each ADTT beamline component have been constructed. Examples noted include a Bridge Coupled Drift Tube Linac (BCDTL) and the accelerator thermal system. Amore » decision has been made to confine the ASM framework principally to beamline modeling, while detailed target/blanket, balance-of-plant and facility costing analysis will be performed externally. An interfacing external balance-of-plant and facility costing model, which will permit the performance of iterative facility trade studies, is under separate development. An ABC (Accelerator Based Conversion) example is used to highlight the present models and capabilities.« less

  19. New site characterization and monitoring technology

    NASA Astrophysics Data System (ADS)

    Nielsen, Bruce J.; Gillispie, Gregory D.; Bohne, David A.; Lindstrom, David R.

    1995-10-01

    The cost of characterizing and monitoring U.S. government hazardous waste sites could exceed $500 billion utilizing traditional methods and technology. New sensor technologies are being developed to meet the nation's environmental remediation and compliance programs. In 1993, the U.S. Air Force Armstrong Laboratory and Loral Defense System, Eagan (formerly a division of Unisys Corporation) signed a Cooperative Research and Development Agreement (CRDA) to commercialize fiber optic laser-induced fluorescence technology that had been developed with U.S. Air Force funding a North Dakota State University (NDSU). A consortium consisting of the CRDA partners (USAF and Loral), Dakota Technologies Inc., and NDSU submitted a proposal to the advanced Research Projects Agency, Technology Reinvestment Project and won an award to fund the commercialization. The result, the Rapid Optical Screening Tool or ROST is a state-of-the-art laser spectroscopy system for analysis of aromatic hydrocarbon-contaminated soil and groundwater. With ROST, environmental investigators are able to find, classify, and map the distribution of many hazardous chemicals in the field instead of waiting for reports to come back from the analytical laboratory. The research and development program leading to prototype laser spectrometers is summarized along with results from laboratory and field demonstrations illustrating system performance and benefits for site characterization. The technology has recently been demonstrated in Europe in Germany, the Netherlands, France an several sites in the United Kingdom having light, medium, and heavy aromatic hydrocarbon contamination from fuel spills and refinery or chemical plant operations. The use of the ROST system to find hydrocarbon contamination is now being offered as a service by Loral Corporation.

  20. EDITORIAL: Metrological Aspects of Accelerator Technology and High Energy Physics Experiments

    NASA Astrophysics Data System (ADS)

    Romaniuk, Ryszard S.; Pozniak, Krzysztof T.

    2007-08-01

    The subject of this special feature in Measurement Science and Technology concerns measurement methods, devices and subsystems, both hardware and software aspects, applied in large experiments of high energy physics (HEP) and superconducting RF accelerator technology (SRF). These experiments concern mainly the physics of elementary particles or the building of new machines and detectors. The papers present practical examples of applied solutions in large, contemporary, international research projects such as HERA, LHC, FLASH, XFEL, ILC and others. These machines are unique in their global scale and consist of extremely dedicated apparatus. The apparatus is characterized by very large dimensions, a considerable use of resources and a high level of overall technical complexity. They possess a large number of measurement channels (ranging from thousands to over 100 million), are characterized by fast of processing of measured data and high measurement accuracies, and work in quite adverse environments. The measurement channels cooperate with a large number of different sensors of momenta, energies, trajectories of elementary particles, electron, proton and photon beam profiles, accelerating fields in resonant cavities, and many others. The provision of high quality measurement systems requires the designers to use only the most up-to-date technical solutions, measurement technologies, components and devices. Research work in these demanding fields is a natural birthplace of new measurement methods, new data processing and acquisition algorithms, complex, networked measurement system diagnostics and monitoring. These developments are taking place in both hardware and software layers. The chief intention of this special feature is that the papers represent equally some of the most current metrology research problems in HEP and SRF. The accepted papers have been divided into four topical groups: superconducting cavities (4 papers), low level RF systems (8 papers

  1. SITE TECHNOLOGY CAPSULE: ROCHEM SEPARATION SYSTEMS, INC. - DISC TUBE MODULE TECHNOLOGY

    EPA Science Inventory

    SITE Program demonstration of the Rochem Disc Tube Module™(DTM) developed by Rochem Separations Systems, Inc. The demonstration test was conducted at the central landfill superfund site in Johnston, Rhode island in August, 1994. The DTM technology is an innovative membrane filt...

  2. SITE TECHNOLOGY CAPSULE: FILTER FLOW TECHNOLOGY, INC. - COLLOID POLISHING FILTER METHOD

    EPA Science Inventory

    The Filter Flow Technology, Inc. (FFT) Coloid Polishing Filter Method (CPFM) was demonstrated at the U.S Department of Energy's (DOE) Rock Flats Plant (RFP) as part of the U.S. Environmental Protection Agency's (EPA) Superfund and Innovative Technology Evaluation (SITE) program. ...

  3. SITE CHARACTERIZATION AND ANALYSIS PENETROMETER SYSTEM(SCAPS) LAZER-INDUCED FLUORESCENCE (LIF) SENSOR AND SUPPORT SYSTEM

    EPA Science Inventory

    The Consortium for Site Characterization Technology (CSCT) has established a formal program to accelerate acceptance and application of innovative monitoring and site characterization technologies that improve the way the nation manages its environmental problems. In 1995 the CS...

  4. Breakthrough: Fermilab Accelerator Technology

    ScienceCinema

    None

    2018-02-07

    There are more than 30,000 particle accelerators in operation around the world. At Fermilab, scientists are collaborating with other laboratories and industry to optimize the manufacturing processes for a new type of powerful accelerator that uses superconducting niobium cavities. Experimenting with unique polishing materials, a Fermilab team has now developed an efficient and environmentally friendly way of creating cavities that can propel particles with more than 30 million volts per meter.

  5. Breakthrough: Fermilab Accelerator Technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2012-04-23

    There are more than 30,000 particle accelerators in operation around the world. At Fermilab, scientists are collaborating with other laboratories and industry to optimize the manufacturing processes for a new type of powerful accelerator that uses superconducting niobium cavities. Experimenting with unique polishing materials, a Fermilab team has now developed an efficient and environmentally friendly way of creating cavities that can propel particles with more than 30 million volts per meter.

  6. Extraordinary Tools for Extraordinary Science: The Impact ofSciDAC on Accelerator Science&Technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ryne, Robert D.

    2006-08-10

    Particle accelerators are among the most complex and versatile instruments of scientific exploration. They have enabled remarkable scientific discoveries and important technological advances that span all programs within the DOE Office of Science (DOE/SC). The importance of accelerators to the DOE/SC mission is evident from an examination of the DOE document, ''Facilities for the Future of Science: A Twenty-Year Outlook''. Of the 28 facilities listed, 13 involve accelerators. Thanks to SciDAC, a powerful suite of parallel simulation tools has been developed that represent a paradigm shift in computational accelerator science. Simulations that used to take weeks or more now takemore » hours, and simulations that were once thought impossible are now performed routinely. These codes have been applied to many important projects of DOE/SC including existing facilities (the Tevatron complex, the Relativistic Heavy Ion Collider), facilities under construction (the Large Hadron Collider, the Spallation Neutron Source, the Linac Coherent Light Source), and to future facilities (the International Linear Collider, the Rare Isotope Accelerator). The new codes have also been used to explore innovative approaches to charged particle acceleration. These approaches, based on the extremely intense fields that can be present in lasers and plasmas, may one day provide a path to the outermost reaches of the energy frontier. Furthermore, they could lead to compact, high-gradient accelerators that would have huge consequences for US science and technology, industry, and medicine. In this talk I will describe the new accelerator modeling capabilities developed under SciDAC, the essential role of multi-disciplinary collaboration with applied mathematicians, computer scientists, and other IT experts in developing these capabilities, and provide examples of how the codes have been used to support DOE/SC accelerator projects.« less

  7. SITE TECHNOLOGY PROFILES - 11TH EDITION, COMPACT DISC

    EPA Science Inventory

    The Superfund Innovative Technology Evaluation (SITE) Program, now in its eleventh year is an integral part of EPA's research into alternative cleanup methods for hazardous waste sites around the nation. The SITE Program was created to encourage the development and routine use o...

  8. Computational screening of organic polymer dielectrics for novel accelerator technologies

    DOE PAGES

    Pilania, Ghanshyam; Weis, Eric; Walker, Ethan M.; ...

    2018-06-18

    The use of infrared lasers to power accelerating dielectric structures is a developing area of research. Within this technology, the choice of the dielectric material forming the accelerating structures, such as the photonic band gap (PBG) structures, is dictated by a range of interrelated factors including their dielectric and optical properties, amenability to photo-polymerization, thermochemical stability and other target performance metrics of the particle accelerator. In this direction, electronic structure theory aided computational screening and design of dielectric materials can play a key role in identifying potential candidate materials with the targeted functionalities to guide experimental synthetic efforts. In anmore » attempt to systematically understand the role of chemistry in controlling the electronic structure and dielectric properties of organic polymeric materials, here we employ empirical screening and density functional theory (DFT) computations, as a part of our multi-step hierarchal screening strategy. Our DFT based analysis focused on the bandgap, dielectric permittivity, and frequency-dependent dielectric losses due to lattice absorption as key properties to down-select promising polymer motifs. In addition to the specific application of dielectric laser acceleration, the general methodology presented here is deemed to be valuable in the design of new insulators with an attractive combination of dielectric properties.« less

  9. Illinois Accelerator Research Center

    DOE PAGES

    Kroc, Thomas K.; Cooper, Charlie A.

    2017-10-26

    The Illinois Accelerator Research Center (IARC) hosts a new accelerator development program at Fermi National Accelerator Laboratory. IARC provides access to Fermi's state-of-the-art facilities and technologies for research, development and industrialization of particle accelerator technology. In addition to facilitating access to available existing Fermi infrastructure, the IARC Campus has a dedicated 36,000 ft2 heavy assembly building (HAB) with all the infrastructure needed to develop, commission and operate new accelerators. Connected to the HAB is a 47,000 ft Office, Technology and Engineering (OTE) building, paid for by the state, that has office, meeting, and light technical space. The OTE building, whichmore » contains the Accelerator Physics Center, and nearby Accelerator and Technical divisions provide IARC collaborators with unique access to world class expertise in a wide array of accelerator technologies. Finally, at IARC scientists and engineers from Fermilab and academia work side by side with industrial partners to develop breakthroughs in accelerator science and translate them into applications for the nation's health, wealth and security.« less

  10. Illinois Accelerator Research Center

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kroc, Thomas K.; Cooper, Charlie A.

    The Illinois Accelerator Research Center (IARC) hosts a new accelerator development program at Fermi National Accelerator Laboratory. IARC provides access to Fermi's state-of-the-art facilities and technologies for research, development and industrialization of particle accelerator technology. In addition to facilitating access to available existing Fermi infrastructure, the IARC Campus has a dedicated 36,000 ft2 heavy assembly building (HAB) with all the infrastructure needed to develop, commission and operate new accelerators. Connected to the HAB is a 47,000 ft Office, Technology and Engineering (OTE) building, paid for by the state, that has office, meeting, and light technical space. The OTE building, whichmore » contains the Accelerator Physics Center, and nearby Accelerator and Technical divisions provide IARC collaborators with unique access to world class expertise in a wide array of accelerator technologies. Finally, at IARC scientists and engineers from Fermilab and academia work side by side with industrial partners to develop breakthroughs in accelerator science and translate them into applications for the nation's health, wealth and security.« less

  11. Illinois Accelerator Research Center

    NASA Astrophysics Data System (ADS)

    Kroc, Thomas K.; Cooper, Charlie A.

    The Illinois Accelerator Research Center (IARC) hosts a new accelerator development program at Fermi National Accelerator Laboratory. IARC provides access to Fermi's state-of-the-art facilities and technologies for research, development and industrialization of particle accelerator technology. In addition to facilitating access to available existing Fermi infrastructure, the IARC Campus has a dedicated 36,000 ft2 Heavy Assembly Building (HAB) with all the infrastructure needed to develop, commission and operate new accelerators. Connected to the HAB is a 47,000 ft2 Office, Technology and Engineering (OTE) building, paid for by the state, that has office, meeting, and light technical space. The OTE building, which contains the Accelerator Physics Center, and nearby Accelerator and Technical divisions provide IARC collaborators with unique access to world class expertise in a wide array of accelerator technologies. At IARC scientists and engineers from Fermilab and academia work side by side with industrial partners to develop breakthroughs in accelerator science and translate them into applications for the nation's health, wealth and security.

  12. SUPERFUND INNOVATIVE TECHNOLOGY EVALUATION (SITE) PROGRAM ANNUAL REPORT TO CONGRESS 2003

    EPA Science Inventory

    The Superfund Innovative Technology Evaluation (SITE) Program has successfully promoted the development, commercialization and implementation of innovative hazardous waste treatment technologies for 17 years. SITE offers a mechanism for conducting joint technology demonstration a...

  13. SITE TECHNOLOGY CAPSULE: J.R. SIMPLOT EX-SITU ANAEROBIC BIOREMEDIATION TECHNOLOGY: TNT

    EPA Science Inventory

    The J.R. Simplot Ex-Situ Bioremediation Technology is designed to degrade nitroaromatic compounds anaerobically, with total destruction of toxic intermediates at the completion of treatment. An evaluation of this technology was conducted under the SITE Program on TNT-contaminated...

  14. Ecological-site based assessments of wind and water erosion: informing management of accelerated soil erosion in rangelands

    NASA Astrophysics Data System (ADS)

    Webb, N.; Herrick, J.; Duniway, M.

    2013-12-01

    This work explores how soil erosion assessments can be structured in the context of ecological sites and site dynamics to inform systems for managing accelerated soil erosion. We evaluated wind and water erosion rates for five ecological sites in southern New Mexico, USA, using monitoring data and rangeland-specific wind and water erosion models. Our results show that wind and water erosion can be highly variable within and among ecological sites. Plots in shrub-encroached and shrub-dominated states were consistently susceptible to both wind and water erosion. However, grassland plots and plots with a grass-succulent mix had a high indicated susceptibility to wind and water erosion respectively. Vegetation thresholds for controlling erosion are identified that transcend the ecological sites and their respective states. The thresholds define vegetation cover levels at which rapid (exponential) increases in erosion rates begin to occur, suggesting that erosion in the study ecosystem can be effectively controlled when bare ground cover is <20% of a site or total ground cover is >50%. Similarly, our results show that erosion can be controlled when the cover of canopy interspaces >50 cm in length reaches ~50%, the cover of canopy interspaces >100 cm in length reaches ~35% or the cover of canopy interspaces >150 cm in length reaches ~20%. This process-based understanding can be applied, along with knowledge of the differential sensitivity of vegetation states, to improve erosion management systems. Land use and management activities that alter cover levels such that they cross thresholds, and/or drive vegetation state changes, may increase the susceptibility of sites to erosion. Land use impacts that are constrained within the natural variability of sites should not result in accelerated soil erosion. Evaluating land condition against the erosion thresholds and natural variability of ecological sites will enable improved identification of where and when accelerated soil

  15. Education in a rapidly advancing technology: Accelerators and beams

    NASA Astrophysics Data System (ADS)

    Month, Mel

    2000-06-01

    The field of accelerators and beams (A&B) is one of today's fast changing technologies. Because university faculties have not been able to keep pace with the associated advancing knowledge, universities have not been able to play their traditional role of educating the scientists and engineers needed to sustain this technology for use in science, industry, commerce, and defense. This problem for A&B is described and addressed. The solution proposed, a type of "distance" education, is the U.S. Particle Accelerator School (USPAS) created in the early 1980s. USPAS provides the universities with a means of serving the education needs of the institutions using A&B, primarily but not exclusively the national laboratories. The field of A&B is briefly summarized. The need for education outside the university framework, the raison d'être for USPAS, the USPAS method, program structure, and curriculum, and particular USPAS-university connections are explained. The management of USPAS is analyzed, including its unique administrative structure, its institutional ties, and its operations, finance, marketing, and governmental relations. USPAS performance over the years is documented and a business assessment is made. Finally, there is a brief discussion of the future potential for this type of educational program, including possible extrapolation to new areas and/or different environments, in particular, its extra-government potential and its international possibilities.

  16. SITE TECHNOLOGY CAPSULE: GEOTECH DEVELOPMENT CORPORATION COLD TOP EX-SITU VITRIFICATION TECHNOLOGY

    EPA Science Inventory

    A SITE technology demonstration was conducted in 1997 to evaluate the potential applicability and effectiveness of the Geotech Cold Top ex-situ vitrification technology on chromium-contaminated soils. The primary objective was to develop test data to evaluate whether the waste a...

  17. Superconducting accelerator magnet technology in the 21st century: A new paradigm on the horizon?

    NASA Astrophysics Data System (ADS)

    Gourlay, S. A.

    2018-06-01

    Superconducting magnets for accelerators were first suggested in the mid-60's and have since become one of the major components of modern particle colliders. Technological progress has been slow but steady for the last half-century, based primarily on Nb-Ti superconductor. That technology has reached its peak with the Large Hadron Collider (LHC). Despite the superior electromagnetic properties of Nb3Sn and adoption by early magnet pioneers, it is just now coming into use in accelerators though it has not yet reliably achieved fields close to the theoretical limit. The discovery of the High Temperature Superconductors (HTS) in the late '80's created tremendous excitement, but these materials, with tantalizing performance at high fields and temperatures, have not yet been successfully developed into accelerator magnet configurations. Thanks to relatively recent developments in both Bi-2212 and REBCO, and a more focused international effort on magnet development, the situation has changed dramatically. Early optimism has been replaced with a reality that could create a new paradigm in superconducting magnet technology. Using selected examples of magnet technology from the previous century to define the context, this paper will describe the possible innovations using HTS materials as the basis for a new paradigm.

  18. 75 FR 66795 - TTM Technologies, Including On-Site Leased Workers From Kelly Services, Aerotek, and an On-Site...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-29

    ... follows: ``All workers TTM Technologies, including on-site leased workers from Kelly Services and Aerotek... DEPARTMENT OF LABOR Employment and Training Administration [TA-W-64,993] TTM Technologies, Including On-Site Leased Workers From Kelly Services, Aerotek, and an On-Site Leased Worker From Orbotech...

  19. Repetitive nanosecond electron accelerators type URT-1 for radiation technology

    NASA Astrophysics Data System (ADS)

    Sokovnin, S. Yu.; Balezin, M. E.

    2018-03-01

    The electron accelerator URT-1М-300 for mobile installation was created for radiation disinfecting to correct drawbacks that were found the URT-1M electron accelerator operation (the accelerating voltage up to 1 МV, repetition rate up to 300 pps, electron beam size 400 × 100 mm, the pulse width about 100 ns). Accelerator configuration was changed that allowed to reduce significantly by 20% tank volume with oil where is placed the system of formation high-voltage pulses, thus the average power of the accelerator is increased by 6 times at the expense of increase in pulses repetition rate. Was created the system of the computerized monitoring parameters (output parameters and thermal mode) and remote control of the accelerator (charge voltage, pulse repetition rate), its elements and auxiliary systems (heat of the thyratron, vacuum system), the remote control panel is connected to the installation by the fiber-optical channel, what lightens the work for service personnel. For generating an electron beam up to 400 mm wide there are used metal- ceramic] and metal-dielectric cold cathodes of several emission elements (plates) with a non-uniform distribution of the electron beam current density on the output foil ± 15%. It was found that emission drop of both type of cathodes, during the operation at the high repetition rate (100 pps) is substantial at the beginning of the process, and then proceeds rather slowly that allows for continuous operation up to 40 h. Experiments showed that linear dependence of the voltage and a signal from the pin-diode remains within the range of the charge voltage 45-65 kV. Thus, voltage increases from 690 to 950 kV, and the signal from the pin-diode - from (2,8-4,6)*104 Gy/s. It allows to select electron energy quite precisely with consideration of the radiation technology requirements.

  20. Technology Evaluation Report - SITE PROGRAM DEMONSTRATION OF THE ULTROX INTERNATIONAL ULTRAVIOLET RADIATION OXIDATION TECHNOLOGY

    EPA Science Inventory

    In support of EPA's Superfund Innovative Technology Evaluation (SITE) Program, this report presents the results of the Ultrox International technology demonstration. The Ultrox® technology (a registered trademark of Ultrox International) simultaneously uses ultraviolet (UV) radi...

  1. Extraordinary tools for extraordinary science: the impact of SciDAC on accelerator science and technology

    NASA Astrophysics Data System (ADS)

    Ryne, Robert D.

    2006-09-01

    Particle accelerators are among the most complex and versatile instruments of scientific exploration. They have enabled remarkable scientific discoveries and important technological advances that span all programs within the DOE Office of Science (DOE/SC). The importance of accelerators to the DOE/SC mission is evident from an examination of the DOE document, ''Facilities for the Future of Science: A Twenty-Year Outlook.'' Of the 28 facilities listed, 13 involve accelerators. Thanks to SciDAC, a powerful suite of parallel simulation tools has been developed that represent a paradigm shift in computational accelerator science. Simulations that used to take weeks or more now take hours, and simulations that were once thought impossible are now performed routinely. These codes have been applied to many important projects of DOE/SC including existing facilities (the Tevatron complex, the Relativistic Heavy Ion Collider), facilities under construction (the Large Hadron Collider, the Spallation Neutron Source, the Linac Coherent Light Source), and to future facilities (the International Linear Collider, the Rare Isotope Accelerator). The new codes have also been used to explore innovative approaches to charged particle acceleration. These approaches, based on the extremely intense fields that can be present in lasers and plasmas, may one day provide a path to the outermost reaches of the energy frontier. Furthermore, they could lead to compact, high-gradient accelerators that would have huge consequences for US science and technology, industry, and medicine. In this talk I will describe the new accelerator modeling capabilities developed under SciDAC, the essential role of multi-disciplinary collaboration with applied mathematicians, computer scientists, and other IT experts in developing these capabilities, and provide examples of how the codes have been used to support DOE/SC accelerator projects.

  2. SITE TECHNOLOGY CAPSULE: NOVOCS EVALUATION AT NAS NORTH ISLAND

    EPA Science Inventory

    This is a SITE Technology Capsule. The MACTEC, Inc. (MACTEC), NoVOCs(TM) in-well volatile organic compounds (VOC) stripping technology is an in-situ groundwater remediation technology designed for the cleanup of groundwater contaminated with VOCs. The NoVOCs(TM) technology was ev...

  3. Accelerating Project and Process Improvement using Advanced Software Simulation Technology: From the Office to the Enterprise

    DTIC Science & Technology

    2010-04-29

    Technology: From the Office Larry Smith Software Technology Support Center to the Enterprise 517 SMXS/MXDEA 6022 Fir Avenue Hill AFB, UT 84056 801...2010 to 00-00-2010 4. TITLE AND SUBTITLE Accelerating Project and Process Improvement using Advanced Software Simulation Technology: From the Office to

  4. A new type of accelerator power supply based on voltage-type space vector PWM rectification technology

    NASA Astrophysics Data System (ADS)

    Wu, Fengjun; Gao, Daqing; Shi, Chunfeng; Huang, Yuzhen; Cui, Yuan; Yan, Hongbin; Zhang, Huajian; Wang, Bin; Li, Xiaohui

    2016-08-01

    To solve the problems such as low input power factor, a large number of AC current harmonics and instable DC bus voltage due to the diode or thyristor rectifier used in an accelerator power supply, particularly in the Heavy Ion Research Facility in Lanzhou-Cooler Storage Ring (HIRFL-CSR), we designed and built up a new type of accelerator power supply prototype base on voltage-type space vector PWM (SVPWM) rectification technology. All the control strategies are developed in TMS320C28346, which is a digital signal processor from TI. The experimental results indicate that an accelerator power supply with a SVPWM rectifier can solve the problems above well, and the output performance such as stability, tracking error and ripple current meet the requirements of the design. The achievement of prototype confirms that applying voltage-type SVPWM rectification technology in an accelerator power supply is feasible; and it provides a good reference for design and build of this new type of power supply.

  5. Accelerating Technology Development through Integrated Computation and Experimentation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shekhawat, Dushyant; Srivastava, Rameshwar D.; Ciferno, Jared

    2013-08-15

    This special section of Energy & Fuels comprises a selection of papers presented at the topical conference “Accelerating Technology Development through Integrated Computation and Experimentation”, sponsored and organized by the United States Department of Energy’s National Energy Technology Laboratory (NETL) as part of the 2012 American Institute of Chemical Engineers (AIChE) Annual Meeting held in Pittsburgh, PA, Oct 28-Nov 2, 2012. That topical conference focused on the latest research and development efforts in five main areas related to fossil energy, with each area focusing on the utilization of both experimental and computational approaches: (1) gas separations (membranes, sorbents, and solventsmore » for CO{sub 2}, H{sub 2}, and O{sub 2} production), (2) CO{sub 2} utilization (enhanced oil recovery, chemical production, mineralization, etc.), (3) carbon sequestration (flow in natural systems), (4) advanced power cycles (oxy-combustion, chemical looping, gasification, etc.), and (5) fuel processing (H{sub 2} production for fuel cells).« less

  6. Accelerating the commercialization of university technologies for military healthcare applications: the role of the proof of concept process

    NASA Astrophysics Data System (ADS)

    Ochoa, Rosibel; DeLong, Hal; Kenyon, Jessica; Wilson, Eli

    2011-06-01

    The von Liebig Center for Entrepreneurism and Technology Advancement at UC San Diego (vonliebig.ucsd.edu) is focused on accelerating technology transfer and commercialization through programs and education on entrepreneurism. Technology Acceleration Projects (TAPs) that offer pre-venture grants and extensive mentoring on technology commercialization are a key component of its model which has been developed over the past ten years with the support of a grant from the von Liebig Foundation. In 2010, the von Liebig Entrepreneurism Center partnered with the U.S. Army Telemedicine and Advanced Technology Research Center (TATRC), to develop a regional model of Technology Acceleration Program initially focused on military research to be deployed across the nation to increase awareness of military medical needs and to accelerate the commercialization of novel technologies to treat the patient. Participants to these challenges are multi-disciplinary teams of graduate students and faculty in engineering, medicine and business representing universities and research institutes in a region, selected via a competitive process, who receive commercialization assistance and funding grants to support translation of their research discoveries into products or services. To validate this model, a pilot program focused on commercialization of wireless healthcare technologies targeting campuses in Southern California has been conducted with the additional support of Qualcomm, Inc. Three projects representing three different universities in Southern California were selected out of forty five applications from ten different universities and research institutes. Over the next twelve months, these teams will conduct proof of concept studies, technology development and preliminary market research to determine the commercial feasibility of their technologies. This first regional program will help build the needed tools and processes to adapt and replicate this model across other regions in the

  7. U.S. EPA SITE DEMONSTRATION OF AWD TECHNOLOGIES, INC AQUADETOX/SVE SYSTEM

    EPA Science Inventory

    Under the Superfund Innovation TechnologyEvaluation (SITE) Program, a technology developed by AWD Technologies, Inc. was demonstrated in September 1990. This paper presents the major results of the SITE demonstration of AWD Technologies" AquaDetox/SVE Treatment system designed f...

  8. Rail accelerator technology and applications

    NASA Technical Reports Server (NTRS)

    Zana, L. M.; Kerslake, W. R.

    1985-01-01

    Rail accelerators offer a viable means of launching ton-size payloads from the Earth's surface to space. The results of two mission studies which indicate that an Earth-to-Space Rail Launcher (ESRL) system is not only technically feasible but also economically beneficial, particularly when large amounts of bulk cago are to be delivered to space are given. An in-house experimental program at the Lewis Research Center (LeRC) was conducted in parallel with the mission studies with the objective of examining technical feasibility issues. A 1 m long - 12.5 by 12.5 mm bore rail accelerator as designed with clear polycarbonate sidewalls to visually observe the plasma armature acceleration. The general character of plasma/projectile dynamics is described for a typical test firing.

  9. SITE TECHNOLOGY PROFILES, TENTH EDITION, VOLUME I - DEMONSTRATION PROGRAM

    EPA Science Inventory

    The Superfund Innovative Technology Evaluation (SITE) Program, now in its thirteenth year, is an integral part of EPA's research into alternative cleanup methods for hazardous waste sites around the nation. The SITE Program was created to encourage the development and routine us...

  10. Education in a rapidly advancing technology: Accelerators and beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Month, Mel

    2000-06-01

    The field of accelerators and beams (A and B) is one of today's fast changing technologies. Because university faculties have not been able to keep pace with the associated advancing knowledge, universities have not been able to play their traditional role of educating the scientists and engineers needed to sustain this technology for use in science, industry, commerce, and defense. This problem for A and B is described and addressed. The solution proposed, a type of ''distance'' education, is the U.S. Particle Accelerator School (USPAS) created in the early 1980s. USPAS provides the universities with a means of serving themore » education needs of the institutions using A and B, primarily but not exclusively the national laboratories. The field of A and B is briefly summarized. The need for education outside the university framework, the raison d'etre for USPAS, the USPAS method, program structure, and curriculum, and particular USPAS-university connections are explained. The management of USPAS is analyzed, including its unique administrative structure, its institutional ties, and its operations, finance, marketing, and governmental relations. USPAS performance over the years is documented and a business assessment is made. Finally, there is a brief discussion of the future potential for this type of educational program, including possible extrapolation to new areas and/or different environments, in particular, its extra-government potential and its international possibilities. (c) 2000 American Association of Physics Teachers.« less

  11. Fermilab | Tevatron | Accelerator

    Science.gov Websites

    Leading accelerator technology Accelerator complex Illinois Accelerator Research Center Fermilab temperature. They were used to transfer particles from one part of the Fermilab accelerator complex to another center ring of Fermilab's accelerator complex. Before the Tevatron shut down, it had three primary

  12. Accelerating the deployment of energy efficient and renewable energy technologies in South Africa

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shickman, Kurt

    Purpose of the project was to accelerate the deployment of energy efficient and renewable energy technologies in South Africa. Activities were undertaken to reduce barriers to deployment by improving product awareness for the South African market; market and policy intelligence for U.S. manufacturers; product/service availability; local technical capacity at the workforce, policymaker and expert levels; and ease of conducting business for these technologies/services in the South African market.

  13. DEMONSTRATION AND EVALUATION OF INNOVATIVE REMEDIATION TECHNOLOGIES THROUGH THE EPA SITE PROGRAM

    EPA Science Inventory

    The Superfund Innovative Technology Evaluation (SITE) Program has successfuly promoted the development, commercialization and implementation of innovative hazardous waste treatment technologies for 18 years. SITE offers a mechanism for conducting joint technology demonstration an...

  14. Demonstration of innovative monitoring technologies at the Savannah River Integrated Demonstration Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rossabi, J.; Jenkins, R.A.; Wise, M.B.

    1993-12-31

    The Department of Energy`s Office of Technology Development initiated an Integrated Demonstration Program at the Savannah River Site in 1989. The objective of this program is to develop, demonstrate, and evaluate innovative technologies that can improve present-day environmental restoration methods. The Integrated Demonstration Program at SRS is entitled ``Cleanup of Organics in Soils and Groundwater at Non-Arid Sites.`` New technologies in the areas of drilling, characterization, monitoring, and remediation are being demonstrated and evaluated for their technical performance and cost effectiveness in comparison with baseline technologies. Present site characterization and monitoring methods are costly, time-consuming, overly invasive, and often imprecise.more » Better technologies are required to accurately describe the subsurface geophysical and geochemical features of a site and the nature and extent of contamination. More efficient, nonintrusive characterization and monitoring techniques are necessary for understanding and predicting subsurface transport. More reliable procedures are also needed for interpreting monitoring and characterization data. Site characterization and monitoring are key elements in preventing, identifying, and restoring contaminated sites. The remediation of a site cannot be determined without characterization data, and monitoring may be required for 30 years after site closure.« less

  15. ESTIMATING INNOVATIVE TECHNOLOGY COSTS FOR THE SITE PROGRAM

    EPA Science Inventory

    Among the objectives of the EPA`s Superfund Innovative Technology Evaluation (SITE) Program are two which pertain to the issue of economics: 1) That the program will provide a projected cost for each treatment technology demonstrated. 2) That the program will attempt to identify ...

  16. Accelerators, Beams And Physical Review Special Topics - Accelerators And Beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Siemann, R.H.; /SLAC

    Accelerator science and technology have evolved as accelerators became larger and important to a broad range of science. Physical Review Special Topics - Accelerators and Beams was established to serve the accelerator community as a timely, widely circulated, international journal covering the full breadth of accelerators and beams. The history of the journal and the innovations associated with it are reviewed.

  17. Development of Manufacturing Technology to Accelerate Cost Reduction of Low Concentration and

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Detrick, Adam

    The purpose of this project was to accelerate deployment of cost-effective US-based manufacturing of Solaria’s unique c-Si module technology. This effort successfully resulted in the development of US-based manufacturing technology to support two highly-differentiated, market leading product platforms. The project was initially predicated on developing Solaria’s low-concentration PV (LCPV) module technology which at the time of the award was uniquely positioned to exceed the SunShot price goal of $0.50/Wp for standard c-Si modules. The Solaria LCPV module is a 2.5x concentrator that leverages proven, high-reliability PV module materials and low silicon cell usage into a technology package that already hadmore » the lowest direct material cost and leading Levelized Cost of Electricity (LCOE). With over 25 MW commercially deployed globally, the Solaria module was well positioned to continue to lead in PV module cost reduction. Throughout the term of the contract, market conditions changed dramatically and so to did Solaria’s product offerings to support this. However, the manufacturing technology developed for the LCPV module was successfully leveraged and optimized to support two new and different product platforms. BIPV “PowerVision” and High-efficiency “PowerXT” modules. The primary barrier to enabling high-volume PV module manufacturing in the US is the high manual labor component in certain unique aspects of our manufacturing process. The funding was used to develop unique manufacturing automation which makes the manual labor components of these key processes more efficient and increase throughput. At the core of Solaria’s product offerings are its unique and proprietary techniques for dicing and re-arranging solar cells into modules with highly-differentiated characteristics that address key gaps in the c-Si market. It is these techniques that were successfully evolved and deployed into US-based manufacturing site with SunShot funding. Today

  18. Technology for Waste Treatment at Remote Army Sites

    DTIC Science & Technology

    1986-09-01

    Management "AD-A.17 6 801 i echnology for Waste Treatment at Remote Army Sites by * Richard J. Scholze James E. Alleinan Steve R. Struss EdD. Smith This...62720 IA896 A 1039 IT TITLE (include Security Classification) Technology for Waste Treatment at Remote Army Sites (Unclassified) 12 PERSONAL...management human wastes 13 02 waste treatment remote sites I I wastes (sanitary engineering)~ 19 ABSTRACT (Continue on reverse if necessary and identify by

  19. USEPA SITE PROGRAM APPROACH TO TECHNOLOGY TRANSFER AND REGULATORY ACCEPTANCE

    EPA Science Inventory

    The USEPA's SITE program was created to meet the demand for innovative technologies for hazardous waste treatment. The primary mission of the SITe Program is to expedite the cleanup of sites on the NPL. These sites often have multiple contaminants in soil and groundwater, and few...

  20. Harnessing collaborative technology to accelerate achievement of chronic disease management objectives for Canada.

    PubMed

    Thompson, Leslee J; Healey, Lindsay; Falk, Will

    2007-01-01

    Morgan and colleagues put forth a call to action for the transformation of the Canadian healthcare system through the adoption of a national chronic disease prevention and management (CDPM) strategy. They offer examples of best practices and national solutions including investment in clinical information technologies to help support improved care and outcomes. Although we acknowledge that the authors propose CDPM solutions that are headed in the right direction, more rapid deployment of solutions that harness the potential of advanced collaborative technologies is required. We provide examples of how technologies that exist today can help to accelerate the achievement of some key CDPM objectives.

  1. Amplified Rate Acceleration by Simultaneous Up-Regulation of Multiple Active Sites in an Endo-Functionalized Porous Capsule.

    PubMed

    Kopilevich, Sivil; Müller, Achim; Weinstock, Ira A

    2015-10-14

    Using the hydrolysis of epoxides in water as a model reaction, the effect of multiple active sites on Michaelis-Menten compliant rate accelerations in a porous capsule is demonstrated. The capsule is a water-soluble Ih-symmetry Keplerate-type complex of the form, [{Mo(VI)6O21(H2O)6}12{Mo(V)2O4(L)}30](42-), in which 12 pentagonal "ligands," {(Mo(VI))Mo(VI)5O21(H2O)6}(6-), are coordinated to 30 dimolybdenum sites, {Mo(V)2O4L}(1+) (L = an endohedrally coordinated η(2)-bound carboxylate anion), resulting in 20 Mo9O9 pores. When "up-regulated" by removal of ca. one-third of the blocking ligands, L, an equal number of dimolybdenum sites are activated, and the newly freed-up space allows for encapsulation of nearly twice as many substrate guests, leading to a larger effective molarity (amplification), and an increase in the rate acceleration (k(cat)/k(uncat)) from 16,000 to an enzyme-like value of 182,800.

  2. Universality of accelerating change

    NASA Astrophysics Data System (ADS)

    Eliazar, Iddo; Shlesinger, Michael F.

    2018-03-01

    On large time scales the progress of human technology follows an exponential growth trend that is termed accelerating change. The exponential growth trend is commonly considered to be the amalgamated effect of consecutive technology revolutions - where the progress carried in by each technology revolution follows an S-curve, and where the aging of each technology revolution drives humanity to push for the next technology revolution. Thus, as a collective, mankind is the 'intelligent designer' of accelerating change. In this paper we establish that the exponential growth trend - and only this trend - emerges universally, on large time scales, from systems that combine together two elements: randomness and amalgamation. Hence, the universal generation of accelerating change can be attained by systems with no 'intelligent designer'.

  3. SITE TECHNOLOGY PROFILES - 11TH EDITION - DEMONSTRATION PROGRAM, VOLUME 1

    EPA Science Inventory

    The Superfund Innovative Technology Evaluation (SITE) Program, now in its eleventh year is an integral part of EPA's research into alternative cleanup methods for hazardous waste sites around the nation. The SITE Program was created to encourage the development and routine use o...

  4. TREATMENT TECHNOLOGY FOR REMEDIATION OF WOOD PRESERVING SITES: OVERVIEW

    EPA Science Inventory

    This is the first in a series of five articles describing the applicability, performance and cost of technologies for the remediation of contaminated soil and water at wood preserving sites. Site-specific treatability studies conducted under the supervision of the USEPA NRMRL fro...

  5. EVALUATION OF WASTE STABILIZED BY THE SOLIDITECH SITE TECHNOLOGY

    EPA Science Inventory

    The Soliditech technology demonstration was conducted at the Imperial Oil Company/Champion Chemicals Superfund Site in Monmouth County, New Jersey. ontamination at this site includes PCBs, lead (with various other metals) and oil and grease. his process mixes the waste material w...

  6. Optical Microfiber Technology for Current, Temperature, Acceleration, Acoustic, Humidity and Ultraviolet Light Sensing

    PubMed Central

    Lancaster, David G.; Monro, Tanya M.

    2017-01-01

    Optical microfibers possess excellent optical and mechanical properties that have been exploited for sensing. We highlight the authors’ recent work in the areas of current, temperature, acceleration, acoustic, humidity and ultraviolet-light sensing based on this exquisite technology, and the advantages and challenges of using optical microfibers are discussed. PMID:29283414

  7. SITE CHARACTERIZATION AND MONITORING TECHNOLOGY VERIFICATION: PROGRESS AND RESULTS

    EPA Science Inventory

    The Site Characterization and Monitoring Technology Pilot of the U.S. Environmental Protection Agency's Environmental Technology Verification Program (ETV) has been engaged in verification activities since the fall of 1994 (U.S. EPA, 1997). The purpose of the ETV is to promote th...

  8. DEMONSTRATION OF AQUAFIX AND SAPS PASSIVE MINE WATER TREATMENT TECHNOLOGIES AT SUMMITVILLE MINE SITE, INNOVATIVE TECHNOLOGY EVALUATION REPORT

    EPA Science Inventory

    As part of the Superfund Innovative Technology Evaluation (SITE) Program, the U.S. Environmental Protection Agency evaluated two passive water treatment (PWT) technologies for metals removal from acid mine drainage (AMD) at the Summitville Mine Superfund Site in southern Colorado...

  9. Taking a traditional web site to patient portal technology.

    PubMed

    Labow, Kimberly

    2010-01-01

    In this era of consumer-driven healthcare, consumers (your current and potential patients) seek healthcare information on the Internet. If your practice doesn't have a Web site, or has one that's static and uninformative, you won't be found, and the patient will move on to the next practice Web site. Why? Because only the most graphically appealing, informative, and patient-centered Web sites will drive patients to your practice. Patients are demanding improved communication with their physician. A practice Web site is a start, but the adoption of a fully functional, interactive Web site with patient portal solutions will not only improve patient-to-provider relationships but will also give the patient access to your practice from anywhere, at any time of the day. Furthermore, these solutions can help practices increase efficiencies and revenue, while reducing operating costs. With the American Recovery and Reinvestment Act of 2009 and other incentives for healthcare information technology adoption, the time is right for your practice to consider implementing technology that will bring considerable value to your practice and also increase patient satisfaction.

  10. Theoretical and technological building blocks for an innovation accelerator

    NASA Astrophysics Data System (ADS)

    van Harmelen, F.; Kampis, G.; Börner, K.; van den Besselaar, P.; Schultes, E.; Goble, C.; Groth, P.; Mons, B.; Anderson, S.; Decker, S.; Hayes, C.; Buecheler, T.; Helbing, D.

    2012-11-01

    Modern science is a main driver of technological innovation. The efficiency of the scientific system is of key importance to ensure the competitiveness of a nation or region. However, the scientific system that we use today was devised centuries ago and is inadequate for our current ICT-based society: the peer review system encourages conservatism, journal publications are monolithic and slow, data is often not available to other scientists, and the independent validation of results is limited. The resulting scientific process is hence slow and sloppy. Building on the Innovation Accelerator paper by Helbing and Balietti [1], this paper takes the initial global vision and reviews the theoretical and technological building blocks that can be used for implementing an innovation (in first place: science) accelerator platform driven by re-imagining the science system. The envisioned platform would rest on four pillars: (i) Redesign the incentive scheme to reduce behavior such as conservatism, herding and hyping; (ii) Advance scientific publications by breaking up the monolithic paper unit and introducing other building blocks such as data, tools, experiment workflows, resources; (iii) Use machine readable semantics for publications, debate structures, provenance etc. in order to include the computer as a partner in the scientific process, and (iv) Build an online platform for collaboration, including a network of trust and reputation among the different types of stakeholders in the scientific system: scientists, educators, funding agencies, policy makers, students and industrial innovators among others. Any such improvements to the scientific system must support the entire scientific process (unlike current tools that chop up the scientific process into disconnected pieces), must facilitate and encourage collaboration and interdisciplinarity (again unlike current tools), must facilitate the inclusion of intelligent computing in the scientific process, must facilitate

  11. SITE TECHNOLOGY CAPSULE: SONOTECH PULSE COMBUSTION SYSTEM

    EPA Science Inventory

    Sonotech has targeted waste incineration as a potential application for this technology. Based on bench-scale rotary-kiln simulator tests, Sonotech proposed a demonstration under the SITE program to evaluate the Sonotech pulse combustion system on a larger scale at EPA's IRF in J...

  12. Testing Done for Lorentz Force Accelerators and Electrodeless Propulsion Technology Development

    NASA Technical Reports Server (NTRS)

    Pencil, Eric J.; Gilland, James H.; Arrington, Lynn A.; Kamhawi, Hani

    2004-01-01

    The NASA Glenn Research Center is developing Lorentz force accelerators and electrodeless plasma propulsion for a wide variety of space applications. These applications range from precision control of formation-flying spacecraft to primary propulsion for very high power interplanetary spacecraft. The specific thruster technologies being addressed are pulsed plasma thrusters, magnetoplasmadynamic thrusters, and helicon-electron cyclotron resonance acceleration thrusters. The pulsed plasma thruster mounted on the Earth Observing-1 spacecraft was operated successfully in orbit in 2002. The two-axis thruster system is fully incorporated in the attitude determination and control system and is being used to automatically counteract disturbances in the pitch axis of the spacecraft. Recent on-orbit operations have focused on extended operations to add flight operation time to the total accumulated thruster life. The results of the experiments pave the way for electric propulsion applications on future Earth-imaging satellites.

  13. Accelerated construction

    DOT National Transportation Integrated Search

    2004-01-01

    Accelerated Construction Technology Transfer (ACTT) is a strategic process that uses various innovative techniques, strategies, and technologies to minimize actual construction time, while enhancing quality and safety on today's large, complex multip...

  14. Linear Accelerator (LINAC)

    MedlinePlus

    ... equipment? How is safety ensured? What is this equipment used for? A linear accelerator (LINAC) is the ... Therapy (SBRT) . top of page How does the equipment work? The linear accelerator uses microwave technology (similar ...

  15. USEPA SITE PROGRAM APPROACH TO TECHNOLOGY TRANSFER AND REGULATORY ACCEPTANCE

    EPA Science Inventory

    The SITE Program was created to meet the increased demand for innovative technologies for hazardous waste treatment. To accomplish this mission, the program seeks to advance the development, implementation and commercialization of innovative technologies for hazardous waste chara...

  16. 76 FR 5833 - Polaris Industries, Including On-Site Leased Workers From Westaff, Supply Technologies, Aerotek...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-02

    ..., Including On-Site Leased Workers From Westaff, Supply Technologies, Aerotek, and Securitas Security Services..., including on-site leased workers from Westaff, Supply Technologies, Aerotek and Securitas Security Services... was amended on December 6, 2010 to include on- site leased workers from Supply Technologies. The...

  17. SITE TECHNOLOGY PROFILES, TENTH EDITION, VOLUME 3 - MEASUREMENT AND MONITORING PROGRAM

    EPA Science Inventory

    The Superfund Innovative Technology Evaluation (SITE) Program, now in its thirteenth year, is an integral part of EPA's research into alternative cleanup methods for hazardous waste sites around the nation. The SITE Program was created to encourage the development and routine us...

  18. Empirical evidence for acceleration-dependent amplification factors

    USGS Publications Warehouse

    Borcherdt, R.D.

    2002-01-01

    Site-specific amplification factors, Fa and Fv, used in current U.S. building codes decrease with increasing base acceleration level as implied by the Loma Prieta earthquake at 0.1g and extrapolated using numerical models and laboratory results. The Northridge earthquake recordings of 17 January 1994 and subsequent geotechnical data permit empirical estimates of amplification at base acceleration levels up to 0.5g. Distance measures and normalization procedures used to infer amplification ratios from soil-rock pairs in predetermined azimuth-distance bins significantly influence the dependence of amplification estimates on base acceleration. Factors inferred using a hypocentral distance norm do not show a statistically significant dependence on base acceleration. Factors inferred using norms implied by the attenuation functions of Abrahamson and Silva show a statistically significant decrease with increasing base acceleration. The decrease is statistically more significant for stiff clay and sandy soil (site class D) sites than for stiffer sites underlain by gravely soils and soft rock (site class C). The decrease in amplification with increasing base acceleration is more pronounced for the short-period amplification factor, Fa, than for the midperiod factor, Fv.

  19. U.S. ENVIRONMENTAL PROTECTION AGENCY'S SITE EMERGING TECHNOLOGY PROGRAM: 1991 UPDATE

    EPA Science Inventory

    The Emerging Technology Program (ETP) supports the development of technologies successfully tested at the bench- and pilot-scale level. The ETP is part of the Superfund Innovative Technology Evaluation (SITE) Program which was established in 1986 under the Superfund Amendments an...

  20. TECHNOLOGY INTEGRATION FOR CONTAMINATED SITE REMEDIATION: CLEANUP GOALS & PERFORMANCE CRITERIA

    EPA Science Inventory

    There is a need to develop and field-test integrated remediation technologies that operate in a synergistic manner for cost-effective treatment of contaminated sites to achieve risk-based and rational endpoints. Aggressive technologies designed for rapid source-zone remediation m...

  1. SITE CHARACTERIZATION ANALYSIS PENETROMETER SYSTEM (SCAPS) - INNOVATIVE TECHNOLOGY EVALUATION REPORT

    EPA Science Inventory

    In August 1994, a demonstration of cone penetrometer-mounted sensor technologies took place to evaluate their effectiveness in sampling and analyzing the physical and chemical characteristics of subsurface sod at hazardous waste sites. he effectiveness of each technology was eval...

  2. Acceleration profile of an acrobatic act during training and shows using wearable technology.

    PubMed

    Barker, Leland; Burnstein, Bryan; Mercer, John

    2018-05-24

    The purpose of this study was to describe the mechanical characteristics of a trampoline circus act and its individual tracks performed in training and shows using a tri-axial accelerometer. A track is an artist's specific role within a choreographed act. Seven male acrobats performed their trampoline act during training and shows while wearing a triaxial accelerometer and reported ratings of perceived exertion (RPE) after each trial. Average acceleration (AVG), root mean square (RMS), root mean to the fourth (RM4), time spent in specific acceleration ranges and RPE were measured/recorded from training and show acts. Paired t-tests compared dependent variables between training and show. Acceleration AVG, RMS and RM4 were significantly higher (p < 0.05) in training than show. RPE was significantly higher (p < 0.05) in show than training. No significant differences existed in time spent in any of the acceleration ranges between training and show. GPS devices have been used to manage workloads in field sports but are inoperable in theatres. But, inertial measurements may be an effective alternative to describe mechanical demands in theatre or arena environments. Wearable technology may be useful to coaches to improve understanding of track demands to manage artist workloads.

  3. Overview of Accelerator Applications in Energy

    NASA Astrophysics Data System (ADS)

    Garnett, Robert W.; Sheffield, Richard L.

    An overview of the application of accelerators and accelerator technology in energy is presented. Applications span a broad range of cost, size, and complexity and include large-scale systems requiring high-power or high-energy accelerators to drive subcritical reactors for energy production or waste transmutation, as well as small-scale industrial systems used to improve oil and gas exploration and production. The enabling accelerator technologies will also be reviewed and future directions discussed.

  4. FERMILAB ACCELERATOR R&D PROGRAM TOWARDS INTENSITY FRONTIER ACCELERATORS : STATUS AND PROGRESS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shiltsev, Vladimir

    2016-11-15

    The 2014 P5 report indicated the accelerator-based neutrino and rare decay physics research as a centrepiece of the US domestic HEP program at Fermilab. Operation, upgrade and development of the accelerators for the near- term and longer-term particle physics program at the Intensity Frontier face formidable challenges. Here we discuss key elements of the accelerator physics and technology R&D program toward future multi-MW proton accelerators and present its status and progress. INTENSITY FRONTIER ACCELERATORS

  5. Accelerator physics and technology challenges of very high energy hadron colliders

    NASA Astrophysics Data System (ADS)

    Shiltsev, Vladimir D.

    2015-08-01

    High energy hadron colliders have been in the forefront of particle physics for more than three decades. At present, international particle physics community considers several options for a 100 TeV proton-proton collider as a possible post-LHC energy frontier facility. The method of colliding beams has not fully exhausted its potential but has slowed down considerably in its progress. This paper briefly reviews the accelerator physics and technology challenges of the future very high energy colliders and outlines the areas of required research and development towards their technical and financial feasibility.

  6. Accelerator physics and technology challenges of very high energy hadron colliders

    DOE PAGES

    Shiltsev, Vladimir D.

    2015-08-20

    High energy hadron colliders have been in the forefront of particle physics for more than three decades. At present, international particle physics community considers several options for a 100 TeV proton–proton collider as a possible post-LHC energy frontier facility. The method of colliding beams has not fully exhausted its potential but has slowed down considerably in its progress. This article briefly reviews the accelerator physics and technology challenges of the future very high energy colliders and outlines the areas of required research and development towards their technical and financial feasibility.

  7. 12th European Conference on Accelerators in Applied Research and Technology

    NASA Astrophysics Data System (ADS)

    Sajavaara, Timo; Tarvainen, Olli; Javanainen, Arto; Räisänen, Jyrki

    2017-09-01

    The 12th European Conference on Accelerators in Applied Research and Technology was organized by Department of Physics on the 3rd -8th July 2016 in the Agora building of the University of Jyväskylä in Finland. This was the first time ECAART was held in Nordic countries. There were in total 141 participants from 31 countries and six industrial exhibitors. The largest foreign delegation was from Japan with 25 participants. The scientific programme included 13 invited lectures, 29 oral and 112 poster presentations. There were altogether 14 exhibitors and sponsors.

  8. Advanced Accelerators for Medical Applications

    NASA Astrophysics Data System (ADS)

    Uesaka, Mitsuru; Koyama, Kazuyoshi

    We review advanced accelerators for medical applications with respect to the following key technologies: (i) higher RF electron linear accelerator (hereafter “linac”); (ii) optimization of alignment for the proton linac, cyclotron and synchrotron; (iii) superconducting magnet; (iv) laser technology. Advanced accelerators for medical applications are categorized into two groups. The first group consists of compact medical linacs with high RF, cyclotrons and synchrotrons downsized by optimization of alignment and superconducting magnets. The second group comprises laser-based acceleration systems aimed of medical applications in the future. Laser plasma electron/ion accelerating systems for cancer therapy and laser dielectric accelerating systems for radiation biology are mentioned. Since the second group has important potential for a compact system, the current status of the established energy and intensity and of the required stability are given.

  9. Advanced Accelerators for Medical Applications

    NASA Astrophysics Data System (ADS)

    Uesaka, Mitsuru; Koyama, Kazuyoshi

    We review advanced accelerators for medical applications with respect to the following key technologies: (i) higher RF electron linear accelerator (hereafter "linac"); (ii) optimization of alignment for the proton linac, cyclotron and synchrotron; (iii) superconducting magnet; (iv) laser technology. Advanced accelerators for medical applications are categorized into two groups. The first group consists of compact medical linacs with high RF, cyclotrons and synchrotrons downsized by optimization of alignment and superconducting magnets. The second group comprises laserbased acceleration systems aimed of medical applications in the future. Laser plasma electron/ion accelerating systems for cancer therapy and laser dielectric accelerating systems for radiation biology are mentioned. Since the second group has important potential for a compact system, the current status of the established energy and intensity and of the required stability are given.

  10. Development of Gravity Acceleration Measurement Using Simple Harmonic Motion Pendulum Method Based on Digital Technology and Photogate Sensor

    NASA Astrophysics Data System (ADS)

    Yulkifli; Afandi, Zurian; Yohandri

    2018-04-01

    Development of gravitation acceleration measurement using simple harmonic motion pendulum method, digital technology and photogate sensor has been done. Digital technology is more practical and optimizes the time of experimentation. The pendulum method is a method of calculating the acceleration of gravity using a solid ball that connected to a rope attached to a stative pole. The pendulum is swung at a small angle resulted a simple harmonic motion. The measurement system consists of a power supply, Photogate sensors, Arduino pro mini and seven segments. The Arduino pro mini receives digital data from the photogate sensor and processes the digital data into the timing data of the pendulum oscillation. The calculation result of the pendulum oscillation time is displayed on seven segments. Based on measured data, the accuracy and precision of the experiment system are 98.76% and 99.81%, respectively. Based on experiment data, the system can be operated in physics experiment especially in determination of the gravity acceleration.

  11. USPAS | U.S. Particle Accelerator School

    Science.gov Websites

    U.S. Particle Accelerator School U.S. Particle Accelerator School U.S. Particle Accelerator School U.S. Particle Accelerator School Education in Beam Physics and Accelerator Technology Home About About University Credits Joint International Accelerator School University-Style Programs Symposium-Style Programs

  12. Induction linear accelerators

    NASA Astrophysics Data System (ADS)

    Birx, Daniel

    1992-03-01

    Among the family of particle accelerators, the Induction Linear Accelerator is the best suited for the acceleration of high current electron beams. Because the electromagnetic radiation used to accelerate the electron beam is not stored in the cavities but is supplied by transmission lines during the beam pulse it is possible to utilize very low Q (typically<10) structures and very large beam pipes. This combination increases the beam breakup limited maximum currents to of order kiloamperes. The micropulse lengths of these machines are measured in 10's of nanoseconds and duty factors as high as 10-4 have been achieved. Until recently the major problem with these machines has been associated with the pulse power drive. Beam currents of kiloamperes and accelerating potentials of megavolts require peak power drives of gigawatts since no energy is stored in the structure. The marriage of liner accelerator technology and nonlinear magnetic compressors has produced some unique capabilities. It now appears possible to produce electron beams with average currents measured in amperes, peak currents in kiloamperes and gradients exceeding 1 MeV/meter, with power efficiencies approaching 50%. The nonlinear magnetic compression technology has replaced the spark gap drivers used on earlier accelerators with state-of-the-art all-solid-state SCR commutated compression chains. The reliability of these machines is now approaching 1010 shot MTBF. In the following paper we will briefly review the historical development of induction linear accelerators and then discuss the design considerations.

  13. Horizontal directional drilling: a green and sustainable technology for site remediation.

    PubMed

    Lubrecht, Michael D

    2012-03-06

    Sustainability has become an important factor in the selection of remedies to clean up contaminated sites. Horizontal directional drilling (HDD) is a relatively new drilling technology that has been successfully adapted to site remediation. In addition to the benefits that HDD provides for the logistics of site cleanup, it also delivers sustainability advantages, compared to alternative construction methods.

  14. Accelerators for America's Future

    NASA Astrophysics Data System (ADS)

    Bai, Mei

    2016-03-01

    Particle accelerator, a powerful tool to energize beams of charged particles to a desired speed and energy, has been the working horse for investigating the fundamental structure of matter and fundermental laws of nature. Most known examples are the 2-mile long Stanford Linear Accelerator at SLAC, the high energy proton and anti-proton collider Tevatron at FermiLab, and Large Hadron Collider that is currently under operation at CERN. During the less than a century development of accelerator science and technology that led to a dazzling list of discoveries, particle accelerators have also found various applications beyond particle and nuclear physics research, and become an indispensible part of the economy. Today, one can find a particle accelerator at almost every corner of our lives, ranging from the x-ray machine at the airport security to radiation diagnostic and therapy in hospitals. This presentation will give a brief introduction of the applications of this powerful tool in fundermental research as well as in industry. Challenges in accelerator science and technology will also be briefly presented

  15. SITE TECHNOLOGY PROFILES - 11TH EDITION, MEASUREMENT AND MONITORING PROGRAM, VOLUME 3

    EPA Science Inventory

    The Superfund Innovative Technology Evaluation (SITE) Program, now in its eleventh year is an integral part of EPA's research into alternative cleanup methods for hazardous waste sites around the nation. The SITE Program was created to encourage the development and routine use o...

  16. Plasma Wakefield Acceleration and FACET - Facilities for Accelerator Science and Experimental Test Beams at SLAC

    ScienceCinema

    Seryi, Andrei

    2017-12-22

    Plasma wakefield acceleration is one of the most promising approaches to advancing accelerator technology. This approach offers a potential 1,000-fold or more increase in acceleration over a given distance, compared to existing accelerators.  FACET, enabled by the Recovery Act funds, will study plasma acceleration, using short, intense pulses of electrons and positrons. In this lecture, the physics of plasma acceleration and features of FACET will be presented.  

  17. 76 FR 175 - Faurecia Emissions Control Technologies Including On-Site Leased Workers From Adecco Employment...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-03

    ... Technologies Including On-Site Leased Workers From Adecco Employment Servcies and Emcon Technologies, Troy, MI..., applicable to workers of Faurecia Emissions Control Technologies, Troy, Michigan, including on-site leased workers from Adecco Employment Services, Troy, Michigan. The Department's notice of determination was...

  18. Overview of Phosphate-Based Remediation Technologies At The Hanford Site, Richland Washington

    NASA Astrophysics Data System (ADS)

    Thompson, K. M.; Fruchter, J. S.

    2009-12-01

    Phosphate-based technologies have been tested to sequester strontium-90 and uranium at the Hanford Site, part of the U.S. Department of Energy's (DOE)nuclear weapons complex that encompasses approximately 586 square miles in southeast Washington State. The Columbia River flows through the site (Hanford Reach) where localized groundwater plumes upwell into the river. Efforts to reduce the flux of Sr-90 to the Columbia River from Hanford Site 100-N Area past practice liquid waste disposal sites have been underway since the early 1990s. Termination of all liquid discharges to the ground in 1993 was a major step toward meeting this goal. However, Sr 90 adsorbed onto sediment beneath liquid waste disposal sites, and onto sediment that extends beneath the near-shore riverbed, remains a continuing contaminant source for impacting groundwater and the Columbia River. Initial remediation efforts using a pump-and treat system proved to be ineffective as a long-term solution because of the geochemical characteristics of Sr-90. Following an evaluation of potential Sr-90 treatment technologies and their applicability under 100-N Area hydrogeologic conditions, the U.S. Department of Energy and the Washington State Department of Ecology agreed to evaluate apatite sequestration as the primary remedial technology, combined with a secondary polishing step utilizing phytoextraction if necessary. DOE is also evaluating the efficacy of using polyphosphate to reduce uranium concentrations in the groundwater with the goal of meeting drinking water standards (30 μg/L). This technology works by forming phosphate minerals (autunite and apatite) in the aquifer that directly sequester the existing aqueous uranium in autunite minerals and precipitates apatite minerals for sorption and long-term treatment of uranium migrating into the treatment zone, thus reducing current and future aqueous uranium concentrations. These remedial technologies are being developed by Pacific Northwest National

  19. Pulsars and Acceleration Sites

    NASA Technical Reports Server (NTRS)

    Harding, Alice

    2008-01-01

    Rotation-powered pulsars are excellent laboratories for the studying particle acceleration as well as fundamental physics of strong gravity, strong magnetic fields and relativity. But even forty years after their discovery, we still do not understand their pulsed emission at any wavelength. I will review both the basic physics of pulsars as well as the latest developments in understanding their high-energy emission. Special and general relativistic effects play important roles in pulsar emission, from inertial frame-dragging near the stellar surface to aberration, time-of-flight and retardation of the magnetic field near the light cylinder. Understanding how these effects determine what we observe at different wavelengths is critical to unraveling the emission physics. Fortunately the Gamma-Ray Large Area Space Telescope (GLAST), with launch in May 2008 will detect many new gamma-ray pulsars and test the predictions of these models with unprecedented sensitivity and energy resolution for gamma-rays in the range of 30 MeV to 300 GeV.

  20. TECHNOLOGY INTEGRATION FOR CONTAMINATED SITE REMEDIATION: CLEANUP GOALS AND PERFORMANCE CRITERIA

    EPA Science Inventory

    There is a need to develop and field-test integrated remediation technologies that operate in a synergistic manner for cost-effective treatment of contaminated sites to achieve risk-based and rational endpoints. Aggressive technologies designed for rapid source-zone remediation m...

  1. APPLICATION OF THERMAL DESORPTION TECHNOLOGIES TO HAZARDOUS WASTE SITES

    EPA Science Inventory

    Thermal desorption is a separation process frequently used to remediate many Superfund sites. Thermal desorption technologies are recommended and used because of (1) the wide range of organic contaminants effectively treated, (2) availability and mobility of commercial systems, ...

  2. Site vegetation report: Terrestrial vegetation survey (1993--1995) for the Rocky Flats Environmental Technology Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1997-06-01

    The Ecological Monitoring Program (EcMP) was designed to investigate the long-term ecological trends in terrestrial and aquatic ecosystems at the US Department of energy`s (DOE`s) Rocky Flats Environmental Technology Site (Site) (DOE 1993). Field sampling was conducted during 1993, 1994, and 1995, until the program was terminated in late 1995. This report presents the terrestrial vegetation data that were gathered by the EcMP. The site is located on the Colorado Piedmont, east of the Front Range, between Boulder and Golden, approximately 25 km (16 miles) northwest of Denver. The topography and proximity of the Site to the mountain front resultmore » in an interesting mixture of prairie and mountain plant species. The Site is one of the few large, relatively undisturbed areas of its kind that remains along the Colorado Piedmont. Until 1989, the primary mission of the Site was the production of nuclear weapons components (DOE 1993). After production ceased, Site personnel shifted their focus to cleanup and closure.« less

  3. Accelerator-driven Transmutation of Waste

    NASA Astrophysics Data System (ADS)

    Venneri, Francesco

    1998-04-01

    Nuclear waste from commercial power plants contains large quantities of plutonium, other fissionable actinides, and long-lived fission products that are potential proliferation concerns and create challenges for the long-term storage. Different strategies for dealing with nuclear waste are being followed by various countries because of their geologic situations and their views on nuclear energy, reprocessing and non-proliferation. The current United States policy is to store unprocessed spent reactor fuel in a geologic repository. Other countries are opting for treatment of nuclear waste, including partial utilization of the fissile material contained in the spent fuel, prior to geologic storage. Long-term uncertainties are hampering the acceptability and eventual licensing of a geologic repository for nuclear spent fuel in the US, and driving up its cost. The greatest concerns are with the potential for radiation release and exposure from the spent fuel for tens of thousands of years and the possible diversion and use of the actinides contained in the waste for weapons construction. Taking advantage of the recent breakthroughs in accelerator technology and of the natural flexibility of subcritical systems, the Accelerator-driven Transmutation of Waste (ATW) concept offers the United States and other countries the possibility to greatly reduce plutonium, higher actinides and environmentally hazardous fission products from the waste stream destined for permanent storage. ATW does not eliminate the need for, but instead enhances the viability of permanent waste repositories. Far from being limited to waste destruction, the ATW concept also brings to the table new technologies that could be relevant for next-generation power producing reactors. In the ATW concept, spent fuel would be shipped to the ATW site where the plutonium, transuranics and selected long-lived fission products would be destroyed by fission or transmutation in their first and only pass through the

  4. Fabrication Technologies of the High Gradient Accelerator Structures at 100MV/M Range

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Juwen; /SLAC; Lewandowski, James

    A CERN-SLAC-KEK collaboration on high gradient X-band structure research has been established in order to demonstrate the feasibility of the CLIC baseline design for the main linac stably operating at more than 100 MV/m loaded accelerating gradient. Several prototype CLIC structures were successfully fabricated and high power tested. They operated at 105 MV/m with a breakdown rate that meets the CLIC linear collider specifications of < 5 x 10{sup -7}/pulse/m. This paper summarizes the fabrication technologies including the mechanical design, precision machining, chemical cleaning, diffusion bonding as well as vacuum baking and all related assembly technologies. Also, the tolerances control,more » tuning and RF characterization will be discussed.« less

  5. Accelerator Science: Why RF?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lincoln, Don

    Particle accelerators can fire beams of subatomic particles at near the speed of light. The accelerating force is generated using radio frequency technology and a whole lot of interesting features. In this video, Fermilab’s Dr. Don Lincoln explains how it all works.

  6. MABE multibeam accelerator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hasti, D.E.; Ramirez, J.J.; Coleman, P.D.

    1985-01-01

    The Megamp Accelerator and Beam Experiment (MABE) was the technology development testbed for the multiple beam, linear induction accelerator approach for Hermes III, a new 20 MeV, 0.8 MA, 40 ns accelerator being developed at Sandia for gamma-ray simulation. Experimental studies of a high-current, single-beam accelerator (8 MeV, 80 kA), and a nine-beam injector (1.4 MeV, 25 kA/beam) have been completed, and experiments on a nine-beam linear induction accelerator are in progress. A two-beam linear induction accelerator is designed and will be built as a gamma-ray simulator to be used in parallel with Hermes III. The MABE pulsed power systemmore » and accelerator for the multiple beam experiments is described. Results from these experiments and the two-beam design are discussed. 11 refs., 6 figs.« less

  7. Area- and energy-efficient CORDIC accelerators in deep sub-micron CMOS technologies

    NASA Astrophysics Data System (ADS)

    Vishnoi, U.; Noll, T. G.

    2012-09-01

    The COordinate Rotate DIgital Computer (CORDIC) algorithm is a well known versatile approach and is widely applied in today's SoCs for especially but not restricted to digital communications. Dedicated CORDIC blocks can be implemented in deep sub-micron CMOS technologies at very low area and energy costs and are attractive to be used as hardware accelerators for Application Specific Instruction Processors (ASIPs). Thereby, overcoming the well known energy vs. flexibility conflict. Optimizing Global Navigation Satellite System (GNSS) receivers to reduce the hardware complexity is an important research topic at present. In such receivers CORDIC accelerators can be used for digital baseband processing (fixed-point) and in Position-Velocity-Time estimation (floating-point). A micro architecture well suited to such applications is presented. This architecture is parameterized according to the wordlengths as well as the number of iterations and can be easily extended for floating point data format. Moreover, area can be traded for throughput by partially or even fully unrolling the iterations, whereby the degree of pipelining is organized with one CORDIC iteration per cycle. From the architectural description, the macro layout can be generated fully automatically using an in-house datapath generator tool. Since the adders and shifters play an important role in optimizing the CORDIC block, they must be carefully optimized for high area and energy efficiency in the underlying technology. So, for this purpose carry-select adders and logarithmic shifters have been chosen. Device dimensioning was automatically optimized with respect to dynamic and static power, area and performance using the in-house tool. The fully sequential CORDIC block for fixed-point digital baseband processing features a wordlength of 16 bits, requires 5232 transistors, which is implemented in a 40-nm CMOS technology and occupies a silicon area of 1560 μm2 only. Maximum clock frequency from circuit

  8. SITE PROGRAM EVALUATION OF THE SONOTECH PULSE COMBUSTION BURNER TECHNOLOGY - TECHNICAL RESULTS

    EPA Science Inventory

    A series of demonstration tests was performed at the Environmental Protection Agency's (EPA's) Incineration Research Facility (IRF) under the Superfund Innovative Technology Evaluation (SITE) program. These tests, twelve in all, evaluated a pulse combustion burner technology dev...

  9. SITE TECHNOLOGY CAPSULE: PINTAIL SYSTEMS INC'S AQUEOUS BIOCYANIDE PROCESS

    EPA Science Inventory

    A field treatability study of an innovative biological treatment technology for cyanide destruction and metals immobilizaton from an aqueous mine process stream was held at the Echo Bay/McCoy Cove mine site in Nevada. The Aqueous Biocyanide Process, developed and operated by Pint...

  10. Innovation Technologies and Applications for Coastal Archaeological sites

    NASA Astrophysics Data System (ADS)

    Di Iorio, A.; Biliouris, D.; Guzinski, R.; Hansen, L. B.; Bagni, M.

    2015-04-01

    Innovation Technologies and Applications for Coastal Archaeological sites project (ITACA) aims to develop and test a management system for underwater archaeological sites in coastal regions. The discovering and monitoring service will use innovative satellite remote sensing techniques combined with image processing algorithms. The project will develop a set of applications integrated in a system pursuing the following objectives: - Search and location of ancient ship wrecks; - Monitoring of ship wrecks, ruins and historical artefacts that are now submerged; - Integration of resulting search and monitoring data with on-site data into a management tool for underwater sites; - Demonstration of the system's suitability for a service. High resolution synthetic aperture radar (TerraSAR-X, Cosmo-SkyMed) and multispectral satellite data (WorldView) will be combined to derive the relative bathymetry of the bottom of the sea up to the depth of 50 meters. The resulting data fusion will be processed using shape detection algorithms specific for archaeological items. The new algorithms, the physical modelling and the computational capabilities will be integrated into the Web-GIS, together with data recorded from surface (2D and 3D modelling) and from underwater surveys. Additional specific archaeological layers will be included into the WebGIS to facilitate the object identification through shape detection techniques and mapping. The system will be verified and validated through an extensive onground (sea) campaign carried out with both cutting edge technologies (side-scan sonar, multi beam echo sounder) and traditional means (professional scuba divers) in two test sites in Italy and Greece. The project is leaded by Planetek Hellas E.P.E. and include ALMA Sistemi sas for the "shape detection" and dissemination tasks, DHI-GRAS and Kell Srl for multispectral and SAR bathymetry. The complete consortium is composed by eleven partners and the project Kick-Off has been held in

  11. Investigations into dual-grating THz-driven accelerators

    NASA Astrophysics Data System (ADS)

    Wei, Y.; Ischebeck, R.; Dehler, M.; Ferrari, E.; Hiller, N.; Jamison, S.; Xia, G.; Hanahoe, K.; Li, Y.; Smith, J. D. A.; Welsch, C. P.

    2018-01-01

    Advanced acceleration technologies are receiving considerable interest in order to miniaturize future particle accelerators. One such technology is the dual-grating dielectric structures, which can support accelerating fields one to two orders of magnitude higher than the metal RF cavities in conventional accelerators. This opens up the possibility of enabling high accelerating gradients of up to several GV/m. This paper investigates numerically a quartz dual-grating structure which is driven by THz pulses to accelerate electrons. Geometry optimizations are carried out to achieve the trade-offs between accelerating gradient and vacuum channel gap. A realistic electron bunch available from the future Compact Linear Accelerator for Research and Applications (CLARA) is loaded into an optimized 100-period dual-grating structure for a detailed wakefield study. A THz pulse is then employed to interact with this CLARA bunch in the optimized structure. The computed beam quality is analyzed in terms of emittance, energy spread and loaded accelerating gradient. The simulations show that an accelerating gradient of 348 ± 12 MV/m with an emittance growth of 3.0% can be obtained.

  12. SITE - EMERGING TECHNOLOGY: REMOVAL AND RECOVERY OF METAL IONS FROM GROUNDWATER - APPENDICES

    EPA Science Inventory

    A series of laboratory tests and an on-site pilot scale demonstration of Bio-Recovery Systems' AlgaSORB technology for the removal and recovery of mercury-contaminated groundwater were conducted under the SITE program. ptimum conditions were determined for mercury binding to Alga...

  13. 76 FR 35026 - Hutchinson Technology, Inc., Including On-Site Workers Leased From Doherty, Including Workers...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-15

    ... Technology, Inc., Including On-Site Workers Leased From Doherty, Including Workers Whose Unemployment... Technology, Inc., Including On-Site Workers Leased From Doherty, Including Workers Whose Unemployment..., Minnesota locations of the subject firm had their wages reported under a separate unemployment insurance (UI...

  14. Proposal for an Accelerator R&D User Facility at Fermilab's Advanced Superconducting Test Accelerator (ASTA)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Church, M.; Edwards, H.; Harms, E.

    2013-10-01

    Fermilab is the nation’s particle physics laboratory, supported by the DOE Office of High Energy Physics (OHEP). Fermilab is a world leader in accelerators, with a demonstrated track-record— spanning four decades—of excellence in accelerator science and technology. We describe the significant opportunity to complete, in a highly leveraged manner, a unique accelerator research facility that supports the broad strategic goals in accelerator science and technology within the OHEP. While the US accelerator-based HEP program is oriented toward the Intensity Frontier, which requires modern superconducting linear accelerators and advanced highintensity storage rings, there are no accelerator test facilities that support themore » accelerator science of the Intensity Frontier. Further, nearly all proposed future accelerators for Discovery Science will rely on superconducting radiofrequency (SRF) acceleration, yet there are no dedicated test facilities to study SRF capabilities for beam acceleration and manipulation in prototypic conditions. Finally, there are a wide range of experiments and research programs beyond particle physics that require the unique beam parameters that will only be available at Fermilab’s Advanced Superconducting Test Accelerator (ASTA). To address these needs we submit this proposal for an Accelerator R&D User Facility at ASTA. The ASTA program is based on the capability provided by an SRF linac (which provides electron beams from 50 MeV to nearly 1 GeV) and a small storage ring (with the ability to store either electrons or protons) to enable a broad range of beam-based experiments to study fundamental limitations to beam intensity and to develop transformative approaches to particle-beam generation, acceleration and manipulation which cannot be done elsewhere. It will also establish a unique resource for R&D towards Energy Frontier facilities and a test-bed for SRF accelerators and high brightness beam applications in support of the

  15. Particle acceleration on a chip: A laser-driven micro-accelerator for research and industry

    NASA Astrophysics Data System (ADS)

    Yoder, R. B.; Travish, G.

    2013-03-01

    Particle accelerators are conventionally built from radio-frequency metal cavities, but this technology limits the maximum energy available and prevents miniaturization. In the past decade, laser-powered acceleration has been intensively studied as an alternative technology promising much higher accelerating fields in a smaller footprint and taking advantage of recent advances in photonics. Among the more promising approaches are those based on dielectric field-shaping structures. These ``dielectric laser accelerators'' (DLAs) scale with the laser wavelength employed and can be many orders of magnitude smaller than conventional accelerators; DLAs may enable the production of high-intensity, ultra-short relativistic electron bunches in a chip-scale device. When combined with a high- Z target or an optical-period undulator, these systems could produce high-brilliance x-rays from a breadbox-sized device having multiple applications in imaging, medicine, and homeland security. In our research program we have developed one such DLA, the Micro-Accelerator Platform (MAP). We describe the fundamental physics, our fabrication and testing program, and experimental results to date, along with future prospects for MAP-based light-sources and some remaining challenges. Supported in part by the Defense Threat Reduction Agency and National Nuclear Security Administration.

  16. Hanford science and technology needs statements document

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Piper, L.L.

    This document is a compilation of the Hanford science and technology needs statements for FY 1998. The needs were developed by the Hanford Site Technology Coordination Group (STCG) with full participation and endorsement of site user organizations, stakeholders, and regulators. The purpose of this document is to: (a) provide a comprehensive listing of Hanford science and technology needs, and (b) identify partnering and commercialization opportunities with industry, other federal and state agencies, and the academic community. The Hanford STCG reviews and updates the needs annually. Once completed, the needs are communicated to DOE for use in the development and prioritizationmore » of their science and technology programs, including the Focus Areas, Cross-Cutting Programs, and the Environmental Management Science Program. The needs are also transmitted to DOE through the Accelerating Cleanup: 2006 Plan. The public may access the need statements on the Internet on: the Hanford Home Page (www.hanford.gov), the Pacific Rim Enterprise Center`s web site (www2.pacific-rim.org/pacific rim), or the STCG web site at DOE headquarters (em-52.em.doegov/ifd/stcg/stcg.htm). This page includes links to science and technology needs for many DOE sites. Private industry is encouraged to review the need statements and contact the Hanford STCG if they can provide technologies that meet these needs. On-site points of contact are included at the ends of each need statement. The Pacific Rim Enterprise Center (206-224-9934) can also provide assistance to businesses interested in marketing technologies to the DOE.« less

  17. 76 FR 22729 - Polaris Industries, Including On-Site Leased Workers From Westaff, Supply Technologies, Aerotek...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-22

    ..., Including On-Site Leased Workers From Westaff, Supply Technologies, Aerotek, Securitas Security Services..., 2011 to include on-site leased workers from Supply Technologies, Aerotek and Securitas Security Services. The notice was published in the Federal Register on December 13, 2010 (75 FR 77666) and February...

  18. Overview of Chromium Remediation Technology Evaluations At The Hanford Site, Richland Washington

    NASA Astrophysics Data System (ADS)

    Morse, J. G.; Hanson, J. P.

    2009-12-01

    This paper will present an overview of the different technologies and the results to date for optimizing and improving the remediation of Cr+6 in the soil and groundwater at the Hanford Site. The Hanford Site, par of the U.S. Department of Energy's (DOE)nuclear weapons complex, encompasses approximately 586 square miles in southeast Washington State. The Columbia River flows through the site (Hanford Reach.) Reactors were located along the Hanford Reach as part of the production process. Sodium dichromate was used as a corrosion inhibitor in the cooling water for the reactors. As a result chromium (Cr+6) is present in the soil and groundwater. Since the mid 90's interim groundwater pump and treat systems have been in place to try and contain or mitigate the migration of contaminated groundwater into the Columbia River. The primary concern being the protection of aquatic spawning habitat for salmon and other species. In order to improve the effectiveness of the remedial actions a number of different technologies have been evaluated and/or deployed. These include, permeable reactive barriers, in-situ bio-stimulation, in-situ chemical reduction, zero-valent iron injection and evaluation of improved above ground treatment technologies. An overview of the technologies and results to date are presented.

  19. Healing of donor site in bone-tendon-bone ACL reconstruction accelerated with plasma rich in growth factors: a randomized clinical trial.

    PubMed

    Seijas, Roberto; Rius, Marta; Ares, Oscar; García-Balletbó, Montserrat; Serra, Iván; Cugat, Ramón

    2015-04-01

    To determine whether the use of plasma rich in growth factors accelerates healing of the donor site in bone-tendon-bone anterior cruciate ligament (ACL) reconstruction (patellar graft). The use of the patellar graft presents post-operative problems such as anterior knee pain, which limits its use and leads to preference being taken for alternative grafts. A double-blind, randomized, clinical trial was performed comparing two groups of patients who underwent ACL reconstruction using patellar tendon graft and comparing the use of plasma rich in growth factors at the donor site after graft harvest in terms of local regeneration by ultrasound assessment. The plasma rich in growth factors group shows earlier donor site regeneration in comparison with the control group (2 months earlier), with significant differences in the first 4 months of the follow-up. The application of plasma rich in growth factors shows accelerated tissue regeneration processes with respect to the control group. This fact, together with the previously published with similar conclusions, can create a knowledge basis in order to set out new recovery guidelines following ACL reconstruction. Therapeutic study, Level I.

  20. The International Linear Collider Technical Design Report - Volume 3.II: Accelerator Baseline Design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adolphsen, Chris

    2013-06-26

    The International Linear Collider Technical Design Report (TDR) describes in four volumes the physics case and the design of a 500 GeV centre-of-mass energy linear electron-positron collider based on superconducting radio-frequency technology using Niobium cavities as the accelerating structures. The accelerator can be extended to 1 TeV and also run as a Higgs factory at around 250 GeV and on the Z0 pole. A comprehensive value estimate of the accelerator is give, together with associated uncertainties. It is shown that no significant technical issues remain to be solved. Once a site is selected and the necessary site-dependent engineering is carriedmore » out, construction can begin immediately. The TDR also gives baseline documentation for two high-performance detectors that can share the ILC luminosity by being moved into and out of the beam line in a "push-pull" configuration. These detectors, ILD and SiD, are described in detail. They form the basis for a world-class experimental programme that promises to increase significantly our understanding of the fundamental processes that govern the evolution of the Universe.« less

  1. Radiotherapy using a laser proton accelerator

    NASA Astrophysics Data System (ADS)

    Murakami, Masao; Hishikawa, Yoshio; Miyajima, Satoshi; Okazaki, Yoshiko; Sutherland, Kenneth L.; Abe, Mitsuyuki; Bulanov, Sergei V.; Daido, Hiroyuki; Esirkepov, Timur Zh.; Koga, James; Yamagiwa, Mitsuru; Tajima, Toshiki

    2008-06-01

    Laser acceleration promises innovation in particle beam therapy of cancer where an ultra-compact accelerator system for cancer beam therapy can become affordable to a broad range of patients. This is not feasible without the introduction of a technology that is radically different from the conventional accelerator-based approach. Because of its compactness and other novel characteristics, the laser acceleration method provides many enhanced capabilities

  2. Evaluation of Aqua-Ammonia Chiller Technologies and Field Site Installation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zaltash, Abdolreza

    2007-09-01

    The Naval Facilities Engineering Service Center (NFESC) has sponsored Oak Ridge National Laboratory (ORNL) to review, select, and evaluate advanced, gas-fired, 5-ton, aqua-ammonia, chiller technologies. The selection criteria was that units have COP values of 0.67 or better at Air-conditioning and Refrigeration Institute (ARI) 95 F outdoor rating conditions, an active refrigerant flow control, and a variable-speed condenser fan. These features are expected to allow these units to operate at higher ambient temperatures (up to the maximum operating temperature of 110 F) with minimal degradation in performance. ORNL evaluated three potential manufacturers of advanced, gas-fired, 5-ton, aqua-ammonia chillers-Robur, Ambian, andmore » Cooling Technologies. Unfortunately, Robur did not meet the COP requirements and Cooling Technologies could not deliver a unit to be tested at the U.S. Department of Energy (DOE)-ORNL environmental chamber testing facility for thermally activated heat pumps. This eliminated these two technologies from further consideration, leaving only the Ambian chillers for evaluation. Two Ambian chillers were evaluated at the DOE-ORNL test facility. Overall these chillers operated well over a wide range of ambient conditions with minimal degradation in performance due to several control strategies used such as a variable speed condenser fan, a modulating burner, and active refrigerant flow control. These Ambian pre-commercial units were selected for installation and field testing at three federal facilities. NFESC worked with ORNL to assist with the site selection for installation and evaluation of these chillers. Two sites (ORNL and Naval Surface Warfare Center [NSWC] Corona) had a single chiller unit installed; and at one site (Naval Amphibious Base [NAB] Little Creek), two 5-ton chillers linked together were installed to provide 10 tons of cooling. A chiller link controller developed under this project was evaluated in the field test at Little

  3. Beam acceleration through proton radio frequency quadrupole accelerator in BARC

    NASA Astrophysics Data System (ADS)

    Bhagwat, P. V.; Krishnagopal, S.; Mathew, J. V.; Singh, S. K.; Jain, P.; Rao, S. V. L. S.; Pande, M.; Kumar, R.; Roychowdhury, P.; Kelwani, H.; Rama Rao, B. V.; Gupta, S. K.; Agarwal, A.; Kukreti, B. M.; Singh, P.

    2016-05-01

    A 3 MeV proton Radio Frequency Quadrupole (RFQ) accelerator has been designed at the Bhabha Atomic Research Centre, Mumbai, India, for the Low Energy High Intensity Proton Accelerator (LEHIPA) programme. The 352 MHz RFQ is built in 4 segments and in the first phase two segments of the LEHIPA RFQ were commissioned, accelerating a 50 keV, 1 mA pulsed proton beam from the ion source, to an energy of 1.24 MeV. The successful operation of the RFQ gave confidence in the physics understanding and technology development that have been achieved, and indicate that the road forward can now be traversed rather more quickly.

  4. Current Fragmentation and Particle Acceleration in Solar Flares

    NASA Astrophysics Data System (ADS)

    Cargill, P. J.; Vlahos, L.; Baumann, G.; Drake, J. F.; Nordlund, Å.

    2012-11-01

    Particle acceleration in solar flares remains an outstanding problem in plasma physics and space science. While the observed particle energies and timescales can perhaps be understood in terms of acceleration at a simple current sheet or turbulence site, the vast number of accelerated particles, and the fraction of flare energy in them, defies any simple explanation. The nature of energy storage and dissipation in the global coronal magnetic field is essential for understanding flare acceleration. Scenarios where the coronal field is stressed by complex photospheric motions lead to the formation of multiple current sheets, rather than the single monolithic current sheet proposed by some. The currents sheets in turn can fragment into multiple, smaller dissipation sites. MHD, kinetic and cellular automata models are used to demonstrate this feature. Particle acceleration in this environment thus involves interaction with many distributed accelerators. A series of examples demonstrate how acceleration works in such an environment. As required, acceleration is fast, and relativistic energies are readily attained. It is also shown that accelerated particles do indeed interact with multiple acceleration sites. Test particle models also demonstrate that a large number of particles can be accelerated, with a significant fraction of the flare energy associated with them. However, in the absence of feedback, and with limited numerical resolution, these results need to be viewed with caution. Particle in cell models can incorporate feedback and in one scenario suggest that acceleration can be limited by the energetic particles reaching the condition for firehose marginal stability. Contemporary issues such as footpoint particle acceleration are also discussed. It is also noted that the idea of a "standard flare model" is ill-conceived when the entire distribution of flare energies is considered.

  5. Review and Implementation of Technology for Solid Radioactive Waste Volume Reduction

    DTIC Science & Technology

    1999-10-15

    were shifted to Project 1.1 for spent nuclear fuel cask development to accelerate that project. Those funds should be repaid to Project 1.3 in the... transported between the shipyards such as Nerpa, and other intermediate storage sites such as Gremikha and Andreeva Bay. At these sites the largest...waste source and allow pretreatment unit operations using commercially available technologies of contaminant assaying, cutting/shearing, sorting

  6. Access to Data Accelerates Innovation and Adoption of Geothermal

    Science.gov Websites

    Technologies | News | NREL Access to Data Accelerates Innovation and Adoption of Geothermal Technologies Access to Data Accelerates Innovation and Adoption of Geothermal Technologies May 18, 2018 A map of the continental U.S. is overlaid with a colored map showing deep geothermal heat potential. NREL's

  7. Accelerator science in medical physics.

    PubMed

    Peach, K; Wilson, P; Jones, B

    2011-12-01

    The use of cyclotrons and synchrotrons to accelerate charged particles in hospital settings for the purpose of cancer therapy is increasing. Consequently, there is a growing demand from medical physicists, radiographers, physicians and oncologists for articles that explain the basic physical concepts of these technologies. There are unique advantages and disadvantages to all methods of acceleration. Several promising alternative methods of accelerating particles also have to be considered since they will become increasingly available with time; however, there are still many technical problems with these that require solving. This article serves as an introduction to this complex area of physics, and will be of benefit to those engaged in cancer therapy, or who intend to acquire such technologies in the future.

  8. IARC - Illinois Accelerator Research Center | Pilot Program

    Science.gov Websites

    Toggle navigation Pilot Program Agenda Directions Registration Illinois Accelerator Research Center National Laboratory present Accelerator Stewardship Test Facility Pilot Program Use accelerator technology , energy and environment. With this pilot program, the DOE Office of Science National Laboratories are

  9. Developing a Hierarchical Decision Model to Evaluate Nuclear Power Plant Alternative Siting Technologies

    NASA Astrophysics Data System (ADS)

    Lingga, Marwan Mossa

    A strong trend of returning to nuclear power is evident in different places in the world. Forty-five countries are planning to add nuclear power to their grids and more than 66 nuclear power plants are under construction. Nuclear power plants that generate electricity and steam need to improve safety to become more acceptable to governments and the public. One novel practical solution to increase nuclear power plants' safety factor is to build them away from urban areas, such as offshore or underground. To date, Land-Based siting is the dominant option for siting all commercial operational nuclear power plants. However, the literature reveals several options for building nuclear power plants in safer sitings than Land-Based sitings. The alternatives are several and each has advantages and disadvantages, and it is difficult to distinguish among them and choose the best for a specific project. In this research, we recall the old idea of using the alternatives of offshore and underground sitings for new nuclear power plants and propose a tool to help in choosing the best siting technology. This research involved the development of a decision model for evaluating several potential nuclear power plant siting technologies, both those that are currently available and future ones. The decision model was developed based on the Hierarchical Decision Modeling (HDM) methodology. The model considers five major dimensions, social, technical, economic, environmental, and political (STEEP), and their related criteria and sub-criteria. The model was designed and developed by the author, and its elements' validation and evaluation were done by a large number of experts in the field of nuclear energy. The decision model was applied in evaluating five potential siting technologies and ranked the Natural Island as the best in comparison to Land-Based, Floating Plant, Artificial Island, and Semi-Embedded plant.

  10. THE U.S. ENVIRONMENTAL PROTECTION AGENCY'S SITE EMERGING TECHNOLOGY PROGRAM

    EPA Science Inventory

    Under the SITE Emerging Technology Program, the U.S. Environmental Protection Agency is seeking to foster the further development of technol- ogies that have been successfully tested at bench-scale and are now ready for pilot-scale testing, prior to field- or full-scale demonstra...

  11. Possibility for ultra-bright electron beam acceleration in dielectric wakefield accelerators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simakov, Evgenya I.; Carlsten, Bruce E.; Shchegolkov, Dmitry Yu.

    2012-12-21

    We describe a conceptual proposal to combine the Dielectric Wakefield Accelerator (DWA) with the Emittance Exchanger (EEX) to demonstrate a high-brightness DWA with a gradient of above 100 MV/m and less than 0.1% induced energy spread in the accelerated beam. We currently evaluate the DWA concept as a performance upgrade for the future LANL signature facility MaRIE with the goal of significantly reducing the electron beam energy spread. The preconceptual design for MaRIE is underway at LANL, with the design of the electron linear accelerator being one of the main research goals. Although generally the baseline design needs to bemore » conservative and rely on existing technology, any future upgrade would immediately call for looking into the advanced accelerator concepts capable of boosting the electron beam energy up by a few GeV in a very short distance without degrading the beam's quality. Scoping studies have identified large induced energy spreads as the major cause of beam quality degradation in high-gradient advanced accelerators for free-electron lasers. We describe simulations demonstrating that trapezoidal bunch shapes can be used in a DWA to greatly reduce the induced beam energy spread, and, in doing so, also preserve the beam brightness at levels never previously achieved. This concept has the potential to advance DWA technology to a level that would make it suitable for the upgrades of the proposed Los Alamos MaRIE signature facility.« less

  12. Evaluation of a permeable reactive barrier technology for use at Rocky Flats Environmental Technology Site (RFETS)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DWYER,BRIAN P.

    2000-01-01

    Three reactive materials were evaluated at laboratory scale to identify the optimum treatment reagent for use in a Permeable Reactive Barrier Treatment System at Rocky Flats Environmental Technology Site (RFETS). The contaminants of concern (COCS) are uranium, TCE, PCE, carbon tetrachloride, americium, and vinyl chloride. The three reactive media evaluated included high carbon steel iron filings, an iron-silica alloy in the form of a foam aggregate, and a peculiar humic acid based sorbent (Humasorb from Arctech) mixed with sand. Each material was tested in the laboratory at column scale using simulated site water. All three materials showed promise for themore » 903 Mound Site however, the iron filings were determined to be the least expensive media. In order to validate the laboratory results, the iron filings were further tested at a pilot scale (field columns) using actual site water. Pilot test results were similar to laboratory results; consequently, the iron filings were chosen for the fill-scale demonstration of the reactive barrier technology. Additional design parameters including saturated hydraulic conductivity, treatment residence time, and head loss across the media were also determined and provided to the design team in support of the final design. The final design was completed by the Corps of Engineers in 1997 and the system was constructed in the summer of 1998. The treatment system began fill operation in December, 1998 and despite a few problems has been operational since. Results to date are consistent with the lab and pilot scale findings, i.e., complete removal of the contaminants of concern (COCs) prior to discharge to meet RFETS cleanup requirements. Furthermore, it is fair to say at this point in time that laboratory developed design parameters for the reactive barrier technology are sufficient for fuel scale design; however,the treatment system longevity and the long-term fate of the contaminants are questions that remain unanswered

  13. New Continuous Monitoring Technologies for Vapor Intrusion, Remediation and Site Assessment: Benefits of Time Series Data

    DTIC Science & Technology

    2011-03-31

    00-00-2011 4. TITLE AND SUBTITLE New Continuous Monitoring Technologies for Vapor Intrusion, Remediation and Site Assessment . Benefits of Time...Std Z39-18 Dr Peter Morris, Geoff Hewitt New Continuous Monitoring Technologies for Vapor Intrusion, Remediation and Site Assessment . Benefits of...but which poses a greater risk ? V O C p p m Acetone Industrial facility with VOC Leak Site characterisation and Real time monitoring of Remediation

  14. Remediation of petroleum hydrocarbon-contaminated sites by DNA diagnosis-based bioslurping technology.

    PubMed

    Kim, Seungjin; Krajmalnik-Brown, Rosa; Kim, Jong-Oh; Chung, Jinwook

    2014-11-01

    The application of effective remediation technologies can benefit from adequate preliminary testing, such as in lab-scale and Pilot-scale systems. Bioremediation technologies have demonstrated tremendous potential with regards to cost, but they cannot be used for all contaminated sites due to limitations in biological activity. The purpose of this study was to develop a DNA diagnostic method that reduces the time to select contaminated sites that are good candidates for bioremediation. We applied an oligonucleotide microarray method to detect and monitor genes that lead to aliphatic and aromatic degradation. Further, the bioremediation of a contaminated site, selected based on the results of the genetic diagnostic method, was achieved successfully by applying bioslurping in field tests. This gene-based diagnostic technique is a powerful tool to evaluate the potential for bioremediation in petroleum hydrocarbon contaminated soil. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Particle acceleration

    NASA Technical Reports Server (NTRS)

    Vlahos, L.; Machado, M. E.; Ramaty, R.; Murphy, R. J.; Alissandrakis, C.; Bai, T.; Batchelor, D.; Benz, A. O.; Chupp, E.; Ellison, D.

    1986-01-01

    Data is compiled from Solar Maximum Mission and Hinothori satellites, particle detectors in several satellites, ground based instruments, and balloon flights in order to answer fundamental questions relating to: (1) the requirements for the coronal magnetic field structure in the vicinity of the energization source; (2) the height (above the photosphere) of the energization source; (3) the time of energization; (4) transistion between coronal heating and flares; (5) evidence for purely thermal, purely nonthermal and hybrid type flares; (6) the time characteristics of the energization source; (7) whether every flare accelerates protons; (8) the location of the interaction site of the ions and relativistic electrons; (9) the energy spectra for ions and relativistic electrons; (10) the relationship between particles at the Sun and interplanetary space; (11) evidence for more than one acceleration mechanism; (12) whether there is single mechanism that will accelerate particles to all energies and also heat the plasma; and (13) how fast the existing mechanisms accelerate electrons up to several MeV and ions to 1 GeV.

  16. Accelerated Life Testing and Service Lifetime Prediction for PV Technologies in the Twenty-First Century

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Czanderna, A. W.; Jorgensen, G. J.

    The purposes of this paper are to (1) discuss the necessity for conducting accelerated life testing (ALT) in the early stages of developing new photovoltaic (PV) technologies, (2) elucidate the crucial importance for combining ALT with real-time testing (RTT) in terrestrial environments for promising PV technologies for the 21st century, and (3) outline the essential steps for making a service lifetime prediction (SLP) for any PV technology. The specific objectives are to (a) illustrate the essential need for ALT of complete, encapsulated multilayer PV devices, (b) indicate the typical causes of degradation in PV stacks, (c) elucidate the complexity associatedmore » with quantifying the durability of the devices, (d) explain the major elements that constitute a generic SLP methodology, (e) show how the introduction of the SLP methodology in the early stages of new device development can reduce the cost of technology development, and (f) outline the procedure for combining the results of ALT and RTT, establishing degradation mechanisms, using sufficient numbers of samples, and applying the SLP methodology to produce a SLP for existing or new PV technologies.« less

  17. Mechanisation and automation technologies development in work at construction sites

    NASA Astrophysics Data System (ADS)

    Sobotka, A.; Pacewicz, K.

    2017-10-01

    Implementing construction work that creates buildings is a very complicated and laborious task and requires the use of various types of machines and equipment. For years there has been a desire for designers and technologists to introduce devices that replace people’s work on machine construction, automation and even robots. Technologies for building construction are still being developed and implemented to limit people’s hard work and improve work efficiency and quality in innovative architectonical and construction solutions. New opportunities for improving work on the construction site include computerisation of technological processes and construction management for projects and processes. The aim of the paper was to analyse the development of mechanisation, automation and computerisation of construction processes and selected building technologies, with special attention paid to 3D printing technology. The state of mechanisation of construction works in Poland and trends in its development in construction technologies are presented. These studies were conducted on the basis of the available literature and a survey of Polish construction companies.

  18. Laser acceleration

    NASA Astrophysics Data System (ADS)

    Tajima, T.; Nakajima, K.; Mourou, G.

    2017-02-01

    The fundamental idea of Laser Wakefield Acceleration (LWFA) is reviewed. An ultrafast intense laser pulse drives coherent wakefield with a relativistic amplitude robustly supported by the plasma. While the large amplitude of wakefields involves collective resonant oscillations of the eigenmode of the entire plasma electrons, the wake phase velocity ˜ c and ultrafastness of the laser pulse introduce the wake stability and rigidity. A large number of worldwide experiments show a rapid progress of this concept realization toward both the high-energy accelerator prospect and broad applications. The strong interest in this has been spurring and stimulating novel laser technologies, including the Chirped Pulse Amplification, the Thin Film Compression, the Coherent Amplification Network, and the Relativistic Mirror Compression. These in turn have created a conglomerate of novel science and technology with LWFA to form a new genre of high field science with many parameters of merit in this field increasing exponentially lately. This science has triggered a number of worldwide research centers and initiatives. Associated physics of ion acceleration, X-ray generation, and astrophysical processes of ultrahigh energy cosmic rays are reviewed. Applications such as X-ray free electron laser, cancer therapy, and radioisotope production etc. are considered. A new avenue of LWFA using nanomaterials is also emerging.

  19. Influence of Spatial Variation in Ground Motion Peak Acceleration on Local Site Effects Estimation at Bucovina Seismic Array (BURAR) Romania

    NASA Astrophysics Data System (ADS)

    Ghica, D. V.; Radulian, M.; Popa, M.; Grecu, B.

    2006-05-01

    Basically, array processing techniques require a high signal coherency across the seismic site; therefore the local crustal velocities below the station, signal amplitude differences between array elements and local noise conditions, resulting in local site effects will affect calculation of phase arrival times, propagation velocities and ground motion amplitudes. In general, array techniques assume a homogenous structure for all sites, and a simple relief correction is taking in account for the data analysis. To increase the results accuracy, individual element corrections must be applied, based on the biases factors systematically observed. This study aims at identifying the anomalous amplitude variations recorded at the Bucovina Seismic Array (BURAR) and at explaining their influence on site effects estimation. Maximum amplitudes for the teleseismic and regional phases in four narrow frequency bands (0.25-0.5Hz; 0.5-1Hz; 1-2Hz; 1.5-3Hz) are measured. Spatial distribution of ground motion peak acceleration in BURAR site, for each band, is plotted; a different behavior was observed at frequencies below 2Hz. The most important aspect observed is the largest amplitude exhibited by BUR07 across the whole array at high frequencies (an amplification factor of about two). This can be explained by the different geology at BUR07 site (mica schist outcrops), comparing with the rest of elements (green schist outcrops). At the lowest frequencies (0.25-0.5Hz), BUR09 peak amplitudes dominate the other sites. Considering BUR07 as reference site, peak acceleration ratios were investigated. The largest scattering of these ratios appears at the highest frequencies (1.5-3Hz), when the weight of over unit values is about 90 %. No azimuth and distance dependence was found for these effects, suggesting the absence of the dipping layer structures. Although an increase of the ratio values is noticed for epicentral distance between 8000 and 10000 km, for frequencies over 1 Hz. The

  20. IN-SITU DUOX™ CHEMICAL OXIDATION TECHNOLOGY TO TREAT CHLORINATED ORGANICS AT THE ROOSEVELT MILLS SITE, VERNON, CT: SITE CHARACTERIZATION AND TREATABILITY STUDY

    EPA Science Inventory

    A study was performed investigating the feasibility of applying the DUOX™ chemical oxidation technology to chlorinated solvent contaminated media at the Roosevelt Mills site in Vernon, Connecticut. The Roosevelt Mills site is a former woolen mill that included dry cleaning operat...

  1. Infographic Development by Accelerated Bachelor of Science in Nursing Students: An Innovative Technology-Based Approach to Public Health Education.

    PubMed

    Falk, Nancy L

    Health communications and baccalaureate nursing education are increasingly impacted by new technological tools. This article describes how an Accelerated Bachelor of Science in Nursing program incorporates an infographic assignment into a graduate-level online health information and technology course. Students create colorful, engaging infographics using words and visuals to communicate public health information. The assignment, which incorporates the use of data and evidence, provides students the opportunity to acquire new research and technology skills while gaining confidence creating and innovating. The finished products may be disseminated, serving as vehicles to influence public health and well-being.

  2. 76 FR 2144 - Quest Diagnostics, Inc. Information Technology Help Desk Services Including On-Site Leased...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-12

    .... Information Technology Help Desk Services Including On-Site Leased Workers From Modis, West Norriton, PA..., applicable to workers of Quest Diagnostics, Inc., Information Technology Help Desk Services, West Norriton... Quest Diagnostics, Inc., Information Technology Help Desk [[Page 2145

  3. 78 FR 1265 - Dana Holding Corporation; Power Technologies Group Division; Including On-Site Leased Workers...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-08

    ...; Power Technologies Group Division; Including On-Site Leased Workers From Manpower Milwaukee, WI; Notice... former workers of Dana Holding Company, Power Technologies Group Division, Milwaukee, Wisconsin (subject... reconsideration investigation, I determine that workers of Dana Holding Company, Power Technologies Group Division...

  4. Collaborative Visualization for Large-Scale Accelerator Electromagnetic Modeling (Final Report)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    William J. Schroeder

    2011-11-13

    This report contains the comprehensive summary of the work performed on the SBIR Phase II, Collaborative Visualization for Large-Scale Accelerator Electromagnetic Modeling at Kitware Inc. in collaboration with Stanford Linear Accelerator Center (SLAC). The goal of the work was to develop collaborative visualization tools for large-scale data as illustrated in the figure below. The solutions we proposed address the typical problems faced by geographicallyand organizationally-separated research and engineering teams, who produce large data (either through simulation or experimental measurement) and wish to work together to analyze and understand their data. Because the data is large, we expect that it cannotmore » be easily transported to each team member's work site, and that the visualization server must reside near the data. Further, we also expect that each work site has heterogeneous resources: some with large computing clients, tiled (or large) displays and high bandwidth; others sites as simple as a team member on a laptop computer. Our solution is based on the open-source, widely used ParaView large-data visualization application. We extended this tool to support multiple collaborative clients who may locally visualize data, and then periodically rejoin and synchronize with the group to discuss their findings. Options for managing session control, adding annotation, and defining the visualization pipeline, among others, were incorporated. We also developed and deployed a Web visualization framework based on ParaView that enables the Web browser to act as a participating client in a collaborative session. The ParaView Web Visualization framework leverages various Web technologies including WebGL, JavaScript, Java and Flash to enable interactive 3D visualization over the web using ParaView as the visualization server. We steered the development of this technology by teaming with the SLAC National Accelerator Laboratory. SLAC has a computationally

  5. Users speak out on technology deployment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peters, Mark; Prochaska, Marty; Cromer, Paul

    2001-02-25

    This report summarizes user feedback data collected during a recent Accelerated Site Technology Deployment (ASTD) project: the Fluor Fernald ASTD Technology Deployment Project from May, 1999 through September, 2000. The main goal of the ASTD project was to use the ''Fernald approach'' to expedite the deployment of new or innovative technologies with superior safety, cost, and/or productivity benefits to Department of Energy (DOE) facilities. The Fernald approach targets technology end-users and their managers and directly involves them with hands-on demonstrations of new or innovative technologies during technology transfer sessions. The two technologies deployed through this project were the Personal Icemore » Cooling System (PICS) and the oxy-gasoline torch. Participants of technology transfer sessions were requested to complete feedback surveys. Surveys evaluated the effectiveness of the Fernald approach to technology deployment and assessed the responsiveness of employees to new technologies. This report presents the results of those surveys.« less

  6. Distributed Energy Resources On-Site Optimization for Commercial Buildings with Electric and Thermal Storage Technologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lacommare, Kristina S H; Stadler, Michael; Aki, Hirohisa

    The addition of storage technologies such as flow batteries, conventional batteries, and heat storage can improve the economic as well as environmental attractiveness of on-site generation (e.g., PV, fuel cells, reciprocating engines or microturbines operating with or without CHP) and contribute to enhanced demand response. In order to examine the impact of storage technologies on demand response and carbon emissions, a microgrid's distributed energy resources (DER) adoption problem is formulated as a mixed-integer linear program that has the minimization of annual energy costs as its objective function. By implementing this approach in the General Algebraic Modeling System (GAMS), the problemmore » is solved for a given test year at representative customer sites, such as schools and nursing homes, to obtain not only the level of technology investment, but also the optimal hourly operating schedules. This paper focuses on analysis of storage technologies in DER optimization on a building level, with example applications for commercial buildings. Preliminary analysis indicates that storage technologies respond effectively to time-varying electricity prices, i.e., by charging batteries during periods of low electricity prices and discharging them during peak hours. The results also indicate that storage technologies significantly alter the residual load profile, which can contribute to lower carbon emissions depending on the test site, its load profile, and its adopted DER technologies.« less

  7. Innovative site remediation technology: Thermal desorption. Volume 6

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, W.C.

    1993-11-01

    The monograph on thermal desorption is one of a series of eight on innovative site and waste remediation technologies that are the culmination of a multiorganization effort involving more than 100 experts over a two-year period. The thermal desorption processes addressed in this monograph use heat, either direct or indirect, ex situ, as the principal means to physically separate and transfer contaminants from soils, sediments, sludges, filter cakes, or other media. Thermal desorption is part of a treatment train; some pre- and postprocessing is necessary.

  8. Environmental Measurement-While-Drilling System and Horizontal Directional Drilling Technology Demonstration, Hanford Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, C.V.; Lockwood, G.J.; Normann, R.A.

    1999-06-01

    The Environmental Measurement-While-Drilling (EMWD) system and Horizontal Directional Drilling (HDD) were successfully demonstrated at the Mock Tank Leak Simulation Site and the Drilling Technology Test Site, Hanford, Washington. The use of directional drilling offers an alternative to vertical drilling site characterization. Directional drilling can develop a borehole under a structure, such as a waste tank, from an angled entry and leveling off to horizontal at the desired depth. The EMWD system represents an innovative blend of new and existing technology that provides the capability of producing real-time environmental and drill bit data during drilling operations. The technology demonstration consisted ofmore » the development of one borehole under a mock waste tank at a depth of {approximately} {minus}8 m ({minus}27 ft.), following a predetermined drill path, tracking the drill path to within a radius of {approximately}1.5 m (5 ft.), and monitoring for zones of radiological activity using the EMWD system. The purpose of the second borehole was to demonstrate the capability of drilling to a depth of {approximately} {minus}21 m ({minus}70 ft.), the depth needed to obtain access under the Hanford waste tanks, and continue drilling horizontally. This report presents information on the HDD and EMWD technologies, demonstration design, results of the demonstrations, and lessons learned.« less

  9. Second Information Technology in Education Study: SITES 2006 Technical Report

    ERIC Educational Resources Information Center

    Carstens, Ralph, Ed.; Pelgrum, Willem J., Ed.

    2009-01-01

    The International Association for the Evaluation of Educational Achievement (IEA) has been conducting comparative studies for 50 years. SITES 2006 is the fifth wave of surveys related to information and communication technology (ICT), a wave that IEA started with its Computers in Education Study (two studies with data collection in 1989 and 1992),…

  10. Simulation of Cascaded Longitudinal-Space-Charge Amplifier at the Fermilab Accelerator Science & Technology (Fast) Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Halavanau, A.; Piot, P.

    2015-12-01

    Cascaded Longitudinal Space Charge Amplifiers (LSCA) have been proposed as a mechanism to generate density modulation over a board spectral range. The scheme has been recently demonstrated in the optical regime and has confirmed the production of broadband optical radiation. In this paper we investigate, via numerical simulations, the performance of a cascaded LSCA beamline at the Fermilab Accelerator Science & Technology (FAST) facility to produce broadband ultraviolet radiation. Our studies are carried out using elegant with included tree-based grid-less space charge algorithm.

  11. Coupling and decoupling of the accelerating units for pulsed synchronous linear accelerator

    NASA Astrophysics Data System (ADS)

    Shen, Yi; Liu, Yi; Ye, Mao; Zhang, Huang; Wang, Wei; Xia, Liansheng; Wang, Zhiwen; Yang, Chao; Shi, Jinshui; Zhang, Linwen; Deng, Jianjun

    2017-12-01

    A pulsed synchronous linear accelerator (PSLA), based on the solid-state pulse forming line, photoconductive semiconductor switch, and high gradient insulator technologies, is a novel linear accelerator. During the prototype PSLA commissioning, the energy gain of proton beams was found to be much lower than expected. In this paper, the degradation of the energy gain is explained by the circuit and cavity coupling effect of the accelerating units. The coupling effects of accelerating units are studied, and the circuit topologies of these two kinds of coupling effects are presented. Two methods utilizing inductance and membrane isolations, respectively, are proposed to reduce the circuit coupling effects. The effectiveness of the membrane isolation method is also supported by simulations. The decoupling efficiency of the metal drift tube is also researched. We carried out the experiments on circuit decoupling of the multiple accelerating cavity. The result shows that both circuit decoupling methods could increase the normalized voltage.

  12. Rocky Flats Environmental Technology Site Ecological Monitoring Program 1995 annual report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1995-05-31

    The Ecological Monitoring Program (ECMP) was established at the Rocky Flats Environmental Technology Site (Site) in September 1992. At that time, EcMP staff developed a Program Plan that was peer-reviewed by scientists from western universities before submittal to DOE RFFO in January 1993. The intent of the program is to measure several quantitative variables at different ecological scales in order to characterize the Rocky Flats ecosystem. This information is necessary to document ecological conditions at the Site in impacted and nonimpacted areas to determine if Site practices have had ecological impacts, either positive or negative. This information can be usedmore » by managers interested in future use scenarios and CERCLA activities. Others interested in impact analysis may also find the information useful. In addition, these measurements are entered into a database which will serve as a long-term information repository that will document long-term trends and potential future changes to the Site, both natural and anthropogenic.« less

  13. The International Linear Collider Technical Design Report - Volume 3.I: Accelerator \\& in the Technical Design Phase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adolphsen, Chris

    2013-06-26

    The International Linear Collider Technical Design Report (TDR) describes in four volumes the physics case and the design of a 500 GeV centre-of-mass energy linear electron-positron collider based on superconducting radio-frequency technology using Niobium cavities as the accelerating structures. The accelerator can be extended to 1 TeV and also run as a Higgs factory at around 250 GeV and on the Z0 pole. A comprehensive value estimate of the accelerator is give, together with associated uncertainties. It is shown that no significant technical issues remain to be solved. Once a site is selected and the necessary site-dependent engineering is carriedmore » out, construction can begin immediately. The TDR also gives baseline documentation for two high-performance detectors that can share the ILC luminosity by being moved into and out of the beam line in a "push-pull" configuration. These detectors, ILD and SiD, are described in detail. They form the basis for a world-class experimental programme that promises to increase significantly our understanding of the fundamental processes that govern the evolution of the Universe.« less

  14. Klynac: Compact Linear Accelerator with Integrated Power Supply

    NASA Astrophysics Data System (ADS)

    Malyzhenkov, A. V.

    Accelerators and accelerator-based light sources have a wide range of applications in science, engineering technology and medicine. Today the scientific community is working towards improving the quality of the accelerated beam and its parameters, while trying to develop technology for reducing accelerator size. This work describes a design of a compact linear accelerator (linac) prototype: resonant Klynac device, which is a combined linear accelerator and its power supply - klystron. The intended purpose of a Klynac device is to provide a compact and inexpensive alternative to a conventional 1 to 6 MeV accelerator, which typically requires a separate RF source, accelerator itself and all the associated hardware. Because the Klynac is a single structure, it has the potential to be much less sensitive to temperature variations than a system with separate klystron and linac. We start by introducing a simplified theoretical model for a Klynac device. We then demonstrate how a prototype is designed step-by-step using Particle-In-Cell simulation studies for mono-resonant and bi-resonant structures. Finally, we discuss design options from a stability point of view and required input power as well as behavior of competing modes for the actual built device.

  15. Integration of aerial imaging and variable-rate technology for site-specific aerial herbicide application

    USDA-ARS?s Scientific Manuscript database

    As remote sensing and variable rate technology are becoming more available for aerial applicators, practical methodologies on effective integration of these technologies are needed for site-specific aerial applications of crop production and protection materials. The objectives of this study were to...

  16. Accelerating Clean Energy Commercialization. A Strategic Partnership Approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adams, Richard; Pless, Jacquelyn; Arent, Douglas J.

    Technology development in the clean energy and broader clean tech space has proven to be challenging. Long-standing methods for advancing clean energy technologies from science to commercialization are best known for relatively slow, linear progression through research and development, demonstration, and deployment (RDD&D); and characterized by well-known valleys of death for financing. Investment returns expected by traditional venture capital investors have been difficult to achieve, particularly for hardware-centric innovations, and companies that are subject to project finance risks. Commercialization support from incubators and accelerators has helped address these challenges by offering more support services to start-ups; however, more effort ismore » needed to fulfill the desired clean energy future. The emergence of new strategic investors and partners in recent years has opened up innovative opportunities for clean tech entrepreneurs, and novel commercialization models are emerging that involve new alliances among clean energy companies, RDD&D, support systems, and strategic customers. For instance, Wells Fargo and Company (WFC) and the National Renewable Energy Laboratory (NREL) have launched a new technology incubator that supports faster commercialization through a focus on technology development. The incubator combines strategic financing, technology and technical assistance, strategic customer site validation, and ongoing financial support.« less

  17. Environmental Remediation and Conversion of Carbon Dioxide (CO2) into Useful Green Products by Accelerated Carbonation Technology

    PubMed Central

    Lim, Mihee; Han, Gi-Chun; Ahn, Ji-Whan; You, Kwang-Suk

    2010-01-01

    This paper reviews the application of carbonation technology to the environmental industry as a way of reducing carbon dioxide (CO2), a green house gas, including the presentation of related projects of our research group. An alternative technology to very slow natural carbonation is the co-called ‘accelerated carbonation’, which completes its fast reaction within few hours by using pure CO2. Carbonation technology is widely applied to solidify or stabilize solid combustion residues from municipal solid wastes, paper mill wastes, etc. and contaminated soils, and to manufacture precipitated calcium carbonate (PCC). Carbonated products can be utilized as aggregates in the concrete industry and as alkaline fillers in the paper (or recycled paper) making industry. The quantity of captured CO2 in carbonated products can be evaluated by measuring mass loss of heated samples by thermo-gravimetric (TG) analysis. The industrial carbonation technology could contribute to both reduction of CO2 emissions and environmental remediation. PMID:20195442

  18. SITE - EMERGING TECHNOLOGIES: LASER INDUCED PHOTO- CHEMICAL OXIDATIVE DESTRUCTION OF TOXIC ORGANICS IN LEACHATES AND GROUNDWATERS

    EPA Science Inventory

    The technology described in this report has been developed under the Emerging Technology Program of the Superfund Innovative Technology Evaluation (SITE) Program to photochemically oxidize organic compounds in wastewater by applying ultraviolet radiation using an excimer laser. T...

  19. Technology Demonstration Summary Site Program Demonstration Test Soliditech Inc Solidification-stabilization Process

    EPA Science Inventory

    The major objective of the Soliditech, Inc., SITE demonstration was to develop reliable performance and cost information about the Soliditech solidification, stabilization technology. The Soliditech process mixes hazardous waste materials with Portland cement or pozzolanic m...

  20. Proceedings of the 1995 Particle Accelerator Conference and international Conference on High-Energy Accelerators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1996-01-01

    Papers from the sixteenth biennial Particle Accelerator Conference, an international forum on accelerator science and technology held May 1–5, 1995, in Dallas, Texas, organized by Los Alamos National Laboratory (LANL) and Stanford Linear Accelerator Center (SLAC), jointly sponsored by the Institute of Electrical and Electronics Engineers (IEEE) Nuclear and Plasma Sciences Society (NPSS), the American Physical Society (APS) Division of Particles and Beams (DPB), and the International Union of Pure and Applied Physics (IUPAP), and conducted with support from the US Department of Energy, the National Science Foundation, and the Office of Naval Research.

  1. Frontier applications of electrostatic accelerators

    NASA Astrophysics Data System (ADS)

    Liu, Ke-Xin; Wang, Yu-Gang; Fan, Tie-Shuan; Zhang, Guo-Hui; Chen, Jia-Er

    2013-10-01

    Electrostatic accelerator is a powerful tool in many research fields, such as nuclear physics, radiation biology, material science, archaeology and earth sciences. Two electrostatic accelerators, one is the single stage Van de Graaff with terminal voltage of 4.5 MV and another one is the EN tandem with terminal voltage of 6 MV, were installed in 1980s and had been put into operation since the early 1990s at the Institute of Heavy Ion Physics. Many applications have been carried out since then. These two accelerators are described and summaries of the most important applications on neutron physics and technology, radiation biology and material science, as well as accelerator mass spectrometry (AMS) are presented.

  2. TECHNOLOGY EVALUATION REPORT: SITE PROGRAM DEMON- STRATION TEST - HORSEHEAD RESOURCE DEVELOPMENT COMPANY, INC. - FLAME REACTOR TECHNOLOGY - MONACA, PENNSYLVANIA

    EPA Science Inventory

    A SITE demonstration of the Horsehead Resource Development (HRD) Company, Inc. Flame Reactor Technology was conducted in March 1991 at the HRD facility in Monaca, Pennsylvania. or this demonstration, secondary lead smelter soda slag was treated to produce a potentially recyclable...

  3. Rail accelerator research at Lewis Research Center

    NASA Technical Reports Server (NTRS)

    Kerslake, W. R.; Cybyk, B. Z.

    1982-01-01

    A rail accelerator was chosen for study as an electromagnetic space propulsion device because of its simplicity and existing technology base. The results of a mission feasibility study using a large rail accelerator for direct launch of ton-size payloads from the Earth's surface to space, and the results of initial tests with a small, laboratory rail accelerator are presented. The laboratory rail accelerator has a bore of 3 by 3 mm and has accelerated 60 mg projectiles to velocities of 300 to 1000 m/s. Rail materials of Cu, W, and Mo were tested for efficiency and erosion rate.

  4. Applications of ecological concepts and remote sensing technologies in archaeological site reconnaissance

    NASA Technical Reports Server (NTRS)

    Miller, W. Frank; Sever, Thomas L.; Lee, C. Daniel

    1991-01-01

    The concept of integrating ecological perspectives on early man's settlement patterns with advanced remote sensing technologies shows promise for predictive site modeling. Early work with aerial imagery and ecosystem analysis is discussed with respect to the development of a major project in Maya archaeology supported by NASA and the National Geographic Society with technical support from the Mississippi State Remote Sensing Center. A preliminary site reconnaissance model will be developed for testing during the 1991 field season.

  5. A Framework for Managing Inter-Site Storage Area Networks using Grid Technologies

    NASA Technical Reports Server (NTRS)

    Kobler, Ben; McCall, Fritz; Smorul, Mike

    2006-01-01

    The NASA Goddard Space Flight Center and the University of Maryland Institute for Advanced Computer Studies are studying mechanisms for installing and managing Storage Area Networks (SANs) that span multiple independent collaborating institutions using Storage Area Network Routers (SAN Routers). We present a framework for managing inter-site distributed SANs that uses Grid Technologies to balance the competing needs to control local resources, share information, delegate administrative access, and manage the complex trust relationships between the participating sites.

  6. Particle acceleration at a reconnecting magnetic separator

    NASA Astrophysics Data System (ADS)

    Threlfall, J.; Neukirch, T.; Parnell, C. E.; Eradat Oskoui, S.

    2015-02-01

    Context. While the exact acceleration mechanism of energetic particles during solar flares is (as yet) unknown, magnetic reconnection plays a key role both in the release of stored magnetic energy of the solar corona and the magnetic restructuring during a flare. Recent work has shown that special field lines, called separators, are common sites of reconnection in 3D numerical experiments. To date, 3D separator reconnection sites have received little attention as particle accelerators. Aims: We investigate the effectiveness of separator reconnection as a particle acceleration mechanism for electrons and protons. Methods: We study the particle acceleration using a relativistic guiding-centre particle code in a time-dependent kinematic model of magnetic reconnection at a separator. Results: The effect upon particle behaviour of initial position, pitch angle, and initial kinetic energy are examined in detail, both for specific (single) particle examples and for large distributions of initial conditions. The separator reconnection model contains several free parameters, and we study the effect of changing these parameters upon particle acceleration, in particular in view of the final particle energy ranges that agree with observed energy spectra.

  7. Groundwater Contamination: DOD Uses and Develops a Range of Remediation Technologies to Clean Up Military Sites

    DTIC Science & Technology

    2005-06-01

    relative cost -effectiveness of a technology for a given site. DOD has identified a number of contaminants of concern at its facilities, each of...to contain or eliminate hazardous contaminants in groundwater. However, the long cleanup times and high costs of using pump-and- treat technologies...environment. DOD estimates that cleanup of its contaminated sites will cost billions of dollars and may take decades to complete because of the

  8. Site-Specific Integration of Exogenous Genes Using Genome Editing Technologies in Zebrafish.

    PubMed

    Kawahara, Atsuo; Hisano, Yu; Ota, Satoshi; Taimatsu, Kiyohito

    2016-05-13

    The zebrafish (Danio rerio) is an ideal vertebrate model to investigate the developmental molecular mechanism of organogenesis and regeneration. Recent innovation in genome editing technologies, such as zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs) and the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR associated protein 9 (Cas9) system, have allowed researchers to generate diverse genomic modifications in whole animals and in cultured cells. The CRISPR/Cas9 and TALEN techniques frequently induce DNA double-strand breaks (DSBs) at the targeted gene, resulting in frameshift-mediated gene disruption. As a useful application of genome editing technology, several groups have recently reported efficient site-specific integration of exogenous genes into targeted genomic loci. In this review, we provide an overview of TALEN- and CRISPR/Cas9-mediated site-specific integration of exogenous genes in zebrafish.

  9. KLYNAC: Compact linear accelerator with integrated power supply

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Malyzhenkov, Alexander

    Accelerators and accelerator-based light sources have a wide range of applications in science, engineering technology and medicine. Today the scienti c community is working towards improving the quality of the accelerated beam and its parameters while trying to develop technology for reducing accelerator size. This work describes a design of a compact linear accelerator (linac) prototype, resonant Klynac device, which is a combined linear accelerator and its power supply - klystron. The intended purpose of a Klynac device is to provide a compact and inexpensive alternative to a conventional 1 to 6 MeV accelerator, which typically requires a separate RFmore » source, an accelerator itself and all the associated hardware. Because the Klynac is a single structure, it has the potential to be much less sensitive to temperature variations than a system with separate klystron and linac. We start by introducing a simpli ed theoretical model for a Klynac device. We then demonstrate how a prototype is designed step-by-step using particle-in-cell simulation studies for mono- resonant and bi-resonant structures. Finally, we discuss design options from a stability point of view and required input power as well as behavior of competing modes for the actual built device.« less

  10. Electron acceleration behind a wavy dipolarization front

    NASA Astrophysics Data System (ADS)

    Wu, Mingyu; Lu, Quanming; Volwerk, Martin; Nakamura, Rumi; Zhang, Tielong

    2018-02-01

    In this paper, with the in-situ observations from the Time History of Events and Macroscale Interactions during Substorms (THEMIS) probes we report a wavy dipolarization front (DF) event, where the DF has different magnetic structures and electron distributions at different y positions in the Geocentric Solar Magnetospheric (GSM) coordinates. At y ˜2.1RE (RE is the radius of Earth), the DF has a relatively simple structure, which is similar to that of a conventional DF. At y ˜3.0RE, the DF is revealed to have a multiple DF structure, where the plasma exhibits a vortex flow. Such a wavy DF could be the results of the interchange instability. The different structure of such a wavy DF at different sites has a great effect on electron acceleration. Fermi acceleration can occur at the site of the DF with a simple or multiple DF structure, while betatron acceleration as a local process has the contribution to energetic electrons only at the site of the DF with a simple structure.

  11. Implementation guidance for accelerated bridge construction in South Dakota

    DOT National Transportation Integrated Search

    2017-09-01

    A study was conducted to investigate implementation of accelerated bridge construction (ABC) in South Dakota. Accelerated bridge construction is defined as construction practices that employ innovative techniques to reduce on-site construction time a...

  12. Assay optimisation and technology transfer for multi-site immuno-monitoring in vaccine trials

    PubMed Central

    Harris, Stephanie A.; Satti, Iman; Bryan, Donna; Walker, K. Barry; Dockrell, Hazel M.; McShane, Helen; Ho, Mei Mei

    2017-01-01

    Cellular immunological assays are important tools for the monitoring of responses to T-cell-inducing vaccine candidates. As these bioassays are often technically complex and require considerable experience, careful technology transfer between laboratories is critical if high quality, reproducible data that allows comparison between sites, is to be generated. The aim of this study, funded by the European Union Framework Program 7-funded TRANSVAC project, was to optimise Standard Operating Procedures and the technology transfer process to maximise the reproducibility of three bioassays for interferon-gamma responses: enzyme-linked immunosorbent assay (ELISA), ex-vivo enzyme-linked immunospot and intracellular cytokine staining. We found that the initial variability in results generated across three different laboratories reduced following a combination of Standard Operating Procedure harmonisation and the undertaking of side-by-side training sessions in which assay operators performed each assay in the presence of an assay ‘lead’ operator. Mean inter-site coefficients of variance reduced following this training session when compared with the pre-training values, most notably for the ELISA assay. There was a trend for increased inter-site variability at lower response magnitudes for the ELISA and intracellular cytokine staining assays. In conclusion, we recommend that on-site operator training is an essential component of the assay technology transfer process and combined with harmonised Standard Operating Procedures will improve the quality, reproducibility and comparability of data produced across different laboratories. These data may be helpful in ongoing discussions of the potential risk/benefit of centralised immunological assay strategies for large clinical trials versus decentralised units. PMID:29020010

  13. Electric rail gun projectile acceleration to high velocity

    NASA Technical Reports Server (NTRS)

    Bauer, D. P.; Mccormick, T. J.; Barber, J. P.

    1982-01-01

    Electric rail accelerators are being investigated for application in electric propulsion systems. Several electric propulsion applications require that the rail accelerator be capable of launching projectiles at velocities above 10 km/s. An experimental program was conducted to develop rail accelerator technology for high velocity projectile launch. Several 6 mm bore, 3 m long rail accelerators were fabricated. Projectiles with a mass of 0.2 g were accelerated by plasmas, carrying currents up to 150 kA. Experimental design and results are described. Results indicate that the accelerator performed as predicted for a fraction of the total projectile acceleration. The disparity between predicted and measured results are discussed.

  14. EPA-developed, patented technologies related to contaminated sites and hazardous substances that are available for licensing

    EPA Pesticide Factsheets

    Under the Federal Technology Transfer Act (FTTA), Federal Agencies can patent inventions developed during the course of research. These technologies can then be licensed to businesses or individuals for further development and sale in the marketplace. These technologies relate to treatment of contaminated sites.

  15. Evaluation of the Xeon phi processor as a technology for the acceleration of real-time control in high-order adaptive optics systems

    NASA Astrophysics Data System (ADS)

    Barr, David; Basden, Alastair; Dipper, Nigel; Schwartz, Noah; Vick, Andy; Schnetler, Hermine

    2014-08-01

    We present wavefront reconstruction acceleration of high-order AO systems using an Intel Xeon Phi processor. The Xeon Phi is a coprocessor providing many integrated cores and designed for accelerating compute intensive, numerical codes. Unlike other accelerator technologies, it allows virtually unchanged C/C++ to be recompiled to run on the Xeon Phi, giving the potential of making development, upgrade and maintenance faster and less complex. We benchmark the Xeon Phi in the context of AO real-time control by running a matrix vector multiply (MVM) algorithm. We investigate variability in execution time and demonstrate a substantial speed-up in loop frequency. We examine the integration of a Xeon Phi into an existing RTC system and show that performance improvements can be achieved with limited development effort.

  16. The United States Particle Accelerator School: Educating the Next Generation of Accelerator Scientists and Engineers

    NASA Astrophysics Data System (ADS)

    Barletta, William A.

    2009-03-01

    Only a handful of universities in the US offer any formal training in accelerator science. The United States Particle Accelerator School (USPAS) is National Graduate Educational Program that has developed a highly successful educational paradigm that, over the past twenty-years, has granted more university credit in accelerator/beam science and technology than any university in the world. Sessions are held twice annually, hosted by major US research universities that approve course credit, certify the USPAS faculty, and grant course credit. The USPAS paradigm is readily extensible to other rapidly developing, cross-disciplinary research areas such as high energy density physics.

  17. SHEAR ACCELERATION IN EXPANDING FLOWS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rieger, F. M.; Duffy, P., E-mail: frank.rieger@mpi-hd.mpg.de, E-mail: peter.duffy@ucd.ie

    Shear flows are naturally expected to occur in astrophysical environments and potential sites of continuous non-thermal Fermi-type particle acceleration. Here we investigate the efficiency of expanding relativistic outflows to facilitate the acceleration of energetic charged particles to higher energies. To this end, the gradual shear acceleration coefficient is derived based on an analytical treatment. The results are applied to the context of the relativistic jets from active galactic nuclei. The inferred acceleration timescale is investigated for a variety of conical flow profiles (i.e., power law, Gaussian, Fermi–Dirac) and compared to the relevant radiative and non-radiative loss timescales. The results exemplifymore » that relativistic shear flows are capable of boosting cosmic-rays to extreme energies. Efficient electron acceleration, on the other hand, requires weak magnetic fields and may thus be accompanied by a delayed onset of particle energization and affect the overall jet appearance (e.g., core, ridge line, and limb-brightening).« less

  18. Characteristics of four SPE groups with different origins and acceleration processes

    NASA Astrophysics Data System (ADS)

    Kim, R.-S.; Cho, K.-S.; Lee, J.; Bong, S.-C.; Joshi, A. D.; Park, Y.-D.

    2015-09-01

    Solar proton events (SPEs) can be categorized into four groups based on their associations with flare or CME inferred from onset timings as well as acceleration patterns using multienergy observations. In this study, we have investigated whether there are any typical characteristics of associated events and acceleration sites in each group using 42 SPEs from 1997 to 2012. We find the following: (i) if the proton acceleration starts from a lower energy, a SPE has a higher chance to be a strong event (> 5000 particle flux per unit (pfu)) even if its associated flare and/or CME are not so strong. The only difference between the SPEs associated with flare and CME is the location of the acceleration site. (ii) For the former (Group A), the sites are very low (˜ 1 Rs) and close to the western limb, while the latter (Group C) have relatively higher (mean = 6.05 Rs) and wider acceleration sites. (iii) When the proton acceleration starts from the higher energy (Group B), a SPE tends to be a relatively weak event (< 1000 pfu), although its associated CME is relatively stronger than previous groups. (iv) The SPEs categorized by the simultaneous acceleration in whole energy range within 10 min (Group D) tend to show the weakest proton flux (mean = 327 pfu) in spite of strong associated eruptions. Based on those results, we suggest that the different characteristics of SPEs are mainly due to the different conditions of magnetic connectivity and particle density, which are changed with longitude and height as well as their origin.

  19. The STD Site Operator. Satellite Technology Demonstration, Technical Report No. 0419.

    ERIC Educational Resources Information Center

    Braunstein, Jean

    Intimately involved in any equipment system is the human factor. The people operating the equipment at the remote installations for the Satellite Technology Demonstration (STD) were different from paid employees or from private consumers. The STD site operators were paid only token fees; thus, they are best describd as having been motivated by the…

  20. Accelerated Innovation Pilot

    NASA Technical Reports Server (NTRS)

    Davis, Jeffrey

    2012-01-01

    Opportunities: I. Engage NASA team (examples) a) Research and technology calls . provide suggestions to AES, HRP, OCT. b) Use NASA@Work to solicit other ideas; (possibly before R+D calls). II. Stimulate collaboration (examples) a) NHHPC. b) Wharton Mack Center for Technological Innovation (Feb 2013). c) International ] DLR ] :envihab (July 2013). d) Accelerated research models . NSF, Myelin Repair Foundation. III. Engage public Prizes (open platform: InnoCentive, yet2.com, NTL; Rice Business Plan, etc.) IV. Use same methods to engage STEM.

  1. Accelerators for society: succession of European infrastructural projects: CARE, EuCARD, TIARA, EuCARD2

    NASA Astrophysics Data System (ADS)

    Romaniuk, Ryszard S.

    2013-10-01

    Accelerator science and technology is one of a key enablers of the developments in the particle physic, photon physics and also applications in medicine and industry. The paper presents a digest of the research results in the domain of accelerator science and technology in Europe, shown during the realization of CARE (Coordinated Accelerator R&D), EuCARD (European Coordination of Accelerator R&D) and during the national annual review meeting of the TIARA - Test Infrastructure of European Research Area in Accelerator R&D. The European projects on accelerator technology started in 2003 with CARE. TIARA is an European Collaboration of Accelerator Technology, which by running research projects, technical, networks and infrastructural has a duty to integrate the research and technical communities and infrastructures in the global scale of Europe. The Collaboration gathers all research centers with large accelerator infrastructures. Other ones, like universities, are affiliated as associate members. TIARA-PP (preparatory phase) is an European infrastructural project run by this Consortium and realized inside EU-FP7. The paper presents a general overview of CARE, EuCARD and especially TIARA activities, with an introduction containing a portrait of contemporary accelerator technology and a digest of its applications in modern society. CARE, EuCARD and TIARA activities integrated the European accelerator community in a very effective way. These projects are expected very much to be continued.

  2. SITE PROGRAM DEMONSTRATION OF THE SBP TECHNOLOGIES, INC. MEMBRANE FILTRATION SYSTEM ON CREOSOTE-CONTAMINATED WATER

    EPA Science Inventory

    The formed-in-place, membrane filtration system offered by SBP Technologies, Inc. of Stone Mountain, Georgia was evaluated by the U.S. EPA Superfund Inno- vative Technology Evaluation (SITE) Program. The evaluation lasted six days; ap- proximately 1000 gallons per day of water co...

  3. Computational Accelerator Physics. Proceedings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bisognano, J.J.; Mondelli, A.A.

    1997-04-01

    The sixty two papers appearing in this volume were presented at CAP96, the Computational Accelerator Physics Conference held in Williamsburg, Virginia from September 24{minus}27,1996. Science Applications International Corporation (SAIC) and the Thomas Jefferson National Accelerator Facility (Jefferson lab) jointly hosted CAP96, with financial support from the U.S. department of Energy`s Office of Energy Research and the Office of Naval reasearch. Topics ranged from descriptions of specific codes to advanced computing techniques and numerical methods. Update talks were presented on nearly all of the accelerator community`s major electromagnetic and particle tracking codes. Among all papers, thirty of them are abstracted formore » the Energy Science and Technology database.(AIP)« less

  4. Pulse - Accelerator Science in Medicine

    Science.gov Websites

    intermediate machines. Each generation of particle accelerators build on the accomp-lishments of the previous ones, raising the level of technology ever higher. Security, Privacy Legal

  5. Characteristics of Four SPE Classes According to Onset Timing and Proton Acceleration Patterns

    NASA Astrophysics Data System (ADS)

    Kim, Roksoon

    2015-04-01

    In our previous work (Kim et al., 2015), we suggested a new classification scheme, which categorizes the SPEs into four groups based on association with flare or CME inferred from onset timings as well as proton acceleration patterns using multienergy observations. In this study, we have tried to find whether there are any typical characteristics of associated events and acceleration sites in each group using 42 SPEs from 1997 to 2012. We find: (i) if the proton acceleration starts from a lower energy, a SPE has a higher chance to be a strong event (> 5000 pfu) even if the associated flare and CME are not so strong. The only difference between the SPEs associated with flare and CME is the location of the acceleration site. For the former, the sites are very low ( ~1 Rs) and close to the western limb, while the latter has a relatively higher (mean=6.05 Rs) and wider acceleration sites. (ii) When the proton acceleration starts from the higher energy, a SPE tends to be a relatively weak event (< 1000 pfu), in spite of its associated CME is relatively stronger than previous group. (iii) The SPEs categorized by the simultaneous proton acceleration in whole energy range within 10 minutes, tend to show the weakest proton flux (mean=327 pfu) in spite of strong related eruptions. Their acceleration heights are very close to the locations of type II radio bursts. Based on those results, we suggest that the different characteristics of the four groups are mainly due to the different mechanisms governing the acceleration pattern and interval, and different condition such as the acceleration location.

  6. Second International Conference on Accelerating Biopharmaceutical Development

    PubMed Central

    2009-01-01

    The Second International Conference on Accelerating Biopharmaceutical Development was held in Coronado, California. The meeting was organized by the Society for Biological Engineering (SBE) and the American Institute of Chemical Engineers (AIChE); SBE is a technological community of the AIChE. Bob Adamson (Wyeth) and Chuck Goochee (Centocor) were co-chairs of the event, which had the theme “Delivering cost-effective, robust processes and methods quickly and efficiently.” The first day focused on emerging disruptive technologies and cutting-edge analytical techniques. Day two featured presentations on accelerated cell culture process development, critical quality attributes, specifications and comparability, and high throughput protein formulation development. The final day was dedicated to discussion of technology options and new analysis methods provided by emerging disruptive technologies; functional interaction, integration and synergy in platform development; and rapid and economic purification process development. PMID:20065637

  7. TECHNICAL EVALUATION OF REMEDIATION TECHNOLOGIES FOR PLUTONIUM-CONTAMINATED SOILS AT THE NEVADA TEST SITE (NTS)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steve Hoeffner

    2003-12-31

    The Clemson Environmental Technologies Laboratory (CETL) was contracted by the National Energy Technology Center to evaluate technologies that might be used to reduce the volume of plutonium-contaminated soil at the Nevada Test Site. The project has been systematically approached. A thorough review and summary was completed for: (1) The NTS soil geological, geochemical and physical characteristics; (2) The characteristics and chemical form of the plutonium that is in these soils; (3) Previous volume reduction technologies that have been attempted on the NTS soils; (4) Vendors with technology that may be applicable; and (5) Related needs at other DOE sites. Soilsmore » from the Nevada Test Site were collected and delivered to the CETL. Soils were characterized for Pu-239/240, Am-241 and gross alpha. In addition, wet sieving and the subsequent characterization were performed on soils before and after attrition scrubbing to determine the particle size distribution and the distribution of Pu-239/240 and gross alpha as a function of particle size. Sequential extraction was performed on untreated soil to provide information about how tightly bound the plutonium was to the soil. Magnetic separation was performed to determine if this could be useful as part of a treatment approach. Using the information obtained from these reviews, three vendors were selected to demonstration their volume reduction technologies at the CETL. Two of the three technologies, bioremediation and soil washing, met the performance criteria. Both were able to significantly reduce the concentration plutonium in the soil from around 1100 pCi/g to 200 pCi/g or less with a volume reduction of around 95%, well over the target 70%. These results are especially encouraging because they indicate significant improvement over that obtained in these earlier pilot and field studies. Additional studies are recommended.« less

  8. Principles of Induction Accelerators

    NASA Astrophysics Data System (ADS)

    Briggs*, Richard J.

    The basic concepts involved in induction accelerators are introduced in this chapter. The objective is to provide a foundation for the more detailed coverage of key technology elements and specific applications in the following chapters. A wide variety of induction accelerators are discussed in the following chapters, from the high current linear electron accelerator configurations that have been the main focus of the original developments, to circular configurations like the ion synchrotrons that are the subject of more recent research. The main focus in the present chapter is on the induction module containing the magnetic core that plays the role of a transformer in coupling the pulsed power from the modulator to the charged particle beam. This is the essential common element in all these induction accelerators, and an understanding of the basic processes involved in its operation is the main objective of this chapter. (See [1] for a useful and complementary presentation of the basic principles in induction linacs.)

  9. SITE TECHNOLOGY CAPSULE: BIOGENESIS SOIL WASHING TECHNOLOGY

    EPA Science Inventory

    Soil washing technologies are designed to transfer contaminants from soil to a liquid phase. The BloGenesis™ soil washing technology uses a proprietary surfactant solution to transfer organic contaminants from soil to wastewater. The surfactant used in the soil washing process wa...

  10. TECHNOLOGY EVALUATION REPORT: BIOTROL SOIL WASHING SYSTEM FOR TREATMENT OF A WOOD PRESERVING SITE - VOLUME II

    EPA Science Inventory

    The SITE Program demonstration of one configuration of the BioTrol Soil Washing System (BSWS) was conducted to obtain reliable performance and cost data that can be used to evaluate the potential applicability of the technology as a remediation alternative for sites contaminated ...

  11. Acceleration Of Wound Healing Ny Photodynamic Therapy

    DOEpatents

    Hasan, Tayyaba; Hamblin, Michael R.; Trauner, Kenneth

    2000-08-22

    Disclosed is a method for accelerating wound healing in a mammal. The method includes identifying an unhealed wound site or partially-healed wound site in a mammal; administering a photosensitizer to the mammal; waiting for a time period wherein the photosensitizer reaches an effective tissue concentration at the wound site; and photoactivating the photosensitizer at the wound site. The dose of photodynamic therapy is selected to stimulate the production of one or more growth factor by cells at the wound site, without causing tissue destruction.

  12. Empirical evidence for site coefficients in building code provisions

    USGS Publications Warehouse

    Borcherdt, R.D.

    2002-01-01

    Site-response coefficients, Fa and Fv, used in U.S. building code provisions are based on empirical data for motions up to 0.1 g. For larger motions they are based on theoretical and laboratory results. The Northridge earthquake of 17 January 1994 provided a significant new set of empirical data up to 0.5 g. These data together with recent site characterizations based on shear-wave velocity measurements provide empirical estimates of the site coefficients at base accelerations up to 0.5 g for Site Classes C and D. These empirical estimates of Fa and Fnu; as well as their decrease with increasing base acceleration level are consistent at the 95 percent confidence level with those in present building code provisions, with the exception of estimates for Fa at levels of 0.1 and 0.2 g, which are less than the lower confidence bound by amounts up to 13 percent. The site-coefficient estimates are consistent at the 95 percent confidence level with those of several other investigators for base accelerations greater than 0.3 g. These consistencies and present code procedures indicate that changes in the site coefficients are not warranted. Empirical results for base accelerations greater than 0.2 g confirm the need for both a short- and a mid- or long-period site coefficient to characterize site response for purposes of estimating site-specific design spectra.

  13. Seismic environment of the Burro Flats site, Ventura County, California: a brief, limited literature review

    USGS Publications Warehouse

    Wentworth, Carl M.; Bonilla, Manuel G.; Buchanan, Jane M.

    1969-01-01

    magnitude placed at the closest point to the site on the fault trace, and applying attenuation curves of three different authors. Considerable uncertainty is inherent in the rough estimates of seismic accelerations made herein, for they are dependent on a chain of judgments, each of which, in itself, is uncertain. Present knowledge of the geology of the region is incomplete, so that geometry and structural relations of the faults are in part uncertain, and much evidence bearing on the youth of the faults has yet to be gathered and evaluated. Estimation of earthquake magnitude is also uncertain, and even assuming that approximate magnitude is known rather than estimated from fault length, estimates of maximum ground acceleration may differ greatly depending on the authority used. Further consideration of ground acceleration at the site might refine the estimates made herein and resolve the apparent contradictions between the authorities cited. Attention to frequency and duration of strong shaking would also be appropriate. This study was undertaken at the request of A. J. Pressesky, Assistant Director for Nuclear Safety, Division of Reactor-Development and Technology, U.S. Atomic Energy Commission, in March, 1969. It is based on a brief review of pertinent literature to which the authors had immediate access during the few weeks (April-May, 1969) available for report preparation. Because the report is limited both in scope and thoroughness, it must be considered no more than a first estimate of the tectonic and seismic environment of the Burro Flats site, and should not be considered sufficient, in itself, as a basis for design. The report is intended, however, to indicate the breadth of inquiry that is necessary in the consideration of ground acceleration at sites in California, and to indicate the incomplete status of geologic mapping and other geologic studies in the region. The report describes the tectonic environment of the Burro Flats site, discusses 10 pertinent

  14. PERFORMANCE OF CONVENTIONAL REMEDIAL TECHNOLOGY FOR TREATMENT OF MTBE AND BENZENE AT UST SITES IN KANSAS

    EPA Science Inventory

    Ground water at most UST spills sites in Kansas contains both MTBE and benzene, and both contaminants must be effectively treated to close the sites. Soil vacuum extraction, air sparging, and excavation are the most common treatment technologies in Kansas. To compare the relati...

  15. Applications of the Strategic Defense Initiative's compact accelerators

    NASA Technical Reports Server (NTRS)

    Montanarelli, Nick; Lynch, Ted

    1991-01-01

    The Strategic Defense Initiative's (SDI) investment in particle accelerator technology for its directed energy weapons program has produced breakthroughs in the size and power of new accelerators. These accelerators, in turn, have produced spinoffs in several areas: the radio frequency quadrupole linear accelerator (RFQ linac) was recently incorporated into the design of a cancer therapy unit at the Loma Linda University Medical Center, an SDI-sponsored compact induction linear accelerator may replace Cobalt-60 radiation and hazardous ethylene-oxide as a method for sterilizing medical products, and other SDIO-funded accelerators may be used to produce the radioactive isotopes oxygen-15, nitrogen-13, carbon-11, and fluorine-18 for positron emission tomography (PET). Other applications of these accelerators include bomb detection, non-destructive inspection, decomposing toxic substances in contaminated ground water, and eliminating nuclear waste.

  16. Beam Position Monitoring in the CSU Accelerator Facility

    NASA Astrophysics Data System (ADS)

    Einstein, Joshua; Vankeuren, Max; Watras, Stephen

    2014-03-01

    A Beam Position Monitoring (BPM) system is an integral part of an accelerator beamline, and modern accelerators can take advantage of newer technologies and designs when creating a BPM system. The Colorado State University (CSU) Accelerator Facility will include four stripline detectors mounted around the beamline, a low-noise analog front-end, and digitization and interface circuitry. The design will support a sampling rate greater than 10 Hz and sub-100 μm accuracy.

  17. 78 FR 48468 - M/A-Com Technology Solutions, Including On-Site Leased Workers of Kelly Temps and Aerotek CE...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-08

    ...-W-82,242 is hereby issued as follows: All workers of M/A-Com Technology Solutions, including on-site... DEPARTMENT OF LABOR Employment and Training Administration [TA-W-80,242; TA-W-80,242A] M/A-Com.../A-Com Technology Solutions, Including On-Site Leased Workers of Kelly Temps and Aerotek CE, Long...

  18. Particle Acceleration at the Sun and in the Heliosphere

    NASA Technical Reports Server (NTRS)

    Reames, Donald V.

    1999-01-01

    Energetic particles are accelerated in rich profusion at sites throughout the heliosphere. They come from solar flares in the low corona, from shock waves driven outward by coronal mass ejections (CMEs), from planetary magnetospheres and bow shocks. They come from corotating interaction regions (CIRs) produced by high-speed streams in the solar wind, and from the heliospheric termination shock at the outer edge of the heliospheric cavity. We sample all these populations near Earth, but can distinguish them readily by their element and isotope abundances, ionization states, energy spectra, angular distributions and time behavior. Remote spacecraft have probed the spatial distributions of the particles and examined new sources in situ. Most acceleration sources can be "seen" only by direct observation of the particles; few photons are produced at these sites. Wave-particle interactions are an essential feature in acceleration sources and, for shock acceleration, new evidence of energetic-proton-generated waves has come from abundance variations and from local cross-field scattering. Element abundances often tell us the physics the source plasma itself, prior to acceleration. By comparing different populations, we learn more about the sources, and about the physics of acceleration and transport, than we can possibly learn from one source alone.

  19. Future HEP Accelerators: The US Perspective

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhat, Pushpalatha; Shiltsev, Vladimir

    2015-11-02

    Accelerator technology has advanced tremendously since the introduction of accelerators in the 1930s, and particle accelerators have become indispensable instruments in high energy physics (HEP) research to probe Nature at smaller and smaller distances. At present, accelerator facilities can be classified into Energy Frontier colliders that enable direct discoveries and studies of high mass scale particles and Intensity Frontier accelerators for exploration of extremely rare processes, usually at relatively low energies. The near term strategies of the global energy frontier particle physics community are centered on fully exploiting the physics potential of the Large Hadron Collider (LHC) at CERN throughmore » its high-luminosity upgrade (HL-LHC), while the intensity frontier HEP research is focused on studies of neutrinos at the MW-scale beam power accelerator facilities, such as Fermilab Main Injector with the planned PIP-II SRF linac project. A number of next generation accelerator facilities have been proposed and are currently under consideration for the medium- and long-term future programs of accelerator-based HEP research. In this paper, we briefly review the post-LHC energy frontier options, both for lepton and hadron colliders in various regions of the world, as well as possible future intensity frontier accelerator facilities.« less

  20. Research on Acceleration Compensation Strategy of Electric Vehicle Based on Fuzzy Control Theory

    NASA Astrophysics Data System (ADS)

    Zhu, Tianjun; Li, Bin; Zong, Changfu; Wei, Zhicheng

    2017-09-01

    Nowadays, the driving technology of electric vehicle is developing rapidly. There are many kinds of methods in driving performance control technology. The paper studies the acceleration performance of electric vehicle. Under the premise of energy management, an acceleration power compensation method by fuzzy control theory based on driver intention recognition is proposed, which can meet the driver’s subjective feelings better. It avoids the problem that the pedal opening and power output are single correspondence when the traditional vehicle accelerates. Through the simulation test, this method can significantly improve the performance of acceleration and output torque smoothly in non-emergency acceleration to ensure vehicle comfortable and stable.

  1. Laser-driven ion acceleration: methods, challenges and prospects

    NASA Astrophysics Data System (ADS)

    Badziak, J.

    2018-01-01

    The recent development of laser technology has resulted in the construction of short-pulse lasers capable of generating fs light pulses with PW powers and intensities exceeding 1021 W/cm2, and has laid the basis for the multi-PW lasers, just being built in Europe, that will produce fs pulses of ultra-relativistic intensities ~ 1023 - 1024 W/cm2. The interaction of such an intense laser pulse with a dense target can result in the generation of collimated beams of ions of multi-MeV to GeV energies of sub-ps time durations and of extremely high beam intensities and ion fluencies, barely attainable with conventional RF-driven accelerators. Ion beams with such unique features have the potential for application in various fields of scientific research as well as in medical and technological developments. This paper provides a brief review of state-of-the art in laser-driven ion acceleration, with a focus on basic ion acceleration mechanisms and the production of ultra-intense ion beams. The challenges facing laser-driven ion acceleration studies, in particular those connected with potential applications of laser-accelerated ion beams, are also discussed.

  2. COMPARISON OF THE EXTENT OF TREATMENT OF MTBE AND BENZENE BY ACTIVE REMEDIAL TECHNOLOGY AT UST SITES IN KANSAS

    EPA Science Inventory

    Data were collected from 63 sites in Kansas where technology for active cleanup of gasoline contamination had been implemented; SVE and AS was used at 39 sites, SVE alone at 11 sites, SVE an AS and excavation at 6 sites, SVE and product recovery at 3 sites, excavation alone at 2 ...

  3. EuCARD2: enhanced accelerator research and development in Europe

    NASA Astrophysics Data System (ADS)

    Romaniuk, Ryszard S.

    2013-10-01

    Accelerator science and technology is one of a key enablers of the developments in the particle physic, photon physics and also applications in medicine and industry. EuCARD2 is an European research project which will be realized during 2013-2017 inside the EC FP7 framework. The project concerns the development and coordination of European Accelerator Research and Development. The project is particularly important, to a number of domestic laboratories, due to some plans to build large accelerator infrastructure in Poland. Large accelerator infrastructure of fundamental and applied research character stimulates around it the development and industrial applications as well as biomedical of advanced accelerators, material research and engineering, cryo-technology, mechatronics, robotics, and in particular electronics - like networked measurement and control systems, sensors, computer systems, automation and control systems. The paper presents a digest of the European project EuCARD2 which is Enhanced European Coordination for Accelerator Research and Development. The paper presents a digest of the research results and assumptions in the domain of accelerator science and technology in Europe, shown during the final fourth annual meeting of the EuCARD - European Coordination of Accelerator R&D, and the kick-off meeting of the EuCARD2. There are debated a few basic groups of accelerator systems components like: measurement - control networks of large geometrical extent, multichannel systems for large amounts of metrological data acquisition, precision photonic networks of reference time, frequency and phase distribution, high field magnets, superconducting cavities, novel beam collimators, etc. The paper bases on the following materials: Internet and Intranet documents combined with EuCARD2, Description of Work FP7 EuCARD-2 DoW-312453, 2013-02-13, and discussions and preparatory materials worked on by Eucard-2 initiators.

  4. Advanced on-site power plant development technology program

    NASA Technical Reports Server (NTRS)

    1984-01-01

    A 30-cell, full area short stack containing advanced cell features was tested for 2900 hours. A stack acid addition approach was selected and will be evaluated on the stack at 5000 hours test time. A brassboard inverter was designed and fabrication was initiated. Evaluation of this brassboard inverter will take place in 1984. A Teflon coated commercial heat exchanger was selected as the preferred approach for the acid condenser. A reformer catalyst with significantly less pressure drop and equivalent performance relative to the 40-K baseline catalyst was selected for the development reformer. The early 40-kW field power plant history was reviewed and adjustments were made to the On-Site Technology Development Program to address critical component issues.

  5. Applications of High Intensity Proton Accelerators

    NASA Astrophysics Data System (ADS)

    Raja, Rajendran; Mishra, Shekhar

    2010-06-01

    Superconducting radiofrequency linac development at Fermilab / S. D. Holmes -- Rare muon decay experiments / Y. Kuno -- Rare kaon decays / D. Bryman -- Muon collider / R. B. Palmer -- Neutrino factories / S. Geer -- ADS and its potential / J.-P. Revol -- ADS history in the USA / R. L. Sheffield and E. J. Pitcher -- Accelerator driven transmutation of waste: high power accelerator for the European ADS demonstrator / J. L. Biarrotte and T. Junquera -- Myrrha, technology development for the realisation of ADS in EU: current status & prospects for realisation / R. Fernandez ... [et al.] -- High intensity proton beam production with cyclotrons / J. Grillenberger and M. Seidel -- FFAG for high intensity proton accelerator / Y. Mori -- Kaon yields for 2 to 8 GeV proton beams / K. K. Gudima, N. V. Mokhov and S. I. Striganov -- Pion yield studies for proton driver beams of 2-8 GeV kinetic energy for stopped muon and low-energy muon decay experiments / S. I. Striganov -- J-Parc accelerator status and future plans / H. Kobayashi -- Simulation and verification of DPA in materials / N. V. Mokhov, I. L. Rakhno and S. I. Striganov -- Performance and operational experience of the CNGS facility / E. Gschwendtner -- Particle physics enabled with super-conducting RF technology - summary of working group 1 / D. Jaffe and R. Tschirhart -- Proton beam requirements for a neutrino factory and muon collider / M. S. Zisman -- Proton bunching options / R. B. Palmer -- CW SRF H linac as a proton driver for muon colliders and neutrino factories / M. Popovic, C. M. Ankenbrandt and R. P. Johnson -- Rapid cycling synchrotron option for Project X / W. Chou -- Linac-based proton driver for a neutrino factory / R. Garoby ... [et al.] -- Pion production for neutrino factories and muon colliders / N. V. Mokhov ... [et al.] -- Proton bunch compression strategies / V. Lebedev -- Accelerator test facility for muon collider and neutrino factory R&D / V. Shiltsev -- The superconducting RF linac for muon

  6. Technology Demonstration Summary Shirco Electric Infrared Incineration At The Peak Oil Superfund Site

    EPA Science Inventory

    Under the auspices of the Superfund Innovative Technology Evaluation or SITE Program, a critical assessment is made of the performance of the transportable Shirco Infrared Thermal Destruction System during three separate test runs at an operating feed rate of 100 tons per day. Th...

  7. Flattening filter-free accelerators: a report from the AAPM Therapy Emerging Technology Assessment Work Group.

    PubMed

    Xiao, Ying; Kry, Stephen F; Popple, Richard; Yorke, Ellen; Papanikolaou, Niko; Stathakis, Sotirios; Xia, Ping; Huq, Saiful; Bayouth, John; Galvin, James; Yin, Fang-Fang

    2015-05-08

    This report describes the current state of flattening filter-free (FFF) radiotherapy beams implemented on conventional linear accelerators, and is aimed primarily at practicing medical physicists. The Therapy Emerging Technology Assessment Work Group of the American Association of Physicists in Medicine (AAPM) formed a writing group to assess FFF technology. The published literature on FFF technology was reviewed, along with technical specifications provided by vendors. Based on this information, supplemented by the clinical experience of the group members, consensus guidelines and recommendations for implementation of FFF technology were developed. Areas in need of further investigation were identified. Removing the flattening filter increases beam intensity, especially near the central axis. Increased intensity reduces treatment time, especially for high-dose stereotactic radiotherapy/radiosurgery (SRT/SRS). Furthermore, removing the flattening filter reduces out-of-field dose and improves beam modeling accuracy. FFF beams are advantageous for small field (e.g., SRS) treatments and are appropriate for intensity-modulated radiotherapy (IMRT). For conventional 3D radiotherapy of large targets, FFF beams may be disadvantageous compared to flattened beams because of the heterogeneity of FFF beam across the target (unless modulation is employed). For any application, the nonflat beam characteristics and substantially higher dose rates require consideration during the commissioning and quality assurance processes relative to flattened beams, and the appropriate clinical use of the technology needs to be identified. Consideration also needs to be given to these unique characteristics when undertaking facility planning. Several areas still warrant further research and development. Recommendations pertinent to FFF technology, including acceptance testing, commissioning, quality assurance, radiation safety, and facility planning, are presented. Examples of clinical

  8. HISTORY AND ACCOMPLISHMENTS OF THE US EPA'S SUPERFUND INNOVATIVE TECHNOLOGY EVALUATION (SITE) MONITORING AND MEASUREMENT (MMT) PROGRAM

    EPA Science Inventory

    This manuscript presents the history and evolution of the U.S. Environmental Protection Agency's (EPA) Superfund Innovative Technology Evaluation (SITE) Monitoring and Measurement Technology (MMT) Program. This includes a discussion of how the fundamental concepts of a performanc...

  9. Ames expedited site characterization demonstration at the former manufactured gas plant site, Marshalltown, Iowa

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bevolo, A.J.; Kjartanson, B.H.; Wonder, J.D.

    1996-03-01

    The goal of the Ames Expedited Site Characterization (ESC) project is to evaluate and promote both innovative technologies (IT) and state-of-the-practice technologies (SOPT) for site characterization and monitoring. In April and May 1994, the ESC project conducted site characterization, technology comparison, and stakeholder demonstration activities at a former manufactured gas plant (FMGP) owned by Iowa Electric Services (IES) Utilities, Inc., in Marshalltown, Iowa. Three areas of technology were fielded at the Marshalltown FMGP site: geophysical, analytical and data integration. The geophysical technologies are designed to assess the subsurface geological conditions so that the location, fate and transport of the targetmore » contaminants may be assessed and forecasted. The analytical technologies/methods are designed to detect and quantify the target contaminants. The data integration technology area consists of hardware and software systems designed to integrate all the site information compiled and collected into a conceptual site model on a daily basis at the site; this conceptual model then becomes the decision-support tool. Simultaneous fielding of different methods within each of the three areas of technology provided data for direct comparison of the technologies fielded, both SOPT and IT. This document reports the results of the site characterization, technology comparison, and ESC demonstration activities associated with the Marshalltown FMGP site. 124 figs., 27 tabs.« less

  10. Supporting research sites in resource-limited settings: challenges in implementing information technology infrastructure.

    PubMed

    Whalen, Christopher J; Donnell, Deborah; Tartakovsky, Michael

    2014-01-01

    As information and communication technology infrastructure becomes more reliable, new methods of electronic data capture, data marts/data warehouses, and mobile computing provide platforms for rapid coordination of international research projects and multisite studies. However, despite the increasing availability of Internet connectivity and communication systems in remote regions of the world, there are still significant obstacles. Sites with poor infrastructure face serious challenges participating in modern clinical and basic research, particularly that relying on electronic data capture and Internet communication technologies. This report discusses our experiences in supporting research in resource-limited settings. We describe examples of the practical and ethical/regulatory challenges raised by the use of these newer technologies for data collection in multisite clinical studies.

  11. Baseline report - tall upland shrubland at the Rocky Flats Environmental Technology Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    Rocky Flats Environmental Technology Site (Site) is located on the Colorado Piedmont east of the Front Range between Boulder and Golden. At an elevation of approximately 6,000 feet, the Site contains a unique ecotonal mixture of mountain and prairie plant species, resulting from the topography and close proximity to the mountain front. The Buffer Zone surrounding the Industrial Area is one of the largest remaining undeveloped areas of its kind along the Colorado Piedmont. A number of plant communities at the Site have been identified as increasingly rare and unique by Site ecologists and the Colorado Natural Heritage Program (CNHP).more » These include the xeric tallgrass prairie, tall upland shrubland, wetlands, and Great Plains riparian woodland communities. Many of these communities support populations of increasingly rare animals as well, including the Preble`s meadow jumping mouse, grasshopper sparrow, loggerhead shrike, Merriam`s shrew, black crowned night heron, and Hops blue and Argos skipper butterflies. One of the more interesting and important plant communities at the Site is the tall upland shrubland community. It has been generally overlooked by previous Site ecological studies, probably due to its relatively small size; only 34 acres total. Although mentioned in a plant community ordination study conducted by Clark et al. and also in the Site baseline ecological study, few data were available on this plant community before the present study.« less

  12. Shallow Water UXO Technology Demonstration Site, Scoring Record No. 4 (CTC, FEREX DLG-GPS), MAG)

    DTIC Science & Technology

    2008-04-01

    Detection and Discrimination Demonstration of a Fluxgate Vertical Gradient Magnetometer at the Aberdeen Shallow Water Test Site. Submitted in...TECHNOLOGY TYPE/PLATFORM: FEREX DLG-GPS MAGNETOMETER SYSTEM PREPARED BY: U.S. ARMY ABERDEEN TEST CENTER ABERDEEN PROVING GROUND, MD 21005...efforts of Concurrent Technologies Corporation (CTC) to detect and discriminate inert unexploded ordnance (UXO) using a FEREX DLG- magnetometer with a

  13. Overview of Accelerator Applications for Security and Defense

    DOE PAGES

    Antolak, Arlyn J.

    2015-01-01

    Particle accelerators play a key role in a broad set of defense and security applications including war-fighter and asset protection, cargo inspection, nonproliferation, materials characterization and stockpile stewardship. Accelerators can replace the high activity radioactive sources that pose a security threat for developing a radiological dispersal device and be used to produce isotopes for medical, industrial, and re-search purposes. Lastly, we present an overview of current and emerging accelerator technologies relevant to addressing the needs of defense and security.

  14. Pressure fluctuation caused by moderate acceleration

    NASA Astrophysics Data System (ADS)

    Tagawa, Yoshiyuki; Kurihara, Chihiro; Kiyama, Akihito

    2017-11-01

    Pressure fluctuation caused by acceleration of a liquid column is observed in various important technologies, e.g. water-hammer in a pipeline. The magnitude of fluctuation can be estimated by two different approaches: When the duration time of acceleration is much shorter than the propagation time for a pressure wave to travel the length of the liquid column, e.g. sudden valve closure for a long pipe, Joukowsky equation is applied. In contrast, if the acceleration duration is much longer, the liquid is modeled as a rigid column, ignoring compressibility of the fluid. However, many of practical cases exist between these two extremes. In this study we propose a model describing pressure fluctuation when the duration of acceleration is in the same order of the propagation time for a pressure wave, i.e. under moderate acceleration. The novel model considers both temporal and spatial evolutions of pressure propagation as well as gradual pressure rise during the acceleration. We conduct experiments in which we impose acceleration to a liquid with varying the length of the liquid column, acceleration duration, and properties of liquids. The ratio between the acceleration duration and the propagation time is in the range of 0.02 - 2. The model agrees well with measurement results. JSPS KAKENHI Grant Numbers 26709007 and 17H01246.

  15. Advances in Plexcore active layer technology systems for organic photovoltaics: roof-top and accelerated lifetime analysis of high performance organic photovoltaic cells

    NASA Astrophysics Data System (ADS)

    Laird, Darin W.; Vaidya, Swanand; Li, Sergey; Mathai, Mathew; Woodworth, Brian; Sheina, Elena; Williams, Shawn; Hammond, Troy

    2007-09-01

    We report NREL-certified efficiencies and initial lifetime data for organic photovoltaic (OPV) cells based on Plexcore PV photoactive layer and Plexcore HTL-OPV hole transport layer technology. Plexcore PV-F3, a photoactive layer OPV ink, was certified in a single-layer OPV cell at the National Renewable Energy Laboratory (NREL) at 5.4%, which represents the highest official mark for a single-layer organic solar cell. We have fabricated and measured P3HT:PCBM solar cells with a peak efficiency of 4.4% and typical efficiencies of 3 - 4% (internal, NREL-calibrated measurement) with P3HT manufactured at Plextronics by the Grignard Metathesis (GRIM) method. Outdoor and accelerated lifetime testing of these devices is reported. Both Plexcore PV-F3 and P3HT:PCBM-based OPV cells exhibit >750 hours of outdoor roof-top, non-accelerated lifetime with less than 8% loss in initial efficiency for both active layer systems when exposed continuously to the climate of Western Pennsylvania. These devices are continuously being tested to date. Accelerated testing using a high-intensity (1000W) metal-halide lamp affords shorter lifetimes; however, the true acceleration factor is still to be determined.

  16. Identification and assessment of site treatment plan implementation opportunities for emerging technologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bernard, E.A.

    1995-12-31

    The Department of Energy (DOE), in response to the 1992 Federal Facility Compliance Act, has prepared Site Treatment Plans (STP) for the approximately 2,000 waste streams identified within its mixed waste inventory Concurrently, emerging mixed waste treatment technologies are in final development. This paper defines a three-phase process to identify and assess implementation opportunities for these emerging technologies within the STP. It highlights the first phase, functional matching of expected treatment capabilities with proposed treatment requirements. Matches are based on treatment type, regulated contaminant and waste matrix type, for both capabilities and requirements. Results identify specific waste streams and volumesmore » that could be treated by each emerging technology. A study for Plasma Hearth Process, Delphi DETOX{sup sm}, Supercritical Water Oxidation and Vitrification shows that about 200,000 ml of DOE`s mixed waste inventory can potentially be treated by one or more of these emerging technologies. Actual implementations are small fractions of the treatable inventory. Differences between potential and actual implementations must be minimized to accrue optimum benefit from implementation of emerging or alternative treatment technologies. Functional matching is the first phase in identifying and quantifying benefits, addressing technology system and treatment issues, and providing, in part, the basis for STP implementation decisions. DOE, through EM`s Office of Technology Development, has funded this work.« less

  17. High Intensity Proton Accelerator Project in Japan (J-PARC).

    PubMed

    Tanaka, Shun-ichi

    2005-01-01

    The High Intensity Proton Accelerator Project, named as J-PARC, was started on 1 April 2001 at Tokai-site of JAERI. The accelerator complex of J-PARC consists of three accelerators: 400 MeV Linac, 3 GeV rapid cycle synchrotron and 50 GeV synchrotron; and four major experimental facilities: Material and Life Science Facility, Nuclear and Particle Physics Facility, Nuclear Transmutation Experiment Facility and Neutrino Facility. The outline of the J-PARC is presented with the current status of construction.

  18. Theoretical and Experimental Studies in Accelerator Physics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rosenzweig, James

    This report describes research supported by the US Dept. of Energy Office of High Energy Physics (OHEP), performed by the UCLA Particle Beam Physics Laboratory (PBPL). The UCLA PBPL has, over the last two decades-plus, played a critical role in the development of advanced accelerators, fundamental beam physics, and new applications enabled by these thrusts, such as new types of accelerator-based light sources. As the PBPL mission is broad it is natural that it has been grown within the context of the accelerator science and technology stewardship of the OHEP. Indeed, steady OHEP support for the program has always beenmore » central to the success of the PBPL; it has provided stability, and above all has set the over-arching themes for our research directions, which have producing over 500 publications (>120 in high level journals). While other agency support has grown notably in recent years, permitting more vigorous pursuit of the program, it is transient by comparison. Beyond permitting program growth in a time of flat OHEP budgets, the influence of other agency missions is found in push to adapt advanced accelerator methods to applications, in light of the success the field has had in proof-of-principle experiments supported first by the DoE OHEP. This three-pronged PBPL program — advanced accelerators, fundamental beam physics and technology, and revolutionary applications — has produced a generation of students that have had a profound affect on the US accelerator physics community. PBPL graduates, numbering 28 in total, form a significant population group in the accelerator community, playing key roles as university faculty, scientific leaders in national labs (two have been named Panofsky Fellows at SLAC), and vigorous proponents of industrial application of accelerators. Indeed, the development of advanced RF, optical and magnet technology at the PBPL has led directly to the spin-off company, RadiaBeam Technologies, now a leading industrial

  19. SITE TECHNOLOGY CAPSULE: DYNAPHORE, INC., FORAGER SPONGE TECHNOLOGY

    EPA Science Inventory

    The Forager Sponge is a volume reduction technology in which heavy metal contaminants from an aqueous medium are selectively concentrated into a smaller volume for facilitated disposal. he technology treats contaminated groundwater, surface waters and porous waters by absorbing d...

  20. SITE TECHNOLOGY CAPSULE: DYNAPHORE, INC., FORAGER™ SPONGE TECHNOLOGY

    EPA Science Inventory

    The Forager™ Sponge is a volume reduction technology in which heavy metal contaminants from an aqueous medium are selectively concentrated into a smaller volume for facilitated disposal. The technology treats contaminated groundwater, surface waters, and process waters by absorbi...

  1. SITE TECHNOLOGY CAPSULE: IITRI RADIO FREQUENCY HEATING TECHNOLOGY

    EPA Science Inventory

    Radio frequency heating (RFH) technologies use electromagnetic energy in the radio frequency i(RF) band to heat soil in-situ, thereby potentially enhancing the performances of standard soil vapor extraction (SVE) technologies. ontaminants are removed from in situ soils and transf...

  2. SITE TECHNOLOGY CAPSULE: IITRI RADIO FREQUENCY HEATING TECHNOLOGY

    EPA Science Inventory

    Radio frequency heating (RFH) technologies use electromagnetic energy in the radio frequency (RF) band to heat soil in situ, thereby potentially enhancing the performance of standard soil vapor extraction (SVE) technologies. Contaminants are removed from in situ soils and transfe...

  3. Miniature penetrator (MinPen) acceleration recorder development test

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Franco, R.J.; Platzbecker, M.R.

    1998-08-01

    The Telemetry Technology Development Department at Sandia National Laboratories actively develops and tests acceleration recorders for penetrating weapons. This new acceleration recorder (MinPen) utilizes a microprocessor-based architecture for operational flexibility while maintaining electronics and packaging techniques developed over years of penetrator testing. MinPen has been demonstrated to function in shock environments up to 20,000 Gs. The MinPen instrumentation development has resulted in a rugged, versatile, miniature acceleration recorder and is a valuable tool for penetrator testing in a wide range of applications.

  4. How technology transfer issues are managed

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sink, C.H.; Easley, K.R.

    1991-12-31

    In 1989, Secretary of Energy James Watkins made a commitment to accelerate DOE compliance with all applicable laws and standards aimed at protecting human health and the environment. At a minimum, this pledge requires the remediation of the 1989 inventory of chemical, radioactive, and mixed wastes at DOE production sites by 2019. The 1989 Complex inventory consisted of more than 3,700 sites, encompassing more than 26,000 acres contaminated with radioactive, hazardous, and mixed wastes. In addition, over 500 surplus sites are awaiting decontamination and decommissioning (D and D), and approximately 5,000 peripheral properties have contaminated soils (e.g., uranium tailings). Moreover,more » these problems exist at both inactive sites, where the primary focus is on environmental restoration, and at active sites, where the major emphasis is on improved waste management techniques. Although some of DOE`s problems are considered unique due to radioactivity, most forms of contamination resident in the Complex are not; rather, contaminants such as waste chemicals (e.g., inorganics), organics (e.g., fuels and solvents), halogenated organics (e.g., PCBs) and heavy metals commonly result in conventional industrial processes. Although certain other forms of contamination are more unique to DOE operations (e.g., radioactive materials, explosives, and pyrophorics), they are not exclusive to DOE. As DOE develops innovative solutions to these and related waste problems, it is imperative that technology systems and lessons learned be transferred from DOE sites and its R and D laboratories to private industry to maximize the nation`s return on environmental management technology investments.« less

  5. Cobalt-60 Machines and Medical Linear Accelerators: Competing Technologies for External Beam Radiotherapy.

    PubMed

    Healy, B J; van der Merwe, D; Christaki, K E; Meghzifene, A

    2017-02-01

    Medical linear accelerators (linacs) and cobalt-60 machines are both mature technologies for external beam radiotherapy. A comparison is made between these two technologies in terms of infrastructure and maintenance, dosimetry, shielding requirements, staffing, costs, security, patient throughput and clinical use. Infrastructure and maintenance are more demanding for linacs due to the complex electric componentry. In dosimetry, a higher beam energy, modulated dose rate and smaller focal spot size mean that it is easier to create an optimised treatment with a linac for conformal dose coverage of the tumour while sparing healthy organs at risk. In shielding, the requirements for a concrete bunker are similar for cobalt-60 machines and linacs but extra shielding and protection from neutrons are required for linacs. Staffing levels can be higher for linacs and more staff training is required for linacs. Life cycle costs are higher for linacs, especially multi-energy linacs. Security is more complex for cobalt-60 machines because of the high activity radioactive source. Patient throughput can be affected by source decay for cobalt-60 machines but poor maintenance and breakdowns can severely affect patient throughput for linacs. In clinical use, more complex treatment techniques are easier to achieve with linacs, and the availability of electron beams on high-energy linacs can be useful for certain treatments. In summary, there is no simple answer to the question of the choice of either cobalt-60 machines or linacs for radiotherapy in low- and middle-income countries. In fact a radiotherapy department with a combination of technologies, including orthovoltage X-ray units, may be an option. Local needs, conditions and resources will have to be factored into any decision on technology taking into account the characteristics of both forms of teletherapy, with the primary goal being the sustainability of the radiotherapy service over the useful lifetime of the equipment

  6. High brightness gamma-ray production at Fermilab Accelerator Science and Technology (FAST) facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mihalcea, Daniel; Jacobson, B.; Murokh, A.

    Electron beams with energies of the order of a few 100's of MeV and low transverse emittance, in combination with powerful infrared lasers, allow for the production of high quality gamma rays through Inverse Compton Scattering (ICS). At Fermilab Accelerator Science and Technology (FAST) facility, a 300 MeV beam will be used to generate gamma rays with maximum photon energies of up to ~1.5 MeV and brightness of the order of 10 21 photons/[s-(mm-mrad) 2- 0.1%BW]. Due to the low electron-beam transverse emittance, the relative bandwidth of the scattered radiation is expected to be ≤ 1%. A key challenge towardmore » the production of high radiation dose and brightness is to enhance the energy of the infrared 3 ps laser pulses to the joule level. Finally, in this contribution, we present the plans for the experimental setup, along with comprehensive numerical simulations of the ICS process.« less

  7. High brightness gamma-ray production at Fermilab Accelerator Science and Technology (FAST) facility

    DOE PAGES

    Mihalcea, Daniel; Jacobson, B.; Murokh, A.; ...

    2017-03-01

    Electron beams with energies of the order of a few 100's of MeV and low transverse emittance, in combination with powerful infrared lasers, allow for the production of high quality gamma rays through Inverse Compton Scattering (ICS). At Fermilab Accelerator Science and Technology (FAST) facility, a 300 MeV beam will be used to generate gamma rays with maximum photon energies of up to ~1.5 MeV and brightness of the order of 10 21 photons/[s-(mm-mrad) 2- 0.1%BW]. Due to the low electron-beam transverse emittance, the relative bandwidth of the scattered radiation is expected to be ≤ 1%. A key challenge towardmore » the production of high radiation dose and brightness is to enhance the energy of the infrared 3 ps laser pulses to the joule level. Finally, in this contribution, we present the plans for the experimental setup, along with comprehensive numerical simulations of the ICS process.« less

  8. Microwave Radiometer Technology Acceleration Mission (MiRaTA): Advancing Weather Remote Sensing with Nanosatellites

    NASA Astrophysics Data System (ADS)

    Cahoy, K.; Blackwell, W. J.; Bishop, R. L.; Erickson, N.; Fish, C. S.; Neilsen, T. L.; Stromberg, E. M.; Bardeen, J.; Dave, P.; Marinan, A.; Marlow, W.; Kingsbury, R.; Kennedy, A.; Byrne, J. M.; Peters, E.; Allen, G.; Burianek, D.; Busse, F.; Elliott, D.; Galbraith, C.; Leslie, V. V.; Osaretin, I.; Shields, M.; Thompson, E.; Toher, D.; DiLiberto, M.

    2014-12-01

    The Microwave Radiometer Technology Acceleration (MiRaTA) is a 3U CubeSat mission sponsored by the NASA Earth Science Technology Office (ESTO). Microwave radiometer measurements and GPS radio occultation (GPSRO) measurements of all-weather temperature and humidity provide key contributions toward improved weather forecasting. The MiRaTA mission will validate new technologies in both passive microwave radiometry and GPS radio occultation: (1) new ultra-compact and low-power technology for multi-channel and multi-band passive microwave radiometers, and (2) new GPS receiver and patch antenna array technology for GPS radio occultation retrieval of both temperature-pressure profiles in the atmosphere and electron density profiles in the ionosphere. In addition, MiRaTA will test (3) a new approach to spaceborne microwave radiometer calibration using adjacent GPSRO measurements. The radiometer measurement quality can be substantially improved relative to present systems through the use of proximal GPSRO measurements as a calibration standard for radiometric observations, reducing and perhaps eliminating the need for costly and complex internal calibration targets. MiRaTA will execute occasional pitch-up maneuvers so that the radiometer and GPSRO observations sound overlapping volumes of atmosphere through the Earth's limb. To validate system performance, observations from both microwave radiometer (MWR) and GPSRO instruments will be compared to radiosondes, global high-resolution analysis fields, other satellite observations, and to each other using radiative transfer models. Both the radiometer and GPSRO payloads, currently at TRL5 but to be advanced to TRL7 at mission conclusion, can be accommodated in a single 3U CubeSat. The current plan is to launch from an International Space Station (ISS) orbit at ~400 km altitude and 52° inclination for low-cost validation over a ~90-day mission to fly in 2016. MiRaTA will demonstrate high fidelity, well-calibrated radiometric

  9. Technological advances in site-directed spin labeling of proteins.

    PubMed

    Hubbell, Wayne L; López, Carlos J; Altenbach, Christian; Yang, Zhongyu

    2013-10-01

    Molecular flexibility over a wide time range is of central importance to the function of many proteins, both soluble and membrane. Revealing the modes of flexibility, their amplitudes, and time scales under physiological conditions is the challenge for spectroscopic methods, one of which is site-directed spin labeling EPR (SDSL-EPR). Here we provide an overview of some recent technological advances in SDSL-EPR related to investigation of structure, structural heterogeneity, and dynamics of proteins. These include new classes of spin labels, advances in measurement of long range distances and distance distributions, methods for identifying backbone and conformational fluctuations, and new strategies for determining the kinetics of protein motion. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. CHEMICAL STABILIZATION OF MIXED ORGANIC AND METAL COMPOUNDS - EPA SITE PROGRAM DEMONSTRATION OF THE SILICATE TECHNOLOGY CORPORATION PROCESS

    EPA Science Inventory

    In November 1990, the Silicate Technology Corporation`s (STC) proprietary process for treating soil contaminated with toxic semivolatile organic and inorganic contaminants was evaluated in a Superfund Innovative Technology Evaluation (SITE) field demonstration at the Selma Pressu...

  11. Educating and Training Accelerator Scientists and Technologists for Tomorrow

    NASA Astrophysics Data System (ADS)

    Barletta, William; Chattopadhyay, Swapan; Seryi, Andrei

    2012-01-01

    Accelerator science and technology is inherently an integrative discipline that combines aspects of physics, computational science, electrical and mechanical engineering. As few universities offer full academic programs, the education of accelerator physicists and engineers for the future has primarily relied on a combination of on-the-job training supplemented with intensive courses at regional accelerator schools. This article describes the approaches being used to satisfy the educational curiosity of a growing number of interested physicists and engineers.

  12. Educating and Training Accelerator Scientists and Technologists for Tomorrow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barletta, William A.; Chattopadhyay, Swapan; Seryi, Andrei

    2012-07-01

    Accelerator science and technology is inherently an integrative discipline that combines aspects of physics, computational science, electrical and mechanical engineering. As few universities offer full academic programs, the education of accelerator physicists and engineers for the future has primarily relied on a combination of on-the-job training supplemented with intense courses at regional accelerator schools. This paper describes the approaches being used to satisfy the educational interests of a growing number of interested physicists and engineers.

  13. Technology evaluation of man-rated acceleration test equipment for vestibular research

    NASA Technical Reports Server (NTRS)

    Taback, I.; Kenimer, R. L.; Butterfield, A. J.

    1983-01-01

    The considerations for eliminating acceleration noise cues in horizontal, linear, cyclic-motion sleds intended for both ground and shuttle-flight applications are addressed. the principal concerns are the acceleration transients associated with change in direction-of-motion for the carriage. The study presents a design limit for acceleration cues or transients based upon published measurements for thresholds of human perception to linear cyclic motion. The sources and levels for motion transients are presented based upon measurements obtained from existing sled systems. The approaches to a noise-free system recommends the use of air bearings for the carriage support and moving-coil linear induction motors operating at low frequency as the drive system. Metal belts running on air bearing pulleys provide an alternate approach to the driving system. The appendix presents a discussion of alternate testing techniques intended to provide preliminary type data by means of pendulums, linear motion devices and commercial air bearing tables.

  14. ALTERNATIVE REMEDIATION TECHNOLOGY STUDY FOR GROUNDWATER TREATMENT AT 200-PO-1 OPERABLE UNIT AT HANFORD SITE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DADO MA

    2008-07-31

    This study focuses on the remediation methods and technologies applicable for use at 200-PO-I Groundwater Operable Unit (OU) at the Hanford Site. The 200-PO-I Groundwater au requires groundwater remediation because of the existence of contaminants of potential concern (COPC). A screening was conducted on alternative technologies and methods of remediation to determine which show the most potential for remediation of groundwater contaminants. The possible technologies were screened to determine which would be suggested for further study and which were not applicable for groundwater remediation. COPCs determined by the Hanford Site groundwater monitoring were grouped into categories based on properties linkingmore » them by remediation methods applicable to each COPC group. The screening considered the following criteria. (1) Determine if the suggested method or technology can be used for the specific contaminants found in groundwater and if the technology can be applied at the 200-PO-I Groundwater au, based on physical characteristics such as geology and depth to groundwater. (2) Evaluate screened technologies based on testing and development stages, effectiveness, implementability, cost, and time. This report documents the results of an intern research project conducted by Mathew Dado for Central Plateau Remediation in the Soil and Groundwater Remediation Project. The study was conducted under the technical supervision of Gloria Cummins and management supervision of Theresa Bergman and Becky Austin.« less

  15. EDITORIAL: Laser and plasma accelerators Laser and plasma accelerators

    NASA Astrophysics Data System (ADS)

    Bingham, Robert

    2009-02-01

    This special issue on laser and plasma accelerators illustrates the rapid advancement and diverse applications of laser and plasma accelerators. Plasma is an attractive medium for particle acceleration because of the high electric field it can sustain, with studies of acceleration processes remaining one of the most important areas of research in both laboratory and astrophysical plasmas. The rapid advance in laser and accelerator technology has led to the development of terawatt and petawatt laser systems with ultra-high intensities and short sub-picosecond pulses, which are used to generate wakefields in plasma. Recent successes include the demonstration by several groups in 2004 of quasi-monoenergetic electron beams by wakefields in the bubble regime with the GeV energy barrier being reached in 2006, and the energy doubling of the SLAC high-energy electron beam from 42 to 85 GeV. The electron beams generated by the laser plasma driven wakefields have good spatial quality with energies ranging from MeV to GeV. A unique feature is that they are ultra-short bunches with simulations showing that they can be as short as a few femtoseconds with low-energy spread, making these beams ideal for a variety of applications ranging from novel high-brightness radiation sources for medicine, material science and ultrafast time-resolved radiobiology or chemistry. Laser driven ion acceleration experiments have also made significant advances over the last few years with applications in laser fusion, nuclear physics and medicine. Attention is focused on the possibility of producing quasi-mono-energetic ions with energies ranging from hundreds of MeV to GeV per nucleon. New acceleration mechanisms are being studied, including ion acceleration from ultra-thin foils and direct laser acceleration. The application of wakefields or beat waves in other areas of science such as astrophysics and particle physics is beginning to take off, such as the study of cosmic accelerators considered

  16. Radiobiological effectiveness of laser accelerated electrons in comparison to electron beams from a conventional linear accelerator.

    PubMed

    Laschinsky, Lydia; Baumann, Michael; Beyreuther, Elke; Enghardt, Wolfgang; Kaluza, Malte; Karsch, Leonhard; Lessmann, Elisabeth; Naumburger, Doreen; Nicolai, Maria; Richter, Christian; Sauerbrey, Roland; Schlenvoigt, Hans-Peter; Pawelke, Jörg

    2012-01-01

    The notable progress in laser particle acceleration technology promises potential medical application in cancer therapy through compact and cost effective laser devices that are suitable for already existing clinics. Previously, consequences on the radiobiological response by laser driven particle beams characterised by an ultra high peak dose rate have to be investigated. Therefore, tumour and non-malignant cells were irradiated with pulsed laser accelerated electrons at the JETI facility for the comparison with continuous electrons of a conventional therapy LINAC. Dose response curves were measured for the biological endpoints clonogenic survival and residual DNA double strand breaks. The overall results show no significant differences in radiobiological response for in vitro cell experiments between laser accelerated pulsed and clinical used electron beams. These first systematic in vitro cell response studies with precise dosimetry to laser driven electron beams represent a first step toward the long term aim of the application of laser accelerated particles in radiotherapy.

  17. Salt Effect Accelerates Site-Selective Cysteine Bioconjugation

    PubMed Central

    2016-01-01

    Highly efficient and selective chemical reactions are desired. For small molecule chemistry, the reaction rate can be varied by changing the concentration, temperature, and solvent used. In contrast for large biomolecules, the reaction rate is difficult to modify by adjusting these variables because stringent biocompatible reaction conditions are required. Here we show that adding salts can change the rate constant over 4 orders of magnitude for an arylation bioconjugation reaction between a cysteine residue within a four-residue sequence (π-clamp) and a perfluoroaryl electrophile. Biocompatible ammonium sulfate significantly enhances the reaction rate without influencing the site-specificity of π-clamp mediated arylation, enabling the fast synthesis of two site-specific antibody–drug conjugates that selectively kill HER2-positive breast cancer cells. Computational and structure–reactivity studies indicate that salts may tune the reaction rate through modulating the interactions between the π-clamp hydrophobic side chains and the electrophile. On the basis of this understanding, the salt effect is extended to other bioconjugation chemistry, and a new regioselective alkylation reaction at π-clamp cysteine is developed. PMID:27725962

  18. MALVAC 2012 scientific forum: accelerating development of second-generation malaria vaccines

    PubMed Central

    2012-01-01

    The World Health Organization (WHO) convened a malaria vaccines committee (MALVAC) scientific forum from 20 to 21 February 2012 in Geneva, Switzerland, to review the global malaria vaccine portfolio, to gain consensus on approaches to accelerate second-generation malaria vaccine development, and to discuss the need to update the vision and strategic goal of the Malaria Vaccine Technology Roadmap. This article summarizes the forum, which included reviews of leading Plasmodium falciparum vaccine candidates for pre-erythrocytic vaccines, blood-stage vaccines, and transmission-blocking vaccines. Other major topics included vaccine candidates against Plasmodium vivax, clinical trial site capacity development in Africa, trial design considerations for a second-generation malaria vaccine, adjuvant selection, and regulatory oversight functions including vaccine licensure. PMID:23140365

  19. Timescale Correlation between Marine Atmospheric Exposure and Accelerated Corrosion Testing

    NASA Technical Reports Server (NTRS)

    Montgomery, Eliza L.; Calle, Luz Marina; Curran, Jerone C.; Kolody, Mark R.

    2011-01-01

    Evaluation of metal-based structures has long relied on atmospheric exposure test sites to determine corrosion resistance in marine environments. Traditional accelerated corrosion testing relies on mimicking the exposure conditions, often incorporating salt spray and ultraviolet (UV) radiation, and exposing the metal to continuous or cyclic conditions of the corrosive environment. Their success for correlation to atmospheric exposure is often a concern when determining the timescale to which the accelerated tests can be related. Accelerated laboratory testing, which often focuses on the electrochemical reactions that occur during corrosion conditions, has yet to be universally accepted as a useful tool in predicting the long term service life of a metal despite its ability to rapidly induce corrosion. Although visual and mass loss methods of evaluating corrosion are the standard and their use is imperative, a method that correlates timescales from atmospheric exposure to accelerated testing would be very valuable. This work uses surface chemistry to interpret the chemical changes occurring on low carbon steel during atmospheric and accelerated corrosion conditions with the objective of finding a correlation between its accelerated and long-term corrosion performance. The current results of correlating data from marine atmospheric exposure conditions at the Kennedy Space Center beachside corrosion test site, alternating seawater spray, and immersion in typical electrochemical laboratory conditions, will be presented. Key words: atmospheric exposure, accelerated corrosion testing, alternating seawater spray, marine, correlation, seawater, carbon steel, long-term corrosion performance prediction, X-ray photoelectron spectroscopy.

  20. Accelerator boom hones China's engineering expertise

    NASA Astrophysics Data System (ADS)

    Normile, Dennis

    2018-02-01

    In raising the curtain on the China Spallation Neutron Source, China has joined just four other nations in having mastered the technology of accelerating and controlling beams of protons. The $277 million facility, set to open to users this spring in Dongguan, is expected to yield big dividends in materials science, chemistry, and biology. More world class machines are on the way, as China this year starts construction on four other major accelerator facilities. The building boom is prompting a scramble to find enough engineers and technicians to finish the projects. But if they all come off as planned, the facilities would position China to tackle the next global megaproject: a giant accelerator that would pick up where Europe's Large Hadron Collider leaves off.

  1. Impact accelerations

    NASA Technical Reports Server (NTRS)

    Vongierke, H. E.; Brinkley, J. W.

    1975-01-01

    The degree to which impact acceleration is an important factor in space flight environments depends primarily upon the technology of capsule landing deceleration and the weight permissible for the associated hardware: parachutes or deceleration rockets, inflatable air bags, or other impact attenuation systems. The problem most specific to space medicine is the potential change of impact tolerance due to reduced bone mass and muscle strength caused by prolonged weightlessness and physical inactivity. Impact hazards, tolerance limits, and human impact tolerance related to space missions are described.

  2. EuCARD 2010: European coordination of accelerator research and development

    NASA Astrophysics Data System (ADS)

    Romaniuk, Ryszard S.

    2010-09-01

    Accelerators are basic tools of the experimental physics of elementary particles, nuclear physics, light sources of the fourth generation. They are also used in myriad other applications in research, industry and medicine. For example, there are intensely developed transmutation techniques for nuclear waste from nuclear power and atomic industries. The European Union invests in the development of accelerator infrastructures inside the framework programs to build the European Research Area. The aim is to build new accelerator research infrastructures, develop the existing ones, and generally make the infrastructures more available to competent users. The paper summarizes the first year of activities of the EU FP7 Project Capacities EuCARD -European Coordination of Accelerator R&D. EuCARD is a common venture of 37 European Accelerator Laboratories, Institutes, Universities and Industrial Partners involved in accelerator sciences and technologies. The project, initiated by ESGARD, is an Integrating Activity co-funded by the European Commission under Framework Program 7 - Capacities for a duration of four years, starting April 1st, 2009. Several teams from this country participate actively in this project. The contribution from Polish research teams concerns: photonic and electronic measurement - control systems, RF-gun co-design, thin-film superconducting technology, superconducting transport infrastructures, photon and particle beam measurements and control.

  3. Preparing undergraduates for the future of scientific collaboration: Benefits, challenges and technological solutions in Distributed REU Sites

    NASA Astrophysics Data System (ADS)

    Hubenthal, M.; Anagnos, T.

    2012-12-01

    As research problems increasingly require multi-disciplinary approaches they naturally foster scientific collaborations between geographically distributed colleagues. This increasing trend in scientific research, the rapid evolution of communication technology, cognitive research into distance education, and the current generation of undergraduate students' eagerness to embrace and use technology, increases the relevance of distributed REU sites. Like traditional REU sites that host a cohort of students in one geographic location, distributed REU sites also seek to attract, nurture, and retain students in a STEM career pipeline. Distributed REU sites are unique in that some or all of the interns are geographically distributed during the research period. This arrangement allows the REU site to capitalize on distributed scientific resources such as field sites, research facilities, or human capital. At their core, distributed REU sites are fundamentally constructed of elements that have proven to be effective components of any undergraduate research experience. They also strive to develop and employ specialized programming that leverages collaboration tools through a cyberinfrastructure to enable interns to develop meaningful social and academic relationships with one another. Since 2006 the IRIS Consortium and NEES have facilitated separate, NSF funded, distributed REU Sites. Implementation and evaluations of these programs have revealed a number of successes and benefits. Longitudinal tracking indicates that distributed REU Sites are at least as successful as traditional sites in attracting, nurturing, and retaining students in a STEM career pipeline. A distributed arrangement also offers benefits over a traditional REU site, such as the flexibility to place interns at a variety of institutions with mentors making only an annual commitment to participate. This ensures that all mentors are eager to participate and are concerned with their intern's growth. It also

  4. Neural Networks for Modeling and Control of Particle Accelerators

    NASA Astrophysics Data System (ADS)

    Edelen, A. L.; Biedron, S. G.; Chase, B. E.; Edstrom, D.; Milton, S. V.; Stabile, P.

    2016-04-01

    Particle accelerators are host to myriad nonlinear and complex physical phenomena. They often involve a multitude of interacting systems, are subject to tight performance demands, and should be able to run for extended periods of time with minimal interruptions. Often times, traditional control techniques cannot fully meet these requirements. One promising avenue is to introduce machine learning and sophisticated control techniques inspired by artificial intelligence, particularly in light of recent theoretical and practical advances in these fields. Within machine learning and artificial intelligence, neural networks are particularly well-suited to modeling, control, and diagnostic analysis of complex, nonlinear, and time-varying systems, as well as systems with large parameter spaces. Consequently, the use of neural network-based modeling and control techniques could be of significant benefit to particle accelerators. For the same reasons, particle accelerators are also ideal test-beds for these techniques. Many early attempts to apply neural networks to particle accelerators yielded mixed results due to the relative immaturity of the technology for such tasks. The purpose of this paper is to re-introduce neural networks to the particle accelerator community and report on some work in neural network control that is being conducted as part of a dedicated collaboration between Fermilab and Colorado State University (CSU). We describe some of the challenges of particle accelerator control, highlight recent advances in neural network techniques, discuss some promising avenues for incorporating neural networks into particle accelerator control systems, and describe a neural network-based control system that is being developed for resonance control of an RF electron gun at the Fermilab Accelerator Science and Technology (FAST) facility, including initial experimental results from a benchmark controller.

  5. Honey Dressing Accelerates Split-Thickness Skin Graft Donor Site Healing.

    PubMed

    Subrahmanyam, M

    2015-12-01

    The management of the donor site after harvesting a skin graft is an important issue, as patients often report more discomfort at the donor site than at the recipient site. There is, however, a plethora of dressings available for the treatment and management of donor sites, yet, there is no widely accepted method established for these partial thickness wounds. Honey has been found to be useful in the treatment of burns and other wounds, split-thickness skin graft donor sites are like partial thickness burn wounds and honey's healing effect on burn wound can also be expected on these types of wounds. Therefore, this study was undertaken to evaluate the effect of honey on skin graft donor sites. From 2002 to 2004, 100 patients who have undergone skin grafting for various reasons formed the material of the randomized study divided into two groups of 50 each in honey-treated group and Vaseline gauze-treated group. Graft donor site area ranged from 30 to 48 cm(2), mean 32.6 cm(2). In the group treated with honey, 90 % of the patients had nil or only moderate pain, whereas in the group treated with Vaseline gauze,88 % had nil or mild pain (p > 0.001, not significant). There were no allergic reactions in any of the patients in either group. On opening of the dressing on the 7th day, epithelialization has occurred in 48 patients as compared to 39 in group 2, i.e., donor sites treated with Vaseline gauze (p < 0.05, statistically significant). By the 10th day, all the wounds healed in honey-treated group, whereas 76 % of wounds healed in Vaseline gauze-treated group (p < 0.05). At 1 month follow-up, the results were comparable in both groups, with regard to patient satisfaction. In conclusion, honey-impregnated gauze causes less pain and heals donor sites wounds faster with good cosmetic result.

  6. Accelerator Generation and Thermal Separation (AGATS) of Technetium-99m

    ScienceCinema

    Grover, Blaine

    2018-05-01

    Accelerator Generation and Thermal Separation (AGATS) of Technetium-99m is a linear electron accelerator-based technology for producing medical imaging radioisotopes from a separation process that heats, vaporizes and condenses the desired radioisotope. You can learn more about INL's education programs at http://www.facebook.com/idahonationallaboratory.

  7. Space Acceleration Measurement System (SAMS)/Orbital Acceleration Research Experiment (OARE)

    NASA Technical Reports Server (NTRS)

    Hakimzadeh, Roshanak

    1998-01-01

    The Life and Microgravity Spacelab (LMS) payload flew on the Orbiter Columbia on mission STS-78 from June 20th to July 7th, 1996. The LMS payload on STS-78 was dedicated to life sciences and microgravity experiments. Two accelerometer systems managed by the NASA Lewis Research Center (LERC) flew to support these experiments, namely the Orbital Acceleration Research Experiment (OARE) and the Space Acceleration Measurements System (SAMS). In addition, the Microgravity Measurement Assembly (NOAA), managed by the European Space Research and Technology Center (ESA/ESTEC), and sponsored by NASA, collected acceleration data in support of the experiments on-board the LMS mission. OARE downlinked real-time quasi-steady acceleration data, which was provided to the investigators. The SAMS recorded higher frequency data on-board for post-mission analysis. The MMA downlinked real-time quasi-steady as well as higher frequency acceleration data, which was provided to the investigators. The Principal Investigator Microgravity Services (PIMS) project at NASA LERC supports principal investigators of microgravity experiments as they evaluate the effects of varying acceleration levels on their experiments. A summary report was prepared by PIMS to furnish interested experiment investigators with a guide to evaluate the acceleration environment during STS-78, and as a means of identifying areas which require further study. The summary report provides an overview of the STS-78 mission, describes the accelerometer systems flown on this mission, discusses some specific analyses of the accelerometer data in relation to the various activities which occurred during the mission, and presents plots resulting from these analyses as a snapshot of the environment during the mission. Numerous activities occurred during the STS-78 mission that are of interest to the low-gravity community. Specific activities of interest during this mission were crew exercise, radiator deployment, Vernier Reaction

  8. Desert Research and Technology Studies (RATS) Local and Remote Test Sites

    NASA Technical Reports Server (NTRS)

    Janoiko, Barbara; Kosmo, Joseph; Eppler, Dean

    2007-01-01

    Desert RATS (Research and Technology Studies) is a combined group of inter-NASA center scientists and engineers, collaborating with representatives of industry and academia, for the purpose of conducting remote field exercises. These exercises provide the capability to validate experimental hardware and software, to evaluate and develop mission operational techniques, and to identify and establish technical requirements applicable for future planetary exploration. D-RATS completed its ninth year of field testing in September 2006. Dry run test activities prior to testing at designated remote field site locations are initially conducted at the Johnson Space Center (JSC) Remote Field Demonstration Test Site. This is a multi-acre external test site located at JSC and has detailed representative terrain features simulating both Lunar and Mars surface characteristics. The majority of the remote field tests have been subsequently conducted in various high desert areas adjacent to Flagstaff, Arizona. Both the local JSC and remote field test sites have terrain conditions that are representative of both the Moon and Mars, such as strewn rock and volcanic ash fields, meteorite crater ejecta blankets, rolling plains, hills, gullies, slopes, and outcrops. Flagstaff is the preferred remote test site location for many reasons. First, there are nine potential test sites with representative terrain features within a 75-mile radius. Second, Flagstaff is the location of the United States Geologic Survey (USGS)/Astrogeology Branch, which historically supported Apollo astronaut geologic training and currently supports and provides host accommodations to the D-RATS team. Finally, in considering the importance of logistics in regard to providing the necessary level of support capabilities, the Flagstaff area provides substantial logistics support and lodging accommodations to take care of team members during long hours of field operations.

  9. Signatures of particle acceleration at SN 1987A

    NASA Technical Reports Server (NTRS)

    Gaisser, T. K.; Stanev, Todor; Harding, Alice K.

    1989-01-01

    At least eight experiments are currently monitoring SN 1987A for photons or neutrinos with energies in the TeV range or higher. Observation of such signals would indicate that the supernova is the site of acceleration of charged particles to even higher energies. The way that the acceleration might occur is discussed, and the prospects for detection of such signals in light of current limits on power in the supernova from sources other than the nickel-cobalt-iron decay chain are evaluated. It is pointed out that signals of particle acceleration may show up in continuum MeV gamma rays as well as in the 100 MeV range.

  10. Cultured allogeneic keratinocyte sheets accelerate healing compared to Op-site treatment of donor sites in burns.

    PubMed

    Duinslaeger, L A; Verbeken, G; Vanhalle, S; Vanderkelen, A

    1997-01-01

    Donor site treatment is a crucial issue in the treatment of extensive burns. In this single-blind, randomized study treatment of donor sites with a polyurethane dressing, Op-Site (Smith & Nephew, York, U.K.) is compared to treatment with allogeneic cultured keratinocyte sheets. Results show a mean healing time of 6.7 days with use of cultured keratinocyte sheets compared to mean healing time of 13.6 days with Op-Site treatment. Also, improvement in the comfort of patients as the result of less exudate formation and pain attenuation was noted.

  11. Experimental Results from a Resonant Dielectric Laser Accelerator

    NASA Astrophysics Data System (ADS)

    Yoder, Rodney; McNeur, Joshua; Sozer, Esin; Travish, Gil; Hazra, Kiran Shankar; Matthews, Brian; England, Joel; Peralta, Edgar; Wu, Ziran

    2015-04-01

    Laser-powered accelerators have the potential to operate with very large accelerating gradients (~ GV/m) and represent a path toward extremely compact colliders and accelerator technology. Optical-scale laser-powered devices based on field-shaping structures (known as dielectric laser accelerators, or DLAs) have been described and demonstrated recently. Here we report on the first experimental results from the Micro-Accelerator Platform (MAP), a DLA based on a slab-symmetric resonant optical-scale structure. As a resonant (rather than near-field) device, the MAP is distinct from other DLAs. Its cavity resonance enhances its accelerating field relative to the incoming laser fields, which are coupled efficiently through a diffractive optic on the upper face of the device. The MAP demonstrated modest accelerating gradients in recent experiments, in which it was powered by a Ti:Sapphire laser well below its breakdown limit. More detailed results and some implications for future developments will be discussed. Supported in part by the U.S. Defense Threat Reduction Agency (UCLA); U.S. Dept of Energy (SLAC); and DARPA (SLAC).

  12. Accelerators for Cancer Therapy

    DOE R&D Accomplishments Database

    Lennox, Arlene J.

    2000-05-30

    The vast majority of radiation treatments for cancerous tumors are given using electron linacs that provide both electrons and photons at several energies. Design and construction of these linacs are based on mature technology that is rapidly becoming more and more standardized and sophisticated. The use of hadrons such as neutrons, protons, alphas, or carbon, oxygen and neon ions is relatively new. Accelerators for hadron therapy are far from standardized, but the use of hadron therapy as an alternative to conventional radiation has led to significant improvements and refinements in conventional treatment techniques. This paper presents the rationale for radiation therapy, describes the accelerators used in conventional and hadron therapy, and outlines the issues that must still be resolved in the emerging field of hadron therapy.

  13. EPA SITE DEMONSTRATION OF THE INTERNATIONAL WASTE TECHNOLOGIES/GEO-CON IN SITU STABILIZATION/ SOLIDIFICATION PROCESS

    EPA Science Inventory

    This paper presents an EPA evaluation of the first field demonstration of an in situ stabilization/solidification process for contaminated soil under the EPA Superfund Innovative Technology Evaluation (SITE) program. Demonstration of this process was a joint effort of two vendors...

  14. The September 19, 1985 Michoacan Earthquake: Aftershock acceleration data recorded by a temporary installation of strong motion instruments

    NASA Astrophysics Data System (ADS)

    Munguía, Luis; Simila, Gerry W.; McNally, Karen C.; Thompson, Howard

    1986-06-01

    We describe acceleration signals recorded for nine aftershocks of the September 19, 1985 Michoacan earthquake. To obtain this data set, three A-700 Teledyne-Geotech digital strong-motion instruments were operated temporarily at two sites on the José María Morelos (La Villita) Dam, and at a site located at about 12 km to the west of the town of Zihuatanejo. Peak horizontal accelerations of 0.005 g to 0.031 g were recorded at epicentral distances between 10 and 75 km, for earthquakes with magnitude (mb) between 4.5 and 5.3. It was observed that the peak accelerations recorded at a site on the embankment of the dam (near the crest ) are approximately three times those recorded on the abutment bedrock portion of the dam. Although these sites were spatially separated by no more than 300 m, differences among their records are also significant. Waveforms recorded at the embankment site look more complex than those from the abutment site. This fact, as well as the higher peak accelerations on the embankment, provides evidence of a strong influence of the structure of the dam on the ground motion at the embankment site.

  15. 15 Years of R&D on high field accelerator magnets at FNAL

    DOE PAGES

    Barzi, Emanuela; Zlobin, Alexander V.

    2016-07-01

    The High Field Magnet (HFM) Program at Fermi National Accelerator Laboratory (FNAL) has been developing Nb 3Sn superconducting magnets, materials and technologies for present and future particle accelerators since the late 1990s. This paper summarizes the main results of the Nb 3Sn accelerator magnet and superconductor R&D at FNAL and outlines the Program next steps.

  16. PharMillenium '99--the second world pharmaceutical congress and exhibition. Accelerating the pipeline: from drug discovery to market. 1-3 February 1999, Washington DC, USA.

    PubMed

    Fernandes, M

    1999-04-01

    This highly interactive meeting effectively covered critical issues on every transaction from drug discovery through to development and commercialization. The program included company-specific descriptions of new discovery products, together with seminars by clinical research and site management organizations on the acceleration of development, pharmaco-economics, branding of products, direct-to-consumer advertising, global marketing, management, information technology and business strategy. There were approximately 50 sessions covered by 70 speakers.

  17. 78 FR 65747 - Notice of Funding Availability for Accelerated Innovation Deployment Demonstration

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-01

    ... Funding Availability for Accelerated Innovation Deployment Demonstration AGENCY: Federal Highway... comments. SUMMARY: This notice announces the availability of funding for Accelerated Innovation Deployment (AID) Demonstration authorized within the Technology and Innovation Deployment Program (TIDP) under the...

  18. Research and Development of Wires and Cables for High-Field Accelerator Magnets

    DOE PAGES

    Barzi, Emanuela; Zlobin, Alexander V.

    2016-02-18

    The latest strategic plans for High Energy Physics endorse steadfast superconducting magnet technology R&D for future Energy Frontier Facilities. This includes 10 to 16 T Nb3Sn accelerator magnets for the luminosity upgrades of the Large Hadron Collider and eventually for a future 100 TeV scale proton-protonmore » $(pp)$ collider. This paper describes the multi-decade R&D investment in the $$Nb_3Sn$$ superconductor technology, which was crucial to produce the first reproducible 10 to 12 T accelerator-quality dipoles and quadrupoles, as well as their scale-up. We also indicate prospective research areas in superconducting $$Nb_3Sn$$ wires and cables to achieve the next goals for superconducting accelerator magnets. Emphasis is on increasing performance and decreasing costs while pushing the $$Nb_3Sn$$ technology to its limits for future $pp$ colliders.« less

  19. [Research on the application of in-situ biological stabilization solidification technology in chromium contaminated site management].

    PubMed

    Zhang, Jian-rong; Li, Juan; Xu, Wei

    2013-09-01

    In-situ biological stabilization solidification (SS) technology is an effective ground water risk control method for chromium contaminated sites. Through on-site engineering test, this paper has preliminarily validated the remediation effect of in-situ SS method on a southern chromium contaminated site. The engineering test site has an area of approximately 600 m2, and is located at the upstream of the contaminated area. Due to the severe contamination of chromium, the total chromium concentration reached up to 11,850 mg x kg(-1), while the hexavalent chromium concentration reached up to 349 mg x kg(-1), and the most severely contaminated soil had a depth of -0.5 - -2 m. Variations in hexavalent chromium and total chromium concentration in groundwater were observed through the injection of reducing agents and microbial regulators into the injection wells in the test site, and through the monitoring analysis at different time and different depth under the action of the injection agents. Results of the engineering test showed that the on-site SS technology significantly changed the chromium speciation in soil and then reduced the migration of chromium, thus the groundwater risk was reduced. The injected agents had a good effect of hexavalent chromium remediation in groundwater within the effective range of the injection wells, and the SS rate of hexavalent chromium into trivalent chromium reached 94%-99.9%, the SS rate of total chromium fixation reached 83.9%-99.8%. The test results are of significant reference value for the remediation of contaminated sites with features of shallow groundwater depth and soil mainly consisting of silty clay and sandy clay.

  20. Investigation of advanced propulsion technologies: The RAM accelerator and the flowing gas radiation heater

    NASA Technical Reports Server (NTRS)

    Bruckner, A. P.; Knowlen, C.; Mattick, A. T.; Hertzberg, A.

    1992-01-01

    The two principal areas of advanced propulsion investigated are the ram accelerator and the flowing gas radiation heater. The concept of the ram accelerator is presented as a hypervelocity launcher for large-scale aeroballistic range applications in hypersonics and aerothermodynamics research. The ram accelerator is an in-bore ramjet device in which a projectile shaped like the centerbody of a supersonic ramjet is propelled in a stationary tube filled with a tailored combustible gas mixture. Combustion on and behind the projectile generates thrust which accelerates it to very high velocities. The acceleration can be tailored for the 'soft launch' of instrumented models. The distinctive reacting flow phenomena that have been observed in the ram accelerator are relevant to the aerothermodynamic processes in airbreathing hypersonic propulsion systems and are useful for validating sophisticated CFD codes. The recently demonstrated scalability of the device and the ability to control the rate of acceleration offer unique opportunities for the use of the ram accelerator as a large-scale hypersonic ground test facility. The flowing gas radiation receiver is a novel concept for using solar energy to heat a working fluid for space power or propulsion. Focused solar radiation is absorbed directly in a working gas, rather than by heat transfer through a solid surface. Previous theoretical analysis had demonstrated that radiation trapping reduces energy loss compared to that of blackbody receivers, and enables higher efficiencies and higher peak temperatures. An experiment was carried out to measure the temperature profile of an infrared-active gas and demonstrate the effect of radiation trapping. The success of this effort validates analytical models of heat transfer in this receiver, and confirms the potential of this approach for achieving high efficiency space power and propulsion.

  1. Vacuum Brazing of Accelerator Components

    NASA Astrophysics Data System (ADS)

    Singh, Rajvir; Pant, K. K.; Lal, Shankar; Yadav, D. P.; Garg, S. R.; Raghuvanshi, V. K.; Mundra, G.

    2012-11-01

    Commonly used materials for accelerator components are those which are vacuum compatible and thermally conductive. Stainless steel, aluminum and copper are common among them. Stainless steel is a poor heat conductor and not very common in use where good thermal conductivity is required. Aluminum and copper and their alloys meet the above requirements and are frequently used for the above purpose. The accelerator components made of aluminum and its alloys using welding process have become a common practice now a days. It is mandatory to use copper and its other grades in RF devices required for accelerators. Beam line and Front End components of the accelerators are fabricated from stainless steel and OFHC copper. Fabrication of components made of copper using welding process is very difficult and in most of the cases it is impossible. Fabrication and joining in such cases is possible using brazing process especially under vacuum and inert gas atmosphere. Several accelerator components have been vacuum brazed for Indus projects at Raja Ramanna Centre for Advanced Technology (RRCAT), Indore using vacuum brazing facility available at RRCAT, Indore. This paper presents details regarding development of the above mentioned high value and strategic components/assemblies. It will include basics required for vacuum brazing, details of vacuum brazing facility, joint design, fixturing of the jobs, selection of filler alloys, optimization of brazing parameters so as to obtain high quality brazed joints, brief description of vacuum brazed accelerator components etc.

  2. Acceleration modules in linear induction accelerators

    NASA Astrophysics Data System (ADS)

    Wang, Shao-Heng; Deng, Jian-Jun

    2014-05-01

    The Linear Induction Accelerator (LIA) is a unique type of accelerator that is capable of accelerating kilo-Ampere charged particle current to tens of MeV energy. The present development of LIA in MHz bursting mode and the successful application into a synchrotron have broadened LIA's usage scope. Although the transformer model is widely used to explain the acceleration mechanism of LIAs, it is not appropriate to consider the induction electric field as the field which accelerates charged particles for many modern LIAs. We have examined the transition of the magnetic cores' functions during the LIA acceleration modules' evolution, distinguished transformer type and transmission line type LIA acceleration modules, and re-considered several related issues based on transmission line type LIA acceleration module. This clarified understanding should help in the further development and design of LIA acceleration modules.

  3. Vibration isolation technology: Sensitivity of selected classes of experiments to residual accelerations

    NASA Technical Reports Server (NTRS)

    Alexander, J. Iwan D.

    1990-01-01

    The solution was sought of a 2-D axisymmetric moving boundary problem for the sensitivity of isothermal and nonisothermal liquid columns and the sensitivity of thermo-capillary flows to buoyancy driven convection caused by residual accelerations. The sensitivity of a variety of space experiments to residual accelerations are examined. In all the cases discussed, the sensitivity is related to the dynamic response of a fluid. In some cases the sensitivity can be defined by the magnitude of the response of the velocity field. This response may involve motion of the fluid associated with internal density gradients, or the motion of a free liquid surface. For fluids with internal density gradients, the type of acceleration to which the experiment is sensitive will depend on whether buoyancy driven convection must be small in comparison to other types of fluid motion (such as thermocapillary flow), or fluid motion must be suppressed or eliminated (such as in diffusion studies, or directional solidification experiments). The effect of the velocity on the composition and temperature field must be considered, particularly in the vicinity of the melt crystal interface. As far as the response to transient disturbances is concerned the sensitivity is determined by both the magnitude and frequency the acceleration and the characteristic momentum and solute diffusion times.

  4. ExMC Technology Watch

    NASA Technical Reports Server (NTRS)

    Krihak, M.; Watkins, S.; Shaw, T.

    2014-01-01

    The Technology Watch (Tech Watch) project is directed by the NASA Human Research Program's (HRP) Exploration Medical Capability (ExMC) element, and primarily focuses on ExMC technology gaps. The project coordinates the efforts of multiple NASA centers, including the Johnson Space Center (JSC), Glenn Research Center (GRC), Ames Research Center (ARC), and the Langley Research Center (LaRC). The objective of Tech Watch is to identify emerging, high-impact technologies that augment current NASA HRP technology development efforts. Identifying such technologies accelerates the development of medical care and research capabilities for the mitigation of potential health issues encountered during human space exploration missions. The aim of this process is to leverage technologies developed by academia, industry and other government agencies and to identify the effective utilization of NASA resources to maximize the HRP return on investment. The establishment of collaborations with these entities is beneficial to technology development, assessment and/or insertion, and advance NASA's goal to provide a safe and healthy environment for human exploration. In fiscal year 2013, the Tech Watch project maintained student project activity aimed at specific ExMC gaps, completed the gap report review cycle for all gaps through a maturated gap report review process, and revised the ExMC Tech Watch Sharepoint site for enhanced data content and organization. Through site visits, internships and promotions via aerospace journals, several student projects were initiated and completed this past year. Upon project completion, the students presented their results via telecom or WebEx to the ExMC Element as a whole. The upcoming year will continue to forge strategic alliances and student projects in the interest of technology and knowledge gap closure. Through the population of Sharepoint with technologies assessed by the gap owners, the database expansion will develop a more comprehensive

  5. ExMC Technology Watch

    NASA Technical Reports Server (NTRS)

    Krihak, M.; Watkins, S.; Shaw, T.

    2014-01-01

    The Technology Watch (Tech Watch) project is directed by the NASA Human Research Programs (HRP) Exploration Medical Capability (ExMC) element, and primarily focuses on ExMC technology gaps. The project coordinates the efforts of multiple NASA centers, including the Johnson Space Center (JSC), Glenn Research Center (GRC), Ames Research Center (ARC), and the Langley Research Center (LaRC). The objective of Tech Watch is to identify emerging, high-impact technologies that augment current NASA HRP technology development efforts. Identifying such technologies accelerates the development of medical care and research capabilities for the mitigation of potential health issues encountered during human space exploration missions. The aim of this process is to leverage technologies developed by academia, industry and other government agencies and to identify the effective utilization of NASA resources to maximize the HRP return on investment. The establishment of collaborations with these entities is beneficial to technology development, assessment and/or insertion, and advance NASAs goal to provide a safe and healthy environment for human exploration. In fiscal year 2013, the Tech Watch project maintained student project activity aimed at specific ExMC gaps, completed the gap report review cycle for all gaps through a maturated gap report review process, and revised the ExMC Tech Watch Sharepoint site for enhanced data content and organization. Through site visits, internships and promotions via aerospace journals, several student projects were initiated and completed this past year. Upon project completion, the students presented their results via telecom or WebEx to the ExMC Element as a whole. The upcoming year will continue to forge strategic alliances and student projects in the interest of technology and knowledge gap closure. Through the population of Sharepoint with technologies assessed by the gap owners, the database expansion will develop a more comprehensive

  6. Which Accelerates Faster--A Falling Ball or a Porsche?

    ERIC Educational Resources Information Center

    Rall, James D.; Abdul-Razzaq, Wathiq

    2012-01-01

    An introductory physics experiment has been developed to address the issues seen in conventional physics lab classes including assumption verification, technological dependencies, and real world motivation for the experiment. The experiment has little technology dependence and compares the acceleration due to gravity by using position versus time…

  7. Design of four-beam IH-RFQ linear accelerator

    NASA Astrophysics Data System (ADS)

    Ikeda, Shota; Murata, Aki; Hayashizaki, Noriyosu

    2017-09-01

    The multi-beam acceleration method is an acceleration technique for low-energy high-intensity heavy ion beams, which involves accelerating multiple beams to decrease space charge effects, and then integrating these beams by a beam funneling system. At the Tokyo Institute of Technology a two beam IH-RFQ linear accelerator was developed using a two beam laser ion source with direct plasma injection scheme. This system accelerated a carbon ion beam with a current of 108 mA (54 mA/channel × 2) from 5 up to 60 keV/u. In order to demonstrate that a four-beam IH-RFQ linear accelerator is suitable for high-intensity heavy ion beam acceleration, we have been developing a four-beam prototype. A four-beam IH-RFQ linear accelerator consists of sixteen RFQ electrodes (4 × 4 set) with stem electrodes installed alternately on the upper and lower ridge electrodes. As a part of this development, we have designed a four-beam IH-RFQ linear accelerator using three dimensional electromagnetic simulation software and beam tracking simulation software. From these simulation results, we have designed the stem electrodes, the center plate and the side shells by evaluating the RF properties such as the resonance frequency, the power loss and the electric strength distribution between the RFQ electrodes.

  8. Developing Use Cases for Evaluation of ADMS Applications to Accelerate Technology Adoption: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Veda, Santosh; Wu, Hongyu; Martin, Maurice

    Grid modernization for the distribution systems comprise of the ability to effectively monitor and manage unplanned events while ensuring reliable operations. Integration of Distributed Energy Resources (DERs) and proliferation of autonomous smart controllers like microgrids and smart inverters in the distribution networks challenge the status quo of distribution system operations. Advanced Distribution Management System (ADMS) technologies are being increasingly deployed to manage the complexities of operating distribution systems. The ability to evaluate the ADMS applications in specific utility environments and for future scenarios will accelerate wider adoption of the ADMS and will lower the risks and costs of their implementation.more » This paper addresses the first step - identify and define the use cases for evaluating these applications. The applications that are selected for this discussion include Volt-VAr Optimization (VVO), Fault Location Isolation and Service Restoration (FLISR), Online Power Flow (OLPF)/Distribution System State Estimation (DSSE) and Market Participation. A technical description and general operational requirements for each of these applications is presented. The test scenarios that are most relevant to the utility challenges are also addressed.« less

  9. Phase 2 environmental site investigation procedures and technologies for property transfer and PS and E development

    DOT National Transportation Integrated Search

    1999-05-01

    The purpose of this project is to provide TxDOT with an improved procedure for conducting environmental site investigations at various stages during transportation infrastructure development. The project seeks to identify modern assessment technologi...

  10. Observation of 690 MV m -1 Electron Accelerating Gradient with a Laser-Driven Dielectric Microstructure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wootton, K. P.; Wu, Z.; Cowan, B. M.

    Acceleration of electrons using laser-driven dielectric microstructures is a promising technology for the miniaturization of particle accelerators. In this work, experimental results are presented of relativistic electron acceleration with 690±100 MVm -1 gradient. This is a record-high accelerating gradient for a dielectric microstructure accelerator, nearly doubling the previous record gradient. To reach higher acceleration gradients the present experiment employs 90 fs duration laser pulses.

  11. Electron Heating and Acceleration in a Reconnecting Magnetotail

    NASA Astrophysics Data System (ADS)

    El-Alaoui, M.; Zhou, M.; Lapenta, G.; Berchem, J.; Richard, R. L.; Schriver, D.; Walker, R. J.

    2017-12-01

    Electron heating and acceleration in the magnetotail have been investigated intensively. A major site for this process is the reconnection region. However, where and how the electrons are accelerated in a realistic three-dimensional X-line geometry is not fully understood. In this study, we employed a three-dimensional implicit particle-in-cell (iPIC3D) simulation and large-scale kinetic (LSK) simulation to address these problems. We modeled a magnetotail reconnection event observed by THEMIS in an iPIC3D simulation with initial and boundary conditions given by a global magnetohydrodynamic (MHD) simulation of Earth's magnetosphere. The iPIC3D simulation system includes the region of fast outflow emanating from the reconnection site that drives dipolarization fronts. We found that current sheet electrons exhibit elongated (cigar-shaped) velocity distributions with a higher parallel temperature. Using LSK we then followed millions of test electrons using the electromagnetic fields from iPIC3D. We found that magnetotail reconnection can generate power law spectra around the near-Earth X-line. A significant number of electrons with energies higher than 50 keV are produced. We identified several acceleration mechanisms at different locations that were responsible for energizing these electrons: non-adiabatic cross-tail drift, betatron and Fermi acceleration. Relative contributions to the energy gain of these high energy electrons from the different mechanisms will be discussed.

  12. Neural Networks for Modeling and Control of Particle Accelerators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Edelen, A. L.; Biedron, S. G.; Chase, B. E.

    Myriad nonlinear and complex physical phenomena are host to particle accelerators. They often involve a multitude of interacting systems, are subject to tight performance demands, and should be able to run for extended periods of time with minimal interruptions. Often times, traditional control techniques cannot fully meet these requirements. One promising avenue is to introduce machine learning and sophisticated control techniques inspired by artificial intelligence, particularly in light of recent theoretical and practical advances in these fields. Within machine learning and artificial intelligence, neural networks are particularly well-suited to modeling, control, and diagnostic analysis of complex, nonlinear, and time-varying systems,more » as well as systems with large parameter spaces. Consequently, the use of neural network-based modeling and control techniques could be of significant benefit to particle accelerators. For the same reasons, particle accelerators are also ideal test-beds for these techniques. Moreover, many early attempts to apply neural networks to particle accelerators yielded mixed results due to the relative immaturity of the technology for such tasks. For the purpose of this paper is to re-introduce neural networks to the particle accelerator community and report on some work in neural network control that is being conducted as part of a dedicated collaboration between Fermilab and Colorado State University (CSU). We also describe some of the challenges of particle accelerator control, highlight recent advances in neural network techniques, discuss some promising avenues for incorporating neural networks into particle accelerator control systems, and describe a neural network-based control system that is being developed for resonance control of an RF electron gun at the Fermilab Accelerator Science and Technology (FAST) facility, including initial experimental results from a benchmark controller.« less

  13. Neural Networks for Modeling and Control of Particle Accelerators

    DOE PAGES

    Edelen, A. L.; Biedron, S. G.; Chase, B. E.; ...

    2016-04-01

    Myriad nonlinear and complex physical phenomena are host to particle accelerators. They often involve a multitude of interacting systems, are subject to tight performance demands, and should be able to run for extended periods of time with minimal interruptions. Often times, traditional control techniques cannot fully meet these requirements. One promising avenue is to introduce machine learning and sophisticated control techniques inspired by artificial intelligence, particularly in light of recent theoretical and practical advances in these fields. Within machine learning and artificial intelligence, neural networks are particularly well-suited to modeling, control, and diagnostic analysis of complex, nonlinear, and time-varying systems,more » as well as systems with large parameter spaces. Consequently, the use of neural network-based modeling and control techniques could be of significant benefit to particle accelerators. For the same reasons, particle accelerators are also ideal test-beds for these techniques. Moreover, many early attempts to apply neural networks to particle accelerators yielded mixed results due to the relative immaturity of the technology for such tasks. For the purpose of this paper is to re-introduce neural networks to the particle accelerator community and report on some work in neural network control that is being conducted as part of a dedicated collaboration between Fermilab and Colorado State University (CSU). We also describe some of the challenges of particle accelerator control, highlight recent advances in neural network techniques, discuss some promising avenues for incorporating neural networks into particle accelerator control systems, and describe a neural network-based control system that is being developed for resonance control of an RF electron gun at the Fermilab Accelerator Science and Technology (FAST) facility, including initial experimental results from a benchmark controller.« less

  14. Laser Acceleration of Ions for Radiation Therapy

    NASA Astrophysics Data System (ADS)

    Tajima, Toshiki; Habs, Dietrich; Yan, Xueqing

    Ion beam therapy for cancer has proven to be a successful clinical approach, affording as good a cure as surgery and a higher quality of life. However, the ion beam therapy installation is large and expensive, limiting its availability for public benefit. One of the hurdles is to make the accelerator more compact on the basis of conventional technology. Laser acceleration of ions represents a rapidly developing young field. The prevailing acceleration mechanism (known as target normal sheath acceleration, TNSA), however, shows severe limitations in some key elements. We now witness that a new regime of coherent acceleration of ions by laser (CAIL) has been studied to overcome many of these problems and accelerate protons and carbon ions to high energies with higher efficiencies. Emerging scaling laws indicate possible realization of an ion therapy facility with compact, cost-efficient lasers. Furthermore, dense particle bunches may allow the use of much higher collective fields, reducing the size of beam transport and dump systems. Though ultimate realization of a laser-driven medical facility may take many years, the field is developing fast with many conceptual innovations and technical progress.

  15. Highly accelerated cardiovascular MR imaging using many channel technology: concepts and clinical applications

    PubMed Central

    Sodickson, Daniel K.

    2010-01-01

    Cardiovascular magnetic resonance imaging (CVMRI) is of proven clinical value in the non-invasive imaging of cardiovascular diseases. CVMRI requires rapid image acquisition, but acquisition speed is fundamentally limited in conventional MRI. Parallel imaging provides a means for increasing acquisition speed and efficiency. However, signal-to-noise (SNR) limitations and the limited number of receiver channels available on most MR systems have in the past imposed practical constraints, which dictated the use of moderate accelerations in CVMRI. High levels of acceleration, which were unattainable previously, have become possible with many-receiver MR systems and many-element, cardiac-optimized RF-coil arrays. The resulting imaging speed improvements can be exploited in a number of ways, ranging from enhancement of spatial and temporal resolution to efficient whole heart coverage to streamlining of CVMRI work flow. In this review, examples of these strategies are provided, following an outline of the fundamentals of the highly accelerated imaging approaches employed in CVMRI. Topics discussed include basic principles of parallel imaging; key requirements for MR systems and RF-coil design; practical considerations of SNR management, supported by multi-dimensional accelerations, 3D noise averaging and high field imaging; highly accelerated clinical state-of-the art cardiovascular imaging applications spanning the range from SNR-rich to SNR-limited; and current trends and future directions. PMID:17562047

  16. Study of strength kinetics of sand concrete system of accelerated hardening

    NASA Astrophysics Data System (ADS)

    Sharanova, A. V.; Lenkova, D. A.; Panfilova, A. D.

    2018-04-01

    Methods of calorimetric analysis are used to study the dynamics of the hydration processes of concretes with different accelerator contents. The efficiency of the isothermal calorimetry method is shown for study of strength kinetics of concrete mixtures of accelerated hardening, promising for additive technologies in civil engineering.

  17. 76 FR 4724 - Polaris Industries, Including On-Site Leased Workers From Westaff and Supply Technologies...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-26

    .... The Department has determined that these workers were sufficiently under the control of Polaris..., Including On-Site Leased Workers From Westaff and Supply Technologies, Osceola, WI; Amended Certification Regarding Eligibility To Apply for Worker Adjustment Assistance In accordance with section 223 of the Trade...

  18. 77 FR 51064 - Dana Holding Corporation, Power Technologies Group Division, Including On-Site Leased Workers...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-23

    ... DEPARTMENT OF LABOR Employment and Training Administration [TA-W-81,317] Dana Holding Corporation, Power Technologies Group Division, Including On-Site Leased Workers From Manpower, Milwaukee, WI; Notice... investigation resulted in a negative determination based on the findings that the subject firm did not shift...

  19. Radiographic findings after treatment with balloon brachytherapy accelerated partial breast irradiation.

    PubMed

    Ibrahim, Nafisa B; Anandan, Srividya; Hartman, Audrey L; McSweeney, Michelle; Chun, Jeanette; McKee, Andrea; Yang, Rebecca; Kim, Cathleen

    2015-01-01

    The use of accelerated partial breast irradiation (APBI) following breast-conserving surgery is rapidly gaining popularity as an alternative to whole-breast irradiation (WBI) in selected patients with early-stage breast cancer. Although data on the long-term effectiveness and safety of APBI accelerated partial breast irradiation are still being gathered, the shorter treatment course and narrowed radiation target of APBI accelerated partial breast irradiation provide an attractive alternative for carefully selected patients. These patients include those with relatively small tumors (≤3 cm), negative or close margins, and negative sentinel lymph nodes. Possible long-term complications include telangiectasia and the development of a palpable mass at the lumpectomy site. Mammographic findings in patients who have undergone APBI accelerated partial breast irradiation are distinct from those in patients who have undergone conventional WBI whole-breast irradiation . The most common post-APBI accelerated partial breast irradiation radiographic findings include formation of seromas at the lumpectomy site, focal parenchymal changes such as increased trabeculation and parenchymal distortion, fat necrosis, and skin changes such as thickening or retraction. Given the continued evolution of breast cancer treatment, it is important that radiologists have a comprehensive understanding of APBI accelerated partial breast irradiation in terms of rationale, patient selection criteria, common postprocedural radiographic findings (and how they differ from post-WBI whole-breast irradiation findings), and advantages and potential complications. RSNA, 2015

  20. Measurement of absolute gravity acceleration in Firenze

    NASA Astrophysics Data System (ADS)

    de Angelis, M.; Greco, F.; Pistorio, A.; Poli, N.; Prevedelli, M.; Saccorotti, G.; Sorrentino, F.; Tino, G. M.

    2011-01-01

    This paper reports the results from the accurate measurement of the acceleration of gravity g taken at two separate premises in the Polo Scientifico of the University of Firenze (Italy). In these laboratories, two separate experiments aiming at measuring the Newtonian constant and testing the Newtonian law at short distances are in progress. Both experiments require an independent knowledge on the local value of g. The only available datum, pertaining to the italian zero-order gravity network, was taken more than 20 years ago at a distance of more than 60 km from the study site. Gravity measurements were conducted using an FG5 absolute gravimeter, and accompanied by seismic recordings for evaluating the noise condition at the site. The absolute accelerations of gravity at the two laboratories are (980 492 160.6 ± 4.0) μGal and (980 492 048.3 ± 3.0) μGal for the European Laboratory for Non-Linear Spectroscopy (LENS) and Dipartimento di Fisica e Astronomia, respectively. Other than for the two referenced experiments, the data here presented will serve as a benchmark for any future study requiring an accurate knowledge of the absolute value of the acceleration of gravity in the study region.

  1. A compact linear accelerator based on a scalable microelectromechanical-system RF-structure

    NASA Astrophysics Data System (ADS)

    Persaud, A.; Ji, Q.; Feinberg, E.; Seidl, P. A.; Waldron, W. L.; Schenkel, T.; Lal, A.; Vinayakumar, K. B.; Ardanuc, S.; Hammer, D. A.

    2017-06-01

    A new approach for a compact radio-frequency (RF) accelerator structure is presented. The new accelerator architecture is based on the Multiple Electrostatic Quadrupole Array Linear Accelerator (MEQALAC) structure that was first developed in the 1980s. The MEQALAC utilized RF resonators producing the accelerating fields and providing for higher beam currents through parallel beamlets focused using arrays of electrostatic quadrupoles (ESQs). While the early work obtained ESQs with lateral dimensions on the order of a few centimeters, using a printed circuit board (PCB), we reduce the characteristic dimension to the millimeter regime, while massively scaling up the potential number of parallel beamlets. Using Microelectromechanical systems scalable fabrication approaches, we are working on further reducing the characteristic dimension to the sub-millimeter regime. The technology is based on RF-acceleration components and ESQs implemented in the PCB or silicon wafers where each beamlet passes through beam apertures in the wafer. The complete accelerator is then assembled by stacking these wafers. This approach has the potential for fast and inexpensive batch fabrication of the components and flexibility in system design for application specific beam energies and currents. For prototyping the accelerator architecture, the components have been fabricated using the PCB. In this paper, we present proof of concept results of the principal components using the PCB: RF acceleration and ESQ focusing. Ongoing developments on implementing components in silicon and scaling of the accelerator technology to high currents and beam energies are discussed.

  2. A compact linear accelerator based on a scalable microelectromechanical-system RF-structure.

    PubMed

    Persaud, A; Ji, Q; Feinberg, E; Seidl, P A; Waldron, W L; Schenkel, T; Lal, A; Vinayakumar, K B; Ardanuc, S; Hammer, D A

    2017-06-01

    A new approach for a compact radio-frequency (RF) accelerator structure is presented. The new accelerator architecture is based on the Multiple Electrostatic Quadrupole Array Linear Accelerator (MEQALAC) structure that was first developed in the 1980s. The MEQALAC utilized RF resonators producing the accelerating fields and providing for higher beam currents through parallel beamlets focused using arrays of electrostatic quadrupoles (ESQs). While the early work obtained ESQs with lateral dimensions on the order of a few centimeters, using a printed circuit board (PCB), we reduce the characteristic dimension to the millimeter regime, while massively scaling up the potential number of parallel beamlets. Using Microelectromechanical systems scalable fabrication approaches, we are working on further reducing the characteristic dimension to the sub-millimeter regime. The technology is based on RF-acceleration components and ESQs implemented in the PCB or silicon wafers where each beamlet passes through beam apertures in the wafer. The complete accelerator is then assembled by stacking these wafers. This approach has the potential for fast and inexpensive batch fabrication of the components and flexibility in system design for application specific beam energies and currents. For prototyping the accelerator architecture, the components have been fabricated using the PCB. In this paper, we present proof of concept results of the principal components using the PCB: RF acceleration and ESQ focusing. Ongoing developments on implementing components in silicon and scaling of the accelerator technology to high currents and beam energies are discussed.

  3. MEMS-based, RF-driven, compact accelerators

    NASA Astrophysics Data System (ADS)

    Persaud, A.; Seidl, P. A.; Ji, Q.; Breinyn, I.; Waldron, W. L.; Schenkel, T.; Vinayakumar, K. B.; Ni, D.; Lal, A.

    2017-10-01

    Shrinking existing accelerators in size can reduce their cost by orders of magnitude. Furthermore, by using radio frequency (RF) technology and accelerating ions in several stages, the applied voltages can be kept low paving the way to new ion beam applications. We make use of the concept of a Multiple Electrostatic Quadrupole Array Linear Accelerator (MEQALAC) and have previously shown the implementation of its basic components using printed circuit boards, thereby reducing the size of earlier MEQALACs by an order of magnitude. We now demonstrate the combined integration of these components to form a basic accelerator structure, including an initial beam-matching section. In this presentation, we will discuss the results from the integrated multi-beam ion accelerator and also ion acceleration using RF voltages generated on-board. Furthermore, we will show results from Micro-Electro-Mechanical Systems (MEMS) fabricated focusing wafers, which can shrink the dimension of the system to the sub-mm regime and lead to cheaper fabrication. Based on these proof-of-concept results we outline a scaling path to high beam power for applications in plasma heating in magnetized target fusion and in neutral beam injectors for future Tokamaks. This work was supported by the Office of Science of the US Department of Energy through the ARPA-e ALPHA program under contracts DE-AC02-05CH11231.

  4. Evaluation of Discrimination Technologies and Classification Results Live Site Demonstration: Former Waikoloa Maneuver Area

    DTIC Science & Technology

    2015-06-01

    National Instruments. The National Instruments DAQ is a full-featured PC running Windows 7. The DAQ, electromagnetic transmitter , and batteries for the... electromagnetic induction Environet Environet, Inc. ESTCP Environmental Security Technology Certification Program ftp file transfer protocol FUDS formerly used...capabilities of a currently available advanced electromagnetic induction sensor developed specifically for discrimination on real sites under operational

  5. Accelerating Innovation that Enhances Resource Recovery in the Wastewater Sector: Advancing a National Testbed Network.

    PubMed

    Mihelcic, James R; Ren, Zhiyong Jason; Cornejo, Pablo K; Fisher, Aaron; Simon, A J; Snyder, Seth W; Zhang, Qiong; Rosso, Diego; Huggins, Tyler M; Cooper, William; Moeller, Jeff; Rose, Bob; Schottel, Brandi L; Turgeon, Jason

    2017-07-18

    This Feature examines significant challenges and opportunities to spur innovation and accelerate adoption of reliable technologies that enhance integrated resource recovery in the wastewater sector through the creation of a national testbed network. The network is a virtual entity that connects appropriate physical testing facilities, and other components needed for a testbed network, with researchers, investors, technology providers, utilities, regulators, and other stakeholders to accelerate the adoption of innovative technologies and processes that are needed for the water resource recovery facility of the future. Here we summarize and extract key issues and developments, to provide a strategy for the wastewater sector to accelerate a path forward that leads to new sustainable water infrastructures.

  6. ENVIRONMENTAL TECHNOLOGY VERIFICATION REPORT: ECR TECHNOLOGIES, INC., EARTHLINKED GROUND-SOURCE HEAT PUMP WATER HEATING SYSTEM

    EPA Science Inventory

    EPA has created the Environmental Technology Verification program to provide high quality, peer reviewed data on technology performance. This data is expected to accelerate the acceptance and use of improved environmental protection technologies. The Greenhouse Gas Technology C...

  7. An Expert System For Tuning Particle-Beam Accelerators

    NASA Astrophysics Data System (ADS)

    Lager, Darrel L.; Brand, Hal R.; Maurer, William J.; Searfus, Robert M.; Hernandez, Jose E.

    1989-03-01

    We have developed a proof-of-concept prototype of an expert system for tuning particle beam accelerators. It is designed to function as an intelligent assistant for an operator. In its present form it implements the strategies and reasoning followed by the operator for steering through the beam transport section of the Advanced Test Accelerator at Lawrence Livermore Laboratory's Site 300. The system is implemented in the language LISP using the Artificial Intelligence concepts of frames, daemons, and a representation we developed called a Monitored Decision Script.

  8. 75 FR 11920 - Agilent Technologies, Eesof Division, Including On-Site Leased Workers From Volt and Managed...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-12

    ... software and related services including quality assurance and learning products, marketing, product development, marketing and administration. The company reports that on-site leased workers from Managed..., Santa Clara, California, and the Everett, Washington locations of Agilent Technologies, EEsof Division...

  9. 78 FR 8587 - Thomson Reuters, Finance Operations & Technology Division, Including On-Site Leased Workers From...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-06

    ... DEPARTMENT OF LABOR Employment and Training Administration [TA-W-81,755] Thomson Reuters, Finance Operations & Technology Division, Including On-Site Leased Workers From Adecco; Eagan, MN; Amended Certification Regarding Eligibility To Apply for Worker Adjustment Assistance In accordance with Section 223 of the Trade Act of 1974, as amended (`...

  10. Accelerator infrastructure in Europe: EuCARD 2011

    NASA Astrophysics Data System (ADS)

    Romaniuk, Ryszard S.

    2011-10-01

    The paper presents a digest of the research results in the domain of accelerator science and technology in Europe, shown during the annual meeting of the EuCARD - European Coordination of Accelerator Research and Development. The conference concerns building of the research infrastructure, including in this advanced photonic and electronic systems for servicing large high energy physics experiments. There are debated a few basic groups of such systems like: measurement - control networks of large geometrical extent, multichannel systems for large amounts of metrological data acquisition, precision photonic networks of reference time, frequency and phase distribution.

  11. Helium refrigeration systems for super-conducting accelerators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ganni, V.

    Many of the present day accelerators are based on superconducting technology which requires 4.5-K or 2-K helium refrigeration systems. These systems utilize superconducting radio frequency (SRF) cavities and/or superconducting magnets which are packaged into vacuum vessels known as cryo-modules (CM’s). Many of the present day accelerators are optimized to operate primarily at around 2-K, requiring specialized helium refrigeration systems which are cost intensive to produce and to operate. Some of the cryogenic refrigeration system design considerations for these challenging applications are discussed.

  12. Overview of Accelerators with Potential Use in Homeland Security

    NASA Astrophysics Data System (ADS)

    Garnett, Robert W.

    Quite a broad range of accelerators have been applied to solving many of the challenging problems related to homeland security and defense. These accelerator systems range from relatively small, simple, and compact, to large and complex, based on the specific application requirements. They have been used or proposed as sources of primary and secondary probe beams for applications such as radiography and to induce specific reactions that are key signatures for detecting conventional explosives or fissile material. A brief overview and description of these accelerator systems, their specifications, and application will be presented. Some recent technology trends will also be discussed.

  13. Accelerator system and method of accelerating particles

    NASA Technical Reports Server (NTRS)

    Wirz, Richard E. (Inventor)

    2010-01-01

    An accelerator system and method that utilize dust as the primary mass flux for generating thrust are provided. The accelerator system can include an accelerator capable of operating in a self-neutralizing mode and having a discharge chamber and at least one ionizer capable of charging dust particles. The system can also include a dust particle feeder that is capable of introducing the dust particles into the accelerator. By applying a pulsed positive and negative charge voltage to the accelerator, the charged dust particles can be accelerated thereby generating thrust and neutralizing the accelerator system.

  14. Design of High Efficiency High Power Electron Accelerator Systems Based on Normal Conducting RF Technology for Energy and Environmental Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dolgashev, Valery; Tantawi, Sami

    The goal of this project was to perform engineering design studies of three extremely high efficiency electron accelerators with the following parameters [1]: 2 MeV output beam energy and 1 MW average beam power; 10 MeV output energy and 10 MW; 10 MeV output energy and 1 MW. These linacs are intended for energy and environmental applications [2]. We based our designs on normal conducting radio-frequency technology. We have successfully reached this goal where we show rf-to-beam efficiency of 96.7 %, 97.2 %, and 79.6 % for these linacs.

  15. Technical Report: Reference photon dosimetry data for Varian accelerators based on IROC-Houston site visit data.

    PubMed

    Kerns, James R; Followill, David S; Lowenstein, Jessica; Molineu, Andrea; Alvarez, Paola; Taylor, Paige A; Stingo, Francesco C; Kry, Stephen F

    2016-05-01

    Accurate data regarding linear accelerator (Linac) radiation characteristics are important for treatment planning system modeling as well as regular quality assurance of the machine. The Imaging and Radiation Oncology Core-Houston (IROC-H) has measured the dosimetric characteristics of numerous machines through their on-site dosimetry review protocols. Photon data are presented and can be used as a secondary check of acquired values, as a means to verify commissioning a new machine, or in preparation for an IROC-H site visit. Photon data from IROC-H on-site reviews from 2000 to 2014 were compiled and analyzed. Specifically, data from approximately 500 Varian machines were analyzed. Each dataset consisted of point measurements of several dosimetric parameters at various locations in a water phantom to assess the percentage depth dose, jaw output factors, multileaf collimator small field output factors, off-axis factors, and wedge factors. The data were analyzed by energy and parameter, with similarly performing machine models being assimilated into classes. Common statistical metrics are presented for each machine class. Measurement data were compared against other reference data where applicable. Distributions of the parameter data were shown to be robust and derive from a student's t distribution. Based on statistical and clinical criteria, all machine models were able to be classified into two or three classes for each energy, except for 6 MV for which there were eight classes. Quantitative analysis of the measurements for 6, 10, 15, and 18 MV photon beams is presented for each parameter; supplementary material has also been made available which contains further statistical information. IROC-H has collected numerous data on Varian Linacs and the results of photon measurements from the past 15 years are presented. The data can be used as a comparison check of a physicist's acquired values. Acquired values that are well outside the expected distribution should be

  16. 4,300-Year-old chimpanzee sites and the origins of percussive stone technology

    PubMed Central

    Mercader, Julio; Barton, Huw; Gillespie, Jason; Harris, Jack; Kuhn, Steven; Tyler, Robert; Boesch, Christophe

    2007-01-01

    Archaeological research in the African rainforest reveals unexpected results in the search for the origins of hominoid technology. The ancient Panin sites from Côte d'Ivoire constitute the only evidence of prehistoric ape behavior known to date anywhere in the world. Recent archaeological work has yielded behaviorally modified stones, dated by chronometric means to 4,300 years of age, lodging starch residue suggestive of prehistoric dietary practices by ancient chimpanzees. The “Chimpanzee Stone Age” pre-dates the advent of settled farming villages in this part of the African rainforest and suggests that percussive material culture could have been inherited from an common human–chimpanzee clade, rather than invented by hominins, or have arisen by imitation, or resulted from independent technological convergence. PMID:17360606

  17. Marshak Lectureship: The Turkish Accelerator Center, TAC

    NASA Astrophysics Data System (ADS)

    Yavas, Omer

    2012-02-01

    The Turkish Accelerator Center (TAC) project is comprised of five different electron and proton accelerator complexes, to be built over 15 years, with a phased approach. The Turkish Government funds the project. Currently there are 23 Universities in Turkey associated with the TAC project. The current funded project, which is to run until 2013 aims *To establish a superconducting linac based infra-red free electron laser and Bremsstrahlung Facility (TARLA) at the Golbasi Campus of Ankara University, *To establish the Institute of Accelerator Technologies in Ankara University, and *To complete the Technical Design Report of TAC. The proposed facilities are a 3^rd generation Synchrotron Radiation facility, SASE-FEL facility, a GeV scale Proton Accelerator facility and an electron-positron collider as a super charm factory. In this talk, an overview on the general status and road map of TAC project will be given. National and regional importance of TAC will be expressed and the structure of national and internatonal collaborations will be explained.

  18. Solar efficient technologies for valorising an archaeological site in the rural area Romania

    NASA Astrophysics Data System (ADS)

    Tǎmǎşan, Maria; Mǎrǎcineanu, Cristian; Bica, Smaranda Maria

    2015-12-01

    The purpose of the study is finding viable methods of rehabilitation and re-use of the cultural heritage in rural areas by efficient contemporary technological and architectural solutions. In this respect, this paper describes the phases of an environmental-friendly intervention on an archaeological site near the village Şiria, Arad County, as case study, the expected results and the steps which must be taken in order to implement the proposal. The final aim is to create a complex and sustainable tourist attraction through musealisation, integrated in the already known, but poorly promoted tourist itinerary, known as The Wine Path - Şiria is in a wine-growing region first documented in the 9th century. The proposed design reflects our sustainable approach by combining local materials with non-invasive structural solutions and efficient solar technologies. The purpose of this approach is to reduce the building's maintenance costs nearly to 0 and to extend the visiting time of the archaeological site during the entire year, whatever the weather or season. The proposals are to be submitted to the County Council, having issued the Strategy for Tourist Development for Arad County, elaborated in 2011 by The Analysis for Institutional Development Centre - Bucharest.

  19. Environmental Technology Verification: Pesticide Spray Drift Reduction Technologies for Row and Field Crops

    EPA Pesticide Factsheets

    The Environmental Technology Verification Program, established by the EPA, is designed to accelerate the development and commercialization of new or improved technologies through third-party verification and reporting of performance.

  20. Project acceleration : making the leap from pilot to commercialization.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Borneo, Daniel R.

    2010-05-01

    Since the energy storage technology market is in a relatively emergent phase, narrowing the gap between pilot project status and commercialization is fundamental to the accelerating of this innovative market space. This session will explore regional market design factors to facilitate the storage enterprise. You will also hear about: quantifying transmission and generation efficiency enhancements; resource planning for storage; and assessing market mechanisms to accelerate storage adoption regionally.

  1. Demonstration of acceleration of relativistic electrons at a dielectric microstructure using femtosecond laser pulses

    DOE PAGES

    Wootton, Kent P.; Wu, Ziran; Cowan, Benjamin M.; ...

    2016-06-02

    Acceleration of electrons using laser-driven dielectric microstructures is a promising technology for the miniaturization of particle accelerators. Achieving the desired GV m –1 accelerating gradients is possible only with laser pulse durations shorter than ~1 ps. In this Letter, we present, to the best of our knowledge, the first demonstration of acceleration of relativistic electrons at a dielectric microstructure driven by femtosecond duration laser pulses. Furthermore, using this technique, an electron accelerating gradient of 690±100 MV m –1 was measured—a record for dielectric laser accelerators.

  2. The SUPERFUND INNOVATIVE TECHNOLOGY EVALUATION program - Technology Profiles

    EPA Science Inventory

    The Superfund Innovative Technology Evaluation (SITE) program was created to evaluate new and promising treatment technologies for cleanup at hazardous waste sites. The mission of the SITE program is to encourage the development and routine use of innovative treatment technologie...

  3. Cloud Computing and Validated Learning for Accelerating Innovation in IoT

    ERIC Educational Resources Information Center

    Suciu, George; Todoran, Gyorgy; Vulpe, Alexandru; Suciu, Victor; Bulca, Cristina; Cheveresan, Romulus

    2015-01-01

    Innovation in Internet of Things (IoT) requires more than just creation of technology and use of cloud computing or big data platforms. It requires accelerated commercialization or aptly called go-to-market processes. To successfully accelerate, companies need a new type of product development, the so-called validated learning process.…

  4. Enabling More than Moore: Accelerated Reliability Testing and Risk Analysis for Advanced Electronics Packaging

    NASA Technical Reports Server (NTRS)

    Ghaffarian, Reza; Evans, John W.

    2014-01-01

    For five decades, the semiconductor industry has distinguished itself by the rapid pace of improvement in miniaturization of electronics products-Moore's Law. Now, scaling hits a brick wall, a paradigm shift. The industry roadmaps recognized the scaling limitation and project that packaging technologies will meet further miniaturization needs or ak.a "More than Moore". This paper presents packaging technology trends and accelerated reliability testing methods currently being practiced. Then, it presents industry status on key advanced electronic packages, factors affecting accelerated solder joint reliability of area array packages, and IPC/JEDEC/Mil specifications for characterizations of assemblies under accelerated thermal and mechanical loading. Finally, it presents an examples demonstrating how Accelerated Testing and Analysis have been effectively employed in the development of complex spacecraft thereby reducing risk. Quantitative assessments necessarily involve the mathematics of probability and statistics. In addition, accelerated tests need to be designed which consider the desired risk posture and schedule for particular project. Such assessments relieve risks without imposing additional costs. and constraints that are not value added for a particular mission. Furthermore, in the course of development of complex systems, variances and defects will inevitably present themselves and require a decision concerning their disposition, necessitating quantitative assessments. In summary, this paper presents a comprehensive view point, from technology to systems, including the benefits and impact of accelerated testing in offsetting risk.

  5. Timescale Correlation between Marine Atmospheric Exposure and Accelerated Corrosion Testing - Part 2

    NASA Technical Reports Server (NTRS)

    Montgomery, Eliza L.; Calle, Luz Marina; Curran, Jerome C.; Kolody, Mark R.

    2012-01-01

    Evaluation of metals to predict service life of metal-based structures in corrosive environments has long relied on atmospheric exposure test sites. Traditional accelerated corrosion testing relies on mimicking the exposure conditions, often incorporating salt spray and ultraviolet (UV) radiation, and exposing the metal to continuous or cyclic conditions similar to those of the corrosive environment. Their reliability to correlate to atmospheric exposure test results is often a concern when determining the timescale to which the accelerated tests can be related. Accelerated corrosion testing has yet to be universally accepted as a useful tool in predicting the long-term service life of a metal, despite its ability to rapidly induce corrosion. Although visual and mass loss methods of evaluating corrosion are the standard, and their use is crucial, a method that correlates timescales from accelerated testing to atmospheric exposure would be very valuable. This paper presents work that began with the characterization of the atmospheric environment at the Kennedy Space Center (KSC) Beachside Corrosion Test Site. The chemical changes that occur on low carbon steel, during atmospheric and accelerated corrosion conditions, were investigated using surface chemistry analytical methods. The corrosion rates and behaviors of panels subjected to long-term and accelerated corrosion conditions, involving neutral salt fog and alternating seawater spray, were compared to identify possible timescale correlations between accelerated and long-term corrosion performance. The results, as well as preliminary findings on the correlation investigation, are presented.

  6. A compact linear accelerator based on a scalable microelectromechanical-system RF-structure

    DOE PAGES

    Persaud, A.; Ji, Q.; Feinberg, E.; ...

    2017-06-08

    Here, a new approach for a compact radio-frequency (RF) accelerator structure is presented. The new accelerator architecture is based on the Multiple Electrostatic Quadrupole Array Linear Accelerator (MEQALAC) structure that was first developed in the 1980s. The MEQALAC utilized RF resonators producing the accelerating fields and providing for higher beam currents through parallel beamlets focused using arrays of electrostatic quadrupoles (ESQs). While the early work obtained ESQs with lateral dimensions on the order of a few centimeters, using a printed circuit board (PCB), we reduce the characteristic dimension to the millimeter regime, while massively scaling up the potential number ofmore » parallel beamlets. Using Microelectromechanical systems scalable fabrication approaches, we are working on further red ucing the characteristic dimension to the sub-millimeter regime. The technology is based on RF-acceleration components and ESQs implemented in the PCB or silicon wafers where each beamlet passes through beam apertures in the wafer. The complete accelerator is then assembled by stacking these wafers. This approach has the potential for fast and inexpensive batch fabrication of the components and flexibility in system design for application specific beam energies and currents. For prototyping the accelerator architecture, the components have been fabricated using the PCB. In this paper, we present proof of concept results of the principal components using the PCB: RF acceleration and ESQ focusing. Finally, ongoing developments on implementing components in silicon and scaling of the accelerator technology to high currents and beam energies are discussed.« less

  7. Transferring new technologies within the federal sector: The New Technology Demonstration Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Conover, D.R.; Hunt, D.M.

    1994-08-01

    The federal sector is the largest consumer of products in the United States and annually purchases almost 1.5 quads of energy measured at the building site at a cost of almost $10 billion (U.S. Department of Energy 1991). A review of design, construction, and procurement practices in the federal sector, as well as discussions with manufacturers and vendors, indicated that new technologies are not utilized in as timely a manner as possible. As a consequence of this technology transfer lag, the federal sector loses valuable energy and environmental benefits that can be derived through the application of new technologies. Inmore » addition, opportunities are lost to reduce federal energy expenditures and spur U.S. economic growth through the procurement of such technologies. In 1990, under the direction of the U.S. Department of Energy (DOE) Federal Energy Management Program, the Pacific Northwest Laboratory began the design of a program to accelerate the introduction of new U.S. technologies into the federal sector. Designated first as the Test Bed Demonstration Program and more recently the New Technology Demonstration Program, it sought to shorten the acceptance period of new technologies within the federal sector. By installing and evaluating various new technologies at federal facilities, the Program attempts to increase the acceptance of those new technologies through the results of {open_quotes}real-world{close_quotes} federal installations. Since that time, the Program has conducted new technology demonstrations and evaluations, evolved to address the need for more timely information transfer, and explored collaborative opportunities with other DOE offices and laboratories. This paper explains the processes by which a new technology demonstration project is implemented and presents a general description of the Program results to date.« less

  8. Secondary electron emission from plasma processed accelerating cavity grade niobium

    NASA Astrophysics Data System (ADS)

    Basovic, Milos

    Advances in the particle accelerator technology have enabled numerous fundamental discoveries in 20th century physics. Extensive interdisciplinary research has always supported further development of accelerator technology in efforts of reaching each new energy frontier. Accelerating cavities, which are used to transfer energy to accelerated charged particles, have been one of the main focuses of research and development in the particle accelerator field. Over the last fifty years, in the race to break energy barriers, there has been constant improvement of the maximum stable accelerating field achieved in accelerating cavities. Every increase in the maximum attainable accelerating fields allowed for higher energy upgrades of existing accelerators and more compact designs of new accelerators. Each new and improved technology was faced with ever emerging limiting factors. With the standard high accelerating gradients of more than 25 MV/m, free electrons inside the cavities get accelerated by the field, gaining enough energy to produce more electrons in their interactions with the walls of the cavity. The electron production is exponential and the electron energy transfer to the walls of a cavity can trigger detrimental processes, limiting the performance of the cavity. The root cause of the free electron number gain is a phenomenon called Secondary Electron Emission (SEE). Even though the phenomenon has been known and studied over a century, there are still no effective means of controlling it. The ratio between the electrons emitted from the surface and the impacting electrons is defined as the Secondary Electron Yield (SEY). A SEY ratio larger than 1 designates an increase in the total number of electrons. In the design of accelerator cavities, the goal is to reduce the SEY to be as low as possible using any form of surface manipulation. In this dissertation, an experimental setup was developed and used to study the SEY of various sample surfaces that were treated

  9. Secondary Electron Emission from Plasma Processed Accelerating Cavity Grade Niobium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Basovic, Milos

    Advances in the particle accelerator technology have enabled numerous fundamental discoveries in 20th century physics. Extensive interdisciplinary research has always supported further development of accelerator technology in efforts of reaching each new energy frontier. Accelerating cavities, which are used to transfer energy to accelerated charged particles, have been one of the main focuses of research and development in the particle accelerator field. Over the last fifty years, in the race to break energy barriers, there has been constant improvement of the maximum stable accelerating field achieved in accelerating cavities. Every increase in the maximum attainable accelerating fields allowed for highermore » energy upgrades of existing accelerators and more compact designs of new accelerators. Each new and improved technology was faced with ever emerging limiting factors. With the standard high accelerating gradients of more than 25 MV/m, free electrons inside the cavities get accelerated by the field, gaining enough energy to produce more electrons in their interactions with the walls of the cavity. The electron production is exponential and the electron energy transfer to the walls of a cavity can trigger detrimental processes, limiting the performance of the cavity. The root cause of the free electron number gain is a phenomenon called Secondary Electron Emission (SEE). Even though the phenomenon has been known and studied over a century, there are still no effective means of controlling it. The ratio between the electrons emitted from the surface and the impacting electrons is defined as the Secondary Electron Yield (SEY). A SEY ratio larger than 1 designates an increase in the total number of electrons. In the design of accelerator cavities, the goal is to reduce the SEY to be as low as possible using any form of surface manipulation. In this dissertation, an experimental setup was developed and used to study the SEY of various sample surfaces that were

  10. The Scanning Electron Microscope As An Accelerator For The Undergraduate Advanced Physics Laboratory

    NASA Astrophysics Data System (ADS)

    Peterson, Randolph S.; Berggren, Karl K.; Mondol, Mark

    2011-06-01

    Few universities or colleges have an accelerator for use with advanced physics laboratories, but many of these institutions have a scanning electron microscope (SEM) on site, often in the biology department. As an accelerator for the undergraduate, advanced physics laboratory, the SEM is an excellent substitute for an ion accelerator. Although there are no nuclear physics experiments that can be performed with a typical 30 kV SEM, there is an opportunity for experimental work on accelerator physics, atomic physics, electron-solid interactions, and the basics of modern e-beam lithography.

  11. Ensemble Manifold Rank Preserving for Acceleration-Based Human Activity Recognition.

    PubMed

    Tao, Dapeng; Jin, Lianwen; Yuan, Yuan; Xue, Yang

    2016-06-01

    With the rapid development of mobile devices and pervasive computing technologies, acceleration-based human activity recognition, a difficult yet essential problem in mobile apps, has received intensive attention recently. Different acceleration signals for representing different activities or even a same activity have different attributes, which causes troubles in normalizing the signals. We thus cannot directly compare these signals with each other, because they are embedded in a nonmetric space. Therefore, we present a nonmetric scheme that retains discriminative and robust frequency domain information by developing a novel ensemble manifold rank preserving (EMRP) algorithm. EMRP simultaneously considers three aspects: 1) it encodes the local geometry using the ranking order information of intraclass samples distributed on local patches; 2) it keeps the discriminative information by maximizing the margin between samples of different classes; and 3) it finds the optimal linear combination of the alignment matrices to approximate the intrinsic manifold lied in the data. Experiments are conducted on the South China University of Technology naturalistic 3-D acceleration-based activity dataset and the naturalistic mobile-devices based human activity dataset to demonstrate the robustness and effectiveness of the new nonmetric scheme for acceleration-based human activity recognition.

  12. An Analysis of the Potential Use of Red Horse Capabilities and Training Activities to Perform or Accelerate Air Force Environmental Cleanups

    DTIC Science & Technology

    1992-09-01

    capable of remediating sites contaminated with VOCs. Technologies which are innovative , emerging or not applicable are all considered to be...AD-A261 422 AFIT/GEE/CE%’/92S-’ AN" ANALYSIS OF T1’E, P’OTEN-TIAL USE OF RED HORSE CAPABILITIES AND TRAINING ACTIVITIES TO PEPFORM OR ACCELERATE AIR...Approved for public release; distribution unlimited 93 2 2-5 1󈧤 A.FIT/GEE/CEV/92S-7 AIN A.N.AýLYSIS OF THE POTENTIAL USE OF RED HORSE CAPABILITIES

  13. Microparticle acceleration by a Van de Graaff accelerator and application to space and material sciences

    NASA Astrophysics Data System (ADS)

    Shibata, Hiromi; Kobayashi, Koichi; Iwai, Takeo; Hamabe, Yoshimi; Sasaki, Sho; Hasegawa, Sunao; Yano, Hajime; Fujiwara, Akira; Ohashi, Hideo; Kawamura, Toru; Nogami, Ken-ichi

    2001-01-01

    A microparticle (dust) ion source has been installed in the 3.75 MV Van de Graaff electrostatic accelerator and a new beam line for microparticle experiments has been built at the HIT facility of Research Center for Nuclear Science and Technology, the University of Tokyo. Microparticle acceleration has been successful in obtaining expected velocities of 1-20 km/s or more for micron- or submicron-sized particles. Development of in situ dust detectors on board satellites and spacecraft in the expected mass and velocity range of micrometeoroids and investigation of hypervelocity impact phenomena by using time-of-flight mass spectrometry, impact flash measurement and scanning electron microscope observation for metals, polymers and semiconductors bombarded by micron-sized particles have been started.

  14. Tandem accelerators in Romania: Multi-tools for science, education and technology

    NASA Astrophysics Data System (ADS)

    Burducea, I.; GhiÅ£ǎ, D. G.; Sava, T. B.; Straticiuc, M.

    2017-06-01

    An educated selection of the main beam parameters - particle type, velocity and intensity, can result in a cutting-edge scalpel to remove tumors, sanitize sewage, act as a nuclear forensics detective, date an artefact, clean up air, improve a microprocessor, transmute nuclear waste, detect a counterfeit or even look into the stars. Nowadays more than particle accelerators operate worldwide in medicine, industry and basic research. For example the proton therapy market is expected to attain 1 billion US per year in 2019 with almost 330 proton therapy rooms, while the annual market for the ion implantation industry already reached 1.5 G in revenue [1,2]. A brief history of the Tandem Accelerators Complex at IFIN-HH [3] emphasizing on their applications and the physics behind the scenes, is also presented [4-6].

  15. PERFORMANCE VERIFICATION OF ANIMAL WATER TREATMENT TECHNOLOGIES THROUGH EPA'S ENVIRONMENTAL TECHNOLOGY VERIFICATION PROGRAM

    EPA Science Inventory

    The U.S. Environmental Protection Agency created the Environmental Technology Verification Program (ETV) to further environmental protection by accelerating the commercialization of new and innovative technology through independent performance verification and dissemination of in...

  16. Ponderomotive Acceleration in Coronal Loops

    NASA Astrophysics Data System (ADS)

    Dahlburg, Russell B.; Laming, J. Martin; Taylor, Brian; Obenschain, Keith

    2017-08-01

    Ponderomotive acceleration has been asserted to be a cause of the First Ionization Potential (FIP) effect, the by now well known enhancement in abundance by a factor of 3-4 over photospheric values of elements in the solar corona with FIP less than about 10 eV. It is shown here by means of numerical simulations that ponderomotive acceleration occurs in solar coronal loops, with the appropriate magnitude and direction, as a ``byproduct'' of coronal heating. The numerical simulations are performed with the HYPERION code, which solves the fully compressible three-dimensional magnetohydrodynamic equations including nonlinear thermal conduction and optically thin radiation. Numerical simulations of a coronal loops with an axial magnetic field from 0.005 Teslas to 0.02 Teslas and lengths from 25000 km to 75000 km are presented. In the simulations the footpoints of the axial loop magnetic field are convected by random, large-scale motions. There is a continuous formation and dissipation of field-aligned current sheets which act to heat the loop. As a consequence of coronal magnetic reconnection, small scale, high speed jets form. The familiar vortex quadrupoles form at reconnection sites. Between the magnetic footpoints and the corona the reconnection flow merges with the boundary flow. It is in this region that the ponderomotive acceleration occurs. Mirroring the character of the coronal reconnection, the ponderomotive acceleration is also found to be intermittent.

  17. Overview of accelerators with potential use in homeland security

    DOE PAGES

    Garnett, Robert W.

    2015-06-18

    Quite a broad range of accelerators have been applied to solving many of the challenging problems related to homeland security and defense. These accelerator systems range from relatively small, simple, and compact, to large and complex, based on the specific application requirements. They have been used or proposed as sources of primary and secondary probe beams for applications such as radiography and to induce specific reactions that are key signatures for detecting conventional explosives or fissile material. A brief overview and description of these accelerator systems, their specifications, and application will be presented. Some recent technology trends will also bemore » discussed.« less

  18. Real-time and accelerated outdoor endurance testing of solar cells

    NASA Technical Reports Server (NTRS)

    Forestieri, A. F.; Anagnostou, E.

    1977-01-01

    Real-time and accelerated outdoor endurance testing was performed on a variety of samples of interest to the National Photovoltaic Conversion Program. The real-time tests were performed at seven different sites and the accelerated tests were performed at one of those sites in the southwestern United States. The purpose of the tests were to help evaluate the lifetime of photovoltaic systems. Three types of samples were tested; transmission samples of possible cover materials, sub-modules constructed using these materials attached to solar cells, and solar cell modules produced by the manufacturers for the ERDA program. Results indicate that suitable cover materials are glass, FEP-A and PFA. Dirt accumulation and cleanability are important factors in the selection of solar cell module covers and encapsulants.

  19. Basic and applied studies of the ram accelerator as a hypervelocity projectile launcher

    NASA Astrophysics Data System (ADS)

    Bruckner, Adam P.; Knowlen, Carl

    1993-12-01

    The potential of using ram accelerator technology for an impulsive launcher of autonomously guided interceptors, such as the LEAP, has been studied during this contract period. In addition, fundamental investigations on some of the engineering issues which must be addressed for enabling ram accelerator propulsive modes to operate at 4 km/sec have been undertaken. An experimental investigation of the gas dynamic limits of ram accelerator operation has demonstrated the existence of two distinct limiting mechanisms that must be accounted for when designing projectiles for these launchers. Other experiments were conducted to make detailed pressure measurements of the flow fields at the tube walls to study the effects of projectile canting. Results from this LEAP launcher study and the experimental investigations indicate that the ram accelerator technology is well suited for applications as a transportable launcher capable of meeting the needs of theater ballistic missile defense missions.

  20. Direct longitudinal laser acceleration of electrons in free space

    NASA Astrophysics Data System (ADS)

    Carbajo, Sergio; Nanni, Emilio A.; Wong, Liang Jie; Moriena, Gustavo; Keathley, Phillip D.; Laurent, Guillaume; Miller, R. J. Dwayne; Kärtner, Franz X.

    2016-02-01

    Compact laser-driven accelerators are pursued heavily worldwide because they make novel methods and tools invented at national laboratories widely accessible in science, health, security, and technology [V. Malka et al., Principles and applications of compact laser-plasma accelerators, Nat. Phys. 4, 447 (2008)]. Current leading laser-based accelerator technologies [S. P. D. Mangles et al., Monoenergetic beams of relativistic electrons from intense laser-plasma interactions, Nature (London) 431, 535 (2004); T. Toncian et al., Ultrafast laser-driven microlens to focus and energy-select mega-electron volt protons, Science 312, 410 (2006); S. Tokita et al. Single-shot ultrafast electron diffraction with a laser-accelerated sub-MeV electron pulse, Appl. Phys. Lett. 95, 111911 (2009)] rely on a medium to assist the light to particle energy transfer. The medium imposes material limitations or may introduce inhomogeneous fields [J. R. Dwyer et al., Femtosecond electron diffraction: "Making the molecular movie,", Phil. Trans. R. Soc. A 364, 741 (2006)]. The advent of few cycle ultraintense radially polarized lasers [S. Carbajo et al., Efficient generation of ultraintense few-cycle radially polarized laser pulses, Opt. Lett. 39, 2487 (2014)] has ushered in a novel accelerator concept [L. J. Wong and F. X. Kärtner, Direct acceleration of an electron in infinite vacuum by a pulsed radially polarized laser beam, Opt. Express 18, 25035 (2010); F. Pierre-Louis et al. Direct-field electron acceleration with ultrafast radially polarized laser beams: Scaling laws and optimization, J. Phys. B 43, 025401 (2010); Y. I. Salamin, Electron acceleration from rest in vacuum by an axicon Gaussian laser beam, Phys. Rev. A 73, 043402 (2006); C. Varin and M. Piché, Relativistic attosecond electron pulses from a free-space laser-acceleration scheme, Phys. Rev. E 74, 045602 (2006); A. Sell and F. X. Kärtner, Attosecond electron bunches accelerated and compressed by radially polarized laser

  1. Potential of mobile intraoperative radiotherapy technology.

    PubMed

    Goer, Donald A; Musslewhite, Chapple W; Jablons, David M

    2003-10-01

    Mobile IORT units have the potential to change the way patients who have cancer are treated. The integration of IORT into cancer treatment programs, made possible by the new technologies of mobile linear accelerators that can be used in unshielded operating rooms, makes IORT significantly less time-consuming, less costly, and less risky to administer. It is now practical for IORT to be used in early-stage disease, in addition to advanced disease, and in sites for which patient transportation in the middle of surgery is considered too risky. Preliminary results of trials for early-stage breast and rectal cancer indicate benefits of IORT. Pediatric patients and patients who have lung cancer, previously underserved by IORT therapies, can be offered potential gains when patient transport issues do not limit IORT. Furthermore, because many of these mobile systems require no shielding, it is now practical for mobile units to be shared between hospitals, making this new mobile technology much more widely available.

  2. Accelerated stress testing of terrestrial solar cells

    NASA Technical Reports Server (NTRS)

    Prince, J. L.; Lathrop, J. W.

    1979-01-01

    A program to investigate the reliability characteristics of unencapsulated low-cost terrestrial solar cells using accelerated stress testing is described. Reliability (or parametric degradation) factors appropriate to the cell technologies and use conditions were studied and a series of accelerated stress tests was synthesized. An electrical measurement procedure and a data analysis and management system was derived, and stress test fixturing and material flow procedures were set up after consideration was given to the number of cells to be stress tested and measured and the nature of the information to be obtained from the process. Selected results and conclusions are presented.

  3. SITE TECHNOLOGY CAPSULE: UNTERDRUCK-VERDAMPFER- BRUNNEN TECHNOLOGY (UVB) VACUUM VAPORIZING WELL

    EPA Science Inventory

    The UVB technology is an in situ groundwater remediation technology for aquifers contaminated with compounds amenable to air stripping, and is an alternative method to pump-and-treat remediation of groundwater. The UVB technology is designed to remove VOCs from groundwater by tra...

  4. Compact and tunable focusing device for plasma wakefield acceleration

    NASA Astrophysics Data System (ADS)

    Pompili, R.; Anania, M. P.; Chiadroni, E.; Cianchi, A.; Ferrario, M.; Lollo, V.; Notargiacomo, A.; Picardi, L.; Ronsivalle, C.; Rosenzweig, J. B.; Shpakov, V.; Vannozzi, A.

    2018-03-01

    Plasma wakefield acceleration, either driven by ultra-short laser pulses or electron bunches, represents one of the most promising techniques able to overcome the limits of conventional RF technology and allows the development of compact accelerators. In the particle beam-driven scenario, ultra-short bunches with tiny spot sizes are required to enhance the accelerating gradient and preserve the emittance and energy spread of the accelerated bunch. To achieve such tight transverse beam sizes, a focusing system with short focal length is mandatory. Here we discuss the development of a compact and tunable system consisting of three small-bore permanent-magnet quadrupoles with 520 T/m field gradient. The device has been designed in view of the plasma acceleration experiments planned at the SPARC_LAB test-facility. Being the field gradient fixed, the focusing is adjusted by tuning the relative position of the three magnets with nanometer resolution. Details about its magnetic design, beam-dynamics simulations, and preliminary results are examined in the paper.

  5. ENVIRONMENTAL TECHNOLOGY VERIFICATION REPORT - PORTABLE GAS CHROMATOGRAPH ELECTRONIC SENSOR TECHNOLOGY MODEL 4100

    EPA Science Inventory

    The U.S. Environmental Protection Agency, through the Environmental Technology Verification Program, is working to accelerate the acceptance and use of innovative technologies that improve the way the United States manages its environmental problems. As part of this program, the...

  6. Progress of the Felsenkeller Shallow-Underground Accelerator for Nuclear Astrophysics

    NASA Astrophysics Data System (ADS)

    Bemmerer, D.; Cavanna, F.; Cowan, T. E.; Grieger, M.; Hensel, T.; Junghans, A. R.; Ludwig, F.; Müller, S. E.; Rimarzig, B.; Reinicke, S.; Schulz, S.; Schwengner, R.; Stöckel, K.; Szücs, T.; Takács, M. P.; Wagner, A.; Wagner, L.; Zuber, K.

    Low-background experiments with stable ion beams are an important tool for putting the model of stellar hydrogen, helium, and carbon burning on a solid experimental foundation. The pioneering work in this regard has been done by the LUNA collaboration at Gran Sasso, using a 0.4 MV accelerator. In the present contribution, the status of the project for a higher-energy underground accelerator is reviewed. Two tunnels of the Felsenkeller underground site in Dresden, Germany, are currently being refurbished for the installation of a 5 MV high-current Pelletron accelerator. Construction work is on schedule and expected to complete in August 2017. The accelerator will provide intense, 50 µA, beams of 1H+, 4He+, and 12C+ ions, enabling research on astrophysically relevant nuclear reactions with unprecedented sensitivity.

  7. Disturbance-mediated accelerated succession in two Michigan forest types

    USGS Publications Warehouse

    Abrams, Marc D.; Scott, Michael L.

    1989-01-01

    In northern lower Michigan, logging accelerated sugar maple (Acer saccharum) dominance in a northern white cedar (Thuja occidentals) community, and clear-cutting and burning quickly converted certain sites dominated by mature jack pine (Pinus banksiana) to early-succesional hardwoods, including Prunus, Populus, and Quercus. In both forest types the succeeding hardwoods should continue to increase in the future at the expense of the pioneer conifer species. In the cedar example, sugar maple was also increasing a an undisturbed, old-growth stand, but at a much reduced rate than in the logged stand. Traditionally, disturbance was through to set back succession to some earlier stage. However, out study sites and at least several other North American forest communities exhibited accelerated succession following a wide range of disturbances, including logging fire, ice storms, wind-throw, disease, insect attack, and herbicide spraying.

  8. Reservoir High's TE Site Wins Web Site of the Month

    ERIC Educational Resources Information Center

    Tech Directions, 2008

    2008-01-01

    This article features "Mr. Rhine's Technology Education Web Site," a winner of the Web Site of the Month. This Web site was designed by Luke Rhine, a teacher at the Reservoir High School in Fulton, Maryland. Rhine's Web site offers course descriptions and syllabuses, class calendars, lectures and presentations, design briefs and other course…

  9. Geological and technological assessment of artificial reef sites, Louisiana outer continental shelf

    USGS Publications Warehouse

    Pope, D.L.; Moslow, T.F.; Wagner, J.B.

    1993-01-01

    This paper describes the general procedures used to select sites for obsolete oil and gas platforms as artificial reefs on the Louisiana outer continental shelf (OCS). The methods employed incorporate six basic steps designed to resolve multiple-use conflicts that might otherwise arise with daily industry and commercial fishery operations, and to identify and assess both geological and technological constraints that could affect placement of the structures. These steps include: (1) exclusion mapping; (2) establishment of artificial reef planning areas; (3) database compilation; (4) assessment and interpretation of database; (5) mapping of geological and man-made features within each proposed reef site; and (6) site selection. Nautical charts, bathymetric maps, and offshore oil and gas maps were used for exclusion mapping, and to select nine regional planning areas. Pipeline maps were acquired from federal agencies and private industry to determine their general locations within each planning area, and to establish exclusion fairways along each pipeline route. Approximately 1600 line kilometers of high-resolution geophysical data collected by federal agencies and private industry was acquired for the nine planning areas. These data were interpreted to determine the nature and extent of near-surface geologic features that could affect placement of the structures. Seismic reflection patterns were also characterized to evaluate near-bottom sedimentation processes in the vicinity of each reef site. Geotechnical borings were used to determine the lithological and physical properties of the sediment, and for correlation with the geophysical data. Since 1987, five sites containing 10 obsolete production platforms have been selected on the Louisiana OCS using these procedures. Industry participants have realized a total savings of approximately US $1 500 000 in salvaging costs by converting these structures into artificial reefs. ?? 1993.

  10. Compilation of accelerated bridge construction (ABC) bridges : final report.

    DOT National Transportation Integrated Search

    2016-01-01

    Development of accelerated bridge construction (ABC) technologies has been occurring across the country, many times in : isolation. Although FHWA and others have worked to facilitate communication between these efforts, there was not a : comprehensiv...

  11. Thomas Jefferson National Accelerator Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grames, Joseph; Higinbotham, Douglas; Montgomery, Hugh

    The Thomas Jefferson National Accelerator Facility (Jefferson Lab) in Newport News, Virginia, USA, is one of ten national laboratories under the aegis of the Office of Science of the U.S. Department of Energy (DOE). It is managed and operated by Jefferson Science Associates, LLC. The primary facility at Jefferson Lab is the Continuous Electron Beam Accelerator Facility (CEBAF) as shown in an aerial photograph in Figure 1. Jefferson Lab was created in 1984 as CEBAF and started operations for physics in 1995. The accelerator uses superconducting radio-frequency (srf) techniques to generate high-quality beams of electrons with high-intensity, well-controlled polarization. Themore » technology has enabled ancillary facilities to be created. The CEBAF facility is used by an international user community of more than 1200 physicists for a program of exploration and study of nuclear, hadronic matter, the strong interaction and quantum chromodynamics. Additionally, the exceptional quality of the beams facilitates studies of the fundamental symmetries of nature, which complement those of atomic physics on the one hand and of high-energy particle physics on the other. The facility is in the midst of a project to double the energy of the facility and to enhance and expand its experimental facilities. Studies are also pursued with a Free-Electron Laser produced by an energy-recovering linear accelerator.« less

  12. Graphic products used in the evaluation of traditional and emerging remote sensing technologies for the detection of fugitive contamination at selected superfund hazardous waste sites

    USGS Publications Warehouse

    Slonecker, E. Terrence; Fisher, Gary B.

    2011-01-01

    This report presents the overhead imagery and field sampling results used to prepare U.S. Geological Survey Open-File Report 2011-1050, 'Evaluation of Traditional and Emerging Remote Sensing Technologies for the Detection of Fugitive Contamination at Selected Superfund Hazardous Waste Sites'. These graphic products were used in the evaluation of remote sensing technology in postclosure monitoring of hazardous waste sites and represent an ongoing research effort. Soil sampling results presented here were accomplished with field portable x-ray fluoresence (XRF) technology and are used as screening tools only representing the current conditions of metals and other contaminants at selected Superfund hazardous waste sites.

  13. Regional Variations of Public Perception on Contaminated Industrial Sites in China and Its Influencing Factors

    PubMed Central

    Li, Xiaonuo; Jiao, Wentao; Xiao, Rongbo; Chen, Weiping; Bai, Yanying

    2016-01-01

    Public involvement is critical in sustainable contaminated site management. It is important for China to improve public knowledge and participation, foster dialogue between urban managers and laypeople, and accelerate the remediation and redevelopment processes in contaminated site management. In this study, we collected 1812 questionnaires from nine cities around China through face-to-face interviews and statistically analyzed the perception of residents concerning contaminated sites. The results show that respondents’ concern about soil pollution was lower than for other environmental issues and their knowledge of soil contamination was limited. The risks posed by contaminated industrial sites were well recognized by respondents, but they were unsatisfied with the performance of local agencies regarding information disclosure, publicity and education and public participation. Respondents believed that local governments and polluters should take the primary responsibility for contaminated site remediation. Most of them were unwilling to pay for contaminated site remediation and preferred recreational or public service redevelopment. Moreover, our research indicated that public perception varied among different cities. This variation was mainly determined by implementations of policy instruments and additionally affected by remediation technology, pollutant type, regional policy response and living distance. PMID:27070632

  14. Regional Variations of Public Perception on Contaminated Industrial Sites in China and Its Influencing Factors.

    PubMed

    Li, Xiaonuo; Jiao, Wentao; Xiao, Rongbo; Chen, Weiping; Bai, Yanying

    2016-04-08

    Public involvement is critical in sustainable contaminated site management. It is important for China to improve public knowledge and participation, foster dialogue between urban managers and laypeople, and accelerate the remediation and redevelopment processes in contaminated site management. In this study, we collected 1812 questionnaires from nine cities around China through face-to-face interviews and statistically analyzed the perception of residents concerning contaminated sites. The results show that respondents' concern about soil pollution was lower than for other environmental issues and their knowledge of soil contamination was limited. The risks posed by contaminated industrial sites were well recognized by respondents, but they were unsatisfied with the performance of local agencies regarding information disclosure, publicity and education and public participation. Respondents believed that local governments and polluters should take the primary responsibility for contaminated site remediation. Most of them were unwilling to pay for contaminated site remediation and preferred recreational or public service redevelopment. Moreover, our research indicated that public perception varied among different cities. This variation was mainly determined by implementations of policy instruments and additionally affected by remediation technology, pollutant type, regional policy response and living distance.

  15. Free electron lasers driven by linear induction accelerators: High power radiation sources

    NASA Technical Reports Server (NTRS)

    Orzechowski, T. J.

    1989-01-01

    The technology of Free Electron Lasers (FELs) and linear induction accelerators (LIAs) is addressed by outlining the following topics: fundamentals of FELs; basic concepts of linear induction accelerators; the Electron Laser Facility (a microwave FEL); PALADIN (an infrared FEL); magnetic switching; IMP; and future directions (relativistic klystrons). This presentation is represented by viewgraphs only.

  16. Identifying new technologies that save energy and reduce costs to the Federal sector: The New Technology Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hunt, W.D.M.; Conover, D.R.; Stockmeyer, M.K.

    1995-11-01

    In 1990 the New Technology Demonstration Program (formerly the Test Bed Demonstration Program) was initiated by the US Department of Energy`s Office (DOE`s) of Federal Energy Management Programs with the purpose of accelerating the introduction of new technologies into the Federal sector. The program has since expanded into a multi-laboratory collaborative effort that evaluates new technologies and shares the results with the Federal design and procurement communities. These evaluations are performed on a collaborative basis which typically includes technology manufacturers, Federal facilities, utilities, trade associations, research institutes, and other in partnership with DOE. The end result is a range ofmore » effective technology transfer tools that provide operations and performance data on new technologies to Federal designers, building managers, and procurement officials. These tools assist in accelerating a technology`s Federal application and realizing reductions in energy consumption and costs.« less

  17. Accelerated Adaptive MGS Phase Retrieval

    NASA Technical Reports Server (NTRS)

    Lam, Raymond K.; Ohara, Catherine M.; Green, Joseph J.; Bikkannavar, Siddarayappa A.; Basinger, Scott A.; Redding, David C.; Shi, Fang

    2011-01-01

    The Modified Gerchberg-Saxton (MGS) algorithm is an image-based wavefront-sensing method that can turn any science instrument focal plane into a wavefront sensor. MGS characterizes optical systems by estimating the wavefront errors in the exit pupil using only intensity images of a star or other point source of light. This innovative implementation of MGS significantly accelerates the MGS phase retrieval algorithm by using stream-processing hardware on conventional graphics cards. Stream processing is a relatively new, yet powerful, paradigm to allow parallel processing of certain applications that apply single instructions to multiple data (SIMD). These stream processors are designed specifically to support large-scale parallel computing on a single graphics chip. Computationally intensive algorithms, such as the Fast Fourier Transform (FFT), are particularly well suited for this computing environment. This high-speed version of MGS exploits commercially available hardware to accomplish the same objective in a fraction of the original time. The exploit involves performing matrix calculations in nVidia graphic cards. The graphical processor unit (GPU) is hardware that is specialized for computationally intensive, highly parallel computation. From the software perspective, a parallel programming model is used, called CUDA, to transparently scale multicore parallelism in hardware. This technology gives computationally intensive applications access to the processing power of the nVidia GPUs through a C/C++ programming interface. The AAMGS (Accelerated Adaptive MGS) software takes advantage of these advanced technologies, to accelerate the optical phase error characterization. With a single PC that contains four nVidia GTX-280 graphic cards, the new implementation can process four images simultaneously to produce a JWST (James Webb Space Telescope) wavefront measurement 60 times faster than the previous code.

  18. GENERAL ENVIRONMENTAL CORPORATION; CURE ELECTROCOAGULATION TECHNOLOGY: INNOVATIVE TECHNOLOGY EVALUATION REPORT

    EPA Science Inventory

    The CURE electrocoagulation technology was demonstrated under the Superfund Innovative Technology Evaluation (SITE) program at the U.S. Department of Energy (DOE) Rocky Flats Environmental Technology Site (RFETS), where water from the solar evaporation ponds (SEPs) was contaminat...

  19. The interactive impact of forest site and stand attributes and logging technology on stand management

    Treesearch

    C.B. LeDoux; J.E. Baumgras

    1991-01-01

    The impact of selected site and stand attributes on stand management is demonstrated using actual forest model plot data and a complete systems simulation model called MANAGE. The influence of terrain on the type of logging technology required to log a stand and the resulting impact on stand management is also illustrated. The results can be used by managers and...

  20. Simulation Studies of the Dielectric Grating as an Accelerating and Focusing Structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soong, Ken; Peralta, E.A.; Byer, R.L.

    A grating-based design is a promising candidate for a laser-driven dielectric accelerator. Through simulations, we show the merits of a readily fabricated grating structure as an accelerating component. Additionally, we show that with a small design perturbation, the accelerating component can be converted into a focusing structure. The understanding of these two components is critical in the successful development of any complete accelerator. The concept of accelerating electrons with the tremendous electric fields found in lasers has been proposed for decades. However, until recently the realization of such an accelerator was not technologically feasible. Recent advances in the semiconductor industry,more » as well as advances in laser technology, have now made laser-driven dielectric accelerators imminent. The grating-based accelerator is one proposed design for a dielectric laser-driven accelerator. This design, which was introduced by Plettner, consists of a pair of opposing transparent binary gratings, illustrated in Fig. 1. The teeth of the gratings serve as a phase mask, ensuring a phase synchronicity between the electromagnetic field and the moving particles. The current grating accelerator design has the drive laser incident perpendicular to the substrate, which poses a laser-structure alignment complication. The next iteration of grating structure fabrication seeks to monolithically create an array of grating structures by etching the grating's vacuum channel into a fused silica wafer. With this method it is possible to have the drive laser confined to the plane of the wafer, thus ensuring alignment of the laser-and-structure, the two grating halves, and subsequent accelerator components. There has been previous work using 2-dimensional finite difference time domain (2D-FDTD) calculations to evaluate the performance of the grating accelerator structure. However, this work approximates the grating as an infinite structure and does not accurately model a

  1. Electron heating and acceleration during magnetic reconnection

    NASA Astrophysics Data System (ADS)

    Dahlin, Joel

    2017-10-01

    Magnetic reconnection is thought to be an important driver of energetic particles in a variety of astrophysical phenomena such as solar flares and magnetospheric storms. However, the observed fraction of energy imparted to a nonthermal component can vary widely in different regimes. We use kinetic particle-in-cell (PIC) simulations to demonstrate the important role of the non-reversing (guide) field in controlling the efficiency of electron acceleration in collisionless reconnection. In reconnection where the guide field is smaller than the reconnecting component, the dominant electron accelerator is a Fermi-type mechanism that preferentially energizes the most energetic particles. In strong guide field reconnection, the field-line contraction that drives the Fermi mechanism becomes weak. Instead, parallel electric fields are primarily responsible for driving electron heating but are ineffective in driving the energetic component of the spectrum. Three-dimensional simulations reveal that the stochastic magnetic field that develops during 3D guide field reconnection plays a vital role in particle acceleration and transport. The reconnection outflows that drive Fermi acceleration also expel accelerating particles from energization regions. In 2D reconnection, electrons are trapped in island cores and acceleration ceases, whereas in 3D the stochastic magnetic field enables energetic electrons to leak out of islands and freely sample regions of energy release. A finite guide field is required to break initial 2D symmetry and facilitate escape from island structures. We show that reconnection with a guide field comparable to the reconnecting field generates the greatest number of energetic electrons, a regime where both (a) the Fermi mechanism is an efficient driver and (b) energetic electrons may freely access acceleration sites. These results have important implications for electron acceleration in solar flares and reconnection-driven dissipation in turbulence.

  2. SUPERFUND INNOVATIVE TECHNOLOGY EVALUATION PROGRAM - TECHNOLOGY PROFILES 4th Edition

    EPA Science Inventory

    The Superfund Innovative Technology Evaluation (SITE) Program evaluates new and promising treatment technologies for cleanup of hazardous waste sites. The program was created to encourage the development and routine use of innovative treatment technologies. As a result, the SI...

  3. An update on the use of laser technology in skin vaccination

    PubMed Central

    Chen, Xinyuan; Wang, Ji; Shah, Dilip; Wu, Mei X

    2014-01-01

    Vaccination via skin often induces stronger immune responses than via muscle. This, in line with potential needle-free, painless delivery, makes skin a very attractive site for immunization. Yet, despite decades of effort, effective skin delivery is still in its infant stage and safe and potent adjuvants for skin vaccination remain largely undefined. We have shown that laser technologies including both fractional and non-fractional lasers can greatly augment vaccine-induced immune response without incurring any significant local and systemic side effects. Laser illumination at specific settings can accelerate the motility of antigen-presenting cells or trigger release of ‘danger’ signals stimulating the immune system. Moreover, several other groups including the authors explore laser technologies for needle-free transcutaneous vaccine delivery. As these laser-mediated resurfacing technologies are convenient, safe and cost-effective, their new applications in vaccination warrant clinical studies in the very near future. PMID:24127871

  4. Converging blockchain and next-generation artificial intelligence technologies to decentralize and accelerate biomedical research and healthcare

    PubMed Central

    Mamoshina, Polina; Ojomoko, Lucy; Yanovich, Yury; Ostrovski, Alex; Botezatu, Alex; Prikhodko, Pavel; Izumchenko, Eugene; Aliper, Alexander; Romantsov, Konstantin; Zhebrak, Alexander; Ogu, Iraneus Obioma; Zhavoronkov, Alex

    2018-01-01

    The increased availability of data and recent advancements in artificial intelligence present the unprecedented opportunities in healthcare and major challenges for the patients, developers, providers and regulators. The novel deep learning and transfer learning techniques are turning any data about the person into medical data transforming simple facial pictures and videos into powerful sources of data for predictive analytics. Presently, the patients do not have control over the access privileges to their medical records and remain unaware of the true value of the data they have. In this paper, we provide an overview of the next-generation artificial intelligence and blockchain technologies and present innovative solutions that may be used to accelerate the biomedical research and enable patients with new tools to control and profit from their personal data as well with the incentives to undergo constant health monitoring. We introduce new concepts to appraise and evaluate personal records, including the combination-, time- and relationship-value of the data. We also present a roadmap for a blockchain-enabled decentralized personal health data ecosystem to enable novel approaches for drug discovery, biomarker development, and preventative healthcare. A secure and transparent distributed personal data marketplace utilizing blockchain and deep learning technologies may be able to resolve the challenges faced by the regulators and return the control over personal data including medical records back to the individuals. PMID:29464026

  5. Converging blockchain and next-generation artificial intelligence technologies to decentralize and accelerate biomedical research and healthcare.

    PubMed

    Mamoshina, Polina; Ojomoko, Lucy; Yanovich, Yury; Ostrovski, Alex; Botezatu, Alex; Prikhodko, Pavel; Izumchenko, Eugene; Aliper, Alexander; Romantsov, Konstantin; Zhebrak, Alexander; Ogu, Iraneus Obioma; Zhavoronkov, Alex

    2018-01-19

    The increased availability of data and recent advancements in artificial intelligence present the unprecedented opportunities in healthcare and major challenges for the patients, developers, providers and regulators. The novel deep learning and transfer learning techniques are turning any data about the person into medical data transforming simple facial pictures and videos into powerful sources of data for predictive analytics. Presently, the patients do not have control over the access privileges to their medical records and remain unaware of the true value of the data they have. In this paper, we provide an overview of the next-generation artificial intelligence and blockchain technologies and present innovative solutions that may be used to accelerate the biomedical research and enable patients with new tools to control and profit from their personal data as well with the incentives to undergo constant health monitoring. We introduce new concepts to appraise and evaluate personal records, including the combination-, time- and relationship-value of the data. We also present a roadmap for a blockchain-enabled decentralized personal health data ecosystem to enable novel approaches for drug discovery, biomarker development, and preventative healthcare. A secure and transparent distributed personal data marketplace utilizing blockchain and deep learning technologies may be able to resolve the challenges faced by the regulators and return the control over personal data including medical records back to the individuals.

  6. Accelerated stress testing of terrestrial solar cells

    NASA Technical Reports Server (NTRS)

    Lathrop, J. W.; Hawkins, D. C.; Prince, J. L.; Walker, H. A.

    1982-01-01

    The development of an accelerated test schedule for terrestrial solar cells is described. This schedule, based on anticipated failure modes deduced from a consideration of IC failure mechanisms, involves bias-temperature testing, humidity testing (including both 85-85 and pressure cooker stress), and thermal-cycle thermal-shock testing. Results are described for 12 different unencapsulated cell types. Both gradual electrical degradation and sudden catastrophic mechanical change were observed. These effects can be used to discriminate between cell types and technologies relative to their reliability attributes. Consideration is given to identifying laboratory failure modes which might lead to severe degradation in the field through second quadrant operation. Test results indicate that the ability of most cell types to withstand accelerated stress testing depends more on the manufacturer's design, processing, and worksmanship than on the particular metallization system. Preliminary tests comparing accelerated test results on encapsulated and unencapsulated cells are described.

  7. Superconducting Magnets for Accelerators

    NASA Astrophysics Data System (ADS)

    Brianti, G.; Tortschanoff, T.

    1993-03-01

    This chapter describes the main features of superconducting magnets for high energy synchrotrons and colliders. It refers to magnets presently used and under development for the most advanced accelerators projects, both recently constructed or in the preparatory phase. These magnets, using the technology mainly based on the NbTi conductor, are described from the aspect of design, materials, construction and performance. The trend toward higher performance can be gauged from the doubling of design field in less than a decade from about 4 T for the Tevatron to 10 T for the LHC. Special properties of the superconducting accelerator magnets, such as their general layout and the need of extensive computational treatment, the limits of performance inherent to the available conductors, the requirements on the structural design are described. The contribution is completed by elaborating on persistent current effects, quench protection and the cryostat design. As examples the main magnets for HERA and SSC, as well as the twin-aperture magnets for LHC, are presented.

  8. SITE TECHNOLOGY CAPSULE: KAI RADIO FREQUENCY HEATING TECHNOLOGY

    EPA Science Inventory

    KAI developed a patented, in situ RFH technology to enhance the removal of volatile and semi-volatile organics by soil vapor extraction (SVE). Electromagnetic energy heats the soil resulting in increased contaminant vapor pressures and soil permeability that may increase with dry...

  9. Field Emission in Superconducting Accelerators: Instrumented Measurements for Its Understanding and Mitigation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Geng, Rongli; Freyberger, Arne P.; Legg, Robert A.

    Several new accelerator projects are adopting superconducting accelerator technology. When accelerating cavities maintain high RF gradients, field emission, the emission of electrons from cavity walls, can occur and may impact operational cavity gradient, radiological environment via activated components, and reliability. In this talk, we will discuss instrumented measurements of field emission from the two 1.1 GeV superconducting continuous wave (CW) linacs in CEBAF. The goal is to improve the understanding of field emission sources originating from cryomodule production, installation and operation. Such basic knowledge is needed in guiding field emission control, mitigation, and reduction toward high gradient and reliable operationmore » of superconducting accelerators.« less

  10. Fermilab | Science | Particle Accelerators | Advanced Superconducting Test

    Science.gov Websites

    Accelerators for science and society Particle Physics 101 Science of matter, energy, space and time How Technology (FAST) Facility is America's only test bed for cutting-edge, record high-intensity particle beams in the United States as a particle beam research facility based on superconducting radio-frequency

  11. SUPERFUND INNOVATIVE TECHNOLOGY EVALUATION - TECHNOLOGY PROFILES

    EPA Science Inventory

    This document is intended as a reference guide for EPA Regional decision makers and others interested in technologies in the SITE Demonstration and Emerging Technologies programs. The Technologies are described in technology profiles, presented in alphabetical order by developer ...

  12. Superconducting Magnet Technology for Future High Energy Proton Colliders

    NASA Astrophysics Data System (ADS)

    Gourlay, Stephen

    2017-01-01

    Interest in high field dipoles has been given a boost by new proposals to build a high-energy proton-proton collider to follow the LHC and programs around the world are taking on the task to answer the need. Studies aiming toward future high-energy proton-proton colliders at the 100 TeV scale are now being organized. The LHC and current cost models are based on technology close to four decades old and point to a broad optimum of operation using dipoles with fields between 5 and 12T when site constraints, either geographical or political, are not a factor. Site geography constraints that limit the ring circumference can drive the required dipole field up to 20T, which is more than a factor of two beyond state-of-the-art. After a brief review of current progress, the talk will describe the challenges facing future development and present a roadmap for moving high field accelerator magnet technology forward. This work was supported by the Director, Office of Science, High Energy Physics, US Department of Energy, under contract No. DE-AC02-05CH11231.

  13. Taking Control of Castleman Disease: Leveraging Precision Medicine Technologies to Accelerate Rare Disease Research.

    PubMed

    Newman, Samantha Kass; Jayanthan, Raj K; Mitchell, Grant W; Carreras Tartak, Jossie A; Croglio, Michael P; Suarez, Alexander; Liu, Amy Y; Razzo, Beatrice M; Oyeniran, Enny; Ruth, Jason R; Fajgenbaum, David C

    2015-12-01

    Castleman disease (CD) is a rare and heterogeneous disorder characterized by lymphadenopathy that may occur in a single lymph node (unicentric) or multiple lymph nodes (multicentric), the latter typically occurring secondary to excessive proinflammatory hypercytokinemia. While a cohort of multicentric Castleman disease (MCD) cases are caused by Human Herpes Virus-8 (HHV-8), the etiology of HHV-8 negative, idiopathic MCD (iMCD), remains unknown. Breakthroughs in "omics" technologies that have facilitated the development of precision medicine hold promise for elucidating disease pathogenesis and identifying novel therapies for iMCD. However, in order to leverage precision medicine approaches in rare diseases like CD, stakeholders need to overcome several challenges. To address these challenges, the Castleman Disease Collaborative Network (CDCN) was founded in 2012. In the past 3 years, the CDCN has worked to transform the understanding of the pathogenesis of CD, funded and initiated genomics and proteomics research, and united international experts in a collaborative effort to accelerate progress for CD patients. The CDCN's collaborative structure leverages the tools of precision medicine and serves as a model for both scientific discovery and advancing patient care.

  14. SUMMARY OF TECNIQUES AND UNIQUE USES FOR DIRECT PUSH METHODS IN SITE CHARACTERIZATION ON CONTAMINATED FIELD SITES

    EPA Science Inventory

    At many of the sites where we have been asked to assist in site characterization, we have discovered severe discrepancies that new technologies may be able to prevent. This presentation is designed to illustrate these new technologies or unique uses of existing technology and the...

  15. High-field plasma acceleration in a high-ionization-potential gas

    DOE PAGES

    Corde, S.; Adli, E.; Allen, J. M.; ...

    2016-06-17

    Plasma accelerators driven by particle beams are a very promising future accelerator technology as they can sustain high accelerating fields over long distances with high energy efficiency. They rely on the excitation of a plasma wave in the wake of a drive beam. To generate the plasma, a neutral gas can be field-ionized by the head of the drive beam, in which case the distance of acceleration and energy gain can be strongly limited by head erosion. In our research, we overcome this limit and demonstrate that electrons in the tail of a drive beam can be accelerated by upmore » to 27 GeV in a high-ionization-potential gas (argon), boosting their initial 20.35 GeV energy by 130%. Particle-in-cell simulations show that the argon plasma is sustaining very high electric fields, of ~150 GV m -1, over ~20 cm. Lastly, the results open new possibilities for the design of particle beam drivers and plasma sources.« less

  16. Accelerated aging in adults with knee osteoarthritis pain: consideration for frequency, intensity, time, and total pain sites

    PubMed Central

    Sibille, Kimberly T.; Chen, Huaihou; Bartley, Emily J.; Riley, Joseph; Glover, Toni L.; King, Christopher D.; Zhang, Hang; Cruz-Almeida, Yenisel; Goodin, Burel R.; Sotolongo, Adriana; Petrov, Megan E.; Herbert, Matthew; Bulls, Hailey W.; Edberg, Jeffrey C.; Staud, Roland; Redden, David; Bradley, Laurence A.; Fillingim, Roger B.

    2017-01-01

    Abstract Introduction: Individuals with osteoarthritis (OA) show increased morbidity and mortality. Telomere length, a measure of cellular aging, predicts increased morbidity and mortality. Telomeres shorten with persisting biological and psychosocial stress. Living with chronic OA pain is stressful. Previous research exploring telomere length in people with OA has produced inconsistent results. Considering pain severity may clarify the relationship between OA and telomeres. Objectives: We hypothesized that individuals with high OA chronic pain severity would have shorter telomeres than those with no or low chronic pain severity. Methods: One hundred thirty-six adults, ages 45 to 85 years old, with and without symptomatic knee OA were included in the analysis. Peripheral blood leukocyte telomere length was measured, and demographic, clinical, and functional data were collected. Participants were categorized into 5 pain severity groups based on an additive index of frequency, intensity, time or duration, and total number of pain sites (FITT). Covariates included age, sex, race or ethnicity, study site, and knee pain status. Results: The no or low chronic pain severity group had significantly longer telomeres compared with the high pain severity group, P = 0.025. A significant chronic pain severity dose response emerged for telomere length, P = 0.034. The FITT chronic pain severity index was highly correlated with the clinical and functional OA pain measures. However, individual clinical and functional measures were not associated with telomere length. Conclusion: Results demonstrate accelerated cellular aging with high knee OA chronic pain severity and provide evidence for the potential utility of the FITT chronic pain severity index in capturing the biological burden of chronic pain. PMID:29392207

  17. Preliminary consideration of a double, 480 GeV, fast cycling proton accelerator for production of neutrino beams at Fermilab

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Piekarz, Henryk; Hays, Steven; /Fermilab

    We propose to build the DSF-MR (Double Super-Ferric Main Ring), 480 GeV, fast-cycling (2 second repetition rate) two-beam proton accelerator in the Main Ring tunnel of Fermilab. This accelerator design is based on the super-ferric magnet technology developed for the VLHC, and extended recently to the proposed LER injector for the LHC and fast cycling SF-SPS at CERN. The DSF-MR accelerator system will constitute the final stage of the proton source enabling production of two neutrino beams separated by 2 second time period. These beams will be sent alternately to two detectors located at {approx} 3000 km and {approx} 7500more » km away from Fermilab. It is expected that combination of the results from these experiments will offer more than 3 order of magnitudes increased sensitivity for detection and measurement of neutrino oscillations with respect to expectations in any current experiment, and thus may truly enable opening the window into the physics beyond the Standard Model. We examine potential sites for the long baseline neutrino detectors accepting beams from Fermilab. The current injection system consisting of 400 MeV Linac, 8 GeV Booster and the Main Injector can be used to accelerate protons to 45 GeV before transferring them to the DSF-MR. The implementation of the DSF-MR will allow for an 8-fold increase in beam power on the neutrino production target. In this note we outline the proposed new arrangement of the Fermilab accelerator complex. We also briefly describe the DSF-MR magnet design and its power supply, and discuss necessary upgrade of the Tevatron RF system for the use with the DSF-MR accelerator. Finally, we outline the required R&D, cost estimate and possible timeline for the implementation of the DSF-MR accelerator.« less

  18. Doing More with Less: Cost-effective, Compact Particle Accelerators (489th Brookhaven Lecture)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trbojevic, Dejan

    2013-10-22

    Replace a 135-ton magnet used for cancer-fighting particle therapies with a magnet that weighs only two tons? Such a swap is becoming possible thanks to new particle accelerator advances being developed by researchers at Brookhaven Lab. With an approach that combines techniques used by synchrotron accelerators with the ability to accept more energy, these new technologies could be used for more than fighting cancer. They could also decrease the lifecycle of byproducts from nuclear power plants and reduce costs for eRHIC—a proposed electron-ion collider for Brookhaven Lab that researchers from around the world would use to explore the glue thatmore » holds together the universe’s most basic building blocks and explore the proton-spin puzzle. During this lecture, Dr. Trbojevic provides an overview of accelerator technologies and techniques—particularly a non-scaling, fixed-focused alternating gradient—to focus particle beams using fewer, smaller magnets. He discusses how these technologies will benefit eRHIC and other applications, including particle therapies being developed to combat cancer.« less

  19. Accelerators for charged particle therapy: PAMELA and related issues

    NASA Astrophysics Data System (ADS)

    Peach, Ken

    2014-05-01

    Cancer is a dreadful disease that will affect one in three people at some point in their life; radiotherapy is used in more than half of all cancer treatment, and contributes about 40% to the successful treatment of cancer. Charged Particle Therapy uses protons and other light ions to deliver the lethal dose to the tumor while being relatively sparing of healthy tissue and, because of the finite range of the particles, is able to avoid giving any dose to vital organs. While there are adequate technologies currently available to deliver the required energies and fluxes, the two main technologies (cyclotrons and synchrotrons) have limitations. PAMELA (the Particle Accelerator for MEdicaLApplications) uses the newly-developed non-scaling Fixed Field Alternating Gradient accelerator concepts to deliver therapeutically relevant beams. The status of the development of the PAMELA conceptual design is discussed.

  20. Laser-driven electron beam acceleration and future application to compact light sources

    NASA Astrophysics Data System (ADS)

    Hafz, N.; Jeong, T. M.; Lee, S. K.; Pae, K. H.; Sung, J. H.; Choi, I. W.; Yu, T. J.; Jeong, Y. U.; Lee, J.

    2009-07-01

    Laser-driven plasma accelerators are gaining much attention by the advanced accelerator community due to the potential these accelerators hold in miniaturizing future high-energy and medium-energy machines. In the laser wakefield accelerator (LWFA), the ponderomotive force of an ultrashort high intensity laser pulse excites a longitudinal plasma wave or bubble. Due to huge charge separation, electric fields created in the plasma bubble can be several orders of magnitude higher than those available in conventional microwave and RF-based accelerator facilities which are limited (up to ˜100 MV/m) by material breakdown. Therefore, if an electron bunch is injected into the bubble in phase with its field, it will gain relativistic energies within an extremely short distance. Here, in the LWFA we show the generation of high-quality and high-energy electron beams up to the GeV-class within a few millimeters of gas-jet plasmas irradiated by tens of terawatt ultrashort laser pulses. Thus we realize approximately four orders of magnitude acceleration gradients higher than available by conventional technology. As a practical application of the stable high-energy electron beam generation, we are planning on injecting the electron beams into a few-meters long conventional undulator in order to realize compact X-ray synchrotron (immediate) and FEL (future) light sources. Stable laser-driven electron beam and radiation devices will surely open a new era in science, medicine and technology and will benefit a larger number of users in those fields.

  1. First muon acceleration using a radio-frequency accelerator

    NASA Astrophysics Data System (ADS)

    Bae, S.; Choi, H.; Choi, S.; Fukao, Y.; Futatsukawa, K.; Hasegawa, K.; Iijima, T.; Iinuma, H.; Ishida, K.; Kawamura, N.; Kim, B.; Kitamura, R.; Ko, H. S.; Kondo, Y.; Li, S.; Mibe, T.; Miyake, Y.; Morishita, T.; Nakazawa, Y.; Otani, M.; Razuvaev, G. P.; Saito, N.; Shimomura, K.; Sue, Y.; Won, E.; Yamazaki, T.

    2018-05-01

    Muons have been accelerated by using a radio-frequency accelerator for the first time. Negative muonium atoms (Mu- ), which are bound states of positive muons (μ+) and two electrons, are generated from μ+'s through the electron capture process in an aluminum degrader. The generated Mu- 's are initially electrostatically accelerated and injected into a radio-frequency quadrupole linac (RFQ). In the RFQ, the Mu- 's are accelerated to 89 keV. The accelerated Mu- 's are identified by momentum measurement and time of flight. This compact muon linac opens the door to various muon accelerator applications including particle physics measurements and the construction of a transmission muon microscope.

  2. Transforming American Education: Learning Powered by Technology. National Education Technology Plan, 2010

    ERIC Educational Resources Information Center

    US Department of Education, 2010

    2010-01-01

    This report presents the Administration's National Education Technology Plan. This plan calls for applying the advanced technologies used in everyone's daily personal and professional lives to the entire education system to improve student learning, accelerate and scale up the adoption of effective practices, and use data and information for…

  3. Site operator program final report for fiscal years 1992 through 1996

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Francfort, J.E.; Bassett, R.R.; Birasco, S.

    The Site Operator Program was an electric vehicle testing and evaluation program sponsored by US Department of Energy and managed at the Idaho National Engineering and Environmental Laboratory. The Program`s goals included the field evaluation of electric vehicles in real-world applications and environments; the support of electric vehicle technology advancement; the development of infrastructure elements necessary to support significant electric vehicle use; and increasing the awareness and acceptance of electric vehicles. This report covers Program activities from 1992 to 1996. The Site Operator Program ended in September 1996, when it was superseded by the Field Operations Program. Electric vehicle testingmore » included baseline performance testing, which was performed in conjunction with EV America. The baseline performance parameters included acceleration, braking, range, energy efficiency, and charging time. The Program collected fleet operations data on electric vehicles operated by the Program`s thirteen partners, comprising electric utilities, universities, and federal agencies. The Program`s partners had over 250 electric vehicles, from vehicle converters and original equipment manufacturers, in their operating fleets. Test results are available via the World Wide Web site at http://ev.inel.gov/sop.« less

  4. Study of component technologies for fuel cell on-site integrated energy systems

    NASA Technical Reports Server (NTRS)

    Lee, W. D.; Mathias, S.

    1980-01-01

    Heating, ventilation and air conditioning equipment are integrated with three types of fuel cells. System design and computer simulations are developed to utilize the thermal energy discharge of the fuel in the most cost effective manner. The fuel provides all of the electric needs and a loss of load probability analysis is used to ensure adequate power plant reliability. Equipment cost is estimated for each of the systems analyzed. A levelized annual cost reflecting owning and operating costs including the cost of money was used to select the most promising integrated system configurations. Cash flows are presented for the most promising 16 systems. Several systems for the 96 unit apartment complex (a retail store was also studied) were cost competitive with both gas and electric based conventional systems. Thermal storage is shown to be beneficial and the optimum absorption chiller sizing (waste heat recovery) in connection with electric chillers are developed. Battery storage was analyzed since the system is not electric grid connected. Advanced absorption chillers were analyzed as well. Recommendations covering financing, technical development, and policy issues are given to accelerate the commercialization of the fuel cell for on-site power generation in buildings.

  5. PARTICLE ACCELERATOR

    DOEpatents

    Teng, L.C.

    1960-01-19

    ABS>A combination of two accelerators, a cyclotron and a ring-shaped accelerator which has a portion disposed tangentially to the cyclotron, is described. Means are provided to transfer particles from the cyclotron to the ring accelerator including a magnetic deflector within the cyclotron, a magnetic shield between the ring accelerator and the cyclotron, and a magnetic inflector within the ring accelerator.

  6. The CUBLAS and CULA based GPU acceleration of adaptive finite element framework for bioluminescence tomography.

    PubMed

    Zhang, Bo; Yang, Xiang; Yang, Fei; Yang, Xin; Qin, Chenghu; Han, Dong; Ma, Xibo; Liu, Kai; Tian, Jie

    2010-09-13

    In molecular imaging (MI), especially the optical molecular imaging, bioluminescence tomography (BLT) emerges as an effective imaging modality for small animal imaging. The finite element methods (FEMs), especially the adaptive finite element (AFE) framework, play an important role in BLT. The processing speed of the FEMs and the AFE framework still needs to be improved, although the multi-thread CPU technology and the multi CPU technology have already been applied. In this paper, we for the first time introduce a new kind of acceleration technology to accelerate the AFE framework for BLT, using the graphics processing unit (GPU). Besides the processing speed, the GPU technology can get a balance between the cost and performance. The CUBLAS and CULA are two main important and powerful libraries for programming on NVIDIA GPUs. With the help of CUBLAS and CULA, it is easy to code on NVIDIA GPU and there is no need to worry about the details about the hardware environment of a specific GPU. The numerical experiments are designed to show the necessity, effect and application of the proposed CUBLAS and CULA based GPU acceleration. From the results of the experiments, we can reach the conclusion that the proposed CUBLAS and CULA based GPU acceleration method can improve the processing speed of the AFE framework very much while getting a balance between cost and performance.

  7. Work with Us | Geothermal Technologies | NREL

    Science.gov Websites

    work with us and leverage our geothermal research, facilities, and expertise. Contact Us Photo of develop, test, and evaluate geothermal technologies. Commercialize Your Technology Accelerate the transfer

  8. Innovations in Site Characterization: Streamlining Cleanup at Vapor Intrusion and Product Removal Sites Using the Triad Approach: Hartford Plume Site, Hartford, Illinois

    EPA Pesticide Factsheets

    The Hartford Plume Site case study provides a detailed example of the strategies and technologies used at the site that are available to environmental practitioners to use at large and small hydrocarbon sites.

  9. Acceleration Modes and Transitions in Pulsed Plasma Accelerators

    NASA Technical Reports Server (NTRS)

    Polzin, Kurt A.; Greve, Christine M.

    2018-01-01

    Pulsed plasma accelerators typically operate by storing energy in a capacitor bank and then discharging this energy through a gas, ionizing and accelerating it through the Lorentz body force. Two plasma accelerator types employing this general scheme have typically been studied: the gas-fed pulsed plasma thruster and the quasi-steady magnetoplasmadynamic (MPD) accelerator. The gas-fed pulsed plasma accelerator is generally represented as a completely transient device discharging in approximately 1-10 microseconds. When the capacitor bank is discharged through the gas, a current sheet forms at the breech of the thruster and propagates forward under a j (current density) by B (magnetic field) body force, entraining propellant it encounters. This process is sometimes referred to as detonation-mode acceleration because the current sheet representation approximates that of a strong shock propagating through the gas. Acceleration of the initial current sheet ceases when either the current sheet reaches the end of the device and is ejected or when the current in the circuit reverses, striking a new current sheet at the breech and depriving the initial sheet of additional acceleration. In the quasi-steady MPD accelerator, the pulse is lengthened to approximately 1 millisecond or longer and maintained at an approximately constant level during discharge. The time over which the transient phenomena experienced during startup typically occur is short relative to the overall discharge time, which is now long enough for the plasma to assume a relatively steady-state configuration. The ionized gas flows through a stationary current channel in a manner that is sometimes referred to as the deflagration-mode of operation. The plasma experiences electromagnetic acceleration as it flows through the current channel towards the exit of the device. A device that had a short pulse length but appeared to operate in a plasma acceleration regime different from the gas-fed pulsed plasma

  10. Advanced low-beta cavity development for proton and ion accelerators

    NASA Astrophysics Data System (ADS)

    Conway, Z. A.; Kelly, M. P.; Ostroumov, P. N.

    2015-05-01

    Recent developments in designing and processing low-beta superconducting cavities at Argonne National Laboratory are very encouraging for future applications requiring compact proton and ion accelerators. One of the major benefits of these accelerating structures is achieving real-estate accelerating gradients greater than 3 MV/m very efficiently either continuously or for long-duty cycle operation (>1%). The technology has been implemented in low-beta accelerator cryomodules for the Argonne ATLAS heavy-ion linac where the cryomodules are required to have real-estate gradients of more than 3 MV/m. In offline testing low-beta cavities with even higher gradients have already been achieved. This paper will review this work where we have achieved surface fields greater than 166 mT magnetic and 117 MV/m electric in a 72 MHz quarter-wave resonator optimized for β = 0.077 ions.

  11. SITE TECHNOLOGY CAPSULE: J.R. SIMPLOT EX-SITU BIOREMEDIATION TECHNOLOGY: DINOSEB

    EPA Science Inventory

    The J.R. Simplot Ex-Situ Bioremediation Technology is designed to anaerobically degrade nitroaromatic and energetic compounds in soils and liquids without forming identifiable toxic intermediate compounds produced by other biotreatment methods. This technology was evaluated un...

  12. Overview of graduate training program of John Adams Institute for Accelerator Science

    NASA Astrophysics Data System (ADS)

    Seryi, Andrei

    The John Adams Institute for Accelerator Science is a center of excellence in the UK for advanced and novel accelerator technology, providing expertise, research, development and training in accelerator techniques, and promoting advanced accelerator applications in science and society. We work in JAI on design of novel light sources upgrades of 3-rd generation and novel FELs, on plasma acceleration and its application to industrial and medical fields, on novel energy recovery compact linacs and advanced beam diagnostics, and many other projects. The JAI is based on three universities - University of Oxford, Imperial College London and Royal Holloway University of London. Every year 6 to 10 accelerators science experts, trained via research on cutting edge projects, defend their PhD thesis in JAI partner universities. In this presentation we will overview the research and in particular the highly successful graduate training program in JAI.

  13. Advances in Sprint Acceleration Profiling for Field-Based Team-Sport Athletes: Utility, Reliability, Validity and Limitations.

    PubMed

    Simperingham, Kim D; Cronin, John B; Ross, Angus

    2016-11-01

    Advanced testing technologies enable insight into the kinematic and kinetic determinants of sprint acceleration performance, which is particularly important for field-based team-sport athletes. Establishing the reliability and validity of the data, particularly from the acceleration phase, is important for determining the utility of the respective technologies. The aim of this systematic review was to explain the utility, reliability, validity and limitations of (1) radar and laser technology, and (2) non-motorised treadmill (NMT) and torque treadmill (TT) technology for providing kinematic and kinetic measures of sprint acceleration performance. A comprehensive search of the CINAHL Plus, MEDLINE (EBSCO), PubMed, SPORTDiscus, and Web of Science databases was conducted using search terms that included radar, laser, non-motorised treadmill, torque treadmill, sprint, acceleration, kinetic, kinematic, force, and power. Studies examining the kinematics or kinetics of short (≤10 s), maximal-effort sprint acceleration in adults or children, which included an assessment of reliability or validity of the advanced technologies of interest, were included in this systematic review. Absolute reliability, relative reliability and validity data were extracted from the selected articles and tabulated. The level of acceptance of reliability was a coefficient of variation (CV) ≤10 % and an intraclass correlation coefficient (ICC) or correlation coefficient (r) ≥0.70. A total of 34 studies met the inclusion criteria and were included in the qualitative analysis. Generally acceptable validity (r = 0.87-0.99; absolute bias 3-7 %), intraday reliability (CV ≤9.5 %; ICC/r ≥0.84) and interday reliability (ICC ≥0.72) were reported for data from radar and laser. However, low intraday reliability was reported for the theoretical maximum horizontal force (ICC 0.64) within adolescent athletes, and low validity was reported for velocity during the initial 5 m of a sprint

  14. Organoid Center Strategies for Accelerating Clinical Translation.

    PubMed

    Takebe, Takanori; Wells, James M; Helmrath, Michael A; Zorn, Aaron M

    2018-06-01

    The meteoric rise in stem-cell-derived organoid technologies has ushered in a new era of "organoid medicine." Here we discuss how an organoid center can accelerate the translation of laboratory proof-of-principle experiments into clinical practice by developing and utilizing shared platforms for commercial and medical applications. Copyright © 2018 Elsevier Inc. All rights reserved.

  15. SUPERFUND INNOVATIVE TECHNOLOGY EVALUATION PROGRAM TECHNOLOGY PROFILES: SIXTH EDITION

    EPA Science Inventory

    The Superfund Innovative Technology Evaluation (SITE) Program evaluates new and promising treatment and monitoring and measurement technologies for cleanup of hazardous waste sites. The program was created to encourage the development and routine use of innovative treatment techn...

  16. SUPERFUND INNOVATIVE TECHNOLOGY EVALUATION PROGRAM - TECHNOLOGY PROFILES - SEVENTH EDITION

    EPA Science Inventory

    The Superfund Innovative Technology Evaluation (SITE) Program evaluates new and promising treatment and monitoring and measurement technologies for cleanup of hazardous waste sites. The program was created to encourage the development and routine use of innovative treatment techn...

  17. Environmental Impact From Accelerator Operation at SLAC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, James C

    1999-03-22

    Environmental impacts from electron accelerator operations at the Stanford Linear Accelerator Center, which is located near populated areas, are illustrated by using examples of three different accelerator facilities: the low power (a few watts) SSRL, the high power (a few kilowatts) PEP-II, and the 50-kW SLC. Three types of major impacts are discussed: (1) off-site doses from skyshine radiation, mainly neutrons, (2) off-site doses from radioactive air emission, mainly {sup 13}N, and (3) radioactivities, mainly {sup 3}H, produced in the groundwater. It was found that, from SSRL operation, the skyshine radiation result in a MEI (Maximum Exposed Individual) of 0.3more » {mu}Sv/y while a conservative calculation using CAP88 showed a MEI of 0.36 {mu}Sv/y from radioactive air releases. The calculated MEI doses due to future PEP-II operation are 30 {mu}Sv/y from skyshine radiation and 2 {mu}Sv/y from air releases. The population doses due to radioactive air emission are 0.5 person-mSv from SSRL and 12 person-mSv from PEP-II. Because of the stronger decrease of skyshine dose as the distance increases, the population dose from skyshine radiation are smaller than that from air release. The third environmental impact, tritium activity produced in the groundwater, was also demonstrated to be acceptable from both the well water measurements and the FLUKA calculations for the worst case of the SLC high-power dump.« less

  18. Educational Leadership. [SITE 2002 Section].

    ERIC Educational Resources Information Center

    2002

    This document contains the following papers on educational leadership from the SITE (Society for Information Technology & Teacher Education) 2002 conference: (1) "Personality Assessment of Educational Leaders via Technology" (Pamela T. Barber Freeman and Michael L. McFrazier); (2) "Contributions and Concerns of SITE Participants: A Survey of…

  19. Site systems engineering fiscal year 1999 multi-year work plan (MYWP) update for WBS 1.8.2.2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    GRYGIEL, M.L.

    1998-10-08

    Manage the Site Systems Engineering process to provide a traceable integrated requirements-driven, and technically defensible baseline. Through the Site Integration Group(SIG), Systems Engineering ensures integration of technical activities across all site projects. Systems Engineering's primary interfaces are with the RL Project Managers, the Project Direction Office and with the Project Major Subcontractors, as well as with the Site Planning organization. Systems Implementation: (1) Develops, maintains, and controls the site integrated technical baseline, ensures the Systems Engineering interfaces between projects are documented, and maintain the Site Environmental Management Specification. (2) Develops and uses dynamic simulation models for verification of the baselinemore » and analysis of alternatives. (3) Performs and documents fictional and requirements analyses. (4) Works with projects, technology management, and the SIG to identify and resolve technical issues. (5) Supports technical baseline information for the planning and budgeting of the Accelerated Cleanup Plan, Multi-Year Work Plans, Project Baseline Summaries as well as performance measure reporting. (6) Works with projects to ensure the quality of data in the technical baseline. (7) Develops, maintains and implements the site configuration management system.« less

  20. Wave Resource Characterization at US Wave Energy Converter (WEC) Test Sites

    NASA Astrophysics Data System (ADS)

    Dallman, A.; Neary, V. S.

    2016-02-01

    The US Department of Energy's (DOE) Marine and Hydrokinetic energy (MHK) Program is supporting a diverse research and development portfolio intended to accelerate commercialization of the marine renewable industry by improving technology performance, reducing market barriers, and lowering the cost of energy. Wave resource characterization at potential and existing wave energy converter (WEC) test sites and deployment locations contributes to this DOE goal by providing a catalogue of wave energy resource characteristics, met-ocean data, and site infrastructure information, developed utilizing a consistent methodology. The purpose of the catalogue is to enable the comparison of resource characteristics among sites to facilitate the selection of test sites that are most suitable for a developer's device and that best meet their testing needs and objectives. It also provides inputs for the design of WEC test devices and planning WEC tests, including the planning of deployment and operations and maintenance. The first edition included three sites: the Pacific Marine Energy Center (PMEC) North Energy Test Site (NETS) offshore of Newport, Oregon, the Kaneohe Bay Naval Wave Energy Test Site (WETS) offshore of Oahu, HI, and a potential site offshore of Humboldt Bay, CA (Eureka, CA). The second edition was recently finished, which includes five additional sites: the Jennette's Pier Wave Energy Converter Test Site in North Carolina, the US Army Corps of Engineers (USACE) Field Research Facility (FRF), the PMEC Lake Washington site, the proposed PMEC South Energy Test Site (SETS), and the proposed CalWave Central Coast WEC Test Site. The operational sea states are included according to the IEC Technical Specification on wave energy resource assessment and characterization, with additional information on extreme sea states, weather windows, and representative spectra. The methodology and a summary of results will be discussed.

  1. 10. Freiburger Symposium 2011 der SCG-Division Industrielle Chemie Technology Progress, Success Key for our Production Sites.

    PubMed

    Naef, Olivier

    2012-01-01

    This short paper presents the abstracts of the different presentations during 10. Freiburger Symposium 2011 der SCG-Division Industrielle Chemie: Technology Progress, Success key for our production sites held Thursday and Friday, September 29 and 30, 2011 at the Ecole d'ingénieurs et d'architectes de Fribourg (Switzerland).

  2. Compact Torus Acceleration and Injection Experiment

    NASA Astrophysics Data System (ADS)

    Fukumoto, Naoyuki; Fujiwara, Makoto; Nagata, Masayoshi; Uyama, Tadao; Oda, Yasushi; Azuma, Kingo

    1996-11-01

    The spheromak-type compact torus (CT) acceleration and injection experiment has been carried out using the Himeji Institute of Technology Compact Torus Injector (HIT-CTI). We explore the possibility of refueling, density control, current drive, and edge electric field control of tokamak plasma by means of CT injection. In last September the new HIT-CTI was built up to achieve higher speed (Vct>200 km/s) and higher density CT plasmoid by improving the capacitor bank system and eliminating the impurity and neutral particles. At initial formation discharge tests the gun for formation and compression successfully produced a CT plasmoid and injected it between electrodes for acceleration. (Initial velocity Vct.ini. 32 km/s, Bct 1 kG, Rct=5.5 cm). The formation capacitor bank will be upgraded to two 36 mF capacitors operating at 20 kV (14.4 kJ). The acceleration capacitor bank will be also upgraded to two 36 mF capacitors operating at 20 kV (14.4 kJ). The HIT-CTI will be optimized to obtain suitable CT parameters after acceleration (Bct>5 kG, Lct 20 cm, Vct>200 km/s). In the respect of CT parameter measurement magnetic probes and a He-Ne laser interferometer will be employed in order to measure the CT magnetic field, velocity, density, and length. CT acceleration experimental data on the HIT-CTI and the plan of CT injection experiment on the JFT-2M tokamak (JAERI) will be presented at the meeting.

  3. ANAEROBIC COMPOST CONSTRUCTED WETLANDS SYSTEM TECHNOLOGY - SITE TECHNOLOGY CAPSULE

    EPA Science Inventory

    In fall 1994, anaerobic compost wetlands in both upflow and down flow configurations were constructed adjacent to and received drainage from the Burleigh tunnel, which forms part of the Clear Creek/Central City Superfund site. The systems were operated over a 3 year period. The ...

  4. APPLICATIONS ANALYSIS REPORT: AWD TECHNOLOGIES, INC AQUADETOX®/SVE TECHNOLOGY

    EPA Science Inventory

    In support of the U.S. Environmental Protection Agency’s (EPA) Superfund Innovative Technology Evaluation (SITE) Program, this report evaluates the AWD Technologies, Inc., integrated AquaDetox®/SVE treatment system for simultaneous on-site treatment of contaminated groundwater an...

  5. Impact of accelerated plant growth on seed variety development

    NASA Astrophysics Data System (ADS)

    Christophersen, Eric

    1998-01-01

    The commercial lives of agricultural seed products have steadily declined in recent years. The introduction of genetically engineered crop seeds in 1966 has accentuated that trend. Widespread grower demand for genetically engineered seed requires competitive response by industry followers in order to avert market share losses to the industry leaders. Limitations on plant transformation technology, regulatory requirements and patent impediments require companies to rapidly convert transformed lines into elite commercial products. Massive multigenerational backcrossing efforts are required to distribute genetically engineered traits into a broad product mix. Significant incidents of expression failures, or ``gene silencing,'' have occurred unexpectedly, requiring product substitution strategies. First-to-market strategies, competitive response, broad germplasm conversion and rescue of product failures all share the element of urgency. Technologies which reliably accelerate product development rates can expect favorable reception by commercial seed developers. A growth chamber which dramatically accelerates the rate of plant growth is described.

  6. Optoelectronic Technology Consortium: Precompetitive Consortium for Optoelectronic Interconnect Technology

    DTIC Science & Technology

    1992-09-01

    demonstrating the producibility of optoelectronic components for high-density/high-data-rate processors and accelerating the insertion of this technology...technology development stage, OETC will advance the development of optical components, produce links for a multiboard processor testbed demonstration, and...components that are affordable, initially at <$100 per line, and reliable, with a li~e BER᝺-15 and MTTF >10 6 hours. Under the OETC program, Honeywell will

  7. Second International Conference on Accelerating Biopharmaceutical Development: March 9-12, 2009, Coronado, CA USA.

    PubMed

    Reichert, Janice M; Jacob, Nitya; Amanullah, Ashraf

    2009-01-01

    The Second International Conference on Accelerating Biopharmaceutical Development was held in Coronado, California. The meeting was organized by the Society for Biological Engineering (SBE) and the American Institute of Chemical Engineers (AIChE); SBE is a technological community of the AIChE. Bob Adamson (Wyeth) and Chuck Goochee (Centocor) were co-chairs of the event, which had the theme "Delivering cost-effective, robust processes and methods quickly and efficiently." The first day focused on emerging disruptive technologies and cutting-edge analytical techniques. Day two featured presentations on accelerated cell culture process development, critical quality attributes, specifications and comparability, and high throughput protein formulation development. The final day was dedicated to discussion of technology options and new analysis methods provided by emerging disruptive technologies; functional interaction, integration and synergy in platform development; and rapid and economic purification process development.

  8. Second International Conference on Accelerating Biopharmaceutical Development: March 9-12, 2009, Coronado, CA, USA.

    PubMed

    Reichert, Janice M; Jacob, Nitya M; Amanullah, Ashraf

    2009-01-01

    The Second International Conference on Accelerating Biopharmaceutical Development was held in Coronado, California. The meeting was organized by the Society for Biological Engineering (SBE) and the American Institute of Chemical Engineers (AIChE); SBE is a technological community of the AIChE. Bob Adamson (Wyeth) and Chuck Goochee (Centocor) were co-chairs of the event, which had the theme "Delivering cost-effective, robust processes and methods quickly and efficiently." The first day focused on emerging disruptive technologies and cutting-edge analytical techniques. Day two featured presentations on accelerated cell culture process development, critical quality attributes, specifications and comparability, and high throughput protein formulation development. The final day was dedicated to discussion of technology options and new analysis methods provided by emerging disruptive technologies; functional interaction, integration and synergy in platform development; and rapid and economic purification process development.

  9. Guided post-acceleration of laser-driven ions by a miniature modular structure

    PubMed Central

    Kar, Satyabrata; Ahmed, Hamad; Prasad, Rajendra; Cerchez, Mirela; Brauckmann, Stephanie; Aurand, Bastian; Cantono, Giada; Hadjisolomou, Prokopis; Lewis, Ciaran L. S.; Macchi, Andrea; Nersisyan, Gagik; Robinson, Alexander P. L.; Schroer, Anna M.; Swantusch, Marco; Zepf, Matt; Willi, Oswald; Borghesi, Marco

    2016-01-01

    All-optical approaches to particle acceleration are currently attracting a significant research effort internationally. Although characterized by exceptional transverse and longitudinal emittance, laser-driven ion beams currently have limitations in terms of peak ion energy, bandwidth of the energy spectrum and beam divergence. Here we introduce the concept of a versatile, miniature linear accelerating module, which, by employing laser-excited electromagnetic pulses directed along a helical path surrounding the laser-accelerated ion beams, addresses these shortcomings simultaneously. In a proof-of-principle experiment on a university-scale system, we demonstrate post-acceleration of laser-driven protons from a flat foil at a rate of 0.5 GeV m−1, already beyond what can be sustained by conventional accelerator technologies, with dynamic beam collimation and energy selection. These results open up new opportunities for the development of extremely compact and cost-effective ion accelerators for both established and innovative applications. PMID:27089200

  10. Parametric investigations of target normal sheath acceleration experiments

    NASA Astrophysics Data System (ADS)

    Zani, Alessandro; Sgattoni, Andrea; Passoni, Matteo

    2011-10-01

    One of the most important challenges related to laser-driven ion acceleration research is to actively control some important ion beam features. This is a peculiar topic in the light of future possible technological applications. In the present work we make use of one theoretical model for target normal sheath acceleration in order to reproduce recent experimental parametric studies about maximum ion energy dependencies on laser parameters. The key role played by pulse energy and intensity is enlightened. Finally the effective dependence of maximum ion energy on intensity is evaluated using a combined theoretical approach, obtained by means of an analytical and a particle-in-cell numerical investigation.

  11. Angular Impact Mitigation System for Bicycle Helmets to Reduce Head Acceleration and Risk of Traumatic Brain Injury

    PubMed Central

    Hansen, Kirk; Dau, Nathan; Feist, Florian; Deck, Caroline; Willinger, Rémy; Madey, Steven M.; Bottlang, Michael

    2013-01-01

    Angular acceleration of the head is a known cause of traumatic brain injury (TBI), but contemporary bicycle helmets lack dedicated mechanisms to mitigate angular acceleration. A novel Angular Impact Mitigation (AIM) system for bicycle helmets has been developed that employs an elastically suspended aluminum honeycomb liner to absorb linear acceleration in normal impacts as well as angular acceleration in oblique impacts. This study tested bicycle helmets with and without AIM technology to comparatively assess impact mitigation. Normal impact tests were performed to measure linear head acceleration. Oblique impact tests were performed to measure angular head acceleration and neck loading. Furthermore, acceleration histories of oblique impacts were analyzed in a computational head model to predict the resulting risk of TBI in the form of concussion and diffuse axonal injury (DAI). Compared to standard helmets, AIM helmets resulted in a 14% reduction in peak linear acceleration (p < 0.001), a 34% reduction in peak angular acceleration (p < 0.001), and a 22% to 32% reduction in neck loading (p < 0.001). Computational results predicted that AIM helmets reduced the risk of concussion and DAI by 27% and 44%, respectively. In conclusion, these results demonstrated that AIM technology could effectively improve impact mitigation compared to a contemporary expanded polystyrene-based bicycle helmet, and may enhance prevention of bicycle-related TBI. Further research is required. PMID:23770518

  12. Mid-infrared lasers for energy frontier plasma accelerators

    DOE PAGES

    Pogorelsky, I. V.; Polyanskiy, M. N.; Kimura, W. D.

    2016-09-12

    Plasma wake field accelerators driven with solid-state near-IR lasers have been considered as an alternative to conventional rf accelerators for next-generation TeV-class lepton colliders. Here, we extend this study to the mid-IR spectral domain covered by CO 2 lasers. We conclude that the increase in the laser driver wavelength favors the regime of laser wake field acceleration with a low plasma density and high electric charge. This regime is the most beneficial for gamma colliders to be converted from lepton colliders via inverse Compton scattering. Selecting a laser wavelength to drive a Compton gamma source is essential for the designmore » of such a machine. In conclusion, the revealed benefits from spectral diversification of laser drivers for future colliders and off-spring applications validate ongoing efforts in advancing the ultrafast CO 2 laser technology.« less

  13. Reinventing the Accelerator for the High Energy Frontier

    ScienceCinema

    Rosenzweig, James [UCLA, Los Angeles, California, United States

    2017-12-09

    The history of discovery in high-energy physics has been intimately connected with progress in methods of accelerating particles for the past 75 years. This remains true today, as the post-LHC era in particle physics will require significant innovation and investment in a superconducting linear collider. The choice of the linear collider as the next-generation discovery machine, and the selection of superconducting technology has rather suddenly thrown promising competing techniques -- such as very large hadron colliders, muon colliders, and high-field, high frequency linear colliders -- into the background. We discuss the state of such conventional options, and the likelihood of their eventual success. We then follow with a much longer view: a survey of a new, burgeoning frontier in high energy accelerators, where intense lasers, charged particle beams, and plasmas are all combined in a cross-disciplinary effort to reinvent the accelerator from its fundamental principles on up.

  14. Turbulence, Magnetic Reconnection in Turbulent Fluids and Energetic Particle Acceleration

    NASA Astrophysics Data System (ADS)

    Lazarian, A.; Vlahos, L.; Kowal, G.; Yan, H.; Beresnyak, A.; de Gouveia Dal Pino, E. M.

    2012-11-01

    Turbulence is ubiquitous in astrophysics. It radically changes many astrophysical phenomena, in particular, the propagation and acceleration of cosmic rays. We present the modern understanding of compressible magnetohydrodynamic (MHD) turbulence, in particular its decomposition into Alfvén, slow and fast modes, discuss the density structure of turbulent subsonic and supersonic media, as well as other relevant regimes of astrophysical turbulence. All this information is essential for understanding the energetic particle acceleration that we discuss further in the review. For instance, we show how fast and slow modes accelerate energetic particles through the second order Fermi acceleration, while density fluctuations generate magnetic fields in pre-shock regions enabling the first order Fermi acceleration of high energy cosmic rays. Very importantly, however, the first order Fermi cosmic ray acceleration is also possible in sites of magnetic reconnection. In the presence of turbulence this reconnection gets fast and we present numerical evidence supporting the predictions of the Lazarian and Vishniac (Astrophys. J. 517:700-718, 1999) model of fast reconnection. The efficiency of this process suggests that magnetic reconnection can release substantial amounts of energy in short periods of time. As the particle tracing numerical simulations show that the particles can be efficiently accelerated during the reconnection, we argue that the process of magnetic reconnection may be much more important for particle acceleration than it is currently accepted. In particular, we discuss the acceleration arising from reconnection as a possible origin of the anomalous cosmic rays measured by Voyagers as well as the origin cosmic ray excess in the direction of Heliotail.

  15. Advanced low-beta cavity development for proton and ion accelerators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Conway, Z. A.; Kelly, M. P.; Ostroumov, P. N.

    2015-05-01

    Recent developments in designing and processing low-beta superconducting cavities at Argonne National Laboratory are very encouraging for future applications requiring compact proton and ion accelerators. One of the major benefits of these accelerating structures is achieving real-estate accelerating gradients greater than 3 MV/m very efficiently either continuously or for long-duty cycle operation (>1%). The technology has been implemented in low-beta accelerator cryomodules for the Argonne ATLAS heavy-ion linac where the cryomodules are required to have real-estate gradients of more than 3 MV/m. In offline testing low-beta cavities with even higher gradients have already been achieved. This paper will review thismore » work where we have achieved surface fields greater than 166 mT magnetic and 117 MV/m electric in a 72 MHz quarter-wave resonator optimized for beta = 0.077 ions.« less

  16. Covariant Uniform Acceleration

    NASA Astrophysics Data System (ADS)

    Friedman, Yaakov; Scarr, Tzvi

    2013-04-01

    We derive a 4D covariant Relativistic Dynamics Equation. This equation canonically extends the 3D relativistic dynamics equation , where F is the 3D force and p = m0γv is the 3D relativistic momentum. The standard 4D equation is only partially covariant. To achieve full Lorentz covariance, we replace the four-force F by a rank 2 antisymmetric tensor acting on the four-velocity. By taking this tensor to be constant, we obtain a covariant definition of uniformly accelerated motion. This solves a problem of Einstein and Planck. We compute explicit solutions for uniformly accelerated motion. The solutions are divided into four Lorentz-invariant types: null, linear, rotational, and general. For null acceleration, the worldline is cubic in the time. Linear acceleration covariantly extends 1D hyperbolic motion, while rotational acceleration covariantly extends pure rotational motion. We use Generalized Fermi-Walker transport to construct a uniformly accelerated family of inertial frames which are instantaneously comoving to a uniformly accelerated observer. We explain the connection between our approach and that of Mashhoon. We show that our solutions of uniformly accelerated motion have constant acceleration in the comoving frame. Assuming the Weak Hypothesis of Locality, we obtain local spacetime transformations from a uniformly accelerated frame K' to an inertial frame K. The spacetime transformations between two uniformly accelerated frames with the same acceleration are Lorentz. We compute the metric at an arbitrary point of a uniformly accelerated frame. We obtain velocity and acceleration transformations from a uniformly accelerated system K' to an inertial frame K. We introduce the 4D velocity, an adaptation of Horwitz and Piron s notion of "off-shell." We derive the general formula for the time dilation between accelerated clocks. We obtain a formula for the angular velocity of a uniformly accelerated object. Every rest point of K' is uniformly accelerated, and

  17. Analyzing radial acceleration with a smartphone acceleration sensor

    NASA Astrophysics Data System (ADS)

    Vogt, Patrik; Kuhn, Jochen

    2013-03-01

    This paper continues the sequence of experiments using the acceleration sensor of smartphones (for description of the function and the use of the acceleration sensor, see Ref. 1) within this column, in this case for analyzing the radial acceleration.

  18. Clinical utility of RapidArc™ radiotherapy technology

    PubMed Central

    Infusino, Erminia

    2015-01-01

    RapidArc™ is a radiation technique that delivers highly conformal dose distributions through the complete rotation (360°) and speed variation of the linear accelerator gantry. This technique, called volumetric modulated arc therapy (VMAT), compared with conventional radiotherapy techniques, can achieve high-target volume coverage and sparing damage to normal tissues. RapidArc delivers precise dose distribution and conformity similar to or greater than intensity-modulated radiation therapy in a short time, generally a few minutes, to which image-guided radiation therapy is added. RapidArc has become a currently used technology in many centers, which use RapidArc technology to treat a large number of patients. Large and small hospitals use it to treat the most challenging cases, but more and more frequently for the most common cancers. The clinical use of RapidArc and VMAT technology is constantly growing. At present, a limited number of clinical data are published, mostly concerning planning and feasibility studies. Clinical outcome data are increasing for a few tumor sites, even if only a little. The purpose of this work is to discuss the current status of VMAT techniques in clinical use through a review of the published data of planning systems and clinical outcomes in several tumor sites. The study consisted of a systematic review based on analysis of manuscripts retrieved from the PubMed, BioMed Central, and Scopus databases by searching for the keywords “RapidArc”, “Volumetric modulated arc radiotherapy”, and “Intensity-modulated radiotherapy”. PMID:26648755

  19. Mathematics. [SITE 2001 Section].

    ERIC Educational Resources Information Center

    Connell, Michael L., Ed.; Lowery, Norene Vail, Ed.; Harnisch, Delwyn L., Ed.

    This document contains the following papers on mathematics from the SITE (Society for Information Technology & Teacher Education) 2001 conference: "Secondary Mathematics Methods Course with Technology Units: Encouraging Pre-Service Teachers To Use Technology" (Rajee Amarasinghe); "Competency Exams in College Mathematics"…

  20. Accelerating Industrial Adoption of Metal Additive Manufacturing Technology

    NASA Astrophysics Data System (ADS)

    Vartanian, Kenneth; McDonald, Tom

    2016-03-01

    While metal additive manufacturing (AM) technology has clear benefits, there are still factors preventing its adoption by industry. These factors include the high cost of metal AM systems, the difficulty for machinists to learn and operate metal AM machines, the long approval process for part qualification/certification, and the need for better process controls; however, the high AM system cost is the main barrier deterring adoption. In this paper, we will discuss an America Makes-funded program to reduce AM system cost by combining metal AM technology with conventional computerized numerical controlled (CNC) machine tools. Information will be provided on how an Optomec-led team retrofitted a legacy CNC vertical mill with laser engineered net shaping (LENS®—LENS is a registered trademark of Sandia National Labs) AM technology, dramatically lowering deployment cost. The upgraded system, dubbed LENS Hybrid Vertical Mill, enables metal additive and subtractive operations to be performed on the same machine tool and even on the same part. Information on the LENS Hybrid system architecture, learnings from initial system deployment and continuing development work will also be provided to help guide further development activities within the materials community.

  1. Accelerator System Model (ASM) user manual with physics and engineering model documentation. ASM version 1.0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1993-07-01

    The Accelerator System Model (ASM) is a computer program developed to model proton radiofrequency accelerators and to carry out system level trade studies. The ASM FORTRAN subroutines are incorporated into an intuitive graphical user interface which provides for the {open_quotes}construction{close_quotes} of the accelerator in a window on the computer screen. The interface is based on the Shell for Particle Accelerator Related Codes (SPARC) software technology written for the Macintosh operating system in the C programming language. This User Manual describes the operation and use of the ASM application within the SPARC interface. The Appendix provides a detailed description of themore » physics and engineering models used in ASM. ASM Version 1.0 is joint project of G. H. Gillespie Associates, Inc. and the Accelerator Technology (AT) Division of the Los Alamos National Laboratory. Neither the ASM Version 1.0 software nor this ASM Documentation may be reproduced without the expressed written consent of both the Los Alamos National Laboratory and G. H. Gillespie Associates, Inc.« less

  2. Accelerators for Fusion Materials Testing

    NASA Astrophysics Data System (ADS)

    Knaster, Juan; Okumura, Yoshikazu

    Fusion materials research is a worldwide endeavor as old as the parallel one working toward the long term stable confinement of ignited plasma. In a fusion reactor, the preservation of the required minimum thermomechanical properties of the in-vessel components exposed to the severe irradiation and heat flux conditions is an indispensable factor for safe operation; it is also an essential goal for the economic viability of fusion. Energy from fusion power will be extracted from the 14 MeV neutron freed as a product of the deuterium-tritium fusion reactions; thus, this kinetic energy must be absorbed and efficiently evacuated and electricity eventually generated by the conventional methods of a thermal power plant. Worldwide technological efforts to understand the degradation of materials exposed to 14 MeV neutron fluxes >1018 m-2s-1, as expected in future fusion power plants, have been intense over the last four decades. Existing neutron sources can reach suitable dpa (“displacement-per-atom”, the figure of merit to assess materials degradation from being exposed to neutron irradiation), but the differences in the neutron spectrum of fission reactors and spallation sources do not allow one to unravel the physics and to anticipate the degradation of materials exposed to fusion neutrons. Fusion irradiation conditions can be achieved through Li (d, xn) nuclear reactions with suitable deuteron beam current and energy, and an adequate flowing lithium screen. This idea triggered in the late 1970s at Los Alamos National Laboratory (LANL) a campaign working toward the feasibility of continuous wave (CW) high current linacs framed by the Fusion Materials Irradiation Test (FMIT) project. These efforts continued with the Low Energy Demonstrating Accelerator (LEDA) (a validating prototype of the canceled Accelerator Production of Tritium (APT) project), which was proposed in 2002 to the fusion community as a 6.7MeV, 100mA CW beam injector for a Li (d, xn) source to bridge

  3. Accelerators for Fusion Materials Testing

    NASA Astrophysics Data System (ADS)

    Knaster, Juan; Okumura, Yoshikazu

    Fusion materials research is a worldwide endeavor as old as the parallel one working toward the long term stable confinement of ignited plasma. In a fusion reactor, the preservation of the required minimum thermomechanical properties of the in-vessel components exposed to the severe irradiation and heat flux conditions is an indispensable factor for safe operation; it is also an essential goal for the economic viability of fusion. Energy from fusion power will be extracted from the 14 MeV neutron freed as a product of the deuterium-tritium fusion reactions; thus, this kinetic energy must be absorbed and efficiently evacuated and electricity eventually generated by the conventional methods of a thermal power plant. Worldwide technological efforts to understand the degradation of materials exposed to 14 MeV neutron fluxes > 1018 m-2s-1, as expected in future fusion power plants, have been intense over the last four decades. Existing neutron sources can reach suitable dpa ("displacement-per-atom", the figure of merit to assess materials degradation from being exposed to neutron irradiation), but the differences in the neutron spectrum of fission reactors and spallation sources do not allow one to unravel the physics and to anticipate the degradation of materials exposed to fusion neutrons. Fusion irradiation conditions can be achieved through Li (d, xn) nuclear reactions with suitable deuteron beam current and energy, and an adequate flowing lithium screen. This idea triggered in the late 1970s at Los Alamos National Laboratory (LANL) a campaign working toward the feasibility of continuous wave (CW) high current linacs framed by the Fusion Materials Irradiation Test (FMIT) project. These efforts continued with the Low Energy Demonstrating Accelerator (LEDA) (a validating prototype of the canceled Accelerator Production of Tritium (APT) project), which was proposed in 2002 to the fusion community as a 6.7MeV, 100mA CW beam injector for a Li (d, xn) source to bridge

  4. Developments of AMS at the TANDAR accelerator

    NASA Astrophysics Data System (ADS)

    Fernández Niello, J. O.; Abriola, D.; Alvarez, D. E.; Capurro, O. A.; di Tada, M.; Etchegoyen, A.; Ferrero, A. M. J.; Martí, G. V.; Pacheco, A. J.; Testoni, J. E.; Korschinek, G.

    1996-08-01

    Man-made long-lived radioisotopes have been produced as a result of different nuclear technologies. The study of accidental spillages and the determination of radioisotope concentrations in nuclear waste prior to final storage in a repository are subjects of great interest in connection with this activity. The accelerator mass spectrometry (AMS) technique is a powerful tool to measure long-lived isotopes at abundance ratios as low as 10 -12-10 -15 in small samples. Applications to the Argentine nuclear program like those mentioned above, as well as applications to archaeology, hydrology and biomedical research, are considered in an AMS program using the TANDAR 20 UD electrostatic accelerator at Buenos Aires. In this work we present the status of the program and a description of the facility.

  5. Informing child welfare policy and practice: using knowledge discovery and data mining technology via a dynamic Web site.

    PubMed

    Duncan, Dean F; Kum, Hye-Chung; Weigensberg, Elizabeth Caplick; Flair, Kimberly A; Stewart, C Joy

    2008-11-01

    Proper management and implementation of an effective child welfare agency requires the constant use of information about the experiences and outcomes of children involved in the system, emphasizing the need for comprehensive, timely, and accurate data. In the past 20 years, there have been many advances in technology that can maximize the potential of administrative data to promote better evaluation and management in the field of child welfare. Specifically, this article discusses the use of knowledge discovery and data mining (KDD), which makes it possible to create longitudinal data files from administrative data sources, extract valuable knowledge, and make the information available via a user-friendly public Web site. This article demonstrates a successful project in North Carolina where knowledge discovery and data mining technology was used to develop a comprehensive set of child welfare outcomes available through a public Web site to facilitate information sharing of child welfare data to improve policy and practice.

  6. Constraints on the extremely high-energy cosmic ray accelerators from classical electrodynamics

    NASA Astrophysics Data System (ADS)

    Aharonian, F. A.; Belyanin, A. A.; Derishev, E. V.; Kocharovsky, V. V.; Kocharovsky, Vl. V.

    2002-07-01

    We formulate the general requirements, set by classical electrodynamics, on the sources of extremely high-energy cosmic rays (EHECRs). It is shown that the parameters of EHECR accelerators are strongly limited not only by the particle confinement in large-scale magnetic fields or by the difference in electric potentials (generalized Hillas criterion) but also by the synchrotron radiation, the electro-bremsstrahlung, or the curvature radiation of accelerated particles. Optimization of these requirements in terms of an accelerator's size and magnetic field strength results in the ultimate lower limit to the overall source energy budget, which scales as the fifth power of attainable particle energy. Hard γ rays accompanying generation of EHECRs can be used to probe potential acceleration sites. We apply the results to several populations of astrophysical objects-potential EHECR sources-and discuss their ability to accelerate protons to 1020 eV and beyond. The possibility of gain from ultrarelativistic bulk flows is addressed, with active galactic nuclei and gamma-ray bursts being the examples.

  7. Constraints on the extremely high-energy cosmic rays accelerators from classical electrodynamics

    NASA Astrophysics Data System (ADS)

    Belyanin, A.; Aharonian, F.; Derishev, E.; Kocharovsky, V.; Kocharovsky, V.

    We formulate the general requirements, set by classical electrodynamics, to the sources of extremely high-energy cosmic rays (EHECRs). It is shown that the parameters of EHECR accelerators are strongly limited not only by the particle confinement in large-scale magnetic field or by the difference in electric potentials (generalized Hillas criterion), but also by the synchrotron radiation, the electro-bremsstrahlung, or the curvature radiation of accelerated particles. Optimization of these requirements in terms of accelerator's size and magnetic field strength results in the ultimate lower limit to the overall source energy budget, which scales as the fifth power of attainable particle energy. Hard gamma-rays accompanying generation of EHECRs can be used to probe potential acceleration sites. We apply the results to several populations of astrophysical objects - potential EHECR sources - and discuss their ability to accelerate protons to 1020 eV and beyond. A possibility to gain from ultrarelativistic bulk flows is addressed, with Active Galactic Nuclei and Gamma-Ray Bursts being the examples.

  8. Accelerator Technology and High Energy Physics Experiments, Photonics Applications and Web Engineering, Wilga, May 2012

    NASA Astrophysics Data System (ADS)

    Romaniuk, Ryszard S.

    2012-05-01

    The paper is the second part (out of five) of the research survey of WILGA Symposium work, May 2012 Edition, concerned with accelerator technology and high energy physics experiments. It presents a digest of chosen technical work results shown by young researchers from different technical universities from this country during the XXXth Jubilee SPIE-IEEE Wilga 2012, May Edition, symposium on Photonics and Web Engineering. Topical tracks of the symposium embraced, among others, nanomaterials and nanotechnologies for photonics, sensory and nonlinear optical fibers, object oriented design of hardware, photonic metrology, optoelectronics and photonics applications, photonicselectronics co-design, optoelectronic and electronic systems for astronomy and high energy physics experiments, JET and pi-of-the sky experiments development. The symposium is an annual summary in the development of numerable Ph.D. theses carried out in this country in the area of advanced electronic and photonic systems. It is also a great occasion for SPIE, IEEE, OSA and PSP students to meet together in a large group spanning the whole country with guests from this part of Europe. A digest of Wilga references is presented [1-275].

  9. Advanced space transportation technologies

    NASA Technical Reports Server (NTRS)

    Raj, Rishi S.

    1989-01-01

    A wide range of propulsion technologies for space transportation are discussed in the literature. It is clear from the literature review that a single propulsion technology cannot satisfy the many mission needs in space. Many of the technologies tested, proposed, or in experimental stages relate to: chemical and nuclear fuel; radiative and corpuscular external energy source; tethers; cannons; and electromagnetic acceleration. The scope and limitation of these technologies is well tabulated in the literature. Prior experience has shown that an extensive amount of fuel needs to be carried along for the return mission. This requirement puts additional constraints on the lift off rocket technology and limits the payload capacity. Consider the possibility of refueling in space. If the return fuel supply is guaranteed, it will not only be possible to lift off more payload but also to provide security and safety of the mission. Exploration to deep space where solar sails and thermal effects fade would also be possible. Refueling would also facilitate travel on the planet of exploration. This aspect of space transportation prompts the present investigation. The particle emissions from the Sun's corona will be collected under three different conditions: in space closer to the Sun, in the Van Allen Belts; and on the Moon. It is proposed to convert the particle state into gaseous, liquid, or solid state and store it for refueling space vehicles. These facilities may be called space pump stations and the fuel collected as space fuel. Preliminary estimates of fuel collection at all three sites will be made. Future work will continue towards advancing the art of collection rate and design schemes for pumping stations.

  10. Chemical vs. Physical Acceleration of Cement Hydration

    PubMed Central

    Bentz, Dale P.; Zunino, Franco; Lootens, Didier

    2016-01-01

    Cold weather concreting often requires the use of chemical accelerators to speed up the hydration reactions of the cement, so that setting and early-age strength development will occur in a timely manner. While calcium chloride (dihydrate – CaCl2·2H2O) is the most commonly used chemical accelerator, recent research using fine limestone powders has indicated their high proficiency for physically accelerating early-age hydration and reducing setting times. This paper presents a comparative study of the efficiency of these two approaches in accelerating hydration (as assessed via isothermal calorimetry), reducing setting times (Vicat needle), and increasing early-age mortar cube strength (1 d and 7 d). Both the CaCl2 and the fine limestone powder are used to replace a portion of the finest sand in the mortar mixtures, while keeping both the water-to-cement ratio and volume fractions of water and cement constant. Studies are conducted at 73.4 °F (23°C) and 50 °F (10 °C), so that activation energies can be estimated for the hydration and setting processes. Because the mechanisms of acceleration of the CaCl2 and limestone powder are different, a hybrid mixture with 1 % CaCl2 and 20 % limestone powder (by mass of cement) is also investigated. Both technologies are found to be viable options for reducing setting times and increasing early-age strengths, and it is hoped that concrete producers and contractors will consider the addition of fine limestone powder to their toolbox of techniques for assuring performance in cold weather and other concreting conditions where acceleration may be needed. PMID:28077884

  11. BrainFrame: a node-level heterogeneous accelerator platform for neuron simulations

    NASA Astrophysics Data System (ADS)

    Smaragdos, Georgios; Chatzikonstantis, Georgios; Kukreja, Rahul; Sidiropoulos, Harry; Rodopoulos, Dimitrios; Sourdis, Ioannis; Al-Ars, Zaid; Kachris, Christoforos; Soudris, Dimitrios; De Zeeuw, Chris I.; Strydis, Christos

    2017-12-01

    Objective. The advent of high-performance computing (HPC) in recent years has led to its increasing use in brain studies through computational models. The scale and complexity of such models are constantly increasing, leading to challenging computational requirements. Even though modern HPC platforms can often deal with such challenges, the vast diversity of the modeling field does not permit for a homogeneous acceleration platform to effectively address the complete array of modeling requirements. Approach. In this paper we propose and build BrainFrame, a heterogeneous acceleration platform that incorporates three distinct acceleration technologies, an Intel Xeon-Phi CPU, a NVidia GP-GPU and a Maxeler Dataflow Engine. The PyNN software framework is also integrated into the platform. As a challenging proof of concept, we analyze the performance of BrainFrame on different experiment instances of a state-of-the-art neuron model, representing the inferior-olivary nucleus using a biophysically-meaningful, extended Hodgkin-Huxley representation. The model instances take into account not only the neuronal-network dimensions but also different network-connectivity densities, which can drastically affect the workload’s performance characteristics. Main results. The combined use of different HPC technologies demonstrates that BrainFrame is better able to cope with the modeling diversity encountered in realistic experiments while at the same time running on significantly lower energy budgets. Our performance analysis clearly shows that the model directly affects performance and all three technologies are required to cope with all the model use cases. Significance. The BrainFrame framework is designed to transparently configure and select the appropriate back-end accelerator technology for use per simulation run. The PyNN integration provides a familiar bridge to the vast number of models already available. Additionally, it gives a clear roadmap for extending the platform

  12. BrainFrame: a node-level heterogeneous accelerator platform for neuron simulations.

    PubMed

    Smaragdos, Georgios; Chatzikonstantis, Georgios; Kukreja, Rahul; Sidiropoulos, Harry; Rodopoulos, Dimitrios; Sourdis, Ioannis; Al-Ars, Zaid; Kachris, Christoforos; Soudris, Dimitrios; De Zeeuw, Chris I; Strydis, Christos

    2017-12-01

    The advent of high-performance computing (HPC) in recent years has led to its increasing use in brain studies through computational models. The scale and complexity of such models are constantly increasing, leading to challenging computational requirements. Even though modern HPC platforms can often deal with such challenges, the vast diversity of the modeling field does not permit for a homogeneous acceleration platform to effectively address the complete array of modeling requirements. In this paper we propose and build BrainFrame, a heterogeneous acceleration platform that incorporates three distinct acceleration technologies, an Intel Xeon-Phi CPU, a NVidia GP-GPU and a Maxeler Dataflow Engine. The PyNN software framework is also integrated into the platform. As a challenging proof of concept, we analyze the performance of BrainFrame on different experiment instances of a state-of-the-art neuron model, representing the inferior-olivary nucleus using a biophysically-meaningful, extended Hodgkin-Huxley representation. The model instances take into account not only the neuronal-network dimensions but also different network-connectivity densities, which can drastically affect the workload's performance characteristics. The combined use of different HPC technologies demonstrates that BrainFrame is better able to cope with the modeling diversity encountered in realistic experiments while at the same time running on significantly lower energy budgets. Our performance analysis clearly shows that the model directly affects performance and all three technologies are required to cope with all the model use cases. The BrainFrame framework is designed to transparently configure and select the appropriate back-end accelerator technology for use per simulation run. The PyNN integration provides a familiar bridge to the vast number of models already available. Additionally, it gives a clear roadmap for extending the platform support beyond the proof of concept, with improved

  13. Research. [SITE 2002 Section].

    ERIC Educational Resources Information Center

    Curtis, Reagan, Ed.

    This document contains papers on instructional technology research from the SITE (Society for Information Technology & Teacher Education) 2002 conference. Topics covered include: professors share their thoughts and feelings with their students; faculty reflections on teaching online; integrating technology into preservice teacher education;…

  14. REU Site: CUNY/GISS CGCR - Increasing Diversity in Earth and Space Science and Space Technology Research

    NASA Astrophysics Data System (ADS)

    Johnson, L. P.; Marchese, P.; Carlson, B. E.; Howard, A. M.; Damas, M. C.; Boxe, C.; Sohl, L. E.; Cheung, T. D.; Zavala-Gutierrez, R.; Jiang, M.

    2016-12-01

    This presentation describes student projects and accomplishments of the NSF REU Site: The City University of New York / NASA Goddard Institute for Space Studies Center for Global Climate Research. These student experiences contribute to the preparation of a diverse workforce in the areas of ocean modeling, planetary atmospheres, atmospheric science, climate change, heliophysics and space technology. It is important to motivate students to continue their studies towards advanced degrees and pursue careers related to these fields of study. This is best accomplished by involving undergraduates in research. For the past three years, this REU Site has supported research for more than 35 students, approximately 60 percent from underrepresented minorities and 35 percent female. All the students have progressed towards their degrees and some have advanced to graduate study. This program is supported by NSF award AGS-1359293 REU Site: CUNY/GISS Center for Global Climate Research and the NASA New York State Space Grant Consortium and in collaboration with the NASA Goddard Institute for Space Studies (GISS).

  15. Osaka Symposium and New Accelerator Projects in Japan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wei, Jie

    1997-04-25

    The purpose of this presentation was to participate as an invited speaker at the XV RCNP Osaka International Symposium on Multi-GeV High-Performance Accelerators and Related Technology to collaborate with Kyoto University on laser cooling and beam crystallization projects and to give seminars in Beijing and Shanghai on the Relativistic Heavy Ion Collider.

  16. SITE TECHNOLOGY CAPSULE: GEOSAFE CORPORATION IN SITU VITRIFICATION TECHNOLOGY

    EPA Science Inventory

    The Geosafe In Situ Vitrification (ISV) Technology is designed to treat soils, sludges, sediments, and mine tallings contaminated with organic, inorganic, and radioactive compounds. The organic compounds are pyrolyzed and reduced to simple gases which are collected under a treatm...

  17. Neutron physics with accelerators

    NASA Astrophysics Data System (ADS)

    Colonna, N.; Gunsing, F.; Käppeler, F.

    2018-07-01

    Neutron-induced nuclear reactions are of key importance for a variety of applications in basic and applied science. Apart from nuclear reactors, accelerator-based neutron sources play a major role in experimental studies, especially for the determination of reaction cross sections over a wide energy span from sub-thermal to GeV energies. After an overview of present and upcoming facilities, this article deals with state-of-the-art detectors and equipment, including the often difficult sample problem. These issues are illustrated at selected examples of measurements for nuclear astrophysics and reactor technology with emphasis on their intertwined relations.

  18. Accelerated Performance Testing on the 2006 NCAT Pavement Test Track

    DOT National Transportation Integrated Search

    2009-12-01

    The original National Center for Asphalt Technology (NCAT) Pavement Test Track was built in 2000 in Opelika, Alabama where it has served as a state-of-the-art, full-scale, closed-loop accelerated loading facility. The construction, operation, and res...

  19. Accelerator controls at CERN: Some converging trends

    NASA Astrophysics Data System (ADS)

    Kuiper, B.

    1990-08-01

    CERN's growing services to the high-energy physics community using frozen resources has led to the implementation of "Technical Boards", mandated to assist the management by making recommendations for rationalizations in various technological domains. The Board on Process Control and Electronics for Accelerators, TEBOCO, has emphasized four main lines which might yield economy in resources. First, a common architecture for accelerator controls has been agreed between the three accelerator divisions. Second, a common hardware/software kit has been defined, from which the large majority of future process interfacing may be composed. A support service for this kit is an essential part of the plan. Third, high-level protocols have been developed for standardizing access to process devices. They derive from agreed standard models of the devices and involve a standard control message. This should ease application development and mobility of equipment. Fourth, a common software engineering methodology and a commercial package of application development tools have been adopted. Some rationalization in the field of the man-machine interface and in matters of synchronization is also under way.

  20. New estimation method of neutron skyshine for a high-energy particle accelerator

    NASA Astrophysics Data System (ADS)

    Oh, Joo-Hee; Jung, Nam-Suk; Lee, Hee-Seock; Ko, Seung-Kook

    2016-09-01

    A skyshine is the dominant component of the prompt radiation at off-site. Several experimental studies have been done to estimate the neutron skyshine at a few accelerator facilities. In this work, the neutron transports from a source place to off-site location were simulated using the Monte Carlo codes, FLUKA and PHITS. The transport paths were classified as skyshine, direct (transport), groundshine and multiple-shine to understand the contribution of each path and to develop a general evaluation method. The effect of each path was estimated in the view of the dose at far locations. The neutron dose was calculated using the neutron energy spectra obtained from each detector placed up to a maximum of 1 km from the accelerator. The highest altitude of the sky region in this simulation was set as 2 km from the floor of the accelerator facility. The initial model of this study was the 10 GeV electron accelerator, PAL-XFEL. Different compositions and densities of air, soil and ordinary concrete were applied in this calculation, and their dependences were reviewed. The estimation method used in this study was compared with the well-known methods suggested by Rindi, Stevenson and Stepleton, and also with the simple code, SHINE3. The results obtained using this method agreed well with those using Rindi's formula.

  1. The physics design of accelerator-driven transmutation systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Venneri, F.

    1995-10-01

    Nuclear systems under study in the Los Alamos Accelerator-Driven Transmutation Technology program (ADTT) will allow the destruction of nuclear spent fuel and weapons-return plutonium, as well as the production of nuclear energy from the thorium cycle, without a long-lived radioactive waste stream. The subcritical systems proposed represent a radical departure from traditional nuclear concepts (reactors), yet the actual implementation of ADTT systems is based on modest extrapolations of existing technology. These systems strive to keep the best that the nuclear technology has developed over the years, within a sensible conservative design envelope and eventually manage to offer a safe, lessmore » expensive and more environmentally sound approach to nuclear power.« less

  2. Shock-wave proton acceleration from a hydrogen gas jet

    NASA Astrophysics Data System (ADS)

    Cook, Nathan; Pogorelsky, Igor; Polyanskiy, Mikhail; Babzien, Marcus; Tresca, Olivier; Maharjan, Chakra; Shkolnikov, Peter; Yakimenko, Vitaly

    2013-04-01

    Typical laser acceleration experiments probe the interaction of intense linearly-polarized solid state laser pulses with dense metal targets. This interaction generates strong electric fields via Transverse Normal Sheath Acceleration and can accelerate protons to high peak energies but with a large thermal spectrum. Recently, the advancement of high pressure amplified CO2 laser technology has allowed for the creation of intense (10^16 Wcm^2) pulses at λ˜10 μm. These pulses may interact with reproducible, high rep. rate gas jet targets and still produce plasmas of critical density (nc˜10^19 cm-3), leading to the transference of laser energy via radiation pressure. This acceleration mode has the advantage of producing narrow energy spectra while scaling well with pulse intensity. We observe the interaction of an intense CO2 laser pulse with an overdense hydrogen gas jet. Using two pulse optical probing in conjunction with interferometry, we are able to obtain density profiles of the plasma. Proton energy spectra are obtained using a magnetic spectrometer and scintillating screen.

  3. A mass filter based on an accelerating traveling wave.

    PubMed

    Wiedenbeck, Michael; Kasemset, Bodin; Kasper, Manfred

    2008-01-01

    We describe a novel mass filtering concept based on the acceleration of a pulsed ion beam through a stack of electrostatic plates. A precisely controlled traveling wave generated within such an ion guide will induce a mass-selective ion acceleration, with mass separation ultimately accomplished via a simple energy-filtering system. Crucial for successful filtering is that the velocity with which the traveling wave passes through the ion guide must be dynamically controlled in order to accommodate the acceleration of the target ion species. Mass selection is determined by the velocity and acceleration with which the wave traverses the ion guide, whereby the target species will acquire a higher kinetic energy than all other lighter as well as heaver species. Finite element simulations of this design demonstrate that for small masses a mass resolution M/DeltaM approximately 1000 can be achieved within an electrode stack containing as few as 20 plates. Some of the possible advantages and drawbacks which distinguish this concept from established mass spectrometric technologies are discussed.

  4. Felsenkeller 5 MV underground accelerator: Towards the Holy Grail of Nuclear Astrophysics 12C(α, γ)16O

    NASA Astrophysics Data System (ADS)

    Bemmerer, Daniel; Cowan, Thomas E.; Grieger, Marcel; Hammer, Sebastian; Hensel, Thomas; Junghans, Arnd R.; Koppitz, Martina; Ludwig, Felix; Müller, Stefan E.; Rimarzig, Bernd; Reinicke, Stefan; Schwengner, Ronald; Stöckel, Klaus; Szücs, Tamás; Takács, Marcell P.; Turkat, Steffen; Wagner, Andreas; Wagner, Louis; Zuber, Kai

    2018-05-01

    Low-background experiments with stable ion beams are an important tool for putting the model of stellar hydrogen, helium, and carbon burning on a solid experimental foundation. The pioneering work in this regard has been done by the LUNA collaboration at Gran Sasso, using a 0.4 MV accelerator. The present contribution reviews the status of the project for a higher-energy underground accelerator in Felsenkeller, Germany. Results from γ-ray, neutron, and muon background measurements in the Felsenkeller underground site in Dresden, Germany, show that the background conditions are satisfactory. Two tunnels of the Felsenkeller site have recently been refurbished for the installation of a 5MV high-current Pelletron accelerator. Civil construction work has completed in March 2018. The accelerator will provide intense, 50 μA, beams of 1H+, 4He+, and 12C+ ions, enabling research on astrophysically relevant nuclear reactions with unprecedented sensitivity.

  5. The optimisation of low-acceleration interstellar relativistic rocket trajectories using genetic algorithms

    NASA Astrophysics Data System (ADS)

    Fung, Kenneth K. H.; Lewis, Geraint F.; Wu, Xiaofeng

    2017-04-01

    A vast wealth of literature exists on the topic of rocket trajectory optimisation, particularly in the area of interplanetary trajectories due to its relevance today. Studies on optimising interstellar and intergalactic trajectories are usually performed in flat spacetime using an analytical approach, with very little focus on optimising interstellar trajectories in a general relativistic framework. This paper examines the use of low-acceleration rockets to reach galactic destinations in the least possible time, with a genetic algorithm being employed for the optimisation process. The fuel required for each journey was calculated for various types of propulsion systems to determine the viability of low-acceleration rockets to colonise the Milky Way. The results showed that to limit the amount of fuel carried on board, an antimatter propulsion system would likely be the minimum technological requirement to reach star systems tens of thousands of light years away. However, using a low-acceleration rocket would require several hundreds of thousands of years to reach these star systems, with minimal time dilation effects since maximum velocities only reached about 0.2 c . Such transit times are clearly impractical, and thus, any kind of colonisation using low acceleration rockets would be difficult. High accelerations, on the order of 1 g, are likely required to complete interstellar journeys within a reasonable time frame, though they may require prohibitively large amounts of fuel. So for now, it appears that humanity's ultimate goal of a galactic empire may only be possible at significantly higher accelerations, though the propulsion technology requirement for a journey that uses realistic amounts of fuel remains to be determined.

  6. Final Report: Towards an Emergent Model of Technology Adoption for Accelerating the Diffusion of Residential Solar PV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rai, Varun

    This project sought to enable electric utilities in Texas to accelerate diffusion of residential solar photovoltaic (PV) by systematically identifying and targeting existing barriers to PV adoption. A core goal of the project was to develop an integrated research framework that combines survey research, econometric modeling, financial modeling, and implementation and evaluation of pilot projects to study the PV diffusion system. This project considered PV diffusion as an emergent system, with attention to the interactions between the constituent parts of the PV socio-technical system including: economics of individual decision-making; peer and social influences; behavioral responses; and information and transaction costs.more » We also conducted two pilot projects, which have yielded new insights into behavioral and informational aspects of PV adoption. Finally, this project has produced robust and generalizable results that will provide deeper insights into the technology-diffusion process that will be applicable for the design of utility programs for other technologies such as home-energy management systems and plug-in electric vehicles. When we started this project in 2013 there was little systematic research on characterizing the decision-making process of households interested in adopting PV. This project was designed to fill that research gap by analyzing the PV adoption process from the consumers' decision-making perspective and with the objective to systematically identifying and addressing the barriers that consumers face in the adoption of PV. The two key components of that decision-making process are consumers' evaluation of: (i) uncertainties and non-monetary costs associated with the technology and (ii) the direct monetary cost-benefit. This project used an integrated approach to study both the non-monetary and the monetary components of the consumer decision-making process.« less

  7. Acceleration of electron bunches by intense laser pulse in vacuum

    NASA Astrophysics Data System (ADS)

    Hua, J. F.; Ho, Y. K.; Lin, Y. Z.; Cao, N.

    2003-08-01

    This paper addresses the output characteristics of real electron bunches accelerated with ultra-intense laser pulse in vacuum by the capture & acceleration scenario (CAS) scheme (see, e.g., Phys. Rev. E66 (2002) 066501). Normally, the size of an electron bunch is much larger than that of a tightly focused and compressed laser pulse. We examine in detail the features of the intersection region, the distribution of electrons which can experience an intense laser field and be accelerated to high energy. Furthermore, the output properties of the accelerated CAS electrons, such as the energy spectra, the angular distributions, the energy-angle correlations, the acceleration gradient, the energy which can be reached with this scheme, the emittances of the outgoing electron bunches, and the dependence of the output properties on the incident electron beam qualities such as the emittance, focusing status, etc. were studied and explained. We found that with intense laser systems and electron beam technology currently available nowadays, the number of CAS electrons can reach 10 4-10 5, when the total number of incident electrons in the practical bunch reaches ˜10 8. These results demonstrate that CAS is promising to become a novel mechanism of vacuum laser accelerators.

  8. Cleaning up contaminated wood-treating sites. Background paper

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    This report identifies technologies available for organic hazardous waste cleanup at woodtreating sites throughout the country. OTA has identified a range of such technologies that have been selected in the past and could be applied to other sites in the future. The applicability of a technology to a particular Superfund site has to be based on many site-specific factors. Nevertheless, it is clear that a number of the approaches identified by OTA may be appropriate and could prove useful if more detailed site-specific studies and tests were done. Although this study focused on the Texarkana site, decisionmakers and the publicmore » could benefit from this analysis in selecting future cleanup strategies for other sites.« less

  9. Low Energy Accelerators for Cargo Inspection

    NASA Astrophysics Data System (ADS)

    Tang, Chuanxiang

    Cargo inspection by X-rays has become essential for seaports and airports. With the emphasis on homeland security issues, the identification of dangerous things, such as explosive items and nuclear materials, is the key feature of a cargo inspection system. And new technologies based on dual energy X-rays, neutrons and monoenergetic X-rays have been studied to achieve sufficiently good material identification. An interpretation of the principle of X-ray cargo inspection technology and the features of X-ray sources are presented in this article. As most of the X-ray sources are based on RF electron linear accelerators (linacs), we give a relatively detailed description of the principle and characteristics of linacs. Cargo inspection technologies based on neutron imaging, neutron analysis, nuclear resonance fluorescence and computer tomography are also mentioned here. The main vendors and their products are summarized at the end of the article.

  10. Digital Technologies as Education Innovation at Universities

    ERIC Educational Resources Information Center

    Kryukov, Vladimir; Gorin, Alexey

    2017-01-01

    This paper analyses the use of digital technology-based education innovations in higher education. It demonstrated that extensive implementation of digital technologies in universities is the main factor conditioning the acceleration of innovative changes in educational processes, while digital technologies themselves become one of the key…

  11. Radiation from Accelerated Particles in Shocks and Reconnections

    NASA Technical Reports Server (NTRS)

    Nishikawa, K.-I.; Zhang, B.; Niemiec, J.; Medvedev, M.; Hardee, P.; Mizuno, Y.; Nordlund, A.; Frederiksen, J. T.; Sol, H.; Pohl, M.; hide

    2011-01-01

    Plasma instabilities are responsible not only for the onset and mediation of collisionless shocks but also for the associated acceleration of particles. We have investigated particle acceleration and shock structure associated with an unmagnetized relativistic electron-positron jet propagating into an unmagnetized electron-positron plasma. Cold jet electrons are thermalized and slowed while the ambient electrons are swept up to create a partially developed hydrodynamic-like shock structure. In the leading shock, electron density increases by a factor of about 3.5 in the simulation frame. Strong electromagnetic fields are generated in the trailing shock and provide an emission site. These magnetic fields contribute to the electrons transverse deflection and, more generally, relativistic acceleration behind the shock. We have calculated, self-consistently, the radiation from electrons accelerated in the turbulent magnetic fields. We found that the synthetic spectra depend on the Lorentz factor of the jet, its thermal temperature and strength of the generated magnetic fields. We are currently investigating the specific case of a jet colliding with an anti-parallel magnetized ambient medium. The properties of the radiation may be important for understanding the complex time evolution and/or spectral structure in gamma-ray bursts, relativistic jets in general, and supernova remnants.

  12. Advanced induction accelerator designs for ground based and space based FELs

    NASA Astrophysics Data System (ADS)

    Birx, Daniel

    1994-04-01

    The primary goal of this program was to improve the performance of induction accelerators with particular regards to their being used to drive Free Electron Lasers (FEL's). It is hoped that FEL's operating at visible wavelengths might someday be used to beam power from earth to extraterrestrial locations. One application of this technology might be strategic theater defense, but this power source might be used to propel vehicles or supplement solar energized systems. Our path toward achieving this goal was directed first toward optimization of the nonlinear magnetic material used in induction accelerator construction and secondly at the overall design in terms of cost, size and efficiency. We began this research effort with an in depth study into the properties of various nonlinear magnetic materials. With the data on nonlinear magnetic materials, so important to the optimization of efficiency, in hand, we envisioned a new induction accelerator design where all of the components were packaged together in one container. This induction accelerator module would combine an /ll-solid-state, nonlinear magnetic driver and the induction accelerator cells all in one convenient package. Each accelerator module (denoted SNOMAD-IVB) would produce 1.0 MeV of acceleration with the exception of the SNOMAD-IV injector module which would produce 0.5 MeV of acceleration for an electron beam current up to 1000 amperes.

  13. Piezoelectric particle accelerator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kemp, Mark A.; Jongewaard, Erik N.; Haase, Andrew A.

    2017-08-29

    A particle accelerator is provided that includes a piezoelectric accelerator element, where the piezoelectric accelerator element includes a hollow cylindrical shape, and an input transducer, where the input transducer is disposed to provide an input signal to the piezoelectric accelerator element, where the input signal induces a mechanical excitation of the piezoelectric accelerator element, where the mechanical excitation is capable of generating a piezoelectric electric field proximal to an axis of the cylindrical shape, where the piezoelectric accelerator is configured to accelerate a charged particle longitudinally along the axis of the cylindrical shape according to the piezoelectric electric field.

  14. Radiation from Accelerated Particles in Shocks and Reconnections

    NASA Technical Reports Server (NTRS)

    Nishikawa, K. I.; Choi, E. J.; Min, K. W.; Niemiec, J.; Zhang, B.; Hardee, P.; Mizuno, Y.; Medvedev, M.; Nordlund, A.; Frederiksen, J.; hide

    2012-01-01

    Plasma instabilities are responsible not only for the onset and mediation of collisionless shocks but also for the associated acceleration of particles. We have investigated particle acceleration and shock structure associated with an unmagnetized relativistic electron-positron jet propagating into an unmagnetized electron-positron plasma. Cold jet electrons are thermalized and slowed while the ambient electrons are swept up to create a partially developed hydrodynamic-like shock structure. In the leading shock, electron density increases by a factor of about 3.5 in the simulation frame. Strong electromagnetic fields are generated in the trailing shock and provide an emission site. These magnetic fields contribute to the electrons transverse deflection and, more generally, relativistic acceleration behind the shock. We have calculated, self-consistently, the radiation from electrons accelerated in the turbulent magnetic fields. We found that the synthetic spectra depend on the Lorentz factor of the jet, its thermal temperature and strength of the generated magnetic fields. Our initial results of a jet-ambient interaction with anti-parallelmagnetic fields show pile-up of magnetic fields at the colliding shock, which may lead to reconnection and associated particle acceleration. We will investigate the radiation in a transient stage as a possible generation mechanism of precursors of prompt emission. In our simulations we calculate the radiation from electrons in the shock region. The detailed properties of this radiation are important for understanding the complex time evolution and spectral structure in gamma-ray bursts, relativistic jets, and supernova remnants.

  15. Quasi-monoenergetic laser-plasma acceleration of electrons to 2 GeV

    PubMed Central

    Wang, Xiaoming; Zgadzaj, Rafal; Fazel, Neil; Li, Zhengyan; Yi, S. A.; Zhang, Xi; Henderson, Watson; Chang, Y.-Y.; Korzekwa, R.; Tsai, H.-E.; Pai, C.-H.; Quevedo, H.; Dyer, G.; Gaul, E.; Martinez, M.; Bernstein, A. C.; Borger, T.; Spinks, M.; Donovan, M.; Khudik, V.; Shvets, G.; Ditmire, T.; Downer, M. C.

    2013-01-01

    Laser-plasma accelerators of only a centimetre’s length have produced nearly monoenergetic electron bunches with energy as high as 1 GeV. Scaling these compact accelerators to multi-gigaelectronvolt energy would open the prospect of building X-ray free-electron lasers and linear colliders hundreds of times smaller than conventional facilities, but the 1 GeV barrier has so far proven insurmountable. Here, by applying new petawatt laser technology, we produce electron bunches with a spectrum prominently peaked at 2 GeV with only a few per cent energy spread and unprecedented sub-milliradian divergence. Petawatt pulses inject ambient plasma electrons into the laser-driven accelerator at much lower density than was previously possible, thereby overcoming the principal physical barriers to multi-gigaelectronvolt acceleration: dephasing between laser-driven wake and accelerating electrons and laser pulse erosion. Simulations indicate that with improvements in the laser-pulse focus quality, acceleration to nearly 10 GeV should be possible with the available pulse energy. PMID:23756359

  16. Will Progress in Science and Technology Avert or Accelerate Global Collapse? A Critical Analysis and Policy Recommendations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huesemann, Michael H.; Huesemann, Joyce A.

    Industrial society will move towards collapse if its total environmental impact (I), expressed either in terms of energy and materials use or in terms of pollution, increases with time, i.e., dI/dt > 0. The traditional interpretation of the I=PAT equation reflects the optimistic belief that technological innovation, particularly improvements in eco-efficiency, will significantly reduce the technology (T) factor, and thereby result in a corresponding decline in impact (I). Unfortunately, this interpretation of the I=PAT equation ignores the effects of technical change on the other two factors: population (P) and per capita affluence (A). A more heuristic formulation of this equationmore » is I=P(T)∙A(T)∙T in which the dependence of P and A on T is apparent. From historical evidence, it is clear that technological revolutions (tool-making, agricultural, and industrial) have been the primary driving forces behind successive population explosions, and that modern communication and transportation technologies have been employed to transform a large proportion of the world’s inhabitants into consumers of material- and energy-intensive products and services. In addition, factor analysis from neoclassical growth theory and the rebound effect provide evidence that science and technology have played a key role in contributing to rising living standards. While technological change has thus contributed to significant increases in both P and A, it has at the same time brought about considerable eco-efficiency improvements. Unfortunately, reductions in the T-factor have generally not been sufficiently rapid to compensate for the simultaneous increases in both P and A. As a result, total impact, in terms of energy production, mineral extraction, land-use and CO2 emissions, has in most cases increased with time, indicating that industrial society is nevertheless moving towards collapse. The belief that continued and even accelerated scientific research and technological

  17. SITE TECHNOLOGY CAPSULE: TEXACO GASIFICATION PROCESS

    EPA Science Inventory

    In 1980, the U.S. Congress passed the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA), also known as Superfund. to protect human health and the environment from uncontrolled hazardous waste sites. CERCLA was amended by the Superfund Amendments and R...

  18. SUPERFUND INNOVATIVE TECHNOLOGY EVALUATION PROGRAM: TECHNOLOGY WITH AN IMPACT

    EPA Science Inventory

    SITE promotes the development and implementation of innovative technologies for remediating hazardous waste sites and for evaluating the nature and extent of hazardous waste site contamination through four component segments. The SITE Program is a key element in EPA's efforts...

  19. An evaluation of remote sensing technologies for the detection of fugitive contamination at selected Superfund hazardous waste sites in Pennsylvania

    USGS Publications Warehouse

    Slonecker, E. Terrence; Fisher, Gary B.

    2014-01-01

    This evaluation was conducted to assess the potential for using both traditional remote sensing, such as aerial imagery, and emerging remote sensing technology, such as hyperspectral imaging, as tools for postclosure monitoring of selected hazardous waste sites. Sixteen deleted Superfund (SF) National Priorities List (NPL) sites in Pennsylvania were imaged with a Civil Air Patrol (CAP) Airborne Real-Time Cueing Hyperspectral Enhanced Reconnaissance (ARCHER) sensor between 2009 and 2012. Deleted sites are those sites that have been remediated and removed from the NPL. The imagery was processed to radiance and atmospherically corrected to relative reflectance with standard software routines using the Environment for Visualizing Imagery (ENVI, ITT–VIS, Boulder, Colorado) software. Standard routines for anomaly detection, endmember collection, vegetation stress, and spectral analysis were applied.

  20. High power ring methods and accelerator driven subcritical reactor application

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tahar, Malek Haj

    2016-08-07

    High power proton accelerators allow providing, by spallation reaction, the neutron fluxes necessary in the synthesis of fissile material, starting from Uranium 238 or Thorium 232. This is the basis of the concept of sub-critical operation of a reactor, for energy production or nuclear waste transmutation, with the objective of achieving cleaner, safer and more efficient process than today’s technologies allow. Designing, building and operating a proton accelerator in the 500-1000 MeV energy range, CW regime, MW power class still remains a challenge nowadays. There is a limited number of installations at present achieving beam characteristics in that class, e.g.,more » PSI in Villigen, 590 MeV CW beam from a cyclotron, SNS in Oakland, 1 GeV pulsed beam from a linear accelerator, in addition to projects as the ESS in Europe, a 5 MW beam from a linear accelerator. Furthermore, coupling an accelerator to a sub-critical nuclear reactor is a challenging proposition: some of the key issues/requirements are the design of a spallation target to withstand high power densities as well as ensure the safety of the installation. These two domains are the grounds of the PhD work: the focus is on the high power ring methods in the frame of the KURRI FFAG collaboration in Japan: upgrade of the installation towards high intensity is crucial to demonstrate the high beam power capability of FFAG. Thus, modeling of the beam dynamics and benchmarking of different codes was undertaken to validate the simulation results. Experimental results revealed some major losses that need to be understood and eventually overcome. By developing analytical models that account for the field defects, one identified major sources of imperfection in the design of scaling FFAG that explain the important tune variations resulting in the crossing of several betatron resonances. A new formula is derived to compute the tunes and properties established that characterize the effect of the field

  1. Subattomole sensitivity in biological accelerator mass spectrometry.

    PubMed

    Salehpour, Mehran; Possnert, Göran; Bryhni, Helge

    2008-05-15

    The Uppsala University 5 MV Pelletron tandem accelerator has been used to study (14)C-labeled biological samples utilizing accelerator mass spectrometry (AMS) technology. We have adapted a sample preparation method for small biological samples down to a few tens of micrograms of carbon, involving among others, miniaturizing of the graphitization reactor. Standard AMS requires about 1 mg of carbon with a limit of quantitation of about 10 amol. Results are presented for a range of small sample sizes with concentrations down to below 1 pM of a pharmaceutical substance in human blood. It is shown that (14)C-labeled molecular markers can be routinely measured from the femtomole range down to a few hundred zeptomole (10 (-21) mol), without the use of any additional separation methods.

  2. The Persistence of Mode 1 Technology in the Korean Late Paleolithic

    PubMed Central

    Lee, Hyeong Woo

    2013-01-01

    Ssangjungri (SJ), an open-air site with several Paleolithic horizons, was recently discovered in South Korea. Most of the identified artifacts are simple core and flake tools that indicate an expedient knapping strategy. Bifacially worked core tools, which might be considered non-classic bifaces, also have been found. The prolific horizons at the site were dated by accelerator mass spectrometry (AMS) to about 30 kya. Another newly discovered Paleolithic open-air site, Jeungsan (JS), shows a homogeneous lithic pattern during this period. The dominated artifact types and usage of raw materials are similar in character to those from SJ, although JS yielded a larger number of simple core and flake tools with non-classic bifaces. Chronometric analysis by AMS and optically stimulated luminescence (OSL) indicate that the prime stratigraphic levels at JS also date to approximately 30 kya, and the numerous conjoining pieces indicate that the layers were not seriously affected by post-depositional processes. Thus, it can be confirmed that simple core and flake tools were produced at temporally and culturally independent sites until after 30 kya, supporting the hypothesis of a wide and persistent use of simple technology into the Late Pleistocene. PMID:23724113

  3. Collective acceleration of ions in picosecond pinched electron beams

    NASA Astrophysics Data System (ADS)

    Baryshnikov, V. I.; Paperny, V. L.; Shipayev, I. V.

    2017-10-01

    Сharacteristics of intense electron-ion beams emitted by a high-voltage (280 kV) electron accelerator with a pulse duration of 200 ps and current 5 kA are studied. The capture phenomena and the subsequent collective acceleration of multi charged ions of the cathode material by the electric field of the electron beam are observed. It is shown that the electron-ion beam diameter does not exceed 30 µm therein in the case of lighter ions, and the decay of the pinched beam occurs at a shorter distance from the cathode. It is established that the ions of the cathode material Tin+ captured by the electron beam are accelerated up to an energy of  ⩽10 MeV, and the ion fluence reaches 1017 ion cm-2 in the pulse. These ions are effectively embedded into the lattice sites of the irradiated substrate (sapphire crystal), forming the luminescent areas of the micron scale.

  4. An overview of negative hydrogen ion sources for accelerators

    NASA Astrophysics Data System (ADS)

    Faircloth, Dan; Lawrie, Scott

    2018-02-01

    An overview of high current (>1 mA) negative hydrogen ion (H-) sources that are currently used on particle accelerators. The current understanding of how H- ions are produced is summarised. Issues relating to caesium usage are explored. The different ways of expressing emittance and beam currents are clarified. Source technology naming conventions are defined and generalised descriptions of each source technology are provided. Examples of currently operating sources are outlined, with their current status and future outlook given. A comparative table is provided.

  5. Source-to-accelerator quadrupole matching section for a compact linear accelerator

    NASA Astrophysics Data System (ADS)

    Seidl, P. A.; Persaud, A.; Ghiorso, W.; Ji, Q.; Waldron, W. L.; Lal, A.; Vinayakumar, K. B.; Schenkel, T.

    2018-05-01

    Recently, we presented a new approach for a compact radio-frequency (RF) accelerator structure and demonstrated the functionality of the individual components: acceleration units and focusing elements. In this paper, we combine these units to form a working accelerator structure: a matching section between the ion source extraction grids and the RF-acceleration unit and electrostatic focusing quadrupoles between successive acceleration units. The matching section consists of six electrostatic quadrupoles (ESQs) fabricated using 3D-printing techniques. The matching section enables us to capture more beam current and to match the beam envelope to conditions for stable transport in an acceleration lattice. We present data from an integrated accelerator consisting of the source, matching section, and an ESQ doublet sandwiched between two RF-acceleration units.

  6. Operational and design aspects of accelerators for medical applications

    NASA Astrophysics Data System (ADS)

    Schippers, Jacobus Maarten; Seidel, Mike

    2015-03-01

    Originally, the typical particle accelerators as well as their associated beam transport equipment were designed for particle and nuclear physics research and applications in isotope production. In the past few decades, such accelerators and related equipment have also been applied for medical use. This can be in the original physics laboratory environment, but for the past 20 years also in hospital-based or purely clinical environments for particle therapy. The most important specific requirements of accelerators for radiation therapy with protons or ions will be discussed. The focus will be on accelerator design, operational, and formal aspects. We will discuss the special requirements to reach a high reliability for patient treatments as well as an accurate delivery of the dose at the correct position in the patient using modern techniques like pencil beam scanning. It will be shown that the technical requirements, safety aspects, and required reliability of the accelerated beam differ substantially from those in a nuclear physics laboratory. It will be shown that this difference has significant implications on the safety and interlock systems. The operation of such a medical facility should be possible by nonaccelerator specialists at different operating sites (treatment rooms). The organization and role of the control and interlock systems can be considered as being the most crucially important issue, and therefore a special, dedicated design is absolutely necessary in a facility providing particle therapy.

  7. Present status of Accelerator-Based BNCT

    PubMed Central

    Kreiner, Andres Juan; Bergueiro, Javier; Cartelli, Daniel; Baldo, Matias; Castell, Walter; Asoia, Javier Gomez; Padulo, Javier; Suárez Sandín, Juan Carlos; Igarzabal, Marcelo; Erhardt, Julian; Mercuri, Daniel; Valda, Alejandro A.; Minsky, Daniel M.; Debray, Mario E.; Somacal, Hector R.; Capoulat, María Eugenia; Herrera, María S.; del Grosso, Mariela F.; Gagetti, Leonardo; Anzorena, Manuel Suarez; Canepa, Nicolas; Real, Nicolas; Gun, Marcelo; Tacca, Hernán

    2016-01-01

    Aim This work aims at giving an updated report of the worldwide status of Accelerator-Based BNCT (AB-BNCT). Background There is a generalized perception that the availability of accelerators installed in hospitals, as neutron sources, may be crucial for the advancement of BNCT. Accordingly, in recent years a significant effort has started to develop such machines. Materials and methods A variety of possible charged-particle induced nuclear reactions and the characteristics of the resulting neutron spectra are discussed along with the worldwide activity in suitable accelerator development. Results Endothermic 7Li(p,n)7Be and 9Be(p,n)9B and exothermic 9Be(d,n)10B are compared. In addition to having much better thermo-mechanical properties than Li, Be as a target leads to stable products. This is a significant advantage for a hospital-based facility. 9Be(p,n)9B needs at least 4–5 MeV bombarding energy to have a sufficient yield, while 9Be(d,n)10B can be utilized at about 1.4 MeV, implying the smallest possible accelerator. This reaction operating with a thin target can produce a sufficiently soft spectrum to be viable for AB-BNCT. The machines considered are electrostatic single ended or tandem accelerators or radiofrequency quadrupoles plus drift tube Linacs. Conclusions 7Li(p,n)7Be provides one of the best solutions for the production of epithermal neutron beams for deep-seated tumors. However, a Li-based target poses significant technological challenges. Hence, Be has been considered as an alternative target, both in combination with (p,n) and (d,n) reactions. 9Be(d,n)10B at 1.4 MeV, with a thin target has been shown to be a realistic option for the treatment of deep-seated lesions. PMID:26933390

  8. Present status of Accelerator-Based BNCT.

    PubMed

    Kreiner, Andres Juan; Bergueiro, Javier; Cartelli, Daniel; Baldo, Matias; Castell, Walter; Asoia, Javier Gomez; Padulo, Javier; Suárez Sandín, Juan Carlos; Igarzabal, Marcelo; Erhardt, Julian; Mercuri, Daniel; Valda, Alejandro A; Minsky, Daniel M; Debray, Mario E; Somacal, Hector R; Capoulat, María Eugenia; Herrera, María S; Del Grosso, Mariela F; Gagetti, Leonardo; Anzorena, Manuel Suarez; Canepa, Nicolas; Real, Nicolas; Gun, Marcelo; Tacca, Hernán

    2016-01-01

    This work aims at giving an updated report of the worldwide status of Accelerator-Based BNCT (AB-BNCT). There is a generalized perception that the availability of accelerators installed in hospitals, as neutron sources, may be crucial for the advancement of BNCT. Accordingly, in recent years a significant effort has started to develop such machines. A variety of possible charged-particle induced nuclear reactions and the characteristics of the resulting neutron spectra are discussed along with the worldwide activity in suitable accelerator development. Endothermic (7)Li(p,n)(7)Be and (9)Be(p,n)(9)B and exothermic (9)Be(d,n)(10)B are compared. In addition to having much better thermo-mechanical properties than Li, Be as a target leads to stable products. This is a significant advantage for a hospital-based facility. (9)Be(p,n)(9)B needs at least 4-5 MeV bombarding energy to have a sufficient yield, while (9)Be(d,n)(10)B can be utilized at about 1.4 MeV, implying the smallest possible accelerator. This reaction operating with a thin target can produce a sufficiently soft spectrum to be viable for AB-BNCT. The machines considered are electrostatic single ended or tandem accelerators or radiofrequency quadrupoles plus drift tube Linacs. (7)Li(p,n)(7)Be provides one of the best solutions for the production of epithermal neutron beams for deep-seated tumors. However, a Li-based target poses significant technological challenges. Hence, Be has been considered as an alternative target, both in combination with (p,n) and (d,n) reactions. (9)Be(d,n)(10)B at 1.4 MeV, with a thin target has been shown to be a realistic option for the treatment of deep-seated lesions.

  9. High sustained +Gz acceleration: physiological adaptation to high-G tolerance

    NASA Technical Reports Server (NTRS)

    Convertino, V. A.

    1998-01-01

    Since the early 1940s, a significant volume of research has been conducted in an effort to describe the impact of acute exposures to high-G acceleration on cardiovascular mechanisms responsible to maintaining cerebral perfusion and conscious in high performance aircraft pilots during aerial combat maneuvers. The value of understanding hemodynamic characteristics that underlie G-induced loss of consciousness has been instrumental in the evolution of optimal technology development (e.g., G-suits, positive pressure breathing, COMBAT EDGE, etc.) and pilot training (e.g., anti-G straining maneuvers). Although the emphasis of research has been placed on the development of protection against acute high +Gz acceleration effects, recent observations suggest that adaptation of cardiovascular mechanism associated with blood pressure regulation may contribute to a protective 'G-training' effect. Regular training at high G enhances G tolerance in humans, rats, guinea pigs, and dogs while prolonged layoff from exposure in high G profiles (G-layoff) can result in reduced G endurance. It seems probable that adaptations in physiological functions following chronically-repeated high G exposure (G training) or G-layoff could have significant impacts on performance during sustained high-G acceleration since protective technology such as G-suits and anit-G straining maneuvers are applied consistently during these periods of training. The purpose of this paper is to present a review of new data from three experiments that support the notion that repeated exposure on a regular basis to high sustained +Gz acceleration induces significant physiological adaptations which are associated with improved blood pressure regulation and subsequent protection of cerebral perfusion during orthostatic challenges.

  10. Thermo-magnetic instabilities in Nb 3Sn superconducting accelerator magnets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bordini, Bernardo

    2006-09-01

    The advance of High Energy Physics research using circulating accelerators strongly depends on increasing the magnetic bending field which accelerator magnets provide. To achieve high fields, the most powerful present-day accelerator magnets employ NbTi superconducting technology; however, with the start up of Large Hadron Collider (LHC) in 2007, NbTi magnets will have reached the maximum field allowed by the intrinsic properties of this superconductor. A further increase of the field strength necessarily requires a change in superconductor material; the best candidate is Nb 3Sn. Several laboratories in the US and Europe are currently working on developing Nb 3Sn accelerator magnets,more » and although these magnets have great potential, it is suspected that their performance may be fundamentally limited by conductor thermo-magnetic instabilities: an idea first proposed by the Fermilab High Field Magnet group early in 2003. This thesis presents a study of thermo-magnetic instability in high field Nb 3Sn accelerator magnets. In this chapter the following topics are described: the role of superconducting magnets in High Energy Physics; the main characteristics of superconductors for accelerator magnets; typical measurements of current capability in superconducting strands; the properties of Nb 3Sn; a description of the manufacturing process of Nb 3Sn strands; superconducting cables; a typical layout of superconducting accelerator magnets; the current state of the art of Nb 3Sn accelerator magnets; the High Field Magnet program at Fermilab; and the scope of the thesis.« less

  11. Vibration isolation technology: An executive summary of systems development and demonstration

    NASA Technical Reports Server (NTRS)

    Grodsinsky, Carlos M.; Logsdon, Kirk A.; Lubomski, Joseph F.

    1993-01-01

    A program was organized to develop the enabling technologies needed for the use of Space Station Freedom as a viable microgravity experimental platform. One of these development programs was the Vibration Isolation Technology (VIT). This technology development program grew because of increased awareness that the acceleration disturbances present on the Space Transportation System (STS) orbiter can and are detrimental to many microgravity experiments proposed for STS, and in the future, Space Station Freedom (SSF). Overall technological organization are covered of the VIT program. Emphasis is given to the results from development and demonstration of enabling technologies to achieve the acceleration requirements perceived as those most likely needed for a variety of microgravity science experiments. In so doing, a brief summary of general theoretical approaches to controlling the acceleration environment of an isolated space based payload and the design and/or performance of two prototype six degree of freedom active magnetic isolation systems is presented.

  12. Vibration isolation technology - An executive summary of systems development and demonstration

    NASA Astrophysics Data System (ADS)

    Grodsinsky, C. M.; Logsdon, K. A.; Lubomski, J. F.

    1993-01-01

    A program was organized to develop the enabling technologies needed for the use of Space Station Freedom as a viable microgravity experimental platform. One of these development programs was the Vibration Isolation Technology (VIT). This technology development program grew because of increased awareness that the acceleration disturbances present on the Space Transportation System (STS) orbiter can and are detrimental to many microgravity experiments proposed for STS, and in the future, Space Station Freedom (SSF). Overall technological organization are covered of the VIT program. Emphasis is given to the results from development and demonstration of enabling technologies to achieve the acceleration requirements perceived as those most likely needed for a variety of microgravity science experiments. In so doing, a brief summary of general theoretical approaches to controlling the acceleration environment of an isolated space based payload and the design and/or performance of two prototype six degree of freedom active magnetic isolation systems is presented.

  13. Accelerating Commercial Remote Sensing

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Through the Visiting Investigator Program (VIP) at Stennis Space Center, Community Coffee was able to use satellites to forecast coffee crops in Guatemala. Using satellite imagery, the company can produce detailed maps that separate coffee cropland from wild vegetation and show information on the health of specific crops. The data can control coffee prices and eventually may be used to optimize application of fertilizers, pesticides and irrigation. This would result in maximal crop yields, minimal pollution and lower production costs. VIP is a mechanism involving NASA funding designed to accelerate the growth of commercial remote sensing by promoting general awareness and basic training in the technology.

  14. Can Accelerators Accelerate Learning?

    NASA Astrophysics Data System (ADS)

    Santos, A. C. F.; Fonseca, P.; Coelho, L. F. S.

    2009-03-01

    The 'Young Talented' education program developed by the Brazilian State Funding Agency (FAPERJ) [1] makes it possible for high-schools students from public high schools to perform activities in scientific laboratories. In the Atomic and Molecular Physics Laboratory at Federal University of Rio de Janeiro (UFRJ), the students are confronted with modern research tools like the 1.7 MV ion accelerator. Being a user-friendly machine, the accelerator is easily manageable by the students, who can perform simple hands-on activities, stimulating interest in physics, and getting the students close to modern laboratory techniques.

  15. Adaptive and accelerated tracking-learning-detection

    NASA Astrophysics Data System (ADS)

    Guo, Pengyu; Li, Xin; Ding, Shaowen; Tian, Zunhua; Zhang, Xiaohu

    2013-08-01

    An improved online long-term visual tracking algorithm, named adaptive and accelerated TLD (AA-TLD) based on Tracking-Learning-Detection (TLD) which is a novel tracking framework has been introduced in this paper. The improvement focuses on two aspects, one is adaption, which makes the algorithm not dependent on the pre-defined scanning grids by online generating scale space, and the other is efficiency, which uses not only algorithm-level acceleration like scale prediction that employs auto-regression and moving average (ARMA) model to learn the object motion to lessen the detector's searching range and the fixed number of positive and negative samples that ensures a constant retrieving time, but also CPU and GPU parallel technology to achieve hardware acceleration. In addition, in order to obtain a better effect, some TLD's details are redesigned, which uses a weight including both normalized correlation coefficient and scale size to integrate results, and adjusts distance metric thresholds online. A contrastive experiment on success rate, center location error and execution time, is carried out to show a performance and efficiency upgrade over state-of-the-art TLD with partial TLD datasets and Shenzhou IX return capsule image sequences. The algorithm can be used in the field of video surveillance to meet the need of real-time video tracking.

  16. Technology Demonstration Summary Technology Evaluation Report, Site Demonstration Test, Hazcon Solidification, Douglassville, Pennsylvania

    EPA Science Inventory

    The major objective of the HAZCON Solidification SITE Program Demonstration Test was to develop reliable performance and cost information. The demonstration occurred at a 50-acre site of a former oil reprocessing plant at Douglassville, PA containing a wide range of organic...

  17. Intracellular Calcium Dynamics and the Acceleration of Sinus Rhythm by β-Adrenergic Stimulation

    PubMed Central

    Joung, Boyoung; Tang, Liang; Maruyama, Mitsunori; Han, Seongwook; Chen, Zhenhui; Stucky, Marcelle; Jones, Larry R.; Fishbein, Michael C.; Weiss, James N.; Chen, Peng-Sheng; Lin, Shien-Fong

    2009-01-01

    Background Recent evidence indicates that membrane voltage and Ca2+ clocks jointly regulate sinoatrial node (SAN) automaticity. Here we test the hypothesis that sinus rate acceleration by β-adrenergic stimulation involves synergistic interactions between these clock mechanisms. Methods and Results We simultaneously mapped intracellular calcium (Cai) and membrane potential (Vm) in 25 isolated canine right atrium (RA), using previously described criteria of the timing of late diastolic Cai elevation (LDCAE) relative to the action potential (AP) upstroke to detect the Ca2+ clock. Before isoproterenol, the earliest pacemaking site occurred in the inferior SAN, and LDCAE was observed in only 4/25 preparations. Isoproterenol (1 μmol/L) increased sinus rate and shifted pacemaking site to superior SAN, concomitant with the appearance of LDCAE preceding the AP upstroke by 98 ± 31 ms. Caffeine had similar effects, while SR Ca2+ depletion with ryanodine and thapsigargin prevented isoproterenol-induced LDCAE and blunted sinus rate acceleration. Cai transient relaxation time during ISO was shorter in superior SAN (124 ± 34 ms) than inferior SAN (138 ± 24 ms, p = 0.01) or RA (164 ± 33 ms, p = 0.001), and was associated with a lower SR Ca2+ ATPase pump to phospholamban protein ratio in SAN than in RA. If current blockade with ZD 7288 modestly blunted, but did not prevent LDCAE or sinus rate acceleration by isoproterenol. Conclusions Acceleration of the Ca2+ clock in the superior SAN plays an important role in sinus acceleration during β-adrenergic stimulation, interacting synergistically with the voltage clock to increase sinus rate. PMID:19188501

  18. GPU Accelerated Prognostics

    NASA Technical Reports Server (NTRS)

    Gorospe, George E., Jr.; Daigle, Matthew J.; Sankararaman, Shankar; Kulkarni, Chetan S.; Ng, Eley

    2017-01-01

    Prognostic methods enable operators and maintainers to predict the future performance for critical systems. However, these methods can be computationally expensive and may need to be performed each time new information about the system becomes available. In light of these computational requirements, we have investigated the application of graphics processing units (GPUs) as a computational platform for real-time prognostics. Recent advances in GPU technology have reduced cost and increased the computational capability of these highly parallel processing units, making them more attractive for the deployment of prognostic software. We present a survey of model-based prognostic algorithms with considerations for leveraging the parallel architecture of the GPU and a case study of GPU-accelerated battery prognostics with computational performance results.

  19. Space Technology 7 : Micropropulsion and Mass Distribution

    NASA Technical Reports Server (NTRS)

    Carnaub, A.; Dunn, C.; Ziemer, J,; Hruby, V.; Spence, D.; Demmons, N.; Roy, T.; McCormick, R.; Gasaska, C.; Young, J.; hide

    2007-01-01

    The NASA New Millennium Program Space Technology 7 (ST7) project will validate technology for precision spacecraft control. The ST7 disturbance reduction system (DRS) will contain new micropropulsion technology to be flown as part of the European Space Agency's LISA (laser interferometer space antenna) Pathfinder project. After launch into a low Earth orbit in early 2010, the LISA Pathfinder spacecraft will be maneuvered to a halo orbit about the Earth-Sun LI Lagrange point for operations. The DRS will control the position of the spacecraft relative to a reference to an accuracy of one nanometer over time scales of several thousand seconds. To perform the control the spacecraft will use a new colloid thruster technology. The thrusters will operate over the range of 5 to 30 micro-Newtons with precision of 0.1 micro-Newton. The thrust will be generated by using a high electric field to extract charged droplets of a conducting colloid fluid and accelerating them with a precisely adjustable voltage. The control position reference will be provided by the European LISA Technology Package, which will include two nearly free-floating test masses. The test mass position and attitude will be sensed and adjusted using electrostatic capacitance bridges. The DRS will control the spacecraft position with respect to one test mass while minimizing disturbances on the second test mass. The dynamic control system will cover eighteen degrees of freedom, six for each of the test masses and six for the spacecraft. In the absence of other disturbances, the test masses will slowly gravitate toward local concentrations of spacecraft mass. The test mass acceleration must be minimized to maintain the acceleration of the enclosing drag-free spacecraft within the control authority of the micropropulsion system. Therefore, test mass acceleration must be predicted by accurate measurement of mass distribution, then offset by the placement of specially shaped balance masses near each test mass

  20. Microfabricated electrospray emitter arrays with integrated extractor and accelerator electrodes for the propulsion of small spacecraft

    NASA Astrophysics Data System (ADS)

    Dandavino, S.; Ataman, C.; Ryan, C. N.; Chakraborty, S.; Courtney, D.; Stark, J. P. W.; Shea, H.

    2014-07-01

    Microfabricated electrospray thrusters could revolutionize the spacecraft industry by providing efficient propulsion capabilities to micro and nano satellites (1-100 kg). We present the modeling, design, fabrication and characterization of a new generation of devices, for the first time integrating in the fabrication process individual accelerator electrodes capable of focusing and accelerating the emitted sprays. Integrating these electrodes is a key milestone in the development of this technology; in addition to increasing the critical performance metrics of thrust, specific impulse and propulsive efficiency, the accelerators enable a number of new system features such as power tuning and thrust vectoring and balancing. Through microfabrication, we produced high density arrays (213 emitters cm-2) of capillary emitters, assembling them at wafer-level with an extractor/accelerator electrode pair separated by micro-sandblasted glass. Through IV measurements, we could confirm that acceleration could be decoupled from the extraction of the spray—an important element towards the flexibility of this technology. We present the largest reported internally fed microfabricated arrays operation, with 127 emitters spraying in parallel, for a total beam of 10-30 µA composed by 95% of ions. Effective beam focusing was also demonstrated, with plume half-angles being reduced from approximately 30° to 15° with 2000 V acceleration. Based on these results, we predict, with 3000 V acceleration, thrust per emitter of 38.4 nN, specific impulse of 1103 s and a propulsive efficiency of 22% with <1 mW/emitter power consumption.