Accelerating Vaccine Formulation Development Using Design of Experiment Stability Studies.
Ahl, Patrick L; Mensch, Christopher; Hu, Binghua; Pixley, Heidi; Zhang, Lan; Dieter, Lance; Russell, Ryann; Smith, William J; Przysiecki, Craig; Kosinski, Mike; Blue, Jeffrey T
2016-10-01
Vaccine drug product thermal stability often depends on formulation input factors and how they interact. Scientific understanding and professional experience typically allows vaccine formulators to accurately predict the thermal stability output based on formulation input factors such as pH, ionic strength, and excipients. Thermal stability predictions, however, are not enough for regulators. Stability claims must be supported by experimental data. The Quality by Design approach of Design of Experiment (DoE) is well suited to describe formulation outputs such as thermal stability in terms of formulation input factors. A DoE approach particularly at elevated temperatures that induce accelerated degradation can provide empirical understanding of how vaccine formulation input factors and interactions affect vaccine stability output performance. This is possible even when clear scientific understanding of particular formulation stability mechanisms are lacking. A DoE approach was used in an accelerated 37(°)C stability study of an aluminum adjuvant Neisseria meningitidis serogroup B vaccine. Formulation stability differences were identified after only 15 days into the study. We believe this study demonstrates the power of combining DoE methodology with accelerated stress stability studies to accelerate and improve vaccine formulation development programs particularly during the preformulation stage. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.
Stability of Permanent Magnets,
1984-03-06
temperature. The effect of impacts, vibrations and external magnetic fields in less detail is illuminated. The new, accelerated methods of the study of...accelerated methods, developed by the author of the study of the stability of magnets and systems, which do not require prolonged time intervais...the accelerated methods proposed to them of the study of the stability of magnets will contribute to the accumulation of experimental results and to
DOT National Transportation Integrated Search
2008-01-01
The Midwest States Accelerated Pavement Testing Pooled Fund Program, financed by the highway departments : of Missouri, Iowa, Kansas and Nebraska, has supported an accelerated pavement testing (APT) project to compare : the performance of stabilized ...
An extended macro model accounting for acceleration changes with memory and numerical tests
NASA Astrophysics Data System (ADS)
Cheng, Rongjun; Ge, Hongxia; Sun, Fengxin; Wang, Jufeng
2018-09-01
Considering effect of acceleration changes with memory, an improved continuum model of traffic flow is proposed in this paper. By applying the linear stability theory, we derived the new model's linear stability condition. Through nonlinear analysis, the KdV-Burgers equation is derived to describe the propagating behavior of traffic density wave near the neutral stability line. Numerical simulation is carried out to study the extended traffic flow model, which explores how acceleration changes with memory affected each car's velocity, density and fuel consumption and exhaust emissions. Numerical results demonstrate that acceleration changes with memory have significant negative effect on dynamic characteristic of traffic flow. Furthermore, research results verify that the effect of acceleration changes with memory will deteriorate the stability of traffic flow and increase cars' total fuel consumptions and emissions during the whole evolution of small perturbation.
Establishment of an equivalence acceptance criterion for accelerated stability studies.
Burdick, Richard K; Sidor, Leslie
2013-01-01
In this article, the use of statistical equivalence testing for providing evidence of process comparability in an accelerated stability study is advocated over the use of a test of differences. The objective of such a study is to demonstrate comparability by showing that the stability profiles under nonrecommended storage conditions of two processes are equivalent. Because it is difficult at accelerated conditions to find a direct link to product specifications, and hence product safety and efficacy, an equivalence acceptance criterion is proposed that is based on the statistical concept of effect size. As with all statistical tests of equivalence, it is important to collect input from appropriate subject-matter experts when defining the acceptance criterion.
Accelerated stability studies of Sufoofe Sailan: A Unani formulation.
Rani, Seema; Rahman, Khaleequr; Younis, Peerzada Mohammad
2015-01-01
Sufoofe Sailan (SS) is a polyherbal powder preparation used in Unani medicine to treat gynecological diseases. It is observed that SS degrade early as it is in the form of powder; however, the stability study of SS was not carried out till date. To evaluate the accelerated stability of SS. Finished formulation of SS was packed in three airtight transparent polyethylene terephthalate containers. One pack was analyzed just after manufacturing and remaining two packs were kept in stability chamber at 40°C ± 2°C/75% ± 5% RH, of which one pack was analyzed after the completion of three and another after 6 months. Organoleptic, physico-chemical, microbiological parameters along with high-performance thin layer chromatography (HPTLC) fingerprinting were carried out. Organoleptic characters showed no significant change in accelerated stability condition. All physico-chemical parameters showed changes <5%, HPTLC fingerprinting showed minimum changes and microbial studies were in confirmation to the World Health Organization guidelines. SS confirmed to the International Conference on Harmonization Guideline for accelerated testing of the pharmaceutical product on said parameters and as per the Grimm's statement the shelf life of SS may last 20 months.
Accelerated stability studies of Sufoofe Sailan: A Unani formulation
Rani, Seema; Rahman, Khaleequr; Younis, Peerzada Mohammad
2015-01-01
Introduction: Sufoofe Sailan (SS) is a polyherbal powder preparation used in Unani medicine to treat gynecological diseases. It is observed that SS degrade early as it is in the form of powder; however, the stability study of SS was not carried out till date. Aim: To evaluate the accelerated stability of SS. Materials and Methods: Finished formulation of SS was packed in three airtight transparent polyethylene terephthalate containers. One pack was analyzed just after manufacturing and remaining two packs were kept in stability chamber at 40°C ± 2°C/75% ± 5% RH, of which one pack was analyzed after the completion of three and another after 6 months. Organoleptic, physico-chemical, microbiological parameters along with high-performance thin layer chromatography (HPTLC) fingerprinting were carried out. Results: Organoleptic characters showed no significant change in accelerated stability condition. All physico-chemical parameters showed changes <5%, HPTLC fingerprinting showed minimum changes and microbial studies were in confirmation to the World Health Organization guidelines. Conclusion: SS confirmed to the International Conference on Harmonization Guideline for accelerated testing of the pharmaceutical product on said parameters and as per the Grimm's statement the shelf life of SS may last 20 months. PMID:26730145
Guha, Madhumita; Gao, Xuan; Jayaraman, Shobini; Gursky, Olga
2008-11-04
High-density lipoproteins (HDLs) are protein-lipid assemblies that remove excess cell cholesterol and prevent atherosclerosis. HDLs are stabilized by kinetic barriers that decelerate protein dissociation and lipoprotein fusion. We propose that similar barriers modulate metabolic remodeling of plasma HDLs; hence, changes in particle composition that destabilize HDLs and accelerate their denaturation may accelerate their metabolic remodeling. To test this notion, we correlate existing reports on HDL-mediated cell cholesterol efflux and esterification, which are obligatory early steps in cholesterol removal, with our kinetic studies of HDL stability. The results support our hypothesis and show that factors accelerating cholesterol efflux and esterification in model discoidal lipoproteins (including reduced protein size, reduced fatty acyl chain length, and/or increased level of cis unsaturation) destabilize lipoproteins and accelerate their fusion and apolipoprotein dissociation. Oxidation studies of plasma spherical HDLs show a similar trend: mild oxidation by Cu(2+) or OCl(-) accelerates cell cholesterol efflux, protein dissociation, and HDL fusion, while extensive oxidation inhibits these reactions. Consequently, moderate destabilization may be beneficial for HDL functions by facilitating insertion of cholesterol and lipophilic enzymes, promoting dissociation of lipid-poor apolipoproteins, which are primary acceptors of cell cholesterol, and thereby accelerating HDL metabolism. Therefore, HDL stability must be delicately balanced to maintain the structural integrity of the lipoprotein assembly and ensure structural specificity necessary for interactions of HDL with its metabolic partners, while facilitating rapid HDL remodeling and turnover at key junctures of cholesterol transport. The inverse correlation between HDL stability and remodeling illustrates the functional importance of structural disorder in macromolecular assemblies stabilized by kinetic barriers.
Patil, Dada; Gautam, Manish; Jadhav, Umesh; Mishra, Sanjay; Karupothula, Suresh; Gairola, Sunil; Jadhav, Suresh; Patwardhan, Bhushan
2010-03-01
Stability testing at preformulation stages is a crucial part of drug development. We studied physicochemical stability and biological activity of Withania somnifera (ashwagandha) dried root aqueous extract during six months real-time and under accelerated storage conditions. The characteristic constituents of ashwagandha roots include withanolides such as withaferin A and withanolide A. We modified and validated the HPLC-DAD method for quantitative measurement of withanolides and fingerprint analysis. The results suggest a significant decline in withaferin A and withanolide A content under real and accelerated conditions. The HPLC fingerprint analysis showed significant changes in some peaks during real and accelerated storage (> 20 %). We also observed incidences of clump formation and moisture sensitivity (> 10 %) under real-time and accelerated storage conditions. These changes were concurrent with a significant decline in immunomodulatory activity (p < 0.01) during the third month of the accelerated storage. Thus, adequate control of temperature and humidity is important for WSE containing formulations. This study may help in proposing suitable guidance for storage conditions and shelf life of ashwagandha formulations. (c) Georg Thieme Verlag KG Stuttgart . New York.
Ashokraj, Y; Kohli, G; Kaul, C L; Panchagnula, R
2005-11-01
To determine the quality and performance of rifampicin (RMP) containing fixed-dose combination (FDC) formulations of anti-tuberculosis drugs sourced from the international market with respect to physical, chemical and dissolution properties after storage at accelerated stability conditions (40 degrees C/75% relative humidity) and to identify appropriate storage specifications. Formulations across different companies and combinations were subjected to 6-month accelerated stability testing in packaging conditions recommended by the manufacturer. Various pharmacopeial and nonpharmacopeial tests for tablets were performed for 3- and 6-month samples. All the formulations were found to be stable, where extent of dissolution was within +/- 10% of that of the initial value, and all formulations passed the pharmacopeial limits for assay and content uniformity of 90-110% and +/- 15% of average drug content, respectively. Good quality RMP-containing FDCs that remain stable after 6-month accelerated stability testing are available in the marketplace.
Vecksler-Macmillan phase stability for neutral atoms accelerated by a laser beam
NASA Astrophysics Data System (ADS)
Mel'nikov, I. V.; Haus, J. W.; Kazansky, P. G.
2003-05-01
We use a Fokker-Planck equation to study the phenomenon of accelerating a neutral atom bunch by a chirped optical beam. This method enables us to obtain a semi-analytical solution to the problem in which a wide range of parameters can be studied. In addition it provides a simple physical interpretation where the problem is reduced to an analogous problem of charged particles accelerators, that is, the Vecksler-Macmillan principle of phase stability. A possible experimental scenario is suggested, which uses a photonic crystal fiber as the guiding medium.
Magari, Robert T
2002-03-01
The effect of different lot-to-lot variability levels on the prediction of stability are studied based on two statistical models for estimating degradation in real time and accelerated stability tests. Lot-to-lot variability is considered as random in both models, and is attributed to two sources-variability at time zero, and variability of degradation rate. Real-time stability tests are modeled as a function of time while accelerated stability tests as a function of time and temperatures. Several data sets were simulated, and a maximum likelihood approach was used for estimation. The 95% confidence intervals for the degradation rate depend on the amount of lot-to-lot variability. When lot-to-lot degradation rate variability is relatively large (CV > or = 8%) the estimated confidence intervals do not represent the trend for individual lots. In such cases it is recommended to analyze each lot individually. Copyright 2002 Wiley-Liss, Inc. and the American Pharmaceutical Association J Pharm Sci 91: 893-899, 2002
Prathama, Aditya Heru; Pantano, Carlos
2017-08-09
Here, we study the inviscid linear stability of a vertical interface separating two fluids of different densities and subject to a gravitational acceleration field parallel to the interface. In this arrangement, the two free streams are constantly accelerated, which means that the linear stability analysis is not amenable to Fourier or Laplace solution in time. Instead, we derive the equations analytically by the initial-value problem method and express the solution in terms of the well-known parabolic cylinder function. The results, which can be classified as an accelerating Kelvin–Helmholtz configuration, show that even in the presence of surface tension, the interfacemore » is unconditionally unstable at all wavemodes. This is a consequence of the ever increasing momentum of the free streams, as gravity accelerates them indefinitely. The instability can be shown to grow as the exponential of a quadratic function of time.« less
Humidity-corrected Arrhenius equation: The reference condition approach.
Naveršnik, Klemen; Jurečič, Rok
2016-03-16
Accelerated and stress stability data is often used to predict shelf life of pharmaceuticals. Temperature, combined with humidity accelerates chemical decomposition and the Arrhenius equation is used to extrapolate accelerated stability results to long-term stability. Statistical estimation of the humidity-corrected Arrhenius equation is not straightforward due to its non-linearity. A two stage nonlinear fitting approach is used in practice, followed by a prediction stage. We developed a single-stage statistical procedure, called the reference condition approach, which has better statistical properties (less collinearity, direct estimation of uncertainty, narrower prediction interval) and is significantly easier to use, compared to the existing approaches. Our statistical model was populated with data from a 35-day stress stability study on a laboratory batch of vitamin tablets and required mere 30 laboratory assay determinations. The stability prediction agreed well with the actual 24-month long term stability of the product. The approach has high potential to assist product formulation, specification setting and stability statements. Copyright © 2016 Elsevier B.V. All rights reserved.
The effect of heat treatment on the stability of Nb 3Sn RRP-150/169 strands
Li, Pei; Turrioni, Daniele; Barzi, Emanuela; ...
2017-02-17
Here, the magnetic stability of superconductor strands and cables is a key issue in the successful building and operation of high-field accelerator magnets. In this paper, we report the study of a state-of-the-art 0.7 mm Nb 3Sn restacked-rod-process strand manufactured by Oxford Instrument Superconductor Technology. This conductor will be used in Rutherford cable for a 15-T Nb 3Sn dipole demonstrator being built at Fermi National Accelerator Laboratory. Particularly, this study focuses on the impact of varying heat treatment conditions on the stability of the strand. Both the stability against internal flux jumps and external thermal perturbations are studied.
The effect of heat treatment on the stability of Nb 3Sn RRP-150/169 strands
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Pei; Turrioni, Daniele; Barzi, Emanuela
Here, the magnetic stability of superconductor strands and cables is a key issue in the successful building and operation of high-field accelerator magnets. In this paper, we report the study of a state-of-the-art 0.7 mm Nb 3Sn restacked-rod-process strand manufactured by Oxford Instrument Superconductor Technology. This conductor will be used in Rutherford cable for a 15-T Nb 3Sn dipole demonstrator being built at Fermi National Accelerator Laboratory. Particularly, this study focuses on the impact of varying heat treatment conditions on the stability of the strand. Both the stability against internal flux jumps and external thermal perturbations are studied.
Vaccine stability study design and analysis to support product licensure.
Schofield, Timothy L
2009-11-01
Stability evaluation supporting vaccine licensure includes studies of bulk intermediates as well as final container product. Long-term and accelerated studies are performed to support shelf life and to determine release limits for the vaccine. Vaccine shelf life is best determined utilizing a formal statistical evaluation outlined in the ICH guidelines, while minimum release is calculated to help assure adequate potency through handling and storage of the vaccine. In addition to supporting release potency determination, accelerated stability studies may be used to support a strategy to recalculate product expiry after an unintended temperature excursion such as a cold storage unit failure or mishandling during transport. Appropriate statistical evaluation of vaccine stability data promotes strategic stability study design, in order to reduce the uncertainty associated with the determination of the degradation rate, and the associated risk to the customer.
Accelerated testing for studying pavement design and performance (FY 2003) : research summary.
DOT National Transportation Integrated Search
2008-01-01
The Midwest States Accelerated Pavement Testing Pooled Fund Program, financed by : the highway departments of Missouri, Iowa, Kansas and Nebraska, has supported an : accelerated pavement testing (APT) project to compare the performance of stabilized ...
Field stabilization studies for a radio frequency quadrupole accelerator
NASA Astrophysics Data System (ADS)
Gaur, R.; Kumar, V.
2014-07-01
The Radio Frequency Quadrupole (RFQ) linear accelerator is an accelerator that efficiently focuses, bunches and accelerates a high intensity DC beam from an ion source, for various applications. Unlike other conventional RF linear accelerators, the electromagnetic mode used for its operation is not the lowest frequency mode supported by the structure. In a four vane type RFQ, there are several undesired electromagnetic modes having frequency close to that of the operating mode. While designing an RFQ accelerator, care must be taken to ensure that the frequencies of these nearby modes are sufficiently separated from the operating mode. If the undesired nearby modes have frequencies close to the operating mode, the electromagnetic field pattern in the presence of geometrical errors will not be stabilized to the desired field profile, and will be perturbed by the nearby modes. This will affect the beam dynamics and reduce the beam transmission. In this paper, we present a detailed study of the electromagnetic modes supported, which is followed by calculations for implementation of suitable techniques to make the desired operating mode stable against mixing with unwanted modes for an RFQ being designed for the proposed Indian Spallation Neutron Source (ISNS) project at Raja Ramanna Centre for Advanced Technology, Indore. Resonant coupling scheme, along with dipole stabilization rods has been proposed to increase the mode separation. The paper discusses the details of a generalized optimization procedure that has been used for the design of mode stabilization scheme.
2010-01-01
Background We evaluated the influence of chemical disinfection and accelerated aging on the dimensional stability and detail reproduction of a silicone elastomer containing one of two opacifiers. Methods A total of 90 samples were fabricated from Silastic MDX 4-4210 silicone and divided into groups (n = 10) according to opacifier content (barium sulfate or titanium dioxide) and disinfectant solution (neutral soap, Efferdent, or 4% chlorhexidine). The specimens were disinfected 3 times per week during 60 days and then subjected to accelerated aging for 1008 hours. Dimensional stability and detail reproduction tests were performed after specimens' fabrication (baseline), chemical disinfection and periodically during accelerated aging (252, 504, and 1008 hours). The results were analyzed using 3-way repeated-measures ANOVA and the Tukey HSD test (α = 0.05). Results All groups exhibited dimensional changes over time. The opacifier (p = .314), period (p < .0001) and their interactions (p = .0041) affected the dimensional stability of the silicone. Statistical significant dimensional differences occurred between groups with (0.071) and without opacifiers (0.053). Accelerated aging influenced the dimensional stability of the samples. All groups scored 2 in the detail reproduction tests, which represents the fully reproducing of three test grooves with accurate angles. Conclusions Incorporation of opacifiers alters the dimensional stability of silicones used in facial prosthetics, but seems to have no influence on detail reproduction. Accelerated aging is responsible for most of the dimensional changes in Silastic MDX4 4210, but all dimensional changes measured in this study remained within the limits of stability necessary for this application. PMID:21162729
A comparison of biophysical characterization techniques in predicting monoclonal antibody stability.
Thiagarajan, Geetha; Semple, Andrew; James, Jose K; Cheung, Jason K; Shameem, Mohammed
2016-01-01
With the rapid growth of biopharmaceutical product development, knowledge of therapeutic protein stability has become increasingly important. We evaluated assays that measure solution-mediated interactions and key molecular characteristics of 9 formulated monoclonal antibody (mAb) therapeutics, to predict their stability behavior. Colloidal interactions, self-association propensity and conformational stability were measured using effective surface charge via zeta potential, diffusion interaction parameter (kD) and differential scanning calorimetry (DSC), respectively. The molecular features of all 9 mAbs were compared to their stability at accelerated (25°C and 40°C) and long-term storage conditions (2-8°C) as measured by size exclusion chromatography. At accelerated storage conditions, the majority of the mAbs in this study degraded via fragmentation rather than aggregation. Our results show that colloidal stability, self-association propensity and conformational characteristics (exposed tryptophan) provide reasonable prediction of accelerated stability, with limited predictive value at 2-8°C stability. While no correlations to stability behavior were observed with onset-of-melting temperatures or domain unfolding temperatures, by DSC, melting of the Fab domain with the CH2 domain suggests lower stability at stressed conditions. The relevance of identifying appropriate biophysical assays based on the primary degradation pathways is discussed.
Accelerated Storage Stability and Corrosion Characteristics Study Protocol
EPA has determined that studies using this protocol will, in certain circumstances, provide the Agency with all the information it needs to make a determination on the storage stability of pesticides.
The principle of phase stability and the accelerator program at Berkeley, 1945--1954
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lofgren, E.J.
1994-07-01
The discovery of the Principle of Phase Stability by Vladimir Veksler and Edwin McMillian and the end of the war released a surge of accelerator activity at the Lawrence Berkeley Laboratory (then The University of California Radiation Laboratory). Six accelerators incorporating the Principle of Phase Stability were built in the period 1945--1954.
Freire, T S; Aguilar, F G; Garcia, L da Fonseca Roberti; Pires-de-Souza, F de Carvalho Panzeri
2014-03-01
Acrylic resin is widely used for artificial teeth manufacturing due to several important characteristics; however, this material do not present acceptable colour stability over the course of time. This study evaluated the effect of different cleaning protocols and accelerated artificial aging on colour stability of denture teeth made of acrylic resin. Sixty denture teeth in dark and light shades were used, and separated according to the treatment to which they were submitted. Results demonstrated that colour stability of artificial teeth is influenced by the cleaning solution and artificial aging, being dark teeth more susceptible to colour alteration than lighter ones.
Nyman, Patricia J; Wamer, Wayne G; Begley, Timothy H; Diachenko, Gregory W; Perfetti, Gracia A
2010-04-01
Under certain conditions, benzene can form in beverages containing benzoic and ascorbic acids. The American Beverage Assn. (ABA) has published guidelines to help manufacturers mitigate benzene formation in beverages. These guidelines recommend accelerated testing conditions to test product formulations, because exposure to ultraviolet (UV) light and elevated temperature over the shelf life of the beverage may result in benzene formation in products containing benzoic and ascorbic acids. In this study, the effects of UVA exposure on benzene formation were determined. Benzene formation was examined for samples contained in UV stabilized and non-UV stabilized packaging. Additionally, the usefulness of accelerated thermal testing to simulate end of shelf-life benzene formation was evaluated for samples containing either benzoic or ascorbic acid, or both. The 24 h studies showed that under intense UVA light benzene levels increased by as much as 53% in model solutions stored in non-UV stabilized bottles, whereas the use of UV stabilized polyethylene terephthalate bottles reduced benzene formation by about 13% relative to the non-UV stabilized bottles. Similar trends were observed for the 7 d study. Retail beverages and positive and negative controls were used to study the accelerated thermal testing conditions. The amount of benzene found in the positive controls and cranberry juice suggests that testing at 40 degrees C for 14 d may more reliably simulate end of shelf-life benzene formation in beverages. Except for cranberry juice, retail beverages were not found to contain detectable amounts of benzene (<0.05 ng/g) at the end of their shelf lives.
Kaur, Ishtdeep; Suthar, Nancy; Kaur, Jasmeen; Bansal, Yogita; Bansal, Gulshan
2016-10-01
Regulatory guidelines recommend systematic stability studies on a herbal product to establish its shelf life. In the present study, commercial extracts (Types I and II) and freshly prepared extract (Type III) of Centella asiatica were subjected to accelerated stability testing for 6 months. Control and stability samples were evaluated for organoleptics, pH, moisture, total phenolic content (TPC), asiatic acid, kaempherol, and high-performance thin layer chromatography fingerprints, and for antioxidant and acetylcholinesterase inhibitory activities. Markers and TPC and both the activities of each extract decreased in stability samples with respect to control. These losses were maximum in Type I extract and minimum in Type III extract. Higher stability of Type III extract than others might be attributed to the additional phytoconstituents and/or preservatives in it. Pearson correlation analysis of the results suggested that TPC, asiatic acid, and kaempferol can be taken as chemical markers to assess chemical and therapeutic shelf lives of herbal products containing Centella asiatica. © The Author(s) 2016.
DOT National Transportation Integrated Search
2004-08-01
This report covers the Fiscal Year 2002 project conducted at the Accelerated Testing Laboratory at Kansas : State University. The project was selected and funded by the Midwest Accelerated Testing Pooled Fund Program , : which includes Iowa, Kansas, ...
Accelerated stability studies for moisture-induced aggregation of tetanus toxoid.
Jain, Nishant Kumar; Roy, Ipsita
2011-03-01
The study was carried out to evaluate the effect of exposing solid tetanus toxoid to moisture in two different ways on the structure and function of the toxoid. Tetanus toxoid was exposed to moisture by (i) the addition of an optimized amount of buffer and (ii) incubation under an environment provided by a saturated solution of K(2)CrO(4.) The changes in the conformational, structural and antigenic properties of tetanus toxoid were measured and compared. Results show that even at a similar level of moisture-induced aggregation, the amounts of water absorbed by the two preparations of tetanus toxoid are different. Differences in antigenicity and changes in structure of the toxoid at primary, secondary and tertiary structure levels were seen. Although both conditions are used to mimic accelerated stability conditions in the laboratory, the final products are different in the two cases. Thus, conditions for 'accelerated stability studies' for therapeutic proteins need to be selected with care so that they resemble the fate of the actual product.
NASA Technical Reports Server (NTRS)
Lyell, M. J.; Roh, Michael
1991-01-01
With the increasing opportunities for research in a microgravity environment, there arises a need for understanding fluid mechanics under such conditions. In particular, a number of material processing configurations involve fluid-fluid interfaces which may experience instabilities in the presence of external forcing. In a microgravity environment, these accelerations may be periodic or impulse-type in nature. This research investigates the behavior of a multi-layer idealized fluid configuration which is infinite in extent. The analysis is linear, and each fluid region is considered inviscid, incompressible, and immiscible. An initial parametric study of confiquration stability in the presence of a constant acceleration field is performed. The zero mean gravity limit case serves as the base state for the subsequent time-dependent forcing cases. A stability analysis of the multi-layer fluid system in the presence of periodic forcing is investigated. Floquet theory is utilized. A parameter study is performed, and regions of stability are identified. For the impulse-type forcing case, asymptotic stability is established for the configuration. Using numerical integration, the time response of the interfaces is determined.
Schou-Pedersen, Anne Marie V; Østergaard, Jesper; Cornett, Claus; Hansen, Steen Honoré
2015-05-15
Microwave ovens have been used extensively in organic synthesis in order to accelerate reaction rates. Here, a set up comprising a microwave oven combined with silicon carbide (SiC) plates for the controlled microwave heating of model formulations has been applied in order to investigate, if a microwave oven is applicable for accelerated drug stability testing. Chemical interactions were investigated in three selected model formulations of drug and excipients regarding the formation of ester and amide reaction products. In the accelerated stability studies, a design of experiments (DoE) approach was applied in order to be able to rank excipients regarding reactivity: Study A: cetirizine with PEG 400, sorbitol, glycerol and propylene glycol. Study B: 6-aminocaproic acid with citrate, acetate, tartrate and gluconate. Study C: atenolol with citric, tartaric, malic, glutaric, and sorbic acid. The model formulations were representative for oral solutions (co-solvents), parenteral solutions (buffer species) and solid dosage forms (organic acids applicable for solubility enhancement). The DoE studies showed overall that the same impurities were generated by microwave oven heating leading to temperatures between 150°C and 180°C as compared to accelerated stability studies performed at 40°C and 80°C using a conventional oven. Ranking of the reactivity of the excipients could be made in the DoE studies performed at 150-180°C, which was representative for the ranking obtained after storage at 40°C and 80°C. It was possible to reduce the time needed for drug-excipient compatibility testing of the three model formulations from weeks to less than an hour in the three case studies. The microwave oven is therefore considered to be an interesting alternative to conventional thermal techniques for the investigation of drug-excipient interactions during preformulation. Copyright © 2015 Elsevier B.V. All rights reserved.
Torres, Susana; Brown, Roland; Szucs, Roman; Hawkins, Joel M; Zelesky, Todd; Scrivens, Garry; Pettman, Alan; Taylor, Mark R
2015-11-10
The aim of this study was to evaluate the use of electrochemistry to generate oxidative degradation products of a model pharmaceutical compound. The compound was oxidized at different potentials using an electrochemical flow-cell fitted with a glassy carbon working electrode, a Pd/H2 reference electrode and a titanium auxiliary electrode. The oxidative products formed were identified and structurally characterized by LC-ESI-MS/MS using a high resolution Q-TOF mass spectrometer. Results from electrochemical oxidation using electrolytes of different pH were compared to those from chemical oxidation and from accelerated stability studies. Additionally, oxidative degradation products predicted using an in silico commercially available software were compared to those obtained from the various experimental methods. The electrochemical approach proved to be useful as an oxidative stress test as all of the final oxidation products observed under accelerated stability studies could be generated; previously reported reactive intermediate species were not observed most likely because the electrochemical mechanism differs from the oxidative pathway followed under accelerated stability conditions. In comparison to chemical degradation tests electrochemical degradation has the advantage of being much faster and does not require the use of strong oxidizing agents. Moreover, it enables the study of different operating parameters in short periods of time and optimisation of the reaction conditions (pH and applied potential) to achieve different oxidative products mixtures. This technique may prove useful as a stress test condition for the generation of oxidative degradation products and may help accelerate structure elucidation and development of stability indicating analytical methods. Copyright © 2015 Elsevier B.V. All rights reserved.
Mancuso, Daniela Nardi; Goiato, Marcelo Coelho; Dekon, Stefan Fiuza de Carvalho; Gennari-Filho, Humberto
2009-01-01
The objective of this study was to evaluate by a visual method of comparison the color stability of nonpigmented and pigmented facial silicones after accelerated aging. Two kinds of silicones were used in this study; one specifically formulated for facial prostheses and the other an acetic silicone for industrial use. Twenty-four trial bodies were made for each silicone. These were divided into colorless and intrinsically pigmented groups: ceramic, make-up, and iron oxide. The groups were submitted to accelerated aging for nonmetallic materials. An initial reading and subsequent readings were made at 163, 351, 692, and 1000 hours using a visual method of comparison. The values were annotated in a spreadsheet by two observers, according to scores elaborated for this study. All groups presented color stability in the visual method. According to the results obtained and analyzed in this study, we can conclude that both silicones, Silastic 732 RTV and Silastic MDX 4-4210, behaved similarly, they can therefore be indicated for use in maxillofacial prosthesis. The time factor of aging influenced negatively, independently of the pigmentation, or lack of it, and of silicones and no group had visually noticeable alterations in any of the accelerated aging time, independently of the addition or not of pigments.
Parveen, Ghazala; Hussain, Shahzad; Malik, Farnaz; Begum, Anwar; Mahmood, Sidra; Raza, Naeem
2013-11-01
Tetanus is an acute illness represented by comprehensive increased inflexibility and spastic spasms of skeletal muscles. The poor quality tetanus toxoid vaccine can raise the prevalence of neonatal tetanus. WHO has taken numerous steps to assist national regulatory authorities and vaccine manufacturers to ensure its quality and efficacy. It has formulated international principles for stability evaluation of each vaccine, which are available in the form of recommendations and guidelines. The aim of present study was to ensure the stability of tetanus vaccines produced by National Institute of Health, Islamabad, Pakistan by employing standardized methods to ensure constancy of tetanus toxoid at elevated temperature, if during storage/transportation cold chain may not be maintained in hot weather. A total of three batches filled during full-scale production were tested. All Stability studies determination were performed on final products stored at 2-8°C and elevated temperatures in conformance with the ICH Guideline of Stability Testing of Biological Products. These studies gave comparison between real time shelf-life stability and accelerated stability studies. The findings indicate longterm thermo stability and prove that this tetanus vaccine can remain efficient under setting of routine use when suggested measures for storage and handling are followed in true spirit.
Stability condition for the drive bunch in a collinear wakefield accelerator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baturin, S. S.; Zholents, A.
The beam breakup instability of the drive bunch in the structure-based collinear wakefield accelerator is considered and a stabilizing method is proposed. The method includes using the specially designed beam focusing channel, applying the energy chirp along the electron bunch, and keeping energy chirp constant during the drive bunch deceleration. A stability condition is derived that defines the limit on the accelerating field for the witness bunch.
Dynamic stabilization of Rayleigh-Taylor instability in an ablation front
DOE Office of Scientific and Technical Information (OSTI.GOV)
Piriz, A. R.; Di Lucchio, L.; Rodriguez Prieto, G.
2011-01-15
Dynamic stabilization of Rayleigh-Taylor instability in an ablation front is studied by considering a modulation in the acceleration that consists of sequences of Dirac deltas. This allows obtaining explicit analytical expressions for the instability growth rate as well as for the boundaries of the stability region. As a general rule, it is found that it is possible to stabilize all wave numbers above a certain minimum value k{sub m}, but the requirements in the modulation amplitude and frequency become more exigent with smaller k{sub m}. The essential role of compressibility is phenomenologically addressed in order to find the constraint itmore » imposes on the stability region. The results for some different wave forms of the acceleration modulation are also presented.« less
Yoshioka, S; Aso, Y; Takeda, Y
1990-06-01
Accelerated stability data obtained at a single temperature is statistically evaluated, and the utility of such data for assessment of stability is discussed focussing on the chemical stability of solution-state dosage forms. The probability that the drug content of a product is observed to be within the lower specification limit in the accelerated test is interpreted graphically. This probability depends on experimental errors in the assay and temperature control, as well as the true degradation rate and activation energy. Therefore, the observation that the drug content meets the specification in the accelerated testing can provide only limited information on the shelf-life of the drug, without the knowledge of the activation energy and the accuracy and precision of the assay and temperature control.
Cosgriff-Hernandez, Elizabeth; Tkatchouk, Ekaterina; Touchet, Tyler; Sears, Nick; Kishan, Alysha; Jenney, Christopher; Padsalgikar, Ajay D; Chen, Emily
2016-07-01
Although silicone-based polyurethanes have demonstrated increased oxidative stability, there have been conflicting reports of the long-term hydrolytic stability of Optim™ and PurSil(®) 35 based on recent temperature-accelerated hydrolysis studies. The goal of the current study was to identify in vitro-in vivo correlations to determine the relevance of this accelerated in vitro model for predicting clinical outcomes. Temperature-accelerated hydrolytic aging of three commonly used cardiac lead insulation materials, Optim™, Elasthane™ 55D, Elasthane™ 80A, and a related silicone-polyurethane, PurSil(®) 35, was performed. After 1 year at 85°C, similar losses in Mn and Mz were observed for the poly(ether urethanes), but an increase in Mz loss as compared to Mn loss was observed for the silicone-based polyurethanes. A similar trend of increased Mz loss as compared to Mn loss was observed in explanted Optim™ leads after 2-3 years; however, no statistically significant Mn loss was detected between 2-3 and 7-8 years of implantation. Given this preferential loss of high molecular weight chains, it was hypothesized that the observed differences between the polyurethanes were due to allophanate dissociation rather than backbone chain scission. Following full dissociation of the small percentage of allophanates in vivo, the observed molecular weight stability and proven clinical performance of Optim™ was attributed to the well-documented stability of the urethane bond under physiological conditions. This allophanate dissociation reaction is incompatible with the first order mechanism proposed in previous temperature-accelerated hydrolysis studies and may be the reason for the model's inaccurate prediction of significant and progressive molecular weight loss in vivo. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 1805-1816, 2016. © 2016 Wiley Periodicals, Inc.
Goldberg, Deborah S; Lewus, Rachael A; Esfandiary, Reza; Farkas, David C; Mody, Neil; Day, Katrina J; Mallik, Priyanka; Tracka, Malgorzata B; Sealey, Smita K; Samra, Hardeep S
2017-08-01
Selecting optimal formulation conditions for monoclonal antibodies for first time in human clinical trials is challenging due to short timelines and reliance on predictive assays to ensure product quality and adequate long-term stability. Accelerated stability studies are considered to be the gold standard for excipient screening, but they are relatively low throughput and time consuming. High throughput screening (HTS) techniques allow for large amounts of data to be collected quickly and easily, and can be used to screen solution conditions for early formulation development. The utility of using accelerated stability compared to HTS techniques (differential scanning light scattering and differential scanning fluorescence) for early formulation screening was evaluated along with the impact of excipients of various types on aggregation of monoclonal antibodies from multiple IgG subtypes. The excipient rank order using quantitative HTS measures was found to correlate with accelerated stability aggregation rate ranking for only 33% (by differential scanning fluorescence) to 42% (by differential scanning light scattering) of the antibodies tested, due to the high intrinsic stability and minimal impact of excipients on aggregation rates and HTS data. Also explored was a case study of employing a platform formulation instead of broader formulation screening for early formulation development. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.
Modification of the argon stripping target of the tandem accelerator.
Makarov, A; Ostreinov, Yu; Taskaev, S; Vobly, P
2015-12-01
The tandem accelerator with vacuum insulation has been proposed and developed in Budker Institute of Nuclear Physics. Negative hydrogen ions are accelerated by the positive 1MV potential of the high-voltage electrode, converted into protons in the gas stripping target inside the electrode, and then protons are accelerated again by the same potential. A stationary proton beam with 2 MeV energy, 1.6 mA current, 0.1% energy monochromaticity, and 0.5% current stability is obtained now. To conduct Boron Neutron Capture Therapy it is planned to increase the proton beam current to at least 3 mA. The paper presents the results of experimental studies clarifying the reasons for limiting the current, and gives suggestions for modifying the gas stripping target in order to increase the proton beam current along with the stability of the accelerator. Copyright © 2015 Elsevier Ltd. All rights reserved.
Terahertz Pulsed Imaging and Magnetic Resonance Imaging as Tools to Probe Formulation Stability
Zhang, Qilei; Gladden, Lynn F.; Avalle, Paolo; Zeitler, J. Axel; Mantle, Michael D.
2013-01-01
Dissolution stability over the entire shelf life duration is of critical importance to ensure the quality of solid dosage forms. Changes in the drug release profile during storage may affect the bioavailability of drug products. This study investigated the stability of a commercial tablet (Lescol® XL) when stored under accelerated conditions (40 °C/75% r.h.). Terahertz pulsed imaging (TPI) was used to investigate the structure of the tablet coating before and after the accelerated aging process. The results indicate that the coating was reduced in thickness and exhibited a higher density after being stored under accelerated conditions for four weeks. In situ magnetic resonance imaging (MRI) of the water penetration processes during tablet dissolution in a USP-IV dissolution cell equipped with an in-line UV-vis analyzer was carried out to study local differences in water uptake into the tablet matrix between the stressed and unstressed state. The drug release profiles of the Lescol® XL tablet before and after the accelerated storage stability testing were compared using a “difference” factor f1 and a “similarity” factor f2. The results reveal that even though the physical properties of the coating layers changed significantly during the stress testing, the coating protected the tablet matrix and the densification of the coating polymer had no adverse effect on the drug release performance. PMID:24300564
Nonlinear dynamics of autonomous vehicles with limits on acceleration
NASA Astrophysics Data System (ADS)
Davis, L. C.
2014-07-01
The stability of autonomous vehicle platoons with limits on acceleration and deceleration is determined. If the leading-vehicle acceleration remains within the limits, all vehicles in the platoon remain within the limits when the relative-velocity feedback coefficient is equal to the headway time constant [k=1/h]. Furthermore, if the sensitivity α>1/h, no collisions occur. String stability for small perturbations is assumed and the initial condition is taken as the equilibrium state. Other values of k and α that give stability with no collisions are found from simulations. For vehicles with non-negligible mechanical response, simulations indicate that the acceleration-feedback-control gain might have to be dynamically adjusted to obtain optimal performance as the response time changes with engine speed. Stability is demonstrated for some perturbations that cause initial acceleration or deceleration greater than the limits, yet do not cause collisions.
van Streun, Erwin L. P.; Frijlink, Henderik W.; Hinrichs, Wouter L. J.
2014-01-01
The purpose of this study was to investigate the stability of lysozyme in aqueous solutions in the presence of various extremolytes (betaine, hydroxyectoine, trehalose, ectoine, and firoin) under different stress conditions. The stability of lysozyme was determined by Nile red Fluorescence Spectroscopy and a bioactivity assay. During heat shock (10 min at 70°C), betaine, trehalose, ectoin and firoin protected lysozyme against inactivation while hydroxyectoine, did not have a significant effect. During accelerated thermal conditions (4 weeks at 55°C), firoin also acted as a stabilizer. In contrast, betaine, hydroxyectoine, trehalose and ectoine destabilized lysozyme under this condition. These findings surprisingly indicate that some extremolytes can stabilize a protein under certain stress conditions but destabilize the same protein under other stress conditions. Therefore it is suggested that for the screening extremolytes to be used for protein stabilization, an appropriate storage conditions should also be taken into account. PMID:24465983
Avanti, Christina; Saluja, Vinay; van Streun, Erwin L P; Frijlink, Henderik W; Hinrichs, Wouter L J
2014-01-01
The purpose of this study was to investigate the stability of lysozyme in aqueous solutions in the presence of various extremolytes (betaine, hydroxyectoine, trehalose, ectoine, and firoin) under different stress conditions. The stability of lysozyme was determined by Nile red Fluorescence Spectroscopy and a bioactivity assay. During heat shock (10 min at 70°C), betaine, trehalose, ectoin and firoin protected lysozyme against inactivation while hydroxyectoine, did not have a significant effect. During accelerated thermal conditions (4 weeks at 55°C), firoin also acted as a stabilizer. In contrast, betaine, hydroxyectoine, trehalose and ectoine destabilized lysozyme under this condition. These findings surprisingly indicate that some extremolytes can stabilize a protein under certain stress conditions but destabilize the same protein under other stress conditions. Therefore it is suggested that for the screening extremolytes to be used for protein stabilization, an appropriate storage conditions should also be taken into account.
NASA Astrophysics Data System (ADS)
Sathiyaraj, P.; Samuel, E. James jebaseelan
2018-01-01
The aim of this study is to evaluate the methacrylic acid, gelatin and tetrakis (hydroxymethyl) phosphonium chloride gel (MAGAT) by cone beam computed tomography (CBCT) attached with modern linear accelerator. To compare the results of standard diagnostic computed tomography (CT) with CBCT, different parameters such as linearity, sensitivity and temporal stability were checked. MAGAT gel showed good linearity for both diagnostic CT and CBCT measurements. Sensitivity and temporal stability were also comparable with diagnostic CT measurements. In both the modalities, the sensitivity of the MAGAT increased to 4 days and decreased till the 10th day of post irradiation. Since all measurements (linearity, sensitivity and temporal stability) from diagnostic CT and CBCT were comparable, CBCT could be a potential tool for dose analysis study for polymer gel dosimeter.
Stability of simulated flight path control at +3 Gz in a human centrifuge.
Guardiera, Simon; Dalecki, Marc; Bock, Otmar
2010-04-01
Earlier studies have shown that naïve subjects and experienced jet pilots produce exaggerated manual forces when exposed to increased acceleration (+Gz). This study was designed to evaluate whether this exaggeration affects the stability of simulated flight path control. We evaluated naïve subjects' performance in a flight simulator which either remained stationary (+1 Gz), or rotated to induce an acceleration in accordance to the simulated flight path with a mean acceleration of about +3 Gz. In either case, subjects were requested to produce a series of altitude changes in pursuit of a visual target airplane. Resulting flight paths were analyzed to determine the largest oscillation after an altitude change (Oscillation) and the mean deviation between subject and target flight path (Tracking Error). Flight stability after an altitude change was degraded in +3 Gz compared to +1 Gz, as evidenced by larger Oscillations (+11%) and increased Tracking Errors (+80%). These deficits correlated significantly with subjects' +3 Gz deficits in a manual-force production task. We conclude that force exaggeration in +3 Gz may impair flight stability during simulated jet maneuvers in naïve subjects, most likely as a consequence of vestibular stimulation.
Mechanical Stability Study for Integrable Optics Test Accelerator at Fermilab
DOE Office of Scientific and Technical Information (OSTI.GOV)
McGee, Mike; Andrews, Richard; Carlson, Kermit
2016-07-01
The Integrable Optics Test Accelerator (IOTA) is proposed for operation at Fermilab. The goal of IOTA is to create practical nonlinear accelerator focusing systems with a large frequency spread and stable particle motion. The IOTA is a 40 m circumference, 150 MeV (e-), 2.5 MeV (p⁺) diagnostic test ring. A heavy low frequency steel floor girder is proposed as the primary tier for IOTA device component support. Two design lengths; (8) 4 m and (2) 2.8 m long girders with identical cross section completely encompass the ring. This study focuses on the 4 m length girder and the development ofmore » a working prototype. Hydrostatic Level Sensor (HLS), temperature, metrology and fast motion measurements characterize the anticipated mechanical stability of the IOTA ring.« less
NASA Technical Reports Server (NTRS)
Fay, John F.
1990-01-01
A calculation is made of the stability of various relaxation schemes for the numerical solution of partial differential equations. A multigrid acceleration method is introduced, and its effects on stability are explored. A detailed stability analysis of a simple case is carried out and verified by numerical experiment. It is shown that the use of multigrids can speed convergence by several orders of magnitude without adversely affecting stability.
Dynamics of High Temperature Plasmas.
1985-10-01
25 VI. > LASER BEAT WAVE PARTICLE ACCELERATION-.. ..... .. 27 ,, VII. ORBITRON MASER DESIGN .. ..... ............. 30 0 VIIM> ELECTRON BEAM STABILITY...IN THE MODIFIED BETATRON .... ............ 32 IX. * RELATIVISTIC ELECTRON BEAM DIODE DESIGN . . . . 35 X. FREE ELECTRON LASER APPLICATION TO XUV...Accelerators (B), VI. Laser Beat Wave Particle Acceleration, VII. Orbitron Maser Design , VIII. Electron Beam Stability in the Modified Betatron, IX
Acceleration of polarized protons and deuterons in the ion collider ring of JLEIC
NASA Astrophysics Data System (ADS)
Kondratenko, A. M.; Kondratenko, M. A.; Filatov, Yu N.; Derbenev, Ya S.; Lin, F.; Morozov, V. S.; Zhang, Y.
2017-07-01
The figure-8-shaped ion collider ring of Jefferson Lab Electron-Ion Collider (JLEIC) is transparent to the spin. It allows one to preserve proton and deuteron polarizations using weak stabilizing solenoids when accelerating the beam up to 100 GeV/c. When the stabilizing solenoids are introduced into the collider’s lattice, the particle spins precess about a spin field, which consists of the field induced by the stabilizing solenoids and the zero-integer spin resonance strength. During acceleration of the beam, the induced spin field is maintained constant while the resonance strength experiences significant changes in the regions of “interference peaks”. The beam polarization depends on the field ramp rate of the arc magnets. Its component along the spin field is preserved if acceleration is adiabatic. We present the results of our theoretical analysis and numerical modeling of the spin dynamics during acceleration of protons and deuterons in the JLEIC ion collider ring. We demonstrate high stability of the deuteron polarization in figure-8 accelerators. We analyze a change in the beam polarization when crossing the transition energy.
Acceleration of polarized protons and deuterons in the ion collider ring of JLEIC
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kondratenko, A.; Kondratenko, M.; Filatov, Yu. N.
2017-07-01
The figure-8-shaped ion collider ring of Jefferson Lab Electron-Ion Collider (JLEIC) is transparent to the spin. It allows one to preserve proton and deuteron polarizations using weak stabilizing solenoids when accelerating the beam up to 100 GeV/c. When the stabilizing solenoids are introduced into the collider's lattice, the particle spins precess about a spin field, which consists of the field induced by the stabilizing solenoids and the zero-integer spin resonance strength. During acceleration of the beam, the induced spin field is maintained constant while the resonance strength experiences significant changes in the regions of "interference peaks". The beam polarization dependsmore » on the field ramp rate of the arc magnets. Its component along the spin field is preserved if acceleration is adiabatic. We present the results of our theoretical analysis and numerical modeling of the spin dynamics during acceleration of protons and deuterons in the JLEIC ion collider ring. We demonstrate high stability of the deuteron polarization in figure-8 accelerators. We analyze a change in the beam polarization when crossing the transition energy.« less
Silame, F D J; Tonani, R; Alandia-Roman, C C; Chinelatti, M; Panzeri, H; Pires-de-Souza, F C P
2013-12-01
This study evaluated the colour stability of temporary prosthetic restorations with different thicknesses submitted to artificial accelerated aging. The occlusal surfaces of 40 molars were grinded to obtain flat enamel surfaces. Twenty acrylic resin specimens [Polymethyl methacrylate (Duralay) and Bis-methyl acrylate (Luxatemp)] were made with two different thicknesses, 0.5 mm and 1.0 mm. Temporary restorations were fixed on enamel and CIE L*a*b* colour parameters of each specimen were assessed before and after artificial accelerated aging. All groups showed colour alterations above the clinically acceptable limit. Luxatemp showed the lowest colour alteration regardless its thickness and Duralay showed the greatest alteration with 0.5 mm.
Walking stability and sensorimotor function in older people with diabetic peripheral neuropathy.
Menz, Hylton B; Lord, Stephen R; St George, Rebecca; Fitzpatrick, Richard C
2004-02-01
To evaluate, in older people with diabetic peripheral neuropathy (DPN) and in age-matched controls, acceleration patterns of the head and pelvis when walking to determine the effect of lower-limb sensory loss on walking stability. Case-control study. Falls and balance laboratory in Australia. Thirty persons with diabetes mellitus (age range, 55-91 y) and 30 age-matched controls. Acceleration patterns of the head and pelvis were measured while participants walked on a level surface and an irregular walkway. Participants also underwent tests of vision, sensation, strength, reaction time, and balance. Temporospatial gait parameters and variables derived from acceleration signals. Participants with DPN had reduced walking speed, cadence, and step length, and less rhythmic acceleration patterns at the head and pelvis compared with controls. These differences were particularly evident when participants walked on the irregular surface. Participants with DPN also had impaired peripheral sensation, reaction time, and balance. Older people with DPN have an impaired ability to stabilize their body when walking on irregular surfaces, even if they adopt a more conservative gait pattern. These results provide further insights into the role of peripheral sensory input in the control of gait stability, and suggest possible mechanisms underlying the increased risk of falling in older people with diabetic neuropathy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Dongjin; Waite, T. David; Swarbrick, Gareth
2005-11-15
The differences in the effect of calcite on the strength and stability of Pb-rich wastes solidified and stabilized using Australian and South Korean ordinary Portland cements are examined in this study. Pb-rich waste stabilized using Australian OPC has been shown to possess both substantially higher unconfined compressive strength and lead immobilization ability than South Korean OPC as a result of its higher C{sub 3}S content and the associated enhanced degree of precipitation of lead on the surfaces of silicate phases present. Calcite addition is observed to have an accelerating effect on the OPC-induced solidification/stabilization of Pb-rich wastes as gauged bymore » the unconfined compressive strength and leachability of the solids formed. This effect is observed to be far more dramatic for South Korean OPC than for Australian OPC. Using scanning electron microscopy, waste stabilized with cement and calcite was observed to develop significantly greater proportions of hydrated crystals than wastes stabilized with cement alone. The results of X-ray diffraction studies have shown that the presence of calcite in South Korean OPC results in greater acceleration in the formation of portlandite than is the case for Australian OPC.« less
NASA Technical Reports Server (NTRS)
Chembo, Yanne K.; Baumgartel, Lukas; Grudinin, Ivan; Strekalov, Dmitry; Thompson, Robert; Yu, Nan
2012-01-01
Whispering gallery mode resonators are attracting increasing interest as promising frequency reference cavities. Unlike commonly used Fabry-Perot cavities, however, they are filled with a bulk medium whose properties have a significant impact on the stability of its resonance frequencies. In this context that has to be reduced to a minimum. On the other hand, a small monolithic resonator provides opportunity for better stability against vibration and acceleration. this feature is essential when the cavity operates in a non-laboratory environment. In this paper, we report a case study for a crystalline resonator, and discuss the a pathway towards the inhibition of vibration-and acceleration-induced frequency fluctuations.
Shanmugam, Srinivasan; Park, Jae-Hyun; Chi, Sang-Cheol; Yong, Chul Soon; Choi, Han-Gon; Woo, Jong Soo
2011-06-01
To investigate the physicochemical stability, pharmacokinetics (PK), and biodistribution of paclitaxel (PTX) from paclitaxel solid dispersion (PSD) prepared by supercritical antisolvent (SAS) process. Physicochemical stability was performed in accelerated (40°C 70 ± 5% RH) and stress (60°C) storage conditions for a period of 6 months and 4 weeks, respectively. PK and biodistribution studies were performed in rats following i.v. administration of PTX equivalent to 6 and 12 mg/kg formulations. Physical stability of PSD showed excellent stability with no recrystallization of the amorphous form. Chemical stability of PSD in terms of % PTX remaining was 98.2 ± 0.6% at 6 months and 97.9 ± 0.3% at 4 weeks of accelerated and stress conditions, respectively. The PK study showed a nonlinear increase in AUC with increasing dose, that is, 100% increase in dose (from 6 to 12 mg/kg) resulted in 405.90% increase in AUC. Unlike PK study, the organ distribution study of PTX from PSD showed linear relationship with dose escalation. The order of organ distribution of PTX from highest to lowest for both PSD and Taxol® was liver>kidney>lung>brain. This study demonstrated excellent physicochemical stability with insight information on the PK and biodistribution of PTX from PSD prepared by SAS process.
Accelerated stability assay (ASA) for colloidal systems.
Chong, Josephine Y T; Mulet, Xavier; Boyd, Ben J; Drummond, Calum J
2014-05-12
Assessment of the stability of colloidal systems, in particular lyotropic liquid crystalline dispersions, such as cubosomes and hexosomes, is typically performed qualitatively or with limited throughput on specialized instruments. Here, an accelerated stability assay for colloidal particles has been developed in 384-well plates with standard laboratory equipment. These protocols enable quantitative assessments of colloidal stability. To demonstrate the applicability of the assay, several steric stabilizers for cubic phase nanostructured particles (cubosomes) have been compared to the current "gold standard" Pluronic F127.
The IMISS-1 Experiment for Recording and Analysis of Accelerations in Orbital Flight
NASA Astrophysics Data System (ADS)
Sadovnichii, V. A.; Alexandrov, V. V.; Bugrov, D. I.; Lemak, S. S.; Pakhomov, V. B.; Panasyuk, M. I.; Petrov, V. L.; Yashin, I. V.
2018-03-01
The IMISS-1 experiment represents the second step in solving the problem of the creation of the gaze stabilization corrector. This device is designed to correct the effect of the gaze stabilization delay under microgravity. IMISS-1 continues research started by the Tat'yana-2 satellite. This research will be continued on board the International Space Station. At this stage we study the possibility of registration of angular and linear accelerations acting on the sensitive mass in terms of Low Earth Orbit flight, using MEMS sensors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pande, S.G.; Hardy, D.R.
1995-05-01
Thermally unstable jet fuels pose operational problems. In order to adequately identify such fuels, factors that realistically impact on thermal stability were examined. Evaluation was based on a quantitative method of measuring thermal stability, viz., NRL`s recently developed gravimetric JFTOT. This method gives a quantitative measurement of both the strip deposit and filterables formed. The pertinent factors examined, included the individual and interactive effects of: soluble copper, MDA (metal deactivator), and aging. The latter was accelerated to simulate field conditions of approximately six months aging at ambient temperature and pressure. The results indicate that the individual and interactive effects ofmore » copper, MDA, and accelerated aging appear to be fuel dependent. Based on the results, the three test fuels examined (one JP-8 and two JP-5s) were categorized as exhibiting very good, typical, and poor thermal stabilities, respectively. For both the very good and poor thermal stability fuels, the effect of copper in conjunction with accelerated aging did not significantly increase the total thermal deposits of the neat fuels. In contrast, for the typical thermal stability fuel, the combined effects of copper and accelerated aging, did. Furthermore, the addition of MDA prior to aging of the copper-doped, typical stability fuel significantly counteracted the adverse effect of copper and aging. A similar beneficial effect of MDA was not observed for the poor stability fuel. These results focus on the compositional differences among fuels and the need to elucidate these differences (physical and chemical) for a better understanding and prediction of their performance.« less
van Asseldonk, Edwin H F; Carpenter, Mark G; van der Helm, Frans C T; van der Kooij, Herman
2007-12-01
Due to the mechanical coupling between the body segments, it is impossible to see with the naked eye the causes of body movements and understand the interaction between movements of different body parts. The goal of this paper is to investigate the use of induced acceleration analysis to reveal the causes of body movements. We derive the analytical equations to calculate induced accelerations and evaluate its potential to study human postural responses to support-surface translations. We measured the kinematic and kinetic responses of a subject to sudden forward and backward translations of a moving platform. The kinematic and kinetics served as input to the induced acceleration analyses. The induced accelerations showed explicitly that the platform acceleration and deceleration contributed to the destabilization and restabilization of standing balance, respectively. Furthermore, the joint torques, coriolis and centrifugal forces caused by swinging of the arms, contributed positively to stabilization of the Center of Mass. It is concluded that induced acceleration analyses is a valuable tool in understanding balance responses to different kinds of perturbations and may help to identify the causes of movement in different pathologies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kazakevich, G.; Johnson, R.; Lebedev, V.
State of the art high-current superconducting accelerators require efficient RF sources with a fast dynamic phase and power control. This allows for compensation of the phase and amplitude deviations of the accelerating voltage in the Superconducting RF (SRF) cavities caused by microphonics, etc. Efficient magnetron transmitters with fast phase and power control are attractive RF sources for this application. They are more cost effective than traditional RF sources such as klystrons, IOTs and solid-state amplifiers used with large scale accelerator projects. However, unlike traditional RF sources, controlled magnetrons operate as forced oscillators. Study of the impact of the controlling signalmore » on magnetron stability, noise and efficiency is therefore important. This paper discusses experiments with 2.45 GHz, 1 kW tubes and verifies our analytical model which is based on the charge drift approximation.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pern, F. J.; Watson, G. L.; Glick, S. H.
2001-10-01
Presented at the 2001 NCPV Program Review Meeting: Study of photothermal stability of special EVA encapsulant by accelerated exposure testing and analysis of causes of performance degradation on a-Si modules.
Acceleration and stability of a high-current ion beam in induction fields
NASA Astrophysics Data System (ADS)
Karas', V. I.; Manuilenko, O. V.; Tarakanov, V. P.; Federovskaya, O. V.
2013-03-01
A one-dimensional nonlinear analytic theory of the filamentation instability of a high-current ion beam is formulated. The results of 2.5-dimensional numerical particle-in-cell simulations of acceleration and stability of an annular compensated ion beam (CIB) in a linear induction particle accelerator are presented. It is shown that additional transverse injection of electron beams in magnetically insulated gaps (cusps) improves the quality of the ion-beam distribution function and provides uniform beam acceleration along the accelerator. The CIB filamentation instability in both the presence and the absence of an external magnetic field is considered.
Gender differences in head-neck segment dynamic stabilization during head acceleration.
Tierney, Ryan T; Sitler, Michael R; Swanik, C Buz; Swanik, Kathleen A; Higgins, Michael; Torg, Joseph
2005-02-01
Recent epidemiological research has revealed that gender differences exist in concussion incidence but no study has investigated why females may be at greater risk of concussion. Our purpose was to determine whether gender differences existed in head-neck segment kinematic and neuromuscular control variables responses to an external force application with and without neck muscle preactivation. Forty (20 females and 20 males) physically active volunteers participated in the study. The independent variables were gender, force application (known vs unknown), and force direction (forced flexion vs forced extension). The dependent variables were kinematic and EMG variables, head-neck segment stiffness, and head-neck segment flexor and extensor isometric strength. Statistical analyses consisted of multiple multivariate and univariate analyses of variance, follow-up univariate analyses of variance, and t-tests (P < or = 0.05). Gender differences existed in head-neck segment dynamic stabilization during head angular acceleration. Females exhibited significantly greater head-neck segment peak angular acceleration (50%) and displacement (39%) than males despite initiating muscle activity significantly earlier (SCM only) and using a greater percentage of their maximum head-neck segment muscle activity (79% peak activity and 117% muscle activity area). The head-neck segment angular acceleration differences may be because females exhibited significantly less isometric strength (49%), neck girth (30%), and head mass (43%), resulting in lower levels of head-neck segment stiffness (29%). For our subject demographic, the results revealed gender differences in head-neck segment dynamic stabilization during head acceleration in response to an external force application. Females exhibited significantly greater head-neck segment peak angular acceleration and displacement than males despite initiating muscle activity earlier (SCM only) and using a greater percentage of their maximum head-neck segment muscle activity.
Denmark, Scott E.; Marlin, John E.; Rajendra, G.
2012-01-01
The carbanion-accelerated Claisen rearrangement has been extended to include phosphorus carbanion-stabilizing groups. The appropriately substituted allyl vinyl ethers are synthesized by the nucleophilic addition of allyloxides to phosphorus-substituted allenes, which are obtained in one step from simple starting materials. The phosphorus-stabilized, carbanion-accelerated Claisen rearrangements proceed rapidly at room temperature in high yield, and the rearrangements are highly site and stereoselective. The first examples of asymmetric induction in the Claisen rearrangement with chiral, phosphorus, anion-stabilizing groups are described. The observed asymmetric induction is highly dependent on the structure of the auxiliary and the metal counterion involved. Both internal and relative diastereoselectivity are high. A model for the observed sense of internal diastereoselectivity is proposed that is founded in the current understanding of the structure of phosphorus-stabilized anions. PMID:23101563
Kinetic Modeling of Accelerated Stability Testing Enabled by Second Harmonic Generation Microscopy.
Song, Zhengtian; Sarkar, Sreya; Vogt, Andrew D; Danzer, Gerald D; Smith, Casey J; Gualtieri, Ellen J; Simpson, Garth J
2018-04-03
The low limits of detection afforded by second harmonic generation (SHG) microscopy coupled with image analysis algorithms enabled quantitative modeling of the temperature-dependent crystallization of active pharmaceutical ingredients (APIs) within amorphous solid dispersions (ASDs). ASDs, in which an API is maintained in an amorphous state within a polymer matrix, are finding increasing use to address solubility limitations of small-molecule APIs. Extensive stability testing is typically performed for ASD characterization, the time frame for which is often dictated by the earliest detectable onset of crystal formation. Here a study of accelerated stability testing on ritonavir, a human immunodeficiency virus (HIV) protease inhibitor, has been conducted. Under the condition for accelerated stability testing at 50 °C/75%RH and 40 °C/75%RH, ritonavir crystallization kinetics from amorphous solid dispersions were monitored by SHG microscopy. SHG microscopy coupled by image analysis yielded limits of detection for ritonavir crystals as low as 10 ppm, which is about 2 orders of magnitude lower than other methods currently available for crystallinity detection in ASDs. The four decade dynamic range of SHG microscopy enabled quantitative modeling with an established (JMAK) kinetic model. From the SHG images, nucleation and crystal growth rates were independently determined.
[Stability of disintegration in health food].
Ma, Lan; Zhao, Xin; Zhou, Shuang; Yang, Dajin
2012-11-01
To study the change of disintegration of different formulation samples which stored in the artificial climate box or room temperature and provide the technical support for health food monitoring. According to the method of Chinese Pharmacopoeia and British Pharmacopoeia. Appendix XII A. Disintegration 2010. Disintegration of the non-accelerate, accelerated after 1, 2 and 3 months samples were determined by the disintegrator, respectively. Sample properties, the ingredients of the samples, the proportions of the capsule and treatment methods have some effect on the stability of the disintegration. The disintegration time of health food will be changed particularly after they were accelerated under the condition of (38 +/- 1) degrees C/75% RH. Especially the disintegration time of soft capsules were significantly prolonged. The composition and properties of samples were the main factors that affected the disintegration.
Hu, Zhilan; Hsu, Wendy; Pynn, Abby; Ng, Domingos; Quicho, Donna; Adem, Yilma; Kwong, Zephie; Mauger, Brad; Joly, John; Snedecor, Bradley; Laird, Michael W; Andersen, Dana C; Shen, Amy
2017-11-01
In the biopharmaceutical industry, a clonally derived cell line is typically used to generate material for investigational new drug (IND)-enabling toxicology studies. The same cell line is then used to generate material for clinical studies. If a pool of clones can be used to produce material for IND-enabling toxicology studies (Pool for Tox (PFT) strategy) during the time a lead clone is being selected for clinical material production, the toxicology studies can be accelerated significantly (approximately 4 months at Genentech), leading to a potential acceleration of 4 months for the IND submission. We explored the feasibility of the PFT strategy with three antibodies-mAb1, mAb2, and mAb3-at the 2 L scale. For each antibody, two lead cell lines were identified that generated material with similar product quality to the material generated from the associated pool. For two antibody molecules, mAb1 and mAb2, the material generated by the lead cell lines from 2 L bioreactors was tested in an accelerated stability study and was shown to have stability comparable to the material generated by the associated pool. Additionally, we used this approach for two antibody molecules, mAb4 and mAb5, at Tox and GMP production. The materials from the Tox batch at 400 L scale and three GMP batches at 2000 L scale have comparable product quality attributes for both molecules. Our results demonstrate the feasibility of using a pool of clonally derived cell lines to generate material of similar product quality and stability for use in IND-enabling toxicology studies as was derived from the final production clone, which enabled significant acceleration of timelines into clinical development. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:1449-1455, 2017. © 2017 American Institute of Chemical Engineers.
A reticle retrofit and dosimetric consideration for a linear accelerator.
Krithivas, V
1996-01-01
An imperfect reticle system in an accelerator causes uncertainties in source-skin distance (SSD), off-axis distance (OAD), isocenter, and so forth. A reticle was designed and fabricated, and its implications on x-ray and electron beam dosimetry were investigated. A new reticle frame was dimensioned to fit snugly in the accelerator. The frame was fabricated to carry a pair of adjustable cross wires and to allow the machine operation in the photon and electron modes. The impact of the cross wires on 6 MV photon and 5-10 MeV electron beam parameters such as dose rate (Gy/monitor unit), beam uniformity, surface dose, and so forth, were studied using suitable ion chambers and phantoms. The retrofitted system offered long-term mechanical stability leading to precise SSD, OAD, and isocenter measurements. Changes introduced by the cross wires on the 6 MV photon and 5-10 MeV electron beams are presented. Long-term stability of a reticle in an accelerator is important for an accurate patient setup and for making reliable dosimetric measurements. Beam characteristrics have to be studied whenever modifications on a reticle system are made.
The progress about measurements of the proton beam characteristics of the JUNA 400 kV accelerator
NASA Astrophysics Data System (ADS)
Wang, Shuo; Li, Kuoang
2018-04-01
China JinPing underground Laboratory (CJPL) was established inside the tunnels piercing Jinping Mountain in Sichuan Province, China, which can provide an ideal environment for low background experiment. Jinping Underground laboratory for Nuclear Astrophysics (JUNA) is one of the major research programs in CJPL. A new 400 kV accelerator, with high current based on an ECR source, will be installed into CJPL for the study of key nuclear reactions in astrophysics. The beam characteristics of the accelerator, like absolute energy, energy spread, and long-term energy stability, will be determined by several well-known resonance and non-resonance reactions. Due to the new accelerator still being under construction, the resonance reaction of 27Al(p, γ)28Si and non-resonance 12C(p, γ)13N were studied at the 320 kV high-voltage platform of Institute of Modern Physics in Lanzhou, China. The energy spread of proton beam is about 1.0 keV and the long-term energy stability of proton beam is better than ±200eV during 4 hours measurement.
Evaluation of asymmetric quadrupoles for a non-scaling fixed field alternating gradient accelerator
NASA Astrophysics Data System (ADS)
Lee, Sang-Hun; Park, Sae-Hoon; Kim, Yu-Seok
2017-12-01
A non-scaling fixed field alternating gradient (NS-FFAG) accelerator was constructed, which employs conventional quadrupoles. The possible demerit is the beam instability caused by the variable focusing strength when the orbit radius of the beam changes. To overcome this instability, it was suggested that the asymmetric quadrupole has different current flows in each coil. The magnetic field of the asymmetric quadrupole was found to be more similar to the magnetic field required for the FFAG accelerator than the constructed NS-FFAG accelerator. In this study, a simulation of the beam dynamics was carried out to evaluate the improvement to the beam stability for the NS-FFAG accelerator using the SIMION program. The beam dynamics simulation was conducted with the `hard edge' model; it ignored the fringe field at the end of the magnet. The magnetic field map of the suggested magnet was created using the SIMION program. The lattices for the simulation combined the suggested magnets. The magnets were evaluated for beam stability in the lattices through the SIMION program.
Suwada, Tsuyoshi; Satoh, Masanori; Telada, Souichi; Minoshima, Kaoru
2013-09-01
A laser-based alignment system with a He-Ne laser has been newly developed in order to precisely align accelerator units at the KEKB injector linac. The laser beam was first implemented as a 500-m-long fiducial straight line for alignment measurements. We experimentally investigated the propagation and stability characteristics of the laser beam passing through laser pipes in vacuum. The pointing stability at the last fiducial point was successfully obtained with the transverse displacements of ±40 μm level in one standard deviation by applying a feedback control. This pointing stability corresponds to an angle of ±0.08 μrad. This report contains a detailed description of the experimental investigation for the propagation and stability characteristics of the laser beam in the laser-based alignment system for long-distance linear accelerators.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Suwada, Tsuyoshi; Satoh, Masanori; Telada, Souichi
2013-09-15
A laser-based alignment system with a He-Ne laser has been newly developed in order to precisely align accelerator units at the KEKB injector linac. The laser beam was first implemented as a 500-m-long fiducial straight line for alignment measurements. We experimentally investigated the propagation and stability characteristics of the laser beam passing through laser pipes in vacuum. The pointing stability at the last fiducial point was successfully obtained with the transverse displacements of ±40 μm level in one standard deviation by applying a feedback control. This pointing stability corresponds to an angle of ±0.08 μrad. This report contains a detailedmore » description of the experimental investigation for the propagation and stability characteristics of the laser beam in the laser-based alignment system for long-distance linear accelerators.« less
Huang, Jun; Goolcharran, Chimanlall; Ghosh, Krishnendu
2011-05-01
This paper presents the use of experimental design, optimization and multivariate techniques to investigate root-cause of tablet dissolution shift (slow-down) upon stability and develop control strategies for a drug product during formulation and process development. The effectiveness and usefulness of these methodologies were demonstrated through two application examples. In both applications, dissolution slow-down was observed during a 4-week accelerated stability test under 51°C/75%RH storage condition. In Application I, an experimental design was carried out to evaluate the interactions and effects of the design factors on critical quality attribute (CQA) of dissolution upon stability. The design space was studied by design of experiment (DOE) and multivariate analysis to ensure desired dissolution profile and minimal dissolution shift upon stability. Multivariate techniques, such as multi-way principal component analysis (MPCA) of the entire dissolution profiles upon stability, were performed to reveal batch relationships and to evaluate the impact of design factors on dissolution. In Application II, an experiment was conducted to study the impact of varying tablet breaking force on dissolution upon stability utilizing MPCA. It was demonstrated that the use of multivariate methods, defined as Quality by Design (QbD) principles and tools in ICH-Q8 guidance, provides an effective means to achieve a greater understanding of tablet dissolution upon stability. Copyright © 2010 Elsevier B.V. All rights reserved.
DOT National Transportation Integrated Search
2010-01-01
This study sought to identify the equivalent 105F curing duration for lime-stabilized soil (LSS) that will : yield the equivalent unconfined compressive strength (UCS) to that resulting from 28-day, 73F curing. Both : 5-day and 7-day 105F (or 1...
Beam manipulation for resonant plasma wakefield acceleration
NASA Astrophysics Data System (ADS)
Chiadroni, E.; Alesini, D.; Anania, M. P.; Bacci, A.; Bellaveglia, M.; Biagioni, A.; Bisesto, F. G.; Cardelli, F.; Castorina, G.; Cianchi, A.; Croia, M.; Gallo, A.; Di Giovenale, D.; Di Pirro, G.; Ferrario, M.; Filippi, F.; Giribono, A.; Marocchino, A.; Mostacci, A.; Petrarca, M.; Piersanti, L.; Pioli, S.; Pompili, R.; Romeo, S.; Rossi, A. R.; Scifo, J.; Shpakov, V.; Spataro, B.; Stella, A.; Vaccarezza, C.; Villa, F.
2017-09-01
Plasma-based acceleration has already proved the ability to reach ultra-high accelerating gradients. However the step towards the realization of a plasma-based accelerator still requires some effort to guarantee high brightness beams, stability and reliability. A significant improvement in the efficiency of PWFA has been demonstrated so far accelerating a witness bunch in the wake of a higher charge driver bunch. The transformer ratio, therefore the energy transfer from the driver to the witness beam, can be increased by resonantly exciting the plasma with a properly pre-shaped drive electron beam. Theoretical and experimental studies of beam manipulation for resonant PWFA will be presented here.
Goiato, Marcelo Coelho; Santos, Daniela Micheline dos; Souza, Josiene Firmino; Moreno, Amália; Pesqueira, Aldiéris Alves
2010-12-01
Esthetics and durability of materials used to fabricate artificial eyes has been an important issue since artificial eyes are essential to restore esthetics and function, protect the remaining tissues and help with patients' psychological therapy. However, these materials are submitted to degrading effects of environmental agents on the physical properties of the acrylic resin. This study assessed the color stability of acrylic resins used to fabricate sclera in three basic shades (N1, N2 and N3) when subjected to accelerated aging, mechanical and chemical polishing. Specimens of each resin were fabricated and submitted to mechanical and chemical polishing. Chromatic analysis was performed before and after accelerated aging through ultraviolet reflection spectrophotometry. All specimens revealed color alteration following polishing and accelerated aging. The resins presented statistically significant chromatic alteration (p<0.01) between the periods of 252 and 1008 h. Both polishing methods presented no significant difference between the values of color derivatives of resins.
Ihlen, Espen A. F.; van Schooten, Kimberley S.; Bruijn, Sjoerd M.; Pijnappels, Mirjam; van Dieën, Jaap H.
2017-01-01
Over the last decades, various measures have been introduced to assess stability during walking. All of these measures assume that gait stability may be equated with exponential stability, where dynamic stability is quantified by a Floquet multiplier or Lyapunov exponent. These specific constructs of dynamic stability assume that the gait dynamics are time independent and without phase transitions. In this case the temporal change in distance, d(t), between neighboring trajectories in state space is assumed to be an exponential function of time. However, results from walking models and empirical studies show that the assumptions of exponential stability break down in the vicinity of phase transitions that are present in each step cycle. Here we apply a general non-exponential construct of gait stability, called fractional stability, which can define dynamic stability in the presence of phase transitions. Fractional stability employs the fractional indices, α and β, of differential operator which allow modeling of singularities in d(t) that cannot be captured by exponential stability. The fractional stability provided an improved fit of d(t) compared to exponential stability when applied to trunk accelerations during daily-life walking in community-dwelling older adults. Moreover, using multivariate empirical mode decomposition surrogates, we found that the singularities in d(t), which were well modeled by fractional stability, are created by phase-dependent modulation of gait. The new construct of fractional stability may represent a physiologically more valid concept of stability in vicinity of phase transitions and may thus pave the way for a more unified concept of gait stability. PMID:28900400
One- and two-stage Arrhenius models for pharmaceutical shelf life prediction.
Fan, Zhewen; Zhang, Lanju
2015-01-01
One of the most challenging aspects of the pharmaceutical development is the demonstration and estimation of chemical stability. It is imperative that pharmaceutical products be stable for two or more years. Long-term stability studies are required to support such shelf life claim at registration. However, during drug development to facilitate formulation and dosage form selection, an accelerated stability study with stressed storage condition is preferred to quickly obtain a good prediction of shelf life under ambient storage conditions. Such a prediction typically uses Arrhenius equation that describes relationship between degradation rate and temperature (and humidity). Existing methods usually rely on the assumption of normality of the errors. In addition, shelf life projection is usually based on confidence band of a regression line. However, the coverage probability of a method is often overlooked or under-reported. In this paper, we introduce two nonparametric bootstrap procedures for shelf life estimation based on accelerated stability testing, and compare them with a one-stage nonlinear Arrhenius prediction model. Our simulation results demonstrate that one-stage nonlinear Arrhenius method has significant lower coverage than nominal levels. Our bootstrap method gave better coverage and led to a shelf life prediction closer to that based on long-term stability data.
Accelerated aging: prediction of chemical stability of pharmaceuticals.
Waterman, Kenneth C; Adami, Roger C
2005-04-11
Methods of rapidly and accurately assessing the chemical stability of pharmaceutical dosage forms are reviewed with respect to the major degradation mechanisms generally observed in pharmaceutical development. Methods are discussed, with the appropriate caveats, for accelerated aging of liquid and solid dosage forms, including small and large molecule active pharmaceutical ingredients. In particular, this review covers general thermal methods, as well as accelerated aging methods appropriate to oxidation, hydrolysis, reaction with reactive excipient impurities, photolysis and protein denaturation.
Lin, Shan-Yang; Wang, Shun-Li
2012-04-01
The solid-state chemistry of drugs has seen growing importance in the pharmaceutical industry for the development of useful API (active pharmaceutical ingredients) of drugs and stable dosage forms. The stability of drugs in various solid dosage forms is an important issue because solid dosage forms are the most common pharmaceutical formulation in clinical use. In solid-state stability studies of drugs, an ideal accelerated method must not only be selected by different complicated methods, but must also detect the formation of degraded product. In this review article, an analytical technique combining differential scanning calorimetry and Fourier-transform infrared (DSC-FTIR) microspectroscopy simulates the accelerated stability test, and simultaneously detects the decomposed products in real time. The pharmaceutical dipeptides aspartame hemihydrate, lisinopril dihydrate, and enalapril maleate either with or without Eudragit E were used as testing examples. This one-step simultaneous DSC-FTIR technique for real-time detection of diketopiperazine (DKP) directly evidenced the dehydration process and DKP formation as an impurity common in pharmaceutical dipeptides. DKP formation in various dipeptides determined by different analytical methods had been collected and compiled. Although many analytical methods have been applied, the combined DSC-FTIR technique is an easy and fast analytical method which not only can simulate the accelerated drug stability testing but also at the same time enable to explore phase transformation as well as degradation due to thermal-related reactions. This technique offers quick and proper interpretations. Copyright © 2012 Elsevier B.V. All rights reserved.
Vibration waveform effects on dynamic stabilization of ablative Rayleigh-Taylor instability
DOE Office of Scientific and Technical Information (OSTI.GOV)
Piriz, A. R.; Lucchio, L. Di; Rodriguez Prieto, G.
2011-08-15
An analysis of dynamic stabilization of Rayleigh-Taylor instability in an ablation front is performed by considering a general square wave for modulating the vertical acceleration of the front. Such a kind of modulation allows for clarifying the role of thermal conduction in the mechanism of dynamic stabilization. In addition, the study of the effect of different modulations by varying the duration and amplitude of the square wave in each half-period provides insight on the optimum performance of dynamic stabilization.
ERIC Educational Resources Information Center
Edge, R. D.
1974-01-01
Discusses the design of a device which serves to demonstrate the principle of acceleration and phase stability by accelerating gravitationally a ball bearing along a spiral groove. Application of the design principle to the acceleration aspect of a linear accelerator is recommended. (CC)
Geiger, Simon; Kasian, Olga; Mingers, Andrea M; Nicley, Shannon S; Haenen, Ken; Mayrhofer, Karl J J; Cherevko, Serhiy
2017-09-18
In searching for alternative oxygen evolution reaction (OER) catalysts for acidic water splitting, fast screening of the material intrinsic activity and stability in half-cell tests is of vital importance. The screening process significantly accelerates the discovery of new promising materials without the need of time-consuming real-cell analysis. In commonly employed tests, a conclusion on the catalyst stability is drawn solely on the basis of electrochemical data, for example, by evaluating potential-versus-time profiles. Herein important limitations of such approaches, which are related to the degradation of the backing electrode material, are demonstrated. State-of-the-art Ir-black powder is investigated for OER activity and for dissolution as a function of the backing electrode material. Even at very short time intervals materials like glassy carbon passivate, increasing the contact resistance and concealing the degradation phenomena of the electrocatalyst itself. Alternative backing electrodes like gold and boron-doped diamond show better stability and are thus recommended for short accelerated aging investigations. Moreover, parallel quantification of dissolution products in the electrolyte is shown to be of great importance for comparing OER catalyst feasibility. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Recent results of studies of acceleration of compact toroids
NASA Astrophysics Data System (ADS)
Hammer, J. H.; Hartmen, C. W.; Eddleman, J.
1984-03-01
The observed gross stability and self-contained structure of compact toroids (CT's) give rise to the possibility, unique among magnetically confined plasmas, of translating CT's from their point of origin over distances many times their own length. This feature has led us to consider magnetic acceleration of CT's to directed kinetic energies much greater than their stored magnetic and thermal energies. A CT accelerator falls in the very broad gap between traditional particle accelerators at one extreme, which are limited in the number of particles per bunch by electrostatic repulsive forces, and mass accelerators such as rail guns at the other extreme, which accelerate many particles but are forced by the stress limitations of solids to far smaller accelerations. A typical CT has about a Coulomb of particles, weighs 10 micrograms and can be accelerated by magnetic forces of several tons, leading to an acceleration on the order of 10(11) gravities.
NASA Astrophysics Data System (ADS)
Deng, Chao; Ren, Wei; Mao, Yao; Ren, Ge
2017-08-01
A plug-in module acceleration feedback control (Plug-In AFC) strategy based on the disturbance observer (DOB) principle is proposed for charge-coupled device (CCD)-based fast steering mirror (FSM) stabilization systems. In classical FSM tracking systems, dual-loop control (DLC), including velocity feedback and position feedback, is usually utilized to enhance the closed-loop performance. Due to the mechanical resonance of the system and CCD time delay, the closed-loop bandwidth is severely restricted. To solve this problem, cascade acceleration feedback control (AFC), which is a kind of high-precision robust control method, is introduced to strengthen the disturbance rejection property. However, in practical applications, it is difficult to realize an integral algorithm in an acceleration controller to compensate for the quadratic differential contained in the FSM acceleration model, resulting in a challenging controller design and a limited improvement. To optimize the acceleration feedback framework in the FSM system, different from the cascade AFC, the accelerometers are used to construct DOB to compensate for the platform vibrations directly. The acceleration nested loop can be plugged into the velocity loop without changing the system stability, and the controller design is quite simple. A series of comparative experimental results demonstrate that the disturbance rejection property of the CCD-based FSM can be effectively improved by the proposed approach.
Accelerated Stability Testing of a Clobetasol Propionate-Loaded Nanoemulsion as per ICH Guidelines.
Ali, Mohammad Sajid; Alam, Mohammad Sarfaraz; Alam, Nawazish; Anwer, Tarique; Safhi, Mohammed Mohsen A
2013-01-01
The physical and chemical degradation of drugs may result in altered therapeutic efficacy and even toxic effects. Therefore, the objective of this work was to study the stability of clobetasol propionate (CP) in a nanoemulsion. The nanoemulsion formulation containing CP was prepared by the spontaneous emulsification method. For the formulation of the nanoemulsion, Safsol, Tween 20, ethanol, and distilled water were used. The drug was incorporated into an oil phase in 0.05% w/v. The lipophilic nature of the drug led to the O/W nanoemulsion formulation. This was characterized by droplet size, pH, viscosity, conductivity, and refractive index. Stability studies were performed as per ICH guidelines for a period of three months. The shelf life of the nanoemulsion formulation was also determined after performing accelerated stability testing (40°C ± 2°C and 75% ± 5% RH). We also performed an intermediate stability study (30°C ± 2°C/65% RH ± 5% RH). It was found that the droplet size, conductivity, and refractive index were slightly increased, while the viscosity and pH slightly decreased at all storage conditions during the 3-month period. However, the changes in these parameters were not statistically significant (p≥0.05). The degradation (%) of the optimized nanoemulsion of CP was determined and the shelf life was found to be 2.18 years at room temperature. These studies confirmed that the physical and chemical stability of CP were enhanced in the nanoemulsion formulation.
Mundim, F M; Da Fonseca Roberti Garcia, L; Silva Sousa, A B; Cruvinel, D R; De Carvalho Panzeri Pires-De-Souza, F
2010-10-01
The aim of this study was to evaluate the influence of artificial accelerated aging on the color stability and opacity of composites of different shades. Four composites for direct use (Heliomolar, 4 Seasons, Tetric EvoCeram; QuiXfil) and one for indirect use (SR Adoro) in two shades were used: light (A2) and dark (C3 for direct, and D4 for indirect composite). QuiXfil was obtained in Universal shade. A Teflon matrix (12 X 2 mm) was used to obtain 54 specimens (N=6), which were submitted to color and opacity analysis (Spectrophotometer PCB 6807, Byk Gardner) before and after artificial accelerated aging for 384 hours. After the statistical analysis (2-way ANOVA - Bonferroni - P<0.05), significant color alteration was observed in the light and dark composites studied (P<0.05), with the exception of QuiXfil. Composite 4 Seasons/C3 showed less color alteration (ΔE=0.91). The opacity alteration (ΔOP) was higher for light composites. Artificial accelerated aging interfered in the optical properties assessed; however, the alterations seemed to be more related to the composites composition than to their shade.
Influence of trace elements on stabilization of aqueous solutions of ascorbic acid.
Dolińska, Barbara; Ostróżka-Cieślik, Aneta; Caban, Artur; Rimantas, Klimas; Leszczyńska, Lucyna; Ryszka, Florian
2012-12-01
Together with vitamin C, zinc, selenium, manganese, and magnesium play a vital role in the preservation of organs scheduled for transplantation. In the present study, it is shown that addition of 1 mg/l of these elements influences the stability of 0.3 mM ascorbic acid solutions. The solution's stability was estimated using an accelerated stability test. The concentration of vitamin C was measured using a validated spectrophotometric method, which uses the reduction of 2,6-dichlorophenoloindophenol by ascorbic acid. Elevated temperatures, the factor accelerating substances' decomposition reaction rate, were used in the tests. The research was conducted at two temperatures at intervals of 10 °C: 80 ± 0.1 and 90 ± 0.1 °C. It was stated that the studied substances' decomposition occurred in accordance with the equation for first-order reactions. The function of the logarithmic concentration (log%C) over time was revealed to be rectilinear. This dependence was used to determine the kinetics of decomposition reaction rate parameters. The stabilization of vitamin C solutions was measured as the time in which 10 % of the substance decomposed at 20 and 0 °C. Addition of Se(IV) or Mg(II) ions significantly increase the stability of ascorbic acid solution (∼34 and ∼16 %, respectively), but Zn(II) causes a significant decrease in stability by ∼23 %. Addition of Mn(II) has no significant influence on vitamin C stability.
NASA Technical Reports Server (NTRS)
Zerlaut, Gene A.; Gilligan, J. E.; Harada, Y.
1965-01-01
In a previous research program for the Jet Propulsion- Laboratory, extensive studies led to the development and specifications of three zinc oxide-pigmented thermal-control coatings. The principal objectives of this program are: improvement of the three paints (as engineering materials), determination of the validity of our accelerated space-simulation testing, and continuation of the zinc oxide photolysis studies begun in the preceding program. Specific tasks that are discussed include: improvement of potassium silicate coatings as engineering materials and elucidation of their storage and handling problems; improvement of methyl silicone coatings as engineering materials; studies of zinc oxide photolysis to establish reasons for the observed stability of zinc oxide; and determination of space-simulation parameters such as long-term stability (to 8000 ESH), effect of coating surface temperature on the rate of degradation, and validity of accelerated testing (by reciprocity and wavelength dependency studies).
Heuberger, Adam L; Broeckling, Corey D; Sedin, Dana; Holbrook, Christian; Barr, Lindsay; Kirkpatrick, Kaylyn; Prenni, Jessica E
2016-06-01
Flavour stability is vital to the brewing industry as beer is often stored for an extended time under variable conditions. Developing an accelerated model to evaluate brewing techniques that affect flavour stability is an important area of research. Here, we performed metabolomics on non-volatile compounds in beer stored at 37 °C between 1 and 14 days for two beer types: an amber ale and an India pale ale. The experiment determined high temperature to influence non-volatile metabolites, including the purine 5-methylthioadenosine (5-MTA). In a second experiment, three brewing techniques were evaluated for improved flavour stability: use of antioxidant crowns, chelation of pro-oxidants, and varying plant content in hops. Sensory analysis determined the hop method was associated with improved flavour stability, and this was consistent with reduced 5-MTA at both regular and high temperature storage. Future studies are warranted to understand the influence of 5-MTA on flavour and aging within different beer types. Copyright © 2016 Elsevier Ltd. All rights reserved.
Local Dynamic Stability Assessment of Motion Impaired Elderly Using Electronic Textile Pants.
Liu, Jian; Lockhart, Thurmon E; Jones, Mark; Martin, Tom
2008-10-01
A clear association has been demonstrated between gait stability and falls in the elderly. Integration of wearable computing and human dynamic stability measures into home automation systems may help differentiate fall-prone individuals in a residential environment. The objective of the current study was to evaluate the capability of a pair of electronic textile (e-textile) pants system to assess local dynamic stability and to differentiate motion-impaired elderly from their healthy counterparts. A pair of e-textile pants comprised of numerous e-TAGs at locations corresponding to lower extremity joints was developed to collect acceleration, angular velocity and piezoelectric data. Four motion-impaired elderly together with nine healthy individuals (both young and old) participated in treadmill walking with a motion capture system simultaneously collecting kinematic data. Local dynamic stability, characterized by maximum Lyapunov exponent, was computed based on vertical acceleration and angular velocity at lower extremity joints for the measurements from both e-textile and motion capture systems. Results indicated that the motion-impaired elderly had significantly higher maximum Lyapunov exponents (computed from vertical acceleration data) than healthy individuals at the right ankle and hip joints. In addition, maximum Lyapunov exponents assessed by the motion capture system were found to be significantly higher than those assessed by the e-textile system. Despite the difference between these measurement techniques, attaching accelerometers at the ankle and hip joints was shown to be an effective sensor configuration. It was concluded that the e-textile pants system, via dynamic stability assessment, has the potential to identify motion-impaired elderly.
NASA Technical Reports Server (NTRS)
Anderson, J. E.
1974-01-01
An experimental program was conducted for the purpose of evaluating propellant behavior characteristics in spinning toroidal tanks. The effects of typical mission requirements, and related phenomena upon propellant slosh and settling, and orientation and stability of the ullage were investigated in a subscale model tank under both one-g and low-g acceleration environments. Specific conditions included were axial acceleration, spin rate, spinrate change, and spacecraft wobble, both singly and in combination. Methanol and water in combination with appropriate spin-rates and accelerations of the scale model system were used to simulate the behavior of fluorine, nitrogen tetroxide, monomethylhydrazine, and hydrazine. The experimental results indicate that no major fluid behavior problems would be encountered with the use of toroidal tanks containing any of the four propellants in a proposed spin-stabilized orbiter spacecraft.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kafka, Gene
2015-05-01
The Integrable Optics Test Accelerator (IOTA) storage ring at Fermilab will serve as the backbone for a broad spectrum of Advanced Accelerator R&D (AARD) experiments, and as such, must be designed with signi cant exibility in mind, but without compromising cost e ciency. The nonlinear experiments at IOTA will include: achievement of a large nonlinear tune shift/spread without degradation of dynamic aperture; suppression of strong lattice resonances; study of stability of nonlinear systems to perturbations; and studies of di erent variants of nonlinear magnet design. The ring optics control has challenging requirements that reach or exceed the present state ofmore » the art. The development of a complete self-consistent design of the IOTA ring optics, meeting the demands of all planned AARD experiments, is presented. Of particular interest are the precise control for nonlinear integrable optics experiments and the transverse-to-longitudinal coupling and phase stability for the Optical Stochastic Cooling Experiment (OSC). Since the beam time-of- ight must be tightly controlled in the OSC section, studies of second order corrections in this section are presented.« less
NASA Astrophysics Data System (ADS)
Kafka, Gene
The Integrable Optics Test Accelerator (IOTA) storage ring at Fermilab will serve as the backbone for a broad spectrum of Advanced Accelerator R&D (AARD) experiments, and as such, must be designed with significant flexibility in mind, but without compromising cost efficiency. The nonlinear experiments at IOTA will include: achievement of a large nonlinear tune shift/spread without degradation of dynamic aperture; suppression of strong lattice resonances; study of stability of nonlinear systems to perturbations; and studies of different variants of nonlinear magnet design. The ring optics control has challenging requirements that reach or exceed the present state of the art. The development of a complete self-consistent design of the IOTA ring optics, meeting the demands of all planned AARD experiments, is presented. Of particular interest are the precise control for nonlinear integrable optics experiments and the transverse-to-longitudinal coupling and phase stability for the Optical Stochastic Cooling Experiment (OSC). Since the beam time-of-flight must be tightly controlled in the OSC section, studies of second order corrections in this section are presented.
Schütte, Kurt H; Aeles, Jeroen; De Beéck, Tim Op; van der Zwaard, Babette C; Venter, Rachel; Vanwanseele, Benedicte
2016-07-01
Despite frequently declared benefits of using wireless accelerometers to assess running gait in real-world settings, available research is limited. The purpose of this study was to investigate outdoor surface effects on dynamic stability and dynamic loading during running using tri-axial trunk accelerometry. Twenty eight runners (11 highly-trained, 17 recreational) performed outdoor running on three outdoor training surfaces (concrete road, synthetic track and woodchip trail) at self-selected comfortable running speeds. Dynamic postural stability (tri-axial acceleration root mean square (RMS) ratio, step and stride regularity, sample entropy), dynamic loading (impact and breaking peak amplitudes and median frequencies), as well as spatio-temporal running gait measures (step frequency, stance time) were derived from trunk accelerations sampled at 1024Hz. Results from generalized estimating equations (GEE) analysis showed that compared to concrete road, woodchip trail had several significant effects on dynamic stability (higher AP ratio of acceleration RMS, lower ML inter-step and inter-stride regularity), on dynamic loading (downward shift in vertical and AP median frequency), and reduced step frequency (p<0.05). Surface effects were unaffected when both running level and running speed were added as potential confounders. Results suggest that woodchip trails disrupt aspects of dynamic stability and loading that are detectable using a single trunk accelerometer. These results provide further insight into how runners adapt their locomotor biomechanics on outdoor surfaces in situ. Copyright © 2016 Elsevier B.V. All rights reserved.
Kostoulas, Ioannis; Polyzois, Gregory; Mitsoudis, Anastasios; Kavoura, Victoria; Frangou, Maria
2012-06-01
The purpose of this study was to assess the colour stability of seven visible light-cured (VLC) hard and soft denture liners by an in vitro accelerated ageing test and compare them with two autopolymerised hard and soft liners. Ten specimens of each material were fabricated. The initial colour was measured with a tri-stimulus colorimeter. One set of five specimens was placed in distilled water at 37°C in the dark for 15 days, while the remaining were subjected to UV/visible light-accelerated ageing initially for 24 h and then for 144 h. Colour change (ΔΕ) was calculated. Data were statistically analysed by anova, Tukey and t-tests at α = 0.05. All the liners showed clinically acceptable colour change (ΔΕ ≤ 6.8) in distilled water. The colour changes after ageing for Triad DuaLine, Lightdon U, Ufi Gel H and Light Liner Hard were clinically unacceptable (ΔΕ ≥ 6.8), whereas LightLiner Soft, Astron LC Soft, Triad Resiline and Flexacryl Soft presented slighter and clinically acceptable colour change (ΔΕ ≤ 6.8). Accelerated ageing affected significantly the colour stability of all denture liners tested except Astron LC Soft. Soft VLC denture liners were more colour-stable than hard VLC liners. © 2011 The Gerodontology Society and John Wiley & Sons A/S.
Reslan, Mouhamad; Demir, Yusuf K; Trout, Bernhardt L; Chan, Hak-Kim; Kayser, Veysel
2017-09-01
Improving the physical stability of spray-dried proteins is essential for enabling pulmonary delivery of biotherapeutics as a noninvasive alternative to injections. Recently, a novel combination of two amino acids - l-arginine (l-Arg) and l-glutamic acid (l-Glu), has been reported to have synergistic protein-stabilizing effects on various protein solutions. Using spray-dried bovine serum albumin (BSA) reconstituted in solution as a model protein, we investigated the synergistic effect of these amino acids on the physical stability of proteins. Five BSA solutions were prepared: (1) BSA with no amino acids (control); (2) with 50 mM l-Arg; (3) with 200 mM l-Arg, (4) with 50 mM l-Glu and (5) with 25:25 mM of Arg:Glu. All solutions were spray-dried and accelerated studies at high temperatures were performed. Following accelerated studies, monomer BSA loss was measured using SE-HPLC. We found that l-Arg significantly improved the physical stability of spray-dried BSA even at low concentrations, however, when combined with l-Glu, was ineffective at reducing monomer BSA loss. Our findings demonstrate the limitations in using Arg-Glu for the stabilization of spray-dried BSA. Furthermore, we found that a low concentration of l-Glu enhanced monomer BSA loss. These findings may have significant implications on the design of future biotherapeutic formulations.
Pegoraro, F; Bulanov, S V
2007-08-10
The stability of a thin plasma foil accelerated by the radiation pressure of a high intensity electromagnetic (e.m.) pulse is investigated analytically and with particle in cell numerical simulations. It is shown that the onset of a Rayleigh-Taylor-like instability can lead to transverse bunching of the foil and to broadening of the energy spectrum of fast ions. The use of a properly tailored e.m. pulse with a sharp intensity rise can stabilize the foil acceleration.
The effect of accelerated aging on the wear of UHMWPE.
Sakoda, H; Fisher, J; Lu, S; Buchanan, F
2001-01-01
Oxidative degradation of UHMWPE has been found to be a cause of elevated wear rate of the polymer in total joint replacement leading to failure of these devices. In order to evaluate long term stability of polymers, various accelerated aging methods have been developed. In this study, wear rates of shelf aged UHMWPE and "accelerated aged" UHMWPE were compared using a multi-directional pin-on-plate wear test machine in order to evaluate the effect of the accelerated aging on wear. Wear factors of the aged materials were found to depend on their density, which is a measure of oxidation level. Finally, accelerated aging was calibrated against shelf aging in terms of wear rate. Copyright 2001 Kluwer Academic Publishers
Bhutani, H; Mariappan, T T; Singh, S
2004-09-01
To determine the physical and chemical stability of anti-tuberculosis fixed-dose combinations (FDC) of rifampicin (RMP), isoniazid (INH), pyrazinamide (PZA) and ethambutol (EMB) sold on the Indian market. The products were stored for 3 months under ICH/WHO accelerated conditions (40 degrees C / 75% RH), with and without the original packaging in the presence and absence of light. The initial RMP, INH and PZA content was found to be within the range of 90-110% of the label claim. However, the products were found to have some chemical instability even initially; one of the tablets also showed physical instability. Under accelerated conditions, the unpackaged products underwent severe changes, whereas both physical and chemical changes were also observed in the packaged formulations. The physical changes were stronger under lighted conditions. A significant finding is that PZA and perhaps EMB may play a catalytic role in the interaction between INH and RMP. This study suggests that, unless they are packed in barrier packaging, anti-tuberculosis FDC formulations should be considered unstable, and due consideration should be given to their development pharmaceutics, packaging and stability testing.
Kinematic variability, fractal dynamics and local dynamic stability of treadmill walking
2011-01-01
Background Motorized treadmills are widely used in research or in clinical therapy. Small kinematics, kinetics and energetics changes induced by Treadmill Walking (TW) as compared to Overground Walking (OW) have been reported in literature. The purpose of the present study was to characterize the differences between OW and TW in terms of stride-to-stride variability. Classical (Standard Deviation, SD) and non-linear (fractal dynamics, local dynamic stability) methods were used. In addition, the correlations between the different variability indexes were analyzed. Methods Twenty healthy subjects performed 10 min TW and OW in a random sequence. A triaxial accelerometer recorded trunk accelerations. Kinematic variability was computed as the average SD (MeanSD) of acceleration patterns among standardized strides. Fractal dynamics (scaling exponent α) was assessed by Detrended Fluctuation Analysis (DFA) of stride intervals. Short-term and long-term dynamic stability were estimated by computing the maximal Lyapunov exponents of acceleration signals. Results TW did not modify kinematic gait variability as compared to OW (multivariate T2, p = 0.87). Conversely, TW significantly modified fractal dynamics (t-test, p = 0.01), and both short and long term local dynamic stability (T2 p = 0.0002). No relationship was observed between variability indexes with the exception of significant negative correlation between MeanSD and dynamic stability in TW (3 × 6 canonical correlation, r = 0.94). Conclusions Treadmill induced a less correlated pattern in the stride intervals and increased gait stability, but did not modify kinematic variability in healthy subjects. This could be due to changes in perceptual information induced by treadmill walking that would affect locomotor control of the gait and hence specifically alter non-linear dependencies among consecutive strides. Consequently, the type of walking (i.e. treadmill or overground) is important to consider in each protocol design. PMID:21345241
Archegas, Lucí Regina Panka; Freire, Andrea; Vieira, Sergio; Caldas, Danilo Biazzetto de Menezes; Souza, Evelise Machado
2011-11-01
Colour changes of the luting material can become clinically visible affecting the aesthetic appearance of thin ceramic laminates. The aim of this in vitro study was to evaluate the colour stability and opacity of light- and dual-cured resin cements and flowable composites after accelerated ageing. The luting agents were bonded (0.2 mm thick) to ceramic disks (0.75 mm thick) built with the pressed-ceramic IPS Aesthetic Empress (n=7). Colour measurements were determined using a FTIR spectrophotometer before and after accelerated ageing in a weathering machine with a total energy of 150 kJ. Changes in colour (ΔE) and opacity (ΔO) were obtained using the CIE L*a*b* system. The results were submitted to one-way ANOVA, Tukey HSD test and Student's t test (α=5%). All the materials showed significant changes in colour and opacity. The ΔE of the materials ranged from 0.41 to 2.40. The highest colour changes were attributed to RelyX ARC and AllCem, whilst lower changes were found in Variolink Veneer, Tetric Flow and Filtek Z350 Flow. The opacity of the materials ranged from -0.01 to 1.16 and its variation was not significant only for Opallis Flow and RelyX ARC. The accelerated ageing led to colour changes in all the evaluated materials, although they were considered clinically acceptable (ΔE<3). Amongst the dual-cured resin cements, Variolink II demonstrated the highest colour stability. All the flowable composites showed proper colour stability for the luting of ceramic veneers. After ageing, an increase in opacity was observed for most of the materials. Copyright © 2011 Elsevier Ltd. All rights reserved.
Guo, Qin; Cai, Jie; Li, Pengyu; Xu, Dongling; Ni, Xiaomin; Wen, Hui; Liu, Dan; Lin, Suizhen; Hu, Haiyan
2016-01-01
Androst-3β,5α,6β-triol (Triol) is a promising neuroprotective agent, but its poor solubility restricts its development into parenteral preparations. In this study, Triol is significantly solubilized by bile salt/phosphatidylcholine mixed micelles (BS/PC-MM). All BS/PC-MM systems are tested to remarkably improve the drug solubility with various stabilities after drug loading. Among them, the sodium glycocholate (SGC)/egg phosphatidylcholine (EPC) system with 2:1 ratio in weight and the total concentration of SGC and EPC of 100 mg/mL is proved to produce stable mixed micelles with high drug loading. It is found that the stability of drug-loaded mixed micelles is quite different, which might be related to the change in critical micelle concentration (CMC) after incorporating drugs. SGC/EPC and SGC/soya phosphatidylcholine (SPC) remain transparent under accelerated conditions and manifest a decreased CMC (dropping from 0.105 to 0.056 mg/mL and from 0.067 to 0.024 mg/mL, respectively). In contrast, swine bile acid-sodium salt (SBA-Na)/PC and sodium deoxycholate (SDC)/PC are accompanied by drug precipitation and reached the maximum CMC on the first and the third days, respectively. Interestingly, the variation of CMC under accelerated testing conditions highly matches the drug-precipitating event in the primary stability experiment. In brief, the bile salt/phosphatidylcholine system exists as a potential strategy of improving sterol drug solubility. CMC variation under accelerated testing conditions might be a simple and easy method to predict the stability of drug-loaded mixed micelles.
Zanatta, Cinthia Fernanda; de Faria Sato, Anne Miwa Callejón; de Camargo, Flavio Bueno; Campos, Patrícia Maria Berardo Gonçalves Maia; Rocha-Filho, Pedro Alves
2010-01-01
It is well known that the Amazon region presents a huge biodiversity; therefore, countless natural resources are being employed in the production of phytocosmetics and phytomedicines. The purpose of this work was to obtain emulsions produced with Buriti oil and non-ionic surfactants. Two surfactant systems were employed (Steareth-2 associated to Ceteareth-5 and to Ceteareth-20) to produce the emulsions using phase diagram method. Emulsions were obtained by echo-planar imaging method at 75°C. Rheological behavior and zeta potential were evaluated, and accelerated stability tests were performed. All emulsions analyzed presented pseudoplastic behavior. Zeta potential values were obtained between -14.2 and -53.3 mV. The formulations did not show changes in either physical stability, pH, or rheological behavior after accelerated stability tests. Significant differences were observed only after temperature cycling test. Based on these results, the emulsions obtained could be considered as promising delivery systems.
Patel, Ashaben; Erb, Steven M; Strange, Linda; Shukla, Ravi S; Kumru, Ozan S; Smith, Lee; Nelson, Paul; Joshi, Sangeeta B; Livengood, Jill A; Volkin, David B
2018-05-24
A combination experimental approach, utilizing semi-empirical excipient screening followed by statistical modeling using design of experiments (DOE), was undertaken to identify stabilizing candidate formulations for a lyophilized live attenuated Flavivirus vaccine candidate. Various potential pharmaceutical compounds used in either marketed or investigative live attenuated viral vaccine formulations were first identified. The ability of additives from different categories of excipients, either alone or in combination, were then evaluated for their ability to stabilize virus against freeze-thaw, freeze-drying, and accelerated storage (25°C) stresses by measuring infectious virus titer. An exploratory data analysis and predictive DOE modeling approach was subsequently undertaken to gain a better understanding of the interplay between the key excipients and stability of virus as well as to determine which combinations were interacting to improve virus stability. The lead excipient combinations were identified and tested for stabilizing effects using a tetravalent mixture of viruses in accelerated and real time (2-8°C) stability studies. This work demonstrates the utility of combining semi-empirical excipient screening and DOE experimental design strategies in the formulation development of lyophilized live attenuated viral vaccine candidates. Copyright © 2017 Elsevier Ltd. All rights reserved.
Catelan, Anderson; Suzuki, Thaís Yumi Umeda; Becker, Francisco; Briso, André Luiz Fraga; Dos Santos, Paulo Henrique
2017-05-01
In the present study, we evaluated the influence of surface sealing on color stability and surface roughness of a composite resin after accelerated artificial aging. Thirty-two specimens of a composite were prepared. After 24 h, the specimens were polished and divided into four groups (n = 8), according to the surface sealant used, including the control, which had no sealant application. Baseline color was measured according to the CIELab system using a reflection spectrophotometer. Surface roughness was determined using a profilometer with a cut-off of 0.25 mm. After these tests, specimens were aged for 252 h in an ultraviolet (UV)-accelerated aging chamber. Color stability was determined by difference between coordinates obtained before and after the aging procedure. Data of color change and roughness were evaluated by anova and Fisher's exact test (α = 0.05). The results showed that the unsealed group had the highest color change compared to other groups (P = 0.0289), and there was no significant difference between groups sealed with surface sealant (P > 0.05). The artificial aging caused an increase in roughness values independent of the experimental group studied (P = 0.0015). The sealed composites showed lower color change after UV aging, but all groups showed clinically-acceptable color change, and only liquid polish decreased roughness. © 2016 John Wiley & Sons Australia, Ltd.
Herrera, María; Tattini, Virgilio; Pitombo, Ronaldo N M; Gutiérrez, José María; Borgognoni, Camila; Vega-Baudrit, José; Solera, Federico; Cerdas, Maykel; Segura, Alvaro; Villalta, Mauren; Vargas, Mariángela; León, Guillermo
2014-11-01
Freeze-drying is used to improve the long term stability of pharmaceutical proteins. Sugars and polyols have been successfully used in the stabilization of proteins. However, their use in the development of freeze-dried antivenoms has not been documented. In this work, whole IgG snake antivenom, purified from equine plasma, was formulated with different concentrations of sorbitol, sucrose or mannitol. The glass transition temperatures of frozen formulations, determined by Differential Scanning Calorimetry (DSC), ranged between -13.5 °C and -41 °C. In order to evaluate the effectiveness of the different stabilizers, the freeze-dried samples were subjected to an accelerated stability test at 40 ± 2 °C and 75 ± 5% relative humidity. After six months of storage at 40 °C, all the formulations presented the same residual humidity, but significant differences were observed in turbidity, reconstitution time and electrophoretic pattern. Moreover, all formulations, except antivenoms freeze-dried with mannitol, exhibited the same potency for the neutralization of lethal effect of Bothrops asper venom. The 5% (w:v) sucrose formulation exhibited the best stability among the samples tested, while mannitol and sorbitol formulations turned brown. These results suggest that sucrose is a better stabilizer than mannitol and sorbitol in the formulation of freeze-dried antivenoms under the studied conditions. Copyright © 2014 Elsevier Ltd. All rights reserved.
Thermodynamics of Accelerating Black Holes.
Appels, Michael; Gregory, Ruth; Kubizňák, David
2016-09-23
We address a long-standing problem of describing the thermodynamics of an accelerating black hole. We derive a standard first law of black hole thermodynamics, with the usual identification of entropy proportional to the area of the event horizon-even though the event horizon contains a conical singularity. This result not only extends the applicability of black hole thermodynamics to realms previously not anticipated, it also opens a possibility for studying novel properties of an important class of exact radiative solutions of Einstein equations describing accelerated objects. We discuss the thermodynamic volume, stability, and phase structure of these black holes.
DOT National Transportation Integrated Search
2011-12-01
Accelerated pavement testing (APT) has been increasingly used by state highway agencies in recent years for evaluating pavement structures and/or materials. However, running an APT experiment is expensive. It requires costly accelerated loading devic...
Stankovičová, Mária; Lašáková, Andrea; Medlenová, Veronika; Bezáková, Zelmíra; Cižmárik, Jozef
2014-08-01
The paper studies the kinetics of alkaline hydrolysis and stability under non-isothermal conditions of heptacainium chloride and carbisocainium chloride in the medium of aqueous-ethanolic solution of sodium hydroxide c = 0.1 mol/l and buffer solutions of values of pH 7.0 and pH 8.0. The results of the study of the kinetics of hydrolysis by means of a non-isothermal test - rate constants and activation energy values served as the basis for exact evaluation of the stability of these potential pharmaceuticals. The objective of the paper links up with the previous studies of these substances.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vargas, M.; Schumaker, W.; He, Z.-H.
2014-04-28
High intensity, short pulse lasers can be used to accelerate electrons to ultra-relativistic energies via laser wakefield acceleration (LWFA) [T. Tajima and J. M. Dawson, Phys. Rev. Lett. 43, 267 (1979)]. Recently, it was shown that separating the injection and acceleration processes into two distinct stages could prove beneficial in obtaining stable, high energy electron beams [Gonsalves et al., Nat. Phys. 7, 862 (2011); Liu et al., Phys. Rev. Lett. 107, 035001 (2011); Pollock et al., Phys. Rev. Lett. 107, 045001 (2011)]. Here, we use a stereolithography based 3D printer to produce two-stage gas targets for LWFA experiments on themore » HERCULES laser system at the University of Michigan. We demonstrate substantial improvements to the divergence, pointing stability, and energy spread of a laser wakefield accelerated electron beam compared with a single-stage gas cell or gas jet target.« less
NASA Astrophysics Data System (ADS)
Ohtaki, Yasuaki; Arif, Muhammad; Suzuki, Akihiro; Fujita, Kazuki; Inooka, Hikaru; Nagatomi, Ryoichi; Tsuji, Ichiro
This study presents an assessment of walking stability in elderly people, focusing on local dynamic stability of walking. Its main objectives were to propose a technique to quantify local dynamic stability using nonlinear time-series analyses and a portable instrument, and to investigate their reliability in revealing the efficacy of an exercise training intervention for elderly people for improvement of walking stability. The method measured three-dimensional acceleration of the upper body, and computation of Lyapunov exponents, thereby directly quantifying the local stability of the dynamic system. Straight level walking of young and elderly subjects was investigated in the experimental study. We compared Lyapunov exponents of young and the elderly subjects, and of groups before and after the exercise intervention. Experimental results demonstrated that the exercise intervention improved local dynamic stability of walking. The proposed method was useful in revealing effects and efficacies of the exercise intervention for elderly people.
NASA Astrophysics Data System (ADS)
Kocaefe, Duygu; Saha, Sudeshna
2012-04-01
High temperature heat-treatment of wood is a very valuable technique which improves many properties (biological durability, dimensional stability, thermal insulating characteristics) of natural wood. Also, it changes the natural color of wood to a very attractive dark brown color. Unfortunately, this color is not stable if left unprotected in external environment and turns to gray or white depending on the wood species. To overcome this problem, acrylic polyurethane coatings are applied on heat-treated wood to delay surface degradations (color change, loss of gloss, and chemical modifications) during aging. The acrylic polyurethane coatings which have high resistance against aging are further modified by adding bark extracts and/or lignin stabilizer to enhance their effectiveness in preventing the wood aging behavior. The aging characteristic of this coating is compared with acrylic polyurethane combined with commercially available organic UV stabilizers. In this study, their performance on three heat-treated North American wood species (jack pine, quaking aspen and white birch) are compared under accelerated aging conditions. Both the color change data and visual assessment indicate improvement in protective characteristic of acrylic polyurethane when bark extracts and lignin stabilizer are used in place of commercially available UV stabilizer. The results showed that although acrylic polyurethane with bark extracts and lignin stabilizer was more efficient compared to acrylic polyurethane with organic UV stabilizers in protecting heat-treated jack pine, it failed to protect heat-treated aspen and birch effectively after 672 h of accelerated aging. This degradation was not due to the coating adhesion loss or coating degradation during accelerated aging; rather, it was due to the significant degradation of heat-treated aspen and birch surface beneath this coating. The XPS results revealed formation of carbonyl photoproducts after aging on the coated surfaces and chain scission of Csbnd N of urethane linkages.
Experimental Investigation of Hexagon Stability in Two Frequency Forced Faraday Waves
NASA Astrophysics Data System (ADS)
Ding, Yu; Umbanhowar, Paul
2003-03-01
We have conducted experiments on a deep layer of silicone oil vertically oscillated with an acceleration a(t) = Am sin(m ω t + φ_m) + An sin(n ω t + φ_n). The stability of hexagonal surface wave patterns is investigated as a function of the overall acceleration, the ratio m:n, and the phase of the two rationally related driving frequencies. When the ratio A_m/An is chosen so the system is near a co-dimension two point, the stability of hexagons above onset is determined by the acceleration amplitude and the relative phase. Recent results by Porter and Silver (J. Porter and M. Silber, Phys. Rev. Lett. 084501, 2002) predicts that the range of pattern stability above onset as a function of acceleration is determined by cos(Φ), where Φ = π/4 - m φn / 2- n φm /2. We have tested this prediction for a number of m:n ratios and for various values of the dimensionless damping coefficient γ. We find that the patterns exhibit the predicted functional dependence on s(Φ) but with an additional phase offset. We measure the phase offset as a function of m:n and γ for varying frequency ω and fluid viscosity 5 cS <= ν <= 30 cS.
Methods of Phase and Power Control in Magnetron Transmitters for Superconducting Accelerators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kazadevich, G.; Johnson, R.; Neubauer, M.
Various methods of phase and power control in magnetron RF sources of superconducting accelerators intended for ADS-class projects were recently developed and studied with conventional 2.45 GHz, 1 kW, CW magnetrons operating in pulsed and CW regimes. Magnetron transmitters excited by a resonant (injection-locking) phasemodulated signal can provide phase and power control with the rates required for precise stabilization of phase and amplitude of the accelerating field in Superconducting RF (SRF) cavities of the intensity-frontier accelerators. An innovative technique that can significantly increase the magnetron transmitter efficiency at the widerange power control required for superconducting accelerators was developed and verifiedmore » with the 2.45 GHz magnetrons operating in CW and pulsed regimes. High efficiency magnetron transmitters of this type can significantly reduce the capital and operation costs of the ADSclass accelerator projects.« less
Reliability enhancement of Navier-Stokes codes through convergence acceleration
NASA Technical Reports Server (NTRS)
Merkle, Charles L.; Dulikravich, George S.
1995-01-01
Methods for enhancing the reliability of Navier-Stokes computer codes through improving convergence characteristics are presented. The improving of these characteristics decreases the likelihood of code unreliability and user interventions in a design environment. The problem referred to as a 'stiffness' in the governing equations for propulsion-related flowfields is investigated, particularly in regard to common sources of equation stiffness that lead to convergence degradation of CFD algorithms. Von Neumann stability theory is employed as a tool to study the convergence difficulties involved. Based on the stability results, improved algorithms are devised to ensure efficient convergence in different situations. A number of test cases are considered to confirm a correlation between stability theory and numerical convergence. The examples of turbulent and reacting flow are presented, and a generalized form of the preconditioning matrix is derived to handle these problems, i.e., the problems involving additional differential equations for describing the transport of turbulent kinetic energy, dissipation rate and chemical species. Algorithms for unsteady computations are considered. The extension of the preconditioning techniques and algorithms derived for Navier-Stokes computations to three-dimensional flow problems is discussed. New methods to accelerate the convergence of iterative schemes for the numerical integration of systems of partial differential equtions are developed, with a special emphasis on the acceleration of convergence on highly clustered grids.
Identifying head-trunk and lower limb contributions to gaze stabilization during locomotion
NASA Technical Reports Server (NTRS)
Mulavara, Ajitkumar P.; Bloomberg, Jacob J.
2002-01-01
The goal of the present study was to determine how the multiple, interdependent full-body sensorimotor subsystems respond to a change in gaze stabilization task constraints during locomotion. Nine subjects performed two gaze stabilization tasks while walking at 6.4 km/hr on a motorized treadmill: 1) focusing on a central point target; 2) reading numeral characters; both presented at 2 m in front at the level of their eyes. While subjects performed the tasks we measured: temporal parameters of gait, full body sagittal plane segmental kinematics of the head, trunk, thigh, tibia and foot, accelerations along the vertical axis at the head and the tibia, and the vertical forces acting on the support surface. We tested the hypothesis that with the increased demands placed on visual acuity during the number recognition task, subjects would modify full-body segmental kinematics in order to reduce perturbations to the head in order to successfully perform the task. We found that while reading numeral characters as compared to the central point target: 1) compensatory head pitch movement was on average 22% greater despite the fact that the trunk pitch and trunk vertical translation movement control were not significantly changed; 2) coordination patterns between head and trunk as reflected by the peak cross correlation between the head pitch and trunk pitch motion as well as the peak cross correlation between the head pitch and vertical trunk translation motion were not significantly changed; 3) knee joint total movement was on average 11% greater during the period from the heel strike event to the peak knee flexion event in stance phase of the gait cycle; 4) peak acceleration measured at the head was significantly reduced by an average of 13% in four of the six subjects. This was so even when the peak acceleration at the tibia and the transmission of the shock wave at heel strike (measured by the peak acceleration ratio of the head/tibia and the time lag between the tibial and head peak accelerations) remained unchanged. Taken together these results provide further evidence that the full body contributes to gaze stabilization during locomotion, and that its different functional elements can be modified online to contribute to gaze stabilization for different visual task constraints.
Accelerated Aging of Lead-Free Propellant
NASA Technical Reports Server (NTRS)
Furrow, Keith W.; Jervey, David D.
2000-01-01
Following higher than expected 2-NDPA depletion rates in a lead-free doublebase formulation (RPD-422), an accelerated aging study was conducted to verify the depletion rates. A test plan was prepared to compare the aging characteristics of lead-free propellant and NOSIH-AA2. The study was also designed to determine which lead-free ballistic modifiers accelerated 2-NDPA depletion. The increased depletion rate occurred in propellants containing monobasic copper salicylate. Four lead-free propellants were then formulated to improved aging characteristics over previous lead-free propellant formulations. The new formulations reduced or replaced the monobasic copper salicylate. The new formulations had improved aging characteristics. Their burn rates, however, were unacceptable for use in a 2.75 inch rocket. To compare aging characteristics, stabilizer depletion rates of RPD-422, AA2, M28, and RLC 470/6A were measured or taken from the literature. The data were fit to a kinetic model. The model contained first and zero order terms which allowed the stabilizer concentration to go to zero. In the model, only the concentration of the primary stabilizer was considered. Derivatives beyond the first nitrated or nitroso derivative of 2-NPDA were not considered. The rate constants were fit to the Arrhenius equation and extrapolated to lower temperatures. The time to complete stabilizer depletion was estimated using the kinetic model. The four propellants were compared and the RPD-422 depleted faster at 45 C than both A22 and M28. These types of predictions depend on the validity of the model and on confidence in the Arrhenius relationship holding at lower temperatures. At 45 C, the zero order portion of the model dominates the depletion rate.
Santos, Rafael M; Mertens, Gilles; Salman, Muhammad; Cizer, Özlem; Van Gerven, Tom
2013-10-15
This study compared the performance of four different approaches for stabilization of regulated heavy metal and metalloid leaching from municipal solid waste incineration bottom ash (MSWI-BA): (i) short term (three months) heap ageing, (ii) heat treatment, (iii) accelerated moist carbonation, and (iv) accelerated pressurized slurry carbonation. Two distinct types of MSWI-BA were tested in this study: one originating from a moving-grate furnace incineration operation treating exclusively household refuse (sample B), and another originating from a fluid-bed furnace incineration operation that treats a mixture of household and light industrial wastes (sample F). The most abundant elements in the ashes were Si (20-27 wt.%) and Ca (16-19 wt.%), followed by significant quantities of Fe, Al, Na, S, K, Mg, Ti, and Cl. The main crystalline substances present in the fresh ashes were Quartz, Calcite, Apatite, Anhydrite and Gehlenite, while the amorphous fraction ranged from 56 to 73 wt.%. The leaching values of all samples were compared to the Flemish (NEN 7343) and the Walloon (DIN 38414) regulations from Belgium. Batch leaching of the fresh ashes at natural pH showed that seven elements exceeded at least one regulatory limit (Ba, Cr, Cu, Mo, Pb, Se and Zn), and that both ashes had excess basicity (pH > 12). Accelerated carbonation achieved significant reduction in ash basicity (9.3-9.9); lower than ageing (10.5-12.2) and heat treatment (11.1-12.1). For sample B, there was little distinction between the leaching results of ageing and accelerated carbonation with respect to regulatory limits; however carbonation achieved comparatively lower leaching levels. Heat treatment was especially detrimental to the leaching of Cr. For sample F, ageing was ineffective and heat treatment had marginally better results, while accelerated carbonation delivered the most effective performance, with slurry carbonation meeting all DIN limits. Slurry carbonation was deemed the most effective treatment process, achieving consistently significant leaching stabilization, while also effectively washing out Cl ions, a requirement for the utilization of the ashes in construction applications. The benefits of carbonation were linked to the formation of significant quantities of Ca-carbonates, including appreciable quantities of the Aragonite polymorph formed in the slurry carbonated samples. Copyright © 2013 Elsevier Ltd. All rights reserved.
Rauk, Adam P; Guo, Kevin; Hu, Yanling; Cahya, Suntara; Weiss, William F
2014-08-01
Defining a suitable product presentation with an acceptable stability profile over its intended shelf-life is one of the principal challenges in bioproduct development. Accelerated stability studies are routinely used as a tool to better understand long-term stability. Data analysis often employs an overall mass action kinetics description for the degradation and the Arrhenius relationship to capture the temperature dependence of the observed rate constant. To improve predictive accuracy and precision, the current work proposes a least-squares estimation approach with a single nonlinear covariate and uses a polynomial to describe the change in a product attribute with respect to time. The approach, which will be referred to as Arrhenius time-scaled (ATS) least squares, enables accurate, precise predictions to be achieved for degradation profiles commonly encountered during bioproduct development. A Monte Carlo study is conducted to compare the proposed approach with the common method of least-squares estimation on the logarithmic form of the Arrhenius equation and nonlinear estimation of a first-order model. The ATS least squares method accommodates a range of degradation profiles, provides a simple and intuitive approach for data presentation, and can be implemented with ease. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.
Basic principles of stability.
Egan, William; Schofield, Timothy
2009-11-01
An understanding of the principles of degradation, as well as the statistical tools for measuring product stability, is essential to management of product quality. Key to this is management of vaccine potency. Vaccine shelf life is best managed through determination of a minimum potency release requirement, which helps assure adequate potency throughout expiry. Use of statistical tools such a least squares regression analysis should be employed to model potency decay. The use of such tools provides incentive to properly design vaccine stability studies, while holding stability measurements to specification presents a disincentive for collecting valuable data. The laws of kinetics such as Arrhenius behavior help practitioners design effective accelerated stability programs, which can be utilized to manage stability after a process change. Design of stability studies should be carefully considered, with an eye to minimizing the variability of the stability parameter. In the case of measuring the degradation rate, testing at the beginning and the end of the study improves the precision of this estimate. Additional design considerations such as bracketing and matrixing improve the efficiency of stability evaluation of vaccines.
Park, Jungyu; Lee, Beom; Tian, Donjie; Jun, Hangbae
2018-01-01
A microbial electrolysis cell (MEC) is a promising technology for enhancing biogas production from an anaerobic digestion (AD) reactor. In this study, the effects of the MEC on the rate of methane production from food waste were examined by comparing an AD reactor with an AD reactor combined with a MEC (AD+MEC). The use of the MEC accelerated methane production and stabilization via rapid organic oxidation and rapid methanogenesis. Over the total experimental period, the methane production rate and stabilization time of the AD+MEC reactor were approximately 1.7 and 4.0 times faster than those of the AD reactor. Interestingly however, at the final steady state, the methane yields of both the reactors were similar to the theoretical maximum methane yield. Based on these results, the MEC did not increase the methane yield over the theoretical value, but accelerated methane production and stabilization by bioelectrochemical reactions. Copyright © 2017 Elsevier Ltd. All rights reserved.
Degradation of components in drug formulations: a comparison between HPLC and DSC methods.
Ceschel, G C; Badiello, R; Ronchi, C; Maffei, P
2003-08-08
Information about the stability of drug components and drug formulations is needed to predict the shelf-life of the final products. The studies on the interaction between the drug and the excipients may be carried out by means of accelerated stability tests followed by analytical determination of the active principle (HPLC and other methods) and by means of the differential scanning calorimetry (DSC). This research has been focused to the acetyl salicylic acid (ASA) physical-chemical characterisation by using DSC method in order to evaluate its compatibility with some of the most used excipients. It was possible to show, with the DSC method, the incompatibility of magnesium stearate with ASA; the HPLC data confirm the reduction of ASA concentration in the presence of magnesium stearate. With the other excipients the characteristic endotherms of the drug were always present and no or little degradation was observed with the accelerated stability tests. Therefore, the results with the DSC method are comparable and in good agreement with the results obtained with other methods.
Landing impact studies of a 0.3-scale model air cushion landing system for a Navy fighter airplane
NASA Technical Reports Server (NTRS)
Leland, T. J. W.; Thompson, W. C.
1975-01-01
An experimental study was conducted in order to determine the landing-impact behavior of a 0.3-scale, dynamically (but not physically) similar model of a high-density Navy fighter equipped with an air cushion landing system. The model was tested over a range of landing contact attitudes at high forward speeds and sink rates on a specialized test fixture at the Langley aircraft landing loads and traction facility. The investigation indicated that vertical acceleration at landing impact was highly dependent on the pitch angle at ground contact, the higher acceleration of approximately 5g occurring near zero body-pitch attitude. A limited number of low-speed taxi tests were made in order to determine model stability characteristics. The model was found to have good pitch-damping characteristics but stability in roll was marginal.
Rotational accelerations stabilize leading edge vortices on revolving fly wings.
Lentink, David; Dickinson, Michael H
2009-08-01
The aerodynamic performance of hovering insects is largely explained by the presence of a stably attached leading edge vortex (LEV) on top of their wings. Although LEVs have been visualized on real, physically modeled, and simulated insects, the physical mechanisms responsible for their stability are poorly understood. To gain fundamental insight into LEV stability on flapping fly wings we expressed the Navier-Stokes equations in a rotating frame of reference attached to the wing's surface. Using these equations we show that LEV dynamics on flapping wings are governed by three terms: angular, centripetal and Coriolis acceleration. Our analysis for hovering conditions shows that angular acceleration is proportional to the inverse of dimensionless stroke amplitude, whereas Coriolis and centripetal acceleration are proportional to the inverse of the Rossby number. Using a dynamically scaled robot model of a flapping fruit fly wing to systematically vary these dimensionless numbers, we determined which of the three accelerations mediate LEV stability. Our force measurements and flow visualizations indicate that the LEV is stabilized by the ;quasi-steady' centripetal and Coriolis accelerations that are present at low Rossby number and result from the propeller-like sweep of the wing. In contrast, the unsteady angular acceleration that results from the back and forth motion of a flapping wing does not appear to play a role in the stable attachment of the LEV. Angular acceleration is, however, critical for LEV integrity as we found it can mediate LEV spiral bursting, a high Reynolds number effect. Our analysis and experiments further suggest that the mechanism responsible for LEV stability is not dependent on Reynolds number, at least over the range most relevant for insect flight (100
Kudarha, Ritu; Dhas, Namdev L; Pandey, Abhijeet; Belgamwar, Veena S; Ige, Pradum P
2015-01-01
Bicalutamide (BCM) is an anti-androgen drug used to treat prostate cancer. In this study, nanostructured lipid carriers (NLCs) were chosen as a carrier for delivery of BCM using Box-Behnken (BB) design for optimizing various quality attributes such as particle size and entrapment efficiency which is very critical for efficient drug delivery and high therapeutic efficacy. Stability of formulated NLCs was assessed with respect to storage stability, pH stability, hemolysis, protein stability, serum protein stability and accelerated stability. Hot high-pressure homogenizer was utilized for formulation of BCM-loaded NLCs. In BB response surface methodology, total lipid, % liquid lipid and % soya lecithin was selected as independent variable and particle size and %EE as dependent variables. Scanning electron microscopy (SEM) was done for morphological study of NLCs. Differential scanning calorimeter and X-ray diffraction study were used to study crystalline and amorphous behavior. Analysis of design space showed that process was robust with the particle size less than 200 nm and EE up to 78%. Results of stability studies showed stability of carrier in various storage conditions and in different pH condition. From all the above study, it can be concluded that NLCs may be suitable carrier for the delivery of BCM with respect to stability and quality attributes.
Stamatin, Serban N; Speder, Jozsef; Dhiman, Rajnish; Arenz, Matthias; Skou, Eivind M
2015-03-25
In the presented work, the electrochemical stability of platinized silicon carbide is studied. Postmortem transmission electron microscopy and X-ray photoelectron spectroscopy were used to document the change in the morphology and structure upon potential cycling of Pt/SiC catalysts. Two different potential cycle aging tests were used in order to accelerate the support corrosion, simulating start-up/shutdown and load cycling. On the basis of the results, we draw two main conclusions. First, platinized silicon carbide exhibits improved electrochemical stability over platinized active carbons. Second, silicon carbide undergoes at least mild oxidation if not even silicon leaching.
Vieira, Marcus Fraga; de Sá E Souza, Gustavo Souto; Lehnen, Georgia Cristina; Rodrigues, Fábio Barbosa; Andrade, Adriano O
2016-10-01
The purpose of this study was to determine whether general fatigue induced by incremental maximal exercise test (IMET) affects gait stability and variability in healthy subjects. Twenty-two young healthy male subjects walked in a treadmill at preferred walking speed for 4min prior (PreT) the test, which was followed by three series of 4min of walking with 4min of rest among them. Gait variability was assessed using walk ratio (WR), calculated as step length normalized by step frequency, root mean square (RMSratio) of trunk acceleration, standard deviation of medial-lateral trunk acceleration between strides (VARML), coefficient of variation of step frequency (SFCV), length (SLCV) and width (SWCV). Gait stability was assessed using margin of stability (MoS) and local dynamic stability (λs). VARML, SFCV, SLCV and SWCV increased after the test indicating an increase in gait variability. MoS decreased and λs increased after the test, indicating a decrease in gait stability. All variables showed a trend to return to PreT values, but the 20-min post-test interval appears not to be enough for a complete recovery. The results showed that general fatigue induced by IMET alters negatively the gait, and an interval of at least 20min should be considered for injury prevention in tasks with similar demands. Copyright © 2016 Elsevier Ltd. All rights reserved.
Qin, Botao; Ma, Dong; Li, Fanglei; Li, Yong
2017-11-01
We have developed aqueous clay suspensions stabilized by alginate fluid gels (AFG) for coal spontaneous combustion prevention and control. Specially, this study aimed to characterize the effect of AFG on the microstructure, static and dynamic stability, and coal fire inhibition performances of the prepared AFG-stabilized clay suspensions. Compared with aqueous clay suspensions, the AFG-stabilized clay suspensions manifest high static and dynamic stability, which can be ascribed to the formation of a robust three-dimensional gel network by AFG. The coal acceleration oxidation experimental results show that the prepared AFG-stabilized clay suspensions can improve the coal thermal stability and effectively inhibit the coal spontaneous oxidation process by increasing crossing point temperature (CPT) and reducing CO emission. The prepared low-cost and nontoxic AFG-stabilized clay suspensions, exhibiting excellent coal fire extinguishing performances, indicate great application potentials in coal spontaneous combustion prevention and control.
An ion beam facility based on a 3 MV tandetron accelerator in Sichuan University, China
NASA Astrophysics Data System (ADS)
Han, Jifeng; An, Zhu; Zheng, Gaoqun; Bai, Fan; Li, Zhihui; Wang, Peng; Liao, Xiaodong; Liu, Mantian; Chen, Shunli; Song, Mingjiang; Zhang, Jun
2018-03-01
A new ion beam facility based on a 3 MV tandetron accelerator system has been installed in Sichuan University, China. The facility was developed by High Voltage Engineering Europa and consists of three high-energy beam lines including the ion beam analysis, ion implantation and nuclear physics experiment end stations, respectively. The terminal voltage stability of the accelerator is better than ±30 V, and the brightness of the proton beam is approximately 5.06 A/rad2/m2/eV. The system demonstrates a great application potential in fields such as nuclear, material and environmental studies.
Convergence acceleration of the Proteus computer code with multigrid methods
NASA Technical Reports Server (NTRS)
Demuren, A. O.; Ibraheem, S. O.
1992-01-01
Presented here is the first part of a study to implement convergence acceleration techniques based on the multigrid concept in the Proteus computer code. A review is given of previous studies on the implementation of multigrid methods in computer codes for compressible flow analysis. Also presented is a detailed stability analysis of upwind and central-difference based numerical schemes for solving the Euler and Navier-Stokes equations. Results are given of a convergence study of the Proteus code on computational grids of different sizes. The results presented here form the foundation for the implementation of multigrid methods in the Proteus code.
Baratta, Francesca; Germano, Antonio; Brusa, Paola
2012-04-01
To investigate the diffusion of counterfeit medicines in developing countries and to verify the stability of galenic dosage forms to determine the stability of galenics prepared and stored in developing countries. We purchased 221 pharmaceutical samples belonging to different therapeutic classes both in authorized and illegal pharmacies and subjected them to European Pharmacopoeia, 7th ed. quality tests. An UV-visible spectrophotometric assay was used to determine the galenics stability under different conditions of temperature (T) and relative humidity (RH). A substantial percentage of samples was substandard (52%) and thus had to be considered as counterfeit. Stability tests for galenics showed that the tested dosage forms were stable for 24 months under "standard" (t=25±2°C, RH=50±5%) conditions. Under "accelerated" (t=40±2°C, RH=50±5%) conditions, samples were stable for 3 months provided that they were stored in glass containers. Stability results of samples stored in "accelerated" conditions were similar to those obtained by on site in tropical countries and could so supply precious information on the expected stability of galenics in tropical countries. This study gives useful information about the presence of counterfeit medicinal products in the pharmacies of many developing countries. This should serve as an alarm bell and an input for the production of galenics. We recommend setting up of galenic laboratories in developing countries around the globe.
Local Dynamic Stability Associated with Load Carrying
Lockhart, Thurmon E
2013-01-01
Objectives Load carrying tasks are recognized as one of the primary occupational factors leading to slip and fall injuries. Nevertheless, the mechanisms associated with load carrying and walking stability remain illusive. The objective of the current study was to apply local dynamic stability measure in walking while carrying a load, and to investigate the possible adaptive gait stability changes. Methods Current study involved 25 young adults in a biomechanics research laboratory. One tri-axial accelerometer was used to measure three-dimensional low back acceleration during continuous treadmill walking. Local dynamic stability was quantified by the maximum Lyapunov exponent (maxLE) from a nonlinear dynamics approach. Results Long term maxLE was found to be significant higher under load condition than no-load condition in all three reference axes, indicating the declined local dynamic stability associated with load carrying. Conclusion Current study confirmed the sensitivity of local dynamic stability measure in load carrying situation. It was concluded that load carrying tasks were associated with declined local dynamic stability, which may result in increased risk of fall accident. This finding has implications in preventing fall accidents associated with occupational load carrying. PMID:23515183
Shelf-life of a 2.5% sodium hypochlorite solution as determined by Arrhenius equation.
Nicoletti, Maria Aparecida; Siqueira, Evandro Luiz; Bombana, Antonio Carlos; Oliveira, Gabriella Guimarães de
2009-01-01
Accelerated stability tests are indicated to assess, within a short time, the degree of chemical degradation that may affect an active substance, either alone or in a formula, under normal storage conditions. This method is based on increased stress conditions to accelerate the rate of chemical degradation. Based on the equation of the straight line obtained as a function of the reaction order (at 50 and 70 degrees C) and using Arrhenius equation, the speed of the reaction was calculated for the temperature of 20 degrees C (normal storage conditions). This model of accelerated stability test makes it possible to predict the chemical stability of any active substance at any given moment, as long as the method to quantify the chemical substance is available. As an example of the applicability of Arrhenius equation in accelerated stability tests, a 2.5% sodium hypochlorite solution was analyzed due to its chemical instability. Iodometric titration was used to quantify free residual chlorine in the solutions. Based on data obtained keeping this solution at 50 and 70 degrees C, using Arrhenius equation and considering 2.0% of free residual chlorine as the minimum acceptable threshold, the shelf-life was equal to 166 days at 20 degrees C. This model, however, makes it possible to calculate shelf-life at any other given temperature.
Racetrack-shape fixed field induction accelerator for giant cluster ions
NASA Astrophysics Data System (ADS)
Takayama, Ken; Adachi, Toshikazu; Wake, Masayoshi; Okamura, Katsuya
2015-05-01
A novel scheme for a racetrack-shape fixed field induction accelerator (RAFFIA) capable of accelerating extremely heavy cluster ions (giant cluster ions) is described. The key feature of this scheme is rapid induction acceleration by localized induction cells. Triggering the induction voltages provided by the signals from the circulating bunch allows repeated acceleration of extremely heavy cluster ions. The given RAFFIA example is capable of realizing the integrated acceleration voltage of 50 MV per acceleration cycle. Using 90° bending magnets with a reversed field strip and field gradient is crucial for assuring orbit stability in the RAFFIA.
Muselík, Jan; Wojnarová, Lenka; Masteiková, Ruta; Sopuch, Tomáš
2013-04-01
Carboxymethyl cellulose, especially its sodium salt, is a versatile pharmaceutical excipient. From a therapeutic point of view, sodium salt of carboxymethyl cellulose is used in the production of modern wound dressings to allow moist wound healing. Wound dressings must be sterile and stable throughout their shelf life and have to be able to withstand different temperature conditions. At the present time, a number of sterilization methods are available. In the case of polymeric materials, the selected sterilization process must not induce any changes in the polymer structure, such as polymer chains cleavage, changes in cross-linking, etc. This paper evaluates the influence of different sterilization methods (γ-radiation, β-radiation, ethylene oxide) on the stability of carboxymethyl cellulose and the results of long-term and accelerated stability testing. Evaluation of samples was performed using size-exclusion chromatography. The obtained results showed that ethylene oxide sterilization was the least aggressive variant of the sterilization methods tested. When the γ-radiation sterilization was used, the changes in the size of the carboxymethyl cellulose molecule occurred. In the course of accelerated and long term stability studies, no further degradation changes were observed, and thus sterilized samples are suitable for long term storage.
Identifying Head-Trunk and Lower Limb Contributions to Gaze Stabilization During Locomotion
NASA Technical Reports Server (NTRS)
Mulavara, Ajitkumar P.; Bloomberg, Jacob J.
2003-01-01
The goal of the present study was to determine how the multiple, interdependent full-body sensorimotor subsystems respond to a change in gaze stabilization task constraints during locomotion. Nine subjects performed two gaze stabilization tasks while walking at 6.4 km/hr on a motorized treadmill: 1) focusing on a central point target; 2) reading numeral characters; both presented at 2m in front at the level of their eyes. While subjects performed the tasks we measured: temporal parameters of gait, full body sagittal plane segmental kinematics of the head, trunk, thigh, shank and foot, accelerations along the vertical axis at the head and the shank, and the vertical forces acting on the support surface. We tested the hypothesis that with the increased demands placed on visual acuity during the number recognition task, subjects would modify full-body segmental kinematics in order to reduce perturbations to the head in order to successfully perform the task. We found that while reading numeral characters as - compared to the central point target: 1) compensatory head pitch movement was on average 22% greater despite the fact that the trunk pitch and trunk vertical translation movement control were not significantly changed; 2) coordination patterns between head and trunk as reflected by the peak cross correlation between the head pitch and trunk pitch motion as well as the peak cross correlation between the head pitch and vertical trunk translation motion were not significantly changed; 3) knee joint total movement was on average 11% greater during the period from the heel strike event to the peak knee flexion event in stance phase of the gait cycle; 4) peak acceleration measured at the head was significantly reduced by an average of 13% in four of the six subjects. This was so even when the peak acceleration at the shank and the transmissibility of the shock wave at heel strike (measured by the peak acceleration ratio of the head/shank) remained unchanged. Taken together these results provide further evidence that the full body contributes to gaze stabilization during locomotion, and that its different functional elements can be modified online to contribute to gaze stabilization for different visual task constraints.
A Numerical Study of Wind-Turbine Wakes for Three Atmospheric Stability Conditions
NASA Astrophysics Data System (ADS)
Xie, Shengbai; Archer, Cristina L.
2017-10-01
The effects of atmospheric stability on wind-turbine wakes are studied via large-eddy simulations. Three stability conditions are considered: stable, neutral, and unstable, with the same geostrophic wind speed aloft and the same Coriolis frequency. Both a single 5-MW turbine and a wind farm of five turbines are studied. The single-turbine wake is strongly correlated with stability, in terms of velocity deficit, turbulence kinetic energy (TKE) and temperature distribution. Because of the Coriolis effect, the wake shape deviates from a Gaussian distribution. For the wind-farm simulations, the separation of the core region and outer region is clear for the stable and neutral cases, but less distinct for the unstable case. The unstable case exhibits strong horizontal variations in wind speed. Local accelerations such as related to aisle jets are also observed, whose features depend on stability. The added TKE in the wind farm increases with stability. The highest power extraction and lowest power deficit are observed for the unstable case.
Accelerated aging and stabilization of radiation-vulcanized EPDM rubber
NASA Astrophysics Data System (ADS)
Basfar, A. A.; Abdel-Aziz, M. M.; Mofti, S.
2000-03-01
The effect of different antioxidants and their mixtures on the thermal aging and accelerated weathering of γ-radiation vulcanized EPDM rubber in presence of crosslinking coagent, was investigated. The compounds used were either a synergistic blend of phenolic and phosphite antioxidants, i.e. 1:4 Irganox 1076: Irgafos 168 or a blend of arylamine and quinoline type antioxidants, i.e. 1:1 IPPD: TMQ, at fixed concentration. Tinuvin 622 LD hindered amine light stabilized (HALS) was also used. The response was evaluated by the tensile strength and elongation at break for irradiated samples after thermal aging at 100°C for 28 days and accelerated weathering (Xenon test) up to 200 h.
Electrostatic accelerators with high energy resolution
NASA Astrophysics Data System (ADS)
Uchiyama, T.; Agawa, Y.; Nishihashi, T.; Takagi, K.; Yamakawa, H.; Isoya, A.; Takai, M.; Namba, S.
1991-05-01
Several models of electrostatic accelerators based on rotating disks (Disktron) have been manufactured for various ion beam applications like surface analyses and implantation. The high voltage terminal of the Disktron with a terminal voltage of up to 500 kV is open in air, while the generator part is enclosed in FRP (fiber reinforced plastics) or a ceramic vessel filled with sf 6 gas. The 1 MV model is completely enclosed in a steel vessel. A compact tandem accelerator of the pellet chain type with a terminal voltage of 1.5 MV has also been manufactured. The good energy stability of these accelerators, typically in the range of 10 -4, has proved to be quite favorable for applications in precise studies of material surfaces, including the use of microbeam techniques.
Effects of seasonings on the stability of ascorbic acid in a cooking model system.
Kishida, Etsu; Maeda, Tomoko; Nishihama, Akiko; Kojo, Shosuke; Masuzawa, Yasuo
2004-12-01
The thermolability of ascorbic acid (AA) in aqueous solution at 100 degrees C was assessed in the presence of various seasonings commonly used in Japanese-style cooking. A model system approximated Japanese cooking with regard to the concentrations of AA and seasonings and the heating time. The decrease of AA in the reaction system of this experiment was a first-order reaction with respect to the concentration of AA loss. Although kinetic constants for AA loss decreased with increasing concentrations of AA (25-400 microg/mL), the absolute amounts degraded were almost the same for all AA concentrations, suggesting that dissolved oxygen is one of main factors affecting the stability of AA solutions during heating at 100 degrees C. When each seasoning was added to AA solution, salt stabilized AA and Japanese alcohol-containing admixtures, such as sake and sweet sake (mirin), did not have a significant effect on the stability. Conversely, soy sauce, miso (fermented soybean paste) and broth powder from skipjack accelerated the decrease of AA in a concentration-dependent manner. The kinetic study suggested that oxygen was rapidly consumed and AA loss accelerated by addition of soy sauce or miso to AA solution. Consequently it is likely that a reaction mechanism shifts from aerobic to anaerobic and the forward reactions proceed. Of the constituents of Japanese seasonings, not only iron but also amino acids are involved in the acceleration of AA degradation. The presence of amino acids should be taken into account when considering the levels of AA in soups.
Effect of Halide Composition on the Photochemical Stability of Perovskite Photovoltaic Materials.
Misra, Ravi K; Ciammaruchi, Laura; Aharon, Sigalit; Mogilyansky, Dmitry; Etgar, Lioz; Visoly-Fisher, Iris; Katz, Eugene A
2016-09-22
The photochemical stability of encapsulated films of mixed halide perovskites with a range of MAPb(I 1-x Br x ) 3 (MA=methylammonium) compositions (solid solutions) was investigated under accelerated stressing using concentrated sunlight. The relevance of accelerated testing to standard operational conditions of solar cells was confirmed by comparison to degradation experiments under outdoor sunlight exposure. We found that MAPbBr 3 films exhibited no degradation, while MAPbI 3 and mixed halide MAPb(I 1-x Br x ) 3 films decomposed yielding crystallization of inorganic PbI 2 accompanied by degradation of the perovskite solar light absorption, with faster absorption degradation in mixed halide films. The crystal coherence length was found to correlate with the stability of the films. We postulate that the introduction of Br into the mixed halide solid solution stressed its structure and induced more structural defects and/or grain boundaries compared to pure halide perovskites, which might be responsible for the accelerated degradation. Hence, the cause for accelerated degradation may be the increased defect density rather than the chemical composition of the perovskite materials. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Johnson, Norman A; Porter, Adam H
2007-01-01
Developmental systems are regulated by a web of interacting loci. One common and useful approach in studying the evolution of development is to focus on classes of interacting elements within these systems. Here, we use individual-based simulations to study the evolution of traits controlled by branched developmental pathways involving three loci, where one locus regulates two different traits. We examined the system under a variety of selective regimes. In the case where one branch was under stabilizing selection and the other under directional selection, we observed "developmental system drift": the trait under stabilizing selection showed little phenotypic change even though the loci underlying that trait showed considerable evolutionary divergence. This occurs because the pleiotropic locus responds to directional selection and compensatory mutants are then favored in the pathway under stabilizing selection. Though developmental system drift may be caused by other mechanisms, it seems likely that it is accelerated by the same underlying genetic mechanism as that producing the Dobzhansky-Muller incompatibilities that lead to speciation in both linear and branched pathways. We also discuss predictions of our model for developmental system drift and how different selective regimes affect probabilities of speciation in the branched pathway system.
Stabilized radio-frequency quadrupole
Lancaster, H.D.; Fugitt, J.A.; Howard, D.R.
1982-09-29
A long-vane stabilized radio frequency resonator for accelerating charged particles and including means defining a radio frequency resonator cavity, a plurality of long vanes mounted in the defining means for dividing the cavity into sections, and means interconnecting opposing ones of the plurality of vanes for stabilizing the resonator.
Stabilized radio frequency quadrupole
Lancaster, Henry D.; Fugitt, Jock A.; Howard, Donald R.
1984-01-01
A long-vane stabilized radio frequency resonator for accelerating charged particles and including means defining a radio frequency resonator cavity, a plurality of long vanes mounted in the defining means for dividing the cavity into sections, and means interconnecting opposing ones of the plurality of vanes for stabilizing the resonator.
Evaluation of stone/RAP interlayers under accelerated loading : tech summary.
DOT National Transportation Integrated Search
2008-08-01
The first Louisiana accelerated loading experiment, Evaluation of Louisianas Conventional and Alternative Base Courses, showed that pavement performance could be enhanced signifi cantly if a layer of stone was placed over the cement stabilized sub...
Evaluation of stone/RAP interlayers under accelerated loading : tech summary.
DOT National Transportation Integrated Search
2008-08-01
The fi rst Louisiana accelerated loading experiment, Evaluation of Louisianas Conventional and Alternative Base Courses, : showed that pavement performance could be enhanced signifi cantly if a layer of stone was placed over the cement : stabilize...
KLYNAC: Compact linear accelerator with integrated power supply
DOE Office of Scientific and Technical Information (OSTI.GOV)
Malyzhenkov, Alexander
Accelerators and accelerator-based light sources have a wide range of applications in science, engineering technology and medicine. Today the scienti c community is working towards improving the quality of the accelerated beam and its parameters while trying to develop technology for reducing accelerator size. This work describes a design of a compact linear accelerator (linac) prototype, resonant Klynac device, which is a combined linear accelerator and its power supply - klystron. The intended purpose of a Klynac device is to provide a compact and inexpensive alternative to a conventional 1 to 6 MeV accelerator, which typically requires a separate RFmore » source, an accelerator itself and all the associated hardware. Because the Klynac is a single structure, it has the potential to be much less sensitive to temperature variations than a system with separate klystron and linac. We start by introducing a simpli ed theoretical model for a Klynac device. We then demonstrate how a prototype is designed step-by-step using particle-in-cell simulation studies for mono- resonant and bi-resonant structures. Finally, we discuss design options from a stability point of view and required input power as well as behavior of competing modes for the actual built device.« less
Klynac: Compact Linear Accelerator with Integrated Power Supply
NASA Astrophysics Data System (ADS)
Malyzhenkov, A. V.
Accelerators and accelerator-based light sources have a wide range of applications in science, engineering technology and medicine. Today the scientific community is working towards improving the quality of the accelerated beam and its parameters, while trying to develop technology for reducing accelerator size. This work describes a design of a compact linear accelerator (linac) prototype: resonant Klynac device, which is a combined linear accelerator and its power supply - klystron. The intended purpose of a Klynac device is to provide a compact and inexpensive alternative to a conventional 1 to 6 MeV accelerator, which typically requires a separate RF source, accelerator itself and all the associated hardware. Because the Klynac is a single structure, it has the potential to be much less sensitive to temperature variations than a system with separate klystron and linac. We start by introducing a simplified theoretical model for a Klynac device. We then demonstrate how a prototype is designed step-by-step using Particle-In-Cell simulation studies for mono-resonant and bi-resonant structures. Finally, we discuss design options from a stability point of view and required input power as well as behavior of competing modes for the actual built device.
Effect of Filler Concentration on Thermal Stability of Vinyl Copolymer Elastomer (VCE) Composites
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Dali; Hubbard, Kevin Mark; Devlin, David James
To study the thermal stability of vinyl copolymer elastomer (VCE) in its composite form, systematic TGA characterizations were conducted in both nonisothermal and isothermal modes. The effects of filler concentration on the aging behaviors of the VCE/filler composites were investigated under nitroplasticizer (NP) environment. FTIR characterization was used to probe the structural changes in the VCE polymer before and after the thermal treatments. This study suggests that the filler concentration significantly deteriorates the thermal stability of NP at a moderate temperature (< 70 °C). The degradation of NP, in turn, accelerates the aging process of the VCE polymer in itsmore » composite form.« less
Stability analysis in tachyonic potential chameleon cosmology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Farajollahi, H.; Salehi, A.; Tayebi, F.
2011-05-01
We study general properties of attractors for tachyonic potential chameleon scalar-field model which possess cosmological scaling solutions. An analytic formulation is given to obtain fixed points with a discussion on their stability. The model predicts a dynamical equation of state parameter with phantom crossing behavior for an accelerating universe. We constrain the parameters of the model by best fitting with the recent data-sets from supernovae and simulated data points for redshift drift experiment generated by Monte Carlo simulations.
Weijer, R H A; Hoozemans, M J M; van Dieën, J H; Pijnappels, M
2018-05-01
Quality of gait during daily life activities and perceived gait stability are both independent risk factors for future falls in older adults. We investigated whether perceived gait stability modulates the association between gait quality and falling in older adults. In this prospective cohort study, we used one-week daily-life trunk acceleration data of 272 adults over 65 years of age. Sample entropy (SE) of the 3D acceleration signals was calculated to quantify daily life gait quality. To quantify perceived gait stability, the level of concern about falling was assessed using the Falls Efficacy Scale international (FES-I) questionnaire and step length, estimated from the accelerometer data. A fall calendar was used to record fall incidence during a six-month follow up period. Logistic regression analyses were performed to study the association between falling and SE, step length or FES-I score, and their interactions. High (i.e., poor) SE in vertical direction was significantly associated with falling. FES-I scores significantly modulated this association, whereas step length did not. Subgroup analyses based on FES-I scores showed that high SE in the vertical direction was a risk factor for falls only in older adults who had a high (i.e. poor) FES-I score. In conclusion, perceived gait stability modulates the association between gait quality and falls in older adults such that an association between gait quality and falling is only present when perceived gait stability is poor. The results of the present study indicate that the effectiveness of interventions for fall prevention, aimed at improving gait quality, may be affected by a modulating effect of perceived gait stability. Results indicate that interventions to reduce falls in older adults might sort most effectiveness in populations with both a poor physiological and psychological status. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Gilbert, W. P.; Nguyen, L. T.; Vangunst, R. W.
1976-01-01
A piloted, fixed-base simulation was conducted to study the effectiveness of some automatic control system features designed to improve the stability and control characteristics of fighter airplanes at high angles of attack. These features include an angle-of-attack limiter, a normal-acceleration limiter, an aileron-rudder interconnect, and a stability-axis yaw damper. The study was based on a current lightweight fighter prototype. The aerodynamic data used in the simulation were measured on a 0.15-scale model at low Reynolds number and low subsonic Mach number. The simulation was conducted on the Langley differential maneuvering simulator, and the evaluation involved representative combat maneuvering. Results of the investigation show the fully augmented airplane to be quite stable and maneuverable throughout the operational angle-of-attack range. The angle-of-attack/normal-acceleration limiting feature of the pitch control system is found to be a necessity to avoid angle-of-attack excursions at high angles of attack. The aileron-rudder interconnect system is shown to be very effective in making the airplane departure resistant while the stability-axis yaw damper provided improved high-angle-of-attack roll performance with a minimum of sideslip excursions.
Stabilized radio frequency quadrupole
Lancaster, H.D.; Fugitt, J.A.; Howard, D.R.
1984-12-25
Disclosed is a long-vane stabilized radio frequency resonator for accelerating charged particles and including means defining a radio frequency resonator cavity, a plurality of long vanes mounted in the defining means for dividing the cavity into sections, and means interconnecting opposing ones of the plurality of vanes for stabilizing the resonator. 5 figs.
Transient aerodynamic characteristics of vans during the accelerated overtaking process
NASA Astrophysics Data System (ADS)
Liu, Li-ning; Wang, Xing-shen; Du, Guang-sheng; Liu, Zheng-gang; Lei, Li
2018-04-01
This paper studies the influence of the accelerated overtaking process on the vehicles' transient aerodynamic characteristics, through 3-D numerical simulations with dynamic meshes and sliding interface technique. Numerical accuracy is verified by experimental results. The aerodynamic characteristics of vehicles in the uniform overtaking process and the accelerated overtaking process are compared. It is shown that the speed variation of the overtaking van would influence the aerodynamic characteristics of the two vans, with greater influence on the overtaken van than on the overtaking van. The simulations of three different accelerated overtaking processes show that the greater the acceleration of the overtaking van, the larger the aerodynamic coefficients of the overtaken van. When the acceleration of the overtaking van increases by 1 m/s2, the maximum drag force, side force and yawing moment coefficients of the overtaken van all increase by more than 6%, to seriously affect the power performance and the stability of the vehicles. The analysis of the pressure fields under different accelerated conditions reveals the cause of variations of the aerodynamic characteristics of vehicles.
Stability versus Maneuvering: Challenges for Stability during Swimming by Fishes.
Webb, Paul W; Weihs, Daniel
2015-10-01
Fishes are well known for their remarkable maneuverability and agility. Less visible is the continuous control of stability essential for the exploitation of the full range of aquatic resources. Perturbations to posture and trajectory arise from hydrostatic and hydrodynamic forces centered in a fish (intrinsic) and from the environment (extrinsic). Hydrostatic instabilities arise from vertical and horizontal separation of the centers of mass (CM) and of buoyancy, thereby creating perturbations in roll, yaw, and pitch, with largely neglected implications for behavioral ecology. Among various forms of hydrodynamic stability, the need for stability in the face of recoil forces from propulsors is close to universal. Destabilizing torques in body-caudal fin swimming is created by inertial and viscous forces through a propulsor beat. The recoil component is reduced, damped, and corrected in various ways, including kinematics, shape of the body and fins, and deployment of the fins. We postulate that control of the angle of orientation, θ, of the trailing edge is especially important in the evolution and lifestyles of fishes, but studies are few. Control of stability and maneuvering are reflected in accelerations around the CM. Accelerations for such motions may give insight into time-behavior patterns in the wild but cannot be used to determine the expenditure of energy by free-swimming fishes. © The Author 2015. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved. For permissions please email: journals.permissions@oup.com.
Acceleration of convergence of vector sequences
NASA Technical Reports Server (NTRS)
Sidi, A.; Ford, W. F.; Smith, D. A.
1983-01-01
A general approach to the construction of convergence acceleration methods for vector sequence is proposed. Using this approach, one can generate some known methods, such as the minimal polynomial extrapolation, the reduced rank extrapolation, and the topological epsilon algorithm, and also some new ones. Some of the new methods are easier to implement than the known methods and are observed to have similar numerical properties. The convergence analysis of these new methods is carried out, and it is shown that they are especially suitable for accelerating the convergence of vector sequences that are obtained when one solves linear systems of equations iteratively. A stability analysis is also given, and numerical examples are provided. The convergence and stability properties of the topological epsilon algorithm are likewise given.
Imposed Faster and Slower Walking Speeds Influence Gait Stability Differently in Parkinson Fallers.
Cole, Michael H; Sweeney, Matthew; Conway, Zachary J; Blackmore, Tim; Silburn, Peter A
2017-04-01
To evaluate the effect of imposed faster and slower walking speeds on postural stability in people with Parkinson disease (PD). Cross-sectional cohort study. General community. Patients with PD (n=84; 51 with a falls history; 33 without) and age-matched controls (n=82) were invited to participate via neurology clinics and preexisting databases. Of those contacted, 99 did not respond (PD=36; controls=63) and 27 were not interested (PD=18; controls=9). After screening, a further 10 patients were excluded; 5 had deep brain stimulation surgery and 5 could not accommodate to the treadmill. The remaining patients (N=30) completed all assessments and were subdivided into PD fallers (n=10), PD nonfallers (n=10), and age-matched controls (n=10) based on falls history. Not applicable. Three-dimensional accelerometers assessed head and trunk accelerations and allowed calculation of harmonic ratios and root mean square (RMS) accelerations to assess segment control and movement amplitude. Symptom severity, balance confidence, and medical history were established before participants walked on a treadmill at 70%, 100%, and 130% of their preferred speed. Head and trunk control was lower for PD fallers than PD nonfallers and older adults. Significant interactions indicated head and trunk control increased with speed for PD nonfallers and older adults, but did not improve at faster speeds for PD fallers. Vertical head and trunk accelerations increased with walking speed for PD nonfallers and older adults, while the PD fallers demonstrated greater anteroposterior RMS accelerations compared with both other groups. The results suggest that improved gait dynamics do not necessarily represent improved walking stability, and this must be respected when rehabilitating gait in patients with PD. Copyright © 2016 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
Liu, Xuan; Bhatt, Tanvi; Pai, Yi-Chung (Clive)
2015-01-01
Very little is known how training intensity interacts with the generalization from treadmill-slip to overground slip. The purposes of this study were to determine whether treadmill-slip training improved center-of-mass stability, more so in the reactive than in the proactive control of stability, with high intensity (HI with a trial-to-trial-consistent acceleration of 12 m/s2) better than low intensity training (LO with a consistent acceleration of 6 m/s2), and progressively-increasing intensity (INCR with a block-to-block acceleration varied from 6 to 12 m/s2) better than progressively-decreasing intensity training (DECR with an acceleration varied from 12 to 6 m/s2) in such generalization. Thirty-six young subjects evenly assigned to one of four (HI, LO, INCR, DECR) groups underwent 24 treadmill-slips before their generalization test trial with a novel slip during overground walking. The controls (CTRL, n=9) from existing data only experienced the same novel overground slip without treadmill training but under otherwise identical condition. The results showed that treadmill-slip training did improved balance control on overground slip with a greater impact on subjects’ reactive (44.3%) than proactive control of stability (27.1%) in comparison to the CTRL. HI yielded stronger generalization than LO, while INCR was only marginally better than DECR. Finally, the group means of these four displayed a clear ascending order from CTRL, LO, DECR, INCR, to HI. The results suggested that higher training intensity on treadmill led to a better generalization, while a progressively-increase in intensity had advantage over the progressively-decrease or the low training strategy. (243 words) PMID:26159058
Debandi, Aníbal; Maeyama, Akira; Hoshino, Yuichi; Asai, Shigehiro; Goto, Bunsei; Smolinski, Patrick; Fu, Freddie H
2016-11-01
To evaluate the effect of knee flexion angle for hamstring graft fixation, full extension (FE), or 30°, on acceleration of the knee motion during pivot-shift testing after either anatomic or nonanatomic anterior cruciate ligament (ACL) reconstruction using triaxial accelerometry. Two types of ACL reconstructions (anatomic and nonanatomic) using 2 different angles of knee flexion during graft fixation (FE and 30°) were performed on 12 fresh-frozen human knees making 4 groups: anatomic-FE, anatomic-30°, nonanatomic-FE, and nonanatomic-30°. Manual pivot-shift testing was performed at ACL-intact, ACL-deficient, and ACL-reconstructed conditions. Three-dimensional acceleration of knee motion was recorded using a triaxial accelerometer. The anatomic-30° group showed the smallest overall magnitude of acceleration among the ACL-reconstructed groups (P = .0039). There were no significant differences among the anatomic-FE group, the nonanatomic-FE group, and the nonantomic-30° group (anatomic-FE vs nonanatomic-FE, P = .1093; anatomic-FE vs nonanatomic-30°, P = .8728; and nonanatomic-FE vs nonanatomic-30°, P = .1093). After ACL transection, acceleration was reduced by ACL reconstruction with the exception of the nonanatomic-FE group that did not show a significant difference when compared with the ACL-deficient (P = .4537). The anatomic ACL reconstruction with the graft fixed at 30° of knee flexion better restored rotational knee stability compared with FE. An ACL graft fixed with the knee at FE in anatomic position did not show a significant difference compared with the nonanatomic ACL reconstructions. Knee flexion angle at the time of graft fixation for ACL reconstruction can be considered to maximize the rotational knee stability. Copyright © 2016 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.
Ribeiro, Renato Cesar de Azevedo; Barreto, Stella Maria de Andrade Gomes; Ostrosky, Elissa Aarantes; da Rocha-Filho, Pedro Alves; Veríssimo, Lourena Mafra; Ferrari, Márcio
2015-02-02
This study aimed to produce and characterize an oil in water (O/W) nanoemulsion containing Opuntia ficus-indica (L.) Mill hydroglycolic extract, as well as evaluate its preliminary and accelerated thermal stability and moisturizing efficacy. The formulations containing 0.5% of xanthan gum (FX) and 0.5% of xanthan gum and 1% of Opuntia ficus-indica MILL extract (FXE) were white, homogeneus and fluid in aspect. Both formulations were stable during preliminary and accelerated stability tests. FX and FXE presented a pH compatible to skin pH (4.5-6.0); droplet size varying from 92.2 to 233.6 nm; a polydispersion index (PDI) around 0.200 and a zeta potential from -26.71 to -47.01 mV. FXE was able to increase the water content of the stratum corneum for 5 h after application on the forearm. The O/W nanoemulsions containing 1% of Opuntia ficus-indica (L.) Mill extract presented suitable stability for at least for 60 days. Besides, this formulation was able to increase the water content of stratum corneum, showing its moisturizing efficacy.
Study of Running Stability in Side-Suspended HTS-PMG Maglev Circular Line System
NASA Astrophysics Data System (ADS)
Zhou, Dajin; Zhao, Lifeng; Li, Linbo; Cui, Chenyu; Hsieh, Chang-Chun; Zhang, Yong; Guo, Jianqiang; Zhao, Yong
2017-07-01
A research on stability of the side-suspended HTS-PMG maglev circular line system is carried out through simulation experiment. The results show that the maglev vehicle will gradually get close to the track surface during acceleration under the action of centrifugal force, leading to decay of guidance force and occurrence of vertical eccentric motion. In case of linear array of YBa2Cu3O7-x (YBCO) bulks, the guidance force will be changed with the decreasing of the levitation gap. It can be suppressed through the complex arrangement of YBCO bulks. Fortunately, triangle array of YBCO bulks can effectively keep the guidance force constant and realize stable running during accelerating process of the prototype vehicle. Based on the research on stability of side-suspended maglev vehicle, a side-suspended PMG circular test track with diameter of 6.5 m and circumference of 20.4 m is successfully designed and established, enabling the prototype vehicle to run stably at up to 82.5 km/h under open atmosphere (9.6 × 104 Pa).
Stabilization of soybean oil during accelerated storage by essential oil of ferulago angulata boiss.
Sadeghi, Ehsan; Mahtabani, Aidin; Etminan, Alireza; Karami, Farahnaz
2016-02-01
This study has been considered effect of Ferulago angulata essential oil on stabilizing soybean oil during accelerated storage. The essential oil was extracted by Clevenger-type apparatus. For analysis of the essential oil, GC/MS was used. Main components of the essential oil were monoterpene and sesquiterpene hydrocarbons. The essential oil of F. angulata at four concentrations, i.e. 125 (SBO-125), 250 (SBO-250), 500 (SBO-500) and SBO-Mixture (60 ppm TBHQ +60 ppm essential oil) were added to preheated refined soybean oil. TBHQ was used at 120 ppm as standard besides the control. Antioxidant activity index (AAI), free fatty acid (FFA) content, peroxide value (PV) and p-anisidine value (p-AnV) were served for appreciation of efficacy of F. angulata in stabilization of soybean oil. Results from different tests showed that SBO-mixture had highest effect and followed by SBO-TBHQ, SBO-250, SBO-125, SBO-500 and Ctrl. These results reveal F. angulata is a strong antioxidant and can be used instead of synthetic antioxidant.
Bao, Yimei; Mo, Xiaopeng; Xu, Xiaoying; He, Yuyu; Xu, Xiao; An, Haoyun
2008-11-04
Bis(4-fluorobenzyl)trisulfide, fluorapacin, has been extensively developed as a promising new anticancer drug candidate. Its degradation products were identified and verified by the newly synthesized compounds bis(4-fluorobenzyl)disulfide (A) and bis(4-fluorobenzyl)tetrasulfide (B) which were resulted from the disproportionation of fluorapacin under forced conditions. A stability-indicating HPLC method was used for the stability evaluation of active pharmaceutical ingredient (API) fluorapacin and finished pharmaceutical product (FPP) under various conditions. High recovery (99.57%) of API was found after three freeze-thaw cycle processes of fluorapacin FPP. Susceptibility of fluorapacin to oxidative degradation was studied by treating fluorapacin and FPP in 30% hydrogen peroxide aqueous solution, and the result verified the oxidative stability of fluorapacin. However, treatment of this drug candidate under strong light (4500 Lx+/-500 Lx) for 10 days showed substantial effect on the recovery of fluorapacin, especially from fluorapacin FPP. Strong acid (1.0M, HCl) did not affect the recovery of fluorapacin while strong basic condition (1.0M, NaOH) accelerated the disproportionation of fluorapacin to its related substances A and B. The stability of fluorapacin in its aqueous media at a pH range of 2.0-10.0 for up to 6h was further investigated, and 4.0-8.0 was found to be the most stable pH range. Fluorapacin and FPP were exposed to the elevated temperatures of 40 and 60 degrees C for 10 days without obvious impact on their stability. The thermal stability of fluorapacin API and FPP under constant humidity with light protection was also thoroughly investigated under accelerated (40+/-2 degrees C, RH 75+/-5%, 6 months) and long-term (25+/-2 degrees C, RH 60+/-10%, 24 months) conditions. There was no significant change except minor color change of fluorapacin FPP. Therefore, fluorapacin has excellent stability as a potential drug candidate for further clinical development investigation.
Ram accelerator direct space launch system - New concepts
NASA Technical Reports Server (NTRS)
Bogdanoff, David W.
1992-01-01
The ram accelerator, a chemically driven ramjet-in-tube device is a new option for direct launch of acceleration-insensitive payloads into earth orbit. The projectile is the centerbody of a ramjet and travels through a tube filled with a premixed fuel-oxidizer mixture. The tube acts as the cowl of the ramjet. A number of new concepts for a ram accelerator space launch system are presented. The velocity and acceleration capabilities of a number of ram accelerator drive modes, including several new modes, are given. Passive (fin) stabilization during atmospheric transit is investigated and found to be promising. Gasdynamic heating in-tube and during atmospheric transit is studied; the former is found to be severe, but may be alleviated by the selection of the most suitable drive modes, transpiration cooling, or a hydrogen gas core in the launch tube. To place the payload in earth orbit, scenarios using one impulse and three impulses (with an aeropass) and a new scenario involving an auxiliary vehicle are studied. The auxiliary vehicle scenario is found to be competitive regarding payload, and requires a much simpler projectile, but has the disadvantage of requiring the auxiliary vehicle.
Crenshaw, Jeremy R; Rosenblatt, Noah J; Hurt, Christopher P; Grabiner, Mark D
2012-01-03
This study evaluated the discriminant capability of stability measures, trunk kinematics, and step kinematics to classify successful and failed compensatory stepping responses. In addition, the shared variance between stability measures, step kinematics, and trunk kinematics is reported. The stability measures included the anteroposterior distance (d) between the body center of mass and the stepping limb toe, the margin of stability (MOS), as well as time-to-boundary considering velocity (TTB(v)), velocity and acceleration (TTB(a)), and MOS (TTB(MOS)). Kinematic measures included trunk flexion angle and angular velocity, step length, and the time after disturbance onset of recovery step completion. Fourteen young adults stood on a treadmill that delivered surface accelerations necessitating multiple forward compensatory steps. Thirteen subjects fell from an initial disturbance, but recovered from a second, identical disturbance. Trunk flexion velocity at completion of the first recovery step and trunk flexion angle at completion of the second step had the greatest overall classification of all measures (92.3%). TTB(v) and TTB(a) at completion of both steps had the greatest classification accuracy of all stability measures (80.8%). The length of the first recovery step (r ≤ 0.70) and trunk flexion angle at completion of the second recovery step (r ≤ -0.54) had the largest correlations with stability measures. Although TTB(v) and TTB(a) demonstrated somewhat smaller discriminant capabilities than trunk kinematics, the small correlations between these stability measures and trunk kinematics (|r| ≤ 0.52) suggest that they reflect two important, yet different, aspects of a compensatory stepping response. Copyright © 2011 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Günther, Uwe; Zhuk, Alexander; Bezerra, Valdir B.; Romero, Carlos
2005-08-01
We study multi-dimensional gravitational models with scalar curvature nonlinearities of types R-1 and R4. It is assumed that the corresponding higher dimensional spacetime manifolds undergo a spontaneous compactification to manifolds with a warped product structure. Special attention has been paid to the stability of the extra-dimensional factor spaces. It is shown that for certain parameter regions the systems allow for a freezing stabilization of these spaces. In particular, we find for the R-1 model that configurations with stabilized extra dimensions do not provide a late-time acceleration (they are AdS), whereas the solution branch which allows for accelerated expansion (the dS branch) is incompatible with stabilized factor spaces. In the case of the R4 model, we obtain that the stability region in parameter space depends on the total dimension D = dim(M) of the higher dimensional spacetime M. For D > 8 the stability region consists of a single (absolutely stable) sector which is shielded from a conformal singularity (and an antigravity sector beyond it) by a potential barrier of infinite height and width. This sector is smoothly connected with the stability region of a curvature-linear model. For D < 8 an additional (metastable) sector exists which is separated from the conformal singularity by a potential barrier of finite height and width so that systems in this sector are prone to collapse into the conformal singularity. This second sector is not smoothly connected with the first (absolutely stable) one. Several limiting cases and the possibility of inflation are discussed for the R4 model.
Reddy, R Buchi; More, Kishor R; Gupta, Leena; Jha, Mukesh S; Magar, Laki
2016-01-05
A new unknown impurity was observed in accelerated stability studies of Metoprolol tartrate tablets. This impurity has been identified, synthesized and characterized through different spectral studies and confirmed as an adduct of lactose and Metoprolol formed by Maillard reaction. Copyright © 2015 Elsevier B.V. All rights reserved.
Efficient model for low-energy transverse beam dynamics in a nine-cell 1.3 GHz cavity
NASA Astrophysics Data System (ADS)
Hellert, Thorsten; Dohlus, Martin; Decking, Winfried
2017-10-01
FLASH and the European XFEL are SASE-FEL user facilities, at which superconducting TESLA cavities are operated in a pulsed mode to accelerate long bunch-trains. Several cavities are powered by one klystron. While the low-level rf system is able to stabilize the vector sum of the accelerating gradient of one rf station sufficiently, the rf parameters of individual cavities vary within the bunch-train. In correlation with misalignments, intrabunch-train trajectory variations are induced. An efficient model is developed to describe the effect at low beam energy, using numerically adjusted transfer matrices and discrete coupler kick coefficients, respectively. Comparison with start-to-end tracking and dedicated experiments at the FLASH injector will be shown. The short computation time of the derived model allows for comprehensive numerical studies on the impact of misalignments and variable rf parameters on the transverse intra-bunch-train beam stability at the injector module. Results from both, statistical multibunch performance studies and the deduction of misalignments from multibunch experiments are presented.
Chen, Yanxian; Chang, Billy Heung Wing; Ding, Xiaohu; He, Mingguang
2016-11-22
In the present study we attempt to use hypothesis-independent analysis in investigating the patterns in refraction growth in Chinese children, and to explore the possible risk factors affecting the different components of progression, as defined by Principal Component Analysis (PCA). A total of 637 first-born twins in Guangzhou Twin Eye Study with 6-year annual visits (baseline age 7-15 years) were available in the analysis. Cluster 1 to 3 were classified after a partitioning clustering, representing stable, slow and fast progressing groups of refraction respectively. Baseline age and refraction, paternal refraction, maternal refraction and proportion of two myopic parents showed significant differences across the three groups. Three major components of progression were extracted using PCA: "Average refraction", "Acceleration" and the combination of "Myopia stabilization" and "Late onset of refraction progress". In regression models, younger children with more severe myopia were associated with larger "Acceleration". The risk factors of "Acceleration" included change of height and weight, near work, and parental myopia, while female gender, change of height and weight were associated with "Stabilization", and increased outdoor time was related to "Late onset of refraction progress". We therefore concluded that genetic and environmental risk factors have different impacts on patterns of refraction progression.
Effect of thermal aging on stability of transformer oil based temperature sensitive magnetic fluids
NASA Astrophysics Data System (ADS)
Kaur, Navjot; Chudasama, Bhupendra
2018-04-01
Synthesizing stable temperature sensitive magnetic fluids with tunable magnetic properties that can be used as coolant in transformers is of great interest, however not exploited commercially due to the lack of its stability at elevated temperatures in bulk quantities. The task is quite challenging as the performance parameters of magnetic fluids are strongly influenced by thermal aging. In this article, we report the effect of thermal aging on colloidal stability and magnetic properties of Mn1-xZnxFe2O4 magnetic fluids prepared in industrial grade transformer oil. As-synthesized magnetic fluids possess good dispersion stability and tunable magnetic properties. Effect of accelerated thermal aging on the dispersion stability and magnetic properties have been evaluated by photon correlation spectroscopy and vibration sample magnetometry, respectively. Magnetic fluids are stable under accelerated aging at elevated temperatures (from 50 °C to 125 °C), which is critical for their efficient performance in high power transformers.
NASA Astrophysics Data System (ADS)
Takeuchi, S.; Sakai, K.; Matsumoto, M.; Sugihara, R.
1987-04-01
An accelerator is proposed in which a TE-mode wave is used to drive charged particles in contrast to the usual linear accelerators in which longitudinal electric fields or TM-mode waves are supposed to be utilized. The principle of the acceleration is based on the V(p) x B acceleration of a dynamo force acceleration, in which a charged particle trapped in a transverse wave feels a constant electric field (Faraday induction field) and subsequently is accelerated when an appropriate magnetic field is externally applied in the direction perpendicular to the wave propagation. A pair of dielectric plates is used to produce a slow TE mode. The conditions of the particle trapping the stabilization of the particle orbit are discussed.
Ribeiro, S C; Monteiro, G A; Prazeres, D M F
2009-04-01
Plasmid biopharmaceuticals are a new class of medicines with an enormous potential. Attempts to increase the physical stability of highly purified supercoiled (SC) plasmid DNA in pharmaceutical aqueous solutions have relied on: (i) changing the DNA sequence, (ii) improving manufacturing to reduce deleterious impurities and initial DNA damage, and (iii) controlling the storage medium characteristics. In this work we analyzed the role of secondary structures on the degradation of plasmid molecules. Accelerated stability experiments were performed with SC, open circular (OC) and linear (L) isoforms of three plasmids which differed only in the "single-strandlike" content of their polyadenylation (poly A) signals. We have proved that the presence of more altered or interrupted (non-B) DNA secondary structures did not directly translate into an easier strand scission of the SC isoforms. Rather, those unusual structures imposed a lower degree of SC in the plasmids, leading to an increase in their resistance to thermal degradation. However, this behavior was reversed when the relaxed or L isoforms were tested, in which case the absence of SC rendered the plasmids essentially double-stranded. Overall, this work suggests that plasmid DNA sequence and secondary structures should be taken into account in future investigations of plasmid stability during prolonged storage.
Darrington, Richard T; Jiao, Jim
2004-04-01
Rapid and accurate stability prediction is essential to pharmaceutical formulation development. Commonly used stability prediction methods include monitoring parent drug loss at intended storage conditions or initial rate determination of degradants under accelerated conditions. Monitoring parent drug loss at the intended storage condition does not provide a rapid and accurate stability assessment because often <0.5% drug loss is all that can be observed in a realistic time frame, while the accelerated initial rate method in conjunction with extrapolation of rate constants using the Arrhenius or Eyring equations often introduces large errors in shelf-life prediction. In this study, the shelf life prediction of a model pharmaceutical preparation utilizing sensitive high-performance liquid chromatography-mass spectrometry (LC/MS) to directly quantitate degradant formation rates at the intended storage condition is proposed. This method was compared to traditional shelf life prediction approaches in terms of time required to predict shelf life and associated error in shelf life estimation. Results demonstrated that the proposed LC/MS method using initial rates analysis provided significantly improved confidence intervals for the predicted shelf life and required less overall time and effort to obtain the stability estimation compared to the other methods evaluated. Copyright 2004 Wiley-Liss, Inc. and the American Pharmacists Association.
Enhancement of the Accelerating Gradient in Superconducting Microwave Resonators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Checchin, Mattia; Grassellino, Anna; Martinello, Martina
2017-05-01
The accelerating gradient of superconducting resonators can be enhanced by engineering the thickness of a dirty layer grown at the cavity's rf surface. In this paper the description of the physics behind the accelerating gradient enhancement by meaning of the dirty layer is carried out by solving numerically the the Ginzburg-Landau (GL) equations for the layered system. The calculation shows that the presence of the dirty layer stabilizes the Meissner state up to the lower critical field of the bulk, increasing the maximum accelerating gradient.
Current driven instabilities of an electromagnetically accelerated plasma
NASA Technical Reports Server (NTRS)
Chouetri, E. Y.; Kelly, A. J.; Jahn, R. G.
1988-01-01
A plasma instability that strongly influences the efficiency and lifetime of electromagnetic plasma accelerators was quantitatively measured. Experimental measurements of dispersion relations (wave phase velocities), spatial growth rates, and stability boundaries are reported. The measured critical wave parameters are in excellent agreement with theoretical instability boundary predictions. The instability is current driven and affects a wide spectrum of longitudinal (electrostatic) oscillations. Current driven instabilities, which are intrinsic to the high-current-carrying magnetized plasma of the magnetoplasmadynmic (MPD) accelerator, were investigated with a kinetic theoretical model based on first principles. Analytical limits of the appropriate dispersion relation yield unstable ion acoustic waves for T(i)/T(e) much less than 1 and electron acoustic waves for T(i)/T(e) much greater than 1. The resulting set of nonlinear equations for the case of T(i)/T(e) = 1, of most interest to the MPD thruster Plasma Wave Experiment, was numerically solved to yield a multiparameter set of stability boundaries. Under certain conditions, marginally stable waves traveling almost perpendicular to the magnetic field would travel at a velocity equal to that of the electron current. Such waves were termed current waves. Unstable current waves near the upper stability boundary were observed experimentally and are in accordance with theoretical predictions. This provides unambiguous proof of the existence of such instabilites in electromagnetic plasma accelerators.
Stability of the accelerated expansion in nonlinear electrodynamics
NASA Astrophysics Data System (ADS)
Sharif, M.; Mumtaz, Saadia
2017-02-01
This paper is devoted to the phase space analysis of an isotropic and homogeneous model of the universe by taking a noninteracting mixture of the electromagnetic and viscous radiating fluids whose viscous pressure satisfies a nonlinear version of the Israel-Stewart transport equation. We establish an autonomous system of equations by introducing normalized dimensionless variables. In order to analyze the stability of the system, we find corresponding critical points for different values of the parameters. We also evaluate the power-law scale factor whose behavior indicates different phases of the universe in this model. It is concluded that the bulk viscosity as well as electromagnetic field enhances the stability of the accelerated expansion of the isotropic and homogeneous model of the universe.
Non-Arrhenius protein aggregation.
Wang, Wei; Roberts, Christopher J
2013-07-01
Protein aggregation presents one of the key challenges in the development of protein biotherapeutics. It affects not only product quality but also potentially impacts safety, as protein aggregates have been shown to be linked with cytotoxicity and patient immunogenicity. Therefore, investigations of protein aggregation remain a major focus in pharmaceutical companies and academic institutions. Due to the complexity of the aggregation process and temperature-dependent conformational stability, temperature-induced protein aggregation is often non-Arrhenius over even relatively small temperature windows relevant for product development, and this makes low-temperature extrapolation difficult based simply on accelerated stability studies at high temperatures. This review discusses the non-Arrhenius nature of the temperature dependence of protein aggregation, explores possible causes, and considers inherent hurdles for accurately extrapolating aggregation rates from conventional industrial approaches for selecting accelerated conditions and from conventional or more advanced methods of analyzing the resulting rate data.
Molecular basis of slow activation of the human ether-á-go-go related gene potassium channel
Subbiah, Rajesh N; Clarke, Catherine E; Smith, David J; Zhao, JingTing; Campbell, Terence J; Vandenberg, Jamie I
2004-01-01
The human ether-á-go-go related gene (HERG) encodes the pore forming α-subunit of the rapid delayed rectifier K+ channel which is central to the repolarization phase of the cardiac action potential. HERG K+ channels have unusual kinetics characterized by slow activation and deactivation, yet rapid inactivation. The fourth transmembrane domain (S4) of HERG, like other voltage-gated K+ channels, contains multiple positive charges and is the voltage sensor for activation. In this study, we mutated each of the positively charged residues in this region to glutamine (Q), expressed the mutant and wild-type (WT) channels in Xenopus laevis oocytes and studied them using two-electrode voltage clamp methods. K525Q channels activated at more hyperpolarized potentials than WT, whereas all the other mutant channels activated at more depolarized potentials. All mutants except for R531Q also had a reduction in apparent gating charge associated with activation. Mutation of K525 to cysteine (C) resulted in a less dramatic phenotype than K525Q. The addition of the positively charged MTSET to K525C altered the phenotype to one more similar to K525Q than to WT. Therefore it is not charge per se, but the specific lysine side chain at position 525, that is crucial for stabilizing the closed state. When rates of activation and deactivation for WT and mutant channels were compared at equivalent total (chemical + electrostatic) driving forces, K525Q and R528Q accelerated activation but had no effect on deactivation, R531Q slowed activation and deactivation, R534Q accelerated activation but slowed deactivation and R537Q accelerated deactivation but had no effect on activation. The main conclusions we can draw from these data are that in WT channels K525 stabilizes the closed state, R531 stabilizes the open state and R534 participates in interactions that stabilize pre-open closed states. PMID:15181157
Long-term stability of amorphous-silicon modules
NASA Technical Reports Server (NTRS)
Ross, R. G., Jr.
1986-01-01
The Jet Propulsion Laboratory (JPL) program of developing qualification tests necessary for amorphous silicon modules, including appropriate accelerated environmental tests reveal degradation due to illumination. Data were given which showed the results of temperature-controlled field tests and accelerated tests in an environmental chamber.
NASA Astrophysics Data System (ADS)
Kononenko, O.; Lopes, N. C.; Cole, J. M.; Kamperidis, C.; Mangles, S. P. D.; Najmudin, Z.; Osterhoff, J.; Poder, K.; Rusby, D.; Symes, D. R.; Warwick, J.; Wood, J. C.; Palmer, C. A. J.
2016-09-01
In this work, two-dimensional (2D) hydrodynamic simulations of a variable length gas cell were performed using the open source fluid code OpenFOAM. The gas cell was designed to study controlled injection of electrons into a laser-driven wakefield at the Astra Gemini laser facility. The target consists of two compartments: an accelerator and an injector section connected via an aperture. A sharp transition between the peak and plateau density regions in the injector and accelerator compartments, respectively, was observed in simulations with various inlet pressures. The fluid simulations indicate that the length of the down-ramp connecting the sections depends on the aperture diameter, as does the density drop outside the entrance and the exit cones. Further studies showed, that increasing the inlet pressure leads to turbulence and strong fluctuations in density along the axial profile during target filling, and consequently, is expected to negatively impact the accelerator stability.
NASA Technical Reports Server (NTRS)
Sadoff, Melvin; McFadden, Norman M.; Heinle, Donovan R.
1961-01-01
As part of a general investigation to determine the effects of simulator motions on pilot opinion and task performance over a wide range of vehicle longitudinal dynamics, a cooperative NASA-AMAL program was conducted on the centrifuge at Johnsville, Pennsylvania. The test parameters and measurements for this program duplicated those of earlier studies made at Ames Research Center with a variable-stability airplane and with a pitch-roll chair flight simulator. Particular emphasis was placed on the minimum basic damping and stability the pilots would accept and on the minimum dynamics they considered controllable in the event of stability-augmentation system failure. Results of the centrifuge-simulator program indicated that small positive damping was required by the pilots over most of the frequency range covered for configurations rated acceptable for emergency conditions only (e.g., failure of a pitch damper). It was shown that the pilot's tolerance for unstable dynamics was dependent primarily on the value of damping. For configurations rated acceptable for emergency operation only, the allowable instability and damping corresponded to a divergence time to double amplitude of about 1 second. Comparisons were made of centrifuge, pitch-chair and fixed-cockpit simulator tests with flight tests. Pilot ratings indicated that the effects of incomplete or spurious motion cues provided by these three modes of simulation were important only for high-frequency, lightly damped dynamics or unstable, moderately damped dynamics. The pitch- chair simulation, which provided accurate angular-acceleration cues to the pilot, compared most favorably with flight. For the centrifuge simulation, which furnished accurate normal accelerations but spurious pitching and longitudinal accelerations, there was a deterioration of pilots' opinion relative to flight results. Results of simulator studies with an analog pilot replacing the human pilot illustrated the adaptive capability of human pilots in coping with the wide range of vehicle dynamics and the control problems covered in this study. It was shown that pilot-response characteristics, deduced by the analog-pilot method, could be related to pilot opinion. Possible application of these results for predicting flight-control problems was illustrated by means of an example control-problem analysis. The results of a brief evaluation of a pencil-type side-arm controller in the centrifuge showed a considerable improvement in the pilots' ability to cope with high-frequency, low-damping dynamics, compared to results obtained with the center stick. This improvement with the pencil controller was attributed primarily to a marked reduction in the adverse effects of large and exaggerated pitching and longitudinal accelerations on pilot control precision.
Fluid Physics Under a Stochastic Acceleration Field
NASA Technical Reports Server (NTRS)
Vinals, Jorge
2001-01-01
The research summarized in this report has involved a combined theoretical and computational study of fluid flow that results from the random acceleration environment present onboard space orbiters, also known as g-jitter. We have focused on a statistical description of the observed g-jitter, on the flows that such an acceleration field can induce in a number of experimental configurations of interest, and on extending previously developed methodology to boundary layer flows. Narrow band noise has been shown to describe many of the features of acceleration data collected during space missions. The scale of baroclinically induced flows when the driving acceleration is random is not given by the Rayleigh number. Spatially uniform g-jitter induces additional hydrodynamic forces among suspended particles in incompressible fluids. Stochastic modulation of the control parameter shifts the location of the onset of an oscillatory instability. Random vibration of solid boundaries leads to separation of boundary layers. Steady streaming ahead of a modulated solid-melt interface enhances solute transport, and modifies the stability boundaries of a planar front.
FFAGs: Front-end for neutrino factories and medical accelerators
NASA Astrophysics Data System (ADS)
Mori, Yoshiharu
The idea of Fixed Field Alternating Gradient (FFAG) accelerator was originated by different people and groups in the early 1950s. It was independently introduced by Ohkawa [Ohkawa (1953)], Symon et al. [Symon et al. (1956)], and Kolomensky [Kolomensky and Lebedev (1966)] when the strong Alternate Gradient (AG) focusing and the phase stability schemes were applied to particle acceleration. The first FFAG electron model was developed in the MURA accelerator project led by Kerst and Cole in the late 1950s. Since then, they have fabricated several electron models in the early 1960s [Symon et al. (1956)]. However, the studies did not lead to a single practical FFAG accelerator for the following 50 years. Because of the difficulties of treating non-linear magnetic field and RF acceleration for non-relativistic particles, the proton FFAG, especially, was not accomplished until recently. In 2000, the FFAG concept was revived with the world's first proton FFAG (POP) which was developed at KEK [Aiba (2000); Mori (1999)]. Since then, in many places [Berg (2004); Johnstone et al. (2004); Mori (2011); Ruggiero (2004); Trbojevic (2004)], FFAGs have been developed and constructed...
NASA Astrophysics Data System (ADS)
Chhina, H.; Campbell, S.; Kesler, O.
The oxidation of carbon catalyst supports to carbon dioxide gas leads to degradation in catalyst performance over time in proton exchange membrane fuel cells (PEMFCs). The electrochemical stability of Pt supported on tungsten carbide has been evaluated on a carbon-based gas diffusion layer (GDL) at 80 °C and compared to that of HiSpec 4000™ Pt/Vulcan XC-72R in 0.5 M H 2SO 4. Due to other electrochemical processes occurring on the GDL, detailed studies were also performed on a gold mesh substrate. The oxygen reduction reaction (ORR) activity was measured both before and after accelerated oxidation cycles between +0.6 V and +1.8 V vs. RHE. Tafel plots show that the ORR activity remained high even after accelerated oxidation tests for Pt/tungsten carbide, while the ORR activity was extremely poor after accelerated oxidation tests for HiSpec 4000™. In order to make high surface area tungsten carbide, three synthesis routes were investigated. Magnetron sputtering of tungsten on carbon was found to be the most promising route, but needs further optimization.
NASA Astrophysics Data System (ADS)
Werner, Nathaniel; Chung, Hojae; Wang, Junshi; Liu, Geng; Cimbala, John; Dong, Haibo; Cheng, Bo
2017-11-01
This work investigates the radial vorticity dynamics and the stability of leading-edge vortices (LEVs) in revolving wings. Previous studies have shown that Coriolis acceleration plays a key role in stabilizing the LEV; however, the exact mechanism remains unclear. This study tests a new hypothesis based on the curl of the Coriolis acceleration in the vorticity equation, which corresponds to the radial tilting of the planetary vortex (PVTr). The PVTr could reorient planetary vorticity into radial vorticity that reduces the strength of the LEV, preventing the LEV from growing and becoming unstable. To test this, an in-house immersed-boundary-method-based flow solver was used to generate velocity and vorticity fields of revolving wings of different aspect ratio (AR = 3, 5, 7) and Reynolds number (Re = 110, 1400). It is found that the PVTr consistently negates the LEV vorticity for all the AR and Re investigated, although its effect is outweighed by other 3D effects at Re =1400. It is also found that the strength of the PVTr increases along the wing span until approximately a chord length from the wing tip. The averaged magnitude of PVTr within the LEV and the dependency of its relative strength on the aspect ratio and Reynolds number are also investigated.
Fokker-Planck Equations of Stochastic Acceleration: A Study of Numerical Methods
NASA Astrophysics Data System (ADS)
Park, Brian T.; Petrosian, Vahe
1996-03-01
Stochastic wave-particle acceleration may be responsible for producing suprathermal particles in many astrophysical situations. The process can be described as a diffusion process through the Fokker-Planck equation. If the acceleration region is homogeneous and the scattering mean free path is much smaller than both the energy change mean free path and the size of the acceleration region, then the Fokker-Planck equation reduces to a simple form involving only the time and energy variables. in an earlier paper (Park & Petrosian 1995, hereafter Paper 1), we studied the analytic properties of the Fokker-Planck equation and found analytic solutions for some simple cases. In this paper, we study the numerical methods which must be used to solve more general forms of the equation. Two classes of numerical methods are finite difference methods and Monte Carlo simulations. We examine six finite difference methods, three fully implicit and three semi-implicit, and a stochastic simulation method which uses the exact correspondence between the Fokker-Planck equation and the it5 stochastic differential equation. As discussed in Paper I, Fokker-Planck equations derived under the above approximations are singular, causing problems with boundary conditions and numerical overflow and underflow. We evaluate each method using three sample equations to test its stability, accuracy, efficiency, and robustness for both time-dependent and steady state solutions. We conclude that the most robust finite difference method is the fully implicit Chang-Cooper method, with minor extensions to account for the escape and injection terms. Other methods suffer from stability and accuracy problems when dealing with some Fokker-Planck equations. The stochastic simulation method, although simple to implement, is susceptible to Poisson noise when insufficient test particles are used and is computationally very expensive compared to the finite difference method.
Okuma, C H; Andrade, T A M; Caetano, G F; Finci, L I; Maciel, N R; Topan, J F; Cefali, L C; Polizello, A C M; Carlo, T; Rogerio, A P; Spadaro, A C C; Isaac, V L B; Frade, M A C; Rocha-Filho, P A
2015-04-25
Appropriate therapeutics for wound treatments can be achieved by studying the pathophysiology of tissue repair. Here we develop formulations of lamellar gel phase (LGP) emulsions containing marigold (Calendula officinalis) oil, evaluating their stability and activity on experimental wound healing in rats. LGP emulsions were developed and evaluated based on a phase ternary diagram to select the best LGP emulsion, having a good amount of anisotropic structure and stability. The selected LGP formulation was analyzed according to the intrinsic and accelerated physical stability at different temperatures. In addition, in vitro and in vivo studies were carried out on wound healing rats as a model. The LGP emulsion (15.0% marigold oil; 10.0% of blend surfactants and 75.0% of purified water [w/w/w]) demonstrated good stability and high viscosity, suggesting longer contact of the formulation with the wound. No cytotoxic activity (50-1000 μg/mL) was observed in marigold oil. In the wound healing rat model, the LGP (15 mg/mL) showed an increase in the leukocyte recruitment to the wound at least on days 2 and 7, but reduced leukocyte recruitment after 14 and 21 days, as compared to the control. Additionally, collagen production was reduced in the LGP emulsion on days 2 and 7 and further accelerated the process of re-epithelialization of the wound itself. The methodology utilized in the present study has produced a potentially useful formulation for a stable LGP emulsion-containing marigold, which was able to improve the wound healing process. Copyright © 2015 Elsevier B.V. All rights reserved.
The effect of platelet-rich fibrin on implant stability.
Öncü, Elif; Alaaddinoğlu, E Emine
2015-01-01
Achieving accelerated implant osseointegration could make immediate or early loading of implants more predictable. Platelet-rich fibrin (PRF) is frequently used to accelerate soft and hard tissue healing. The activated platelets in PRF release growth factors, resulting in cellular proliferation, collagen synthesis, and osteoid production. The aim of this study was to compare the stability of dental implants inserted in a one-stage surgical protocol with or without PRF application. Twenty healthy patients with adequate alveolar bone and two or more adjacent missing teeth extracted at least 6 months previously were included in this study. A minimum of two tapered implants (Ankylos, Dentsply/Friadent) were placed in each patient. After surgical preparation of the implant sockets, PRF that had been prepared preoperatively was placed randomly into one of the sockets (PRF+). The acellular plasma portion of PRF was used to wet the implant placed into the PRF-coated socket. Resonance frequency measurements were made after implant placement and at 1 week and 1 month postoperatively. Mean implant stability quotients (ISQs) of the PRF+ implants was 69.3 ± 10.5, and mean ISQs for the PRF- implants was 64.5 ± 12.2 at the end of the first week. The mean ISQs at 4 weeks postoperatively were 77.1 ± 7.1 for the PRF+ group and 70.5 ± 7.7 for the PRF- group. In this study, PRF application increased implant stability during the early healing period, as evidenced by higher ISQ values. Simple application of this material seems to provide faster osseointegration.
Accelerated Physical Stability Testing of Amorphous Dispersions.
Mehta, Mehak; Suryanarayanan, Raj
2016-08-01
The goal was to develop an accelerated physical stability testing method of amorphous dispersions. Water sorption is known to cause plasticization and may accelerate drug crystallization. In an earlier investigation, it was observed that both the increase in mobility and decrease in stability in amorphous dispersions was explained by the "plasticization" effect of water (Mehta et al. Mol. Pharmaceutics 2016, 13 (4), 1339-1346). In this work, the influence of water concentration (up to 1.8% w/w) on the correlation between mobility and crystallization in felodipine dispersions was investigated. With an increase in water content, the α-relaxation time as well as the time for 1% w/w felodipine crystallization decreased. The relaxation times of the systems, obtained with different water concentration, overlapped when the temperature was scaled (Tg/T). The temperature dependencies of the α-relaxation time as well as the crystallization time were unaffected by the water concentration. Thus, the value of the coupling coefficient, up to a water concentration of 1.8% w/w, was approximately constant. Based on these findings, the use of "water sorption" is proposed to build predictive models for crystallization in slow crystallizing dispersions.
New Integrated Testing System for the Validation of Vehicle-Snow Interaction Models
2010-08-06
are individual wheel speeds, accelerator pedal position, vehicle speed, yaw rate, lateral acceleration, steering wheel angle and brake ...forces and moments at each wheel center, vehicle body slip angle , speed, acceleration, yaw rate, roll, and pitch. The profilometer has a 3-D scanning...Stability Program. The test vehicle provides measurements that include three forces and moments at each wheel center, vehicle body slip angle , speed
USDA-ARS?s Scientific Manuscript database
Mechanically purified raw cotton fiber finds a growing range of applications in support of environmental sustainability, but its unique thermal stability, which is important in processes and utilization, is little known. This study shows that at low temperatures (< 300 'C), the accelerated dehydrati...
Mitigation of Remedial Action Schemes by Decentralized Robust Governor Control
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elizondo, Marcelo A.; Marinovici, Laurentiu D.; Lian, Jianming
This paper presents transient stability improvement by a new distributed hierarchical control architecture (DHC). The integration of remedial action schemes (RAS) to the distributed hierarchical control architecture is studied. RAS in power systems are designed to maintain stability and avoid undesired system conditions by rapidly switching equipment and/or changing operating points according to predetermined rules. The acceleration trend relay currently in use in the US western interconnection is an example of RAS that trips generators to maintain transient stability. The link between RAS and DHC is through fast acting robust turbine/governor control that can also improve transient stability. In thismore » paper, the influence of the decentralized robust turbine/governor control on the design of RAS is studied. Benefits of combining these two schemes are increasing power transfer capability and mitigation of RAS generator tripping actions; the later benefit is shown through simulations.« less
Accelerated loading evaluation of stabilized BCS layers in pavement performance : tech summary.
DOT National Transportation Integrated Search
2012-03-01
The Louisiana Department of Transportation and Development (LADOTD) began to use blended calcium sulfate (BCS) as : an alternative base material in the 1990s. Raw BCS base without further chemical stabilization can achieve relatively high : strength ...
Effect of water content on stability of landslides triggered by earthquakes
NASA Astrophysics Data System (ADS)
Beyabanaki, S.; Bagtzoglou, A. C.; Anagnostou, E. N.
2013-12-01
Earthquake- triggered landslides are one of the most important natural hazards that often result in serious structural damage and loss of life. They are widely studied by several researchers. However, less attention has been focused on soil water content. Although the effect of water content has been widely studied for rainfall- triggered landslides [1], much less attention has been given to it for stability analysis of earthquake- triggered landslides. We developed a combined hydrology and stability model to investigate effect of soil water content on earthquake-triggered landslides. For this purpose, Bishop's method is used to do the slope stability analysis and Richard's equation is employed to model infiltration. Bishop's method is one the most widely methods used for analyzing stability of slopes [2]. Earthquake acceleration coefficient (EAC) is also considered in the model to analyze the effect of earthquake on slope stability. Also, this model is able to automatically determine geometry of the potential landslide. In this study, slopes with different initial water contents are simulated. First, the simulation is performed in the case of earthquake only with different EACs and water contents. As shown in Fig. 1, initial water content has a significant effect on factor of safety (FS). Greater initial water contents lead to less FS. This impact is more significant when EAC is small. Also, when initial water content is high, landslides can happen even with small earthquake accelerations. Moreover, in this study, effect of water content on geometry of landslides is investigated. For this purpose, different cases of landslides triggered by earthquakes only and both rainfall and earthquake for different initial water contents are simulated. The results show that water content has more significant effect on geometry of landslides triggered by rainfall than those triggered by an earthquake. Finally, effect of water content on landslides triggered by earthquakes during rainfall is investigated. In this study, after different durations of rainfall, an earthquake is applied to the model and the elapsed time in which the FS gets less than one obtains by trial and error. The results for different initial water contents and earthquake acceleration coefficients show that landslides can happen after shorter rainfall duration when water content is greater. If water content is high enough, the landslide occurs even without rainfall. References [1] Ray RL, Jacobs JM, de Alba P. Impact of unsaturated zone soil moisture and groundwater table on slope instability. J. Geotech. Geoenviron. Eng., 2010, 136(10):1448-1458. [2] Das B. Principles of Foundation Engineering. Stanford, Cengage Learning, 2011. Fig. 1. Effect of initial water content on FS for different EACs
Garnero, Claudia; Chattah, Ana Karina; Aloisio, Carolina; Fabietti, Luis; Longhi, Marcela
2018-05-10
Norfloxacin, an antibiotic that exists in different solid forms, has very unfavorable properties in terms of solubility and stability. Binary complexes of norfloxacin, in the solid form C, and β-cyclodextrin were procured by the kneading method and physical mixture. Their effect on the solubility, the dissolution rate, and the chemical and physical stability of norfloxacin was evaluated. To perform stability studies, the solid samples were stored under accelerated storage conditions, for a period of 6 months. Physical stability was monitored through powder X-ray diffraction, high-resolution 13 C solid-state nuclear magnetic resonance, and scanning electron microscopy. The results showed evidence that the kneaded complex increased and modulated the dissolution rate of norfloxacin C. Furthermore, it was demonstrated that the photochemical stability was increased in the complex, without affecting its physical stability. The results point to the conclusion that the new kneading complex of norfloxacin constitutes an alternative tool to formulate a potential oral drug delivery system with improve oral bioavailability.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Shichun; Geng, Rongli
2015-09-01
Reliable acceleration of low- to medium-beta proton or heavy ion species is needed for future high-current superconducting radio frequency (SRF) accelerators. Due to the high-Q nature of an SRF resonator, it is sensitive to many factors such as electron loading (from either the accelerated beam or from parasitic field emitted electrons), mechanical vibration, and liquid helium bath pressure fluctuation etc. To increase the stability against those factors, a mechanically strong and stable RF structure is desirable. Guided by this consideration, multi-fold symmetry element-loaded SRF structures (MFSEL), cylindrical tanks with multiple (n>=3) rod-shaped radial elements, are being explored. The top goalmore » of its optimization is to improve mechanical stability. A natural consequence of this structure is a lowered ratio of the peak surface electromagnetic field to the acceleration gradient as compared to the traditional spoke cavity. A disadvantage of this new structure is an increased size for a fixed resonant frequency and optimal beta. This paper describes the optimization of the electro-magnetic (EM) design and preliminary mechanical analysis for such structures.« less
An optical fiber spool for laser stabilization with reduced acceleration sensitivity to 10-12/g
NASA Astrophysics Data System (ADS)
Hu, Yong-Qi; Dong, Jing; Huang, Jun-Chao; Li, Tang; Liu, Liang
2015-10-01
Environmental vibration causes mechanical deformation in optical fibers, which induces excess frequency noise in fiber-stabilized lasers. In order to solve such a problem, we propose an ultralow acceleration sensitivity fiber spool with symmetrically mounted structure. By numerical analysis with the finite element method, we obtain the optimal geometry parameters of the spool with which the horizontal and vertical acceleration sensitivity can be reduced to 3.25 × 10-12/g and 5.38 × 10-12/g respectively. Moreover, the structure features the insensitivity to the variation of geometry parameters, which will minimize the influence from numerical simulation error and manufacture tolerance. Project supported by the National Natural Science Foundation of China (Grant Nos. 11034008 and 11274324) and the Key Research Program of the Chinese Academy of Sciences (Grant No. KJZD-EW-W02).
Payload isolation and stabilization by a Suspended Experiment Mount (SEM)
NASA Technical Reports Server (NTRS)
Bailey, Wayne L.; Desanctis, Carmine E.; Nicaise, Placide D.; Schultz, David N.
1992-01-01
Many Space Shuttle and Space Station payloads can benefit from isolation from crew or attitude control system disturbances. Preliminary studies have been performed for a Suspended Experiment Mount (SEM) system that will provide isolation from accelerations and stabilize the viewing direction of a payload. The concept consists of a flexible suspension system and payload-mounted control moment gyros. The suspension system, which is rigidly locked for ascent and descent, isolates the payload from high frequency disturbances. The control moment gyros stabilize the payload orientation. The SEM will be useful for payloads that require a lower-g environment than a manned vehicle can provide, such as materials processing, and for payloads that require stabilization of pointing direction, but not large angle slewing, such as nadir-viewing earth observation or solar viewing payloads.
DOT National Transportation Integrated Search
2008-12-01
PROBLEM: The full-scale accelerated pavement testing (APT) provides a unique tool for pavement : engineers to directly collect pavement performance and failure data under heavy : wheel loading. However, running a full-scale APT experiment is very exp...
DOT National Transportation Integrated Search
2011-12-01
Accelerated pavement testing (APT) has been increasingly used by state highway agencies in recent years for evaluating pavement : design and performance through applying a simulative heavy vehicular load to the pavement section under controlled fi el...
Leong, Mei-Huan; Tan, Chin-Ping; Nyam, Kar-Lin
2016-10-01
The objective of this research was to study the oxidative stability and antioxidant properties of microencapsulated kenaf (Hibiscus cannabinus L.) seed oil (MKSO) produced by co-extrusion technology upon accelerated storage. The combination of sodium alginate, high methoxyl pectin, and chitosan were used as shell materials. The oxidative stability of the kenaf seed oil was determined by iodine value, peroxide value, p-Anisidine value, total oxidation (TOTOX), thiobarbituric acid reactive substances assay, and free fatty acid content. Total phenolic content, 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) cation radical-scavenging assay and 2,2-diphenyl-1-picrylhydrazyl radical scavenging assay were used to examine the antioxidant properties of oils. Oxidative stability tests showed that bulk kenaf seed oil (BKSO) was oxidized significantly higher (P < 0.05) than MKSO. The total increment of TOTOX value of BKSO was 165.93% significantly higher (P < 0.05) than MKSO. Co-extrusion technology has shown to be able to protect kenaf seed oil against lipid oxidation and delay the degradation of natural antioxidants that present in oil during storage. © 2016 Institute of Food Technologists®.
Mechanisms of nitrogen heterocycle influence on turbine fuel stability
NASA Technical Reports Server (NTRS)
Daniel, S. R.; Worstell, J. H.
1980-01-01
Lewis bases were extracted from a Utah COED syncrude via ligand exchange. Addition of this extract to Jet A at levels as low as 5 ppm N produced deterioration of stability in both JFTOT and accelerated storage tests (7 days at 394 K with 13:1air to fuel ratio). Comparable effects on Jet A stability were obtained by addition of pyridine and quinoline, while pyrrole and indole were less detrimental at the same concentration level. The weight of deposit produced accelerated storage tests was found to be proportional to the concentration of added nitrogen compound. Over the narrow temperature range accessible with the experimental method, Arrhenius plots obtained by assuming specific rate to be proportional to the weight of material deposited in seven days exhibit greater slopes in the presence of those nitrogen compounds producing the greater deposition rates. It is shown that despite variation in appearance the elemental composition and spectral characteristics of the deposits are unaffected by addition of the nitrogen compounds. The linearity of the Arrhenius plots and of a plot of Arrhenius slope versus intercept for all the compounds suggests a constancy of mechanism over the range of temperature and heterocycles studied.
Continental drift and climate change drive instability in insect assemblages
NASA Astrophysics Data System (ADS)
Li, Fengqing; Tierno de Figueroa, José Manuel; Lek, Sovan; Park, Young-Seuk
2015-06-01
Global change has already had observable effects on ecosystems worldwide, and the accelerated rate of global change is predicted in the future. However, the impacts of global change on the stability of biodiversity have not been systematically studied in terms of both large spatial (continental drift) and temporal (from the last inter-glacial period to the next century) scales. Therefore, we analyzed the current geographical distribution pattern of Plecoptera, a thermally sensitive insect group, and evaluated its stability when coping with global change across both space and time throughout the Mediterranean region—one of the first 25 global biodiversity hotspots. Regional biodiversity of Plecoptera reflected the geography in both the historical movements of continents and the current environmental conditions in the western Mediterranean region. The similarity of Plecoptera assemblages between areas in this region indicated that the uplift of new land and continental drift were the primary determinants of the stability of regional biodiversity. Our results revealed that climate change caused the biodiversity of Plecoptera to slowly diminish in the past and will cause remarkably accelerated biodiversity loss in the future. These findings support the theory that climate change has had its greatest impact on biodiversity over a long temporal scale.
NASA Astrophysics Data System (ADS)
Mu, Yan; Gao, Yi Qin
2007-09-01
We studied the effects of hydrophobicity and dipole-dipole interactions between the nearest-neighbor amide planes on the secondary structures of a model polypeptide by calculating the free energy differences between different peptide structures. The free energy calculations were performed with low computational costs using the accelerated Monte Carlo simulation (umbrella sampling) method, with a bias-potential method used earlier in our accelerated molecular dynamics simulations. It was found that the hydrophobic interaction enhances the stability of α helices at both low and high temperatures but stabilizes β structures only at high temperatures at which α helices are not stable. The nearest-neighbor dipole-dipole interaction stabilizes β structures under all conditions, especially in the low temperature region where α helices are the stable structures. Our results indicate clearly that the dipole-dipole interaction between the nearest neighboring amide planes plays an important role in determining the peptide structures. Current research provides a more unified and quantitative picture for understanding the effects of different forms of interactions on polypeptide structures. In addition, the present model can be extended to describe DNA/RNA, polymer, copolymer, and other chain systems.
Continental drift and climate change drive instability in insect assemblages
Li, Fengqing; Tierno de Figueroa, José Manuel; Lek, Sovan; Park, Young-Seuk
2015-01-01
Global change has already had observable effects on ecosystems worldwide, and the accelerated rate of global change is predicted in the future. However, the impacts of global change on the stability of biodiversity have not been systematically studied in terms of both large spatial (continental drift) and temporal (from the last inter-glacial period to the next century) scales. Therefore, we analyzed the current geographical distribution pattern of Plecoptera, a thermally sensitive insect group, and evaluated its stability when coping with global change across both space and time throughout the Mediterranean region—one of the first 25 global biodiversity hotspots. Regional biodiversity of Plecoptera reflected the geography in both the historical movements of continents and the current environmental conditions in the western Mediterranean region. The similarity of Plecoptera assemblages between areas in this region indicated that the uplift of new land and continental drift were the primary determinants of the stability of regional biodiversity. Our results revealed that climate change caused the biodiversity of Plecoptera to slowly diminish in the past and will cause remarkably accelerated biodiversity loss in the future. These findings support the theory that climate change has had its greatest impact on biodiversity over a long temporal scale. PMID:26081036
Continental drift and climate change drive instability in insect assemblages.
Li, Fengqing; Tierno de Figueroa, José Manuel; Lek, Sovan; Park, Young-Seuk
2015-06-17
Global change has already had observable effects on ecosystems worldwide, and the accelerated rate of global change is predicted in the future. However, the impacts of global change on the stability of biodiversity have not been systematically studied in terms of both large spatial (continental drift) and temporal (from the last inter-glacial period to the next century) scales. Therefore, we analyzed the current geographical distribution pattern of Plecoptera, a thermally sensitive insect group, and evaluated its stability when coping with global change across both space and time throughout the Mediterranean region--one of the first 25 global biodiversity hotspots. Regional biodiversity of Plecoptera reflected the geography in both the historical movements of continents and the current environmental conditions in the western Mediterranean region. The similarity of Plecoptera assemblages between areas in this region indicated that the uplift of new land and continental drift were the primary determinants of the stability of regional biodiversity. Our results revealed that climate change caused the biodiversity of Plecoptera to slowly diminish in the past and will cause remarkably accelerated biodiversity loss in the future. These findings support the theory that climate change has had its greatest impact on biodiversity over a long temporal scale.
Self-organizing dynamic stability of far-from-equilibrium biological systems
NASA Astrophysics Data System (ADS)
Ivanitskii, G. R.
2017-10-01
One indication of the stability of a living system is the variation of the system’s characteristic time scales. Underlying the stability mechanism are the structural hierarchy and self-organization of systems, factors that give rise to a positive (accelerating) feedback and a negative (braking) feedback. Information processing in the brain cortex plays a special role in highly organized living organisms.
Accelerated in vitro release testing method for naltrexone loaded PLGA microspheres.
Andhariya, Janki V; Choi, Stephanie; Wang, Yan; Zou, Yuan; Burgess, Diane J; Shen, Jie
2017-03-30
The objective of the present study was to develop a discriminatory and reproducible accelerated release testing method for naltrexone loaded parenteral polymeric microspheres. The commercially available naltrexone microsphere product (Vivitrol ® ) was used as the testing formulation in the in vitro release method development, and both sample-and-separate and USP apparatus 4 methods were investigated. Following an in vitro drug stability study, frequent media replacement and addition of anti-oxidant in the release medium were used to prevent degradation of naltrexone during release testing at "real-time" (37°C) and "accelerated" (45°C), respectively. The USP apparatus 4 method was more reproducible than the sample-and-separate method. In addition, the accelerated release profile obtained using USP apparatus 4 had a shortened release duration (within seven days), and good correlation with the "real-time" release profile. Lastly, the discriminatory ability of the developed accelerated release method was assessed using compositionally equivalent naltrexone microspheres with different release characteristics. The developed accelerated USP apparatus 4 release method was able to detect differences in the release characteristics of the prepared naltrexone microspheres. Moreover, a linear correlation was observed between the "real-time" and accelerated release profiles of all the formulations investigated, suggesting that the release mechanism(s) may be similar under both conditions. These results indicate that the developed accelerated USP apparatus 4 method has the potential to be an appropriate fast quality control tool for long-acting naltrexone PLGA microspheres. Copyright © 2017 Elsevier B.V. All rights reserved.
Accelerated loading evaluation of stabilized BCS layers in pavement performance.
DOT National Transportation Integrated Search
2012-03-01
BCS is short for blended calcium sulfate, a recycled fluorogypsum mixture that has been used in Louisiana as a roadway base for more than a decade. : Without further chemical stabilization, the major concern of using raw BCS as a pavement structural ...
Roig-Salom, José-Luis; Doménech-Carbó, María-Teresa; de la Cruz-Cañizares, Juana; Bolívar-Galiano, Fernando; Pelufo-Carbonell, María-José; Peraza-Zurita, Yaiza
2003-04-01
A study by SEM/EDX and spectrophotometry in the visible region attempting to assess the stability of new resin-bound mortars used for casting replicas of marble historic fountains is presented in this paper. Different accelerating tests such as thermal ageing, UV light ageing, ageing in an SO(2) pollutant chamber, freezing cycles ageing, salt crystallisation ageing, natural ageing and biological attack have been applied to a series of test specimens prepared with polyester-, epoxy- and gel-coat-bound mortars. Examination of morphology, measurement of chemical composition and chromatic coordinates before and after ageing treatments establish the higher stability and resistance properties of these resin-bound mortars by comparison to those from the natural marbles.
Compliance aids and medicine stability: new evidence of quality assurance.
Glass, Beverley Dawn; Haywood, Alison; Llewelyn, Victoria; Mangan, Martina
2009-01-01
Although increasing use of compliance aids is resulting in improved clinical outcomes for patients, the stability of some drugs being repackaged into these aids is being questioned. This is due to the fact that despite their widespread use, there is limited availability of relevant stability data. This review presents clinical evidence for repackaging into Dose Administration Aids (DAAs), the Australian Pharmaceutical Advisory Committee and other guidelines on general stability issues related to repackaging and a summary of evidence for stability studies conducted in the practice. For frusemide and prochlorperazine chosen as candidates for study because of their light sensitivity, while discoloration on light exposure rendered them unacceptable for patient use, precautions in repackaging and patient counselling can easily overcome this problem. In the case of sodium valproate however, hygroscopicity results in these tablets being unusable after exposure to accelerated storage conditions. In the absence of specific data on the stability of drug products repackaged into compliance aids, the guidelines, practical recommendations for repackaging and the management of compliance aids put forward in this article provide the pharmacist with the tools to make an informed decision on this process.
Kato, Megumi; Yamazaki, Taichi; Kato, Hisashi; Yamanaka, Noriko; Takatsu, Akiko; Ihara, Toshihide
2017-01-01
To prepare metrologically traceable amino acid mixed standard solutions, it is necessary to determine the stability of each amino acid present in the mixed solutions. In the present study, we prepared amino acid mixed solutions using certified reference standards of 17 proteinogenic amino acids, and examined the stability of each of these amino acids in 0.1 N HCl. We found that the concentration of glutamic acid decreased significantly during storage. LC/MS analysis indicated that the instability of glutamic acid was due to the partial degradation of glutamic acid to pyroglutamic acid in 0.1 N HCl. Using accelerated degradation tests, we investigated several solvent compositions to improve the stability of glutamic acid in amino acid mixed solution, and determined that the change of the pH by diluting the mixed solution improved the stability of glutamic acid.
Togral, Guray; Hasturk, Askin Esen; Kekec, Fevzi; Parpucu, Murat; Gungor, Safak
2015-01-01
In this retrospective study, surgical results of four patients with sacral tumors having disparate pathologic diagnoses, who were treated with partial or total sacrectomy and lumbopelvic stabilization were abstracted. Two patients were treated with partial sacral resection and two patients were treated with total sacrectomy and spinopelvic fixation. Fixation methods included spinopelvic fixation with rods and screws in two cases, reconstruction plate in one case, and fresh frozen allografts in two cases. Fibular allografts used for reconstruction accelerated bony union and enhanced the stability in two cases. Addition of polymethyl methacrylate in the cavity in the case of a giant cell tumor had a positive stabilizing effect on fixation. As a result, we can conclude that mechanical instability after sacral resection can be stabilized securely with lumbopelvic fixation and polymethyl methacrylate application or addition of fresh frozen allografts between the rods can augment the stability of the reconstruction. PMID:26713133
Arıkan, Murat; Togral, Guray; Hasturk, Askin Esen; Kekec, Fevzi; Parpucu, Murat; Gungor, Safak
2015-12-01
In this retrospective study, surgical results of four patients with sacral tumors having disparate pathologic diagnoses, who were treated with partial or total sacrectomy and lumbopelvic stabilization were abstracted. Two patients were treated with partial sacral resection and two patients were treated with total sacrectomy and spinopelvic fixation. Fixation methods included spinopelvic fixation with rods and screws in two cases, reconstruction plate in one case, and fresh frozen allografts in two cases. Fibular allografts used for reconstruction accelerated bony union and enhanced the stability in two cases. Addition of polymethyl methacrylate in the cavity in the case of a giant cell tumor had a positive stabilizing effect on fixation. As a result, we can conclude that mechanical instability after sacral resection can be stabilized securely with lumbopelvic fixation and polymethyl methacrylate application or addition of fresh frozen allografts between the rods can augment the stability of the reconstruction.
The effect of stereotype threat on performance of a rhythmic motor skill.
Huber, Meghan E; Seitchik, Allison E; Brown, Adam J; Sternad, Dagmar; Harkins, Stephen G
2015-04-01
Many studies using cognitive tasks have found that stereotype threat, or concern about confirming a negative stereotype about one's group, debilitates performance. The few studies that documented similar effects on sensorimotor performance have used only relatively coarse measures to quantify performance. This study tested the effect of stereotype threat on a rhythmic ball bouncing task, where previous analyses of the task dynamics afforded more detailed quantification of the effect of threat on motor control. In this task, novices hit the ball with positive racket acceleration, indicative of unstable performance. With practice, they learn to stabilize error by changing their ball-racket impact from positive to negative acceleration. Results showed that for novices, stereotype threat potentiated hitting the ball with positive racket acceleration, leading to poorer performance of stigmatized females. However, when the threat manipulation was delivered after having acquired some skill, reflected by negative racket acceleration, the stigmatized females performed better. These findings are consistent with the mere effort account that argues that stereotype threat potentiates the most likely response on the given task. The study also demonstrates the value of identifying the control mechanisms through which stereotype threat has its effects on outcome measures. (c) 2015 APA, all rights reserved.
NASA Technical Reports Server (NTRS)
Kelly, A. J.; Jahn, R. G.; Choueiri, E. Y.
1990-01-01
The dominant unstable electrostatic wave modes of an electromagnetically accelerated plasma are investigated. The study is the first part of a three-phase program aimed at characterizing the current-driven turbulent dissipation degrading the efficiency of Lorentz force plasma accelerators such as the MPD thruster. The analysis uses a kinetic theory that includes magnetic and thermal effects as well as those of an electron current transverse to the magnetic field and collisions, thus combining all the features of previous models. Analytical and numerical solutions allow a detailed description of threshold criteria, finite growth behavior, destabilization mechanisms and maximized-growth characteristics of the dominant unstable modes. The lower hybrid current-driven instability is implicated as dominant and was found to preserve its character in the collisional plasma regime.
Advanced Accelerators for Medical Applications
NASA Astrophysics Data System (ADS)
Uesaka, Mitsuru; Koyama, Kazuyoshi
We review advanced accelerators for medical applications with respect to the following key technologies: (i) higher RF electron linear accelerator (hereafter “linac”); (ii) optimization of alignment for the proton linac, cyclotron and synchrotron; (iii) superconducting magnet; (iv) laser technology. Advanced accelerators for medical applications are categorized into two groups. The first group consists of compact medical linacs with high RF, cyclotrons and synchrotrons downsized by optimization of alignment and superconducting magnets. The second group comprises laser-based acceleration systems aimed of medical applications in the future. Laser plasma electron/ion accelerating systems for cancer therapy and laser dielectric accelerating systems for radiation biology are mentioned. Since the second group has important potential for a compact system, the current status of the established energy and intensity and of the required stability are given.
Advanced Accelerators for Medical Applications
NASA Astrophysics Data System (ADS)
Uesaka, Mitsuru; Koyama, Kazuyoshi
We review advanced accelerators for medical applications with respect to the following key technologies: (i) higher RF electron linear accelerator (hereafter "linac"); (ii) optimization of alignment for the proton linac, cyclotron and synchrotron; (iii) superconducting magnet; (iv) laser technology. Advanced accelerators for medical applications are categorized into two groups. The first group consists of compact medical linacs with high RF, cyclotrons and synchrotrons downsized by optimization of alignment and superconducting magnets. The second group comprises laserbased acceleration systems aimed of medical applications in the future. Laser plasma electron/ion accelerating systems for cancer therapy and laser dielectric accelerating systems for radiation biology are mentioned. Since the second group has important potential for a compact system, the current status of the established energy and intensity and of the required stability are given.
Oxidative stability of egg and soy lecithin as affected by transition metal ions and pH in emulsion.
Wang, Guang; Wang, Tong
2008-12-10
Oxidative stability of egg and soy lecithin in emulsion was evaluated with two transition metal ions, cupric and ferric ion, at two concentration levels (50 and 500 microM). The effect of pH on lipid oxidation was also examined under these two concentrations for each ion. Egg lecithin (EL) had similar peroxide value (PV) development pattern as soy lecithin (SL) when treated with cupric ion under both acidic and neutral pH. Acidic pH of 3 accelerated oxidation of both EL and SL, especially under high concentration of copper. When treated with ferric ion, EL oxidized much faster than SL did. EL had higher value of thiobarbituric acid-reactive substances (TBARS) than SL, possibly because of its higher content of long-chain polyunsaturated fatty acids (PUFA). Acidic pH accelerated TBARS development for both EL and SL, but EL had more significantly increased values. Cupric ion was more powerful than ferric in catalyzing oxidation of both EL and SL under both acidic and neutral pH conditions as measured by PV and TBARS. Linoleic acid may contribute to higher PV production, however, arachidonic acid and docosahexaenoic acid may have contributed more to TBARS production. Overall, SL showed better oxidative stability than EL under the experimental conditions. This study also suggests that using multiple methods is necessary in properly evaluating lipid oxidative stability.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Becker, Peter A.; Das, Santabrata; Le, Truong, E-mail: pbecker@gmu.edu, E-mail: sbdas@iitg.ernet.in, E-mail: truong.le@nhrec.org
2011-12-10
The acceleration of relativistic particles in a viscous accretion disk containing a standing shock is investigated as a possible explanation for the energetic outflows observed around radio-loud black holes. The energy/space distribution of the accelerated particles is computed by solving a transport equation that includes the effects of first-order Fermi acceleration, bulk advection, spatial diffusion, and particle escape. The velocity profile of the accreting gas is described using a model for shocked viscous disks recently developed by the authors, and the corresponding Green's function distribution for the accelerated particles in the disk and the outflow is obtained using a classicalmore » method based on eigenfunction analysis. The accretion-driven, diffusive shock acceleration scenario explored here is conceptually similar to the standard model for the acceleration of cosmic rays at supernova-driven shocks. However, in the disk application, the distribution of the accelerated particles is much harder than would be expected for a plane-parallel shock with the same compression ratio. Hence the disk environment plays a key role in enhancing the efficiency of the shock acceleration process. The presence of the shock helps to stabilize the disk by reducing the Bernoulli parameter, while channeling the excess binding energy into the escaping relativistic particles. In applications to M87 and Sgr A*, we find that the kinetic power in the jet is {approx}0.01 M-dot c{sup 2}, and the outflowing relativistic particles have a mean energy {approx}300 times larger than that of the thermal gas in the disk at the shock radius. Our results suggest that a standing shock may be an essential ingredient in accretion onto underfed black holes, helping to resolve the long-standing problem of the stability of advection-dominated accretion disks.« less
Experimental Investigation of the Near-Wall Region in the NASA HiVHAc EDU2 Hall Thruster
NASA Technical Reports Server (NTRS)
Shastry, Rohit; Kamhawi, Hani; Huang, Wensheng; Haag, Thomas W.
2015-01-01
The HiVHAc propulsion system is currently being developed to support Discovery-class NASA science missions. Presently, the thruster meets the required operational lifetime by utilizing a novel discharge channel replacement mechanism. As a risk reduction activity, an alternative approach is being investigated that modifies the existing magnetic circuit to shift the ion acceleration zone further downstream such that the magnetic components are not exposed to direct ion impingement during the thruster's lifetime while maintaining adequate thruster performance and stability. To measure the change in plasma properties between the original magnetic circuit configuration and the modified, "advanced" configuration, six Langmuir probes were flush-mounted within each channel wall near the thruster exit plane. Plasma potential and electron temperature were measured for both configurations across a wide range of discharge voltages and powers. Measurements indicate that the upstream edge of the acceleration zone shifted downstream by as much as 0.104 channel lengths, depending on operating condition. The upstream edge of the acceleration zone also appears to be more insensitive to operating condition in the advanced configuration, remaining between 0.136 and 0.178 channel lengths upstream of the thruster exit plane. Facility effects studies performed on the original configuration indicate that the plasma and acceleration zone recede further upstream into the channel with increasing facility pressure. These results will be used to inform further modifications to the magnetic circuit that will provide maximum protection of the magnetic components without significant changes to thruster performance and stability.
NASA Technical Reports Server (NTRS)
Stewart, E. C.
1976-01-01
The results of an analytical study of a system using stability derivatives determined in static wind tunnel tests of a 1/6 scale model of a popular, high wing, light airplane equipped with the gust alleviation system are reported. The longitudinal short period mode dynamics of the system are analyzed, and include the following: (1) root loci, (2) airplane frequency responses to vertical gusts, (3) power spectra of the airplane responses in a gust spectrum, (4) time history responses to vertical gusts, and (5) handling characteristics. The system reduces the airplane's normal acceleration response to vertical gusts while simultaneously increasing the pitching response and reducing the damping of the longitudinal short period mode. The normal acceleration response can be minimized by using the proper amount of static alleviation and a fast response system with a moderate amount of damping. The addition of a flap elevator interconnect or a pitch damper system further increases the alleviation while moderating the simultaneous increase in pitching response. The system provides direct lift control and may reduce the stick fixed longitudinal static stability.
NASA Astrophysics Data System (ADS)
Zhou, Tong; Chen, Dong; Liu, Weining
2018-03-01
Based on the full velocity difference and acceleration car-following model, an extended car-following model is proposed by considering the vehicle’s acceleration derivative. The stability condition is given by applying the control theory. Considering some typical traffic environments, the results of theoretical analysis and numerical simulation show the extended model has a more actual acceleration of string vehicles than that of the previous models in starting process, stopping process and sudden brake. Meanwhile, the traffic jams more easily occur when the coefficient of vehicle’s acceleration derivative increases, which is presented by space-time evolution. The results confirm that the vehicle’s acceleration derivative plays an important role in the traffic jamming transition and the evolution of traffic congestion.
Waterman, Kenneth Craig
2011-09-01
An isoconversion paradigm, where times in different temperature and humidity-controlled stability chambers are set to provide a fixed degradant level, is shown to compensate for the complex, non-single order kinetics of solid drug products. A humidity-corrected Arrhenius equation provides reliable estimates for temperature and relative humidity effects on degradation rates. A statistical protocol is employed to determine best fits for chemical stability data, which in turn allows for accurate estimations of shelf life (with appropriate confidence intervals) at any storage condition including inside packaging (based on the moisture vapor transmission rate of the packaging and moisture sorption isotherms of the internal components). These methodologies provide both faster results and far better predictions of chemical stability limited shelf life (expiry) than previously possible. Precise shelf-life estimations are generally determined using a 2-week, product-specific protocol. Once the model for a product is developed, it can play a critical role in providing the product understanding necessary for a quality by design (QbD) filing for product approval and enable rational control strategies to assure product stability. Moreover, this Accelerated Stability Assessment Program (ASAP) enables the coupling of product attributes (e.g., moisture content, packaging options) to allow for flexibility in how control strategies are implemented to provide a balance of cost, speed, and other factors while maintaining adequate stability.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baumgarten, C.; Barchetti, A.; Einenkel, H.
2011-05-15
A compact electron cyclotron resonance proton source has been developed and installed recently at thePaul Scherrer Institute's high intensity proton accelerator. Operation at the ion source test stand and the accelerator demonstrates a high reliability and stability of the new source. When operated at a 10 - 12 mA net proton current the lifetime of the source exceeds 2000 h. The essential development steps towards the observed performance are described.
Chang, Yi-Tzu; Meng, Ling-Fu; Chang, Chun-Ju; Lai, Po-Liang; Lung, Chi-Wen; Chern, Jen-Suh
2017-01-01
Subjective visual vertical (SVV) judgment and standing stability were separately investigated among patients with adolescent idiopathic scoliosis (AIS). Although, one study has investigated the central mechanism of stability control in the AIS population, the relationships between SVV, decreased standing stability, and AIS have never been investigated. Through event-related potentials (ERPs), the present study examined the effect of postural control demands (PDs) on AIS central mechanisms related to SVV judgment and standing stability to elucidate the time-serial stability control process. Thirteen AIS subjects (AIS group) and 13 age-matched adolescents (control group) aged 12-18 years were recruited. Each subject had to complete an SVV task (i.e., the modified rod-and-frame [mRAF] test) as a stimulus, with online electroencephalogram recording being performed in the following three standing postures: feet shoulder-width apart standing, feet together standing, and tandem standing. The behavioral performance in terms of postural stability (center of pressure excursion), SVV (accuracy and reaction time), and mRAF-locked ERPs (mean amplitude and peak latency of the P1, N1, and P2 components) was then compared between the AIS and control groups. In the behavioral domain, the results revealed that only the AIS group demonstrated a significantly accelerated SVV reaction time as the PDs increased. In the cerebral domain, significantly larger P2 mean amplitudes were observed during both feet shoulder-width-apart standing and feet together standing postures compared with during tandem standing. No group differences were noted in the cerebral domain. The results indicated that (1) during the dual-task paradigm, a differential behavioral strategy of accelerated SVV reaction time was observed in the AIS group only when the PDs increased and (2) the decrease in P2 mean amplitudes with the increase in the PD levels might be direct evidence of the competition for central processing attentional resources under the dual-task postural control paradigm.
Chang, Yi-Tzu; Meng, Ling-Fu; Chang, Chun-Ju; Lai, Po-Liang; Lung, Chi-Wen; Chern, Jen-Suh
2017-01-01
Subjective visual vertical (SVV) judgment and standing stability were separately investigated among patients with adolescent idiopathic scoliosis (AIS). Although, one study has investigated the central mechanism of stability control in the AIS population, the relationships between SVV, decreased standing stability, and AIS have never been investigated. Through event-related potentials (ERPs), the present study examined the effect of postural control demands (PDs) on AIS central mechanisms related to SVV judgment and standing stability to elucidate the time-serial stability control process. Thirteen AIS subjects (AIS group) and 13 age-matched adolescents (control group) aged 12–18 years were recruited. Each subject had to complete an SVV task (i.e., the modified rod-and-frame [mRAF] test) as a stimulus, with online electroencephalogram recording being performed in the following three standing postures: feet shoulder-width apart standing, feet together standing, and tandem standing. The behavioral performance in terms of postural stability (center of pressure excursion), SVV (accuracy and reaction time), and mRAF-locked ERPs (mean amplitude and peak latency of the P1, N1, and P2 components) was then compared between the AIS and control groups. In the behavioral domain, the results revealed that only the AIS group demonstrated a significantly accelerated SVV reaction time as the PDs increased. In the cerebral domain, significantly larger P2 mean amplitudes were observed during both feet shoulder-width-apart standing and feet together standing postures compared with during tandem standing. No group differences were noted in the cerebral domain. The results indicated that (1) during the dual-task paradigm, a differential behavioral strategy of accelerated SVV reaction time was observed in the AIS group only when the PDs increased and (2) the decrease in P2 mean amplitudes with the increase in the PD levels might be direct evidence of the competition for central processing attentional resources under the dual-task postural control paradigm. PMID:28713252
Dynamic stabilization of an optomechanical oscillator
2014-10-20
respectively. The proper frequency of the pendulum is ω0 = √ g/, where g is the gravitational acceleration and is the length of the pendulum . The...controlled experiments. In this paper we discuss one such situation, the dynamic stabilization of a mechanical system such as an inverted pendulum . The...quantumoptomechanics, macroscopic quantum system, dynamic stabilization, Kapitza pendulum REPORT DOCUMENTATION PAGE 11. SPONSOR/MONITOR’S REPORT NUMBER(S
Instability of a witness bunch in a plasma bubble
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burov, A.; Lebedev, V.; Nagaitsev, S.
2016-02-16
The stability of a trailing witness bunch, accelerated by a plasma wake accelerator (PWA) in a blow-out regime, is discussed. The instability growth rate as well as the energy spread, required for BNS damping, are obtained. A relationship between the PWA power efficiency and the BNS energy spread is derived.
Acceleration and torque feedback for robotic control - Experimental results
NASA Technical Reports Server (NTRS)
Mclnroy, John E.; Saridis, George N.
1990-01-01
Gross motion control of robotic manipulators typically requires significant on-line computations to compensate for nonlinear dynamics due to gravity, Coriolis, centripetal, and friction nonlinearities. One controller proposed by Luo and Saridis avoids these computations by feeding back joint acceleration and torque. This study implements the controller on a Puma 600 robotic manipulator. Joint acceleration measurement is obtained by measuring linear accelerations of each joint, and deriving a computationally efficient transformation from the linear measurements to the angular accelerations. Torque feedback is obtained by using the previous torque sent to the joints. The implementation has stability problems on the Puma 600 due to the extremely high gains inherent in the feedback structure. Since these high gains excite frequency modes in the Puma 600, the algorithm is modified to decrease the gain inherent in the feedback structure. The resulting compensator is stable and insensitive to high frequency unmodeled dynamics. Moreover, a second compensator is proposed which uses acceleration and torque feedback, but still allows nonlinear terms to be fed forward. Thus, by feeding the increment in the easily calculated gravity terms forward, improved responses are obtained. Both proposed compensators are implemented, and the real time results are compared to those obtained with the computed torque algorithm.
Developments in Understanding Stability as Applied to Magnetic Levitated Launch Assist
NASA Technical Reports Server (NTRS)
Gering, James A.
2002-01-01
Magnetic levitation is a promising technology, with the potential of constituting the first stage of a third generation space transportation system. Today, the Space Shuttle burns on the order of one million pounds of solid rocket propellant to bring the orbiter and external tank to nearly Mach 1 (1,000 kph). Imagine the reductions in launch vehicle weight, complexity and risk if an aerospace vehicle could be accelerated to the same speed utilizing about $1,000 of off-board electrical energy stored in flywheels. After over two decades of development, maglev trains travel on full-scale demonstration tracks in Germany and Japan reaching speeds approaching 500 kph. Encouraging as this may appear, the energy and power required to accelerate a 1 million pound launch vehicle to 1,000 kph would radically redefine the state-of-the-art in electrical energy storage and delivery. Reaching such a goal will require levitation with sufficient stability to withstand an operating environment fundamentally different from that of a high-speed train. Recently NASA let contracts for the construction of three maglev demonstration tracks. This construction and several associated trade studies represent a first-order investigation into the feasibility of maglev launch assist. This report provides a review of these efforts, other government sponsored maglev projects and additional technical literature pertinent to maglev stability. This review brings to light details and dimensions of the maglev stability problem which are not found in previous NASA-sponsored trade studies and which must be addressed in order to realize magnetic levitation as a launch assist technology.
Scaling fixed-field alternating gradient accelerators with a small orbit excursion.
Machida, Shinji
2009-10-16
A novel scaling type of fixed-field alternating gradient (FFAG) accelerator is proposed that solves the major problems of conventional scaling and nonscaling types. This scaling FFAG accelerator can achieve a much smaller orbit excursion by taking a larger field index k. A triplet focusing structure makes it possible to set the operating point in the second stability region of Hill's equation with a reasonable sensitivity to various errors. The orbit excursion is about 5 times smaller than in a conventional scaling FFAG accelerator and the beam size growth due to typical errors is at most 10%.
Indirect check of the stability of the reference ion chamber used for accelerator output calibration
NASA Astrophysics Data System (ADS)
Kang, Sei-Kwon; Yoon, Jai-Woong; Park, Soah; Hwang, Taejin; Cheong, Kwang-Ho; Han, Tae Jin; Kim, Haeyoung; Lee, Me-Yeon; Kim, Kyoung Ju; Bae, Hoonsik
2014-11-01
A linear accelerator's output is periodically checked by using a reference ion chamber which is also periodically calibrated at the accredited standard dosimetry laboratories. We suggest a simple procedure for checking the chamber's stability between calibrations by comparison with another ion chamber. To identify the long-term stability of chambers, we collected and assessed the dose-to-water conversion factors provided by standard laboratories for three chambers during a period of four years. To develop the chamber constancy check program, we used one Farmer-type reference ion chamber FC65-G, two ion chambers (CC13a and CC13b) and one CC01 ion chamber (IBA). Under the accelerator, each chamber was placed inside the solid phantom and irradiated; the experimental configurations were identical. To check the variation in charge collection of the reference chamber, we monitored the ratios of the FC65-G values over each chamber reading. Based on the error propagation of the two chamber ratios, we estimated the uncertainty of the output calibration from the chamber variation. The calibration factors provided for the three chambers showed 0.04 ˜ 0.12% standard deviations during four years. For procedure development, the reading ratios of FC65-G over CCxx showed very good stability; the ratios of FC65-G over CC13a, CC13b and CC01 varied less than 0.059, 0.087 and 0.248%, respectively, over five measurements. By ascribing possible uncertainties of the ratio to the reference chamber alone, we could conservatively check the stability of the reference chamber for treatment safety. An extension of the chamber calibration period was also evaluated. In conclusion, we designed a stability check procedure for the reference chamber based on a reading ratio of two chambers. This could help the user assess the chamber stability between periodic chamber calibration, and the associated patient treatment could be carried out with enhanced safety.
Chokshi, Rina J; Zia, Hossein; Sandhu, Harpreet K; Shah, Navnit H; Malick, Waseem A
2007-01-01
The solid dispersions with poloxamer 188 (P188) and solid solutions with polyvinylpyrrolidone K30 (PVPK30) were evaluated and compared in an effort to improve aqueous solubility and bioavailability of a model hydrophobic drug. All preparations were characterized by differential scanning calorimetry, powder X-ray diffraction, intrinsic dissolution rates, and contact angle measurements. Accelerated stability studies also were conducted to determine the effects of aging on the stability of various formulations. The selected solid dispersion and solid solution formulations were further evaluated in beagle dogs for in vivo testing. Solid dispersions were characterized to show that the drug retains its crystallinity and forms a two-phase system. Solid solutions were characterized to be an amorphous monophasic system with transition of crystalline drug to amorphous state. The evaluation of the intrinsic dissolution rates of various preparations indicated that the solid solutions have higher initial dissolution rates compared with solid dispersions. However, after storage at accelerated conditions, the dissolution rates of solid solutions were lower due to partial reversion to crystalline form. The drug in solid dispersion showed better bioavailability in comparison to solid solution. Therefore, considering physical stability and in vivo study results, the solid dispersion was the most suitable choice to improve dissolution rates and hence the bioavailability of the poorly water soluble drug.
Acceleration constraints in modeling and control of nonholonomic systems
NASA Astrophysics Data System (ADS)
Bajodah, Abdulrahman H.
2003-10-01
Acceleration constraints are used to enhance modeling techniques for dynamical systems. In particular, Kane's equations of motion subjected to bilateral constraints, unilateral constraints, and servo-constraints are modified by utilizing acceleration constraints for the purpose of simplifying the equations and increasing their applicability. The tangential properties of Kane's method provide relationships between the holonomic and the nonholonomic partial velocities, and hence allow one to describe nonholonomic generalized active and inertia forces in terms of their holonomic counterparts, i.e., those which correspond to the system without constraints. Therefore, based on the modeling process objectives, the holonomic and the nonholonomic vector entities in Kane's approach are used interchangeably to model holonomic and nonholonomic systems. When the holonomic partial velocities are used to model nonholonomic systems, the resulting models are full-order (also called nonminimal or unreduced) and separated in accelerations. As a consequence, they are readily integrable and can be used for generic system analysis. Other related topics are constraint forces, numerical stability of the nonminimal equations of motion, and numerical constraint stabilization. Two types of unilateral constraints considered are impulsive and friction constraints. Impulsive constraints are modeled by means of a continuous-in-velocities and impulse-momentum approaches. In controlled motion, the acceleration form of constraints is utilized with the Moore-Penrose generalized inverse of the corresponding constraint matrix to solve for the inverse dynamics of servo-constraints, and for the redundancy resolution of overactuated manipulators. If control variables are involved in the algebraic constraint equations, then these tools are used to modify the controlled equations of motion in order to facilitate control system design. An illustrative example of spacecraft stabilization is presented.
The Effect of Stereotype Threat on Performance of a Rhythmic Motor Skill
Huber, Meghan E.; Seitchik, Allison E.; Brown, Adam J.; Sternad, Dagmar; Harkins, Stephen G.
2015-01-01
Many studies using cognitive tasks have found that stereotype threat, or concern about confirming a negative stereotype about one's group, debilitates performance. The few studies that documented similar effects on sensorimotor performance have used only relatively coarse measures to quantify performance. Three experiments tested the effect of stereotype threat on a rhythmic ball bouncing task, both at the novice and skilled level. Previous analysis of the task dynamics afforded more detailed quantification of the effect of threat on motor control. In this task, novices hit the ball with positive racket acceleration, indicative of unstable performance. With practice, they learn to stabilize error by changing their ball-racket impact from positive to negative acceleration. Results showed that for novices, stereotype threat potentiated hitting the ball with positive racket acceleration, leading to poorer performance of stigmatized females. However, when the threat manipulation was delivered after having acquired some skill, reflected by negative racket acceleration, the stigmatized females performed better. These findings are consistent with the mere effort account that argues that stereotype threat potentiates the most likely response on the given task. The study also demonstrates the value of identifying the control mechanisms through which stereotype threat has its effects on outcome measures. PMID:25706769
Netto MPharm, Gladyston; Jose, Jobin
2017-12-10
Most of the sunscreen formulations mainly contain chemicals or synthetic molecules. Nowadays, researchers are mainly focussing on herbal formulations due to toxicity of the synthetic molecules. Silymarin is a natural flavonoids having excellent antioxidant properties. Solid lipid nanoparticles are novel drug carriers which improve the drug stability and tolerance effect and also enhance the permeation effect. This study aimed at the preparation of solid lipid nanoparticles containing silymarin that will be incorporated into a sunscreen cream and determine its sun protection factor. The solid lipid nanoparticles were prepared by micro-emulsion method; here, the glyceryl monostearate was used as lipid, and Tween 80 was used as an emulsifier. The solid lipid nanoparticles were evaluated for drug entrapment, particle size and morphology, zeta potential, and polydispersity index. The dispersion was formulated into sunscreen cream and evaluated for various parameters, such as extrudability, viscosity, spreadability, drug content, in vitro drug release, ex vivo permeation of drug, in vitro and in vivo sun protection factor determination, in vivo skin irritation test, and accelerated stability studies. The results suggested that as the concentration of emulsifier increased, the entrapment efficiency of silymarin increased. In vitro and in vivo sun protection factor determination showed that SPF of 13.80 and 14.1, respectively. Stability studies were performed under accelerated conditions, and it did not show any appreciable change in parameters. These results indicated that the sunscreen containing silymarin solid lipid nanoparticles exhibited better photoprotective action. © 2017 Wiley Periodicals, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mohanty, Angela D.; Tignor, Steven E.; Sturgeon, Matthew R.
2017-01-01
The increased interest in the use of anion exchange membranes (AEMs) for applications in electrochemical devices has prompted significant efforts in designing materials with robust stability in alkaline media. Most reported AEMs suffer from polymer backbone degradation as well as cation functional group degradation. In this report, we provide comprehensive experimental investigations for the analysis of cation functional group stability under alkaline media. A silver oxide-mediated ion exchange method and an accelerated stability test in aqueous KOH solutions at elevated temperatures using a Parr reactor were used to evaluate a broad scope of quaternary ammonium (QA) cationic model compound structures,more » particularly focusing on alkyl-tethered cations. Additionally, byproduct analysis was employed to gain better understanding of degradation pathways and trends of alkaline stability. Experimental results under different conditions gave consistent trends in the order of cation stability of various QA small molecule model compounds. Overall, cations that are benzyl-substituted or that are near to electronegative atoms (such as oxygen) degrade faster in alkaline media in comparison to alkyl-tethered QAs. These comprehensive model compound stability studies provide valuable information regarding the relative stability of various cation structures and can help guide researchers towards designing new and promising candidates for AEM materials.« less
NASA Technical Reports Server (NTRS)
Wu, Xiaolin; Delgado, Guillermo; Krishnamurthy, Ramanarayanan; Eschenmoser, Albert
2003-01-01
Replacement of adenine by 2,6-diaminopurine-two nucleobases to be considered equivalent from an etlological point of view-strongly enhances the stability of TNA/TNA, TNA/RNA, or TNA/DNA duplexes and efficiently accelerates template-directed ligation of TNA ligands.
Long-term physical and oxidative stability of liposomes containing glycerides of lipoic acid
USDA-ARS?s Scientific Manuscript database
The acyl glycerides of lipoic and dihydrolipoic acids may serve as slow-release sources for cutaneous delivery of these antioxidants when formulated in a liposomal vehicle. Accelerated storage testing was conducted to determine the storage stability of the lipoic derivatives and of the soybean phosp...
On the Stability of a Can of Soda
ERIC Educational Resources Information Center
Benesh, G. A.; Olafsen, J. S.
2014-01-01
Stability is often an important consideration in both static and dynamic systems. While introductory students soon grasp the balance of forces required for constant velocity motion, it generally takes longer for them to reliably identify the various torques involved in producing rotational equilibrium. Accelerating systems have the additional…
NASA Astrophysics Data System (ADS)
Ma, Wei; Lu, Liang; Xu, Xianbo; Sun, Liepeng; Zhang, Zhouli; Dou, Weiping; Li, Chenxing; Shi, Longbo; He, Yuan; Zhao, Hongwei
2017-03-01
An 81.25 MHz continuous wave (CW) radio frequency quadrupole (RFQ) accelerator has been designed for the Low Energy Accelerator Facility (LEAF) at the Institute of Modern Physics (IMP) of the Chinese Academy of Science (CAS). In the CW operating mode, the proposed RFQ design adopted the conventional four-vane structure. The main design goals are providing high shunt impendence with low power losses. In the electromagnetic (EM) design, the π-mode stabilizing loops (PISLs) were optimized to produce a good mode separation. The tuners were also designed and optimized to tune the frequency and field flatness of the operating mode. The vane undercuts were optimized to provide a flat field along the RFQ cavity. Additionally, a full length model with modulations was set up for the final EM simulations. Following the EM design, thermal analysis of the structure was carried out. In this paper, detailed EM design and thermal simulations of the LEAF-RFQ will be presented and discussed. Structure error analysis was also studied.
Chromaticity of the lattice and beam stability in energy recovery linacs
NASA Astrophysics Data System (ADS)
Litvinenko, Vladimir N.
2012-07-01
Energy recovery linacs (ERLs) are an emerging generation of accelerators that promises to revolutionize the fields of high-energy physics and photon sciences. These accelerators combine the advantages of linear accelerators with that of storage rings, and augur the delivery of electron beams of unprecedented power and quality. The use of superconducting radio-frequency cavities converts ERLs into nearly perfect “perpetuum mobile” accelerators, wherein the beam is accelerated to the desired energy, used, and then yields the energy back to the rf field. However, one potential weakness of these devices is transverse beam breakup instability that could severely limit the available beam current. In this paper, I propose a novel method of suppressing these dangerous effects via a natural phenomenon in the accelerators, viz., the chromaticity of the transverse motion.
Stability analysis of unsteady ablation fronts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Betti, R.; McCrory, R.L.; Verdon, C.P.
1993-08-01
The linear stability analysis of unsteady ablation fronts, is carried out for a semi-infinite uniform medium. For a laser accelerated target, it is shown that a properly selected modulation of the laser intensity can lead to the dynamic stabilization or growth-rate reduction of a large portion of the unstable spectrum. The theory is in qualitative agreement with the numerical results obtained by using the two-dimensional hydrodynamic code ORCHID.
Stability analysis of unsteady ablation fronts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Betti, R.; McCrory, R.L.; Verdon, C.P.
1993-11-08
The linear stability analysis of unsteady ablation fronts is carried out for a semi-infinite uniform medium. For a laser accelerated target, it is shown that a properly selected modulation of the laser intensity can lead to the dynamic stabilization or growth-rate reduction of a large portion of the unstable spectrum. The theory is in qualitative agreement with the numerical results obtained by using the two-dimensional hydrodynamic code ORCHID.
Investigation of the aerothermodynamics of hypervelocity reacting flows in the ram accelerator
NASA Technical Reports Server (NTRS)
Hertzberg, A.; Bruckner, A. P.; Mattick, A. T.; Knowlen, C.
1992-01-01
New diagnostic techniques for measuring the high pressure flow fields associated with high velocity ram accelerator propulsive modes was experimentally investigated. Individual propulsive modes are distinguished by their operating Mach number range and the manner in which the combustion process is initiated and stabilized. Operation of the thermally choked ram accelerator mode begins by injecting the projectile into the accelerator tube at a prescribed entrance velocity by means of a conventional light gas gun. A specially designed obturator, which is used to seal the bore of the gun, plays a key role in the ignition of the propellant gases in the subsonic combustion mode of the ram accelerator. Once ignited, the combustion process travels with the projectile and releases enough heat to thermally choke the flow within several tube diameters behind it, thereby stabilizing a high pressure zone on the rear of the projectile. When the accelerating projectile approaches the Chapman-Jouguet detonation speed of the propellant mixture, the combustion region is observed to move up onto the afterbody of the projectile as the pressure field evolves to a distinctively different form that implies the presence of supersonic combustion processes. Eventually, a high enough Mach number is reached that the ram effect is sufficient to cause the combustion process to occur entirely on the body. Propulsive cycles utilizing on-body heat release can be established either by continuously accelerating the projectile in a single propellant mixture from low initial in-tube Mach numbers (M less than 4) or by injecting the projectile at a speed above the propellant's Chapman-Jouguet detonation speed. The results of experimental and theoretical explorations of ram accelerator gas dynamic phenomena and the effectiveness of the new diagnostic techniques are presented in this report.
Exploration of ethyl anthranilate-loaded monolithic matrix-type prophylactic polymeric patch.
Islam, Johirul; Zaman, Kamaruz; Chakrabarti, Srijita; Bora, Nilutpal Sharma; Pathak, Manash Pratim; Mandal, Santa; Junejo, Julfikar Ali; Chattopadhyay, Pronobesh
2017-10-01
Compromised stability of pharmaceutical formulations loaded with volatiles is a serious problem associated with devices designed to deliver volatile compounds. The present study has been focused to evaluate the stability potential of matrix-type polymeric patches composed of volatile ethyl anthranilate for prophylaxis against vector-borne diseases. Ethyl anthranilate-loaded matrix-type polymeric patches were fabricated by solvent evaporation method on an impermeable backing membrane and attached to temporary release liners. Stability testing of the polymeric patches was performed as per the International Conference on Harmonization (ICH) guidelines for 6 months under accelerated conditions. In addition, the quantification of residual solvents was also performed as per the ICH guidelines. After conducting the stability studies for 6 months, the optimized patches showed the best possible results with respect to uniformity of drug content, physical appearance, and other analytical parameters. Furthermore, the amount of residual solvent was found well below the accepted limit. Thus, the present report outlined the analytical parameters to be evaluated to ensure the stability of a certain devices consisting of volatile compounds. Copyright © 2016. Published by Elsevier B.V.
Impact of excipient interactions on solid dosage form stability.
Narang, Ajit S; Desai, Divyakant; Badawy, Sherif
2012-10-01
Drug-excipient interactions in solid dosage forms can affect drug product stability in physical aspects such as organoleptic changes and dissolution slowdown, or chemically by causing drug degradation. Recent research has allowed the distinction in chemical instability resulting from direct drug-excipient interactions and from drug interactions with excipient impurities. A review of chemical instability in solid dosage forms highlights common mechanistic themes applicable to multiple degradation pathways. These common themes include the role of water and microenvironmental pH. In addition, special aspects of solid-state reactions with excipients and/or excipient impurities add to the complexity in understanding and modeling reaction pathways. This paper discusses mechanistic basis of known drug-excipient interactions with case studies and provides an overview of common underlying themes. Recent developments in the understanding of degradation pathways further impact methodologies used in the pharmaceutical industry for prospective stability assessment. This paper discusses these emerging aspects in terms of limitations of drug-excipient compatibility studies, emerging paradigms in accelerated stability testing, and application of mathematical modeling for prediction of drug product stability.
Enhanced switching stability in Ta2O5 resistive RAM by fluorine doping
NASA Astrophysics Data System (ADS)
Sedghi, N.; Li, H.; Brunell, I. F.; Dawson, K.; Guo, Y.; Potter, R. J.; Gibbon, J. T.; Dhanak, V. R.; Zhang, W. D.; Zhang, J. F.; Hall, S.; Robertson, J.; Chalker, P. R.
2017-08-01
The effect of fluorine doping on the switching stability of Ta2O5 resistive random access memory devices is investigated. It shows that the dopant serves to increase the memory window and improve the stability of the resistive states due to the neutralization of oxygen vacancies. The ability to alter the current in the low resistance state with set current compliance coupled with large memory window makes multilevel cell switching more favorable. The devices have set and reset voltages of <1 V with improved stability due to the fluorine doping. Density functional modeling shows that the incorporation of fluorine dopant atoms at the two-fold O vacancy site in the oxide network removes the defect state in the mid bandgap, lowering the overall density of defects capable of forming conductive filaments. This reduces the probability of forming alternative conducting paths and hence improves the current stability in the low resistance states. The doped devices exhibit more stable resistive states in both dc and pulsed set and reset cycles. The retention failure time is estimated to be a minimum of 2 years for F-doped devices measured by temperature accelerated and stress voltage accelerated retention failure methods.
NASA Astrophysics Data System (ADS)
Shin, Dongwon; Han, Myungseong; Shul, Yong-Gun; Lee, Hyejin; Bae, Byungchan
2018-02-01
The oxidative stability of membranes constructed from a composite of pristine sulfonated poly(arylene ether sulfone) and cerium was investigated by conducting an accelerated oxidative-stability test at the open-circuit voltage (OCV). The membranes were analyzed in situ through OCV and impedance measurements, cyclic voltammetry, and linear-sweep voltammetry to monitor the electrochemical properties during the stability test. Although the high-frequency resistance of a composite membrane was slightly higher than that of a pristine membrane because of the exchange of protons from the sulfonic acid with cerium ions, the composite membrane maintained its potential for much longer than the pristine membrane. The effect of the cerium ions as radical scavengers was confirmed by analyzing the drain water and chemical structure after operation. These post-operation analyses confirmed that cerium ions improved the oxidative stability of the hydrocarbon-based polymer during fuel-cell operation. It is clear that the cerium-based radical scavengers prevented chemical degradation of the polymer membrane as well as the electrode in terms of hydrogen cross-over, polymer-chain scission, and the electrochemical surface area, while they rarely diffused outward from the membrane.
Drive beam stabilisation in the CLIC Test Facility 3
NASA Astrophysics Data System (ADS)
Malina, L.; Corsini, R.; Persson, T.; Skowroński, P. K.; Adli, E.
2018-06-01
The proposed Compact Linear Collider (CLIC) uses a high intensity, low energy drive beam to produce the RF power needed to accelerate a lower intensity main beam with 100 MV/m gradient. This scheme puts stringent requirements on drive beam stability in terms of phase, energy and current. The consequent experimental work was carried out in CLIC Test Facility CTF3. In this paper, we present a novel analysis technique in accelerator physics to find beam drifts and their sources in the vast amount of the continuously gathered signals. The instability sources are identified and adequately mitigated either by hardware improvements or by implementation and commissioning of various feedbacks, mostly beam-based. The resulting drive beam stability is of 0.2°@ 3 GHz in phase, 0.08% in relative beam energy and about 0.2% beam current. Finally, we propose a stabilisation concept for CLIC to guarantee the main beam stability.
NASA Astrophysics Data System (ADS)
Davis, L. C.
2013-09-01
A model that includes the mechanical response of a vehicle to a demanded change in acceleration is analyzed to determine the string stability of a platoon of autonomous vehicles. The response is characterized by a first-order time constant τ and an explicit delay td. The minimum value of the acceleration feedback control gain is found from calculations of the velocity of vehicles following a lead vehicle that decelerates sharply from high speed to low speed. Larger values of ξ (in the stable range) give larger values of deceleration for vehicles in the platoon. Optimal operation is attained close to the minimum value of ξ for stability. Small oscillations are found after the main peak in deceleration for ξ in the stable region but near the transition to instability. A theory for predicting the frequency and amplitude of the oscillations is presented.
Gravitational modulation of thermosolutal convection during directional solidification
NASA Astrophysics Data System (ADS)
Murray, B. T.; Coriell, S. R.; McFadden, G. B.; Wheeler, A. A.; Saunders, B. V.
1993-03-01
During directional solidification of a binary alloy at constant velocity, thermosolutal convection may occur due to the temperature and solute gradients associated with the solidification process. For vertical growth in an ideal furnace (lacking horizontal gradients) a quiescent state is possible. The effect of a time-periodic vertical gravitational acceleration (or equivalently vibration) on the onset of thermosolutal convection is calculated based on linear stability using Floquet theory. Numerical calculations for the onset of instability have been carried out for a semiconductor alloy with Schmidt number of 10 and Prandtl number of 0.1 with primary emphasis on large modulation frequencies in a microgravity environment for which the background gravitational acceleration is negligible. The numerical results demonstrate that there is a significant difference in stability depending on whether a heavier or lighter solute is rejected. For large modulation frequencies, the stability behavior can be described by either the method of averaging or an asymptotic resonant mode analysis.
NASA Astrophysics Data System (ADS)
Abbasi, Mahboube; Amiri, Razieh; Bordbar, Abdol-Kalegh; Ranjbakhsh, Elnaz; Khosropour, Ahmad-Reza
2016-02-01
Immobilized proteins and enzymes are widely investigated in the medical field as well as the food and environmental fields. In this study, glucose oxidase (GOX) was covalently immobilized on the surface of modified iron oxide magnetic nanoparticles (MIMNs) to produce a bioconjugate complex. Transmission electron microscopy (TEM) and X-ray diffraction (XRD) were used to the size, shape and structure characterization of the MIMNs. Binding of GOX to these MIMNs was confirmed by using FT-IR spectroscopy. The stability of the immobilized and free enzyme at different temperature and pH values was investigated by measuring the enzymatic activity. These studies reveal that the enzyme's stability is enhanced by immobilization. Further experiments showed that the storage stability of the enzyme is improved upon binding to the MIMNs. The results of kinetic measurements suggest that the effect of the immobilization process on substrate and product diffusion is small. Such bioconjugates can be considered as a catalytic nanodevice for accelerating the glucose oxidation reaction for biotechnological purposes.
Lesniewska, Monika A; Dereziński, Paweł; Klupczyńska, Agnieszka; Kokot, Zenon J; Ostrowski, Tomasz; Zeidler, Joanna; Muszalska, Izabela
2015-01-01
The degradation behavior of a tricyclic analog of acyclovir [6-(4-MeOPh)-TACV] was determined in accordance with International Conference on Harmonization guidelines for good clinical practice under different stress conditions (neutral hydrolysis, strong acid/base degradation, oxidative decomposition, photodegradation, and thermal degradation). Accelerated [40±2°C/75%±5% relative humidity (RH)] and intermediate (30±2°C/65%±5% RH) stability tests were also performed. For observation of the degradation of the tested compound the RP-HPLC was used, whereas for the analysis of its degradation products HPLC/MS/MS was used. Degradation of the tested substance allowed its classification as unstable in neutral environment, acidic/alkaline medium, and in the presence of oxidizing agent. The tested compound was also light sensitive and was classified as photolabile both in solution and in the solid phase. However, the observed photodegradation in the solid phase was at a much lower level than in the case of photodegradation in solution. The study showed that both air temperature and RH had no significant effect on the stability of the tested substance during storage for 1 month at 100°C (dry heat) as well as during accelerated and intermediate tests. Based on the HPLC/MS/MS analysis, it can be concluded that acyclovir was formed as a degradation product of 6-(4-MeOPh)-TACV.
NASA Technical Reports Server (NTRS)
Nelms, W. P., Jr.; Axelson, J. A.
1974-01-01
A computerized synthesis program has been used to assess the effects of various vehicle and mission parameters on the performance of a highly maneuverable remotely piloted vehicle (RPV) for the air-to-air combat role. The configuration used in the study is a trapezoidal-wing and body concept, with forward-mounted stabilizing and control surfaces. The study mission consists of an outbound cruise, an acceleration phase, a series of subsonic and supersonic turns, and a return cruise. Performance is evaluated in terms of both the required vehicle weight to accomplish this mission and combat effectiveness as measured by turning and acceleration capability. The report describes the synthesis program, the mission, the vehicle, and the results of sensitivity and trade studies.
Cell Cycle Regulates Nuclear Stability of AID and Determines the Cellular Response to AID
Le, Quy; Maizels, Nancy
2015-01-01
AID (Activation Induced Deaminase) deaminates cytosines in DNA to initiate immunoglobulin gene diversification and to reprogram CpG methylation in early development. AID is potentially highly mutagenic, and it causes genomic instability evident as translocations in B cell malignancies. Here we show that AID is cell cycle regulated. By high content screening microscopy, we demonstrate that AID undergoes nuclear degradation more slowly in G1 phase than in S or G2-M phase, and that mutations that affect regulatory phosphorylation or catalytic activity can alter AID stability and abundance. We directly test the role of cell cycle regulation by fusing AID to tags that destabilize nuclear protein outside of G1 or S-G2/M phases. We show that enforced nuclear localization of AID in G1 phase accelerates somatic hypermutation and class switch recombination, and is well-tolerated; while nuclear AID compromises viability in S-G2/M phase cells. We identify AID derivatives that accelerate somatic hypermutation with minimal impact on viability, which will be useful tools for engineering genes and proteins by iterative mutagenesis and selection. Our results further suggest that use of cell cycle tags to regulate nuclear stability may be generally applicable to studying DNA repair and to engineering the genome. PMID:26355458
NASA Astrophysics Data System (ADS)
Rout, Bibhudutta; Dhoubhadel, Mangal S.; Poudel, Prakash R.; Kummari, Venkata C.; Pandey, Bimal; Deoli, Naresh T.; Lakshantha, Wickramaarachchige J.; Mulware, Stephen J.; Baxley, Jacob; Manuel, Jack E.; Pacheco, Jose L.; Szilasi, Szabolcs; Weathers, Duncan L.; Reinert, Tilo; Glass, Gary A.; Duggan, Jerry L.; McDaniel, Floyd D.
2013-07-01
The Ion Beam Modification and Analysis Laboratory (IBMAL) at the University of North Texas includes several accelerator facilities with capabilities of producing a variety of ion beams from tens of keV to several MeV in energy. The four accelerators are used for research, graduate and undergraduate education, and industrial applications. The NEC 3MV Pelletron tandem accelerator has three ion sources for negative ions: He Alphatross and two different SNICS-type sputter ion sources. Presently, the tandem accelerator has four high-energy beam transport lines and one low-energy beam transport line directly taken from the negative ion sources for different research experiments. For the low-energy beam line, the ion energy can be varied from ˜20 to 80 keV for ion implantation/modification of materials. The four post-acceleration beam lines include a heavy-ion nuclear microprobe; multi-purpose PIXE, RBS, ERD, NRA, and broad-beam single-event upset; high-energy ion implantation line; and trace-element accelerator mass spectrometry. The NEC 3MV single-ended Pelletron accelerator has an RF ion source mainly for hydrogen, helium and heavier inert gases. We recently installed a capacitive liner to the terminal potential stabilization system for high terminal voltage stability and high-resolution microprobe analysis. The accelerator serves a beam line for standard RBS and RBS/C. Another beamline for high energy focused ion beam application using a magnetic quadrupole lens system is currently under construction. This beam line will also serve for developmental work on an electrostatic lens system. The third accelerator is a 200 kV Cockcroft-Walton accelerator with an RF ion source. The fourth accelerator is a 2.5 MV Van de Graaff accelerator, which was in operation for last several decades is currently planned to be used mainly for educational purpose. Research projects that will be briefly discussed include materials synthesis/modification for photonic, electronic, and magnetic applications, surface sputtering and micro-fabrication of materials, development of high-energy ion microprobe systems, and educational and outreach activities.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rout, Bibhudutta; Dhoubhadel, Mangal S.; Poudel, Prakash R.
2013-07-03
The Ion Beam Modification and Analysis Laboratory (IBMAL) at the University of North Texas includes several accelerator facilities with capabilities of producing a variety of ion beams from tens of keV to several MeV in energy. The four accelerators are used for research, graduate and undergraduate education, and industrial applications. The NEC 3MV Pelletron tandem accelerator has three ion sources for negative ions: He Alphatross and two different SNICS-type sputter ion sources. Presently, the tandem accelerator has four high-energy beam transport lines and one low-energy beam transport line directly taken from the negative ion sources for different research experiments. Formore » the low-energy beam line, the ion energy can be varied from {approx}20 to 80 keV for ion implantation/modification of materials. The four post-acceleration beam lines include a heavy-ion nuclear microprobe; multi-purpose PIXE, RBS, ERD, NRA, and broad-beam single-event upset; high-energy ion implantation line; and trace-element accelerator mass spectrometry. The NEC 3MV single-ended Pelletron accelerator has an RF ion source mainly for hydrogen, helium and heavier inert gases. We recently installed a capacitive liner to the terminal potential stabilization system for high terminal voltage stability and high-resolution microprobe analysis. The accelerator serves a beam line for standard RBS and RBS/C. Another beamline for high energy focused ion beam application using a magnetic quadrupole lens system is currently under construction. This beam line will also serve for developmental work on an electrostatic lens system. The third accelerator is a 200 kV Cockcroft-Walton accelerator with an RF ion source. The fourth accelerator is a 2.5 MV Van de Graaff accelerator, which was in operation for last several decades is currently planned to be used mainly for educational purpose. Research projects that will be briefly discussed include materials synthesis/modification for photonic, electronic, and magnetic applications, surface sputtering and micro-fabrication of materials, development of high-energy ion microprobe systems, and educational and outreach activities.« less
Effect of radiation, heat, and aging on in vitro wear resistance of polyethylene.
Muratoglu, Orhun K; Merrill, Edward W; Bragdon, Charles R; O'Connor, Daniel; Hoeffel, Daniel; Burroughs, Brian; Jasty, Murali; Harris, William H
2003-12-01
Radiation cross-linking increases the wear resistance of polyethylene used in total hip replacement. Radiation also generates residual free radicals, which are detrimental to long-term properties of polyethylene. Two approaches are used to stabilize the residual free radicals and terminally sterilize the components. One is postirradiation annealing with gas sterilization and the other is postirradiation melting with gamma sterilization in nitrogen. The hypothesis of the current study is that postirradiation annealing followed by gamma sterilization in nitrogen will result in more free radicals in polyethylene than gamma sterilization either in air or in nitrogen alone. To test this hypothesis, concentration of residual free radicals was quantified in polyethylene that was annealed and gamma sterilized in nitrogen and control polyethylenes gamma sterilized in air versus in nitrogen. Three crosslinked polyethylenes that were melted and gas sterilized also were included in the study. The effects of residual free radicals were studied by accelerated aging. Oxidation levels and weight loss in bidirectional pin-on-disk tests were determined before and after aging. Polyethylene that was subjected to postirradiation annealing and gamma sterilization resulted in 58% more residual free radicals than control polyethylenes. Weight loss of the annealed polyethylene increased by 16-fold on accelerated aging and had three times higher oxidation levels than that measured in control polyethylenes after aging. In contrast, polyethylenes that were stabilized with postirradiation melting and terminally gas sterilized showed no detectable residual free radicals. Accelerated aging did not affect the weight loss and oxidation levels of melted polyethylenes.
Li, Xuechao; Peng, Huanhuan; Tian, Bin; Gou, Jingxin; Yao, Qing; Tao, Xiaoguang; He, Haibing; Zhang, Yu; Tang, Xing; Cai, Cuifang
2015-01-01
The main purpose of this study was to investigate the feasibility of azithromycin (AZI)--Aerosil 200 solid dispersions specifically with high stability under accelerated condition (40 °C/75% RH). Ball milling (BM) and hot-melt extrusion (HME) were used to prepare AZI solid dispersions. The physical properties of solid dispersions were evaluated by differential scanning calorimetry (DSC), scanning electron microscopy (SEM), powder X-ray diffraction (PXRD), Fourier transform infrared spectroscopy (FT-IR) and thermogravimetric analysis (TGA). For solid dispersions prepared with both methods, no crystalline of AZI was detected (except for AZI: Aerosil 200=75:25) by DSC or PXRD, indicating the amorphous state of AZI in solid dispersions. The FT-IR results demonstrated the loss of crystallization water and the formation of hydrogen bonds between Aerosil 200 and AZI during the preparation of solid dispersions. After 4 weeks storage under accelerated condition, the degree of crystallinity of AZI increased in solid dispersions prepared by BM, whereas for solid dispersions containing AZI, Aerosil 200 and glyceryl behenate (GB) prepared by HME, no crystalline of AZI was identified. This high stability can be attributed to the hydrophobic properties of GB and the presence of hydrogen bonds. Based on the above results, it is inferred the protection of hydrogen bonds between AZI and Aerosil 200 formed during preparation process effectively inhibited the recrystallization of AZI and improved the physical stability of amorphous AZI in the presence of Aerosil 200. Copyright © 2015 Elsevier B.V. All rights reserved.
Thermal properties of black phosphorene and doped phosphorene (C, N & O): A DFT study
NASA Astrophysics Data System (ADS)
Devi, Anjna; Singh, Amarjeet
2018-04-01
In this work, we present the results from a DFT based computational study of pristine phosphorene and doped (C, N & O) phosphorene. We systematically investigated the lattice thermal properties of black phosphorene and the effect of doping on its thermal properties. We first determined the vibrational properties of pristine and doped phosphorene and from these results we calculated their thermal properties. We doped the phosphorene with C, N and O and observed that the structural stability of doped phosphorene decreases, while the thermal stability is increased as compared to pristine phosphorene. The presence of finite temperature effects in the doped system can contribute to acceleration of progress in future nano-scale technology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Awe, Thomas James; Peterson, Kyle J.; Yu, Edmund P.
Enhanced implosion stability has been experimentally demonstrated for magnetically accelerated liners that are coated with 70 μm of dielectric. The dielectric tamps liner-mass redistribution from electrothermal instabilities and also buffers coupling of the drive magnetic field to the magneto-Rayleigh-Taylor instability. A dielectric-coated and axially premagnetized beryllium liner was radiographed at a convergence ratio [CR=R in,0/R in(z,t)] of 20, which is the highest CR ever directly observed for a strengthless magnetically driven liner. Lastly, the inner-wall radius R in(z,t) displayed unprecedented uniformity, varying from 95 to 130 μm over the 4.0 mm axial height captured by the radiograph.
Awe, Thomas James; Peterson, Kyle J.; Yu, Edmund P.; ...
2016-02-10
Enhanced implosion stability has been experimentally demonstrated for magnetically accelerated liners that are coated with 70 μm of dielectric. The dielectric tamps liner-mass redistribution from electrothermal instabilities and also buffers coupling of the drive magnetic field to the magneto-Rayleigh-Taylor instability. A dielectric-coated and axially premagnetized beryllium liner was radiographed at a convergence ratio [CR=R in,0/R in(z,t)] of 20, which is the highest CR ever directly observed for a strengthless magnetically driven liner. Lastly, the inner-wall radius R in(z,t) displayed unprecedented uniformity, varying from 95 to 130 μm over the 4.0 mm axial height captured by the radiograph.
Clay facial masks: physicochemical stability at different storage temperatures.
Zague, Vivian; de Almeida Silva, Diego; Baby, André Rolim; Kaneko, Telma Mary; Velasco, Maria Valéria Robles
2007-01-01
Clay facial masks--formulations that contain a high percentage of solids dispersed in a liquid vehicle--have become of special interest due to specific properties presented by clays, such as particle size, cooling index, high adsorption capacity, and plasticity. Although most of the physicochemical properties of clay dispersions have been studied, specific aspects concerning the physicochemical stability of clay mask products remain unclear. This work aimed at investigating the accelerated physicochemical stability of clay mask formulations stored at different temperatures. Formulations were subjected to centrifuge testing and to thermal treatment for 15 days, during which temperature was varied from -5.0 degrees to 45.0 degrees C. The apparent viscosity and visual aspect (homogeneity) of all formulations were affected by temperature variation, whereas color, odor, and pH value remained unaltered. These results, besides the estimation of physicochemical stability under aging, can be useful in determining the best storage conditions for clay-based formulations.
Paszun, Sylwia K; Stanisz, Beata J; Gradowska, Agnieszka
2013-01-01
The presented study aimed at the evaluation of hydrochlorothiazide influence on cilazapril stability in model mixture and fixed dose tablet formulation. The degradation of cilazapril in the presence of hydrochlorothiazide took place according to autocatalytic reaction kinetic mechanism, described mathematically by Prout-Tompkins equation. Hydrochlorothiazide coexistence with cilazapril in model mixture and fixed dose tablet without blister package accelerated cilazapril degradation in comparison with degradation of cilazapril substance. Values of reaction induction time shortened, while those of observed reaction rate constant increased. Increasing values of relative humidity and temperature have negative impact on cilazapril stability. Determined semi-logarithmic relationships: In k = f(RH) and Arrhenius ln k = f(1/T) are linear and are cilazapril stability predictive. The blister (OPA/Alu/PVC//Alu) package of fixed dose tablets, constitutes absolute moisture protection and prevent cilazapril--hydrochlorothiazide interaction occurrence.
Stabilization of Landslides for the Improvement of Aquatic Habitat
Michael J. Furniss
1989-01-01
Chronic surface and mass erosion from recent landslides often prevents the recovery of productive stream habitats following initial mass failure events. Low-cost methods that can accelerate recovery and stabilization processes have been employed on numerous failed slopes in the Six Rivers National Forest in the northwest corner of California, with notable success. Two...
State observer-based sliding mode control for semi-active hydro-pneumatic suspension
NASA Astrophysics Data System (ADS)
Ren, Hongbin; Chen, Sizhong; Zhao, Yuzhuang; Liu, Gang; Yang, Lin
2016-02-01
This paper proposes an improved virtual reference model for semi-active suspension to coordinate the vehicle ride comfort and handling stability. The reference model combines the virtues of sky-hook with ground-hook control logic, and the hybrid coefficient is tuned according to the longitudinal and lateral acceleration so as to improve the vehicle stability especially in high-speed condition. Suspension state observer based on unscented Kalman filter is designed. A sliding mode controller (SMC) is developed to track the states of the reference model. The stability of the SMC strategy is proven by means of Lyapunov function taking into account the nonlinear damper characteristics and sprung mass variation of the vehicle. Finally, the performance of the controller is demonstrated under three typical working conditions: the random road excitation, speed bump road and sharp acceleration and braking. The simulation results indicated that, compared with the traditional passive suspension, the proposed control algorithm can offer a better coordination between vehicle ride comfort and handling stability. This approach provides a viable alternative to costlier active suspension control systems for commercial vehicles.
Chromaticity of the lattice and beam stability in energy-recovery linacs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Litvinenko, V.N.
2011-12-23
Energy recovery linacs (ERLs) are an emerging generation of accelerators promising to revolutionize the fields of high-energy physics and photon sciences. These accelerators combine the advantages of linear accelerators with that of storage rings, and hold the promise of delivering electron beams of unprecedented power and quality. Use of superconducting radio-frequency (SRF) cavities converts ERLs into nearly perfect 'perpetuum mobile' accelerators, wherein the beam is accelerated to a desirable energy, used, and then gives the energy back to the RF field. One potential weakness of these devices is transverse beam break-up instability that could severely limit the available beam current.more » In this paper, I present a method of suppressing these dangerous effects using a natural phenomenon in the accelerators, viz., the chromaticity of the transverse motion.« less
NASA Astrophysics Data System (ADS)
Mueller, Peter; Schile-Beers, Lisa M.; Mozdzer, Thomas J.; Chmura, Gail L.; Dinter, Thomas; Kuzyakov, Yakov; de Groot, Alma V.; Esselink, Peter; Smit, Christian; D'Alpaos, Andrea; Ibáñez, Carles; Lazarus, Magdalena; Neumeier, Urs; Johnson, Beverly J.; Baldwin, Andrew H.; Yarwood, Stephanie A.; Montemayor, Diana I.; Yang, Zaichao; Wu, Jihua; Jensen, Kai; Nolte, Stefanie
2018-05-01
Tidal wetlands, such as tidal marshes and mangroves, are hotspots for carbon sequestration. The preservation of organic matter (OM) is a critical process by which tidal wetlands exert influence over the global carbon cycle and at the same time gain elevation to keep pace with sea-level rise (SLR). The present study assessed the effects of temperature and relative sea level on the decomposition rate and stabilization of OM in tidal wetlands worldwide, utilizing commercially available standardized litter. While effects on decomposition rate per se were minor, we show strong negative effects of temperature and relative sea level on stabilization, as based on the fraction of labile, rapidly hydrolyzable OM that becomes stabilized during deployment. Across study sites, OM stabilization was 29 % lower in low, more frequently flooded vs. high, less frequently flooded zones. Stabilization declined by ˜ 75 % over the studied temperature gradient from 10.9 to 28.5 °C. Additionally, data from the Plum Island long-term ecological research site in Massachusetts, USA, show a pronounced reduction in OM stabilization by > 70 % in response to simulated coastal eutrophication, confirming the potentially high sensitivity of OM stabilization to global change. We therefore provide evidence that rising temperature, accelerated SLR, and coastal eutrophication may decrease the future capacity of tidal wetlands to sequester carbon by affecting the initial transformations of recent OM inputs to soil OM.
Bhattacharya, Rahul; Gopalan, Natarajan; Singh, Anil Kumar; Singh, Poonam; Yadav, Shiv Kumar; Rao, Pooja; Shrivastava, Saurabh
2014-02-01
Due to several limitations of existing cyanide antidotes, α-ketoglutarate (α-KG) has been proposed as a promising treatment for cyanide. This study reports the accelerated stability and bioassay of a new oral α-KG formulation. Amber-colored PVDF bottles containing 100 ml of 10% α-KG in 70% sorbitol, preservative (sodium methyl paraben and sodium propyl paraben), sweetener (sodium saccharine), flavor (American ice-cream soda and peppermint) and color (tartrazine), at pH 7.0-8.0 were stored in stability chamber (40 ± 2 °C and 75 ± 5% humidity) for 6 months in a GMP compliant facility. Various physical (pH, color, evaporation, extractable volume and clarity), chemical (identification and quantification of active ingredient) and microbiological (total aerobic count) analyses, together with protection studies were carried periodically in mice. Acute toxicity of the formulation and bioavailability of α-KG were assessed in rats at the beginning of the experiment. No physical changes and microbiological growth were observed in the formulation. After 6 months, α-KG content in the formulation diminished by ∼24% but its protective efficacy against cyanide remained at 5.9-fold. Protection was further characterized spectrophotometrically by disappearance of α-KG spectrum in the presence of cyanide, confirming cyanohydrin formation. Oral LD50 of α-KG formulation in rats was >7.0 g/kg body weight, and did not produce any acute toxicity of clinical significance. Also, an appreciable amount of α-KG was measured in blood. As per the guidelines of International Conference on Harmonization, the new α-KG formulation exhibited satisfactory stability, bioefficacy and safety as cyanide antidote.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ekdahl, Carl August Jr.
2014-10-14
Beam dynamics issues are assessed for a new linear induction electron accelerator being designed for flash radiography of large explosively driven hydrodynamic experiments. Special attention is paid to equilibrium beam transport, possible emittance growth, and beam stability. It is concluded that a radiographic quality beam will be produced possible if engineering standards and construction details are equivalent to those on the present radiography accelerators at Los Alamos.
[Preparation and in vitro dissolution of magnolol solid dispersion].
Tang, Lan; Qiu, Shuai-Bo; Wu, Lan; Lv, Long-Fei; Lv, Hui-Xia; Shan, Wei-Guang
2016-02-01
In this study, solid dispersion system of magnolol in croscarmellose sodium was prepared by using the solvent evaporation method, in order to increase the drug dissolution. And its dissolution behavior, stability and physical characteristics were studied. The solid dispersion was prepared with magnolol and croscarmellose sodium, with the proportion of 1∶5, the in vitro dissolution of magnolol solid dispersion was up to 80.66% at 120 min, which was 6.9 times of magnolol. The results of DSC (differential scanning calorimetry), IR (infra-red) spectrum and SEM (scanning electron microscopy) showed that magnolol existed in solid dispersion in an amorphous form. After an accelerated stability test for six months, the drug dissolution and content in magnolol solid dispersion showed no significant change. So the solid dispersion prepared with croscarmellose sodium as the carrier can remarkably improve the stability and dissolution of magnolol. Copyright© by the Chinese Pharmaceutical Association.
Thermocapillary Motion in an Emulsion
NASA Technical Reports Server (NTRS)
Pukhnachov, Vladislav V.; Voinov, Oleg V.
1996-01-01
The phenomenological model for the motion of an emulsion or a gas-liquid mixture exposed to thermocapillary forces and micro-acceleration is formulated. The analytical and numerical investigation of one-dimensional flows for these media is fulfilled, the structure of discontinuous motion is studied. The stability conditions of a space-uniform state and of the interface between an emulsion and a pure liquid are obtained.
Numerical study of effects of atmosphere temperature profile on wildfire behavior
Chunmei Xia; M. Yousuff Hussaini; Philip Cunningham; Rodman R. Linn; Scott L. Goodrick
2003-01-01
The vertical temperature profile and hence the stability in the atmosphere near the ground vanes significantly between day and night. Typically, the potential temperature at the surface is higher than that above the ground during the day and lower than that above the ground during the night. Such differences in the vertical temperature profile might act to accelerate...
Ammari, Faten; Jouan-Rimbaud-Bouveresse, Delphine; Boughanmi, Néziha; Rutledge, Douglas N
2012-09-15
The aim of this study was to find objective analytical methods to study the degradation of edible oils during heating and thus to suggest solutions to improve their stability. The efficiency of Nigella seed extract as natural antioxidant was compared with butylated hydroxytoluene (BHT) during accelerated oxidation of edible vegetable oils at 120 and 140 °C. The modifications during heating were monitored by 3D-front-face fluorescence spectroscopy along with Independent Components Analysis (ICA), (1)H NMR spectroscopy and classical physico-chemical methods such as anisidine value and viscosity. The results of the study clearly indicate that the natural seed extract at a level of 800 ppm exhibited antioxidant effects similar to those of the synthetic antioxidant BHT at a level of 200 ppm and thus contributes to an increase in the oxidative stability of the oil. Copyright © 2012 Elsevier B.V. All rights reserved.
Nagai, Kanto; Hoshino, Yuichi; Nishizawa, Yuichiro; Araki, Daisuke; Matsushita, Takehiko; Matsumoto, Tomoyuki; Takayama, Koji; Nagamune, Kouki; Kurosaka, Masahiro; Kuroda, Ryosuke
2015-10-01
Tibial acceleration during the pivot shift test is a potential quantitative parameter to evaluate rotational laxity of anterior cruciate ligament (ACL) insufficiency. However, clinical application of this measurement has not been fully examined. This study aimed to measure and compare tibial acceleration before and after ACL reconstruction (ACLR) in ACL-injured patients. We hypothesized tibial acceleration would be reduced by ACLR and tibial acceleration would be consistent in the same knee at different time points. Seventy ACL-injured patients who underwent ACLR were enrolled. Tibial acceleration during the pivot shift test was measured using an electromagnetic measurement system before ALCR and at the second-look arthroscopy 1 year post-operatively. Tibial acceleration was compared to clinical grading and between ACL-injured/ACL-reconstructed and contralateral knees. Pre-operative tibial acceleration was increased stepwise with the increase in clinical grading (P < 0.01). Tibial acceleration in ACL-injured knee (1.9 ± 1.2 m/s(2)) was larger than that in the contralateral knee (0.8 ± 0.3 m/s(2), P < 0.01), and reduced to 0.9 ± 0.3 m/s(2) post-operatively (P < 0.01). There was no difference between ACL-reconstructed and contralateral knee (n.s.). Tibial acceleration in contralateral knees was consistent pre- and post-operatively (n.s.). Tibial acceleration measurement demonstrated increased rotational laxity in ACL-injured knees and its reduction by ALCR. Additionally, consistent measurements were obtained in ACL-intact knees at different time points. Therefore, tibial acceleration during the pivot shift test could provide quantitative evaluation of rotational stability before and after ACL reconstruction. III.
Neck Strength Imbalance Correlates With Increased Head Acceleration in Soccer Heading
Dezman, Zachary D.W.; Ledet, Eric H.; Kerr, Hamish A.
2013-01-01
Background: Soccer heading is using the head to directly contact the ball, often to advance the ball down the field or score. It is a skill fundamental to the game, yet it has come under scrutiny. Repeated subclinical effects of heading may compound over time, resulting in neurologic deficits. Greater head accelerations are linked to brain injury. Developing an understanding of how the neck muscles help stabilize and reduce head acceleration during impact may help prevent brain injury. Hypothesis: Neck strength imbalance correlates to increasing head acceleration during impact while heading a soccer ball. Study Design: Observational laboratory investigation. Methods: Sixteen Division I and II collegiate soccer players headed a ball in a controlled indoor laboratory setting while player motions were recorded by a 14-camera Vicon MX motion capture system. Neck flexor and extensor strength of each player was measured using a spring-type clinical dynamometer. Results: Players were served soccer balls by hand at a mean velocity of 4.29 m/s (±0.74 m/s). Players returned the ball to the server using a heading maneuver at a mean velocity of 5.48 m/s (±1.18 m/s). Mean neck strength difference was positively correlated with angular head acceleration (rho = 0.497; P = 0.05), with a trend toward significance for linear head acceleration (rho = 0.485; P = 0.057). Conclusion: This study suggests that symmetrical strength in neck flexors and extensors reduces head acceleration experienced during low-velocity heading in experienced collegiate players. Clinical Relevance: Balanced neck strength may reduce head acceleration cumulative subclinical injury. Since neck strength is a measureable and amenable strength training intervention, this may represent a modifiable intrinsic risk factor for injury. PMID:24459547
[Subtype classification of ceftriaxone sodium and its influence on the quality of product].
Xue, Jing; Jia, Yan-Hua; Li, Jin; Yin, Li-Hui; Hu, Chang-Qin
2014-07-01
Powder X-ray diffraction (PXRD) technology combined with cluster analysis method was used to classify 75 batches of crystalline ceftriaxone sodium into subtypes, the crystalline characteristics of each subtype were measured with scanning electron microscope (SEM). By comparing some parameters of these subtypes correlated to crystallization process of ceftriaxone sodium, such as salification rate, water content in different subtypes, as well as by studying different lattice stabilities, different compatibilities with rubber closures during accelerated stability tests, the key point to improve the quality of domestic ceftriaxone sodium was disclosed. The results of this paper indicated that the fine structure of the products could be controlled well by improving the salification and crystallization process. As a result, the subtype II of ceftriaxone sodium with high stability can be produced.
NASA Astrophysics Data System (ADS)
Kan, Guangyuan; He, Xiaoyan; Ding, Liuqian; Li, Jiren; Hong, Yang; Zuo, Depeng; Ren, Minglei; Lei, Tianjie; Liang, Ke
2018-01-01
Hydrological model calibration has been a hot issue for decades. The shuffled complex evolution method developed at the University of Arizona (SCE-UA) has been proved to be an effective and robust optimization approach. However, its computational efficiency deteriorates significantly when the amount of hydrometeorological data increases. In recent years, the rise of heterogeneous parallel computing has brought hope for the acceleration of hydrological model calibration. This study proposed a parallel SCE-UA method and applied it to the calibration of a watershed rainfall-runoff model, the Xinanjiang model. The parallel method was implemented on heterogeneous computing systems using OpenMP and CUDA. Performance testing and sensitivity analysis were carried out to verify its correctness and efficiency. Comparison results indicated that heterogeneous parallel computing-accelerated SCE-UA converged much more quickly than the original serial version and possessed satisfactory accuracy and stability for the task of fast hydrological model calibration.
Electron-Beam Dynamics for an Advanced Flash-Radiography Accelerator
Ekdahl, Carl
2015-11-17
Beam dynamics issues were assessed for a new linear induction electron accelerator being designed for multipulse flash radiography of large explosively driven hydrodynamic experiments. Special attention was paid to equilibrium beam transport, possible emittance growth, and beam stability. Especially problematic would be high-frequency beam instabilities that could blur individual radiographic source spots, low-frequency beam motion that could cause pulse-to-pulse spot displacement, and emittance growth that could enlarge the source spots. Furthermore, beam physics issues were examined through theoretical analysis and computer simulations, including particle-in-cell codes. Beam instabilities investigated included beam breakup, image displacement, diocotron, parametric envelope, ion hose, and themore » resistive wall instability. The beam corkscrew motion and emittance growth from beam mismatch were also studied. It was concluded that a beam with radiographic quality equivalent to the present accelerators at Los Alamos National Laboratory will result if the same engineering standards and construction details are upheld.« less
Electron-beam dynamics for an advanced flash-radiography accelerator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ekdahl, Carl August Jr.
2015-06-22
Beam dynamics issues were assessed for a new linear induction electron accelerator. Special attention was paid to equilibrium beam transport, possible emittance growth, and beam stability. Especially problematic would be high-frequency beam instabilities that could blur individual radiographic source spots, low-frequency beam motion that could cause pulse-to-pulse spot displacement, and emittance growth that could enlarge the source spots. Beam physics issues were examined through theoretical analysis and computer simulations, including particle-in cell (PIC) codes. Beam instabilities investigated included beam breakup (BBU), image displacement, diocotron, parametric envelope, ion hose, and the resistive wall instability. Beam corkscrew motion and emittance growth frommore » beam mismatch were also studied. It was concluded that a beam with radiographic quality equivalent to the present accelerators at Los Alamos will result if the same engineering standards and construction details are upheld.« less
NASA Technical Reports Server (NTRS)
Lyell, M. J.; Roh, Michael
1991-01-01
The increasing number of research opportunities in a microgravity environment will benefit not only fundamental studies in fluid dynamics, but also technological applications such as those involving materials processing. In particular, fluid configurations which involve fluid-fluid interfaces would occur in a variety of experimental investigations. This work investigates the stability of a configuration involving fluid-fluid interfaces in the presence of a time-dependent forcing. Both periodic (g-jitter) and nonperiodic accelerations are considered. The fluid configuration is multilayered, and infinite in extent. The analysis is linear and inviscid, and the acceleration vector is oriented perpendicular to each interface. A Floquet analysis is employed in the case of the periodic forcing. In the problem of nonperiodic forcing, the resulting system of equations are integrated in time. Specific nondimensional parameters appear in each problem. The configuration behavior is investigated for a range of parameter values.
NASA Astrophysics Data System (ADS)
Redondo, L. M.; Silva, J. Fernando; Canacsinh, H.; Ferrão, N.; Mendes, C.; Soares, R.; Schipper, J.; Fowler, A.
2010-07-01
A new circuit topology is proposed to replace the actual pulse transformer and thyratron based resonant modulator that supplies the 60 kV target potential for the ion acceleration of the On-Line Isotope Mass Separator accelerator, the stability of which is critical for the mass resolution downstream separator, at the European Organization for Nuclear Research. The improved modulator uses two solid-state switches working together, each one based on the Marx generator concept, operating as series and parallel switches, reducing the stress on the series stacked semiconductors, and also as auxiliary pulse generator in order to fulfill the target requirements. Preliminary results of a 10 kV prototype, using 1200 V insulated gate bipolar transistors and capacitors in the solid-state Marx circuits, ten stages each, with an electrical equivalent circuit of the target, are presented, demonstrating both the improved voltage stability and pulse flexibility potential wanted for this new modulator.
Cell culture media impact on drug product solution stability.
Purdie, Jennifer L; Kowle, Ronald L; Langland, Amie L; Patel, Chetan N; Ouyang, Anli; Olson, Donald J
2016-07-08
To enable subcutaneous administration of monoclonal antibodies, drug product solutions are often needed at high concentrations. A significant risk associated with high drug product concentrations is an increase in aggregate level over the shelf-life dating period. While much work has been done to understand the impact of drug product formulation on aggregation, there is limited understanding of the link between cell culture process conditions and soluble aggregate growth in drug product. During cell culture process development, soluble aggregates are often measured at harvest using cell-free material purified by Protein A chromatography. In the work reported here, cell culture media components were evaluated with respect to their impact on aggregate levels in high concentration solution drug product during accelerated stability studies. Two components, cysteine and ferric ammonium citrate, were found to impact aggregate growth rates in our current media (version 1) leading to the development of new chemically defined media and concentrated feed formulations. The new version of media and associated concentrated feeds (version 2) were evaluated across four cell lines producing recombinant IgG4 monoclonal antibodies and a bispecific antibody. In all four cell lines, the version 2 media reduced aggregate growth over the course of a 12 week accelerated stability study compared with the version 1 media, although the degree to which aggregate growth decreased was cell line dependent. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:998-1008, 2016. © 2016 American Institute of Chemical Engineers.
NASA Astrophysics Data System (ADS)
Khoshbinfar, S.
2017-11-01
The advent of laser-assisted ion acceleration technology promises an alternative candidate to conventional accelerator drivers used in inertial confinement fusion. The experimental generation of quasi-monoenergetic heavier ion species i.e. carbon and aluminum, applicable to fast ignition studies has been recently reported. The propagation of these energetic ions may impact on the proper ignition phase through growing of micro-instabilities of beam-plasma system. The growth of flow-aligned instabilities is much more important for heavier ions transport in the dense plasma. Here, we have presented a general non-relativistic one-dimensional dispersion relation of cold fluid model as well as corresponding kinetic theory of incident ion beam with atomic number, Zb enters into a fast ignition DT plasma. The longitudinal instabilities of some selected average energies of experimentally generated C6+ (EC=50, 100 and 200 MeV with δE/E ∼ 10 %) and Al11+ (EAl=150 and 300 MeV with δE/E ∼25%) quasi-monoenergetic beams were examined and beam-plasma system stable configuration have been then derived. It has been shown that in the kinetic theory framework, carbon and aluminum ions may be completely stabilized by the combination of beam to plasma density ratio (αb) and plasma temperature (Tp) of ignition phase parameters. Moreover, in complete stabilization, αb parameter of aluminum beam is an order of magnitude lower than carbon.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rotsch, David A.; Brossard, Tom; Roussin, Ethan
Molybdenum-99, the mother of Tc-99m, can be produced from fission of U-235 in nuclear reactors and purified from fission products by the Cintichem process, later modified for low-enriched uranium (LEU) targets. The key step in this process is the precipitation of Mo with α-benzoin oxime (ABO). The stability of this complex to radiation has been examined. Molybdenum-ABO was irradiated with 3 MeV electrons produced by a Van de Graaff generator and 35 MeV electrons produced by a 50 MeV/25 kW electron linear accelerator. Dose equivalents of 1.7–31.2 kCi of Mo-99 were administered to freshly prepared Mo-ABO. Irradiated samples of Mo-ABOmore » were processed according to the LEU Modified-Cintichem process. The Van de Graaff data indicated good radiation stability of the Mo-ABO complex up to ~15 kCi dose equivalents of Mo-99 and nearly complete destruction at doses >24 kCi Mo-99. The linear accelerator data indicate that even at 6.2 kCi of Mo-99 equivalence of dose, the sample lost ~20% of Mo-99. The 20% loss of Mo-99 at this low dose may be attributed to thermal decomposition of the product from the heat deposited in the sample during irradiation.« less
Collaborative Model for Acceleration of Individualized Therapy of Colon Cancer
2014-10-01
disease stability. We have proposed to employ a team science, systems biology based approach to rapidly identify novel anti-cancer agents and...options and receive salvage therapy that results in only a few weeks of disease stability. This is particularly true for a subset of patients that have...that can stabilize disease and hopefully prolong life in patients with CRC. One of the lessons learned in CRC, in fact, in patients with the KRAS
Evaluation of accelerated stability test conditions for medicated chewing gums.
Maggi, Lauretta; Conte, Ubaldo; Nhamias, Alain; Grenier, Pascal; Vergnault, Guy
2013-10-01
The overall stability of medicated chewing gums is investigated under different storage conditions. Active substances with different chemical stabilities in solid state are chosen as model drugs. The dosage form is a three layer tablet obtained by direct compression. The gum core contains the active ingredient while the external layers are formulated to prevent gum adhesion to the punches of the tableting machine. Two accelerated test conditions (40°C/75% RH and 30°C/65% RH) are performed for 6 months. Furthermore, a long-term stability test at room conditions is conducted to verify the predictability of the results obtained from the stress tests. Some drugs are stable in all the conditions tested, but other drugs, generally considered stable in solid dosage forms, have shown relevant stability problems particularly when stress test conditions are applied to this particular semi-solid dosage forms. For less stable drugs, the stress conditions of 40°C/75% RH are not always predictable of chewing gum stability at room temperature and may produce false negative; intermediate conditions, 30°C/65% RH, are more predictive for this purpose, the results of drug content found after 6 months at intermediate stress conditions and 12 months at room conditions are generally comparable. But the results obtained show that only long-term conditions stability tests gave consistent results. During aging, the semi solid nature of the gum base itself, may also influence the drug delivery rate during chewing and great attention should be given also to the dissolution stability.
NASA Technical Reports Server (NTRS)
Baker, John; Thorpe, Ira
2012-01-01
Thoroughly studied classic space-based gravitational-wave missions concepts such as the Laser Interferometer Space Antenna (LISA) are based on laser-interferometry techniques. Ongoing developments in atom-interferometry techniques have spurred recently proposed alternative mission concepts. These different approaches can be understood on a common footing. We present an comparative analysis of how each type of instrument responds to some of the noise sources which may limiting gravitational-wave mission concepts. Sensitivity to laser frequency instability is essentially the same for either approach. Spacecraft acceleration reference stability sensitivities are different, allowing smaller spacecraft separations in the atom interferometry approach, but acceleration noise requirements are nonetheless similar. Each approach has distinct additional measurement noise issues.
Profiling of metal ions leached from pharmaceutical packaging materials.
Fliszar, Kyle A; Walker, David; Allain, Leonardo
2006-01-01
Metal leachables from packaging components can affect the safety and efficacy of a pharmaceutical formulation. As liquid formulations continue to contain surfactants, salts, and chelating agents coupled with lower drug levels, the interaction between the formulation and the packaging material becomes more important. This study examines the interaction of commonly used packaging materials with extraction solvents representative of liquid formulations found in the pharmaceutical industry stressed under conditions encountered during accelerated stability studies.
Fusion Partner Toolchest for the Stabilization and Crystallization of G Protein-Coupled Receptors
Chun, Eugene; Thompson, Aaron A.; Liu, Wei; Roth, Christopher B.; Griffith, Mark T.; Katritch, Vsevolod; Kunken, Joshua; Xu, Fei; Cherezov, Vadim; Hanson, Michael A.; Stevens, Raymond C.
2012-01-01
SUMMARY Structural studies of human G protein-coupled receptors (GPCRs) have recently been accelerated through the use of the T4 lysozyme fusion partner that was inserted into the third intracellular loop. Using chimeras of the human β2-adrenergic and human A2A adenosine receptors, we present the methodology and data for the selection of five new fusion partners for crystallizing GPCRs. In particular, the use of the thermostabilized apocytochrome b562RIL as a fusion partner displays certain advantages over the previously utilized T4 lysozyme, resulting in a significant improvement in stability and structure in GPCR-fusion constructs. PMID:22681902
Design of a control configured tanker aircraft
NASA Technical Reports Server (NTRS)
Walker, S. A.
1976-01-01
The benefits that accrue from using control configured vehicle (CCV) concepts were examined along with the techniques for applying these concepts to an advanced tanker aircraft design. Reduced static stability (RSS) and flutter mode control (FMC) were the two primary CCV concepts used in the design. The CCV tanker was designed to the same mission requirements specified for a conventional tanker design. A seven degree of freedom mathematical model of the flexible aircraft was derived and used to synthesize a lateral stability augmentation system (SAS), a longitudinal control augmentation system (CAS), and a FMC system. Fatigue life and cost analyses followed the control system synthesis, after which a comparative evaluation of the CCV and conventional tankers was made. This comparison indicated that the CCV weight and cost were lower but that, for this design iteration, the CCV fatigue life was shorter. Also, the CCV crew station acceleration was lower, but the acceleration at the boom operator station was higher relative to the corresponding conventional tanker. Comparison of the design processes used in the CCV and conventional design studies revealed that they were basically the same.
Nonlocal Galileons and self-acceleration
NASA Astrophysics Data System (ADS)
Gabadadze, Gregory; Yu, Siqing
2017-05-01
A certain class of nonlocal theories eliminates an arbitrary cosmological constant (CC) from a universe that can be perceived as our world. Dark energy then cannot be explained by a CC; it could however be due to massive gravity. We calculate the new corrections, which originate from the nonlocal terms that eliminate the CC, to the decoupling limit Lagrangian of massive gravity. The new nonlocal terms also have internal field space Galilean symmetry and are referred here as ;nonlocal Galileons.; We then study a self-accelerated solution and show that the new nonlocal terms change the perturbative stability analysis. In particular, small fluctuations are now stable and non-superluminal for some simple parameter choices, whereas for the same choices the pure massive gravity fluctuations are unstable. We also study stable spherically symmetric solutions on this background.
Thermal Stability of Acetohydroxamic Acid/Nitric Acid Solutions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rudisill, T.S.
2002-03-13
The transmutation of transuranic actinides and long-lived fission products in spent commercial nuclear reactor fuel has been proposed as one element of the Advanced Accelerator Applications Program. Preparation of targets for irradiation in an accelerator-driven subcritical reactor would involve dissolution of the fuel and separation of uranium, technetium, and iodine from the transuranic actinides and other fission products. The UREX solvent extraction process is being developed to reject and isolate the transuranic actinides in the acid waste stream by scrubbing with acetohydroxamic acid (AHA). To ensure that a runaway reaction will not occur between nitric acid and AHA, an analoguemore » of hydroxyl amine, thermal stability tests were performed to identify if any processing conditions could lead to a runaway reaction.« less
Kurtz, S M; Siskey, R; Reitman, M
2010-05-01
The objectives of this study were three-fold: (1) to determine the applicability of the small punch test to characterize Bionate 80A polycarbonate urethane (PCU) acetabular implants; (2) to evaluate the susceptibility of PCU acetabular implants to exhibit degradation of mechanical behavior following gamma irradiation in air and accelerated aging; and (3) to compare the oxidation of gamma-air sterilized PCU following accelerated aging and 5 years of natural shelf aging. In addition to attenuated total reflectance-Fourier transform infrared spectroscopy, we also adapted a miniature specimen mechanical test, the small punch test, for the deformable PCU cups. Accelerated aging was performed using ASTM F2003, a standard test that represents a severe oxidative challenge. The results of this study suggest that the small punch test is sufficiently sensitive and reproducible to discriminate slight differences in the large-deformation mechanical behavior of Bionate 80A following accelerated aging. The gamma-air sterilized PCU had a reduction of 9% in ultimate load after aging. Five years of shelf aging had little effect on the mechanical properties of the PCU. Overall, our findings suggest that the Bionate 80A material has greater oxidative stability than ultra-high molecular weight polyethylene following gamma irradiation in air and exposure to a severe oxidative challenge. (c) 2010 Wiley Periodicals, Inc.
Symposium on Electromagnetic Launcher Technology, 5th, Sandestin, FL, Apr. 3-5, 1990, Proceedings
NASA Astrophysics Data System (ADS)
Gooden, Clarence E.
1991-01-01
The present conference on electromagnetic accelerators (EMAs) and railguns (RGs) discusses active-current management for four-rail RGs, the design of a compulsator-drive 60-caliber RG, EMA studies with augmented rails, muzzle-shunt augmentation of conventional RGs, effect of in-bore gas on RG performance, the distributed-energy store RG, plasma diagnostics for high power ignitron development, a review of EMA armature research, RG hybrid armatures, a new solid-armature design concept, and the electrodynamics of RG plasma armatures. Also discussed is RG modeling at speed using three-dimensional finite elements, power supply technology for EMAs, rotating machine power supplies for next-generation EMAs, advanced EMA power supplies with magnetic-flux compression, metal-to-metal switches for large currents, lightweight high-effiency energy-storage transformers, hypervelocity projectile development for EMAs, structural design issues for EMA projectiles, stiff RGs, a reinforced Al conductor for cryogenic applications, mass-stabilized projectile designs for EMA launch, indictively-commutated coilguns, an actively switched pulsed induction accelerator, a plasma gun-augmented electrothermal accelerator, a symmetrical rail accelerator, and a travelling-wave synchronous coil gun.
Laser Radiation Pressure Acceleration of Monoenergetic Protons in an Ultra-Thin Foil
NASA Astrophysics Data System (ADS)
Eliasson, Bengt; Liu, Chuan S.; Shao, Xi; Sagdeev, Roald Z.; Shukla, Padma K.
2009-11-01
We present theoretical and numerical studies of the acceleration of monoenergetic protons in a double layer formed by the laser irradiation of an ultra-thin film. The stability of the foil is investigated by direct Vlasov-Maxwell simulations for different sets of laser-plasma parameters. It is found that the foil is stable, due to the trapping of both electrons and ions in the thin laser-plasma interaction region, where the electrons are trapped in a potential well composed of the ponderomo-tive potential of the laser light and the electrostatic potential due to the ions, and the ions are trapped in a potential well composed of the inertial potential in an accelerated frame and the electrostatic potential due to the electrons. The result is a stable double layer, where the trapped ions are accelerated to monoenergetic energies up to 100 MeV and beyond, which makes them suitable for medical applications cancer treatment. The underlying physics of trapped and untapped ions in a double layer is also investigated theoretically and numerically.
Testing of a Loop Heat Pipe Subjective to Variable Accelerations. Part 2; Temperature Stability
NASA Technical Reports Server (NTRS)
Ku, Jentung; Ottenstein, Laura; Kaya, Taril; Rogers, Paul; Hoff, Craig
2000-01-01
The effect of accelerating forces on the performance of loop heat pipes (LHP) is of interest and importance to terrestrial and space applications. LHP's are being considered for cooling of military combat vehicles and for spinning spacecraft. In order to investigate the effect of an accelerating force on LHP operation, a miniature LHP was installed on a spin table. Variable accelerating forces were imposed on the LHP by spinning the table at different angular speeds. Several patterns of accelerating forces were applied, i.e. continuous spin at different speeds and periodic spin at different speeds and frequencies. The resulting accelerations ranged from 1.17 g's to 4.7 g's. This paper presents the second part of the experimental study, i.e. the effect of an accelerating force on the LHP operating temperature. It has been known that in stationary tests the LHP operating temperature is a function of the evaporator power and the condenser sink temperature when the compensation temperature is not actively controlled. Results of this test program indicate that any change in the accelerating force will result in a chance in the LHP operating temperature through its influence on the fluid distribution in the evaporator, condenser and compensation chamber. However, the effect is not universal, rather it is a function of other test conditions. A steady, constant acceleration may result in an increase or decrease of the operating temperature, while a periodic spin will lead to a quasi-steady operating temperature over a sufficient time interval. In addition, an accelerating force may lead to temperature hysteresis and changes in the temperature oscillation. In spite of all these effects, the LHP continued to operate without any problems in all tests.
Electrostatic wire for stabilizing a charged particle beam
Prono, Daniel S.; Caporaso, George J.; Briggs, Richard J.
1985-01-01
In combination with a charged particle beam generator and accelerator, apparatus and method are provided for stabilizing a beam of electrically charged particles. A guiding means, disposed within the particle beam, has an electric charge induced upon it by the charged particle beam. Because the sign of the electric charge on the guiding means and the sign of the particle beam are opposite, the particles are attracted toward and cluster around the guiding means to thereby stabilize the particle beam as it travels.
NASA Technical Reports Server (NTRS)
Fischel, Jack; Nugent, Jack
1953-01-01
The results of transonic flight measurements of the longitudinal stability characteristics of the Douglas D-558-II research airplane in the original configuration and with outboard fences mounted on the wings are presented. The levels of normal-force coefficient at which the stability decreases and pitch-up starts have been determined for both airplane configurations at Mach numbers up to about 0.94.
Electrostatic wire stabilizing a charged particle beam
Prono, D.S.; Caporaso, G.J.; Briggs, R.J.
1983-03-21
In combination with a charged particle beam generator and accelerator, apparatus and method are provided for stabilizing a beam of electrically charged particles. A guiding means, disposed within the particle beam, has an electric charge induced upon it by the charged particle beam. Because the sign of the electric charge on the guiding means and the sign of the particle beam are opposite, the particles are attracted toward and cluster around the guiding means to thereby stabilize the particle beam as it travels.
Simos, N.; Ludewig, H.; Kirk, H.; ...
2018-05-29
The effects of proton beams irradiating materials considered for targets in high-power accelerator experiments have been studied using the Brookhaven National Laboratory’s (BNL) 200 MeV proton linac. A wide array of materials and alloys covering a wide range of the atomic number (Z) are being scoped by the high-power accelerator community prompting the BNL studies to focus on materials representing each distinct range, i.e. low-Z, mid-Z and high-Z. The low range includes materials such as beryllium and graphite, the midrange alloys such as Ti-6Al-4V, gum metal and super-Invar and finally the high-Z range pure tungsten and tantalum. Of interest inmore » assessing proton irradiation effects are (a) changes in physiomechanical properties which are important in maintaining high-power target functionality, (b) identification of possible limits of proton flux or fluence above which certain materials cease to maintain integrity, (c) the role of material operating temperature in inducing or maintaining radiation damage reversal, and (d) phase stability and microstructural changes. The paper presents excerpt results deduced from macroscopic and microscopic post-irradiation evaluation (PIE) following several irradiation campaigns conducted at the BNL 200 MeV linac and specifically at the isotope producer beam-line/target station. The microscopic PIE relied on high energy x-ray diffraction at the BNL NSLS X17B1 and NSLS II XPD beam lines. The studies reveal the dramatic effects of irradiation on phase stability in several of the materials, changes in physical properties and ductility loss as well as thermally induced radiation damage reversal in graphite and alloys such as super-Invar.« less
NASA Astrophysics Data System (ADS)
Simos, N.; Ludewig, H.; Kirk, H.; Dooryhee, E.; Ghose, S.; Zhong, Z.; Zhong, H.; Makimura, S.; Yoshimura, K.; Bennett, J. R. J.; Kotsinas, G.; Kotsina, Z.; McDonald, K. T.
2018-05-01
The effects of proton beams irradiating materials considered for targets in high-power accelerator experiments have been studied using the Brookhaven National Laboratory's (BNL) 200 MeV proton linac. A wide array of materials and alloys covering a wide range of the atomic number (Z) are being scoped by the high-power accelerator community prompting the BNL studies to focus on materials representing each distinct range, i.e. low-Z, mid-Z and high-Z. The low range includes materials such as beryllium and graphite, the midrange alloys such as Ti-6Al-4V, gum metal and super-Invar and finally the high-Z range pure tungsten and tantalum. Of interest in assessing proton irradiation effects are (a) changes in physiomechanical properties which are important in maintaining high-power target functionality, (b) identification of possible limits of proton flux or fluence above which certain materials cease to maintain integrity, (c) the role of material operating temperature in inducing or maintaining radiation damage reversal, and (d) phase stability and microstructural changes. The paper presents excerpt results deduced from macroscopic and microscopic post-irradiation evaluation (PIE) following several irradiation campaigns conducted at the BNL 200 MeV linac and specifically at the isotope producer beam-line/target station. The microscopic PIE relied on high energy x-ray diffraction at the BNL NSLS X17B1 and NSLS II XPD beam lines. The studies reveal the dramatic effects of irradiation on phase stability in several of the materials, changes in physical properties and ductility loss as well as thermally induced radiation damage reversal in graphite and alloys such as super-Invar.
Muskett, Frederick W.; Thouta, Samrat; Thomson, Steven J.; Bowen, Alexander; Stansfeld, Phillip J.; Mitcheson, John S.
2011-01-01
Human ether-à-go-go-related gene (hERG) K+ channels have a critical role in cardiac repolarization. hERG channels close (deactivate) very slowly, and this is vital for regulating the time course and amplitude of repolarizing current during the cardiac action potential. Accelerated deactivation is one mechanism by which inherited mutations cause long QT syndrome and potentially lethal arrhythmias. hERG deactivation is highly dependent upon an intact EAG domain (the first 135 amino acids of the N terminus). Importantly, deletion of residues 2–26 accelerates deactivation to a similar extent as removing the entire EAG domain. These and other experiments suggest the first 26 residues (NT1–26) contain structural elements required to slow deactivation by stabilizing the open conformation of the pore. Residues 26–135 form a Per-Arnt-Sim domain, but a structure for NT1–26 has not been forthcoming, and little is known about its site of interaction on the channel. In this study, we present an NMR structure for the entire EAG domain, which reveals that NT1–26 is structurally independent from the Per-Arnt-Sim domain and contains a stable amphipathic helix with one face being positively charged. Mutagenesis and electrophysiological studies indicate that neutralizing basic residues and breaking the amphipathic helix dramatically accelerate deactivation. Furthermore, scanning mutagenesis and molecular modeling studies of the cyclic nucleotide binding domain suggest that negatively charged patches on its cytoplasmic surface form an interface with the NT1–26 domain. We propose a model in which NT1–26 obstructs gating motions of the cyclic nucleotide binding domain to allosterically stabilize the open conformation of the pore. PMID:21135103
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simos, N.; Ludewig, H.; Kirk, H.
The effects of proton beams irradiating materials considered for targets in high-power accelerator experiments have been studied using the Brookhaven National Laboratory’s (BNL) 200 MeV proton linac. A wide array of materials and alloys covering a wide range of the atomic number (Z) are being scoped by the high-power accelerator community prompting the BNL studies to focus on materials representing each distinct range, i.e. low-Z, mid-Z and high-Z. The low range includes materials such as beryllium and graphite, the midrange alloys such as Ti-6Al-4V, gum metal and super-Invar and finally the high-Z range pure tungsten and tantalum. Of interest inmore » assessing proton irradiation effects are (a) changes in physiomechanical properties which are important in maintaining high-power target functionality, (b) identification of possible limits of proton flux or fluence above which certain materials cease to maintain integrity, (c) the role of material operating temperature in inducing or maintaining radiation damage reversal, and (d) phase stability and microstructural changes. The paper presents excerpt results deduced from macroscopic and microscopic post-irradiation evaluation (PIE) following several irradiation campaigns conducted at the BNL 200 MeV linac and specifically at the isotope producer beam-line/target station. The microscopic PIE relied on high energy x-ray diffraction at the BNL NSLS X17B1 and NSLS II XPD beam lines. The studies reveal the dramatic effects of irradiation on phase stability in several of the materials, changes in physical properties and ductility loss as well as thermally induced radiation damage reversal in graphite and alloys such as super-Invar.« less
Ihlen, Espen A. F.; Weiss, Aner; Helbostad, Jorunn L.; Hausdorff, Jeffrey M.
2015-01-01
The present study compares phase-dependent measures of local dynamic stability of daily life walking with 35 conventional gait features in their ability to discriminate between community-dwelling older fallers and nonfallers. The study reanalyzes 3D-acceleration data of 3-day daily life activity from 39 older people who reported less than 2 falls during one year and 31 who reported two or more falls. Phase-dependent local dynamic stability was defined for initial perturbation at 0%, 20%, 40%, 60%, and 80% of the step cycle. A partial least square discriminant analysis (PLS-DA) was used to compare the discriminant abilities of phase-dependent local dynamic stability with the discriminant abilities of 35 conventional gait features. The phase-dependent local dynamic stability λ at 0% and 60% of the step cycle discriminated well between fallers and nonfallers (AUC = 0.83) and was significantly larger (p < 0.01) for the nonfallers. Furthermore, phase-dependent λ discriminated as well between fallers and nonfallers as all other gait features combined. The present result suggests that phase-dependent measures of local dynamic stability of daily life walking might be of importance for further development in early fall risk screening tools. PMID:26491669
Ozinga, Sarah J; Linder, Susan M; Alberts, Jay L
2017-04-01
To determine the accuracy of inertial measurement unit data from a mobile device using the mobile device relative to posturography to quantify postural stability in individuals with Parkinson disease (PD). Criterion standard. Motor control laboratory at a clinic. A sample (N=28) of individuals with mild to moderate PD (n=14) and age-matched community-dwelling individuals without PD (n=14) completed the study. Not applicable. Center of mass (COM) acceleration measures were compared between the mobile device and the NeuroCom force platform to determine the accuracy of mobile device measurements during performance of the Sensory Organization Test (SOT). Analyses examined test-retest reliability of both systems and sensitivity of (1) the equilibrium score from the SOT and (2) COM acceleration measures from the force platform and mobile device to quantify postural stability across populations. Metrics of COM acceleration from inertial measurement unit data and the NeuroCom force platform were significantly correlated across balance conditions and groups (Pearson r range, .35 to .97). The SOT equilibrium scores failed to discriminate individuals with and without PD. However, the multiplanar measures of COM acceleration from the mobile device exhibited good to excellent reliability across SOT conditions and were able to discriminate individuals with and without PD in conditions with the greatest balance demands. Metrics employing medial-lateral movement produce a more sensitive outcome than the equilibrium score in identifying postural instability associated with PD. Overall, the output from the mobile device provides an accurate and reliable method of rapidly quantifying balance in individuals with PD. The portable and affordable nature of a mobile device with the application makes it ideally suited to use biomechanical data to aid in clinical decision making. Copyright © 2016 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
Recent results from the University of Washington's 38 mm ram accelerator
NASA Technical Reports Server (NTRS)
De Turenne, J. A.; Chew, G.; Bruckner, A. P.
1992-01-01
The ram accelerator is a propulsive device that accelerates projectiles using gasdynamic cycles similar to those which generate thrust in airbreathing ramjets. The projectile, analogous to the centerbody of a ramjet, travels supersonically through a stationary tube containing a gaseous fuel and oxidizer mixture. The projectile itself carries no onboard propellant. A combustion zone follows the projectile and stabilizes the shock structure. The resulting pressure distribution continuously accelerates the projectile. Several modes of ram accelerator operation have been investigated experimentally and theoretically. At velocities below the Chapman-Jouguet (C-J) detonation speed of the propellant mixture, the thermally choked propulsion mode accelerates the projectiles. At projectile velocities between approximately 90 and 110 percent of the C-J speed, a transdetonative propulsion mode occurs. At velocities beyond 110 percent of the C-J speed, projectiles experience superdetonative propulsion. This paper presents recent experimental results from these propulsion modes obtained with the University of Washington's 38-mm bore ram accelerator. Data from investigations with hydrogen diluted-gas mixtures are also introduced.
Sluggett, Gregory W; Zelesky, Todd; Hetrick, Evan M; Babayan, Yelizaveta; Baertschi, Steven W
2018-02-05
Accelerated stability studies of pharmaceutical products are commonly conducted at various combinations of temperature and relative humidity (RH). The RH of the sample environment can be controlled to set points using humidity-controlled stability chambers or via storage of the sample in a closed container in the presence of a saturated aqueous salt solution. Herein we report an unexpected N-nitrosation reaction that occurs upon storage of carvedilol- or propranolol-excipient blends in a stability chamber in the presence of saturated sodium nitrite (NaNO 2 ) solution to control relative humidity (∼60% RH). In both cases, the major products were identified as the corresponding N-nitroso derivatives of the secondary amine drugs based on mass spectrometry, UV-vis and retention time. These degradation products were not observed upon storage of the samples at the same temperature and humidity but in the presence of saturated potassium iodide (KI) solution (∼60% RH) for humidity control. The levels of the N-nitrosamine derivatives varied with the pH of various NaNO 2 batches. The presence of volatile NOx species in the headspace of a container containing saturated NaNO 2 solution was confirmed via the Griess assay. The process for formation of the N-nitrosamine derivatives is proposed to involve volatilization of nitric oxide (NO) from aqueous nitrite solution into the headspace of the container followed by diffusion into the solid drug-excipient blend and subsequent reaction of NOx with the secondary amine. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Olson, Roland E.; Truscott, Starr
1942-01-01
Data taken from tests at constant speed to establish trim limits of stability, tests at accelerated speeds to determine stable limits of center of gravity shift, and tests at decelerated speeds to obtain landing characteristics of several model hull forms were used to establish hull design effect on longitudinal stability of porpoising. Results show a reduction of dead rise angle as being the only investigated factor reducing low trim limit. Various methods of reducing afterbody interference increased upper trim limit
Spin Stabilized Impulsively Controlled Missile (SSICM)
NASA Astrophysics Data System (ADS)
Crawford, J. I.; Howell, W. M.
1985-12-01
This patent is for the Spin Stabilized Impulsively Controlled Missile (SSICM). SSICM is a missile configuration which employs spin stabilization, nutational motion, and impulsive thrusting, and a body mounted passive or semiactive sensor to achieve very small miss distances against a high speed moving target. SSICM does not contain an autopilot, control surfaces, a control actuation system, nor sensor stabilization gimbals. SSICM spins at a rate sufficient to provide frequency separation between body motions and inertial target motion. Its impulsive thrusters provide near instantaneous changes in lateral velocity, whereas conventional missiles require a significant time delay to achieve lateral acceleration.
Zhao, Binwu
2017-01-01
The β roll molecules with sequence (GAGAGAGQ)10 stack via hydrogen bonding to form fibrils which have been themselves been used to make viral capsids of DNA strands, supramolecular nanotapes and pH-responsive gels. Accelerated molecular dynamics (aMD) simulations are used to investigate the unfolding of a stack of two β roll molecules, (GAGAGAGQ)10, to shed light on the folding mechanism by which silk-inspired polypeptides form fibrils and to identify the dominant forces that keep the silk-inspired polypeptide in a β roll configuration. Our study shows that a molecule in a stack of two β roll molecules unfolds in a step-wise fashion mainly from the C terminal. The bottom template is found to play an important role in stabilizing the β roll structure of the molecule on top by strengthening the hydrogen bonds in the layer that it contacts. Vertical hydrogen bonds within the β roll structure are considerably weaker than lateral hydrogen bonds, signifying the importance of lateral hydrogen bonds in stabilizing the β roll structure. Finally, an intermediate structure was found containing a β hairpin and an anti-parallel β sheet consisting of strands from the top and bottom molecules, revealing the self-healing ability of the β roll stack. PMID:28329017
Zhang, Shihan; Lu, Hong; Lu, Yongqi
2013-12-03
A novel potassium-carbonate-based absorption process is currently being developed to reduce the energy consumption when capturing CO2 from coal combustion flue gas. The process employs the enzyme carbonic anhydrase (CA) as a catalyst to accelerate the rate of CO2 absorption. This study focused on the immobilization of a new variant of the CA enzyme onto a new group of nonporous nanoparticles to improve the enzyme's thermal stability and its chemical resistance to major impurities from the flue gas. The CA enzyme was manufactured at the pilot scale by a leading enzyme company. As carrier materials, two different batches of SiO2-ZrO2 composite nanoparticles and one batch of silica nanoparticle were synthesized using a flame spray pyrolysis method. Classic Danckwerts absorption theory with reaction was applied to determine the kinetics of the immobilized enzymes for CO2 absorption. The immobilized enzymes retained 56-88% of their original activity in a K2CO3/KHCO3 solution over a 60-day test period at 50 °C, compared with a 30% activity retention for their free CA enzyme counterpart. The immobilized CA enzymes also revealed improved chemical stability. The inactivation kinetics of the free and immobilized CA enzymes in the K2CO3/KHCO3 solution were experimentally quantified.
Zhou, Yankun; Roos, Yrjö H
2012-08-01
Water plasticization of sugar-protein encapsulants may cause structural changes and decrease the stability of encapsulated compounds during storage. The retention of α-tocopherol in freeze-dried lactose-milk protein-oil, lactose-soy protein-oil, trehalose-milk protein-oil, and trehalose-soy protein-oil systems at various water activities (a(w)) and in the presence of sugar crystallization was studied. Water sorption was determined gravimetrically. Glass transition and sugar crystallization were studied using differential scanning calorimetry and the retention of α-tocopherol spectrophotometrically. The loss of α-tocopherol followed lipid oxidation, but the greatest stability was found at 0 a(w) presumably because of α-tocopherol immobilization at interfaces and consequent reduction in antioxidant activity. A considerable loss of α-tocopherol coincided with sugar crystallization. The results showed that glassy matrices may protect encapsulated α-tocopherol; however, its role as an antioxidant at increasing aw accelerated its loss. Sugar crystallization excluded the oil-containing α-tocopherol from the protecting matrices and exposed it to surroundings, which decreased the stability of α-tocopherol.
Nonlinear transient analysis of multi-mass flexible rotors - theory and applications
NASA Technical Reports Server (NTRS)
Kirk, R. G.; Gunter, E. J.
1973-01-01
The equations of motion necessary to compute the transient response of multi-mass flexible rotors are formulated to include unbalance, rotor acceleration, and flexible damped nonlinear bearing stations. A method of calculating the unbalance response of flexible rotors from a modified Myklestad-Prohl technique is discussed in connection with the method of solution for the transient response. Several special cases of simplified rotor-bearing systems are presented and analyzed for steady-state response, stability, and transient behavior. These simplified rotor models produce extensive design information necessary to insure stable performance to elastic mounted rotor-bearing systems under varying levels and forms of excitation. The nonlinear journal bearing force expressions derived from the short bearing approximation are utilized in the study of the stability and transient response of the floating bush squeeze damper support system. Both rigid and flexible rotor models are studied, and results indicate that the stability of flexible rotors supported by journal bearings can be greatly improved by the use of squeeze damper supports. Results from linearized stability studies of flexible rotors indicate that a tuned support system can greatly improve the performance of the units from the standpoint of unbalanced response and impact loading. Extensive stability and design charts may be readily produced for given rotor specifications by the computer codes presented in this analysis.
NASA Astrophysics Data System (ADS)
Chen, Yumin; Zhang, Zhichao; Liu, Hanlong
2017-04-01
The Hybrid A-Frame Micropile/MSE (mechanically stabilized earth) Wall suitable for mountain roadways is put forward in this study: a pair of vertical and inclined micropiles goes through the backfill region of a highway MSE Wall from the road surface and are then anchored into the foundation. The pile cap and grade beam are placed on the pile tops, and then a road barrier is connected to the grade beam by connecting pieces. The MSE wall's global stability, local stability and impact resistance of the road barrier can be enhanced simultaneously by this design. In order to validate the serviceability of the hybrid A-frame micropile/MSE wall and the reliability of the numerical method, scale model tests and a corresponding numerical simulation were conducted. Then, the seismic performance of the MSE walls before and after reinforcement with micropiles was studied comparatively through numerical methods. The results indicate that the hybrid A-frame micropile/MSE wall can effectively control earthquake-induced deformation, differential settlement at the road surface, bearing pressure on the bottom and acceleration by means of a rigid-soft combination of micropiles and MSE. The accumulated displacement under earthquakes with amplitude of 0.1‒0.5 g is reduced by 36.3%‒46.5%, and the acceleration amplification factor on the top of the wall is reduced by 13.4%, 15.7% and 19.3% based on 0.1, 0.3 and 0.5 g input earthquake loading, respectively. In addition, the earthquake-induced failure mode of the MSE wall in steep terrain is the sliding of the MSE region along the backslope, while the micropiles effectively control the sliding trend. The maximum earthquake-induced pile bending moment is in the interface between MSE and slope foundation, so it is necessary to strengthen the reinforcement of the pile body in the interface. Hence, it is proven that the hybrid A-frame micropile/MSE wall system has good seismic performance.
Overview of recent studies and design changes for the FNAL magnetron ion source
NASA Astrophysics Data System (ADS)
Bollinger, D. S.; Sosa, A.
2017-08-01
This paper presents several studies and design changes that will eventually be implemented to the Fermi National Accelerator Laboratory (FNAL) magnetron ion source. The topics include tungsten cathode insert, solenoid gas valves, current controlled arc pulser, cesium boiler redesign, gas mixtures of hydrogen and nitrogen, and duty factor reduction. The studies were performed on the FNAL test stand described in [1], with the aim to improve source lifetime, stability, and reducing the amount of tuning needed.
Fluid-injection and the mechanics of frictional stability of shale-bearing faults
NASA Astrophysics Data System (ADS)
Scuderi, Marco Maria; Collettini, Cristiano; Marone, Chris
2017-04-01
Fluid overpressure is one of the primary mechanisms for triggering tectonic fault slip and human-induced seismicity. This mechanism is appealing because fluids lubricate the fault and reduce the effective normal stress that holds the fault in place. However, current models of earthquake nucleation, based on rate- and state- friction, imply that stable sliding is favored by the increase of pore fluid pressure. Despite this apparent dilemma, there are a few studies on the role of fluid pressure in frictional stability under controlled, laboratory conditions. Here, we describe laboratory experiments on shale fault gouge, conducted in the double direct shear configuration in a true-triaxial machine. To characterize frictional stability and hydrological properties we performed three types of experiments: 1) stable sliding shear experiment to determine the material failure envelope resulting in fault strength of µ=0.28 and fault zone permeability (k 10-19m2); 2) velocity step experiments to determine the rate- and state- frictional properties, characterized by a velocity strengthening behavior with a negative rate parameter b, indicative of stable aseismic creep; 3) creep experiment to study fault slip evolution with increasing pore-fluid pressure. In these creep experiments fault slip history can be divided in three main stages: a) for low fluid pressure the fault is locked and undergoes compaction; b) with increasing fluid pressurization, we observe aseismic creep (i.e. v=0.0001 µm/s) associated with fault dilation, with maintained low permeability; c) As fluid pressure is further increased and we approach the failure criteria fault begins to accelerate, the dilation rate increases causing an increase in permeability. Following the first acceleration we document complex fault slip behavior characterized by periodic accelerations and decelerations with slip velocity that remains slow (i.e. v 200 µm/s), never approaching dynamic slip rates. Surprisingly, this complex slip behavior is associated with fault zone compaction and permeability increase as opposite to the dilation hardening mechanism that is usually invoked to quench the instability. We relate this complex fault slip behaviour to the interplay between fault weakening induced by fluid pressurization and the strong rate-strengthening behaviour of shales. Our data show that fault rheology and fault stability is controlled by the coupling between fluid pressure and rate- and state- friction parameters suggesting that their comprehensive characterization is fundamental for assessing the role of fluid pressure in natural and human induced earthquakes.
Approaches to improve the stability of the antiviral agent UC781 in aqueous solutions.
Damian, Festo; Fabian, Judit; Friend, David R; Kiser, Patrick F
2010-08-30
In this work, we evaluated the chemical stability profiles of UC781 based solutions to identify excipients that stabilize the microbicidal agent UC781. When different antioxidants were added to UC781 in sulfobutylether-beta-cyclodextrin (SBE-beta-CD) solutions and subjected to a 50 degrees C stability study, it was observed that EDTA was a better stabilizing agent than sodium metabisulfite, glutathione or ascorbic acid. Some antioxidants accelerated the degradation of UC781, suggesting metal-catalyzed degradation of UC781. Furthermore, we observed substantial degradation of UC781 when stored in 1% Tween 80 and 1% DMSO solutions alone or in those with 10mM EDTA. On the other hand, improved stability of UC781 in the presence of 100 and 200mM of EDTA was observed in these solutions. The addition of both EDTA and citric acid in the stock solutions resulted in recovery of more than 60% of UC781 after 12 weeks. Generally, 10% SBE-beta-CD in the presence of EDTA and citric acid stabilized UC781 solutions: the amount of UC781 recovered approaching 95% after 12 weeks of storage at 40 degrees C. We also showed that the desulfuration reaction of the UC781 thioamide involves oxygen by running solution stability studies in deoxygenated media. Improved stability of UC781 in the present study indicates that the incorporation of EDTA, citric acid and SBE-beta-CD and the removal of oxygen in formulations of this drug will aid in increasing the stability of UC781 where solutions of the drug are required. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Asano, Shogo; Matsumoto, Hideki
2001-05-01
This paper describes the development process for acceleration sensors used on automobiles and an acceleration evaluation system designed specifically for acceleration at super-low-range frequencies. The features of the newly developed sensor are as follows. 1) Original piezo-bimorph design based on a disc-center-fixed structure achieves pyroeffect cancelling and stabilization of sensor characteristics and enables the detection of the acceleration of 0.0009 G at the super-low-range-frequency of 0.03 Hz. 2) The addition of a self-diagnostic function utilizing the characteristics of piezoceramics enables constant monitoring of sensor failure. The frequency range of acceleration for accurate vehicle motion control is considered to be from DC to about 50 Hz. However, the measurement of acceleration in the super-low-range frequency near DC has been difficult because of mechanical and electrical noise interruption. This has delayed the development of the acceleration sensor for automotive use. We have succeeded in the development of an acceleration evaluation system for super-low-range frequencies from 0.015 Hz to 2 Hz with detection of the acceleration range from 0.0002 G (0.2 gal) to 1 G, as well as the development of a piezoelectric-type acceleration sensor for automotive use.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Volk, James; Hansen, Sten; Johnson, Todd
2012-01-01
Particle accelerators require very tight tolerances on the alignment and stability of their elements: magnets, accelerating cavities, vacuum chambers, etc. In this article we describe the Hydrostatic Level Sensors (HLS) for very low frequency measurements used in a variety of facilities at Fermilab. We present design features of the sensors, outline their technical parameters, describe their test and calibration procedures, discuss different regimes of operation and give few illustrative examples of the experimental data. Detail experimental results of the ground motion measurements with these detectors will be presented in subsequent papers.
NASA Astrophysics Data System (ADS)
Yoon, Jangyeol; Yim, Seongjin; Cho, Wanki; Koo, Bongyeong; Yi, Kyongsu
2010-11-01
This paper describes a unified chassis control (UCC) strategy to prevent vehicle rollover and improve both manoeuvrability and lateral stability. Since previous researches on rollover prevention are only focused on the reduction of lateral acceleration, the manoeuvrability and lateral stability cannot be guaranteed. For this reason, it is necessary to design a UCC controller to prevent rollover and improve lateral stability by integrating electronic stability control, active front steering and continuous damping control. This integration is performed through switching among several control modes and a simulation is performed to validate the proposed method. Simulation results indicate that a significant improvement in rollover prevention, manoeuvrability and lateral stability can be expected from the proposed UCC system.
The Superconducting Cavity Stabilized Oscillator
NASA Technical Reports Server (NTRS)
Turneaure, J. P.; Buchman, Saps; Lipa, John
1997-01-01
Superconducting Cavity Stabilized Oscillators (SCSOs) have produced the most stable clocks to date for integration times between 10(exp 2) and 10(exp 3) seconds, achieving a fractional frequency stability of 2 x 10(exp -16) for a sampling time of 100 s. The principal contributors to cavity frequency variations are: (1) acceleration effects due to gravity and vibrations; (2) temperature variations; (3) variations in the energy stored in the cavity; and (4) noise introduced by the frequency stabilization circuit. We discuss the prospects for improvements in all these areas for both ground-based and space-based SCSOs, which may lead to SCSOs with fractional frequency stabilities below 10(exp -17). SCSOs of this frequency stability will be useful for testing fundamental physical principles.
2016-03-01
acceleration of the shifting masses experiences a Coriolis Effect due to the angular velocity of the spacecraft. However, the perpendicular component of...angular velocity. If we neglect the Coriolis Effect in absolute acceleration, both terms become zero. Then, Equation 4.22 becomes ( )0 0 0 0 0...METHOD ......................................................83 C. EXPLORATION OF THE ALTITUDE AND INCLINATION EFFECTS ON THE CONTROL
NASA Astrophysics Data System (ADS)
Xiang, Yuren; Zhang, Fan; He, Junjie; Lian, Jiarong; Zeng, Pengju; Song, Jun; Qu, Junle
2018-04-01
The photo-conversion efficiency of perovskite solar cells (PSCs) has been improved considerably in recent years, but the poor stability of PSCs still prevents their commercialization. In this report, we use the rate of the integrated short-circuit current change (Drate) to investigate the performance degradation kinetics and identify the degradation of PSCs that is accelerated by the light current. The value of Drate increases by an order of magnitude from about 0.02 to 0.35 mA cm-2·min-1 after light-IV testing. The accelerated degradation progress is proven to be dominated by the hydration process and the migration of the iodine ions of the light current. The migration of the iodine ions enhances the hydration process through a chain reaction, enabling the formation of fast diffusion channels for both H2O and O2, which induce the rapid decomposition of the perovskite film and increase the density of the trap state. The X-ray photoelectron spectroscopy measurement data also indicate that the super oxygen may be formed due to the PCBM damage caused by the migration iodine ions. An understanding of the degradation acceleration mechanism would provide an insight into the effect of ion migration on the stability of PSCs.
Accelerating proof of concept for small molecule drugs using solid-state chemistry.
Byrn, Stephen R; Zografi, George; Chen, Xiaoming Sean
2010-09-01
In this perspective we have shown that the process of "proof of concept" (POC) in the early part of drug development can be greatly accelerated by close attention to the underlying solid-state chemistry (SSC) of a new chemical entity. POC seeks data that provide confidence in the therapeutic activity and safety of a new chemical entity, which can rapidly lead to a key "GO/NO-GO" decision point for further development. Due to the high cost of the development of new chemical entities and the current low overall productivity of obtaining successful candidates, the pharmaceutical industry is being required to develop accelerated POC strategies. The success of accelerated approaches to POC depends on a full understanding of the SSC of drugs in relation to solubility and stability. Dissolution-limited absorption due to poor solubility of drug substances is particularly important because it can lead to low exposure in animals and undesired bioavailability in humans. Choosing a desirable solid form with sufficient solubility and acceptable stability is essential in developing formulations for POC with superior quality. In this perspective we present an approach that utilizes SSC as part of a novel 2-year development strategy for reaching the pivotal clinical trial stage of development.
Feng, Yan Wen; Ooishi, Ayako; Honda, Shinya
2012-01-05
A simple systematic approach using Fourier transform infrared (FTIR) spectroscopy, size exclusion chromatography (SEC) and design of experiments (DOE) techniques was applied to the analysis of aggregation factors for protein formulations in stress and accelerated testings. FTIR and SEC were used to evaluate protein conformational and storage stabilities, respectively. DOE was used to determine the suitable formulation and to analyze both the main effect of single factors and the interaction effect of combined factors on aggregation. Our results indicated that (i) analysis at a low protein concentration is not always applicable to high concentration formulations; (ii) an investigation of interaction effects of combined factors as well as main effects of single factors is effective for improving conformational stability of proteins; (iii) with the exception of pH, the results of stress testing with regard to aggregation factors would be available for suitable formulation instead of performing time-consuming accelerated testing; (iv) a suitable pH condition should not be determined in stress testing but in accelerated testing, because of inconsistent effects of pH on conformational and storage stabilities. In summary, we propose a three-step strategy, using FTIR, SEC and DOE techniques, to effectively analyze the aggregation factors and perform a rapid screening for suitable conditions of protein formulation. Copyright © 2011 Elsevier B.V. All rights reserved.
Sharma, Deepak; Singh, Gurmeet; Kumar, Dinesh; Singh, Mankaran
2015-01-01
The objective of the present study was to prepare the fast disintegrating tablet of Salbutamol Sulphate, Cetirizine Hydrochloride in combined tablet dosage form for respiratory disorders such as bronchitis, asthma, and coughing for pediatrics and geriatrics. The tablets were prepared by direct compression technique. Superdisintegrant such as Sodium Starch Glycolate was optimized as 4% on the basis of least disintegration time. Different binders such as MCC and PVP K-30 were optimized along with optimized superdisintegrant concentration. 1% MCC was selected as optimum binder concentration on the basis of least disintegration time. The tablets were evaluated for hardness, friability, weight variation, wetting time, disintegration time, and drug content uniformity. Optimized formulation was further evaluated by in vitro dissolution test, drug-excipient compatibility, and accelerated stability study. Percent weight variation and content uniformity were within the acceptable limit. The friability was less than 1%. The wetting time and disintegration time were practically good for all formulations. FTIR studies and accelerated stability study showed that there was no interaction between the drug and excipients. It was concluded that, by employing commonly available pharmaceutical excipients such as superdisintegrants, hydrophilic and swellable excipients and proper filler, a fast disintegrating tablet of Salbutamol Sulphate, Cetirizine Hydrochloride in combined tablet dosage form, were formulated successfully with desired characteristics. PMID:25810924
Beirowski, Jakob; Inghelbrecht, Sabine; Arien, Albertina; Gieseler, Henning
2012-01-01
On the basis of a previously developed formulation and process guideline for lyophilized, highly concentrated drug nanosuspensions for parenteral use, it was the purpose of this study to demonstrate that the original nanoparticle size distribution can be preserved over a minimum period of 3 months, even if aggressive primary drying conditions are used. Critical factors were evaluated that were originally believed to affect storage stability of freeze-dried drug nanoparticles. It was found that the nature and concentration of the steric stabilizer, such as Poloxamer 338 and Cremophor EL, are the most important factors for long-term stability of such formulations, independent of the used drug compound. The rational choice of an adequate steric stabilizer, namely Poloxamer 338, in combination with various lyoprotectants seems crucial to prevent physical instabilities of the lyophilized drug nanoparticles during short-term stability experiments at ambient and accelerated conditions. A 200 mg/mL concentration of nanoparticles could successfully be stabilized over the investigated time interval. In the course of the present experiments, polyvinylpyrrolidone, type K15 was found superior to trehalose or sucrose in preserving the original particle size distribution, presumably based on its surface-active properties. Lastly, it was demonstrated that lower water contents are generally beneficial to stabilize such systems. Copyright © 2011 Wiley-Liss, Inc.
The ISOLDE facility and the HIE-HISOLDE project: Recent highlights
DOE Office of Scientific and Technical Information (OSTI.GOV)
Borge, M. J. G.
2014-07-23
The ISOLDE facility at CERN has as objective the production, study and research of nuclei far from stability. The facility provides low energy radioactive beams and post-accelerated beams. In the last 45 years the ISOLDE facility has gathered unique expertise in research with radioactive beams. Over 700 isotopes of more than 70 elements have been used in a wide range of research domains, including cutting edge studies in nuclear structure, atomic physics, nuclear astrophysics, and fundamental interactions. These nuclear probes are also used to do frontier research in solid state and life sciences. There is an on-going upgrade of themore » facility, the HIE-ISOLDE project, which aims to improve the ISOLDE capabilities in a wide front, from an energy increase of the post-accelerated beam to improvements in beam quality and beam purity. The first phase of HIE-ISOLDE will start for physics in the autumn of 2015 with an upgrade of energy for all post-accelerated ISOLDE beams up to 5.5 MeV/u. In this contribution the most recent highlights of the facility are presented.« less
NASA Astrophysics Data System (ADS)
Qiao, Bin; He, X. T.; Zhu, Shao-ping; Zheng, C. Y.
2005-08-01
The acceleration of plasma electron in intense laser-plasma interaction is investigated analytically and numerically, where the conjunct effect of laser fields and self-consistent spontaneous fields (including quasistatic electric field Esl, azimuthal quasistatic magnetic field Bsθ and the axial one Bsz) is completely considered for the first time. An analytical relativistic electron fluid model using test-particle method has been developed to give an explicit analysis about the effects of each quasistatic fields. The ponderomotive accelerating and scattering effects on electrons are partly offset by Esl, furthermore, Bsθ pinches and Bsz collimates electrons along the laser axis. The dependences of energy gain and scattering angle of electron on its initial radial position, plasma density, and laser intensity are, respectively, studied. The qualities of the relativistic electron beam (REB), such as energy spread, beam divergence, and emitting (scattering) angle, generated by both circularly polarized (CP) and linearly polarized (LP) lasers are studied. Results show CP laser is of clear advantage comparing to LP laser for it can generate a better REB in collimation and stabilization.
Three Axes MEMS Combined Sensor for Electronic Stability Control System
NASA Astrophysics Data System (ADS)
Jeong, Heewon; Goto, Yasushi; Aono, Takanori; Nakamura, Toshiaki; Hayashi, Masahide
A microelectromechanical systems (MEMS) combined sensor measuring two-axis accelerations and an angular rate (rotation) has been developed for an electronic stability control system of automobiles. With the recent trend to mount the combined sensors in the engine compartment, the operation temperature range increased drastically, with the request of immunity to environmental disturbances such as vibration. In this paper, we report the combined sensor which has a gyroscopic part and two acceleration parts in single die. A deformation-robust MEMS structure has been adopted to achieve stable operation under wide temperature range (-40 to 125°C) in the engine compartment. A package as small as 10 × 19 × 4 mm is achieved by adopting TSV (through silicon via) and WLP (wafer-level package) technologies with enough performance as automotive grade.
Application of high hydrostatic pressure for increasing activity and stability of enzymes.
Mozhaev, V V; Lange, R; Kudryashova, E V; Balny, C
1996-10-20
Elevated hydrostatic pressure has been used to increase catalytic activity and thermal stability of alpha-chymotrypsin (CT). For an anilide substrate, characterized by a negative value of the reaction activation volume (DeltaV( not equal)), an increase in pressure at 20 degrees C results in an exponential acceleration of the hydrolysis rate catalyzed by CT reaching a 6.5-fold increase in activity at 4700 atm (4.7 kbar). Due to a strong temperature dependence of DeltaV( not equal), the acceleration effect of high pressure becomes more pronounced at high temperatures. For example, at 50 degrees C, under a pressure of 3.6 kbar, CT shows activity which is more than 30 times higher than the activity at normal conditions (20 degrees C, 1 atm). At pressures of higher than 3.6 kbar, the enzymatic activity is decreased due to a pressure-induced denaturation.Elevated hydrostatic pressure is also efficient for increasing stability of CT against thermal denaturation. For example, at 55 degrees C, CT is almost instantaneously inactivated at atmospheric pressure, whereas under a pressure of 1.8 kbar CT retains its anilide-hydrolyzing activity during several dozen minutes. Additional stabilization can be achieved in the presence of glycerol, which is most effective for protection of CT at an intermediate concentration of 40% (v/v). There has been observed an additivity in stabilization effects of high pressure and glycerol: thermal inactivation of pressure-stabilized CT can be decelerated in a supplementary manner by addition of 40% (v/v) glycerol. The protection effect of glycerol on the catalytic activity and stability of CT becomes especially pronounced when both extreme factors of temperature and pressure reach critical values. For example, at approximately 55 degrees C and 4.7 kbar, enzymatic activity of CT in the presence of 40% (v/v) glycerol is severalfold higher than in aqueous buffer.The results of this study are discussed in terms of the hypotheses which explain the action of external and medium effects on protein structure, such as preferential hydration and osmotic pressure.
Dynamic motion modes of high temperature superconducting maglev on a 45-m long ring test line
NASA Astrophysics Data System (ADS)
Lei, W. Y.; Qian, N.; Zheng, J.; Jin, L. W.; Zhang, Y.; Deng, Z. G.
2017-10-01
With the development of high temperature superconducting (HTS) maglev, studies on the running stability have become more and more significant to ensure the operation safety. An experimental HTS maglev vehicle was tested on a 45-m long ring test line under the speed from 4 km/h to 20 km/h. The lateral and vertical acceleration signals of each cryostat were collected by tri-axis accelerometers in real time. By analyzing the phase relationship of acceleration signals on the four cryostats, several typical motion modes of the HTS maglev vehicle, including lateral, yaw, pitch and heave motions were observed. This experimental finding is important for the next improvement of the HTS maglev system.
Anderson acceleration and application to the three-temperature energy equations
NASA Astrophysics Data System (ADS)
An, Hengbin; Jia, Xiaowei; Walker, Homer F.
2017-10-01
The Anderson acceleration method is an algorithm for accelerating the convergence of fixed-point iterations, including the Picard method. Anderson acceleration was first proposed in 1965 and, for some years, has been used successfully to accelerate the convergence of self-consistent field iterations in electronic-structure computations. Recently, the method has attracted growing attention in other application areas and among numerical analysts. Compared with a Newton-like method, an advantage of Anderson acceleration is that there is no need to form the Jacobian matrix. Thus the method is easy to implement. In this paper, an Anderson-accelerated Picard method is employed to solve the three-temperature energy equations, which are a type of strong nonlinear radiation-diffusion equations. Two strategies are used to improve the robustness of the Anderson acceleration method. One strategy is to adjust the iterates when necessary to satisfy the physical constraint. Another strategy is to monitor and, if necessary, reduce the matrix condition number of the least-squares problem in the Anderson-acceleration implementation so that numerical stability can be guaranteed. Numerical results show that the Anderson-accelerated Picard method can solve the three-temperature energy equations efficiently. Compared with the Picard method without acceleration, Anderson acceleration can reduce the number of iterations by at least half. A comparison between a Jacobian-free Newton-Krylov method, the Picard method, and the Anderson-accelerated Picard method is conducted in this paper.
Temporal acceleration of spatially distributed kinetic Monte Carlo simulations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chatterjee, Abhijit; Vlachos, Dionisios G.
The computational intensity of kinetic Monte Carlo (KMC) simulation is a major impediment in simulating large length and time scales. In recent work, an approximate method for KMC simulation of spatially uniform systems, termed the binomial {tau}-leap method, was introduced [A. Chatterjee, D.G. Vlachos, M.A. Katsoulakis, Binomial distribution based {tau}-leap accelerated stochastic simulation, J. Chem. Phys. 122 (2005) 024112], where molecular bundles instead of individual processes are executed over coarse-grained time increments. This temporal coarse-graining can lead to significant computational savings but its generalization to spatially lattice KMC simulation has not been realized yet. Here we extend the binomial {tau}-leapmore » method to lattice KMC simulations by combining it with spatially adaptive coarse-graining. Absolute stability and computational speed-up analyses for spatial systems along with simulations provide insights into the conditions where accuracy and substantial acceleration of the new spatio-temporal coarse-graining method are ensured. Model systems demonstrate that the r-time increment criterion of Chatterjee et al. obeys the absolute stability limit for values of r up to near 1.« less
Hypersonic vehicle control law development using H infinity and mu-synthesis
NASA Technical Reports Server (NTRS)
Gregory, Irene M.; Chowdhry, Rajiv S.; Mcminn, John D.; Shaughnessy, John D.
1992-01-01
Applicability and effectiveness of robust control techniques to a single-stage-to-orbit (SSTO) airbreathing hypersonic vehicle on an ascent accelerating path and their effectiveness are explored in this paper. An SSTO control system design problem, requiring high accuracy tracking of velocity and altitude commands while limiting angle of attack oscillations, minimizing control power usage and stabilizing the vehicle all in the presence of atmospheric turbulence and uncertainty in the system, was formulated to compare results of the control designs using H infinity and mu-synthesis procedures. The math model, an integrated flight/propulsion dynamic model of a conical accelerator class vehicle, was linearized as the vehicle accelerated through Mach 8. Controller analysis was conducted using the singular value technique and the mu-analysis approach. Analysis results were obtained in both the frequency and the time domains. The results clearly demonstrate the inherent advantages of the structured singular value framework for this class of problems. Since payload performance margins are so critical for the SSTO mission, it is crucial that adequate stability margins be provided without sacrificing any payload mass.
Handa, Tarun; Jhajra, Shalu; Bhagat, Shweta; Bharatam, P V; Chakraborti, Asit K; Singh, Saranjit
2017-03-20
Combination therapy with the use of fixed-dose combinations (FDCs) is evincing increasing interest of prescribers, manufacturers and even regulators, evidently due to the primary benefit of improved patient compliance. However, owing to potential of drug-drug interaction, FDCs require closer scrutiny with respect to their physical and chemical stability. Accordingly, the purpose of the present study was to explore stability behavior of a popular antihypertensive combination of amlodipine besylate (AML) and losartan potassium (LST). Physical mixtures of the two drugs and multiple marketed formulations were stored under accelerated conditions of temperature and humidity (40°C/75% RH) in a stability chamber and samples were withdrawn after 1 and 3 months. The physical changes were observed visibly, while chemical changes were monitored by HPLC employing a method that could separate the two drugs and all other components present. The combination revealed strong physical instability and also chemical degradation of AML in the presence of LST. Interestingly, three isomeric interaction products of AML were formed in the combination, which otherwise were reported in the literature to be generated on exposure of AML free base above its melting point. The same unusual products were even formed when multiple marketed FDCs were stored under accelerated conditions outside their storage packs. However, these were absent when AML alone was stored in the same studied conditions. Therefore, reasons for physical and chemical incompatibility and the mechanism of degradation of AML in the presence of LST were duly explored at the molecular level. The outcomes of the study are expected to help in development of stable FDCs of the two drugs. Copyright © 2016 Elsevier B.V. All rights reserved.
Garidel, Patrick; Pevestorf, Benjamin; Bahrenburg, Sven
2015-11-01
We studied the stability of freeze-dried therapeutic protein formulations over a range of initial concentrations (from 40 to 160 mg/mL) and employed a variety of formulation strategies (including buffer-free freeze dried formulations, or BF-FDF). Highly concentrated, buffer-free liquid formulations of therapeutic monoclonal antibodies (mAbs) have been shown to be a viable alternative to conventionally buffered preparations. We considered whether it is feasible to use the buffer-free strategy in freeze-dried formulations, as an answer to some of the known drawbacks of conventional buffers. We therefore conducted an accelerated stability study (24 weeks at 40 °C) to assess the feasibility of stabilizing freeze-dried formulations without "classical" buffer components. Factors monitored included pH stability, protein integrity, and protein aggregation. Because the protein solutions are inherently self-buffering, and the system's buffer capacity scales with protein concentration, we included highly concentrated buffer-free freeze-dried formulations in the study. The tested formulations ranged from "fully formulated" (containing both conventional buffer and disaccharide stabilizers) to "buffer-free" (including formulations with only disaccharide lyoprotectant stabilizers) to "excipient-free" (with neither added buffers nor stabilizers). We evaluated the impacts of varying concentrations, buffering schemes, pHs, and lyoprotectant additives. At the end of 24 weeks, no change in pH was observed in any of the buffer-free formulations. Unbuffered formulations were found to have shorter reconstitution times and lower opalescence than buffered formulations. Protein stability was assessed by visual inspection, sub-visible particle analysis, protein monomer content, charge variants analysis, and hydrophobic interaction chromatography. All of these measures found the stability of buffer-free formulations that included a disaccharide stabilizer comparable to buffer-based formulations, especially at protein concentrations up to and including 115 mg/mL. Copyright © 2015 Elsevier B.V. All rights reserved.
Initiation of combustion in the thermally choked ram accelerator
NASA Technical Reports Server (NTRS)
Bruckner, A. P.; Burnham, E. A.; Knowlen, C.; Hertzberg, A.; Bogdanoff, D. W.
1992-01-01
The methodology for initiating stable combustion in a ram accelerator operating in the thermally choked mode is presented in this paper. The ram accelerator is a high velocity ramjet-in-tube projectile launcher whose principle of operation is similar to that of an airbreathing ramjet. The subcaliber projectile travels supersonically through a stationary tube filled with a premixed combustible gas mixture. In the thermally choked propulsion mode subsonic combustion takes place behind the base of the projectile and leads to thermal choking, which stabilizes a normal shock system on the projectile, thus producing forward thrust. Projectiles with masses in the 45-90 g range have been accelerated to velocities up to 2650 m/sec in a 38 mm bore, 16 m long accelerator tube. Operation of the ram accelerator is started by injecting the projectile into the accelerator tube at velocities in the 700 - 1300 m/sec range by means of a conventional gas gun. A specially designed obturator, which seals the bore of the gun during this initial acceleration, enters the ram accelerator together with the projectile. The interaction of the obturator with the propellant gas ignites the gas mixture and establishes stable combustion behind the projectile.
Recent advances in testing of microsphere drug delivery systems.
Andhariya, Janki V; Burgess, Diane J
2016-01-01
This review discusses advances in the field of microsphere testing. In vitro release-testing methods such as sample and separate, dialysis membrane sacs and USP apparatus IV have been used for microspheres. Based on comparisons of these methods, USP apparatus IV is currently the method of choice. Accelerated in vitro release tests have been developed to shorten the testing time for quality control purposes. In vitro-in vivo correlations using real-time and accelerated release data have been developed, to minimize the need to conduct in vivo performance evaluation. Storage stability studies have been conducted to investigate the influence of various environmental factors on microsphere quality throughout the product shelf life. New tests such as the floating test and the in vitro wash-off test have been developed along with advancement in characterization techniques for other physico-chemical parameters such as particle size, drug content, and thermal properties. Although significant developments have been made in microsphere release testing, there is still a lack of guidance in this area. Microsphere storage stability studies should be extended to include microspheres containing large molecules. An agreement needs to be reached on the use of particle sizing techniques to avoid inconsistent data. An approach needs to be developed to determine total moisture content of microspheres.
Influence of pigments and opacifiers on color stability of an artificially aged facial silicone.
dos Santos, Daniela Micheline; Goiato, Marcelo Coelho; Moreno, Amália; Pesqueira, Aldiéris Alves; Haddad, Marcela Filiè
2011-04-01
The aim of this study was to evaluate the influence of two pigments (ceramic powder and oil paint) and one opacifier (barium sulfate) on the color stability of MDX4-4210 facial silicone submitted to accelerated aging. Sixty specimens of silicone were fabricated and divided into six groups--colorless (G1), colorless with opacifier (G2), ceramic (G3), ceramic with opacifier (G4), oil (G5), oil with opacifier (G6). All replicas were submitted to accelerated aging for 1008 hours. The evaluations of chromatic alteration through visual analysis and reflection spectrophotometry were carried out initially and after 252, 504, and 1008 hours of aging. The results were submitted to ANOVA and Tukey's test at 5% level of significance. All groups exhibited chromatic alteration (ΔE > 0); however, this color alteration was not perceptible through visual analysis of the color. The pigmented groups with opacifier presented the lowest ΔE values, with a statistical difference from the other groups. For the groups without opacifier, the group pigmented with oil paint exhibited the lowest ΔE values in the different aging periods, with a statistical difference. Accelerated aging generated significant chromatic alterations in all groups after 252 hours, except for the colorless and oil groups, both with opacifier (G2 and G6). The opacifier protects facial silicones against color degradation, and oil paint is a stable pigment even without addition of opacifier. © 2010 by The American College of Prosthodontists.
Lavelli, Vera; Vantaggi, Claudia
2009-06-10
Dehydrated apples were studied to evaluate the effects of water activity on the stability of their antioxidants and color. Apples were freeze-dried, ground, then equilibrated, and stored at eight water activity levels, ranging from 0.058 to 0.747, at 40 degrees C. Their contents of hydroxycinnamic acids, dihydrochalcones, catechin, epicatechin, polymeric flavan-3-ols, and hydroxymethylfurfural, their antioxidant activity values, and their Hunter colorimetric parameters were analyzed at different storage times. Antioxidant degradation followed pseudo-first-order kinetics and was accelerated by increasing the water activity. The order of antioxidant stability in the products at water activity levels below 0.316 was catechin, epicatechin, and ascorbic acid < total procyanidins < dihydrochalcones and p-coumaric acid < chlorogenic acid; however, in the products at water activity levels above 0.316, the degradation of all antioxidants was very fast. The hydroxymethylfurfural formation rate increased exponentially during storage, especially at high water activity levels. The antioxidant activity of the dehydrated apples decreased during storage, consistent with antioxidant loss. The variations of the colorimetric parameters, namely, lightness (L*), redness (a*), and yellowness (b*), followed pseudo-zero-order kinetics and were accelerated by increasing water activity. All analytical indices indicated that the dehydrated apples were stable at water activity levels below 0.316, with the degradation rate accelerating upon exposure to higher relative humidities. Above 0.316, a small increase in water activity of the product would sharply increase the degradation rate constants for both antioxidant and color variations.
Torres, Susana; Brown, Roland; Zelesky, Todd; Scrivens, Garry; Szucs, Roman; Hawkins, Joel M; Taylor, Mark R
2016-11-30
Stability studies of pharmaceutical drug products and pharmaceutical active substances are important to research and development in order to fully understand and maintain product quality and safety throughout its shelf-life. Oxidative forced degradation studies are among the different types of stability studies performed by the pharmaceutical industry in order to understand the intrinsic stability of drug molecules. We have been comparing the use of electrochemistry as an alternative oxidative forced degradation method to traditional forced degradation and accelerated stability studies. Using the electrochemical degradation approach the substrate oxidation takes place in a commercially available electrochemical cell and the effluent of the cell can be either a) directly infused into the mass spectrometer or b) injected in a chromatographic column for separation of the different products formed prior to the mass spectrometry analysis. To enable the study of large numbers of different experimental conditions and molecules we developed a new dual pump automated electrochemical screening platform. This system used a HPLC pump and autosampler to load and wash the electrochemical cell and deliver the oxidized sample plug to a second injection loop. This system enabled the automatic sequential analyses of large numbers of different solutions under varied experimental conditions without need for operator intervention during the run sequence. Here we describe the system and evaluate its performance using a test molecule with well characterized stability and compare results to those obtained using an off-line electrochemistry approach. Copyright © 2016 Elsevier B.V. All rights reserved.
Lu, Mengxiao; Gantz, Donald L.; Herscovitz, Haya; Gursky, Olga
2012-01-01
Fusion of modified LDL in the arterial wall promotes atherogenesis. Earlier we showed that thermal denaturation mimics LDL remodeling and fusion, and revealed kinetic origin of LDL stability. Here we report the first quantitative analysis of LDL thermal stability. Turbidity data show sigmoidal kinetics of LDL heat denaturation, which is unique among lipoproteins, suggesting that fusion is preceded by other structural changes. High activation energy of denaturation, Ea = 100 ± 8 kcal/mol, indicates disruption of extensive packing interactions in LDL. Size-exclusion chromatography, nondenaturing gel electrophoresis, and negative-stain electron microscopy suggest that LDL dimerization is an early step in thermally induced fusion. Monoclonal antibody binding suggests possible involvement of apoB N-terminal domain in early stages of LDL fusion. LDL fusion accelerates at pH < 7, which may contribute to LDL retention in acidic atherosclerotic lesions. Fusion also accelerates upon increasing LDL concentration in near-physiologic range, which likely contributes to atherogenesis. Thermal stability of LDL decreases with increasing particle size, indicating that the pro-atherogenic properties of small dense LDL do not result from their enhanced fusion. Our work provides the first kinetic approach to measuring LDL stability and suggests that lipid-lowering therapies that reduce LDL concentration but increase the particle size may have opposite effects on LDL fusion. PMID:22855737
Lu, Mengxiao; Gantz, Donald L; Herscovitz, Haya; Gursky, Olga
2012-10-01
Fusion of modified LDL in the arterial wall promotes atherogenesis. Earlier we showed that thermal denaturation mimics LDL remodeling and fusion, and revealed kinetic origin of LDL stability. Here we report the first quantitative analysis of LDL thermal stability. Turbidity data show sigmoidal kinetics of LDL heat denaturation, which is unique among lipoproteins, suggesting that fusion is preceded by other structural changes. High activation energy of denaturation, E(a) = 100 ± 8 kcal/mol, indicates disruption of extensive packing interactions in LDL. Size-exclusion chromatography, nondenaturing gel electrophoresis, and negative-stain electron microscopy suggest that LDL dimerization is an early step in thermally induced fusion. Monoclonal antibody binding suggests possible involvement of apoB N-terminal domain in early stages of LDL fusion. LDL fusion accelerates at pH < 7, which may contribute to LDL retention in acidic atherosclerotic lesions. Fusion also accelerates upon increasing LDL concentration in near-physiologic range, which likely contributes to atherogenesis. Thermal stability of LDL decreases with increasing particle size, indicating that the pro-atherogenic properties of small dense LDL do not result from their enhanced fusion. Our work provides the first kinetic approach to measuring LDL stability and suggests that lipid-lowering therapies that reduce LDL concentration but increase the particle size may have opposite effects on LDL fusion.
NASA Astrophysics Data System (ADS)
Bergasa-Caceres, Fernando; Rabitz, Herschel A.
2013-06-01
A model of protein folding kinetics is applied to study the effects of macromolecular crowding on protein folding rate and stability. Macromolecular crowding is found to promote a decrease of the entropic cost of folding of proteins that produces an increase of both the stability and the folding rate. The acceleration of the folding rate due to macromolecular crowding is shown to be a topology-dependent effect. The model is applied to the folding dynamics of the murine prion protein (121-231). The differential effect of macromolecular crowding as a function of protein topology suffices to make non-native configurations relatively more accessible.
ION-STABILIZED ELECTRON INDUCTION ACCELERATOR
Finkelstein, D.
1960-03-22
A method and apparatus for establishing an ion-stabilized self-focusing relativistic electron beam from a plasma are reported. A plasma is introduced into a specially designed cavity by plasma guns, and a magnetic field satisfying betatron conditions is produced in the cavity by currents flowing in the highly conductive, non-magnetic surface of the cavity. This field forms the electron beam by induction from the plasma.
NASA Technical Reports Server (NTRS)
McKann, Robert F.; Coffee, Claude W.; Arabian, Donald D.
1949-01-01
A model of the Consolidated Vultee Aircraft Corporation Skate 7 seaplane was tested in Langley tank no. 2. Presented without discussion in this paper are landing stability in smooth water, maximum normal accelerations occurring during rough-water landings, and take-off behavior in waves.
Thomas, David G.
1976-01-01
The subject invention is directed to a floating platform for supporting nuclear reactors and the like at selected offshore sites. The platform is provided with a stabilizer mechanism which significantly reduces the effects of wave action upon the platform and which comprises a pair of relatively small floats attached by rigid booms to the platform at locations spaced therefrom for reducing wave pitch, acceleration, and the resonance period of the wave.
Iyer, Vidyashankara; Hu, Lei; Schanté, Carole E; Vance, David; Chadwick, Chrystal; Jain, Nishant Kumar; Brey, Robert N; Joshi, Sangeeta B; Volkin, David B; Andra, Kiran K; Bann, James G; Mantis, Nicholas J; Middaugh, C Russell
2013-11-01
Dominant Negative Inhibitor (DNI) is a translocation-deficient homolog of recombinant protective antigen of Bacillus anthracis that is a candidate for a next generation anthrax vaccine. This study demonstrates that the biophysical characteristics of the DNI protein stored in lyophilized form at 4°C for 8 y were similar to recombinant Protective Antigen (rPA). To provide information on the accelerated stability of DNI, samples in the lyophilized form were subjected to thermal stress (40°C and 70°C for up to 4 weeks) and thoroughly evaluated using various biophysical and chemical characterization techniques. Results demonstrate preserved structural stability of the DNI protein under extreme conditions, suggesting long-term stability can be achieved for a vaccine that employs DNI, as desired for a biodefense countermeasure. Furthermore, the biological activity of the stressed DNI bound to the adjuvant Alhydrogel (®) was evaluated in mice and it was found that the immunogenicity DNI was not affected by thermal stress.
Stabilization of anthocyanins in blackberry juice by glutathione fortification.
Stebbins, Nathan B; Howard, Luke R; Prior, Ronald L; Brownmiller, Cindi; Mauromoustakos, Andy
2017-10-18
Blackberry anthocyanins provide attractive color and antioxidant activity. However, anthocyanins degrade during juice processing and storage, so maintaining high anthocyanin concentrations in berry juices may lead to greater antioxidant and health benefits for the consumer. This study evaluated potential additives to stabilize anthocyanins during blackberry juice storage. The anthocyanin stabilizing agents used were: glutathione, galacturonic acid, diethylenetriaminepentaacetic acid and tannic acid, which were added at a level of 500 mg L -1 . Juice anthocyanin, flavonol, and ellagitannin content and percent polymeric color were measured over five weeks of accelerated storage at 30 °C. Glutathione had the greatest protective effect on total anthocyanins and polymeric color. Therefore a second study was performed with glutathione in combination with lipoic and ascorbic acids in an effort to use antioxidant recycling to achieve a synergistic effect. However, the antioxidant recycling system had no protective effect relative to glutathione alone. Glutathione appears to be a promising blackberry juice additive to protect against anthocyanin degradation during storage.
Investigation of phase diagrams and physical stability of drug-polymer solid dispersions.
Lu, Jiannan; Shah, Sejal; Jo, Seongbong; Majumdar, Soumyajit; Gryczke, Andreas; Kolter, Karl; Langley, Nigel; Repka, Michael A
2015-01-01
Solid dispersion technology has been widely explored to improve the solubility and bioavailability of poorly water-soluble compounds. One of the critical drawbacks associated with this technology is the lack of physical stability, i.e. the solid dispersion would undergo recrystallization or phase separation thus limiting a product's shelf life. In the current study, the melting point depression method was utilized to construct a complete phase diagram for felodipine (FEL)-Soluplus® (SOL) and ketoconazole (KTZ)-Soluplus® (SOL) binary systems, respectively, based on the Flory-Huggins theory. The miscibility or solubility of the two compounds in SOL was also determined. The Flory-Huggins interaction parameter χ values of both systems were calculated as positive at room temperature (25 °C), indicating either compound was miscible with SOL. In addition, the glass transition temperatures of both solid dispersion systems were theoretically predicted using three empirical equations and compared with the practical values. Furthermore, the FEL-SOL solid dispersions were subjected to accelerated stability studies for up to 3 months.
NASA Technical Reports Server (NTRS)
Giesy, Daniel P.; Christhilf, David M.
1999-01-01
A comparison is made between the results of trimming a High Speed Civil Transport (HSCT) concept along a reference mission profile using two trim modes. One mode uses the stabilator. The other mode uses fore and aft placement of the center of gravity. A comparison is make of the throttle settings (cruise segments) or the total acceleration (ascent and descent segments) and of the drag coefficient. The comparative stability of trimming using the two modes is also assessed by comparing the stability margins and the placement of the lateral and longitudinal eigenvalues.
Keuper, Melanie; Berthold, Christoph; Nickel, Klaus Georg
2014-02-01
We present new findings on the low-temperature degradation of yttria-stabilized zirconia at 37°C over several years and at high and low partial pressures of water. With the aid of focused ion beam cross-section confirmation studies we are able to show an extensive linear, continuous degradation without retardation, even at low temperatures and low water pressures. The characteristic layer growth and its inferred rate constant imply a lifetime of tens of years under simple tension and open the possibility of studying the longevity of these ceramics more rigorously. In addition, we show reproducibility complications of accelerated aging tests by the use of different autoclaves and possible implications for standardized procedures. Copyright © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Cryogenics for high-energy particle accelerators: highlights from the first fifty years
NASA Astrophysics Data System (ADS)
Lebrun, Ph
2017-02-01
Applied superconductivity has become a key technology for high-energy particle accelerators, allowing to reach higher beam energy while containing size, capital expenditure and operating costs. Large and powerful cryogenic systems are therefore ancillary to low-temperature superconducting accelerator devices - magnets and high-frequency cavities - distributed over multi-kilometre distances and operating generally close to the normal boiling point of helium, but also above 4.2 K in supercritical and down to below 2 K in superfluid. Additionally, low-temperature operation in accelerators may also be required by considerations of ultra-high vacuum, limited stored energy and beam stability. We discuss the rationale for cryogenics in high-energy particle accelerators, review its development over the past half-century and present its outlook in future large projects, with reference to the main engineering domains of cryostat design and heat loads, cooling schemes, efficient power refrigeration and cryogenic fluid management.
[Stability of physical state on compound hawthorn dropping pills].
Zhang, Wei; Chen, Hong-Yan; Jiang, Jian-Lan
2008-11-01
To evaluate the stability of physical state with accelerate test and dropping in process before and after on compound hawthorn dropping pills. Scanning electron microscope, TG-DTA, FT-IR and XRD were used. The active components presented amorphous, tiny crystal and molecular state in dropping pills, and it had no obvious reaction between PEG 4000 and active components. With time prolonging, a little of active components changed from amorphous state to tiny crystal or molecular state. Solid dispersion improved the stability and dissolution of compound hawthorn dropping pills.
Metabolic adaptation via regulated enzyme degradation in the pathogenic yeast Candida albicans.
Ting, S Y; Ishola, O A; Ahmed, M A; Tabana, Y M; Dahham, S; Agha, M T; Musa, S F; Muhammed, R; Than, L T L; Sandai, D
2017-03-01
The virulence of Candida albicans is dependent upon fitness attributes as well as virulence factors. These attributes include robust stress responses and metabolic flexibility. The assimilation of carbon sources is important for growth and essential for the establishment of infections by C. albicans. Previous studies showed that the C. albicans ICL1 genes, which encode the glyoxylate cycle enzymes isocitratelyase are required for growth on non-fermentable carbon sources such as lactate and oleic acid and were repressed by 2% glucose. In contrast to S. cerevsiae, the enzyme CaIcl1 was not destabilised by glucose, resulting with its metabolite remaining at high levels. Further glucose addition has caused CaIcl1 to lose its signal and mechanisms that trigger destabilization in response to glucose. Another purpose of this study was to test the stability of the Icl1 enzyme in response to the dietary sugars, fructose, and galactose. In the present study, the ICL1 mRNAs expression was quantified using Quantitative Real Time PCR, whereby the stability of protein was measured and quantified using Western blot and phosphoimager, and the replacing and cloning of ICL1 ORF by gene recombination and ubiquitin binding was conducted via co-immuno-precipitation. Following an analogous experimental approach, the analysis was repeated using S. cerevisiaeas a control. Both galactose and fructose were found to trigger the degradation of the ICL1 transcript in C. albicans. The Icl1 enzyme was stable following galactose addition but was degraded in response to fructose. C. albicans Icl1 (CaIcl1) was also subjected to fructose-accelerated degradation when expressed in S. cerevisiae, indicating that, although it lacks a ubiquitination site, CaIcl1 is sensitive to fructose-accelerated protein degradation. The addition of an ubiquitination site to CaIcl1 resulted in this enzyme becoming sensitive to galactose-accelerated degradation and increases its rate of degradation in the presence of fructose. It can be concluded that ubiquitin-independent pathways of fructose-accelerated enzyme degradation exist in C. albicans. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
Electrostatic Steering Accelerates C3d:CR2 Association.
Mohan, Rohith R; Huber, Gary A; Morikis, Dimitrios
2016-08-25
Electrostatic effects are ubiquitous in protein interactions and are found to be pervasive in the complement system as well. The interaction between complement fragment C3d and complement receptor 2 (CR2) has evolved to become a link between innate and adaptive immunity. Electrostatic interactions have been suggested to be the driving factor for the association of the C3d:CR2 complex. In this study, we investigate the effects of ionic strength and mutagenesis on the association of C3d:CR2 through Brownian dynamics simulations. We demonstrate that the formation of the C3d:CR2 complex is ionic strength-dependent, suggesting the presence of long-range electrostatic steering that accelerates the complex formation. Electrostatic steering occurs through the interaction of an acidic surface patch in C3d and the positively charged CR2 and is supported by the effects of mutations within the acidic patch of C3d that slow or diminish association. Our data are in agreement with previous experimental mutagenesis and binding studies and computational studies. Although the C3d acidic patch may be locally destabilizing because of unfavorable Coulombic interactions of like charges, it contributes to the acceleration of association. Therefore, acceleration of function through electrostatic steering takes precedence to stability. The site of interaction between C3d and CR2 has been the target for delivery of CR2-bound nanoparticle, antibody, and small molecule biomarkers, as well as potential therapeutics. A detailed knowledge of the physicochemical basis of C3d:CR2 association may be necessary to accelerate biomarker and drug discovery efforts.
NASA Astrophysics Data System (ADS)
Cavalli, F.; Naimzada, A.; Pecora, N.
2017-10-01
In the present paper, we investigate the dynamics of a model in which the real part of the economy, described within a multiplier-accelerator framework, interacts with a financial market with heterogeneous speculators, in order to study the channels through which the two sectors influence each other. Employing analytical and numerical tools, we investigate stability conditions as well as bifurcations and possible periodic, quasi-periodic, and chaotic dynamics, enlightening how the degree of market interaction, together with the accelerator parameter and the intervention of the fiscal authority, may affect the business cycle and the course of the financial market. In particular, we show that even if the steady state is locally stable, multistability phenomena can occur, with several and complex dynamic structures coexisting with the steady state. Finally, simulations reveal that the proposed model is able to explain several statistical properties and stylized facts observed in real financial markets, including persistent high volatility, fat-tailed return distributions, volatility clustering, and positive autocorrelation of absolute returns.
Cavalli, F; Naimzada, A; Pecora, N
2017-10-01
In the present paper, we investigate the dynamics of a model in which the real part of the economy, described within a multiplier-accelerator framework, interacts with a financial market with heterogeneous speculators, in order to study the channels through which the two sectors influence each other. Employing analytical and numerical tools, we investigate stability conditions as well as bifurcations and possible periodic, quasi-periodic, and chaotic dynamics, enlightening how the degree of market interaction, together with the accelerator parameter and the intervention of the fiscal authority, may affect the business cycle and the course of the financial market. In particular, we show that even if the steady state is locally stable, multistability phenomena can occur, with several and complex dynamic structures coexisting with the steady state. Finally, simulations reveal that the proposed model is able to explain several statistical properties and stylized facts observed in real financial markets, including persistent high volatility, fat-tailed return distributions, volatility clustering, and positive autocorrelation of absolute returns.
NASA Astrophysics Data System (ADS)
Ke, Xiang; Zhou, Xiang; Hao, Gaozi; Xiao, Lei; Liu, Jie; Jiang, Wei
2017-06-01
One of the challenges for the application of energetic materials is their energy-retaining capabilities after long-term storage. In this study, we report a facile method to fabricate superhydrophobic Al/Fe2O3 nanothermite film by combining electrophoretic deposition and surface modification technologies. Different concentrations of dispersion solvents and additives are investigated to optimize the deposition parameters. Meanwhile, the dependence of deposition rates on nanoparticle concentrations is also studied. The surface morphology and chemical composition are characterized by field-emission scanning electron microscopy, X-ray diffraction, X-ray energy-dispersive spectroscopy, and X-ray photoelectron spectroscopy. A static contact angles as high as 156° shows the superhydrophobicity of the nanothermite film. Natural and accelerated aging tests are performed and the thermal behavior is analyzed. Thermal analysis shows that the surface modification contributes to significantly improved energy-release characteristics for both fresh and aged samples, which is supposed to be attributed to the preignition reaction between Al2O3 shell and FAS-17. Superhydrophobic Al/Fe2O3 nanothermite film exhibits excellent long-time storage stability with 83.4% of energy left in natural aging test and 60.5% in accelerated aging test. This study is instructive to the practical applications of nanothermites, especially in highly humid environment.
Effect of hinge-moment parameters on elevator stick forces in rapid maneuvers
NASA Technical Reports Server (NTRS)
Jones, R. T.; Greenberg, H.
1976-01-01
The importance of the stick force per unit normal acceleration as a criterion of longitudinal stability and the critical dependence of this gradient on elevator hinge moment parameters are investigated with special reference to transient effects for maneuvers of short duration. The analysis shows that different combinations of elevator parameters, which give the same stick force per unit acceleration in turns, give widely different force variations during the entries into and recoveries from steady turns and during maneuvers of short duration such as abrupt pull-ups. The stick force per unit acceleration is greater for abrupt than for gradual control movements.
Garcia, Lucas da Fonseca Roberti; Roselino, Lourenço de Moraes Rego; Mundim, Fabrício Mariano; Pires-de-Souza, Fernanda de Carvalho Panzeri; Consani, Simonides
2010-08-01
The aim of this study was to evaluate the influence of artificial accelerated aging on dimensional stability of two types of acrylic resins (thermally and chemically activated) submitted to different protocols of storage. One hundred specimens were made using a Teflon matrix (1.5 cm x 0.5 mm) with four imprint marks, following the lost-wax casting method. The specimens were divided into ten groups, according to the type of acrylic resin, aging procedure, and storage protocol (30 days). GI: acrylic resins thermally activated, aging, storage in artificial saliva for 16 hours, distilled water for 8 hours; GII: thermal, aging, artificial saliva for 16 hours, dry for 8 hours; GIII: thermal, no aging, artificial saliva for 16 hours, distilled water for 8 hours, GIV: thermal, no aging, artificial saliva for 16 hours, dry for 8 hours; GV: acrylic resins chemically activated, aging, artificial saliva for 16 hours, distilled water for 8 hours; GVI: chemical, aging, artificial saliva for 16 hours, dry for 8 hours; GVII: chemical, no aging, artificial saliva for 16 hours, distilled water for 8 hours; GVIII: chemical, no aging, artificial saliva for 16 hours, dry for 8 hours GIX: thermal, dry for 24 hours; and GX: chemical, dry for 24 hours. All specimens were photographed before and after treatment, and the images were evaluated by software (UTHSCSA - Image Tool) that made distance measurements between the marks in the specimens (mm), calculating the dimensional stability. Data were submitted to statistical analysis (two-way ANOVA, Tukey test, p= 0.05). Statistical analysis showed that the specimens submitted to storage in water presented the largest distance between both axes (major and minor), statistically different (p < 0.05) from control groups. All acrylic resins presented dimensional changes, and the artificial accelerated aging and storage period influenced these alterations.
Hussein, Tarek; Yiou, Eric; Larue, Jacques
2013-01-01
Although the effect of temporal pressure on spatio-temporal aspects of motor coordination and posture is well established in young adults, there is a clear lack of data on elderly subjects. This work examined the aging-related effects of temporal pressure on movement synchronization and dynamic stability. Sixteen young and eleven elderly subjects performed series of simultaneous rapid leg flexions in an erect posture paired with ipsilateral index-finger extensions, minimizing the difference between heel and finger movement onsets. This task was repeated ten times under two temporal conditions (self-initiated [SI] vs. reaction-time [RT]). Results showed that, first, temporal pressure modified movement synchronization; the finger extension preceded swing heel-off in RT, and inversely in SI. Synchronization error and associated standard deviation were significantly greater in elderly than in young adults in SI only, i.e. in the condition where proprioception is thought to be crucial for temporal coordination. Secondly, both groups developed a significantly shorter mediolateral (ML) anticipatory postural adjustment duration in RT (high temporal pressure) than in SI. In both groups, this shortening was compensated by an increase in the anticipatory peak of centre-of-gravity (CoG) acceleration towards the stance-leg so that ML dynamic stability at foot-off, quantified with the “extrapolated centre-of-mass”, remained unchanged across temporal conditions. This increased CoG acceleration was associated with an increased anticipatory peak of ML centre-of-pressure shift towards the swing-leg in young adults only. This suggested that the ability to accelerate the CoG with the centre-of-pressure shift was degraded in elderly, probably due to weakness in the lower limb muscles. Dynamic stability at foot-off was also degraded in elderly, with a consequent increased risk of ML imbalance and falling. The present study provides new insights into the ability of elderly adults to deal with temporal pressure constraints in adapting whole-body coordination of postural and focal components of paired movement. PMID:24340080
Hussein, Tarek; Yiou, Eric; Larue, Jacques
2013-01-01
Although the effect of temporal pressure on spatio-temporal aspects of motor coordination and posture is well established in young adults, there is a clear lack of data on elderly subjects. This work examined the aging-related effects of temporal pressure on movement synchronization and dynamic stability. Sixteen young and eleven elderly subjects performed series of simultaneous rapid leg flexions in an erect posture paired with ipsilateral index-finger extensions, minimizing the difference between heel and finger movement onsets. This task was repeated ten times under two temporal conditions (self-initiated [SI] vs. reaction-time [RT]). Results showed that, first, temporal pressure modified movement synchronization; the finger extension preceded swing heel-off in RT, and inversely in SI. Synchronization error and associated standard deviation were significantly greater in elderly than in young adults in SI only, i.e. in the condition where proprioception is thought to be crucial for temporal coordination. Secondly, both groups developed a significantly shorter mediolateral (ML) anticipatory postural adjustment duration in RT (high temporal pressure) than in SI. In both groups, this shortening was compensated by an increase in the anticipatory peak of centre-of-gravity (CoG) acceleration towards the stance-leg so that ML dynamic stability at foot-off, quantified with the "extrapolated centre-of-mass", remained unchanged across temporal conditions. This increased CoG acceleration was associated with an increased anticipatory peak of ML centre-of-pressure shift towards the swing-leg in young adults only. This suggested that the ability to accelerate the CoG with the centre-of-pressure shift was degraded in elderly, probably due to weakness in the lower limb muscles. Dynamic stability at foot-off was also degraded in elderly, with a consequent increased risk of ML imbalance and falling. The present study provides new insights into the ability of elderly adults to deal with temporal pressure constraints in adapting whole-body coordination of postural and focal components of paired movement.
De Vore, Karl W; Fatahi, Nadia M; Sass, John E
2016-08-01
Arrhenius modeling of analyte recovery at increased temperatures to predict long-term colder storage stability of biological raw materials, reagents, calibrators, and controls is standard practice in the diagnostics industry. Predicting subzero temperature stability using the same practice is frequently criticized but nevertheless heavily relied upon. We compared the ability to predict analyte recovery during frozen storage using 3 separate strategies: traditional accelerated studies with Arrhenius modeling, and extrapolation of recovery at 20% of shelf life using either ordinary least squares or a radical equation y = B1x(0.5) + B0. Computer simulations were performed to establish equivalence of statistical power to discern the expected changes during frozen storage or accelerated stress. This was followed by actual predictive and follow-up confirmatory testing of 12 chemistry and immunoassay analytes. Linear extrapolations tended to be the most conservative in the predicted percent recovery, reducing customer and patient risk. However, the majority of analytes followed a rate of change that slowed over time, which was fit best to a radical equation of the form y = B1x(0.5) + B0. Other evidence strongly suggested that the slowing of the rate was not due to higher-order kinetics, but to changes in the matrix during storage. Predicting shelf life of frozen products through extrapolation of early initial real-time storage analyte recovery should be considered the most accurate method. Although in this study the time required for a prediction was longer than a typical accelerated testing protocol, there are less potential sources of error, reduced costs, and a lower expenditure of resources. © 2016 American Association for Clinical Chemistry.
An ultrasonic-accelerated oxidation method for determining the oxidative stability of biodiesel.
Avila Orozco, Francisco D; Sousa, Antonio C; Domini, Claudia E; Ugulino Araujo, Mario Cesar; Fernández Band, Beatriz S
2013-05-01
Biodiesel is considered an alternative energy because it is produced from fats and vegetable oils by means of transesterification. Furthermore, it consists of fatty acid alkyl esters (FAAS) which have a great influence on biodiesel fuel properties and in the storage lifetime of biodiesel itself. The biodiesel storage stability is directly related to the oxidative stability parameter (Induction Time - IT) which is determined by means of the Rancimat® method. This method uses condutimetric monitoring and induces the degradation of FAAS by heating the sample at a constant temperature. The European Committee for Standardization established a standard (EN 14214) to determine the oxidative stability of biodiesel, which requires it to reach a minimum induction period of 6h as tested by Rancimat® method at 110°C. In this research, we aimed at developing a fast and simple alternative method to determine the induction time (IT) based on the FAAS ultrasonic-accelerated oxidation. The sonodegradation of biodiesel samples was induced by means of an ultrasonic homogenizer fitted with an immersible horn at 480Watts of power and 20 duty cycles. The UV-Vis spectrometry was used to monitor the FAAS sonodegradation by measuring the absorbance at 270nm every 2. Biodiesel samples from different feedstock were studied in this work. In all cases, IT was established as the inflection point of the absorbance versus time curve. The induction time values of all biodiesel samples determined using the proposed method was in accordance with those measured through the Rancimat® reference method by showing a R(2)=0.998. Copyright © 2012 Elsevier B.V. All rights reserved.
De Nardis, Camilla; Hendriks, Linda J A; Poirier, Emilie; Arvinte, Tudor; Gros, Piet; Bakker, Alexander B H; de Kruif, John
2017-09-01
Bispecific antibodies combine two different antigen-binding sites in a single molecule, enabling more specific targeting, novel mechanisms of action, and higher clinical efficacies. Although they have the potential to outperform conventional monoclonal antibodies, many bispecific antibodies have issues regarding production, stability, and pharmacokinetic properties. Here, we describe a new approach for generating bispecific antibodies using a common light chain format and exploiting the stable architecture of human immunoglobulin G 1 We used iterative experimental validation and computational modeling to identify multiple Fc variant pairs that drive efficient heterodimerization of the antibody heavy chains. Accelerated stability studies enabled selection of one Fc variant pair dubbed "DEKK" consisting of substitutions L351D and L368E in one heavy chain combined with L351K and T366K in the other. Solving the crystal structure of the DEKK Fc region at a resolution of 2.3 Å enabled detailed analysis of the interactions inducing CH3 interface heterodimerization. Local shifts in the IgG backbone accommodate the introduction of lysine side chains that form stabilizing salt-bridge interactions with substituted and native residues in the opposite chain. Overall, the CH3 domain adapted to these shifts at the interface, yielding a stable Fc conformation very similar to that in wild-type IgG. Using the DEKK format, we generated the bispecific antibody MCLA-128, targeting human EGF receptors 2 and 3. MCLA-128 could be readily produced and purified at industrial scale with a standard mammalian cell culture platform and a routine purification protocol. Long-term accelerated stability assays confirmed that MCLA-128 is highly stable and has excellent biophysical characteristics. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.
De Nardis, Camilla; Hendriks, Linda J. A.; Poirier, Emilie; Arvinte, Tudor; Gros, Piet; Bakker, Alexander B. H.; de Kruif, John
2017-01-01
Bispecific antibodies combine two different antigen-binding sites in a single molecule, enabling more specific targeting, novel mechanisms of action, and higher clinical efficacies. Although they have the potential to outperform conventional monoclonal antibodies, many bispecific antibodies have issues regarding production, stability, and pharmacokinetic properties. Here, we describe a new approach for generating bispecific antibodies using a common light chain format and exploiting the stable architecture of human immunoglobulin G1. We used iterative experimental validation and computational modeling to identify multiple Fc variant pairs that drive efficient heterodimerization of the antibody heavy chains. Accelerated stability studies enabled selection of one Fc variant pair dubbed “DEKK” consisting of substitutions L351D and L368E in one heavy chain combined with L351K and T366K in the other. Solving the crystal structure of the DEKK Fc region at a resolution of 2.3 Å enabled detailed analysis of the interactions inducing CH3 interface heterodimerization. Local shifts in the IgG backbone accommodate the introduction of lysine side chains that form stabilizing salt-bridge interactions with substituted and native residues in the opposite chain. Overall, the CH3 domain adapted to these shifts at the interface, yielding a stable Fc conformation very similar to that in wild-type IgG. Using the DEKK format, we generated the bispecific antibody MCLA-128, targeting human EGF receptors 2 and 3. MCLA-128 could be readily produced and purified at industrial scale with a standard mammalian cell culture platform and a routine purification protocol. Long-term accelerated stability assays confirmed that MCLA-128 is highly stable and has excellent biophysical characteristics. PMID:28655766
Pires-de-Souza, Fernanda de Carvalho Panzeri; Garcia, Lucas da Fonseca Roberti; Roselino, Lourenço de Moraes Rego; Naves, Lucas Zago
2011-07-01
To assess the in situ color stability, surface and the tooth/restoration interface degradation of a silorane-based composite (P90, 3M ESPE) after accelerated artificial ageing (AAA), in comparison with other dimethacrylate monomer-based composites (Z250/Z350, 3M ESPE and Esthet-X, Dentsply). Class V cavities (25 mm(2) × 2 mm deep) were prepared in 48 bovine incisors, which were randomly allocated into 4 groups of 12 specimens each, according to the type of restorative material used. After polishing, 10 specimens were submitted to initial color readings (Easyshade, Vita) and 2 to analysis by scanning electronic microscopy (SEM). Afterwards, the teeth were submitted to AAA for 384 h, which corresponds to 1 year of clinical use, after which new color readings and microscopic images were obtained. The values obtained for the color analysis were submitted to statistical analysis (1-way ANOVA, Tukey, p<0.05). With regard to color stability, it was verified that all the composites showed color alteration above the clinically acceptable levels (ΔE ≥ 3.3), and that the silorane-based composite showed higher ΔE (18.6), with a statistically significant difference in comparison with the other composites (p<0.05). The SEM images showed small alterations for the dimethacrylate-based composites after AAA and extensive degradation for the silorane-based composite with a rupture at the interface between the matrix/particle. It may be concluded that the silorane-based composite underwent greater alteration with regard to color stability and greater surface and tooth/restoration interface degradation after AAA. Copyright © 2011 Elsevier Ltd. All rights reserved.
Schütte, Kurt H; Seerden, Stefan; Venter, Rachel; Vanwanseele, Benedicte
2018-01-01
Medial tibial stress syndrome (MTSS) is a common overuse running injury with pathomechanics likely to be exaggerated by fatigue. Wearable accelerometry provides a novel alternative to assess biomechanical parameters continuously while running in more ecologically valid settings. The purpose of this study was to determine the influence of outdoor running fatigue and MTSS on both dynamic loading and dynamic stability derived from trunk and tibial accelerometery. Runners with (n=14) and without (n=16) history of MTSS performed an outdoor fatigue run of 3200m. Accelerometer-based measures averaged per lap included dynamic loading of the trunk and tibia (i.e. axial peak positive acceleration, signal power magnitude, and shock attenuation) as well as dynamic trunk stability (i.e. tri-axial root mean square ratio, step and stride regularity, and sample entropy). Regression coefficients from generalised estimating equations were used to evaluate group by fatigue interactions. No evidence could be found for dynamic loading being higher with fatigue in runners with MTSS history (all measures p>0.05). One significant group by running fatigue interaction effect was detected for dynamic stability. Specifically, in MTSS only, decreases mediolateral sample entropy i.e. loss of complexity was associated with running fatigue (p<0.01). The current results indicate that entire acceleration waveform signals reflecting mediolateral trunk control is related to MTSS history, a compensation that went undetected in the non-fatigued running state. We suggest that a practical outdoor running fatigue protocol that concurrently captures trunk accelerometry-based movement complexity warrants further prospective investigation as an in-situ screening tool for MTSS individuals. Copyright © 2017 Elsevier B.V. All rights reserved.
Delay-feedback control strategy for reducing CO2 emission of traffic flow system
NASA Astrophysics Data System (ADS)
Zhang, Li-Dong; Zhu, Wen-Xing
2015-06-01
To study the signal control strategy for reducing traffic emission theoretically, we first presented a kind of discrete traffic flow model with relative speed term based on traditional coupled map car-following model. In the model, the relative speed difference between two successive running cars is incorporated into following vehicle's acceleration running equation. Then we analyzed its stability condition with discrete control system stability theory. Third, we designed a delay-feedback controller to suppress traffic jam and decrease traffic emission based on modern controller theory. Last, numerical simulations are made to support our theoretical results, including the comparison of models' stability analysis, the influence of model type and signal control on CO2 emissions. The results show that the temporal behavior of our model is superior to other models, and the traffic signal controller has good effect on traffic jam suppression and traffic CO2 emission, which fully supports the theoretical conclusions.
Controlling laser driven protons acceleration using a deformable mirror at a high repetition rate
NASA Astrophysics Data System (ADS)
Noaman-ul-Haq, M.; Sokollik, T.; Ahmed, H.; Braenzel, J.; Ehrentraut, L.; Mirzaie, M.; Yu, L.-L.; Sheng, Z. M.; Chen, L. M.; Schnürer, M.; Zhang, J.
2018-03-01
We present results from a proof-of-principle experiment to optimize laser driven protons acceleration by directly feeding back its spectral information to a deformable mirror (DM) controlled by evolutionary algorithms (EAs). By irradiating a stable high-repetition rate tape driven target with ultra-intense pulses of intensities ∼1020 W/ cm2, we optimize the maximum energy of the accelerated protons with a stability of less than ∼5% fluctuations near optimum value. Moreover, due to spatio-temporal development of the sheath field, modulations in the spectrum are also observed. Particularly, a prominent narrow peak is observed with a spread of ∼15% (FWHM) at low energy part of the spectrum. These results are helpful to develop high repetition rate optimization techniques required for laser-driven ion accelerators.
Influence of particle shedding from silicone tubing on antibody stability.
Saller, Verena; Hediger, Constanze; Matilainen, Julia; Grauschopf, Ulla; Bechtold-Peters, Karoline; Mahler, Hanns-Christian; Friess, Wolfgang
2018-05-01
Peristaltic pumps are increasingly employed during fill & finish operations of a biopharmaceutical drug, due to sensitivity of many biological products to rotary piston pump-related stresses. Yet, possibly also unit operations using peristaltic pumps may shed particulates into the final product due to abrasion from the employed tubing. It was the aim of this study to elucidate the potential influence of particles shed from peristaltic pump tubing on the stability of a drug product. Spiking solutions containing shed silicone particles were prepared via peristaltic pumping of placebo under recirculating conditions and subsequently characterized. Two formulated antibodies were spiked with two realistic, but worst-case levels of particles and a 6-month accelerated stability study with storage at 2-8, 25 and 40°C were conducted. Regarding the formation of aggregates and fragments, both mAbs degraded at their typically expected rates and no additional impact of spiked particles was observed. No changes were discerned however in turbidity, subvisible and visible particle assessments. Flow imaging data for one of the mAb formulations with spiked particles suggested limited colloidal stability of shed particles as indicated by a similar increase in spiked placebo. Shed silicone particles from peristaltic pump tubing are assumed to not impair drug product stability. © 2016 Royal Pharmaceutical Society.
Parkin absence accelerates microtubule aging in dopaminergic neurons.
Cartelli, Daniele; Amadeo, Alida; Calogero, Alessandra Maria; Casagrande, Francesca Vittoria Marialuisa; De Gregorio, Carmelita; Gioria, Mariarosa; Kuzumaki, Naoko; Costa, Ilaria; Sassone, Jenny; Ciammola, Andrea; Hattori, Nobutaka; Okano, Hideyuki; Goldwurm, Stefano; Roybon, Laurent; Pezzoli, Gianni; Cappelletti, Graziella
2018-01-01
Loss-of-function caused by mutations in the parkin gene (PARK2) lead to early-onset familial Parkinson's disease. Recently, mechanistic studies proved the ability of parkin in regulating mitochondria homeostasis and microtubule (MT) stability. Looking at these systems during aging of PARK2 knockout mice, we found that loss of parkin induced an accelerated (over)acetylation of MT system both in dopaminergic neuron cell bodies and fibers, localized in the substantia nigra and corpus striatum, respectively. Interestingly, in PARK2 knockout mice, changes of MT stability preceded the alteration of mitochondria transport. Moreover, in-cell experiments confirmed that loss of parkin affects mitochondria mobility and showed that this defect depends on MT system as it is rescued by paclitaxel, a well-known MT-targeted agent. Furthermore, both in PC12 neuronal cells and in patients' induced pluripotent stem cell-derived midbrain neurons, we observed that parkin deficiencies cause the fragmentation of stable MTs. Therefore, we suggest that parkin acts as a regulator of MT system during neuronal aging, and we endorse the hypothesis that MT dysfunction may be crucial in the pathogenesis of Parkinson's disease. Copyright © 2017 Elsevier Inc. All rights reserved.
Water landing characteristics of a model of a winged reentry vehicle
NASA Technical Reports Server (NTRS)
Stubbs, S. M.
1972-01-01
Proposed manned space shuttle vehicles are expected to land on airport runways. In an emergency situation, however, the vehicle may be required to land on water. A 1/10-scale dynamic model of a winged reentry vehicle was investigated to determine the water landing characteristics. Two configurations of the proposed vehicle were studied. Configuration 1 had a 30 deg negative dihedral of the stabilizer-elevon surface whereas configuration 2 had a 30 deg positive dihedral. Results indicate that the maximum normal accelerations for configurations 1 and 2 when landing in calm water were approximately 8g and 6g, respectively, and the maximum longitudinal accelerations were approximately 5g and 3g, respectively. A small hydroflap was needed to obtain satisfactory calm-water landings with configuration 2, whereas configuration 1 gave good landings without a hydroflap. All landings made in rough water resulted in unsatisfactory motions. For landings made in three different wave sizes, both configurations dived. The maximum normal accelerations for configurations 1 and 2 when landing in waves were -10.1g and -18.7g, respectively, and the maximum longitudinal accelerations for both configurations were approximately 13g.
Hetrick, Evan M; Vannoy, Jeffrey; Montgomery, Laura L; Pack, Brian W
2013-08-01
The color of pharmaceutical dosage forms can be an important aspect of product branding and patient compliance with a dosing regimen. During the development of drug products, it is important to understand the stability of not only the active pharmaceutical ingredient but also the color and appearance of the tablet or capsule. Currently, the most common method to ensure color stability is to conduct a visual test throughout a stability study. This visual test is subjective and can be expensive, especially if there is a failure late in development or after marketing approval. This work describes a series of studies using accelerated conditions (i.e., heat, humidity, and light) and logistic regression analyses that have been developed to determine the relative stability ranking of multiple color coatings early in development to provide an increased probability of technical success on long-term stability studies and to avoid coatings whose visual appearance may change over time. Once this relative stability ranking has been established, the stability advantages can be assessed versus any manufacturing/processing liabilities of the selected coating in order to make a data-driven decision around coating selection. This work reviews the basic fundamentals of colorimetry, followed by the description of a consistent experimental approach to correlate a visual rating with an instrumental measurement (e.g., dE(*) from a colorimeter) to remove the subjectivity from the assessment. This approach represents a novel strategy for establishing a probabilized correlation between the quantitative instrumental color measurement and the visual rating of the same color change. Copyright © 2013 Wiley Periodicals, Inc.
Russell, J. Eric; Morales, Julia; Makeyev, Aleksandr V.; Liebhaber, Stephen A.
1998-01-01
The developmental stage-specific expression of human globin proteins is characterized by a switch from the coexpression of ζ- and α-globin in the embryonic yolk sac to exclusive expression of α-globin during fetal and adult life. Recent studies with transgenic mice demonstrate that in addition to transcriptional control elements, full developmental silencing of the human ζ-globin gene requires elements encoded within the transcribed region. In the current work, we establish that these latter elements operate posttranscriptionally by reducing the relative stability of ζ-globin mRNA. Using a transgenic mouse model system, we demonstrate that human ζ-globin mRNA is unstable in adult erythroid cells relative to the highly stable human α-globin mRNA. A critical determinant of the difference between α- and ζ-globin mRNA stability is mapped by in vivo expression studies to their respective 3′ untranslated regions (3′UTRs). In vitro messenger ribonucleoprotein (mRNP) assembly assays demonstrate that the α- and ζ-globin 3′UTRs assemble a previously described mRNP stability-determining complex, the α-complex, with distinctly different affinities. The diminished efficiency of α-complex assembly on the ζ 3′UTR results from a single C→G nucleotide substitution in a crucial polypyrimidine tract contained by both the human α- and ζ-globin mRNA 3′UTRs. A potential pathway for accelerated ζ-globin mRNA decay is suggested by the observation that its 3′UTR encodes a shortened poly(A) tail. Based upon these data, we propose a model for ζ-globin gene silencing in fetal and adult erythroid cells in which posttranscriptional controls play a central role by providing for accelerated clearance of ζ-globin transcripts. PMID:9528789
NASA Technical Reports Server (NTRS)
Assadourian, Arthur; Reeder, John P.
1948-01-01
A series of flight tests have been made at the Langley Flight Research Division at the request of the Bureau of Aeronautics, Department of the Navy, to determine the flying qualities of the Grumman F8F-1 air- plane. This paper presents the test results necessary to determine the longitudinal stability and control characteristics end the stalling characteristics. These tests were made between February and June of 1947- The range of Mach numbers covered in this investigation was approximately 0.10 to 0.62, and no attempt was made to investigate compressibility effects at higher Mach numbers. The lateral and directional stability and control characteristics of the subject airplane have already been reported (reference 1). Also presented in this paper is a discussion of the normal accelerations induced by yawing velocity and sideslip which were considered ob,jectionable by the pilot for this airplane. A discussion of the undesirable accelerations has been included with a view towards formulating some flying-qualities requirements limiting them.
Westfall, Alexandra; Giusti, Mónica
Cosmetics, such as lipstick, can affect an individual's perception of attractiveness and morale. Consumer concern with the safety of synthetic colorants has made the need for alternative natural color sources increasingly urgent. Our goal was to evaluate the feasibility of anthocyanin (ACN) extracts as colorants in lipstick formulations. Lipstick formulations were colored with ACN-rich materials. Accelerated environmental testing typical of the cosmetic industry were used: incubation at 20°, 37°, and 45°C for 12 weeks and temperature abuse cycles between 20°/37°C or -20°/20°C. Color (CIELab) and total monomeric ACN (pH-differential) changes were monitored to determine shelf stability of the product. All formulations exhibited acceptable color for lipsticks. Shelf stability was determined to exceed 2 year based on the accelerated testing conditions. Formulations containing cyanidin as their main ACN were the most stable (elderberry, purple corn, and purple sweet potato). ACNs could be used as suitable alternatives to synthetic colorants in lipid-based topical formulations.
Kehili, Mouna; Choura, Sirine; Zammel, Ayachi; Allouche, Noureddine; Sayadi, Sami
2018-04-25
Tomato peels by-product from a Tunisian industry was used for the extraction of lycopene-rich oleoresin using hexane solvent maceration. Tomato peels oleoresin, TPO, exhibited competitive free radicals scavenging activity with synthetic antioxidants. The efficacy of TPO in stabilizing refined olive (ROO) and sunflower (RSO) oils was investigated for five months, under accelerated shelf-life, compared to the synthetic antioxidant, butylated hydroxytoluene (BHT). TPO was added to ROO and RSO at four different concentrations, namely 250, 500, 1000 and 2000 µg/g and BHT standard at 200 µg/g. Lipid oxidation was tracked by measuring the peroxide value, acidity, conjugated dienes and trienes. Results suggested the highest efficiency of 250 µg/g and 2000 µg/g of TPO, referring to 5 µg/g and 40 µg/g of lycopene, for the oxidative stabilization of ROO and RSO, respectively. The protective effect of TPO against the primary oxidation of these refined oils was significantly correlated to their lycopene contents. Copyright © 2017 Elsevier Ltd. All rights reserved.
Nataraj, Raviraj; Audu, Musa L; Triolo, Ronald J
2012-05-06
The purpose of this study was to determine the comparative effectiveness of feedback control systems for maintaining standing balance based on joint kinematics or total body center of mass (COM) acceleration, and assess their clinical practicality for standing neuroprostheses after spinal cord injury (SCI). In simulation, controller performance was measured according to the upper extremity effort required to stabilize a three-dimensional model of bipedal standing against a variety of postural disturbances. Three cases were investigated: proportional-derivative control based on joint kinematics alone, COM acceleration feedback alone, and combined joint kinematics and COM acceleration feedback. Additionally, pilot data was collected during external perturbations of an individual with SCI standing with functional neuromuscular stimulation (FNS), and the resulting joint kinematics and COM acceleration data was analyzed. Compared to the baseline case of maximal constant muscle excitations, the three control systems reduced the mean upper extremity loading by 51%, 43% and 56%, respectively against external force-pulse perturbations. Controller robustness was defined as the degradation in performance with increasing levels of input errors expected with clinical deployment of sensor-based feedback. At error levels typical for body-mounted inertial sensors, performance degradation due to sensor noise and placement were negligible. However, at typical tracking error levels, performance could degrade as much as 86% for joint kinematics feedback and 35% for COM acceleration feedback. Pilot data indicated that COM acceleration could be estimated with a few well-placed sensors and efficiently captures information related to movement synergies observed during perturbed bipedal standing following SCI. Overall, COM acceleration feedback may be a more feasible solution for control of standing with FNS given its superior robustness and small number of inputs required.
2012-01-01
Background The purpose of this study was to determine the comparative effectiveness of feedback control systems for maintaining standing balance based on joint kinematics or total body center of mass (COM) acceleration, and assess their clinical practicality for standing neuroprostheses after spinal cord injury (SCI). Methods In simulation, controller performance was measured according to the upper extremity effort required to stabilize a three-dimensional model of bipedal standing against a variety of postural disturbances. Three cases were investigated: proportional-derivative control based on joint kinematics alone, COM acceleration feedback alone, and combined joint kinematics and COM acceleration feedback. Additionally, pilot data was collected during external perturbations of an individual with SCI standing with functional neuromuscular stimulation (FNS), and the resulting joint kinematics and COM acceleration data was analyzed. Results Compared to the baseline case of maximal constant muscle excitations, the three control systems reduced the mean upper extremity loading by 51%, 43% and 56%, respectively against external force-pulse perturbations. Controller robustness was defined as the degradation in performance with increasing levels of input errors expected with clinical deployment of sensor-based feedback. At error levels typical for body-mounted inertial sensors, performance degradation due to sensor noise and placement were negligible. However, at typical tracking error levels, performance could degrade as much as 86% for joint kinematics feedback and 35% for COM acceleration feedback. Pilot data indicated that COM acceleration could be estimated with a few well-placed sensors and efficiently captures information related to movement synergies observed during perturbed bipedal standing following SCI. Conclusions Overall, COM acceleration feedback may be a more feasible solution for control of standing with FNS given its superior robustness and small number of inputs required. PMID:22559852
A new concept of a vacuum insulation tandem accelerator.
Sorokin, I; Taskaev, S
2015-12-01
A tandem accelerator with vacuum insulation has been proposed and developed in the Budker Institute of Nuclear Physics. Negative hydrogen ions are accelerated by the positive 1 MV potential of the high voltage electrode, converted into protons in the gas stripping target inside the electrode, and then the protons are accelerated again by the same potential. The potential for high voltage and intermediate electrodes is supplied by the sectioned rectifier through a sectioned bushing insulator with a resistive divider. In this work, we propose a radical improvement of the accelerator concept. It is proposed to abandon the separate placement of the accelerator and the power supply and connect them through the bushing insulator. The source of high voltage is proposed to be located inside the accelerator insulator with high voltage and intermediate electrodes mounted on it. This will reduce the facility height from 7 m to 3m and make it really compact and attractive for placing in a clinic. This will significantly increase the stability of the accelerator because the potential for intermediate electrodes can be fed directly from the relevant sections of the rectifier. Copyright © 2015 Elsevier Ltd. All rights reserved.
Mazurek-Wadołkowska, Edyta; Winnicka, Katarzyna; Czyzewska, Urszula; Miltyk, Wojciech
2016-07-01
High profitability and simplicity of direct compression, encourages pharmaceutical industry to create universal excipients to improve technology process. Prosolv® SMCC - silicified microcrystalline cellulose and Starch 1500® - pregelatinized starch, are the example of multifunctional excipients. The aim of the present study was to evaluate the stability of theophylline (API) in the mixtures with excipients with various physico-chemical properties (Prosolv® SMCC 90, Prosolv® SMCC HD 90, Prosolv* SMCC 50®, Starch 1500® and magnesium stearate). The study presents results of thermal analysis of the mixtures with theophylline before and after 6 months storage of the tablets at various temperatures and relative humidity conditions (25 ± 2°C/40 ± 5% RH, 40 ± 2°C/75 ± 5% RH). It was shown that high concentration of Starch 1500® (49%) affects the stability of the theophylline tablets with Prosolv® SMCC. Prosolv® SMCC had no effect on API stability as confirmed by the differential scanning calorimetry (DSC). Changes in peak placements were observed just after tabletting process, which might indicate that compression accelerated the incompatibilities between theophylline and Starch 1500. TGA analysis showed loss in tablets mass equal to water content in starch. GC-MS study established no chemical decomposition of theophylline. We demonstrated that high content of Starch 1500® (49%) in the tablet mass, affects stability on tablets containing theophylline and Prosolv® SMCC.
Advances in the stability of high precision crystal resonators
NASA Technical Reports Server (NTRS)
Ballato, A.; Vig, J. R.
1979-01-01
Advances in technology directed toward minimizing the temporal changes in frequency of crystal resonators are described. Specific emphasis is placed on reducing their susceptibility to temperature, acceleration, and other environmental effects.
Improvement in vehicle agility and stability by G-Vectoring control
NASA Astrophysics Data System (ADS)
Yamakado, Makoto; Takahashi, Jyunya; Saito, Shinjiro; Yokoyama, Atsushi; Abe, Masato
2010-12-01
We extracted a trade-off strategy between longitudinal traction/braking force and cornering force by using jerk information through observing an expert driver's voluntary braking and turning action. Using the expert driver's strategy, we developed a new control concept, called 'G-Vectoring control', which is an automatic longitudinal acceleration control (No DYC) in accordance with the vehicle's lateral jerk caused by the driver's steering manoeuvres. With the control, the direction of synthetic acceleration (G) changes seamlessly (i.e. vectoring). The improvements in vehicle agility and stability were evaluated by theoretical analysis and through computer simulation. We then introduced a 'G-Vectoring' equipped test vehicle realised by brake-by-wire technology and executed a detailed examination on a test track. We have confirmed that the vehicle motion in view of both handling and ride quality has improved dramatically.
Furuse, Adilson Y; Gordon, Kathryn; Rodrigues, Flávia P; Silikas, Nick; Watts, David C
2008-11-01
To evaluate the colour-stability and gloss-retention of silorane versus dimethacrylate composites exposed to accelerated aging from daylight radiation. Five disc-shaped specimens of photo-cured resin-composites were prepared and manually polished for each material (Filtek Silorane, Herculite XRV, Tetric Evoceram and QuiXfil). Colour and gloss were evaluated before and after periods (baseline, 24, 72, 120 and 192 h) of accelerated photo-aging in xenon light following ISO 7491:2000. Colour measurements were performed with a colourimeter according to the CIE-Lab colour-space. The colour change (DeltaE) for each time was calculated. The surface gloss was measured using a glossmeter. Results were evaluated using one-way ANOVA and Tukey tests (alpha=0.05). Correlations between logtime, DeltaE and gloss were evaluated using Pearson's correlation (alpha=0.05). Materials generally decreased in L and a and increased in b. The strong exception was Filtek Silorane which maintained a and b. DeltaE was found to be a positive linear function of logtime for all materials. Materials varied in the magnitude and rate of increase of DeltaE with logtime: QuiXfil>Tetric EvoCeram>(Filtek Silorane>or=Herculite XRV). DeltaE remained<3.3 for Filtek Silorane and Herculite XRV. Gloss was found to be a negative linear function of logtime. Gloss was maximal in the sequence: Filtek Silorane approximately Tetric EvoCeram>Herculite XRV>QuiXfil. Silorane gave the best overall performance in stability over time, compared to a set of representative dimethacrylate composites.
NASA Technical Reports Server (NTRS)
Lallman, Frederick J.; Davidson, John B.; Murphy, Patrick C.
1998-01-01
A method, called pseudo controls, of integrating several airplane controls to achieve cooperative operation is presented. The method eliminates conflicting control motions, minimizes the number of feedback control gains, and reduces the complication of feedback gain schedules. The method is applied to the lateral/directional controls of a modified high-performance airplane. The airplane has a conventional set of aerodynamic controls, an experimental set of thrust-vectoring controls, and an experimental set of actuated forebody strakes. The experimental controls give the airplane additional control power for enhanced stability and maneuvering capabilities while flying over an expanded envelope, especially at high angles of attack. The flight controls are scheduled to generate independent body-axis control moments. These control moments are coordinated to produce stability-axis angular accelerations. Inertial coupling moments are compensated. Thrust-vectoring controls are engaged according to their effectiveness relative to that of the aerodynamic controls. Vane-relief logic removes steady and slowly varying commands from the thrust-vectoring controls to alleviate heating of the thrust turning devices. The actuated forebody strakes are engaged at high angles of attack. This report presents the forward-loop elements of a flight control system that positions the flight controls according to the desired stability-axis accelerations. This report does not include the generation of the required angular acceleration commands by means of pilot controls or the feedback of sensed airplane motions.
Silami, Francisca Daniele Jardilino; Tonani, Rafaella; Alandia-Román, Carla Cecilia; Pires-de-Souza, Fernanda de Carvalho Panzeri
2016-01-01
The aim of this study was to evaluate the influence of accelerated aging (AAA) on the color stability of resin cements for bonding ceramic laminate veneers of different thicknesses. The occlusal surfaces of 80 healthy human molars were flattened. Ceramic laminate veneers (IPS e-max Ceram) of two thicknesses (0.5 and 1.0 mm) were bonded with three types of luting agents: light-cured, conventional dual and self-adhesive dual cement. Teeth without restorations and cement samples (0.5 mm) were used as control. After initial color evaluations, the samples were subjected to AAA for 580 h. After this, new color readouts were made, and the color stability (ΔE) and luminosity (ΔL) data were analyzed. The greatest color changes (p<0.05) occurred when 0.5 mm veneers were fixed with light-cured cement and the lowest when 1.0 mm veneers were fixed with conventional dual cement. There was no influence of the restoration thickness when the self-adhesive dual cement was used. When veneers were compared with the control groups, it was verified that the cement samples presented the greatest alterations (p<0.05) in comparison with both substrates and restored teeth. Therefore, it was concluded that the thickness of the restoration influences color and luminosity changes for conventional dual and light-cured cements. The changes in self-adhesive cement do not depend on restoration thickness.
Senjoti, Faria Gias; Mahmood, Syed; Jaffri, Juliana Md; Mandal, Uttam Kumar
2016-01-01
An oral sustained-release floating tablet formulation of metformin HCl was designed and developed. Effervescence and swelling properties were attributed on the developed tablets by sodium bicarbonate and HPMC-PEO polymer combination, respectively. Tablet composition was optimized by response surface methodology (RSM). Seventeen (17) trial formulations were analyzed according to Box-Behnken design of experiment where polymer content of HPMC and PEO at 1: 4 ratio (A), amount of sodium bi-carbonate (B), and amount of SSG (C) were adopted as independent variables. Floating lag time in sec (Y1), cumulative percent drug released at 1 h (Y2) and 12 h (Y3) were chosen as response variables. Tablets from the optimized formulation were also stored at accelerated stability condition (40°C and 75% RH) for 3 months to assess their stability profile. RSM could efficiently optimize the tablet composition with excellent prediction ability. In-vitro drug release until 12 h, floating lag time, and duration of floating were dependent on the amount of three selected independent variables. Optimized tablets remained floating for more than 24 h with a floating lag time of less than 4 min. Based on best fitting method, optimized formulation was found to follow Korsmeyer-Peppas release kinetic. Accelerated stability study revealed that optimized formulation was stable for three months without any major changes in assay, dissolution profile, floating lag time and other physical properties. PMID:27610147
Lin, Gigi L; Pathak, Jai A; Kim, Dong Hyun; Carlson, Marcia; Riguero, Valeria; Kim, Yoen Joo; Buff, Jean S; Fuller, Gerald G
2016-04-14
Protein molecules are amphiphilic moieties that spontaneously adsorb at the air/solution (A/S) interface to lower the surface energy. Previous studies have shown that hydrodynamic disruptions to these A/S interfaces can result in the formation of protein aggregates that are of concern to the pharmaceutical industry. Interfacial hydrodynamic stresses encountered by protein therapeutic solutions under typical manufacturing, filling, and shipping conditions will impact protein stability, prompting a need to characterize the contribution of basic fluid kinematics to monoclonal antibody (mAb) destabilization. We demonstrate that dilatational surface deformations are more important to antibody stability when compared to constant-area shear of the A/S interface. We have constructed a dilatational interfacial rheometer that utilizes simultaneous pressure and bubble shape measurements to study the mechanical stability of mAbs under interfacial aging. It has a distinct advantage over methods utilizing the Young-Laplace equation, which incorrectly describes viscoelastic interfaces. We provide visual evidence of particle ejection from dilatated A/S interfaces and spectroscopic data of ejected mAb particles. These rheological studies frame a molecular understanding of the protein-protein interactions at the complex-fluid interface.
Mouri, Abdelkader; Legrand, Philippe; El Ghzaoui, Abdeslam; Dorandeu, Christophe; Maurel, Jean Claude; Devoisselle, Jean-Marie
2016-04-11
Lithium biocompatible microemulsion based on Peceol(®), lecithin, ethanol and water was studied in attempt to identify the optimal compositions in term of drug content, physicochemical properties and stability. Lithium solubilization in microemulsion was found to be compatible with a drug-surfactant binding model. Lithium ions were predominantly solubilized within lecithin head group altering significantly the interfacial properties of the system. Pseudo-ternary phase diagrams of drug free and drug loaded microemulsions were built at constant ethanol/lecithin weight ratio (40/60). Lithium loaded microemulsion has totally disappeared in the Peceol(®) rich part of phase diagram; critical fractions of lecithin and ethanol were required for the formation of stable microemulsion. The effect of lithium concentration on the properties and physical stability of microemulsions were studied using microscopy, Karl Fischer titrations, rheology analyses, conductivity measurements and centrifugation tests. The investigated microemulsions were found to be stable under accelerated storage conditions. The systems exhibited low viscosity and behaved as Newtonian fluid and no structural transition was shown. Copyright © 2016 Elsevier B.V. All rights reserved.
E.E. Jafarov; V.E. Romanovsky; H. Genet; A.D. McGuire; S.S. Marchenko
2013-01-01
Fire is an important factor controlling the composition and thickness of the organic layer in the black spruce forest ecosystems of interior Alaska. Fire that burns the organic layer can trigger dramatic changes in the underlying permafrost, leading to accelerated ground thawing within a relatively short time. In this study, we addressed the following questions. (1)...
NASA Technical Reports Server (NTRS)
Barger, R. L.; Brooks, J. D.; Beasley, W. D.
1961-01-01
A crossed-field, continuous-flow plasma accelerator has been built and operated. The highest measured velocity of the flow, which was driven by the interaction of the electric and magnetic fields, was about 500 meters per second. Some of the problems discussed are ion slip, stability and uniformity of the discharge, effect of the magnetic field on electron emission, use of preionization, and electrode contamination.
Lowry, Kristin A; Carrel, Andrew J; McIlrath, Jessica M; Smiley-Oyen, Ann L
2010-04-01
To determine if gait stability, as measured by harmonic ratios (HRs) derived from trunk accelerations, is improved during 3 amplitude-based cueing strategies (visual cues, lines on the floor 20% longer than preferred step length; verbal cues, experimenter saying "big step" every third; cognitive cues, participants think "big step") in people with Parkinson's disease. Gait analysis with a triaxial accelerometer. University research laboratory. A volunteer sample of persons with Parkinson's disease (N=7) (Hoehn and Yahr stages 2-3). Not applicable Gait stability was quantified by anterior-posterior (AP), vertical, and mediolateral (ML) HRs; higher ratios indicated improved gait stability. Spatiotemporal parameters assessed were walking speed, stride length, cadence, and the coefficient of variation for stride time. Of the amplitude-based cues, verbal and cognitive resulted in the largest improvements in the AP HR (P=.018) with a trend in the vertical HR as well as the largest improvements in both stride length and velocity. None of the cues positively affected stability in the ML direction. Descriptively, all participants increased speed and stride length, but only those in Hoehn and Yahr stage 2 (not Hoehn and Yahr stage 3) showed improvements in HRs. Cueing for "big steps" is effective for improving gait stability in the AP direction with modest improvements in the vertical direction, but it is not effective in the ML direction. These data support the use of trunk acceleration measures in assessing the efficacy of common therapeutic interventions. Copyright 2010 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
Centripetal Acceleration Reaction: An Effective and Robust Mechanism for Flapping Flight in Insects
Zhang, Chao; Hedrick, Tyson L.; Mittal, Rajat
2015-01-01
Despite intense study by physicists and biologists, we do not fully understand the unsteady aerodynamics that relate insect wing morphology and kinematics to lift generation. Here, we formulate a force partitioning method (FPM) and implement it within a computational fluid dynamic model to provide an unambiguous and physically insightful division of aerodynamic force into components associated with wing kinematics, vorticity, and viscosity. Application of the FPM to hawkmoth and fruit fly flight shows that the leading-edge vortex is the dominant mechanism for lift generation for both these insects and contributes between 72–85% of the net lift. However, there is another, previously unidentified mechanism, the centripetal acceleration reaction, which generates up to 17% of the net lift. The centripetal acceleration reaction is similar to the classical inviscid added-mass in that it depends only on the kinematics (i.e. accelerations) of the body, but is different in that it requires the satisfaction of the no-slip condition, and a combination of tangential motion and rotation of the wing surface. Furthermore, the classical added-mass force is identically zero for cyclic motion but this is not true of the centripetal acceleration reaction. Furthermore, unlike the lift due to vorticity, centripetal acceleration reaction lift is insensitive to Reynolds number and to environmental flow perturbations, making it an important contributor to insect flight stability and miniaturization. This force mechanism also has broad implications for flow-induced deformation and vibration, underwater locomotion and flows involving bubbles and droplets. PMID:26252016
Centripetal Acceleration Reaction: An Effective and Robust Mechanism for Flapping Flight in Insects.
Zhang, Chao; Hedrick, Tyson L; Mittal, Rajat
2015-01-01
Despite intense study by physicists and biologists, we do not fully understand the unsteady aerodynamics that relate insect wing morphology and kinematics to lift generation. Here, we formulate a force partitioning method (FPM) and implement it within a computational fluid dynamic model to provide an unambiguous and physically insightful division of aerodynamic force into components associated with wing kinematics, vorticity, and viscosity. Application of the FPM to hawkmoth and fruit fly flight shows that the leading-edge vortex is the dominant mechanism for lift generation for both these insects and contributes between 72-85% of the net lift. However, there is another, previously unidentified mechanism, the centripetal acceleration reaction, which generates up to 17% of the net lift. The centripetal acceleration reaction is similar to the classical inviscid added-mass in that it depends only on the kinematics (i.e. accelerations) of the body, but is different in that it requires the satisfaction of the no-slip condition, and a combination of tangential motion and rotation of the wing surface. Furthermore, the classical added-mass force is identically zero for cyclic motion but this is not true of the centripetal acceleration reaction. Furthermore, unlike the lift due to vorticity, centripetal acceleration reaction lift is insensitive to Reynolds number and to environmental flow perturbations, making it an important contributor to insect flight stability and miniaturization. This force mechanism also has broad implications for flow-induced deformation and vibration, underwater locomotion and flows involving bubbles and droplets.
Weber, Michael; Hellriegel, Christine; Rueck, Alexander; Wuethrich, Juerg; Jenks, Peter
2014-05-01
Quantitative NMR spectroscopy (qNMR) is gaining interest across both analytical and industrial research applications and has become an essential tool for the content assignment and quantitative determination of impurities. The key benefits of using qNMR as measurement method for the purity determination of organic molecules are discussed, with emphasis on the ability to establish traceability to "The International System of Units" (SI). The work describes a routine certification procedure from the point of view of a commercial producer of certified reference materials (CRM) under ISO/IEC 17025 and ISO Guide 34 accreditation, that resulted in a set of essential references for (1)H qNMR measurements, and the relevant application data for these substances are given. The overall process includes specific selection criteria, pre-tests, experimental conditions, homogeneity and stability studies. The advantages of an accelerated stability study over the classical stability-test design are shown with respect to shelf-life determination and shipping conditions. Copyright © 2013 The Authors. Published by Elsevier B.V. All rights reserved.
Application of ultrasound to improve lees ageing processes in red wines.
Del Fresno, Juan Manuel; Loira, Iris; Morata, Antonio; González, Carmen; Suárez-Lepe, Jose Antonio; Cuerda, Rafael
2018-09-30
Ageing on lees (AOL) is a technique that increases volatile compounds, promotes colour stability, improves mouthfeel and reduces astringency in red wines. The main drawback is that it is a slow process. Several months are necessary to obtain perceptible effects in wines. Different authors have studied the application of new techniques to accelerate the AOL process. Ultrasound (US) has been used to improve different food industry processes; it could be interesting to accelerate the yeast autolysis during AOL. This work evaluates the use of the US technique together with AOL and oak chips for this purpose studying the effects of different oenological parameters of red wines. The results obtained indicate an increase of polysaccharides content when US is applied in wine AOL. In addition, total polyphenol index (TPI) and volatile acidity were not affected. However, this treatment increases the dissolved oxygen affecting the volatile compounds and total anthocyanins. Copyright © 2018 Elsevier Ltd. All rights reserved.
Special features of high-speed interaction of supercavitating solids in water
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ishchenko, Aleksandr, E-mail: ichan@niipmm.tsu.ru; Afanas’eva, Svetlana, E-mail: s.a.afanasyeva@mail.ru; Burkin, Viktor, E-mail: v.v.burkin@mail.ru
Special features of material behavior of a supercavitating projectile are investigated at various initial velocities of entering water on the basis of the developed stress-strain state model with possibility of destruction of solids when moving in water and interacting with various underwater barriers with the use of consistent methodological approach of mechanics of continuous media. The calculation-experimental method was used to study the modes of motion of supercavitating projectiles at sub- and supersonic velocities in water medium after acceleration in the barrelled accelerator, as well as their interaction with barriers. Issues of stabilization of the supercavitating projectile on the initialmore » flight path in water were studied. Microphotographs of state of solids made of various materials, before and after interaction with water, at subsonic and supersonic velocities were presented. Supersonic velocity of the supercavitating projectile motion in water of 1590 m/s was recorded.« less
Special features of high-speed interaction of supercavitating solids in water
NASA Astrophysics Data System (ADS)
Ishchenko, Aleksandr; Akinshin, Ruslan; Afanas'eva, Svetlana; Borisenkov, Igor; Burkin, Viktor; Diachkovskii, Aleksei; Korolkov, Leonid; Moiseev, Dmitrii; Khabibullin, Marat
2016-01-01
Special features of material behavior of a supercavitating projectile are investigated at various initial velocities of entering water on the basis of the developed stress-strain state model with possibility of destruction of solids when moving in water and interacting with various underwater barriers with the use of consistent methodological approach of mechanics of continuous media. The calculation-experimental method was used to study the modes of motion of supercavitating projectiles at sub- and supersonic velocities in water medium after acceleration in the barrelled accelerator, as well as their interaction with barriers. Issues of stabilization of the supercavitating projectile on the initial flight path in water were studied. Microphotographs of state of solids made of various materials, before and after interaction with water, at subsonic and supersonic velocities were presented. Supersonic velocity of the supercavitating projectile motion in water of 1590 m/s was recorded.
NASA Astrophysics Data System (ADS)
Schneider, M.; Johnson, T.; Dumont, R.; Eriksson, J.; Eriksson, L.-G.; Giacomelli, L.; Girardo, J.-B.; Hellsten, T.; Khilkevitch, E.; Kiptily, V. G.; Koskela, T.; Mantsinen, M.; Nocente, M.; Salewski, M.; Sharapov, S. E.; Shevelev, A. E.; Contributors, JET
2016-11-01
Recent JET experiments have been dedicated to the studies of fusion reactions between deuterium (D) and Helium-3 (3He) ions using neutral beam injection (NBI) in synergy with third harmonic ion cyclotron radio-frequency heating (ICRH) of the beam. This scenario generates a fast ion deuterium tail enhancing DD and D3He fusion reactions. Modelling and measuring the fast deuterium tail accurately is essential for quantifying the fusion products. This paper presents the modelling of the D distribution function resulting from the NBI+ICRF heating scheme, reinforced by a comparison with dedicated JET fast ion diagnostics, showing an overall good agreement. Finally, a sawtooth activity for these experiments has been observed and interpreted using SPOT/RFOF simulations in the framework of Porcelli’s theoretical model, where NBI+ICRH accelerated ions are found to have a strong stabilizing effect, leading to monster sawteeth.
Low gravity reorientation in a scale-model Centaur liquid-hydrogen tank
NASA Technical Reports Server (NTRS)
Salzman, J. A.; Masica, W. J.; Lacovic, R. F.
1973-01-01
An experiment was conducted to investigate the process of liquid reorientation from one end of a scale-model Centaur liquid-hydrogen tank to the other end by means of low-level accelerations. Prior to reorientation, the liquid was stabilized at the top of the tank at a Bond number of 15. Tanks both with and without ring baffles and with tank radii of 5.5 and 7.0 centimeters were used in the study. Reorientation acceleration values were varied to obtain Bond numbers of 200 and 450. Liquid fill levels of 20 and 70 percent were used. From the data in this study, relations were developed to estimate reorientation event times in unbaffled tanks through the point of final liquid clearing from the top of the tank. The insertion of ring baffles drastically changed the reorientation flow profiles but resulted in only minor differences in the times of tank-top uncovering and liquid collection.
DOE Office of Scientific and Technical Information (OSTI.GOV)
None, None
1999-10-01
Long-term stewardship is expected to be needed at more than 100 DOE sites after DOE's Environmental Management program completes disposal, stabilization, and restoration operations to address waste and contamination resulting from nuclear research and nuclear weapons production conducted over the past 50 years. From Cleanup to stewardship provides background information on the Department of Energy (DOE) long-term stewardship obligations and activities. This document begins to examine the transition from cleanup to long-term stewardship, and it fulfills the Secretary's commitment to the President in the 1999 Performance Agreement to provide a companion report to the Department's Accelerating Cleanup: Paths to Closuremore » report. It also provides background information to support the scoping process required for a study on long-term stewardship required by a 1998 Settlement Agreement.« less
Accelerated loading evaluation of subbase layers in pavement performance.
DOT National Transportation Integrated Search
2010-04-01
This report documents the research efforts conducted at the Louisiana Transportation Research Center (LTRC) regarding chemical stabilization of the naturally wet and problematic clayey soils typically found as subgrade in south Louisiana and provides...
One-step continuous extrusion process for the manufacturing of solid dispersions.
Maniruzzaman, M; Nair, A; Scoutaris, N; Bradley, Michael S A; Snowden, M J; Douroumis, D
2015-12-30
The purpose of this study was to evaluate the performance of synthetic magnesium aluminometasilicate (MAS) as a novel inorganic carrier in hot melt extrusion (HME) processing of indomethacin (IND) for the development of solid dispersions. A continuous extrusion process at various IND/excipient blend ratios (20%, 30% and 40%) was performed using a twin-screw extruder. Physicochemical characterization carried out by SEM, DSC, and XRPD demonstrated the presence of IND in amorphous nature within the porous network of the inorganic material for all extruded formulations. Further, AFM and FTIR studies revealed a single-phase amorphous system and intermolecular H-bonding formation. The IND/MAS extrudates showed enhanced INM dissolution rates within 100% been released within 1h. Stability studies under accelerated conditions (40°C, RH 75%) showed that MAS retained the physical stability of the amorphous solid dispersions even at high drug loadings for 12 months. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Fiedler, Heinrich E.
1991-01-01
Recent works on flow stability and turbulence are reviewed with emphasis on the flow control of free and wall-bounded flows. Axisymmetric jets in counterflow are considered for two characteristic cases: a stable case at low velocity ratios and an unstable case at higher velocity ratios. Among mixing layers, excited layers are covered as well as density-inhomogeneous flows, where countergradient, homogeneous, and cogradient cases are reviewed. The influences of boundary conditions are analyzed, and focus is placed on feedback condition, flow distortion, accelerated flow, and two- and three-dimensional studies. Attention is given to stability investigations and riblets as a means for reducing surface friction in a turbulent flow.
Catelan, Anderson; Briso, André Luiz Fraga; Sundfeld, Renato Hermann; Goiato, Marcelo Coelho; dos Santos, Paulo Henrique
2011-04-01
The color alteration of resin-based materials is one of the most common reasons to replace esthetic dental restorations. This study assessed the influence of surface sealant (Biscover) on the color stability of nanofilled (Supreme XT) and microhybrid (Vit-l-escence and Opallis) composite resins after artificial aging. One hundred disc-shaped (6 × 1.5 mm) specimens were made for each composite resin. After 24 hours, all specimens were polished and sealant was applied to 50 specimens of each material. Baseline color was measured according to the CIE L*a*b* system using a reflection spectrophotometer. Ten specimens of each group were aged for 252 h in an ultraviolet (UV)-accelerated aging chamber or immersed for 4 weeks in cola soft drink, orange juice, red wine staining solutions or distilled water as control. Color difference (ΔE) after aging was calculated based on the color coordinates before (baseline) and after aging/staining treatment. Data were analyzed with 2-way ANOVA and Fisher's test (α=.05). The results showed significant changes in color after artificial aging in all the groups (P<.05). Independent of the material studied, red wine resulted in the highest level of discoloration. Intermediate values were found for orange juice, UV accelerated aging, and the cola soft drink. The lowest values of ΔE were found for specimens stored in distilled water. All composite resins showed some color alteration after the aging methods. The surface sealant did not alter the color stability of the tested materials. Copyright © 2011 The Editorial Council of the Journal of Prosthetic Dentistry. Published by Mosby, Inc. All rights reserved.
Autonomic Nervous Activity and Lipid Oxidation Postexercise with Capsaicin in the Humans
Yeo, Nam Hwoeh; Kang, Sunghwun
2010-01-01
This study evaluated the synergistic effects of acute exercise with capsaicin (200mg) upon the restoration of cardiac autonomic functions and depolarization- repolarization interval as well as substrate oxidation. Nine healthy males [21.9(0.8) yrs] volunteered for this study. Cardiac autonomic activity, metabolic responses, and the ECG QT intervals were continuously measured during 5 min at rest and postexercise recovery after 30 min exercise at 50% VO2max on a stationary ergometer with placebo (ECON) or capsaicin intake (ECAP), and no exercise control (NCON) were randomized. Results indicated that the HF power reflecting parasympathetic activity significantly returned to the baseline much faster during ECAP than ECON trial during postexercise [122.1 (23.2) vs. 60.2 (11.7) %, p < 0.05]. The ECAP trial significantly decreased RQ [0.79(0.02) vs. 0.85 (0.03), p < 0.05] with significantly greater fat oxidation [69.3 (6.0) vs. 49.4 (10.8) %, p < 0.05] in comparison to NCON trial during 120 min postexercise recovery without any adverse effects on cardiac electrical stability as determined by trigger-averaged ECG QT interval analyses. We suggest that capsaicin before the exercise may contribute to the improvement of cardio-protective functions and metabolic responses as one of the beneficial supplements accelerating faster restoration of autonomic activity and enhanced lipolysis during postexercise recovery without any adverse effects on cardiac electrical stability. Key points Capsaicin before exercise may contribute to the improvement of cardio-protective functions as one of the beneficial supplements accelerating faster restoration of autonomic activity Capsaicin before exercise enhanced lipolysis during postexercise recovery period Capsaicin intake does not influence cardiac electrical stability during recovery period. PMID:24149693
The utilization of a commercial gloss spray in stabilization of incinerated dental structures.
Berketa, John; Fauzi, Ahmad; James, Helen; Lake, Anthony; Langlois, Neil
2015-07-01
Incinerated human remains may require dental comparison to establish identity. The remains are often fragile and minor forces can damage teeth and facial bones, disrupting anatomical relationships, and impairing the ability to compare with antemortem records. This study evaluated the ability of a commercially available gloss spray to stabilize teeth in incinerated remains. Lower anterior teeth of scavenged sheep mandibles were incinerated in a furnace at a temperature of 500 °C for 35 min. Before a series of vibration tests, the left side of each sample was treated with the spray, with the right side acting as a control. Significant retention of dental data was achieved utilizing the spray in comparison to the non-stabilized sides. This study showed that a commercial clear gloss spray did not affect the ability to document or perform radiographic assessment of restorations, and statistically improved the stability and anatomical relationships of incinerated dental remains in scavenged sheep mandibles. Commercial products, such as the one tested in this study, are readily available and could be deployed at a mass disaster situation. However, the spray should not be used if there is any suspicion that accelerants might be involved at the scene. Copyright © 2015 Elsevier Ltd and Faculty of Forensic and Legal Medicine. All rights reserved.
Severino, Marco; Rastelli, Claudio; Bernardi, Sara; Caruso, Silvia; Galli, Massimo; Lamazza, Luca; Di Paolo, Carlo
2017-01-01
Background The attainment of a good primary stability is a necessary condition to ensure the success of osseointegration in implantology. In type IV cancellous bone, however, it is possible that a reduced primary stability can lead to an increased rate of failure. The aim of this study was therefore to determine, with the help of the resonance frequency (Osstell mentor), which technique of implant site preparation (piezo surgery, conventional, under-preparation, bone compaction, osteodistraction) and macro-geometry is able to improve implant stability in type IV cancellous bone. Material and Methods 10 pig ribs were prepared with a surgical pre-drilled guide, calibrated for a correct implant positioning. On each rib, 5 implant sites (one for each technique) were prepared. Successively, 50 conical implants (Tekka Global D) were inserted and measured with the resonance frequency to evaluate the primary stability. Data collected were analyzed by analysis of variance (ANOVA) to test whether the Implant Stability Quotient (ISQ) values of the five techniques were significantly different. Results The results showed that no significant differences among the ISQ values of the five techniques used were found. Also, no significant differences in the macro-geometry of the two types of compared implants were observed. However, the macro-geometry of Tekka implants, characterized by a double condensing thread, seems to provide greater ISQ values than those of single thread implants when using the same technique. Conclusions In light of these preliminary data, it is conceivable that in cases of reduced stability, such as those occurring with a type IV bone, all means ameliorating the primary stability and accelerating the osseointegration can be utilized. Key words:Implant primary stability, resonance frequency analysis, implant site preparation. PMID:28160577
Stabilities of Dried Suspensions of Influenza Virus Sealed in a Vacuum or Under Different Gases
Greiff, Donald; Rightsel, Wilton A.
1969-01-01
Suspensions of purified influenza virus, dried to a 1.4% content of residual moisture by sublimation of ice in vacuo, were sealed in a vacuum or under different gases of high purity. The stabilities of the several preparations were determined by an accelerated storage test. Based on the times predicted for the dried preparations stored at different temperatures to lose 1 log of infectivity titer, the order of stabilities in relation to sealing in vacuum or under different gases was as follows: helium > hydrogen > vacuum > argon > nitrogen > oxygen > carbon dioxide. Images PMID:5797938
Plasma Wakefield Acceleration of an Intense Positron Beam
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blue, B
2004-04-21
The Plasma Wakefield Accelerator (PWFA) is an advanced accelerator concept which possess a high acceleration gradient and a long interaction length for accelerating both electrons and positrons. Although electron beam-plasma interactions have been extensively studied in connection with the PWFA, very little work has been done with respect to positron beam-plasma interactions. This dissertation addresses three issues relating to a positron beam driven plasma wakefield accelerator. These issues are (a) the suitability of employing a positron drive bunch to excite a wake; (b) the transverse stability of the drive bunch; and (c) the acceleration of positrons by the plasma wakemore » that is driven by a positron bunch. These three issues are explored first through computer simulations and then through experiments. First, a theory is developed on the impulse response of plasma to a short drive beam which is valid for small perturbations to the plasma density. This is followed up with several particle-in-cell (PIC) simulations which study the experimental parameter (bunch length, charge, radius, and plasma density) range. Next, the experimental setup is described with an emphasis on the equipment used to measure the longitudinal energy variations of the positron beam. Then, the transverse dynamics of a positron beam in a plasma are described. Special attention is given to the way focusing, defocusing, and a tilted beam would appear to be energy variations as viewed on our diagnostics. Finally, the energy dynamics imparted on a 730 {micro}m long, 40 {micro}m radius, 28.5 GeV positron beam with 1.2 x 10{sup 10} particles in a 1.4 meter long 0-2 x 10{sup 14} e{sup -}/cm{sup 3} plasma is described. First the energy loss was measured as a function of plasma density and the measurements are compared to theory. Then, an energy gain of 79 {+-} 15 MeV is shown. This is the first demonstration of energy gain of a positron beam in a plasma and it is in good agreement with the predictions made by the 3-D PIC code. The work presented in this dissertation will show that plasma wakefield accelerators are an attractive technology for future particle accelerators.« less
Prediction and Validation of Mars Pathfinder Hypersonic Aerodynamic Data Base
NASA Technical Reports Server (NTRS)
Gnoffo, Peter A.; Braun, Robert D.; Weilmuenster, K. James; Mitcheltree, Robert A.; Engelund, Walter C.; Powell, Richard W.
1998-01-01
Postflight analysis of the Mars Pathfinder hypersonic, continuum aerodynamic data base is presented. Measured data include accelerations along the body axis and axis normal directions. Comparisons of preflight simulation and measurements show good agreement. The prediction of two static instabilities associated with movement of the sonic line from the shoulder to the nose and back was confirmed by measured normal accelerations. Reconstruction of atmospheric density during entry has an uncertainty directly proportional to the uncertainty in the predicted axial coefficient. The sensitivity of the moment coefficient to freestream density, kinetic models and center-of-gravity location are examined to provide additional consistency checks of the simulation with flight data. The atmospheric density as derived from axial coefficient and measured axial accelerations falls within the range required for sonic line shift and static stability transition as independently determined from normal accelerations.
Detecting chaos in particle accelerators through the frequency map analysis method.
Papaphilippou, Yannis
2014-06-01
The motion of beams in particle accelerators is dominated by a plethora of non-linear effects, which can enhance chaotic motion and limit their performance. The application of advanced non-linear dynamics methods for detecting and correcting these effects and thereby increasing the region of beam stability plays an essential role during the accelerator design phase but also their operation. After describing the nature of non-linear effects and their impact on performance parameters of different particle accelerator categories, the theory of non-linear particle motion is outlined. The recent developments on the methods employed for the analysis of chaotic beam motion are detailed. In particular, the ability of the frequency map analysis method to detect chaotic motion and guide the correction of non-linear effects is demonstrated in particle tracking simulations but also experimental data.
Comparison of accelerator physics issues for symmetric and asymmetric B-factory rings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tigner, M.
1990-10-10
A systematic comparison of accelerator physics issues from the beam-beam interaction to single particle stability including ring and IR layout, synchrotron radiation and lost particle backgrounds, and single and multi-bunch instabilities is given. While some practical handicap probably accrues to the asymmetric design because of its extra constraints, the differences in the two approaches tend to be obscured by larger issues such as how to achieve the enormous increases in luminosity demanded of a b-factory.
Suppression of Instabilities Generated by an Anti-Damper with a Nonlinear Magnetic Element in IOTA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stern, E.
The Integrable Optics Test Accelerator (IOTA) storage ring is being constructed at Fermilab as a testbed for new accelerator concepts. One important series of experiments tests the use of a novel nonlinear magnetic insert to damp coherent instabilities. To test the damping power of the element, an instability of desired strength may be intentionally excited with an anti-damper. We report on simulations of beam stabilization using the Synergia modeling framework over ranges of driving and damping strengths.
Accelerated Irradiations for High Dose Microstructures in Fast Reactor Alloys
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiao, Zhijie
The objective of this project is to determine the extent to which high dose rate, self-ion irradiation can be used as an accelerated irradiation tool to understand microstructure evolution at high doses and temperatures relevant to advanced fast reactors. We will accomplish the goal by evaluating phase stability and swelling of F-M alloys relevant to SFR systems at very high dose by combining experiment and modeling in an effort to obtain a quantitative description of the processes at high and low damage rates.
The concept of coupling impedance in the self-consistent plasma wake field excitation
NASA Astrophysics Data System (ADS)
Fedele, R.; Akhter, T.; De Nicola, S.; Migliorati, M.; Marocchino, A.; Massimo, F.; Palumbo, L.
2016-09-01
Within the framework of the Vlasov-Maxwell system of equations, we describe the self-consistent interaction of a relativistic charged-particle beam with the surroundings while propagating through a plasma-based acceleration device. This is done in terms of the concept of coupling (longitudinal) impedance in full analogy with the conventional accelerators. It is shown that also here the coupling impedance is a very useful tool for the Nyquist-type stability analysis. Examples of specific physical situations are finally illustrated.
Vehicle Mobility or Firing Stability. A Delicate Balance,
1980-06-01
parameters with respect to a vehicle’s cross country ride performance and to the firing stability of an initially stationary ve- hicle. It is...model described in the previous sec- tion, with the addition of the necessary roll related parameters , trunnion position data, and the firing reaction...mode of operation to a vehicle weapon sys- tem. Obviously the horizontal acceleration at the gunner’s eyepiece 268 * HOOG (TERP &BECK also has an
Investigation of longitudinal control system for a small hydrofoil boat
NASA Technical Reports Server (NTRS)
Phillips, W. H.; Shaughnessy, J. D.
1976-01-01
An analysis of a hydromechanical system for longitudinal control of a small hydrofoil boat is presented. The system incorporates height and acceleration sensors operating flaps on the foils through a mechanical linkage. Effects of some of the system parameters on the stability and response to waves are shown. The results indicate that the system is capable of providing adequate stability, but the response to stern waves at low frequencies is larger than desired.
Boltres, Bettine; Tratzky, Stephan; Kass, Christof; Eichholz, Rainer; Naß, Peter
2016-01-01
For pharmaceutical parenteral packaging the glass compositions have always been either Type I borosilicate or Type III soda-lime glass. As both the compositions and certain chemical and physical properties are mandated by international standards, there has not been room for any changes. However, by applying only minor adjustments, a borosilicate glass was developed that showed improved chemical stability. The chemical composition is still in the range of currently used borosilicate glasses, which makes it a Type I glass according to all current pharmacopeia. A study was performed on glass vials comparing the new glass with the standard FIOLAX(®) and two other publicly available glasses. In an extraction study with water at 121 °C the new glass showed the highest chemical stability with the lowest amount of extractables. In an accelerated ageing study, which was done with water, phosphate, and carbonate buffer at 40 °C for 12 months, the new glass also proved to have the lowest amount of leachables. In this article the new glass and the results from the studies are presented, showing the reader how much of an effect can be attained with only minor adjustments if the scientific fundamentals are clear. The pharmaceutical market has been quite constant and risk-oriented due to the high impact on the safety of the patient. As any change necessitates a complicated change process, this has, in consequence, lead the industry to resist changing the parenteral primary packaging material for decades. The main glasses have either been Type I borosilicate or Type III soda-lime glass. On the other hand, a combination of improved inspection systems and the development of more sensitive biologically based drugs has elevated the standards for parental packaging materials. For example, the measurement of extractables and leachables from the packaging material steadily came into focus. In this article, a new glass is presented that still belongs to the group of Type I borosilicate glasses according to all pharmacopeia. However, with some minor adjustments in the chemical composition it was possible to increase the chemical stability measurably. To prove this several studies were performed, of which the extraction study with water at 121 °C and the accelerated ageing study with water, phosphate, and carbonate buffer at 40 °C for 12 months are presented here. © PDA, Inc. 2016.
3D multiphysics modeling of superconducting cavities with a massively parallel simulation suite
NASA Astrophysics Data System (ADS)
Kononenko, Oleksiy; Adolphsen, Chris; Li, Zenghai; Ng, Cho-Kuen; Rivetta, Claudio
2017-10-01
Radiofrequency cavities based on superconducting technology are widely used in particle accelerators for various applications. The cavities usually have high quality factors and hence narrow bandwidths, so the field stability is sensitive to detuning from the Lorentz force and external loads, including vibrations and helium pressure variations. If not properly controlled, the detuning can result in a serious performance degradation of a superconducting accelerator, so an understanding of the underlying detuning mechanisms can be very helpful. Recent advances in the simulation suite ace3p have enabled realistic multiphysics characterization of such complex accelerator systems on supercomputers. In this paper, we present the new capabilities in ace3p for large-scale 3D multiphysics modeling of superconducting cavities, in particular, a parallel eigensolver for determining mechanical resonances, a parallel harmonic response solver to calculate the response of a cavity to external vibrations, and a numerical procedure to decompose mechanical loads, such as from the Lorentz force or piezoactuators, into the corresponding mechanical modes. These capabilities have been used to do an extensive rf-mechanical analysis of dressed TESLA-type superconducting cavities. The simulation results and their implications for the operational stability of the Linac Coherent Light Source-II are discussed.
Tune-stabilized, non-scaling, fixed-field, alternating gradient accelerator
Johnstone, Carol J [Warrenville, IL
2011-02-01
A FFAG is a particle accelerator having turning magnets with a linear field gradient for confinement and a large edge angle to compensate for acceleration. FODO cells contain focus magnets and defocus magnets that are specified by a number of parameters. A set of seven equations, called the FFAG equations relate the parameters to one another. A set of constraints, call the FFAG constraints, constrain the FFAG equations. Selecting a few parameters, such as injection momentum, extraction momentum, and drift distance reduces the number of unknown parameters to seven. Seven equations with seven unknowns can be solved to yield the values for all the parameters and to thereby fully specify a FFAG.
Electrostatic Steering Accelerates C3d:CR2 Association
2016-01-01
Electrostatic effects are ubiquitous in protein interactions and are found to be pervasive in the complement system as well. The interaction between complement fragment C3d and complement receptor 2 (CR2) has evolved to become a link between innate and adaptive immunity. Electrostatic interactions have been suggested to be the driving factor for the association of the C3d:CR2 complex. In this study, we investigate the effects of ionic strength and mutagenesis on the association of C3d:CR2 through Brownian dynamics simulations. We demonstrate that the formation of the C3d:CR2 complex is ionic strength-dependent, suggesting the presence of long-range electrostatic steering that accelerates the complex formation. Electrostatic steering occurs through the interaction of an acidic surface patch in C3d and the positively charged CR2 and is supported by the effects of mutations within the acidic patch of C3d that slow or diminish association. Our data are in agreement with previous experimental mutagenesis and binding studies and computational studies. Although the C3d acidic patch may be locally destabilizing because of unfavorable Coulombic interactions of like charges, it contributes to the acceleration of association. Therefore, acceleration of function through electrostatic steering takes precedence to stability. The site of interaction between C3d and CR2 has been the target for delivery of CR2-bound nanoparticle, antibody, and small molecule biomarkers, as well as potential therapeutics. A detailed knowledge of the physicochemical basis of C3d:CR2 association may be necessary to accelerate biomarker and drug discovery efforts. PMID:27092816
Wave-Particle Interactions and Particle Acceleration in Turbulent Plasmas: Hybrid Simulations
NASA Astrophysics Data System (ADS)
Kucharek, Harald; Pogorelov, Nikolai; Mueller, Hans; Gamayunov, Konstantin; Farrugia, Charles
2015-04-01
Wave-particle interactions and acceleration processes are present in all key regions inside and outside of the heliosphere. Spacecraft observations measure ion distributions and accelerated ion populations, which are the result of one or several processes. For instance STEREO measures energetic particles associated with interplanetary discontinuities and in the solar wind. Voyager and IBEX provide unique data of energetic particles from the termination shock and the inner and outer heliopause. The range of plasma conditions covered by observations is enormous. However, the physical processes causing particle acceleration and wave-particle interaction and determining the particle distributions are still unknown. Currently two mechanisms, the so-called pumping mechanism (Fisk and Gloeckler, 2010) and merging/contracting island (Fermo, Drake & Swisdak, 2010) are discussed as promising models. In order to determine these individual processes, numerical models or theoretical considerations are needed. Hybrid simulations, which include all kinetic processes self-consistently on the ion level, are a very proven, powerful tool to investigate wave-particle interaction, turbulence, and phase-space evolution of pickup and solar wind ions. In the framework of this study we performed 3D multi-species hybrid simulations for an ion/ion beam instability to study the temporal evolution of ion distributions, their stability, and the influence of self-generated waves. We investigated the energization of ions downstream of interplanetary discontinuities and shocks and downstream of the termination shock, the turbulence, and growth rate of instabilities and compared the results with theoretical predictions. The simulations show that ions can be accelerated downstream of collisionless shocks by trapping of charged particles in coherent wave fronts.
Effect of Opuntia ficus-indica flowers maceration on quality and on heat stability of olive oil.
Ammar, Imène; BenAmira, Amal; Khemakem, Ibtihel; Attia, Hamadi; Ennouri, Monia
2017-05-01
This study was focused on the evaluation of the quality and the oxidative stability of olive oil added with Opuntia ficus - indica flowers. Two different amounts of O. ficus - indica flowers were considered 5 and 15% (w/w). The olive oils were evaluated towards their quality, fatty acids profile, total phenol contents and thermal properties by differential scanning calorimetry. The oxidative stability was also monitored by employing the Rancimat and the oven test based on accelerating the oxidation process during storage. The addition of O. ficus - indica flowers induced an increase in free acidity values and a variation in fatty acids profile of olive oils but values remained under the limits required for an extra-virgin olive oil. The obtained olive oils were nutritionally enriched due to the increase in their phenols content. The oxidative stability was generally improved, mainly in olive oil enriched with 5% Opuntia ficus - indica flowers. These findings proved that this enriched olive oil could be considered as a product with a greater added value.
Pre-genomic, genomic and post-genomic study of microbial communities involved in bioenergy.
Rittmann, Bruce E; Krajmalnik-Brown, Rosa; Halden, Rolf U
2008-08-01
Microorganisms can produce renewable energy in large quantities and without damaging the environment or disrupting food supply. The microbial communities must be robust and self-stabilizing, and their essential syntrophies must be managed. Pre-genomic, genomic and post-genomic tools can provide crucial information about the structure and function of these microbial communities. Applying these tools will help accelerate the rate at which microbial bioenergy processes move from intriguing science to real-world practice.
Stable generation of GeV-class electron beams from self-guided laser-plasma channels
NASA Astrophysics Data System (ADS)
Hafz, Nasr A. M.; Jeong, Tae Moon; Choi, Il Woo; Lee, Seong Ku; Pae, Ki Hong; Kulagin, Victor V.; Sung, Jae Hee; Yu, Tae Jun; Hong, Kyung-Han; Hosokai, Tomonao; Cary, John R.; Ko, Do-Kyeong; Lee, Jongmin
2008-09-01
Table-top laser-driven plasma accelerators are gaining attention for their potential use in miniaturizing future high-energy accelerators. By irradiating gas jet targets with ultrashort intense laser pulses, the generation of quasimonoenergetic electron beams was recently observed. Currently, the stability of beam generation and the ability to scale to higher electron beam energies are critical issues for practical laser acceleration. Here, we demonstrate the first generation of stable GeV-class electron beams from stable few-millimetre-long plasma channels in a self-guided wakefield acceleration process. As primary evidence of the laser wakefield acceleration in a bubble regime, we observed a boost of both the electron beam energy and quality by reducing the plasma density and increasing the plasma length in a 1-cm-long gas jet. Subsequent three-dimensional simulations show the possibility of achieving even higher electron beam energies by minimizing plasma bubble elongation, and we anticipate dramatic increases in beam energy and quality in the near future. This will pave the way towards ultracompact, all-optical electron beam accelerators and their applications in science, technology and medicine.
NASA Astrophysics Data System (ADS)
Klein, Kristopher; Kasper, Justin; Korreck, Kelly; Alterman, Benjamin
2017-04-01
The role of free-energy driven instabilities in governing heating and acceleration processes in the heliosphere has been studied for over half a century, with significant recent advancements enabled by the statistical analysis of decades worth of observations from missions such as WIND. Typical studies focus on marginal stability boundaries in a reduced parameter space, such as the canonical plasma beta versus temperature anisotropy plane, due to a single source of free energy. We present a more general method of determining stability, accounting for all possible sources of free energy in the constituent plasma velocity distributions. Through this novel implementation, we can efficiently determine if the plasma is linearly unstable, and if so, how many normal modes are growing. Such identification will enabling us to better pinpoint the dominant heating or acceleration processes in solar wind plasma. The theory behind this approach is reviewed, followed by a discussion of our methods for a robust numerical implementation, and an initial application to portions of the WIND data set. Further application of this method to velocity distribution measurements from current missions, including WIND, upcoming missions, including Solar Probe Plus and Solar Orbiter, and missions currently in preliminary phases, such as ESA's THOR and NASA's IMAP, will help elucidate how instabilities shape the evolution of the heliosphere.
Landau Damping of Beam Instabilities by Electron Lenses
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shiltsev, V.; Alexahin, Yuri; Burov, A.
2017-06-26
Modern and future particle accelerators employ increasingly higher intensity and brighter beams of charged particles and become operationally limited by coherent beam instabilities. Usual methods to control the instabilities, such as octupole magnets, beam feedback dampers and use of chromatic effects, become less effective and insufficient. We show that, in contrast, Lorentz forces of a low-energy, a magnetically stabilized electron beam, or "electron lens", easily introduces transverse nonlinear focusing sufficient for Landau damping of transverse beam instabilities in accelerators. It is also important that, unlike other nonlinear elements, the electron lens provides the frequency spread mainly at the beam core,more » thus allowing much higher frequency spread without lifetime degradation. For the parameters of the Future Circular Collider, a single conventional electron lens a few meters long would provide stabilization superior to tens of thousands of superconducting octupole magnets.« less
Landau Damping of Beam Instabilities by Electron Lenses
Shiltsev, V.; Alexahin, Yuri; Burov, A.; ...
2017-09-27
Modern and future particle accelerators employ increasingly higher intensity and brighter beams of charged particles and become operationally limited by coherent beam instabilities. Usual methods to control the instabilities, such as octupole magnets, beam feedback dampers, and use of chromatic effects, become less effective and insufficient. Here, we show that, in contrast, Lorentz forces of a low-energy, magnetically stabilized electron beam, or “electron lens,” easily introduce transverse nonlinear focusing sufficient for Landau damping of transverse beam instabilities in accelerators. It is also important to note that, unlike other nonlinear elements, the electron lens provides the frequency spread mainly at themore » beam core, thus allowing much higher frequency spread without lifetime degradation. For the parameters of the Future Circular Collider, a single conventional electron lens a few meters long would provide stabilization superior to tens of thousands of superconducting octupole magnets.« less
Loss of Mass and Stability of Galaxies in Modified Newtonian Dynamics
NASA Astrophysics Data System (ADS)
Wu, Xufen; Zhao, HongSheng; Famaey, Benoit; Gentile, G.; Tiret, O.; Combes, F.; Angus, G. W.; Robin, A. C.
2007-08-01
The self-binding energy and stability of a galaxy in MOND-based gravity are curiously decreasing functions of its center-of-mass acceleration (of the order of 10-12 to 10-10 m s-2) toward neighboring mass concentrations. A tentative indication of this breaking of the strong equivalence principle in field galaxies is the RAVE-observed escape speed in the Milky Way. Another consequence is that satellites of field galaxies will move on nearly Keplerian orbits at large radii (100-500 kpc), with a declining speed below the asymptotically constant naive MOND prediction. But the consequences of an environment-sensitive gravity are even more severe in clusters, where member galaxies accelerate fast; no dark halo-like potential is present to support galaxies, meaning that extended axisymmetric disks of gas and stars are likely unstable. These predicted reappearances of asymptotic Keplerian velocity curves and disappearances of ``stereotypic galaxies'' in clusters are falsifiable with targeted surveys.
NASA Astrophysics Data System (ADS)
Wu, Fengjun; Gao, Daqing; Shi, Chunfeng; Huang, Yuzhen; Cui, Yuan; Yan, Hongbin; Zhang, Huajian; Wang, Bin; Li, Xiaohui
2016-08-01
To solve the problems such as low input power factor, a large number of AC current harmonics and instable DC bus voltage due to the diode or thyristor rectifier used in an accelerator power supply, particularly in the Heavy Ion Research Facility in Lanzhou-Cooler Storage Ring (HIRFL-CSR), we designed and built up a new type of accelerator power supply prototype base on voltage-type space vector PWM (SVPWM) rectification technology. All the control strategies are developed in TMS320C28346, which is a digital signal processor from TI. The experimental results indicate that an accelerator power supply with a SVPWM rectifier can solve the problems above well, and the output performance such as stability, tracking error and ripple current meet the requirements of the design. The achievement of prototype confirms that applying voltage-type SVPWM rectification technology in an accelerator power supply is feasible; and it provides a good reference for design and build of this new type of power supply.
Alternative Attitude Commanding and Control for Precise Spacecraft Landing
NASA Technical Reports Server (NTRS)
Singh, Gurkirpal
2004-01-01
A report proposes an alternative method of control for precision landing on a remote planet. In the traditional method, the attitude of a spacecraft is required to track a commanded translational acceleration vector, which is generated at each time step by solving a two-point boundary value problem. No requirement of continuity is imposed on the acceleration. The translational acceleration does not necessarily vary smoothly. Tracking of a non-smooth acceleration causes the vehicle attitude to exhibit undesirable transients and poor pointing stability behavior. In the alternative method, the two-point boundary value problem is not solved at each time step. A smooth reference position profile is computed. The profile is recomputed only when the control errors get sufficiently large. The nominal attitude is still required to track the smooth reference acceleration command. A steering logic is proposed that controls the position and velocity errors about the reference profile by perturbing the attitude slightly about the nominal attitude. The overall pointing behavior is therefore smooth, greatly reducing the degree of pointing instability.
Battini, Swapna; Mannava, M K Chaitanya; Nangia, Ashwini
2018-06-01
The classic fixed-dose combination (FDC) of 4 tuberculosis drugs, namely rifampicin (RIF), isoniazid (INH), pyrazinamide (PZA), and ethambutol dihydrochloride (EDH) has the twin issues of physical stability and RIF cross-reaction in the 4-FDC. The major reason for these quality issues is the interaction between RIF and INH to yield isonicotinyl hydrazone in drug tablets. Pharmaceutical cocrystals of INH with caffeic acid (CFA) (PZA + EDH + RIF + INH-CFA cocrystal) and vanillic acid (VLA) (PZA + EDH + RIF + INH-VLA cocrystal) are able to stabilize the FDC formulation compared with the reference batch (PZA + EDH + RIF + INH). Stability studies under accelerated humidity and temperature stress conditions of 40°C and 75% relative humidity showed that the physical stability of the cocrystal formulation was superior by powder X-ray diffraction and scanning electron microscopy analysis, and chemical purity was analyzed by high-performance liquid chromatography. Changes in the composition and structure were monitored on samples drawn at 7, 15, 22, and 30 days of storage. FDC-INH-CFA cocrystal batch exhibited greater stability compared with FDC-INH-VLA cocrystal and FDC reference drug batches. The superior stability of INH-CFA cocrystal is attributed to the presence of stronger hydrogen bonds and cyclic O-H⋯O synthon in the crystal structure. Copyright © 2018 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.
High Efficiency Electron-Laser Interactions in Tapered Helical Undulators
NASA Astrophysics Data System (ADS)
Duris, Joseph Patrick
Efficient coupling of relativistic electron beams with high power radiation lies at the heart of advanced accelerator and light source research and development. The inverse free electron laser is a stable accelerator capable of harnessing very high intensity laser electric fields to efficiently transfer large powers from lasers to electron beams. In this dissertation, we first present the theoretical framework to describe the interaction, and then apply our improved understanding of the IFEL to the design and numerical study of meter-long, GeV IFELs for compact light sources. The central experimental work of the dissertation is the UCLA BNL helical inverse free electron laser experiment at the Accelerator Test Facility in Brookhaven National Laboratory which used a strongly tapered 54cm long, helical, permanent magnet undulator and a several hundred GW CO2 laser to accelerate electrons from 52 to 106MeV, setting new records for inverse free electron laser energy gain (54MeV) and average accelerating gradient (100MeV/m). The undulator design and fabrication as well as experimental diagnostics are presented. In order to improve the stability and quality of the accelerated electron beam, we redesigned the undulator for a slightly reduced output energy by modifying the magnet gap throughout the undulator, and we used this modified undulator to demonstrated capture of >25% of the injected beam without prebunching. In the study of heavily loaded GeV inverse free electron lasers, we show that a majority of the power may be transferred from a laser to the accelerated electron beam. Reversing the process to decelerate high power electron beams, a mechanism we refer to as tapering enhanced stimulated superradiant amplification, offers a clear path to high power light sources. We present studies of radiation production for a wide range of wavelengths (10mum, 13nm, and 0.3nm) using this method and discuss the design for a deceleration experiment using the same undulator used for acceleration in this experiment. By accounting for the evolving radiation field in the design of the undulator tapering, a large fraction of energy may be transferred between the electrons and laser, enabling compact, high-current GeV accelerators and various wavelength light-sources of unprecedented peak powers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morgan, R. V.; Likhachev, O. A.; Jacobs, J. W.
Theory and experiments are reported that explore the behaviour of the Rayleigh–Taylor instability initiated with a diffuse interface. Experiments are performed in which an interface between two gases of differing density is made unstable by acceleration generated by a rarefaction wave. Well-controlled, diffuse, two-dimensional and three-dimensional, single-mode perturbations are generated by oscillating the gases either side to side, or vertically for the three-dimensional perturbations. The puncturing of a diaphragm separating a vacuum tank beneath the test section generates a rarefaction wave that travels upwards and accelerates the interface downwards. This rarefaction wave generates a large, but non-constant, acceleration of the order ofmore » $$1000g_{0}$$, where$$g_{0}$$is the acceleration due to gravity. Initial interface thicknesses are measured using a Rayleigh scattering diagnostic and the instability is visualized using planar laser-induced Mie scattering. Growth rates agree well with theoretical values, and with the inviscid, dynamic diffusion model of Duffet al. (Phys. Fluids, vol. 5, 1962, pp. 417–425) when diffusion thickness is accounted for, and the acceleration is weighted using inviscid Rayleigh–Taylor theory. The linear stability formulation of Chandrasekhar (Proc. Camb. Phil. Soc., vol. 51, 1955, pp. 162–178) is solved numerically with an error function diffusion profile using the Riccati method. This technique exhibits good agreement with the dynamic diffusion model of Duffet al. for small wavenumbers, but produces larger growth rates for large-wavenumber perturbations. Asymptotic analysis shows a$$1/k^{2}$$decay in growth rates as$$k\\rightarrow \\infty$$for large-wavenumber perturbations.« less
Morgan, R. V.; Likhachev, O. A.; Jacobs, J. W.
2016-02-15
Theory and experiments are reported that explore the behaviour of the Rayleigh–Taylor instability initiated with a diffuse interface. Experiments are performed in which an interface between two gases of differing density is made unstable by acceleration generated by a rarefaction wave. Well-controlled, diffuse, two-dimensional and three-dimensional, single-mode perturbations are generated by oscillating the gases either side to side, or vertically for the three-dimensional perturbations. The puncturing of a diaphragm separating a vacuum tank beneath the test section generates a rarefaction wave that travels upwards and accelerates the interface downwards. This rarefaction wave generates a large, but non-constant, acceleration of the order ofmore » $$1000g_{0}$$, where$$g_{0}$$is the acceleration due to gravity. Initial interface thicknesses are measured using a Rayleigh scattering diagnostic and the instability is visualized using planar laser-induced Mie scattering. Growth rates agree well with theoretical values, and with the inviscid, dynamic diffusion model of Duffet al. (Phys. Fluids, vol. 5, 1962, pp. 417–425) when diffusion thickness is accounted for, and the acceleration is weighted using inviscid Rayleigh–Taylor theory. The linear stability formulation of Chandrasekhar (Proc. Camb. Phil. Soc., vol. 51, 1955, pp. 162–178) is solved numerically with an error function diffusion profile using the Riccati method. This technique exhibits good agreement with the dynamic diffusion model of Duffet al. for small wavenumbers, but produces larger growth rates for large-wavenumber perturbations. Asymptotic analysis shows a$$1/k^{2}$$decay in growth rates as$$k\\rightarrow \\infty$$for large-wavenumber perturbations.« less
NASA Astrophysics Data System (ADS)
Phillips, R.; Craig, M.; Turner, B. L.; Liang, C.
2017-12-01
Climate predicts soil organic matter (SOM) stocks at the global scale, yet controls on SOM stocks at finer spatial scales are still debated. A current hypothesis predicts that carbon (C) and nitrogen (N) storage in soils should be greater when decomposition is slow owing to microbial competition for nutrients or the recalcitrance of organic substrates (hereafter the `slow decay' hypothesis). An alternative hypothesis predicts that soil C and N storage should be greater in soils with rapid decomposition, owing to the accelerated production of microbial residues and their stabilization on soil minerals (hereafter the `stabilization hypothesis'). To test these alternative hypotheses, we quantified soil C and N to 1-m depth in temperate forests across the Eastern and Midwestern US that varied in their biotic, climatic, and edaphic properties. At each site, we sampled (1) soils dominated by arbuscular mycorrhizal (AM) tree species, which typically have fast decay rates and accelerated N cycling, (2) soils dominated by ectomycorrhizal (ECM) tree species, which generally have slow decay rates and slow N cycling, and (3) soils supporting both AM and ECM trees. To the extent that trees and theor associated microbes reflect and reinforce soil conditions, support for the slow decay hypothesis would be greater SOM storage in ECM soils, whereas support for the stabilization hypothesis would be greater SOM storage in AM soils. We found support for both hypotheses, as slow decomposition in ECM soils increased C and N storage in topsoil, whereas fast decomposition in AM soils increased C and N storage in subsoil. However, at all sites we found 57% greater total C and N storage in the entire profile in AM- soils (P < 0.0001), supporting the stabilization hypothesis. Amino sugar biomarkers (an indicator of microbial necromass) and particle size fractionation revealed that the greater SOM storage in AM soils was driven by an accumulation of microbial residues on clay minerals and metal oxides. Taken together, our results indicate that tree species influence soil C and N storage owing to how differences in decay rates affect mineral stabilization of organic matter. Further, our findings indicate that slow decay promotes soil C and N stocks at the soil surface, whereas fast decay promotes greater soil C and N stocks at depth.
Jamil, Razieh Kamali; Taqavian, Mohammad; Sadigh, Zohreh-Azita; Shahkarami, Mohammad-Kazem; Esna-Ashari, Fatemeh; Hamkar, Rasool; Hosseini, Seyedeh-Marzieh; Hatami, Alireza
2014-04-01
The stability of live-attenuated viral vaccines is important for immunization efficacy. Here, the thermostabilities of lyophilized live-attenuated mumps vaccine formulations in two different stabilizers, a trehalose dihydrate-based stabilizer and a stabilizer containing sucrose, human serum albumin and sorbitol were investigated using accelerated stability tests at 4°C, 25°C and 37°C at time points between 4h (every 4h for the first 24h) and 1 week. Even under the harshest storage conditions of 37°C for 1 week, the 50% cell culture infective dose (CCID50) determined from titrations in Vero cells dropped by less than 10-fold using each stabilizer formulation and thus complied with the World Health Organization's requirements for the potency of live-attenuated mumps vaccines. However, as the half-life of the RS-12 strain mumps virus infectivity was lengthened substantially at elevated temperatures using the trehalose dihydrate (TD)-based stabilizer, this stabilizer is recommended for vaccine use. Copyright © 2013 Elsevier B.V. All rights reserved.
Bellés, Marc; Alonso, Verónica; Roncalés, Pedro; Beltrán, Jose A
2018-06-01
The commercialization of thawed lamb packaged in modified atmosphere and maintained on display could serve as an alternative capable of satisfying the requirements of both customers and distributors. However, previous studies have suggested that lipid oxidation may accelerate post-thawing because peroxidation occurs during frozen storage, thereby leading to rapid and severe secondary lipid oxidation. The addition of an antioxidant compound either in the lamb diet or in the packaged meat could resolve this problem. Therefore, the present study aimed to compare the effect of dietary vitamin E (1000 mg of dl-α-tocopheryl acetate per kg of basal diet) and the spraying of borage seed aqueous extract (10% p/v) on the quality of fresh and thawed lamb leg chops. Both borage extract and vitamin E improved colour (as measured via instrumental and visual assessment of colour) and lipid stability (thiobarbituric acid reactive substances) of fresh and thawed lamb throughout display, although neither of them had any antimicrobial effect. Freezing/thawing accelerated bone marrow darkening and reduced redness but delayed microbial growth. Both of these antioxidant strategies would be very profitable for the preservation of lamb meat, allowing thawed meat packaged in a modified atmosphere to be commercialized. However, additional studies should be carried out to determine how bone darkening in thawed chops can be avoided. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.
Tao, Jing; Zhu, Qin; Qin, Fang; Wang, Mingfu; Chen, Jie; Zheng, Zong-Ping
2017-06-01
Oil-in-water microemulsions (O/W MEs) allow the preparation of insoluble compounds into liquid. In this study, we prepared O/W MEs to improve the solubility and stability of steppogenin (S) in aqueous liquid, and studied their ability to inhibit fresh apple juice browning. The ME technique greatly increased steppogenin solubility up to 3000-fold higher than that in water. All SMEs demonstrated good stability after acceleration and long-term storage. In particular, 0.01% SME was associated with dramatic inhibition of fresh apple juice browning after 24h at room temperature and 7days at 4°C, and its antibrowning effects were further improved when combined with 0.05% ascorbic acid. On the other hand, simultaneous encapsulation of steppogenin with vitamin E or butylated hydroxytoluene into ME did not greatly improve SME antibrowning effects. Taken together, these results suggested that steppogenin might serve as a potential antibrowning agent to preserve fresh apple juice. Copyright © 2016 Elsevier Ltd. All rights reserved.
Sabry, Suzy M; Abdel-Hady, M; Elsayed, M; Fahmy, Osama T; Maher, Hadir M
2003-07-14
Study of the degradation reaction of methotrexate (MTX) in acidic solution was carried out. Optimization of the experimental parameters of MTX acid hydrolysis was investigated. Spectrofluorimetric method for determination of MTX through measurement of its acid-degradation product, 4-amino-4-deoxy-10-methylpteroic acid (AMP), was developed. Stability of the standard solution of MTX prepared in sulfuric acid was discussed in the view of accelerated stability analysis. Two other comparative spectroflourimetric methods based on measuring the fluorescence intensities from either a condensation reaction with acetylacetone-formaldehyde (Hantzsch reaction) or a reaction with fluorescamine were also described. Beer's law validation, accuracy, precision, limits of detection, limits of quantification, and other aspects of analytical merit are presented in the text. The proposed methods were successfully applied for the analysis of MTX in pure drug and tablets dosage form. The sensitivity of the developed methods was favorable, so it was possible to be adopted for determination of MTX in plasma samples for routine use in high-dose MTX therapy.
Substrate dependent stability of conducting polymer coatings on medical electrodes.
Green, Rylie A; Hassarati, Rachelle T; Bouchinet, Lucie; Lee, Chaekyung S; Cheong, Gin L M; Yu, Jin F; Dodds, Christopher W; Suaning, Gregg J; Poole-Warren, Laura A; Lovell, Nigel H
2012-09-01
Conducting polymer (CP) coatings on medical electrodes have the potential to provide superior performance when compared to conventional metallic electrodes, but their stability is strongly dependant on the substrate properties. The aim of this study was to examine the effect of laser roughening of underlying platinum (Pt) electrode surfaces on the mechanical, electrical and biological performance of CP coatings. In addition, the impact of dopant type on electrical performance and stability was assessed. The CP poly(ethylene dioxythiophene) (PEDOT) was coated on Pt microelectrode arrays, with three conventional dopant ions. The in vitro electrical characteristics were assessed by cyclic voltammetry and biphasic stimulation. Results showed that laser roughening of the underlying substrate did not affect the charge injection limit of the coated material, but significantly improved the passive stability and chronic stimulation lifetime without failure of the coating. Accelerated material ageing and long-term biphasic stimulus studies determined that some PEDOT variants experienced delamination within as little as 10 days when the underlying Pt was smooth, but laser roughening to produce a surface index of 2.5 improved stability, such that more than 1.3 billion stimulation cycles could be applied without evidence of failure. PEDOT doped with paratoluene sulfonate (PEDOT/pTS) was found to be the most stable CP on roughened Pt, and presented a surface topography which encouraged neural cell attachment. Crown Copyright © 2012. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Kapanen, Mika; Tenhunen, Mikko; Hämäläinen, Tuomo; Sipilä, Petri; Parkkinen, Ritva; Järvinen, Hannu
2006-07-01
Quality control (QC) data of radiotherapy linear accelerators, collected by Helsinki University Central Hospital between the years 2000 and 2004, were analysed. The goal was to provide information for the evaluation and elaboration of QC of accelerator outputs and to propose a method for QC data analysis. Short- and long-term drifts in outputs were quantified by fitting empirical mathematical models to the QC measurements. Normally, long-term drifts were well (<=1%) modelled by either a straight line or a single-exponential function. A drift of 2% occurred in 18 ± 12 months. The shortest drift times of only 2-3 months were observed for some new accelerators just after the commissioning but they stabilized during the first 2-3 years. The short-term reproducibility and the long-term stability of local constancy checks, carried out with a sealed plane parallel ion chamber, were also estimated by fitting empirical models to the QC measurements. The reproducibility was 0.2-0.5% depending on the positioning practice of a device. Long-term instabilities of about 0.3%/month were observed for some checking devices. The reproducibility of local absorbed dose measurements was estimated to be about 0.5%. The proposed empirical model fitting of QC data facilitates the recognition of erroneous QC measurements and abnormal output behaviour, caused by malfunctions, offering a tool to improve dose control.
RF Phase Stability and Electron Beam Characterization for the PLEIADES Thomson X-Ray Source
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, W J; Hartemann, F V; Tremaine, A M
2002-10-16
We report on the performance of an S-band RF photocathode electron gun and accelerator for operation with the PLEIADES Thomson x-ray source at LLNL. To produce picosecond, high brightness x-ray pulses, picosecond timing, terahertz bandwidth diagnostics, and RF phase control are required. Planned optical, RF, x-ray and electron beam measurements to characterize the dependence of electron beam parameters and synchronization on RF phase stability are presented.
Advance Ratio Effects on the Dynamic-stall Vortex of a Rotating Blade in Steady Forward Flight
2014-08-06
dependence on advance ratio is used to relate the stability of the dynamic-stall vortex to Coriolis effects . Advance ratio effects on the dynamic-stall vortex...relate the stability of the dynamic-stall vortex to Coriolis effects . Keywords: Leading-edge vortex, Dynamic stall vortex, Vortex flows, Rotating wing...Reynolds number are not decoupled. 3. Radial flow field In the rotating environment the coupled effect of centripetal and Coriolis accelerations is ex
Measured performance of the GTA rf systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Denney, P.M.; Jachim, S.P.
1993-06-01
This paper describes the performance of the RF systems on the Ground Test Accelerator (GTA). The RF system architecture is briefly described. Among the RF performance results presented are RF field flatness and stability, amplitude and phase control resolution, and control system bandwidth and stability. The rejection by the RF systems of beam-induced disturbances, such as transients and noise, are analyzed. The observed responses are also compared to computer-based simulations of the RF systems for validation.
Measured performance of the GTA rf systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Denney, P.M.; Jachim, S.P.
1993-01-01
This paper describes the performance of the RF systems on the Ground Test Accelerator (GTA). The RF system architecture is briefly described. Among the RF performance results presented are RF field flatness and stability, amplitude and phase control resolution, and control system bandwidth and stability. The rejection by the RF systems of beam-induced disturbances, such as transients and noise, are analyzed. The observed responses are also compared to computer-based simulations of the RF systems for validation.
Falisi, G; Severino, M; Rastelli, C; Bernardi, S; Caruso, S; Galli, M; Lamazza, L; Di Paolo, C
2017-03-01
The attainment of a good primary stability is a necessary condition to ensure the success of osseointegration in implantology. In type IV cancellous bone, however, it is possible that a reduced primary stability can lead to an increased rate of failure. The aim of this study was therefore to determine, with the help of the resonance frequency (Osstell mentor), which technique of implant site preparation (piezo surgery, conventional, under-preparation, bone compaction, osteodistraction) and macro-geometry is able to improve implant stability in type IV cancellous bone. 10 pig ribs were prepared with a surgical pre-drilled guide, calibrated for a correct implant positioning. On each rib, 5 implant sites (one for each technique) were prepared. Successively, 50 conical implants (Tekka Global D) were inserted and measured with the resonance frequency to evaluate the primary stability. Data collected were analyzed by analysis of variance (ANOVA) to test whether the Implant Stability Quotient (ISQ) values of the five techniques were significantly different. The results showed that no significant differences among the ISQ values of the five techniques used were found. Also, no significant differences in the macro-geometry of the two types of compared implants were observed. However, the macro-geometry of Tekka implants, characterized by a double condensing thread, seems to provide greater ISQ values than those of single thread implants when using the same technique. In light of these preliminary data, it is conceivable that in cases of reduced stability, such as those occurring with a type IV bone, all means ameliorating the primary stability and accelerating the osseointegration can be utilized.
NASA Technical Reports Server (NTRS)
Grantham, William D.; Person, Lee H., Jr.; Bailey, Melvin L.; Tingas, Stephen A.
1994-01-01
The maneuver control stability characteristics of an aircraft are a flying qualities parameter of critical importance, to ensure structural protection as well as adequate predictability to the pilot. Currently, however, maneuver stability characteristics are not uniquely addressed in the Federal Aviation Regulations (FAR) Part 25, for transport aircraft. In past transport category certification programs, the Federal Aviation Administration (FAA) has used a combination of requirements (longitudinal control, vibration and buffeting, high-speed characteristics, and out-of-trim characteristics) to ensure safe and controllable maneuver stability characteristics over a range of flight conditions and airplane configurations. Controversies exist regarding each of these regulations, however, and considerable expenditures in terms of design studies and testing time have resulted from the requirements. It is also recognized that additional engineering guidance is needed for identifying acceptable nonlinear maneuver stability characteristics, particularly as they relate to relaxed stability, highly augmented transport configurations. The current trend in large aircraft design is toward relaxed, or even negative, static margins for improved fuel efficiency. The advanced flight control systems developed for these aircraft, in many instances, have rendered current aforementioned maneuver stability criteria either too stringent or of little practical use. Current design requirements do not account for these advanced designs. The objective was to evaluate a broad spectrum of linear and nonlinear longitudinal stability characteristics to generate data for defining satisfactory and unacceptable maneuver characteristics, as defined by pilot opinion. Primary emphasis was placed on two techniques of varying column force per normal acceleration. This study was a joint venture with four pilots participating; one from NASA, one from the FAA, and two from industry.
Current Fragmentation and Particle Acceleration in Solar Flares
NASA Astrophysics Data System (ADS)
Cargill, P. J.; Vlahos, L.; Baumann, G.; Drake, J. F.; Nordlund, Å.
2012-11-01
Particle acceleration in solar flares remains an outstanding problem in plasma physics and space science. While the observed particle energies and timescales can perhaps be understood in terms of acceleration at a simple current sheet or turbulence site, the vast number of accelerated particles, and the fraction of flare energy in them, defies any simple explanation. The nature of energy storage and dissipation in the global coronal magnetic field is essential for understanding flare acceleration. Scenarios where the coronal field is stressed by complex photospheric motions lead to the formation of multiple current sheets, rather than the single monolithic current sheet proposed by some. The currents sheets in turn can fragment into multiple, smaller dissipation sites. MHD, kinetic and cellular automata models are used to demonstrate this feature. Particle acceleration in this environment thus involves interaction with many distributed accelerators. A series of examples demonstrate how acceleration works in such an environment. As required, acceleration is fast, and relativistic energies are readily attained. It is also shown that accelerated particles do indeed interact with multiple acceleration sites. Test particle models also demonstrate that a large number of particles can be accelerated, with a significant fraction of the flare energy associated with them. However, in the absence of feedback, and with limited numerical resolution, these results need to be viewed with caution. Particle in cell models can incorporate feedback and in one scenario suggest that acceleration can be limited by the energetic particles reaching the condition for firehose marginal stability. Contemporary issues such as footpoint particle acceleration are also discussed. It is also noted that the idea of a "standard flare model" is ill-conceived when the entire distribution of flare energies is considered.
NASA Astrophysics Data System (ADS)
Cheng, Wood-Hi; Tsai, Chun-Chin; Wang, Jimmy
2011-10-01
The lumen degradation and chromaticity shift in glass and silicone based high-power phosphor-converted white-emitting diodes (PC-WLEDs) under accelerated thermal tests at 150°C, 200°C, and 250°C are presented and compared. The glass based PC-WLEDs exhibited better thermal stability than the silicone by 4.8 time reductions in lumen loss 6.8 time reductions in chromaticity shift at 250°C, respectively. The mean-time-to-failure (MTTF) evaluation of glass and silicone based high-power PC-WLEDs in accelerated thermal tests is also presented and compared. The results showed that the glass based PC-WLEDs exhibited higher MTTF than the silicone by 7.53 times in lumen loss and 14.4 times in chromaticity shift at 250°C, respectively. The thermal performance of lumen, chromaticity, and MTTF investigations demonstrated that the thermal stability of the glass based PC-WLEDs were better than the silicone. A better thermal stability phosphor layer of glass as encapsulation material may be beneficial to the many applications where the LED modules with high power and high reliability are demanded.
Orion Landing Simulation Eight Soil Model Comparison
NASA Technical Reports Server (NTRS)
Mark, Stephen D.
2009-01-01
LS-DYNA finite element simulations of a rigid Orion Crew Module (CM) were used to investigate the CM impact behavior on eight different soil models. Ten different landing conditions, characterized by the combination of CM vertical and horizontal velocity, hang angle, and roll angle were simulated on the eight different soils. The CM center of gravity accelerations, pitch angle, kinetic energy, and soil contact forces were the outputs of interest. The simulation results are presented, with comparisons of the CM behavior on the different soils. The soils analyzed in this study can be roughly categorized as soft, medium, or hard, according to the CM accelerations that occur when landing on them. The soft group is comprised of the Carson Sink Wet soil and the Kennedy Space Center (KSC) Low Density Dry Sand. The medium group includes Carson Sink Dry, the KSC High Density In-Situ Moisture Sand and High Density Flooded Sand, and Cuddeback B. The hard soils are Cuddeback A and the Gantry Unwashed Sand. The softer soils were found to produce lower peak accelerations, have more stable pitch behavior, and to be less sensitive to the landing conditions. This investigation found that the Cuddeback A soil produced the highest peak accelerations and worst stability conditions, and that the best landing performance was achieved on the KSC Low Density Dry Sand.
Mega-electron-volt ultrafast electron diffraction at SLAC National Accelerator Laboratory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weathersby, S. P.; Brown, G.; Chase, T. F.
Ultrafast electron probes are powerful tools, complementary to x-ray free-electron lasers, used to study structural dynamics in material, chemical, and biological sciences. High brightness, relativistic electron beams with femtosecond pulse duration can resolve details of the dynamic processes on atomic time and length scales. SLAC National Accelerator Laboratory recently launched the Ultrafast Electron Diffraction (UED) and microscopy Initiative aiming at developing the next generation ultrafast electron scattering instruments. As the first stage of the Initiative, a mega-electron-volt (MeV) UED system has been constructed and commissioned to serve ultrafast science experiments and instrumentation development. The system operates at 120-Hz repetition ratemore » with outstanding performance. In this paper, we report on the SLAC MeV UED system and its performance, including the reciprocal space resolution, temporal resolution, and machine stability.« less
Mega-electron-volt ultrafast electron diffraction at SLAC National Accelerator Laboratory.
Weathersby, S P; Brown, G; Centurion, M; Chase, T F; Coffee, R; Corbett, J; Eichner, J P; Frisch, J C; Fry, A R; Gühr, M; Hartmann, N; Hast, C; Hettel, R; Jobe, R K; Jongewaard, E N; Lewandowski, J R; Li, R K; Lindenberg, A M; Makasyuk, I; May, J E; McCormick, D; Nguyen, M N; Reid, A H; Shen, X; Sokolowski-Tinten, K; Vecchione, T; Vetter, S L; Wu, J; Yang, J; Dürr, H A; Wang, X J
2015-07-01
Ultrafast electron probes are powerful tools, complementary to x-ray free-electron lasers, used to study structural dynamics in material, chemical, and biological sciences. High brightness, relativistic electron beams with femtosecond pulse duration can resolve details of the dynamic processes on atomic time and length scales. SLAC National Accelerator Laboratory recently launched the Ultrafast Electron Diffraction (UED) and microscopy Initiative aiming at developing the next generation ultrafast electron scattering instruments. As the first stage of the Initiative, a mega-electron-volt (MeV) UED system has been constructed and commissioned to serve ultrafast science experiments and instrumentation development. The system operates at 120-Hz repetition rate with outstanding performance. In this paper, we report on the SLAC MeV UED system and its performance, including the reciprocal space resolution, temporal resolution, and machine stability.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Edstrom Jr., D.; et al.
The low-energy section of the photoinjector-based electron linear accelerator at the Fermilab Accelerator Science & Technology (FAST) facility was recently commissioned to an energy of 50 MeV. This linear accelerator relies primarily upon pulsed SRF acceleration and an optional bunch compressor to produce a stable beam within a large operational regime in terms of bunch charge, total average charge, bunch length, and beam energy. Various instrumentation was used to characterize fundamental properties of the electron beam including the intensity, stability, emittance, and bunch length. While much of this instrumentation was commissioned in a 20 MeV running period prior, some (includingmore » a new Martin- Puplett interferometer) was in development or pending installation at that time. All instrumentation has since been recommissioned over the wide operational range of beam energies up to 50 MeV, intensities up to 4 nC/pulse, and bunch structures from ~1 ps to more than 50 ps in length.« less
Multistage Coupling of Laser-Wakefield Accelerators with Curved Plasma Channels.
Luo, J; Chen, M; Wu, W Y; Weng, S M; Sheng, Z M; Schroeder, C B; Jaroszynski, D A; Esarey, E; Leemans, W P; Mori, W B; Zhang, J
2018-04-13
Multistage coupling of laser-wakefield accelerators is essential to overcome laser energy depletion for high-energy applications such as TeV-level electron-positron colliders. Current staging schemes feed subsequent laser pulses into stages using plasma mirrors while controlling electron beam focusing with plasma lenses. Here a more compact and efficient scheme is proposed to realize the simultaneous coupling of the electron beam and the laser pulse into a second stage. A partly curved channel, integrating a straight acceleration stage with a curved transition segment, is used to guide a fresh laser pulse into a subsequent straight channel, while the electrons continue straight. This scheme benefits from a shorter coupling distance and continuous guiding of the electrons in plasma while suppressing transverse beam dispersion. Particle-in-cell simulations demonstrate that the electron beam from a previous stage can be efficiently injected into a subsequent stage for further acceleration while maintaining high capture efficiency, stability, and beam quality.
Zha, Hao; Latina, Andrea; Grudiev, Alexej; ...
2016-01-20
The baseline design of CLIC (Compact Linear Collider) uses X-band accelerating structures for its main linacs. In order to maintain beam stability in multibunch operation, long-range transverse wakefields must be suppressed by 2 orders of magnitude between successive bunches, which are separated in time by 0.5 ns. Such strong wakefield suppression is achieved by equipping every accelerating structure cell with four damping waveguides terminated with individual rf loads. A beam-based experiment to directly measure the effectiveness of this long-range transverse wakefield and benchmark simulations was made in the FACET test facility at SLAC using a prototype CLIC accelerating structure. Furthermore,more » the experiment showed good agreement with the simulations and a strong suppression of the wakefields with an unprecedented minimum resolution of 0.1 V/(pC mm m).« less
Microgravity vibration isolation: An optimal control law for the one-dimensional case
NASA Technical Reports Server (NTRS)
Hampton, Richard D.; Grodsinsky, Carlos M.; Allaire, Paul E.; Lewis, David W.; Knospe, Carl R.
1991-01-01
Certain experiments contemplated for space platforms must be isolated from the accelerations of the platform. An optimal active control is developed for microgravity vibration isolation, using constant state feedback gains (identical to those obtained from the Linear Quadratic Regulator (LQR) approach) along with constant feedforward gains. The quadratic cost function for this control algorithm effectively weights external accelerations of the platform disturbances by a factor proportional to (1/omega) exp 4. Low frequency accelerations are attenuated by greater than two orders of magnitude. The control relies on the absolute position and velocity feedback of the experiment and the absolute position and velocity feedforward of the platform, and generally derives the stability robustness characteristics guaranteed by the LQR approach to optimality. The method as derived is extendable to the case in which only the relative positions and velocities and the absolute accelerations of the experiment and space platform are available.
Multistage Coupling of Laser-Wakefield Accelerators with Curved Plasma Channels
NASA Astrophysics Data System (ADS)
Luo, J.; Chen, M.; Wu, W. Y.; Weng, S. M.; Sheng, Z. M.; Schroeder, C. B.; Jaroszynski, D. A.; Esarey, E.; Leemans, W. P.; Mori, W. B.; Zhang, J.
2018-04-01
Multistage coupling of laser-wakefield accelerators is essential to overcome laser energy depletion for high-energy applications such as TeV-level electron-positron colliders. Current staging schemes feed subsequent laser pulses into stages using plasma mirrors while controlling electron beam focusing with plasma lenses. Here a more compact and efficient scheme is proposed to realize the simultaneous coupling of the electron beam and the laser pulse into a second stage. A partly curved channel, integrating a straight acceleration stage with a curved transition segment, is used to guide a fresh laser pulse into a subsequent straight channel, while the electrons continue straight. This scheme benefits from a shorter coupling distance and continuous guiding of the electrons in plasma while suppressing transverse beam dispersion. Particle-in-cell simulations demonstrate that the electron beam from a previous stage can be efficiently injected into a subsequent stage for further acceleration while maintaining high capture efficiency, stability, and beam quality.
State of the art in electromagnetic modeling for the Compact Linear Collider
DOE Office of Scientific and Technical Information (OSTI.GOV)
Candel, Arno; Kabel, Andreas; Lee, Lie-Quan
SLAC's Advanced Computations Department (ACD) has developed the parallel 3D electromagnetic time-domain code T3P for simulations of wakefields and transients in complex accelerator structures. T3P is based on state-of-the-art Finite Element methods on unstructured grids and features unconditional stability, quadratic surface approximation and up to 6th-order vector basis functions for unprecedented simulation accuracy. Optimized for large-scale parallel processing on leadership supercomputing facilities, T3P allows simulations of realistic 3D structures with fast turn-around times, aiding the design of the next generation of accelerator facilities. Applications include simulations of the proposed two-beam accelerator structures for the Compact Linear Collider (CLIC) - wakefieldmore » damping in the Power Extraction and Transfer Structure (PETS) and power transfer to the main beam accelerating structures are investigated.« less
Microgravity vibration isolation: An optimal control law for the one-dimensional case
NASA Technical Reports Server (NTRS)
Hampton, R. D.; Grodsinsky, C. M.; Allaire, P. E.; Lewis, D. W.; Knospe, C. R.
1991-01-01
Certain experiments contemplated for space platforms must be isolated from the accelerations of the platforms. An optimal active control is developed for microgravity vibration isolation, using constant state feedback gains (identical to those obtained from the Linear Quadratic Regulator (LQR) approach) along with constant feedforward (preview) gains. The quadratic cost function for this control algorithm effectively weights external accelerations of the platform disturbances by a factor proportional to (1/omega)(exp 4). Low frequency accelerations (less than 50 Hz) are attenuated by greater than two orders of magnitude. The control relies on the absolute position and velocity feedback of the experiment and the absolute position and velocity feedforward of the platform, and generally derives the stability robustness characteristics guaranteed by the LQR approach to optimality. The method as derived is extendable to the case in which only the relative positions and velocities and the absolute accelerations of the experiment and space platform are available.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, L.; Hou, L.G., E-mail: lghou@skl.ustb.edu.cn; Zhang, J.X.
The microstructures and properties of spray formed (SF) high-speed steels (HSSs) with or without niobium (Nb) addition were studied. Particular emphasis was placed on the effect of Nb on the solidification microstructures, decomposition of M{sub 2}C carbides, thermal stability and mechanical properties. The results show that spray forming can refine the cell size of eutectic carbides due to the rapid cooling effect during atomization. With Nb addition, further refinement of the eutectic carbides and primary austenite grains are obtained. Moreover, the Nb addition can accelerate the decomposition of M{sub 2}C carbides and increase the thermal stability of high-speed steel, andmore » also can improve the hardness and bending strength with slightly decrease the impact toughness. The high-speed steel made by spray forming and Nb alloying can give a better tool performance compared with powder metallurgy M3:2 and commercial AISI M2 high-speed steels. - Highlights: • Spray forming can effectively refine the microstructure of M3:2 steel. • Niobium accelerates the decomposition of M{sub 2}C carbides. • Niobium increases the hardness and bending strength of spray formed M3:2 steel. • Spray-formed niobium-containing M3:2 steel has the best tool performance.« less
Li, Bo; Wang, Zhi-Wei; Lin, Qin-Bao; Hu, Chang-Ying; Su, Qi-Zhi; Wu, Yu-Mei
2015-07-01
An analytical method for the quantitative determination of 4 antioxidants, 9 ultraviolet (UV) stabilizers, 12 phthalate plasticizers and 2 photoinitiators in plastic food package using accelerated solvent extraction (ASE) coupled with high-performance liquid chromatography-photodiode array detector (HPLC-PDA) has been developed. Parameters affecting the efficiency in the process such as extraction and chromatographic conditions were studied in order to determine operating conditions. The analytical method of ASE-HPLC showed good linearity with good correlation coefficients (R ≥ 0.9833). The limits of detection and quantification were between 0.03 and 0.30 µg mL(-1) and between 0.10 and 1.00 µg mL(-1) for 27 analytes. Average spiked recoveries for most analytes in samples were >70.4% at 10, 20 and 40 µg g(-1) spiked levels, except UV-9 and Irganox 1010 (58.6 and 64.0% spiked at 10 µg g(-1), respectively), the relative standard deviations were in the range from 0.4 to 15.4%. The methodology has been proposed for the analysis of 27 polymer additives in plastic food package. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
He, Wei; Tan, Yanan; Tian, Zhiqiang; Chen, Lingyun; Hu, Fuqiang; Wu, Wei
2011-01-01
Nanoemulsions stabilized by traditional emulsifiers raise toxicological concerns for long-term treatment. The present work investigates the potential of food proteins as safer stabilizers for nanoemulsions to deliver hydrophobic drugs. Nanoemulsions stabilized by food proteins (soybean protein isolate, whey protein isolate, β-lactoglobulin) were prepared by high-pressure homogenization. The toxicity of the nanoemulsions was tested in Caco-2 cells using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazoliumbromide viability assay. In vivo absorption in rats was also evaluated. Food protein-stabilized nanoemulsions, with small particle size and good size distribution, exhibited better stability and biocompatibility compared with nanoemulsions stabilized by traditional emulsifiers. Moreover, β-lactoglobulin had a better emulsifying capacity and biocompatibility than the other two food proteins. The pancreatic degradation of the proteins accelerated drug release. It is concluded that an oil/water nanoemulsion system with good biocompatibility can be prepared by using food proteins as emulsifiers, allowing better and more rapid absorption of lipophilic drugs. PMID:21468355
He, Wei; Tan, Yanan; Tian, Zhiqiang; Chen, Lingyun; Hu, Fuqiang; Wu, Wei
2011-01-01
Nanoemulsions stabilized by traditional emulsifiers raise toxicological concerns for long-term treatment. The present work investigates the potential of food proteins as safer stabilizers for nanoemulsions to deliver hydrophobic drugs. Nanoemulsions stabilized by food proteins (soybean protein isolate, whey protein isolate, β-lactoglobulin) were prepared by high-pressure homogenization. The toxicity of the nanoemulsions was tested in Caco-2 cells using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazoliumbromide viability assay. In vivo absorption in rats was also evaluated. Food protein-stabilized nanoemulsions, with small particle size and good size distribution, exhibited better stability and biocompatibility compared with nanoemulsions stabilized by traditional emulsifiers. Moreover, β-lactoglobulin had a better emulsifying capacity and biocompatibility than the other two food proteins. The pancreatic degradation of the proteins accelerated drug release. It is concluded that an oil/water nanoemulsion system with good biocompatibility can be prepared by using food proteins as emulsifiers, allowing better and more rapid absorption of lipophilic drugs.
Zhang, L; Lin, Y H; Leng, X J; Huang, M; Zhou, G H
2013-10-01
The objective of this study was to assess the effect of sage, at levels of 0.05%, 0.1% and 0.15% (w/w), on the oxidative stability of Chinese-style sausage stored at 4°C for 21 days. The results showed that inclusion of sage in sausages resulted in lower L* values (P<0.05) and higher a* values (P<0.05) compared to the control. During refrigerated storage, sausages containing sage showed significantly retarded increases in TBARS values, and in the formation of protein carbonyls (P<0.05), but showed accelerated losses of thiol groups (P<0.05). Addition of sage to the sausages at levels of 0.1% and 0.15% reduced textural deterioration during refrigerated storage (P<0.05). Sage used in this study had no negative effects on the sensory properties of sausages. Copyright © 2013 Elsevier Ltd. All rights reserved.
Kanojia, Gaurav; Have, Rimko Ten; Bakker, Arjen; Wagner, Koen; Frijlink, Henderik W; Kersten, Gideon F A; Amorij, Jean-Pierre
2016-01-01
In prospect of developing an oral dosage form of Infliximab, for treatment of Crohn's disease and rheumatoid arthritis, freeze-drying (vial vs Lyoguard trays) and spray-drying were investigated as production method for stable powders. Dextran and inulin were used in combination with sucrose as stabilizing excipients. The drying processes did not affect Infliximab in these formulations, i.e. both the physical integrity and biological activity (TNF binding) were retained. Accelerated stability studies (1 month at 60°C) showed that the TNF binding ability of Infliximab was conserved in the freeze-dried formulations, whereas the liquid counterpart lost all TNF binding. After thermal treatment, the dried formulations showed some chemical modification of the IgG in the dextran-sucrose formulation, probably due to Maillard reaction products. This study indicates that, with the appropriate formulation, both spray-drying and freeze-drying may be useful for (bulk) powder production of Infliximab.
Photothermal characterization of encapsulant materials for photovoltaic modules
NASA Technical Reports Server (NTRS)
Liang, R. H.; Gupta, A.; Distefano, S.
1982-01-01
A photothermal test matrix and a low cost testing apparatus for encapsulant materials of photovoltaic modules were defined. Photothermal studies were conducted to screen and rank existing as well as future encapsulant candidate materials and/or material formulations in terms of their long term physiochemical stability under accelerated photothermal aging conditions. Photothermal characterization of six candidate pottant materials and six candidate outer cover materials were carried out. Principal products of photothermal degradation are identified. Certain critical properties are also monitored as a function of photothermal aging.
Zuccarello, Daniel J; Murphy, Michael P; Meyer, Richard F; Winslow, Paul A
2009-01-01
A comprehensive digestive approach for determining the extractable and leachable metals in pharmaceutical products by inductively-coupled plasma is investigated. This study examines several acid digestion strategies for packaging materials, containers, and formulated products for complete trace metals analysis. Packaging materials, a food product, and a simulated drug product are evaluated for leachable metals by stressing the materials under accelerated stability conditions. Trace metal profiles of 64 elements for these materials are reported.
Acceleration feedback improves balancing against reflex delay
Insperger, Tamás; Milton, John; Stépán, Gábor
2013-01-01
A model for human postural balance is considered in which the time-delayed feedback depends on position, velocity and acceleration (proportional–derivative–acceleration (PDA) feedback). It is shown that a PDA controller is equivalent to a predictive controller, in which the prediction is based on the most recent information of the state, but the control input is not involved into the prediction. A PDA controller is superior to the corresponding proportional–derivative controller in the sense that the PDA controller can stabilize systems with approximately 40 per cent larger feedback delays. The addition of a sensory dead zone to account for the finite thresholds for detection by sensory receptors results in highly intermittent, complex oscillations that are a typical feature of human postural sway. PMID:23173196
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Z. M.; Laser Fusion Research Center, CAEP, Mianyang 621900; He, X. T.
A complex target (CT) configuration tailored for generating high quality proton bunch by circularly polarized laser pulses at intensities of 10{sup 20-21} W/cm{sup 2} is proposed. Two-dimensional particle-in-cell simulations show that both the collimation and mono-energetic qualities of the accelerated proton bunch obtained using a front-shaped thin foil can be greatly enhanced by the backside inhomogeneous plasma layer. The main mechanisms for improving the accelerated protons are identified and discussed. These include stabilization of the photon cavity, providing hole-boring supplementary acceleration and suppressing the thermal-electron effects. A theory for tailoring the CT parameters is also presented.
Introduction to Computational Methods for Stability and Control (COMSAC)
NASA Technical Reports Server (NTRS)
Hall, Robert M.; Fremaux, C. Michael; Chambers, Joseph R.
2004-01-01
This Symposium is intended to bring together the often distinct cultures of the Stability and Control (S&C) community and the Computational Fluid Dynamics (CFD) community. The COMSAC program is itself a new effort by NASA Langley to accelerate the application of high end CFD methodologies to the demanding job of predicting stability and control characteristics of aircraft. This talk is intended to set the stage for needing a program like COMSAC. It is not intended to give details of the program itself. The topics include: 1) S&C Challenges; 2) Aero prediction methodology; 3) CFD applications; 4) NASA COMSAC planning; 5) Objectives of symposium; and 6) Closing remarks.
Robust controller designs for second-order dynamic system: A virtual passive approach
NASA Technical Reports Server (NTRS)
Juang, Jer-Nan; Phan, Minh
1990-01-01
A robust controller design is presented for second-order dynamic systems. The controller is model-independent and itself is a virtual second-order dynamic system. Conditions on actuator and sensor placements are identified for controller designs that guarantee overall closed-loop stability. The dynamic controller can be viewed as a virtual passive damping system that serves to stabilize the actual dynamic system. The control gains are interpreted as virtual mass, spring, and dashpot elements that play the same roles as actual physical elements in stability analysis. Position, velocity, and acceleration feedback are considered. Simple examples are provided to illustrate the physical meaning of this controller design.
Effect of gravity modulation on thermosolutal convection in an infinite layer of fluid
NASA Astrophysics Data System (ADS)
Saunders, B. V.; Murray, B. T.; McFadden, G. B.; Coriell, S. R.; Wheeler, A. A.
1991-10-01
The effect of time-periodic vertical gravity modulation on the onset of thermosolutal convection in an infinite horizontal layer with stress free boundaries is studied using Floquet theory for the linear stability analysis. Situations are considered for which the fluid layer is stably stratified in either the fingering or diffusive regimes of double diffusive convection. Results are presented both with and without steady background acceleration. Modulation may stabilize an unstable base solution or destabilize a stable base solution. In addition to synchronous and subharmonic response to the modulation frequency, instability in the double diffusive system can occur via a complex conjugate mode. In the diffusive regime, where oscillatory onset occurs in the unmodulated system, regions of resonant instability occur and exhibit strong coupling with the unmodulated oscillatory frequency.
Stability and perturbations of countable Markov maps
NASA Astrophysics Data System (ADS)
Jordan, Thomas; Munday, Sara; Sahlsten, Tuomas
2018-04-01
Let T and , , be countable Markov maps such that the branches of converge pointwise to the branches of T, as . We study the stability of various quantities measuring the singularity (dimension, Hölder exponent etc) of the topological conjugacy between and T when . This is a well-understood problem for maps with finitely-many branches, and the quantities are stable for small ɛ, that is, they converge to their expected values if . For the infinite branch case their stability might be expected to fail, but we prove that even in the infinite branch case the quantity is stable under some natural regularity assumptions on and T (under which, for instance, the Hölder exponent of fails to be stable). Our assumptions apply for example in the case of Gauss map, various Lüroth maps and accelerated Manneville-Pomeau maps when varying the parameter α. For the proof we introduce a mass transportation method from the cusp that allows us to exploit thermodynamical ideas from the finite branch case. Dedicated to the memory of Bernd O Stratmann
Ren, Fuzheng; Sun, Hanjing; Cui, Lin; Si, Yike; Chen, Ning; Ren, Guobin; Jing, Qiufang
2018-06-01
Drugs in amorphous solid dispersions (ASDs) are highly dispersed in hydrophilic polymeric carriers, which also help to restrain recrystallization and stabilize the ASDs. In this study, microscopic observation after antisolvent recrystallization was developed as a rapid screening method to select appropriate polymers for the initial design filgotinib (FTN) ASDs. Using solvent evaporation, FTN ASDs with the polymers were prepared, and accelerated experimentation validated this screening method. Fourier-transform infrared spectroscopy, Raman scattering, and nuclear magnetic resonance revealed hydrogen-bonding formation in the drug-polymer binary system, which was critical for ASDs stabilization. A Flory-Huggins interaction parameter and water sorption isotherms were applied to evaluate the strength of the interaction between FTN and the polymers. The dissolution rate was also significantly improved by ASDs formulation, and the presence of the polymers exerted solubilization effects. These results suggested the efficacy of this screening method as a preliminary tool for polymer selection in ASDs design. Copyright © 2018 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.
Zhao, Jingjing; Deng, Yehao; Wei, Haotong; Zheng, Xiaopeng; Yu, Zhenhua; Shao, Yuchuan; Shield, Jeffrey E.; Huang, Jinsong
2017-01-01
Organic-inorganic hybrid perovskite (OIHP) solar cells have achieved comparable efficiencies to those of commercial solar cells, although their instability hinders their commercialization. Although encapsulation techniques have been developed to protect OIHP solar cells from external stimuli such as moisture, oxygen, and ultraviolet light, understanding of the origin of the intrinsic instability of perovskite films is needed to improve their stability. We show that the OIHP films fabricated by existing methods are strained and that strain is caused by mismatched thermal expansion of perovskite films and substrates during the thermal annealing process. The polycrystalline films have compressive strain in the out-of-plane direction and in-plane tensile strain. The strain accelerates degradation of perovskite films under illumination, which can be explained by increased ion migration in strained OIHP films. This study points out an avenue to enhance the intrinsic stability of perovskite films and solar cells by reducing residual strain in perovskite films. PMID:29159287
Beam dynamics and electromagnetic studies of a 3 MeV, 325 MHz radio frequency quadrupole accelerator
NASA Astrophysics Data System (ADS)
Gaur, Rahul; Kumar, Vinit
2018-05-01
We present the beam dynamics and electromagnetic studies of a 3 MeV, 325 MHz H- radio frequency quadrupole (RFQ) accelerator for the proposed Indian Spallation Neutron Source project. We have followed a design approach, where the emittance growth and the losses are minimized by keeping the tune depression ratio larger than 0.5. The transverse cross-section of RFQ is designed at a frequency lower than the operating frequency, so that the tuners have their nominal position inside the RFQ cavity. This has resulted in an improvement of the tuning range, and the efficiency of tuners to correct the field errors in the RFQ. The vane-tip modulations have been modelled in CST-MWS code, and its effect on the field flatness and the resonant frequency has been studied. The deterioration in the field flatness due to vane-tip modulations is reduced to an acceptable level with the help of tuners. Details of the error study and the higher order mode study along with mode stabilization technique are also described in the paper.
21 CFR 172.135 - Disodium EDTA.
Code of Federal Regulations, 2014 CFR
2014-04-01
... levels prescribed, calculated as anhydrous calcium disodium EDTA: Food Limitation (parts per million) Use Aqueous multivitamin preparations 150 With iron salts as a stabilizer for vitamin B 12 in liquid... accelerator with sodium ascorbate or ascorbic acid. Dressings, nonstandardized 75 Preservative. French...
Accelerated load testing of geosynthetic base reinforced pavement test sections.
DOT National Transportation Integrated Search
2011-02-01
The main objective of this research is to evaluate the benefits of geosynthetic stabilization and reinforcement of subgrade/base aggregate layers in flexible pavements built on weak subgrades and the effect of pre-rut pavement sections, prior to the ...
In this work calculations are made of the efficiencies of acceleration of a liner from an inductive accumulator in the mode theta-pinch and Z-pinch...to the speed of the liner . Estimations have been made of the necessary power at the moment of switching the current on the basis of considerations of...the stability of the pinch effect of the liner . The level of energies necessary for the creation of a thermonuclear reactor on the basis of theta
Acceleration of GPU-based Krylov solvers via data transfer reduction
Anzt, Hartwig; Tomov, Stanimire; Luszczek, Piotr; ...
2015-04-08
Krylov subspace iterative solvers are often the method of choice when solving large sparse linear systems. At the same time, hardware accelerators such as graphics processing units continue to offer significant floating point performance gains for matrix and vector computations through easy-to-use libraries of computational kernels. However, as these libraries are usually composed of a well optimized but limited set of linear algebra operations, applications that use them often fail to reduce certain data communications, and hence fail to leverage the full potential of the accelerator. In this study, we target the acceleration of Krylov subspace iterative methods for graphicsmore » processing units, and in particular the Biconjugate Gradient Stabilized solver that significant improvement can be achieved by reformulating the method to reduce data-communications through application-specific kernels instead of using the generic BLAS kernels, e.g. as provided by NVIDIA’s cuBLAS library, and by designing a graphics processing unit specific sparse matrix-vector product kernel that is able to more efficiently use the graphics processing unit’s computing power. Furthermore, we derive a model estimating the performance improvement, and use experimental data to validate the expected runtime savings. Finally, considering that the derived implementation achieves significantly higher performance, we assert that similar optimizations addressing algorithm structure, as well as sparse matrix-vector, are crucial for the subsequent development of high-performance graphics processing units accelerated Krylov subspace iterative methods.« less
Influence of formulation properties on chemical stability of captopril in aqueous preparations.
Kristensen, S; Lao, Y E; Brustugun, J; Braenden, J U
2008-12-01
The influence of various formulation properties on the chemical stability of captopril in aqueous media at pH 3 was investigated, in order to reformulate and increase the shelf-life of an oral mixture of the drug. At this pH, chemical stability is improved by an increase in drug concentration (1-5 mg/ml) and a decrease in temperature (5-36 degrees C), the latter demonstrated by a linear Arrhenius-plot. The activation energy is low (Ea = 10.2 kcal/mol), thus the Q10 value is only 1.8 in pure aqueous solutions. The degradation at the lowest concentration investigated in pure aqueous solution apparently follows zero order kinetics. The reaction order is changed at higher concentrations. We are presenting a hypothesis of intramolecular proton transfer from the thiol to the ionized carboxylic group as the initial step in the oxidative degradation pathways of captopril. Long-term stability of 1 mg/ml captopril in aqueous solutions at pH 3, stored at 36 degrees C for one year, shows that the sugar alcohol sorbitol accelerates degradation of the drug while Na-EDTA at a concentration as low as 0.01% is sufficient to stabilize these samples. Purging with N2-gas prior to storage is not essential for drug stability, as long as Na-EDTA is present. Only at a low level of Na-EDTA (0.01%) combined with a high level of sorbitol (35%), purging with N2-gas appears to have a small effect. The destabilizing effect of sugar alcohols is confirmed by accelerated degradation also in the presence of glycerol. The efficient stabilization in the presence of Na-EDTA at a low concentration indicates that the metal-ion-catalyzed oxidation pathway dominates the chemical degradation process at low pH, although several mechanisms seem to be involved depending on excipients present.
Encapsulation materials research
NASA Technical Reports Server (NTRS)
Willis, P. B.
1984-01-01
Encapsulation materials for solar cells were investigated. The different phases consisted of: (1) identification and development of low cost module encapsulation materials; (2) materials reliability examination; and (3) process sensitivity and process development. It is found that outdoor photothermal aging devices (OPT) are the best accelerated aging methods, simulate worst case field conditions, evaluate formulation and module performance and have a possibility for life assessment. Outdoor metallic copper exposure should be avoided, self priming formulations have good storage stability, stabilizers enhance performance, and soil resistance treatment is still effective.
Neck injury criteria formulation and injury risk curves for the ejection environment: a pilot study.
Parr, Jeffrey C; Miller, Michael E; Pellettiere, Joseph A; Erich, Roger A
2013-12-01
Helmet mounted displays provide increased pilot capability, but can also increase the risk of injury during ejection. The National Highway Transportation Safety Administration's (NHTSA's) neck injury criteria (Nij) metric is evaluated for understanding the impact of helmet mass on the risk of injury and modified risk curves are developed which are compatible with the needs of the aviation community. Existent human subject data collected under various accelerative and head loading conditions were applied to understand the sensitivity of the Nij construct to changes in acceleration and helmet mass, as well as its stability with respect to gender, body mass, neck circumference, and sitting height. A portion of this data was combined with data from an earlier postmortem human subject study to create pilot study modified risk curves. These curves were compared and contrasted with the NHTSA risk curves. A statistically significant difference in the peak mean Nij was observed when seat acceleration increased by 2 G, but not when helmet mass was varied from 1.6 kg to 2 kg at a constant seat acceleration of 8 G. Although NHTSA risk curves predict a 13% risk of AIS 2+ injury for the 8-G, 2-kg helmet condition mean Nij of 0.138, no AIS 2+ injuries were observed. Modified risk curves were produced which predict a 0.91% risk of AIS 2+ injury under these conditions. The Nij was shown to be sensitive to changes in acceleration and generally robust to anthropometric differences between individuals. Modified risk curves are proposed which improve risk prediction at lower Nij values.
Yoganandan, Narayan; Pintar, Frank A; Humm, John R; Maiman, Dennis J; Voo, Liming; Merkle, Andrew
2016-07-01
The purpose of this study was to determine injuries to osteo-ligamentous structures of cervical column, mechanisms, forces, severities and AIS scores from vertical accelerative loading. Seven human cadaver head-neck complexes (56.9 ± 9.5 years) were aligned based on seated the posture of military soldiers. Army combat helmets were used. Specimens were attached to a vertical accelerator to apply caudo-cephalad g-forces. They were accelerated with increasing insults. Intermittent palpation and radiography were done. A roof structure mimicking military vehicle interior was introduced after a series of tests and experiments were conducted following similar protocols. Upon injury detection, CT and dissection were done. Temporal force responses were extracted, peak forces and times of occurrence were obtained, injury severities were graded, and spine stability was determined. Injuries occurred in tests only when the roof structure was included. Responses were tri-phasic: initial thrust, secondary tensile, tertiary roof contact phases. Peak forces: 1364-4382 N, initial thrust, 165-169 N, secondary tensile, 868-3368 N tertiary helmet-head roof contact phases. Times of attainments: 5.3-9.6, 31.7-42.6, 55.0-70.8 ms. Injuries included fractures and joint disruptions. Multiple injuries occurred in all but one specimen. A majority of injury severities were AIS = 2. Spines were considered unstable in a majority of cases. Spine response was tri-phasic. Injuries occurred in roof contact tests with the helmeted head-neck specimen. Multiplicity and unstable nature of AIS = 2 level injuries, albeit at lower severities, might predispose the spine to long-term accelerated degenerative changes. Clinical protocols should include a careful evaluation of sub-catastrophic injuries in military patients.
A Model of RHIC Using the Unified Accelerator Libraries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pilat, F.; Tepikian, S.; Trahern, C. G.
1998-01-01
The Unified Accelerator Library (UAL) is an object oriented and modular software environment for accelerator physics which comprises an accelerator object model for the description of the machine (SMF, for Standard Machine Format), a collection of Physics Libraries, and a Perl inte,face that provides a homogeneous shell for integrating and managing these components. Currently available physics libraries include TEAPOT++, a collection of C++ physics modules conceptually derived from TEAPOT, and DNZLIB, a differential algebra package for map generation. This software environment has been used to build a flat model of RHIC which retains the hierarchical lattice description while assigning specificmore » characteristics to individual elements, such as measured field harmonics. A first application of the model and of the simulation capabilities of UAL has been the study of RHIC stability in the presence of siberian snakes and spin rotators. The building blocks of RHIC snakes and rotators are helical dipoles, unconventional devices that can not be modeled by traditional accelerator physics codes and have been implemented in UAL as Taylor maps. Section 2 describes the RHIC data stores, Section 3 the RHIC SMF format and Section 4 the RHIC specific Perl interface (RHIC Shell). Section 5 explains how the RHIC SMF and UAL have been used to study the RHIC dynamic behavior and presents detuning and dynamic aperture results. If the reader is not familiar with the motivation and characteristics of UAL, we include in the Appendix an useful overview paper. An example of a complete set of Perl Scripts for RHIC simulation can also be found in the Appendix.« less
3D multiphysics modeling of superconducting cavities with a massively parallel simulation suite
Kononenko, Oleksiy; Adolphsen, Chris; Li, Zenghai; ...
2017-10-10
Radiofrequency cavities based on superconducting technology are widely used in particle accelerators for various applications. The cavities usually have high quality factors and hence narrow bandwidths, so the field stability is sensitive to detuning from the Lorentz force and external loads, including vibrations and helium pressure variations. If not properly controlled, the detuning can result in a serious performance degradation of a superconducting accelerator, so an understanding of the underlying detuning mechanisms can be very helpful. Recent advances in the simulation suite ace3p have enabled realistic multiphysics characterization of such complex accelerator systems on supercomputers. In this paper, we presentmore » the new capabilities in ace3p for large-scale 3D multiphysics modeling of superconducting cavities, in particular, a parallel eigensolver for determining mechanical resonances, a parallel harmonic response solver to calculate the response of a cavity to external vibrations, and a numerical procedure to decompose mechanical loads, such as from the Lorentz force or piezoactuators, into the corresponding mechanical modes. These capabilities have been used to do an extensive rf-mechanical analysis of dressed TESLA-type superconducting cavities. Furthermore, the simulation results and their implications for the operational stability of the Linac Coherent Light Source-II are discussed.« less
NASA Astrophysics Data System (ADS)
Yi, Zhiran; Yang, Bin; Li, Guimiao; Liu, Jingquan; Chen, Xiang; Wang, Xiaolin; Yang, Chunsheng
2017-07-01
This letter presents a high performance bimorph piezoelectric MEMS harvester with bulk PZT thick films on both sides of a flexible thin beryllium-bronze substrate via bonding and thinning technologies. The upper and lower PZT layers are thinned down to about 53 μm and 76 μm, respectively, and a commercial beryllium bronze with the thickness of about 50 μm is used as the substrate. The effective volume of this device is 30.6 mm3. The harvester with a tungsten proof mass generated the close-circuit peak-to-peak voltage of 53.1 V, the output power of 0.979 mW, and the power density of 31.99 mW/cm3 with the matching load resistance of 360 kΩ at the applied acceleration amplitude of 3.5 g and the applied frequency of 77.2 Hz. Meanwhile, in order to evaluate the stability, the device was measured continuously under applied acceleration amplitudes of 1.0 g and 3.5 g for one hour and demonstrated a good stability. Then, the harvester was utilized to light up LEDs and about twenty-one serial LEDs were lighted up at resonance under an applied acceleration amplitude of 3.0 g.
3D multiphysics modeling of superconducting cavities with a massively parallel simulation suite
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kononenko, Oleksiy; Adolphsen, Chris; Li, Zenghai
Radiofrequency cavities based on superconducting technology are widely used in particle accelerators for various applications. The cavities usually have high quality factors and hence narrow bandwidths, so the field stability is sensitive to detuning from the Lorentz force and external loads, including vibrations and helium pressure variations. If not properly controlled, the detuning can result in a serious performance degradation of a superconducting accelerator, so an understanding of the underlying detuning mechanisms can be very helpful. Recent advances in the simulation suite ace3p have enabled realistic multiphysics characterization of such complex accelerator systems on supercomputers. In this paper, we presentmore » the new capabilities in ace3p for large-scale 3D multiphysics modeling of superconducting cavities, in particular, a parallel eigensolver for determining mechanical resonances, a parallel harmonic response solver to calculate the response of a cavity to external vibrations, and a numerical procedure to decompose mechanical loads, such as from the Lorentz force or piezoactuators, into the corresponding mechanical modes. These capabilities have been used to do an extensive rf-mechanical analysis of dressed TESLA-type superconducting cavities. Furthermore, the simulation results and their implications for the operational stability of the Linac Coherent Light Source-II are discussed.« less
Analytic model of a laser-accelerated composite plasma target and its stability
NASA Astrophysics Data System (ADS)
Khudik, Vladimir; Shvets, Gennady
2013-10-01
A self-consistent analytical model of monoenergetic acceleration of a one and two-species ultrathin target irradiated by a circularly polarized laser pulse is developed. In the accelerated reference frame, the bulk plasma in the target is neutral and its parameters are assumed to be stationary. It is found that the structure of the target depends strongly on the temperatures of electrons and ions, which are both strongly influenced by the laser pulse pedestal. When the electron temperature is large, the hot electrons bounce back and forth inside the potential well formed by ponderomotive and electrostatic potentials while the heavy and light ions are forced-balanced by the electrostatic and non-inertial fields forming two separated layers. In the opposite limiting case when the ion temperature is large, the hot ions are trapped in the potential well formed by the ion-sheath's electric and non-inertial potentials while the cold electrons are forced-balanced by the electrostatic and ponderomotive fields. Using PIC simulations we have determined which scenario is realized in practice depending on the initial target structure and laser intensity. Target stability with respect to Rayleigh-Taylor instability will also be discussed. This work is supported by the US DOE grants DE-FG02-04ER41321 and DE-FG02-07ER54945.
Zhang, Chen; Yun, Sining; Li, Xue; Wang, Ziqi; Xu, Hongfei; Du, Tingting
2018-05-11
To improve the methane yield and digestate utilization of anaerobic digestion (AD), low-cost composited accelerants consisting of urea (0.2-0.5%), bentonite (0.5-0.8%), active carbon (0.6-0.9%), and plant ash (0.01-0.3%) were designed and tested in batch experiments. Total biogas yield (485.7-681.9 mL/g VS) and methane content (63.0-66.6%) were remarkably enhanced in AD systems by adding accelerants compared to those of control group (361.9 mL/g VS, 59.4%). Composited accelerant addition led to the highest methane yield (454.1 mL/g VS), more than double that of control group. The TS, VS, and CODt removal rates (29.7-55.3%, 50.9-63.0%, and 46.8-69.1%) for AD with accelerants were much higher than control group (26.2%, 37.1%, and 39.6%). The improved digestate stability and enhanced fertilizer nutrient content (4.95-5.66%) confirmed that the digestate of AD systems with composited accelerants could safely serve as a potential component of bioorganic fertilizer. These findings open innovative avenues in composited accelerant development and application. Copyright © 2018 Elsevier Ltd. All rights reserved.
UV resistance and dimensional stability of wood modified with isopropenyl acetate.
Nagarajappa, Giridhar B; Pandey, Krishna K
2016-02-01
Chemical modification of Rubberwood (Hevea brasiliensis Müll.Arg) with isopropenyl acetate (IPA) in the presence of anhydrous aluminum chloride as a catalyst has been carried out under solvent free conditions. The level of modification was estimated by determining the weight percent gain and modified wood was characterized by FTIR-ATR and CP/MAS (13)C NMR spectroscopy. The effect of catalyst concentration on WPG was studied. UV resistance, moisture adsorption and dimensional stability of modified wood were evaluated. UV resistance of modified wood was evaluated by exposing unmodified and modified wood to UV irradiation in a QUV accelerated weathering tester. Unmodified wood showed rapid color changes and degradation of lignin upon exposure to UV light. Chemical modification of wood polymers with IPA was effective in reducing light induced color changes (photo-yellowing) at wood surfaces. In contrast to unmodified wood, modified wood exhibited bleaching. FTIR analysis of modified wood exposed to UV light indicated stabilization of wood polymers against UV degradation. Modified wood showed good dimensional stability and hydrophobicity. Thermogravimetric analysis showed that modification with IPA improved thermal stability of wood. Improved dimensional stability and UV resistance of modified wood indicates IPA as a promising reagent since there is no acid byproduct of reaction as observed in case of other esterification reactions. Copyright © 2015 Elsevier B.V. All rights reserved.