Science.gov

Sample records for accelerated stability study

  1. Accelerated stability studies of Sufoofe Sailan: A Unani formulation

    PubMed Central

    Rani, Seema; Rahman, Khaleequr; Younis, Peerzada Mohammad

    2015-01-01

    Introduction: Sufoofe Sailan (SS) is a polyherbal powder preparation used in Unani medicine to treat gynecological diseases. It is observed that SS degrade early as it is in the form of powder; however, the stability study of SS was not carried out till date. Aim: To evaluate the accelerated stability of SS. Materials and Methods: Finished formulation of SS was packed in three airtight transparent polyethylene terephthalate containers. One pack was analyzed just after manufacturing and remaining two packs were kept in stability chamber at 40°C ± 2°C/75% ± 5% RH, of which one pack was analyzed after the completion of three and another after 6 months. Organoleptic, physico-chemical, microbiological parameters along with high-performance thin layer chromatography (HPTLC) fingerprinting were carried out. Results: Organoleptic characters showed no significant change in accelerated stability condition. All physico-chemical parameters showed changes <5%, HPTLC fingerprinting showed minimum changes and microbial studies were in confirmation to the World Health Organization guidelines. Conclusion: SS confirmed to the International Conference on Harmonization Guideline for accelerated testing of the pharmaceutical product on said parameters and as per the Grimm's statement the shelf life of SS may last 20 months. PMID:26730145

  2. Stability study for matching in laser driven plasma acceleration

    NASA Astrophysics Data System (ADS)

    Rossi, A. R.; Anania, M. P.; Bacci, A.; Belleveglia, M.; Bisesto, F. G.; Chiadroni, E.; Cianchi, A.; Curcio, A.; Gallo, A.; Di Giovenale, D.; Di Pirro, G.; Ferrario, M.; Marocchino, A.; Massimo, F.; Mostacci, A.; Petrarca, M.; Pompili, R.; Serafini, L.; Tomassini, P.; Vaccarezza, C.; Villa, F.

    2016-09-01

    In a recent paper [14], a scheme for inserting and extracting high brightness electron beams to/from a plasma based acceleration stage was presented and proved to be effective with an ideal bi-Gaussian beam, as could be delivered by a conventional photo-injector. In this paper, we extend that study, assessing the method stability against some jitters in the properties of the injected beam. We find that the effects of jitters in Twiss parameters are not symmetric in results; we find a promising configuration that yields better performances than the setting proposed in [14]. Moreover we show and interpret what happens when the beam charge profiles are modified.

  3. Accelerated aging studies and environmental stability of prototype tamper tapes

    SciTech Connect

    Wright, B.W.; Wright, C.W.; Bunk, A.R.

    1995-05-01

    This report describes the results of accelerated aging experiments (weathering) conducted on prototype tamper tapes bonded to a variety of surface materials. The prototype tamper tapes were based on the patented Confirm{reg_sign} tamper-indicating technology developed and produced by 3M Company. Tamper tapes bonded to surfaces using pressure sensitive adhesive (PSA) and four rapid-set adhesives were evaluated. The configurations of the PSA-bonded tamper tapes were 1.27-cm-wide Confirm{reg_sign} 1700 windows with vinyl underlay and 2.54-cm-wide Confirm{reg_sign} 1700 windows with vinyl and polyester underlays. The configurations of the rapid-set adhesive-bonded tamper tapes were 2.54-cm-wide Confirm{reg_sign} (1700, 1500 with and without primer, and 1300) windows with vinyl underlay. Surfaces used for bonding included aluminum, steel, stainless steel, Kevlar{reg_sign}, brass, copper, fiberglass/resin with and without gel coat, polyurethane-painted steel, acrylonitrile:butadiene:styrene plastic, polyester fiberglass board, Lexan polycarbonate, and cedar wood. Weathering conditions included a QUV cabinet (ultraviolet light at 60{degrees}C, condensing humidity at 40{degrees}C), a thermal cycling cabinet (-18{degrees}C to 46{degrees}C), a Weather-O-Meter (Xenon lamp), and exposure outdoors in Daytona Beach, Florida. Environmental aging exposures lasted from 7 weeks to 5 months. After exposure, the tamper tapes were visually examined and tested for transfer resistance. Tamper tapes were also exposed to a variety of chemical liquids (including organic solvents, acids, bases, and oxidizing liquids) to determine chemical resistance and to sand to determine abrasion resistance.

  4. Evaluation of microwave oven heating for prediction of drug-excipient compatibilities and accelerated stability studies.

    PubMed

    Schou-Pedersen, Anne Marie V; Østergaard, Jesper; Cornett, Claus; Hansen, Steen Honoré

    2015-05-15

    Microwave ovens have been used extensively in organic synthesis in order to accelerate reaction rates. Here, a set up comprising a microwave oven combined with silicon carbide (SiC) plates for the controlled microwave heating of model formulations has been applied in order to investigate, if a microwave oven is applicable for accelerated drug stability testing. Chemical interactions were investigated in three selected model formulations of drug and excipients regarding the formation of ester and amide reaction products. In the accelerated stability studies, a design of experiments (DoE) approach was applied in order to be able to rank excipients regarding reactivity: Study A: cetirizine with PEG 400, sorbitol, glycerol and propylene glycol. Study B: 6-aminocaproic acid with citrate, acetate, tartrate and gluconate. Study C: atenolol with citric, tartaric, malic, glutaric, and sorbic acid. The model formulations were representative for oral solutions (co-solvents), parenteral solutions (buffer species) and solid dosage forms (organic acids applicable for solubility enhancement). The DoE studies showed overall that the same impurities were generated by microwave oven heating leading to temperatures between 150°C and 180°C as compared to accelerated stability studies performed at 40°C and 80°C using a conventional oven. Ranking of the reactivity of the excipients could be made in the DoE studies performed at 150-180°C, which was representative for the ranking obtained after storage at 40°C and 80°C. It was possible to reduce the time needed for drug-excipient compatibility testing of the three model formulations from weeks to less than an hour in the three case studies. The microwave oven is therefore considered to be an interesting alternative to conventional thermal techniques for the investigation of drug-excipient interactions during preformulation. PMID:25746946

  5. Spectroscopic evaluation of a freeze-dried vaccine during an accelerated stability study.

    PubMed

    Hansen, Laurent; Van Renterghem, Jeroen; Daoussi, Rim; Vervaet, Chris; Remon, Jean Paul; De Beer, Thomas

    2016-07-01

    This research evaluates a freeze-dried live, attenuated virus vaccine during an accelerated stability study using Near Infrared (NIR) and Fourier Transform Infrared (FTIR) spectroscopy in addition to the traditional quality tests (i.e., potency assay and residual moisture analysis) and Modulated Differential Scanning Calorimetry (MDSC). Therefore, freeze-dried live, attenuated virus vaccines were stored during four weeks at 4°C (i.e., recommended storage condition) and at 37°C (i.e., accelerated storage condition) and weekly analyzed using these techniques. The potency assay showed that the virus titer decreased in two phases when the samples were stored at 37°C. The highest titer loss occurred during the first week storage at 37°C after which the degradation rate decreased. Both the residual moisture content and the relaxation enthalpy also increased according to this two-phase pattern during storage at 37°C. In order to evaluate the virus and its interaction with the amorphous stabilizer in the formulation (trehalose), the NIR spectra were analyzed via principal component analysis (PCA) using the amide A/II band (5029-4690cm(-1)). The FTIR spectra were also analyzed via PCA using the amide III spectral range (1350-1200cm(-1)). Analysis of the amide A/II band in the NIR spectra revealed that the titer decrease during storage was probably linked to a change of the hydrogen bonds (i.e., interaction) between the virus proteins and the amorphous trehalose. Analyzing the amide III band (FTIR spectra) showed that the virus destabilization was coupled to a decrease of the coated proteins β turn and an increase of α helix. During storage at 4°C, the titer remained constant, no enthalpic relaxation was observed and neither the Amide A/II band (NIR spectra) nor the Amide III band (FTIR spectra) varied. PMID:27102305

  6. Acceleration Studies

    NASA Technical Reports Server (NTRS)

    Rogers, Melissa J. B.

    1993-01-01

    Work to support the NASA MSFC Acceleration Characterization and Analysis Project (ACAP) was performed. Four tasks (analysis development, analysis research, analysis documentation, and acceleration analysis) were addressed by parallel projects. Work concentrated on preparation for and implementation of near real-time SAMS data analysis during the USMP-1 mission. User support documents and case specific software documentation and tutorials were developed. Information and results were presented to microgravity users. ACAP computer facilities need to be fully implemented and networked, data resources must be cataloged and accessible, future microgravity missions must be coordinated, and continued Orbiter characterization is necessary.

  7. Stability of non-linear integrable accelerator

    SciTech Connect

    Batalov, I.; Valishev, A.; /Fermilab

    2011-09-01

    The stability of non-linear Integrable Optics Test Accelerator (IOTA) model developed in [1] was tested. The area of the stable region in transverse coordinates and the maximum attainable tune spread were found as a function of non-linear lens strength. Particle loss as a function of turn number was analyzed to determine whether a dynamic aperture limitation present in the system. The system was also tested with sextupoles included in the machine for chromaticity compensation. A method of evaluation of the beam size in the linear part of the accelerator was proposed.

  8. Acceleration of aged-landfill stabilization by combining partial nitrification and leachate recirculation: a field-scale study.

    PubMed

    Chung, Jinwook; Kim, Seungjin; Baek, Seungcheon; Lee, Nam-Hoon; Park, Seongjun; Lee, Junghun; Lee, Heechang; Bae, Wookeun

    2015-03-21

    Leachate recirculation for rapid landfill stabilization can result in the accumulation of high-strength ammonium. An on-site sequencing batch reactor (SBR) was therefore, applied to oxidize the ammonium to nitrite, which was then recirculated to the landfill for denitrification to nitrogen gas. At relatively higher ammonium levels, nitrite accumulated well in the SBR; the nitrite was denitrified stably in the landfill, despite an insufficient biodegradable carbon source in the leachate. As the leachate was recirculated, the methane and carbon dioxide contents produced from the landfill fluctuated, implying that the organic acids and hydrogen produced in the acid production phase acted as the carbon source for denitrification in the landfill. Leachate recirculation combined with ex-situ partial nitrification of the leachate may enhance the biodegradation process by: (a) removing the nitrogen that is contained with the leachate, and (b) accelerating landfill stabilization, because the biodegradation efficiency of landfill waste is increased by supplying sufficient moisture and its byproducts are used as the carbon source for denitrification. In addition, partial nitrification using an SBR has advantages for complete denitrification in the landfill, since the available carbon source is in short supply in aged landfills. PMID:25531070

  9. Comparative study of ageing, heat treatment and accelerated carbonation for stabilization of municipal solid waste incineration bottom ash in view of reducing regulated heavy metal/metalloid leaching.

    PubMed

    Santos, Rafael M; Mertens, Gilles; Salman, Muhammad; Cizer, Özlem; Van Gerven, Tom

    2013-10-15

    This study compared the performance of four different approaches for stabilization of regulated heavy metal and metalloid leaching from municipal solid waste incineration bottom ash (MSWI-BA): (i) short term (three months) heap ageing, (ii) heat treatment, (iii) accelerated moist carbonation, and (iv) accelerated pressurized slurry carbonation. Two distinct types of MSWI-BA were tested in this study: one originating from a moving-grate furnace incineration operation treating exclusively household refuse (sample B), and another originating from a fluid-bed furnace incineration operation that treats a mixture of household and light industrial wastes (sample F). The most abundant elements in the ashes were Si (20-27 wt.%) and Ca (16-19 wt.%), followed by significant quantities of Fe, Al, Na, S, K, Mg, Ti, and Cl. The main crystalline substances present in the fresh ashes were Quartz, Calcite, Apatite, Anhydrite and Gehlenite, while the amorphous fraction ranged from 56 to 73 wt.%. The leaching values of all samples were compared to the Flemish (NEN 7343) and the Walloon (DIN 38414) regulations from Belgium. Batch leaching of the fresh ashes at natural pH showed that seven elements exceeded at least one regulatory limit (Ba, Cr, Cu, Mo, Pb, Se and Zn), and that both ashes had excess basicity (pH > 12). Accelerated carbonation achieved significant reduction in ash basicity (9.3-9.9); lower than ageing (10.5-12.2) and heat treatment (11.1-12.1). For sample B, there was little distinction between the leaching results of ageing and accelerated carbonation with respect to regulatory limits; however carbonation achieved comparatively lower leaching levels. Heat treatment was especially detrimental to the leaching of Cr. For sample F, ageing was ineffective and heat treatment had marginally better results, while accelerated carbonation delivered the most effective performance, with slurry carbonation meeting all DIN limits. Slurry carbonation was deemed the most

  10. Accelerator research studies

    SciTech Connect

    Not Available

    1992-01-01

    The Accelerator Research Studies program at the University of Maryland, sponsored by the Department of Energy under grant number DE-FG05-91ER40642, is currently in the first year of a three-year funding cycle. The program consists of the following three tasks: TASK A, Study of Transport and Longitudinal Compression of Intense, High-Brightness Beams, TASK B, Study of Collective Ion Acceleration by Intense Electron Beams and Pseudospark Produced High Brightness Electron Beams; TASK C, Study of a Gyroklystron High-power Microwave Source for Linear Colliders. In this report we document the progress that has been made during the past year for each of the three tasks.

  11. Accelerator research studies

    SciTech Connect

    Not Available

    1993-01-01

    The Accelerator Research Studies program at the University of Maryland, sponsored by the Department of Energy under grant number DE-FG05-91ER40642, is currently in the second year of a three-year funding cycle. The program consists of the following three tasks: TASK A, Study of Transport and Longitudinal Compression of Intense, High-Brightness Beams,'' (P.I., M. Reiser); TASK B, Study of Collective Ion Acceleration by Intense Electron Beams and Pseudospark Produced High Brightness Electron Beams,'' (Co-P.I.'s, W.W. Destler, M. Reiser, M.J. Rhee, and C.D. Striffler); TASK C, Study of a Gyroklystron High-Power Microwave Source for Linear Colliders,'' (Co-P.I.'s, V.L. Granatstein, W. Lawson, M. Reiser, and C.D. Striffler). In this report we document the progress that has been made during the past year for each of the three tasks.

  12. Stability and Resolution Studies of HOMBPMs for the 1.3 GHz Superconducting Accelerating Cavities at FLASH

    NASA Astrophysics Data System (ADS)

    Shi, L.; Baboi, N.; Jones, R. M.

    HOMBPMs (HOM based Beam Position Monitors) are installed at the FLASH facility at DESY, Hamburg. These are aimed at aligning the beam and monitoring the beam position. Over time, the accuracy of beam position prediction is degraded. This is due to instability issues in the 1.3 GHz and 3.9 GHz superconducting cavities and associated electronics. In this paper, we demonstrate for the first time a measurement technique which is stable and can be relied upon over a period of three months with unprecedented resolution (below 4 μm horizontally and 2 μm vertically). We attribute this improvement in stability to a focused campaign on various signal processing and analysis techniques. These techniques include SVD (Singular Value Decomposition), ANN (Artificial Neural Network) and PLS (Partial Least Square). We found the best resolution and computational power using the latter method, PLS. These techniques are directly applicable to the HOMBPM system at the European XFEL that is currently under construction. However, they are in many ways generic and hence applicable to other measurement methods.

  13. SYSTEMS TO ACCELERATE IN SITU STABILIZATION OF WASTE DEPOSITS

    EPA Science Inventory

    In-situ systems to accelerate the stabilization of waste deposits involve three essential elements: selection of a chemical or biological agent (reactant) which can react with and stabilize the waste, a method for delivery of the reactant to the deposit and a method for recovery ...

  14. ION-STABILIZED ELECTRON INDUCTION ACCELERATOR

    DOEpatents

    Finkelstein, D.

    1960-03-22

    A method and apparatus for establishing an ion-stabilized self-focusing relativistic electron beam from a plasma are reported. A plasma is introduced into a specially designed cavity by plasma guns, and a magnetic field satisfying betatron conditions is produced in the cavity by currents flowing in the highly conductive, non-magnetic surface of the cavity. This field forms the electron beam by induction from the plasma.

  15. Vibrational Stability of SRF Accelerator Test Facility at Fermilab

    SciTech Connect

    McGee, M.W.; Volk, J.T.; /Fermilab

    2009-05-01

    Recently developed, the Superconducting Radio Frequency (SRF) Accelerator Test Facilities at Fermilab support the International Linear Collider (ILC), High Intensity Neutrino Source (HINS), a new high intensity injector (Project X) and other future machines. These facilities; Meson Detector Building (MDB) and New Muon Lab (NML) have very different foundations, structures, relative elevations with respect to grade level and surrounding soil composition. Also, there are differences in the operating equipment and their proximity to the primary machine. All the future machines have stringent operational stability requirements. The present study examines both near-field and ambient vibration in order to develop an understanding of the potential contribution of near-field sources (e.g. compressors, ultra-high and standard vacuum equipment, klystrons, modulators, utility fans and pumps) and distant noise sources to the overall system displacements. Facility vibration measurement results and methods of possible isolation from noise sources are presented and discussed.

  16. Narrow band noise as a model of time-dependent accelerations - Study of the stability of a fluid surface in a microgravity environment

    NASA Technical Reports Server (NTRS)

    Casademunt, Jaume; Zhang, Wenbin; Vinals, Jorge; Sekerka, Robert F.

    1993-01-01

    We introduce a stochastic model to analyze in quantitative detail the effect of the high frequency components of the residual accelerations onboard spacecraft (often called g-jitter) on fluid motion. The residual acceleration field is modeled as a narrow band noise characterized by three independent parameters: its intensity G squared, a dominant frequency Omega, and a characteristic spectral width tau exp -1. The white noise limit corresponds to Omega tau goes to O, with G squared tau finite, and the limit of a periodic g-jitter (or deterministic limit) can be recovered for Omega tau goes to infinity, G squared finite. The analysis of the response of a fluid surface subjected to a fluctuating gravitational field leads to the stochastic Mathieu equation driven by both additive and multiplicative noise. We discuss the stability of the solutions of this equation in the two limits of white noise and deterministic forcing, and in the general case of narrow band noise. The results are then applied to typical microgravity conditions.

  17. Rotational accelerations stabilize leading edge vortices on revolving fly wings.

    PubMed

    Lentink, David; Dickinson, Michael H

    2009-08-01

    The aerodynamic performance of hovering insects is largely explained by the presence of a stably attached leading edge vortex (LEV) on top of their wings. Although LEVs have been visualized on real, physically modeled, and simulated insects, the physical mechanisms responsible for their stability are poorly understood. To gain fundamental insight into LEV stability on flapping fly wings we expressed the Navier-Stokes equations in a rotating frame of reference attached to the wing's surface. Using these equations we show that LEV dynamics on flapping wings are governed by three terms: angular, centripetal and Coriolis acceleration. Our analysis for hovering conditions shows that angular acceleration is proportional to the inverse of dimensionless stroke amplitude, whereas Coriolis and centripetal acceleration are proportional to the inverse of the Rossby number. Using a dynamically scaled robot model of a flapping fruit fly wing to systematically vary these dimensionless numbers, we determined which of the three accelerations mediate LEV stability. Our force measurements and flow visualizations indicate that the LEV is stabilized by the ;quasi-steady' centripetal and Coriolis accelerations that are present at low Rossby number and result from the propeller-like sweep of the wing. In contrast, the unsteady angular acceleration that results from the back and forth motion of a flapping wing does not appear to play a role in the stable attachment of the LEV. Angular acceleration is, however, critical for LEV integrity as we found it can mediate LEV spiral bursting, a high Reynolds number effect. Our analysis and experiments further suggest that the mechanism responsible for LEV stability is not dependent on Reynolds number, at least over the range most relevant for insect flight (100

  18. Food Fortification Stability Study

    NASA Technical Reports Server (NTRS)

    Sirmons, T. A.; Cooper, M. R.; Douglas, G. L.

    2016-01-01

    This study aims to assess the stability of vitamin content, sensory acceptability and color variation in fortified spaceflight foods over a period of 2 years. Findings will identify optimal formulation, processing, and storage conditions to maintain stability and acceptability of commercially available fortification nutrients. Changes in food quality are being monitored to indicate whether fortification affects quality over time (compared to the unfortified control), thus indicating their potential for use on long-duration missions.

  19. Color stability of repaired composite submitted to accelerated artificial aging.

    PubMed

    Souza, Ana Beatriz Silva; Silame, Francisca Daniele Jardilino; Alandia-Roman, Carla Cecilia; Cruvinel, Diogo Rodrigues; Garcia, Lucas da Fonseca Roberti; Pires-de-Souza, Fernanda de Carvalho Panzeri

    2012-01-01

    The aim of this study was to evaluate the color stability (ΔE) of nanoparticulate composite, with consideration for the type of surface treatment performed before repair. A Teflon matrix was used to fabricate 50 test specimens from composite. After initial color readout, the specimens were submitted to 100 hours of accelerated artificial aging (AAA). The samples were divided into five groups (n = 10), according to the surface treatment performed: sandblasting with aluminum oxide powder, phosphoric acid, and an adhesive system (Group 1); sandblasting with aluminum oxide powder, phosphoric acid, and a flowable composite (Group 2); abrasion with a diamond bur, phosphoric acid, and an adhesive system (Group 3); abrasion with a diamond bur, phosphoric acid, and a nanoparticulate composite (Group 4); and a control group (Group 5). After repair, a new color readout was taken, the test specimens were submitted to a new AAA cycle (300 hours), and the final color readout was taken. Comparison of the ΔE means (one-way ANOVA and Tukey tests, p < 0.05) demonstrated no statistically significant differences among the groups (p > 0.05) after 100 hours of AAA. After repair, Group 1 (4.61 ± 2.03) presented the highest color alteration with a statistically significant difference compared with the other groups (p < 0.05). After 300 hours, Group 4 specimens (13.84 ± 0.71) presented the lowest color alteration in comparison with the other groups, with a statistically significant difference (p < 0.05). It was concluded that the repair performed in Group 4 provided greater esthetic recovery, made possible by the regression in the ΔE values of the restorations after repair, and less color alteration of the restorations over the course of time. PMID:23032241

  20. Amps particle accelerator definition study

    NASA Technical Reports Server (NTRS)

    Sellen, J. M., Jr.

    1975-01-01

    The Particle Accelerator System of the AMPS (Atmospheric, Magnetospheric, and Plasmas in Space) payload is a series of charged particle accelerators to be flown with the Space Transportation System Shuttle on Spacelab missions. In the configuration presented, the total particle accelerator system consists of an energetic electron beam, an energetic ion accelerator, and both low voltage and high voltage plasma acceleration devices. The Orbiter is illustrated with such a particle accelerator system.

  1. Colour stability of denture teeth submitted to different cleaning protocols and accelerated artificial aging.

    PubMed

    Freire, T S; Aguilar, F G; Garcia, L da Fonseca Roberti; Pires-de-Souza, F de Carvalho Panzeri

    2014-03-01

    Acrylic resin is widely used for artificial teeth manufacturing due to several important characteristics; however, this material do not present acceptable colour stability over the course of time. This study evaluated the effect of different cleaning protocols and accelerated artificial aging on colour stability of denture teeth made of acrylic resin. Sixty denture teeth in dark and light shades were used, and separated according to the treatment to which they were submitted. Results demonstrated that colour stability of artificial teeth is influenced by the cleaning solution and artificial aging, being dark teeth more susceptible to colour alteration than lighter ones. PMID:24922996

  2. Modified betatron accelerator studies. Final report

    SciTech Connect

    Hughes, T.P.; Godfrey, B.B.

    1984-12-01

    This final report describes work carried out on the equilibrium and stability properties of circular accelerators. A rigid-disk beam model in which the fields are treated exactly is used to study linear instabilities. This approach has uncovered an important inductive effect which at high toroidal mode numbers leads to either stability or to a hybrid instability. A corresponding effect has been found in electron-layer geometry. The new theory also shows that moving the equilibrium position toward the inner wall can stabilize low mode numbers. With the aid of IVORY code simulation results it is shown that the transverse motion of beam partilces is a key factor in determining beam stability. The upper bound on particle circulation frequency spread is shown to be a function only of the beam major and minor radii. This leads to upper bounds on stable currents in the modified betatron. Numerical results on stability in the stellatron and reversing-solenoidal-lens betatrons are presented. In addition, the sensitivity of equilibrium particle orbits in the stellatron to initial conditions is calculated.

  3. Studies of accelerated compact toruses

    SciTech Connect

    Hartman, C.W.; Eddleman, J.; Hammer, J.H.

    1983-01-04

    In an earlier publication we considered acceleration of plasma rings (Compact Torus). Several possible accelerator configurations were suggested and the possibility of focusing the accelerated rings was discussed. In this paper we consider one scheme, acceleration of a ring between coaxial electrodes by a B/sub theta/ field as in a coaxial rail-gun. If the electrodes are conical, a ring accelerated towards the apex of the cone undergoes self-similar compression (focusing) during acceleration. Because the allowable acceleration force, F/sub a/ = kappaU/sub m//R where (kappa < 1), increases as R/sup -2/, the accelerating distance for conical electrodes is considerably shortened over that required for coaxial electrodes. In either case, however, since the accelerating flux can expand as the ring moves, most of the accelerating field energy can be converted into kinetic energy of the ring leading to high efficiency.

  4. Stability of lysozyme in aqueous extremolyte solutions during heat shock and accelerated thermal conditions.

    PubMed

    Avanti, Christina; Saluja, Vinay; van Streun, Erwin L P; Frijlink, Henderik W; Hinrichs, Wouter L J

    2014-01-01

    The purpose of this study was to investigate the stability of lysozyme in aqueous solutions in the presence of various extremolytes (betaine, hydroxyectoine, trehalose, ectoine, and firoin) under different stress conditions. The stability of lysozyme was determined by Nile red Fluorescence Spectroscopy and a bioactivity assay. During heat shock (10 min at 70°C), betaine, trehalose, ectoin and firoin protected lysozyme against inactivation while hydroxyectoine, did not have a significant effect. During accelerated thermal conditions (4 weeks at 55°C), firoin also acted as a stabilizer. In contrast, betaine, hydroxyectoine, trehalose and ectoine destabilized lysozyme under this condition. These findings surprisingly indicate that some extremolytes can stabilize a protein under certain stress conditions but destabilize the same protein under other stress conditions. Therefore it is suggested that for the screening extremolytes to be used for protein stabilization, an appropriate storage conditions should also be taken into account. PMID:24465983

  5. Centrifuge Study of Pilot Tolerance to Acceleration and the Effects of Acceleration on Pilot Performance

    NASA Technical Reports Server (NTRS)

    Creer, Brent Y.; Smedal, Harald A.; Wingrove, Rodney C.

    1960-01-01

    A research program the general objective of which was to measure the effects of various sustained accelerations on the control performance of pilots, was carried out on the Aviation Medical Acceleration Laboratory centrifuge, U.S. Naval Air Development Center, Johnsville, PA. The experimental setup consisted of a flight simulator with the centrifuge in the control loop. The pilot performed his control tasks while being subjected to acceleration fields such as might be encountered by a forward-facing pilot flying an atmosphere entry vehicle. The study was divided into three phases. In one phase of the program, the pilots were subjected to a variety of sustained linear acceleration forces while controlling vehicles with several different sets of longitudinal dynamics. Here, a randomly moving target was displayed to the pilot on a cathode-ray tube. For each combination of acceleration field and vehicle dynamics, pilot tracking accuracy was measured and pilot opinion of the stability and control characteristics was recorded. Thus, information was obtained on the combined effects of complexity of control task and magnitude and direction of acceleration forces on pilot performance. These tests showed that the pilot's tracking performance deteriorated markedly at accelerations greater than about 4g when controlling a lightly damped vehicle. The tentative conclusion was also reached that regardless of the airframe dynamics involved, the pilot feels that in order to have the same level of control over the vehicle, an increase in the vehicle dynamic stability was required with increases in the magnitudes of the acceleration impressed upon the pilot. In another phase, boundaries of human tolerance of acceleration were established for acceleration fields such as might be encountered by a pilot flying an orbital vehicle. A special pilot restraint system was developed to increase human tolerance to longitudinal decelerations. The results of the tests showed that human tolerance

  6. Acceleration-based joint stability parameters for total knee arthroplasty that correspond with patient-reported instability.

    PubMed

    Roberts, Dustyn; Khan, Humera; Kim, Joo H; Slover, James; Walker, Peter S

    2013-10-01

    There is no universally accepted definition of human joint stability, particularly in nonperiodic general activities of daily living. Instability has proven to be a difficult parameter to define and quantify, since both spatial and temporal measures need to be considered to fully characterize joint stability. In this preliminary study, acceleration-based parameters were proposed to characterize the joint stability. Several time-statistical parameters of acceleration and jerk were defined as potential stability measures, since anomalous acceleration or jerk could be a symptom of poor control or stability. An inertial measurement unit attached at the level of the tibial tubercle of controls and patients following total knee arthroplasty was used to determine linear acceleration of the knee joint during several activities of daily living. The resulting accelerations and jerks were compared with patient-reported instability as determined through a standard questionnaire. Several parameters based on accelerations and jerks in the anterior/posterior direction during the step-up/step-down activity were significantly different between patients and controls and correlated with patient reports of instability in that activity. The range of the positive to negative peak acceleration and infinity norm of acceleration, in the anterior/posterior direction during the step-up/step-down activity, proved to be the best indicators of instability. As time derivatives of displacement, these acceleration-based parameters represent spatial and temporal information and are an important step forward in developing a definition and objective quantification of human joint stability that can complement the subjective patient report. PMID:23886970

  7. Metallic alloy stability studies

    NASA Technical Reports Server (NTRS)

    Firth, G. C.

    1983-01-01

    The dimensional stability of candidate cryogenic wind tunnel model materials was investigated. Flat specimens of candidate materials were fabricated and cryo-cycled to assess relative dimensional stability. Existing 2-dimensional airfoil models as well as models in various stages of manufacture were also cryo-cycled. The tests indicate that 18 Ni maraging steel offers the greatest dimensional stability and that PH 13-8 Mo stainless steel is the most stable of the stainless steels. Dimensional stability is influenced primarily by metallurgical transformations (austenitic to martensitic) and manufacturing-induced stresses. These factors can be minimized by utilization of stable alloys, refinement of existing manufacturing techniques, and incorporation of new manufacturing technologies.

  8. Effect of disinfection and accelerated ageing on dimensional stability and detail reproduction of a facial silicone with nanoparticles.

    PubMed

    Pesqueira, A A; Goiato, M C; Dos Santos, D M; Haddad, M F; Moreno, A

    2012-05-01

    The aim of the present study was to evaluate the effect of disinfection and accelerated ageing on the dimensional stability and detail reproduction of a facial silicone with different types of nanoparticle. A total of 60 specimens were fabricated with Silastic MDX 4-4210 silicone and they were divided into three groups: colourless and pigmented with nanoparticles (make-up powder and ceramic powder). Half of the specimens of each group were disinfected with Efferdent tablets and half with neutral soap for 60 days. Afterwards, all specimens were subjected to accelerated ageing. Both dimensional stability and detail reproduction tests were performed after specimen fabrication (initial period), after chemical disinfection, and after accelerated ageing periods (252, 504 and 1008 hours). The dimensional stability test was conducted using AutoCAD software, while detail reproduction was analysed using a stereoscope magnifying glass. Dimensional stability values were statistically evaluated by analysis of variance (ANOVA) followed by Tukey's test (p < 0.01). Detail reproduction results were compared using a score. Chemical disinfection and also accelerated ageing affected the dimensional stability of the facial silicone with statistically significant results. The silicone's detail reproduction was not affected by these two factors regardless of nanoparticle type, disinfection and accelerated ageing. PMID:22428808

  9. Stability analysis of multigrid acceleration methods for the solution of partial differential equations

    NASA Technical Reports Server (NTRS)

    Fay, John F.

    1990-01-01

    A calculation is made of the stability of various relaxation schemes for the numerical solution of partial differential equations. A multigrid acceleration method is introduced, and its effects on stability are explored. A detailed stability analysis of a simple case is carried out and verified by numerical experiment. It is shown that the use of multigrids can speed convergence by several orders of magnitude without adversely affecting stability.

  10. Impossibility of unconditional stability and robustness of diffusive acceleration schemes

    SciTech Connect

    Azmy, Y.Y.

    1998-01-01

    The authors construct a problem for which exists no preconditioner with a cell-centered diffusion coupling stencil that is unconditionally stable and robust. In particular they consider an asymptotic limit of the Periodic Horizontal Interface (PHI) configuration wherein the cell height in both layers approaches zero like {sigma}{sup 2} while the total cross section varies like a in one layer and like 1/{sigma} in the other layer. In such case they show that the conditions for stability and robustness of the flat eigenmodes of the iteration residual imply instability of the modes flat in the y-dimension and rapidly varying in the x-dimension. This paper is important for radiation transport studies.

  11. Comparative Oxidative Stability of Fatty Acid Alkyl Esters by Accelerated Methods

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Several fatty acid alkyl esters were subjected to accelerated methods of oxidation, including EN 14112 (Rancimat method) and pressurized differential scanning calorimetry (PDSC). Structural trends elucidated from both methods that improved oxidative stability included decreasing the number of doubl...

  12. Colour stability of temporary restorations with different thicknesses submitted to artificial accelerated aging.

    PubMed

    Silame, F D J; Tonani, R; Alandia-Roman, C C; Chinelatti, M; Panzeri, H; Pires-de-Souza, F C P

    2013-12-01

    This study evaluated the colour stability of temporary prosthetic restorations with different thicknesses submitted to artificial accelerated aging. The occlusal surfaces of 40 molars were grinded to obtain flat enamel surfaces. Twenty acrylic resin specimens [Polymethyl methacrylate (Duralay) and Bis-methyl acrylate (Luxatemp)] were made with two different thicknesses, 0.5 mm and 1.0 mm. Temporary restorations were fixed on enamel and CIE L*a*b* colour parameters of each specimen were assessed before and after artificial accelerated aging. All groups showed colour alterations above the clinically acceptable limit. Luxatemp showed the lowest colour alteration regardless its thickness and Duralay showed the greatest alteration with 0.5 mm. PMID:24479216

  13. Transverse stability of the primary beam in the plasma wake-field accelerator

    SciTech Connect

    Krall, J.; Joyce, G.

    1995-06-01

    The stability of the primary electron beam in the plasma wakefield accelerator is studied using a three-dimensional particle code, for cases in which a shaped electron beam, with length {ital L}{approx_gt}{lambda}{sub {ital p}} is used, where {lambda}{sub {ital p}} is the plasma wavelength. The electron-hose and the transverse two-stream instabilities are observed to cause transverse deflections of the beam, with the transverse two-stream instability having a lower growth rate. Operation in the electron-hose regime can be avoided by reducing the beam density. {copyright} 1995 {ital American Institute of Physics}.

  14. Food Fortification Stability Study

    NASA Technical Reports Server (NTRS)

    Abdulmalik, T. O.; Cooper, M. R.; Douglas, G. L.

    2015-01-01

    NASA has established the goal of traveling beyond low-Earth orbit and extending manned exploration to Mars. The extended length of a Mars mission, along with the lack of resupply missions increases the importance of nutritional content in the food system. The purpose of this research is to assess the stability of vitamin supplementation in traditionally processed spaceflight foods. It is expected that commercially available fortificants will remain stable through long-duration missions if proper formulation, processing, and storage temperatures are all achieved. Five vitamins (vitamin E, vitamin K, pantothenic acid, folic acid, and thiamin) were blended into a vitamin premix (DSM, Freeport, TX); premixes were formulated to be compatible with current processing techniques (retort or freeze-dried), varied water activities (high or low), and packaging material. The overall goal of this process is to provide 25% of the recommended daily intake of each vitamin (per serving), following processing and two years of ambient storage. Four freeze-dried foods (Scrambled Eggs, Italian Vegetables, Potatoes Au Gratin, Noodles and Chicken) and four thermostabilized foods (Curry Sauce with Vegetables, Chicken Noodle Soup, Grilled Pork Chop, Rice with Butter) were produced (with and without the vitamin premix), to assess the impact of the added fortificant on color and taste, and to determine the stability of supplemental vitamins in spaceflight foods. The use of fortification in spaceflight foods appears to be a plausible mitigation step to inadequate nutrition. This is due to the ease of vitamin addition as well as the sustainability of the premixes through initial processing steps. Postprocessing analysis indicated that vitamin fortification with this premix did not immediately impact organoleptic properties of the food. At this stage, the largest hurdle to fortification is the preciseness to which vitamins can be added; the total amount of vitamins required for production is 10

  15. Computational studies and optimization of wakefield accelerators

    SciTech Connect

    Tsung, Frank S.; Bruhwiler, David L.; Cary, John R.; Esarey, Eric H.; Mori, Warren B.; Vay, Jean-Luc; Martins, Samuel F.; Katsouleas, Tom; Cormier-Michel, Estelle; Fawley, William M.; Huang, Chengkun; Wang, Xiadong; Cowan, Ben; Decyk, Victor K.; Fonseca, Ricardo A.; Lu, Wei; Messmer, Peter; Mullowney, Paul; Nakamura, Kei; Paul, Kevin; Plateau, Guillaume R.; Schroeder, Carl B.; Silva, Luis O.; Toth, Csaba; Geddes, C.G.R.; Tzoufras, Michael; Antonsen, Tom; Vieira, Jorge; Leemans, Wim P.

    2008-06-16

    Laser- and particle beam-driven plasma wakefield accelerators produce accelerating fields thousands of times higher than radio-frequency accelerators, offering compactness and ultrafast bunches to extend the frontiers of high energy physics and to enable laboratory-scale radiation sources. Large-scale kinetic simulations provide essential understanding of accelerator physics to advance beam performance and stability and show and predict the physics behind recent demonstration of narrow energy spread bunches. Benchmarking between codes is establishing validity of the models used and, by testing new reduced models, is extending the reach of simulations to cover upcoming meter-scale multi-GeV experiments. This includes new models that exploit Lorentz boosted simulation frames to speed calculations. Simulations of experiments showed that recently demonstrated plasma gradient injection of electrons can be used as an injector to increase beam quality by orders of magnitude. Simulations are now also modeling accelerator stages of tens of GeV, staging of modules, and new positron sources to design next-generation experiments and to use in applications in high energy physics and light sources.

  16. Report on accelerated corrosion studies.

    SciTech Connect

    Mowry, Curtis Dale; Glass, Sarah Jill; Sorensen, Neil Robert

    2011-03-01

    Sandia National Laboratories (SNL) conducted accelerated atmospheric corrosion testing for the U.S. Consumer Product Safety Commission (CPSC) to help further the understanding of the development of corrosion products on conductor materials in household electrical components exposed to environmental conditions representative of homes constructed with problem drywall. The conditions of the accelerated testing were chosen to produce corrosion product growth that would be consistent with long-term exposure to environments containing humidity and parts per billion (ppb) levels of hydrogen sulfide (H{sub 2}S) that are thought to have been the source of corrosion in electrical components from affected homes. This report documents the test set-up, monitoring of electrical performance of powered electrical components during the exposure, and the materials characterization conducted on wires, screws, and contact plates from selected electrical components. No degradation in electrical performance (measured via voltage drop) was measured during the course of the 8-week exposure, which was approximately equivalent to 40 years of exposure in a light industrial environment. Analyses show that corrosion products consisting of various phases of copper sulfide, copper sulfate, and copper oxide are found on exposed surfaces of the conductor materials including wires, screws, and contact plates. The morphology and the thickness of the corrosion products showed a range of character. In some of the copper wires that were observed, corrosion product had flaked or spalled off the surface, exposing fresh metal to the reaction with the contaminant gasses; however, there was no significant change in the wire cross-sectional area.

  17. Food Fortification Stability Study

    NASA Technical Reports Server (NTRS)

    Sirmons, T.; Cooper, M.; Douglas, G.

    2016-01-01

    NASA has established the goal of traveling beyond low-Earth orbit and extending manned exploration to Mars. The length of proposed Mars missions and the lack of resupply missions increases the importance of nutritional content in the food system, which will need a five year shelf life. The purpose of this research is to assess the stability of vitamin supplementation in traditionally processed spaceflight foods. It is expected that commercially available fortification nutrients will remain stable through a long duration exploration mission at sufficient levels if compatible formulation, processing, and storage temperatures are achieved. Five vitamins (vitamin E, vitamin K, pantothenic acid, folic acid, and thiamin) were blended into a vitamin premix (DSM, Freeport, TX) such that the vitamin concentration per serving equaled 25% of the recommended daily intake after two years of ambient storage. Four freeze-dried foods (Scrambled Eggs, Italian Vegetables, Potatoes Au Gratin, Noodles and Chicken) and four thermostabilized foods (Curry Sauce with Vegetables, Chicken Noodle Soup, Grilled Pork Chop, Rice with Butter) were produced, with and without the vitamin premix, to assess the impact of the added fortification on color and taste and to determine the stability of supplemental vitamins in spaceflight foods. The addition of fortification to spaceflight foods did not greatly alter the organoleptic properties of most products. In most cases, overall acceptability scores remained above 6.0 (minimum acceptable score) following six months and one year of low-temperature storage. Likewise, the color of fortified products appears to be preserved over one year of storage. The only exception was Grilled pork Chop and Chicken Noodle Soup whose individual components appear to degrade rapidly over one year of storage. Finally, most vitamins appear to be stable during long-term storage. The only exception was thiamin, which degraded rapidly during the first year of storage at 35

  18. Independent Study Unit on Accelerated Reference Frames

    ERIC Educational Resources Information Center

    Poultney, S. K.

    1973-01-01

    Presents a list of topics, research areas, references, and laboratory equipment which is prepared to facilitate general-science students' understanding of physics aspects in accelerated reference frames after their study of circular motion and Galilean relativity in mechanics. (CC)

  19. Acceleration and stability of a high-current ion beam in induction fields

    NASA Astrophysics Data System (ADS)

    Karas', V. I.; Manuilenko, O. V.; Tarakanov, V. P.; Federovskaya, O. V.

    2013-03-01

    A one-dimensional nonlinear analytic theory of the filamentation instability of a high-current ion beam is formulated. The results of 2.5-dimensional numerical particle-in-cell simulations of acceleration and stability of an annular compensated ion beam (CIB) in a linear induction particle accelerator are presented. It is shown that additional transverse injection of electron beams in magnetically insulated gaps (cusps) improves the quality of the ion-beam distribution function and provides uniform beam acceleration along the accelerator. The CIB filamentation instability in both the presence and the absence of an external magnetic field is considered.

  20. Acceleration and stability of a high-current ion beam in induction fields

    SciTech Connect

    Karas', V. I.; Manuilenko, O. V.; Tarakanov, V. P.; Federovskaya, O. V.

    2013-03-15

    A one-dimensional nonlinear analytic theory of the filamentation instability of a high-current ion beam is formulated. The results of 2.5-dimensional numerical particle-in-cell simulations of acceleration and stability of an annular compensated ion beam (CIB) in a linear induction particle accelerator are presented. It is shown that additional transverse injection of electron beams in magnetically insulated gaps (cusps) improves the quality of the ion-beam distribution function and provides uniform beam acceleration along the accelerator. The CIB filamentation instability in both the presence and the absence of an external magnetic field is considered.

  1. Accelerated Stability Testing of a Clobetasol Propionate-Loaded Nanoemulsion as per ICH Guidelines.

    PubMed

    Ali, Mohammad Sajid; Alam, Mohammad Sarfaraz; Alam, Nawazish; Anwer, Tarique; Safhi, Mohammed Mohsen A

    2013-12-01

    The physical and chemical degradation of drugs may result in altered therapeutic efficacy and even toxic effects. Therefore, the objective of this work was to study the stability of clobetasol propionate (CP) in a nanoemulsion. The nanoemulsion formulation containing CP was prepared by the spontaneous emulsification method. For the formulation of the nanoemulsion, Safsol, Tween 20, ethanol, and distilled water were used. The drug was incorporated into an oil phase in 0.05% w/v. The lipophilic nature of the drug led to the O/W nanoemulsion formulation. This was characterized by droplet size, pH, viscosity, conductivity, and refractive index. Stability studies were performed as per ICH guidelines for a period of three months. The shelf life of the nanoemulsion formulation was also determined after performing accelerated stability testing (40°C ± 2°C and 75% ± 5% RH). We also performed an intermediate stability study (30°C ± 2°C/65% RH ± 5% RH). It was found that the droplet size, conductivity, and refractive index were slightly increased, while the viscosity and pH slightly decreased at all storage conditions during the 3-month period. However, the changes in these parameters were not statistically significant (p≥0.05). The degradation (%) of the optimized nanoemulsion of CP was determined and the shelf life was found to be 2.18 years at room temperature. These studies confirmed that the physical and chemical stability of CP were enhanced in the nanoemulsion formulation. PMID:24482775

  2. Accelerated Stability Testing of a Clobetasol Propionate-Loaded Nanoemulsion as per ICH Guidelines

    PubMed Central

    Ali, Mohammad Sajid; Alam, Mohammad Sarfaraz; Alam, Nawazish; Anwer, Tarique; Safhi, Mohammed Mohsen A.

    2013-01-01

    The physical and chemical degradation of drugs may result in altered therapeutic efficacy and even toxic effects. Therefore, the objective of this work was to study the stability of clobetasol propionate (CP) in a nanoemulsion. The nanoemulsion formulation containing CP was prepared by the spontaneous emulsification method. For the formulation of the nanoemulsion, Safsol, Tween 20, ethanol, and distilled water were used. The drug was incorporated into an oil phase in 0.05% w/v. The lipophilic nature of the drug led to the O/W nanoemulsion formulation. This was characterized by droplet size, pH, viscosity, conductivity, and refractive index. Stability studies were performed as per ICH guidelines for a period of three months. The shelf life of the nanoemulsion formulation was also determined after performing accelerated stability testing (40°C ± 2°C and 75% ± 5% RH). We also performed an intermediate stability study (30°C ± 2°C/65% RH ± 5% RH). It was found that the droplet size, conductivity, and refractive index were slightly increased, while the viscosity and pH slightly decreased at all storage conditions during the 3-month period. However, the changes in these parameters were not statistically significant (p≥0.05). The degradation (%) of the optimized nanoemulsion of CP was determined and the shelf life was found to be 2.18 years at room temperature. These studies confirmed that the physical and chemical stability of CP were enhanced in the nanoemulsion formulation. PMID:24482775

  3. Chromatic stability of acrylic resins of artificial eyes submitted to accelerated aging and polishing

    PubMed Central

    GOIATO, Marcelo Coelho; dos SANTOS, Daniela Micheline; SOUZA, Josiene Firmino; MORENO, Amália; PESQUEIRA, Aldiéris Alves

    2010-01-01

    Esthetics and durability of materials used to fabricate artificial eyes has been an important eissue since artificial eyes are essential to restore esthetics and function, protect the remaining tissues and help with patients' psychological therapy. However, these materials are submitted to degrading effects of environmental agents on the physical properties of the acrylic resin. Objective This study assessed the color stability of acrylic resins used to fabricate sclera in three basic shades (N1, N2 and N3) when subjected to accelerated aging, mechanical and chemical polishing. Material and methods Specimens of each resin were fabricated and submitted to mechanical and chemical polishing. Chromatic analysis was performed before and after accelerated aging through ultraviolet reflection spectrophotometry. Results All specimens revealed color alteration following polishing and accelerated aging. The resins presented statistically significant chromatic alteration (p<0.01) between the periods of 252 and 1008 h. Conclusions Both polishing methods presented no significant difference between the values of color derivatives of resins. PMID:21308298

  4. Brine stability study

    SciTech Connect

    Gary Garland

    2015-04-15

    This is a study of the brine formulations that we were using in our testing were stable over time. The data includes charts, as well as, all of the original data from the ICP-MS runs to complete this study.

  5. Frequency conversion in field stabilization system for application in SC cavity of linear accelerator

    NASA Astrophysics Data System (ADS)

    Filipek, Tomasz A.

    2005-09-01

    The paper concerns frequency conversion circuits of electromagnetic field stabilization system in superconductive cavity of linear accelerator. The stabilization system consists of digital part (based on FPGA) and analog part (frequency conversions, ADC/DAC, filters). Frequency conversion circuit is analyzed. The main problem in the frequency conversion for the stabilization system are: linearity of conversion and stability. Also, second order problems are subject of analysis: control of local oscillator parameters and fluctuation of actuated signal (exposing conversion). The following work was done: analysis of individual stage parameters on field stability and external influence, simulation. The work was closed with conclusions of the major frequency conversion parameters for field stabilization. The results have been applied for field stabilization system (RF Feedback System) in TESLA Test Facility 2 and preliminary research on X-Ray Free Electron Laser.

  6. Accelerating sea-level rise and coastal marsh stability: Insights from an early Holocene stratigraphic record

    NASA Astrophysics Data System (ADS)

    Li, Y.; Tornqvist, T. E.; Kohl, B.; Kuykendall, J.

    2011-12-01

    The increasingly recognized economic and ecologic value of coastal ecosystems and growing concerns about the fate of coastal wetlands in the face of anticipated accelerating sea-level rise in the next century provide the impetus to understand coastal marsh stability under climate warming conditions. This problem is strikingly exemplified by the Mississippi Delta, where wetland loss rates are among the highest in the world. Direct field observations of marsh responses to rising seas are helpful to understand marsh stability over short (annual to decadal) timescales. However, knowledge about marsh stability over longer timescales is largely lacking. Here we present an early Holocene stratigraphic and foraminiferal record from the Mississippi Delta to examine marsh responses to relative sea-level (RSL) rise at rates within the range of what is commonly predicted for the latter portion of the 21st century. While field monitoring of modern marshes has suggested that they may survive rates of RSL rise on the order of 1 cm/yr, our results show that marshes can persist only for up to a century, and often much shorter, with rates of RSL rise of ~0.7 cm/yr. We therefore conclude that the tipping point beyond which coastal marshes in this region become unsustainable may be reached earlier than what previous studies have suggested. These findings may be instrumental in long-term planning and mitigating impacts of anticipated sea-level rise on coastal ecosystems.

  7. Stabilization of Gyrotron Frequency by PID Feedback Control on the Acceleration Voltage

    NASA Astrophysics Data System (ADS)

    Khutoryan, E. M.; Idehara, T.; Kuleshov, A. N.; Tatematsu, Y.; Yamaguchi, Y.; Matsuki, Y.; Fujiwara, T.

    2015-12-01

    The results of frequency stabilization by proportional-integral-derivative (PID) feedback control of acceleration voltage in the 460-GHz Gyrotron FU CW GVI (the official name in Osaka University is Gyrotron FU CW GOI) are presented. The experiment was organized on the basis of the frequency modulation by modulation of acceleration voltage of beam electrons. The frequency stabilization during 10 h experiment was better than 10-6, which is compared with the results of the frequency deviation in free-running gyrotron operation.

  8. Vaccine stability study design and analysis to support product licensure.

    PubMed

    Schofield, Timothy L

    2009-11-01

    Stability evaluation supporting vaccine licensure includes studies of bulk intermediates as well as final container product. Long-term and accelerated studies are performed to support shelf life and to determine release limits for the vaccine. Vaccine shelf life is best determined utilizing a formal statistical evaluation outlined in the ICH guidelines, while minimum release is calculated to help assure adequate potency through handling and storage of the vaccine. In addition to supporting release potency determination, accelerated stability studies may be used to support a strategy to recalculate product expiry after an unintended temperature excursion such as a cold storage unit failure or mishandling during transport. Appropriate statistical evaluation of vaccine stability data promotes strategic stability study design, in order to reduce the uncertainty associated with the determination of the degradation rate, and the associated risk to the customer. PMID:19717312

  9. The application of the Accelerated Stability Assessment Program (ASAP) to quality by design (QbD) for drug product stability.

    PubMed

    Waterman, Kenneth Craig

    2011-09-01

    An isoconversion paradigm, where times in different temperature and humidity-controlled stability chambers are set to provide a fixed degradant level, is shown to compensate for the complex, non-single order kinetics of solid drug products. A humidity-corrected Arrhenius equation provides reliable estimates for temperature and relative humidity effects on degradation rates. A statistical protocol is employed to determine best fits for chemical stability data, which in turn allows for accurate estimations of shelf life (with appropriate confidence intervals) at any storage condition including inside packaging (based on the moisture vapor transmission rate of the packaging and moisture sorption isotherms of the internal components). These methodologies provide both faster results and far better predictions of chemical stability limited shelf life (expiry) than previously possible. Precise shelf-life estimations are generally determined using a 2-week, product-specific protocol. Once the model for a product is developed, it can play a critical role in providing the product understanding necessary for a quality by design (QbD) filing for product approval and enable rational control strategies to assure product stability. Moreover, this Accelerated Stability Assessment Program (ASAP) enables the coupling of product attributes (e.g., moisture content, packaging options) to allow for flexibility in how control strategies are implemented to provide a balance of cost, speed, and other factors while maintaining adequate stability. PMID:21748541

  10. Hall MHD Stability and Turbulence in Magnetically Accelerated Plasmas

    SciTech Connect

    H. R. Strauss

    2012-11-27

    The object of the research was to develop theory and carry out simulations of the Z pinch and plasma opening switch (POS), and compare with experimental results. In the case of the Z pinch, there was experimental evidence of ion kinetic energy greatly in excess of the ion thermal energy. It was thought that this was perhaps due to fine scale turbulence. The simulations showed that the ion energy was predominantly laminar, not turbulent. Preliminary studies of a new Z pinch experiment with an axial magnetic field were carried out. The axial magnetic is relevant to magneto - inertial fusion. These studies indicate the axial magnetic field makes the Z pinch more turbulent. Results were also obtained on Hall magnetohydrodynamic instability of the POS.

  11. Flame acceleration studies in the MINIFLAME facility

    SciTech Connect

    Tieszen, S.R.; Sherman, M.P.; Benedick, W.B.

    1989-07-01

    Flame acceleration and deflagration-to-detonation transition (DDT) studies have been conducted in a 19.4-cm high, 14.5-cm wide, and 2. 242-m long channel (MINIFLAME) that is a 1:12.6 scale model of the 136-m{sup 3} FLAME facility. Tests were conducted with two levels of hydrogen concentration -- 20% and 30%, with and without obstacles in the channel, and with three levels of transverse top venting -- 0%, 13%, and 50%. The flame acceleration results in MINIFLAME are qualitatively similar to those in FLAME; however, the small-scale results are more benign quantitatively. The results show that insufficient venting, 13% venting in this case, can promote flame acceleration due to turbulence produced by the flow through the vents in smooth channels. However, with obstacle-generated turbulence in the channel, 13% top venting was found to be beneficial. Flame acceleration resulting in DDT was shown to occur in as little as 35 liters of mixture. Comparison of the DDT data with obstacles in MINIFLAME and FLAME supports d/{lambda} scaling of DDT, where {lambda} is the detonation cell width of the mixture and d is the characteristic open diameter of the channel. In the MINIFLAME and FLAME tests, DDT occurred for d/{lambda} greater than approximately three. Comparison with other experiments shows that the value of d/{lambda} for DDT is not constant but depends on the obstacle type, spacing, and channel geometry. The comparison of MINIFLAME and FLAME experiments extends the use of d/{lambda} scaling to different geometries and larger scales than previous studies. Small-scale-model testing of flame acceleration and DDT with the same combustible mixture as the full-scale prototype underpredicts flame speeds, overpressures, and the possibility of DDT. 18 refs., 16 figs.

  12. W-band accelerator study in KEK

    NASA Astrophysics Data System (ADS)

    Zhu, Xiongwei; Nakajima, Kazuhisa

    2001-05-01

    In this paper, we summarize the W-band accelerator study in KEK. We present a design study on W-Band photocathode RF gun which is capable of generating and accelerating 300 pC electron bunch. The design system is made up of 91.392 GHz photocathode RF gun and 91.392 GHz traveling wave linac cells. Based on the numerical simulation using SUPERFISH and PARMELA and the conventional RF linac scaling law, the design will produce 300 pC at 1.74 MeV with bunch length 0.72 ps and normalized transverse emittance 0.55 mm mrad. We study the beam dynamics in high frequency and high gradient; due to the high gradient, the pondermotive effect plays an important role in beam dynamics; we found the pondermotive effect still exist with only the fundamental space harmonics (synchrotron mode) due to the coupling of the transverse and longitudinal motion.

  13. Recent results of studies of acceleration of compact toroids

    NASA Astrophysics Data System (ADS)

    Hammer, J. H.; Hartmen, C. W.; Eddleman, J.

    1984-03-01

    The observed gross stability and self-contained structure of compact toroids (CT's) give rise to the possibility, unique among magnetically confined plasmas, of translating CT's from their point of origin over distances many times their own length. This feature has led us to consider magnetic acceleration of CT's to directed kinetic energies much greater than their stored magnetic and thermal energies. A CT accelerator falls in the very broad gap between traditional particle accelerators at one extreme, which are limited in the number of particles per bunch by electrostatic repulsive forces, and mass accelerators such as rail guns at the other extreme, which accelerate many particles but are forced by the stress limitations of solids to far smaller accelerations. A typical CT has about a Coulomb of particles, weighs 10 micrograms and can be accelerated by magnetic forces of several tons, leading to an acceleration on the order of 10(11) gravities.

  14. Cluster Multi-Point Studies of the Auroral Acceleration Region

    NASA Astrophysics Data System (ADS)

    Marklund, G. T.

    2014-12-01

    Multi-point studies of the auroral acceleration region (AAR) by the Cluster spacecraft has enabled a number of open issues on the auroral acceleration to be addressed and revealed. Data from AAR crossings of Inverted-V aurora, by the C1 and C3 spacecraft at different altitudes, enabled a detailed reconstruction of the acceleration potential and a verification of its stability on a five min time scale. The relative role of quasi-static and Alfvénic acceleration behind aurora are addressed in two event studies. In one of these, the two processes are shown to operate jointly on the plasma population within the polar cap boundary. In the other, the electron energy flux producing multiple arcs within a surge is found to be generally dominated by the quasi-static contribution. Acceleration features and the FAC closure associated with surge-horn aurora crossed by the Cluster fleet were derived in another event study. A study of the density distribution within the auroral cavity, showed for all included events, exponential density decreases, relative to the ambient densities, from the mid to top of the AAR. In another study, cavities were found to extend well beyond the top of the AAR. Finally, statistical high-latitude electric field and plasma density distributions are presented based on 10 years of Cluster data collected between 2 and 4 RE altitudes. Intense electric fields appear in two altitude regimes on the nightside, separated by a gap at 2.8 RE. The upper altitude fields were interpreted to be Alfvénic and the lower altitude fields quasi-static, related to the AAR. The gap in the electric field intensity indicates a partial closure of the potentials in the lower region, with similarities to model results of reflected Alfvén waves and earlier reported observations

  15. Design of undercuts and dipole stabilizer rods for the CPHS RFQ accelerator

    NASA Astrophysics Data System (ADS)

    Cai, Jin-Chi; Xing, Qing-Zi; Guan, Xia-Ling; Du, Lei

    2012-05-01

    As part of the design and machining of the RFQ accelerator in the Compact Pulsed Hadron Source (CPHS) project at Tsinghua University, the design process of the undercuts and dipole stabilizer rods is presented in this paper. In particular, the relationship between the inter-vane voltage slope and the local frequency of the undercut section is described quantitatively. With the identification of modes existing in the cavity, the specific parameters are optimized by the SUPERFISH and MAFIA codes. In addition, the water-cooling requirement of the dipole stabilizer rods is briefly discussed.

  16. Freeze-dried snake antivenoms formulated with sorbitol, sucrose or mannitol: comparison of their stability in an accelerated test.

    PubMed

    Herrera, María; Tattini, Virgilio; Pitombo, Ronaldo N M; Gutiérrez, José María; Borgognoni, Camila; Vega-Baudrit, José; Solera, Federico; Cerdas, Maykel; Segura, Alvaro; Villalta, Mauren; Vargas, Mariángela; León, Guillermo

    2014-11-01

    Freeze-drying is used to improve the long term stability of pharmaceutical proteins. Sugars and polyols have been successfully used in the stabilization of proteins. However, their use in the development of freeze-dried antivenoms has not been documented. In this work, whole IgG snake antivenom, purified from equine plasma, was formulated with different concentrations of sorbitol, sucrose or mannitol. The glass transition temperatures of frozen formulations, determined by Differential Scanning Calorimetry (DSC), ranged between -13.5 °C and -41 °C. In order to evaluate the effectiveness of the different stabilizers, the freeze-dried samples were subjected to an accelerated stability test at 40 ± 2 °C and 75 ± 5% relative humidity. After six months of storage at 40 °C, all the formulations presented the same residual humidity, but significant differences were observed in turbidity, reconstitution time and electrophoretic pattern. Moreover, all formulations, except antivenoms freeze-dried with mannitol, exhibited the same potency for the neutralization of lethal effect of Bothrops asper venom. The 5% (w:v) sucrose formulation exhibited the best stability among the samples tested, while mannitol and sorbitol formulations turned brown. These results suggest that sucrose is a better stabilizer than mannitol and sorbitol in the formulation of freeze-dried antivenoms under the studied conditions. PMID:25091348

  17. Stability and chaotic dynamics of a rate gyro with feedback control under uncertain vehicle spin and acceleration

    NASA Astrophysics Data System (ADS)

    Chen, Heng-Hui

    2004-06-01

    An analysis of stability and chaotic dynamics is presented by a single-axis rate gyro subjected to linear feedback control loops. This rate gyro is supposed to be mounted on a space vehicle which undergoes an uncertain angular velocity ωZ( t) around its spin axis. And simultaneously acceleration ω˙X(t) occurs with respect to the output axis. The necessary and sufficient conditions of stability for the autonomous case, whose vehicle undergoes a steady rotation, were provided by Routh-Hurwitz theory. Also, the degeneracy conditions of the non-hyperbolic point were derived and the dynamics of the resulting system on the center manifold near the double-zero degenerate point by using center manifold and normal form methods were examined. The stability of the non-linear non-autonomous system was investigated by Liapunov stability and instability theorems. As the electrical time constant is much smaller than the mechanical time constant, the singularly perturbed system can be obtained by the singular perturbation theory. The Liapunov stability of this system by studying the reduced and boundary-layer systems was also analyzed. Numerical simulations were performed to verify the analytical results. The stable regions of the autonomous system were obtained in parametric diagrams. For the non-autonomous case in which ωZ( t) oscillates near boundary of stability, periodic, quasiperiodic and chaotic motions were demonstrated by using time history, phase plane and Poincaré maps.

  18. Analytical study of diffusive relativistic shock acceleration.

    PubMed

    Keshet, Uri

    2006-12-01

    Particle acceleration in relativistic shocks is studied analytically in the test-particle, small-angle scattering limit, for an arbitrary velocity-angle diffusion function D. The particle spectral index s is found to be sensitive to D, particularly downstream and at certain angles. The analysis, confirmed numerically, justifies and generalizes previous results for isotropic diffusion. It can be used to test collisionless shock models and to observationally constrain D. For example, strongly forward- or backward-enhanced diffusion downstream is ruled out by gamma-ray burst afterglow observations. PMID:17155790

  19. MAFIA study of the RFQ1 accelerator

    NASA Astrophysics Data System (ADS)

    Adams, F. P.; de Jong, M. S.; Hutcheon, R. M.

    1991-05-01

    The RFQ1 accelerator has been modeled using the MAFIA codes. Calculated resonant frequency shifts due to the introduction of components into the accelerator agree reasonably well with measurements. Heating predictions based on calculated results correspond well with observations.

  20. Dynamic stability in parametric resonance of axially accelerating viscoelastic Timoshenko beams

    NASA Astrophysics Data System (ADS)

    Chen, Li-Qun; Tang, You-Qi; Lim, C. W.

    2010-03-01

    This paper investigates dynamic stability of an axially accelerating viscoelastic beam undergoing parametric resonance. The effects of shear deformation and rotary inertia are taken into account by the Timoshenko thick beam theory. The beam material obeys the Kelvin model in which the material time derivative is used. The axial speed is characterized as a simple harmonic variation about the constant mean speed. The governing partial-differential equations are derived from Newton's second law, Euler's angular momentum principle, and the constitutive relation. The method of multiple scales is applied to the equations to establish the solvability conditions in summation and principal parametric resonances. The sufficient and necessary condition of the stability is derived from the Routh-Hurvitz criterion. Some numerical examples are presented to demonstrate the effects of related parameters on the stability boundaries.

  1. Indirect check of the stability of the reference ion chamber used for accelerator output calibration

    NASA Astrophysics Data System (ADS)

    Kang, Sei-Kwon; Yoon, Jai-Woong; Park, Soah; Hwang, Taejin; Cheong, Kwang-Ho; Han, Tae Jin; Kim, Haeyoung; Lee, Me-Yeon; Kim, Kyoung Ju; Bae, Hoonsik

    2014-11-01

    A linear accelerator's output is periodically checked by using a reference ion chamber which is also periodically calibrated at the accredited standard dosimetry laboratories. We suggest a simple procedure for checking the chamber's stability between calibrations by comparison with another ion chamber. To identify the long-term stability of chambers, we collected and assessed the dose-to-water conversion factors provided by standard laboratories for three chambers during a period of four years. To develop the chamber constancy check program, we used one Farmer-type reference ion chamber FC65-G, two ion chambers (CC13a and CC13b) and one CC01 ion chamber (IBA). Under the accelerator, each chamber was placed inside the solid phantom and irradiated; the experimental configurations were identical. To check the variation in charge collection of the reference chamber, we monitored the ratios of the FC65-G values over each chamber reading. Based on the error propagation of the two chamber ratios, we estimated the uncertainty of the output calibration from the chamber variation. The calibration factors provided for the three chambers showed 0.04 ˜ 0.12% standard deviations during four years. For procedure development, the reading ratios of FC65-G over CCxx showed very good stability; the ratios of FC65-G over CC13a, CC13b and CC01 varied less than 0.059, 0.087 and 0.248%, respectively, over five measurements. By ascribing possible uncertainties of the ratio to the reference chamber alone, we could conservatively check the stability of the reference chamber for treatment safety. An extension of the chamber calibration period was also evaluated. In conclusion, we designed a stability check procedure for the reference chamber based on a reading ratio of two chambers. This could help the user assess the chamber stability between periodic chamber calibration, and the associated patient treatment could be carried out with enhanced safety.

  2. Testing of a Loop Heat Pipe Subjective to Variable Accelerations. Part 2; Temperature Stability

    NASA Technical Reports Server (NTRS)

    Ku, Jentung; Ottenstein, Laura; Kaya, Taril; Rogers, Paul; Hoff, Craig

    2000-01-01

    The effect of accelerating forces on the performance of loop heat pipes (LHP) is of interest and importance to terrestrial and space applications. LHP's are being considered for cooling of military combat vehicles and for spinning spacecraft. In order to investigate the effect of an accelerating force on LHP operation, a miniature LHP was installed on a spin table. Variable accelerating forces were imposed on the LHP by spinning the table at different angular speeds. Several patterns of accelerating forces were applied, i.e. continuous spin at different speeds and periodic spin at different speeds and frequencies. The resulting accelerations ranged from 1.17 g's to 4.7 g's. This paper presents the second part of the experimental study, i.e. the effect of an accelerating force on the LHP operating temperature. It has been known that in stationary tests the LHP operating temperature is a function of the evaporator power and the condenser sink temperature when the compensation temperature is not actively controlled. Results of this test program indicate that any change in the accelerating force will result in a chance in the LHP operating temperature through its influence on the fluid distribution in the evaporator, condenser and compensation chamber. However, the effect is not universal, rather it is a function of other test conditions. A steady, constant acceleration may result in an increase or decrease of the operating temperature, while a periodic spin will lead to a quasi-steady operating temperature over a sufficient time interval. In addition, an accelerating force may lead to temperature hysteresis and changes in the temperature oscillation. In spite of all these effects, the LHP continued to operate without any problems in all tests.

  3. An optical fiber spool for laser stabilization with reduced acceleration sensitivity to 10-12/g

    NASA Astrophysics Data System (ADS)

    Hu, Yong-Qi; Dong, Jing; Huang, Jun-Chao; Li, Tang; Liu, Liang

    2015-10-01

    Environmental vibration causes mechanical deformation in optical fibers, which induces excess frequency noise in fiber-stabilized lasers. In order to solve such a problem, we propose an ultralow acceleration sensitivity fiber spool with symmetrically mounted structure. By numerical analysis with the finite element method, we obtain the optimal geometry parameters of the spool with which the horizontal and vertical acceleration sensitivity can be reduced to 3.25 × 10-12/g and 5.38 × 10-12/g respectively. Moreover, the structure features the insensitivity to the variation of geometry parameters, which will minimize the influence from numerical simulation error and manufacture tolerance. Project supported by the National Natural Science Foundation of China (Grant Nos. 11034008 and 11274324) and the Key Research Program of the Chinese Academy of Sciences (Grant No. KJZD-EW-W02).

  4. UCLA Neptune Facility for Advanced Accelerator Studies

    SciTech Connect

    Tochitsky, Sergei Ya.; Clayton, Christopher E.; Marsh, Kenneth A.; Joshi, Chandrashekhar; Rosenzweig, James B.; Pellegrini, Claudio

    2004-12-07

    The Neptune Laboratory at UCLA is being used for exploring concepts useful for advanced accelerators. This facility hosts a TW-class CO2 laser system and a high-brightness photoinjector producing a 14 MeV electron beam. The goal for the laboratory is to carry out experiments on high-gradient acceleration of externally injected electrons in both laser-driven relativistic plasma waves and EM laser field in vacuum. Experiments on plasma beat-wave acceleration using a prebunched electron beam, a high-energy gain 10-{mu}m inverse free electron laser accelerator, longitudinal electron beam shaping and laser based light-sources are planned.

  5. Method for Studying Helicopter Longitudinal Maneuver Stability

    NASA Technical Reports Server (NTRS)

    Amer, Kenneth B

    1954-01-01

    A theoretical analysis of helicopter maneuver stability is made and the results are compared with experimental results for both a single and a tandem rotor helicopter. Techniques are described for measuring in flight the significant stability derivatives for use with the theory to aid in design studies of means for achieving marginal maneuver stability for a prototype helicopter.

  6. The effects of unbalance orientation angle on the stability of the lateral torsion coupling vibration of an accelerated rotor with a transverse breathing crack

    NASA Astrophysics Data System (ADS)

    He, Qing; Peng, Huichun; Zhai, Pengcheng; Zhen, Yaxin

    2016-06-01

    The angular acceleration is taken into the consideration for the modeling of equations of coupling vibration in rotational operation. The effects of angular acceleration on the amplitude of both lateral and torsion vibration of the breathing cracked rotor are studied for the first time. The torsion influence of unbalance orientation angles is especially studied during the modeling of the Breathing behavior model of the crack with the mass eccentricity. Different from the previous study, the effects of unbalance orientation angle on the lateral torsion coupling vibration of the breathing cracked rotor are compared by logarithmic spectrum diagrams. Parametric stability of the breathing cracked rotor associated with both unbalance orientation angle and accelerations in diverse level of mass eccentricity are presented, these works have not been seen before. The numerical parametrically stability results are verified by comparing with the dynamic response of the system.

  7. Region of stability derived by center of mass acceleration better identifies individuals with difficulty in sit-to-stand movement.

    PubMed

    Fujimoto, Masahiro; Chou, Li-Shan

    2014-04-01

    Poor performance of sit-to-stand (STS) has been identified as one of the predictors of fall risk among elderly adults. This study examined differences in the whole body center of mass (COM) kinematic variables in relation to the regions of stability between elderly adults with difficulty in STS and healthy individuals. Whole body motion data while performing STS were collected from 10 young, 10 elderly and 10 elderly subjects with difficulty in STS. Young subjects were also asked to stand up with their trunk purposely bent forward. The regions of stability were defined with COM position at seat-off and its instantaneous velocity (ROSv) or peak acceleration (ROSa), using a single-link-plus-foot inverted pendulum model. Peak COM accelerations prior to seat-off differed significantly among groups; however, no significant differences were detected in its velocities at seat-off. The ROSa demonstrated a better ability to discriminate elderly adults with difficulty from healthy individuals. Although a similar COM momentum was observed at seat-off, how the momentum was controlled differed between healthy individuals and individuals with difficulty in STS. ROSa could provide insight into how the COM momentum is controlled prior to seat-off, which could be used to differentiate individuals with functional limitations from healthy individuals. PMID:24259008

  8. Surface degradation of CeO2 stabilized acrylic polyurethane coated thermally treated jack pine during accelerated weathering

    NASA Astrophysics Data System (ADS)

    Saha, Sudeshna; Kocaefe, Duygu; Boluk, Yaman; Pichette, Andre

    2013-07-01

    The thermally treated wood is a new value-added product and is very important for the diversification of forestry products. It drew the attention of consumers due to its attractive dark brown color. However, it loses its color when exposed to outside environment. Therefore, development of a protective coating for this value added product is necessary. In the present study, the efficiency of CeO2 nano particles alone or in combination with lignin stabilizer and/or bark extracts in acrylic polyurethane polymer was investigated by performing an accelerated weathering test. The color measurement results after accelerated weathering demonstrated that the coating containing CeO2 nano particles was the most effective whereas visual assessment suggested the coating containing CeO2 nano particles and lignin stabilizer as the most effective coating. The surface polarity changed for all the coatings during weathering and increase in contact angle after weathering suggested cross linking and reorientation of the polymer chain during weathering. The surface chemistry altered during weathering was evaluated by ATR-FTIR analysis. It suggested formation of different carbonyl byproducts during weathering. The chain scission reactions of the urethane linkages were not found to be significant during weathering.

  9. Probucol via inhibition of NHE1 attenuates LPS-accelerated atherosclerosis and promotes plaque stability in vivo.

    PubMed

    Li, Jian-Fei; Chen, Song; Feng, Jun-Duo; Zhang, Ming-Yu; Liu, Xiao-Xia

    2014-04-01

    Activation of Na(+)/H(+) exchanger 1 (NHE1) by lipopolysaccharide (LPS) via Ca(2+)/calpain is responsible in vascular smooth muscle cell (VSMC) apoptosis and to the process of atherosclerosis. Probucol is a lipid-lowering drug which has an anti-atherosclerosis effect. The mechanism remains poorly understood. Here we hypothesized that probucol via inhibition of NHE1 in VSMCs attenuates LPS-accelerated atherosclerosis and promotes plaque stability. Our results revealed that treatment of VSMCs with LPS increased the NHE1 activity in a time-dependent manner, associated with the increased Ca(2+)i. Probucol inhibited the LPS-induced increase of NHE1 activity in a dose-dependent manner in VSMCs for 24-hour co-incubation, as well as the change of Ca(2+)i. In addition, LPS enhanced the calpain activity. Both probucol and calcium chelation of Ca(2+) abolished the LPS-induced increase of calpain activity. Treatment of VSMCs with LPS reduced the expression of Bcl-2 without altering the mRNA level. Probucol inhibited the LPS-reduced expression of Bcl-2 protein in VSMCs. Animal studies indicated administration of probucol suppressed LPS-accelerated apoptosis, atherosclerosis and plaque instability in Apoe(-/-) mice. In conclusion, probucol via inhibition of NHE1 attenuates atherosclerosis lesion growth and promotes plaque stability. PMID:24594116

  10. Analysis of tetragonal to monoclinic phase transformation caused by accelerated artificial aging and the effects of microstructure in stabilized zirconia

    NASA Astrophysics Data System (ADS)

    Lucas, Thomas J.

    This investigation addresses the issue that yttria stabilized zirconia is being used as a dental biomaterial without substantial evidence of its long-term viability. Furthermore, stabilized zirconia (SZ) undergoes low temperature degradation (LTD), which can lead to roughening of the surface. A rougher exterior can lead to increased wear of the antagonist in the oral environment. Despite the LTD concerns, SZ is now widely used in restorative dentistry, including full contour crowns. A comparison of aging methods to determine the role of artificial aging on inducing the transformation has not been extensively studied. Therefore, simulations of the transformation process were investigated by comparing different methods of accelerated aging. The rejected null hypothesis is that the temperature of aging treatment will not affect the time required to cause measurable monoclinic transformation of yttria stabilized zirconia. The transformation of SZ starts at the surface and progresses inward; however, it is unclear whether the progression is constant for different aging conditions. This investigation analyzed the depth of transformation as a function of aging conditions for stabilized zirconia in the top 5-6 mum from the surface. The rejected null hypothesis is that the transformation amount is constant throughout the first six micrometers from the surface. The effects of grain size on the amount of monoclinic transformation were also investigated. This study aimed to determine if the grain size of partially stabilized zirconia affects the amount of monoclinic transformation, surface roughness, and property degradation due to aging. The rejected null hypothesis is that the grain size will not affect the amount of monoclinic transformation, thus have no effect on surface roughening or property degradation. The final part of this study addresses the wear of enamel when opposing zirconia by observing how grain size and aging affected the wear rate of an enamel antagonist

  11. Accelerated screening methods for determining chemical and thermal stability of refrigerant-lubricant mixtures, Part 1: Method assessment. Final report

    SciTech Connect

    Kauffman, R.

    1993-04-01

    This report presents results of a literature search performed to identify analytical techniques suitable for accelerated screening of chemical and thermal stabilities of different refrigerant/lubricant combinations. Search focused on three areas: Chemical stability data of HFC-134a and other non-chlorine containing refrigerant candidates; chemical stability data of CFC-12, HCFC-22, and other chlorine containing refrigerants; and accelerated thermal analytical techniques. Literature was catalogued and an abstract was written for each journal article or technical report. Several thermal analytical techniques were identified as candidates for development into accelerated screening tests. They are easy to operate, are common to most laboratories, and are expected to produce refrigerant/lubricant stability evaluations which agree with the current stability test ANSI/ASHRAE (American National Standards Institute/American Society of Heating, Refrigerating, and Air-Conditioning Engineers) Standard 97-1989, ``Sealed Glass Tube Method to Test the Chemical Stability of Material for Use Within Refrigerant Systems.`` Initial results of one accelerated thermal analytical candidate, DTA, are presented for CFC-12/mineral oil and HCFC-22/mineral oil combinations. Also described is research which will be performed in Part II to optimize the selected candidate.

  12. Linear Accelerators

    NASA Astrophysics Data System (ADS)

    Sidorin, Anatoly

    2010-01-01

    In linear accelerators the particles are accelerated by either electrostatic fields or oscillating Radio Frequency (RF) fields. Accordingly the linear accelerators are divided in three large groups: electrostatic, induction and RF accelerators. Overview of the different types of accelerators is given. Stability of longitudinal and transverse motion in the RF linear accelerators is briefly discussed. The methods of beam focusing in linacs are described.

  13. Linear Accelerators

    SciTech Connect

    Sidorin, Anatoly

    2010-01-05

    In linear accelerators the particles are accelerated by either electrostatic fields or oscillating Radio Frequency (RF) fields. Accordingly the linear accelerators are divided in three large groups: electrostatic, induction and RF accelerators. Overview of the different types of accelerators is given. Stability of longitudinal and transverse motion in the RF linear accelerators is briefly discussed. The methods of beam focusing in linacs are described.

  14. Experimental demonstration of the stabilizing effect of dielectric coatings on magnetically accelerated imploding metallic liners

    DOE PAGESBeta

    Awe, Thomas James; Peterson, Kyle J.; Yu, Edmund P.; McBride, Ryan D.; Sinars, Daniel B.; Gomez, Matthew R.; Jennings, Christopher Ashley; Martin, Matthew R.; Rosenthal, Stephen E.; Sefkow, Adam B.; et al

    2016-02-10

    Enhanced implosion stability has been experimentally demonstrated for magnetically accelerated liners that are coated with 70 μm of dielectric. The dielectric tamps liner-mass redistribution from electrothermal instabilities and also buffers coupling of the drive magnetic field to the magneto-Rayleigh-Taylor instability. A dielectric-coated and axially premagnetized beryllium liner was radiographed at a convergence ratio [CR=Rin,0/Rin(z,t)] of 20, which is the highest CR ever directly observed for a strengthless magnetically driven liner. Lastly, the inner-wall radius Rin(z,t) displayed unprecedented uniformity, varying from 95 to 130 μm over the 4.0 mm axial height captured by the radiograph.

  15. Experimental Demonstration of the Stabilizing Effect of Dielectric Coatings on Magnetically Accelerated Imploding Metallic Liners

    NASA Astrophysics Data System (ADS)

    Awe, T. J.; Peterson, K. J.; Yu, E. P.; McBride, R. D.; Sinars, D. B.; Gomez, M. R.; Jennings, C. A.; Martin, M. R.; Rosenthal, S. E.; Schroen, D. G.; Sefkow, A. B.; Slutz, S. A.; Tomlinson, K.; Vesey, R. A.

    2016-02-01

    Enhanced implosion stability has been experimentally demonstrated for magnetically accelerated liners that are coated with 70 μ m of dielectric. The dielectric tamps liner-mass redistribution from electrothermal instabilities and also buffers coupling of the drive magnetic field to the magneto-Rayleigh-Taylor instability. A dielectric-coated and axially premagnetized beryllium liner was radiographed at a convergence ratio [CR =Rin,0/Rin(z ,t ) ] of 20, which is the highest CR ever directly observed for a strengthless magnetically driven liner. The inner-wall radius Rin(z ,t ) displayed unprecedented uniformity, varying from 95 to 130 μ m over the 4.0 mm axial height captured by the radiograph.

  16. Experimental Demonstration of the Stabilizing Effect of Dielectric Coatings on Magnetically Accelerated Imploding Metallic Liners.

    PubMed

    Awe, T J; Peterson, K J; Yu, E P; McBride, R D; Sinars, D B; Gomez, M R; Jennings, C A; Martin, M R; Rosenthal, S E; Schroen, D G; Sefkow, A B; Slutz, S A; Tomlinson, K; Vesey, R A

    2016-02-12

    Enhanced implosion stability has been experimentally demonstrated for magnetically accelerated liners that are coated with 70  μm of dielectric. The dielectric tamps liner-mass redistribution from electrothermal instabilities and also buffers coupling of the drive magnetic field to the magneto-Rayleigh-Taylor instability. A dielectric-coated and axially premagnetized beryllium liner was radiographed at a convergence ratio [CR=Rin,0/Rin(z,t)] of 20, which is the highest CR ever directly observed for a strengthless magnetically driven liner. The inner-wall radius Rin(z,t) displayed unprecedented uniformity, varying from 95 to 130  μm over the 4.0 mm axial height captured by the radiograph. PMID:26918996

  17. Simulating the effects of timing and energy stability in a laser wakefield accelerator with external injection

    SciTech Connect

    Dijk, W. van; Corstens, J. M.; Stragier, X. F. D.; Brussaard, G. J. H.; Geer, S. B. van der

    2009-01-22

    One of the most compelling reasons to use external injection of electrons into a laser wakefield accelerator is to improve the stability and reproducibility of the accelerated electrons. We have built a simulation tool based on particle tracking to investigate the expected output parameters. Specifically, we are simulating the variations in energy and bunch charge under the influence of variations in laser power and timing jitter. In these simulations a a{sub 0} = 0.32 to a{sub 0} = 1.02 laser pulse with 10% shot-to-shot energy fluctuation is focused into a plasma waveguide with a density of 1.0x10{sup 24} m{sup -3} and a calculated matched spot size of 50.2 {mu}m. The timing of the injected electron bunch with respect to the laser pulse is varied from up to 1 ps from the standard timing (1 ps ahead or behind the laser pulse, depending on the regime). The simulation method and first results will be presented. Shortcomings and possible extensions to the model will be discussed.

  18. Coupler Studies for PBG Fiber Accelerators

    SciTech Connect

    England, J.; Ng, C.; Noble, R.; Spencer, J.; Wu, Z.; Xu, D.; /SLAC

    2011-08-17

    Photonic band gap (PBG) fiber with hollow core defects are being designed and fabricated for use as laser driven accelerators because they can provide gradients of several GeV/m for picosecond pulse lengths. We expect to produce fiber down to {lambda} = 1.5-2.0 {micro}m wavelengths but still lack a viable means for efficient coupling of laser power into such structures due to the very different character of the TM-like modes from those used in the telecom field and the fact that the defect must function as both a longitudinal waveguide for the accelerating field and a transport channel for the particles. We discuss the status of our work in pursuing both end and side coupling. For both options, the symmetry of these crystals leads to significant differences with the telecom field. Side coupling provides more options and appears to be preferred. Our goals are to test gradients, mode content and coupling efficiencies on the NLCTA at SLAC. While there are many potential types of fiber based on very different fabrication methods and materials we will concentrate on 2D axisymmetric glass with hexagonal symmetry but will discuss several different geometries including 2D and 3D planar structures. Since all of these can be fabricated using modern techniques with a variety of dielectric materials they are expected to have desirable optical and radiation hardness properties. Thus, we expect a new generation of very high gradient accelerators that extends the Livingston-Panofsky chart of exponential growth in energy vs. time at greatly reduced costs. For illustration, Fig.1 shows a simulation of our first engineered fiber with an accelerating mode expected near 7.3 {micro}m that is now ready to test on the NLCTA. In this example, one sees the uniform longitudinal accelerating field in the central defect as first shown by Lin3 together with a hexagonal array of surrounding hot spots. Contrary to what one expects from the telecom field, Ng et al. have shown4 that the ideal end

  19. Current-driven plasma acceleration versus current-driven energy dissipation. I - Wave stability theory

    NASA Technical Reports Server (NTRS)

    Kelly, A. J.; Jahn, R. G.; Choueiri, E. Y.

    1990-01-01

    The dominant unstable electrostatic wave modes of an electromagnetically accelerated plasma are investigated. The study is the first part of a three-phase program aimed at characterizing the current-driven turbulent dissipation degrading the efficiency of Lorentz force plasma accelerators such as the MPD thruster. The analysis uses a kinetic theory that includes magnetic and thermal effects as well as those of an electron current transverse to the magnetic field and collisions, thus combining all the features of previous models. Analytical and numerical solutions allow a detailed description of threshold criteria, finite growth behavior, destabilization mechanisms and maximized-growth characteristics of the dominant unstable modes. The lower hybrid current-driven instability is implicated as dominant and was found to preserve its character in the collisional plasma regime.

  20. A new slit stabilization system for the beam energy at the Bucharest tandem Van de Graaff accelerator

    NASA Astrophysics Data System (ADS)

    Moşu, D. V.; Ghiţă, D. G.; Dobrescu, S.; Sava, T.; Mitu, I. O.; Călinescu, I. C.; Naghel, G.; Dumitru, G.; Căta-Danil, Gh.

    2012-11-01

    Recent work has been undertaken to renew the stabilization system for the beam energy at the Bucharest Tandem Accelerator. In the present paper the mechatronic design of the new system is presented and the running consistency of the new electronic circuits is shown. The experimental tests have shown that the new system has improved the quality of the accelerated beams in terms of stability and energy resolution, especially at lower accelerating voltages. As a result of the present development we show an improvement with 20% for the peak to peak medium value of the high voltage ripple on the terminal. This improvement also allowed to lower the minimum stable voltage on the terminal from 1.5 MV to 0.8 MV.

  1. Axisymmetric Tandem Mirrors: Stabilization and Confinement Studies

    SciTech Connect

    Post, R F; Fowler, T K; Bulmer, R; Byers, J; Hua, D; Tung, L

    2004-07-15

    The 'Kinetic Stabilizer' has been proposed as a means of MHD stabilizing an axisymmetric tandem mirror system. The K-S concept is based on theoretical studies by Ryutov, confirmed experimentally in the Gas Dynamic Trap experiment in Novosibirsk. In the K-S beams of ions are directed into the end of an 'expander' region outside the outer mirror of a tandem mirror. These ions, slowed, stagnated, and reflected as they move up the magnetic gradient, produce a low-density stabilizing plasma. At the Lawrence Livermore National Laboratory we have been conducting theoretical and computational studies of the K-S Tandem Mirror. These studies have employed a low-beta code written especially to analyze the beam injection/stabilization process, and a new code SYMTRAN (by Hua and Fowler) that solves the coupled radial and axial particle and energy transport in a K-S TM. Also, a 'legacy' MHD stability code, FLORA, has been upgraded and employed to benchmark the injection/stabilization code and to extend its results to high beta values. The FLORA code studies so far have confirmed the effectiveness of the K-S in stabilizing high-beta (40%) plasmas with stabilizer plasmas the peak pressures of which are several orders of magnitude smaller than those of the confined plasma. Also the SYMTRAN code has shown D-T plasma ignition from alpha particle energy deposition in T-M regimes with strong end plugging. Our studies have confirmed the viability of the K-S-T-M concept with respect to MHD stability and radial and axial confinement. We are continuing these studies in order to optimize the parameters and to examine means for the stabilization of possible residual instability modes, such as drift modes and 'trapped-particle' modes. These modes may in principle be controlled by tailoring the stabilizer plasma distribution and/or the radial potential distribution. In the paper the results to date of our studies are summarized and projected to scope out possible fusion-power versions of the K

  2. Axisymmetric Tandem Mirrors: Stabilization and Confinement Studies

    SciTech Connect

    Post, R.F.; Fowler, T.K.; Bulmer, R.; Byers, J.; Hua, D.; Tung, L.

    2005-01-15

    The 'Kinetic Stabilizer' has been proposed as a means of MHD stabilizing an axisymmetric tandem mirror system. The K-S concept is based on theoretical studies by Ryutov, confirmed experimentally in the Gas Dynamic Trap experiment in Novosibirsk. In the K-S beams of ions are directed into the end of an 'expander' region outside the outer mirror of a tandem mirror. These ions, slowed, stagnated, and reflected as they move up the magnetic gradient, produce a low-density stabilizing plasma.At the Lawrence Livermore National Laboratory we have been conducting theoretical and computational studies of the K-S Tandem Mirror. These studies have employed a low-beta code written especially to analyze the beam injection/stabilization process,and a new code SYMTRAN (by Hua and Fowler)that solves the coupled radial and axial particle and energy transport in a K-S T-M. Also, a 'legacy' MHD stability code, FLORA, has been upgraded and employed to benchmark the injection/stabilization code and to extend its results to high beta values.The FLORA code studies so far have confirmed the effectiveness of the K-S in stabilizing high-beta (40%) plasmas with stabilizer plasmas the peak pressures of which are several orders of magnitude smaller than those of the confined plasma.Also the SYMTRAN code has shown D-T plasma ignition from alpha particle energy deposition in T-M regimes with strong end plugging.Our studies have confirmed the viability of the K-S T-M concept with respect to MHD stability and radial and axial confinement. We are continuing these studies in order to optimize the parameters and to examine means for the stabilization of possible residual instability modes, such as drift modes and 'trapped-particle' modes. These modes may in principle be controlled by tailoring the stabilizer plasma distribution and/or the radial potential distribution.In the paper the results to date of our studies are summarized and projected to scope out possible fusion-power versions of the K-S T-M.

  3. Influence of Different Types of Resin Luting Agents on Color Stability of Ceramic Laminate Veneers Subjected to Accelerated Artificial Aging.

    PubMed

    Silami, Francisca Daniele Jardilino; Tonani, Rafaella; Alandia-Román, Carla Cecilia; Pires-de-Souza, Fernanda de Carvalho Panzeri

    2016-01-01

    The aim of this study was to evaluate the influence of accelerated aging (AAA) on the color stability of resin cements for bonding ceramic laminate veneers of different thicknesses. The occlusal surfaces of 80 healthy human molars were flattened. Ceramic laminate veneers (IPS e-max Ceram) of two thicknesses (0.5 and 1.0 mm) were bonded with three types of luting agents: light-cured, conventional dual and self-adhesive dual cement. Teeth without restorations and cement samples (0.5 mm) were used as control. After initial color evaluations, the samples were subjected to AAA for 580 h. After this, new color readouts were made, and the color stability (ΔE) and luminosity (ΔL) data were analyzed. The greatest color changes (p<0.05) occurred when 0.5 mm veneers were fixed with light-cured cement and the lowest when 1.0 mm veneers were fixed with conventional dual cement. There was no influence of the restoration thickness when the self-adhesive dual cement was used. When veneers were compared with the control groups, it was verified that the cement samples presented the greatest alterations (p<0.05) in comparison with both substrates and restored teeth. Therefore, it was concluded that the thickness of the restoration influences color and luminosity changes for conventional dual and light-cured cements. The changes in self-adhesive cement do not depend on restoration thickness. PMID:27007354

  4. COMBINED STEREO/RHESSI STUDY OF CORONAL MASS EJECTION ACCELERATION AND PARTICLE ACCELERATION IN SOLAR FLARES

    SciTech Connect

    Temmer, M.; Veronig, A. M.; Krucker, S.; Vrsnak, B. E-mail: asv@igam.uni-graz.a E-mail: krucker@ssl.berkeley.ed

    2010-04-01

    Using the potential of two unprecedented missions, Solar Terrestrial Relations Observatory (STEREO) and Reuven Ramaty High-Energy Solar Spectroscopic Imager (RHESSI), we study three well-observed fast coronal mass ejections (CMEs) that occurred close to the limb together with their associated high-energy flare emissions in terms of RHESSI hard X-ray (HXR) spectra and flux evolution. From STEREO/EUVI and STEREO/COR1 data, the full CME kinematics of the impulsive acceleration phase up to {approx}4 R{sub sun} is measured with a high time cadence of <=2.5 minutes. For deriving CME velocity and acceleration, we apply and test a new algorithm based on regularization methods. The CME maximum acceleration is achieved at heights h <= 0.4 R{sub sun}, and the peak velocity at h <= 2.1 R{sub sun} (in one case, as small as 0.5 R{sub sun}). We find that the CME acceleration profile and the flare energy release as evidenced in the RHESSI HXR flux evolve in a synchronized manner. These results support the 'standard' flare/CME model which is characterized by a feedback relationship between the large-scale CME acceleration process and the energy release in the associated flare.

  5. Comparative Study of Vibration Stability at Operating Light Source Facilities and Lessons Learned in Achieving NSLS II Stability Goals

    SciTech Connect

    Simos,N.; Fallier, M.; Amick, H.

    2008-06-23

    In an effort to ensure that the stability goals of the NSLS II will be met once the accelerator structure is set on the selected BNL site a comprehensive evaluation of the ground vibration observed at existing light source facilities has been undertaken. The study has relied on measurement data collected and reported by the operating facilities as well as on new data collected in the course of this study. The primary goal of this comprehensive effort is to compare the green-field conditions that exist in the various sites both in terms of amplitude as well as frequency content and quantify the effect of the interaction of these accelerator facilities with the green-field vibration. The latter represents the ultimate goal of this effort where the anticipated motion of the NSLS II ring is estimated prior to its construction and compared with the required stability criteria.

  6. A study of accelerated radiation damage effects in PuO2 and gadolinia-stabilized cubic zirconia, Zr0.79Gd0.14Pu0.07O1.93, doped with 238Pu

    NASA Astrophysics Data System (ADS)

    Burakov, B. E.; Yagovkina, M. A.

    2015-12-01

    Polycrystalline samples of cubic zirconia, Zr0.79Gd0.14Pu0.07O1.93, doped with approximately 9.9 wt.% 238Pu, and PuO2 containing 11.0 wt. % 238Pu (and main isotope is 239Pu) have been repeatedly studied during many years by X-ray diffraction analysis. At a temperature of 25 °C the unit-cell parameter of PuO2 increases depending on accumulated dose, and is accompanied by decrease of coherent scattering region (CSR). Self-irradiation of Zr0.79Gd0.14Pu0.07O1.93 is accompanied with repeated change of unit-cell parameter and CSR.

  7. DC/DC Converter Stability Testing Study

    NASA Technical Reports Server (NTRS)

    Wang, Bright L.

    2008-01-01

    This report presents study results on hybrid DC/DC converter stability testing methods. An input impedance measurement method and a gain/phase margin measurement method were evaluated to be effective to determine front-end oscillation and feedback loop oscillation. In particular, certain channel power levels of converter input noises have been found to have high degree correlation with the gain/phase margins. It becomes a potential new method to evaluate stability levels of all type of DC/DC converters by utilizing the spectral analysis on converter input noises.

  8. Flux pinning and stabilizer studies. Final report

    SciTech Connect

    Collings, E.W.

    1994-11-29

    A synopsis of the results of the flux-pinning and stabilizer studies that form the central theme of the subject contract is followed by a list of papers that were published during the period August 28, 1986 to November 31, 1992.

  9. Endotoxin Studies And Biosolids Stabilization Research

    EPA Science Inventory

    This presentation has three parts; a review of bench-scale endotoxin research, a review of observations from a field scale endotoxin release study, and discussion of biosolids stabilization and characterization by PLFA/FAME microbial community analysis. Endotoxins are part of th...

  10. International scoping study: accelerator working group report

    SciTech Connect

    Zisman, Michael; Zisman, M.S.

    2006-09-30

    During the past several years, an International Scoping Study (ISS) of a Neutrino Factory was carried out, with the aim of developing an internationally accepted baseline facility design. Progress toward that goal will be described. Many of the key technical aspects of a Neutrino Factory facility design are presently being investigated experimentally, and the status of these investigations will be mentioned. Plans for the recently launched International Design Study (IDS), which serves as a follow-on to the ISS, will be briefly described.

  11. Physicochemical investigations and stability studies of amorphous gliclazide.

    PubMed

    Jondhale, Shital; Bhise, Satish; Pore, Yogesh

    2012-06-01

    Gliclazide (GLI), a poorly water-soluble antidiabetic, was transformed into a glassy state by melt quench technique in order to improve its physicochemical properties. Chemical stability of GLI during formation of glass was assessed by monitoring thin-layer chromatography, and an existence of amorphous form was confirmed by differential scanning calorimetry and X-ray powder diffractometry. The glass transition occurred at 67.5°C. The amorphous material thus generated was examined for its in vitro dissolution performance in phosphate buffer (pH 6.8). Surprisingly, amorphous GLI did not perform well and was unable to improve the dissolution characteristics compared to pure drug over entire period of dissolution studies. These unexpected results might be due to the formation of a cohesive supercooled liquid state and structural relaxation of amorphous form toward the supercooled liquid region which indicated functional inability of amorphous GLI from stability point of view. Hence, stabilization of amorphous GLI was attempted by elevation of T(g) via formation of solid dispersion systems involving comprehensive antiplasticizing as well as surface adsorption mechanisms. The binary and ternary amorphous dispersions prepared with polyvinylpyrrolidone K30 (as antiplasticizer for elevation of T (g)) and Aerosil 200® and/or Sylysia® 350 (as adsorbent) in the ratio of 1:1:1 (w/w) using kneading and spray-drying techniques demonstrated significant enhancement in rate and extent of dissolution of drug initially. During accelerated stability studies, ternary systems showed no significant reduction in drug dissolution performance over a period of 3 months indicating excellent stabilization of amorphous GLI. PMID:22382730

  12. Stability studies of Solar Optical Telescope dynamics

    NASA Technical Reports Server (NTRS)

    Gullapalli, Sarma N.; Pal, Parimal K.; Ruthven, Gregory P.

    1987-01-01

    The Solar Optical Telescope (SOT) is designed to operate as an attached payload mounted on the Instrument Pointing System (IPS) in the cargo bay of the Shuttle Orbiter. Pointing and control of SOT is accomplished by an active Articulated Primary Mirror (APM), an active Tertiary Mirror (TM), an elaborate set of optical sensors, electromechanical actuators and programmable controllers. The structural interactions of this complex control system are significant factors in the stability of the SOT. The preliminary stability study results of the SOT dynamical system are presented. Structural transfer functions obtained from the NASTRAN model of the structure were used. These studies apply to a single degree of freedom (elevation). Fully integrated model studies will be conducted in the future.

  13. The World of Wonder Accelerated Learning Community: A Case Study.

    ERIC Educational Resources Information Center

    Biddle, Julie K.

    This report presents a case study of the World of Wonders Accelerated Learning Community School (WOW). A community school in Ohio is a new kind of public school-an independent public school that is nonsectarian and nondiscriminatory. The report presents three contexts for the study--historical, local and methodological--and highlights some of the…

  14. Field quality study in Nb(3)Sn accelerator magnets

    SciTech Connect

    Kashikhin, V.V.; Ambrosio, G.; Andreev, N.; Barzi, E.; Bossert, R.; DiMarco, J.; Kashikhin, V.S.; Lamm, M.; Novitski, I.; Schlabach, P.; Velev, G.; Yamada, R.; Zlobin, A.V.; /Fermilab

    2005-05-01

    Four nearly identical Nb{sub 3}Sn dipole models of the same design were built and tested at Fermilab. It provided a unique opportunity of systematic study the field quality effects in Nb{sub 3}Sn accelerator magnets. The results of these studies are reported in the paper.

  15. Study of electron acceleration and x-ray radiation as a function of plasma density in capillary-guided laser wakefield accelerators

    SciTech Connect

    Ju, J.; Döpp, A.; Cros, B.; Svensson, K.; Genoud, G.; Wojda, F.; Burza, M.; Persson, A.; Lundh, O.; Wahlström, C.-G.; Ferrari, H.

    2013-08-15

    Laser wakefield electron acceleration in the blow-out regime and the associated betatron X-ray radiation were investigated experimentally as a function of the plasma density in a configuration where the laser is guided. Dielectric capillary tubes were employed to assist the laser keeping self-focused over a long distance by collecting the laser energy around its central focal spot. With a 40 fs, 16 TW pulsed laser, electron bunches with tens of pC charge were measured to be accelerated to an energy up to 300 MeV, accompanied by X-ray emission with a peak brightness of the order of 10{sup 21} ph/s/mm{sup 2}/mrad{sup 2}/0.1%BW. Electron trapping and acceleration were studied using the emitted X-ray beam distribution to map the acceleration process; the number of betatron oscillations performed by the electrons was inferred from the correlation between measured X-ray fluence and beam charge. A study of the stability of electron and X-ray generation suggests that the fluctuation of X-ray emission can be reduced by stabilizing the beam charge. The experimental results are in good agreement with 3D particle-in-cell (PIC) simulation.

  16. Bleaching Agent Action on Color Stability, Surface Roughness and Microhardness of Composites Submitted to Accelerated Artificial Aging

    PubMed Central

    Rattacaso, Raphael Mendes Bezerra; da Fonseca Roberti Garcia, Lucas; Aguilar, Fabiano Gamero; Consani, Simonides; de Carvalho Panzeri Pires-de-Souza, Fernanda

    2011-01-01

    Objectives: The purpose of this study was to evaluate the bleaching agent action on color stability, surface roughness and microhardness of composites (Charisma, Filtek Supreme and Heliomolar - A2) submitted to accelerated artificial aging (AAA). Methods: A Teflon matrix (12 x 2 mm) was used to fabricate 18 specimens (n=6) which, after polishing (Sof-Lex), were submitted to initial color reading (ΔE), Knoop microhardness (KHN) (50 g/15 s load) and roughness (Ra) (cut-off 0.25 mm) tests. Afterwards, the samples were submitted to AAA for 384 hours and new color, microhardness and roughness readings were performed. After this, the samples were submitted to daily application (4 weeks) of 16% Carbamide Peroxide (NiteWhite ACP) for 8 hours and kept in artificial saliva for 16 hours. New color, microhardness and roughness readings were made at the end of the cycle, and 15 days after bleaching. Results: Comparison of the ΔE means (2-way ANOVA, Bonferroni, P<.05) indicated clinically unacceptable color alteration for all composites after AAA, but without significant difference. Statistically significant increase in the KHN values after AAA was observed, but without significant alterations 15 days after bleaching. For Ra there was no statistically significant difference after AAA and 15 days after bleaching. Conclusions: The alterations promoted by the bleaching agent and AAA are material dependent. PMID:21494380

  17. Transverse emittance studies of an induction accelerator of heavy ions

    SciTech Connect

    Garvey, T.; Eylon, S.; Fessenden, T.J.; Hahn, K.; Henestroza, E.

    1991-04-01

    Current amplification of heavy ion beams is an integral feature of the induction linac approach to heavy ion fusion. As part of the Heavy Ion Fusion Accelerator Research program at LBL we have been studying the evolution of the transverse emittance of ion beams while they are undergoing current amplification, achieved by longitudinal bunch compression and acceleration. Experiments are conducted on MBE-4, a four beam Cs{sup +} induction linac. The space-charge dominated beams of MBE-4 are focused by electrostatic quadrupoles while they are accelerated from nominally 200 keV up to {approximately} 1 MeV by 24 accelerating gaps. Initially the beams have currents of typically 4 mA to 10 mA per beam. Early experimental results showed a growth of the normalized emittance by a factor of 2 while the beam current was amplified by up to 9 times its initial value. We will discuss the results of recent experiments in which a mild bunch length compression rate, more typical of that required by a fusion driver, has shown that the normalized emittance can be maintained at its injection value (0.03 mm-mr) during acceleration. 4 refs., 4 figs., 1 tab.

  18. A STUDY OF POLARIZED PROTON ACCELERATION IN J-PARC.

    SciTech Connect

    LUCCIO, A.U.; BAI, M.; ROSER, T.

    2006-10-02

    We have studied the feasibility of polarized proton acceleration in rhe J-PARC accelerator facility, consisting of a 400 MeV linac, a 3 GeV rapid cycling synchrotron (RCS) and a 50 GeV synchrotron (MR). We show how the polarization of the beam can be preserved using an rf dipole in the RCS and two superconductive partial helical Siberian snakes in the MR. The lattice of the MR will be modified with the addition of quadrupoles to compensate for the focusing properties of the snakes.

  19. A Study of Polarized Proton Acceleration in J-PARC

    SciTech Connect

    Luccio, A. U.; Bai, M.; Roser, T.; Molodojentsev, A.; Ohmori, C.; Sato, H.; Hatanaka, K.

    2007-06-13

    We have studied the feasibility of polarized proton acceleration in rhe J-PARC accelerator facility, consisting of a 400 MeV linac, a 3 GeV rapid cycling synchrotron (RCS) and a 50 GeV synchrotron (MR). We show how the polarization of the beam can be preserved using an rf dipole in the RCS and two superconductve partial helical Siberian snakes in the MR. The lattice of the MR will be modified with the addition of quadrupoles to compensate for the focusing properties of the snakes.

  20. A study on task difficulty and acceleration stress

    NASA Technical Reports Server (NTRS)

    Repperger, D. W.; Rogers, D. B.

    1981-01-01

    The results of two experiments which relate to task difficulty and the effects of environmental stress on tracking performance are discussed and compared to subjective evaluations. The first experiment involved five different sum of sine tracking tasks which humans tracked both in a static condition and under a 5 Gz acceleration stress condition. The second experiment involved similar environmental stress conditions but in this case the tasks were constructed from deterministic functions with specially designed velocity and acceleration profiles. Phase Plane performance analysis was conducted to study potential measures of workload or tracking difficulty.

  1. Diagnostics for studies of novel laser ion acceleration mechanisms

    SciTech Connect

    Senje, Lovisa; Aurand, Bastian; Wahlström, Claes-Göran; Yeung, Mark; Kuschel, Stephan; Rödel, Christian; Wagner, Florian; Roth, Markus; Li, Kun; Neumayer, Paul; Dromey, Brendan; Jung, Daniel; Bagnoud, Vincent; Zepf, Matthew; Kuehl, Thomas

    2014-11-15

    Diagnostic for investigating and distinguishing different laser ion acceleration mechanisms has been developed and successfully tested. An ion separation wide angle spectrometer can simultaneously investigate three important aspects of the laser plasma interaction: (1) acquire angularly resolved energy spectra for two ion species, (2) obtain ion energy spectra for multiple species, separated according to their charge to mass ratio, along selected axes, and (3) collect laser radiation reflected from and transmitted through the target and propagating in the same direction as the ion beam. Thus, the presented diagnostic constitutes a highly adaptable tool for accurately studying novel acceleration mechanisms in terms of their angular energy distribution, conversion efficiency, and plasma density evolution.

  2. Study of accelerator neutrino detection at a spallation source

    NASA Astrophysics Data System (ADS)

    Huang, Ming-Yang

    2016-06-01

    We study the detection of accelerator neutrinos produced at the China Spallation Neutron Source (CSNS). Using the code FLUKA, we have simulated the production of neutrinos in a proton beam on a tungsten target and obtained the yield efficiency, numerical flux, and average energy of different flavors of neutrinos. Furthermore, detection of these accelerator neutrinos is investigated in two reaction channels: neutrino-electron reactions and neutrino-carbon reactions. The expected numbers of different flavors of neutrinos have also been calculated. Supported by National Natural Science Foundation of China (11205185, 11175020)

  3. An Experimental Study of Laminarization Induced by Acceleration and Curvature

    NASA Astrophysics Data System (ADS)

    Jackson, R. Brian

    The Generation IV Very High Temperature Reactor (VHTR) design is being actively studied in various countries for application due to its inherent passive safe design, higher thermal efficiencies, and proposed capability of providing high temperature process heat. The pebble bed core is one of two core designs used in gas reactors. In the pebble bed core there are mechanisms present which can cause the flow to laminarize, thus reducing its heat transfer effectiveness. Wind tunnel experiments were conducted using Particle Image Velocimetry (PIV) to investigate boundary layer laminarization due to flow acceleration and convex curvature effects. The flow was subject to acceleration and curvature both separately and together and the flow behavior characterized with velocity flow profiles, mean boundary layer parameters, and turbulence quantities. Laminarization was identified and the influence of acceleration and curvature was characterized.

  4. Target Material Irradiation Studies for High-Intensity Accelerator Beams

    SciTech Connect

    Simos, N.; Kirk, H.; Ludewig, H.; Thieberger, P.; Weng, W.T.; McDonald, K.; Sheppard, J.; Evangelakis, G.; Yoshimura, K.; /KEK, Tsukuba

    2005-08-16

    This paper presents results of recent experimental studies focusing on the behavior of special materials and composites under irradiation conditions and their potential use as accelerator targets. The paper also discusses the approach and goals of on-going investigations on an expanded material matrix geared toward the neutrino superbeam and muon collider initiatives.

  5. Observational Study on Initiation and Acceleration of Coronal Mass Ejections

    NASA Technical Reports Server (NTRS)

    Zhang, Jie

    2005-01-01

    During the performance period, we have successfully carried out all the tasks and fulfilled all the scientific objectives outlined in the proposal, which are about building a C1 Ch4E catalog and studying CME accelerations in both inner and outer corona.

  6. Vacuum Insulator Studies for the Dielectric Wall Accelerator

    SciTech Connect

    Harris, J R; Chen, Y J; Blackfield, D; Sanders, D M; Caporaso, G J; Krogh, M

    2007-06-11

    As part of our ongoing development of the Dielectric Wall Accelerator, we are studying the performance of multilayer high-gradient insulators. These vacuum insulating structures are composed of thin, alternating layers of metal and dielectric, and have been shown to withstand higher gradients than conventional vacuum insulator materials. This paper describes these structures and presents some of our recent results.

  7. Nike Experiments on Acceleration of Planar Targets Stabilized with a Short Spike Pulse^1

    NASA Astrophysics Data System (ADS)

    Weaver, J. L.; Velikovich, A. L.; Metzler, N.; Aglitskiy, Y.; Oh, J.; Mostovych, A. N.; Gardner, J. H.

    2005-10-01

    Theoretical work has shown that a low energy spike pulse in front of the drive laser pulse can help mitigate the growth of hydrodynamic instabilities in targets for inertial confinement fusion.[1]^ While other experiments [2] used higher spike pulse energies, this study reports the influence of a lower energy spike and longer spike-main pulse delay on the acceleration of planar CH targets. Time evolution of preimposed sinusoidal ripples on the target surface was observed using a monochromatic x-ray imaging system. Delayed onset and/or suppression of mode growth was found for the spike prepulse shots compared to those with a low intensity foot, in good agreement with predictions from FAST2D simulations. The propagation velocity of the decaying shock wave from the spike pulse was measured with VISAR and was also in good agreement with an analytical prediction.[3] [1] Metzler et al., Phys. Plasmas 6, 3283 (1999); 9, 5050 (2002); 10, 1897 (2003);Goncharov et al., Phys. Plasmas 10, 1906 (2003) ;Betti et al., Phys Plamas 12, 042703 (2005) ;[2]Knauer et al., Phys. Plasmas 12, 056306 (2005) ; [3]Velikovich et al., Phys. Plasmas 10, 3270 (2003). ^1Work supported by U. S. Department of Energy

  8. Stability of bellows used as expansion joints between superconducting magnets in accelerators

    SciTech Connect

    Shutt, R.P.; Rehak, M.L.

    1991-01-01

    For superconducting magnets, one needs many bellows for connection of various helium cooling transfer lines. There could be approximately 20,000 magnet interconnection bellows in the SSC exposed to an internal pressure. When axially compressed, internally pressurized, or insufficiently supported at their ends, bellows can become unstable, leading to gross distortion or complete failure. If several bellows are contained in a magnet assembly, failure modes might interact. If designed properly large bellows can be used to connect the large tubular shells that support the magnet iron yokes and superconducting coils and contain supercritical helium for magnet cooling. We investigate here bellows design features and end supports to insure that instabilities will not occur in the bellows pressure operating region, including some margin. A model of three superconducting accelerator magnets connected by two large bellows is analyzed in order to ascertain that support requirements are satisfied and in order to study interaction effects between the two bellows. Specific details of large and small bellows design and reliability for our application will be addressed.

  9. Picosecond flash spectroscopic studies on ultraviolet stabilizers and stabilized polymers

    NASA Technical Reports Server (NTRS)

    Scott, G. W.

    1982-01-01

    Spectroscopic and excited state decay kinetics are reported for monomeric and polymeric forms of ultraviolet stabilizers in the 2-(2'-hydroxyphenyl)-benzotriazole and 2-hydroxybenzophenone classes. For some of these molecules in various solvents at room temperature, (1) ground state absorption spectra, (2) emission spectra, (3) picosecond time-resolved transient absorption spectra, (4) ground state absorption recovery kinetics, (5) emission kinetics, and (6) transient absorption kinetics are reported. In the solid state at low temperatures, emission spectra and their temperature dependent kinetics up to approximately 200K as well as, in one case, the 12K excitation spectra of the observed dual emission are also reported.

  10. Traditional and accelerated Ponseti technique: a comparative study.

    PubMed

    Elgohary, Hatem S A; Abulsaad, Mazen

    2015-07-01

    The purpose of this study was to compare the results of traditional and accelerated Ponseti techniques to clarify whether this technique can be done safely in reduced time with complete correction of the deformity and without complications. A total of 66 feet in 41 children with idiopathic club foot and with Pirani score no <4 were included; of these, 34 feet in 20 children were managed with the traditional Ponseti method with one cast a week, in the other 32 feet in 21 children, an accelerated technique was used with casting twice a week, and the Pirani score was used for initial assessment and for follow-up. The results were comparable for both groups; the mean number of casts for full correction was 4.88 ± 0.88 in the traditional group and 5.16 ± 0.72 in the accelerated group. Initial correction was obtained in all cases in both groups, and relapses were observed in 14.7 % in the traditional group and in 15.6 % in the accelerated group. Deformities required from four to seven casts for correction in both groups. There was a statistically significant reduction in the mean time required for correction from onset of manipulation till tenotomy or correction of equines without tenotomy which was 33.36 ± 6.69 days (21-42 days) in the traditional Ponseti group and 18.13 ± 3.02 days (11-22 days) in accelerated Ponseti (P = 0.001). Accelerated Ponseti technique significantly reduces the correction time without affecting the final results; it is quite as safe and effective as the traditional Ponseti. PMID:25633123

  11. The analytic model of a laser-accelerated plasma target and its stability

    SciTech Connect

    Khudik, V. Yi, S. A.; Siemon, C.; Shvets, G.

    2014-01-15

    A self-consistent kinetic theory of a laser-accelerated plasma target with distributed electron/ion densities is developed. The simplified model assumes that after an initial transition period the bulk of cold ions are uniformly accelerated by the self-consistent electric field generated by hot electrons trapped in combined ponderomotive and electrostatic potentials. Several distinct target regions (non-neutral ion tail, non-neutral electron sheath, and neutral plasma bulk) are identified and analytically described. It is shown analytically that such laser-accelerated finite-thickness target is susceptible to Rayleigh-Taylor (RT) instability. Particle-in-cell simulations of the seeded perturbations of the plasma target reveal that, for ultra-relativistic laser intensities, the growth rate of the RT instability is depressed from the analytic estimates.

  12. Tune-stabilized, non-scaling, fixed-field, alternating gradient accelerator

    DOEpatents

    Johnstone, Carol J.

    2011-02-01

    A FFAG is a particle accelerator having turning magnets with a linear field gradient for confinement and a large edge angle to compensate for acceleration. FODO cells contain focus magnets and defocus magnets that are specified by a number of parameters. A set of seven equations, called the FFAG equations relate the parameters to one another. A set of constraints, call the FFAG constraints, constrain the FFAG equations. Selecting a few parameters, such as injection momentum, extraction momentum, and drift distance reduces the number of unknown parameters to seven. Seven equations with seven unknowns can be solved to yield the values for all the parameters and to thereby fully specify a FFAG.

  13. Experimental studies of plasma wake-field acceleration and focusing

    SciTech Connect

    Rosenzweig, J.B.; Cole, B.; Ho, C.; Gai, W.; Konecny, R.; Mtingwa, S.; Norem, J.; Rosing, M.; Schoessow, P.; Simpson, J.

    1989-07-18

    More than four years after the initial proposal of the Plasma Wake-field Accelerator (PWFA), it continues to be the object of much investigation, due to the promise of the ultra-high accelerating gradients that can exist in relativistic plasma waves driven in the wake of charged particle beams. These large amplitude plasma wake-fields are of interest in the laboratory, both for the wealth of basic nonlinear plasma wave phenomena which can be studied, as well as for the applications of acceleration of focusing of electrons and positrons in future linear colliders. Plasma wake-field waves are also of importance in nature, due to their possible role in direct cosmic ray acceleration. The purpose of the present work is to review the recent experimental advances made in PWFA research at Argonne National Laboratory, in which many interesting beam and plasma phenomena have been observed. Emphasis is given to discussion of the nonlinear aspects of the PWFA beam-plasma interaction. 29 refs., 13 figs.

  14. Study and application on accelerated algorithm of ray-casting

    NASA Astrophysics Data System (ADS)

    Sun, Xiaoping; Wu, Jian; Cui, Zhiming; Ma, Jianlin

    2007-12-01

    Medical image 3D reconstruct is an important application filed for volume rendering, for it special using, it required fast interactive speed and high image quality. The ray casting algorithm (RCA) is a widely used basic volume rendering algorithm. It can get high quality image but the rendering speed is very slowly for powerful computing capacity. Due to these shortcomings and deficiencies, the accelerated ray casting algorithm is presented in this paper to improve its rendering speed and apply it to medical image 3D reconstruct. Firstly, accelerate algorithms for ray casting are fully studied and compared. Secondly, improved tri-linear interpolation technology has been selected and extended to continuous ray casting in order to reduce matrix computation by matrix transformation characteristics of re-sampling points. Then ray interval casting technology is used to reduce the number of rays. Utilizing volume data sets cropping technology that improving boundary box technique avoids the sampling in empty voxel. Finally, the synthesized accelerate algorithm has been proposed. The result shown that compare with standard ray casting algorithm, the accelerate algorithm not only improve the rendering speed but also produce the required quality images.

  15. Compensating sampling errors in stabilizing helmet-mounted displays using auxiliary acceleration measurements

    NASA Technical Reports Server (NTRS)

    Merhav, S.; Velger, M.

    1991-01-01

    A method based on complementary filtering is shown to be effective in compensating for the image stabilization error due to sampling delays of HMD position and orientation measurements. These delays would otherwise have prevented the stabilization of the image in HMDs. The method is also shown to improve the resolution of the head orientation measurement, particularly at low frequencies, thus providing smoother head control commands, which are essential for precise head pointing and teleoperation.

  16. Comparative study of acceleration transducers for biomedical applications

    NASA Astrophysics Data System (ADS)

    Buchczik, Dariusz; Wyżgolik, Roman; Pietraszek, Stanisław

    2006-10-01

    The results of comparative studies of the metrological parameters of acceleration transducers constructed in Institute of Electronics, Silesian University of Technology is presented in this article. The construction of the transducers is based on commercially available monolithic accelerometers and optimized for biomedical applications. The parameters determined during the tests are similar to the parameters of the monolithic accelerometers declared by their manufacturers. It proofs that both the mechanical and the electronic construction of the transducers are correct.

  17. Study on stability of DMS meridian detector.

    PubMed

    Yang, Ning; Huang, Li; Yuan, Jiamin; Zhang, Zhifang; Yang, Zhimin

    2016-05-01

    The stability of meridian detector was the basis to study meridian through conductance method. Ancient documents mentioned that the human body's blood could change with the time and meridians. When qi and blood came, the qi and blood would be full of that place; when qi and blood gone, the local skin shining could fade and recess. It liked the tidal fluctuation, then caused the corresponding acupuncture points conductance value changes. Modern studies had reported that meridian detector instrument the skin area of twelve meridians acupuncture points could change along with time within 24 hours. In this circumstance, whether the conductance values changes in human acupuncture points had statistical significance was vital important. DMS meridian detector instruction was adopt to measure the twelve meridian jingyuan acupuncture point in order to analyze the acupuncture point conductance value changes within one day. PMID:27383493

  18. Evaluation of non-volatile metabolites in beer stored at high temperature and utility as an accelerated method to predict flavour stability.

    PubMed

    Heuberger, Adam L; Broeckling, Corey D; Sedin, Dana; Holbrook, Christian; Barr, Lindsay; Kirkpatrick, Kaylyn; Prenni, Jessica E

    2016-06-01

    Flavour stability is vital to the brewing industry as beer is often stored for an extended time under variable conditions. Developing an accelerated model to evaluate brewing techniques that affect flavour stability is an important area of research. Here, we performed metabolomics on non-volatile compounds in beer stored at 37 °C between 1 and 14 days for two beer types: an amber ale and an India pale ale. The experiment determined high temperature to influence non-volatile metabolites, including the purine 5-methylthioadenosine (5-MTA). In a second experiment, three brewing techniques were evaluated for improved flavour stability: use of antioxidant crowns, chelation of pro-oxidants, and varying plant content in hops. Sensory analysis determined the hop method was associated with improved flavour stability, and this was consistent with reduced 5-MTA at both regular and high temperature storage. Future studies are warranted to understand the influence of 5-MTA on flavour and aging within different beer types. PMID:26830592

  19. First Principles Study of Carbyne Structural Stability

    NASA Astrophysics Data System (ADS)

    Kwon, Kevin; Holmes, Colin; Kim, Ki Chul; Jang, Seung Soon

    Carbyne is composed of linear sp-hybridized carbon bonds and yields promising results to surpass graphene's mechanical and electrical properties. Carbyne has two semi-stable conformations: Polyyne (alternating triple and single bonds) and Polycumulene (repeating double bonds). This study investigated the stability of these forms at infinite chain lengths by using periodic boundary conditions. Geometric optimization was performed via DFT calculations using DMoL3 and PBE GGA functional group. Each configuration's chain was stretched or compressed until the most stable form - lowest energy - was obtained. After comparing the energies, the most stable form alternated between Polyyne and Polycumulene as the number of carbon atoms within each boundary increased. Polyyne was the most stable form for odd number of carbons and Polycumulene was the most stable for even number of carbons. Finally, K-point sampling was increased in the direction of the chain axis to obtain a more accurate depiction of structural stability. As the number of k-points increased, the Polycumulene structure became more stable compared to Polyyne. School of Materials Science and Engineering, Georgia Institute of Technology.

  20. Early Acceleration of Students in Mathematics: Does It Promote Growth and Stability of Growth in Achievement across Mathematical Areas?

    ERIC Educational Resources Information Center

    Ma, Xin

    2005-01-01

    Using data from the Longitudinal Study of American Youth (LSAY), the present study examined whether early acceleration of students into formal algebra at the beginning of middle school promoted evident growth in different mathematical areas (basic skills, algebra, geometry, and quantitative literacy) and stable growth across these mathematical…

  1. International Scoping Study of a Future Accelerator NeutrinoComplex

    SciTech Connect

    Zisman, Michael S.

    2006-06-21

    The International Scoping Study (ISS), launched at NuFact05 to evaluate the physics case for a future neutrino facility, along with options for the accelerator complex and detectors, is laying the foundations for a subsequent conceptual-design study. It is hosted by Rutherford Appleton Laboratory (RAL) and organized by the international community, with participants from Europe, Japan, and the U.S. Here we cover the work of the Accelerator Working Group. For the 4-MW proton driver, linacs, synchrotrons, and Fixed-Field Alternating Gradient (FFAG) rings are considered. For targets, issues of both liquid-metal and solid materials are examined. For beam conditioning, (phase rotation, bunching, and ionization cooling), we evaluate schemes both with and without cooling, the latter based on scaling-FFAG rings. For acceleration, we examine scaling FFAGs and hybrid systems comprising linacs, dogbone RLAs, and non-scaling FFAGs. For the decay ring, we consider racetrack and triangular shapes, the latter capable of simultaneously illuminating two different detectors at different long baselines. Comparisons are made between various technical approaches to identify optimum design choices.

  2. Application of accelerator mass spectrometry in aluminum metabolism studies

    NASA Astrophysics Data System (ADS)

    Meirav, O.; Sutton, R. A. L.; Fink, D.; Middleton, R.; Klein, J.; Walker, V. R.; Halabe, A.; Vetterli, D.; Johnson, R. R.

    1990-12-01

    The recent recognition that aluminum causes toxicity in uremie patients and may be associated with Alzheimer's disease has stimulated many studies of its biochemical effects. However, such studies were hampered by the lack of a suitable tracer. In a novel experiment, we have applied the new technique of accelerator mass spectrometry to investigate aluminum kinetics in rats, using as a marker the long-lived isotope 26Al. We present the first aluminum kinetic model for a biological system. The results clearly demonstrate the advantage this technique holds for isotope tracer studies in animals as well as in humans.

  3. Comparative study of medium damped and detuned linear accelerator structures

    SciTech Connect

    Jean-Francois Ostiguy et al.

    2001-08-22

    Long range wakefields are a serious concern for a future linear collider based on room temperature accelerating structures. They can be suppressed either by detuning and or local damping or with some combination of both strategies. Detuning relies on precisely phasing the contributions of the dipole modes excited by the passage of a single bunch. This is accomplished by controlling individual mode frequencies, a process which dictates individual cell dimensional tolerances. Each mode must be excited with the correct strength; this in turn, determines cell-to-cell alignment tolerances. In contrast, in a locally damped structure, the modes are attenuated at the cell level. Clearly, mode frequencies and relative excitation become less critical in that context; mechanical fabrication tolerances can be relaxed. While local damping is ideal from the stand-point of long range wakefield suppression, this comes at the cost of reducing the shunt impedance and possibly unacceptable localized heating. Recently, the Medium Damped Structure (MDS), a compromise between detuning and local damping, has generated some interest. In this paper, we compare a hypothetical MDS to the NLC Rounded Damped Detuned Structure (RDDS) and investigate possible advantages from the standpoint fabrication tolerances and their relation to beam stability and emittance preservation.

  4. Numerical studies of multipactor in dielectric-loaded accelerator structures

    NASA Astrophysics Data System (ADS)

    Sinitsyn, Oleksandr; Nusinovich, Gregory; Antonsen, Thomas

    2009-11-01

    Multipactor (MP) is known as the avalanche growth of the number of secondary electrons emitted from a solid surface exposed to an rf electric field under vacuum conditions. MP may occur in various microwave and rf systems such as microwave tubes, rf windows and launchers, accelerating structures, and rf satellite payloads. In this work we present results of MP analysis in dielectric-loaded accelerator (DLA) structures. The starting point of our work was experimental and theoretical studies of DLA structures jointly done by Argonne National Laboratory and Naval Research Laboratory (J. G. Power et al., Phys. Rev. Lett. 92, 164801 (2004); J. G. Power et al., AIP Conf. Proc. 877, 362 (2006)). In the theoretical model developed during those studies the space-charge field due to the total number of particles is taken into account as a parameter. We perform our studies using a self-consistent approach with the help of time-dependent two-dimensional code developed at the University of Maryland (O. V. Sinitsyn et al., Phys. Plasmas 16, 073102 (2009)). Results include analysis of MP evolution at an early stage, detailed studies of individual electron trajectories, analysis of MP onset time under various conditions and comparison of some results with the experimental data.

  5. Study of Direct Current Negative Ion Source for Medicine Accelerator

    SciTech Connect

    Belchenko, Yu.; Ivanov, I.; Piunov, I.

    2005-04-06

    Status of dc H- ion source development for tandem accelerator of boron capture neutron therapy is described. Upgrade and study of the Penning surface-plasma source with hollow cathodes was continued. Results of source optimization, of ion optic computer simulation, and of emittance measurement are presented. The upgraded source delivers dc H- beam with energy 25 kV, current 8 mA, 1rms emittance JukcyX {approx} 0.2 {pi} mm{center_dot}mrad, JukcyY {approx} 0.3 {pi} mm{center_dot}mrad at discharge power {<=} 0.5 kW.

  6. Study of a multi-beam accelerator driven thorium reactor

    SciTech Connect

    Ludewig, H.; Aronson, A.

    2011-03-01

    The primary advantages that accelerator driven systems have over critical reactors are: (1) Greater flexibility regarding the composition and placement of fissile, fertile, or fission product waste within the blanket surrounding the target, and (2) Potentially enhanced safety brought about by operating at a sufficiently low value of the multiplication factor to preclude reactivity induced events. The control of the power production can be achieved by vary the accelerator beam current. Furthermore, once the beam is shut off the system shuts down. The primary difference between the operation of an accelerator driven system and a critical system is the issue of beam interruptions of the accelerator. These beam interruptions impose thermo-mechanical loads on the fuel and mechanical components not found in critical systems. Studies have been performed to estimate an acceptable number of trips, and the value is significantly less stringent than had been previously estimated. The number of acceptable beam interruptions is a function of the length of the interruption and the mission of the system. Thus, for demonstration type systems and interruption durations of 1sec < t < 5mins, and t > 5mins 2500/yr and 50/yr are deemed acceptable. However, for industrial scale power generation without energy storage type systems and interruption durations of t < 1sec., 1sec < t < 10secs., 10secs < t < 5mins, and t > 5mins, the acceptable number of interruptions are 25000, 2500, 250, and 3 respectively. However, it has also been concluded that further development is required to reduce the number of trips. It is with this in mind that the following study was undertaken. The primary focus of this study will be the merit of a multi-beam target system, which allows for multiple spallation sources within the target/blanket assembly. In this manner it is possible to ameliorate the effects of sudden accelerator beam interruption on the surrounding reactor, since the remaining beams will still

  7. Dual-rate-loop control based on disturbance observer of angular acceleration for a three-axis aerial inertially stabilized platform.

    PubMed

    Zhou, Xiangyang; Jia, Yuan; Zhao, Qiang; Cai, Tongtong

    2016-07-01

    This paper presents a dual-rate-loop control method based on disturbance observer (DOB) of angular acceleration for a three-axis ISP for aerial remote sensing applications, by which the control accuracy and stabilization of ISP are improved obviously. In stabilization loop of ISP, a dual-rate-loop strategy is designed through constituting inner rate loop and the outer rate loop, by which the capability of disturbance rejection is advanced. Further, a DOB-based on angular acceleration is proposed to attenuate the influences of the main disturbances on stabilization accuracy. Particularly, an information fusion method is suggested to obtain accurate angular acceleration in DOB design, which is the key for the disturbance compensation. The proposed methods are theoretically analyzed and experimentally validated to illustrate the effectiveness. PMID:27016450

  8. A Method to Simulate Linear Stability of Impulsively Accelerated Density Interfaces in Ideal-MHD and Gas Dynamics

    SciTech Connect

    Ravi Samtaney

    2009-02-10

    We present a numerical method to solve the linear stability of impulsively accelerated density interfaces in two dimensions such as those arising in the Richtmyer-Meshkov instability. The method uses an Eulerian approach, and is based on an unwind method to compute the temporally evolving base state and a flux vector splitting method for the perturbations. The method is applicable to either gas dynamics or magnetohydrodynamics. Numerical examples are presented for cases in which a hydrodynamic shock interacts with a single or double density interface, and a doubly shocked single density interface. Convergence tests show that the method is spatially second order accurate for smooth flows, and between first and second order accurate for flows with shocks.

  9. Silicate stabilization studies in propylene glycol

    SciTech Connect

    Schwartz, S.A.

    1999-08-01

    In most North American and many European coolant formulations, the corrosion inhibition of heat-rejecting aluminum surfaces is provided by alkali metal silicates. But, their tendency towards polymerization, leading to gelation and/or precipitation, can reduce the effectiveness of a coolant. This paper presents the results of experiments which illustrate formulation-dependent behavior of inorganic silicate in propylene glycol compositions. Specific examples of the effects of glycol matrix, stabilizer type, and hard water on silicate stabilization are provided.

  10. Spectral variability studies and acceleration scenarios in jets of blazars

    NASA Astrophysics Data System (ADS)

    Joshi, Manasvita

    2009-06-01

    This work focuses on the study of spectral energy distributions (SEDs) and the spectral variability patterns of blazars, especially BL Lac objects. It also investigates the dominant mode of particle acceleration in the jets of blazars. The first part of the work describes the BL Lac object 3C 66A, which was the target of an intensive multiwavelength campaign in 2003/2004. During the campaign, flux measurements from radio to X-ray frequencies and upper limits in the very high energy (VHE) g-ray regime were obtained. A time-dependent leptonic jet model has been used to obtain a detailed description of the physical processes in 3C 66A. This successful model results in the reproduction of the observed spectral energy distribution (SED) and the optical variability pattern. The model also predicts an intrinsic cutoff value for the VHE g-ray emission and the possibility of the object being observed by MAGIC, Fermi, and other future missions. The second part of the work uses the internal shock model to explore the particle acceleration scenarios and the subsequent production of radiation via synchrotron and synchrotron self-Compton processes at sub-pc scales of a relativistic jet. A code has been developed to simulate the acceleration mechanism and to calculate the resulting spectrum after accounting for the inhomogeneity in the photon density throughout the acceleration region by dividing the region into multiple zones and considering the subsequent time- dependent radiation transfer within the zone and in between zones. An extensive study to understand the effects of varying shock and radiative parameters on the SED and spectral lightcurves of a generic blazar source has been carried out to aid in future theoretical analysis of such sources. This dissertation also includes a brief description of the observations conducted with the 1.3 m McGraw-Hill telescope of the MDM observatory at Kitt Peak, Arizona. The observations were carried out as a part of an ongoing long- term

  11. Studies of dished accelerator grids for 30-cm ion thrusters

    NASA Technical Reports Server (NTRS)

    Rawlin, V. K.

    1973-01-01

    Eighteen geometrically different sets of dished accelerator grids were tested on five 30-cm thrusters. The geometric variation of the grids included the grid-to-grid spacing, the screen and accelerator hole diameters and thicknesses, the screen and accelerator open area fractions, ratio of dish depth to dish diameter, compensation, and aperture shape. In general, the data taken over a range of beam currents for each grid set included the minimum total accelerating voltage required to extract a given beam current and the minimum accelerator grid voltage required to prevent electron backstreaming.

  12. Studies of dished accelerator grids for 30-cm ion thrusters

    NASA Technical Reports Server (NTRS)

    Rawlin, V. K.

    1973-01-01

    Geometrically different sets of dished accelerator grids were tested on five 30-cm thrusters. The geometric variation of the grids included the grid-to-grid spacing, the screen and accelerator hole diameters and thicknesses, the screen and accelerator open area fractions, ratio of dish depth to the dish diameter, compensation, and aperture shape. In general, the data taken over a range of beam currents for each grid set included the minimum total accelerating voltage required to extract a given beam current and the minimum accelerator grid voltage required to prevent electron backstreaming.

  13. Studying Radiation Damage in Structural Materials by Using Ion Accelerators

    NASA Astrophysics Data System (ADS)

    Hosemann, Peter

    2011-02-01

    Radiation damage in structural materials is of major concern and a limiting factor for a wide range of engineering and scientific applications, including nuclear power production, medical applications, or components for scientific radiation sources. The usefulness of these applications is largely limited by the damage a material can sustain in the extreme environments of radiation, temperature, stress, and fatigue, over long periods of time. Although a wide range of materials has been extensively studied in nuclear reactors and neutron spallation sources since the beginning of the nuclear age, ion beam irradiations using particle accelerators are a more cost-effective alternative to study radiation damage in materials in a rather short period of time, allowing researchers to gain fundamental insights into the damage processes and to estimate the property changes due to irradiation. However, the comparison of results gained from ion beam irradiation, large-scale neutron irradiation, and a variety of experimental setups is not straightforward, and several effects have to be taken into account. It is the intention of this article to introduce the reader to the basic phenomena taking place and to point out the differences between classic reactor irradiations and ion irradiations. It will also provide an assessment of how accelerator-based ion beam irradiation is used today to gain insight into the damage in structural materials for large-scale engineering applications.

  14. Feasibility study of accelerator based production of molybdenum-99/technetium-99m

    NASA Astrophysics Data System (ADS)

    Tchelidze, Lali

    Stability of supply in the medical radioisotope market is now of overriding importance. One of the most commonly used radioisotopes is 99mTc, which is produced from 99Mo decay. 99Mo has been produced in nuclear reactors before, however these reactors are aging and have been not reliable lately and there is a great need to find an alternative for the production. In the current project, photo-neutron production of 99Mo/ 99mTc was investigated. An electron linear accelerator at the Idaho Accelerator Center was used to study the feasibility of 99mTc production using bremsstrahlung photon beams from the accelerator. The kinematic recoil process that occurs with every photo nuclear reaction was exploited. With the emission of a neutron in a photo nuclear reaction, the parent nucleus recoils in order to conserve momentum. This recoil can be used to separate 99Mo from 100Mo, at which point one has a very pure and very high specific activity source of 99Mo. We verified the photo-neutron production rates for 99Mo. Also, the kinematic recoil process was modeled and separation efficiencies were measured experimentally. We concluded that it is feasible to produce high 99Mo activities, however nano-particles of molybdenum have to be used and a clean nano-particle separation method has to be achieved.

  15. The Effectiveness of Rambutan (Nephelium lappaceum L.) Extract in Stabilization of Sunflower Oil under Accelerated Conditions

    PubMed Central

    Mei, Winne Sia Chiaw; Ismail, Amin; Mohd. Esa, Norhaizan; Akowuah, Gabriel Akyirem; Wai, Ho Chun; Seng, Yim Hip

    2014-01-01

    The oxidative properties of sunflower oil supplemented with rambutan extract, (crude extract and its fractionated fraction, SF II) in comparison with synthetic antioxidant were investigated. The supplemented sunflower oils were stored under accelerated conditions for 24 days at 60 °C. For every 6-day interval, the oxidative properties of the supplemented sunflower oil were evaluated based on the following tests, namely peroxide value, p-anisidine value, Thiobarbituric Acid Reactive Substances (TBARS) assay, iodine value and free fatty acids. The total oxidation (TOTOX) values were also calculated based on the peroxide values and p-anisidine values. Rambutan extract is a potential source of antioxidant. The oxidative activities of the extracts at all concentrations were significantly (p < 0.05) higher than the control. Generally, the partially fractionated fraction was more effective than the crude extract. With a 2-year storage period at ambient temperature, the fractionated fraction of the extract, SF II at 300 ppm, was observed to work more effectively than the synthetic antioxidant, t-Tocopherol, and it possessed a protective effect comparable with butylatedhydrioxynanisole (BHA). Therefore, rambutan extract could be used as a potential alternative source of antioxidant in the oil industry or other fat-based products to delay lipid oxidation. PMID:26784877

  16. Stabilization of sawteeth with third harmonic deuterium ICRF-accelerated beam in JET plasmas

    NASA Astrophysics Data System (ADS)

    Girardo, Jean-Baptiste; Sharapov, Sergei; Boom, Jurrian; Dumont, Rémi; Eriksson, Jacob; Fitzgerald, Michael; Garbet, Xavier; Hawkes, Nick; Kiptily, Vasily; Lupelli, Ivan; Mantsinen, Mervi; Sarazin, Yanick; Schneider, Mireille

    2016-01-01

    Sawtooth stabilisation by fast ions is investigated in deuterium (D) and D-helium 3 (He3) plasmas of JET heated by deuterium Neutral Beam Injection combined in synergy with Ion Cyclotron Resonance Heating (ICRH) applied on-axis at 3rd beam cyclotron harmonic. A very significant increase in the sawtooth period is observed, caused by the ICRH-acceleration of the beam ions born at 100 keV to the MeV energy range. Four representative sawteeth from four different discharges are compared with Porcelli's model. In two discharges, the sawtooth crash appears to be triggered by core-localized Toroidal Alfvén Eigenmodes inside the q = 1 surface (also called "tornado" modes) which expel the fast ions from within the q = 1 surface, over time scales comparable with the sawtooth period. Two other discharges did not exhibit fast ion-driven instabilities in the plasma core, and no degradation of fast ion confinement was found in both modelling and direct measurements of fast ion profile with the neutron camera. The developed sawtooth scenario without fast ion-driven instabilities in the plasma core is of high interest for the burning plasmas. Possible causes of the sawtooth crashes on JET are discussed.

  17. Propagation and stability characteristics of a 500-m-long laser-based fiducial line for high-precision alignment of long-distance linear accelerators

    SciTech Connect

    Suwada, Tsuyoshi; Satoh, Masanori; Telada, Souichi; Minoshima, Kaoru

    2013-09-15

    A laser-based alignment system with a He-Ne laser has been newly developed in order to precisely align accelerator units at the KEKB injector linac. The laser beam was first implemented as a 500-m-long fiducial straight line for alignment measurements. We experimentally investigated the propagation and stability characteristics of the laser beam passing through laser pipes in vacuum. The pointing stability at the last fiducial point was successfully obtained with the transverse displacements of ±40 μm level in one standard deviation by applying a feedback control. This pointing stability corresponds to an angle of ±0.08 μrad. This report contains a detailed description of the experimental investigation for the propagation and stability characteristics of the laser beam in the laser-based alignment system for long-distance linear accelerators.

  18. Stability Study of the RERTR Fuel Microstructure

    SciTech Connect

    Jian Gan; Dennis Keiser; Brandon Miller; Daniel Wachs

    2014-04-01

    The irradiation stability of the interaction phases at the interface of fuel and Al alloy matrix as well as the stability of the fission gas bubble superlattice is believed to be very important to the U-Mo fuel performance. In this paper the recent result from TEM characterization of Kr ion irradiated U-10Mo-5Zr alloy will be discussed. The focus will be on the phase stability of Mo2-Zr, a dominated second phase developed at the interface of U-10Mo and the Zr barrier in a monolithic fuel plate from fuel fabrication. The Kr ion irradiations were conducted at a temperature of 200 degrees C to an ion fluence of 2.0E+16 ions/cm2. To investigate the thermal stability of the fission gas bubble superlattice, a key microstructural feature in both irradiated dispersion U-7Mo fuel and monolithic U-10Mo fuel, a FIB-TEM sample of the irradiated U-10Mo fuel (3.53E+21 fission/cm3) was used for a TEM in-situ heating experiment. The preliminary result showed extraordinary thermal stability of the fission gas bubble superlattice. The implication of the TEM observation from these two experiments on the fuel microstructural evolution under irradiation will be discussed.

  19. Cytosolic Selection Systems To Study Protein Stability

    PubMed Central

    Malik, Ajamaluddin; Mueller-Schickert, Antje

    2014-01-01

    Here we describe biosensors that provide readouts for protein stability in the cytosolic compartment of prokaryotes. These biosensors consist of tripartite sandwich fusions that link the in vitro stability or aggregation susceptibility of guest proteins to the in vivo resistance of host cells to the antibiotics kanamycin, spectinomycin, and nourseothricin. These selectable markers confer antibiotic resistance in a wide range of hosts and are easily quantifiable. We show that mutations within guest proteins that affect their stability alter the antibiotic resistances of the cells expressing the biosensors in a manner that is related to the in vitro stabilities of the mutant guest proteins. In addition, we find that polyglutamine tracts of increasing length are associated with an increased tendency to form amyloids in vivo and, in our sandwich fusion system, with decreased resistance to aminoglycoside antibiotics. We demonstrate that our approach allows the in vivo analysis of protein stability in the cytosolic compartment without the need for prior structural and functional knowledge. PMID:25266385

  20. A performance study of the Loma Linda proton medical accelerator

    SciTech Connect

    Coutrakon, G.; Hubbard, J.; Johanning, J.; Maudsley, G.; Slaton, T.; Morton, P. )

    1994-11-01

    More than three years have passed since Loma Linda treated the first cancer patient with the world's first proton accelerator dedicated to radiation therapy. Since that time, over 1000 patients have completed treatments and the facility currently treats more than 45 patients per day. With a typical intensity of 3[times]10[sup 10] protons per pulse and 27 pulses per minute, dose rates of 90--100 cGy/min are easily achieved on a 20-cm diameter field. In most cases, patient treatment times are 2 min, much less than the patient alignment time required before each treatment. Nevertheless, there is considerable medical interest in increasing field sizes up to 40-cm diameter while keeping dose rates high and treatment times low. In this article, beam measurements relevant to intensity studies are presented and possible accelerator modifications for upgrades are proposed. It is shown that nearly all intensity losses can be ascribed to the large momentum spread of the injected beam and occur at or near the injection energy of 2 MeV. The agreement between calculations and measurements appears quite good. In addition, optimum beam characteristics for a new injector are discussed based upon the momentum acceptance and space charge limits of the Loma Linda synchrotron.

  1. A performance study of the Loma Linda proton medical accelerator.

    PubMed

    Coutrakon, G; Hubbard, J; Johanning, J; Maudsley, G; Slaton, T; Morton, P

    1994-11-01

    More than three years have passed since Loma Linda treated the first cancer patient with the world's first proton accelerator dedicated to radiation therapy. Since that time, over 1000 patients have completed treatments and the facility currently treats more than 45 patients per day. With a typical intensity of 3 x 10(10) protons per pulse and 27 pulses per minute, dose rates of 90-100 cGy/min are easily achieved on a 20-cm diameter field. In most cases, patient treatment times are 2 min, much less than the patient alignment time required before each treatment. Nevertheless, there is considerable medical interest in increasing field sizes up to 40-cm diameter while keeping dose rates high and treatment times low. In this article, beam measurements relevant to intensity studies are presented and possible accelerator modifications for upgrades are proposed. It is shown that nearly all intensity losses can be ascribed to the large momentum spread of the injected beam and occur at or near the injection energy of 2 MeV. The agreement between calculations and measurements appears quite good. In addition, optimum beam characteristics for a new injector are discussed based upon the momentum acceptance and space charge limits of the Loma Linda synchrotron. PMID:7891629

  2. An Experimental Study of a Pulsed Electromagnetic Plasma Accelerator

    NASA Technical Reports Server (NTRS)

    Thio, Y. C. Francis; Eskridge, Richard; Lee, Mike; Smith, James; Martin, Adam; Markusic, Tom E.; Cassibry, Jason T.; Rodgers, Stephen L. (Technical Monitor)

    2002-01-01

    Experiments are being performed on the NASA Marshall Space Flight Center (MSFC) pulsed electromagnetic plasma accelerator (PEPA-0). Data produced from the experiments provide an opportunity to further understand the plasma dynamics in these thrusters via detailed computational modeling. The detailed and accurate understanding of the plasma dynamics in these devices holds the key towards extending their capabilities in a number of applications, including their applications as high power (greater than 1 MW) thrusters, and their use for producing high-velocity, uniform plasma jets for experimental purposes. For this study, the 2-D MHD modeling code, MACH2, is used to provide detailed interpretation of the experimental data. At the same time, a 0-D physics model of the plasma initial phase is developed to guide our 2-D modeling studies.

  3. The Early Screening Profiles: A Stability Study.

    ERIC Educational Resources Information Center

    Smith, Douglas K.; And Others

    Stability of the Early Screening Profiles (ESP), developed by P. Harrison, was examined with a sample of 23 non-handicapped preschool children (14 females and 9 males) ranging in age from 3 years 0 months to 6 years 0 months at the time of initial testing. The sample was drawn from a rural/suburban community in the midwest with a predominantly…

  4. UV photoemission studies of metal photocathodes for particle accelerators

    SciTech Connect

    Fischer, J.; Srinivasan-Rao, T.

    1988-09-01

    Photoemission from several metals was studied with 10 ps laser pulses at 266 nm. The yield was linear with energy and with area. Quantum efficiencies (/eta/) were determined (up to 10/sup /minus/3/ e/photons for samarium), and found to vary as (h..nu..-/phi/)/sup 2/. /eta/ also increased with the field. The field assisted efficiencies were calculated for some metals and confirmed by experiment for gold, up to surface fields of /approximately/3/times/10/sup 8/ V/m. High charge and current densities, close to 10/sup 5/ A/cm/sup 2/ from macroscopic areas, were measured or indicated. Results are then related to applications in accelerators. 18 refs., 15 figs., 4 tabs.

  5. [Sugar consumption and prenatal acceleration. II. Studies on the etiology and pathophysiology of secular prenatal acceleration].

    PubMed

    Ziegler, E

    1976-12-01

    The pathophysiologic considerations support the causal relationship between the secular trend of sugar consumption in industrialized society and the development of prenatal acceleration, which is evident on the basis of epidemiological data. The excessive consumption of sugar and the other quickly absorbed "refined" carbohydrates enhances the hormonogenic effect of food which is also potentiated by the proteins. Together with the caloric overloading, provoked also by the excess in fat, characteristic for the affluent society, the excessive sugar consumption enhances in the pregnant women obesity and "protodiabetes" (PFEIFFER), in the predisposed child the tendency to hyperinsulinism with its consequences. In a prediabetic mother with normal glucose-tolerance the regularly repeated postprandial overfloating of the fetus with maternal glucose changes the feto-maternal hormonal regulation and enhances together with the overloading of substrate, i.e. energy and elements of biosyntheses, the accelerated fetal growth and especially the obesity of the large baby. PMID:1035212

  6. Multiwavelength studies of Galactic TeV particle accelerators

    NASA Astrophysics Data System (ADS)

    Kaaret, Philip

    2016-07-01

    Our Milky Way galaxy is host to a variety of astrophysical objects capable of accelerating particles to TeV energies, including supernova remnants and pulsar wind nebulae. I will review recent multiwavelength results on Galactic TeV sources and discuss the implications for particle acceleration and diffusion in these systems.

  7. Analytical study of magnetohydrodynamic propulsion stability

    NASA Astrophysics Data System (ADS)

    Abdollahzadeh Jamalabadi, M. Y.

    2014-09-01

    In this paper an analytical solution for the stability of the fully developed flow drive in a magneto-hydro-dynamic pump with pulsating transverse Eletro-magnetic fields is presented. To do this, a theoretical model of the flow is developed and the analytical results are obtained for both the cylindrical and Cartesian configurations that are proper to use in the propulsion of marine vessels. The governing parabolic momentum PDEs are transformed into an ordinary differential equation using approximate velocity distribution. The numerical results are obtained and asymptotic analyses are built to discover the mathematical behavior of the solutions. The maximum velocity in a magneto-hydro-dynamic pump versus time for various values of the Stuart number, electro-magnetic interaction number, Reynolds number, aspect ratio, as well as the magnetic and electrical angular frequency and the shift of the phase angle is presented. Results show that for a high Stuart number there is a frequency limit for stability of the fluid flow in a certain direction of the flow. This stability frequency is dependent on the geometric parameters of a channel.

  8. Experimental study of ion heating and acceleration during magnetic reconnection

    SciTech Connect

    Hsu, S.C.

    2000-01-28

    This dissertation reports an experimental study of ion heating and acceleration during magnetic reconnection, which is the annihilation and topological rearrangement of magnetic flux in a conductive plasma. Reconnection is invoked often to explain particle heating and acceleration in both laboratory and naturally occurring plasmas. However, a simultaneous account of reconnection and its associated energy conversion has been elusive due to the extreme inaccessibility of reconnection events, e.g. in the solar corona, the Earth's magnetosphere, or in fusion research plasmas. Experiments for this work were conducted on MRX (Magnetic Reconnection Experiment), which creates a plasma environment allowing the reconnection process to be isolated, reproduced, and diagnosed in detail. Key findings of this work are the identification of local ion heating during magnetic reconnection and the determination that non-classical effects must provide the heating mechanism. Measured ion flows are sub-Alfvenic and can provide only slight viscous heating, and classical ion-electron interactions can be neglected due to the very long energy equipartition time. The plasma resistivity in the reconnection layer is seen to be enhanced over the classical value, and the ion heating is observed to scale with the enhancement factor, suggesting a relationship between the magnetic energy dissipation mechanism and the ion heating mechanism. The observation of non-classical ion heating during reconnection has significant implications for understanding the role played by non-classical dissipation mechanisms in generating fast reconnection. The findings are relevant for many areas of space and laboratory plasma research, a prime example being the currently unsolved problem of solar coronal heating. In the process of performing this work, local measurements of ion temperature and flows in a well-characterized reconnection layer were obtained for the first time in either laboratory or observational

  9. Parameterizations for shielding electron accelerators based on Monte Carlo studies

    SciTech Connect

    P. Degtyarenko; G. Stapleton

    1996-10-01

    Numerous recipes for designing lateral slab neutron shielding for electron accelerators are available and each generally produces rather similar results for shield thicknesses of about 2 m of concrete and for electron beams with energy in the 1 to 10 GeV region. For thinner or much thicker shielding the results tend to diverge and the standard recipes require modification. Likewise for geometries other than lateral to the beam direction further corrections are required so that calculated results are less reliable and hence additional and costly conservatism is needed. With the adoption of Monte Carlo (MC) methods of transporting particles a much more powerful way of calculating radiation dose rates outside shielding becomes available. This method is not constrained by geometry, although deep penetration problems need special statistical treatment, and is an excellent approach to solving any radiation transport problem providing the method has been properly checked against measurements and is free from the well known errors common to such computer methods. This present paper utilizes the results of MC calculations based on a nuclear fragmentation model named DINREG using the MC transport code GEANT and models them with the normal two parameter shielding expressions. Because the parameters can change with electron beam energy, angle to the electron beam direction and target material, the parameters are expressed as functions of some of these variables to provide a universal equations for shielding electron beams which can used rather simply for deep penetration problems in simple geometry without the time consuming computations needed in the original MC programs. A particular problem with using simple parameterizations based on the uncollided flux is that approximations based on spherical geometry might not apply to the more common cylindrical cases used for accelerator shielding. This source of error has been discussed at length by Stevenson and others. To study

  10. Nonlinear stability of Kelvin-Helmholtz waves in magnetic fluids stressed by a time-dependent acceleration and a tangential magnetic field

    NASA Astrophysics Data System (ADS)

    El-Dib, Yusry O.

    1996-04-01

    The nonlinear stability of surface waves propagating between two superposed streaming magnetic fluids is investigated. The fluids are stressed by a constant tangential magnetic field and a vertical periodic acceleration. The solution employs the method of multiple scales. Owing to the periodicity, resonant cases appear. Two parametrically nonlinear Schrödinger equations are derived for the resonant cases to describe the elevation of weakly nonlinear capillary waves. The standard nonlinear Schrödinger equation is satisfied for the non resonant cases. Necessary and sufficient conditions for stability are obtained. A formula for the surface elevation is obtained in each case. It is found that the magnetic field, the velocities and the frequency of the applied periodic force play dual roles in the resonant region. Investigation of the stability criterion by nonlinear perturbation shows that an increase in the acceleration frequency has a stabilizing effect. The stabilizing role of the frequency is due to the destabilizing effect of the amplitude of the periodic acceleration.

  11. Improvements to laser wakefield accelerated electron beam stability, divergence, and energy spread using three-dimensional printed two-stage gas cell targets

    SciTech Connect

    Vargas, M.; Schumaker, W.; He, Z.-H.; Zhao, Z.; Behm, K.; Chvykov, V.; Hou, B.; Krushelnick, K.; Maksimchuk, A.; Yanovsky, V.; Thomas, A. G. R.

    2014-04-28

    High intensity, short pulse lasers can be used to accelerate electrons to ultra-relativistic energies via laser wakefield acceleration (LWFA) [T. Tajima and J. M. Dawson, Phys. Rev. Lett. 43, 267 (1979)]. Recently, it was shown that separating the injection and acceleration processes into two distinct stages could prove beneficial in obtaining stable, high energy electron beams [Gonsalves et al., Nat. Phys. 7, 862 (2011); Liu et al., Phys. Rev. Lett. 107, 035001 (2011); Pollock et al., Phys. Rev. Lett. 107, 045001 (2011)]. Here, we use a stereolithography based 3D printer to produce two-stage gas targets for LWFA experiments on the HERCULES laser system at the University of Michigan. We demonstrate substantial improvements to the divergence, pointing stability, and energy spread of a laser wakefield accelerated electron beam compared with a single-stage gas cell or gas jet target.

  12. Improvements to laser wakefield accelerated electron beam stability, divergence, and energy spread using three-dimensional printed two-stage gas cell targets

    NASA Astrophysics Data System (ADS)

    Vargas, M.; Schumaker, W.; He, Z.-H.; Zhao, Z.; Behm, K.; Chvykov, V.; Hou, B.; Krushelnick, K.; Maksimchuk, A.; Yanovsky, V.; Thomas, A. G. R.

    2014-04-01

    High intensity, short pulse lasers can be used to accelerate electrons to ultra-relativistic energies via laser wakefield acceleration (LWFA) [T. Tajima and J. M. Dawson, Phys. Rev. Lett. 43, 267 (1979)]. Recently, it was shown that separating the injection and acceleration processes into two distinct stages could prove beneficial in obtaining stable, high energy electron beams [Gonsalves et al., Nat. Phys. 7, 862 (2011); Liu et al., Phys. Rev. Lett. 107, 035001 (2011); Pollock et al., Phys. Rev. Lett. 107, 045001 (2011)]. Here, we use a stereolithography based 3D printer to produce two-stage gas targets for LWFA experiments on the HERCULES laser system at the University of Michigan. We demonstrate substantial improvements to the divergence, pointing stability, and energy spread of a laser wakefield accelerated electron beam compared with a single-stage gas cell or gas jet target.

  13. Study of the beam breakup mode in linear induction accelerators for heavy ions

    SciTech Connect

    Chattopadhyay, S.; Faltens, A.; Smith, L.

    1981-03-01

    A simple theoretical study and numerical estimate is presented for the transverse amplitude growth of a nonrelativistic heavy ion beam in an induction linac, as envisaged for use in commercial power plants, due to the nonregenerative coherent beam breakup mode. An equivalent electrical circuit has been used to represent the accelerating induction modules. Our calculation shows that for the parameters of interest, the beam breakup amplitude for a heavy ion beam grows extremely slowly in the time scales of interest, to magnitudes insignificant for transport purposes. It is concluded that the coherent beam breakup mode does not pose any serious threat to the stability of a high current (kA) heavy ion beam in an induction linac.

  14. High transformer ratio drive beams for wakefield accelerator studies

    SciTech Connect

    England, R. J.; Ng, C.-K.; Frederico, J.; Hogan, M. J.; Litos, M.; Muggli, P.; Joshi, C.; An, W.; Andonian, G.; Mori, W.; Lu, W.

    2012-12-21

    For wakefield based acceleration schemes, use of an asymmetric (or linearly ramped) drive bunch current profile has been predicted to enhance the transformer ratio and generate large accelerating wakes. We discuss plans and initial results for producing such bunches using the 20 to 23 GeV electron beam at the FACET facility at SLAC National Accelerator Laboratory and sending them through plasmas and dielectric tubes to generate transformer ratios greater than 2 (the limit for symmetric bunches). The scheme proposed utilizes the final FACET chicane compressor and transverse collimation to shape the longitudinal phase space of the beam.

  15. Constrained basin stability for studying transient phenomena in dynamical systems

    NASA Astrophysics Data System (ADS)

    van Kan, Adrian; Jegminat, Jannes; Donges, Jonathan F.; Kurths, Jürgen

    2016-04-01

    Transient dynamics are of large interest in many areas of science. Here, a generalization of basin stability (BS) is presented: constrained basin stability (CBS) that is sensitive to various different types of transients arising from finite size perturbations. CBS is applied to the paradigmatic Lorenz system for uncovering nonlinear precursory phenomena of a boundary crisis bifurcation. Further, CBS is used in a model of the Earth's carbon cycle as a return time-dependent stability measure of the system's global attractor. Both case studies illustrate how CBS's sensitivity to transients complements BS in its function as an early warning signal and as a stability measure. CBS is broadly applicable in systems where transients matter, from physics and engineering to sustainability science. Thus CBS complements stability analysis with BS as well as classical linear stability analysis and will be a useful tool for many applications.

  16. Wake-field studies on photonic band gap accelerator cavities

    NASA Astrophysics Data System (ADS)

    Li, Derun; Kroll, N.; Smith, D. R.; Schultz, S.

    1997-03-01

    We have studied the wake-field of several metal Photonic Band Gap (PBG) cavities which consist of either a square or a hexagonal array of metal cylinders, bounded on top and bottom by conducting or superconducting sheets, surrounded by placing microwave absorber at the periphery or by replacing outer rows of metal cylinders with lossy dielectric ones, or by metallic walls. A removed cylinder from the center of the array constitutes a site defect where a localized electromagnetic mode can occur. While both monopole and dipole wake-fields have been studied, we confine our attention here mainly to the dipole case. The dipole wake-field is produced by modes in the propagation bands which tend to fill the entire cavity more or less uniformly and are thus easy to damp selectively. MAFIA time domain simulation of the transverse wake-field has been compared with that of a cylindrical pill-box comparison cavity. Even without damping the wake-field of the metal PBG cavity is substantially smaller than that of the pill-box cavity and may be further reduced by increasing the size of the lattice. By introducing lossy material at the periphery we have been able to produce Q factors for the dipole modes in the 40 to 120 range without significantly degrading the accelerating mode.

  17. Study of spin resonances in the accelerators with snakes

    SciTech Connect

    Lee, S.Y.

    1988-01-01

    Spin resonances in the circular accelerators with snakes are studied to understand the nature of snake resonances. We analyze the effect of snake configuration, and the snake superperiod on the resonance. Defining the critical resonance strength epsilon/sub c/ as the maximum tolerable resonance strength without losing the beam polarization after passing through the resonance, we found that epsilon/sub c/ is a sensitive function of the snake configuration, the snake superperiod at the first order snake resonance, the higher order snake resonance conditions and the spin matching condition. Under properly designed snake configuration, the critical resonance strength epsilon/sub c/ is found to vary linearly with N/sub S/ as = (1/..pi..)sin/sup /minus/1/(/vert bar/cos ..pi nu../sub z//vert bar//sup /1/2//)N/sub S/, where ..nu../sub z/ and N/sub S/ are the betatron tune and the number of snakes respectively. We also study the effect of overlapping intrinsic and imperfection resonances. The imperfection resonance should be corrected to a magnitude of insignificance (e.g., epsilonless than or equal to0.1 for two snakes case) to maintain proper polarization. 23 refs., 25 figs.

  18. Proposed Dark Current Studies at the Argonne Wakefield Accelerator Facility

    SciTech Connect

    Antipov, S.P.; Conde, Manoel Eduardo; Gai, Wei; Power, John Gorham; Yusof, Z.M.; Spentzouris, L.K.; Dolgashev, V.A.; /SLAC

    2008-01-18

    A study of dark currents has been initiated at the Argonne Wakefield Accelerator Facility (AWA). Emission of dark current is closely related to a breakdown. Breakdown may include several factors such as local field enhancement, explosive electron emission, Ohmic heating, tensile stress produced by electric field, and others. The AWA is building a dedicated facility to test various models for breakdown mechanisms and to determine the roles of different factors in the breakdown. An imaging system is being put together to identify single emitters on the cathode surface. This will allow us to study dark current properties in the gun. We also plan to trigger breakdown events with a high-powered laser at various wavelengths (IR to UV). Another experimental idea follows from the recent work on a Schottky-enabled photoemission in an RF photoinjector that allows us to determine in situ the field enhancement factor on a cathode surface. Monitoring the field enhancement factor before and after can shed some light on a modification of metal surface after the breakdown.

  19. Modeling of Nike Experiments on Acceleration of Planar Targets Stabilized with a Short Spike

    NASA Astrophysics Data System (ADS)

    Metzler, N.; Velikovich, A. L.; Gardner, J. H.

    2005-10-01

    A short sub-ns laser pulse (spike) produces a decelerating shock wave and a rarefaction wave immediately behind it, shaping a density gradient in the target. The following main pulse ``rides'' this graded density profile. We have demonstrated how the deceleration of the ablation front following the shock wave suppresses laser imprint and delays perturbation growth in the target [1]. We report the results of 2D numerical modeling of experiments on Nike laser at NRL, with its recently developed short-pulse capability, for a low-energy spike which does not affect the target adiabat. We studied the effect of spike on laser imprint on smooth planar targets and on the growth of perturbations imposed as single-mode ripples on the irradiated surface of the targets. For all cases, delay of the onset and/or suppression of the rate of the mass perturbation growth due to the spike are robust and significant enough to be observable on Nike. [1] N. Metzler et al., Phys. Plasmas 6, 3283 (1999); 9, 5050 (2002); 10, 1897 (2003).

  20. Stability of metallic foams studied under microgravity

    NASA Astrophysics Data System (ADS)

    Wübben, Th; Stanzick, H.; Banhart, J.; Odenbach, S.

    2003-01-01

    Metal foams are prepared by mixing a metal powder and a gas-releasing blowing agent, by densifying the mix to a dense precursor and finally foaming by melting the powder compact. The foaming process of aluminium foams is monitored in situ by x-ray radioscopy. One observes that foam evolution is accompanied by film rupture processes which lead to foam coalescence. In order to elucidate the importance of oxides for foam stability, lead foams were manufactured from lead powders having two different oxide contents. The two foam types were generated on Earth and under weightlessness during parabolic flights. The measurements show that the main function of oxide particles is to prevent coalescence, while their influence on bulk viscosity of the melt is of secondary importance.

  1. Edge Diffusion Flame Propagation and Stabilization Studied

    NASA Technical Reports Server (NTRS)

    Takahashi, Fumiaki; Katta, Viswanath R.

    2004-01-01

    In most practical combustion systems or fires, fuel and air are initially unmixed, thus forming diffusion flames. As a result of flame-surface interactions, the diffusion flame often forms an edge, which may attach to burner walls, spread over condensed fuel surfaces, jump to another location through the fuel-air mixture formed, or extinguish by destabilization (blowoff). Flame holding in combustors is necessary to achieve design performance and safe operation of the system. Fires aboard spacecraft behave differently from those on Earth because of the absence of buoyancy in microgravity. This ongoing in-house flame-stability research at the NASA Glenn Research Center is important in spacecraft fire safety and Earth-bound combustion systems.

  2. Studies of pear-shaped nuclei using accelerated radioactive beams.

    PubMed

    Gaffney, L P; Butler, P A; Scheck, M; Hayes, A B; Wenander, F; Albers, M; Bastin, B; Bauer, C; Blazhev, A; Bönig, S; Bree, N; Cederkäll, J; Chupp, T; Cline, D; Cocolios, T E; Davinson, T; De Witte, H; Diriken, J; Grahn, T; Herzan, A; Huyse, M; Jenkins, D G; Joss, D T; Kesteloot, N; Konki, J; Kowalczyk, M; Kröll, Th; Kwan, E; Lutter, R; Moschner, K; Napiorkowski, P; Pakarinen, J; Pfeiffer, M; Radeck, D; Reiter, P; Reynders, K; Rigby, S V; Robledo, L M; Rudigier, M; Sambi, S; Seidlitz, M; Siebeck, B; Stora, T; Thoele, P; Van Duppen, P; Vermeulen, M J; von Schmid, M; Voulot, D; Warr, N; Wimmer, K; Wrzosek-Lipska, K; Wu, C Y; Zielinska, M

    2013-05-01

    There is strong circumstantial evidence that certain heavy, unstable atomic nuclei are 'octupole deformed', that is, distorted into a pear shape. This contrasts with the more prevalent rugby-ball shape of nuclei with reflection-symmetric, quadrupole deformations. The elusive octupole deformed nuclei are of importance for nuclear structure theory, and also in searches for physics beyond the standard model; any measurable electric-dipole moment (a signature of the latter) is expected to be amplified in such nuclei. Here we determine electric octupole transition strengths (a direct measure of octupole correlations) for short-lived isotopes of radon and radium. Coulomb excitation experiments were performed using accelerated beams of heavy, radioactive ions. Our data on (220)Rn and (224)Ra show clear evidence for stronger octupole deformation in the latter. The results enable discrimination between differing theoretical approaches to octupole correlations, and help to constrain suitable candidates for experimental studies of atomic electric-dipole moments that might reveal extensions to the standard model. PMID:23657348

  3. The SuperB Accelerator: Overview and Lattice Studies

    SciTech Connect

    Biagini, M.E.; Boni, R.; Boscolo, M.; Drago, A.; Guiducci, S.; Preger, M.; Raimondi, P.; Tomassini, S.; Vaccarezza, C.; Zobov, M.; Cai, Y.; Fisher, A.; Heifets, S.; Novokhatski, A.; Pivi, M.T.; Seeman, J.; Sullivan, M.; Wienands, U.; Paoloni, E.; Marchiori, G.; Koop, I.; /Novosibirsk, IYF /Daresbury /LBL, Berkeley /CERN /Orsay, LAL /KEK, Tsukuba

    2011-11-22

    SuperB aims at the construction of a very high luminosity (10{sup 36} cm{sup -2} s{sup -1}) asymmetric e{sup +}e{sup -} Flavour Factory, with possible location at the campus of the University of Rome Tor Vergata, near the INFN Frascati National Laboratory. In this paper the basic principles of the design and details on the lattice are given. SuperB is a new machine that can exploit novel very promising design approaches: (1) large Piwinski angle scheme will allow for peak luminosity of the order of 10{sup 36} cm{sup -2} s{sup -1}, well beyond the current state-of-the-art, without a significant increase in beam currents or shorter bunch lengths; (2) 'crab waist' sextupoles will be used for suppression of dangerous resonances; (3) the low beam currents design presents reduced detector and background problems, and affordable operating costs; (4) a polarized electron beam can produce polarized {tau} leptons, opening an entirely new realm of exploration in lepton flavor physics. SuperB studies are already proving useful to the accelerator and particle physics communities. The principle of operation is being tested at DAFNE. The baseline lattice, based on the reuse of all PEP-II hardware, fits in the Tor Vergata University campus site, near Frascati. A CDR is being reviewed by an International Review Committee, chaired by J. Dainton (UK). A Technical Design Report will be prepared to be ready by beginning of 2010.

  4. Stability Study of Coronal Cavities and Prominences

    NASA Astrophysics Data System (ADS)

    de Toma, Giuliana; Gibson, Sarah

    2016-05-01

    Cavity/prominence systems are large-scale coronal structures that can live for many weeks and even months and often end their life in the form of large coronal eruptions. To determine the role of the surrounding ambient coronal field in stabilizing thesesystems against eruption, we examined the extent to which the decline with height of the external coronal magnetic field influences their evolution and likelihood to erupt. We selected coronal cavities observed with SDO/AIA during the rising phase of cycle 24 and divided them in two groups, eruptive and non-eruptive. The height of the cavity, both at the cavity center and top, was directly measured from the SDO/AIA images. The ambient coronal field was derived from a PFSS extrapolation of SDO/HMI magnetograms. We find that the decay index of the potential field above the coronal cavity varies significantly in value for both eruptive and non-eruptive cases but stable cavity systems have, on average, a lower decay index and less complex topology than the eruptive ones.

  5. Surface wave accelerator based on silicon carbide: theoretical study

    SciTech Connect

    Kalmykov, S.; Korobkin, D.; Neuner, B.; Shvets, G.

    2009-01-22

    Compact near-field solid-state accelerating structure powered by a carbon dioxide (CO{sub 2}) laser is considered. The accelerating luminous transverse magnetic mode is excited in a few-micron wide evacuated planar channel between two silicon carbide (SiC) films grown on silicon (Si) wafers. Laser coupling to this mode is accomplished through the properly designed Si gratings. Operating wavelength is dictated by the frequency-dependent dielectric permittivity of SiC and the channel width. The geometric loss factor {kappa} of the accelerating mode is computed. It is found that the unwanted excitation of the guided modes in Si wafers reduces the laser coupling efficiency and increases the fields inside the Si wafer.

  6. Estimation of absorbed dose in clinical radiotherapy linear accelerator beams: Effect of ion chamber calibration and long-term stability

    PubMed Central

    Ravichandran, Ramamoorthy; Binukumar, Johnson Pichy; Davis, Cheriyathmanjiyil Antony

    2013-01-01

    The measured dose in water at reference point in phantom is a primary parameter for planning the treatment monitor units (MU); both in conventional and intensity modulated/image guided treatments. Traceability of dose accuracy therefore still depends mainly on the calibration factor of the ion chamber/dosimeter provided by the accredited Secondary Standard Dosimetry Laboratories (SSDLs), under International Atomic Energy Agency (IAEA) network of laboratories. The data related to Nd,water calibrations, thermoluminescent dosimetry (TLD) postal dose validation, inter-comparison of different dosimeter/electrometers, and validity of Nd,water calibrations obtained from different calibration laboratories were analyzed to find out the extent of accuracy achievable. Nd,w factors in Gray/Coulomb calibrated at IBA, GmBH, Germany showed a mean variation of about 0.2% increase per year in three Farmer chambers, in three subsequent calibrations. Another ion chamber calibrated in different accredited laboratory (PTW, Germany) showed consistent Nd,w for 9 years period. The Strontium-90 beta check source response indicated long-term stability of the ion chambers within 1% for three chambers. Results of IAEA postal TL “dose intercomparison” for three photon beams, 6 MV (two) and 15 MV (one), agreed well within our reported doses, with mean deviation of 0.03% (SD 0.87%) (n = 9). All the chamber/electrometer calibrated by a single SSDL realized absorbed doses in water within 0.13% standard deviations. However, about 1-2% differences in absorbed dose estimates observed when dosimeters calibrated from different calibration laboratories are compared in solid phantoms. Our data therefore imply that the dosimetry level maintained for clinical use of linear accelerator photon beams are within recommended levels of accuracy, and uncertainties are within reported values. PMID:24672156

  7. Inclined Planes and Motion Detectors: A Study of Acceleration.

    ERIC Educational Resources Information Center

    Tracy, Dyanne M.

    2001-01-01

    Presents an activity in which students work in cooperative groups and roll balls down inclined planes, collect data with the help of an electronic motion detector, and represent data with a graphing calculator to explore concepts such as mass, gravity, velocity, and acceleration. (Contains 12 references.) (Author/ASK)

  8. Recirculation acceleration of high current relativistic electron beams--a feasibility study. Final report

    SciTech Connect

    Wilson, M.

    1981-06-01

    One of the advanced accelerator concepts under study at NBS involves multiplying the energy gained by a long-pulse, high current relativistic electron beam by directing the beam several times through the same induction accelerator during the time of one voltage pulse. Should this concept of the recirculation acceleration of intense electron beams be proven feasible, the savings in cost, size, and weight of a high current accelerator would be considerable. Energy gain by recirculation acceleration through a small-scale proof-of principle facility has been demonstrated at NBS. The study employs a 750A, 750keV electron beam pulse, 2 microsec long, generated by a linear induction accelerator of unique design which was also developed at NBS.

  9. Conformational stability of dimeric proteins: quantitative studies by equilibrium denaturation.

    PubMed Central

    Neet, K. E.; Timm, D. E.

    1994-01-01

    The conformational stability of dimeric globular proteins can be measured by equilibrium denaturation studies in solvents such as guanidine hydrochloride or urea. Many dimeric proteins denature with a 2-state equilibrium transition, whereas others have stable intermediates in the process. For those proteins showing a single transition of native dimer to denatured monomer, the conformational stabilities, delta Gu (H2O), range from 10 to 27 kcal/mol, which is significantly greater than the conformational stability found for monomeric proteins. The relative contribution of quaternary interactions to the overall stability of the dimer can be estimated by comparing delta Gu (H2O) from equilibrium denaturation studies to the free energy associated with simple dissociation in the absence of denaturant. In many cases the large stabilization energy of dimers is primarily due to the intersubunit interactions and thus gives a rationale for the formation of oligomers. The magnitude of the conformational stability is related to the size of the polypeptide in the subunit and depends upon the type of structure in the subunit interface. The practical use, interpretation, and utility of estimation of conformational stability of dimers by equilibrium denaturation methods are discussed. PMID:7756976

  10. Ab initio Study of He Stability in hcp-Ti

    SciTech Connect

    Dai, Yunya; Yang, Li; Peng, SM; Long, XG; Gao, Fei; Zu, Xiaotao T.

    2010-12-20

    The stability of He in hcp-Ti was studied using ab initio method based on density functional theory. The results indicate that a single He atom prefers to occupy the tetrahedral site rather than the octahedral site. The interaction of He defects with Ti atoms has been used to explain the relative stabilities of He point defects in hcp-Ti. The relative stability of He defects in hcp-Ti is useful for He clustering and bubble nucleation in metal tritides, which provides the basis for development of improved atomistic models.

  11. Chemical Accelerator Studies of Ion-Molecule Reaction Dynamics

    NASA Astrophysics Data System (ADS)

    Zhang, Jingfeng

    1995-01-01

    A chemical accelerator instrument has been used to study the dynamics of ion-molecule reaction processes in the gas phase. Specifically, the following reactions are investigated: eqalign{rm CO^+ + H_2&longrightarrowrm HCO ^+ + Hcrrm CO^+ + D_2& longrightarrowrm DCO^+ + Dcrrm CO^+ + HDlongrightarrow &rm HCO ^+ (DCO^+) + D (H)cr} . Both angular and velocity distributions of reactively scattered product ions are measured, as well as reaction cross sections as a function of reactant relative translational energy. Formation of HCO^+ ion from rm CO^+ + H_2 over the collision energy range from 0.35 to 3.02 eV (c.m.) follows closely the predictions of the spectator stripping model, and results in highly excited HCO^+ product ions. This reaction is found to proceed via a direct impulsive mechanism, without any long-lived intermediate complexes involved. The reaction cross section is proportional to E_{T} ^{-1/2}, where E_ {rm T} is the reactant ion relative translational energy. Deuterium atom transfer from D_2 to CO^+ over the collision energy range from 0.41 to 5.14 eV (c.m.) occurs also in a direct process. Reaction cross section is proportional to rm E_{T}^{ -1/2}. The results are very similar to those of the reaction rm CO^+ + H_2. The reaction CO^+ + HD has two product channels, leading to the formation of HCO ^+ and DCO^+, respectively. The reaction is studied over the energy range from 0.88 to 5.00 eV (c.m.). It is found that the production of HCO^+ is consistently the slightly favored reaction channel, which is attributed to the orientation isotope effect. The translational exoergicity for both reaction channels follows closely the prediction of spectator stripping model. Product DCO^+ ions are in higher excited states than HCO ^+ ions. Product velocity distribution contour maps indicate that, at the lowest energies, the DCO ^+ production channel has a longer reaction duration than the HCO^+ production channel, but both reaction channels are dominated by direct

  12. Radioactive microsphere study of cerebral blood flow under acceleration. Technical report

    SciTech Connect

    Greenlees, K.J.; Yoder, J.E.; Toth, D.M.; Oloff, C.M.; Karl, A.

    1980-11-01

    A study using radioactive microspheres for the investigation of cerebral blood flow during acceleration is described. Details of a technique for the blunt dissection of cerebral tissues are included. Results of flow studies at 3 and 5 G sub z acceleration stress indicate there is no selective regional preservation of cerebral tissue. (Author)

  13. Design study of double-layer beam trajectory accelerator based on the Rhodotron structure

    NASA Astrophysics Data System (ADS)

    Jabbari, Iraj; Poursaleh, Ali Mohammad; Khalafi, Hossein

    2016-08-01

    In this paper, the conceptual design of a new structure of industrial electron accelerator based on the Rhodotron accelerator is presented and its properties are compared with those of Rhodotron-TT200 accelerator. The main goal of this study was to reduce the power of RF system of accelerator at the same output electron beam energy. The main difference between the new accelerator structure with the Rhodotron accelerator is the length of the coaxial cavity that is equal to the wavelength at the resonant frequency. Also two sets of bending magnets were used around the acceleration cavity in two layers. In the new structure, the beam crosses several times in the coaxial cavity by the bending magnets around the cavity at the first layer and then is transferred to the second layer using the central bending magnet. The acceleration process in the second layer is similar to the first layer. Hence, the energy of the electron beam will be doubled. The electrical power consumption of the RF system and magnet system were calculated and simulated for the new accelerator structure and TT200. Comparing the calculated and simulated results of the TT200 with those of experimental results revealed good agreement. The results showed that the overall electrical power consumption of the new accelerator structure was less than that of the TT200 at the same energy and power of the electron beam. As such, the electrical efficiency of the new structure was improved.

  14. Syncrude stability study. Final report, June 9, 1980-March 31, 1983

    SciTech Connect

    Bowden, J.N.; Lee, G.H. II

    1983-01-01

    This program was initiated to investigate the storage stability of syncrudes derived from coal and oil shale, and upgraded syncrudes, by procedures utilized for petroleum-derived fuels. Initially, the syncrudes were placed in storage at 43/sup 0/C. After 4, 8, 16 and 24 weeks, aliquots were removed from storage for analysis of filterable precipitates, adherent gum, and soluble gum. Due to the high viscosity and boiling range of many of the syncrudes, special techniques were utilized to filter some of these samples for their measurements, which included heat and pressure. Investigation of other techniques for development of a test protocol that would successfully differentiate between various degrees of storage stability of syncrudes became a second objective of this program. To this end, solvent separations, accelerated stability tests at 80/sup 0/C, differential scanning calorimetry (DSC), and thermogravimetric analysis (TGA) were investigated. Results of this work indicate that for the particular samples studied, the shale syncrudes are more stable than coal-derived syncrudes, and hydrotreatment of the shale syncrudes for upgrading tends to improve their stability. Thermal analysis by SC and/or TGA appears to show promise in evaluating syncrude stability, although finalized standard procedures still need to be developed. 10 references, 18 figures, 29 tables.

  15. Construction of low current 30 keV proton accelerator for detection efficiency studies

    NASA Astrophysics Data System (ADS)

    Salas Bacci, Americo; Baessler, Stefan; Ross, Aaron; Roane, Nicholas; Whitaker, C. J.

    2013-10-01

    We have constructed a small ion source and proton accelerator at UVA. This accelerator is needed for the characterization of the detection efficiency of a large area, thick, 127-hexagonal segmented Silicon detector for the neutron beta decay ``Nab'' experiment that will be carried out at SNS, Oak Ridge National Laboratory in search of physics beyond the standard model. We will present the design, simulations, operation, and detection of 30 keV H+ and H2+, as well as our efforts to stabilize and correlate both ion currents.

  16. Physiological Effects of Acceleration Observed During a Centrifuge Study of Pilot Performance

    NASA Technical Reports Server (NTRS)

    Smedal, Harald A.; Creer, Brent Y.; Wingrove, Rodney C.

    1960-01-01

    An investigation was conducted by the National Aeronautics and Space Administration, Ames Research Center, and the Naval Air Development Center, Aviation Medical Acceleration Laboratory, to study the effects of acceleration on pilot performance and to obtain some meaningful data for use in establishing tolerance to acceleration levels. The flight simulator used in the study was the Johnsville centrifuge operated as a closed loop system. The pilot was required to perform a control task in various sustained acceleration fields typical of those that Might be encountered by a pilot flying an entry vehicle in which he is seated in a forward-facing position. A special restraint system was developed and designed to increase the pilot's tolerance to these accelerations. The results of this study demonstrated that a well-trained subject, such as a test pilot, can adequately carry out a control task during moderately high accelerations for prolonged periods of time. The maximum levels of acceleration tolerated were approximately 6 times that of gravity for approximately 6 minutes, and varied slightly with the acceleration direction. The tolerance runs were in each case terminated by the subject. In all but two instances, the cause was extreme fatigue. On two occasions the subject terminated the run when he "grayed out." Although there were subjective and objective findings involving the visual and cardiovascular systems, the respiratory system yielded the more critical limiting factors. It would appear that these limiting factors were less severe during the "eyeballs-out" accelerations when compared with the "eyeballs-in" accelerations. These findings are explained on the basis of the influence that the inertial forces of acceleration have on the mechanics of respiration. A condensed version of this report was presented at the Annual Meeting of the Aerospace Medical Association, Miami Beach, May 5-11, 1960, in a paper entitled "Ability of Pilots to Perform a Control Task in

  17. The stability of mechanical calibration for a kV cone beam computed tomography system integrated with linear accelerator

    SciTech Connect

    Sharpe, Michael B.; Moseley, Douglas J.; Purdie, Thomas G.

    2006-01-15

    The geometric accuracy and precision of an image-guided treatment system were assessed. Image guidance is performed using an x-ray volume imaging (XVI) system integrated with a linear accelerator and treatment planning system. Using an amorphous silicon detector and x-ray tube, volumetric computed tomography images are reconstructed from kilovoltage radiographs by filtered backprojection. Image fusion and assessment of geometric targeting are supported by the treatment planning system. To assess the limiting accuracy and precision of image-guided treatment delivery, a rigid spherical target embedded in an opaque phantom was subjected to 21 treatment sessions over a three-month period. For each session, a volumetric data set was acquired and loaded directly into an active treatment planning session. Image fusion was used to ascertain the couch correction required to position the target at the prescribed iso-center. Corrections were validated independently using megavoltage electronic portal imaging to record the target position with respect to symmetric treatment beam apertures. An initial calibration cycle followed by repeated image-guidance sessions demonstrated the XVI system could be used to relocate an unambiguous object to within less than 1 mm of the prescribed location. Treatment could then proceed within the mechanical accuracy and precision of the delivery system. The calibration procedure maintained excellent spatial resolution and delivery precision over the duration of this study, while the linear accelerator was in routine clinical use. Based on these results, the mechanical accuracy and precision of the system are ideal for supporting high-precision localization and treatment of soft-tissue targets.

  18. The stability of mechanical calibration for a kV cone beam computed tomography system integrated with linear accelerator.

    PubMed

    Sharpe, Michael B; Moseley, Douglas J; Purdie, Thomas G; Islam, Mohammad; Siewerdsen, Jeffrey H; Jaffray, David A

    2006-01-01

    The geometric accuracy and precision of an image-guided treatment system were assessed. Image guidance is performed using an x-ray volume imaging (XVI) system integrated with a linear accelerator and treatment planning system. Using an amorphous silicon detector and x-ray tube, volumetric computed tomography images are reconstructed from kilovoltage radiographs by filtered backprojection. Image fusion and assessment of geometric targeting are supported by the treatment planning system. To assess the limiting accuracy and precision of image-guided treatment delivery, a rigid spherical target embedded in an opaque phantom was subjected to 21 treatment sessions over a three-month period. For each session, a volumetric data set was acquired and loaded directly into an active treatment planning session. Image fusion was used to ascertain the couch correction required to position the target at the prescribed iso-center. Corrections were validated independently using megavoltage electronic portal imaging to record the target position with respect to symmetric treatment beam apertures. An initial calibration cycle followed by repeated image-guidance sessions demonstrated the XVI system could be used to relocate an unambiguous object to within less than 1 mm of the prescribed location. Treatment could then proceed within the mechanical accuracy and precision of the delivery system. The calibration procedure maintained excellent spatial resolution and delivery precision over the duration of this study, while the linear accelerator was in routine clinical use. Based on these results, the mechanical accuracy and precision of the system are ideal for supporting high-precision localization and treatment of soft-tissue targets. PMID:16485420

  19. A tracking code for injection and acceleration studies in synchrotrons

    SciTech Connect

    Lessner, E.; Symon, K. |

    1996-11-01

    CAPTURE-SPC is a Monte-Carlo-based tracking program that simulates the injection and acceleration processes in proton synchrotrons. The time evolution of a distribution of charged particles is implemented by a symplectic, second-order-accurate integration algorithm. The recurrence relations follow a time-stepping leap--frog method. The time-step can be varied optionally to reduce computer time. Space-charge forces are calculated by binning the phase-projected particle distribution. The statistical fluctuations introduced by the binning process are reduced by presmoothing the data by the cloud-in-cell method and by filtering. Both the bin size and amount of filtering can be varied during the acceleration cycle so that the bunch fine structure is retained while the short wavelength noise is attenuated. The initial coordinates of each macro particle together with its time of injection are retained throughout the calculations. This information is useful in determining low-loss injection schemes.

  20. Case study: Accelerated schedule for MULTI LIMS installation

    SciTech Connect

    Ibsen, T.G.

    1994-05-01

    This presentation focuses on the steps taken by the Westinghouse Hanford Company to meet an accelerated schedule for configuration and implementation of the MULTI LIMS in a multiple laboratory environment. The Westinghouse Hanford Company purchased the MULTI LIMS Laboratory Information Management System in August, 1993. Hardware delivery began in October, 1993. Less than four months later, the initial configuration was released for use in two Westinghouse Hanford Company laboratories. Several major obstacles were overcome during implementation. These include information gathering for base table loading, user training, acceptance of the new system by users of a legacy system, and hardware configuration issues. In summary, steps needed to be taken to meet the accelerated implementation schedule of the MULTI LIMS at the Hanford Site. The obstacles faced were overcome through the in-depth knowledge and help of the vendor and the dedication and drive of the technical staff.

  1. Transverse effects in plasma wakefield acceleration at FACET - Simulation studies

    SciTech Connect

    Adli, E.; Hogan, M.; Frederico, J.; Litos, M. D.; An, W.; Mori, W.

    2012-12-21

    We investigate transverse effects in the plasma-wakefield acceleration experiments planned and ongoing at FACET. We use PIC simulation tools, mainly QuickPIC, to simulate the interaction of the drive electron beam and the plasma. In FACET a number of beam dynamics knobs, including dispersion and bunch length knobs, can be used to vary the beam transverse characteristics in the plasma. We present simulation results and the status of the FACET experimental searches.

  2. Importance of the different posterolateral knee static stabilizers: biomechanical study

    PubMed Central

    Lasmar, Rodrigo Campos Pace; Marques de Almeida, Adriano; Serbino, José Wilson; da Mota Albuquerque, Roberto Freire; Hernandez, Arnaldo José

    2010-01-01

    PURPOSE The purpose of this study was to evaluate the relative importance of the different static stabilizers of the posterolateral corner of the knee in cadavers. METHODS Tests were performed with the application of a varus and external rotation force to the knee in extension at 30 and 60 degrees of flexion using 10 cadaver knees. The forces were applied initially to an intact knee and then repeated after a selective sectioning of the ligaments into the following: section of the lateral collateral ligament; section of the lateral collateral ligament and the popliteofibular complex; and section of the lateral collateral ligament, the popliteofibular complex and the posterolateral capsule. The parameters studied were the angular deformity and stiffness when the knees were submitted to a 15 Newton-meter varus torque and a 6 Newton-meter external tibial torque. Statistical analysis was performed using the ANOVA (Analysis of Variance) and Tukey’s tests. RESULTS AND CONCLUSION Our findings showed that the lateral collateral ligament was important in varus stability at 0, 30 and 60 degrees. The popliteofibular complex was the most important structure for external rotation stability at all angles of flexion and was also important for varus stability at 30 and 60 degrees. The posterolateral capsule was important for varus stability at 0 and 30 degrees and for external rotation stability in extension. Level of evidence: Level IV (cadaver study). PMID:20454502

  3. Gamma radiation stability studies of mercury fulminate

    SciTech Connect

    Fondeur, F.F.

    2000-02-17

    Mercury fulminate completely decomposed in a gamma source (0.86 Mrad/h) after a dose of 208 Mrad. This exposure equates to approximately 2.4 years in Tank 15H and 4 years in Tank 12H, one of the vessels of concern. Since the tanks lost the supernatant cover layer more than a decade ago, this study suggests that any mercury fulminate or closely related energetic species decomposed long ago if ever formed.

  4. Stability of CIGS Solar Cells and Component Materials Evaluated by a Step-Stress Accelerated Degradation Test Method: Preprint

    SciTech Connect

    Pern, F. J.; Noufi, R.

    2012-10-01

    A step-stress accelerated degradation testing (SSADT) method was employed for the first time to evaluate the stability of CuInGaSe2 (CIGS) solar cells and device component materials in four Al-framed test structures encapsulated with an edge sealant and three kinds of backsheet or moisture barrier film for moisture ingress control. The SSADT exposure used a 15oC and then a 15% relative humidity (RH) increment step, beginning from 40oC/40%RH (T/RH = 40/40) to 85oC/70%RH (85/70) as of the moment. The voluminous data acquired and processed as of total DH = 3956 h with 85/70 = 704 h produced the following results. The best CIGS solar cells in sample Set-1 with a moisture-permeable TPT backsheet showed essentially identical I-V degradation trend regardless of the Al-doped ZnO (AZO) layer thickness ranging from standard 0.12 μm to 0.50 μm on the cells. No clear 'stepwise' feature in the I-V parameter degradation curves corresponding to the SSADT T/RH/time profile was observed. Irregularity in I-V performance degradation pattern was observed with some cells showing early degradation at low T/RH < 55/55 and some showing large Voc, FF, and efficiency degradation due to increased series Rs (ohm-cm2) at T/RH ≥ 70/70. Results of (electrochemical) impedance spectroscopy (ECIS) analysis indicate degradation of the CIGS solar cells corresponded to increased series resistance Rs (ohm) and degraded parallel (minority carrier diffusion/recombination) resistance Rp, capacitance C, overall time constant Rp*C, and 'capacitor quality' factor (CPE-P), which were related to the cells? p-n junction properties. Heating at 85/70 appeared to benefit the CIGS solar cells as indicated by the largely recovered CPE-P factor. Device component materials, Mo on soda lime glass (Mo/SLG), bilayer ZnO (BZO), AlNi grid contact, and CdS/CIGS/Mo/SLG in test structures with TPT showed notable to significant degradation at T/RH ≥ 70/70. At T/RH = 85/70, substantial blistering of BZO layers on CIGS

  5. Stability of CIGS solar cells and component materials evaluated by a step-stress accelerated degradation test method

    NASA Astrophysics Data System (ADS)

    Pern, F. J.; Noufi, R.

    2012-10-01

    A step-stress accelerated degradation testing (SSADT) method was employed for the first time to evaluate the stability of CuInGaSe2 (CIGS) solar cells and device component materials in four Al-framed test structures encapsulated with an edge sealant and three kinds of backsheet or moisture barrier film for moisture ingress control. The SSADT exposure used a 15°C and then a 15% relative humidity (RH) increment step, beginning from 40°C/40%RH (T/RH = 40/40) to 85°C/70%RH (85/70) as of the moment. The voluminous data acquired and processed as of total DH = 3956 h with 85/70 = 704 h produced the following results. The best CIGS solar cells in sample Set-1 with a moisture-permeable TPT backsheet showed essentially identical I-V degradation trend regardless of the Al-doped ZnO (AZO) layer thickness ranging from standard 0.12 μm to 0.50 μm on the cells. No clear "stepwise" feature in the I-V parameter degradation curves corresponding to the SSADT T/RH/time profile was observed. Irregularity in I-V performance degradation pattern was observed with some cells showing early degradation at low T/RH < 55/55 and some showing large Voc, FF, and efficiency degradation due to increased series Rs (ohm-cm2) at T/RH >= 70/70. Results of (electrochemical) impedance spectroscopy (ECIS) analysis indicate degradation of the CIGS solar cells corresponded to increased series resistance Rs (ohm) and degraded parallel (minority carrier diffusion/recombination) resistance Rp, capacitance C, overall time constant Rp*C, and "capacitor quality" factor (CPE-P), which were related to the cells' p-n junction properties. Heating at 85/70 appeared to benefit the CIGS solar cells as indicated by the largely recovered CPE-P factor. Device component materials, Mo on soda lime glass (Mo/SLG), bilayer ZnO (BZO), AlNi grid contact, and CdS/CIGS/Mo/SLG in test structures with TPT showed notable to significant degradation at T/RH >= 70/70. At T/RH = 85/70, substantial blistering of BZO layers on CIGS

  6. Determination of Polymer Additives-Antioxidants, Ultraviolet Stabilizers, Plasticizers and Photoinitiators in Plastic Food Package by Accelerated Solvent Extraction Coupled with High-Performance Liquid Chromatography.

    PubMed

    Li, Bo; Wang, Zhi-Wei; Lin, Qin-Bao; Hu, Chang-Ying; Su, Qi-Zhi; Wu, Yu-Mei

    2015-07-01

    An analytical method for the quantitative determination of 4 antioxidants, 9 ultraviolet (UV) stabilizers, 12 phthalate plasticizers and 2 photoinitiators in plastic food package using accelerated solvent extraction (ASE) coupled with high-performance liquid chromatography-photodiode array detector (HPLC-PDA) has been developed. Parameters affecting the efficiency in the process such as extraction and chromatographic conditions were studied in order to determine operating conditions. The analytical method of ASE-HPLC showed good linearity with good correlation coefficients (R ≥ 0.9833). The limits of detection and quantification were between 0.03 and 0.30 µg mL(-1) and between 0.10 and 1.00 µg mL(-1) for 27 analytes. Average spiked recoveries for most analytes in samples were >70.4% at 10, 20 and 40 µg g(-1) spiked levels, except UV-9 and Irganox 1010 (58.6 and 64.0% spiked at 10 µg g(-1), respectively), the relative standard deviations were in the range from 0.4 to 15.4%. The methodology has been proposed for the analysis of 27 polymer additives in plastic food package. PMID:25472804

  7. Discovering the Meaning of Unity of Purpose: A Case Study of Fourteen Accelerated Schools.

    ERIC Educational Resources Information Center

    Davidson, Betty M.; Dell, Geralyn L.

    This paper presents findings of a study that examined how teachers restructuring schools came to understand the meaning of the term "unity of purpose." Fourteen Louisiana schools, comprised primarily of high-risk student populations, implemented the accelerated-schools model of restructuring. The accelerated school model is based on three…

  8. Road Map for Studies to Produce Consistent and High Performance SRF Accelerator Structures

    SciTech Connect

    Ganapati Rao Myneni; John F. O’Hanlon

    2007-06-20

    Superconducting Radio Frequency (SRF) accelerator structures made from high purity niobium are becoming the technological choice for a large number of future accelerators and energy recovery LINAC’s (ERL). Most of the presently planned accelerators and ERL requirements will be met with some effort by the current SRF technology where accelerating gradients of about 20 MV/m can be produced on a routine basis with an acceptable yield. However, the XFEL at DESY and the planned ILC require acceleration gradients more than 28 MV/m and 35 MV/m respectively. At the recent ILC meeting at Snowmass (2005) concern was expressed regarding the wide spread in the achieved accelerator gradients and the relatively low yields. For obtaining accelerating gradients of 35 MV/m in SRF accelerator structures consistently, a deeper understanding of the causes for the spread has to be gained and advances have to be made in many scientific and high technology fields, including materials, surface and vacuum sciences, application of reliable processes and procedures, which provide contamination –free surfaces and avoid recontamination and cryogenics related technologies. In this contribution a road map for studies needed to produce consistent and high performance SRF accelerator structures from the needed materials development to clean and non-recontaminating processes and procedures will be presented.

  9. Design study of beam dynamics issues for 1 TeV next linear collider based upon the relativistic-klystron two-beam accelerator

    SciTech Connect

    Li, H.; Goffeney, N.; Henestroza, E.; Sessler, A.; Yu, S.; Houck, T.; Westenskow, G.

    1994-11-01

    A design study has recently been conducted for exploring the feasibility of a relativistic-klystron two-beam accelerator (RK-TBA) system as a rf power source for a 1 TeV linear collider. The author present, in this paper, the beam dynamics part of this study. They have achieved in their design study acceptable transverse and longitudinal beam stability properties for the resulting high efficiency and low cost RK-TBA.

  10. Feasibility study of Nb3Al Rutherford cable for high field accelerator magnet application

    SciTech Connect

    Yamada, R.; Kikuchi, A.; Ambrosio, G.; Andreev, N.; Barzi, E.; Cooper, C.; Feher, S.; Kashikhin, V.V.; Lamm, M.; Novitski, I.; Takeuchi, T.; Tartaglia, M.; Turrioni, D.; Verweij, A.P.; Wake, M.; Willering, G; Zlobin, A.V.; /Fermilab

    2006-08-01

    Feasibility study of Cu stabilized Nb{sub 3}Al strand and Rutherford cable for the application to high field accelerator magnets are being done at Fermilab in collaboration with NIMS. The Nb{sub 3}Al strand, which was developed and manufactured at NIMS in Japan, has a non-copper Jc of about 844 A/mm{sup 2} at 15 Tesla at 4.2 K, a copper content of 50%, and filament size of about 50 microns. Rutherford cables with 27 Nb{sub 3}Al strands of 1.03 mm diameter were fabricated and tested. Quench tests on a short cable were done to study its stability with only its self field, utilizing a high current transformer. A pair of 2 meter long Nb{sub 3}Al cables was tested extensively at CERN at 4.3 and 1.9 K up to 11 Tesla including its self field with a high transport current of 20.2 kA. In the low field test we observed instability near splices and in the central region. This is related to the flux-jump like behavior, because of excessive amount of Nb in the Nb{sub 3}Al strand. There is possibility that the Nb in Nb{sub 3}Al can cause instability below 2 Tesla field regions. We need further investigation on this problem. Above 8 Tesla, we observed quenches near the critical surface at fast ramp rate from 1000 to 3000 A/sec, with quench velocity over 100 m/sec. A small racetrack magnet was made using a 14 m of Rutherford cable and successfully tested up to 21.8 kA, corresponding to 8.7 T.

  11. A study of light ion accelerators for cancer treatment

    SciTech Connect

    Prelec, K.

    1997-07-01

    This review addresses several issues, such as possible advantages of light ion therapy compared to protons and conventional radiation, the complexity of such a system and its possible adaptation to a hospital environment, and the question of cost-effectiveness compared to other modalities for cancer treatment or to other life saving procedures. Characteristics and effects of different types of radiation on cells and organisms will be briefly described; this will include conventional radiation, protons and light ions. The status of proton and light ion cancer therapy will then be described, with more emphasis on the latter; on the basis of existing experience the criteria for the use of light ions will be listed and areas of possible medical applications suggested. Requirements and parameters of ion beams for cancer treatment will then be defined, including ion species, energy and intensity, as well as parameters of the beam when delivered to the target (scanning, time structure, energy spread). Possible accelerator designs for light ions will be considered, including linear accelerators, cyclotrons and synchrotrons and their basic features given; this will be followed by a review of existing and planned facilities for light ions. On the basis of these considerations a tentative design for a dedicated light ion facility will be suggested, a facility that would be hospital based, satisfying the clinical requirements, simple to operate and reliable, concluding with its cost-effectiveness in comparison with other modalities for treatment of cancer.

  12. Importance of stability study of continuous systems for ethanol production.

    PubMed

    Paz Astudillo, Isabel Cristina; Cardona Alzate, Carlos Ariel

    2011-01-10

    Fuel ethanol industry presents different problems during bioreactors operation. One of them is the unexpected variation in the output ethanol concentration from the bioreactor or a drastic fall in the productivity. In this paper, a compilation of concepts and relevant results of several experimental and theoretical studies about dynamic behavior of fermentation systems for bioethanol production with Saccharomyces cerevisiae and Zymomonas mobilis is done with the purpose of understanding the stability phenomena that could affect the productivity of industries producing fuel ethanol. It is shown that the design of high scale biochemical processes for fuel ethanol production must be done based on stability studies. PMID:21034786

  13. Transdermal delivery of naloxone: skin permeation, pharmacokinetic, irritancy and stability studies.

    PubMed

    Panchagnula, Ramesh; Bokalial, Ranadeep; Sharma, Puneet; Khandavilli, Sateesh

    2005-04-11

    The current investigation aims to evaluate ex vivo, in vivo performance, stability and irritancy potential of a transdermal formulation of naloxone (NLX) developed at our laboratory at different concentrations (10, 20 and 30mg/g of gel) in a transdermal reservoir patch. Ex vivo permeation studies were performed by employing porcine and rat skins. In vivo performance was assessed in Sprague-Dawley rats by single and multiple application of the patch. Further stability of the formulation was established for 3 months at accelerated stability conditions as per ICH guidelines. Amongst the barriers used the rat skin was found to be more permeable than the porcine epidermis and the flux across each barrier increased with increasing thermodynamic activity of drug in the gel. Based on ex vivo data, the surface area (SA) of the patch was predicted to be 39.6 cm(2) in order to achieve therapeutic blood levels. Upon single dose administration, the steady-state levels were maintained from 4-48 h, which proves the clear advantage of transdermal delivery system over the current mode of administration, i.e., intravenous (i.v.) bolus which is effective upto a maximum of 1.5h. Upon multiple dose administration, the sustained steady state for 12h, even after patch removal proves the formation of drug depot in the skin. The formulations were found to be stable with respect to NLX assay and penetration enhancer efficacy upto 3 months under accelerated stability conditions. The alteration of penetration barrier function, as evidenced by increased trans epidermal water loss (TEWL) was not accompanied by any significant amount of skin irritation measured using laser doppler velocimetry (LDV). The developed transdermal delivery system of NLX is efficacious, stable and safe upon single and multiple dose applications each lasting for 48 h. PMID:15778059

  14. Mechanical stability study of type IV cryomodule (ILC prototype)

    SciTech Connect

    McGee, M.W.; Doremus, R.; Wands, C.R.; /Fermilab

    2007-06-01

    An ANSYS modal and harmonic finite element analysis (FEA) was performed in order to investigate cryomodule design mechanical stability for the proposed International Linear Collider (ILC). The current cryomodule, designated Type IV or (T4CM), closely follows the Type III TESLA Test Facility (TTF) version used at DESY, with the exception of a proposed location of the superconducting (SC) quadrupole at the center. This analysis considered the stringent stability criteria established for the ILC, where vertical motion for the SC quadrupole is limited to the micron range at a few Hz. Model validation was achieved through Type III cryomodule vibration measurement studies performed at DESY. The effect of support location, support stiffness and other important parameters were considered in a parametric sensitivity study. FEA results, fast motion investigations and stabilization techniques are discussed.

  15. Decision tree based transient stability method -- A case study

    SciTech Connect

    Wehenkel, L.; Pavella, M. . Inst. Montefiore); Euxibie, E.; Heilbronn, B. . Direction des Etudes et Recherches)

    1994-02-01

    The decision tree transient stability method is revisited via a case study carried out on the French EHV power system. In short, the method consists of building off-line decision trees, able to subsequently assess the system transient behavior in terms of precontingency parameters (or attributes'') of it, likely to drive the stability phenomena. This case study aims at investigating practical feasibility aspects and features of the trees, at enhancing their reliability to the extent possible, and at generalizing them. Feasibility aspects encompass data base generation, candidate attributes, stability classes; tree features concern in particular complexity in terms of their size and interpretability capabilities, robustness with respect to both their building and use. Reliability is enhanced by defining and exploiting pragmatic quality measures. Generalization concerns multicontingency, instead of single-contingency trees. The results obtained show real promise for the method to meet practical needs of electric power utilities.

  16. Particle acceleration studies with intense lasers and advanced light sources

    NASA Astrophysics Data System (ADS)

    Murphy, C. D.; Gray, R. J.; MacLellan, D. A.; Rusby, D.; McKenna, P.; Ridgers, C. P.; Booth, N.; Robinson, A. P. L.; Wilson, L.; Green, J. S.

    2013-10-01

    The interaction of lasers with matter is a subject which has progressed rapidly over the last two decades as higher intensity lasers are found to have possible applications in inertial fusion, laboratory astrophysics and ion acceleration for oncology or ultrafast proton probing. All of these applications require a good understanding of laser-electron coupling and fast electron transport in solid targets which has proven difficult to diagnose. Here we present data from an experiment carried out on the Astra Gemini laser system at STFC-Rutherford Appleton Laboratory, where novel targets and diagnostics illuminate the complex processes at play. An outline of how x-ray free electron lasers may further expand our understanding of such processes will also be described.

  17. Dating Studies of Elephant Tusks Using Accelerator Mass Spectrometry

    SciTech Connect

    Sideras-Haddad, E; Brown, T A

    2002-10-03

    A new method for determining the year of birth, the year of death, and hence, the age at death, of post-bomb and recently deceased elephants has been developed. The technique is based on Accelerator Mass Spectrometry radiocarbon analyses of small-sized samples extracted from along the length of a ge-line of an elephant tusk. The measured radiocarbon concentrations in the samples from a tusk can be compared to the {sup 14}C atmospheric bomb-pulse curve to derive the growth years of the initial and final samples from the tusk. Initial data from the application of this method to two tusks will be presented. Potentially, the method may play a significant role in wildlife management practices of African national parks. Additionally, the method may contribute to the underpinnings of efforts to define new international trade regulations, which could, in effect, decrease poaching and the killing of very young animals.

  18. Experimental study of a shock accelerated thin gas layer

    SciTech Connect

    Jacobs, J.W.; Jenkins, D.G.; Klein, D.L.; Benjamin, R.F.

    1993-08-01

    Planar laser-induced fluorescence imaging is utilized in shock-tube experiments to visualize the development of a shock-accelerated thin gas layer. The Richtmyer-Meshkov instability of both sides of the heavy gas layer causes perturbations initially imposed on the two interfaces to develop into one of three distinct flow patterns. Two of the patterns exhibit vortex pairs which travel either upstream or downstream in the shock tube, while the third is a sinuous pattern that shows no vortex development until late in its evolution. The development of the observed patterns as well as the growth in the layer thickness is modeled by considering the dynamics of vorticity deposited in the layer by the shock interaction process. This model yields an expression for the layer growth which is in good agreement with measurements.

  19. Accelerating Wave Function Convergence in Interactive Quantum Chemical Reactivity Studies.

    PubMed

    Mühlbach, Adrian H; Vaucher, Alain C; Reiher, Markus

    2016-03-01

    The inherently high computational cost of iterative self-consistent field (SCF) methods proves to be a critical issue delaying visual and haptic feedback in real-time quantum chemistry. In this work, we introduce two schemes for SCF acceleration. They provide a guess for the initial density matrix of the SCF procedure generated by extrapolation techniques. SCF optimizations then converge in fewer iterations, which decreases the execution time of the SCF optimization procedure. To benchmark the proposed propagation schemes, we developed a test bed for performing quantum chemical calculations on sequences of molecular structures mimicking real-time quantum chemical explorations. Explorations of a set of six model reactions employing the semi-empirical methods PM6 and DFTB3 in this testing environment showed that the proposed propagation schemes achieved speedups of up to 30% as a consequence of a reduced number of SCF iterations. PMID:26788887

  20. Electrochemical stability and postmortem studies of Pt/SiC catalysts for polymer electrolyte membrane fuel cells.

    PubMed

    Stamatin, Serban N; Speder, Jozsef; Dhiman, Rajnish; Arenz, Matthias; Skou, Eivind M

    2015-03-25

    In the presented work, the electrochemical stability of platinized silicon carbide is studied. Postmortem transmission electron microscopy and X-ray photoelectron spectroscopy were used to document the change in the morphology and structure upon potential cycling of Pt/SiC catalysts. Two different potential cycle aging tests were used in order to accelerate the support corrosion, simulating start-up/shutdown and load cycling. On the basis of the results, we draw two main conclusions. First, platinized silicon carbide exhibits improved electrochemical stability over platinized active carbons. Second, silicon carbide undergoes at least mild oxidation if not even silicon leaching. PMID:25719513

  1. Study of an External Neutron Source for an Accelerator-Driven System using the PHITS Code

    SciTech Connect

    Sugawara, Takanori; Iwasaki, Tomohiko; Chiba, Takashi

    2005-05-24

    A code system for the Accelerator Driven System (ADS) has been under development for analyzing dynamic behaviors of a subcritical core coupled with an accelerator. This code system named DSE (Dynamics calculation code system for a Subcritical system with an External neutron source) consists of an accelerator part and a reactor part. The accelerator part employs a database, which is calculated by using PHITS, for investigating the effect related to the accelerator such as the changes of beam energy, beam diameter, void generation, and target level. This analysis method using the database may introduce some errors into dynamics calculations since the neutron source data derived from the database has some errors in fitting or interpolating procedures. In this study, the effects of various events are investigated to confirm that the method based on the database is appropriate.

  2. Antioxidative properties of Murraya koenigii leaf extracts in accelerated oxidation and deep-frying studies.

    PubMed

    Nor, Fatihanim Mohd; Suhaila, Mohamed; Aini, Idris Nor; Razali, Ismail

    2009-01-01

    Murraya koenigii leaf extract antioxidant potentials were evaluated in palm olein using accelerated oxidation storage and deep-frying studies at 180 degrees C for up to 40 h. The extracts (0.2%) retarded oil oxidation and deterioration significantly (P<0.05), slightly less effectively than 0.02% butylated hydroxytoluene in tests such as the peroxide value, anisidine value, iodine value, free fatty acid, Oxidative Stability Index, and polar and polymer compound content. Sensory evaluation on French fries indicated that the extract was useful in improving colour, flavour and overall acceptability and the quality of the fried product. All samples were more acceptable by panellists, especially after the 40th hour frying, compared with those similarly fried in the control oils and the oil containing butylated hydroxytoluene. M. koenigii leaf extract, had a polyphenol content of 109.5+/-0.3 mg gallic acid equivalents/g extract, and contain a heat-stable antioxidant that could be a natural alternative to synthetic antioxidants for the industry. PMID:19488917

  3. A theoretical study of lateral stability with an automatic pilot

    NASA Technical Reports Server (NTRS)

    Imlay, Frederick H

    1940-01-01

    The influence of automatic operation of the aileron and rudder controls on the lateral stability of an airplane is discussed. The control deflections are assumed to be proportional to the deviations and to the rates of deviation of the airplane from steady-flight conditions. The effects of changes in the types of deviation governing control application are considered. For one simple method of control in which the aileron deflection is proportional to the angle of bank and the rudder deflection is proportional to the angle of yaw, the effect of lag in control application is studied and regions of stability with and without lag are given. For the simple control with lag, curves are included that show the variations in the roots of the stability equation with changes in the amount of control applied. It is concluded that, although the simple control provides a satisfactory means of varying most of the lateral stability characteristics, the stability in azimuth will always be poor for such a control.

  4. Studies of the Stability and Dynamics of Levitated Drops

    NASA Technical Reports Server (NTRS)

    Anikumar, A.; Lee, Chun Ping; Wang, T. G.

    1996-01-01

    This is a review of our experimental and theoretical studies relating to equilibrium and stability of liquid drops, typically of low viscosity, levitated in air by a sound field. The major emphasis here is on the physical principles and understanding behind the stability of levitated drops. A comparison with experimental data is also given, along with some fascinating pictures from high-speed photography. One of the aspects we shall deal with is how a drop can suddenly burst in an intense sound field; a phenomenon which can find applications in atomization technology. Also, we are currently investigating the phenomenon of suppression of coalescence between drops levitated in intense acoustic fields.

  5. A method to study in vivo stability of DNA nanostructures☆

    PubMed Central

    Surana, Sunaina; Bhatia, Dhiraj; Krishnan, Yamuna

    2013-01-01

    DNA nanostructures are rationally designed, synthetic, nanoscale assemblies obtained from one or more DNA sequences by their self-assembly. Due to the molecularly programmable as well as modular nature of DNA, such designer DNA architectures have great potential for in cellulo and in vivo applications. However, demonstrations of functionality in living systems necessitates a method to assess the in vivo stability of the relevant nanostructures. Here, we outline a method to quantitatively assay the stability and lifetime of various DNA nanostructures in vivo. This exploits the property of intact DNA nanostructures being uptaken by the coelomocytes of the multicellular model organism Caenorhabditis elegans. These studies reveal that the present fluorescence based assay in coelomocytes of C. elegans is an useful in vivo test bed for measuring DNA nanostructure stability. PMID:23623822

  6. [Study on composite stabilization of arsenic (As) contaminated soil].

    PubMed

    Wang, Hao; Pan, Li-xiang; Zhang, Xiang-yu; Li, Meng; Song, Bao-hua

    2013-09-01

    Since the contaminated soil may contain various kinds of heavy metals, use of single chemical reagent leads to poor remediation and high cost. In this study, soil containing As, Zn, Cd was sampled, and different reagents were selected to carry out the rapid stabilization of contaminated soil. The TCLP (toxicity characteristic leaching procedure) was used to evaluate the leachate toxicity of heavy metals and the results indicated that calcium-containing, sulphur-containing and iron-containing reagents had good performance in reducing the metal mobility. The stabilization efficiency of the six reagents tested ranked in the order of CaO > Na2S > organic sulfur > Chitosan > FeSO4 > (C2H5)2NCS2Na. Two types of reagents (six reagents) were combined based on the target properties of different reagents and the stabilization efficiency was evaluated and analyzed. The results indicated that the composite reagents had higher stabilization efficiency: the efficiency of 3% FeSO4 + 5% CaO was 81.7%, 97.2% and 68.2% for As, Cd and Zn, respectively, and the efficiency of 3% CaO + 5% organic sulfur was 76.6%, 95.7% and 93.8% for these three metals, respectively. Speciation analysis was carried out in this study and the results suggested that it was the change of metals from the exchangeable state to the reduction (for inorganic reagent) or oxidation state (for organic reagent) that caused the soil stabilization and the degree of change determined the stabilization efficiency. PMID:24289009

  7. Supernova Acceleration Probe: Studying Dark Energy with Type Ia Supernovae

    SciTech Connect

    Albert, J.; Aldering, G.; Allam, S.; Althouse, W.; Amanullah, R.; Annis, J.; Astier, P.; Aumeunier, M.; Bailey, S.; Baltay, C.; Barrelet, E.; Basa, S.; Bebek, C.; Bergstom, L.; Bernstein, G.; Bester, M.; Besuner, B.; Bigelow, B.; Blandford, R.; Bohlin, R.; Bonissent, A.; /Caltech /LBL, Berkeley /Fermilab /SLAC /Stockholm U. /Paris, IN2P3 /Marseille, CPPM /Marseille, Lab. Astrophys. /Yale U. /Pennsylvania U. /UC, Berkeley /Michigan U. /Baltimore, Space Telescope Sci. /Indiana U. /Caltech, JPL /Australian Natl. U., Canberra /American Astron. Society /Chicago U. /Cambridge U. /Saclay /Lyon, IPN

    2005-08-08

    The Supernova Acceleration Probe (SNAP) will use Type Ia supernovae (SNe Ia) as distance indicators to measure the effect of dark energy on the expansion history of the Universe. (SNAP's weak-lensing program is described in a separate White Paper.) The experiment exploits supernova distance measurements up to their fundamental systematic limit; strict requirements on the monitoring of each supernova's properties leads to the need for a space-based mission. Results from pre-SNAP experiments, which characterize fundamental SN Ia properties, will be used to optimize the SNAP observing strategy to yield data, which minimize both systematic and statistical uncertainties. With early R&D funding, we have achieved technological readiness and the collaboration is poised to begin construction. Pre-JDEM AO R&D support will further reduce technical and cost risk. Specific details on the SNAP mission can be found in Aldering et al. (2004, 2005). The primary goal of the SNAP supernova program is to provide a dataset which gives tight constraints on parameters which characterize the dark-energy, e.g. w{sub 0} and w{sub a} where w(a) = w{sub 0} + w{sub a}(1-a). SNAP data can also be used to directly test and discriminate among specific dark energy models. We will do so by building the Hubble diagram of high-redshift supernovae, the same methodology used in the original discovery of the acceleration of the expansion of the Universe that established the existence of dark energy (Perlmutter et al. 1998; Garnavich et al. 1998; Riess et al. 1998; Perlmutter et al. 1999). The SNAP SN Ia program focuses on minimizing the systematic floor of the supernova method through the use of characterized supernovae that can be sorted into subsets based on subtle signatures of heterogeneity. Subsets may be defined based on host-galaxy morphology, spectral-feature strength and velocity, early-time behavior, inter alia. Independent cosmological analysis of each subset of ''like'' supernovae can be

  8. The study of two-dimensional oscillations using a smartphone acceleration sensor: example of Lissajous curves

    NASA Astrophysics Data System (ADS)

    Tuset-Sanchis, Luis; Castro-Palacio, Juan C.; Gómez-Tejedor, José A.; Manjón, Francisco J.; Monsoriu, Juan A.

    2015-08-01

    A smartphone acceleration sensor is used to study two-dimensional harmonic oscillations. The data recorded by the free android application, Accelerometer Toy, is used to determine the periods of oscillation by graphical analysis. Different patterns of the Lissajous curves resulting from the superposition of harmonic motions are illustrated for three experiments. This work introduces an example of how two-dimensional oscillations can be easily studied with a smartphone acceleration sensor.

  9. N-dimensional hypervolumes to study stability of complex ecosystems.

    PubMed

    Barros, Ceres; Thuiller, Wilfried; Georges, Damien; Boulangeat, Isabelle; Münkemüller, Tamara

    2016-07-01

    Although our knowledge on the stabilising role of biodiversity and on how it is affected by perturbations has greatly improved, we still lack a comprehensive view on ecosystem stability that is transversal to different habitats and perturbations. Hence, we propose a framework that takes advantage of the multiplicity of components of an ecosystem and their contribution to stability. Ecosystem components can range from species or functional groups, to different functional traits, or even the cover of different habitats in a landscape mosaic. We make use of n-dimensional hypervolumes to define ecosystem states and assess how much they shift after environmental changes have occurred. We demonstrate the value of this framework with a study case on the effects of environmental change on Alpine ecosystems. Our results highlight the importance of a multidimensional approach when studying ecosystem stability and show that our framework is flexible enough to be applied to different types of ecosystem components, which can have important implications for the study of ecosystem stability and transient dynamics. PMID:27282314

  10. N-dimensional hypervolumes to study stability of complex ecosystems

    PubMed Central

    Barros, Ceres; Thuiller, Wilfried; Georges, Damien; Boulangeat, Isabelle; Münkemüller, Tamara

    2016-01-01

    Although our knowledge on the stabilising role of biodiversity and on how it is affected by perturbations has greatly improved, we still lack a comprehensive view on ecosystem stability that is transversal to different habitats and perturbations. Hence, we propose a framework that takes advantage of the multiplicity of components of an ecosystem and their contribution to stability. Ecosystem components can range from species or functional groups, to different functional traits, or even the cover of different habitats in a landscape mosaic. We make use of n-dimensional hypervolumes to define ecosystem states and assess how much they shift after environmental changes have occurred. We demonstrate the value of this framework with a study case on the effects of environmental change on Alpine ecosystems. Our results highlight the importance of a multidimensional approach when studying ecosystem stability and show that our framework is flexible enough to be applied to different types of ecosystem components, which can have important implications for the study of ecosystem stability and transient dynamics. PMID:27282314

  11. Phase motion of accelerated electrons in vacuum laser acceleration

    SciTech Connect

    Hua, J. F.; Lin, Y. Z.; Tang, Ch. X.; Ho, Y. K.; Kong, Q.

    2007-01-15

    The phase stability in the capture and acceleration scenario (CAS) is studied and compared with that of conventional linear electron accelerators (CLEAs). For the CAS case, it has been found that a slow phase slippage occurs due to the difference between the electron velocity and the phase velocity of the longitudinal accelerating electric field. Thus, CAS electrons cannot remain in a fixed small phase region of the accelerating field to obtain a quasimonoenergy gain in contrast to the stability of phase oscillation in CLEAs. Also, the energy spread of the output electron beam for the CAS case cannot be kept as small as the CLEA because there is no good phase bunching phenomenon generated by phase oscillation.

  12. Target studies for accelerator-based boron neutron capture therapy

    SciTech Connect

    Powell, J.R.; Ludewig, H.; Todosow, M.; Reich, M.

    1996-03-01

    Two new concepts, NIFTI and DISCOS, are described. These concepts enable the efficient production of epithermal neutrons for BNCT (Boron Neutron Capture Therapy) medical treatment, utilizing a low current, low energy proton beam impacting on a lithium target. The NIFTI concept uses an iron layer that strongly impedes the transmission of neutrons with energies above 24 KeV. Lower energy neutrons readily pass through this iron ``filter``, which has a deep ``window`` in its scattering cross section at 24 KeV. The DISCOS concept uses a rapidly rotating, high g disc to create a series of thin ({approximately} 1 micron thickness) liquid lithium targets in the form of continuous films through which the proton beam passes. The average energy lost by a proton as it passes through a single target is small, approximately 10 KeV. Between the targets, the proton beam is reaccelerated by an applied DC electric field. The DISCOS approach enables the accelerator -- target facility to operate with a beam energy only slightly above the threshold value for neutron production -- resulting in an output beam of low-energy epithermal neutrons -- while achieving a high yield of neutrons per milliamp of proton beam current.

  13. Accelerated Molecular Dynamics studies of He Bubble Growth in Tungsten

    NASA Astrophysics Data System (ADS)

    Uberuaga, Blas; Sandoval, Luis; Perez, Danny; Voter, Arthur

    2015-11-01

    Understanding how materials respond to extreme environments is critical for predicting and improving performance. In materials such as tungsten exposed to plasmas for nuclear fusion applications, novel nanoscale fuzzes, comprised of tendrils of tungsten, form as a consequence of the implantation of He into the near surface. However, the detailed mechanisms that link He bubble formation to the ultimate development of fuzz are unclear. Molecular dynamics simulations provide insight into the He implantation process, but are necessarily performed at implantation rates that are orders of magnitudes faster than experiment. Here, using accelerated molecular dynamics methods, we examine the role of He implantation rates on the physical evolution of He bubbles in tungsten. We find that, as the He rate is reduced, new types of events involving the response of the tungsten matrix to the pressure in the bubble become competitive and change the overall evolution of the bubble as well as the subsequent morphology of the tungsten surface. We have also examined how bubble growth differs at various microstructural features. These results highlight the importance of performing simulations at experimentally relevant conditions in order to correctly capture the contributions of the various significant kinetic processes and predict the overall response of the material.

  14. Experimental Study of a Single-Coil Induced-Electromotive-Force Plasma Accelerator

    NASA Technical Reports Server (NTRS)

    Matthews, Clarence W.; Cuddihy, William F.

    1961-01-01

    An experimental study was made of a single-coil induced-electromotive-force plasma accelerator which used a capacitor discharge for the driving force. A strong shock was observed from the first pulse with a velocity of 10(exp 6) centimeters per second. This shock was followed by three or four discharges which produced plasmoids moving at about 5 x 10(exp 6) centimeters per second. The efficiency of the accelerator was estimated to be about 3 percent in the production of the high-velocity plasmoids. Suggestions are made for the improvement of this type of accelerator.

  15. HADRON ACCELERATORS: Study on CYCIAE-100 radiation field and residual radioactivity

    NASA Astrophysics Data System (ADS)

    Bi, Yuan-Jie; Zhang, Tian-Jue; Jia, Xian-Lu; Zhou, Zheng-He; Wang, Feng; Wei, Su-Min; Zhong, Jun-Qing; Tang, Chuan-Xiang

    2009-06-01

    The accelerators should be properly designed to make the radiation field produced by beam loss satisfy the dose limits. The radiation field for high intensity H- cyclotron includes prompt radiation and residual radiation field. The induced radioactivity in accelerator components is the dominant source of occupational radiation exposure if the accelerator is well shielded. The source of radiation is the beam loss when cyclotron is operating. In this paper, the radiation field for CYCIAE-100 is calculated using Monte Carlo method and the radioactive contamination near stripping foil is studied. A method to reduce the dose equivalent rate of maintenance staff is also given.

  16. Thermal stability studies of Li-ion cells and components

    SciTech Connect

    Maleki, H.; Deng, G.; Anani, A.; Howard, J.

    1999-09-01

    A Li-ion cell consists of a carbon-based negative electrode (NE); a porous polymer membrane separator (high density polypropylene and/or polyethylene); and positive electrode (PE) containing lithium transition metal oxides (LiMo{sub 2}, M = Co, Ni, or Mn); and a mixture of lithium salt and organic solvents provides an electrolytic medium for Li-ions to shuttle between the PE and NE. Electrodes are produced by coating slurries of active PE or NE material, polymer binder, most commonly polyvinylidene difluoride (PVDF), and small amounts of high surface area carbon onto a metallic current collectors. Thermal stability of fully charged 550 mAh prismatic Li-ion cells (Sn-doped LiCoO{sub 2}/graphitic carbon) and their components are investigated. Accelerating rate calorimetry (ARC) is used to determine the onset temperature of exothermic chemical reactions that force the cell into thermal runaway. Differential scanning calorimetry (DSC) and thermogravimetry analysis are used to determine the thermal stability of the cell's positive electrode (PE) and negative electrode (NE) materials from 35 to 400 C. The cell self-heating exothermic reactions start at 123 C, and thermal runaway occurs near 167 C. The total exothermic heat generation of the NE and PE materials are 697 and 407 J/g, respectively. Heat generations of the NE and PE materials, washed in diethyl carbonate (DEC) and dried at {approx}65 C under vacuum, are significantly lower than unwashed samples. Lithium plating increases the heat generation of the NE material at temperatures near the lithium melting point. Comparison of the heat generation profiles from DSC and ARC tests indicates that thermal runaway of this cell is close to the decomposition temperature range of the unwashed PE material. The authors conclude that the heat generation from the decomposition of PE material and reaction of that with electrolyte initiates thermal runaway in a Li-ion cell, under thermally or abusive conditions.

  17. Stability studies of a somatostatin analogue in biodegradable implants.

    PubMed

    Rothen-Weinhold, A; Besseghir, K; Vuaridel, E; Sublet, E; Oudry, N; Gurny, R

    1999-02-15

    In recent years, peptides and proteins have received much attention as drug candidates. For many polypeptides, particularly hormones, it is desirable to release the drug continuously at a controlled rate over a period of weeks or even months, and thus a controlled release system is needed. Polylactic acid (PLA) is a biocompatible and biodegradable material with wide utility for many applications, including the design of controlled release systems for pharmaceutical agents. Pharmaceutical development of these delivery systems presents new problems in the area of stability assessment, especially for peptide drugs. In this study, we aimed to investigate the influence of different steps, during the manufacturing of an implant, on peptide stability in the polymeric matrix. Polylactic acid implants containing vapreotide, a somatostatin analogue, were prepared by extrusion. The effects of time, extrusion and temperature on the peptide stability were studied. The influence of various gamma sterilization doses, as well as the conditions under which the implants were irradiated, were also investigated. Peptide stability in the polymeric matrix was evaluated at various temperatures and at various time intervals up to 9 months. PMID:10205641

  18. Solidifications/stabilization treatability study of a mixed waste sludge

    SciTech Connect

    Spence, R.D.; Stine, E.F.

    1996-03-01

    The Department of Energy Oak Ridge Operations Office signed a Federal Facility Compliance Agreement with the US Environmental Protection Agency Region IV regarding mixed wastes from the Oak Ridge Reservation (ORR) subject to the land disposal restriction provisions of the Resource Conservation and Recovery Act (RCRA). This agreement required treatability studies of solidification/stabilization (S/S) on mixed wastes from the ORR. This paper reports the results of the cementitious S/S studies conducted on a waste water treatment sludge generated from biodenitrification and heavy metals precipitation. For the cementitious waste forms, the additives tested were Portland cement, ground granulated blast furnace slag, Class F fly ash, and perlite. The properties measured on the treated waste were density, free-standing liquid, unconfined compressive strength, and TCLP performance. Spiking up to 10,000, 10,000, and 4,400 mg/kg of nickel, lead, and cadmium, respectively, was conducted to test waste composition variability and the stabilization limitations of the binding agents. The results indicated that nickel, lead and cadmium were stabilized fairly well in the high pH hydroxide-carbonate- ``bug bones`` sludge, but also clearly confirmed the established stabilization potential of cementitious S/S for these RCRA metals.

  19. Relativistic-klystron two-beam-accelerator as a power source for a 1 TeV next linear collider: A systems study

    SciTech Connect

    Yu, S.; Goffeney, N.; Deadrick, F.

    1994-10-01

    A physics, engineering, and costing study has been conducted to explore the feasibility of a relativistic-klystron two-beam-accelerator system as a power source candidate for a 1 TeV linear collider. We present a point design example which has acceptable transverse and longitudinal beam stability properties. Preliminary ``bottom-up`` cost estimate yields the full power source system at less than 1 billion dollars. The overall efficiency for rf production is estimated to be 36%.

  20. Study of the stability coated and uncoated nanosilver colloid

    NASA Astrophysics Data System (ADS)

    Harsojo, Respitaningrum, Afrianto, Toto; Sosiati, Harini

    2013-09-01

    The stability of nanosilver colloids made using electrochemical process and chemical process were investigated. In the process using a DC generator cell, two silver electrodes under a DC voltage were used to generate the colloid. In the chemical process the colloid was made using the dilution of AgNO3 in deionized water with the addition of sodium citrate. To increase the stability to this colloid was added polyvinyl alcohol. The stability In those three colloids were investigated using UV-Vis spectrometer. The size of the nano Ag was measured using transmission electron microscope (TEM). The study reveals that within period of two weeks the trend toward a stable colloid is shown by colloid using DC generator. The addition of PVA may stabilize the unstable colloid made using the chemichal process and reduce the size particle to significantly smaller particle compared to the one made using DC generator cell. The condition of obtaining the stable nano colloid silver with smaller particle size was discussed.

  1. The Study of Non-Linear Acceleration of Particles during Substorms Using Multi-Scale Simulations

    SciTech Connect

    Ashour-Abdalla, Maha

    2011-01-04

    To understand particle acceleration during magnetospheric substorms we must consider the problem on multple scales ranging from the large scale changes in the entire magnetosphere to the microphysics of wave particle interactions. In this paper we present two examples that demonstrate the complexity of substorm particle acceleration and its multi-scale nature. The first substorm provided us with an excellent example of ion acceleration. On March 1, 2008 four THEMIS spacecraft were in a line extending from 8 R{sub E} to 23 R{sub E} in the magnetotail during a very large substorm during which ions were accelerated to >500 keV. We used a combination of a global magnetohydrodynamic and large scale kinetic simulations to model the ion acceleration and found that the ions gained energy by non-adiabatic trajectories across the substorm electric field in a narrow region extending across the magnetotail between x = -10 R{sub E} and x = -15 R{sub E}. In this strip called the 'wall region' the ions move rapidly in azimuth and gain 100s of keV. In the second example we studied the acceleration of electrons associated with a pair of dipolarization fronts during a substorm on February 15, 2008. During this substorm three THEMIS spacecraft were grouped in the near-Earth magnetotail (x {approx}-10 R{sub E}) and observed electron acceleration of >100 keV accompanied by intense plasma waves. We used the MHD simulations and analytic theory to show that adiabatic motion (betatron and Fermi acceleration) was insufficient to account for the electron acceleration and that kinetic processes associated with the plasma waves were important.

  2. A STUDY OF STABILITY CONDITIONS IN AN URBAN AREA

    SciTech Connect

    Chan, S T; Lundquist, J K

    2005-11-01

    Chan (1998) for efficient time integration. Physical processes treated in our code include turbulence modeling via Reynolds Averaged Navier-Stokes (RANS) and Large Eddy Simulation (LES) approaches described in Chan and Stevens (2000), atmospheric stability, aerosols, UV radiation decay, surface energy budgets, and vegetative canopies, etc. Predictions from our model are continuously being verified against measured data from wind tunnel and field experiments. Examples of such studies are discussed in Chan et al. (2001, 2004), Chan and Leach (2004), Calhoun et al. (2004, 2005), and Humphreys et al. (2004). In this study, the stability conditions associated with two more of the Joint URBAN 2003 releases are investigated. Through a model-data comparison of the wind and concentration fields, observed buoyancy production in the urban wake region, together with predicted values of turbulence kinetic energy (TKE) in various regions of the computational domain, a more definitive characterization of stability conditions associated with the simulated releases is presented. In the following, we first discuss briefly the field experiments being simulated, then present sample results from a model-data comparison for both the wind and concentration fields, examine the predicted TKE field and the observed buoyant forcing relative to the total TKE in the urban wake, and finally offer a few concluding remarks including the resulting stability conditions of the simulated releases.

  3. Parasponia: a novel system for studying mutualism stability.

    PubMed

    Behm, Jocelyn E; Geurts, Rene; Kiers, E Toby

    2014-12-01

    Understanding how mutualistic interactions are stabilized in the presence of cheaters is a major question in evolutionary biology. The legume-rhizobia mutualism has become a model system for studying how plants control cheating partners. However, the generality and evolutionary origins of these control mechanisms are intensely debated. In this Opinion article, we argue that a novel system--the Parasponia-rhizobia mutualism--will significantly advance research in mutualism stability. Parasponia is the only non-legume lineage to have evolved a rhizobial symbiosis, which provides an evolutionary replicate to test how rhizobial exploitation is controlled. Evidence also suggests that this symbiosis is young. This allows studies at an earlier evolutionary stage in mutualisms, so the origin of control mechanisms can be better understood. PMID:25239777

  4. Stability studies of silymarin nanoemulsion containing Tween 80 as a surfactant

    PubMed Central

    Parveen, Rabea; Baboota, Sanjula; Ali, Javed; Ahuja, Alka; Ahmad, Sayeed

    2015-01-01

    Background: Silymarin, a flavonolignan from “milk thistle” (Silybum marianum) plant is used almost exclusively for hepatoprotection. Because of its low bioavailability, it was incorporated into a nanoemulsion formulation. The aim of the present study was to check the stability of silymarin nanoemulsion at different temperatures for 3 months. Materials and Methods: The oil-in-water based nanoemulsion formulation was prepared by titration method. Silymarin nanoemulsion was characterized by droplet size, viscosity, and refractive index. Droplet size, viscosity, and refractive index were determined every month. The shelf-life of silymarin nanoemulsion was determined by accelerated stability testing. Results: It was found that there was no significant change in the droplet size, viscosity, and refractive index at refrigerator and room temperature during the period of 3 months. The half-life of the optimized nanoemulsion formulation was found to be 4.74 years at room temperature. Conclusion: These results indicated that stability of silymarin can be enhanced in nanoemulsion formulation using Tween 80 as a surfactant. PMID:26681893

  5. Motion sickness and otolith sensitivity - A pilot study of habituation to linear acceleration

    NASA Technical Reports Server (NTRS)

    Potvin, A. R.; Sadoff, M.; Billingham, J.

    1977-01-01

    Astronauts, particularly in Skylab flights, experienced varying degrees of motion sickness lasting 3-5 days. One possible mechanism for this motion sickness adaptation is believed to be a reduction in otolith sensitivity with an attendant reduction in sensory conflict. In an attempt to determine if this hypothesis is valid, a ground-based pilot study was conducted on a vertical linear accelerator. The extent of habituation to accelerations which initially produced motion sickness was evaluated, along with the possible value of habituation training to minimize the space motion sickness problem. Results showed that habituation occurred for 6 of the 8 subjects tested. However, in tests designed to measure dynamic and static otolith function, no significant differences between pre- and post-habituation tests were observed. Cross habituation effects to a standard Coriolis acceleration test were not significant. It is unlikely that ground-based pre-habituation to linear accelerations of the type examined would alter susceptibility to space motion sickness.

  6. Theoretical study of self-balancing missiles. [design for maximum vertical or lateral accelerations

    NASA Technical Reports Server (NTRS)

    Hopkins, E. J.

    1976-01-01

    A theoretical study based on linear theory is presented for two types of 'self-balancing' missiles, designed to accelerate vertically or laterally without pitching or yawing. One type of missile had a variable-incidence wing and the other type had wing flaps to provide acceleration. The main objective of this investigation is to compare the maximum available acceleration for these self-balancing missiles with that of conventional pitching-type missiles. Ten different configurations were considered. The results indicate that self-balancing missiles with either variable wing incidence or wing flaps are feasible, but that the maximum available acceleration for these missiles is less than for a conventional pitching-type missile having the same wing and tail surfaces.

  7. Stability of vegetated slopes in unsaturated conditions: a numerical study

    NASA Astrophysics Data System (ADS)

    Battista Chirico, Giovanni; Borga, Marco; Tarolli, Paolo; Rigon, Riccardo; Preti, Federico

    2014-05-01

    Extreme rainfall events can trigger shallow landslides with failure planes located in soils far from saturated conditions. The stability of shallow soils on very steep slopes under unsaturated conditions can be highly influenced by the vegetation, according to both geo-mechanical and soil-hydrological factors, particularly in regions characterized by a strong climatic seasonality. The root structure of the vegetation reinforces the shallow soils, by providing additional apparent cohesion to the soil. The root water uptake enhances the stability by increasing the frequency of high suction pressure heads in the soil layers explored by the roots. In water controlled eco-systems, such as Mediterranean areas, these two factors are mutually related. Plants develop their root structure in order to optimize the uptake of the water available in the soil, since water availability is limited during the growing season. In this study we present the results of some numerical experiments with the aim to assess the relative importance of these two factors. We simulated the soil water dynamics within homogeneous loamy-sand soils, assuming climatic conditions and root structures typically observed in a deciduous forest of central and southern Italy. An infinite slope stability model is employed for assessing the temporal evolution of the contribute of the soil suction regime to the slope stability, as compared with the contribute of the soil root reinforcement. The results suggest that, during the wet season, the effect of the soil suction state on slope stability is much smaller than that attributable to the mechanical reinforcement provided by the root structure, at least within soil depths explored by the plant roots. Instead, during the growing and dry summer seasons, the soil suction state is far more relevant than the mechanical reinforcement. Thus, accounting for the antecedent soil suction state can be relevant for an appropriate prediction of shallow landslide hazards in

  8. Application of accelerated carbonation with a combination of Na2CO3 and CO2 in cement-based solidification/stabilization of heavy metal-bearing sediment.

    PubMed

    Chen, Quanyuan; Ke, Yujuan; Zhang, Lina; Tyrer, Mark; Hills, Colin D; Xue, Gang

    2009-07-15

    The efficient remediation of heavy metal-bearing sediment has been one of top priorities of ecosystem protection. Cement-based solidification/stabilization (s/s) is an option for reducing the mobility of heavy metals in the sediment and the subsequent hazard for human beings and animals. This work uses sodium carbonate as an internal carbon source of accelerated carbonation and gaseous CO(2) as an external carbon source to overcome deleterious effects of heavy metals on strength development and improve the effectiveness of s/s of heavy metal-bearing sediment. In addition to the compressive strength and porosity measurements, leaching tests followed the Chinese solid waste extraction procedure for leaching toxicity - sulfuric acid and nitric acid method (HJ/T299-2007), German leaching procedure (DIN38414-S4) and US toxicity characteristic leaching procedures (TCLP) have been conducted. The experimental results indicated that the solidified sediment by accelerated carbonation was capable of reaching all performance criteria for the disposal at a Portland cement dosage of 10 wt.% and a solid/water ratio of 1:1. The concentrations of mercury and other heavy metals in the leachates were below 0.10mg/L and 5mg/L, respectively, complying with Chinese regulatory level (GB5085-2007). Compared to the hydration, accelerated carbonation improved the compressive strength of the solidified sediment by more than 100% and reduced leaching concentrations of heavy metals significantly. It is considered that accelerated carbonation technology with a combination of Na(2)CO(3) and CO(2) may practically apply to cement-based s/s of heavy metal-bearing sediment. PMID:19128876

  9. Experimental study of self-trapping in capillary discharge guided laser wakefield acceleration

    SciTech Connect

    Panasenko, D.; Esarey, E.; Geddes, C. G. R.; Gonsalves, A. J.; Leemans, W. P.; Lin, C.; Nakamura, K.; Schroeder, C. B.; Toth, C.

    2009-05-04

    Laser wakefield acceleration experiments were carried out using hydrogen-filled capillary discharge waveguides. For a 33 mm long, 300 mu m capillary, parameter regimes with high energy electron beams (up to 1 GeV) and stable 0.5 GeV were found. In the high energy regime, the electron beam peak energy was correlated with the number of trapped electrons. For a 15 mm long, 200 mu m diameter capillary, quasi-monoenergetic e beams up to 300 MeV were observed. By de-tuning discharge delay from optimum guiding performance, self-trapping was found to be stabilized.

  10. A Non-scaling Fixed Field Alternating Gradient Accelerator for the Final Acceleration Stage of the International Design Study of the Neutrino Factory.

    SciTech Connect

    Berg, J.S.; Aslaninejad, M.; Pasternak, J.; Witte, H.; Bliss, N. Cordwell M.; Jones, T.; Muir, A., Kelliher, D.; Machida, S.

    2011-09-04

    The International Design Study of the Neutrino Factory (IDS-NF) has recently completed its Interim Design Report (IDR), which presents our current baseline design of the neutrino factory. To increase the efficiency and reduce the cost of acceleration, the IDR design uses a linear non-scaling fixed field alternating gradient accelerator (FFAG) for its final acceleration stage. We present the current lattice design of that FFAG, including the main ring plus its injection and extraction systems. We describe parameters for the main ring magnets, kickers, and septa, as well as the power supplies for the kickers. We present a first pass at an engineering layout for the ring and its subsystems.

  11. Studies of low rank coal stabilities. Final report

    SciTech Connect

    1998-03-01

    The National Institute for Occupational Safety and Health (NIOSH), Pittsburgh Research Center, tested feed coal and product samples from Wyoming and Montana for thermal stability in the adiabatic oven and sealed flask apparatus. The results indicated that the products had higher thermal stabilities in comparison with the feed coals. However, both the products samples and feed coals exhibited high spontaneous combustion potentials. A report on these studies was submitted in December 1995. Experiments were also completed in the adiabatic oven to determine the rate of decrease in the heating rate of a reactive sample on exposure to pulses of moist air, and moist nitrogen. The results indicated that with each succeeding pulse, longer time were required to reach selected elevated temperatures. The results also indicated some level of synergy between water and oxygen in the heat generation reaction. The data and results were transmitted to Dr. Dennis Finseth upon completion of the experiments.

  12. New, More Authentic Model for AIDS Will Accelerate Studies | Poster

    Cancer.gov

    By Frank Blanchard, Staff Writer, and Jeff Lifson, Guest Writer Researchers are working to develop a more authentic animal model of human immunodeficiency virus (HIV) infection and AIDS that is expected to speed up studies of experimental treatments and vaccines.

  13. Accelerator research studies. Final report, June 1, 1990--November 30, 1991

    SciTech Connect

    Not Available

    1991-12-31

    The program consisted of the following three tasks: TASK A, ``Study of Transport and Longitudinal Compression of Intense, High-Brightness Beams,`` TASK B, ``Study of Collective Ion Acceleration by Intense Electron Beams and Pseudospark Produced High Brightness Electron Beams,`` and TASK C, ``Study of a Gyroklystron High-Power Microwave Source for Linear Colliders.``

  14. Plasma wakefield acceleration studies using the quasi-static code WAKE

    SciTech Connect

    Jain, Neeraj; Palastro, John; Antonsen, T. M.; Mori, Warren B.; An, Weiming

    2015-02-15

    The quasi-static code WAKE [P. Mora and T. Antonsen, Phys. Plasmas 4, 217 (1997)] is upgraded to model the propagation of an ultra-relativistic charged particle beam through a warm background plasma in plasma wakefield acceleration. The upgraded code is benchmarked against the full particle-in-cell code OSIRIS [Hemker et al., Phys. Rev. Spec. Top. Accel. Beams 3, 061301 (2000)] and the quasi-static code QuickPIC [Huang et al., J. Comput. Phys. 217, 658 (2006)]. The effect of non-zero plasma temperature on the peak accelerating electric field is studied for a two bunch electron beam driver with parameters corresponding to the plasma wakefield acceleration experiments at Facilities for Accelerator Science and Experimental Test Beams. It is shown that plasma temperature does not affect the energy gain and spread of the accelerated particles despite suppressing the peak accelerating electric field. The role of plasma temperature in improving the numerical convergence of the electric field with the grid resolution is discussed.

  15. Comparison of acceleration and impact stress as possible loading factors in phonation: a computer modeling study.

    PubMed

    Horácek, Jaromír; Laukkanen, Anne-Maria; Sidlof, Petr; Murphy, Peter; Svec, Jan G

    2009-01-01

    Impact stress (the impact force divided by the contact area of the vocal folds) has been suspected to be the main traumatizing mechanism in voice production, and the main cause of vocal fold nodules. However, there are also other factors, such as the repetitive acceleration and deceleration, which may traumatize the vocal fold tissues. Using an aeroelastic model of voice production, the present study quantifies the acceleration and impact stress values in relation to lung pressure, fundamental frequency (F0) and prephonatory glottal half-width. Both impact stress and acceleration were found to increase with lung pressure. Compared to impact stress, acceleration was less dependent on prephonatory glottal width and, thus, on voice production type. Maximum acceleration values were about 5-10 times greater for high F0 (approx. 400 Hz) compared to low F0 (approx. 100 Hz), whereas maximum impact stress remained nearly unchanged. This suggests that acceleration, i.e. the inertia forces, may present at high F0 a greater load for the vocal folds, and in addition to the collision forces may contribute to the fact that females develop vocal fold nodules and other vocal fold traumas more frequently than males. PMID:19571548

  16. Studies of a hybrid Trojan Horse wakefield accelerator with high transformer ratio

    NASA Astrophysics Data System (ADS)

    Cook, Nathan; Bruhwiler, David; Hidding, Bernhard; Vay, Jean-Luc; Webb, Stephen

    2015-11-01

    Plasma wakefield acceleration uses relativistic high-charge electron bunches to generate a plasma blowout supporting intense electric fields for trapping and acceleration. Dramatic improvements in emittance, peak current and brightness are achievable through laser-controlled ionization in the plasma blowout, which is the premise of the Trojan Horse approach. The hybrid Trojan Horse concept extends this approach to use the output beam from a laser plasma accelerator to drive a Trojan Horse, resulting in a compact system that can produce higher brightness bunches with order-of-magnitude lower energy spread. We are exploring the use of multiple, shaped laser pulses to resonantly inject a shaped electron drive bunch. The resulting output bunch could generate wakes in PWFA or beam-driven dielectric structures with transformer ratios of 5 to 10 or larger. Hence, a hybrid Trojan Horse accelerator with bunch shaping may provide a compact source of nC bunches that can drive a variety of systems for studying high-gradient wakefields and lepton acceleration. Initial work will use previously simulated electron bunches from a laser plasma accelerator to drive the plasma wakefield stage. We present preliminary results from simulations using the parallel, particle-in-cell framework Warp. Work supported by the U.S. Department of Energy, Office of High Energy Physics, under Award Number DE-SC0013855.

  17. Extraction Socket Management Utilizing Platelet Rich Fibrin: A Proof-of-Principle Study of the "Accelerated-Early Implant Placement" Concept.

    PubMed

    Kotsakis, Georgios A; Boufidou, Foteini; Hinrichs, James E; Prasad, Hari S; Rohrer, Michael; Tosios, Kostantinos I

    2016-04-01

    Dental implants are widely accepted as the golden standard for the rehabilitation of an edentulous site following the extraction of a tooth. The ideal time for implant placement is dependent on the time required for partial or complete tissue healing and the adequacy of socket dimensions. The use of autologous growth factors is a promising new concept that aids clinicians in minimizing treatment time and increasing patient satisfaction. The purpose of this paper is to introduce a protocol for "accelerated-early" implant placement. In this protocol, platelet rich fibrin is employed to accelerate soft and hard tissue healing and to provide a better-healed recipient site for accelerated, early implant placement. Histological analysis revealed that at 6 weeks postextraction, the application of our approach resulted in delicate newly formed bone showing intense osteoblastic activity surrounded by connective tissue as well as areas of mineralized tissue. The present study is a proof-of-principle study of the acceleration of the physiologic postextraction healing sequelae with the use of autologous growth factors. The accelerated-early implant placement concept is a bioengineered protocol that may aid clinicians to achieve increased primary stability, by placing implants in ridges in an advanced stage of bone healing, while offering patients the benefits associated with early implant placement. Controlled studies are warranted to verify the reproducibility of this treatment concept and identify specific indications where the use of the presented technique can lead to significant clinical results. PMID:26389580

  18. A multi-beam, multi-terawatt Ti:sapphire laser system for laser wake-field acceleration studies

    SciTech Connect

    Toth, Cs.; Geddes, C.G.R.; Tilborg, J. van; Leemans, W.P.

    2004-12-07

    The Lasers, Optical Accelerator Systems Integrated Studies (L'OASIS) Lab of LBNL operates a highly automated and remotely controlled Ti:sapphire chirped pulse amplification (CPA) laser system that provides synchronized beams of 2x1.0 TW, 12 TW, and 100 TW peak-power, in a unique, radiation shielded facility. The system has been specially designed for studying high field laser-plasma interactions and particularly aimed for the investigations of laser wake-field particle acceleration. It generates and recombines multiple beams having different pulse durations, wavelengths, and pulse energies for various stages of plasma preparation, excitation, and diagnostics. The amplifier system is characterized and continuously monitored via local area network (LAN) from a radiation shielded control room by an array of diagnostics, including beam profile monitoring cameras, remote controlled alignment options, self-correcting beam-pointing stabilization loops, pulse measurement tools, such as single-shot autocorrelator for pulse duration and third-order correlator for contrast measurements, FROG for pulse shape studies.

  19. Parametric study of transport beam lines for electron beams accelerated by laser-plasma interaction

    NASA Astrophysics Data System (ADS)

    Scisciò, M.; Lancia, L.; Migliorati, M.; Mostacci, A.; Palumbo, L.; Papaphilippou, Y.; Antici, P.

    2016-03-01

    In the last decade, laser-plasma acceleration of high-energy electrons has attracted strong attention in different fields. Electrons with maximum energies in the GeV range can be laser-accelerated within a few cm using multi-hundreds terawatt (TW) lasers, yielding to very high beam currents at the source (electron bunches with up to tens-hundreds of pC in a few fs). While initially the challenge was to increase the maximum achievable electron energy, today strong effort is put in the control and usability of these laser-generated beams that still lack of some features in order to be used for applications where currently conventional, radio-frequency (RF) based, electron beam lines represent the most common and efficient solution. Several improvements have been suggested for this purpose, some of them acting directly on the plasma source, some using beam shaping tools located downstream. Concerning the latter, several studies have suggested the use of conventional accelerator magnetic devices (such as quadrupoles and solenoids) as an easy implementable solution when the laser-plasma accelerated beam requires optimization. In this paper, we report on a parametric study related to the transport of electron beams accelerated by laser-plasma interaction, using conventional accelerator elements and tools. We focus on both, high energy electron beams in the GeV range, as produced on petawatt (PW) class laser systems, and on lower energy electron beams in the hundreds of MeV range, as nowadays routinely obtained on commercially available multi-hundred TW laser systems. For both scenarios, our study allows understanding what are the crucial parameters that enable laser-plasma accelerators to compete with conventional ones and allow for a beam transport. We show that suitable working points require a tradeoff-combination between low beam divergence and narrow energy spread.

  20. Study of phase stability in NiPt systems

    NASA Astrophysics Data System (ADS)

    Paudyal, Durga; Saha-Dasgupta, Tanusri; Mookerjee, Abhijit

    2003-02-01

    We have studied the problem of phase stability in NiPt alloy systems. We have used the augmented space recursion based on the tight binding-linearized muffin-tin orbital as the method for studying the electronic structure of the alloys. In particular, we have used the relativistic generalization of our earlier technique. We note that, in order to predict the proper ground state structures and energetics, in addition to relativistic effects, we have to take into account charge transfer effects with precision.

  1. Numerical studies of transverse curvature effects on transonic flow stability

    NASA Technical Reports Server (NTRS)

    Macaraeg, M. G.; Daudpota, Q. I.

    1992-01-01

    A numerical study of transverse curvature effects on compressible flow temporal stability for transonic to low supersonic Mach numbers is presented for axisymmetric modes. The mean flows studied include a similar boundary-layer profile and a nonsimilar axisymmetric boundary-layer solution. The effect of neglecting curvature in the mean flow produces only small quantitative changes in the disturbance growth rate. For transonic Mach numbers (1-1.4) and aerodynamically relevant Reynolds numbers (5000-10,000 based on displacement thickness), the maximum growth rate is found to increase with curvature - the maximum occurring at a nondimensional radius (based on displacement thickness) between 30 and 100.

  2. Studies of noble-metal thermocouple stability at high temperatures

    NASA Technical Reports Server (NTRS)

    Freeze, P.; Thomas, D. B.

    1976-01-01

    Two investigatory studies on performance characteristics of noble-metal thermocouples are described. (1) thermoelectric stability as affected by preferential oxidation of iridium in the system iridium-40% rhodium versus iridium, and (2) the effects of temperature gradients on the emf stability of the systems platinum-13% rhodium versus platinum and iridium-40% rhodium versus iridium, operating in air. The stability investigation was carried out at three temperatures - 1700, 1850, and 2000 C - by comparing the output of the test thermocouple in air with the output of an identically constructed reference thermocouple in nitrogen. The results show that no calibration shift was observed producing a change in output greater than that corresponding to a 2.0% change in the indicated temperature for all samples tested. The investigation of gradient effects was carried out by subjecting test thermocouples to both severe and mild gradients for periods up to 200 hours. For the platinum system, the operating temperature was 1500 C with gradients of 1475 and 700 C/cm; for the iridium system, 2000 C with gradients of 700, 1500, and 1975 C/cm. Exposure to temperature gradients was found to introduce significant changes in calibration for both systems. In both investigations, the thermoelements were examined by means of electron-probe analysis and by metallographic methods to detect chemical and structural changes. Data and micrographs are presented.

  3. A study of the temporal stability of multiple cell vortices

    NASA Technical Reports Server (NTRS)

    Khorrami, Mehdi R.

    1989-01-01

    The effect of initial mean velocity field on the stability characteristics of longitudinal vortices is documented in detail. The temporal stability of isolated multiple cell vortices is considered. The types of vortices studied include single cell as well as two and three cell vortices. It is shown that cell multiplicity in the vortex core has drastic effects on the stability characteristics. On the basis of numerical calculations, it is concluded that the growth rates of instabilities in multiple cell vortices are substantially larger (two to threefold increases are observed) than those of a single cell vortex. It is also determined that there is a substantial increase in the effective range of axial and azimuthal wavenumbers where instabilities are present. But most importantly, there is the appearance of a variety of viscous modes of instability. In the case of vortices, these latter instabilities which highlight the importance of viscous forces have never been reported before. These effects are discussed in detail for the case of a two cell vortex.

  4. Aging and Phase Stability Studies of Alloy 22 FY08 Final Report

    SciTech Connect

    Torres, S G

    2008-04-03

    This report is a compilation of work done over the past ten years in support of phase stability studies of Alloy 22 for the Yucca Mountain Project and contains information previously published, reported, and referenced. Most sections are paraphrased here for the convenience of readers. Evaluation of the fabrication processes involved in the manufacture of waste containers is important as these processes can have an effect on the metallurgical structure of an alloy. Because material properties such as strength, toughness, aging kinetics and corrosion resistance are all dependent on the microstructure, it is important that prototypes be built and evaluated for processing effects on the performance of the material. Of particular importance are welds, which have an as-cast microstructure with chemical segregation and precipitation of complex phases resulting from the welding process. The work summarized in this report contains information on the effects of fabrication processes such as solution annealing, stress mitigation, heat-to-heat variability, and welding on the kinetics of precipitation, mechanical, and corrosion properties. For a waste package lifetime of thousands of years, it is impossible to test directly in the laboratory the behavior of Alloy 22 under expected repository conditions. The changes that may occur in these materials must be accelerated. For phase stability studies, this is achieved by accelerating the phase transformations by increasing test temperatures above those anticipated in the proposed repository. For these reasons, Alloy 22 characterization specimens were aged at Lawrence Livermore National Laboratory (LLNL) Aging Facilities for times from 1 hour up to 8 years at temperatures ranging from 200-750 C. These data as well as the data from specimens aged at 260 C, 343 C, and 427 C for 100,028 hours at Haynes International will be used for performance confirmation and model validation.

  5. FAST/Polar Conjunction Study of Field-Aligned Auroral Acceleration and Corresponding Magnetotail Drivers

    NASA Technical Reports Server (NTRS)

    Schriver, D.; Ashour-Abdalla, M.; Strangeway, R. J.; Richard, R. L.; Klezting, C.; Dotan, Y.; Wygant, J.

    2002-01-01

    The discrete aurora results when energized electrons bombard the Earth's atmosphere at high latitudes. This paper examines the physical processes that can cause field-aligned acceleration of plasma particles in the auroral region. A data and theoretical study has been carried out to examine the acceleration mechanisms that operate in the auroral zone and to identity the magnetospheric drivers of these acceleration mechanisms. The observations used in the study were collected by the Fast Auroral SnapshoT (FAST) and Polar satellites when the two satellites were in approximate magnetic conjunction in the auroral region. During these events FAST was in the middle of the auroral zone and Polar was above the auroral zone in the near-Earth plasma sheet. Polar data was used to determine the conditions in the magnetotail at the time field-aligned acceleration was measured by FAST in the auroral zone. For each of the magnetotail drivers identified in the data study, the physics of field-aligned acceleration in the auroral region was examined using existing theoretical efforts and a long-system particle-in-cell simulation to model the magnetically connected region between the two satellites.

  6. Space Mechanisms Lessons Learned and Accelerated Testing Studies

    NASA Technical Reports Server (NTRS)

    Fusaro, Robert L.

    1997-01-01

    A number of mechanism (mechanical moving component) failures and anomalies have recently occurred on satellites. In addition, more demanding operating and life requirements have caused mechanism failures or anomalies to occur even before some satellites were launched (e.g., during the qualification testing of GOES-NEXT, CERES, and the Space Station Freedom Beta Joint Gimbal). For these reasons, it is imperative to determine which mechanisms worked in the past and which have failed so that the best selection of mechanically moving components can be made for future satellites. It is also important to know where the problem areas are so that timely decisions can be made on the initiation of research to develop future needed technology. To chronicle the life and performance characteristics of mechanisms operating in a space environment, a Space Mechanisms Lessons Learned Study was conducted. The work was conducted by the NASA Lewis Research Center and by Mechanical Technologies Inc. (MTI) under contract NAS3-27086. The expectation of the study was to capture and retrieve information relating to the life and performance of mechanisms operating in the space environment to determine what components had operated successfully and what components had produced anomalies.

  7. Stability of Enclosed Laminar Flames Studied in Microgravity

    NASA Technical Reports Server (NTRS)

    Stocker, Dennis P.

    1999-01-01

    In practical combustion systems, the flame is often anchored at the inlet where the fuel is injected into an air duct. This type of system is found in powerplant combustors, gas turbine combustors, and the jet engine afterburner. Despite its successful use, this configuration is vulnerable to adverse flow conditions that can cause the flame to literally lift off from the inlet or even blowout. Poor flame stability is, of course, unwanted, especially where safety has a high priority. Our understanding of the mechanisms that control flame stability is incomplete in part because the interaction of buoyant (i.e., gravity-induced) convection makes it difficult to interpret normal-gravity results. However, a comparison of normal-gravity and microgravity results can provide a clear indication of the influence of forced and buoyant flows on flame stability. Therefore, a joint microgravity study on the stability of Enclosed Laminar Flames (ELF) was carried out by researchers at The University of Iowa and the NASA Lewis Research Center. The microgravity tests were conducted in the Microgravity Glovebox (MGBX), during the STS-87 space shuttle mission in late 1997, using hardware designed and produced at Lewis. The primary objective of the ELF investigation was to determine the mechanisms controlling the stability of round, laminar, gas-jet diffusion flames in a coflow air duct. The study specifically focused on the effect of buoyancy on the flame characteristics and velocities at the lift-off, reattachment, and blowout of the flame. When the fuel or air velocity is increased to a critical value, the flame base abruptly jumps downstream, and the flame is said to have reached its lift-off condition. Flow conditions are such that the flame cannot be maintained at the burner rim despite the presence of both fuel and oxygen. When the velocity is further increased, the flame eventually extinguishes at its blowout condition. In contrast, if the velocity is reduced, the flame base

  8. Stability studies of lincomycin hydrochloride in aqueous solution and intravenous infusion fluids

    PubMed Central

    Czarniak, Petra; Boddy, Michael; Sunderland, Bruce; Hughes, Jeff D

    2016-01-01

    Purpose The purpose of this study was to evaluate the chemical stability of Lincocin® (lincomycin hydrochloride) in commonly used intravenous fluids at room temperature (25°C), at accelerated-degradation temperatures and in selected buffer solutions. Materials and methods The stability of Lincocin® injection (containing lincomycin 600 mg/2 mL as the hydrochloride) stored at 25°C±0.1°C in sodium lactate (Hartmann’s), 0.9% sodium chloride, 5% glucose, and 10% glucose solutions was investigated over 31 days. Forced degradation of Lincocin® in hydrochloric acid, sodium hydroxide, and hydrogen peroxide was performed at 60°C. The effect of pH on the degradation rate of lincomycin hydrochloride stored at 80°C was determined. Results Lincomycin hydrochloride w as found to maintain its shelf life at 25°C in sodium lactate (Hartmann’s) solution, 0.9% sodium chloride solution, 5% glucose solution, and 10% glucose solution, with less than 5% lincomycin degradation occurring in all intravenous solutions over a 31-day period. Lincomycin hydrochloride showed less rapid degradation at 60°C in acid than in basic solution, but degraded rapidly in hydrogen peroxide. At all pH values tested, lincomycin followed first-order kinetics. It had the greatest stability near pH 4 when stored at 80°C (calculated shelf life of 4.59 days), and was least stable at pH 2 (calculated shelf life of 0.38 days). Conclusion Lincocin® injection was chemically found to have a shelf life of at least 31 days at 25°C when added to sodium lactate (Hartmann’s) solution, 0.9% sodium chloride solution, 5% glucose solution, and 10% glucose solution. Solutions prepared at approximately pH 4 are likely to have optimum stability. PMID:27022242

  9. A crystal routine for collimation studies in circular proton accelerators

    NASA Astrophysics Data System (ADS)

    Mirarchi, D.; Hall, G.; Redaelli, S.; Scandale, W.

    2015-07-01

    A routine has been developed to simulate interactions of protons with bent crystals in a version of SixTrack for collimation studies. This routine is optimized to produce high-statistics tracking simulations for a highly efficient collimation system, like the one of the CERN Large Hadron Collider (LHC). The routine has recently been reviewed and improved through a comparison with experimental data, benchmarked against other codes and updated by adding better models of low-probability interactions. In this paper, data taken with 400 GeV/c proton beams at the CERN-SPS North Area are used to verify the prediction of the routine, including the results of a more recent analysis.

  10. Promoting Acceleration of Comprehension and Content through Text in High School Social Studies Classes

    ERIC Educational Resources Information Center

    Wanzek, Jeanne; Swanson, Elizabeth A.; Roberts, Greg; Vaughn, Sharon; Kent, Shawn C.

    2015-01-01

    The purpose of this study was to evaluate the efficacy of Promoting Acceleration of Comprehension and Content Through Text intervention implemented with 11th-grade students enrolled in U.S. History classes. Using a within-teacher randomized design, the study was conducted in 41 classes (23 treatment classes) with 14 teachers providing the…

  11. Accelerator Research Studies. Annual report for June 1, 2003 - May 31, 2004

    SciTech Connect

    O'Shea, P. G.; Reiser, M.; Granatstein, V. L.; Lawson, W.; Haber, I.; Kishek, R.

    2004-01-23

    The report provides a summary progress on three tasks: Task A: Study of the Physics of Space-Charge Dominated Beams for Advanced Accelerator Applications; Task B: Studies of High-Power Gyroklystrons and Application to Linear Colliders; and, Task C: Theory and Simulation of the Physics Space-Charge Dominated Beams

  12. Nitric Oxide Deficiency Accelerates Chlorophyll Breakdown and Stability Loss of Thylakoid Membranes during Dark-Induced Leaf Senescence in Arabidopsis

    PubMed Central

    Liu, Fang; Guo, Fang-Qing

    2013-01-01

    Nitric oxide (NO) has been known to preserve the level of chlorophyll (Chl) during leaf senescence. However, the mechanism by which NO regulates Chl breakdown remains unknown. Here we report that NO negatively regulates the activities of Chl catabolic enzymes during dark-induced leaf senescence. The transcriptional levels of the major enzyme genes involving Chl breakdown pathway except for RED CHL CATABOLITE REDUCTASE (RCCR) were dramatically up-regulated during dark-induced Chl degradation in the leaves of Arabidopsis NO-deficient mutant nos1/noa1 that exhibited an early-senescence phenotype. The activity of pheide a oxygenase (PAO) was higher in the dark-induced senescent leaves of nos1/noa1 compared with wild type. Furthermore, the knockout of PAO in nos1/noa1 background led to pheide a accumulation in the double mutant pao1 nos1/noa1, which retained the level of Chl during dark-induced leaf senescence. The accumulated pheide a in darkened leaves of pao1 nos1/noa1 was likely to inhibit the senescence-activated transcriptional levels of Chl catabolic genes as a feed-back inhibitory effect. We also found that NO deficiency led to decrease in the stability of photosynthetic complexes in thylakoid membranes. Importantly, the accumulation of pheide a caused by PAO mutations in combination with NO deficiency had a synergistic effect on the stability loss of thylakoid membrane complexes in the double mutant pao1 nos1/noa1 during dark-induced leaf senescence. Taken together, our findings have demonstrated that NO is a novel negative regulator of Chl catabolic pathway and positively functions in maintaining the stability of thylakoid membranes during leaf senescence. PMID:23418559

  13. Deuterium beam acceleration with 3rd harmonic ion cyclotron resonance heating in Joint European Torus: Sawtooth stabilization and Alfvén eigenmodes

    NASA Astrophysics Data System (ADS)

    Gassner, T.; Schoepf, K.; Sharapov, S. E.; Kiptily, V. G.; Pinches, S. D.; Hellesen, C.; Eriksson, J.; JET-EFDA contributors

    2012-03-01

    Experiments on accelerating NBI-produced deuterium (D) beam ions from their injection energy of ˜110 keV up to the MeV energy range with 3rd harmonic ion cyclotron resonance heating were performed on the Joint European Torus [P. H. Rebut and B. E. Keen, Fusion Technol. 11, 13 (1987)]. A renewed set of nuclear diagnostics was used for analysing fast D ions during sawtooth stabilization, monster sawtooth crashes, and during excitation of Alfvén eigenmodes (AEs) residing inside the q = 1 radius. The measurements and modeling of the fast ions with the nonlinear HAGIS code [S. D. Pinches et al., Comput. Phys. Commun. 111, 133 (1998)] show that monster sawtooth crashes are strongly facilitated by the AE-induced re-distribution of the fast D ions from inside the q = 1 radius to the plasma edge.

  14. Studies of Multipactor in Dielectric-Loaded Accelerator Structures: Comparison of Simulation Results with Experimental Data

    SciTech Connect

    Sinitsyn, Oleksandr; Nusinovich, Gregory; Antonsen, Thomas Jr.

    2010-11-04

    In this paper new results of numerical studies of multipactor in dielectric-loaded accelerator structures are presented. The results are compared with experimental data obtained during recent studies of such structures performed by Argonne National Laboratory, the Naval Research Laboratory, SLAC National Accelerator Laboratory and Euclid TechLabs, LLC. Good agreement between the theory and experiment was observed for the structures with larger inner diameter, however the structures with smaller inner diameter demonstrated a discrepancy between the two. Possible reasons for such discrepancy are discussed.

  15. Study of Spray Disintegration in Accelerating Flow Fields

    NASA Technical Reports Server (NTRS)

    Nurick, W. H.

    1972-01-01

    An analytical and experimental investigation was conducted to perform "proof of principlem experiments to establish the effects of propellant combustion gas velocity on propella'nt atomization characteristics. The propellants were gaseous oxygen (GOX) and Shell Wax 270. The fuel was thus the same fluid used in earlier primary cold-flow atomization studies using the frozen wax method. Experiments were conducted over a range in L* (30 to 160 inches) at two contraction ratios (2 and 6). Characteristic exhaust velocity (c*) efficiencies varied from SO to 90 percent. The hot fire experimental performance characteristics at a contraction ratio of 6.0 in conjunction with analytical predictions from the drovlet heat-up version of the Distributed Energy Release (DER) combustion computer proDam showed that the apparent initial dropsize compared well with cold-flow predictions (if adjusted for the gas velocity effects). The results also compared very well with the trend in perfomnce as predicted with the model. significant propellant wall impingement at the contraction ratio of 2.0 precluded complete evaluation of the effect of gross changes in combustion gas velocity on spray dropsize.

  16. Laser-wakefield accelerators for medical phase contrast imaging: Monte Carlo simulations and experimental studies

    NASA Astrophysics Data System (ADS)

    Cipiccia, S.; Reboredo, D.; Vittoria, Fabio A.; Welsh, G. H.; Grant, P.; Grant, D. W.; Brunetti, E.; Wiggins, S. M.; Olivo, A.; Jaroszynski, D. A.

    2015-05-01

    X-ray phase contrast imaging (X-PCi) is a very promising method of dramatically enhancing the contrast of X-ray images of microscopic weakly absorbing objects and soft tissue, which may lead to significant advancement in medical imaging with high-resolution and low-dose. The interest in X-PCi is giving rise to a demand for effective simulation methods. Monte Carlo codes have been proved a valuable tool for studying X-PCi including coherent effects. The laser-plasma wakefield accelerators (LWFA) is a very compact particle accelerator that uses plasma as an accelerating medium. Accelerating gradient in excess of 1 GV/cm can be obtained, which makes them over a thousand times more compact than conventional accelerators. LWFA are also sources of brilliant betatron radiation, which are promising for applications including medical imaging. We present a study that explores the potential of LWFA-based betatron sources for medical X-PCi and investigate its resolution limit using numerical simulations based on the FLUKA Monte Carlo code, and present preliminary experimental results.

  17. Monte Carlo study of photon fields from a flattening filter-free clinical accelerator

    SciTech Connect

    Vassiliev, Oleg N.; Titt, Uwe; Kry, Stephen F.; Poenisch, Falk; Gillin, Michael T.; Mohan, Radhe

    2006-04-15

    In conventional clinical linear accelerators, the flattening filter scatters and absorbs a large fraction of primary photons. Increasing the beam-on time, which also increases the out-of-field exposure to patients, compensates for the reduction in photon fluence. In recent years, intensity modulated radiation therapy has been introduced, yielding better dose distributions than conventional three-dimensional conformal therapy. The drawback of this method is the further increase in beam-on time. An accelerator with the flattening filter removed, which would increase photon fluence greatly, could deliver considerably higher dose rates. The objective of the present study is to investigate the dosimetric properties of 6 and 18 MV photon beams from an accelerator without a flattening filter. The dosimetric data were generated using the Monte Carlo programs BEAMnrc and DOSXYZnrc. The accelerator model was based on the Varian Clinac 2100 design. We compared depth doses, dose rates, lateral profiles, doses outside collimation, total and collimator scatter factors for an accelerator with and without a flatteneing filter. The study showed that removing the filter increased the dose rate on the central axis by a factor of 2.31 (6 MV) and 5.45 (18 MV) at a given target current. Because the flattening filter is a major source of head scatter photons, its removal from the beam line could reduce the out-of-field dose.

  18. Studies of Heterogeneous Catalyst Selectivity and Stability for Biorefining Applications

    NASA Astrophysics Data System (ADS)

    O'Neill, Brandon J.

    The conversion of raw resources into value-added end products has long underlain the importance of catalysts in economic and scientific development. In particular, the development of selective and stable heterogeneous catalysts is a challenge that continues to grow in importance as environmental, sociological, and economic concerns have motivated an interest in sustainability and the use of renewable raw materials. Within this context, biomass has been identified as the only realistic source of renewable carbon for the foreseeable future. The development of processes to utilize biomass feedstocks will require breakthroughs in fundamental understanding and practical solutions to the challenges related to selectivity and stability of the catalysts employed. Selectivity is addressed on multiple fronts. First, the selectivity for C-O bond scission reactions of a bifunctional, bimetallic RhRe/C catalyst is investigated. Using multiple techniques, the origin of Bronsted acidity in the catalyst and the role of pretreatment on the activity, selectivity, and stability are explored. In addition, reaction kinetics experiments and kinetic modeling are utilized to understand the role of chemical functional group (i.e. carboxylic acid versus formate ester) in determining the decarbonylation versus decarboxylation selectivity over a Pd/C catalyst. Finally, kinetic studies over Pd/C and Cu/gamma-Al2O3 were performed so that that may be paired with density functional theory calculations and microkinetic modeling to elucidate the elementary reaction mechanism, identify the active site, and provide a basis for future rational catalyst design. Next, the issue of catalyst stability, important in the high-temperature, liquid-phase conditions of biomass processing, is examined, and a method for stabilizing the base-metal nanoparticles of a Cu/gamma-Al2O 3 catalyst using atomic layer deposition (ALD) is developed. This advancement may facilitate the development of biorefining by enabling

  19. The effects of free and bonded sulfur both in the presence and absence of vulcanization accelerators on the rheological, technological, aging, and thermal stability of asphalts

    SciTech Connect

    Onabajo, A.; Kopsch, H.

    1987-01-01

    Rheological and technological experiments have been carried out on sulfur-modified asphalts in the temperature range of 353 K to 453 K over a wide range of shear rates (0-4800 sec/sup -1/). The results indicated that the activation energy of the viscous flow increased with increasing amount of bonded sulfur. The irreversible shear degradation observed in sulfur-modified asphalts is caused by the high shear forces which rupture the aggregated molecules. Thermogravimetric analysis and aging experiments on asphalts and their sulfurized products, containing varying amounts of free sulfur (0-5.5 wt.-%) and vulcanization accelerators (0.5-2.5 wt.-%), have shown that mixes containing vulcanization accelerators have higher thermal stabilities and are more resistant to thermal and non-thermal aging than the unaccelerated asphalt-sulfur mixed prepared at the same or higher temperatures. The changes in the rheological and physical properties of the mixes with time is not only explained by the changes in the physical state of unreacted free sulfur, that is, from plastic to crystalline state (physical process), but also attributable to the effect of chemical reactions.

  20. A study of eigenvalue sensitivity for hydrodynamic stability operators

    NASA Technical Reports Server (NTRS)

    Schmid, Peter J.; Henningson, Dan S.; Khorrami, Mehdi R.; Malik, Mujeeb R.

    1993-01-01

    The eigenvalue sensitivity for hydrodynamic stability operators is investigated. Classical matrix perturbation techniques as well as the concept of epsilon-pseudospectra are applied to show that parts of the spectrum are highly sensitive to small perturbations. Applications are drawn from incompressible plane Couette flow, trailing line vortex flow, and compressible Blasius boundary-layer flow. Parameter studies indicate a monotonically increasing effect of the Reynolds number on the sensitivity. The phenomenon of eigenvalue sensitivity is due to the nonnormality of the operators and their discrete matrix analogs and may be associated with large transient growth of the corresponding initial value problem.

  1. Formulation, physicochemical characterization and stability study of lithium-loaded microemulsion system.

    PubMed

    Mouri, Abdelkader; Legrand, Philippe; El Ghzaoui, Abdeslam; Dorandeu, Christophe; Maurel, Jean Claude; Devoisselle, Jean-Marie

    2016-04-11

    Lithium biocompatible microemulsion based on Peceol(®), lecithin, ethanol and water was studied in attempt to identify the optimal compositions in term of drug content, physicochemical properties and stability. Lithium solubilization in microemulsion was found to be compatible with a drug-surfactant binding model. Lithium ions were predominantly solubilized within lecithin head group altering significantly the interfacial properties of the system. Pseudo-ternary phase diagrams of drug free and drug loaded microemulsions were built at constant ethanol/lecithin weight ratio (40/60). Lithium loaded microemulsion has totally disappeared in the Peceol(®) rich part of phase diagram; critical fractions of lecithin and ethanol were required for the formation of stable microemulsion. The effect of lithium concentration on the properties and physical stability of microemulsions were studied using microscopy, Karl Fischer titrations, rheology analyses, conductivity measurements and centrifugation tests. The investigated microemulsions were found to be stable under accelerated storage conditions. The systems exhibited low viscosity and behaved as Newtonian fluid and no structural transition was shown. PMID:26836707

  2. RP-1 Thermal Stability and Copper Based Materials Compatibility Study

    NASA Technical Reports Server (NTRS)

    Stiegemeier, B. R.; Meyer, M. L.; Driscoll, E.

    2005-01-01

    A series of electrically heated tube tests was performed at the NASA Glenn Research Center s Heated Tube Facility to investigate the effect that sulfur content, test duration, and tube material play in the overall thermal stability and materials compatibility characteristics of RP-1. Scanning-electron microscopic (SEM) analysis in conjunction with energy dispersive spectroscopy (EDS) were used to characterize the condition of the tube inner wall surface and any carbon deposition or corrosion formed during these runs. Results of the parametric study indicate that tests with standard RP-1 (total sulfur -23 ppm) and pure copper tubing are characterized by a depostion/deposit shedding process producing local wall temperature swings as high as 500 F. The effect of this shedding is to keep total carbon deposition levels relatively constant for run times from 20 minutes up to 5 hours, though increasing tube pressure drops were observed in all runs. Reduction in the total sulfur content of the fuel from 23 ppm to less than 0.1 ppm resulted in the elimination of deposit shedding, local wall temperature variation, and the tube pressure drop increases that were observed in standard sulfur level RP-1 tests. The copper alloy GRCop-84, a copper alloy developed specifically for high heat flux applications, was found to exhibit higher carbon deposition levels compared to identical tests performed in pure copper tubes. Results of the study are consistent with previously published heated tube data which indicates that small changes in fuel total sulfur content can lead to significant differences in the thermal stability of kerosene type fuels and their compatibility with copper based materials. In conjunction with the existing thermal stability database, these findings give insight into the feasibility of cooling a long life, high performance, high-pressure liquid rocket combustor and nozzle with RP-1.

  3. Mechanism study on stability enhancement of adefovir dipivoxil by cocrystallization: Degradation kinetics and structure-stability correlation.

    PubMed

    Lin, Rui-Zhen; Sun, Peng-Jie; Tao, Qian; Yao, Jia; Chen, Jia-Mei; Lu, Tong-Bu

    2016-03-31

    The purpose of this study is to determine the mechanism by which cocrystallization can enhance the stability of adefovir dipivoxil (AD), a diester prodrug of adefovir with known chemical stability problem. Three multi-component crystals of AD with biologically safe coformers, including gallic acid cocrystal hydrate (1:1:1), salicylate salt (1:1), and maleate salt (1:1) were prepared and characterized by thermal analysis, infrared spectroscopy, powder and single crystal X-ray diffraction. DVS measurements and stability tests were applied to evaluate the stability. The new crystalline phases exhibit improved stability compared to pure drug in the order AD gallic acid cocrystal>AD maleate>AD salicylate>AD form I. Degradation kinetics and structure-stability correlation studies demonstrate that the stability enhancement mechanism by cocrystallization involves (1) inhibition of hydrolysis of AD by replacement of drug-drug homosynthons by stronger drug-coformer heterosynthons at adenine fragments; (2) suppression of dimerization of AD by separation of adenine fragments by inserting coformers in crystal lattices; (3) further reducing rates of hydrolysis by forming hydrogen bonds with hydrate water at phosphoryl fragments. This study has important implications for use of cocrystallization approach to some easily degradable drugs in pharmaceutical. PMID:26462447

  4. Efficiency of particle acceleration at interplanetary shocks: Statistical study of STEREO observations

    NASA Astrophysics Data System (ADS)

    Dresing, N.; Theesen, S.; Klassen, A.; Heber, B.

    2016-04-01

    Context. Among others, shocks are known to be accelerators of energetic charged particles. However, many questions regarding the acceleration efficiency and the required conditions are not fully understood. In particular, the acceleration of electrons by shocks is often questioned. Aims: In this study we determine the efficiency of interplanetary shocks for <100 keV electrons, and for ions at ~0.1 and ~2 MeV energies, as measured by the Solar Electron and Proton Telescope (SEPT) instruments aboard the twin Solar Terrestrial Relations Observatory (STEREO) spacecraft. Methods: We employ an online STEREO in situ shock catalog that lists all shocks observed between 2007 and mid 2014 (observed by STEREO A) and until end of 2013 (observed by STEREO B). In total 475 shocks are listed. To determine the particle acceleration efficiency of these shocks, we analyze the associated intensity increases (shock spikes) during the shock crossings. For the near-relativistic electrons, we take into account the issue of possible ion contamination in the SEPT instrument. Results: The highest acceleration efficiency is found for low energy ions (0.1 MeV), which show a shock-associated increase at 27% of all shocks. The 2 MeV ions show an associated increase only during 5% of the shock crossings. In the case of the electrons, the shocks are nearly ineffective. Only five shock-associated electron increases were found, which correspond to only 1% of all shock crossings.

  5. YOUNG SUPERNOVAE AS EXPERIMENTAL SITES FOR STUDYING THE ELECTRON ACCELERATION MECHANISM

    SciTech Connect

    Maeda, Keiichi

    2013-01-10

    Radio emissions from young supernovae ({approx}<1 year after the explosion) show a peculiar feature in the relativistic electron population at a shock wave, where their energy distribution is steeper than typically found in supernova remnants and than that predicted from the standard diffusive shock acceleration (DSA) mechanism. This has been especially established for the case for a class of stripped envelope supernovae (SNe IIb/Ib/Ic), where a combination of high shock velocity and low circumstellar material density makes it easier to derive the intrinsic energy distribution than in other classes of SNe. We suggest that this apparent discrepancy reflects a situation where the low energy electrons, before being accelerated by the DSA-like mechanism, are responsible for the radio synchrotron emission from young SNe, and that studying young SNe sheds light on the still-unresolved electron injection problem in the acceleration theory of cosmic rays. We suggest that the electron's energy distribution could be flattened toward high energy, most likely around 100 MeV, which marks a transition from inefficient to efficient acceleration. Identifying this feature will be a major advance in understanding the electron acceleration mechanism. We suggest two further probes: (1) millimeter/submillimeter observations in the first year after the explosion and (2) X-ray observations at about one year and thereafter. We show that these are reachable by ALMA and Chandra for nearby SNe.

  6. Engineering study of a 10 MeV heavy ion linear accelerator

    SciTech Connect

    Fong, C.G.; Fessenden, T.J.; Fulton, R.L.; Keefe, D.

    1989-03-01

    LBL's Heavy Ion Fusion Accelerator Research group has completed the engineering study of the Induction Linac Systems Experiment (ILSE). ILSE will address nearly all accelerator physics issues of a scaled heavy ion induction linac inertial fusion pellet driver. Designed as a series of subsystem experiments, ILSE will accelerate 16 parallel carbon ion beams from a 2 MeV injector presently under development to 10 MeV at one ..mu..sec. This overview paper will present the physics and engineering requirements and describe conceptual design approaches for building ILSE. Major ILSE subsystems consist of electrostatic focusing quadrupole matching and accelerating sections, a 16 to 4 beam transverse combining section, a 4 beam magnetic focusing quadrupole accelerating section, a single beam 180 degree bend section, a drift compression section and a final focus and target chamber. These subsystems are the subject of accompanying papers. Also discussed are vacuum and alignment, diagnostics/data acquisition and controls, key conclusions and plans for further development. 10 refs., 4 figs., 1 tab.

  7. DSC evaluation of extra virgin olive oil stability under accelerated oxidative test: effect of fatty acid composition and phenol contents.

    PubMed

    Cerretani, Lorenzo; Bendini, Alessandra; Rinaldi, Massimiliano; Paciulli, Maria; Vecchio, Stefano; Chiavaro, Emma

    2012-01-01

    Three extra virgin olive oils having different fatty acid compositions and total phenol contents were submitted to an accelerated storage test at 60°C for up to 21 weeks. Their oxidative status, evaluated by peroxide values and total phenolic content, was related to differential scanning calorimetry cooling profiles and thermal properties. Changes in crystallization profiles were consistent starting from 12 weeks for the two oil samples (B and C) that had a higher content of linoleic acid and medium/low amounts of phenols, respectively, whereas they became detectable at the end of the test for the remaining oil (sample A). Decrease of crystallization enthalpy and shift of transition towards lower temperature were also evident at 4 weeks of storage for samples B and C, whereas the same changes in the transition profile were noticeable at 12 weeks for sample A. Differential scanning calorimetry appears to be suitable for the discrimination of oxidative status of extra virgin olive oils with widely different fatty acid composition. PMID:22687775

  8. [A study of mandibular movement velocity and acceleration in young adults with normal people].

    PubMed

    Lu, P J

    1993-09-01

    The velocity and acceleration of mandibular movements including the border movement, habitual movement and functional movement were studied in 25 young adults by using D-SGG measuring instrument. The results showed that the conception of functional velocity and the maximum velocity of mandibular movement were developed. The physiological and clinical significance of the value of mandibular movement acceleration can be explained by Newton's Second law, F = ma. The author pointed out that in order to keep the necessary masticatory efficiency, the masticatory velocity enjoy the priority in matching with the masticatory force in mastication. PMID:8194415

  9. FAST/Polar Conjunction Study of Field-Aligned Auroral Acceleration and Corresponding Magnetotail Drivers

    NASA Technical Reports Server (NTRS)

    Schriver, D.; Ashour-Abdalla, M.; Strangeway, R. J.; Richard, R. L.; Klezting, C.; Dotan, Y.; Wygant, J.

    2003-01-01

    The discrete aurora results when energized electrons bombard the Earth's atmosphere at high latitudes. This paper examines the physical processes that can cause field-aligned acceleration of plasma particles in the auroral region. A data and theoretical study has been carried out to examine the acceleration mechanisms that operate in the auroral zone and to identi@ the magnetospheric drivers of these acceleration mechanisms. The observations used in the study were collected by the Fast Auroral Snapshot (FAST) and Polar satellites when the two satellites were in approximate magnetic conjunction in the auroral region. During these events FAST was in the middle of the auroral zone and Polar was above the auroral zone in the near-Earth plasma sheet. Polar data were used to determine the conditions in the magnetotail at the time field-aligned acceleration was measured by FAST in the auroral zone. For each of the magnetotail drivers identified in the data study, the physics of field-aligned acceleration in the auroral region was examined using existing theoretical efforts and/or a long-system particle in cell simulation to model the magnetically connected region between the two satellites. Results from the study indicate that there are three main drivers of auroral acceleration: (1) field-aligned currents that lead to quasistatic parallel potential drops (parallel electric fields), (2) earthward flow of high-energy plasma beams from the magnetotail into the auroral zone that lead to quasistatic parallel potential drops, and (3) large-amplitude Alfven waves that propagate into the auroral region from the magnetotail. The events examined thus far confm the previously established invariant latitudinal dependence of the drivers and show a strong dependence on magnetic activity. Alfven waves tend to occur primarily at the poleward edge of the auroral region during more magnetically active times and are correlated with intense electron precipitation. At lower latitudes away

  10. Accelerated hydrolysis of substituted cellulose for potential biofuel production: kinetic study and modeling.

    PubMed

    Mu, Bingnan; Xu, Helan; Yang, Yiqi

    2015-11-01

    In this work, kinetics of substitution accelerated cellulose hydrolysis with multiple reaction stages was investigated to lay foundation for mechanism study and molecular design of substituting compounds. High-efficiency hydrolysis of cellulose is critical for cellulose-based bioethanol production. It is known that, substitution could substantially decrease activation energy and increase reaction rate of acidic hydrolysis of glycosidic bonds in cellulose. However, reaction kinetics and mechanism of the accelerated hydrolysis were not fully revealed. In this research, it was proved that substitution therefore accelerated hydrolysis only occurred in amorphous regions of cellulose fibers, and was a process with multiple reaction stages. With molar ratio of substitution less than 1%, the overall hydrolysis rate could be increased for around 10 times. We also quantified the relationship between the hydrolysis rate of individual reaction stage and its major influences, including molar ratio of substitution, activation energy of acidic hydrolysis, pH and temperature. PMID:26253917

  11. Nylon 6.6 accelerated aging studies : thermal-oxidative degradation and its interaction with hydrolysis.

    SciTech Connect

    Bernstein, Robert; Derzon, Dora Kay; Gillen, Kenneth T.

    2004-06-01

    Accelerated aging of Nylon 6.6 fibers used in parachutes has been conducted by following the tensile strength loss under both thermal-oxidative and 100% relative humidity conditions. Thermal-oxidative studies (air circulating ovens) were performed for time periods of weeks to years at temperatures ranging from 37 C to 138 C. Accelerated aging humidity experiments (100% RH) were performed under both an argon atmosphere to examine the 'pure' hydrolysis pathway, and under an oxygen atmosphere (oxygen partial pressure close to that occurring in air) to mimic true aging conditions. As expected the results indicated that degradation caused by humidity is much more important than thermal-oxidative degradation. Surprisingly when both oxygen and humidity were present the rate of degradation was dramatically enhanced relative to humidity aging in the absence of oxygen. This significant and previously unknown phenomena underscores the importance of careful accelerated aging that truly mimics real world storage conditions.

  12. Dynamic blade row compression component model for stability studies

    NASA Technical Reports Server (NTRS)

    Tesch, W. A.; Steenken, W. G.

    1976-01-01

    This paper describes a generalized dynamic model which has been developed for use in compression component aerodynamic stability studies. The model is a one-dimensional, pitch-line, blade row, lumped volume system. Arbitrary placement of blade free volumes upstream, within, and downstream of the compression component as well as the removal of bleed flow from the exit of any rotor or stator are model options. The model has been applied to a two-stage fan and an eight-stage compressor. The clean inlet pressure ratio/flow maps and the surge line have been reproduced, thereby validating the capability of the dynamic model to reproduce the steady-flow characteristics of the compression component. A method for determining the onset of an aerodynamic instability which is associated with surge is described. Sinusoidally time-varying inlet and exit boundary conditions have been applied to the eight stage compressor as examples of the manner in which this model may be used for stability studies.

  13. Study of the parametric oscillator driven by narrow-band noise to model the response of a fluid surface to time-dependent accelerations

    SciTech Connect

    Zhang, W.; Casademunt, J.; Vinals, J. )

    1993-12-01

    A stochastic formulation is introduced to study the large amplitude and high-frequency components of residual accelerations found in a typical microgravity environment (or [ital g]-jitter). The linear response of a fluid surface to such residual accelerations is discussed in detail. The analysis of the stability of a free fluid surface can be reduced in the underdamped limit to studying the equation of the parametric harmonic oscillator for each of the Fourier components of the surface displacement. A narrow-band noise is introduced to describe a realistic spectrum of accelerations, that interpolates between white noise and monochromatic noise. Analytic results for the stability of the second moments of the stochastic parametric oscillator are presented in the limits of low-frequency oscillations, and near the region of subharmonic parametric resonance. Based upon simple physical considerations, an explicit form of the stability boundary valid for arbitrary frequencies is proposed, which interpolates smoothly between the low frequency and the near resonance limits with no adjustable parameter, and extrapolates to higher frequencies. A second-order numerical algorithm has also been implemented to simulate the parametric stochastic oscillator driven with narrow-band noise. The simulations are in excellent agreement with our theoretical predictions for a very wide range of noise parameters. The validity of previous approximate theories for the particular case of Ornstein--Uhlenbeck noise is also checked numerically. Finally, the results obtained are applied to typical microgravity conditions to determine the characteristic wavelength for instability of a fluid surface as a function of the intensity of residual acceleration and its spectral width.

  14. Experimental and theoretical studies of the colloidal stability of nanoparticles-a general interpretation based on stability maps.

    PubMed

    Segets, Doris; Marczak, Renata; Schäfer, Stefan; Paula, Carolin; Gnichwitz, Jan-Frederik; Hirsch, Andreas; Peukert, Wolfgang

    2011-06-28

    The current work addresses the understanding of the stabilization of nanoparticles in suspension. Specifically, we study ZnO in ethanol for which the influence of particle size and reactant ratio as well as surface coverage on colloidal stability in dependence of the purification progress was investigated. The results revealed that the well-known ζ-potential determines not only the colloidal stability but also the surface coverage of acetate groups bound to the particle surface. The acetate groups act as molecular spacers between the nanoparticles and prevent agglomeration. Next to DLVO calculations based on the theory of Derjaguin, Landau, Verwey and Overbeek using a core-shell model we find that the stability is better understood in terms of dimensionless numbers which represent attractive forces as well as electrostatic repulsion, steric effects, transport properties, and particle concentration. Evaluating the colloidal stability in dependence of time by means of UV-vis absorption measurements a stability map for ZnO is derived. From this map it becomes clear that the dimensionless steric contribution to colloidal stability scales with a stability parameter including dimensionless repulsion and attraction as well as particle concentration and diffusivity of the particles according to a power law with an exponent of -0.5. Finally, we show that our approach is valid for other stabilizing molecules like cationic dendrons and is generally applicable for a wide range of other material systems within the limitations of vanishing van der Waals forces in refractive index matched situations, vanishing ζ-potential and systems without a stabilizing shell around the particle surface. PMID:21545143

  15. Accelerating rate calorimetry: A new technique for safety studies in lithium systems

    NASA Technical Reports Server (NTRS)

    Ebner, W. B.

    1982-01-01

    The role of exothermic reactions in battery test modes is discussed. The exothermic reactions are characterized with respect to their time-temperature and time-pressure behavior. Reactions occuring for any major exotherm were examined. The accelerating rate calorimetry methods was developed to study lithium cells susceptibility to thermal runaway reactions following certain abuse modes such as forced discharge into reversal and charging.

  16. The Gift of Time: Today's Academic Acceleration Case Study Voices of Experience

    ERIC Educational Resources Information Center

    Scheibel, Susan Riley

    2010-01-01

    The purpose of this qualitative case study was to examine today's academic acceleration from the lived experience and perspectives of two young adults whose education was shortened, thereby allowing them the gift of time. Through personal interviews, parent interviews, and physical artifacts, the researcher gained a complex, holistic understanding…

  17. The Study of Two-Dimensional Oscillations Using a Smartphone Acceleration Sensor: Example of Lissajous Curves

    ERIC Educational Resources Information Center

    Tuset-Sanchis, Luis; Castro-Palacio, Juan C.; Gómez-Tejedor, José A.; Manjón, Francisco J.; Monsoriu, Juan A.

    2015-01-01

    A smartphone acceleration sensor is used to study two-dimensional harmonic oscillations. The data recorded by the free android application, Accelerometer Toy, is used to determine the periods of oscillation by graphical analysis. Different patterns of the Lissajous curves resulting from the superposition of harmonic motions are illustrated for…

  18. From Eighth Grade to Selective College in One Jump: Case Studies in Radical Acceleration.

    ERIC Educational Resources Information Center

    Keating, Daniel P.; Stanley, Julian C.

    The paper examines the problem of highly gifted junior high school students who are intellectually ready for college-level study before beginning high school. The term radical accelerates is used to describe gifted students who jump from junior high to college education, bypassing the high school years. Briefly described are two widely known and…

  19. Structural adhesives for bonding optics to metals: a study of optomechanical stability

    NASA Astrophysics Data System (ADS)

    Daly, John G.; Daly, Damien J.

    2001-11-01

    With so many new adhesives available, characteristics affecting performance are not always well-defined. The user often selects an adhesive based on a single property and later finds his application compromised. This is an effort to study relevant properties of several different structural-type adhesives. The bonding geometry will utilize three types of glass bonded to metal mounts. The mounting geometry will include five different design approaches. These designs will investigate: face bonding, counter-bored mounts, edge bonding, and a flexure mount. The three metals selected are not only common to the industry but often used for matching the Coefficient of Expansion to the optical glass. Each optical flat will have its reflective surface used as a reference for angular stability. The adhesives selected will compare more traditional epoxies with one-part UV light cured products. The obvious advantage of the UV- cured adhesives is the instant cure on-demand. Several adhesives have been selected for differing properties including: viscosity, cure temperature, CTE, modulus of elasticity, out-gassing, and shrinkage upon cure. Discussion will compare each adhesive, its properties, and ease of use. Angular stability will be monitored as a function of: pre vs. post cure, accelerated life testing, thermal exposure, and vibration/shock exposure. Some discussion will be included on the wavefront distortion and stress birefringence.

  20. Is Lesional Stability in Vitiligo More Important Than Disease Stability for Performing Surgical Interventions? Results from a Multicentric Study

    PubMed Central

    Majid, Imran; Mysore, Venkataram; Salim, Thurakkal; Lahiri, Koushik; Chatterji, Manas; Khunger, Niti; Talwar, Suresh; Sachhidanand, S; Barua, Shyamanta

    2016-01-01

    Background: Ensuring stability of the disease process is essential for undertaking surgical intervention in vitiligo. However, there is no consensus regarding the minimum duration of stability or the relative importance of disease and lesional stability in selecting patients for vitiligo grafting. Aim: This multicentric study aims to assess the relative importance of lesional and disease stability on selecting patients for vitiligo grafting. Materials and Methods: One hundred seventy patients were recruited into the study and divided into two groups: Group A with lesional stability of >1 year but overall disease stability of only 6-11 months and Group B with overall disease stability of >1 year. Patients underwent either tissue or cellular vitiligo grafting on the selected lesions and the repigmentation achieved was scored from 0 (no repigmentation) to 6 (100% repigmentation). Repigmentation achieved on different sites of the body was compared between the two groups. Adverse effects at both the donor and the recipient sites were also compared. Results: Of the 170 patients who were enrolled, 82 patients were placed in Group A and 88 patients in Group B. Average repigmentation achieved (on scale of 0 to 6) was 3.8 and 4.04 in Group A and Group B, respectively. In Group A, ≥90% repigmentation was achieved in 36.6% (30/82) patients, while 37.5% (33/88) achieved similar results in Group B. Additionally, 47.6% (39/82) and 53.4% (47/88) of cases achieved partial repigmentation in Group A and Group B, respectively. Perigraft halo was the commonest adverse effect observed in both groups. Statistical analysis revealed no significant differences between the two groups with respect to the repigmentation achieved or adverse effects observed. Repigmentation achieved was the best on the face and neck area, while acral areas responded the least. Conclusions: Lesional stability seems to be as relevant as the overall disease stability in selecting patients for surgical

  1. Parametric study of the aeroelastic stability of a bearingless rotor

    NASA Technical Reports Server (NTRS)

    Hooper, W. E.

    1985-01-01

    A trade study was conducted to illustrate the sensitivity of the aeroelastic stability of a bearingless main rotor to the rotor hub coupling parameters that are available for the designer. The results are presented over the complete range of rotor speed and collective pitch available and the effects on air resonance of the 6 beam installation angles are compared together with the results of offsetting the cuff snubber attachment. The major part of the study was conducted using the FLAIR analysis which incorporates a uniform representation of the flexbeam. Results are also shown for a modified version of FLAIR in which the uniform beam is replaced by a member having the geometric tailoring resulting from structural optimization.

  2. Supernova / Acceleration Probe: a Satellite Experiment to Study the Nature of the Dark Energy

    SciTech Connect

    Aldering, G.; Althouse, W.; Amanullah, R.; Annis, J.; Astier, P.; Baltay, C.; Barrelet, E.; Basa, S.; Bebek, C.; Bergstrom, L.; Bernstein, G.; Bester, M.; Bigelow, B.; Blandford, R.; Bohlin, R.; Bonissent, A.; Bower, C.; Brown, M.; Campbell, M.; Carithers, W.; Commins, E.; /LBL, Berkeley /SLAC /Stockholm U. /Fermilab /Paris U., VI-VII /Yale U. /Pennsylvania U. /UC, Berkeley /Michigan U. /Baltimore, Space Telescope Sci. /Marseille, CPPM /Indiana U. /American Astron. Society /Caltech /Case Western Reserve U. /Cambridge U. /Saclay /Lyon, IPN

    2005-08-15

    The Supernova/Acceleration Probe (SNAP) is a proposed space-based experiment designed to study the dark energy and alternative explanations of the acceleration of the Universe's expansion by performing a series of complementary systematics-controlled astrophysical measurements. We here describe a self-consistent reference mission design that can accomplish this goal with the two leading measurement approaches being the Type Ia supernova Hubble diagram and a wide-area weak gravitational lensing survey. This design has been optimized to first order and is now under study for further modification and optimization. A 2-m three-mirror anastigmat wide-field telescope feeds a focal plane consisting of a 0.7 square-degree imager tiled with equal areas of optical CCDs and near infrared sensors, and a high-efficiency low-resolution integral field spectrograph. The instrumentation suite provides simultaneous discovery and light-curve measurements of supernovae and then can target individual objects for detailed spectral characterization. The SNAP mission will discover thousands of Type Ia supernovae out to z = 3 and will obtain high-signal-to-noise calibrated light-curves and spectra for a subset of > 2000 supernovae at redshifts between z = 0.1 and 1.7 in a northern field and in a southern field. A wide-field survey covering one thousand square degrees in both northern and southern fields resolves {approx} 100 galaxies per square arcminute, or a total of more than 300 million galaxies. With the PSF stability afforded by a space observatory, SNAP will provide precise and accurate measurements of gravitational lensing. The high-quality data available in space, combined with the large sample of supernovae, will enable stringent control of systematic uncertainties. The resulting data set will be used to determine the energy density of dark energy and parameters that describe its dynamical behavior. The data also provide a direct test of theoretical models for the dark energy

  3. Supernova/Acceleration Probe: A Satellite Experiment to Study the Nature of the Dark Energy

    SciTech Connect

    Aldering, G.; Althouse, W.; Amanullah, R.; Annis, J.; Astier, P.; Baltay, C.; Barrelet, E.; Basa, E.; Bebek, C.; Bergstrom, L.; Bernstein, G.; Bester, M.; Bigelow, C.; Blandford, R.; Bohlin, R.; Bonissent, A.; Bower, C.; Brown, M.; Campbell, M.; Carithers, W.; Commins, E.; Craig, W.; Day, C.; DeJongh, F.; Deustua, S.; Diehl, T.; Dodelson, S.; Ealet, A.; Ellis, R.; Emmet, W.; Fouchez, D.; Frieman, J.; Fruchter, A.; Gerdes, D.; Gladney, L.; Goldhaber, G.; Goobar, A.; Groom, D.; Heetderks, H.; Hoff, M.; Holland, S.; Huffer, M.; Hui, L.; Huterer, D.; Jain, B.; Jelinsky, P.; Karcher, A.; Kent, S.; Kahn, S.; Kim, A.; Kolbe, W.; Krieger, B.; Kushner, G.; Kuznetsova, N.; Lafever, R.; Lamoureux, J.; Lampton, M.; Le Fevre, O.; Levi, M.; Limon, P.; Lin, H.; Linder, E.; Loken, S.; Lorenzon, W.; Malina, R.; Marriner, J.; Marshall, P.; Massey, R.; Mazure, A.; McKay, T.; McKee, S.; Miquel, R.; Morgan, N.; Mortsell, E.; Mostek, N.; Mufson, S.; Musser, J.; Nugent, P.; Oluseyi, H.; Pain, R.; Palaio, N.; Pankow, D.; Peoples, J.; Perlmutter, S.; Prieto, E.; Rabinowitz, D.; Refregier, A.; Rhodes, J.; Roe, N.; Rusin, D.; Scarpine, V.; Schubnell, M.; Sholl, M.; Samdja, G.; Smith, R.M.; Smoot, G.; Snyder, J.; Spadafora, A.; Stebbine, A.; Stoughton, C.; Szymkowiak, A.; Tarle, G.; Taylor, K.; Tilquin, A.; Tomasch, A.; Tucker, D.; Vincent, D.; von der Lippe, H.; Walder, J-P.; Wang, G.; Wester, W.

    2004-05-12

    The Supernova/Acceleration Probe (SNAP) is a proposed space-based experiment designed to study the dark energy and alternative explanations of the acceleration of the Universes expansion by performing a series of complementary systematics-controlled astrophysical measurements. We here describe a self-consistent reference mission design that can accomplish this goal with the two leading measurement approaches being the Type Ia supernova Hubble diagram and a wide-area weak gravitational lensing survey. This design has been optimized to first order and is now under study for further modification and optimization. A 2-m three-mirror anastigmat wide-field telescope feeds a focal plane consisting of a 0.7 square-degree imager tiled with equal areas of optical CCDs and near infrared sensors, and a high efficiency low-resolution integral field spectrograph. The instrumentation suite provides simultaneous discovery and light-curve measurements of supernovae and then can target individual objects for detailed spectral characterization. The SNAP mission will discover thousands of Type Ia supernovae out to z = 3 and will obtain high-signal-to-noise calibrated light-curves and spectra for a subset of > 2000 supernovae at redshifts between z = 0.1 and 1.7 in a northern field and in a southern field. A wide-field survey covering one thousand square degrees in both northern and southern fields resolves {approx} 100 galaxies per square arcminute, or a total of more than 300 million galaxies. With the PSF stability afforded by a space observatory, SNAP will provide precise and accurate measurements of gravitational lensing. The high-quality data available in space, combined with the large sample of supernovae, will enable stringent control of systematic uncertainties. The resulting data set will be used to determine the energy density of dark energy and parameters that describe its dynamical behavior. The data also provide a direct test of theoretical models for the dark energy

  4. A facility for studying irradiation accelerated corrosion in high temperature water

    NASA Astrophysics Data System (ADS)

    Raiman, Stephen S.; Flick, Alexander; Toader, Ovidiu; Wang, Peng; Samad, Nassim A.; Jiao, Zhijie; Was, Gary S.

    2014-08-01

    A facility for the study of irradiation accelerated corrosion in high temperature water using in situ proton irradiation has been developed and validated. A specially designed beamline and flowing-water corrosion cell added to the 1.7 MV tandem accelerator at the Michigan Ion Beam Laboratory provide the capability to study the simultaneous effects of displacement damage and radiolysis on corrosion. A thin sample serves as both a “window” into the corrosion cell through which the proton beam passes completely, and the sample for assessing irradiation accelerated corrosion. The facility was tested by irradiating stainless steel samples at beam current densities between 0.5 and 10 μA/cm2 in 130 °C and 320 °C deaerated water, and 320 °C water with 3 wppm H2. Increases in the conductivity and dissolved oxygen content of the water varied with the proton beam current, suggesting that proton irradiation was accelerating the corrosion of the sample. Conductivity increases were greatest at 320 °C, while DO increases were highest at 130 °C. The addition of 3 wppm H2 suppressed DO below detectable levels. The facility will enable future studies into the effect of irradiation on corrosion in high temperature water with in situ proton irradiation.

  5. First-principles stability study of clathrate hydrates under pressure

    NASA Astrophysics Data System (ADS)

    Thonhauser, Timo; Li, Qi; Kolb, Brian

    2010-03-01

    We present a first-principles DFT study of the structural stability of clathrate hydrates under pressure. These materials form under high pressure and low temperature and consist of polyhedral water cages that form an ice-like framework of hydrogen bonds. Clathrate hydrates can be filled with guest molecules such as methane or molecular hydrogen, in which case these materials and their stability are of interest for energy-storage solutions. Since the interactions between the water molecules themselves---but also between the water molecules and the guest molecules---is at least partly determined by van der Waals forces, we utilize the recently developed self-consistent van der Waals density functional vdW-DF (T. Thonhauser, V.R. Cooper, S. Li, A. Puzder, P. Hyldgaard, and D.C. Langreth, Phys. Rev. B 76, 125112 (2007)). For our simulations we consider the empty host lattice, as well as the host lattice filled with methane and molecular hydrogen, for pressures up to 1 GPa. Our results show that the system undergoes phase transitions from structure I to structure II and finally to structure H, in good agreement with experiment.

  6. Experimental study of the salt gradient solar pond stability

    SciTech Connect

    Karim, Choubani; Slim, Zitouni; Kais, Charfi; Jomaa, Safi Mohamed; Akbarzadeh, Aliakbar

    2010-01-15

    Many natural systems such as oceans, lakes, etc.., are influenced by the effect of double-diffusive convection. This phenomenon, which is a combination of heat and mass transfer, can destroy the stability of system-flows. In the case of solar ponds the middle layer, that is linearly stratified, acts as a thermal and mass insulator for the lower layer. This middle layer, called the Non-Convective Zone (NCZ), needs special care to avoid convection and to maintain its stability. In fact, due to an excess of heat stored, a thermal gradient occurs within the NCZ. A convective movement appears at the bottom of the stratified-layers and then grows to a double-diffusive convection movement. This movement transforms the stratified-layers into a well mixed layer, reducing the storage capacity of the pond. Laboratory small-scale pond and middle-scale outdoor solar ponds were designed and built to provide both quantitative data and to study the dynamic processes in solar ponds, including the behavior of the gradient zone. Particle Image Velocimetry (PIV) visualization-experiments carried out in the mechanical and energetic laboratory in the engineering school of Tunisia and experiments in the field showed that the instability of solar ponds could be limited by using porous media placed in the lower layer of the stratification. (author)

  7. Thermal-stability studies of electrode materials for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Jiang, Junwei

    2005-07-01

    The thermal stability of lithium-ion batteries has recently attracted attention for two major reasons. (1) Attempts to make large-size cells used in power tools, E-bikes and EVs. Large cells have lower surface area to volume ratios and hence heat dissipation is more problematic than 18650-size cells. Safety problems, therefore, for large cells are more serious. (2) Next generation high-capacity electrodes will increase the energy density of lithium-ion cells meaning even an 18650-size cell may face safety concerns. This thesis presents studies of the thermal stability of electrode materials in electrolytes to understand their reactivity. A search for new positive electrode materials with high thermal stability was made. The thermal stability of two common electrode materials (Li0.81 C6 and Li0.5CoO2) in lithium-ion cells was studied by Accelerating Rate Calorimeter (ARC). Li0.81C 6 has much lower reactivity with lithium bis(oxalato)borate (LiBOB) electrolyte compared to LiPF6 electrolyte. It is not the case, however, for Li0.5CoO2. Oven tests of full LiCoO 2/C 18650-size cells with LiBOB or LiPF6 electrolytes, confirmed the ARC results. ARC was then used to study the reactivity of existing electrode materials. The thermal stability of a negative electrode material was found to increase with the binding energy of Li atoms hosted in the material. Li0.5VO 2 (B) has a higher lithium binding energy (2.45 eV vs. Li) than Li 0.81C6 (0.1 eV vs. Li) and Li7Ti5O 12 (1.55 eV) and it shows the highest thermal stability in EC/DEC among the three materials. The reactivity of two existing positive electrode materials, LiMn2O4 and LiFePO4, was studied. Cell systems expected to be highly tolerant to thermal abuse were suggested: LiFePO 4/C or Li4Ti5O12 in LiBOB electrolytes. The system, x Li[Ni1/2Mn1/2]O2 • y LiCoO2 • z Li[Li1/3Mn2/3]O2 (x + y + z = 1), was explored for new positive electrode materials with large capacity and high thermal stability. Li[(Ni0.5Mn0.5) xCo1-x]O2 (0

  8. Coal Mine Roadway Stability in Soft Rock: A Case Study

    NASA Astrophysics Data System (ADS)

    Shen, Baotang

    2014-11-01

    Roadway instability has always been a major concern in deep underground coal mines where the surrounding rock strata and coal seams are weak and the in situ stresses are high. Under the high overburden and tectonic stresses, roadways could collapse or experience excessive deformation, which not only endangers mining personnel but could also reduce the functionality of the roadway and halt production. This paper describes a case study on the stability of roadways in an underground coal mine in Shanxi Province, China. The mine was using a longwall method to extract coal at a depth of approximately 350 m. Both the coal seam and surrounding rock strata were extremely weak and vulnerable to weathering. Large roadway deformation and severe roadway instabilities had been experienced in the past, hence, an investigation of the roadway failure mechanism and new support designs were needed. This study started with an in situ stress measurement programme to determine the stress orientation and magnitude in the mine. It was found that the major horizontal stress was more than twice the vertical stress in the East-West direction, perpendicular to the gateroads of the longwall panel. The high horizontal stresses and low strength of coal and surrounding rock strata were the main causes of roadway instabilities. Detailed numerical modeling was conducted to evaluate the roadway stability and deformation under different roof support scenarios. Based on the modeling results, a new roadway support design was proposed, which included an optimal cable/bolt arrangement, full length grouting, and high pre-tensioning of bolts and cables. It was expected the new design could reduce the roadway deformation by 50 %. A field experiment using the new support design was carried out by the mine in a 100 m long roadway section. Detailed extensometry and stress monitorings were conducted in the experimental roadway section as well as sections using the old support design. The experimental section

  9. Analytical and Computational Study of Flame Acceleration due to Wall Friction in Combustion Tubes and Channels

    NASA Astrophysics Data System (ADS)

    Demirgok, Berk; Akkerman, V'yacheslav

    2013-11-01

    Deflagration-to-detonation transition constitutes one of the fundamental problems within the studies of reacting flows. It occurs when a subsonic flamefront accelerates, with velocity jump by several orders of magnitude. According to the Shelkin model, the key element of the process is wall friction at non-slip walls, driving a flow of the fresh pre-mixture to be non-uniform, leading to a positive flame-flow feedback and thereby flame acceleration. We perform analytical and computational study of the phenomenon, with very good agreement between them in the domain of intrinsic accuracy of the theory. Theory assumes large Reynolds number (Re) and thermal expansion as well as plane-parallel flow ahead of flamefront. Simulations are performed for complete set of combustion and hydrodynamic equations. Analytical and computational results are also validated by recent experiments on ethylene-oxygen combustion. It is proven realistic flames with a large density drop at the front accelerate in a self-sustained manner and may initiate detonation in a sufficiently long tube. Before this event, the flame shape and the velocity profile remain self-similar. Acceleration rate grows with thermal expansion in the burning process but decreases with Re related to flame propagation.

  10. 3 MV hypervelocity dust accelerator at the Colorado Center for Lunar Dust and Atmospheric Studies.

    PubMed

    Shu, Anthony; Collette, Andrew; Drake, Keith; Grün, Eberhard; Horányi, Mihály; Kempf, Sascha; Mocker, Anna; Munsat, Tobin; Northway, Paige; Srama, Ralf; Sternovsky, Zoltán; Thomas, Evan

    2012-07-01

    A hypervelocity dust accelerator for studying micrometeorite impacts has been constructed at the Colorado Center for Lunar Dust and Atmospheric Studies (CCLDAS) at the University of Colorado. Based on the Max-Planck-Institüt für Kernphysik (MPI-K) accelerator, this accelerator is capable of emitting single particles of a specific mass and velocity selected by the user. The accelerator consists of a 3 MV Pelletron generator with a dust source, four image charge pickup detectors, and two interchangeable target chambers: a large high-vacuum test bed and an ultra-high vacuum impact study chamber. The large test bed is a 1.2 m diameter, 1.5 m long cylindrical vacuum chamber capable of pressures as low as 10(-7) torr while the ultra-high vacuum chamber is a 0.75 m diameter, 1.1 m long chamber capable of pressures as low as 10(-10) torr. Using iron dust of up to 2 microns in diameter, final velocities have been measured up to 52 km/s. The spread of the dust particles and the effect of electrostatic focusing have been measured using a long exposure CCD and a quartz target. Furthermore, a new technique of particle selection is being developed using real time digital filtering techniques. Signals are digitized and then cross-correlated with a shaped filter, resulting in a suppressed noise floor. Improvements over the MPI-K design, which include a higher operating voltage and digital filtering for detection, increase the available parameter space of dust emitted by the accelerator. The CCLDAS dust facility is a user facility open to the scientific community to assist with instrument calibrations and experiments. PMID:22852725

  11. 3 MV hypervelocity dust accelerator at the Colorado Center for Lunar Dust and Atmospheric Studies

    SciTech Connect

    Shu, Anthony; Horanyi, Mihaly; Kempf, Sascha; Thomas, Evan; Collette, Andrew; Drake, Keith; Northway, Paige; Gruen, Eberhard; Mocker, Anna; Munsat, Tobin; Srama, Ralf; and others

    2012-07-15

    A hypervelocity dust accelerator for studying micrometeorite impacts has been constructed at the Colorado Center for Lunar Dust and Atmospheric Studies (CCLDAS) at the University of Colorado. Based on the Max-Planck-Instituet fuer Kernphysik (MPI-K) accelerator, this accelerator is capable of emitting single particles of a specific mass and velocity selected by the user. The accelerator consists of a 3 MV Pelletron generator with a dust source, four image charge pickup detectors, and two interchangeable target chambers: a large high-vacuum test bed and an ultra-high vacuum impact study chamber. The large test bed is a 1.2 m diameter, 1.5 m long cylindrical vacuum chamber capable of pressures as low as 10{sup -7} torr while the ultra-high vacuum chamber is a 0.75 m diameter, 1.1 m long chamber capable of pressures as low as 10{sup -10} torr. Using iron dust of up to 2 microns in diameter, final velocities have been measured up to 52 km/s. The spread of the dust particles and the effect of electrostatic focusing have been measured using a long exposure CCD and a quartz target. Furthermore, a new technique of particle selection is being developed using real time digital filtering techniques. Signals are digitized and then cross-correlated with a shaped filter, resulting in a suppressed noise floor. Improvements over the MPI-K design, which include a higher operating voltage and digital filtering for detection, increase the available parameter space of dust emitted by the accelerator. The CCLDAS dust facility is a user facility open to the scientific community to assist with instrument calibrations and experiments.

  12. Green Tea Leaves Extract: Microencapsulation, Physicochemical and Storage Stability Study.

    PubMed

    Zokti, James A; Sham Baharin, Badlishah; Mohammed, Abdulkarim Sabo; Abas, Faridah

    2016-01-01

    Green tea polyphenols have been reported to possess many biological properties. Despite the many potential benefits of green tea extracts, their sensitivity to high temperature, pH and oxygen is a major disadvantage hindering their effective utilization in the food industry. Green tea leaves from the Cameron Highlands Malaysia were extracted using supercritical fluid extraction (SFE). To improve the stability, green tea extracts were encapsulated by spray-drying using different carrier materials including maltodextrin (MD), gum arabic (GA) and chitosan (CTS) and their combinations at different ratios. Encapsulation efficiency, total phenolic content and antioxidant capacity were determined and were found to be in the range of 71.41%-88.04%, 19.32-24.90 (g GAE/100 g), and 29.52%-38.05% respectively. Further analysis of moisture content, water activity, hygroscopicity, bulk density and mean particles size distribution of the microparticles were carried out and the results ranged from; 2.31%-5.11%, 0.28-0.36, 3.22%-4.71%, 0.22-0.28 g/cm³ and 40.43-225.64 µm respectively. The ability of the microparticles to swell in simulated gastric fluid (SGF) and simulated intestinal fluid (SIF) was determined as 142.00%-188.63% and 207.55%-231.77%, respectively. Release of catechin polyphenol from microparticles in SIF was higher comparable to that of SGF. Storage stability of encapsulated catechin extracts under different temperature conditions was remarkably improved compared to non-encapsulated extract powder. This study showed that total catechin, total phenolic content (TPC) and antioxidant activity did not decrease significantly (p ≥ 0.05) under 4 °C storage conditions. The half-life study results were in the range of 35-60, 34-65 and 231-288 weeks at storage temperatures of 40 °C, 25 °C and 4 °C respectively, therefore, for improved shelf-life stability we recommend that microparticles should be stored at temperatures below 25 °C. PMID:27472310

  13. Study of thermal stability of Cu2Se thermoelectric material

    NASA Astrophysics Data System (ADS)

    Bohra, Anil; Bhatt, Ranu; Bhattacharya, Shovit; Basu, Ranita; Ahmad, Sajid; Singh, Ajay; Aswal, D. K.; Gupta, S. K.

    2016-05-01

    Sustainability of thermoelectric parameter in operating temperature range is a key consideration factor for fabricating thermoelectric generator or cooler. In present work, we have studied the stability of thermoelectric parameter of Cu2Se within the temperature range of 50-800°C. Temperature dependent Seebeck coefficients and electrical resistivity measurement are performed under three continuous thermal cycles. X-ray diffraction pattern shows the presence of mixed cubic-monoclinic Cu2Se phase in bare pellet which transforms to pure α-Cu2Se phase with repeating thermal cycle. Significant enhancement in Seebeck coefficient and electrical resistivity is observed which may be attributed to (i) Se loss observed in EDS and (ii) the phase transformation from mixed cubic-monoclinic structure to pure monoclinic α-Cu2Se phase.

  14. Plutonium Finishing Plant. Interim plutonium stabilization engineering study

    SciTech Connect

    Sevigny, G.J.; Gallucci, R.H.; Garrett, S.M.K.; Geeting, J.G.H.; Goheen, R.S.; Molton, P.M.; Templeton, K.J.; Villegas, A.J.; Nass, R.

    1995-08-01

    This report provides the results of an engineering study that evaluated the available technologies for stabilizing the plutonium stored at the Plutonium Finishing Plant located at the hanford Site in southeastern Washington. Further processing of the plutonium may be required to prepare the plutonium for interim (<50 years) storage. Specifically this document provides the current plutonium inventory and characterization, the initial screening process, and the process descriptions and flowsheets of the technologies that passed the initial screening. The conclusions and recommendations also are provided. The information contained in this report will be used to assist in the preparation of the environmental impact statement and to help decision makers determine which is the preferred technology to process the plutonium for interim storage.

  15. Applications of Landsat imagery to a coastal inlet stability study

    NASA Technical Reports Server (NTRS)

    Wang, Y.-H.

    1981-01-01

    Polcyn and Lyzenga (1975) and Middleton and Barber (1976) have demonstrated that it is possible to correlate the radiance values of a multispectral imagery, such as Landsat imagery, with the depth related information. The present study is one more example of such an effort. Two sets of Landsat magnetic tape were obtained and displayed on the screen of an Image-100 computer. Spectral analysis was performed to produce various signatures, their extent, and location. Subsequent ground truth observations and measurements were gathered by means of hydrographic surveys and low altitude aerial photographs for interpretation and calibration of the Landsat data. Finally, a coastal engineering assessment based on the Landsat data was made. Recommendations regarding the navigational canal alignment and dredging practice are presented in the light of inlet stability.

  16. Accelerator research studies. Technical progress report, June 1, 1991--May 31, 1992

    SciTech Connect

    Not Available

    1992-02-01

    The Accelerator Research Studies program at the University of Maryland, sponsored by the Department of Energy under grant number DE-FG05-91ER40642, is currently in the first year of a three-year funding cycle. The program consists of the following three tasks: TASK A, Study of Transport and Longitudinal Compression of Intense, High-Brightness Beams, TASK B, Study of Collective Ion Acceleration by Intense Electron Beams and Pseudospark Produced High Brightness Electron Beams; TASK C, Study of a Gyroklystron High-power Microwave Source for Linear Colliders. In this report we document the progress that has been made during the past year for each of the three tasks.

  17. Accelerator research studies. Technical progress report, June 1, 1992--May 31, 1993

    SciTech Connect

    Not Available

    1993-03-01

    The Accelerator Research Studies program at the University of Maryland, sponsored by the Department of Energy under grant number DE-FG05-91ER40642, is currently in the second year of a three-year funding cycle. The program consists of the following three tasks: TASK A, ``Study of Transport and Longitudinal Compression of Intense, High-Brightness Beams,`` (P.I., M. Reiser); TASK B, ``Study of Collective Ion Acceleration by Intense Electron Beams and Pseudospark Produced High Brightness Electron Beams,`` (Co-P.I.`s, W.W. Destler, M. Reiser, M.J. Rhee, and C.D. Striffler); TASK C, ``Study of a Gyroklystron High-Power Microwave Source for Linear Colliders,`` (Co-P.I.`s, V.L. Granatstein, W. Lawson, M. Reiser, and C.D. Striffler). In this report we document the progress that has been made during the past year for each of the three tasks.

  18. How to model the stability of terraced slopes? The case study of Tresenda (northern Italy)

    NASA Astrophysics Data System (ADS)

    Camera, Corrado; Apuani, Tiziana; Masetti, Marco

    2015-04-01

    Terraces are very common morphological features all around the Mediterranean Basin. They have been built to adapt the natural morphology of the territory to the development of anthropogenic activities, particularly agriculture. However, the increasing land abandonment during the last century is leading to soil degradation and stability issues, mainly due to lack of maintenance of these peculiar environments. The objective of this study was to develop a coupled hydrologic-stability model to identify possible triggering areas of superficial landslides during intense rainfall events. The model was tested on a slope uphill of the village of Tresenda, in Northern Italy, which experienced several superficial landslides in the last 35 years. Distributed stability analyses are usually carried out using an infinite slope approach, but in the case of terraces some basic assumptions of this method fail: the parallelism between topographical surface and potential sliding surface and the high ratio between slope length and failure surface depth are the most important examples. In addition, the interest is more on the stability of the terrace system (dry stone retaining wall and backfill soil) and not on soil alone. For these reasons, a stability analysis based on the global method of equilibrium is applied and soft coupled to a well know hydrological model (STARWARS). Sections of terrace, one cell wide, are recognized from the base of a wall to the top of the closest downstream one, and each cell (1 x 1 m2) is considered as a slice. The method of Sarma for circular and non-circular failure is applied. The very fine horizontal resolution (1 m) is crucial to take into consideration the hydrogeological and mechanical properties of dry stone walls (0.6-1.0 m wide). A sensitivity analysis was conducted for saturated water content, initial volumetric water content, the cohesion and friction angle of soil and walls and soil depth. The results of the sensitivity analysis showed that

  19. Simulation studies of acceleration of heavy ions and their elemental compositions; IFSR--755

    SciTech Connect

    Toida, Mieko; Ohsawa, Yukiharu

    1996-07-01

    By using a one-dimensional, electromagnetic particle simulation code with full ion and electron dynamics, we have studied the acceleration of heavy ions by a nonlinear magnetosonic wave in a multi-ion-species plasma. First, we describe the mechanism of heavy ion acceleration by magnetosonic waves. We then investigate this by particle simulations. The simulation plasma contains four ion species: H, He, O, and Fe. The number density of He is taken to be 10% of that of H, and those of O and Fe are much lower. Simulations confirm that, as in a single-ion-species plasma, some of the hydrogens can be accelerated by the longitudinal electric field formed in the wave. Furthermore, they show that magnetosonic waves can accelerate all the particles of all the heavy species (He, O, and Fe) by a different mechanism, i.e., by the transverse electric field. The maximum speeds of the heavy species are about the same, of the order of the wave propagation speed. These are in good agreement with theoretical prediction. These results indicate that, if high-energy ions are produced in the solar corona through these mechanisms, the elemental compositions of these heavy ions can be similar to that of the background plasma, i.e., the corona.

  20. VERITAS observations of supernova remnants for studies of cosmic ray acceleration

    NASA Astrophysics Data System (ADS)

    Park, Nahee

    Supernova remnants (SNRs) have been suggested as the main sites for acceleration of cosmic rays (CRs) with energies up to the knee region ( 10(15) eV). Gamma-ray emission from SNRs can provide a unique window to observe the cosmic ray acceleration and to test existing acceleration models in these objects. The Very Energetic Radiation Imaging Telescope Array System (VERITAS) is an array of atmospheric Cherenkov telescopes that measures gamma rays with energies higher than 100 GeV. Located in Arizona, USA, VERITAS has observed several SNRs in the northern hemisphere since the beginning of operations in 2007. These include two young SNRs of different types (Cassiopeia A and Tycho), as well as middle- to old-aged remnants with nearby target material such as molecular clouds. Gamma-ray data from different types of SNRs in different evolutionary stages are important to study SNRs as CR accelerators. Here we present a summary of VERITAS results on Galactic SNRs including Tycho, and discuss what these observations have taught us.

  1. Nuclear waste incineration and accelerator aspects from the European PDS-XADS study

    NASA Astrophysics Data System (ADS)

    Mueller, Alex C.

    2005-04-01

    In the context of general environmental concerns, the issue of waste from nuclear power plants is a question of actual interest. Here fundamental research in Nuclear Science may have great potential impact on society and on the longer-term future. In contrast to certain non-scientifically voiced opininos, it is clear, from basic facts of Nuclear Science, that e.g. fast neutrons can transmute long-lived radio-toxic components of the spent fuel into short-lived species. Because of the flexibility and control needed for the transmutation of large quantities of nuclear waste with a high content of minor actinides, one could favor for a transmuter reactor a sub-critical system, where the needed additional neutrons come from an external source, i.e. a high-energy proton accelerator producing spallation neutrons. In the European context, a roadmap for this technology was developped by a technical expert group. Consecutive to this, the European project PDS-XADS has been launched, as a preliminary design study for an Accelerator-Driven System. Here we shall report the conclusions for the layout of the accelerator and the associated beam-line to the reactor. The technical options have been chosen with the reliability of the accelerator as prime design criterion.

  2. Review of heavy-ion induced desorption studies for particle accelerators

    NASA Astrophysics Data System (ADS)

    Mahner, Edgar

    2008-10-01

    During high-intensity heavy-ion operation of several particle accelerators worldwide, large dynamic pressure rises of orders of magnitude were caused by lost beam ions that impacted under grazing angle onto the vacuum chamber walls. This ion-induced desorption, observed, for example, at CERN, GSI, and BNL, can seriously limit the ion intensity, luminosity, and beam lifetime of the accelerator. For the heavy-ion program at CERN’s Large Hadron Collider collisions between beams of fully stripped lead (Pb82+208) ions with a beam energy of 2.76TeV/u and a nominal luminosity of 1027cm-2s-1 are foreseen. The GSI future project FAIR (Facility for Antiproton and Ion Research) aims at a beam intensity of 1012 uranium (U28+238) ions per second to be extracted from the synchrotron SIS18. Over the past years an experimental effort has been made to study the observed dynamic vacuum degradations, which are important to understand and overcome for present and future particle accelerators. The paper reviews the results obtained in several laboratories using dedicated test setups, the mitigation techniques found, and their implementation in accelerators.

  3. Study of beamlet deflection and its compensations in a MeV accelerator

    SciTech Connect

    Kashiwagi, Mieko; Inoue, Takashi; Taniguchi, Masaki; Umeda, Naotaka; Dairaku, Masayuki; Takemoto, Jumpei; Tobari, Hiroyuki; Tsuchida, Kazuki; Watanabe, Kazuhiro; Yamanaka, Haruhiko; Sakamoto, Keishi; Grisham, Larry R.

    2011-09-26

    In a five stage multi-aperture and multi-grid (MAMuG) accelerator in JAEA, beam acceleration tests are in progress toward 1 MeV, 200 A/m{sup 2} H{sup -} ion beams for ITER. The 1 MV voltage holding has been successfully demonstrated for 4,000 s with the accelerator of expanded gap length that lowered local electric field concentrations. This led to increase of the beam energy up to 900 keV-level. However, it was found that beamlets were deflected more in long gaps and direct interceptions of the deflected beamlet caused breakdowns. The beamlet deflection and its compensation methods were studied utilizing a three-dimensional multi beamlet analysis. The analysis showed that the 1 MeV beam can be compensated by a combination of the aperture offset of 0.8 mm applied in the electron suppression (ESG) and the metal bar called a field shaping plate with a thickness of 1 mm attached beneath the ESG. The paper reports these compensation methods and analytical predictions, with experimental results of the MAMuG accelerator in which those compensation techniques have been applied.

  4. Stability of rotating stratified shear flow: an analytical study.

    PubMed

    Salhi, A; Cambon, C

    2010-02-01

    We study the stability problem of unbounded shear flow, with velocity U(i)=Sx(3)delta(i1), subjected to a uniform vertical density stratification, with Brunt-Väisälä frequency N, and system rotation of rate Omega about an axis aligned with the spanwise (x(2)) direction. The evolution of plane-wave disturbances in this shear flow is governed by a nonhomogeneous second-order differential equation with time-dependent coefficients. An analytical solution is found to be described by Legendre functions in terms of the nondimensional parameter sigma(phi)(2)=R(R+1)sin(2) phi+R(i), where R=(2Omega/S) is the rotation number, phi is the angle between the horizontal wave vector and the streamwise axis, and R(i)=N(2)/S(2) is the Richardson number. The long-time behavior of the solution is analyzed using the asymptotic representations of the Legendre functions. On the one hand, linear stability is analyzed in terms of exponential growth, as in a normal-mode analysis: the rotating stratified shear flow is stable if R(i)>1/4, or if 00, or if R(R+1)<0stability diagrams are shown for all values of R(i) and R and an arbitrary orientation of the wave vector. Crucial contributions to spectral energies are shown to come from the k(1)=0 mode, which corresponds to an infinite streamwise wavelength. Accordingly, two-dimensional contributions to both kinetic and potential energies are calculated analytically in this streamwise direction. PMID:20365646

  5. Stability and stabilization studies for a class of switched nonlinear systems via vector norms approach.

    PubMed

    Sakly, Anis; Kermani, Marwen

    2015-07-01

    This paper is concerned with the problems of stability analysis and stabilization with a state feedback controller through pole placement for a class of both continuous and discrete-time switched nonlinear systems. These systems are modeled by differential or difference equations. Then, a transformation under the arrow form is employed. Note that, the main contribution in this work is twofold: firstly, based on the construction of an appropriated common Lyapunov function, as well the use of the vector norms notion, the recourse to the Kotelyanski lemma, the M-matrix proprieties, the aggregation techniques and the application of the Borne-Gentina criterion, new sufficient stability conditions under arbitrary switching for the autonomous system are deduced. Secondly, this result is extended for designing a state feedback controller by using pole assignment control, which guarantee that the corresponding closed-loop system is globally asymptotically stable under arbitrary switching. The main novelties features of these obtained results are the explicitness and the simplicity in their application. Moreover, they allow us to avoid the search of a common Lyapunov function which is a difficult matter. Finally, as validation to stabilize a shunt DC motor under variable mechanical loads is performed to demonstrate the effectiveness of the proposed results. PMID:25701192

  6. Magneto-hydrodynamics simulation study of deflagration mode in co-axial plasma accelerators

    SciTech Connect

    Sitaraman, Hariswaran; Raja, Laxminarayan L.

    2014-01-15

    Experimental studies by Poehlmann et al. [Phys. Plasmas 17(12), 123508 (2010)] on a coaxial electrode magnetohydrodynamic (MHD) plasma accelerator have revealed two modes of operation. A deflagration or stationary mode is observed for lower power settings, while higher input power leads to a detonation or snowplow mode. A numerical modeling study of a coaxial plasma accelerator using the non-ideal MHD equations is presented. The effect of plasma conductivity on the axial distribution of radial current is studied and found to agree well with experiments. Lower conductivities lead to the formation of a high current density, stationary region close to the inlet/breech, which is a characteristic of the deflagration mode, while a propagating current sheet like feature is observed at higher conductivities, similar to the detonation mode. Results confirm that plasma resistivity, which determines magnetic field diffusion effects, is fundamentally responsible for the two modes.

  7. Magneto-hydrodynamics simulation study of deflagration mode in co-axial plasma accelerators

    NASA Astrophysics Data System (ADS)

    Sitaraman, Hariswaran; Raja, Laxminarayan L.

    2014-01-01

    Experimental studies by Poehlmann et al. [Phys. Plasmas 17(12), 123508 (2010)] on a coaxial electrode magnetohydrodynamic (MHD) plasma accelerator have revealed two modes of operation. A deflagration or stationary mode is observed for lower power settings, while higher input power leads to a detonation or snowplow mode. A numerical modeling study of a coaxial plasma accelerator using the non-ideal MHD equations is presented. The effect of plasma conductivity on the axial distribution of radial current is studied and found to agree well with experiments. Lower conductivities lead to the formation of a high current density, stationary region close to the inlet/breech, which is a characteristic of the deflagration mode, while a propagating current sheet like feature is observed at higher conductivities, similar to the detonation mode. Results confirm that plasma resistivity, which determines magnetic field diffusion effects, is fundamentally responsible for the two modes.

  8. Contrasting tropical estuarine ecosystem functioning and stability: A comparative study

    NASA Astrophysics Data System (ADS)

    Villanueva, Maria Ching

    2015-03-01

    A comparative study of the Sine-saloum (Senegal) and Gambia (The Gambia) estuaries was performed based on trophic model outputs that describe the system structure and functioning. These trophic models were constructed such as to differentiate main energetic flows in the systems and express how climate change may have impacted ecosystem resilience to change. Estuarine fish assemblages are highly resilient despite exposure to vast hydrodynamic variations and stress. Coupled with strong anthropogenic-driven stresses such as fisheries and climate change, ecosystems may undergo severe regime shifts that may weaken their resilience and stability. Taxonomically related and morphologically similar species do not necessarily play similar ecological roles in these two ecosystems. Biomass and production in the Sine-saloum are concentrated at trophic levels (TLs) 2 and 3, while for the Gambia, both are concentrated at TL3. Higher TL biomasses in Gambia compared to Sine-Saloum may be explained by the latter ecosystem being characterized by inverse hypersalinity. Higher TL of production in Sine-Saloum is due to higher exploitations compared to Gambia where fishing activities are still less developed. High production and consumption rates of some groups in both ecosystems indicate high system productivity. Elevated productivity may be due to higher abundance of juvenile fishes in most groups that utilize the latter as refuge and/or nursery zones. Both ecosystems are phytoplankton-driven. Differences in group trophic and ecological roles are mainly due to adaptive responses of these species to seasonal and long-term climate and anthropogenic stressors. System indicators suggest different levels of ecosystem resilience and stability as a function of biodiversity. Relevance of other observations on ecosystem functioning and indicators in relation to perturbation is discussed.

  9. Design studies and commissioning plans for plasma acceleration research station experimental program

    SciTech Connect

    Mete, O.; Xia, G.; Hanahoe, K.; Dover, M.; Wigram, M.; Wright, J.; Zhang, J.; Smith, J.

    2015-10-15

    Plasma acceleration research station is an electron beam driven plasma wakefield acceleration test stand proposed for CLARA facility in Daresbury Laboratory. In this paper, the interaction between the electron beam and the plasma is numerically characterised via 2D numerical studies by using VSIM code. The wakefields induced by a single bunch travelling through the plasma were found to vary from 200 MV/m to 3 GV/m for a range of bunch length, bunch radius, and plasma densities. Energy gain for the particles populating the bunch tail through the wakefields driven by the head of the bunch was demonstrated. After determining the achievable field for various beams and plasma configurations, a reference setting was determined for further studies. Considering this reference setting, the beam quality studies were performed for a two-bunch acceleration case. The maximum energy gain as well as the energy spread mitigation by benefiting from the beam loading was investigated by positioning the witness and driver bunches with respect to each other. Emittance growth mechanisms were studied considering the beam-plasma and beam-wakefield interactions. Eventually, regarding the findings, the initial commissioning plans and the aims for the later stages were summarised.

  10. STUDIES OF A FREE ELECTRON LASER DRIVEN BY A LASER-PLASMA ACCELERATOR

    SciTech Connect

    Montgomery, A.; Schroeder, C.; Fawley, W.

    2008-01-01

    A free electron laser (FEL) uses an undulator, a set of alternating magnets producing a periodic magnetic fi eld, to stimulate emission of coherent radiation from a relativistic electron beam. The Lasers, Optical Accelerator Systems Integrated Studies (LOASIS) group at Lawrence Berkeley National Laboratory (LBNL) will use an innovative laserplasma wakefi eld accelerator to produce an electron beam to drive a proposed FEL. In order to optimize the FEL performance, the dependence on electron beam and undulator parameters must be understood. Numerical modeling of the FEL using the simulation code GINGER predicts the experimental results for given input parameters. Among the parameters studied were electron beam energy spread, emittance, and mismatch with the undulator focusing. Vacuum-chamber wakefi elds were also simulated to study their effect on FEL performance. Energy spread was found to be the most infl uential factor, with output FEL radiation power sharply decreasing for relative energy spreads greater than 0.33%. Vacuum chamber wakefi elds and beam mismatch had little effect on the simulated LOASIS FEL at the currents considered. This study concludes that continued improvement of the laser-plasma wakefi eld accelerator electron beam will allow the LOASIS FEL to operate in an optimal regime, producing high-quality XUV and x-ray pulses.

  11. Design studies and commissioning plans for plasma acceleration research station experimental program

    NASA Astrophysics Data System (ADS)

    Mete, O.; Xia, G.; Hanahoe, K.; Dover, M.; Wigram, M.; Wright, J.; Zhang, J.; Smith, J.

    2015-10-01

    Plasma acceleration research station is an electron beam driven plasma wakefield acceleration test stand proposed for CLARA facility in Daresbury Laboratory. In this paper, the interaction between the electron beam and the plasma is numerically characterised via 2D numerical studies by using VSIM code. The wakefields induced by a single bunch travelling through the plasma were found to vary from 200 MV/m to 3 GV/m for a range of bunch length, bunch radius, and plasma densities. Energy gain for the particles populating the bunch tail through the wakefields driven by the head of the bunch was demonstrated. After determining the achievable field for various beams and plasma configurations, a reference setting was determined for further studies. Considering this reference setting, the beam quality studies were performed for a two-bunch acceleration case. The maximum energy gain as well as the energy spread mitigation by benefiting from the beam loading was investigated by positioning the witness and driver bunches with respect to each other. Emittance growth mechanisms were studied considering the beam-plasma and beam-wakefield interactions. Eventually, regarding the findings, the initial commissioning plans and the aims for the later stages were summarised.

  12. The influence of combined alignments on lateral acceleration on mountainous freeways: a driving simulator study.

    PubMed

    Wang, Xuesong; Wang, Ting; Tarko, Andrew; Tremont, Paul J

    2015-03-01

    Combined horizontal and vertical alignments are frequently used in mountainous freeways in China; however, design guidelines that consider the safety impact of combined alignments are not currently available. Past field studies have provided some data on the relationship between road alignment and safety, but the effects of differing combined alignments on either lateral acceleration or safety have not systematically examined. The primary reason for this void in past research is that most of the prior studies used observational methods that did not permit control of the key variables. A controlled parametric study is needed that examines lateral acceleration as drivers adjust their speeds across a range of combined horizontal and vertical alignments. Such a study was conducted in Tongji University's eight-degree-of-freedom driving simulator by replicating the full range of combined alignments used on a mountainous freeway in China. Multiple linear regression models were developed to estimate the effects of the combined alignments on lateral acceleration. Based on these models, domains were calculated to illustrate the results and to assist engineers to design safer mountainous freeways. PMID:25626165

  13. Comparative experimental biomechanical study of different types of stabilization methods of the lower cervical spine.

    PubMed

    Kalff, R; Ulrich, C; Claes, L; Wilke, H J; Grote, W

    1992-01-01

    In a comparative experimental biodynamic study using thirty-two human cervical spines of cadavers the primary stabilization effect of different types of spondylodesis was examined. Whereas in flexion stress all methods showed a sufficient stability, the rotation tests proved, that in case of a dorsal instability of the lower cervical spine, posterior interlaminar wiring or anterior plate stabilization showed no reliable stabilization effect. However, the compression clamps by ROOSEN and TRAUSCHEL as well as the hook-plates by MAGERL are suitable dorsal stabilization methods with excellent rotation stability. In case of dorsal instability of the lower cervical spine a posterior spondylodesis is necessary and sufficient. PMID:1480272

  14. Accelerator mass spectrometry-enabled studies: current status and future prospects

    PubMed Central

    Arjomand, Ali

    2010-01-01

    Accelerator mass spectrometry is a detection platform with exceptional sensitivity compared with other bioanalytical platforms. Accelerator mass spectrometry (AMS) is widely used in archeology for radiocarbon dating applications. Early exploration of the biological and pharmaceutical applications of AMS began in the early 1990s. AMS has since demonstrated unique problem-solving ability in nutrition science, toxicology and pharmacology. AMS has also enabled the development of new applications, such as Phase 0 microdosing. Recent development of AMS-enabled applications has transformed this novelty research instrument to a valuable tool within the pharmaceutical industry. Although there is now greater awareness of AMS technology, recognition and appreciation of the range of AMS-enabled applications is still lacking, including study-design strategies. This review aims to provide further insight into the wide range of AMS-enabled applications. Examples of studies conducted over the past two decades will be presented, as well as prospects for the future of AMS. PMID:20440378

  15. Early Acceleration of Mathematics Students and its Effect on Growth in Self-esteem: A Longitudinal Study

    NASA Astrophysics Data System (ADS)

    Ma, Xin

    2002-11-01

    The Longitudinal Study of American Youth (LSAY) database was employed to examine the educational practice of early acceleration of students of mathematics on the development of their self-esteem across the entire secondary grade levels. Students were classified into three different academic categories (gifted, honors, and regular). Results indicated that, in terms of the development of their self-esteem, gifted students benefited from early acceleration, honors students neither benefited nor were harmed by early acceleration, and regular students were harmed by early acceleration. Early acceleration in mathematics promoted significant growth in self-esteem among gifted male students and among gifted, honors, and regular minority students. When students were accelerated, schools showed similar average growth in self-esteem among gifted students and regular students and a large effect of general support for mathematics on the average growth in self-esteem among honors students.

  16. Lean stability augmentation study. [on gas turbine combustion chambers

    NASA Technical Reports Server (NTRS)

    Mcvey, J. B.; Kennedy, J. B.

    1979-01-01

    An analytical conceptual design study and an experimental test program were conducted to investigate techniques and develop technology for improving the lean combustion limits of premixing, prevaporizing combustors applicable to gas turbine engine main burners. The use of hot gas pilots, catalyzed flameholder elements, and heat recirculation to augment lean stability limits was considered in the conceptual design study. Tests of flameholders embodying selected concepts were conducted at a pressure of 10 arm and over a range of entrance temperatures simulating conditions to be encountered during stratospheric cruise. The tests were performed using an axisymmetric flametube test rig having a nominal diameter of 10.2 cm. A total of sixteen test configurations were examined in which lean blowout limits, pollutant emission characteristics, and combustor performance were evaluated. The use of a piloted perforated plate flameholder employing a pilot fuel flow rate equivalent to 4 percent of the total fuel flow at a simulated cruise condition resulted in a lean blowout equivalence ratio of less than 0.25 with a design point (T sub zero = 600k, Phi = 0.6) NOx emission index of less than 1.0 g/kg.

  17. TWIN BINARIES: STUDIES OF STABILITY, MASS TRANSFER, AND COALESCENCE

    SciTech Connect

    Lombardi, J. C.; Holtzman, W.; Gearity, K.; Dooley, K. L.; Kalogera, V.; Rasio, F. A.

    2011-08-20

    Motivated by suggestions that binaries with almost equal-mass components ('twins') play an important role in the formation of double neutron stars and may be rather abundant among binaries, we study the stability of synchronized close and contact binaries with identical components in circular orbits. In particular, we investigate the dependency of the innermost stable circular orbit on the core mass, and we study the coalescence of the binary that occurs at smaller separations. For twin binaries composed of convective main-sequence stars, subgiants, or giants with low-mass cores (M{sub c} {approx}< 0.15M, where M is the mass of a component), a secular instability is reached during the contact phase, accompanied by a dynamical mass transfer instability at the same or at a slightly smaller orbital separation. Binaries that come inside this instability limit transfer mass gradually from one component to the other and then coalesce quickly as mass is lost through the outer Lagrangian points. For twin giant binaries with moderate to massive cores (M{sub c} {approx}> 0.15M), we find that stable contact configurations exist at all separations down to the Roche limit, when mass shedding through the outer Lagrangian points triggers a coalescence of the envelopes and leaves the cores orbiting in a central tight binary. In addition to the formation of binary neutron stars, we also discuss the implications of our results for the production of planetary nebulae with double degenerate central binaries.

  18. Accelerator research studies. Final report, June 1, 1994--May 31, 1995

    SciTech Connect

    1995-08-01

    The Accelerator Research Studies program at the University of Maryland, sponsored by the Department of Energy has completed the third year of its three-year funding cycle and an additional one-year, no-cost extension. The program consisted of the following three tasks: Task A -- Study of the transport and longitudinal compression of intense, high-brightness beams; Task B -- Study of high-brightness beam generation in pseudospark devices; Task C -- Study of a gyroklystron high-power microwave source for linear colliders. The research carried out for each task and progress made is reported.

  19. Accelerator research studies. Final report, June 1, 1991--May 31, 1994

    SciTech Connect

    1994-12-31

    The Accelerator Research Studies program at the University of Maryland, sponsored by the Department of Energy is currently in the third year of its three-year funding cycle. The program consists of the following three tasks: Task A -- Study of the transport and longitudinal compression of intense, high-brightness beams; Task B -- Study of high-brightness beam generation in pseudospark devices; Task C -- Study of a gyroklystron high-power microwave source for linear colliders. The research for each task is detailed in this report.

  20. Accelerator-based conversion (ABC) of weapons plutonium: Plant layout study and related design issues

    SciTech Connect

    Cowell, B.S.; Fontana, M.H.; Krakowski, R.A.; Beard, C.A.; Buksa, J.J.; Davidson, J.W.; Sailor, W.C.; Williamson, M.A.

    1995-04-01

    In preparation for and in support of a detailed R and D Plan for the Accelerator-Based Conversion (ABC) of weapons plutonium, an ABC Plant Layout Study was conducted at the level of a pre-conceptual engineering design. The plant layout is based on an adaptation of the Molten-Salt Breeder Reactor (MSBR) detailed conceptual design that was completed in the early 1070s. Although the ABC Plant Layout Study included the Accelerator Equipment as an essential element, the engineering assessment focused primarily on the Target; Primary System (blanket and all systems containing plutonium-bearing fuel salt); the Heat-Removal System (secondary-coolant-salt and supercritical-steam systems); Chemical Processing; Operation and Maintenance; Containment and Safety; and Instrumentation and Control systems. Although constrained primarily to a reflection of an accelerator-driven (subcritical) variant of MSBR system, unique features and added flexibilities of the ABC suggest improved or alternative approaches to each of the above-listed subsystems; these, along with the key technical issues in need of resolution through a detailed R&D plan for ABC are described on the bases of the ``strawman`` or ``point-of-departure`` plant layout that resulted from this study.

  1. Feasibility study of a nonequilibrium MHD accelerator concept for hypersonic propulsion ground testing

    SciTech Connect

    Lee, Ying-Ming; Simmons, G.A.; Nelson, G.L.

    1995-12-31

    A National Aeronautics and Space Administration (NASA) funded research study to evaluate the feasibility of using magnetohydrodynamic (MHD) body force accelerators to produce true air simulation for hypersonic propulsion ground testing is discussed in this paper. Testing over the airbreathing portion of a transatmospheric vehicle (TAV) hypersonic flight regime will require high quality air simulation for actual flight conditions behind a bow shock wave (forebody, pre-inlet region) for flight velocities up to Mach 16 and perhaps beyond. Material limits and chemical dissociation at high temperature limit the simulated flight Mach numbers in conventional facilities to less than Mach 12 for continuous and semi-continuous testing and less than Mach 7 for applications requiring true air chemistry. By adding kinetic energy directly to the flow, MHD accelerators avoid the high temperatures and pressures required in the reservoir region of conventional expansion facilities, allowing MHD to produce true flight conditions in flight regimes impossible with conventional facilities. The present study is intended to resolve some of the critical technical issues related to the operation of MHD at high pressure. Funding has been provided only for the first phase of a three to four year feasibility study that would culminate in the demonstration of MHD acceleration under conditions required to produce true flight conditions behind a bow shock wave to flight Mach numbers of 16 or greater. MHD critical issues and a program plan to resolve these are discussed.

  2. Feasibility study of inlet shock stability system of YF-12

    NASA Technical Reports Server (NTRS)

    Blausey, G. C.; Coleman, D. M.; Harp, D. S.

    1972-01-01

    The feasibility of self actuating bleed valves as a shock stabilization system in the inlet of the YF-12 is considered for vortex valves, slide valves, and poppet valves. Analytical estimation of valve performance indicates that only the slide and poppet valves located in the inlet cowl can meet the desired steady state stabilizing flows, and of the two the poppet valve is substantially faster in response to dynamic disturbances. The poppet valve is, therefore, selected as the best shock stability system for the YF-12 inlet.

  3. Laser Wakefield Acceleration: Structural and Dynamic Studies. Final Technical Report ER40954

    SciTech Connect

    Downer, Michael C.

    2014-12-19

    Particle accelerators enable scientists to study the fundamental structure of the universe, but have become the largest and most expensive of scientific instruments. In this project, we advanced the science and technology of laser-plasma accelerators, which are thousands of times smaller and less expensive than their conventional counterparts. In a laser-plasma accelerator, a powerful laser pulse exerts light pressure on an ionized gas, or plasma, thereby driving an electron density wave, which resembles the wake behind a boat. Electrostatic fields within this plasma wake reach tens of billions of volts per meter, fields far stronger than ordinary non-plasma matter (such as the matter that a conventional accelerator is made of) can withstand. Under the right conditions, stray electrons from the surrounding plasma become trapped within these “wake-fields”, surf them, and acquire energy much faster than is possible in a conventional accelerator. Laser-plasma accelerators thus might herald a new generation of compact, low-cost accelerators for future particle physics, x-ray and medical research. In this project, we made two major advances in the science of laser-plasma accelerators. The first of these was to accelerate electrons beyond 1 gigaelectronvolt (1 GeV) for the first time. In experimental results reported in Nature Communications in 2013, about 1 billion electrons were captured from a tenuous plasma (about 1/100 of atmosphere density) and accelerated to 2 GeV within about one inch, while maintaining less than 5% energy spread, and spreading out less than ½ milliradian (i.e. ½ millimeter per meter of travel). Low energy spread and high beam collimation are important for applications of accelerators as coherent x-ray sources or particle colliders. This advance was made possible by exploiting unique properties of the Texas Petawatt Laser, a powerful laser at the University of Texas at Austin that produces pulses of 150 femtoseconds (1 femtosecond is 10

  4. Kinetically Stabilized Axisymmetric Tandem Mirrors: Summary of Studies

    SciTech Connect

    Post, R F

    2005-02-08

    The path to practical fusion power through plasma confinement in magnetic fields, if it is solely based on the present front-runner, the tokamak, is clearly long, expensive, and arduous. The root causes for this situation lie in the effects of endemic plasma turbulence and in the complexity the tokamak's ''closed'' field geometry. The studies carried out in the investigations described in the attached reports are aimed at finding an approach that does not suffer from these problems. This goal is to be achieved by employing an axisymmetric ''open'' magnetic field geometry, i.e. one generated by a linear array of circular magnet coils, and employing the magnetic mirror effect in accomplishing the plugging of end leakage. More specifically, the studies were aimed at utilizing the tandem-mirror concept in an axisymmetric configuration to achieve performance superior to the tokamak, and in a far simpler system, one for which the cost and development time could be much lower than that for the tokamak, as exemplified by ITER and its follow-ons. An important stimulus for investigating axisymmetric versions of the tandem mirror is the fact that, beginning from early days in fusion research there have been examples of axisymmetric mirror experiments where the plasma exhibited crossfield transport far below the turbulence-enhanced rates characteristic of tokamaks, in specific cases approaching the ''classical'' rate. From the standpoint of theory, axisymmetric mirror-based systems have special characteristics that help explain the low levels of turbulence that have been observed. Among these are the facts that there are no parallel currents in the equilibrium state, and that the drift surfaces of all of the trapped particles are closed surfaces, as shown early on by Teller and Northrop. In addition, in such systems it is possible to arrange that the radial boundary of the confined plasma terminates without contact with the chamber wall. This possibility reduces the

  5. State Dependence and Trait Stability of Perfectionism: A Short-Term Longitudinal Study

    ERIC Educational Resources Information Center

    Rice, Kenneth G.; Aldea, Mirela A.

    2006-01-01

    The authors examined state dependency on depression, trait stability, and state-trait characteristics of perfectionism in a short-term longitudinal study of university students. Relative stability of perfectionism was assessed with test-retest correlations across 3 time points, and results showed higher rank order and relative stability for…

  6. A Study on a Bell Type Stabilizer Bar of a Small Coaxial Helicopter

    NASA Astrophysics Data System (ADS)

    Sunada, Shigeru; Kikuchi, Atsushi; Tokutake, Hiroshi

    The motion of a stabilizer bar of the small coaxial helicopter was analyzed in the previous study. It has been made clear by the measurements on the motion of the stabilizer bar that the following two revisions are required in the analysis. (1) The motion of stabilizer bar is affected by the upper rotor. (2) Neither of the terms in the moment acting on the stabilizer bar at its hinge, kββ+kββ, can be ignored.

  7. Accelerated Stability and Chemical Kinetics of Ethanol Extracts of Fruit of Piper sarmentosum Using High Performance Liquid Chromatography

    PubMed Central

    Khalid, Hussain; Zhari, Ismail; Amirin, Sadikun; Pazilah, Ibrahim

    2011-01-01

    The extracts of Piper sarmentosum, a medicinal plant, are being used to prepare phytopharmaceuticals while the information about chemical kinetics of constituents of the extract is unavailable to assign precise shelf life (t90) and find optimum storage conditions of the product for patient safety, and to avoid economic repercussions of launching an unstable product. The extract was exposed to three different conditions of high temperature and relative humidity (RH) for six months. The samples were then analyzed at 0, 1, 2, 4 and 6 months by high performance liquid chromatography (HPLC) using pellitorine, sarmentine and sarmentosine as markers. Different chemical kinetic parameters of the markers were evaluated by Arrhenius equation to predict shelf life (t90) at different storage conditions and at room temperature. The markers in the extract followed the zero order degradation, and the activation energy, pre exponential factor and rate constant of the reaction of the markers were found to be varying in samples stored at different conditions. The contents of the markers were found to be decreasing at high temperature and humidity with the passage of time. The predicted shelf life (t90) of the markers at room temperature was found to be 16 months approximately. Results of this study indicate that extracts of the plant are stable at room temperature for 16 months. Moreover, the chemical kinetic data of the markers and the analytical method used to quantify the markers may be useful for phytopharmaceutical industry to produce efficacious and stable products from extracts of the plant. PMID:24250372

  8. Study of a national 2-GeV continuous beam electron accelerator

    SciTech Connect

    Cho, Y.; Holt, R.J.; Jackson, H.E.; Khoe, T.K.; Mavrogenes, G.S.

    1980-08-01

    Current trends in research in medium energy physics with electromagnetic probes are reviewed briefly and design objectives are proposed for a continuous beam 2 GeV electron accelerator. Various types of accelerator systems are discussed and exploratory designs developed for two concepts, the linac-stretcher ring and a double-sided microtron system. Preliminary cost estimates indicate that a linac-ring system which meets all the design objectives with the exception of beam quality and uses state-of-the-art technology can be built for approximately $29 million. However, the double-sided microtron shows promise for development into a substantially less expensive facility meeting all design objectives. Its technical feasibility remains to be established. Specific areas requiring additional engineering studies are discussed, and current efforts at Argonne and elsewhere are identified.

  9. Charge-exchange erosion studies of accelerator grids in ion thrusters

    NASA Technical Reports Server (NTRS)

    Peng, Xiaohang; Ruyten, Wilhelmus M.; Keefer, Dennis

    1993-01-01

    A particle simulation model is developed to study the charge-exchange grid erosion in ion thrusters for both ground-based and space-based operations. Because the neutral gas downstream from the accelerator grid is different for space and ground operation conditions, the charge-exchange erosion processes are also different. Based on an assumption of now electric potential hill downstream from the ion thruster, the calculations show that the accelerator grid erosion rate for space-based operating conditions should be significantly less than experimentally observed erosion rates from the ground-based tests conducted at NASA Lewis Research Center (LeRC) and NASA Jet Propulsion Laboratory (JPL). To resolve this erosion issue completely, we believe that it is necessary to accurately measure the entire electric potential field downstream from the thruster.

  10. Quasi crystals: Studies of stability and phason relaxation

    SciTech Connect

    Gronlund, L.D.

    1989-01-01

    This dissertation is in two distinct parts. In chapter I the author considers a simple model of solidification based on Landau theory and investigates whether this model can have stable or metastable quasicrystalline solutions. The model is that proposed by Kalugin, Kitaev, and Levitov with an additional local quartic term in the free energy. In this case, the body-centered cubic (bcc) crystal is the global minimum. He assesses the stability of the quasicrystalline solutions and shows that they are not even metastable, being unstable against a collapse to the bcc crystal. In chapter II he proposes a simple model for phason dynamics in quasicrystals. Phason shifts in the Penrose tiling model of quasicrystals appear as flips of rows of tiles, known as worms. When worms cross one another a hierarchy is established in which some of the worms cannot flip until others have. A complex set of constraints on worm flips is thereby introduced by the intricate pattern of worm crossings in quasicrystalline tilings. He introduces a simple model of interacting sets of one-dimensional Ising chains that mimics this set of constraints and study the possible consequences of these constraints for phason dynamics and the relaxation of phason strain in quasicrystals.

  11. Development of a perturbation generator for vortex stability studies

    NASA Technical Reports Server (NTRS)

    Riester, J. E.; Ash, Robert L.

    1991-01-01

    Theory predicts vortex instability when subjected to certain types of disturbances. It was desired to build a device which could introduce controlled velocity perturbations into a trailing line vortex in order to study the effects on stability. A perturbation generator was designed and manufactured which can be attached to the centerbody of an airfoil type vortex generator. Details of design tests and manufacturing of the perturbation generator are presented. The device produced controlled perturbation with frequencies in excess of 250 Hz. Preliminary testing and evaluation of the perturbation generator performance was conducted in a 4 inch cylindrical pipe. Observations of vortex shedding frequencies from a centerbody were measured. Further evaluation with the perturbation generator attached to the vortex generator in a 2 x 3 foot wind tunnel were also conducted. Hot-wire anemometry was used to confirm the perturbation generator's ability to introduce controlled frequency fluctuations. Comparison of the energy levels of the disturbances in the vortex core was made between locations 42 chord lengths and 15 chord lengths downstream.

  12. Solid state stability studies of model dipeptides: aspartame and aspartylphenylalanine.

    PubMed

    Leung, S S; Grant, D J

    1997-01-01

    Some solid-state pharmaceutical properties and the solid-state thermal stability of the model dipeptides aspartame (APM) and aspartylphenylalanine (AP), have been investigated. Studies by differential scanning calorimetry (DSC), thermal gravimetric analysis (TGA), high-performance liquid chromatography, powder X-ray diffraction, and optical microscopy have shown that the dipeptides undergo solid state intramolecular aminolysis of the type, solid --> solid + gas. This reaction was observed for APM at 167-180 degrees C with the liberation of methanol and for AP at 186-202 degrees C with the liberation of water. The exclusive solid product of the degradation reaction of both dipeptides is the cyclic compound 3-(carboxymethyl)-6-benzyl-2,5-dioxopiperazine. The rates of the degradation reactions were monitored by isothermal TGA and by temperature-ramp DSC and were found to follow kinetics based on nucleation control with activation energies of about 266 kJ mol(-1) for APM and 234 kJ mol(-1) for AP. PMID:9002461

  13. Experimental Vertical Stability Studies for ITER Performance and Design Guidance

    SciTech Connect

    Humphreys, D A; Casper, T A; Eidietis, N; Ferrera, M; Gates, D A; Hutchinson, I H; Jackson, G L; Kolemen, E; Leuer, J A; Lister, J; LoDestro, L L; Meyer, W H; Pearlstein, L D; Sartori, F; Walker, M L; Welander, A S; Wolfe, S M

    2008-10-13

    Operating experimental devices have provided key inputs to the design process for ITER axisymmetric control. In particular, experiments have quantified controllability and robustness requirements in the presence of realistic noise and disturbance environments, which are difficult or impossible to characterize with modeling and simulation alone. This kind of information is particularly critical for ITER vertical control, which poses some of the highest demands on poloidal field system performance, since the consequences of loss of vertical control can be very severe. The present work describes results of multi-machine studies performed under a joint ITPA experiment on fundamental vertical control performance and controllability limits. We present experimental results from Alcator C-Mod, DIII-D, NSTX, TCV, and JET, along with analysis of these data to provide vertical control performance guidance to ITER. Useful metrics to quantify this control performance include the stability margin and maximum controllable vertical displacement. Theoretical analysis of the maximum controllable vertical displacement suggests effective approaches to improving performance in terms of this metric, with implications for ITER design modifications. Typical levels of noise in the vertical position measurement which can challenge the vertical control loop are assessed and analyzed.

  14. A Study of Longitudinal Control Problems at Low and Negative Damping and Stability with Emphasis on Effects of Motion Cues

    NASA Technical Reports Server (NTRS)

    Sadoff, Melvin; McFadden, Norman M.; Heinle, Donovan R.

    1961-01-01

    As part of a general investigation to determine the effects of simulator motions on pilot opinion and task performance over a wide range of vehicle longitudinal dynamics, a cooperative NASA-AMAL program was conducted on the centrifuge at Johnsville, Pennsylvania. The test parameters and measurements for this program duplicated those of earlier studies made at Ames Research Center with a variable-stability airplane and with a pitch-roll chair flight simulator. Particular emphasis was placed on the minimum basic damping and stability the pilots would accept and on the minimum dynamics they considered controllable in the event of stability-augmentation system failure. Results of the centrifuge-simulator program indicated that small positive damping was required by the pilots over most of the frequency range covered for configurations rated acceptable for emergency conditions only (e.g., failure of a pitch damper). It was shown that the pilot's tolerance for unstable dynamics was dependent primarily on the value of damping. For configurations rated acceptable for emergency operation only, the allowable instability and damping corresponded to a divergence time to double amplitude of about 1 second. Comparisons were made of centrifuge, pitch-chair and fixed-cockpit simulator tests with flight tests. Pilot ratings indicated that the effects of incomplete or spurious motion cues provided by these three modes of simulation were important only for high-frequency, lightly damped dynamics or unstable, moderately damped dynamics. The pitch- chair simulation, which provided accurate angular-acceleration cues to the pilot, compared most favorably with flight. For the centrifuge simulation, which furnished accurate normal accelerations but spurious pitching and longitudinal accelerations, there was a deterioration of pilots' opinion relative to flight results. Results of simulator studies with an analog pilot replacing the human pilot illustrated the adaptive capability of human

  15. A computational study of dielectric photonic-crystal-based accelerator cavities

    NASA Astrophysics Data System (ADS)

    Bauer, C. A.

    Future particle accelerator cavities may use dielectric photonic crystals to reduce harmful wakefields and increase the accelerating electric field (or gradient). Reduced wakefields are predicted based on the bandgap property of some photonic crystals (i.e. frequency-selective reflection/transmission). Larger accelerating gradients are predicted based on certain dielectrics' strong resistance to electrical breakdown. Using computation, this thesis investigated a hybrid design of a 2D sapphire photonic crystal and traditional copper conducting cavity. The goals were to test the claim of reduced wakefields and, in general, judge the effectiveness of such structures as practical accelerating cavities. In the process, we discovered the following: (1) resonant cavities in truncated photonic crystals may confine radiation weakly compared to conducting cavities (depending on the level of truncation); however, confinement can be dramatically increased through optimizations that break lattice symmetry (but retain certain rotational symmetries); (2) photonic crystal cavities do not ideally reduce wakefields; using band structure calculations, we found that wakefields are increased by flat portions of the frequency dispersion (where the waves have vanishing group velocities). A complete comparison was drawn between the proposed photonic crystal cavities and the copper cavities for the Compact Linear Collider (CLIC); CLIC is one of the candidates for a future high-energy electron-positron collider that will study in greater detail the physics learned at the Large Hadron Collider. We found that the photonic crystal cavity, when compared to the CLIC cavity: (1) can lower maximum surface magnetic fields on conductors (growing evidence suggests this limits accelerating gradients by inducing electrical breakdown); (2) shows increased transverse dipole wakefields but decreased longitudinal monopole wakefields; and (3) exhibits lower accelerating efficiencies (unless

  16. Electron beam assisted synthesis of silver nanoparticle in chitosan stabilizer: Preparation, stability and inhibition of building fungi studies

    NASA Astrophysics Data System (ADS)

    Jannoo, Kanokwan; Teerapatsakul, Churapa; Punyanut, Adisak; Pasanphan, Wanvimol

    2015-07-01

    Silver nanoparticles (AgNPs) in chitosan (CS) stabilizer were successfully synthesized using electron beam irradiation. The effects of irradiation dose, molecular weight (MW) of CS stabilizer, concentration of AgNO3 precursor and addition of tert-butanol on AgNPs production were studied. The stability of the AgNPs under different temperatures and storage times were also investigated. The AgNPs formation in CS was observed using UV-vis, FT-IR and XRD. The characteristic surface plasmon resonance (SPR) of the obtained AgNPs was around 418 nm. The CS stabilizer and its MW, AgNO3 precursor and irradiation doses are important parameters for the synthesis of AgNPs. The optimum addition of 20% v/v tert-butanol could assist the formation of AgNPs. The AgNPs in CS stabilizer were stable over a period of one year when the samples were kept at 5 °C. The AgNPs observed from TEM images were spherical with an average particle size in the range of 5-20 nm depending on the irradiation doses. The AgNPs in CS solution effectively inhibited the growth of several fungi, i.e., Curvularia lunata, Trichoderma sp., Penicillium sp. and Aspergillus niger, which commonly found on the building surface.

  17. Status and Plans for the Accelerator Working Group of the International Design Study of the Neutrino Factory

    SciTech Connect

    Berg, J. Scott

    2010-03-30

    The purpose of the International Design Study of the Neutrino Factory (IDS-NF) is to produce a design report for a neutrino factory in 2013. I report the status of the accelerator design and plans for future studies.

  18. Studies of laser wakefield structures and electron acceleration in underdense plasmas

    SciTech Connect

    Maksimchuk, A.; Reed, S.; Bulanov, S. S.; Chvykov, V.; Kalintchenko, G.; Matsuoka, T.; McGuffey, C.; Mourou, G.; Naumova, N.; Nees, J.; Rousseau, P.; Yanovsky, V.; Krushelnick, K.; Matlis, N. H.; Kalmykov, S.; Shvets, G.; Downer, M. C.; Vane, C. R.; Beene, J. R.; Stracener, D.

    2008-05-15

    Experiments on electron acceleration and optical diagnostics of laser wakes were performed on the HERCULES facility in a wide range of laser and plasma parameters. Using frequency domain holography we demonstrated single shot visualization of individual plasma waves, produced by 40 TW, 30 fs laser pulses focused to the intensity of 10{sup 19} W/cm{sup 2} onto a supersonic He gas jet with plasma densities n{sub e}<10{sup 19} cm{sup -3}. These holographic 'snapshots' capture the variation in shape of the plasma wave with distance behind the driver, and resolve wave front curvature seen previously only in simulations. High-energy quasimonoenergetic electron beams were generated using plasma density in the range 1.5x10{sup 19}{<=}n{sub e}{<=}3.5x10{sup 19} cm{sup -3}. These experiments demonstrated that the energy, charge, divergence, and pointing stability of the beam can be controlled by changing n{sub e}, and that higher electron energies and more stable beams are produced for lower densities. An optimized quasimonoenergetic beam of over 300 MeV and 10 mrad angular divergence is demonstrated at a plasma density of n{sub e}{approx_equal}1.5x10{sup 19} cm{sup -3}. The resultant relativistic electron beams have been used to perform photo-fission of {sup 238}U with a record high reaction yields of {approx}3x10{sup 5}/J. The results of initial experiments on electron acceleration at 70 TW are discussed.

  19. [Anti-aging studies on the senescence accelerated mouse (SAM) strains].

    PubMed

    Takahashi, Ryoya

    2010-01-01

    Senescence accelerated mouse (SAM), a murine model of accelerated senescence, was established by Toshio Takeda and colleagues. SAM consists of series of SAMP (prone) and SAMR (resistant) lines. All SAMP lines (from SAMP1 to SAMP11) are characterized by accelerated accumulation of senile features, earlier onset and faster progress of age-associated pathological phenotypes, such as amyloidosis, impaired immune response, senile osteoporosis and deficits in learning and memory. These SAMP lines are useful for evaluation of putative anti-aging therapies. For example, SAMP1 line is used to study the anti-aging effect of the antioxidant containing foods and various anti-oxidants, such as coenzyme Q10, vitamin C, lycopene. SAMP8 line exhibiting an early onset of impaired learning and memory is often used for test strategies for therapeutic intervention of dementia of early onset. SAMP6 is used as an animal model for developing new strategies for the treatment of osteoporosis in humans. Various lines of SAM (P1, P6, P8, P10 and R1) are now commercially available for research. In this review, I will briefly introduce various usages of SAM in anti-aging research. PMID:20046059

  20. To study the emittance dilution in Superconducting Linear Accelerator Design for International Linear Collider (ILC)

    NASA Astrophysics Data System (ADS)

    Ranjan, Kirti; Solyak, Nikolay; Tenenbaum, Peter

    2005-04-01

    Recently the particle physics community has chosen a single technology for the new accelerator, opening the way for the world community to unite and concentrate resources on the design of an International Linear collider (ILC) using superconducting technology. One of the key operational issues in the design of the ILC will be the preservation of the small beam emittances during passage through the main linear accelerator (linac). Sources of emittance dilution include incoherent misalignments of the quadrupole magnets and rf-structure misalignments. In this work, the study of emittance dilution for the 500-GeV center of mass energy main linac of the Superconducting Linear Accelerator design, based on adaptation of the TESLA TDR design is performed using LIAR simulation program. Based on the tolerances of the present design, effect of two important Beam-Based steering algorithms, Flat Steering and Dispersion Free Steering, are compared with respect to the emittance dilution in the main linac. We also investigated the effect of various misalignments on the emittance dilution for these two steering algorithms.

  1. Adult student satisfaction in an accelerated RN-to-BSN program: a follow-up study.

    PubMed

    Boylston, Mary T; Jackson, Christina

    2008-01-01

    This mixed-method study revealed accelerated RN-to-BSN (bachelor of science in nursing) students' levels of satisfaction with a wide range of college services in a small university. Building on seminal research on the topic [Boylston, M. T., Peters, M. A., & Lacey, M. (2004). Adult student satisfaction in traditional and accelerated RN-to-BSN programs. Journal of Professional Nursing, 20, 23-32.], the Noel-Levitz Adult Student Priorities Survey (ASPS) and qualitative interview data revealed primary factors involved in nontraditional (adult) accelerated RN-to-BSN student satisfaction. The ASPS assesses both satisfaction with and importance of the following factors: academic advising effectiveness, academic services, admissions and financial aid effectiveness, campus climate, instructional effectiveness, registration effectiveness, safety and security, and service excellence. Of these factors, participants considered instructional effectiveness and academic advising effectiveness as most important and concomitantly gave high satisfaction ratings to each. In contrast, convenience of the bookstore, counseling services, vending machines, and computer laboratories were given low importance ratings. The participants cited convenience as a strong marketing factor. Loss of financial aid or family crisis was given as a reason for withdrawal and, for most students, would be the only reason for not completing the BSN program. Outcomes of this investigation may guide faculty, staff, and administrators in proactively creating an educational environment in which a nontraditional student can succeed. PMID:18804082

  2. Results from recent hydrogen pellet acceleration studies with a 2-m railgun

    SciTech Connect

    Kim, K.; Zhang, D.J.; King, T.; Haywood, R.; Manns, W.; Venneri, F.

    1989-12-01

    A new 3.2-mm-diameter, two-stage, fuseless, plasma-arc-driven electromagnetic railgun has been designed, constructed, and successfully operated to achieve a record velocity of 2.67 km/s({sup b}) for 3.2 mmD {times} 4 mmL solid hydrogen pellet. The first stage of this hydrogen pellet injector is a combination of a hydrogen pellet generator and a gas fun. The second stage is a 2-m-long railgun which serves as a booster accelerator. The gas fun accelerates a frozen hydrogen pellet to a medium velocity and injects it into the railgun through a perforated coupling piece, which also serves a pressure-relieving mechanism. An electrical breakdown of the propellant gas, which has followed the pellet from the gas fun into the railgun, forms a conducting plasma-arc armature immediately behind the pellet allowing for fuseless operation of the railgun. Study of the pressure profile and the behavior of the plasma-arc armature inside the railgun bore led to elimination of spurious arcing, which prevents operation of the railgun at high voltages (and, therefore, at high currents). A timing circuit that can automatically measure the pellet input velocity and allows for accurate control of arc initiation behind the pellet helps prevent pellet disintegration and mistriggering of the arc initiation circuit. Results from the recent cryogenic operation of the two-stage pellet acceleration system are reported. 11 refs., 2 figs., 1 tab.

  3. Study on beam emittance evolution in a nonlinear plasma wake field accelerator with mobile plasma ions

    NASA Astrophysics Data System (ADS)

    An, Weiming; Joshi, Chan; Mori, Warren; Lu, Wei

    2014-10-01

    We study the electron beam evolution in a nonlinear blowout PWFA when the accelerated beam has a very small matched spot size that can cause the plasma ions collapsing towards the beam. Contrary to the common belief, very small emittance growth of the accelerated electron beam is found when the plasma ion collapsing destroys the perfect linear focusing force in the plasma wake field. The improved quasi-static PIC code QuickPIC also allows us to use very high resolution and to model asymmetric spot sizes. Simulation results show that the accelerated beam will reach a steady state after several cm propagation in the plasma (which is why we can do simulations and not let the drive beam evolve). We find that for round beams the ion density (which is Li+) enhancement is indeed by factors of 100, but that the emittance only grows by around 20 percent. For asymmetric spot sizes, the ion collapse is less and emittance growth is zero in the plane with the largest emittance and about 20 percent in the other plane.

  4. An experimental study on thermal stability of biodiesel fuel

    NASA Astrophysics Data System (ADS)

    Zhu, Yiying

    Biodiesel fuel, as renewable energy, has been used in conventional diesel engines in pure form or as biodiesel/diesel blends for many years. However, thermal stability of biodiesel and biodiesel/diesel blends has been minimally explored. Aimed to shorten this gap, thermal stability of biodiesel is investigated at high temperatures. In this study, batch thermal stressing experiments of biodiesel fuel were performed in stainless steel coils at specific temperature and residence time range from 250 to 425 °C and 3 to 63 minutes, respectively. Evidence of different pathways of biodiesel fuel degradation is demonstrated chromatographically. It was found that biodiesel was stable at 275 °C for a residence time of 8 minutes or below, but the cis-trans isomerization reaction was observed at 28 minutes. Along with isomerization, polymerization also took place at 300 °C at 63 minutes. Small molecular weight products were detected at 350 °C at 33 minutes resulting from pyrolysis reactions and at 360 °C for 33 minutes or above, gaseous products were produced. The formed isomers and dimers were not stable, further decomposition of these compounds was observed at high temperatures. These three main reactions and the temperature ranges in which they occurred are: isomerization, 275--400 °C; polymerization (Diels-Alder reaction), 300--425 °C; pyrolysis reaction, ≥350 °C. The longer residence time and higher temperature resulted in greater decomposition. As the temperature increased to 425 °C, the colorless biodiesel became brownish. After 8 minutes, almost 84% of the original fatty acid methyl esters (FAMEs) disappeared, indicating significant fuel decomposition. A kinetic study was also carried out subsequently to gain better insight into the biodiesel thermal decomposition. A three-lump model was proposed to describe the decomposition mechanism. Based on this mechanism, a reversible first-order reaction kinetic model for the global biodiesel decomposition was shown to

  5. Related Studies in Long Term Lithium Battery Stability

    NASA Technical Reports Server (NTRS)

    Horning, R. J.; Chua, D. L.

    1984-01-01

    The continuing growth of the use of lithium electrochemical systems in a wide variety of both military and industrial applications is primarily a result of the significant benefits associated with the technology such as high energy density, wide temperature operation and long term stability. The stability or long term storage capability of a battery is a function of several factors, each important to the overall storage life and, therefore, each potentially a problem area if not addressed during the design, development and evaluation phases of the product cycle. Design (e.g., reserve vs active), inherent material thermal stability, material compatibility and self-discharge characteristics are examples of factors key to the storability of a power source.

  6. Defining Anaerobic Digestion Stability-Full Scale Study

    NASA Astrophysics Data System (ADS)

    Demitry, M. E., Sr.

    2014-12-01

    A full-scale anaerobic digester receiving a mixture of primary and secondary sludge was monitored for one hundred days. A chemical oxygen demand, COD, and a volatile solids, VS, mass balance was conducted to evaluate the stability of the digester and its capability of producing methane gas. The COD mass balance could account for nearly 90% of the methane gas produced while the VS mass balance showed that 91% of the organic matter removed resulted in biogas formation. Other parameters monitored included: pH, alkalinity, VFA, and propionic acid. The values of these parameters showed that steady state had occurred. Finally, at mesophilic temperature and at steady state performance, the anaerobic digester stability was defined as a constant ratio of methane produced per substrate of ΔVS (average ratio=0.404 l/g). This ratio can be used as universal metric to determine the anaerobic digester stability in an easy and inexpensive way.

  7. Analytical stability and simulation response study for a coupled two-body system

    NASA Technical Reports Server (NTRS)

    Tao, K. M.; Roberts, J. R.

    1975-01-01

    An analytical stability study and a digital simulation response study of two connected rigid bodies are documented. Relative rotation of the bodies at the connection is allowed, thereby providing a model suitable for studying system stability and response during a soft-dock regime. Provisions are made of a docking port axes alignment torque and a despin torque capability for encountering spinning payloads. Although the stability analysis is based on linearized equations, the digital simulation is based on nonlinear models.

  8. Formation, stability, and reactivity studies of neutral iron sulfide clusters

    NASA Astrophysics Data System (ADS)

    Yin, Shi; Wang, Zhechen; Bernstein, Elliot

    2014-03-01

    Different methods are used to generate neutral iron sulfide clusters to study their formation, stability, and reactivity, employing a time of flight mass spectrometer (TOFMS) with VUV (118 nm) radiation single photon ionization (SPI). Neutral FemSn (m = 1-4, n = 1-6), and hydrogen containing FemSnHx (x >0, n > m) clusters are generated by the reaction of seeded H2S in a helium carrier gas with laser ablated iron metal within a supersonic nozzle. The observed strong signal of association products Fe2S2(SH)0,1 M (M = CO, C2H4, C3H6) suggest that the Fe2S2(SH)0,1 clusters have the high activity for interactions with these small molecules. In order to avoid the effect for reactivity from hydrogen containing clusters, pure FemSnclusters are generated through laser ablation of a mixed iron/sulfur target in the presence of a pure helium carrier gas. (FeS)m (m = 1-4) is observed to be the most stable series. Reaction of CO and H2 on neutral (FeS)1,2clusters is farther investigated both experimentally and theoretically. A size dependent reactivity of iron sulfide clusters toward CO is characterized. The reaction FeS + CO --> Fe + OCS is found for the FeS cluster. Products Fe2S 213COH2 and Fe2S 213COH4 are identified for reactions of 13CO and H2 on Fe2S2 clusters: this suggests that the Fe2S2 cluster has a high catalytic activity for hydrogenation reactions of CO to form formaldehyde and methanol. DFT calculations are performed to explore the potential energy surfaces for the two reactions: Fe2S2 + CO + 2H2 --> Fe2S2 + CH3OH; and Fe2S2 + CO + H2 --> Fe2S2 + CH2O.

  9. Quantitative correlation of rainfall and earth surface displacements for slope stability studies

    NASA Astrophysics Data System (ADS)

    Steiakakis, Chrysanthos; Agioutantis, Zacharias; Apostolou, Evangelia; Papavgeri, Georgia; Tripolitsiotis, Achilleas

    2015-06-01

    It is common sense that the possibility of a rockfall increases after an intense rainfall and it is well documented that rainfalls accelerate earth surface displacements such as landslides and rockfalls. This qualitative correlation is highly affected by the geology and climate condition of the area under consideration. The research project entitled "Development of an integrated system for rockfall identification in highways", funded by the Operational Program Competitiveness and Entrepreneurship (co-funded by the European Regional Development Fund (ERDF)) aims to develop an operational system for early warning of rockfalls that occur along transportation corridors. To accomplish this goal the influence and the time gap between triggering mechanisms and rockfall incidents is investigated. In this work, previous studies towards quantitative correlation of rainfall magnitude and earth surface displacements are briefly presented. Based on these works, and taking into account that rockfall incidents, in the majority of Mediterranean countries, are not well-documented, data obtained by a slope stability monitoring network are used to quantitatively determine the magnitude of the rainfall that caused the slope's movement.

  10. Experimental Studies of Gravitational Stability and CO2 Dissolution

    NASA Astrophysics Data System (ADS)

    Newell, D. L.; Carey, J. W.; Backhaus, S.; Klein, B.

    2012-12-01

    The injection of CO2 into a deep saline aquifer for long-term storage will initially result in a buoyant body of supercritical (sc) CO2 trapped beneath the cap-rock seal. During this period, there is risk of CO2 migration out of the reservoir along defects such as wellbores or fracture zones with potential risk to shallow groundwater resources and the atmosphere. Dissolution of the scCO2 plume into brine results in ionic trapping and greatly reduces this risk. However, based on diffusion alone, the ionic trapping of large quantities of CO2 could is expected to take thousands of years. Density-driven mixing of CO2-saturated brine is postulated to greatly accelerate the mass transfer process. This has been the subject of many computational studies but very few experimental studies. Here we present experiments of both an analog system (water-propylene glycol) and the high-pressure, scCO2-water system. The water-propylene glycol system shows the same type of increased mixture density as the scCO2-water system. By scaling of the experimental parameters, the analog system was used to conduct similitude-correct investigations in a 2D Hele-Shaw cell and in a 3D cylindrical cell filled with glass beads. The analog system allows direct visualization of the system. The experiments show a clear initiation period, during which diffusion dominates, followed by the onset of convection, and also reflect the point at which the convective fingers reach the bottom of the cell. The scCO2-water system was studied using a modified autoclave filled with 500 μm glass beads. Experiments were conducted at 40, 75 and 90°C with the vessel vertically oriented and partially filled with water. Combinations of temperature and water column height were used to simulate porous medias with Rayleigh numbers from 5,240 - 16,160, similar to many target CO2 sequestration reservoirs. High pressure liquid CO2 was injected rapidly at the top of the vessel until the desired pressure (200 bars) was reached

  11. Nitrate to ammonia ceramic (NAC) bench scale stabilization study

    SciTech Connect

    Caime, W.J.; Hoeffner, S.L.

    1995-10-01

    Department of Energy (DOE) sites such as the Hanford site, Idaho National Engineering Laboratory (INEL), Savannah River site, Oak Ridge National Laboratory (ORNL) have large quantities of sodium-nitrate based liquid wastes. A process to reduce the nitrates to ammonia has been developed at ORNL. This technology creates a sludge lower in nitrates. This report describes stabilization possibilities of the sludge.

  12. Examining Temporal Stability of Scale Validity in Longitudinal Studies

    ERIC Educational Resources Information Center

    Raykov, Tenko

    2006-01-01

    A method for examining invariance in validity of multiple-component instruments in repeated measure designs is outlined. The approach is developed within the framework of covariance structure modeling and is applicable for purposes of ascertaining temporal stability in scale validity. In addition, the procedure provides a range of plausible values…

  13. The 3MV Hypervelocity Dust Accelerator at the Colorado Center for Lunar Dust and Atmospheric Studies

    NASA Astrophysics Data System (ADS)

    Shu, A.; Collette, A.; Drake, K.; Horanyi, M.; Kempf, S.; Munsat, T.; Northway, P.; Robertson, S.; Sternovsky, Z.; Thomas, E.; Gruen, E.; Srama, R.

    2011-11-01

    Micrometeorite impacts and dusty plasma phenomena can be found in a wide variety of subjects. In many extraplanetary systems, such as in deep space and on airless bodies such as asteroids or the moon, dusty plasmas play a large role in the basic scientific evolution of the environment. Dust can also be captured and studied in dust astronomy in order to better understand the evolution of our universe, similarly to how photons are used in traditional astronomy. At the Colorado Center for Lunar Dust and Atmospheric Studies, we have developed a 3MV hypervelocity dust accelerator in order to study these and other applications of dust and dusty plasmas. This facility is capable of accelerating micron sized dust particles up to 10's of km/s. In addition to this we have several vacuum chambers used for dusty plasma experiments. The large Lunar Environment Impact Laboratory (LEIL) test chamber will be used to study dust levitation, space weathering, and lunar exosphere evolution. A smaller ultrahigh vacuum chamber will be used to detect neutral species in micrometeorite impact ejecta and detect and analyze impact flashes. In addition to this work, graphite tokamak wall tile material will be placed into the beam path to determine damage characteristics from dust in fusion systems.

  14. Proposed research on advanced accelerator concepts

    SciTech Connect

    Davidson, R.C.; Wurtele, J.S.

    1991-09-01

    This report summarizes technical progress and accomplishments during the proposed three-year research on advanced accelerator concepts supported by the Department of Energy under Contract No. DE-FG02-88ER40465. A vigorous theoretical program has been pursued in critical problem areas related to advanced accelerator concepts and the basic equilibrium, stability, and radiation properties of intense charged particle beams. Broadly speaking, our research has made significant contributions in the following three major areas: Investigations of physics issues related to particle acceleration including two-beam accelerators and cyclotron resonance laser (CRL) accelerators; Investigations of RF sources including the free- electron lasers, cyclotron resonance masers, and relativistic magnetrons; Studies of coherent structures in electron plasmas and beams ranging from a low-density, nonrelativistic, pure electron plasma column to high-density, relativistic, non-neutral electron flow in a high-voltage diode. The remainder of this report presents theoretical and computational advances in these areas.

  15. Application of convergence acceleration to the reactor kinetic equations: A comparative study

    SciTech Connect

    Picca, P.; Furfaro, R.; Ganapol, B. D.

    2013-07-01

    This presentation provides a comparison of two methodologies for the solution of reactor kinetic equations, namely for a standard finite difference and a semi-analytical approach. The above-mentioned methods are implemented in a convergence acceleration framework to enhance their efficiency and a comparative study is reported to verify whether it is more convenient to use a rudimentary but fast algorithm (finite difference) with respect to the more refined but computationally intense approach of the semi-analytical method. Performance on several test cases from the literature are compared. (authors)

  16. Numerical simulation study of positron production by intense laser-accelerated electrons

    SciTech Connect

    Yan, Yonghong; Science and Technology on Plasma Physics Laboratory, Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang 621900 ; Dong, Kegong; Wu, Yuchi; Zhang, Bo; Gu, Yuqiu; Yao, Zeen

    2013-10-15

    Positron production by ultra-intense laser-accelerated electrons has been studied with two-dimensional particle-in-cell and Monte Carlo simulations. The dependence of the positron yield on plasma density, plasma length, and converter thickness was investigated in detail with fixed parameters of a typical 100 TW laser system. The results show that with the optimal plasma and converter parameters a positron beam containing up to 1.9 × 10{sup 10} positrons can be generated, which has a small divergence angle (10°), a high temperature (67.2 MeV), and a short pulse duration (1.7 ps)

  17. Study of the near-electrode processes in quasi-steady plasma accelerators with impenetrable electrodes

    NASA Astrophysics Data System (ADS)

    Kozlov, A. N.

    2012-01-01

    Near-electrode processes in a coaxial plasma accelerator with equipotential impenetrable electrodes are simulated using a two-dimensional (generally, time-dependent) two-fluid MHD model with allowance for the Hall effect and the plasma conductivity tensor. The simulations confirm the theoretically predicted mechanism of the so-called "crisis of current" caused by the Hall effect. The simulation results are compared with available experimental data. The influence of both the method of plasma supply to the channel and an additional longitudinal magnetic field on the development of near-electrode instabilities preceding the crisis of current is studied.

  18. Nonlinear stability and control study of highly maneuverable high performance aircraft, phase 2

    NASA Technical Reports Server (NTRS)

    Mohler, R. R.

    1992-01-01

    Research leading to the development of new nonlinear methodologies for the adaptive control and stability analysis of high angle of attack aircraft such as the F-18 is discussed. The emphasis has been on nonlinear adaptive control, but associated model development, system identification, stability analysis, and simulation were studied in some detail as well. Studies indicated that nonlinear adaptive control can outperform linear adaptive control for rapid maneuvers with large changes in angle of attack. Included here are studies on nonlinear model algorithmic controller design and an analysis of nonlinear system stability using robust stability analysis for linear systems.

  19. A Parametric Study of Accelerations of an Airplane Due to a Wake Vortex System

    NASA Technical Reports Server (NTRS)

    Stewart, Eric C.

    1999-01-01

    A study was conducted using strip theory to systematically investigate the effects of progressively more complete descriptions of the interaction of an airplane with a wake vortex system. The emphasis was in roll-dominant, parallel, vortex encounters. That is, the simulated airplane's longitudinal axis was nearly parallel to the rotation axis of the vortex system for most of the results presented. The study began with a drag-less rectangular wing in the flow field of a single vortex and progressed to a complete airplane with aerodynamic surfaces possessing taper, sweep, dihedral, and stalling and immersed in the flow field of a vortex pair in ground effect. The effects of the pitch, roll, and yaw attitudes of the airplane on the calculated accelerations were also investigated. The airplane had the nominal characteristics of a Boeing 757, and the vortex flow field had the nominal characteristics of the wake of a Boeing 767. The Bumham-Hallock model of a vortex flow field was used throughout the study. The data are presented mainly in terms of contours of equal acceleration in a two-dimensional area centered on the vortex pair and having dimensions of 300 feet by 300 feet.

  20. Compatibility and accelerated aging study for Li(Si)/FeS/sub 2 thermally activated batteries

    NASA Astrophysics Data System (ADS)

    Mead, J. W.; Searcy, J. Q.; Neiswander, P. N.; Poole, R. L.

    1983-12-01

    Thermally activated batteries using the lithium (silicon) iron disulfide (Li(Si)/FeS2) electrochemical system are used in weapons having a required storage life of 25 years and high reliability. A review of known data revealed no information on the compatibility of Li(Si)/FeS2 with the organic materials used in the system. The compatibility question is studied. Accelerated-aging data on pairs of materials were produced. In addition, a group of production batteries was aged and tested. Three aging temperatures were used during the one-year study. Gas analyses, electrical tests and mechanical tests were compared for control and aged samples. Two results, the depletion of oxygen and an increase in hydrogen in the compatibility and accelerated-aging samples, stimulated additional studies. No unexpected or significant changes were observed in the electrical or mechanical properties of the organic materials. Calorific output and chloride ion content of heat pellets indicated no degradation with aging. Ignition sensitivity and burn rate measurements suggested no heat pellet degradation. Oxygen content in aged lithium (silicon) anodes remained within acceptable limits. Single-cell tests and battery test results showed no degradation with aging.

  1. Thermal stability studies of polyimide-teflon blends

    SciTech Connect

    Davis, C.R.; Zimmerman, J.A.

    1993-12-31

    Polymers, such as poly(tetrafluoroethylene) (PTFE) that exhibit excellent thermal stability, in addition to other attractive physical properties, are an important component of high-performance devices. However, due to PTFE`s inertness and intractability, significant processing challenges exist and thus limit its successful widespread application in such industries an aerospace and electronics. One specific processing challenge example is the lack of available methods to uniformly and controllably form features in the neat fluoropolymer. Recently, it has been reported that excellent structuring of PTFE can be achieved by sensitizing the fluoropolymer to excimer laser of the sensitization agent, in addition to interacting strongly with the laser`s emitted energy, is suitable thermal stability. Using several analytical techniques, the thermal behavior of PTFE, polyimide sensitizer and resulting polyimide-fluoropolymer blend has been investigated and found to be excellent.

  2. Mechanical stability study of capture cavity II at Fermilab

    SciTech Connect

    McGee, M.W.; Pischalnikov, Y.; /Fermilab

    2007-06-01

    Problematic resonant conditions at both 18 Hz and 180 Hz were encountered and identified early during the commissioning of Capture Cavity II (CC2) at Fermilab. CC2 consists of an external vacuum vessel and a superconducting high gradient (close to 25 MV/m) 9-cell 1.3 GHz niobium cavity, transported from DESY for use in the A0 Photoinjector at Fermilab. An ANSYS modal finite element analysis (FEA) was performed in order to isolate the source of the resonance and directed the effort towards stabilization. Using a fast piezoelectric tuner to excite (or shake) the cavity at different frequencies (from 5 Hz to 250 Hz) at a low-range sweep for analysis purposes. Both warm (300 K) and cold (1.8 K) accelerometer measurements at the cavity were taken as the resonant ''fix'' was applied. FEA results, cultural and technical noise investigation, and stabilization techniques are discussed.

  3. A numerical study of the thermal stability of solar loops

    NASA Technical Reports Server (NTRS)

    Klimchuk, J. A.; Antiochos, S. K.; Mariska, J. T.

    1987-01-01

    An important property of all loops is their thermal stability. If low lying hot loops were thermally unstable, for example, a great majority of the low loops on the Sun might be expected to be cool. How small perturbations evolve in low lying, linearly unstable hot loops was determined and how high lying, linearly stable hot loops respond to large amplitude disturbances such as might be expected on the Sun were examined. Only general descriptions and results are given.

  4. Homolytic dissociation of the vulcanization accelerator tetramethylthiuram disulfide (TMTD) and structures and stabilities of the related radicals Me2NCSn* (n = 1-4).

    PubMed

    Steudel, Ralf; Steudel, Yana; Mak, Adrian Matthew; Wong, Ming Wah

    2006-12-01

    The homolytic dissociation of the important vulcanization accelerator tetramethylthiuram disulfide (TMTD) has been studied by ab initio calculations according to the G3X(MP2) and G3X(MP2)-RAD theories. Homolytic cleavage of the SS bond requires a low enthalpy of 150.0 kJ mol-1, whereas 268.0 kJ mol-1 is needed for the dissociation of one of the C-S single bonds. To cleave one of the SS bonds of the corresponding trisulfide (TMTT) requires 191.1 kJ mol-1. Me2NCS2* is a particularly stable sulfur radical as reflected in the low S-H bond dissociation enthalpy of the corresponding acid Me2NC(=S)SH (301.7 kJ mol-1). Me2NCS2* (2B2) is a sigma radical characterized by the unpaired spin density shared equally between the two sulfur atoms and by a 4-center (NCS2) delocalized pi system. The ESR g-tensors of the radicals Me2NCSn* (n = 1-3) have been calculated. Both TMTD and the mentioned radicals form stable chelate complexes with a Li+ cation, which here serves as a model for the zinc ions used in accelerated rubber vulcanization. Although the binding energy of the complex [Li(TMTD)]+ is larger than that of the isomeric species [Li(S2CNMe2)2]+ (12), the dissociation enthalpy of TMTD as a ligand is smaller (125.5 kJ mol-1) than that of free TMTD. In other words, the homolytic dissociation of the SS bonds of TMTD is facilitated by the presence of Li+ ions. The sulfurization of TMTD in the presence of Li+ to give the paramagnetic complex [Li(S3CNMe2)2]+ is strongly exothermic. These results suggest that TMTD reacts with naked zinc ions as well as with the surface atoms of solid zinc oxide particles in an analogous manner producing highly reactive complexes, which probably initiate the crosslinking process during vulcanization reactions of natural or synthetic rubber accelerated by TMTD/ZnO. PMID:17137356

  5. Study of E. coli Hfq’s RNA annealing acceleration and duplex destabilization activities using substrates with different GC-contents

    PubMed Central

    Doetsch, Martina; Stampfl, Sabine; Fürtig, Boris; Beich-Frandsen, Mads; Saxena, Krishna; Lybecker, Meghan; Schroeder, Renée

    2013-01-01

    Folding of RNA molecules into their functional three-dimensional structures is often supported by RNA chaperones, some of which can catalyse the two elementary reactions helix disruption and helix formation. Hfq is one such RNA chaperone, but its strand displacement activity is controversial. Whereas some groups found Hfq to destabilize secondary structures, others did not observe such an activity with their RNA substrates. We studied Hfq’s activities using a set of short RNAs of different thermodynamic stabilities (GC-contents from 4.8% to 61.9%), but constant length. We show that Hfq’s strand displacement as well as its annealing activity are strongly dependent on the substrate’s GC-content. However, this is due to Hfq’s preferred binding of AU-rich sequences and not to the substrate’s thermodynamic stability. Importantly, Hfq catalyses both annealing and strand displacement with comparable rates for different substrates, hinting at RNA strand diffusion and annealing nucleation being rate-limiting for both reactions. Hfq’s strand displacement activity is a result of the thermodynamic destabilization of the RNA through preferred single-strand binding whereas annealing acceleration is independent from Hfq’s thermodynamic influence. Therefore, the two apparently disparate activities annealing acceleration and duplex destabilization are not in energetic conflict with each other. PMID:23104381

  6. HPLC and HPLC/MS/MS Studies on Stress, Accelerated and Intermediate Degradation Tests of Antivirally Active Tricyclic Analog of Acyclovir.

    PubMed

    Lesniewska, Monika A; Dereziński, Paweł; Klupczyńska, Agnieszka; Kokot, Zenon J; Ostrowski, Tomasz; Zeidler, Joanna; Muszalska, Izabela

    2015-01-01

    The degradation behavior of a tricyclic analog of acyclovir [6-(4-MeOPh)-TACV] was determined in accordance with International Conference on Harmonization guidelines for good clinical practice under different stress conditions (neutral hydrolysis, strong acid/base degradation, oxidative decomposition, photodegradation, and thermal degradation). Accelerated [40±2°C/75%±5% relative humidity (RH)] and intermediate (30±2°C/65%±5% RH) stability tests were also performed. For observation of the degradation of the tested compound the RP-HPLC was used, whereas for the analysis of its degradation products HPLC/MS/MS was used. Degradation of the tested substance allowed its classification as unstable in neutral environment, acidic/alkaline medium, and in the presence of oxidizing agent. The tested compound was also light sensitive and was classified as photolabile both in solution and in the solid phase. However, the observed photodegradation in the solid phase was at a much lower level than in the case of photodegradation in solution. The study showed that both air temperature and RH had no significant effect on the stability of the tested substance during storage for 1 month at 100°C (dry heat) as well as during accelerated and intermediate tests. Based on the HPLC/MS/MS analysis, it can be concluded that acyclovir was formed as a degradation product of 6-(4-MeOPh)-TACV. PMID:26525242

  7. Study of stability of large maneuvers of airplanes

    NASA Technical Reports Server (NTRS)

    Haddad, E. K.

    1974-01-01

    A predictive method of nonlinear system analysis is used to investigate airplane stability and dynamic response during rolling maneuvers. The maneuver roll-rate is not assumed to be constant, and the airplane motion is represented by a set of coupled nonlinear differential equations. The general rolling maneuver is kinematically specified by its roll-rate variation p(t). A method for relating the airplane dynamic response to p(t) is developed. The method provides analytical expressions for the motion variables in terms of the maneuver descriptor p(t). A parameterized family of rolling maneuvers is considered, for which the method is used to predict specific dynamic response information, such as the dependence of the peak angle-of-attack excursion on the maneuver parameters. The stability and motion of the airplane in response to an arbitrary actuation of aileron input is considered. Analytical expressions relating motion variables to aileron input are obtained. Explicit analytical bounds on the motion variables are derived. A stability criterion which guarantees nondivergence of motion in response to aileron actuation is presented.

  8. A cell-based study on pedestrian acceleration and overtaking in a transfer station corridor

    NASA Astrophysics Data System (ADS)

    Ji, Xiangfeng; Zhou, Xuemei; Ran, Bin

    2013-04-01

    Pedestrian speed in a transfer station corridor is faster than usual and sometimes running can be found among some of them. In this paper, pedestrians are divided into two categories. The first one is aggressive, and the other is conservative. Aggressive pedestrians weaving their way through crowd in the corridor are the study object of this paper. During recent decades, much attention has been paid to the pedestrians' behavior, such as overtaking (also deceleration) and collision avoidance, and that continues in this paper. After sufficiently analyzing the characteristics of pedestrian flow in transfer station corridor, a cell-based model is presented in this paper, including the acceleration (also deceleration) and overtaking analysis. Acceleration (also deceleration) in a corridor is fixed according to Newton's Law and then speed calculated with a kinematic formula is discretized into cells based on the fuzzy logic. After the speed is updated, overtaking is analyzed based on updated speed and force explicitly, compared to rule-based models, which herein we call implicit ones. During the analysis of overtaking, a threshold value to determine the overtaking direction is introduced. Actually, model in this paper is a two-step one. The first step is to update speed, which is the cells the pedestrian can move in one time interval and the other is to analyze the overtaking. Finally, a comparison between the rule-based cellular automata, the model in this paper and data in HCM 2000 is made to demonstrate our model can be used to achieve reasonable simulation of acceleration (also deceleration) and overtaking among pedestrians.

  9. Self-Report Stability of Adolescent Cigarette Use across Ten Years of Panel Study Data

    ERIC Educational Resources Information Center

    Shillington, Audrey M.; Reed, Mark B.; Clapp, John D.

    2010-01-01

    This study is the first to examine adolescent cigarette report stability over 10 years. Six waves of data were utilized from the National Longitudinal Survey of Youth. This study examined internal/logical consistency and external consistency. Report stability was higher for lifetime use reports than the age of onset reports. Wave-by-wave…

  10. Experimental stand for studying the impact of laser-accelerated protons on biological objects

    NASA Astrophysics Data System (ADS)

    Burdonov, K. F.; Eremeev, A. A.; Ignatova, N. I.; Osmanov, R. R.; Sladkov, A. D.; Soloviev, A. A.; Starodubtsev, M. V.; Ginzburg, V. N.; Kuz'min, A. A.; Maslennikova, A. V.; Revet, G.; Sergeev, A. M.; Fuchs, J.; Khazanov, E. A.; Chen, S.; Shaykin, A. A.; Shaikin, I. A.; Yakovlev, I. V.

    2016-04-01

    An original experimental stand is presented, aimed at studying the impact of high-energy protons, produced by the laser-plasma interaction at a petawatt power level, on biological objects. In the course of pilot experiments with the energy of laser-accelerated protons up to 25 MeV, the possibility is demonstrated of transferring doses up to 10 Gy to the object of study in a single shot with the magnetic separation of protons from parasitic X-ray radiation and fast electrons. The technique of irradiating the cell culture HeLa Kyoto and measuring the fraction of survived cells is developed. The ways of optimising the parameters of proton beams and the suitable methods of their separation with respect to energy and transporting to the studied living objects are discussed. The construction of the stand is intended for the improvement of laser technologies for hadron therapy of malignant neoplasms.

  11. A study of the pitching moments and the stability characteristics of monoplanes

    NASA Technical Reports Server (NTRS)

    Higgins, George J

    1934-01-01

    This note presents a study of the pitching moments and the stability characteristics of monoplanes. Expressions for the pitching-moment coefficient and the Diehl stability coefficient for the monoplane are developed, suitable for the use of airplane designers. The effective difference between the high-wing and low-wing types is portrayed and discussed. Comparisons between experimental and computed values are made. Charts for use in the solution of numerical values of the pitching-moment and stability coefficients are presented.

  12. Study of the accelerating effect of shikonin and alkannin on the proliferation of granulation tissue in rats.

    PubMed

    Ozaki, Y; Sakaguchi, I; Tujimura, M; Ikeda, N; Nakayama, M; Kato, Y; Suzuki, H; Satake, M

    1998-04-01

    The present study was carried out to compare the accelerating effect of shikonin and alkannin and to elucidate the expression of CD antigen and histological changes on the proliferation of granulation tissue in rats. Shikonin and alkannin produced a dose-dependent acceleration of the cotton pellet-induced granuloma formation and this accelerating potency of both compounds on the proliferation of granulation tissue was about the same 5 and 10 d after implantation of the cotton pellet. Also, both compounds increased the ratio of CD11b+ cells in the granulation tissue 5 and 10 d after implantation of the cotton pellet. Both compounds increased the expression of CD11b+ cells with granulocytes such as macrophages and histiocytes, and then accelerated the proliferation of fibroblasts and collagen fiber. On the other hand, neither compound increased the ratio of CD3+ cells in the granulation tissue after 5 and 10 d. These results suggest that shikonin and alkannin accelerate the proliferation of granulation tissue induced by the cotton pellet and this accelerating effect may be attributed to an increase in the expression of CD11b+ cells, and the acceleration of the proliferation of fibroblasts and collagen fiber in the granulation tissue. PMID:9586574

  13. Study of proton acceleration at the target front surface in laser-solid interactions by neutron spectroscopy

    SciTech Connect

    Youssef, A.; Kodama, R.; Tampo, M.

    2006-03-15

    Proton acceleration inside solid LiF and CH-LiF targets irradiated by a 450-fs, 20-J, 1053-nm laser at an intensity of 3x10{sup 18} W/cm{sup 2} has been studied via neutron spectroscopy. Neutron spectra produced through the {sup 7}Li(p,n){sup 7}Be reaction that occurs between accelerated protons, at the front surface, and background {sup 7}Li ions inside the target. From measured and calculated spectra, by three-dimensional Monte Carlo code, the maximum energy, total number, and slope temperature of the accelerated protons are investigated. The study indicates that protons originate at the front surface and are accelerated to a maximum energy that is reasonably consistent with the calculated one due to the ponderomotive force.

  14. Speeding up CRMs for cloud-climate interaction studies by acceleration of mean state tendencies

    NASA Astrophysics Data System (ADS)

    Jones, C. R.; Bretherton, C. S.

    2014-12-01

    Cloud-resolving models (CRMs) are routinely used to simulate boundary-layer and deep convective cloud processes, aid in the development of moist physical parameterization for global models, study cloud-climate feedbacks and cloud-aerosol interaction, and as the heart of superparameterized climate models. CRMs are computationally demanding, placing practical constraints on their use in these applications, especially for long, climate-relevant simulations. In many situations, the horizontal-mean atmospheric structure evolves slowly compared to the turnover time of the most energetic turbulent eddies. We use this time scale separation to accelerate the time-integration of a CRM, the System for Atmospheric Modelling. Our approach uses a large time step to evolve the horizontally averaged state variables, followed by a short time step to calculate the turbulent fluctuations about the mean state. Using this approach, we are able to accelerate the model evolution by a factor of 8 or more in idealized stratocumulus, shallow and deep cumulus convection without substantial loss of accuracy in simulating mean cloud statistics and their sensitivity to climate change perturbations. We show how to adapt the approach to challenges arising from rapidly falling precipitation and from advecting scalars with a variety of lifetimes.

  15. Numerical study of a linear accelerator using laser-generated proton beams as a source

    SciTech Connect

    Antici, P.; Fazi, M.; Migliorati, M.; Palumbo, L.; Lombardi, A.; Audebert, P.; Fuchs, J.

    2008-12-15

    The injection of laser-generated protons through conventional drift tube linear accelerators (linacs) has been studied numerically. For this, we used the parameters of the proton source produced by ultraintense lasers, i.e., with an intrinsic high beam quality. The numerical particle tracing code PARMELA[L. M. Young and J. H. Billen, LANL Report No. LA-UR-96-1835, 2004] is then used to inject experimentally measured laser-generated protons with energies of 7{+-}0.1 MeV and rms un-normalized emittance of 0.180 mm mrad into one drift tube linac tank that accelerated them to more than 14 MeV. The simulations exhibit un-normalized emittance growths of 8 in x direction and 22.6 in y direction, with final emittances lower than those produced using conventional sources, allowing a potential luminosity gain for the final beam. However, the simulations also exhibit a limitation in the allowed injected proton charge as, over 0.112 mA, space charge effect worsens significantly the beam emittance.

  16. OpenARC: Extensible OpenACC Compiler Framework for Directive-Based Accelerator Programming Study

    SciTech Connect

    Lee, Seyong; Vetter, Jeffrey S

    2014-01-01

    Directive-based, accelerator programming models such as OpenACC have arisen as an alternative solution to program emerging Scalable Heterogeneous Computing (SHC) platforms. However, the increased complexity in the SHC systems incurs several challenges in terms of portability and productivity. This paper presents an open-sourced OpenACC compiler, called OpenARC, which serves as an extensible research framework to address those issues in the directive-based accelerator programming. This paper explains important design strategies and key compiler transformation techniques needed to implement the reference OpenACC compiler. Moreover, this paper demonstrates the efficacy of OpenARC as a research framework for directive-based programming study, by proposing and implementing OpenACC extensions in the OpenARC framework to 1) support hybrid programming of the unified memory and separate memory and 2) exploit architecture-specific features in an abstract manner. Porting thirteen standard OpenACC programs and three extended OpenACC programs to CUDA GPUs shows that OpenARC performs similarly to a commercial OpenACC compiler, while it serves as a high-level research framework.

  17. Experimental study of temperature fields and thermal fluxes in the electrode walls of an MGD accelerator

    SciTech Connect

    Alferov, V.I.; Vitkovskaya, O.N.; Panfilova, O.V.; Rudakova, A.P.; Sukhobokov, A.D.; Shcherbakov, G.I.

    1980-07-01

    Results are presented of an experimental study of the features of heat transfer from a flow of air with KNa admixture to the electrode walls of an MGD accelerator in a wide range of operating modes (B=1--2.5 T,j=4--45 A/cm/sup 2/,P/sub st/0.2=(en-dash0.5)x10/sup 5/ Pa). Data are obtained on the size and distribution of the thermal fluxes in different zones of an MGD channel and over the electrodes, taken separately. Methods are chosen for calculating the convective thermal flux on the electrode walls over the entire length of the accelerator channel, and the values of the thermal flux in the discharge zone due to processes at the electrodes are determined. A possible explanation is proposed for the difference between the values of the thermal fluxes at the electrode walls over different portions of the MGD channel, which is based on features of the behavior of microarcs on the surface of the electrodes.

  18. Laboratory studies of magnetized collisionless flows and shocks using accelerated plasmoids

    NASA Astrophysics Data System (ADS)

    Weber, T. E.; Smith, R. J.; Hsu, S. C.

    2015-11-01

    Magnetized collisionless shocks are thought to play a dominant role in the overall partition of energy throughout the universe, but have historically proven difficult to create in the laboratory. The Magnetized Shock Experiment (MSX) at LANL creates conditions similar to those found in both space and astrophysical shocks by accelerating hot (100s of eV during translation) dense (1022 - 1023 m-3) Field Reversed Configuration (FRC) plasmoids to high velocities (100s of km/s); resulting in β ~ 1, collisionless plasma flows with sonic and Alfvén Mach numbers of ~10. The FRC subsequently impacts a static target such as a strong parallel or anti-parallel (reconnection-wise) magnetic mirror, a solid obstacle, or neutral gas cloud to create shocks with characteristic length and time scales that are both large enough to observe yet small enough to fit within the experiment. This enables study of the complex interplay of kinetic and fluid processes that mediate cosmic shocks and can generate non-thermal distributions, produce density and magnetic field enhancements much greater than predicted by fluid theory, and accelerate particles. An overview of the experimental capabilities of MSX will be presented, including diagnostics, selected recent results, and future directions. Supported by the DOE Office of Fusion Energy Sciences under contract DE-AC52-06NA25369.

  19. Radiation shielding and patient organ dose study for an accelerator- based BNCT Facility at LBNL

    SciTech Connect

    Costes, S.V.; Vujic, J.; Donahue, R.J.

    1996-10-24

    This study considers the radiation safety aspects of several designs discussed in a previous report of an accelerator-based source of neutrons, based on the [sup 7]Li(p,n) reaction, for a Boron Neutron Capture Therapy (BNCT) Facility at Lawrence Berkeley National Laboratory (LBNL). determines the optimal radiation shield thicknesses for the patient treatment room. Since this is an experimental facility no moderator or reflector is considered in the bulk wall shield design. This will allow the flexibility of using any postulated moderator/reflector design and assumes sufficient shielding even in the absence of a moderator/reflector. In addition the accelerator is assumed to be capable of producing 100 mA of 2.5 MeV proton beam current. The addition of 1% and 2% [sup 10]B (by weight) to the concrete is also investigated. The second part of this paper determines the radiation dose to the major organs of a patient during a treatment. Simulations use the MIRD 5 anthropomorphic phantom to calculate organ doses from a 20 mA proton beam assuming various envisioned moderator/reflector in place. Doses are tabulated by component and for a given uniform [sup 10]B loading in all organs. These are presented in for a BeO moderator and for an Al/AlF[sub 3] moderator. Dose estimates for different [sup 10]B loadings may be scaled.

  20. Emotional states of drivers and the impact on speed, acceleration and traffic violations - a simulator study.

    PubMed

    Roidl, Ernst; Frehse, Berit; Höger, Rainer

    2014-09-01

    Maladjusted driving, such as aggressive driving and delayed reactions, is seen as one cause of traffic accidents. Such behavioural patterns could be influenced by strong emotions in the driver. The causes of emotions in traffic are divided into two distinct classes: personal factors and properties of the specific driving situation. In traffic situations, various appraisal factors are responsible for the nature and intensity of experienced emotions. These include whether another driver was accountable, whether goals were blocked and whether progress and safety were affected. In a simulator study, seventy-nine participants took part in four traffic situations which each elicited a different emotion. Each situation had critical elements (e.g. slow car, obstacle on the street) based on combinations of the appraisal factors. Driving parameters such as velocity, acceleration, and speeding, together with the experienced emotions, were recorded. Results indicate that anger leads to stronger acceleration and higher speeds even for 2 km beyond the emotion-eliciting event. Anxiety and contempt yielded similar but weaker effects, yet showed the same negative and dangerous driving pattern as anger. Fright correlated with stronger braking momentum and lower speeds directly after the critical event. PMID:24836476

  1. Stability study of realization of the celestial reference frame

    NASA Astrophysics Data System (ADS)

    Yatskiv, Ya. S.; Bolotin, S. L.; Kur'yanova, A. N.

    2004-09-01

    We present a short overview of the activity of the IERS as well as the Main Astronomical Observatory (MAO) of the National Academy of Sciences of Ukraine for maintenance and extention of the International Celestial Reference Frame (ICRF). Special attention is given to the time stabilities of positions of radio sources (RS) and to the selection of a subset of RS to be used for maintenance of the ICRF. It is shown that seven RS qualified by the IERS as defining sources are unstable.

  2. Fatty acids attached to all-trans-astaxanthin alter its cis-trans equilibrium, and consequently its stability, upon light-accelerated autoxidation.

    PubMed

    de Bruijn, Wouter J C; Weesepoel, Yannick; Vincken, Jean-Paul; Gruppen, Harry

    2016-03-01

    Fatty acid esterification, common in naturally occurring astaxanthin, has been suggested to influence both colour stability and degradation of all-trans-astaxanthin. Therefore, astaxanthin stability was studied as influenced by monoesterification and diesterification with palmitate. Increased esterification decelerated degradation of all-trans-astaxanthin (RP-UHPLC-PDA), whereas, it had no influence on colour loss over time (spectrophotometry). This difference might be explained by the observation that palmitate esterification influenced the cis-trans equilibrium. Free astaxanthin produced larger amounts of 9-cis isomer whereas monopalmitate esterification resulted in increased 13-cis isomerization. The molar ratios of 9-cis:13-cis after 60min were 1:1.7 (free), 1:4.8 (monopalmitate) and 1:2.6 (dipalmitate). The formation of 9-cis astaxanthin, with its higher molar extinction coefficient than that of all-trans-astaxanthin, might compensate for colour loss induced by conjugated double bond cleavage. As such, it was concluded that spectrophotometry is not an accurate measure of the degradation of the all-trans-astaxanthin molecule. PMID:26471660

  3. Preliminary study of using pipetron-type magnets for a pre-accelerator for the LHC

    SciTech Connect

    de Rijk, G.; Rossi, L.; Piekarz, H.; /Fermilab

    2006-06-01

    One of the luminosity limitations of the LHC is the rather low injection energy (0.45 TeV) with respect to the collision energy (7 TeV). The magnetic multipoles in the main dipoles at low field and their dynamic behavior are considered to limit the achievable bunch intensity and emittance. We report on a preliminary study to increase the injection energy to 1.5 TeV using a two-beam pre-accelerator (LER) in the LHC tunnel. The LER is based on ''Pipetron'' magnets as originally proposed for the VLHC. The aim of the study is to assess the feasibility and to identify the critical processes or systems that need to be investigated and developed to render such a machine possible.

  4. Enhancing sample preparation capabilities for accelerator mass spectrometry radiocarbon and radiocalcium studies

    SciTech Connect

    Taylor, R.E.

    1991-08-20

    With support provided by the LLNL Accelerator Mass Spectrometry Laboratory, the UCR Radiocarbon Laboratory continued its studies involving sample pretreatment and target preparation for both AMS radiocarbon ({sup 14}C) and radiocalcium ({sup 41}Ca) involving applications to archaeologically -- and paleoanthropologically- related samples. With regard to AMS {sup 14}C-related studies, we have extended the development of a series of procedures which have, as their initial goal, the capability to combust several hundred microgram amounts of a chemically-pretreated organic sample and convert the resultant CO{sub 2} to graphitic carbon which will consistently yield relatively high {sup 13}C{sup {minus}} ion currents and blanks which will yield, on a consistent basis, {sup 14}C count rates at or below 0.20% modern, giving an 2 sigma age limit of >50,000 yr BP.

  5. Treatability study for the stabilization of chromium contaminated waste

    SciTech Connect

    McGahan, J.F.; Martin, D.

    1994-12-31

    A process has been developed which immobilizes chromium in calcined uranyl nitrate mixed waste, resulting in a waste form disposable as radioactive, non hazardous waste. A prime contractor at the Idaho National Engineering Laboratory generates a radioactive waste contaminated with chromium. During handling, the waste becomes contaminated at a concentration sufficiently high to cause the waste to exceed the EPA`s Toxicity Characteristic Leaching Procedure (TCLP) leachable limit for chromium. A treatability test program was instigated to define the optimum conditions for the chemical reduction pretreatment step necessary for the stabilization of the contaminated waste. Sodium dithionite was determined to be the reducing agent of choice. A dithionite demand experiment was run to determine optimum dithionite dose. This dose, plus 67 percent excess, was added to each sample. Four different stabilization systems, at three different dosage levels, were investigated. The best performing reagent system was chosen for scale-up and more stringent performance testing. In one of the tested reagent systems, Portland cement sodium silicate and dithionite, all of the samples exhibited TCLP extract concentrations for chromium well below the regulatory limit. Portland cement/blast furnace slag blend had one passing sample, and for cement/fly ash and cement alone none of the samples had passing values for leachable chromium. The samples scaled-up passed the performance criteria and the process which is currently undergoing implementation at INEL has successfully converted mixed waste into radioactive waste for disposal.

  6. Experimental study of thermal stability of thin nanowires.

    PubMed

    Gordon, Eugene B; Karabulin, Alexander V; Matyushenko, Vladimir I; Khodos, Igor I

    2015-03-19

    Thin (D < 10 nm) nanowires are in principle promising for their application as catalysts and as elements of nanocomputers and quantum devices. To perform these tasks, their structure and properties must be stable at least at standard conditions. Using our technique based on the capture of small particles to the core of quantized vortices in superfluid helium, we synthesized nanowires made of various metals and alloys and investigated their thermal stability. The indium nanowires (D = 8 nm) were shown to be stable when heated to 100 °C, i.e., almost to the melting point, whereas the silver nanowires (D = 5 nm) disintegrated into traces of individual nanoclusters at 300 K. The gold and platinum nanowires also decomposed at temperatures more than twice as low as the melting point. A model is proposed to explain the premature decay of thin nanowires by unfreezing of the surface-atom mobility in combination with the anomalous dependence of the surface tension on the nanowire radius. Methods for improving the stability limits of thin nanowires by saturation of their surface with immobilized atoms as well as by surface oxidation have been proposed and experimentally tested. PMID:25375969

  7. Can Accelerators Accelerate Learning?

    NASA Astrophysics Data System (ADS)

    Santos, A. C. F.; Fonseca, P.; Coelho, L. F. S.

    2009-03-01

    The 'Young Talented' education program developed by the Brazilian State Funding Agency (FAPERJ) [1] makes it possible for high-schools students from public high schools to perform activities in scientific laboratories. In the Atomic and Molecular Physics Laboratory at Federal University of Rio de Janeiro (UFRJ), the students are confronted with modern research tools like the 1.7 MV ion accelerator. Being a user-friendly machine, the accelerator is easily manageable by the students, who can perform simple hands-on activities, stimulating interest in physics, and getting the students close to modern laboratory techniques.

  8. PARTICLE ACCELERATOR

    DOEpatents

    Teng, L.C.

    1960-01-19

    ABS>A combination of two accelerators, a cyclotron and a ring-shaped accelerator which has a portion disposed tangentially to the cyclotron, is described. Means are provided to transfer particles from the cyclotron to the ring accelerator including a magnetic deflector within the cyclotron, a magnetic shield between the ring accelerator and the cyclotron, and a magnetic inflector within the ring accelerator.

  9. XPS study of the chemical stability of DyBa2Cu3O6+δ superconductor

    NASA Astrophysics Data System (ADS)

    Fetisov, A. V.; Kozhina, G. А.; Estemirova, S. Kh.; Fetisov, V. B.; Gulyaeva, R. I.

    2015-01-01

    The chemical stability of the powder DyBa2Cu3O6+δ has been studied by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and thermal analysis at ambient conditions. The powder was subjected to mechanical processing in a ball mill-activator to accelerate chemical degradation. The kinetic regularities of hydrolytic decomposition of DyBa2Cu3O6+δ under the influence of air moisture have been determined. The resistive properties of DyBa2Cu3O6+δ to water have been found to be better, but not much different from analogous properties of YBa2Cu3O6+δ which is unstable in a wet environment. Chemical degradation of the material is triggered by crucial concentrating of water particles near the free surface of the solid reactant (due to their low diffusibility in the bulk) leading to rapid chemical decomposition of the respective regions.

  10. Stability analysis and trend study of a balloon tethered in a wind, with experimental comparisons

    NASA Technical Reports Server (NTRS)

    Redd, L. T.; Bland, S. R.; Bennett, R. M.

    1973-01-01

    A stability analysis and trend study for a balloon tethered in a steady wind are presented. The linearized, stability-derivative type analysis includes balloon aerodynamics, buoyancy, mass (including apparent mass), and static forces resulting from the tether cable. The analysis has been applied to a balloon 7.64 m in length, and the results are compared with those from tow tests of this balloon. This comparison shows that the analysis gives reasonable predictions for the damping, frequencies, modes of motion, and stability boundaries exhibited by the balloon. A trend study for the 7.64-m balloon was made to illustrate how the stability boundaries are affected by changes in individual stability parameters. The trends indicated in this study may also be applicable to many other tethered-balloon systems.

  11. Materials testing for in situ stabilization treatability study of INEEL mixed wastes soils

    SciTech Connect

    Heiser, J.; Fuhrmann, M.

    1997-09-01

    This report describes the contaminant-specific materials testing phase of the In Situ Stabilization Comprehensive Environment Response, Compensation, and Liability Act (CERCLA) Treatability Study (TS). The purpose of materials testing is to measure the effectiveness of grouting agents to stabilize Idaho National Engineering and Environmental Laboratory (INEEL) Acid Pit soils and select a grout material for use in the Cold Test Demonstration and Acid Pit Stabilization Treatability Study within the Subsurface Disposal Area (SDA) at the Radioactive Waste Management Complex (RWMC). Test results will assist the selecting a grout material for the follow-on demonstrations described in Test Plan for the Cold Test Demonstration and Acid Pit Stabilization Phases of the In Situ Stabilization Treatability Study at the Radioactive Waste Management Complex.

  12. Study report on guidelines and test procedures for investigating stability of nonlinear cardiovascular control system models

    NASA Technical Reports Server (NTRS)

    Fitzjerrell, D. G.

    1974-01-01

    A general study of the stability of nonlinear as compared to linear control systems is presented. The analysis is general and, therefore, applies to other types of nonlinear biological control systems as well as the cardiovascular control system models. Both inherent and numerical stability are discussed for corresponding analytical and graphic methods and numerical methods.

  13. Stability and Change in Work Values: A Meta-Analysis of Longitudinal Studies

    ERIC Educational Resources Information Center

    Jin, Jing; Rounds, James

    2012-01-01

    A meta-analysis of longitudinal studies was conducted to investigate stability and change in work values across the life span. Both rank-order stability and mean-level change were investigated using an integrative classification for intrinsic, extrinsic, social and status work values (Ross, Schwartz, & Surkis, 1999). Results of rank-order…

  14. Adolescent Alcohol Use Self-Report Stability: A Decade of Panel Study Data

    ERIC Educational Resources Information Center

    Shillington, Audrey M.; Clapp, John D.; Reed, Mark B.; Woodruff, Susan I.

    2011-01-01

    This study analyzed six waves of panel data from the National Longitudinal Survey of Youth (NLSY). These analyses were conducted to test the stability of self-reported lifetime use and age of onset. Intraclass correlation coefficients (ICCs) indicated that the stability of age of onset reports decreased with longer time frames between follow-ups.…

  15. Three-Year Outcomes of a Canadian Multicenter Study of Accelerated Partial Breast Irradiation Using Conformal Radiation Therapy

    SciTech Connect

    Berrang, Tanya S.; Olivotto, Ivo; Kim, Do-Hoon; Nichol, Alan; Cho, B.C. John; Mohamed, Islam G.; Parhar, Tarnjit; Wright, J.R.; Truong, Pauline; Tyldesley, Scott; Sussman, Jonathan; Wai, Elaine; Whelan, Tim

    2011-12-01

    Purpose: To report 3-year toxicity, cosmesis, and efficacy of a multicenter study of external beam, accelerated partial breast irradiation (APBI) for early-stage breast cancer. Methods and Materials: Between March 2005 and August 2006, 127 women aged {>=}40 years with ductal carcinoma in situ or node-negative invasive breast cancer {<=}3 cm in diameter, treated with breast-conserving surgery achieving negative margins, were accrued to a prospective study involving five Canadian cancer centers. Women meeting predefined dose constraints were treated with APBI using 3 to 5 photon beams, delivering 35 to 38.5 Gy in 10 fractions, twice a day, over 1 week. Patients were assessed for treatment-related toxicities, cosmesis, and efficacy before APBI and at specified time points for as long as 3 years after APBI. Results: 104 women had planning computed tomography scans showing visible seromas, met dosimetric constraints, and were treated with APBI to doses of 35 Gy (n = 9), 36 Gy (n = 33), or 38.5 Gy (n = 62). Eighty-seven patients were evaluated with minimum 3-year follow-up after APBI. Radiation dermatitis, breast edema, breast induration, and fatigue decreased from baseline levels or stabilized by the 3-year follow-up. Hypopigmentation, hyperpigmentation, breast pain, and telangiectasia slightly increased from baseline levels. Most toxicities at 3 years were Grade 1. Only 1 patient had a Grade 3 toxicity with telangiectasia in a skin fold inside the 95% isodose. Cosmesis was good to excellent in 86% (89/104) of women at baseline and 82% (70/85) at 3 years. The 3-year disease-free survival was 97%, with only one local recurrence that occurred in a different quadrant away from the treated site and two distant recurrences. Conclusions: At 3 years, toxicity and cosmesis were acceptable, and local control and disease-free survival were excellent, supporting continued accrual to randomized APBI trials.

  16. Studies on Muon Induction Acceleration and an Objective Lens Design for Transmission Muon Microscope

    NASA Astrophysics Data System (ADS)

    Artikova, Sayyora; Yoshida, Mitsuhiro; Naito, Fujio

    Muon acceleration will be accomplished by a set of induction cells, where each increases the energy of the muon beam by an increment of up to 30 kV. The cells are arranged in a linear way resulting in total accelerating voltage of 300 kV. Acceleration time in the linac is about hundred nanoseconds. Induction field calculation is based on an electrostatic approximation. Beam dynamics in the induction accelerator is investigated and final beam focusing on specimen is realized by designing a pole piece lens.

  17. Studies of the Mirrortron ion accelerator concept and its application to heavy-ion drivers

    SciTech Connect

    Post, R.F.; Schwager, L.A. ); Douglass, S.R.; Jones, B.R.; Lambert, M.A.; Larson, D.L. . Dept. of Applied Science)

    1990-11-30

    The Mirrortron accelerator is a plasma-based ion accelerator concept that, when implemented, should permit both higher acceleration gradients and higher peak-current capabilities than is possible with conventional induction-type accelerators. Control over the acceleration and focussing of an accelerated beam should approach that achieved in vacuum-field-based ion accelerators. In the Mirrortron a low density (10{sup 10} to 10{sup 11} cm{sup {minus}3}) hot electron'' plasma is confined by a long solenoidal magnetic field capped by mirrors.'' Acceleration of pre-bunched ions is accomplished by activating a series of fast-pulsed mirror coils spaced along the acceleration tube. The hot electrons, being repelled by mirror action, leave the plasma ions behind to create a localized region of high electrical gradient (up to of order 100 MV/m). At the laboratory an experiment and analyses to elucidate the concept and its scaling laws as applied to heavy-ion drivers are underway and will be described. 4 refs., 5 figs.

  18. Space Shuttle Earth Observation sensors pointing and stabilization requirements study

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The shuttle orbiter inertial measurement unit (IMU), located in the orbiter cabin, is used to supply inertial attitude reference signals; and, in conjunction with the onboard navigation system, can provide a pointing capability of the navigation base accurate to within plus or minus 0.5 deg for earth viewing missions. This pointing accuracy can degrade to approximately plus or minus 2.0 deg for payloads located in the aft bay due to structural flexure of the shuttle vehicle, payload structural and mounting misalignments, and calibration errors with respect to the navigation base. Drawbacks to obtaining pointing accuracy by using the orbiter RCS jets are discussed. Supplemental electromechanical pointing systems are developed to provide independent pointing for individual sensors, or sensor groupings. The missions considered and the sensors required for these missions and the parameters of each sensor are described. Assumptions made to derive pointing and stabilization requirements are delineated.

  19. Thermal stability study of nitrogen functionalities in a graphene network

    NASA Astrophysics Data System (ADS)

    Kumar, Ajay; Ganguly, Abhijit; Papakonstantinou, Pagona

    2012-06-01

    Catalyst-free vertically aligned graphene nanoflakes possessing a large amount of high density edge planes were functionalized using nitrogen species in a low energy N+ ion bombardment process to achieve pyridinic, cyanide and nitrogen substitution in hexagonal graphitic coordinated units. The evolution of the electronic structure of the functionalized graphene nanoflakes over the temperature range 20-800 °C was investigated in situ, using high resolution x-ray photoemission spectroscopy. We demonstrate that low energy irradiation is a useful tool for achieving nitrogen doping levels up to 9.6 at.%. Pyridinic configurations are found to be predominant at room temperature, while at 800 °C graphitic nitrogen configurations become the dominant ones. The findings have helped to provide an understanding of the thermal stability of nitrogen functionalities in graphene, and offer prospects for controllable tuning of nitrogen doping in device applications.

  20. Titan's Troposphere: Studies of its stability to convection

    NASA Astrophysics Data System (ADS)

    Griffith, C. A.; McKay, C. P.

    2003-05-01

    Recent images of Titan reveal clouds at high southern latitudes (Roe et al. 2002, Brown et al. 2002), which reside in Titan's mid-troposphere and vary dramatically over hour time scales. Griffith et al. (2000) hypothesize that Titan possesses methane condensation clouds that evolve convectively, because their altitudes are consistent with the final resting place of convectively buoyant parcels. Yet, Titan's equatorial thermal profiles at equinox, measured at sunrise and sunset by Voyager, were found to be stable to convection for subsaturated conditions (McKay et al. 1989). The temperature profiles indicate that a surface parcel must be mechanically raised roughly 6 kilometers before achieving buoyancy, assuming 60% humidity. Titan's stability combined with the similarity of the sunrise and sunset profiles above 3 kilometers suggest that the atmosphere was not highly convective at the time and place of the Voyager measurements. Brown et al. (2002) note however that clouds are found at latitudes where the solar insolation exceeds that at the equator during equinox, suggesting that ground heating might instigate convection under these sunny conditions. Here we examine the sensitivity of Titan's thermal profile to seasonal radiative forcing in order to investigate the formation of Titan's clouds and the stability of Titan's atmosphere to convection. Supported by NASA's Planetary Astronomy Program. C.A. Griffith, J.H. Hall, T.R. Geballe, Science, 290, 509 (2000) C.P. McKay, J.B. Pollack, R. Courtin, Icarus, 80, 23, (1989) M.E. Brown, A.H. Bouchez, C.A. Griffith, Nature, 420, 795, (2002) H.G. Roe, I. dePater, B.A. Macintosh, C.P. McKay Astrophys. J., 581, 1399 (2002)

  1. Stability of illite/smectite during diagenesis: an experimental study

    SciTech Connect

    Sass, B.M.; Rosenberg, P.E.; Kittrick, J.A.

    1987-08-01

    Illites from Goose Lake (Illinois) and Beavers Bend (Oklahoma) were equilibrated in 0.2 M and 2.0 M KCl solutions with excess kaolinite and either gibbsite, boehmite, quartz, or amorphous silica. Teflon-lined reaction vessels were used to heat the charges from 25/sup 0/ to 250/sup 0/C at the vapor pressures of solution. Partial reversibility was demonstrated by approaching equilibria from both high and low K/sup +/H/sup +/ activity ratios. The experimental data were used to construct isothermal, isobaric activity diagrams (log (a/sub K/sup +//a/sub H/sup +//) vs. log a/sub SiO/sub 2//) for the system K/sub 2/O-Al/sub 2/O/sub 3/-SiO/sub 2/-H/sub 2/O. Stability regions have been defined for kaolinite, boehmite, and three other phases that are believed to be components of both illites. At low temperatures (<90/sup 0/C) illite-smectite equilibrium is metastable with respect to calculated kaolinite-microcline equilibrium. Between 90/sup 0/C and 110/sup 0/C a phase transition involving illite and smectite occurs which stabilizes the assemblages illite-smectite-kaolinite and illite-smectite-microcline. This transition occurs at the same temperature as the ordering transition in natural IS. Above 110/sup 0/C the assemblage illite-smectite is again metastable with respect to kaolinite-microcline, but at 200/sup 0/C and above illite and smectite may coexist stably with either kaolinite or microcline. However, smectite decomposes where a/sub SiO/sub 2//sup 0// is controlled to quartz solubility yielding the stable assemblage illite-kaolinite-quartz and illite-mica-quartz.

  2. A PILOT STUDY OF CORE STABILITY AND ATHLETIC PERFORMANCE: IS THERE A RELATIONSHIP?

    PubMed Central

    Sharrock, Chris; Cropper, Jarrod; Mostad, Joel; Johnson, Matt

    2011-01-01

    Study Design: Correlation study Objectives: To objectively evaluate the relationship between core stability and athletic performance measures in male and female collegiate athletes. Background: The relationship between core stability and athletic performance has yet to be quantified in the available literature. The current literature does not demonstrate whether or not core strength relates to functional performance. Questions remain regarding the most important components of core stability, the role of sport specificity, and the measurement of core stability in relation to athletic performance. Methods: A sample of 35 volunteer student athletes from Asbury College (NAIA Division II) provided informed consent. Participants performed a series of five tests: double leg lowering (core stability test), the forty yard dash, the T-test, vertical jump, and a medicine ball throw. Participants performed three trials of each test in a randomized order. Results: Correlations between the core stability test and each of the other four performance tests were determined using a General Linear Model. Medicine ball throw negatively correlated to the core stability test (r –0.389, p=0.023). Participants that performed better on the core stability test had a stronger negative correlation to the medicine ball throw (r =–0.527). Gender was the most strongly correlated variable to core strength, males with a mean measurement of double leg lowering of 47.43 degrees compared to females having a mean of 54.75 degrees. Conclusions: There appears to be a link between a core stability test and athletic performance tests; however, more research is needed to provide a definitive answer on the nature of this relationship. Ideally, specific performance tests will be able to better define and to examine relationships to core stability. Future studies should also seek to determine if there are specific sub-categories of core stability which are most important to allow for optimal training and

  3. Experimental studies on ion acceleration and stream line detachment in a diverging magnetic field

    PubMed Central

    Terasaka, K.; Yoshimura, S.; Ogiwara, K.; Aramaki, M.; Tanaka, M. Y.

    2010-01-01

    The flow structure of ions in a diverging magnetic field has been experimentally studied in an electron cyclotron resonance plasma. The flow velocity field of ions has been measured with directional Langmuir probes calibrated with the laser induced fluorescence spectroscopy. For low ion-temperature plasmas, it is concluded that the ion acceleration due to the axial electric field is important compared with that of gas dynamic effect. It has also been found that the detachment of ion stream line from the magnetic field line takes place when the parameter |fciLB∕Vi| becomes order unity, where fci, LB, and Vi are the ion cyclotron frequency, the characteristic scale length of magnetic field inhomogeneity, and the ion flow velocity, respectively. In the detachment region, a radial electric field is generated in the plasma and the ions move straight with the E×B rotation driven by the radial electric field. PMID:20838424

  4. Study of muon-induced neutron production using accelerator muon beam at CERN

    SciTech Connect

    Nakajima, Y.; Lin, C. J.; Ochoa-Ricoux, J. P.; Draeger, E.; White, C. G.; Luk, K. B.; Steiner, H.

    2015-08-17

    Cosmogenic muon-induced neutrons are one of the most problematic backgrounds for various underground experiments for rare event searches. In order to accurately understand such backgrounds, experimental data with high-statistics and well-controlled systematics is essential. We performed a test experiment to measure muon-induced neutron production yield and energy spectrum using a high-energy accelerator muon beam at CERN. We successfully observed neutrons from 160 GeV/c muon interaction on lead, and measured kinetic energy distributions for various production angles. Works towards evaluation of absolute neutron production yield is underway. This work also demonstrates that the setup is feasible for a future large-scale experiment for more comprehensive study of muon-induced neutron production.

  5. Simulation study of accelerator based quasi-mono-energetic epithermal neutron beams for BNCT.

    PubMed

    Adib, M; Habib, N; Bashter, I I; El-Mesiry, M S; Mansy, M S

    2016-01-01

    Filtered neutron techniques were applied to produce quasi-mono-energetic neutron beams in the energy range of 1.5-7.5 keV at the accelerator port using the generated neutron spectrum from a Li (p, n) Be reaction. A simulation study was performed to characterize the filter components and transmitted beam lines. The feature of the filtered beams is detailed in terms of optimal thickness of the primary and additive components. A computer code named "QMNB-AS" was developed to carry out the required calculations. The filtered neutron beams had high purity and intensity with low contamination from the accompanying thermal, fast neutrons and γ-rays. PMID:26474209

  6. Physics and engineering studies on the MITICA accelerator: comparison among possible design solutions

    SciTech Connect

    Agostinetti, P.; Antoni, V.; Chitarin, G.; Pilan, N.; Marcuzzi, D.; Serianni, G.; Veltri, P.; Cavenago, M.

    2011-09-26

    Consorzio RFX in Padova is currently using a comprehensive set of numerical and analytical codes, for the physics and engineering design of the SPIDER (Source for Production of Ion of Deuterium Extracted from RF plasma) and MITICA (Megavolt ITER Injector Concept Advancement) experiments, planned to be built at Consorzio RFX. This paper presents a set of studies on different possible geometries for the MITICA accelerator, with the objective to compare different design concepts and choose the most suitable one (or ones) to be further developed and possibly adopted in the experiment. Different design solutions have been discussed and compared, taking into account their advantages and drawbacks by both the physics and engineering points of view.

  7. Study of electron acceleration through the ? mode in a collisional plasma-filled cylindrical waveguide

    NASA Astrophysics Data System (ADS)

    Abdoli-Arani, A.; Moghaddasi, M.

    2016-07-01

    Acceleration of an externally injected electron inside the collisional plasma-filled cylindrical waveguide during its motion in the fields of the ? mode excited by microwave radiation is studied. The effect of the electron collision frequency with background ions on the deflection angle and energy gain of electron, when it is injected along the direction of the mode propagation is investigated. The fields for the mode, the deflection angle of electron trajectory, due to these fields, and the electron energy gradient are obtained. The results for collisionless and collisional plasma are graphically presented. The numerical results illustrate that the presence of the electron collision term in the dielectric permittivity can reduce the electron's energy gain in the configuration.

  8. A computational study on directional stability of chine-shaped forebodies at high-alpha

    NASA Technical Reports Server (NTRS)

    Ravi, R.; Mason, William H.

    1992-01-01

    CFD is employed to study the flowfields over chine-shaped forebodies at low-speed high-angle-of-attack conditions with sideslip. This study is conducted to define forebody geometries that provide good directional stability characteristics under these conditions. An analytically defined generic forebody model is developed and a systematic examination of forebody shapes is performed to determine which shapes promote a positive contribution to directional stability at high-alpha. Results of the initial parametric study and some guidelines for aerodynamic design to promote positive directional stability are presented.

  9. Electron acceleration associated with the magnetic flux pileup regions in the near-Earth plasma sheet: A multicase study

    NASA Astrophysics Data System (ADS)

    Tang, C. L.; Zhou, M.; Yao, Z. H.; Shi, F.

    2016-05-01

    Using the Time History of Events and Macroscale Interactions during Substorms (THEMIS) observations, we study electron acceleration (<30 keV) in the magnetic flux pileup regions (FPRs) in the near-Earth plasma sheet (X ~ -10 RE). We present three cases of FRPs associated with dipolarization fronts and substorm dipolarization. Based on the characteristics of the magnetic field, we defined the magnetic field enhancement region (MFER) as the magnetic field with significant ramp that is usually observed near the dipolarization front boundary layer. On the other side, the increased magnetic field without a significant ramp is the rest of a FPR. Our results show that betatron acceleration dominates for 10-30 keV electrons inside the MFER, whereas Fermi acceleration dominates for 10-30 keV electrons inside the rest of the FPR. Betatron acceleration is caused by the enhancement of the local magnetic field, whereas Fermi acceleration is related to the shrinking length of magnetic field line. These accelerated electrons inside the FPRs in the near-Earth tail play a potentially important role in the evolution of the Earth's electron radiation belt and substorms.

  10. Simulation Studies of the Dielectric Grating as an Accelerating and Focusing Structure

    SciTech Connect

    Soong, Ken; Peralta, E.A.; Byer, R.L.; Colby, E.; /SLAC

    2011-08-12

    A grating-based design is a promising candidate for a laser-driven dielectric accelerator. Through simulations, we show the merits of a readily fabricated grating structure as an accelerating component. Additionally, we show that with a small design perturbation, the accelerating component can be converted into a focusing structure. The understanding of these two components is critical in the successful development of any complete accelerator. The concept of accelerating electrons with the tremendous electric fields found in lasers has been proposed for decades. However, until recently the realization of such an accelerator was not technologically feasible. Recent advances in the semiconductor industry, as well as advances in laser technology, have now made laser-driven dielectric accelerators imminent. The grating-based accelerator is one proposed design for a dielectric laser-driven accelerator. This design, which was introduced by Plettner, consists of a pair of opposing transparent binary gratings, illustrated in Fig. 1. The teeth of the gratings serve as a phase mask, ensuring a phase synchronicity between the electromagnetic field and the moving particles. The current grating accelerator design has the drive laser incident perpendicular to the substrate, which poses a laser-structure alignment complication. The next iteration of grating structure fabrication seeks to monolithically create an array of grating structures by etching the grating's vacuum channel into a fused silica wafer. With this method it is possible to have the drive laser confined to the plane of the wafer, thus ensuring alignment of the laser-and-structure, the two grating halves, and subsequent accelerator components. There has been previous work using 2-dimensional finite difference time domain (2D-FDTD) calculations to evaluate the performance of the grating accelerator structure. However, this work approximates the grating as an infinite structure and does not accurately model a

  11. Evaluation of primary stability of innovated orthodontic miniscrew system (STS): An ex-vivo study

    PubMed Central

    Seifi, Massoud

    2016-01-01

    Background Stability is determined as one of the requirements in use of Temporary Anchorage Devices (TAD) in orthodontics. Miniscrew has been a widely used Bone Anchor. Compared with mini-implant that necessitates osseointegration; mechanical retention is a determining factor for primary stability of miniscrew. Studies investigated various ways to increase primary stability. The aim of this study is to introduce a new configuration of miniscrew system which is believed to obtain more primary stability. Material and Methods Freshly ovine mandibles were cut in blocks. Twenty-seven miniscrews (diameter 1.6 × 8 mm; G2, Dual Top Anchor System, Jeil Medical, Seoul, Korea) were inserted in the blocks and divided in 2 experimental groups: single miniscrew and the innovated design “Seifi Twin Screw (STS)”. Primary stability was evaluated by Periotest “M”® device. Results Independent t-test showed a significant difference between 2 experimental groups in periotest evaluation (p< 0.05). STS demonstrated higher primary stability due to its mechanical configuration and design. Conclusions The STS provides higher primary stability and was found to be effective in increased success rate of miniscrew systems from the standpoint of primary stability. Key words:Anchorage procedures, anchorage techniques, orthodontic anchorage procedures, miniscrews, temporary anchorage device. PMID:27398174

  12. Guidelines for the practical stability studies of anticancer drugs: a European consensus conference.

    PubMed

    Bardin, C; Astier, A; Vulto, A; Sewell, G; Vigneron, J; Trittler, R; Daouphars, M; Paul, M; Trojniak, M; Pinguet, F

    2011-07-01

    Stability studies performed by the pharmaceutical industry are only designed to fulfill licensing requirements. Thus, post-dilution or -reconstitution stability data are frequently limited to 24h only for bacteriological reasons regardless of the true chemical stability which could, in many cases, be longer. In practice, the pharmacy-based centralized preparation may require infusions to be made several days in advance to provide, for example, the filling of ambulatory devices for continuous infusions or batch preparations for dose banding. Furthermore, a non-justified limited stability for expensive products is obviously very costly. Thus, there is a compelling need for additional stability data covering practical uses of anticancer drugs. A European conference consensus was held in France, May 2010, under the auspices of the French Society of Oncology Pharmacy (SFPO) to propose adapted rules on stability in practical situations and guidelines to perform corresponding stability studies. For each anticancer drug, considering their therapeutic index, the pharmacokinetics/pharmacodynamics (PK/PD) variability, specific clinical use and risks related to degradation products, the classical limit of 10% of degradation can be inappropriate. Therefore, acceptance limits must be clinically relevant and should be defined for each drug individually. Design of stability studies has to reflect the different needs of the clinical practice (preparation for the week-ends, outpatient transportations, implantable devices, dose banding…). It is essential to use validated stability-indicating methods, separating degradation products being formed in the practical use of the drug. Sequential temperature designs should be encouraged to replicate problems seen in daily practice such as rupture of the cold-chain or temperature-cycling between refrigerated storage and ambient in-use conditions. Stressed conditions are recommended to evaluate not only the role of classical variables (p

  13. A Computational Study of a Capillary Discharge Pellet Accelerator Concept for Magnetic Fusion Fueling

    NASA Astrophysics Data System (ADS)

    Winfrey, A. Leigh; Gilligan, John G.; Bourham, Mohamed A.

    2013-04-01

    An ablation-dominated capillary discharge using low atomic number elements for plasma formation to flow into an ablation-free extension barrel is a concept that provides a high energy-density plasma flow sufficient to propel fuel pellets into the tokamak fusion plasma chamber. In this concept, the extension barrel is made from a non-ablating material by coating the interior wall of the barrel with nanocrystalline diamond to eliminate mixing the propelling plasma with any impurities evolving from the barrel ablation. The electrothermal plasma code ETFLOW models the plasma formation and flow in the capillary discharge and the flow into the extension barrel to accelerate frozen deuterium pellets. The code includes governing equations for both the capillary and the extension barrel, with the addition of the pellet's terms. It also includes ideal and non-ideal plasma conductivity models. The joule heating term in the energy conservation equation is only valid in the capillary section. The pellet momentum and kinetic energy are included in the governing equations of the barrel, with the addition of the effect of viscous drag terms. The electrothermal capillary source generates the plasma via the ablation of a sleeve inside the main capillary housing. The acceleration of the pellet starts in the extension barrel when the pressure of the plasma flow from the capillary reaches the release limit. The code results show pellet exit velocities in excess of 2 km/s for source/barrel systems with low-Z liner materials in the source for 5, 20, 45, and 80 mg pellets. The study shows that an increase in the length of both the source and the extension barrel increases the pellet exit velocity with the limitation of slowdown effects for plasma expansion and cooling off inside the barrel.

  14. Accelerated bone mineral loss following a hip fracture: a prospective longitudinal study.

    PubMed

    Dirschl, D R; Henderson, R C; Oakley, W C

    1997-07-01

    The purpose of this prospective study was to monitor the bone mineral density (BMD) of the lumbar spine and contralateral femoral neck in the first year following an osteoporosis-related fracture of the hip. Eighty-three elderly patients (mean age 77 years) who had sustained a hip fracture had determinations of BMD made at the time of fracture; 49 of these patients were available for reassessment of BMD 1 year later. The change in BMD was correlated with pre- and postinjury variables, such as ambulatory ability, dietary intake of calcium, serum vitamin D levels, mental status, and routine serologies. The mean decrease in BMD in the year following fracture was 5.4% from the contralateral femoral neck and 2.4% from the lumbar spine. Calcium intake correlated with the loss of BMD from the femoral neck (p = 0.015), but not the lumbar spine. Patients with daily calcium intakes of less than 500 mg/day had a more than 10% decrease in femoral neck BMD in the year following their hip fracture. Serum 1,25-dihydroxy vitamin D level correlated with loss of MBD from the lumbar spine (p = 0.001), but not from the femoral neck. There was no correlation between the loss of bone mineral from either measurement site and age, sex, level of ambulation, or mental status. The loss of BMD from the femoral neck in the year following a hip fracture is more than five times that reported in the nonfractured population. This accelerated rate of loss can have drastic consequences in an elderly population already exhibiting osteopenia and propensity to fall. Investigation of pharmacologic or other interventions in the first critical year following a hip fracture may potentially blunt this accelerated rate of bone loss and lessen the risk of subsequent fractures. PMID:9213011

  15. Particle acceleration and plasma energization in substorms: MHD and test particle studies

    SciTech Connect

    Birn, Joachim

    2015-07-16

    The author organizes his slide presentation under the following topics: background, MHD simulation, orbit integration, typical orbits, spatial and temporal features, acceleration mechanisms, source locations, and source energies. Field-­aligned energetic particle fluxes are shown for 45-keV electrons and 80-keV protons. It is concluded that the onset from local thin current sheet is electron tearing. Acceleration is mainly from field collapse, governed by Ey = -vxXBz: importance of localization; betatron acceleration (similar if nonadiabatic); 1st order Fermi, type B (or A; current sheet acceleration). There are two source regions (of comparable importance in magnetotail): - flanks, inner tail - drift entry - early, higher energy - outer plasma sheet - reconnection entry - later, lower energy. Both thermal and suprathermal sources are important, with limited energy range for acceleration

  16. Liquid Crystal Formation from Sunflower Oil: Long Term Stability Studies.

    PubMed

    da Rocha-Filho, Pedro Alves; Maruno, Mônica; Ferrari, Márcio; Topan, José Fernando

    2016-01-01

    The Brazilian biodiversity offers a multiplicity of raw materials with great potential in cosmetics industry applications. Some vegetable oils and fatty esters increase skin hydration by occlusivity, keeping the skin hydrated and with a shiny appearance. Sunflower (Helianthus annus L.) oil is widely employed in cosmetic emulsions in the form of soaps, creams, moisturizers and skin cleansers due to the presence of polyphenols and its high vitamin E content. Liquid crystals are systems with many applications in both pharmaceutical and cosmetic formulations and are easily detected by microscopy under polarized light due to their birefringence properties. The aim of this research was to develop emulsions from natural sunflower oil for topical uses. Sunflower oil (75.0% w/w) was combined with liquid vaseline (25.0% w/w) employing a natural self-emulsifying base (SEB) derivative. The high temperature of the emulsification process did not influence the antioxidant properties of sunflower oil. Fatty esters were added to cosmetic formulations and extended stability tests were performed to characterize the emulsions. Fatty esters like cetyl palmitate and cetyl ester increase the formation of anisotropic structures. O/W emulsions showed acidic pH values and pseudoplastic behavior. The presence of a lamellar phase was observed after a period of 90 days under different storage conditions. PMID:27294894

  17. Electromagnetically Sustained Liquid Metal Flow for Feedback Stabilization Studies

    NASA Astrophysics Data System (ADS)

    Mirhoseini, Seyyed Mohammad; Volpe, Francesco

    2015-11-01

    Liquid metal walls in fusion reactors, whether nearly static or rapidly flowing, will be subject to instabilities that will make them locally bulge, thus entering in contact with the plasma, or deplete, hence exposing the underlying solid substrate. To prevent this, research has begun at Columbia University to create liquid metal flows and demonstrate their stabilization by electromagnetic forces, adjusted in feedback with thickness measurements. Here we present initial results regarding the sustainment of a flow of Galinstan (a gallium, indium, tin alloy) by a special pump consisting of a ferromagnetic rotor, with permanent magnets mounted on it. The magnetic field is partly ``frozen'' in the liquid metal surrounding the rotor. Therefore, as the field rotates, the liquid metal rotates as well, although with a slip factor. This solution was preferred to conventional pumps, which would enter in electrical contact with the metal flow. The pump, 3D-printed at Columbia, allows to adjust the flow-velocity from few mm/s to several cm/s.

  18. Experimental study of the thermal stability of hydrocarbon fuels

    NASA Technical Reports Server (NTRS)

    Marteney, P. J.; Colket, M. B.; Vranos, A.

    1982-01-01

    The thermal stability of two hydrocarbon fuels (premium diesel and regular diesel) was determined in a flow reactor under conditions representing operation of an aircraft gas turbine engine. Temperature was varied from 300 to 750 F (422 to 672 K) for fuel flows of 2.84 to 56.8 liters/hr (corresponding to 6.84 x 0.00010 to 1.63 x 0.010 kg/sec for regular diesel fuel and 6.55 x 0.00010 to 1.37 x 0.010 kg/sec for premium diesel fuel); test times varied between 1 and 8 hr. The rate of deposition was obtained through measurement of weight gained by metal discs fixed along the channel wall. The rate of deposit formation is best correlated by an Arrhenius expression. The sample discs in the flow reactor were varied among stainless steel, aluminum and brass; fuels were doped with quinoline, indole, and benzoyl perioxide to yield nitrogen or oxygen concentrations of approximately 1000 ppm. The most substantial change in rate was an increase in deposits for brass discs; other disc materials or the additives caused only small perturbations. Tests were also conducted in a static reactor at temperatures of 300 to 800 F for times of 30 min to 2 1/2 hr. Much smaller deposition was found, indicating the importance of fluid transport in the mechanism.

  19. MHD simulation studies of z-pinch shear flow stabilization

    NASA Astrophysics Data System (ADS)

    Paraschiv, I.; Bauer, B. S.; Sotnikov, V. I.; Makhin, V.; Siemon, R. E.

    2003-10-01

    The development of the m=0 instability in a z-pinch in the presence of sheared plasma flows is investigated with the aid of a two-dimensional magnetohydrodynamic (MHD) simulation code (MHRDR). The linear growth rates are compared to the results obtained by solving the ideal MHD linearized equations [1] and to the results obtained using a 3D hybrid simulation code [2]. The instability development is followed into the nonlinear regime where its growth and saturation are examined. [1] V.I. Sotnikov, I. Paraschiv, V. Makhin, B.S. Bauer, J.-N. Leboeuf, and J.M. Dawson, "Linear analysis of sheared flow stabilization of global magnetohydrodynamic instabilities based on the Hall fluid mode", Phys. Plasmas 9, 913 (2002). [2] V.I. Sotnikov, V. Makhin, B.S. Bauer, P. Hellinger, P. Travnicek, V. Fiala, J.-N. Leboeuf, "Hybrid Simulations of Current-Carrying Instabilities in Z-pinch Plasmas with Sheared Axial Flow", AIP Conference Proceedings, Volume 651, Dense Z-Pinches: 5th International Conference on Dense Z-Pinches, edited by J. Davis et al., page 396, June 2002.

  20. A study of slanted-edge MTF stability and repeatability

    NASA Astrophysics Data System (ADS)

    Roland, Jackson K. M.

    2015-01-01

    The slanted-edge method of measuring the spatial frequency response (SFR) as an approximation of the modulation transfer function (MTF) has become a well known and widely used image quality testing method over the last 10 years. This method has been adopted by multiple international standards including ISO and IEEE. Nearly every commercially available image quality testing software includes the slanted-edge method and there are numerous open-source algorithms available. This method is one of the most important image quality algorithms in use today. This paper explores test conditions and the impacts they have on the stability and precision of the slanted-edge method as well as details of the algorithm itself. Real world and simulated data are used to validate the characteristics of the algorithm. Details of the target such as edge angle and contrast ratio are tested to determine the impact on measurement under various conditions. The original algorithm defines a near vertical edge so that errors introduced are minor but the theory behind the algorithm requires a perfectly vertical edge. A correction factor is introduced as a way to compensate for this problem. Contrast ratio is shown to have no impact on results in an absence of noise.

  1. Synthesis and Stability of Iron Nanoparticles for Lunar Environment Studies

    NASA Technical Reports Server (NTRS)

    Hung, Ching-cheh; McNatt, Jeremiah

    2009-01-01

    Simulant of lunar dust is needed when researching the lunar environment. However, unlike the true lunar dust, today s simulants do not contain nanophase iron. Two different processes have been developed to fabricate nanophase iron to be used as part of the lunar dust simulant: (1) Sequentially treating a mixture of ferric chloride, fluorinated carbon, and soda lime glass beads at about 300 C in nitrogen, at room temperature in air, and then at 1050 C in nitrogen. The product includes glass beads that are grey in color, can be attracted by a magnet, and contain alpha-iron nanoparticles (which seem to slowly lose their lattice structure in ambient air during a period of 12 months). This product may have some similarity to the lunar glassy regolith that contains Fe(sup 0). (2) Heating a mixture of carbon black and a lunar simulant (a mixed metal oxide that includes iron oxide) at 1050 C in nitrogen. This process simulates lunar dust reaction to the carbon in a micrometeorite at the time of impact. The product contains a chemically modified simulant that can be attracted by a magnet and has a surface layer whose iron concentration increased during the reaction. The iron was found to be alpha-iron and Fe3O4 nanoparticles, which appear to grow after the fabrication process, but stabilizes after 6 months of ambient air storage.

  2. Mechanical models for insect locomotion: stability and parameter studies

    NASA Astrophysics Data System (ADS)

    Schmitt, John; Holmes, Philip

    2001-08-01

    We extend the analysis of simple models for the dynamics of insect locomotion in the horizontal plane, developed in [Biol. Cybern. 83 (6) (2000) 501] and applied to cockroach running in [Biol. Cybern. 83 (6) (2000) 517]. The models consist of a rigid body with a pair of effective legs (each representing the insect’s support tripod) placed intermittently in ground contact. The forces generated may be prescribed as functions of time, or developed by compression of a passive leg spring. We find periodic gaits in both cases, and show that prescribed (sinusoidal) forces always produce unstable gaits, unless they are allowed to rotate with the body during stride, in which case a (small) range of physically unrealistic stable gaits does exist. Stability is much more robust in the passive spring case, in which angular momentum transfer at touchdown/liftoff can result in convergence to asymptotically straight motions with bounded yaw, fore-aft and lateral velocity oscillations. Using a non-dimensional formulation of the equations of motion, we also develop exact and approximate scaling relations that permit derivation of gait characteristics for a range of leg stiffnesses, lengths, touchdown angles, body masses and inertias, from a single gait family computed at ‘standard’ parameter values.

  3. Sustained linear acceleration

    NASA Technical Reports Server (NTRS)

    Fraser, T. M.

    1973-01-01

    The subjective effects of sustained acceleration are discussed, including positive, negative, forward, backward, and lateral acceleration effects. Physiological effects, such as retinal and visual response, unconsciousness and cerebral function, pulmonary response, and renal output, are studied. Human tolerance and performance under sustained acceleration are ascertained.

  4. A study of helicopter stability and control including blade dynamics

    NASA Technical Reports Server (NTRS)

    Zhao, Xin; Curtiss, H. C., Jr.

    1988-01-01

    A linearized model of rotorcraft dynamics has been developed through the use of symbolic automatic equation generating techniques. The dynamic model has been formulated in a unique way such that it can be used to analyze a variety of rotor/body coupling problems including a rotor mounted on a flexible shaft with a number of modes as well as free-flight stability and control characteristics. Direct comparison of the time response to longitudinal, lateral and directional control inputs at various trim conditions shows that the linear model yields good to very good correlation with flight test. In particular it is shown that a dynamic inflow model is essential to obtain good time response correlation, especially for the hover trim condition. It also is shown that the main rotor wake interaction with the tail rotor and fixed tail surfaces is a significant contributor to the response at translational flight trim conditions. A relatively simple model for the downwash and sidewash at the tail surfaces based on flat vortex wake theory is shown to produce good agreement. Then, the influence of rotor flap and lag dynamics on automatic control systems feedback gain limitations is investigated with the model. It is shown that the blade dynamics, especially lagging dynamics, can severly limit the useable values of the feedback gain for simple feedback control and that multivariable optimal control theory is a powerful tool to design high gain augmentation control system. The frequency-shaped optimal control design can offer much better flight dynamic characteristics and a stable margin for the feedback system without need to model the lagging dynamics.

  5. Studies of solid liner stability in electromagnetic implosions

    SciTech Connect

    Atchison, W.L.; Faehl, R.J.; Rienovsky, R.E.; Morgan, D.

    1998-12-31

    simulations and analysis will be presented of both sets of experiments and interpretations of the effect of conductivity on liner stability will be given.

  6. Numerical study on the stabilization of neoclassical tearing modes by electron cyclotron current drive

    SciTech Connect

    Wang, Xiaoguang; Zhang, Xiaodong; Wu, Bin; Zhu, Sizheng; Hu, Yemin

    2015-02-15

    It is well known that electron cyclotron current drive (ECCD) around the o-point of magnetic island along the plasma current direction can stabilize neoclassical tearing modes (NTMs) in tokamak devices. The effects of the radial misalignment between the island and the driven current, the phase misalignment, and the on-duty ratio for modulated current drive on NTM stabilization are studied numerically in this paper. A small radial misalignment is found to significantly decrease the stabilizing effect. When a sufficiently large phase misalignment occurs for the modulated ECCD, the stabilization effect is also reduced a lot. The optimal on-duty ratio of modulated ECCD to stabilize NTMs is found to be in the range of 60%–70%. A larger on-duty ratio than 50% could also mitigate the effect of phase misalignment if it is not too large. There is no benefit from modulation if the phase misalignment is larger than a threshold.

  7. Wellbore stability in shale gas reservoirs, a case study of the Barnett Shale (USA).

    NASA Astrophysics Data System (ADS)

    Ouadfeul, Sid-Ali; Aliouane, Leila

    2015-04-01

    Wellbore stability in shale gas reservoirs is one of the major problems during the drilling phase; bad stability can induce the breakouts and drilling induced fractures. Wellbore stability requires the good knowledge of horizontal maximum and minimum stress, the overburden stress and the pore pressure. In this paper, we show a case study of the wellbore stability and how to estimate the mud weight in shale gas reservoir of the Barnett shale formation before drilling. The overburden stress is calculated from the seismic inversion, the minimum stress is calculated using the poro-elastic model, and however the pore pressure is calculated using the Eaton's model. Keywords: Wellbore stability, shale gas, maximum stress, minimum stress, overburden, mud weight, pore pressure.

  8. Numerical study on the stabilization of neoclassical tearing modes by electron cyclotron current drive

    NASA Astrophysics Data System (ADS)

    Wang, Xiaoguang; Zhang, Xiaodong; Wu, Bin; Zhu, Sizheng; Hu, Yemin

    2015-02-01

    It is well known that electron cyclotron current drive (ECCD) around the o-point of magnetic island along the plasma current direction can stabilize neoclassical tearing modes (NTMs) in tokamak devices. The effects of the radial misalignment between the island and the driven current, the phase misalignment, and the on-duty ratio for modulated current drive on NTM stabilization are studied numerically in this paper. A small radial misalignment is found to significantly decrease the stabilizing effect. When a sufficiently large phase misalignment occurs for the modulated ECCD, the stabilization effect is also reduced a lot. The optimal on-duty ratio of modulated ECCD to stabilize NTMs is found to be in the range of 60%-70%. A larger on-duty ratio than 50% could also mitigate the effect of phase misalignment if it is not too large. There is no benefit from modulation if the phase misalignment is larger than a threshold.

  9. Analytical bunch compression studies for a linac-based electron accelerator

    NASA Astrophysics Data System (ADS)

    Schreck, M.; Wesolowski, P.

    2015-10-01

    The current paper deals with analytical bunch compression studies for FLUTE whose results are compared to simulations. FLUTE is a linac-based electron accelerator with a design energy of approximately 40 MeV currently being constructed at the Karlsruhe Institute of Technology. One of the goals of FLUTE is to generate electron bunches with their length lying in the femtosecond regime. In the first phase this will be accomplished using a magnetic bunch compressor. This compressor forms the subject of the studies presented. The paper is divided into two parts. The first part deals with pure geometric investigations of the bunch compressor where space charge effects and the backreaction of bunches with coherent synchrotron radiation are neglected. The second part is dedicated to the treatment of space charge effects. The upshot is that the analytical results in the two parts agree quite well with what is obtained from simulations. This paper shall form the basis for future analytical studies of the FLUTE bunch compressor and of bunch compression, in general.

  10. From Cleanup to Stewardship. A companion report to Accelerating Cleanup: Paths to Closure and background information to support the scoping process required for the 1998 PEIS Settlement Study

    SciTech Connect

    1999-10-01

    Long-term stewardship is expected to be needed at more than 100 DOE sites after DOE's Environmental Management program completes disposal, stabilization, and restoration operations to address waste and contamination resulting from nuclear research and nuclear weapons production conducted over the past 50 years. From Cleanup to stewardship provides background information on the Department of Energy (DOE) long-term stewardship obligations and activities. This document begins to examine the transition from cleanup to long-term stewardship, and it fulfills the Secretary's commitment to the President in the 1999 Performance Agreement to provide a companion report to the Department's Accelerating Cleanup: Paths to Closure report. It also provides background information to support the scoping process required for a study on long-term stewardship required by a 1998 Settlement Agreement.

  11. Fundamental studies of fluid mechanics and stability in porous media

    SciTech Connect

    Homsy, G.M.

    1992-07-01

    We have been active in four areas: Numerical and analytical studies of viscous fingering in miscible displacements, including non- monotonic mobility profiles; numerical and analytical studies of the effect of non-Newtonian fluid characteristics on instabilities; experimental studies of instabilities of moving contact lines for Newtonian and non-Newtonian fluids; and studies of natural convective energy transport due to time-dependent body forces.

  12. Studies of industrial emissions by accelerator-based techniques: A review of applications at CEDAD

    NASA Astrophysics Data System (ADS)

    Calcagnile, L.; Quarta, G.

    2012-04-01

    Different research activities are in progress at the Centre for Dating and Diagnostics (CEDAD), University of Salento, in the field of environmental monitoring by exploiting the potentialities given by the different experimental beam lines implemented on the 3 MV Tande-tron accelerator and dedicated to AMS (Accelerator Mass Spectrome-try) radiocarbon dating and IB A (Ion Beam Analysis). An overview of these activities is presented by showing how accelerator-based analytical techniques can be a powerful tool for monitoring the anthropogenic carbon dioxide emissions from industrial sources and for the assessment of the biogenic content in SRF (Solid Recovered Fuel) burned in WTE (Waste to Energy) plants.

  13. Detailed Experimental Study of Ion Acceleration by Interaction of an Ultra-Short Intense Laser with an Underdense Plasma.

    PubMed

    Kahaly, S; Sylla, F; Lifschitz, A; Flacco, A; Veltcheva, M; Malka, V

    2016-01-01

    Ion acceleration from intense (Iλ(2) > 10(18) Wcm(-2) μm(2)) laser-plasma interaction is experimentally studied within a wide range of He gas densities. Focusing an ultrashort pulse (duration  ion plasma period) on a newly designed submillimetric gas jet system, enabled us to inhibit total evacuation of electrons from the central propagation channel reducing the radial ion acceleration associated with ponderomotive Coulomb explosion, a mechanism predominant in the long pulse scenario. New ion acceleration mechanism have been unveiled in this regime leading to non-Maxwellian quasi monoenergetic features in the ion energy spectra. The emitted nonthermal ion bunches show a new scaling of the ion peak energy with plasma density. The scaling identified in this new regime differs from previously reported studies. PMID:27531755

  14. Detailed Experimental Study of Ion Acceleration by Interaction of an Ultra-Short Intense Laser with an Underdense Plasma

    PubMed Central

    Kahaly, S.; Sylla, F.; Lifschitz, A.; Flacco, A.; Veltcheva, M.; Malka, V.

    2016-01-01

    Ion acceleration from intense (Iλ2 > 1018 Wcm−2 μm2) laser-plasma interaction is experimentally studied within a wide range of He gas densities. Focusing an ultrashort pulse (duration  ion plasma period) on a newly designed submillimetric gas jet system, enabled us to inhibit total evacuation of electrons from the central propagation channel reducing the radial ion acceleration associated with ponderomotive Coulomb explosion, a mechanism predominant in the long pulse scenario. New ion acceleration mechanism have been unveiled in this regime leading to non-Maxwellian quasi monoenergetic features in the ion energy spectra. The emitted nonthermal ion bunches show a new scaling of the ion peak energy with plasma density. The scaling identified in this new regime differs from previously reported studies. PMID:27531755

  15. Muscle contributions to centre of mass acceleration during turning gait in typically developing children: A simulation study.

    PubMed

    Dixon, Philippe C; Jansen, Karen; Jonkers, Ilse; Stebbins, Julie; Theologis, Tim; Zavatsky, Amy B

    2015-12-16

    Turning while walking requires substantial joint kinematic and kinetic adaptations compared to straight walking in order to redirect the body centre of mass (COM) towards the new walking direction. The role of muscles and external forces in controlling and redirecting the COM during turning remains unclear. The aim of this study was to compare the contributors to COM medio-lateral acceleration during 90° pre-planned turns about the inside limb (spin) and straight walking in typically developing children. Simulations of straight walking and turning gait based on experimental motion data were implemented in OpenSim. The contributors to COM global medio-lateral acceleration during the approach (outside limb) and turn (inside limb) stance phase were quantified via an induced acceleration analysis. Changes in medio-lateral COM acceleration occurred during both turning phases, compared to straight walking (p<0.001). During the approach, outside limb plantarflexors (soleus and medial gastrocnemius) contribution to lateral (away from the turn side) COM acceleration was reduced (p<0.001), whereas during the turn, inside limb plantarflexors (soleus and gastrocnemii) contribution to lateral acceleration (towards the turn side) increased (p≤0.013) and abductor (gluteus medius and minimus) contribution medially decreased (p<0.001), compared to straight walking, together helping accelerate the COM towards the new walking direction. Knowledge of the changes in muscle contributions required to modulate the COM position during turning improves our understanding of the control mechanisms of gait and may be used clinically to guide the management of gait disorders in populations with restricted gait ability. PMID:26555714

  16. STUDY OF THE STABILITY OF PARTICLE MOTION IN STORAGE RINGS. Final Report

    SciTech Connect

    Jack J. Shi

    2012-09-07

    During this period, our research was concentrated on the study of beam-beam effects in large storage-ring colliders and coherent synchrotron radiation (CSR) effect in light sources. Our group was involved in and made significant contribution to several international accelerator projects such as the US-LHC project for the design of the LHC interaction regions, the luminosity upgrade of Tevatron and HERA, the design of eRHIC, and the U.S. LHC Accelerator Research Program (LARP) for the future LHC luminosity upgrade.

  17. Systematic Study of Spin Effects at SPASCHARM Experiment at 70-GeV Accelerator in Protvino

    NASA Astrophysics Data System (ADS)

    Mochalov, V. V.; Abramov, V. V.; Bazhanov, N. A.; Borisov, N. S.; Derevschikov, A. A.; Evdokimova, A. S.; Meshchanin, A. P.; Minaev, N. G.; Morozov, D. A.; Nurushev, S. B.; Ryzhikov, S. V.; Semenov, P. A.; Ryazantsev, A. V.; Strikhanov, M. N.; Rykov, V. L.; Usov, Y. A.; Vasiliev, A. N.

    2016-02-01

    A new experiment SPASCHARM for systematic study of polarization phenomena in the inclusive and exclusive hadronic reactions in the energy range of IHEP accelerator U-70 (12-50GeV) is currently under development. The universal experimental setup will detect dozens of various resonances and stable particles produced in collisions of unpolarized beams with the polarized target, and at the next stage, using polarized proton and antiproton beams. At the beginning, the final states consisting of light quarks (u, d, s) will be reconstructed, and later on the charmonium states will be studied. Measurements are planned for a variety of beams: π±,K±,p, antiprotons. Hyperon polarization and spin density matrix elements of the vector mesons will be measured along with the single-spin asymmetry (SSA). The 2π-acceptance in azimuth, which is extremely useful for reduction of systematic errors in measurements of spin observables, will be implemented in the experiment. The solid angle acceptance of the setup, Δθ ≈ 250 mrad vertically and 350 mrad horizontally in the beam fragmentation region, covers a wide range of kinematic variables pT and xF. This provides the opportunity for separating dependences on these two variables which is usually not possible in the setups with a small solid angle acceptance. Unlike some previous polarization experiments, the SPASCHARM will be able to simultaneously accumulate and record data on the both, charged and neutral particle production.

  18. Development of the CRISP Package for Spallation Studies and Accelerator-Driven Systems

    SciTech Connect

    Anefalos, S.; Deppman, A.; Silva, Gilson da; Maiorino, J.R.; Santos, A. dos; Garcia, F.

    2005-09-15

    Power generation from nuclear reactors provides an almost inexhaustive power source due to the huge quantities of nuclear fuel existent in our planet, which guarantees its utilization for thousands of years. Interest has been shifted to the so-called hybrid reactors [accelerator-driven systems (ADS)] as an alternative technology for power generation and transmutation, thus requiring precise knowledge about nuclear structure and nuclear reaction characteristics. Research groups from Instituto de Fisica, Universidade de Sao Paulo and Brazilian Center for Research in Physics made a joint effort to develop a computer program, CRISP, to calculate the intranuclear cascade proprieties and the nuclear evaporation process, present in all nuclear reactions with energies above a few tens of mega-electron-volts, using Monte Carlo techniques. Some reaction channels were included in these programs, resulting in a more realistic representation of the processes involved, aiming at reactor physics studies and academic studies about hadron and meson properties in nuclear matter. Some results obtained with this code and a comparison with experimental data are presented. Although all these results are preliminary, they are very consistent with the available experimental data. Since the applicability of the CRISP package has a wide range of options, especially in ADS, some results describing the effectiveness of the code were achieved.

  19. FPIC: A Key Next Step for Stability Studies of Advanced Beam Driven FRCs

    NASA Astrophysics Data System (ADS)

    Dettrick, Sean; Barnes, Dan; Ceccherini, Francesco; Galeotti, Laura; Guerrero, Victor; Hendrix, Doug; Hubbard, Kevin; Milroy, Richard; Necas, Ales; TAE Team

    2015-11-01

    The goal of the C-2U experiment is to use neutral beam heating and edge biasing to sustain an advanced beam-driven FRC for many milliseconds, longer than the growth times of known instabilities and the resistive wall time. To guide the experiment further into unexplored parameter regimes, it is desirable to have a stability code suitable for beam-driven FRC plasmas, in which the bulk of ion orbits are not Larmor-like and hence gyrokinetic approximations are inapplicable. Fully kinetic ions are required for stability simulations of beam driven FRCs, as are multiple ion species, end boundary conditions, and a resistive boundary. To meet these challenges a new 3D quasineutral hybrid code, FPIC, is being developed. FPIC has a choice of zero electron mass and finite electron mass Ohm's law solvers. Uniform staggered grids, finite differencing, and cut cell boundaries are used to simplify and optimize the PIC while allowing arbitrary boundary shapes. Finite resistivity of the boundary is implemented by coupling free-space exterior solutions to the cut-cell edges. The code is MPI parallelized and the particle push is GPU accelerated. Code benchmarks will be presented including the stability of the FRC tilt mode.

  20. Recent studies of heavy nuclei far from stability at JYFL

    SciTech Connect

    Julin, R.; Enqvist, T.; Helariutta, K.

    1996-12-31

    The new K=130 Cyclotron + ECR facility of the Physics Department of the University of Jyvaskyla (JYFL) provides stable beams from protons up to krypton ions for nuclear structure studies. Two instruments designed especially for in-beam spectroscopic studies of heavy nuclei at JYFL are introduced in this contribution. Some results from recent measurements with them are reported.

  1. Cosmic-Ray Accelerators in Milky Way studied with the Fermi Gamma-ray Space Telescope

    SciTech Connect

    Kamae, Tuneyoshi; /SLAC /KIPAC, Menlo Park

    2012-05-04

    High-energy gamma-ray astrophysics is now situated at a confluence of particle physics, plasma physics and traditional astrophysics. Fermi Gamma-ray Space Telescope (FGST) and upgraded Imaging Atmospheric Cherenkov Telescopes (IACTs) have been invigorating this interdisciplinary area of research. Among many new developments, I focus on two types of cosmic accelerators in the Milky-Way galaxy (pulsar, pulsar wind nebula, and supernova remnants) and explain discoveries related to cosmic-ray acceleration.

  2. A Study of the Design of Acceleration Control System for Missiles

    NASA Astrophysics Data System (ADS)

    Kajita, Takanori; Eguchi, Hirofumi

    A 2-degrees of freedom PID controller is designed for a maneuvering acceleration control system. This design method is based on the combination of PID and IPD controller. Results show that (1) IP controller is superior to PI controller for the damper loop controller, (2) the selection of PI or IP controller as for the acceleration controller depends on the tradeoffs between the responsibility and the reduction of inverse response.

  3. X-ray photoelectron spectroscopic studies on yttria, zirconia, and yttria-stabilized zirconia

    SciTech Connect

    Majumdar, D. ); Chatterjee, D. )

    1991-07-15

    Surfaces of yttria, zirconia, and yttria-stabilized zirconia were studied using x-ray photoelectron spectroscopy. An almost threefold increase in the surface yttrium concentration was observed in the yttria-stabilized zirconia samples. The core level binding energies of yttrium, zirconium, and oxygen ions in yttria-stabilized zirconia showed chemical shifts. Valence bands and Auger parameters were monitored for the monoclinic and the tetragonal phases of zirconia. Characteristic differences were observed for the two phases due to their different oxygen coordination. The results were used to identify surface phase transitions which were difficult to detect by x-ray diffraction.

  4. Thermodynamic Calculation Study on Effect of Manganese on Stability of Austenite in High Nitrogen Stainless Steels

    NASA Astrophysics Data System (ADS)

    Wang, Qingchuan; Zhang, Bingchun; Yang, Ke

    2016-07-01

    A series of high nitrogen steels were studied by using thermodynamic calculations to investigate the effect of manganese on the stability of austenite. Surprisingly, it was found that the austenite stabilizing ability of manganese was strongly weakened by chromium, but it was strengthened by molybdenum. In addition, with an increase of manganese content, the ferrite stabilizing ability of chromium significantly increased, but that of molybdenum decreased. Therefore, strong interactions exist between manganese and the other alloying elements, which should be the main reason for the difference among different constituent diagrams.

  5. Thermodynamic Calculation Study on Effect of Manganese on Stability of Austenite in High Nitrogen Stainless Steels

    NASA Astrophysics Data System (ADS)

    Wang, Qingchuan; Zhang, Bingchun; Yang, Ke

    2016-05-01

    A series of high nitrogen steels were studied by using thermodynamic calculations to investigate the effect of manganese on the stability of austenite. Surprisingly, it was found that the austenite stabilizing ability of manganese was strongly weakened by chromium, but it was strengthened by molybdenum. In addition, with an increase of manganese content, the ferrite stabilizing ability of chromium significantly increased, but that of molybdenum decreased. Therefore, strong interactions exist between manganese and the other alloying elements, which should be the main reason for the difference among different constituent diagrams.

  6. Electrochemical oxidation stability of anions for modern battery electrolytes: a CBS and DFT study.

    PubMed

    Jónsson, Erlendur; Johansson, Patrik

    2015-02-01

    The electrochemical stability vs. oxidation is a crucial property of anions in order to be suitable as components in lithium-ion batteries. Here the applicability of a number of computational approaches and methods to assess this property, employing a wide selection of DFT functionals, has been studied using the CCSD(T)/CBS method as the reference. In all, the vertical anion oxidation potential, ΔEv, is a fair way to calculate the stability vs. oxidation, however, a functional of at least hybrid quality is recommended. In addition, the chemical hardness, η, is identified as a novel approach to calculate the stability vs. oxidation. PMID:25557392

  7. Thermal gravity analysis for the study of stability of graphene oxide-glycine nanocomposites

    NASA Astrophysics Data System (ADS)

    Najafi, F.; Rajabi, M.

    2015-05-01

    In this work, we synthesized graphene oxide-glycine (GO-G) nanocomposite. To produce this nanocomposite with GO surface, glycine with known concentration was added to GO suspension in ethanol solvent. Nanocomposites provided were characterized by scanning electron microscope (SEM) and Fourier transform infrared (FT-IR) spectroscopy, respectively. Thermogravimetric analysis (TGA) was employed to investigate the thermal stability of these nanocomposites. Results of characterization by SEM and FT-IR showed that nanocomposite was created by the reaction between GO and G. Study of thermal stability by TGA showed that thermal stability of GO was more than that of the GO-G nanocomposite.

  8. A Stability Study of Ni/Yttria-Stabilized Zirconia Anode for Direct Ammonia Solid Oxide Fuel Cells.

    PubMed

    Yang, Jun; Molouk, Ahmed Fathi Salem; Okanishi, Takeou; Muroyama, Hiroki; Matsui, Toshiaki; Eguchi, Koichi

    2015-12-30

    In recent years, solid oxide fuel cells fueled with ammonia have been attracting intensive attention. In this work, ammonia fuel was supplied to the Ni/yttria-stabilized zirconia (YSZ) cermet anode at 600 and 700 °C, and the change of electrochemical performance and microstructure under the open-circuit state was studied in detail. The influence of ammonia exposure on the microstructure of Ni was also investigated by using Ni/YSZ powder and Ni film deposited on a YSZ disk. The obtained results demonstrated that Ni in the cermet anode was partially nitrided under an ammonia atmosphere, which considerably roughened the Ni surface. Moreover, the destruction of the anode support layer was confirmed for the anode-supported cell upon the temperature cycling test between 600 and 700 °C because of the nitriding phenomenon of Ni, resulting in severe performance degradation. PMID:26642379

  9. Study on the radiation problem caused by electron beam loss in accelerator tubes

    NASA Astrophysics Data System (ADS)

    Li, Quan-Feng; Guo, Bing-Qi; Zhang, Jie-Xi; Chen, Huai-Bi

    2008-07-01

    The beam dynamic code PARMELA was used to simulate the transportation process of accelerating electrons in S-band SW linacs with different energies of 2.5, 6 and 20 MeV. The results indicated that in the ideal condition, the percentage of electron beam loss was 50% in accelerator tubes. Also we calculated the spectrum, the location and angular distribution of the lost electrons. Calculation performed by Monte Carlo code MCNP demonstrated that the radiation distribution of lost electrons was nearly uniform along the tube axis, the angular distributions of the radiation dose rates of the three tubes were similar, and the highest leaking dose was at the angle of 160° with respect to the axis. The lower the energy of the accelerator, the higher the radiation relative leakage. For the 2.5 MeV accelerator, the maximum dose rate reached 5% of the main dose and the one on the head of the electron gun was 1%, both of which did not meet the eligible protection requirement for accelerators. We adopted different shielding designs for different accelerators. The simulated result showed that the shielded radiation leaking dose rates fulfilled the requirement. Supported by National Natural Science Foundation of China (10135040)

  10. The Experimental Study of Rayleigh-Taylor Instability using a Linear Induction Motor Accelerator

    NASA Astrophysics Data System (ADS)

    Yamashita, Nicholas; Jacobs, Jeffrey

    2009-11-01

    The experiments to be presented utilize an incompressible system of two stratified miscible liquids of different densities that are accelerated in order to produce the Rayleigh-Taylor instability. Three liquid combinations are used: isopropyl alcohol with water, a calcium nitrate solution or a lithium polytungstate solution, giving Atwood numbers of 0.11, 0.22 and 0.57, respectively. The acceleration required to drive the instability is produced by two high-speed linear induction motors mounted to an 8 m tall drop tower. The motors are mounted in parallel and have an effective acceleration length of 1.7 m and are each capable of producing 15 kN of thrust. The liquid system is contained within a square acrylic tank with inside dimensions 76 x76x184 mm. The tank is mounted to an aluminum plate, which is driven by the motors to create constant accelerations in the range of 1-20 g's, though the potential exists for higher accelerations. Also attached to the plate are a high-speed camera and an LED backlight to provide continuous video of the instability. In addition, an accelerometer is used to provide acceleration measurements during each experiment. Experimental image sequences will be presented which show the development of a random three-dimensional instability from an unforced initial perturbation. Measurements of the mixing zone width will be compared with traditional growth models.

  11. Efficient Heterogeneous Execution on Large Multicore and Accelerator Platforms: Case Study Using a Block Tridiagonal Solver

    SciTech Connect

    Park, Alfred J; Perumalla, Kalyan S

    2013-01-01

    The algorithmic and implementation principles are explored in gainfully exploiting GPU accelerators in conjunction with multicore processors on high-end systems with large numbers of compute nodes, and evaluated in an implementation of a scalable block tridiagonal solver. The accelerator of each compute node is exploited in combination with multicore processors of that node in performing block-level linear algebra operations in the overall, distributed solver algorithm. Optimizations incorporated include: (1) an efficient memory mapping and synchronization interface to minimize data movement, (2) multi-process sharing of the accelerator within a node to obtain balanced load with multicore processors, and (3) an automatic memory management system to efficiently utilize accelerator memory when sub-matrices spill over the limits of device memory. Results are reported from our novel implementation that uses MAGMA and CUBLAS accelerator software systems simultaneously with ACML for multithreaded execution on processors. Overall, using 940 nVidia Tesla X2090 accelerators and 15,040 cores, the best heterogeneous execution delivers a 10.9-fold reduction in run time relative to an already efficient parallel multicore-only baseline implementation that is highly optimized with intra-node and inter-node concurrency and computation-communication overlap. Detailed quantitative results are presented to explain all critical runtime components contributing to hybrid performance.

  12. An experimental study of the motorcycle roll stabilization task

    NASA Technical Reports Server (NTRS)

    Eaton, D. J.

    1973-01-01

    The work of Sharp represents the most complete theoretical analysis of the uncontrolled motorcycle presently available, and serves as a theoretical basis for the study described. Sharp's analysis included roll, yaw, lateral translation, and steering degrees of freedom, and the resulting equations are linear with constant coefficients. Tire aligning moments due to tire sideslip were added to Sharp's equations. Experimental results are presented, and related to the theoretical studies of Sharp and Weir.

  13. Initial Results of Catheter-Directed Ultrasound-Accelerated Thrombolysis for Thromboembolic Obstructions of the Aortofemoral Arteries: A Feasibility Study

    SciTech Connect

    Schrijver, A. Marjolein; Reijnen, Michel M. P. J.; Oostayen, Jacques A. van; Hoksbergen, Arjan W. J.; Lely, Rutger J.; Leersum, Marc van; Vries, Jean-Paul P. M. de

    2012-04-15

    Purpose: This article reports the 30-day technical and clinical outcome of ultrasound (US)-accelerated thrombolysis in patients with aortofemoral arterial thromboembolic obstructions. Methods: A prospective cohort study was conducted from December 2008 to December 2009 of patients who were treated with US-accelerated thrombolysis for thromboembolic obstructions of aortofemoral arteries or bypasses. Urokinase was infused in a dosage of 100,000 IU per hour. Twice daily, a control angiography was performed. Thirty-day follow-up consisted of duplex scanning, combined with magnetic resonance angiography. Results: The study included 21 consecutive patients (20 men; median age, 66 (range, 52-80) years) with 24% artery versus 76% bypass occlusions. Median duration of symptoms was 11 (range, 7-140) days. Median occlusion length was 32 (range, 6-80) cm. In 20 patients (95%), an US-accelerated thrombolysis catheter could be successfully placed. In one patient, placement of an US-accelerated thrombolysis catheter was technically not feasible, and therefore a standard catheter was placed. Median thrombolysis time was 26.5 (range, 8.5-72) hours. Complete thrombolysis (>95% lysis of thrombus) was achieved in 20 patients; in 9 patients within 24 hours. Median ankle-brachial index (ABI) increased from 0.28 (range, 0-0.85) to 0.91 (range, 0.58-1.35). One patient had a thromboembolic complication and needed surgical intervention. No hemorrhagic complications, and no deaths occurred. At 30-day follow-up, 17 of 21 patients (81%) had a patent artery or bypass. Conclusions: This feasibility study showed a high technical success rate of US-accelerated thrombolysis for aortofemoral arterial obstructions. US-accelerated thrombolysis led to complete lysis within 24 hours in almost half of patients, with a low 30-day major complication rate.

  14. Novel in situ gelling ocular films for the opioid growth factor-receptor antagonist-naltrexone hydrochloride: fabrication, mechanical properties, mucoadhesion, tolerability and stability studies.

    PubMed

    Abdelkader, Hamdy; Pierscionek, Barbara; Alany, Raid G

    2014-12-30

    Naltrexone hydrochloride (NTX) is an innovative drug used in ophthalmology for treatment of ocular surface diseases such as impaired corneal wound healing and severe dry eye. Poor chemical stability has been a major limitation for development of NTX in solution form. The aim of this study was to develop and characterise NTX in situ ocular films for enhanced chemical stability and improved ocular tolerability. The films were prepared from different amorphous polymers and characterised for physicochemical compatibility, moisture-sorption, surface pH, mechanical properties, sterilisability, surface morphology, mucoadhesion, in vitro release, conjunctival irritation and accelerated stability at 40°C/75% relative humidity for 3 months. Glycerin (GLY)-plasticised films exhibited significantly better mechanical properties, compared with polyethylene glycol (PEG) 400 and triethylcitrate (TEC)-plasticised formulations. Superior mucoadhesion was recorded for F7 and F9 plasticised with GLY and PEG 400, respectively. The stability of NTX was significantly enhanced more than 18-times, compared with the solution form. Combination of carboxymethylcellulose sodium (CMC) and sodium alginate (ALG) in a film formulation demonstrated minimal % moisture sorption, good mechanical properties, in vitro release, excellent chemical stability and minimal conjunctival irritation lending them as promising ocular formulations. PMID:25445974

  15. Local dynamic stability as a responsive index for the evaluation of rehabilitation effect on fall risk in patients with multiple sclerosis: a longitudinal study

    PubMed Central

    2013-01-01

    Background Gait and balance problems are common in patients with multiple sclerosis, leading to high risk for falls. Local Dynamic Stability (LDS), a non-linear gait stability index, has been advocated as an early indicator of risk for falls. With this longitudinal study over three weeks, we aimed to assess the responsiveness of Local Dynamic Stability to a rehabilitation program and to compare it to other measures. Methods Eighteen patients (mean 54 years, median EDSS score: 5) participated. They were admitted to inpatient rehabilitation and received a three weeks individually tailored program. They performed a 3-minute walking test at the beginning and at the end of the stay, as well as pain, wellbeing, fatigue, and balance assessment. The Local Dynamic Stability was computed from the acceleration signals measured with a 3D-accelerometer. Results At the end of the rehabilitation process, patients reported reduced pain (Effect Size: −0.7), fatigue (ES:-0.6), and increased wellbeing (ES: 1.1). A small positive effect on static balance was observed (ES: 0.3). LDS was improved (ES: 0.6), and the effect was higher than walking speed improvement (ES: 0.4). Conclusions The Local Dynamic Stability seemed responsive to assess rehabilitation effects in patients with multiple sclerosis. It could constitute a valuable gait quality index, which could evaluate potential effects of rehabilitation on fall risk. Trial registration Current Controlled Trials ISRCTN69803702. PMID:23835061

  16. Studies of beam dynamics in relativistic klystron two-beam accelerators

    SciTech Connect

    Lidia, Steven M.

    1999-11-01

    Two-beam accelerators (TBAs) based upon free-electron lasers (FELs) or relativistic klystrons (RK-TBAs) have been proposed as efficient power sources for next generation high-energy linear colliders. Studies have demonstrated the possibility of building TBAs from X-band ({approximately}8-12 GHz) through Ka band ({approximately} 30-35 GHz) frequency regions. Provided that further prototyping shows stable beam propagation with minimal current loss and production of good quality, high-power rf fields, this technology is compatible with current schemes for electron-positron colliders in the multi-TeV center-of-mass scale. A new method of simulating the beam dynamics in accelerators of this type has been developed in this dissertation. There are three main components to this simulation. The first is a tracking algorithm to generate nonlinear transfer maps for pushing noninteracting particles through the external fields. The second component is a 3D Particle-In-Cell (PIC) algorithm that solves a set of Helmholtz equations for the self-fields, including the conducting boundary condition, and generates impulses that are interleaved with the nonlinear maps by means of a split-operation algorithm. The Helmholtz equations are solved by a multi-grid algorithm. The third component is an equivalent circuit equation solver that advances the modal rf cavity fields in time due to excitation by the modulated beam. The RTA project is described, and the simulation code is used to design the latter portions of the experiment. Detailed calculations of the beam dynamics and of the rf cavity output are presented and discussed. A beamline design is presented that will generate nearly 1.2 GW of power from 40 input, gain, and output rv cavities over a 10 m distance. The simulations show that beam current losses are acceptable, and that longitudinal and transverse focusing techniques are sufficient capable of maintaining a high degree of beam quality along the entire beamline. Additional

  17. Study of Electron Acceleration and Multiple Dipolarization Fronts in 3D kinetic models

    NASA Astrophysics Data System (ADS)

    Lapenta, Giovanni; Ashour-Abdalla, Maha; Walker, Raymond; El-Alaoui, Mostafa

    2014-05-01

    The THEMIS mission encountered a depolarization front (DF) during a magnetotail crossing in the interval 035600 - 035900 UT on February 15, 2008 [1]. We present the results of an innovative investigative approach: we combine a global MHD model of the full Earth environment with a local PIC simulation. The global MHD view is provided on the UCLA model applied to the conditions for the interval of interest on Feb 15, 2008. At the specific time of 034800UT, a reconnection site first appear at about x=-15RE, y=4RE. We then use this specific MHD state as the initial setup for a fully kinetic PIC simulation, performed with the iPic3D code [2]. We consider a one way coupling where the MHD state is used as initial state and boundary conditions for the kinetic study [3]. In the present case, the time span of the kinetic simulation is short form the perspective of the global MHD simulation and does not require a full coupling where the MHD then process the information received back from the kinetic run [4]. The fields and particles are advanced self-consistently from the MHD state using a completely kinetic treatment. Many features missed by the MHD model emerge. Most notably a fast reconnection pattern develops and an unsteady reconnection process develops. The typical signatures of fast kinetic reconnection (Hall field) are observed and particle acceleration is obtained self consistently in the fields generated by the PIC simulation. The focus of the presentation will be the mechanisms of unsteady reconnection leading to multiple DFs. We observe intense wave activity propagating off the separatrices. We conduct a spectral analysis to isolate the different wave components in the lower hybrid and whistler regime. The unsteady reconnection and multiple DFs are also analysed in their impact on the energy transfer. We track the conversion of magnetic energy to particle energy and Poynting flux. The processes observed in the simulation are then compared with in situ THEMIS data

  18. Accelerator-Based Studies of Heavy Ion Interactions Relevant to Space Biomedicine

    NASA Technical Reports Server (NTRS)

    Miller, J.; Heilbronn, L.; Zeitlin, C.

    1999-01-01

    Alternating Gradient Synchrotron at Brookhaven National Laboratory (BNL AGS) and the Heavy Ion Medical Accelerator (HIMAC) in Chiba, Japan. Until fairly recently most of these experiments were done to investigate fundamental problems in nuclear physics, but with the increasing interest in heavy charged particles on the part of the space flight, radiobiology and radiotherapy communities, an increasing number of experiments are being directed at these areas. Some of these measurements are discussed in references therein. Over the past several years, our group has taken cross section and fluence data at the AGS and HIMAC for several incident beams with nuclear charge, Z, between 6 and 26 at energies between 290 and 1050 MeV/nucleon. Iron (Z = 26) has been studied most extensively, since it is the heaviest ion present in significant numbers in the GCR. Targets have included tissue-equivalent and proposed shielding materials, as well as a variety of elemental targets for cross section measurements. Most of the data were taken along the beam axis, but measurements have been made off-axis, as well. Here we present selected data and briefly discuss some implications for spacecraft and planetary habitat design.

  19. Nonautonomous motion study on accelerated and decelerated solitons for the variable-coefficient Lenells-Fokas model.

    PubMed

    Lü, Xing; Peng, Mingshu

    2013-03-01

    In this paper, the nonautonomous Lenells-Fokas (LF) model is studied with the bilinear method and symbolic computation. Such analytical solutions of the nonautonomous LF model as one-soliton, two-soliton, and earthwormons are derived. Nonautonomous characteristics are then symbolically and graphically investigated, and it is finally found that the soliton velocity is time-dependent, and there exist soliton accelerating and decelerating motions. Further, two necessary conditions for the occurrence of earthwormon acceleration and deceleration (and their alternation) are pointed out. PMID:23556959

  20. Plasma accelerators

    SciTech Connect

    Ruth, R.D.; Chen, P.

    1986-03-01

    In this paper we discuss plasma accelerators which might provide high gradient accelerating fields suitable for TeV linear colliders. In particular we discuss two types of plasma accelerators which have been proposed, the Plasma Beat Wave Accelerator and the Plasma Wake Field Accelerator. We show that the electric fields in the plasma for both schemes are very similar, and thus the dynamics of the driven beams are very similar. The differences appear in the parameters associated with the driving beams. In particular to obtain a given accelerating gradient, the Plasma Wake Field Accelerator has a higher efficiency and a lower total energy for the driving beam. Finally, we show for the Plasma Wake Field Accelerator that one can accelerate high quality low emittance beams and, in principle, obtain efficiencies and energy spreads comparable to those obtained with conventional techniques.

  1. Recent study of beam stability in the PSR

    SciTech Connect

    Wang, T.S.F.; Cooper, R.; Fitzgerald, D.; Frankle, S.; Hardek, T.; Hutson, R.; Macek, R.; Ohmori, C.; Plum, M.; Thiessen, H.; Wilkinson, C.; Colton, E.; Neuffer, D.; Rees, G.

    1993-06-01

    A fast transverse instability with beam loss has been observed in the 800 MeV Los Alamos Pro Ring (PSR) when the injected beam intensity reaches 2 - 4 {times} 10{sup 13} protons per pulse. Previous observations in that the instability is most likely driven by electrons trapped within the proton beam. Theoretical study shown that beam leakage into the inter-bunch gap leads to electron trapping. Recent experiments were carried out by using the newly implemented ``pinger`` and by varying the machine transition gamma to explore further the ``e-p`` instability and the nature of the instability. This paper summarizes some of these recent experimental results and theoretical studies.

  2. Recent study of beam stability in the PSR

    SciTech Connect

    Wang, T.S.F.; Cooper, R.; Fitzgerald, D.; Frankle, S.; Hardek, T.; Hutson, R.; Macek, R.; Ohmori, C.; Plum, M.; Thiessen, H.; Wilkinson, C. ); Colton, E. ); Neuffer, D. ); Rees, G. )

    1993-01-01

    A fast transverse instability with beam loss has been observed in the 800 MeV Los Alamos Pro Ring (PSR) when the injected beam intensity reaches 2 - 4 [times] 10[sup 13] protons per pulse. Previous observations in that the instability is most likely driven by electrons trapped within the proton beam. Theoretical study shown that beam leakage into the inter-bunch gap leads to electron trapping. Recent experiments were carried out by using the newly implemented pinger'' and by varying the machine transition gamma to explore further the e-p'' instability and the nature of the instability. This paper summarizes some of these recent experimental results and theoretical studies.

  3. A Study of Laminar Compressible Viscous Pipe Flow Accelerated by an Axial Body Force, with Application to Magnetogasdynamics

    NASA Technical Reports Server (NTRS)

    Martin, E. Dale

    1961-01-01

    A study is made of the steady laminar flow of a compressible viscous fluid in a circular pipe when the fluid is accelerated by an axial body force. The application of the theory to the magnetofluidmechanics of an electrically conducting gas accelerated by electric and magnetic fields is discussed. Constant viscosity, thermal conductivity, and electrical conductivity are assumed. Fully developed flow velocity and temperature profiles are shown, and detailed results of the accelerating flow development, including velocity and pressure as functions of distance, are given for the case where the axial body force is constant and for the case where it is a linear function of velocity. From these results are determined the pipe entry length and the pressure difference required.

  4. Kinetic Study of Radiation-Reaction-Limited Particle Acceleration During the Relaxation of Force-Free Equilibria

    NASA Astrophysics Data System (ADS)

    Yuan, Yajie; Nalewajko, Krzysztof; Blandford, Roger D.; East, William E.; Zrake, Jonathan

    2016-01-01

    Many powerful and variable gamma-ray sources, including pulsar wind nebulae, active galactic nuclei and gamma-ray bursts, seem capable of accelerating particles to gamma-ray emitting energies efficiently over short time scales. This might be due to prodigal dissipation in a highly magnetized outflow. In order to understand the generic behavior of relativistic plasma with high magnetization, we consider a class of prototypical force-free equilibria which are shown to be unstable to ideal modes (East et al 2015 PRL 115, 095002). Kinetic simulations are carried out to follow the evolution of the instability and to study the basic mechanisms of particle acceleration, especially in the radiation-reaction-limited regime. We find that the instability naturally produces current layers and these are sites for efficient particle acceleration. Detailed calculations of the gamma ray spectrum, the evolution of the particle distribution function and the dynamical consequences of radiation reaction will be presented.

  5. Improving Bone Microarchitecture in Aging with Diosgenin Treatment: A Study in Senescence-Accelerated OXYS Rats.

    PubMed

    Tikhonova, Maria A; Ting, Che-Hao; Kolosova, Nataliya G; Hsu, Chao-Yu; Chen, Jian-Horng; Huang, Chi-Wen; Tseng, Ging-Ting; Hung, Ching-Sui; Kao, Pan-Fu; Amstislavskaya, Tamara G; Ho, Ying-Jui

    2015-10-31

    Osteoporosis is a major disease associated with aging. We have previously demonstrated that diosgenin prevents osteoporosis in both menopause and D-galactose-induced aging rats. OXYS rats reveal an accelerated senescence and are used as a suitable model of osteoporosis. The aim of the present study was to analyze microarchitecture and morphological changes in femur of OXYS rats using morphological tests and microcomputed tomography scanning, and to evaluate the effects of oral administration of diosgenin at 10 and 50 mg/kg/day on femur in OXYS rats. The result showed that, compared with age-matched Wistar rats, the femur of OXYS rats revealed lower bone length, bone weight, bone volume, frame volume, frame density, void volume, porosity, external and internal diameters, cortical bone area, BV/TV, Tb.N, and Tb.Th, but higher Tb.Sp. Eight weeks of diosgenin treatment decreased porosity and Tb.Sp, but increased BV/TV, cortical bone area, Tb.N and bone mineral density, compared with OXYS rats treated with vehicle. These data reveal that microarchitecture and morphological changes in femur of OXYS rats showed osteoporotic aging features and suggest that diosgenin may have beneficial effects on aging-induced osteoporosis. PMID:26387656

  6. A study on leakage radiation dose at ELV-4 electron accelerator bunker

    SciTech Connect

    Chulan, Mohd Rizal Md E-mail: redzuwan@ukm.my; Yahaya, Redzuwan E-mail: redzuwan@ukm.my; Ghazali, Abu BakarMhd

    2014-09-03

    Shielding is an important aspect in the safety of an accelerator and the most important aspects of a bunker shielding is the door. The bunker’s door should be designed properly to minimize the leakage radiation and shall not exceed the permitted limit of 2.5μSv/hr. In determining the leakage radiation dose that passed through the door and gaps between the door and the wall, 2-dimensional manual calculations are often used. This method is hard to perform because visual 2-dimensional is limited and is also very difficult in the real situation. Therefore estimation values are normally performed. In doing so, the construction cost would be higher because of overestimate or underestimate which require costly modification to the bunker. Therefore in this study, two methods are introduced to overcome the problem such as simulation using MCNPX Version 2.6.0 software and manual calculation using 3-dimensional model from Autodesk Inventor 2010 software. The values from the two methods were eventually compared to the real values from direct measurements using Ludlum Model 3 with Model 44-9 probe survey meter.

  7. An accelerated carbonation procedure for studies of corrosion in reinforced concrete

    SciTech Connect

    Al-Kadhimi, T.K.H.; Banfill, P.F.G.; Millard, S.G.; Bungey, J.H.

    1995-10-01

    Carbonation of the concrete leading to reduced alkalinity around the steel is one of the main reasons for the corrosion of reinforced concrete. Studies of carbonation induced corrosion and of rehabilitation methods, such as electrochemical realkalization, require the convenient preparation of realistically large specimens of carbonated concrete in a sufficiently short time. This paper describes a rapid method of preparing carbonated concrete by exposing concrete, which has been dried to an internal relative humidity of 60%, to a pure atmosphere of carbon dioxide gas at 15 bar pressure (1,500 kPa). The pressure chamber used can accommodate specimens up to 150mm diameter or 100 x 100 mm section and such specimens can be fully carbonated in 2 weeks, much more quickly than by other methods. Carbonation increases the electrical resistivity and strength of the concrete and reduces the water absorption. Optical and electron microscopical investigations on the carbonated concrete confirm that the microstructure is no different from that produced in concrete by carbonation under natural exposure. The accelerated carbonation method can be used for development work on materials and repair methods and has been used by the authors in preparing carbonated concrete specimens for re-alkalization tests.

  8. A study on leakage radiation dose at ELV-4 electron accelerator bunker

    NASA Astrophysics Data System (ADS)

    Chulan, Mohd Rizal Md; Yahaya, Redzuwan; Ghazali, Abu BakarMhd

    2014-09-01

    Shielding is an important aspect in the safety of an accelerator and the most important aspects of a bunker shielding is the door. The bunker's door should be designed properly to minimize the leakage radiation and shall not exceed the permitted limit of 2.5μSv/hr. In determining the leakage radiation dose that passed through the door and gaps between the door and the wall, 2-dimensional manual calculations are often used. This method is hard to perform because visual 2-dimensional is limited and is also very difficult in the real situation. Therefore estimation values are normally performed. In doing so, the construction cost would be higher because of overestimate or underestimate which require costly modification to the bunker. Therefore in this study, two methods are introduced to overcome the problem such as simulation using MCNPX Version 2.6.0 software and manual calculation using 3-dimensional model from Autodesk Inventor 2010 software. The values from the two methods were eventually compared to the real values from direct measurements using Ludlum Model 3 with Model 44-9 probe survey meter.

  9. Study of antineutrino oscillations using accelerator and atmospheric data in MINOS

    SciTech Connect

    Cao, Son Van

    2014-05-01

    The Main Injector Neutrino Oscillation Search (MINOS) is a long baseline experiment that was built for studying the neutrino oscillation phenomena. The MINOS experiment uses high intensity muon neutrino and antineutrino beams created by Neutrinos at the Main Injector facility (NuMI) at the Fermi National Accelerator Laboratory (Fermilab). Neutrino interactions are recorded by two sampling steel-scintillator tracking calorimeters: 0.98\\,kton Near Detector at Fermilab, IL and 5.4\\,kton Far Detector at the Soudan Underground Laboratory, MN. These two detectors are functionally identical, which helps to reduce the systematic uncertainties in the muon neutrino and antineutrino disappearance measurements. The Near Detector, located 1.04\\,km from the neutrino production target, is used to measure the initial beam composition and neutrino energy proximal to the neutrino source. The collected data at the Near Detector is then used to predict energy spectrum in the Far Detector. By comparing this prediction to collected data at the Far Detector, which is 735\\,km away from the target, it enables a measurement of a set of parameters that govern the neutrino oscillation phenomenon. \\\\ \\indent The flexibility of the NuMI beam configuration and the magnetization of the MINOS detectors facilitate the identification of $\

  10. Low-emittance uniform density Cs sup + sources for heavy ion fusion accelerators studies

    SciTech Connect

    Eylon, S.; Henestroza, E.; Garvey, T.; Johnson, R.; Chupp, W.

    1991-04-01

    Low-emittance (high-brightness) Cs{sup +} thermionic sources were developed for the heavy ion induction linac experiment MBE-4 at LBL. The MBE-4 linac accelerates four 10 mA beams from 200 ke V to 900 ke V while amplifying the current up to a factor of nine. Recent studies of the transverse beam dynamics suggested that characteristics of the injector geometry were contributing to the normalized transverse emissions growth. Phase-space and current density distribution measurements of the beam extracted from the injector revealed overfocusing of the outermost rays causing a hollow density profile. We shall report on the performance of a 5 mA scraped beam source (which eliminates the outermost beam rays in the diode) and on the design of an improved 10 mA source. The new source is based on EGUN calculations which indicated that a beam with good emissions and uniform current density could be obtained by modifying the cathode Pierce electrodes and using a spherical emitting surface. The measurements of the beam current density profile on a test stand were found to be in agreement with the numerical simulations. 3 refs., 6 figs.

  11. Experimental study on a heavy-gas cylinder accelerated by cylindrical converging shock waves

    NASA Astrophysics Data System (ADS)

    Si, T.; Zhai, Z.; Luo, X.; Yang, J.

    2014-01-01

    The Richtmyer-Meshkov instability behavior of a heavy-gas cylinder accelerated by a cylindrical converging shock wave is studied experimentally. A curved wall profile is well-designed based on the shock dynamics theory [Phys. Fluids, 22: 041701 (2010)] with an incident planar shock Mach number of 1.2 and a converging angle of in a mm square cross-section shock tube. The cylinder mixed with the glycol droplets flows vertically through the test section and is illuminated horizontally by a laser sheet. The images obtained only one per run by an ICCD (intensified charge coupled device) combined with a pulsed Nd:YAG laser are first presented and the complete evolution process of the cylinder is then captured in a single test shot by a high-speed video camera combined with a high-power continuous laser. In this way, both the developments of the first counter-rotating vortex pair and the second counter-rotating vortex pair with an opposite rotating direction from the first one are observed. The experimental results indicate that the phenomena induced by the converging shock wave and the reflected shock formed from the center of convergence are distinct from those found in the planar shock case.

  12. Empirical Study of the Stability of Biodiesel and Biodiesel Blends: Milestone Report

    SciTech Connect

    McCormick, R. L.; Westbrook, S. R.

    2007-05-01

    The objective of this work was to develop a database that supports specific proposals for a stability test and specification for biodiesel and biodiesel blends. B100 samples from 19 biodiesel producers were obtained in December of 2005 and January of 2006 and tested for stability. Eight of these samples were then selected for additional study, including long-term storage tests and blending at 5% and 20% with a number of ultra-low sulfur diesel fuels.

  13. The study of the measurement and evaluation of coal-water-slurry stability

    SciTech Connect

    He Weijun; Liang Juntai; Zhang Rongzeng

    1997-12-31

    Coal-water-slurry (CWS) is a new type of substitute fuel for oil. It contains about 70% fine coal, 1% chemical additive, and water. It can be pumped, transported, atomized and burned. The main specific properties of CWS are as follows: fluidity, stability, thixotropy, atomizing and burning, etc. The stability and fluidity are the most important properties which are related to every phase of the CWS technology (manufacturing, transportation, storage, combustion). After evaluating the measuring methods for CWS stability used before, the authors designed and fabricated an oscillating-subsiding device and the corresponding electric testing circuit. According to the changing rate value of the oscillating device`s period, they can evaluate the CWS stability. They used four kinds of coal in the experiments, and studied the influences on CWS stability caused by the different coal, CWS concentration, CWS viscosity etc. They proved that it is correct to evaluate the CWS stability by using the device`s period changing rate, and it can quickly, accurately and quantitatively evaluate CWS character. This paper describes the authors` method of CWS stability evaluation.

  14. Adolescent Ethnolinguistic Stability and Change: A Longitudinal Study

    ERIC Educational Resources Information Center

    Kohn, Mary Elizabeth

    2013-01-01

    Most sociolinguistic studies rely on apparent time, cross-sectional methods to analyze language change. On the basis of apparent time data, sociolinguists have hypothesized that cultural processes of lifespan change create predictable cycles of linguistic behavior in which adolescents lead in the use of vernacular variants and advance sound change…

  15. Systematic Study of Student Understanding of the Relationships between the Directions of Force, Velocity, and Acceleration in One Dimension

    ERIC Educational Resources Information Center

    Rosenblatt, Rebecca; Heckler, Andrew F.

    2011-01-01

    We developed an instrument to systematically investigate student conceptual understanding of the relationships between the directions of net force, velocity, and acceleration in one dimension and report on data collected on the final version of the instrument from over 650 students. Unlike previous work, we simultaneously studied all six possible…

  16. Teacher Leadership and School Reform: A Case Study of the Accelerating Student Achievement Project in a Central Kentucky School District

    ERIC Educational Resources Information Center

    Robinson, Jennifer B.

    2009-01-01

    In the study reported here, I explored the notion of teacher leadership as described by individuals participating in a district-wide school reform initiative, the Accelerating Student Achievement Project. Through the district-wide project, teacher leaders were identified at each of the middle and high schools to further develop the schools'…

  17. Solid-state stability studies of crystal form of tebipenem.

    PubMed

    Talaczyńska, Alicja; Lewandowska, Kornelia; Garbacki, Piotr; Zalewski, Przemysław; Skibiński, Robert; Miklaszewski, Andrzej; Mizera, Mikołaj; Cielecka-Piontek, Judyta

    2016-01-01

    The aim of this study was to determine the kinetic and thermodynamic parameters of tebipenem degradation in the solid state. The process was analyzed based on the results obtained by a high performance liquid chromatography (HPLC) method using ultraviolet diode-array detector (DAD)/electrospray ionization tandem mass spectrometry (Q-TOF-MS/MS), Fourier transform infrared spectroscopy (FT-IR) and Raman spectroscopic (RS) studies. In dry air, the degradation of tebipenem was a first-order reaction depending on the substrate concentration while at an increased relative air humidity tebipenem was degraded according to the kinetic model of autocatalysis. The thermodynamic parameters: energy of activation (Ea), enthalpy (ΔH(≠a)) and entropy (ΔS(≠a)) of tebipenem degradation were calculated. Following a spectroscopic analysis of degraded samples of tebipenem, a cleavage of the β-lactam bond was proposed as the main degradation pathway, next confirmation using HPLC-Q-TOF-MS/MS method. PMID:26043654

  18. Fundamental Studies of Fluid Mechanics: Stability in Porous Media

    SciTech Connect

    Homsy, George M.

    2014-02-12

    We summarize our research results in three main areas: coating flows; electrohydrodynamics of drops; and wetting and spreading of drops. Experimental, computational and analytical methods are used to address a variety of issues. Coating flow studies include the effect of roughness, surfactants, and adsorbed particles on the dynamics of dip-coating. Electrohydrodynamic studies include drop deformation in uniform electric fields, shape distortion due to charge convection in sedimenting drops, and driving chaotic advection by either an electric field inclined to the direction of drop motion or time-periodic changes in the direction of the electric field. Heat and mass transport from chaotically mixed droplets exhibit unexpected and remarkable increases in the rates of transport. Finally, we develop an analytical solution to the problem of a static droplet, and use numerical techniques to predict its migration due to surface tension gradients.

  19. Fiber Accelerating Structures

    SciTech Connect

    Hammond, Andrew P.; /Reed Coll. /SLAC

    2010-08-25

    One of the options for future particle accelerators are photonic band gap (PBG) fiber accelerators. PBG fibers are specially designed optical fibers that use lasers to excite an electric field that is used to accelerate electrons. To improve PBG accelerators, the basic parameters of the fiber were tested to maximize defect size and acceleration. Using the program CUDOS, several accelerating modes were found that maximized these parameters for several wavelengths. The design of multiple defects, similar to having closely bound fibers, was studied to find possible coupling or the change of modes. The amount of coupling was found to be dependent on distance separated. For certain distances accelerating coupled modes were found and examined. In addition, several non-periodic fiber structures were examined using CUDOS. The non-periodic fibers produced several interesting results and promised more modes given time to study them in more detail.

  20. Combustion accelerated swirling flows in high confinements

    NASA Astrophysics Data System (ADS)

    Weber, Roman; Dugue, Jacques

    Nine cold flows, 15 well-mixed flames, and eight type II diffusion flames of coke-oven gas are measured in the present study of the effect of combustion on the properties of swirl-induced internal recirculation zones (IRZ) formed in the vicinity of swirl-stabilized burners. Formulae for calculating the effective swirl number are presented. Attention is given to experiments in which initial swirling cold flows are combustion-accelerated; the position and degree of acceleration are systematically varied. The experimental results obtained deepen current understanding of the effects of combustion on swirling flows.

  1. Solid-state stability and compatibility studies of clavulanate potassium.

    PubMed

    Cielecka-Piontek, Judyta; Paczkowska, Magdalena; Zalewski, Przemysław; Lewandowska, Kornelia; Barszcz, Bolesław

    2015-03-01

    The kinetic and thermodynamic parameters of degradation of clavulanate potassium in the solid state were studied by using a reversed phase high performance liquid chromatography (RP-HPLC) method. The degradation of clavulanate potassium was a first-order reaction depending on the substrate concentration at an increased relative air humidity (RH) and in dry air. The dependence ln k = f(1/T) became the ln k = (0.026 ± 166.35)-(2702.82 ± 1779.43)(1/T) in dry air and ln k = (1.65 ± 100.40) × 10(3)-(5748.81 ± 3659.67)(1/T) at 76.4% RH. The thermodynamic parameters Ea, ΔH(≠a), ΔS(≠a) of the degradation of clavulanate potassium in the solid state were calculated. The dependence ln k = f (RH%) assumed the form ln k = (8.78 ± 5.75) 10 (-2) (RH%) + (2.64 × 10(-8 )± 40.41). The compatibility of clavulanate potassium with commonly used excipients was studied at an increased temperature and in dry air. The geometric structure of molecule, highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) orbitals were also determined in order to predict the structural changes and reactive sites in clavulanate potassium during degradation and compatibility studies in the solid state. The ultraviolet (UV), Fourier transform infrared spectroscopy (FT-IR) and Raman spectra of degraded samples of the compound were analyzed. PMID:24219797

  2. Stability and Metastability in Nematic Glasses: a Computational Study

    NASA Astrophysics Data System (ADS)

    Ambrozic, Milan; Sluckin, Timothy J.; Cvetko, Matej; Kralj, Samo

    The influence of randomly distributed impurities on liquid crystal (LC) orientational ordering is studied using a simple Lebwohl-Lasher type lattice model in two (d=2) and three (d=3) dimensions. The impurities of concentration p impose a random anisotropy field-type of disorder of strength w to the LC nematic phase. Orientational correlations can be well presented by a single coherence length ξ for a weak enough w. We show that the Imry-Ma scaling prediction w ξ α w- /2(4 -d) holds true if the LC configuration is initially quenched from the isotropic phase. For other initial configurations the scaling is in general not obeyed.

  3. [Analysis and stability of suxamethonium chloride. 2: Study of various factors in the stability of suxamethonium chloride injection solutions].

    PubMed

    Kottke, D; Döge, G; Pohloudek-Fabini, R

    1983-06-01

    The packing material (glass ampoules and plastic disposable syringes) and the degree of purity of the active agent do not affect the stability of injectable suxamethonium chloride solutions. In contrast to this, the stability was markedly improved by lowering the temperature of storage. Injectable suxamethonium chloride solutions may be stored in plastic disposable syringes. PMID:6611640

  4. Mechanical stability of propped hydraulic fractures: A numerical study

    SciTech Connect

    Asgian, M.I.; Cundall, P.A.; Brady, B.H.

    1995-03-01

    Proppant is sometimes produced along with hydrocarbons in hydraulically fractured petroleum wells. Sometimes 10% to 20% of the proppant is backproduced, which can lead to damaged equipment and downtime. Furthermore, proppant flowback can lead to a substantial loss of fracture conductivity. A numerical study was conducted to help understand what conditions are likely to lead to proppant flowback. In the simulations, the mechanical interaction of a larger number (several thousand) individual proppant grains was modeled with a distinct-element-type code. The numerical simulations show that hydraulic fractures propped with cohesionless, unbonded proppant fail under closure stress at a critical ratio of mean grain diameter to fracture width. This is consistent with published laboratory studies. The simulations identify the mechanism (arch failure) that triggers the mechanical instability and also show that the primary way that drawdowns (less than {approx} 75 psi/ft) affect proppant flowback is to transport loose proppant grains in front of the stable arch to the wellbore. Drawdowns > 75 psi/ft are sufficient to destabilize the arch and to cause progressive failure of the propped fractures.

  5. Defect stability in thorium monocarbide: An ab initio study

    NASA Astrophysics Data System (ADS)

    Wang, Chang-Ying; Han, Han; Shao, Kuan; Cheng, Cheng; Huai, Ping

    2015-09-01

    The elastic properties and point defects of thorium monocarbide (ThC) have been studied by means of density functional theory based on the projector-augmented-wave method. The calculated electronic and elastic properties of ThC are in good agreement with experimental data and previous theoretical results. Five types of point defects have been considered in our study, including the vacancy defect, interstitial defect, antisite defect, schottky defect, and composition-conserving defect. Among these defects, the carbon vacancy defect has the lowest formation energy of 0.29 eV. The second most stable defect (0.49 eV) is one of composition-conserving defects in which one carbon is removed to another carbon site forming a C2 dimer. In addition, we also discuss several kinds of carbon interstitial defects, and predict that the carbon trimer configuration may be a transition state for a carbon dimer diffusion in ThC. Project supported by the International S&T Cooperation Program of China (Grant No. 2014DFG60230), the National Natural Science Foundation of China (Grant No. 91326105), the National Basic Research Program of China (Grant No. 2010CB934504), and the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDA02040104).

  6. Study of the transverse beam motion in the DARHT Phase II accelerator

    SciTech Connect

    Chen, Yu-Jiuan; Fawley, W M; Houck, T L

    1998-08-20

    The accelerator for the second-axis of the Dual Axis Radiographic Hydrodynamic Test (DARHT) facility will accelerate a 4-kA, 3-MeV, 2--µs long electron current pulse to 20 MeV. The energy variation of the beam within the flat-top portion of the current pulse is (plus or equal to) 0.5%. The performance of the DARHT Phase II radiographic machine requires the transverse beam motion to be much less than the beam spot size which is about 1.5 mm diameter on the x-ray converter. In general, the leading causes of the transverse beam motion in an accelerator are the beam breakup instability (BBU) and the corkscrew motion. We have modeled the transverse beam motion in the DARHT Phase II accelerator with various magnetic tunes and accelerator cell configurations by using the BREAKUP code. The predicted sensitivity of corkscrew motion and BBU growth to different tuning algorithms will be presented.

  7. Linear accelerator design study with direct plasma injection scheme for warm dense matter

    SciTech Connect

    Kondo, K.; Kanesue, T; Okamura, M.

    2011-03-28

    Warm Dense Matter (WDM) is a challenging science field, which is related to heavy ion inertial fusion and planetary science. It is difficult to expect the behavior because the state with high density and low temperature is completely different from ideal condition. The well-defined WDM generation is required to understand it. Moderate energy ion beams ({approx} MeV/u) slightly above Bragg peak is an advantageous method for WDM because of the uniform energy deposition. Direct Plasma Injection Scheme (DPIS) with a Interdigital H-mode (IH) accelerator has a potential for the beam parameter. We show feasible parameters of the IH accelerator for WDM. WDM physics is a challenging science and is strongly related to Heavy Ion Fusion science. WDM formation by Direct Plasma Injection Scheme (DPIS) with IH accelerator, which is a compact system, is proposed. Feasible parameters for IH accelerator are shown for WDM state. These represents that DPIS with IH accelerator can access a different parameter region of WDM.

  8. Proposal for a study of laser acceleration of electrons using micrograting structures at ATF (Phase 1)

    SciTech Connect

    Chen, W.; Claus, J.; Fernow, R.C.; Fischer, J.; Gallardo, J.C.; Kirk, H.G.; Kramer, H.; Li, Z.; Palmer, R.B.; Rogers, J.; Shrinvasan-Rao, T.; Tsang, T.; Ulc, S.; Veligdan, J.; Warren, J.; Bigio, I.; Kurnit, N.; Shimada, T.; Wang, X.; McDonald, K.T.; Russell, D.P.; Los Alamos National Lab., NM; Princeton Univ., NJ; California Univ., Los Angeles, CA )

    1989-10-29

    We propose to investigate new methods of particle acceleration using a short-pulse CO{sub 2} laser as the power source and grating-like structures as accelerator cavities''. Phase I of this program is intended to demonstrate the principle of the method. We will focus the laser light to a 3 mm line on the surface of the microstructure. The structure is used to transform the electric field pattern of the incoming transversely polarized laser beam to a mode which has a component along the electron beam direction in the vicinity of the surface. With 6 mJ of laser energy and a 6 ps pulse length, the electric field in the spot will be around 1 GV/m. The electron beam from the Brookhaven Accelerator Test Facility (ATF) will be focused transversely within the few micron transverse dimension of the microstructure. The maximum expected acceleration for a 1 GV/m field and a 3 mm acceleration length is 3 MeV. 17 refs., 11 figs., 2 tabs.

  9. Nonlinear stability and control study of highly maneuverable high performance aircraft

    NASA Technical Reports Server (NTRS)

    Mohler, R. R.

    1991-01-01

    The purpose was to develop and apply new nonlinear system methodologies to the stability analysis and adaptive control of high angle of attack (alpha) aircraft such as the F-18. Considerable progress is documented on nonlinear adaptive control and associated model development, identification, and simulation. The analysis considered linear and nonlinear, longitudinal, high alpha aircraft dynamics with varying degrees of approximation dependent on the purpose. In all cases, angle of attack or pitch rate was controlled primarily by a horizontal stabilizer. In most cases studied, a linear adaptive controller provided sufficient stability. However, it has been demonstrated by simulation of a simplified nonlinear model that certain large rapid maneuvers were not readily stabilized by the investigated linear adaptive control, but were controlled instead by means of a nonlinear time-series based adaptive control.

  10. Acceleration of compact torus plasma rings in a coaxial rail-gun

    SciTech Connect

    Hartman, C.W.; Hammer, J.H.; Eddleman, J.

    1985-05-16

    We discuss here theoretical studies of magnetic acceleration of Compact Torus plasma rings in a coaxial, rail-gun accelerator. The rings are formed using a magnetized coaxial plasma gun and are accelerated by injection of B/sub theta/ flux from an accelerator bank. After acceleration, the rings enter a focusing cone where the ring is decelerated and reduced in radius. As the ring radius decreases, the ring magnetic energy increases until it equals the entering kinetic energy and the ring stagnates. Scaling laws and numerical calculations of acceleration using a O-D numerical code are presented. 2-D, MHD simulations are shown which demonstrate ring formation, acceleration, and focusing. Finally, 3-D calculations are discussed which determine the ideal MHD stability of the accelerated ring.

  11. Fundamental Studies of Fluid Mechanics: Stability in Porous Media

    SciTech Connect

    George M. Homsy

    2005-04-28

    This work has been concerned with theoretical, computational and experimental studies of a variety of flow and transport problems that are of generic interest and applicability in energy-related and energy-intensive processes. These include the following. (1) Problems associated with oil recovery: the global economy continues to be dependent on the stable and predictable supply of oil and fossil fuels. This will remain the case for the near term, as current estimates are that world production of oil will peak between 2025 and 2100, depending on assumptions regarding growth. Most of these resources reside in porous rocks and other naturally occurring media. Studies of flow-induced instabilities are relevant to the areas of secondary and enhanced oil recovery. (2) Small scale and Stokes flows: flows in microgeometries and involving interfaces and surfactants are of interest in a myriad of energy-related contexts. These include: pore-level modeling of the fundamental processes by which oil held in porous materials is mobilized and produced; heating and cooling energy cycles involving significant expenditure of energy in conditioning of human environments, heat pipes, and compact heat exchangers; and energy efficiency in large scale separation processes such as distillation and absorption-processes that underlie the chemical process industries. (3) Coating flows: these are of interest in information technologies, including the manufacture of integrated circuits and data storage and retrieval devices. It is estimated that 50-70% of the starting raw materials and intermediate devices in information technology processes must be discarded as a result of imperfections and failure to meet specifications. These in turn are often the result of the inability to control fluid-mechanical processes and flow instabilities. Our work over the grant period is primarily fundamental in nature. We are interested in establishing general principles and behaviors that relate to a variety of

  12. New graphical techniques for studying acoustic ray stability

    NASA Astrophysics Data System (ADS)

    Bódai, T.; Fenwick, A. J.; Wiercigroch, M.

    2009-07-01

    Alternatives to the standard Poincaré section are proposed to cater for some conditions arising in the study of chaotic ray propagation where the usual method of dimension reduction by the Poincaré section is inadequate because the driving is not periodic. There are three alternatives proposed which all use the same surface of intersection, but which differ in their use of the values of the dependent variables at the intersections of the rays with the surface. The new reduction techniques are used to examine ray behaviour in a harmonically perturbed Munk profile which supports ray chaos. It is found that all three techniques provide a graphical means of distinguishing between regular and irregular motions, and that the space of the mapping associated with one of them is partitioned into nonintersecting regular and chaotic regions as with the Poincaré section. A further model with quasiperiodic time dependence of the Hamiltonian is examined, and it turns out that the quasiperiodic nature of the motion is revealed as Lissajous curves by one technique.

  13. Active targets for the study of nuclei far from stability

    NASA Astrophysics Data System (ADS)

    Beceiro-Novo, S.; Ahn, T.; Bazin, D.; Mittig, W.

    2015-09-01

    Weakly bound nuclear systems can be considered to represent a good testing-ground of our understanding of non-perturbative quantum systems. Reactions leading to bound and unbound states in systems with very unbalanced neutron-to-proton ratios are used to understand the properties of these systems. Radioactive beams with energies from below the Coulomb barrier up to several hundreds MeV/nucleon are now available, and with these beams, a broad variety of studies of nuclei near the drip-line can be performed. To compensate for the low intensity of secondary beams as compared to primary beams, thick targets and high efficiency detection is necessary. In this context, a new generation of detectors was developed, called active target detectors: the detector gas is used as target, and the determination of the reaction vertex in three dimensions allows for good resolution even with thick targets. The reaction products can be measured over essentially 4 π. The physics explored with these detectors together with the technology developed will be described.

  14. Accelerated barrier optimization compressed sensing (ABOCS) reconstruction for cone-beam CT: Phantom studies

    PubMed Central

    Niu, Tianye; Zhu, Lei

    2012-01-01

    Purpose: Recent advances in compressed sensing (CS) enable accurate CT image reconstruction from highly undersampled and noisy projection measurements, due to the sparsifiable feature of most CT images using total variation (TV). These novel reconstruction methods have demonstrated advantages in clinical applications where radiation dose reduction is critical, such as onboard cone-beam CT (CBCT) imaging in radiation therapy. The image reconstruction using CS is formulated as either a constrained problem to minimize the TV objective within a small and fixed data fidelity error, or an unconstrained problem to minimize the data fidelity error with TV regularization. However, the conventional solutions to the above two formulations are either computationally inefficient or involved with inconsistent regularization parameter tuning, which significantly limit the clinical use of CS-based iterative reconstruction. In this paper, we propose an optimization algorithm for CS reconstruction which overcomes the above two drawbacks. Methods: The data fidelity tolerance of CS reconstruction can be well estimated based on the measured data, as most of the projection errors are from Poisson noise after effective data correction for scatter and beam-hardening effects. We therefore adopt the TV optimization framework with a data fidelity constraint. To accelerate the convergence, we first convert such a constrained optimization using a logarithmic barrier method into a form similar to that of the conventional TV regularization based reconstruction but with an automatically adjusted penalty weight. The problem is then solved efficiently by gradient projection with an adaptive Barzilai–Borwein step-size selection scheme. The proposed algorithm is referred to as accelerated barrier optimization for CS (ABOCS), and evaluated using both digital and physical phantom studies. Results: ABOCS directly estimates the data fidelity tolerance from the raw projection data. Therefore, as

  15. A Study of the Electromagnetic Properties of the Dielectric Wall Accelerator

    NASA Astrophysics Data System (ADS)

    Uselmann, Adam J.

    Proton and heavy-ion radiotherapy are powerful tools in cancer treatment, yet access to these modalities has been limited due to the large size and costs of the accelerators used and the facilities to house them. The dielectric wall accelerator (DWA) is a type of compact particle accelerator that can potentially bring proton and heavy ion therapy into more widespread clinical use at a significantly lower cost than existing devices. However, the technology pushes the limits of current materials and electronics, making the maximization of the efficiency of the design absolutely crucial. In this work, an investigation of the critical parameters of the device was performed using electromagnetic simulation and particle tracking tools, and novel geometric variations of the device were investigated in order to improve performance.

  16. High-pressure studies of aggregation of recombinant human interleukin-1 receptor antagonist: Thermodynamics, kinetics, and application to accelerated formulation studies

    PubMed Central

    Seefeldt, Matthew B.; Kim, Yong-Sung; Tolley, Kevin P.; Seely, Jim; Carpenter, John F.; Randolph, Theodore W.

    2005-01-01

    Recombinant human interleukin-1 receptor antagonist (IL-1ra) in aqueous solutions unfolds and aggregates when subjected to hydrostatic pressures greater than about 180 MPa. This study examined the mechanism and thermodynamics of pressure-induced unfolding and aggregation of IL-1ra. The activation free energy for growth of aggregates (ΔG∓aggregation) was found to be 37 ± 3 kJ/mol, whereas the activation volume (ΔV∓aggregation) was −120 ± 20 mL/mol. These values compare closely with equilibrium values for denaturation: The free energy for denaturation, ΔGdenaturation, was 20 ± 5 kJ/mol, whereas the partial specific volume change for denaturation, ΔVdenaturation, was −110 ± 30 mL/mol. When IL-1ra begins to denature at pressures near 140 MPa, cysteines that are normally buried in the native state become exposed. Under oxidizing conditions, this results in the formation of covalently cross-linked aggregates containing nonnative, intermolecular disulfide bonds. The apparent activation free energy for nucleation of aggregates, ΔG∓nuc, was 42 ± 4 kJ/mol, and the activation volume for nucleation, ΔV∓nuc,was −175 ± 37 mL/mol, suggesting that a highly solvent-exposed conformation is needed for nucleation. We hypothesize that the large specific volume of IL-1ra, 0.752 ± 0.004 mL/g, coupled with its relatively low conformational stability, leads to its susceptibility to denaturation at relatively low pressures. The positive partial specific adiabatic compressibility of IL-1ra, 4.5 ± 0.7 ± 10−12 cm2/dyn, suggests that a significant component of the ΔVdenaturation is attributable to the elimination of solvent-free cavities. Lastly, we propose that hydrostatic pressure is a useful variable to conduct accelerated formulation studies of therapeutic proteins. PMID:16081653

  17. Modification of the argon stripping target of the tandem accelerator.

    PubMed

    Makarov, A; Ostreinov, Yu; Taskaev, S; Vobly, P

    2015-12-01

    The tandem accelerator with vacuum insulation has been proposed and developed in Budker Institute of Nuclear Physics. Negative hydrogen ions are accelerated by the positive 1MV potential of the high-voltage electrode, converted into protons in the gas stripping target inside the electrode, and then protons are accelerated again by the same potential. A stationary proton beam with 2 MeV energy, 1.6 mA current, 0.1% energy monochromaticity, and 0.5% current stability is obtained now. To conduct Boron Neutron Capture Therapy it is planned to increase the proton beam current to at least 3 mA. The paper presents the results of experimental studies clarifying the reasons for limiting the current, and gives suggestions for modifying the gas stripping target in order to increase the proton beam current along with the stability of the accelerator. PMID:26242555

  18. Plasma stability studies of the gasdynamic mirror fusion propulsion experiment

    NASA Astrophysics Data System (ADS)

    Emrich, William Julius, Jr.

    The gasdynamic mirror has been proposed as a concept which could form the basis of a highly efficient fusion rocket engine. Gasdynamic mirrors differ from most other mirror type plasma confinement schemes in that they have much larger aspect ratios and operate at somewhat higher plasma densities. These differences are postulated to permit gasdynamic mirrors to confine plasmas in a stable manner without the additional complicated equipment required by low aspect ratio, low plasma density mirror machines. To verify that a gasdynamic mirror could indeed confine plasmas in a stable manner for long periods of time, a small scale experimental gasdynamic mirror was built and tested. The gasdynamic mirror which was constructed is 2.5 meters long and can accommodate plasmas up to 20 centimeters in diameter. The device is able to support mirror magnetic fields of up to two tesla and central cell magnetic fields of up to a third of a tesla. A reciprocating Langmuir probe was used to determine the radial plasma density and electron temperature profiles upon which the experimental results of this study are based. The objective of this experiment was to determine ranges of mirror ratios and plasma densities over which gasdynamic mirror could maintain stable plasmas. Theoretical analyses indicated that plasma magnetohydrodynamic instabilities were likely to occur during subsonic to supersonic flow transitions in the mirror throat region of the gasdynamic mirror. The experimental evidence based upon data derived from the Langmuir probe measurements seems to confirm this analysis. These instabilities result in a loss of plasma confinement and would almost certainly prevent the initiation of fusion reactions. The assumption that a gasdynamic mirror using a simple mirror geometry could be used as a propulsion system, therefore, appears questionable. Fairly simple modifications to the simple mirror concept are presented, however, which if incorporated into the simple mirror

  19. Acceleration and holographic studies on different types of dynamization of external fixators of the bones

    NASA Astrophysics Data System (ADS)

    Podbielska, Halina; Kasprzak, Henryk T.; Voloshin, Arkady S.; Pennig, Dietmar; von Bally, Gert

    1992-08-01

    The unilateral axially dynamic fixator (Orthofix) was mounted on a sheep tibial shaft. Three fixation modes: static, dynamic controlled, and dynamic free were examined by means of double exposure holographic interferometry. Simultaneously, the acceleration was measured by an accelerometer and displayed on the monitor together with loading characteristics. The first exposure was made before the acting force was applied to the tibia plateau. The second one after the moment when the acceleration wave started to propagate through the specimen. We stated that in the case of dynamization less torsion occurs at the fracture site. So far, we have not been able to determine any correlation between results of holographic and accelerometric measurements.

  20. "Cabinet-Safe" Study of 1-8 MeV Electron Accelerators

    SciTech Connect

    Wells, Douglas P; Jones, James Litton; Yoon, Woo Yong; Harmon, Frank Gamble

    2001-05-01

    The development of "cabinet-safe" accelerator technology for ˜1–8 MeV electron LINACs would remove the only major barrier to large-scale "field" applications of these accelerators. These applications range from non-destructive evaluation and assay to radiolytic degradation of hazardous waste. All field applications require large forward dose and very little lateral dose. We investigated the origin, energy, and angular distribution of unwanted lateral radiation dose from two different electron LINACS at three energies. We report on the contributions of various beam parameters to unwanted radiation dose and propose methods to control key beam parameters that significantly contribute to these doses.