Science.gov

Sample records for accelerated steepest descent

  1. Steepest Descent

    SciTech Connect

    Meza, Juan C.

    2010-02-12

    The steepest descent method has a rich history and is one of the simplest and best known methods for minimizing a function. While the method is not commonly used in practice due to its slow convergence rate, understanding the convergence properties of this method can lead to a better understanding of many of the more sophisticated optimization methods. Here, we give a short introduction and discuss some of the advantages and disadvantages of this method. Some recent results on modified versions of the steepest descent method are also discussed.

  2. Distributed Control by Lagrangian Steepest Descent

    NASA Technical Reports Server (NTRS)

    Wolpert, David H.; Bieniawski, Stefan

    2004-01-01

    Often adaptive, distributed control can be viewed as an iterated game between independent players. The coupling between the players mixed strategies, arising as the system evolves from one instant to the next, is determined by the system designer. Information theory tells us that the most likely joint strategy of the players, given a value of the expectation of the overall control objective function, is the minimizer of a function o the joint strategy. So the goal of the system designer is to speed evolution of the joint strategy to that Lagrangian mhimbhgpoint,lowerthe expectated value of the control objective function, and repeat Here we elaborate the theory of algorithms that do this using local descent procedures, and that thereby achieve efficient, adaptive, distributed control.

  3. Efficient Love wave modelling via Sobolev gradient steepest descent

    NASA Astrophysics Data System (ADS)

    Browning, Matt; Ferguson, John; McMechan, George

    2016-05-01

    A new method for finding solutions to ordinary differential equation boundary value problems is introduced, in which Sobolev gradient steepest descent is used to determine eigenfunctions and eigenvalues simultaneously in an iterative scheme. The technique is then applied to the 1-D Love wave problem. The algorithm has several advantages when computing dispersion curves. It avoids the problem of mode skipping, and can handle arbitrary Earth structure profiles in depth. For a given frequency range, computation times scale approximately as the square root of the number of frequencies, and the computation of dispersion curves can be implemented in a fully parallel manner over the modes involved. The steepest descent solutions are within a fraction of a per cent of the analytic solutions for the first 25 modes for a two-layer model. Since all corresponding eigenfunctions are computed along with the dispersion curves, the impact on group and phase velocity of the displacement behaviour with depth is thoroughly examined. The dispersion curves are used to compute synthetic Love wave seismograms that include many higher order modes. An example includes addition of attenuation to a model with a low-velocity zone, with values as low as Q = 20. Finally, a confirming comparison is made with a layer matrix method on the upper 700 km of a whole Earth model.

  4. Steepest descent moment method for three-dimensional magnetohydrodynamic equilibria

    SciTech Connect

    Hirshman, S.P.; Whitson, J.C.

    1983-11-01

    An energy principle is used to obtain the solution of the magnetohydrodynamic (MHD) equilibrium equation J Vector x B Vector - del p = 0 for nested magnetic flux surfaces that are expressed in the inverse coordinate representation x Vector = x Vector(rho, theta, zeta). Here, theta and zeta are poloidal and toroidal flux coordinate angles, respectively, and p = p(rho) labels a magnetic surface. Ordinary differential equations in rho are obtained for the Fourier amplitudes (moments) in the doubly periodic spectral decomposition of x Vector. A steepest descent iteration is developed for efficiently solving these nonlinear, coupled moment equations. The existence of a positive-definite energy functional guarantees the monotonic convergence of this iteration toward an equilibrium solution (in the absence of magnetic island formation). A renormalization parameter lambda is introduced to ensure the rapid convergence of the Fourier series for x Vector, while simultaneously satisfying the MHD requirement that magnetic field lines are straight in flux coordinates. A descent iteration is also developed for determining the self-consistent value for lambda.

  5. Green's-function solutions to dynamical-simulated annealing and steepest-descents equations of motion

    SciTech Connect

    Benedek, R.; Min, B.I.; Garner, J.

    1987-08-01

    Solutions to the dynamical-simulated-annealing and the steepest-descents equations of motion for electron states are presented. The relations proposed by Payne et al. and by Williams and Soler can be obtained from the first-born approximation by applying additional decoupling approximations. A numerical example is presented to contrast the behavior of the Green's function and finite-difference solutions to the steepest-descents dynamics. 14 refs., 2 figs.

  6. Use of steepest descent and various approximations for efficient computation of minimum noise aircraft landing trajectories

    NASA Technical Reports Server (NTRS)

    Cook, G.; Witt, R. M.

    1976-01-01

    The following areas related to landing trajectory optimization research were discussed: (1) programming and modifying the steepest descent optimization procedure, (2) successfully iterating toward the optimum for a four-mile trajectory, (3) beginning optimization runs for a twenty-mile trajectory, and (4) adapt wind tunnel data for computer usage. Other related areas were discussed in detail in the two previous annual reports.

  7. Application of the method of steepest descent to laminated shield weight optimization with several constraints: Theory

    NASA Technical Reports Server (NTRS)

    Lahti, G. P.

    1971-01-01

    The method of steepest descent used in optimizing one-dimensional layered radiation shields is extended to multidimensional, multiconstraint situations. The multidimensional optimization algorithm and equations are developed for the case of a dose constraint in any one direction being dependent only on the shield thicknesses in that direction and independent of shield thicknesses in other directions. Expressions are derived for one-, two-, and three-dimensional cases (one, two, and three constraints). The precedure is applicable to the optimization of shields where there are different dose constraints and layering arrangements in the principal directions.

  8. Nonlinear Steepest Descent Asymptotics for Semiclassical Limit of Integrable Systems: Continuation in the Parameter Space

    NASA Astrophysics Data System (ADS)

    Tovbis, Alexander; Venakides, Stephanos

    2010-04-01

    The initial value problem for an integrable system, such as the Nonlinear Schrödinger equation, is solved by subjecting the linear eigenvalue problem arising from its Lax pair to inverse scattering, and, thus, transforming it to a matrix Riemann-Hilbert problem (RHP) in the spectral variable. In the semiclassical limit, the method of nonlinear steepest descent ([4,5]), supplemented by the g-function mechanism ([3]), is applied to this RHP to produce explicit asymptotic solution formulae for the integrable system. These formule are based on a hyperelliptic Riemann surface {mathcal {R} = mathcal {R}(x,t)} in the spectral variable, where the space-time variables ( x, t) play the role of external parameters. The curves in the x, t plane, separating regions of different genuses of {mathcal {R}(x,t)}, are called breaking curves or nonlinear caustics. The genus of {mathcal {R}(x,t)} is related to the number of oscillatory phases in the asymptotic solution of the integrable system at the point x, t. The evolution theorem ([10]) guarantees continuous evolution of the asymptotic solution in the space-time away from the breaking curves. In the case of the analytic scattering data f( z; x, t) (in the NLS case, f is a normalized logarithm of the reflection coefficient with time evolution included), the primary role in the breaking mechanism is played by a phase function {{Im h(z;x,t)}}, which is closely related to the g function. Namely, a break can be caused ([10]) either through the change of topology of zero level curves of {Im h(z;x,t)} (regular break), or through the interaction of zero level curves of {{Im h(z;x,t)}} with singularities of f (singular break). Every time a breaking curve in the x, t plane is reached, one has to prove the validity of the nonlinear steepest descent asymptotics in the region across the curve. In this paper we prove that in the case of a regular break, the nonlinear steepest descent asymptotics can be “automatically” continued through the

  9. Conjugate gradient and steepest descent approach on quasi-Newton search direction

    NASA Astrophysics Data System (ADS)

    Sofi, A. Z. M.; Mamat, M.; Mohd, I.; Ibrahim, M. A. H.

    2014-07-01

    An approach of using conjugate gradient and classic steepest descent search direction onto quasi-Newton search direction had been proposed in this paper and we called it as 'scaled CGSD-QN' search direction. A new coefficient formula had been successfully constructed for being used in the 'scaled CGSD-QN' search direction and proven here that the coefficient formula is globally converge to the minimizer. The Hessian update formula that has been used in the quasi-Newton algorithm is DFP update formula. This new search direction approach was testes with some some standard unconstrained optimization test problems and proven that this new search direction approach had positively affect quasi-Newton method by using DFP update formula.

  10. Nonlinear Performance Seeking Control using Fuzzy Model Reference Learning Control and the Method of Steepest Descent

    NASA Technical Reports Server (NTRS)

    Kopasakis, George

    1997-01-01

    Performance Seeking Control (PSC) attempts to find and control the process at the operating condition that will generate maximum performance. In this paper a nonlinear multivariable PSC methodology will be developed, utilizing the Fuzzy Model Reference Learning Control (FMRLC) and the method of Steepest Descent or Gradient (SDG). This PSC control methodology employs the SDG method to find the operating condition that will generate maximum performance. This operating condition is in turn passed to the FMRLC controller as a set point for the control of the process. The conventional SDG algorithm is modified in this paper in order for convergence to occur monotonically. For the FMRLC control, the conventional fuzzy model reference learning control methodology is utilized, with guidelines generated here for effective tuning of the FMRLC controller.

  11. Steepest-descent lines for Kīlauea, Mauna Loa, Hualālai, and Mauna Kea Volcanoes, Hawaiʻi

    USGS Publications Warehouse

    Kauahikaua, James P.; Orr, Tim; Patrick, Matthew R.; Trusdell, Frank

    2016-01-01

    This USGS data release includes two ESRI polyline shapefiles (file_names.shp) describing the describing the steepest-descent lines calculated at two levels of detail (See Process Step for explanation). To increase access to these data, KMZ (Compressed Keyhole Markup Language) versions of the polyline feature layers are included in this release (file_names.kmz). In addition to these data layers, two supplementary data layers from the Big Island Mapping Project (BIMP) showing lava flows originating on Mauna Loa and Kilauea volcanoes, originally published in Trusdell, Wolfe, and Morris (2006), are included for context and reference. Both ESRI polygon shapefiles and KMZ versions of these files are included, naming conventions are identical as the files in this release. This metadata file provides information for the GIS data files unique to this data release. Below are the files that comprise this release, including the metadata files: Steepest-Descent_lines_3M_m2.shp Steepest-Descent_lines_750K_m2.shp Steepest-Descent_lines_3M_m2.KMZ Steepest-Descent_lines_750K_m2.KMZ Kilauea1983-1996_from_BIMP.shp ML1984_from_BIMP.shp Kilauea1983-1996_from_BIMP.kmz ML1984_from_BIMP.kmz mauna_loa_steepest_descent_lines_FGDC.xml mauna_loa_steepest_descent_lines_FGDC.txt

  12. Preconditioned steepest descent methods for some nonlinear elliptic equations involving p-Laplacian terms

    NASA Astrophysics Data System (ADS)

    Feng, Wenqiang; Salgado, Abner J.; Wang, Cheng; Wise, Steven M.

    2017-04-01

    We describe and analyze preconditioned steepest descent (PSD) solvers for fourth and sixth-order nonlinear elliptic equations that include p-Laplacian terms on periodic domains in 2 and 3 dimensions. The highest and lowest order terms of the equations are constant-coefficient, positive linear operators, which suggests a natural preconditioning strategy. Such nonlinear elliptic equations often arise from time discretization of parabolic equations that model various biological and physical phenomena, in particular, liquid crystals, thin film epitaxial growth and phase transformations. The analyses of the schemes involve the characterization of the strictly convex energies associated with the equations. We first give a general framework for PSD in Hilbert spaces. Based on certain reasonable assumptions of the linear pre-conditioner, a geometric convergence rate is shown for the nonlinear PSD iteration. We then apply the general theory to the fourth and sixth-order problems of interest, making use of Sobolev embedding and regularity results to confirm the appropriateness of our pre-conditioners for the regularized p-Lapacian problems. Our results include a sharper theoretical convergence result for p-Laplacian systems compared to what may be found in existing works. We demonstrate rigorously how to apply the theory in the finite dimensional setting using finite difference discretization methods. Numerical simulations for some important physical application problems - including thin film epitaxy with slope selection and the square phase field crystal model - are carried out to verify the efficiency of the scheme.

  13. A topological study of gravity free-surface waves generated by bluff bodies using the method of steepest descents.

    PubMed

    Trinh, Philippe H

    2016-07-01

    The standard analytical approach for studying steady gravity free-surface waves generated by a moving body often relies upon a linearization of the physical geometry, where the body is considered asymptotically small in one or several of its dimensions. In this paper, a methodology that avoids any such geometrical simplification is presented for the case of steady-state flows at low speeds. The approach is made possible through a reduction of the water-wave equations to a complex-valued integral equation that can be studied using the method of steepest descents. The main result is a theory that establishes a correspondence between different bluff-bodied free-surface flow configurations, with the topology of the Riemann surface formed by the steepest descent paths. Then, when a geometrical feature of the body is modified, a corresponding change to the Riemann surface is observed, and the resultant effects to the water waves can be derived. This visual procedure is demonstrated for the case of two-dimensional free-surface flow past a surface-piercing ship and over an angled step in a channel.

  14. A topological study of gravity free-surface waves generated by bluff bodies using the method of steepest descents

    NASA Astrophysics Data System (ADS)

    Trinh, Philippe H.

    2016-07-01

    The standard analytical approach for studying steady gravity free-surface waves generated by a moving body often relies upon a linearization of the physical geometry, where the body is considered asymptotically small in one or several of its dimensions. In this paper, a methodology that avoids any such geometrical simplification is presented for the case of steady-state flows at low speeds. The approach is made possible through a reduction of the water-wave equations to a complex-valued integral equation that can be studied using the method of steepest descents. The main result is a theory that establishes a correspondence between different bluff-bodied free-surface flow configurations, with the topology of the Riemann surface formed by the steepest descent paths. Then, when a geometrical feature of the body is modified, a corresponding change to the Riemann surface is observed, and the resultant effects to the water waves can be derived. This visual procedure is demonstrated for the case of two-dimensional free-surface flow past a surface-piercing ship and over an angled step in a channel.

  15. The DOPEX code: An application of the method of steepest descent to laminated-shield-weight optimization with several constraints

    NASA Technical Reports Server (NTRS)

    Lahti, G. P.

    1972-01-01

    A two- or three-constraint, two-dimensional radiation shield weight optimization procedure and a computer program, DOPEX, is described. The DOPEX code uses the steepest descent method to alter a set of initial (input) thicknesses for a shield configuration to achieve a minimum weight while simultaneously satisfying dose constaints. The code assumes an exponential dose-shield thickness relation with parameters specified by the user. The code also assumes that dose rates in each principal direction are dependent only on thicknesses in that direction. Code input instructions, FORTRAN 4 listing, and a sample problem are given. Typical computer time required to optimize a seven-layer shield is about 0.1 minute on an IBM 7094-2.

  16. Feature Clustering for Accelerating Parallel Coordinate Descent

    SciTech Connect

    Scherrer, Chad; Tewari, Ambuj; Halappanavar, Mahantesh; Haglin, David J.

    2012-12-06

    We demonstrate an approach for accelerating calculation of the regularization path for L1 sparse logistic regression problems. We show the benefit of feature clustering as a preconditioning step for parallel block-greedy coordinate descent algorithms.

  17. Steepest descent with momentum for quadratic functions is a version of the conjugate gradient method.

    PubMed

    Bhaya, Amit; Kaszkurewicz, Eugenius

    2004-01-01

    It is pointed out that the so called momentum method, much used in the neural network literature as an acceleration of the backpropagation method, is a stationary version of the conjugate gradient method. Connections with the continuous optimization method known as heavy ball with friction are also made. In both cases, adaptive (dynamic) choices of the so called learning rate and momentum parameters are obtained using a control Liapunov function analysis of the system.

  18. Long-time asymptotic analysis of the Korteweg–de Vries equation via the dbar steepest descent method: the soliton region

    NASA Astrophysics Data System (ADS)

    Giavedoni, Pietro

    2017-03-01

    We address the problem of long-time asymptotics for the solutions of the Korteweg–de Vries equation under low regularity assumptions. We consider decaying initial data admitting only a finite number of moments. For the so-called ‘soliton region’, an improved asymptotic estimate is provided, in comparison with the one in Grunert and Teschl (2009 Math. Phys. Anal. Geom. 12 287–324). Our analysis is based on the dbar steepest descent method proposed by Miller and McLaughlin. Dedicated to Dora, Paolo and Sanja, with deep gratitude for their love and support.

  19. Monte Carlo simulations of electromagnetic wave scattering from a random rough surface with three-dimensional penetrable buried object: mine detection application using the steepest-descent fast multipole method

    NASA Astrophysics Data System (ADS)

    El-Shenawee, Magda; Rappaport, Carey; Silevitch, Michael

    2001-12-01

    We present a statistical study of the electric field scattered from a three-dimensional penetrable object buried under a two-dimensional random rough surface. Monte Carlo simulations using the steepest-descent fast multipole method (SDFMM) are conducted to calculate the average and the standard deviation of the near-zone scattered fields. The SDFMM, originally developed at the University of Illinois at Urbana-Champaign, has been modified to calculate the unknown surface currents both on the rough ground and on the buried object that are due to excitation by a tapered Gaussian beam. The rough ground medium used is an experimentally measured typical dry Bosnian soil with 3.8% moisture, while the buried object represents a plastic land mine modeled as an oblate spheroid with dimensions and burial depth smaller than the free-space wavelength. Both vertical and horizontal polarizations for the incident waves are studied. The numerical results show that the TNT mine signature is almost 5% of the total field scattered from the ground. Moreover, relatively recognizable object signatures are observed even when the object is buried under the tail of the incident beam. Interestingly, even for the small surface roughness parameters considered, the standard deviation of the object signature is almost 30% of the signal itself, indicating significant clutter distortion that is due to the roughness of the ground.

  20. Is stair descent in the elderly associated with periods of high centre of mass downward accelerations?

    PubMed

    Buckley, John G; Cooper, Glen; Maganaris, Constantinos N; Reeves, Neil D

    2013-02-01

    When descending stairs bodyweight becomes supported on a single limb while the forwards-reaching contralateral limb is lowered in order to make contact with the step below. This is associated with lowering of the centre of mass (CoM), which in order to occur in a controlled manner, requires increased ankle and knee joint torque production relative to that in overground walking. We have previously shown that when descending steps or stairs older people operate at a higher proportion of their maximum eccentric capacity and at, or in excess of the maximum passive reference joint range of motion. This suggests they have reduced and/or altered control over their CoM and we hypothesised that this would be associated with alterations in muscle activity patterns and in the CoM vertical acceleration and velocity profiles during both the lowering and landing phases of stair descent. 15 older (mean age 75 years) and 17 young (mean age 25 years) healthy adults descended a 4-step staircase, leading with the right limb on each stair, during which CoM dynamics and electromyographic activity patterns for key lower-limb muscles were assessed. Maximum voluntary eccentric torque generation ability at the knee and ankle was also assessed. Older participants compared to young participants increased muscle co-contraction relative duration at the knee and ankle of the trailing limb so that the limb was stiffened for longer during descent. As a result older participants contacted the step below with a reduced downwards CoM velocity when compared to young participants. Peak downwards and peak upwards CoM acceleration during the descent and landing phases respectively, were also reduced in older adults compared to those in young participants. In contrast, young participants descended quickly onto the step below but arrested their downward CoM velocity sooner following landing; a strategy that was associated with longer relative duration lead-limb plantar flexor activity, increased peak

  1. Descent vehicles

    NASA Technical Reports Server (NTRS)

    Popov, Y. I.

    1985-01-01

    The creation of descent vehicles marked a new stage in the development of cosmonautics, involving the beginning of manned space flight and substantial progress in space research on the distant bodies of the Solar System. This booklet describes these vehicles and their structures, systems, and purposes. It is intended for the general public interested in modern problems of space technology.

  2. Comparison of a discrete steepest ascent method with the continuous steepest ascent method for optimal programing

    NASA Technical Reports Server (NTRS)

    Childs, A. G.

    1971-01-01

    A discrete steepest ascent method which allows controls which are not piecewise constant (for example, it allows all continuous piecewise linear controls) was derived for the solution of optimal programming problems. This method is based on the continuous steepest ascent method of Bryson and Denham and new concepts introduced by Kelley and Denham in their development of compatible adjoints for taking into account the effects of numerical integration. The method is a generalization of the algorithm suggested by Canon, Cullum, and Polak with the details of the gradient computation given. The discrete method was compared with the continuous method for an aerodynamics problem for which an analytic solution is given by Pontryagin's maximum principle, and numerical results are presented. The discrete method converges more rapidly than the continuous method at first, but then for some undetermined reason, loses its exponential convergence rate. A comparsion was also made for the algorithm of Canon, Cullum, and Polak using piecewise constant controls. This algorithm is very competitive with the continuous algorithm.

  3. A feasible dual affine scaling steepest descent method for the linear semidefinite programming problem

    NASA Astrophysics Data System (ADS)

    Zhadan, V. G.

    2016-07-01

    The linear semidefinite programming problem is considered. The dual affine scaling method in which all current iterations belong to the feasible set is proposed for its solution. Moreover, the boundaries of the feasible set may be reached. This method is a generalization of a version of the affine scaling method that was earlier developed for linear programs to the case of semidefinite programming.

  4. Transformable descent vehicles

    NASA Astrophysics Data System (ADS)

    Pichkhadze, K. M.; Finchenko, V. S.; Aleksashkin, S. N.; Ostreshko, B. A.

    2016-12-01

    This article presents some types of planetary descent vehicles, the shape of which varies in different flight phases. The advantages of such vehicles over those with unchangeable form (from launch to landing) are discussed. It is shown that the use of transformable descent vehicles widens the scope of possible tasks to solve.

  5. A conjugate gradient method with descent direction for unconstrained optimization

    NASA Astrophysics Data System (ADS)

    Yuan, Gonglin; Lu, Xiwen; Wei, Zengxin

    2009-11-01

    A modified conjugate gradient method is presented for solving unconstrained optimization problems, which possesses the following properties: (i) The sufficient descent property is satisfied without any line search; (ii) The search direction will be in a trust region automatically; (iii) The Zoutendijk condition holds for the Wolfe-Powell line search technique; (iv) This method inherits an important property of the well-known Polak-Ribière-Polyak (PRP) method: the tendency to turn towards the steepest descent direction if a small step is generated away from the solution, preventing a sequence of tiny steps from happening. The global convergence and the linearly convergent rate of the given method are established. Numerical results show that this method is interesting.

  6. Ascent/Descent Software

    NASA Technical Reports Server (NTRS)

    Brown, Charles; Andrew, Robert; Roe, Scott; Frye, Ronald; Harvey, Michael; Vu, Tuan; Balachandran, Krishnaiyer; Bly, Ben

    2012-01-01

    The Ascent/Descent Software Suite has been used to support a variety of NASA Shuttle Program mission planning and analysis activities, such as range safety, on the Integrated Planning System (IPS) platform. The Ascent/Descent Software Suite, containing Ascent Flight Design (ASC)/Descent Flight Design (DESC) Configuration items (Cis), lifecycle documents, and data files used for shuttle ascent and entry modeling analysis and mission design, resides on IPS/Linux workstations. A list of tools in Navigation (NAV)/Prop Software Suite represents tool versions established during or after the IPS Equipment Rehost-3 project.

  7. Emergency descent device

    NASA Technical Reports Server (NTRS)

    Belew, R. R.

    1974-01-01

    Device includes cable wound on reel; special assembly enclosed in fluid medium controls unwinding speed of cable during descent. Device is compact and reliable. It can be rewound quickly because reel disengages from latches when it is turned in opposite direction.

  8. Descent guidance and mission planning for space shuttle

    NASA Technical Reports Server (NTRS)

    Joosten, B. K.

    1985-01-01

    The Space Shuttle descent mission planning, mission design, deorbit targeting, and entry guidance have necessarily become interrelated because of the nature of the Orbiter's design and mission requirements. The desired descent trajectory has been formulated in a drag acceleration/relative velocity state space since nearly all of the vehicle's highly constraining flight limitations can be uniquely represented in this plane. Constraints and flight requirements that affect the descent are described. The guidance logic which allows the Orbiter to follow the designed trajectory, the impacts of contingency aborts and flightcrew interaction are discussed. The mission planning and guidance techniques remain essentially unchanged through the Shuttle flight test program and subsequent operational flights.

  9. Complementary Curves of Descent

    DTIC Science & Technology

    2012-11-16

    provision of law , no person shall be subject to a penalty for failing to comply with a collection of information if it does not display a currently valid...curves of descent 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR( S ) 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT...NUMBER 7. PERFORMING ORGANIZATION NAME( S ) AND ADDRESS(ES) US Naval Academy,Physics Department,Annapolis,MD,21402-1363 8. PERFORMING ORGANIZATION

  10. Innovative applications of genetic algorithms to problems in accelerator physics

    NASA Astrophysics Data System (ADS)

    Hofler, Alicia; Terzić, Balša; Kramer, Matthew; Zvezdin, Anton; Morozov, Vasiliy; Roblin, Yves; Lin, Fanglei; Jarvis, Colin

    2013-01-01

    The genetic algorithm (GA) is a powerful technique that implements the principles nature uses in biological evolution to optimize a multidimensional nonlinear problem. The GA works especially well for problems with a large number of local extrema, where traditional methods (such as conjugate gradient, steepest descent, and others) fail or, at best, underperform. The field of accelerator physics, among others, abounds with problems which lend themselves to optimization via GAs. In this paper, we report on the successful application of GAs in several problems related to the existing Continuous Electron Beam Accelerator Facility nuclear physics machine, the proposed Medium-energy Electron-Ion Collider at Jefferson Lab, and a radio frequency gun-based injector. These encouraging results are a step forward in optimizing accelerator design and provide an impetus for application of GAs to other problems in the field. To that end, we discuss the details of the GAs used, include a newly devised enhancement which leads to improved convergence to the optimum, and make recommendations for future GA developments and accelerator applications.

  11. Terminal Descent Sensor Simulation

    NASA Technical Reports Server (NTRS)

    Chen, Curtis W.

    2009-01-01

    Sulcata software simulates the operation of the Mars Science Laboratory (MSL) radar terminal descent sensor (TDS). The program models TDS radar antennas, RF hardware, and digital processing, as well as the physics of scattering from a coherent ground surface. This application is specific to this sensor and is flexible enough to handle end-to-end design validation. Sulcata is a high-fidelity simulation and is used for performance evaluation, anomaly resolution, and design validation. Within the trajectory frame, almost all internal vectors are represented in whatever coordinate system is used to represent platform position. The trajectory frame must be planet-fixed. The platform body frame is specified relative to arbitrary reference points relative to the platform (spacecraft or test vehicle). Its rotation is a function of time from the trajectory coordinate system specified via dynamics input (file for open loop, callback for closed loop). Orientation of the frame relative to the body is arbitrary, but constant over time. The TDS frame must have a constant rotation and translation from the platform body frame specified at run time. The DEM frame has an arbitrary, but time-constant, rotation and translation with respect to the simulation frame specified at run time. It has the same orientation as sigma0 frame, but is possibly translated. Surface sigma0 has the same arbitrary rotation and translation as DEM frame.

  12. Entry, Descent, Landing Animation (Animation)

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site] Click on the image for Entry, Descent, Landing animation

    This animation illustrates the path the Stardust return capsule will follow once it enters Earth's atmosphere.

  13. Mars Science Laboratory's Descent Stage

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This portion of NASA's Mars Science Laboratory, called the descent stage, does its main work during the final few minutes before touchdown on Mars.

    The descent stage will provide rocket-powered deceleration for a phase of the arrival at Mars after the phases using the heat shield and parachute. When it nears the surface, the descent stage will lower the rover on a bridle the rest of the way to the ground.

    The Mars Science Laboratory spacecraft is being assembled and tested for launch in 2011.

    This image was taken at NASA's Jet Propulsion Laboratory, Pasadena, Calif., which manages the Mars Science Laboratory Mission for NASA's Science Mission Directorate, Washington. JPL is a division of the California Institute of Technology.

  14. Reinforcement Learning Through Gradient Descent

    DTIC Science & Technology

    1999-05-14

    Reinforcement learning is often done using parameterized function approximators to store value functions. Algorithms are typically developed for...practice of existing types of algorithms, the gradient descent approach makes it possible to create entirely new classes of reinforcement learning algorithms

  15. EXOMARS Descent Module GNC Performance

    NASA Astrophysics Data System (ADS)

    Portigliotti, S.; Capuano, M.; Montagna, M.; Martella, P.; Venditto, P.

    2007-08-01

    The ExoMars mission is the first ESA led robotic mission of the Aurora Programme and combines technology development with investigations of major scientific interest. Italy is by far the major contributor to the mission through the strong support of the Italian Space Agency (ASI). ExoMars will search for traces of past and present life, characterize the Mars geochemistry and water distribution, improve the knowledge of the Mars environment and geophysics, and identify possible surface hazards to future human exploration missions. ExoMars will also validate the technology for safe Entry, Descent and Landing (EDL) of a large size Descent Module (DM) carrying a Rover with medium range surface mobility and the access to subsurface. The ExoMars project is presently undergoing its Phase B1 with Thales Alenia Space-Italia as Industrial Prime Contractor. Additionally, as Descent Module responsible, a dedicated simulation tool is under development in Thales Alenia Space-Italia, Turin site, for the end-to-end design and validation / verification of the DM Entry Descent and Landing.

  16. LANDER program manual: A lunar ascent and descent simulation

    NASA Technical Reports Server (NTRS)

    1988-01-01

    LANDER is a computer program used to predict the trajectory and flight performance of a spacecraft ascending or descending between a low lunar orbit of 15 to 500 nautical miles (nm) and the lunar surface. It is a three degree-of-freedom simulation which is used to analyze the translational motion of the vehicle during descent. Attitude dynamics and rotational motion are not considered. The program can be used to simulate either an ascent from the Moon or a descent to the Moon. For an ascent, the spacecraft is initialized at the lunar surface and accelerates vertically away from the ground at full thrust. When the local velocity becomes 30 ft/s, the vehicle turns downrange with a pitch-over maneuver and proceeds to fly a gravity turn until Main Engine Cutoff (MECO). The spacecraft then coasts until it reaches the requested holding orbit where it performs an orbital insertion burn. During a descent simulation, the lander begins in the holding orbit and performs a deorbit burn. It then coasts to pericynthion, where it reignites its engines and begins a gravity turn descent. When the local horizontal velocity becomes zero, the lander pitches up to a vertical orientation and begins to hover in search of a landing site. The lander hovers for a period of time specified by the user, and then lands.

  17. Numerical analysis of the orthogonal descent method

    SciTech Connect

    Shokov, V.A.; Shchepakin, M.B.

    1994-11-01

    The author of the orthogonal descent method has been testing it since 1977. The results of these tests have only strengthened the need for further analysis and development of orthogonal descent algorithms for various classes of convex programming problems. Systematic testing of orthogonal descent algorithms and comparison of test results with other nondifferentiable optimization methods was conducted at TsEMI RAN in 1991-1992 using the results.

  18. The Steepest Slopes on the Moon: Gradual Degradation and Instant Removal by Basin-Forming Impacts

    NASA Astrophysics Data System (ADS)

    Kreslavsky, M. A.; Head, J. W., III

    2015-12-01

    We calculated topographic gradients over the surface of the Moon at a 25 m baseline using data obtained by the Lunar Orbiter Laser Altimeter (LOLA) instrument onboard the Lunar Reconnaissance Orbiter (LRO) spacecraft. The derived slope-frequency distribution revealed a steep roll-over for slopes close to the angle of repose. Slopes significantly steeper than the angle of repose are almost absent on the Moon due to (1) the general absence of cohesion/strength of the fractured and fragmented megaregolith of the lunar highlands, and (2) the absence of steep-slope producing geological processes in the recent geological past. The majority of slopes steeper than 32 - 35 degrees are associated with relatively young large impact craters. Very rare extremely steep (> 45 degrees) slopes are exclusively associated with large Copernican-age craters. Craters of Early Imbrian age and older are devoid of slopes steeper than ~35 degrees. We interpret these observations in the following way. Every basin-forming impact removes steep slopes by global seismic shaking causing slope collapse. The latest such impact formed Orientale basin and instantly removed all preexisting slopes steeper than ~35 degrees. This makes steep slopes a good global stratigraphic marker at Early/Late Imbrian boundary. After the Orientale impact, craters lose their steepest slopes progressively with time. This makes crater wall steepness an independent proxy for crater age. The global spatial distribution of the proportion of the steepest slopes correlates moderately well with the predicted spatial distribution of impact rate: low latitudes and the leading hemisphere have a higher steep slope proportion than high latitudes and the trailing hemisphere. However, the southern farside has a significant paucity of steep slopes, which remains unexplained. Acknowledgement: Data processing was performed at MIIGAiK by MK and supported by Russian Science Foundation, project 14-22-00197.

  19. Correlation as Probability of Common Descent.

    ERIC Educational Resources Information Center

    Falk, Ruma; Well, Arnold D.

    1996-01-01

    One interpretation of the Pearson product-moment correlation ("r"), correlation as the probability of originating from common descent, important to the genetic measurement of inbreeding, is examined. The conditions under which "r" can be interpreted as the probability of "identity by descent" are specified, and the…

  20. Predictability of Top of Descent Location for Operational Idle-Thrust Descents

    NASA Technical Reports Server (NTRS)

    Stell, Laurel L.

    2010-01-01

    To enable arriving aircraft to fly optimized descents computed by the flight management system (FMS) in congested airspace, ground automation must accurately predict descent trajectories. To support development of the trajectory predictor and its uncertainty models, commercial flights executed idle-thrust descents at a specified descent speed, and the recorded data included the specified descent speed profile, aircraft weight, and the winds entered into the FMS as well as the radar data. The FMS computed the intended descent path assuming idle thrust after top of descent (TOD), and the controllers and pilots then endeavored to allow the FMS to fly the descent to the meter fix with minimal human intervention. The horizontal flight path, cruise and meter fix altitudes, and actual TOD location were extracted from the radar data. Using approximately 70 descents each in Boeing 757 and Airbus 319/320 aircraft, multiple regression estimated TOD location as a linear function of the available predictive factors. The cruise and meter fix altitudes, descent speed, and wind clearly improve goodness of fit. The aircraft weight improves fit for the Airbus descents but not for the B757. Except for a few statistical outliers, the residuals have absolute value less than 5 nmi. Thus, these predictive factors adequately explain the TOD location, which indicates the data do not include excessive noise.

  1. The Descent Rates of the Shear Zones of the Equatorial QBO.

    NASA Astrophysics Data System (ADS)

    Kinnersley, Jonathan S.; Pawson, Steven

    1996-07-01

    The influence of vertical advection on the descent rate of the zero-wind line in both phases of the equatorial quasi-biennial oscillation (QBO) is investigated with the help of the `THIN AIR' stratosphere two-and-a-half-dimensional model. The model QBO is forced by two symmetric easterly and westerly waves, and yet the model reproduces qualitatively the observed asymmetry in the descent rates of the two shear zones due to the enhanced heating during easterly descent combined with the equatorial heating induced by the extratropical planetary waves. Observations show that the maximum easterly accelerations occur predominantly from May until July, which is when the modeled equatorial planetary-wave-induced heating rates are weakest. Hence, model results are consistent with the theory that vertical advection induced by extratropical planetary waves slows significantly the descent of the easterly shear zone. The model also shows the observed increase in vertical wind shear during stalling of the easterly descent (which increases the impact of vertical advection). In the model, the effect of cross-equatorial advection of momentum by the mean flow is negligible compared to the vertical advection. Changes in the propagation of planetary waves depending on the sign of the equatorial zonal wind have a small effect on the modeled equatorial heating rates and therefore do not play a large part in producing the modeled asymmetry in descent rates.

  2. Descent Advisor Preliminary Field Test

    NASA Technical Reports Server (NTRS)

    Green, Steven M.; Vivona, Robert A.; Sanford, Beverly

    1995-01-01

    A field test of the Descent Advisor (DA) automation tool was conducted at the Denver Air Route Traffic Control Center in September 1994. DA is being developed to assist Center controllers in the efficient management and control of arrival traffic. DA generates advisories, based on trajectory predictions, to achieve accurate meter-fix arrival times in a fuel efficient manner while assisting the controller with the prediction and resolution of potential conflicts. The test objectives were: (1) to evaluate the accuracy of DA trajectory predictions for conventional and flight-management system equipped jet transports, (2) to identify significant sources of trajectory prediction error, and (3) to investigate procedural and training issues (both air and ground) associated with DA operations. Various commercial aircraft (97 flights total) and a Boeing 737-100 research aircraft participated in the test. Preliminary results from the primary test set of 24 commercial flights indicate a mean DA arrival time prediction error of 2.4 seconds late with a standard deviation of 13.1 seconds. This paper describes the field test and presents preliminary results for the commercial flights.

  3. Human factors by descent energy management

    NASA Technical Reports Server (NTRS)

    Curry, R. E.

    1979-01-01

    This paper describes some of the results of a human factors study of energy management during descent using standard aircraft displays. Discussions with pilots highlighted the practical constraints involved and the techniques (algorithms) used to accomplish the descent. The advantages and disadvantages of these algorithms are examined with respect to workload and their sensitivity to disturbances. Vertical navigation and flight performance computers are discussed in terms of the information needed for effective pilot monitoring and takeover

  4. Optimal turning climb-out and descent of commercial jet aircraft

    NASA Technical Reports Server (NTRS)

    Neuman, F.; Kreindler, E.

    1982-01-01

    Optimal turning climb-out and descent flight-paths from and to runway headings are derived to provide the missing elements of a complete flight-path optimization for minimum fuel consumption. The paths are derived by generating a field of extremals, using the necessary conditions of optimal control. Results show that the speed profiles for straight and turning flight are essentially identical, except for the final horizontal accelerating or decelerating turn. The optimal turns, which require no abrupt maneuvers, could easily be integrated with present climb-cruise-descent fuel-optimization algorithms.

  5. Reference energy-altitude descent guidance: Simulator evaluation. [aircraft descent and fuel conservation

    NASA Technical Reports Server (NTRS)

    Abbot, K. H.; Knox, C. E.

    1985-01-01

    Descent guidance was developed to provide a pilot with information to ake a fuel-conservative descent and cross a designated geographical waypoint at a preselected altitude and airspeed. The guidance was designed to reduce fuel usage during the descent and reduce the mental work load associated with planning a fuel-conservative descent. A piloted simulation was conducted to evaluate the operational use of this guidance concept. The results of the simulation tests show that the use of the guidance reduced fuel consumption and mental work load during the descent. Use of the guidance also decreased the airspeed error, but had no effect on the altitude error when the designated waypoint was crossed. Physical work load increased with the use of the guidance, but remained well within acceptable levels. The pilots found the guidance easy to use as presented and reported that it would be useful in an operational environment.

  6. Shake rattle and roll: the bony labyrinth and aerial descent in squamates.

    PubMed

    Boistel, Renaud; Herrel, Anthony; Lebrun, Renaud; Daghfous, Gheylen; Tafforeau, Paul; Losos, Jonathan B; Vanhooydonck, Bieke

    2011-12-01

    Controlled aerial descent has evolved many times independently in vertebrates. Squamates (lizards and snakes) are unusual in that respect due to the large number of independent origins of the evolution of this behavior. Although some squamates such as flying geckos of the genus Ptychozoon and the flying dragons of the genus Draco show obvious adaptations including skin flaps or enlarged ribs allowing them to increase their surface area and slow down their descent, many others appear unspecialized. Yet, specializations can be expected at the level of the sensory and neural systems allowing animals to maintain stability during controlled aerial descent. The vestibular system is a likely candidate given that it is an acceleration detector and is well-suited to detect changes in pitch, roll and yaw. Here we use conventional and synchrotron μCT scans to quantify the morphology of the vestibular system in squamates able to perform controlled aerial descent compared to species characterized by a terrestrial or climbing life style. Our results show the presence of a strong phylogenetic signal in the data with the vestibular system in species from the same family being morphologically similar. However, both our shape analysis and an analysis of the dimensions of the vestibular system showed clear differences among animals with different life-styles. Species able to perform a controlled aerial descent differed in the position and shape of the inner ear, especially of the posterior ampulla. Given the limited stability of squamates against roll and the fact that the posterior ampulla is tuned to changes in roll this suggests an adaptive evolution of the vestibular system in squamates using controlled aerial descent. Future studies testing for similar differences in other groups of vertebrates known to use controlled aerial descent are needed to test the generality of this observation.

  7. Entry, Descent, and Landing With Propulsive Deceleration

    NASA Technical Reports Server (NTRS)

    Palaszewski, Bryan

    2012-01-01

    The future exploration of the Solar System will require innovations in transportation and the use of entry, descent, and landing (EDL) systems at many planetary landing sites. The cost of space missions has always been prohibitive, and using the natural planetary and planet s moons atmospheres for entry, descent, and landing can reduce the cost, mass, and complexity of these missions. This paper will describe some of the EDL ideas for planetary entry and survey the overall technologies for EDL that may be attractive for future Solar System missions.

  8. Coping with Discrimination among Mexican Descent Adolescents

    ERIC Educational Resources Information Center

    Edwards, Lisa M.; Romero, Andrea J.

    2008-01-01

    The current research is designed to explore the relationship among discrimination stress, coping strategies, and self-esteem among Mexican descent youth (N = 73, age 11-15 years). Results suggest that primary control engagement and disengagement coping strategies are positively associated with discrimination stress. Furthermore, self-esteem is…

  9. Descent Assisted Split Habitat Lunar Lander Concept

    NASA Technical Reports Server (NTRS)

    Mazanek, Daniel D.; Goodliff, Kandyce; Cornelius, David M.

    2008-01-01

    The Descent Assisted Split Habitat (DASH) lunar lander concept utilizes a disposable braking stage for descent and a minimally sized pressurized volume for crew transport to and from the lunar surface. The lander can also be configured to perform autonomous cargo missions. Although a braking-stage approach represents a significantly different operational concept compared with a traditional two-stage lander, the DASH lander offers many important benefits. These benefits include improved crew egress/ingress and large-cargo unloading; excellent surface visibility during landing; elimination of the need for deep-throttling descent engines; potentially reduced plume-surface interactions and lower vertical touchdown velocity; and reduced lander gross mass through efficient mass staging and volume segmentation. This paper documents the conceptual study on various aspects of the design, including development of sortie and outpost lander configurations and a mission concept of operations; the initial descent trajectory design; the initial spacecraft sizing estimates and subsystem design; and the identification of technology needs

  10. Research study: STS-1 Orbiter Descent

    NASA Technical Reports Server (NTRS)

    Hickey, J. S.

    1981-01-01

    The conversion of STS-1 orbiter descent data from AVE-SESAME contact programs to the REEDA system and the reduction of raw radiosonde data is summarized. A first difference program, contact data program, plot data program, and 30 second data program were developed. Six radiosonde soundings were taken. An example of the outputs of each of the programs is presented.

  11. America's Descent into Madness

    ERIC Educational Resources Information Center

    Giroux, Henry A.

    2014-01-01

    This article describes America's descent into madness under the regime of neoliberalism that has emerged in the United States since the late 1970s. In part, this is due to the emergence of a public pedagogy produced by the corporate-owned media that now saturates Americans with a market-driven value system that undermines those formative…

  12. Optimum Strategies for Selecting Descent Flight-Path Angles

    NASA Technical Reports Server (NTRS)

    Wu, Minghong G. (Inventor); Green, Steven M. (Inventor)

    2016-01-01

    An information processing system and method for adaptively selecting an aircraft descent flight path for an aircraft, are provided. The system receives flight adaptation parameters, including aircraft flight descent time period, aircraft flight descent airspace region, and aircraft flight descent flyability constraints. The system queries a plurality of flight data sources and retrieves flight information including any of winds and temperatures aloft data, airspace/navigation constraints, airspace traffic demand, and airspace arrival delay model. The system calculates a set of candidate descent profiles, each defined by at least one of a flight path angle and a descent rate, and each including an aggregated total fuel consumption value for the aircraft following a calculated trajectory, and a flyability constraints metric for the calculated trajectory. The system selects a best candidate descent profile having the least fuel consumption value while the fly ability constraints metric remains within aircraft flight descent flyability constraints.

  13. A Descent Rate Control Approach to Developing an Autonomous Descent Vehicle

    NASA Astrophysics Data System (ADS)

    Fields, Travis D.

    Circular parachutes have been used for aerial payload/personnel deliveries for over 100 years. In the past two decades, significant work has been done to improve the landing accuracies of cargo deliveries for humanitarian and military applications. This dissertation discusses the approach developed in which a circular parachute is used in conjunction with an electro-mechanical reefing system to manipulate the landing location. Rather than attempt to steer the autonomous descent vehicle directly, control of the landing location is accomplished by modifying the amount of time spent in a particular wind layer. Descent rate control is performed by reversibly reefing the parachute canopy. The first stage of the research investigated the use of a single actuation during descent (with periodic updates), in conjunction with a curvilinear target. Simulation results using real-world wind data are presented, illustrating the utility of the methodology developed. Additionally, hardware development and flight-testing of the single actuation autonomous descent vehicle are presented. The next phase of the research focuses on expanding the single actuation descent rate control methodology to incorporate a multi-actuation path-planning system. By modifying the parachute size throughout the descent, the controllability of the system greatly increases. The trajectory planning methodology developed provides a robust approach to accurately manipulate the landing location of the vehicle. The primary benefits of this system are the inherent robustness to release location errors and the ability to overcome vehicle uncertainties (mass, parachute size, etc.). A separate application of the path-planning methodology is also presented. An in-flight path-prediction system was developed for use in high-altitude ballooning by utilizing the path-planning methodology developed for descent vehicles. The developed onboard system improves landing location predictions in-flight using collected flight

  14. The steepest slopes on the Moon from Lunar Orbiter Laser Altimeter (LOLA) Data: Spatial Distribution and Correlation with Geologic Features

    NASA Astrophysics Data System (ADS)

    Kreslavsky, Mikhail A.; Head, James W.

    2016-07-01

    We calculated topographic gradients over the surface of the Moon at a 25 m baseline using data obtained by the Lunar Orbiter Laser Altimeter (LOLA) instrument onboard the Lunar Reconnaissance Orbiter (LRO) spacecraft. The relative spatial distribution of steep slopes can be reliably obtained, although some technical characteristics of the LOLA dataset preclude statistical studies of slope orientation. The derived slope-frequency distribution revealed a steep rollover for slopes close to the angle of repose. Slopes significantly steeper than the angle of repose are almost absent on the Moon due to (1) the general absence of cohesion/strength of the fractured and fragmented megaregolith of the lunar highlands, and (2) the absence of geological processes producing steep-slopes in the recent geological past. The majority of slopes steeper than 32°-35° are associated with relatively young large impact craters. We demonstrate that these impact craters progressively lose their steepest slopes. We also found that features of Early Imbrian and older ages have almost no slopes steeper than 35°. We interpret this to be due to removal of all steep slopes by the latest basin-forming impact (Orientale), probably by global seismic shaking. The global spatial distribution of the steepest slopes correlates moderately well with the predicted spatial distribution of impact rate; however, a significant paucity of steep slopes in the southern farside remains unexplained.

  15. Analysis of Online Composite Mirror Descent Algorithm.

    PubMed

    Lei, Yunwen; Zhou, Ding-Xuan

    2017-03-01

    We study the convergence of the online composite mirror descent algorithm, which involves a mirror map to reflect the geometry of the data and a convex objective function consisting of a loss and a regularizer possibly inducing sparsity. Our error analysis provides convergence rates in terms of properties of the strongly convex differentiable mirror map and the objective function. For a class of objective functions with Hölder continuous gradients, the convergence rates of the excess (regularized) risk under polynomially decaying step sizes have the order [Formula: see text] after [Formula: see text] iterates. Our results improve the existing error analysis for the online composite mirror descent algorithm by avoiding averaging and removing boundedness assumptions, and they sharpen the existing convergence rates of the last iterate for online gradient descent without any boundedness assumptions. Our methodology mainly depends on a novel error decomposition in terms of an excess Bregman distance, refined analysis of self-bounding properties of the objective function, and the resulting one-step progress bounds.

  16. Retrieval of the ESA Huygens Probe Entry and Descent Trajectory at Titan

    NASA Astrophysics Data System (ADS)

    Kazeminejad, B.; Atkinson, D. H.; Lebreton, J.-P.; Witasse, O.; Perez, M.; DTWG Team

    2005-08-01

    The Huygens probe was released from the Cassini spacecraft on December 25, 2004 and arrived at Titan for atmospheric entry and surface descent on January 14, 2005. The Huygens entry and descent trajectory reconstruction commenced with the Huygens probe state vector at the entry interface point (defined to be at an altitude of 1270 km above the surface of Titan) as provided by the Cassini Navigation Team at JPL. Integration of the equations of motion using measured accelerations provided the Huygens trajectory beyond the point of initial parachute deployment. From the surface, the Huygens descent trajectory was reconstructed upwards using pressure and temperature measurements from the Atmospheric Structure Instrument, N2/CH4 mole fractions from the Gas Chromatograph and Mass Spectrometer, and the impact time measured by the Surface Science Package penetrometer. Longitudinal drift was provided by the Huygens Doppler Wind Experiment. The entry and descent phases of the trajectory reconstructions were merged by adjustment of the initial state vector. The Huygens trajectory was reconstructed to be maximally consistent with all available science and engineering data.

  17. Assessment on EXPERT Descent and Landing System Aerodynamics

    NASA Astrophysics Data System (ADS)

    Wong, H.; Muylaert, J.; Northey, D.; Riley, D.

    2009-01-01

    EXPERT is a re-entry vehicle designed for validation of aero-thermodynamic models, numerical schemes in Computational Fluid Dynamics codes and test facilities for measuring flight data under an Earth re-entry environment. This paper addresses the design for the descent and landing sequence for EXPERT. It includes the descent sequence, the choice of drogue and main parachutes, and the parachute deployment condition, which can be supersonic or subsonic. The analysis is based mainly on an engineering tool, PASDA, together with some hand calculations for parachute sizing and design. The tool consists of a detailed 6-DoF simulation performed with the aerodynamics database of the vehicle, an empirical wakes model and the International Standard Atmosphere database. The aerodynamics database for the vehicle is generated by DNW experimental data and CFD codes within the framework of an ESA contract to CIRA. The analysis will be presented in terms of altitude, velocity, accelerations, angle-of- attack, pitch angle and angle of rigging line. Discussion on the advantages and disadvantages of each parachute deployment condition is included in addition to some comparison with the available data based on a Monte-Carlo method from a Russian company, FSUE NIIPS. Sensitivity on wind speed to the performance of EXPERT is shown to be strong. Supersonic deployment of drogue shows a better performance in stability at the expense of a larger G-load than those from the subsonic deployment of drogue. Further optimization on the parachute design is necessary in order to fulfill all the EXPERT specifications.

  18. Kinetic analysis of stair descent: Part 1. Forwards step-over-step descent.

    PubMed

    Cluff, Tyler; Robertson, D Gordon E

    2011-03-01

    This study examined lower extremity biomechanics during the initiation of stair descent from an upright, static posture. Seventeen healthy subjects (aged 23±2.4 years) descended a five-step, steel-reinforced, wooden laboratory staircase (34° decline). Ten trials of stair descent were separated into two blocks of five trials. Beginning from an upright posture, subjects descended the staircase at their preferred velocity (0.53±0.082 m/s) and continued the length of the laboratory walkway (∼4 m). Joint mechanics were contrasted between gait cycles. Relative to the initiation cycle at the top of the staircase, the dissipative knee extensor (K3) and hip flexor (H2) moments and powers were independent of progression velocity and approximated steady-state (i.e., constant) values after the first cycle of the trail limb (Step 5 to Step 3). In contrast, a salient relationship was observed between progression velocity and ankle joint mechanics at initial-contact. The plantiflexor moment, power and work at initial-contact (A1) increased with centre of mass velocity. Our results demonstrate that while the knee extensor moment is the primary dissipater of mechanical energy in stair descent, the ankle plantiflexors are the primary dissipaters associated with increased progression velocity. In addition, the results show that steady-state stair descent may not be attained during the first gait cycle of the trail limb. These data shed light on locomotive strategies used in stair descent and can be applied in biomechanical models of human stair gait. Researchers and practitioners should take into consideration the influence of gait cycle and progression velocity when evaluating lower extremity function in stair descent.

  19. Patterns of intraneural ganglion cyst descent.

    PubMed

    Spinner, Robert J; Carmichael, Stephen W; Wang, Huan; Parisi, Thomas J; Skinner, John A; Amrami, Kimberly K

    2008-04-01

    On the basis of the principles of the unifying articular theory, predictable patterns of proximal ascent have been described for fibular (peroneal) and tibial intraneural ganglion cysts in the knee region. The mechanism underlying distal descent into the terminal branches of the fibular and tibial nerves has not been previously elucidated. The purpose of this study was to demonstrate if and when cyst descent distal to the articular branch-joint connection occurs in intraneural ganglion cysts to understand directionality of intraneural cyst propagation. In Part I, the clinical records and MRIs of 20 consecutive patients treated at our institution for intraneural ganglion cysts (18 fibular and two tibial) arising from the superior tibiofibular joint were retrospectively analyzed. These patients underwent cyst decompression and disconnection of the articular branch. Five of these patients developed symptomatic cyst recurrence after cyst decompression without articular branch disconnection which was done elsewhere prior to our intervention. In Part II, five additional patients with intraneural ganglion cysts (three fibular and two tibial) treated at other institutions without disconnection of the articular branch were compared. These patients in Parts I and II demonstrated ascent of intraneural cyst to differing degrees (12 had evidence of sciatic nerve cross-over). In addition, all of these patients demonstrated previously unrecognized MRI evidence of intraneural cyst extending distally below the level of the articular branch to the joint of origin: cyst within the proximal most portions of the deep fibular and superficial fibular branches in fibular intraneural ganglion cysts and descending tibial branches in tibial intraneural ganglion cysts. The patients in Part I had complete resolution of their cysts at follow-up MRI examination 1 year postoperatively. The patients in Part II had intraneural recurrences postoperatively within the articular branch, the parent

  20. Regression Analysis of Top of Descent Location for Idle-thrust Descents

    NASA Technical Reports Server (NTRS)

    Stell, Laurel; Bronsvoort, Jesper; McDonald, Greg

    2013-01-01

    In this paper, multiple regression analysis is used to model the top of descent (TOD) location of user-preferred descent trajectories computed by the flight management system (FMS) on over 1000 commercial flights into Melbourne, Australia. The independent variables cruise altitude, final altitude, cruise Mach, descent speed, wind, and engine type were also recorded or computed post-operations. Both first-order and second-order models are considered, where cross-validation, hypothesis testing, and additional analysis are used to compare models. This identifies the models that should give the smallest errors if used to predict TOD location for new data in the future. A model that is linear in TOD altitude, final altitude, descent speed, and wind gives an estimated standard deviation of 3.9 nmi for TOD location given the trajec- tory parameters, which means about 80% of predictions would have error less than 5 nmi in absolute value. This accuracy is better than demonstrated by other ground automation predictions using kinetic models. Furthermore, this approach would enable online learning of the model. Additional data or further knowl- edge of algorithms is necessary to conclude definitively that no second-order terms are appropriate. Possible applications of the linear model are described, including enabling arriving aircraft to fly optimized descents computed by the FMS even in congested airspace. In particular, a model for TOD location that is linear in the independent variables would enable decision support tool human-machine interfaces for which a kinetic approach would be computationally too slow.

  1. African Descent and Glaucoma Evaluation Study (ADAGES)

    PubMed Central

    Girkin, Christopher A.; Sample, Pamela A.; Liebmann, Jeffrey M.; Jain, Sonia; Bowd, Christopher; Becerra, Lida M.; Medeiros, Felipe A.; Racette, Lyne; Dirkes, Keri A.; Weinreb, Robert N.; Zangwill, Linda M.

    2010-01-01

    Objective To define differences in optic disc, retinal nerve fiber layer, and macular structure between healthy participants of African (AD) and European descent (ED) using quantitative imaging techniques in the African Descent and Glaucoma Evaluation Study (ADAGES). Methods Reliable images were obtained using stereoscopic photography, confocal scanning laser ophthalmoscopy (Heidelberg retina tomography [HRT]), and optical coherence tomography (OCT) for 648 healthy subjects in ADAGES. Findings were compared and adjusted for age, optic disc area, and reference plane height where appropriate. Results The AD participants had significantly greater optic disc area on HRT (2.06 mm2; P<.001) and OCT (2.47 mm2; P<.001) and a deeper HRT cup depth than the ED group (P<.001). Retinal nerve fiber layer thickness was greater in the AD group except within the temporal region, where it was significantly thinner. Central macular thickness and volume were less in the AD group. Conclusions Most of the variations in optic nerve morphologic characteristics between the AD and ED groups are due to differences in disc area. However, differences remain in HRT cup depth, OCT macular thickness and volume, and OCT retinal nerve fiber layer thickness independent of these variables. These differences should be considered in the determination of disease status. PMID:20457974

  2. Descent algorithms on oblique manifold for source-adaptive ICA contrast.

    PubMed

    Selvan, Suviseshamuthu Easter; Amato, Umberto; Gallivan, Kyle A; Qi, Chunhong; Carfora, Maria Francesca; Larobina, Michele; Alfano, Bruno

    2012-12-01

    A Riemannian manifold optimization strategy is proposed to facilitate the relaxation of the orthonormality constraint in a more natural way in the course of performing independent component analysis (ICA) that employs a mutual information-based source-adaptive contrast function. Despite the extensive development of manifold techniques catering to the orthonormality constraint, only a limited number of works have been dedicated to oblique manifold (OB) algorithms to intrinsically handle the normality constraint, which has been empirically shown to be superior to other Riemannian and Euclidean approaches. Imposing the normality constraint implicitly, in line with the ICA definition, essentially guarantees a substantial improvement in the solution accuracy, by way of increased degrees of freedom while searching for an optimal unmixing ICA matrix, in contrast with the orthonormality constraint. Designs of the steepest descent, conjugate gradient with Hager-Zhang or a hybrid update parameter, quasi-Newton, and cost-effective quasi-Newton methods intended for OB are presented in this paper. Their performance is validated using natural images and systematically compared with the popular state-of-the-art approaches in order to assess the performance effects of the choice of algorithm and the use of a Riemannian rather than Euclidean framework. We surmount the computational challenge associated with the direct estimation of the source densities using the improved fast Gauss transform in the evaluation of the contrast function and its gradient. The proposed OB schemes may find applications in the offline image/signal analysis, wherein, on one hand, the computational overhead can be tolerated, and, on the other, the solution quality holds paramount interest.

  3. Evaluation of Residual Static Corrections by Hybrid Genetic Algorithm Steepest Ascent Autostatics Inversion.Application southern Algerian fields

    NASA Astrophysics Data System (ADS)

    Eladj, Said; bansir, fateh; ouadfeul, sid Ali

    2016-04-01

    The application of genetic algorithm starts with an initial population of chromosomes representing a "model space". Chromosome chains are preferentially Reproduced based on Their fitness Compared to the total population. However, a good chromosome has a Greater opportunity to Produce offspring Compared To other chromosomes in the population. The advantage of the combination HGA / SAA is the use of a global search approach on a large population of local maxima to Improve Significantly the performance of the method. To define the parameters of the Hybrid Genetic Algorithm Steepest Ascent Auto Statics (HGA / SAA) job, we Evaluated by testing in the first stage of "Steepest Ascent," the optimal parameters related to the data used. 1- The number of iterations "Number of hill climbing iteration" is equal to 40 iterations. This parameter defines the participation of the algorithm "SA", in this hybrid approach. 2- The minimum eigenvalue for SA '= 0.8. This is linked to the quality of data and S / N ratio. To find an implementation performance of hybrid genetic algorithms in the inversion for estimating of the residual static corrections, tests Were Performed to determine the number of generation of HGA / SAA. Using the values of residual static corrections already calculated by the Approaches "SAA and CSAA" learning has Proved very effective in the building of the cross-correlation table. To determine the optimal number of generation, we Conducted a series of tests ranging from [10 to 200] generations. The application on real seismic data in southern Algeria allowed us to judge the performance and capacity of the inversion with this hybrid method "HGA / SAA". This experience Clarified the influence of the corrections quality estimated from "SAA / CSAA" and the optimum number of generation hybrid genetic algorithm "HGA" required to have a satisfactory performance. Twenty (20) generations Were enough to Improve continuity and resolution of seismic horizons. This Will allow

  4. Mars Science Laboratory Entry, Descent and Landing System Overview

    NASA Technical Reports Server (NTRS)

    Steltzner, Adam D.; San Martin, A. Miguel; Rivellini, Tomasso P.; Chen, Allen

    2013-01-01

    The Mars Science Laboratory project recently places the Curiosity rove on the surface of Mars. With the success of the landing system, the performance envelope of entry, descent and landing capabilities has been extended over the previous state of the art. This paper will present an overview to the MSL entry, descent and landing system design and preliminary flight performance results.

  5. Probability of identity by descent in metapopulations.

    PubMed Central

    Kaj, I; Lascoux, M

    1999-01-01

    Equilibrium probabilities of identity by descent (IBD), for pairs of genes within individuals, for genes between individuals within subpopulations, and for genes between subpopulations are calculated in metapopulation models with fixed or varying colony sizes. A continuous-time analog to the Moran model was used in either case. For fixed-colony size both propagule and migrant pool models were considered. The varying population size model is based on a birth-death-immigration (BDI) process, to which migration between colonies is added. Wright's F statistics are calculated and compared to previous results. Adding between-island migration to the BDI model can have an important effect on the equilibrium probabilities of IBD and on Wright's index. PMID:10388835

  6. Error Analysis of Stochastic Gradient Descent Ranking.

    PubMed

    Chen, Hong; Tang, Yi; Li, Luoqing; Yuan, Yuan; Li, Xuelong; Tang, Yuanyan

    2012-12-31

    Ranking is always an important task in machine learning and information retrieval, e.g., collaborative filtering, recommender systems, drug discovery, etc. A kernel-based stochastic gradient descent algorithm with the least squares loss is proposed for ranking in this paper. The implementation of this algorithm is simple, and an expression of the solution is derived via a sampling operator and an integral operator. An explicit convergence rate for leaning a ranking function is given in terms of the suitable choices of the step size and the regularization parameter. The analysis technique used here is capacity independent and is novel in error analysis of ranking learning. Experimental results on real-world data have shown the effectiveness of the proposed algorithm in ranking tasks, which verifies the theoretical analysis in ranking error.

  7. Error analysis of stochastic gradient descent ranking.

    PubMed

    Chen, Hong; Tang, Yi; Li, Luoqing; Yuan, Yuan; Li, Xuelong; Tang, Yuanyan

    2013-06-01

    Ranking is always an important task in machine learning and information retrieval, e.g., collaborative filtering, recommender systems, drug discovery, etc. A kernel-based stochastic gradient descent algorithm with the least squares loss is proposed for ranking in this paper. The implementation of this algorithm is simple, and an expression of the solution is derived via a sampling operator and an integral operator. An explicit convergence rate for leaning a ranking function is given in terms of the suitable choices of the step size and the regularization parameter. The analysis technique used here is capacity independent and is novel in error analysis of ranking learning. Experimental results on real-world data have shown the effectiveness of the proposed algorithm in ranking tasks, which verifies the theoretical analysis in ranking error.

  8. Planetary entry, descent, and landing technologies

    NASA Astrophysics Data System (ADS)

    Pichkhadze, K.; Vorontsov, V.; Polyakov, A.; Ivankov, A.; Taalas, P.; Pellinen, R.; Harri, A.-M.; Linkin, V.

    2003-04-01

    Martian meteorological lander (MML) is intended for landing on the Martian surface in order to monitor the atmosphere at landing point for one Martian year. MMLs shall become the basic elements of a global network of meteorological mini-landers, observing the dynamics of changes of the atmospheric parameters on the Red Planet. The MML main scientific tasks are as follows: (1) Study of vertical structure of the Martian atmosphere throughout the MML descent; (2) On-surface meteorological observations for one Martian year. One of the essential factors influencing the lander's design is its entry, descent, and landing (EDL) sequence. During Phase A of the MML development, five different options for the lander's design were carefully analyzed. All of these options ensure the accomplishment of the above-mentioned scientific tasks with high effectiveness. CONCEPT A (conventional approach): Two lander options (with a parachute system + airbag and an inflatable airbrake + airbag) were analyzed. They are similar in terms of fulfilling braking phases and completely analogous in landing by means of airbags. CONCEPT B (innovative approach): Three lander options were analyzed. The distinguishing feature is the presence of inflatable braking units (IBU) in their configurations. SELECTED OPTION (innovative approach): Incorporating a unique design approach and modern technologies, the selected option of the lander represents a combination of the options analyzed in the framework of Concept B study. Currently, the selected lander option undergoes systems testing (Phase D1). Several MMLs can be delivered to Mars in frameworks of various missions as primary or piggybacking payload: (1) USA-led "Mars Scout" (2007); (2) France-led "NetLander" (2007/2009); (3) Russia-led "Mars-Deimos-Phobos sample return" (2007); (4) Independent mission (currently under preliminary study); etc.

  9. Atomistic-level non-equilibrium model for chemically reactive systems based on steepest-entropy-ascent quantum thermodynamics

    NASA Astrophysics Data System (ADS)

    Li, Guanchen; Al-Abbasi, Omar; von Spakovsky, Michael R.

    2014-10-01

    This paper outlines an atomistic-level framework for modeling the non-equilibrium behavior of chemically reactive systems. The framework called steepest- entropy-ascent quantum thermodynamics (SEA-QT) is based on the paradigm of intrinsic quantum thermodynamic (IQT), which is a theory that unifies quantum mechanics and thermodynamics into a single discipline with wide applications to the study of non-equilibrium phenomena at the atomistic level. SEA-QT is a novel approach for describing the state of chemically reactive systems as well as the kinetic and dynamic features of the reaction process without any assumptions of near-equilibrium states or weak-interactions with a reservoir or bath. Entropy generation is the basis of the dissipation which takes place internal to the system and is, thus, the driving force of the chemical reaction(s). The SEA-QT non-equilibrium model is able to provide detailed information during the reaction process, providing a picture of the changes occurring in key thermodynamic properties (e.g., the instantaneous species concentrations, entropy and entropy generation, reaction coordinate, chemical affinities, reaction rate, etc). As an illustration, the SEA-QT framework is applied to an atomistic-level chemically reactive system governed by the reaction mechanism F + H2 leftrightarrow FH + H.

  10. Bridle Device in Mars Science Laboratory Descent Stage

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This view of a portion of the descent stage of NASA's Mars Science Laboratory shows two of the stage's three spherical fuel tanks flanking the bridle device assembly. The photograph was taken in early October 2008 from the center of the descent stage looking outward. The top of the descent stage is toward the top of the image.

    The bridle device assembly is about two-thirds of a meter, or 2 feet, from top to bottom, and has two main parts. The cylinder on the top is the descent brake. The conical-shaped mechanism below that is the bridle assembly, including a spool of nylon and Vectran cords that will be attached to the rover.

    When pyrotechnic bolts fire to sever the rigid connection between the rover and the descent stage, gravity will pull the tethered rover away from the descent stage. The bridle or tether, attached to three points on the rover, will unspool from the bridle assembly, beginning from the larger-diameter portion. The rotation rate of the assembly, hence the descent rate of the rover, will be governed by the descent brake. Inside the housing of that brake are gear boxes and banks of mechanical resistors engineered to prevent the bridle from spooling out too quickly or too slowly. The length of the bridle will allow the rover to be lowered about 7.5 meters (25 feet) while still tethered to the descent stage.

    The Starsys division of SpaceDev Inc., Poway, Calif., provided the descent brake. NASA's Jet Propulsion Laboratory, Pasadena, Calif., built the bridle assembly. Vectran is a product of Kuraray Co. Ltd., Tokyo. JPL, a division of the California Institute of Technology, manages the Mars Science Laboratory Project for the NASA Science Mission Directorate, Washington.

  11. Mars Science Laboratory Entry, Descent, and Landing Trajectory and Atmosphere Reconstruction

    NASA Technical Reports Server (NTRS)

    Karlgaard, Christopher D.; Kutty, Prasad; Schoenenberer, Mark; Shidner, Jeremy D.

    2013-01-01

    On August 5th 2012, The Mars Science Laboratory entry vehicle successfully entered Mars atmosphere and landed the Curiosity rover on its surface. A Kalman filter approach has been implemented to reconstruct the entry, descent, and landing trajectory based on all available data. The data sources considered in the Kalman filtering approach include the inertial measurement unit accelerations and angular rates, the terrain descent sensor, the measured landing site, orbit determination solutions for the initial conditions, and a new set of instrumentation for planetary entry reconstruction consisting of forebody pressure sensors, known as the Mars Entry Atmospheric Data System. These pressure measurements are unique for planetary entry, descent, and landing reconstruction as they enable a reconstruction of the freestream atmospheric conditions without any prior assumptions being made on the vehicle aerodynamics. Moreover, the processing of these pressure measurements in the Kalman filter approach enables the identification of atmospheric winds, which has not been accomplished in past planetary entry reconstructions. This separation of atmosphere and aerodynamics allows for aerodynamic model reconciliation and uncertainty quantification, which directly impacts future missions. This paper describes the mathematical formulation of the Kalman filtering approach, a summary of data sources and preprocessing activities, and results of the reconstruction.

  12. Time controlled descent guidance algorithm for simulation of advanced ATC systems

    NASA Technical Reports Server (NTRS)

    Lee, H. Q.; Erzberger, H.

    1983-01-01

    Concepts and computer algorithms for generating time controlled four dimensional descent trajectories are described. The algorithms were implemented in the air traffic control simulator and used by experienced controllers in studies of advanced air traffic flow management procedures. A time controlled descent trajectory comprises a vector function of time, including position, altitude, and heading, that starts at the initial position of the aircraft and ends at touchdown. The trajectory provides a four dimensional reference path which will cause an aircraft tracking it to touchdown at a predetermined time with a minimum of fuel consumption. The problem of constructing such trajectories is divided into three subproblems involving synthesis of horizontal, vertical, and speed profiles. The horizontal profile is constructed as a sequence of turns and straight lines passing through a specified set of waypoints. The vertical profile consists of a sequence of level flight and constant descent angle segments defined by altitude waypoints. The speed profile is synthesized as a sequence of constant Mach number, constant indicated airspeed, and acceleration/deceleration legs. It is generated by integrating point mass differential equations of motion, which include the thrust and drag models of the aircraft.

  13. Surface erosion caused on Mars from Viking descent engine plume

    NASA Technical Reports Server (NTRS)

    Hutton, R. E.; Moore, H. J.; Scott, R. F.; Shorthill, R. W.; Spitzer, C. R.

    1980-01-01

    During the Martian landings the descent engine plumes on Viking Lander 1 (VL-1) and Viking Lander 2 (VL-2) eroded the Martian surface materials. This had been anticipated and investigated both analytically and experimentally during the design phase of the Viking spacecraft. This paper presents data on erosion obtained during the tests of the Viking descent engine and the evidence for erosion by the descent engines of VL-1 and VL-2 on Mars. From these and other results, it is concluded that there are four distinct surface materials on Mars: (1) drift materials, (2) crusty to cloddy material, (3) blocky material, and (4) rock.

  14. Surface erosion caused on Mars from Viking descent engine plume

    USGS Publications Warehouse

    Hutton, R.E.; Moore, H.J.; Scott, R.F.; Shorthill, R.W.; Spitzer, C.R.

    1980-01-01

    During the Martian landings the descent engine plumes on Viking Lander 1 (VL-1) and Viking Lander 2 (VL-2) eroded the Martian surface materials. This had been anticipated and investigated both analytically and experimentally during the design phase of the Viking spacecraft. This paper presents data on erosion obtained during the tests of the Viking descent engine and the evidence for erosion by the descent engines of VL-1 and VL-2 on Mars. From these and other results, it is concluded that there are four distinct surface materials on Mars: (1) drift material, (2) crusty to cloddy material, (3) blocky material, and (4) rock. ?? 1980 D. Reidel Publishing Co.

  15. Orion Entry, Descent, and Landing Simulation

    NASA Technical Reports Server (NTRS)

    Hoelscher, Brian R.

    2007-01-01

    The Orion Entry, Descent, and Landing simulation was created over the past two years to serve as the primary Crew Exploration Vehicle guidance, navigation, and control (GN&C) design and analysis tool at the National Aeronautics and Space Administration (NASA). The Advanced NASA Technology Architecture for Exploration Studies (ANTARES) simulation is a six degree-of-freedom tool with a unique design architecture which has a high level of flexibility. This paper describes the decision history and motivations that guided the creation of this simulation tool. The capabilities of the models within ANTARES are presented in detail. Special attention is given to features of the highly flexible GN&C architecture and the details of the implemented GN&C algorithms. ANTARES provides a foundation simulation for the Orion Project that has already been successfully used for requirements analysis, system definition analysis, and preliminary GN&C design analysis. ANTARES will find useful application in engineering analysis, mission operations, crew training, avionics-in-the-loop testing, etc. This paper focuses on the entry simulation aspect of ANTARES, which is part of a bigger simulation package supporting the entire mission profile of the Orion vehicle. The unique aspects of entry GN&C design are covered, including how the simulation is being used for Monte Carlo dispersion analysis and for support of linear stability analysis. Sample simulation output from ANTARES is presented in an appendix.

  16. Men of African Descent and Carcinoma of the Prostate Consortium

    Cancer.gov

    The Men of African Descent and Carcinoma of the Prostate Consortium collaborates on epidemiologic studies to address the high burden of prostate cancer and to understand the causes of etiology and outcomes among men of African ancestry.

  17. 25 CFR 11.711 - Descent and distribution.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... ORDER CODE Probate Proceedings § 11.711 Descent and distribution. (a) The court shall distribute the estate according to the terms of the will of the decedent which has been admitted to probate. (b) If...

  18. 25 CFR 11.711 - Descent and distribution.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... ORDER CODE Probate Proceedings § 11.711 Descent and distribution. (a) The court shall distribute the estate according to the terms of the will of the decedent which has been admitted to probate. (b) If...

  19. 25 CFR 11.711 - Descent and distribution.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... ORDER CODE Probate Proceedings § 11.711 Descent and distribution. (a) The court shall distribute the estate according to the terms of the will of the decedent which has been admitted to probate. (b) If...

  20. 25 CFR 11.711 - Descent and distribution.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... ORDER CODE Probate Proceedings § 11.711 Descent and distribution. (a) The court shall distribute the estate according to the terms of the will of the decedent which has been admitted to probate. (b) If...

  1. 25 CFR 11.711 - Descent and distribution.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... ORDER CODE Probate Proceedings § 11.711 Descent and distribution. (a) The court shall distribute the estate according to the terms of the will of the decedent which has been admitted to probate. (b) If...

  2. Automation for Accommodating Fuel-Efficient Descents in Constrained Airspace

    NASA Technical Reports Server (NTRS)

    Coopenbarger, Richard A.

    2010-01-01

    Continuous descents at low engine power are desired to reduce fuel consumption, emissions and noise during arrival operations. The challenge is to allow airplanes to fly these types of efficient descents without interruption during busy traffic conditions. During busy conditions today, airplanes are commonly forced to fly inefficient, step-down descents as airtraffic controllers work to ensure separation and maximize throughput. NASA in collaboration with government and industry partners is developing new automation to help controllers accommodate continuous descents in the presence of complex traffic and airspace constraints. This automation relies on accurate trajectory predictions to compute strategic maneuver advisories. The talk will describe the concept behind this new automation and provide an overview of the simulations and flight testing used to develop and refine its underlying technology.

  3. Descent Stage of Mars Science Laboratory During Assembly

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This image from early October 2008 shows personnel working on the descent stage of NASA's Mars Science Laboratory inside the Spacecraft Assembly Facility at NASA's Jet Propulsion Laboratory, Pasadena, Calif.

    The descent stage will provide rocket-powered deceleration for a phase of the arrival at Mars after the phases using the heat shield and parachute. When it nears the surface, the descent stage will lower the rover on a bridle the rest of the way to the ground. The larger three of the orange spheres in the descent stage are fuel tanks. The smaller two are tanks for pressurant gas used for pushing the fuel to the rocket engines.

    JPL, a division of the California Institute of Technology, manages the Mars Science Laboratory Project for the NASA Science Mission Directorate, Washington.

  4. Instantaneous, predictable balloon system descent from high altitude

    NASA Astrophysics Data System (ADS)

    Hazlewood, K.

    The 13 inch diameter helium valve has long been the only method for initiating and controlling balloon system descent. As greater altitudes have become standard, the 13 inch valves have become less and less effective. It takes as long as a half hour or more to effect a noticeable descent, even with two or three valves, at altitudes in excess of 120,000 ft. The project that prompted this study called for a descent rate of >1000 ft/min from 131,000 ft to 60,000 ft. The method by which this was accomplished is presented along with recommendations for future work to provide closer control of rapid descents such as this. The National Center for Atmospheric Research is sponsored by the National Science Foundation. Any opinions, findings, and conclusions or recommendations expressed in this publication are those of the author and do not necessarily reflect the views of the National Science Foundation

  5. Optimal sliding guidance algorithm for Mars powered descent phase

    NASA Astrophysics Data System (ADS)

    Wibben, Daniel R.; Furfaro, Roberto

    2016-02-01

    Landing on large planetary bodies (e.g. Mars) with pinpoint accuracy presents a set of new challenges that must be addressed. One such challenge is the development of new guidance algorithms that exhibit a higher degree of robustness and flexibility. In this paper, the Zero-Effort-Miss/Zero-Effort-Velocity (ZEM/ZEV) optimal sliding guidance (OSG) scheme is applied to the Mars powered descent phase. This guidance algorithm has been specifically designed to combine techniques from both optimal and sliding control theories to generate an acceleration command based purely on the current estimated spacecraft state and desired final target state. Consequently, OSG yields closed-loop trajectories that do not need a reference trajectory. The guidance algorithm has its roots in the generalized ZEM/ZEV feedback guidance and its mathematical equations are naturally derived by defining a non-linear sliding surface as a function of the terms Zero-Effort-Miss and Zero-Effort-Velocity. With the addition of the sliding mode and using Lyapunov theory for non-autonomous systems, one can formally prove that the developed OSG law is globally finite-time stable to unknown but bounded perturbations. Here, the focus is on comparing the generalized ZEM/ZEV feedback guidance with the OSG law to explicitly demonstrate the benefits of the sliding mode augmentation. Results show that the sliding guidance provides a more robust solution in off-nominal scenarios while providing similar fuel consumption when compared to the non-sliding guidance command. Further, a Monte Carlo analysis is performed to examine the performance of the OSG law under perturbed conditions.

  6. Descent from the Summit of 'Husband Hill'

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site] Click on the image for Descent from the Summit of 'Husband Hill' (QTVR)

    In late November 2005 while descending 'Husband Hill,' NASA's Mars Exploration Rover Spirit took the most detailed panorama so far of the 'Inner Basin,' the rover's next target destination. Spirit acquired the 405 individual images that make up this 360-degree view of the surrounding terrain using five different filters on the panoramic camera. The rover took the images on Martian days, or sols, 672 to 677 (Nov. 23 to 28, 2005 -- the Thanksgiving holiday weekend).

    This image is an approximately true-color rendering using camera's 750-, 530-, and 430-nanometer filters. Seams between individual frames have been eliminated from the sky portion of the mosaic to better simulate the vista a person standing on Mars would see.

    'Home Plate,' a bright, semi-circular feature scientists hope to investigate, is harder to discern in this image than in earlier views taken from higher up the hill. Spirit acquired this more oblique view, known as the 'Seminole panorama,' from about halfway down the south flank of Husband Hill, 50 meters (164 feet) or so below the summit. Near the center of the panorama, on the horizon, are 'McCool Hill' and 'Ramon Hill,' named, like Husband Hill, in honor of the fallen astronauts of the space shuttle Columbia. Husband Hill is visible behind the rover, on the right and left sides of the panorama. An arc of rover tracks made while avoiding obstacles and getting into position to examine rock outcrops can be traced over a long distance by zooming in to explore the panorama in greater detail.

    Spirit is now significantly farther downhill toward the center of this panorama, en route to Home Plate and other enigmatic soils and outcrop rocks in the quest to uncover the history of Gusev Crater and the 'Columbia Hills.'

  7. Steepest entropy ascent model for far-nonequilibrium thermodynamics: Unified implementation of the maximum entropy production principle

    NASA Astrophysics Data System (ADS)

    Beretta, Gian Paolo

    2014-10-01

    By suitable reformulations, we cast the mathematical frameworks of several well-known different approaches to the description of nonequilibrium dynamics into a unified formulation valid in all these contexts, which extends to such frameworks the concept of steepest entropy ascent (SEA) dynamics introduced by the present author in previous works on quantum thermodynamics. Actually, the present formulation constitutes a generalization also for the quantum thermodynamics framework. The analysis emphasizes that in the SEA modeling principle a key role is played by the geometrical metric with respect to which to measure the length of a trajectory in state space. In the near-thermodynamic-equilibrium limit, the metric tensor is directly related to the Onsager's generalized resistivity tensor. Therefore, through the identification of a suitable metric field which generalizes the Onsager generalized resistance to the arbitrarily far-nonequilibrium domain, most of the existing theories of nonequilibrium thermodynamics can be cast in such a way that the state exhibits the spontaneous tendency to evolve in state space along the path of SEA compatible with the conservation constraints and the boundary conditions. The resulting unified family of SEA dynamical models is intrinsically and strongly consistent with the second law of thermodynamics. The non-negativity of the entropy production is a general and readily proved feature of SEA dynamics. In several of the different approaches to nonequilibrium description we consider here, the SEA concept has not been investigated before. We believe it defines the precise meaning and the domain of general validity of the so-called maximum entropy production principle. Therefore, it is hoped that the present unifying approach may prove useful in providing a fresh basis for effective, thermodynamically consistent, numerical models and theoretical treatments of irreversible conservative relaxation towards equilibrium from far nonequilibrium

  8. Atmospheric properties reconstruction from the Mars Science Laboratory Entry, Descent and Landing

    NASA Astrophysics Data System (ADS)

    Holstein-Rathlou, Christina; Withers, Paul

    2014-11-01

    The Mars Science Laboratory (MSL) landed on August 5, 2012 in Gale Crater on Mars (4.5 S, 137.4 E) [1]. The MSL entry vehicle measured accelerations and angular velocity during its descent through the Martian atmosphere using accelerometers and gyroscopes in an inertial measurement unit. We have applied smoothing techniques previously developed for the NASA Phoenix Mars mission [2] to these acceleration data. Smoothed accelerations were used in conjunction with the vehicle’s aerodynamic database to reconstruct atmospheric density, pressure and temperature profiles to above 120 km altitude. The density profile was estimated using axial accelerations in the drag force equation. Corresponding pressure and temperature profiles were calculated using the hydrostatic equilibrium and ideal gas law, respectively. In contrast to previous missions, MSL used a guided entry that resulted in periods of near-horizontal flight at approximately 20 km altitude [3], during which pressure could not be determined from hydrostatic equilibrium. Instead, atmospheric pressures at low altitudes were determined independently by the Mars Entry Atmospheric Data System (MEADS) [4]. These were used in conjunction with accelerometer-derived densities to extend the atmospheric temperature profile through the period of near-horizontal flight. Although the results present only a snapshot of the regional atmospheric conditions at the time of entry, descent and landing of MSL, they have excellent vertical resolution and vertical extent, thereby complementing orbital observations. We will present an overview of our atmospheric reconstruction process, the derived atmospheric profiles, and preliminary scientific interpretation of the atmospheric results. References: [1] Vasavada, A.R. et al (2014), JGR-Planets, 119, 6, 1134-1161 [2] Withers, P. (2013) Planet. & Space Sci., 79-80, 52-55, [3] Dutta, S. et al. (2013) 23rd AAS/AIAA Space Flight Mechanics Meeting, AAS 13-309, [4] Schoenenberger, M. et al

  9. Mars Descent Imager (MARDI) on the Mars Polar Lander

    USGS Publications Warehouse

    Malin, M.C.; Caplinger, M.A.; Carr, M.H.; Squyres, S.; Thomas, P.; Veverka, J.

    2001-01-01

    The Mars Descent Imager, or MARDI, experiment on the Mars Polar Lander (MPL) consists of a camera characterized by small physical size and mass (???6 ?? 6 ?? 12 cm, including baffle; <500 gm), low power requirements (<2.5 W, including power supply losses), and high science performance (1000 x 1000 pixel, low noise). The intent of the investigation is to acquire nested images over a range of resolutions, from 8 m/pixel to better than 1 cm/pixel, during the roughly 2 min it takes the MPL to descend from 8 km to the surface under parachute and rocket-powered deceleration. Observational goals will include studies of (1) surface morphology (e.g., nature and distribution of landforms indicating past and present environmental processes); (2) local and regional geography (e.g., context for other lander instruments: precise location, detailed local relief); and (3) relationships to features seen in orbiter data. To accomplish these goals, MARDI will collect three types of images. Four small images (256 x 256 pixels) will be acquired on 0.5 s centers beginning 0.3 s before MPL's heatshield is jettisoned. Sixteen full-frame images (1024 X 1024, circularly edited) will be acquired on 5.3 s centers thereafter. Just after backshell jettison but prior to the start of powered descent, a "best final nonpowered descent image" will be acquired. Five seconds after the start of powered descent, the camera will begin acquiring images on 4 s centers. Storage for as many as ten 800 x 800 pixel images is available during terminal descent. A number of spacecraft factors are likely to impact the quality of MARDI images, including substantial motion blur resulting from large rates of attitude variation during parachute descent and substantial rocket-engine-induced vibration during powered descent. In addition, the mounting location of the camera places the exhaust plume of the hydrazine engines prominently in the field of view. Copyright 2001 by the American Geophysical Union.

  10. Design of automation tools for management of descent traffic

    NASA Technical Reports Server (NTRS)

    Erzberger, Heinz; Nedell, William

    1988-01-01

    The design of an automated air traffic control system based on a hierarchy of advisory tools for controllers is described. Compatibility of the tools with the human controller, a key objective of the design, is achieved by a judicious selection of tasks to be automated and careful attention to the design of the controller system interface. The design comprises three interconnected subsystems referred to as the Traffic Management Advisor, the Descent Advisor, and the Final Approach Spacing Tool. Each of these subsystems provides a collection of tools for specific controller positions and tasks. This paper focuses primarily on the Descent Advisor which provides automation tools for managing descent traffic. The algorithms, automation modes, and graphical interfaces incorporated in the design are described. Information generated by the Descent Advisor tools is integrated into a plan view traffic display consisting of a high-resolution color monitor. Estimated arrival times of aircraft are presented graphically on a time line, which is also used interactively in combination with a mouse input device to select and schedule arrival times. Other graphical markers indicate the location of the fuel-optimum top-of-descent point and the predicted separation distances of aircraft at a designated time-control point. Computer generated advisories provide speed and descent clearances which the controller can issue to aircraft to help them arrive at the feeder gate at the scheduled times or with specified separation distances. Two types of horizontal guidance modes, selectable by the controller, provide markers for managing the horizontal flightpaths of aircraft under various conditions. The entire system consisting of descent advisor algorithm, a library of aircraft performance models, national airspace system data bases, and interactive display software has been implemented on a workstation made by Sun Microsystems, Inc. It is planned to use this configuration in operational

  11. Data assimilation using a gradient descent method for estimation of intraoperative brain deformation.

    PubMed

    Ji, Songbai; Hartov, Alex; Roberts, David; Paulsen, Keith

    2009-10-01

    Biomechanical models that simulate brain deformation are gaining attention as alternatives for brain shift compensation. One approach, known as the "forced-displacement method", constrains the model to exactly match the measured data through boundary condition (BC) assignment. Although it improves model estimates and is computationally attractive, the method generates fictitious forces and may be ill-advised due to measurement uncertainty. Previously, we have shown that by assimilating intraoperatively acquired brain displacements in an inversion scheme, the Representer algorithm (REP) is able to maintain stress-free BCs and improve model estimates by 33% over those without data guidance in a controlled environment. However, REP is computationally efficient only when a few data points are used for model guidance because its costs scale linearly in the number of data points assimilated, thereby limiting its utility (and accuracy) in clinical settings. In this paper, we present a steepest gradient descent algorithm (SGD) whose computational complexity scales nearly invariantly with the number of measurements assimilated by iteratively adjusting the forcing conditions to minimize the difference between measured and model-estimated displacements (model-data misfit). Solutions of full linear systems of equations are achieved with a parallelized direct solver on a shared-memory, eight-processor Linux cluster. We summarize the error contributions from the entire process of model-updated image registration compensation and we show that SGD is able to attain model estimates comparable to or better than those obtained with REP, capturing about 74-82% of tumor displacement, but with a computational effort that is significantly less (a factor of 4-fold or more reduction relative to REP) and nearly invariant to the amount of sparse data involved when the number of points assimilated is large. Based on five patient cases, an average computational cost of approximately 2 min for

  12. MSL Entry, Descent and Landing Performance and Environments

    NASA Technical Reports Server (NTRS)

    Lockwood, Mary Kae; Dwyer-Cianciola, Alicia; Dyakonov, Artem; Edquist, Karl; Powell, Dick; Striepe, Scott; Way, David; Graves, Claude; Carman, Gil; Sostaric, Ron

    2005-01-01

    A viewgraph presentation on the MARS Science Laboratory (MSL) Entry, Descent and Landing (EDL) performance and environments is shown. The topics include: 1) High Altitude and Precision Landing; 2) Guided, Lifting, Ballistic Trade; 3) Supersonic Chute Deploy Altitude; 4) Guided, Lifting, Ballistic Landing Footprint Video; 5) Transition Indicator at Peak Heating Point on Trajectory; 6) Aeroheating at Peak Heating Point on Trajectory Nominal, No Uncertainty Included; 7) Comparison to Previous Missions; 8) Pork Chop Plots - EDL Performance for Mission Design; 9) Max Heat Rate Est (CBE+Uncert) W/cm2; 10) Nominal Super Chute Deploy Alt Above MOLA (km); 11) Monte Carlo; 12) MSL Option M2 Entry, Descent and Landing; 13) Entry Performance; 14) Entry Aeroheating and Entry g's; 15) Terminal Descent; and 16) How An Ideal Chute Deployment Altitude Varies with Time of Year and Latitude (JSC Chart).

  13. Crew Procedures for Continuous Descent Arrivals Using Conventional Guidance

    NASA Technical Reports Server (NTRS)

    Oseguera-Lohr, Rosa M.; Williams, David H.; Lewis, Elliot T,

    2007-01-01

    This paper presents results from a simulation study which investigated the use of Continuous Descent Arrival (CDA) procedures for conducting a descent through a busy terminal area, using conventional transport-category automation. This research was part of the Low Noise Flight Procedures (LNFP) element within the Quiet Aircraft Technology (QAT) Project, that addressed development of flight guidance, and supporting pilot and Air Traffic Control (ATC) procedures for low noise operations. The procedures and chart were designed to be easy to understand, and to make it easy for the crew to make changes via the Flight Management Computer Control-Display Unit (FMC-CDU) to accommodate changes from ATC. The test runs were intended to represent situations typical of what exists in many of today's terminal areas, including interruptions to the descent in the form of clearances issued by ATC.

  14. The gubernaculum during testicular descent in the human fetus.

    PubMed Central

    Heyns, C F

    1987-01-01

    This study of 178 male human fetuses and infants demonstrates that descent of the testis through the inguinal canal is a rapid process, with 75% of testes descending between 24 and 28 weeks of gestation. The gubernaculum is a cylindrical, gelatinous structure attached cranially to the testis and epididymis. While the testis is in the abdomen, the caudal tip of the gubernaculum is firmly attached to the region of the inguinal canal. In a few fetuses prior to descent the globular tip of the gubernaculum can be seen bulging through the external inguinal ring, covered by superficial fascia, with no macroscopically discernible extensions to the scrotum or any other area. Once the testis has passed through the inguinal canal, the bulbous lower tip of the gubernaculum is no longer firmly attached to any structure, nor does it extend to the bottom of the scrotum. Histologically the gubernaculum consists of undifferentiated mesenchymatous tissue. Prior to descent of the testis, there is an increase in the length of the intra-abdominal gubernaculum. The wet mass of the gubernaculum relative to the fetal mass increases rapidly prior to descent, while the relative wet mass of the testis remains constant during this period. There is also an increase in the wet/dry mass ratio of the gubernaculum, denoting an increase in its water content prior to descent. This indicates that a combination of growth processes is responsible for testicular descent, with the increase in the size of the gubernaculum playing the most important role in passage of the testis through the inguinal canal. Images Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 Fig. 7 Fig. 8 Fig. 9 Fig. 10 PMID:2892824

  15. Gradient descent learning algorithm overview: a general dynamical systems perspective.

    PubMed

    Baldi, P

    1995-01-01

    Gives a unified treatment of gradient descent learning algorithms for neural networks using a general framework of dynamical systems. This general approach organizes and simplifies all the known algorithms and results which have been originally derived for different problems (fixed point/trajectory learning), for different models (discrete/continuous), for different architectures (forward/recurrent), and using different techniques (backpropagation, variational calculus, adjoint methods, etc.). The general approach can also be applied to derive new algorithms. The author then briefly examines some of the complexity issues and limitations intrinsic to gradient descent learning. Throughout the paper, the author focuses on the problem of trajectory learning.

  16. Entry, Descent and Landing Systems Analysis Study: Phase 1 Report

    NASA Technical Reports Server (NTRS)

    DwyerCianciolo, Alicia M.; Davis, Jody L.; Komar, David R.; Munk, Michelle M.; Samareh, Jamshid A.; Powell, Richard W.; Shidner, Jeremy D.; Stanley, Douglas O.; Wilhite, Alan W.; Kinney, David J.; McGuire, M. Kathleen; Arnold, James O.; Howard, Austin R.; Sostaric, Ronald R.; Studak, Joseph W.; Zumwalt, Carlie H.; Llama, Eduardo G.; Casoliva, Jordi; Ivanov, Mark C.; Clark, Ian; Sengupta, Anita

    2010-01-01

    NASA senior management commissioned the Entry, Descent and Landing Systems Analysis (EDL-SA) Study in 2008 to identify and roadmap the Entry, Descent and Landing (EDL) technology investments that the agency needed to make in order to successfully land large payloads at Mars for both robotic and human-scale missions. This paper summarizes the motivation, approach and top-level results from Year 1 of the study, which focused on landing 10-50 mt on Mars, but also included a trade study of the best advanced parachute design for increasing the landed payloads within the EDL architecture of the Mars Science Laboratory (MSL) mission

  17. Flight Data Entry, Descent, and Landing (EDL) Repository

    NASA Technical Reports Server (NTRS)

    Martinez, Elmain M.; Winterhalter, Daniel

    2012-01-01

    Dr. Daniel Winterhalter, NASA Engineering and Safety Center Chief Engineer at the Jet Propulsion Laboratory, requested the NASA Engineering and Safety Center sponsor a 3-year effort to collect entry, descent, and landing material and to establish a NASA-wide archive to serve the material. The principle focus of this task was to identify entry, descent, and landing repository material that was at risk of being permanently lost due to damage, decay, and undocumented storage. To provide NASA-wide access to this material, a web-based digital archive was created. This document contains the outcome of the effort.

  18. Mars Smart Lander Simulations for Entry, Descent, and Landing

    NASA Technical Reports Server (NTRS)

    Striepe, S. A.; Way, D. W.; Balaram, J.

    2002-01-01

    Two primary simulations have been developed and are being updated for the Mars Smart Lander Entry, Descent, and Landing (EDL). The high fidelity engineering end-to-end EDL simulation that is based on NASA Langley's Program to Optimize Simulated Trajectories (POST) and the end-to-end real-time, hardware-in-the-loop simulation testbed, which is based on NASA JPL's (Jet Propulsion Laboratory) Dynamics Simulator for Entry, Descent and Surface landing (DSENDS). This paper presents the status of these Mars Smart Lander EDL end-to-end simulations at this time. Various models, capabilities, as well as validation and verification for these simulations are discussed.

  19. Powered-descent trajectory optimization scheme for Mars landing

    NASA Astrophysics Data System (ADS)

    Liu, Rongjie; Li, Shihua; Chen, Xisong; Guo, Lei

    2013-12-01

    This paper presents a trajectory optimization scheme for powered-descent phase of Mars landing with considerations of disturbance. Firstly, θ-D method is applied to design a suboptimal control law with descent model in the absence of disturbance. Secondly, disturbance is estimated by disturbance observer, and the disturbance estimation is as feedforward compensation. Then, semi-global stability analysis of the composite controller consisting of the nonlinear suboptimal controller and the disturbance feedforward compensation is proposed. Finally, to verify the effectiveness of proposed control scheme, an application including relevant simulations on a Mars landing mission is demonstrated.

  20. Rosetta Mission's "7 Hours of Terror" and Philae's Descent

    NASA Astrophysics Data System (ADS)

    Blanco, Philip

    2015-09-01

    In November 2014 the Rosetta mission to Comet 67P/Churyumov-Gerasimenko made the headlines when its Philae lander completed a successful unpowered descent onto the surface of the comet nucleus after "7 hours of terror" for the mission scientists. 67P's irregular shape and rotation made this task even more challenging. Philae fell almost radially towards 67P, as shown in an animation produced by the European Space Agency (ESA) prior to the event. Below, we investigate whether it is possible to model the spacecraft's descent time and impact speed using concepts taught in an introductory physics course.

  1. Whole-body angular momentum during stair ascent and descent.

    PubMed

    Silverman, Anne K; Neptune, Richard R; Sinitski, Emily H; Wilken, Jason M

    2014-04-01

    The generation of whole-body angular momentum is essential in many locomotor tasks and must be regulated in order to maintain dynamic balance. However, angular momentum has not been investigated during stair walking, which is an activity that presents a biomechanical challenge for balance-impaired populations. We investigated three-dimensional whole-body angular momentum during stair ascent and descent and compared it to level walking. Three-dimensional body-segment kinematic and ground reaction force (GRF) data were collected from 30 healthy subjects. Angular momentum was calculated using a 13-segment whole-body model. GRFs, external moment arms and net joint moments were used to interpret the angular momentum results. The range of frontal plane angular momentum was greater for stair ascent relative to level walking. In the transverse and sagittal planes, the range of angular momentum was smaller in stair ascent and descent relative to level walking. Significant differences were also found in the ground reaction forces, external moment arms and net joint moments. The sagittal plane angular momentum results suggest that individuals alter angular momentum to effectively counteract potential trips during stair ascent, and reduce the range of angular momentum to avoid falling forward during stair descent. Further, significant differences in joint moments suggest potential neuromuscular mechanisms that account for the differences in angular momentum between walking conditions. These results provide a baseline for comparison to impaired populations that have difficulty maintaining dynamic balance, particularly during stair ascent and descent.

  2. Stress within a Bicultural Context for Adolescents of Mexican Descent.

    ERIC Educational Resources Information Center

    Romero, Andrea J.; Roberts, Robert E.

    2003-01-01

    Folkman and Lazarus's theory of stress and coping was used to develop a measure assessing the perceived stress within a bicultural context. Middle school students of Mexican descent (N=881) reported their perceived stress from intergenerational acculturation gaps, within-group discrimination, out-group discrimination, and monolingual stress.…

  3. Self-Hatred in Americans of African Descent.

    ERIC Educational Resources Information Center

    Vontress, Clemmont E.

    In spite of attempts to destigmatize themselves with the "black is beautiful" rhetoric, efforts by Americans of African descent to disavow their imputed inferiority have not been successful. The black is reacted to as a handicapped person by the white American. Whites look with disdain on black-white sexual relationships, black language, and…

  4. APOLLO 16 TECHNICIAN ATTACHES PLAQUE TO LUNAR MODULE'S DESCENT STAGE

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Working inside the Apollo 16 Saturn V space vehicle at the launch pad, technician Ken Crow attaches a stainless steel plaque bearing the names of Apollo 16 astronauts John W. Young, Thomas K. Mattingly II and Charles M. Duke, Jr., to the Lunar Module's descent stage, which will remain on the Moon's surface.

  5. Women of African Descent: Persistence in Completing Doctorates

    ERIC Educational Resources Information Center

    Iddrisu, Vannetta Bailey

    2010-01-01

    This study examines the educational persistence of women of African descent (WOAD) in pursuit of a doctorate degree at universities in the southeastern United States. WOAD are women of African ancestry born outside the African continent. These women are heirs to an inner dogged determination and spirit to survive despite all odds (Pulliam, 2003,…

  6. "Rosetta" Mission's "7 Hours of Terror" and "Philae's" Descent

    ERIC Educational Resources Information Center

    Blanco, Philip

    2015-01-01

    In November 2014 the "Rosetta" mission to Comet 67P/Churyumov-Gerasimenko made the headlines when its "Philae" lander completed a successful unpowered descent onto the surface of the comet nucleus after "7 hours of terror" for the mission scientists. 67P's irregular shape and rotation made this task even more…

  7. Simulation Results for Airborne Precision Spacing along Continuous Descent Arrivals

    NASA Technical Reports Server (NTRS)

    Barmore, Bryan E.; Abbott, Terence S.; Capron, William R.; Baxley, Brian T.

    2008-01-01

    This paper describes the results of a fast-time simulation experiment and a high-fidelity simulator validation with merging streams of aircraft flying Continuous Descent Arrivals through generic airspace to a runway at Dallas-Ft Worth. Aircraft made small speed adjustments based on an airborne-based spacing algorithm, so as to arrive at the threshold exactly at the assigned time interval behind their Traffic-To-Follow. The 40 aircraft were initialized at different altitudes and speeds on one of four different routes, and then merged at different points and altitudes while flying Continuous Descent Arrivals. This merging and spacing using flight deck equipment and procedures to augment or implement Air Traffic Management directives is called Flight Deck-based Merging and Spacing, an important subset of a larger Airborne Precision Spacing functionality. This research indicates that Flight Deck-based Merging and Spacing initiated while at cruise altitude and well prior to the Terminal Radar Approach Control entry can significantly contribute to the delivery of aircraft at a specified interval to the runway threshold with a high degree of accuracy and at a reduced pilot workload. Furthermore, previously documented work has shown that using a Continuous Descent Arrival instead of a traditional step-down descent can save fuel, reduce noise, and reduce emissions. Research into Flight Deck-based Merging and Spacing is a cooperative effort between government and industry partners.

  8. A Comparison of Inexact Newton and Coordinate Descent Meshoptimization Technqiues

    SciTech Connect

    Diachin, L F; Knupp, P; Munson, T; Shontz, S

    2004-07-08

    We compare inexact Newton and coordinate descent methods for optimizing the quality of a mesh by repositioning the vertices, where quality is measured by the harmonic mean of the mean-ratio metric. The effects of problem size, element size heterogeneity, and various vertex displacement schemes on the performance of these algorithms are assessed for a series of tetrahedral meshes.

  9. 14 CFR 31.19 - Performance: Uncontrolled descent.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... AIRWORTHINESS STANDARDS: MANNED FREE BALLOONS Flight Requirements § 31.19 Performance: Uncontrolled descent. (a... from any single tear in the balloon envelope between tear stoppers: (1) The maximum vertical velocity..., with the balloon descending at the maximum vertical velocity determined in paragraph (a)(1) of...

  10. 14 CFR 31.19 - Performance: Uncontrolled descent.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... AIRWORTHINESS STANDARDS: MANNED FREE BALLOONS Flight Requirements § 31.19 Performance: Uncontrolled descent. (a... from any single tear in the balloon envelope between tear stoppers: (1) The maximum vertical velocity..., with the balloon descending at the maximum vertical velocity determined in paragraph (a)(1) of...

  11. 14 CFR 31.19 - Performance: Uncontrolled descent.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... AIRWORTHINESS STANDARDS: MANNED FREE BALLOONS Flight Requirements § 31.19 Performance: Uncontrolled descent. (a... from any single tear in the balloon envelope between tear stoppers: (1) The maximum vertical velocity..., with the balloon descending at the maximum vertical velocity determined in paragraph (a)(1) of...

  12. 14 CFR 31.19 - Performance: Uncontrolled descent.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... AIRWORTHINESS STANDARDS: MANNED FREE BALLOONS Flight Requirements § 31.19 Performance: Uncontrolled descent. (a... from any single tear in the balloon envelope between tear stoppers: (1) The maximum vertical velocity..., with the balloon descending at the maximum vertical velocity determined in paragraph (a)(1) of...

  13. 14 CFR 31.19 - Performance: Uncontrolled descent.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... AIRWORTHINESS STANDARDS: MANNED FREE BALLOONS Flight Requirements § 31.19 Performance: Uncontrolled descent. (a... from any single tear in the balloon envelope between tear stoppers: (1) The maximum vertical velocity..., with the balloon descending at the maximum vertical velocity determined in paragraph (a)(1) of...

  14. A Portfolio of Outstanding Americans of Mexican Descent.

    ERIC Educational Resources Information Center

    Lelevier, Benjamin, Jr.

    A cross section of Mexican American achievement is presented in a portfolio of 37 portraits of outstanding Americans of Mexican descent. Drawn in black and white on heavy paper stock by Mr. David L. Rodriguez, the sketches are suitable for display purposes. With the likenesses are biographical sketches in both English and Spanish which were…

  15. The Huygens Descent Trajectory Working Group and the Reconstruction of the Huygens Probe Entry and Descent Trajectory at Titan

    NASA Astrophysics Data System (ADS)

    Atkinson, David H.; Kazeminejad, Bobby; Lebreton*, Jean-Pierre

    2015-04-01

    Cassini/Huygens, a flagship mission to explore the rings, atmosphere, magnetic field, and moons that make up the Saturn system, is a joint endeavor of NASA, the European Space Agency, and Agenzia Spaziale Italiana. Comprising two spacecraft - a Saturn orbiter built by NASA and a Titan entry/descent probe built by the European Space Agency - Cassini/Huygens was launched in October 1997 and arrived at Saturn in 2004. The Huygens probe parachuted to the surface of Titan in January 2005. During the descent, six science instruments provided measurements of Titan's atmosphere, clouds, and winds, and photographed Titan's surface. It was recognized early in the Huygens program that to correctly interpret and correlate results from the probe science experiments and to provide a reference set of data for ground truth calibration of the Cassini orbiter remote sensing observations, an accurate reconstruction of the probe entry and descent trajectory and surface landing location would be necessary. The Huygens Descent Trajectory Working Group (DTWG) was chartered in 1996 as a subgroup of the Huygens Science Working Team. With membership comprising representatives from all the probe engineering and instrument teams as well as representatives of industry and the Cassini and Huygens Project Scientists, the DTWG presented an organizational framework within which instrument data was shared, the entry and descent trajectory reconstruction implemented, and the trajectory reconstruction efficiently disseminated. The primary goal of the Descent Trajectory Working Group was to develop retrieval methodologies for the probe descent trajectory reconstruction from the entry interface altitude of 1270 km to the surface using navigation data, and engineering and science data acquired by the instruments on the Huygens Probe, and to provide a reconstruction of the Huygens probe trajectory from entry to the surface of Titan that is maximally consistent with all available engineering and science

  16. Two-dimensional descent through a compressible atmosphere: Sequential deceleration of an unpowered load

    NASA Astrophysics Data System (ADS)

    Silverman, M. P.

    2010-02-01

    Equations, based on Rayleigh's drag law valid for high Reynolds number, are derived for two-dimensional motion through a compressible atmosphere in isentropic equilibrium, such as characterizes the Earth's troposphere. Solutions yield horizontal and vertical displacement, velocity, and acceleration as a function of altitude and ground-level temperature. An exact analytical solution to the equations linearized in the aero-thermodynamic parameter is given; in general the equations must be solved numerically. The theory, applied to the unpowered fall of a large aircraft stabilized to flat descent by symmetrical, sequential deployment of horizontal and vertical decelerators, shows that such an aircraft can be brought down with mean peak deployment and impact decelerations below 10g.

  17. Measurement of CPAS Main Parachute Rate of Descent

    NASA Technical Reports Server (NTRS)

    Ray, Eric S.

    2011-01-01

    The Crew Exploration Vehicle Parachute Assembly System (CPAS) is being designed to land the Orion Crew Module (CM) at a safe rate of descent at splashdown. Flight test performance must be measured to a high degree of accuracy to ensure this requirement is met with the most efficient design possible. Although the design includes three CPAS Main parachutes, the requirement is that the system must not exceed 33 ft/s under two Main parachutes, should one of the Main parachutes fail. Therefore, several tests were conducted with clusters of two Mains. All of the steady-state rate of descent data are normalized to standard sea level conditions and checked against the limit. As the Orion design gains weight, the system is approaching this limit to within measurement precision. Parachute "breathing," cluster interactions, and atmospheric anomalies can cause the rate of descent to vary widely and lead to challenges in characterizing parachute terminal performance. An early test had contradictory rate of descent results from optical trajectory and Differential Global Positioning Systems (DGPS). A thorough analysis of the data sources and error propagation was conducted to determine the uncertainty in the trajectory. It was discovered that the Time Space Position Information (TSPI) from the optical tracking provided accurate position data. However, the velocity from TPSI must be computed via numerical differentiation, which is prone to large error. DGPS obtains position through pseudo-range calculations from multiple satellites and velocity through Doppler shift of the carrier frequency. Because the velocity from DGPS is a direct measurement, it is more accurate than TSPI velocity. To remedy the situation, a commercial off-the-shelf product that combines GPS and an Inertial Measurement Unit (IMU) was purchased to significantly improve rate of descent measurements. This had the added benefit of solving GPS dropouts during aircraft extraction. Statistical probability

  18. RITD - Adapting Mars Entry, Descent and Landing System for Earth

    NASA Astrophysics Data System (ADS)

    Heilimo, Jyri; Harri, Ari-Matti; Aleksashkin, Sergei; Koryanov, Valeri; Arruego, Ignacio; Schmidt, Walter; Haukka, Harri; Finchenko, Valeri; Martynov, Maxim; Ponomarenko, Andrey; Kazakovtsev, Victor; Martin, Susana

    2015-04-01

    We have developed an atmospheric re-entry and descent system concept based on inflatable hypersonic decelerator techniques that were originally developed for Mars. The ultimate goal of this EU-funded RITD-project (Re-entry: Inflatable Technology Development) was to assess the benefits of this technology when deploying small payloads from low Earth orbits to the surface of the Earth with modest costs. The principal goal was to assess and develop a preliminary EDLS design for the entire relevant range of aerodynamic regimes expected to be encountered in Earth's atmosphere during entry, descent and landing. Low Earth Orbit (LEO) and even Lunar applications envisaged include the use of the EDLS approach in returning payloads of 4-8 kg down to the surface. Our development and assessments show clearly that this kind of inflatable technology originally developed for the Martian atmosphere, is feasible for use by Earth entry and descent applications. The preliminary results are highly promising indicating that the current Mars probe design could be used as it is for the Earth. According tp our analyses, the higher atmospheric pressure at an altitude of 12 km and less requires an additional pressurizing device for the in atable system increasing the entry mass by approximately 2 kg. These analyses involved the calculation of 120 different atmospheric entry and descent trajectories. The analysis of the existing technologies and current trends have indicated that the kind of inflatable technology pursued by RITD has high potential to enhance the European space technology expertise. This kind of technology is clearly feasible for utilization by Earth entry and descent applications.

  19. Linear Accelerators

    NASA Astrophysics Data System (ADS)

    Sidorin, Anatoly

    2010-01-01

    In linear accelerators the particles are accelerated by either electrostatic fields or oscillating Radio Frequency (RF) fields. Accordingly the linear accelerators are divided in three large groups: electrostatic, induction and RF accelerators. Overview of the different types of accelerators is given. Stability of longitudinal and transverse motion in the RF linear accelerators is briefly discussed. The methods of beam focusing in linacs are described.

  20. Descent of mesonephric duct to the final position of the vas deferens in human embryo and fetus

    PubMed Central

    Abe, Hiroshi; Hinata, Nobuyuki; Li, Xiang Wu; Murakami, Gen; Rodríguez-Vázquez, José Francisco

    2016-01-01

    Because the ureter arises from the mesonephric or Wolffian duct (WD), the WD opening should migrate inferiorly along the urogenital sinus or future urethra. However, this process of descent has not been evaluated morphometrically in previous studies and we know little about intermediate morphologies for the descent. In the present work, serial sagittal sections of 15 specimens at gestational age 6–12 weeks and serial horizontal sections of 20 specimens at 6–10 weeks were analyzed. Monitoring of horizontal sections showed that, until 9 weeks, a heart-, lozenge- or oval-shape of the initial urogenital sinus remained in the bladder and urethra. Thus, the future bladder and urethra could not be distinguished by the transverse section or plane. The maximum width of the urogenital sinus or bladder at 6–10 weeks was 0.8 mm, although its supero-inferior length reached 5 mm at 10 weeks. During earlier stages, however, the medial shift of the WD was rather evident. Depending on the extent of upward growth of the bladder smooth muscle, the descent of the vas deferens became evident at 10–12 weeks. Development of the urethral rhabdosphincter likely resulted in the differentiation of urogenital sinus into the urethra and bladder before formation of the bladder neck with 3-layered smooth muscles. Development of the prostate followed these morphological changes, later accelerating the further descent of the WD opening. Because of their close topographical relationships, slight anomalies or accidents of the umbilical cord at 10–12 weeks may have a significant effect on normal anatomy. PMID:28127497

  1. Analysis of various descent trajectories for a hypersonic-cruise, cold-wall research airplane

    NASA Technical Reports Server (NTRS)

    Lawing, P. L.

    1975-01-01

    The probable descent operating conditions for a hypersonic air-breathing research airplane were examined. Descents selected were cruise angle of attack, high dynamic pressure, high lift coefficient, turns, and descents with drag brakes. The descents were parametrically exercised and compared from the standpoint of cold-wall (367 K) aircraft heat load. The descent parameters compared were total heat load, peak heating rate, time to landing, time to end of heat pulse, and range. Trends in total heat load as a function of cruise Mach number, cruise dynamic pressure, angle-of-attack limitation, pull-up g-load, heading angle, and drag-brake size are presented.

  2. Efficient Sensor Placement Optimization Using Gradient Descent and Probabilistic Coverage

    PubMed Central

    Akbarzadeh, Vahab; Lévesque, Julien-Charles; Gagné, Christian; Parizeau, Marc

    2014-01-01

    We are proposing an adaptation of the gradient descent method to optimize the position and orientation of sensors for the sensor placement problem. The novelty of the proposed method lies in the combination of gradient descent optimization with a realistic model, which considers both the topography of the environment and a set of sensors with directional probabilistic sensing. The performance of this approach is compared with two other black box optimization methods over area coverage and processing time. Results show that our proposed method produces competitive results on smaller maps and superior results on larger maps, while requiring much less computation than the other optimization methods to which it has been compared. PMID:25196164

  3. RITD - Adapting Mars Entry, Descent and Landing System for Earth

    NASA Astrophysics Data System (ADS)

    Haukka, H.; Heilimo, J.; Harri, A.-M.; Aleksashkin, S.; Koryanov, V.; Arruego, I.; Schmidt, W.; Finchenko, V.; Martynov, M.; Ponomarenko, A.; Kazakovtsev, V.; Martin, S.

    2015-10-01

    We have developed an atmospheric re-entry and descent system concept based on inflatable hypersonic decelerator techniques that were originally developed for Mars. The ultimate goal of this EU-funded RITD-project (Re-entry: Inflatable Technology Development) was to assess the benefits of this technology when deploying small payloads from low Earth orbits to the surface of the Earth with modest costs. The principal goal was to assess and develop a preliminary EDLS design for the entire relevant range of aerodynamic regimes expected to be encountered in Earth's atmosphere during entry, descent and landing. Low Earth Orbit (LEO) and even Lunar applications envisaged include the use of the EDLS approach in returning payloads of 4-8 kg down to the surface.

  4. Helicopter optimal descent and landing after power loss

    NASA Technical Reports Server (NTRS)

    Johnson, W.

    1977-01-01

    An optimal control solution is obtained for the descent and landing of a helicopter after the loss of power in level flight. The model considers the helicopter vertical velocity, horizontal velocity, and rotor speed; and it includes representations of ground effect, rotor inflow time lag, pilot reaction time, rotor stall, and the induced velocity curve in the vortex ring state. The control (rotor thrust magnitude and direction) required to minimize the vertical and horizontal velocity at contact with the ground is obtained using nonlinear optimal control theory. It is found that the optimal descent after power loss in hover is a purely vertical flight path. Good correlation, even quantitatively, is found between the calculations and (non-optimal) flight test results.

  5. Peak knee flexion angles during stair descent in TKA patients.

    PubMed

    Bjerke, Joakim; Öhberg, Fredrik; Nilsson, Kjell G; Foss, Olav A; Stensdotter, Ann K

    2014-04-01

    Reduced peak knee flexion during stair descent (PKSD) is demonstrated in subjects with total knee arthroplasty (TKA), but the underlying factors are not well studied. 3D gait patterns during stair descent, peak passive knee flexion (PPKF), quadriceps strength, pain, proprioception, demographics, and anthropometrics were assessed in 23 unilateral TKA-subjects ~19 months post-operatively, and in 23 controls. PKSD, PPKF and quadriceps strength were reduced in the TKA-side, but also in the contralateral side. A multiple regression analysis identified PPKF as the only predictor (57%) to explain the relationship with PKSD. PPKF was, however sufficient for normal PKSD. Deficits in quadriceps strength in TKA-group suggest that strength is also contributing to smaller PKSD. Increased hip adduction at PKSD may indicate both compensatory strategy and reduced hip strength.

  6. Optimum climb and descent trajectories for airline missions

    NASA Technical Reports Server (NTRS)

    Erzberger, H.

    1981-01-01

    The characteristics of optimum fixed-range trajectories whose structure is constrained to climb, steady cruise, and descent segments are derived by application of optimal control theory. The performance function consists of the sum of fuel and time costs, referred to as direct operating cost (DOC). The state variable is range to go and the independent variable is energy. In this formulation a cruise segment always occurs at the optimum cruise energy for sufficiently large range. At short ranges (400 n. mi. and less), a cruise segment may also occur below the optimum cruise energy. The existence of such a cruise segment depends primarily on the fuel flow vs thrust characteristics and on thrust constraints. If thrust is a free control variable along with airspeed, it is shown that such cruise segments will not generally occur. If thrust is constrained to some maximum value in climb and to some minimum in descent, such cruise segments generally will occur.

  7. A Symmetric Time-Varying Cluster Rate of Descent Model

    NASA Technical Reports Server (NTRS)

    Ray, Eric S.

    2015-01-01

    A model of the time-varying rate of descent of the Orion vehicle was developed based on the observed correlation between canopy projected area and drag coefficient. This initial version of the model assumes cluster symmetry and only varies the vertical component of velocity. The cluster fly-out angle is modeled as a series of sine waves based on flight test data. The projected area of each canopy is synchronized with the primary fly-out angle mode. The sudden loss of projected area during canopy collisions is modeled at minimum fly-out angles, leading to brief increases in rate of descent. The cluster geometry is converted to drag coefficient using empirically derived constants. A more complete model is under development, which computes the aerodynamic response of each canopy to its local incidence angle.

  8. Aerodynamics of the EXPERT Reentry Capsule Along the Descent Trajectory

    NASA Astrophysics Data System (ADS)

    Vashchenkov, P.; Kashkovsky, A.; Ivanov, M.

    2009-01-01

    Results of numerical simulations of high-altitude aero thermodynamics of the EXPERT reentry capsule along its descent trajectory are presented. Aerodynamic characteristics for different angles of attack and rolling of the capsule at altitude of 150 down to 20 km are studied. An engineering local bridging method is used in computations. The uncertainty of the engineering method in the transitional regime is determined by comparisons with results obtained by DSMC simulations.

  9. Flight Management System Execution of Idle-Thrust Descents in Operations

    NASA Technical Reports Server (NTRS)

    Stell, Laurel L.

    2011-01-01

    To enable arriving aircraft to fly optimized descents computed by the flight management system (FMS) in congested airspace, ground automation must accurately predict descent trajectories. To support development of the trajectory predictor and its error models, commercial flights executed idle-thrust descents, and the recorded data includes the target speed profile and FMS intent trajectories. The FMS computes the intended descent path assuming idle thrust after top of descent (TOD), and any intervention by the controllers that alters the FMS execution of the descent is recorded so that such flights are discarded from the analysis. The horizontal flight path, cruise and meter fix altitudes, and actual TOD location are extracted from the radar data. Using more than 60 descents in Boeing 777 aircraft, the actual speeds are compared to the intended descent speed profile. In addition, three aspects of the accuracy of the FMS intent trajectory are analyzed: the meter fix crossing time, the TOD location, and the altitude at the meter fix. The actual TOD location is within 5 nmi of the intent location for over 95% of the descents. Roughly 90% of the time, the airspeed is within 0.01 of the target Mach number and within 10 KCAS of the target descent CAS, but the meter fix crossing time is only within 50 sec of the time computed by the FMS. Overall, the aircraft seem to be executing the descents as intended by the designers of the onboard automation.

  10. Can Accelerators Accelerate Learning?

    NASA Astrophysics Data System (ADS)

    Santos, A. C. F.; Fonseca, P.; Coelho, L. F. S.

    2009-03-01

    The 'Young Talented' education program developed by the Brazilian State Funding Agency (FAPERJ) [1] makes it possible for high-schools students from public high schools to perform activities in scientific laboratories. In the Atomic and Molecular Physics Laboratory at Federal University of Rio de Janeiro (UFRJ), the students are confronted with modern research tools like the 1.7 MV ion accelerator. Being a user-friendly machine, the accelerator is easily manageable by the students, who can perform simple hands-on activities, stimulating interest in physics, and getting the students close to modern laboratory techniques.

  11. Inflammatory Bowel Disease in Children of Middle Eastern Descent

    PubMed Central

    Naidoo, Christina Mai Ying; Leach, Steven T.; Day, Andrew S.; Lemberg, Daniel A.

    2014-01-01

    Increasing rates of inflammatory bowel disease (IBD) are now seen in populations where it was once uncommon. The pattern of IBD in children of Middle Eastern descent in Australia has never been reported. This study aimed to investigate the burden of IBD in children of Middle Eastern descent at the Sydney Children's Hospital, Randwick (SCHR). The SCHR IBD database was used to identify patients of self-reported Middle Eastern ethnicity diagnosed between 1987 and 2011. Demographic, diagnosis, and management data was collected for all Middle Eastern children and an age and gender matched non-Middle Eastern IBD control group. Twenty-four patients of Middle Eastern descent were identified. Middle Eastern Crohn's disease patients had higher disease activity at diagnosis, higher use of thiopurines, and less restricted colonic disease than controls. Although there were limitations with this dataset, we estimated a higher prevalence of IBD in Middle Eastern children and they had a different disease phenotype and behavior compared to the control group, with less disease restricted to the colon and likely a more active disease course. PMID:24987422

  12. Free-falls and parachute descents in the standard atmosphere

    NASA Technical Reports Server (NTRS)

    Webster, A P

    1947-01-01

    A detailed table of the standard equilibrium velocity and standard equilibrium time is presented for bodies falling in the standard atmosphere. This table gives the velocity at various altitudes and the time of fall from sea level to -4000 feet and from 80,000 feet to sea level. In addition to this standard table, there are given short tables and charts of an open-parachute descent and free-falls; the terminal velocity at sea level, and the variation of the weight-to-drag ratio (2w/cds)1/2 for various weight jumpers from 90 to 30 feet in open-parachute descent; and estimations of drag coefficients of silk and nylon parachutes. The table of standard equilibrium velocities and standard equilibrium times may be used directly for open-parachute descents, given the weight of the jumper, the diameter of the parachute, and the drag coefficient. For free-falls starting from horizontal flight, approximately 14 seconds must be added to the equilibrium time given in the table to obtain the total time to sea level. (author)

  13. Entry, Descent, and Landing Performance of the Mars Phoenix Lander

    NASA Technical Reports Server (NTRS)

    Desai, Prasun N.; Prince, Jill L.; Wueen, Eric M.; Cruz, Juan R.; Grover, Myron R.

    2008-01-01

    On May 25, 2008, the Mars Phoenix Lander successfully landed on the northern arctic plains of Mars. An overview of a preliminary reconstruction analysis performed on each entry, descent, and landing phase to assess the performance of Phoenix as it descended is presented and a comparison to pre-entry predictions is provided. The landing occurred 21 km further downrange than the predicted landing location. Analysis of the flight data revealed that the primary cause of Phoenix s downrange landing was a higher trim total angle of attack during the hypersonic phase of the entry, which resulted in Phoenix flying a slightly lifting trajectory. The cause of this higher trim attitude is not known at this time. Parachute deployment was 6.4 s later than prediction. This later deployment time was within the variations expected and is consistent with a lifting trajectory. The parachute deployment and inflation process occurred as expected with no anomalies identified. The subsequent parachute descent and powered terminal landing also behaved as expected. A preliminary reconstruction of the landing day atmospheric density profile was found to be lower than the best apriori prediction, ranging from a few percent less to a maximum of 8%. A comparison of the flight reconstructed trajectory parameters shows that the actual Phoenix entry, descent, and landing was close to pre-entry predictions. This reconstruction investigation is currently ongoing and the results to date are in the process of being refined.

  14. Airborne Management of Traffic Conflicts in Descent With Arrival Constraints

    NASA Technical Reports Server (NTRS)

    Doble, Nathan A.; Barhydt, Richard; Krishnamurthy, Karthik

    2005-01-01

    NASA is studying far-term air traffic management concepts that may increase operational efficiency through a redistribution of decisionmaking authority among airborne and ground-based elements of the air transportation system. One component of this research, En Route Free Maneuvering, allows trained pilots of equipped autonomous aircraft to assume responsibility for traffic separation. Ground-based air traffic controllers would continue to separate traffic unequipped for autonomous operations and would issue flow management constraints to all aircraft. To evaluate En Route Free Maneuvering operations, a human-in-the-loop experiment was jointly conducted by the NASA Ames and Langley Research Centers. In this experiment, test subject pilots used desktop flight simulators to resolve conflicts in cruise and descent, and to adhere to air traffic flow constraints issued by test subject controllers. Simulators at NASA Langley were equipped with a prototype Autonomous Operations Planner (AOP) flight deck toolset to assist pilots with conflict management and constraint compliance tasks. Results from the experiment are presented, focusing specifically on operations during the initial descent into the terminal area. Airborne conflict resolution performance in descent, conformance to traffic flow management constraints, and the effects of conflicting traffic on constraint conformance are all presented. Subjective data from subject pilots are also presented, showing perceived levels of workload, safety, and acceptability of autonomous arrival operations. Finally, potential AOP functionality enhancements are discussed along with suggestions to improve arrival procedures.

  15. Lunar Surface Access Module Descent Engine Turbopump Technology: Detailed Design

    NASA Technical Reports Server (NTRS)

    Alarez, Erika; Thornton, Randall J.; Forbes, John C.

    2008-01-01

    The need for a high specific impulse LOX/LH2 pump-fed lunar lander engine has been established by NASA for the new lunar exploration architecture. Studies indicate that a 4-engine cluster in the thrust range of 9,000-lbf each is a candidate configuration for the main propulsion of the manned lunar lander vehicle. The lander descent engine will be required to perform minor mid-course corrections, a Lunar Orbit Insertion (LOI) burn, a de-orbit burn, and the powered descent onto the lunar surface. In order to achieve the wide range of thrust required, the engines must be capable of throttling approximately 10:1. Working under internal research and development funding, NASA Marshall Space Flight Center (MSFC) has been conducting the development of a 9,000-lbf LOX/LH2 lunar lander descent engine testbed. This paper highlights the detailed design and analysis efforts to develop the lander engine Fuel Turbopump (FTP) whose operating speeds range from 30,000-rpm to 100,000-rpm. The capability of the FTP to operate across this wide range of speeds imposes several structural and dynamic challenges, and the small size of the FTP creates scaling and manufacturing challenges that are also addressed in this paper.

  16. Lunar Surface Access Module Descent Engine Turbopump Technology: Detailed Design

    NASA Technical Reports Server (NTRS)

    Alvarez, Erika; Forbes, John C.; Thornton, Randall J.

    2010-01-01

    The need for a high specific impulse LOX/LH2 pump-fed lunar lander engine has been established by NASA for the new lunar exploration architecture. Studies indicate that a 4-engine cluster in the thrust range of 9,000-lbf each is a candidate configuration for the main propulsion of the manned lunar lander vehicle. The lander descent engine will be required to perform multiple burns including the powered descent onto the lunar surface. In order to achieve the wide range of thrust required, the engines must be capable of throttling approximately 10:1. Working under internal research and development funding, NASA Marshall Space Flight Center (MSFC) has been conducting the development of a 9,000-lbf LOX/LH2 lunar lander descent engine technology testbed. This paper highlights the detailed design and analysis efforts to develop the lander engine Fuel Turbopump (FTP) whose operating speeds range from 30,000-rpm to 100,000-rpm. The capability of the FTP to operate across this wide range of speeds imposes several structural and dynamic challenges, and the small size of the FTP creates scaling and manufacturing challenges that are also addressed in this paper.

  17. Titan Explorer Entry, Descent and Landing Trajectory Design

    NASA Technical Reports Server (NTRS)

    Fisher, Jody L.; Lindberg, Robert E.; Lockwood, Mary Kae

    2006-01-01

    The Titan Explorer mission concept includes an orbiter, entry probe and inflatable airship designed to take remote and in-situ measurements of Titan's atmosphere. A modified entry, descent and landing trajectory at Titan that incorporates mid-air airship inflation (under a parachute) and separation is developed and examined for Titan Explorer. The feasibility of mid-air inflation and deployment of an airship under a parachute is determined by implementing and validating an airship buoyancy and inflation model in the trajectory simulation program, Program to Optimize Simulated Trajectories II (POST2). A nominal POST2 trajectory simulation case study is generated which examines different descent scenarios by varying airship inflation duration, orientation, and separation. The buoyancy model incorporation into POST2 is new to the software and may be used in future trajectory simulations. Each case from the nominal POST2 trajectory case study simulates a successful separation between the parachute and airship systems with sufficient velocity change as to alter their paths to avoid collision throughout their descent. The airship and heatshield also separate acceptably with a minimum distance of separation from the parachute system of 1.5 km. This analysis shows the feasibility of airship inflation on a parachute for different orientations, airship separation at various inflation times, and preparation for level-flight at Titan.

  18. PARTICLE ACCELERATOR

    DOEpatents

    Teng, L.C.

    1960-01-19

    ABS>A combination of two accelerators, a cyclotron and a ring-shaped accelerator which has a portion disposed tangentially to the cyclotron, is described. Means are provided to transfer particles from the cyclotron to the ring accelerator including a magnetic deflector within the cyclotron, a magnetic shield between the ring accelerator and the cyclotron, and a magnetic inflector within the ring accelerator.

  19. African descents are more sensitive than European descents to the antitumor compounds α-hederin and kalopanaxsaponin I.

    PubMed

    Feller, Geva; Kugel, Aleksandra; Moonshine, Dana; Chalifa-Caspi, Vered; Scholz, Martin; Prüfer, Dirk; Rabinski, Tatiana; Müller, Kai J; Ofir, Rivka

    2010-11-01

    α-Hederin, a natural triterpene saponin and its derivative kalopanaxsaponin I (ksI) exhibit cytotoxicity against various cancer cell lines and IN VIVO tumors. We studied the genetic variants contributing to the activity of these two anticancer compounds. Cell lines derived from 30 trios of European descent (Centre d'Etude du Polymorphisme Human, CEPH; CEU) and 30 trios of African descent (Yoruban, YRI) were used. Cytotoxicity was determined as inhibition of cell growth at increasing concentrations of α-hederin or ksI for 24 h. In comparison to the European, the Yoruban populations revealed a higher sensitivity to α-hederin and to ksI that can be attributed to several unique SNPs. These SNPs are located near 111 and 130 genes in the European and the Yoruban populations, respectively, raising the possibility that some of these genes contribute to the differential sensitivity to these compounds.

  20. Mars Science Laboratory: Entry, Descent, and Landing System Performance

    NASA Technical Reports Server (NTRS)

    Way, David W.; Powell, Richard W.; Chen, Allen; Steltzner, Adam D.; San Martin, Alejandro M.; Burkhart, Paul D.; mendeck, Gavin F.

    2006-01-01

    In 2010, the Mars Science Laboratory (MSL) mission will pioneer the next generation of robotic Entry, Descent, and Landing (EDL) systems, by delivering the largest and most capable rover to date to the surface of Mars. To do so, MSL will fly a guided lifting entry at a lift-to-drag ratio in excess of that ever flown at Mars, deploy the largest parachute ever at Mars, and perform a novel Sky Crane maneuver. Through improved altitude capability, increased latitude coverage, and more accurate payload delivery, MSL is allowing the science community to consider the exploration of previously inaccessible regions of the planet. The MSL EDL system is a new EDL architecture based on Viking heritage technologies and designed to meet the challenges of landing increasing massive payloads on Mars. In accordance with level-1 requirements, the MSL EDL system is being designed to land an 850 kg rover to altitudes as high as 1 km above the Mars Orbiter Laser Altimeter defined areoid within 10 km of the desired landing site. Accordingly, MSL will enter the largest entry mass, fly the largest 70 degree sphere-cone aeroshell, generate the largest hypersonic lift-to-drag ratio, and deploy the largest Disk-Gap-Band supersonic parachute of any previous mission to Mars. Major EDL events include a hypersonic guided entry, supersonic parachute deploy and inflation, subsonic heatshield jettison, terminal descent sensor acquisition, powered descent initiation, sky crane terminal descent, rover touchdown detection, and descent stage flyaway. Key performance metrics, derived from level-1 requirements and tracked by the EDL design team to indicate performance capability and timeline margins, include altitude and range at parachute deploy, time on radar, and propellant use. The MSL EDL system, which will continue to develop over the next three years, will enable a notable extension in the advancement of Mars surface science by delivering more science capability than ever before to the surface of

  1. Mars Science Laboratory: Entry, Descent, and Landing System Performance

    NASA Technical Reports Server (NTRS)

    Way, David W.; Powell, Richard W.; Chen, Allen; SanMartin, A. Miguel; Burkhart, P. Daniel; Mendeck, Gavin F.

    2007-01-01

    In 2010, the Mars Science Laboratory (MSL) mission will pioneer the next generation of robotic Entry, Descent, and Landing (EDL) systems, by delivering the largest and most capable rover to date to the surface of Mars. To do so, MSL will fly a guided lifting entry at a lift-to-drag ratio in excess of that ever flown at Mars, deploy the largest parachute ever at Mars, and perform a novel Sky Crane maneuver. Through improved altitude capability, increased latitude coverage, and more accurate payload delivery, MSL is allowing the science community to consider the exploration of previously inaccessible regions of the planet. The MSL EDL system is a new EDL architecture based on Viking heritage technologies and designed to meet the challenges of landing increasing massive payloads on Mars. In accordance with level-1 requirements, the MSL EDL system is being designed to land an 850 kg rover to altitudes as high as 1 km above the Mars Orbiter Laser Altimeter defined areoid within 10 km of the desired landing site. Accordingly, MSL will enter the largest entry mass, fly the largest 70 degree sphere-cone aeroshell, generate the largest hypersonic lift-to-drag ratio, and deploy the largest Disk-Gap-Band supersonic parachute of any previous mission to Mars. Major EDL events include a hypersonic guided entry, supersonic parachute deploy and inflation, subsonic heatshield jettison, terminal descent sensor acquisition, powered descent initiation, sky crane terminal descent, rover touchdown detection, and descent stage flyaway. Key performance metrics, derived from level-1 requirements and tracked by the EDL design team to indicate performance capability and timeline margins, include altitude and range at parachute deploy, time on radar, and propellant use. The MSL EDL system, which will continue to develop over the next three years, will enable a notable extension in the advancement of Mars surface science by delivering more science capability than ever before to the surface of

  2. Steepest-entropy-ascent quantum thermodynamic modeling of the relaxation process of isolated chemically reactive systems using density of states and the concept of hypoequilibrium state

    NASA Astrophysics Data System (ADS)

    Li, Guanchen; von Spakovsky, Michael R.

    2016-01-01

    This paper presents a study of the nonequilibrium relaxation process of chemically reactive systems using steepest-entropy-ascent quantum thermodynamics (SEAQT). The trajectory of the chemical reaction, i.e., the accessible intermediate states, is predicted and discussed. The prediction is made using a thermodynamic-ensemble approach, which does not require detailed information about the particle mechanics involved (e.g., the collision of particles). Instead, modeling the kinetics and dynamics of the relaxation process is based on the principle of steepest-entropy ascent (SEA) or maximum-entropy production, which suggests a constrained gradient dynamics in state space. The SEAQT framework is based on general definitions for energy and entropy and at least theoretically enables the prediction of the nonequilibrium relaxation of system state at all temporal and spatial scales. However, to make this not just theoretically but computationally possible, the concept of density of states is introduced to simplify the application of the relaxation model, which in effect extends the application of the SEAQT framework even to infinite energy eigenlevel systems. The energy eigenstructure of the reactive system considered here consists of an extremely large number of such levels (on the order of 10130) and yields to the quasicontinuous assumption. The principle of SEA results in a unique trajectory of system thermodynamic state evolution in Hilbert space in the nonequilibrium realm, even far from equilibrium. To describe this trajectory, the concepts of subsystem hypoequilibrium state and temperature are introduced and used to characterize each system-level, nonequilibrium state. This definition of temperature is fundamental rather than phenomenological and is a generalization of the temperature defined at stable equilibrium. In addition, to deal with the large number of energy eigenlevels, the equation of motion is formulated on the basis of the density of states and a set of

  3. Evaluation of the orientation of the steepest meridian of regular astigmatism among highly myopic Egyptian patients seeking non-ablative surgical correction of the refractive error

    PubMed Central

    Refai, Tamer Adel

    2015-01-01

    Introduction: LASIK surgery is currently the preferred procedure to correct low to moderate myopia. The aim of this study was to determine the orientation of the steepest meridian of regular astigmatism in order to determine the relative incidence of vertical, horizontal, and oblique regular astigmatism among highly myopic Egyptian patients seeking non-ablative surgical correction of the refractive error. Methods: One hundred and one eyes of 68 highly myopic patients who were seeking refractive surgery were included in this consecutive case series study. The refractive errors were measured using an autorefractometer and confirmed by trial. We measured the uncorrected and best corrected visual acuity in Snellen lines. Keratometry, central corneal thickness, and anterior chamber depth also were measured. The cylinder power in diopters and the axis in degrees were reported. Astigmatism was graded as with the rule (i.e., vertical meridian steeper), against the rule (i.e., horizontal meridian steeper), and oblique astigmatism. The number and the percentage of eyes with the rule, against the rule, and oblique astigmatism were calculated, and the chi-squared test was performed to analyze the data. Results: The spherical refractive error ranged from −6.5 to −24.5 diopters (−13.45 ± 4.60). The cylinder power (Cyl) ranged from −0.25 to −7.5 diopters (−2.23 ± 1.28). The uncorrected visual acuity (UCVA) in Snellen lines ranged from 0.01 – 0.1 (0.03 ± 0.02). The mean for best corrected visual acuity (BCVA) in Snellen lines was 0.40 (± 0.23). The steepest meridian was vertical (i.e., with-the-rule astigmatism) in 44 eyes (43.56%), horizontal (i.e., against-the-rule astigmatism) in 27 eyes (26.73%), and oblique (i.e., oblique astigmatism) in 30 eyes (29.70%). Conclusions: The incidence of with-the-rule astigmatism in patients with high myopia was found to be much lower than in previous studies for non-myopic patients, with a higher incidence for against

  4. Steepest-entropy-ascent quantum thermodynamic modeling of the relaxation process of isolated chemically reactive systems using density of states and the concept of hypoequilibrium state.

    PubMed

    Li, Guanchen; von Spakovsky, Michael R

    2016-01-01

    This paper presents a study of the nonequilibrium relaxation process of chemically reactive systems using steepest-entropy-ascent quantum thermodynamics (SEAQT). The trajectory of the chemical reaction, i.e., the accessible intermediate states, is predicted and discussed. The prediction is made using a thermodynamic-ensemble approach, which does not require detailed information about the particle mechanics involved (e.g., the collision of particles). Instead, modeling the kinetics and dynamics of the relaxation process is based on the principle of steepest-entropy ascent (SEA) or maximum-entropy production, which suggests a constrained gradient dynamics in state space. The SEAQT framework is based on general definitions for energy and entropy and at least theoretically enables the prediction of the nonequilibrium relaxation of system state at all temporal and spatial scales. However, to make this not just theoretically but computationally possible, the concept of density of states is introduced to simplify the application of the relaxation model, which in effect extends the application of the SEAQT framework even to infinite energy eigenlevel systems. The energy eigenstructure of the reactive system considered here consists of an extremely large number of such levels (on the order of 10^{130}) and yields to the quasicontinuous assumption. The principle of SEA results in a unique trajectory of system thermodynamic state evolution in Hilbert space in the nonequilibrium realm, even far from equilibrium. To describe this trajectory, the concepts of subsystem hypoequilibrium state and temperature are introduced and used to characterize each system-level, nonequilibrium state. This definition of temperature is fundamental rather than phenomenological and is a generalization of the temperature defined at stable equilibrium. In addition, to deal with the large number of energy eigenlevels, the equation of motion is formulated on the basis of the density of states and a set

  5. Powered Descent Guidance with General Thrust-Pointing Constraints

    NASA Technical Reports Server (NTRS)

    Carson, John M., III; Acikmese, Behcet; Blackmore, Lars

    2013-01-01

    The Powered Descent Guidance (PDG) algorithm and software for generating Mars pinpoint or precision landing guidance profiles has been enhanced to incorporate thrust-pointing constraints. Pointing constraints would typically be needed for onboard sensor and navigation systems that have specific field-of-view requirements to generate valid ground proximity and terrain-relative state measurements. The original PDG algorithm was designed to enforce both control and state constraints, including maximum and minimum thrust bounds, avoidance of the ground or descent within a glide slope cone, and maximum speed limits. The thrust-bound and thrust-pointing constraints within PDG are non-convex, which in general requires nonlinear optimization methods to generate solutions. The short duration of Mars powered descent requires guaranteed PDG convergence to a solution within a finite time; however, nonlinear optimization methods have no guarantees of convergence to the global optimal or convergence within finite computation time. A lossless convexification developed for the original PDG algorithm relaxed the non-convex thrust bound constraints. This relaxation was theoretically proven to provide valid and optimal solutions for the original, non-convex problem within a convex framework. As with the thrust bound constraint, a relaxation of the thrust-pointing constraint also provides a lossless convexification that ensures the enhanced relaxed PDG algorithm remains convex and retains validity for the original nonconvex problem. The enhanced PDG algorithm provides guidance profiles for pinpoint and precision landing that minimize fuel usage, minimize landing error to the target, and ensure satisfaction of all position and control constraints, including thrust bounds and now thrust-pointing constraints.

  6. Measuring foot placement and clearance during stair descent.

    PubMed

    Muhaidat, Jennifer; Kerr, Andrew; Rafferty, Danny; Skelton, Dawn A; Evans, Jonathan J

    2011-03-01

    Falls during stair descent are a serious problem and can lead to accidental death. Inappropriate foot placement on, and clearance over, steps have been identified as causes for falls on stairs. This study investigated a new method for measuring placement and clearance during stair descent in 10 healthy young subjects. The effect of foot length was accounted for during the measurement of foot placement by calculating the percentage length of the foot overhanging the step. Foot clearance was measured as the resultant of the minimum vertical and horizontal distances from the heel of the foot to the edge of the step. Clearance was divided into landing and passing clearance depending on the planned placement of the foot in relation to the step edge being cleared. Each subject performed seven trials of stairs descent. Mean (SD) and CV (SD) were 16% (6), 0.28 (0.15) for placement; 45.88 (10.05), 0.21 (0.07) for landing clearance; 107.25 (5.59), 0.25 (0.08) for passing clearance. There was no statistically significant effect of trial on placement and clearance (p>0.05). There was a significant effect of step number on landing and passing clearance (p=0.01, p<0.001 respectively). Landing and passing clearances were greater for the third step compared to the second step. Passing clearance was also significantly greater than landing clearance (p<0.001). The repeatable methods and findings from this study might be useful in providing a technical background and normal values for the design of future gait studies on stairs.

  7. Entry, Descent, and Landing for Human Mars Missions

    NASA Technical Reports Server (NTRS)

    Munk, Michelle M.; DwyerCianciolo, Alicia M.

    2012-01-01

    One of the most challenging aspects of a human mission to Mars is landing safely on the Martian surface. Mars has such low atmospheric density that decelerating large masses (tens of metric tons) requires methods that have not yet been demonstrated, and are not yet planned in future Mars missions. To identify the most promising options for Mars entry, descent, and landing, and to plan development of the needed technologies, NASA's Human Architecture Team (HAT) has refined candidate methods for emplacing needed elements of the human Mars exploration architecture (such as ascent vehicles and habitats) on the Mars surface. This paper explains the detailed, optimized simulations that have been developed to define the mass needed at Mars arrival to accomplish the entry, descent, and landing functions. Based on previous work, technology options for hypersonic deceleration include rigid, mid-L/D (lift-to-drag ratio) aeroshells, and inflatable aerodynamic decelerators (IADs). The hypersonic IADs, or HIADs, are about 20% less massive than the rigid vehicles, but both have their technology development challenges. For the supersonic regime, supersonic retropropulsion (SRP) is an attractive option, since a propulsive stage must be carried for terminal descent and can be ignited at higher speeds. The use of SRP eliminates the need for an additional deceleration system, but SRP is at a low Technology Readiness Level (TRL) in that the interacting plumes are not well-characterized, and their effect on vehicle stability has not been studied, to date. These architecture-level assessments have been used to define the key performance parameters and a technology development strategy for achieving the challenging mission of landing large payloads on Mars.

  8. OFT ascent/descent ancillary data requirements document

    NASA Technical Reports Server (NTRS)

    Bond, A. C., Jr.; Abramson, B.

    1978-01-01

    Requirements are presented for the ascent/descent (A/D) navigation and attitude-dependent ancillary data products to be generated for the space shuttle orbiter in support of orbital flight test requirements, MPAD guidance and navigation performance assessment, and the mission evaluation team. It was intended that this document serve as the sole requirements control instrument between MPB/MPAD and the A/D ancillary data users. The requirements are primarily functional in nature, but some detail level requirements are also included.

  9. Shuttle program: OFT ascent/descent ancillary data requirements document

    NASA Technical Reports Server (NTRS)

    Bond, A. C., Jr.; Knoedler, J.

    1980-01-01

    Requirements are presented for the ascent/descent (A/D) navigation and attitude-dependent ancillary data products to be generated for the space shuttle orbiter in support of the orbital flight test (OFT) flight test requirements, MPAD guidance and navigation performance assessment, and the mission evaluation team. The A/D ancillary data support for OFT mission evaluation activities is confined to providing postflight position, velocity, attitude, and associated navigation and attitude derived parameters for the Orbiter over particular flight phases and time intervals.

  10. Revalidation of the Huygens Descent Control Sub-System

    NASA Technical Reports Server (NTRS)

    2005-01-01

    The Huygens probe, part of the Cassini mission to Saturn, is designed to investigate the atmosphere of Titan, Saturn's largest moon. The passage of the probe through the atmosphere is controlled by the Descent Control Sub-System (DCSS), which consists of three parachutes and associated mechanisms. The Cassini / Huygens mission was launched in October 1997 and was designed during the early 1990's. During the time since the design and launch, analysis capabilities have improved significantly, knowledge of the Titan environment has improved and the baseline mission has been modified. Consequently, a study was performed to revalidate the DCSS design against the current predictions.

  11. A variational perspective on accelerated methods in optimization.

    PubMed

    Wibisono, Andre; Wilson, Ashia C; Jordan, Michael I

    2016-11-22

    Accelerated gradient methods play a central role in optimization, achieving optimal rates in many settings. Although many generalizations and extensions of Nesterov's original acceleration method have been proposed, it is not yet clear what is the natural scope of the acceleration concept. In this paper, we study accelerated methods from a continuous-time perspective. We show that there is a Lagrangian functional that we call the Bregman Lagrangian, which generates a large class of accelerated methods in continuous time, including (but not limited to) accelerated gradient descent, its non-Euclidean extension, and accelerated higher-order gradient methods. We show that the continuous-time limit of all of these methods corresponds to traveling the same curve in spacetime at different speeds. From this perspective, Nesterov's technique and many of its generalizations can be viewed as a systematic way to go from the continuous-time curves generated by the Bregman Lagrangian to a family of discrete-time accelerated algorithms.

  12. STS-1 operational flight profile. Volume 5: Descent, cycle 3. Appendix C: Monte Carlo dispersion analysis

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The results of three nonlinear the Monte Carlo dispersion analyses for the Space Transportation System 1 Flight (STS-1) Orbiter Descent Operational Flight Profile, Cycle 3 are presented. Fifty randomly selected simulation for the end of mission (EOM) descent, the abort once around (AOA) descent targeted line are steep target line, and the AOA descent targeted to the shallow target line are analyzed. These analyses compare the flight environment with system and operational constraints on the flight environment and in some cases use simplified system models as an aid in assessing the STS-1 descent flight profile. In addition, descent flight envelops are provided as a data base for use by system specialists to determine the flight readiness for STS-1. The results of these dispersion analyses supersede results of the dispersion analysis previously documented.

  13. Essential equivalence of the general equation for the nonequilibrium reversible-irreversible coupling (GENERIC) and steepest-entropy-ascent models of dissipation for nonequilibrium thermodynamics

    NASA Astrophysics Data System (ADS)

    Montefusco, Alberto; Consonni, Francesco; Beretta, Gian Paolo

    2015-04-01

    By reformulating the steepest-entropy-ascent (SEA) dynamical model for nonequilibrium thermodynamics in the mathematical language of differential geometry, we compare it with the primitive formulation of the general equation for the nonequilibrium reversible-irreversible coupling (GENERIC) model and discuss the main technical differences of the two approaches. In both dynamical models the description of dissipation is of the "entropy-gradient" type. SEA focuses only on the dissipative, i.e., entropy generating, component of the time evolution, chooses a sub-Riemannian metric tensor as dissipative structure, and uses the local entropy density field as potential. GENERIC emphasizes the coupling between the dissipative and nondissipative components of the time evolution, chooses two compatible degenerate structures (Poisson and degenerate co-Riemannian), and uses the global energy and entropy functionals as potentials. As an illustration, we rewrite the known GENERIC formulation of the Boltzmann equation in terms of the square root of the distribution function adopted by the SEA formulation. We then provide a formal proof that in more general frameworks, whenever all degeneracies in the GENERIC framework are related to conservation laws, the SEA and GENERIC models of the dissipative component of the dynamics are essentially interchangeable, provided of course they assume the same kinematics. As part of the discussion, we note that equipping the dissipative structure of GENERIC with the Leibniz identity makes it automatically SEA on metric leaves.

  14. Essential equivalence of the general equation for the nonequilibrium reversible-irreversible coupling (GENERIC) and steepest-entropy-ascent models of dissipation for nonequilibrium thermodynamics.

    PubMed

    Montefusco, Alberto; Consonni, Francesco; Beretta, Gian Paolo

    2015-04-01

    By reformulating the steepest-entropy-ascent (SEA) dynamical model for nonequilibrium thermodynamics in the mathematical language of differential geometry, we compare it with the primitive formulation of the general equation for the nonequilibrium reversible-irreversible coupling (GENERIC) model and discuss the main technical differences of the two approaches. In both dynamical models the description of dissipation is of the "entropy-gradient" type. SEA focuses only on the dissipative, i.e., entropy generating, component of the time evolution, chooses a sub-Riemannian metric tensor as dissipative structure, and uses the local entropy density field as potential. GENERIC emphasizes the coupling between the dissipative and nondissipative components of the time evolution, chooses two compatible degenerate structures (Poisson and degenerate co-Riemannian), and uses the global energy and entropy functionals as potentials. As an illustration, we rewrite the known GENERIC formulation of the Boltzmann equation in terms of the square root of the distribution function adopted by the SEA formulation. We then provide a formal proof that in more general frameworks, whenever all degeneracies in the GENERIC framework are related to conservation laws, the SEA and GENERIC models of the dissipative component of the dynamics are essentially interchangeable, provided of course they assume the same kinematics. As part of the discussion, we note that equipping the dissipative structure of GENERIC with the Leibniz identity makes it automatically SEA on metric leaves.

  15. An evaluation of descent strategies for TNAV-equipped aircraft in an advanced metering environment

    NASA Technical Reports Server (NTRS)

    Izumi, K. H.; Schwab, R. W.; Groce, J. L.; Coote, M. A.

    1986-01-01

    Investigated were the effects on system throughput and fleet fuel usage of arrival aircraft utilizing three 4D RNAV descent strategies (cost optimal, clean-idle Mach/CAS and constant descent angle Mach/CAS), both individually and in combination, in an advanced air traffic control metering environment. Results are presented for all mixtures of arrival traffic consisting of three Boeing commercial jet types and for all combinations of the three descent strategies for a typical en route metering airport arrival distribution.

  16. Gradient descent algorithm applied to wavefront retrieval from through-focus images by an extreme ultraviolet microscope with partially coherent source

    DOE PAGES

    Yamazoe, Kenji; Mochi, Iacopo; Goldberg, Kenneth A.

    2014-12-01

    The wavefront retrieval by gradient descent algorithm that is typically applied to coherent or incoherent imaging is extended to retrieve a wavefront from a series of through-focus images by partially coherent illumination. For accurate retrieval, we modeled partial coherence as well as object transmittance into the gradient descent algorithm. However, this modeling increases the computation time due to the complexity of partially coherent imaging simulation that is repeatedly used in the optimization loop. To accelerate the computation, we incorporate not only the Fourier transform but also an eigenfunction decomposition of the image. As a demonstration, the extended algorithm is appliedmore » to retrieve a field-dependent wavefront of a microscope operated at extreme ultraviolet wavelength (13.4 nm). The retrieved wavefront qualitatively matches the expected characteristics of the lens design.« less

  17. Gradient descent algorithm applied to wavefront retrieval from through-focus images by an extreme ultraviolet microscope with partially coherent source

    SciTech Connect

    Yamazoe, Kenji; Mochi, Iacopo; Goldberg, Kenneth A.

    2014-12-01

    The wavefront retrieval by gradient descent algorithm that is typically applied to coherent or incoherent imaging is extended to retrieve a wavefront from a series of through-focus images by partially coherent illumination. For accurate retrieval, we modeled partial coherence as well as object transmittance into the gradient descent algorithm. However, this modeling increases the computation time due to the complexity of partially coherent imaging simulation that is repeatedly used in the optimization loop. To accelerate the computation, we incorporate not only the Fourier transform but also an eigenfunction decomposition of the image. As a demonstration, the extended algorithm is applied to retrieve a field-dependent wavefront of a microscope operated at extreme ultraviolet wavelength (13.4 nm). The retrieved wavefront qualitatively matches the expected characteristics of the lens design.

  18. Mars Exploration Rover Terminal Descent Mission Modeling and Simulation

    NASA Technical Reports Server (NTRS)

    Raiszadeh, Behzad; Queen, Eric M.

    2004-01-01

    Because of NASA's added reliance on simulation for successful interplanetary missions, the MER mission has developed a detailed EDL trajectory modeling and simulation. This paper summarizes how the MER EDL sequence of events are modeled, verification of the methods used, and the inputs. This simulation is built upon a multibody parachute trajectory simulation tool that has been developed in POST I1 that accurately simulates the trajectory of multiple vehicles in flight with interacting forces. In this model the parachute and the suspended bodies are treated as 6 Degree-of-Freedom (6 DOF) bodies. The terminal descent phase of the mission consists of several Entry, Descent, Landing (EDL) events, such as parachute deployment, heatshield separation, deployment of the lander from the backshell, deployment of the airbags, RAD firings, TIRS firings, etc. For an accurate, reliable simulation these events need to be modeled seamlessly and robustly so that the simulations will remain numerically stable during Monte-Carlo simulations. This paper also summarizes how the events have been modeled, the numerical issues, and modeling challenges.

  19. Mars Science Laboratory Entry Descent and Landing Simulation Using DSENDS

    NASA Technical Reports Server (NTRS)

    Burkhart, P. Daniel; Casoliva, Jordi; Balaram, Bob

    2013-01-01

    The most recent planetary science mission to Mars is Mars Science Laboratory (MSL) with the Curiosity rover, launched November 26, 2011 and landed at Gale Crater on August 6, 2012. This spacecraft was the first use at Mars of a complete closed-loop Guidance Navigation and Control (GN&C) system, including guided entry with a lifting body that greatly reduces dispersions during the Entry, Descent and Landing (EDL) phase to achieve a 25 km x 20 km landing error relative to the selected Gale Crater landing target. In order to confirm meeting the above landing criteria, high-fidelity simulation of the EDL phase is required. The tool used for 6DOF EDL trajectory verification analysis is Dynamics Simulator for Entry, Descent and Surface landing (DSENDS), which is a high-fidelity simulation tool from JPLs Dynamics and Real-Time Simulation Laboratory for the development, test and operations of aero-flight vehicles. DSENDS inherent capability is augmented for MSL with project-specific models of atmosphere, aerodynamics, sensors and thrusters along with GN&C flight software to enable high-fidelity trajectory simulation. This paper will present the model integration and independent verification experience of the JPL EDL trajectory analysis team.

  20. Mars Science Laboratory Entry Descent and Landing Simulation Using DSENDS

    NASA Technical Reports Server (NTRS)

    Burkhart, P. Daniel; Casoliva, Jordi; Balaram, Bob

    2013-01-01

    The most recent planetary science mission to Mars was Mars Science Laboratory (MSL) with the Curiosity rover, launched November 26, 2011 and landed at Gale Crater on August 6, 2012. This spacecraft was the first use at Mars of a complete closed-loop Guidance Navigation and Control (GN&C) system, including guided entry with a lifting body that greatly reduces dispersions during the Entry, Descent and Landing (EDL) phase to achieve a 25 km X 20 km landing error relative to the selected Gale Crater landing target. In order to confirm meeting the above landing criteria, high-fidelity simulation of the EDL phase is required. The tool used for 6DOF EDL trajectory verification analysis is Dynamics Simulator for Entry, Descent and Surface landing (DSENDS), which is a high-fidelity simulation tool from JPLs Dynamics and Real-Time Simulation Laboratory for the development, test and operations of aero-flight vehicles. DSENDS inherent capability is augmented for MSL with project-specific models of atmosphere, aerodynamics, sensors and thrusters along with GN&C flight software to enable high-fidelity trajectory simulation. This paper will present the model integration and independent verification experience of the JPL EDL trajectory analysis team.

  1. Arachnid aloft: directed aerial descent in neotropical canopy spiders

    PubMed Central

    Yanoviak, Stephen P.; Munk, Yonatan; Dudley, Robert

    2015-01-01

    The behaviour of directed aerial descent has been described for numerous taxa of wingless hexapods as they fall from the tropical rainforest canopy, but is not known in other terrestrial arthropods. Here, we describe similar controlled aerial behaviours for large arboreal spiders in the genus Selenops (Selenopidae). We dropped 59 such spiders from either canopy platforms or tree crowns in Panama and Peru; the majority (93%) directed their aerial trajectories towards and then landed upon nearby tree trunks. Following initial dorsoventral righting when necessary, falling spiders oriented themselves and then translated head-first towards targets; directional changes were correlated with bilaterally asymmetric motions of the anterolaterally extended forelegs. Aerial performance (i.e. the glide index) decreased with increasing body mass and wing loading, but not with projected surface area of the spider. Along with the occurrence of directed aerial descent in ants, jumping bristletails, and other wingless hexapods, this discovery of targeted gliding in selenopid spiders further indicates strong selective pressures against uncontrolled falls into the understory for arboreal taxa. PMID:26289654

  2. Viking Mars hydrazine terminal descent engine thermal design considerations

    NASA Technical Reports Server (NTRS)

    Cunningham, C. R.; Morrisey, D. C.

    1977-01-01

    A description is given of some of the more significant thermal design considerations employed in the development and qualification of the monopropellant hydrazine terminal descent engines on the Viking Mars lander spacecraft. The terminal descent engine operates in a blowdown and throttling mode, which results in an operating thrust range of 638 to 90 lbf. Martian entry thermal design boundary conditions are described, along with resulting radiative and conductive engine thermal isolation hardware. Test results are presented, showing engine thermal design performance as compared with specified requirements. General engine materials of construction are described, along with Hastelloy B shell structural characteristics, which were extended to 2000 F by test and are compared with limited existing MIL-HDBK-5 data. Subscale test results are presented, showing the maximum catalyst bed cylinder design temperature of 1970 F. Test results also are presented, showing local reactor internal convective heat-transfer coefficients. Such data are unique, since the engine employs a completely radial flow catalyst bed design. This design approach is the first of its kind in the monopropellant hydrazine gas generator field to be flight qualified.

  3. Mars 2020 Entry, Descent and Landing Instrumentation 2 (MEDLI2)

    NASA Technical Reports Server (NTRS)

    Hwang, Helen H.; Bose, Deepak; White, Todd R.; Wright, Henry S.; Schoenenberger, Mark; Kuhl, Christopher A.; Trombetta, Dominic; Santos, Jose A.; Oishi, Tomomi; Karlgaard, Christopher D.; Mahzari, Milad; Pennington, Steven P.

    2016-01-01

    The Mars Entry Descent and Landing Instrumentation 2 (MEDLI2) sensor suite will measure aerodynamic, aerothermodynamic, and TPS performance during the atmospheric entry, descent, and landing phases of the Mars 2020 mission. The key objectives are to reduce design margin and prediction uncertainties for the aerothermal environments and aerodynamic database. For MEDLI2, the sensors are installed on both the heatshield and backshell, and include 7 pressure transducers, 17 thermal plugs, and 3 heat flux sensors (including a radiometer). These sensors will expand the set of measurements collected by the highly successful MEDLI suite, collecting supersonic pressure measurements on the forebody, a pressure measurement on the aftbody, direct heat flux measurements on the aftbody, a radiative heating measurement on the aftbody, and multiple near-surface thermal measurements on the thermal protection system (TPS) materials on both the forebody and aftbody. To meet the science objectives, supersonic pressure transducers and heat flux sensors are currently being developed and their qualification and calibration plans are presented. Finally, the reconstruction targets for data accuracy are presented, along with the planned methodologies for achieving the targets.

  4. Controller evaluations of the descent advisor automation aid

    NASA Technical Reports Server (NTRS)

    Tobias, Leonard; Volckers, Uwe; Erzberger, Heinz

    1989-01-01

    An automation aid to assist air traffic controllers in efficiently spacing traffic and meeting arrival times at a fix has been developed at NASA Ames Research Center. The automation aid, referred to as the descent advisor (DA), is based on accurate models of aircraft performance and weather conditions. The DA generates suggested clearances, including both top-of-descent point and speed profile data, for one or more aircraft in order to achieve specific time or distance separation objectives. The DA algorithm is interfaced with a mouse-based, menu-driven controller display that allows the air traffic controller to interactively use its accurate predictive capability to resolve conflicts and issue advisories to arrival aircraft. This paper focuses on operational issues concerning the utilization of the DA, specifically, how the DA can be used for prediction, intrail spacing, and metering. In order to evaluate the DA, a real time simulation was conducted using both current and retired controller subjects. Controllers operated in teams of two, as they do in the present environment; issues of training and team interaction will be discussed. Evaluations by controllers indicated considerable enthusiasm for the DA aid, and provided specific recommendations for using the tool effectively.

  5. Prevention of falls during stairway descent in older adults.

    PubMed

    Kim, B J

    2009-05-01

    A prospective design was applied to examine how older adults would adapt stairway intervention stimuli to gait patterns during stairway descent to prevent falls. Ambient lighting and an auditory signal were used as stairway intervention stimuli. The gait pattern changes with and without stimuli were compared. No significant change of angular displacement was found between normal condition and intervention conditions under daylight and nightlight. The lighting intervention tended to increase the knee's angular velocity for both daylight and nightlight conditions, but not the ankle's angular velocity. However, adding the auditory signal to the lighting intervention under nightlight condition increased the ankle's angular velocity. Under the daylight condition, every intervention was significantly helpful to make people step on the floor more confidently compared to the condition without interventions. However, the intervention of lighting had an opposite effect on the confidence of stepping under the nightlight condition. The intervention of lighting may contribute to increase of confidence during stair descent while compromising the declined stride length in older adults and the potential "rush" factor for falls on stairs.

  6. Stepping characteristics and Centre of Mass control during stair descent: Effects of age, fall risk and visual factors.

    PubMed

    Zietz, Doerte; Johannsen, Leif; Hollands, Mark

    2011-06-01

    Stair edges provide important visual cues for appropriate foot placement on the stair and balance control during stair descent. Previous studies explored age-related changes in stepping performance and balance control during stair descent and included fit older adults. The present study investigates both age- and frailty-related changes to stepping parameters and Centre of Mass (COM) control during stair descent and how these measures are affected by visual factors. Older adults were split into two groups containing participants with the lowest (LROA, n=7) and highest (HROA, n=8) combined scores on tests of balance and confidence to negotiate stairs. Data were also collected from younger adult participants (YA, n=8). Kinematic data were collected from participants while they descended stairs under combinations of ambient light (bright and dimmed) and stair edge contrast conditions (high and low). A three (group) × two (illumination)×two (contrast) ANCOVA was performed with average stair walking speed as covariate. HROA cleared the stair edge vertically (p=0.001) and horizontally (p<0.001) with less distance than LROA. Dimmed ambient light resulted in decreased step length in HROA (p=0.006) compared to bright lighting. High stair edge contrast led to reduced vertical COM acceleration variability in HROA (p=0.009) and increased distance between COM and anterior base of support (p=0.017) in LROA. YA increased horizontal foot clearance (p=0.011) when stair edge contrast was high. We conclude that the aforementioned differences in stepping behaviour shown by HROA may contribute towards an increased risk of tripping and that high stair edge contrast has a beneficial effect on balance control in older adults.

  7. Future accelerators (?)

    SciTech Connect

    John Womersley

    2003-08-21

    I describe the future accelerator facilities that are currently foreseen for electroweak scale physics, neutrino physics, and nuclear structure. I will explore the physics justification for these machines, and suggest how the case for future accelerators can be made.

  8. Evaluation of vertical profiles to design continuous descent approach procedure

    NASA Astrophysics Data System (ADS)

    Pradeep, Priyank

    The current research focuses on predictability, variability and operational feasibility aspect of Continuous Descent Approach (CDA), which is among the key concepts of the Next Generation Air Transportation System (NextGen). The idle-thrust CDA is a fuel economical, noise and emission abatement procedure, but requires increased separation to accommodate for variability and uncertainties in vertical and speed profiles of arriving aircraft. Although a considerable amount of researches have been devoted to the estimation of potential benefits of the CDA, only few have attempted to explain the predictability, variability and operational feasibility aspect of CDA. The analytical equations derived using flight dynamics and Base of Aircraft and Data (BADA) Total Energy Model (TEM) in this research gives insight into dependency of vertical profile of CDA on various factors like wind speed and gradient, weight, aircraft type and configuration, thrust settings, atmospheric factors (deviation from ISA (DISA), pressure and density of the air) and descent speed profile. Application of the derived equations to idle-thrust CDA gives an insight into sensitivity of its vertical profile to multiple factors. This suggests fixed geometric flight path angle (FPA) CDA has higher degree of predictability and lesser variability at the cost of non-idle and low thrust engine settings. However, with optimized design this impact can be overall minimized. The CDA simulations were performed using Future ATM Concept Evaluation Tool (FACET) based on radar-track and aircraft type data (BADA) of the real air-traffic to some of the busiest airports in the USA (ATL, SFO and New York Metroplex (JFK, EWR and LGA)). The statistical analysis of the vertical profiles of CDA shows 1) mean geometric FPAs derived from various simulated vertical profiles are consistently shallower than 3° glideslope angle and 2) high level of variability in vertical profiles of idle-thrust CDA even in absence of

  9. Generalized thermodynamic relations for a system experiencing heat and mass diffusion in the far-from-equilibrium realm based on steepest entropy ascent.

    PubMed

    Li, Guanchen; von Spakovsky, Michael R

    2016-09-01

    This paper presents a nonequilibrium thermodynamic model for the relaxation of a local, isolated system in nonequilibrium using the principle of steepest entropy ascent (SEA), which can be expressed as a variational principle in thermodynamic state space. The model is able to arrive at the Onsager relations for such a system. Since no assumption of local equilibrium is made, the conjugate fluxes and forces are intrinsic to the subspaces of the system's state space and are defined using the concepts of hypoequilibrium state and nonequilibrium intensive properties, which describe the nonmutual equilibrium status between subspaces of the thermodynamic state space. The Onsager relations are shown to be a thermodynamic kinematic feature of the system independent of the specific details of the micromechanical dynamics. Two kinds of relaxation processes are studied with different constraints (i.e., conservation laws) corresponding to heat and mass diffusion. Linear behavior in the near-equilibrium region as well as nonlinear behavior in the far-from-equilibrium region are discussed. Thermodynamic relations in the equilibrium and near-equilibrium realm, including the Gibbs relation, the Clausius inequality, and the Onsager relations, are generalized to the far-from-equilibrium realm. The variational principle in the space spanned by the intrinsic conjugate fluxes and forces is expressed via the quadratic dissipation potential. As an application, the model is applied to the heat and mass diffusion of a system represented by a single-particle ensemble, which can also be applied to a simple system of many particles. Phenomenological transport coefficients are also derived in the near-equilibrium realm.

  10. Direct-to-Earth communications with Mars Science Laboratory during Entry, Descent, and Landing

    NASA Astrophysics Data System (ADS)

    Soriano, M.; Finley, S.; Fort, D.; Schratz, B.; Ilott, P.; Mukai, R.; Estabrook, P.; Oudrhiri, K.; Kahan, D.; Satorius, E.

    Mars Science Laboratory (MSL) undergoes extreme heating and acceleration during Entry, Descent, and Landing (EDL) on Mars. Unknown dynamics lead to large Doppler shifts, making communication challenging. During EDL, a special form of Multiple Frequency Shift Keying (MFSK) communication is used for Direct-To-Earth (DTE) communication. The X-band signal is received by the Deep Space Network (DSN) at the Canberra Deep Space Communication complex, then down-converted, digitized, and recorded by open-loop Radio Science Receivers (RSR), and decoded in real-time by the EDL Data Analysis (EDA) System. The EDA uses lock states with configurable Fast Fourier Transforms to acquire and track the signal. RSR configuration and channel allocation is shown. Testing prior to EDL is discussed including software simulations, test bed runs with MSL flight hardware, and the in-flight end-to-end test. EDA configuration parameters and signal dynamics during pre-entry, entry, and parachute deployment are analyzed. RSR and EDA performance during MSL EDL is evaluated, including performance using a single 70-meter DSN antenna and an array of two 34-meter DSN antennas as a back up to the 70-meter antenna.

  11. Direct-to-Earth Communications and Signal Processing for Mars Exploration Rover Entry, Descent, and Landing

    NASA Astrophysics Data System (ADS)

    Satorius, E.; Estabrook, P.; Wilson, J.; Fort, D.

    2003-01-01

    For planetary lander missions, the most challenging phase of the spacecraft-to-ground communications is during the entry, descent, and landing (EDL). As each 2003 Mars Exploration Rover (MER) enters the Martian atmosphere, it slows dramatically. The extreme acceleration and jerk cause extreme Doppler dynamics on the 8.4-GHz (X-band) signal received on Earth. When the vehicle slows sufficiently, the parachute is deployed, causing almost a step in deceleration. After parachute deployment, the lander is lowered beneath the parachute on a bridle. The swinging motion of the lander imparts high Doppler dynamics on the signal and causes the received signal strength to vary widely due to changing antenna pointing angles. All this time, the vehicle transmits important health and status information that is especially critical if the landing is not successful. Even using the largest Deep Space Network antennas, the weak signal and high dynamics render it impossible to conduct reliable phase-coherent communications. Therefore, a specialized form of frequency-shift keying will be used. This article describes the EDL scenario, the signal conditions, the methods used to detect and frequency track the carrier and to detect the data modulation, and the resulting performance estimates.

  12. Direct-to-Earth Communications with Mars Science Laboratory During Entry, Descent, and Landing

    NASA Technical Reports Server (NTRS)

    Soriano, Melissa; Finley, Susan; Fort, David; Schratz, Brian; Ilott, Peter; Mukai, Ryan; Estabrook, Polly; Oudrhiri, Kamal; Kahan, Daniel; Satorius, Edgar

    2013-01-01

    Mars Science Laboratory (MSL) undergoes extreme heating and acceleration during Entry, Descent, and Landing (EDL) on Mars. Unknown dynamics lead to large Doppler shifts, making communication challenging. During EDL, a special form of Multiple Frequency Shift Keying (MFSK) communication is used for Direct-To-Earth (DTE) communication. The X-band signal is received by the Deep Space Network (DSN) at the Canberra Deep Space Communication complex, then down-converted, digitized, and recorded by open-loop Radio Science Receivers (RSR), and decoded in real-time by the EDL Data Analysis (EDA) System. The EDA uses lock states with configurable Fast Fourier Transforms to acquire and track the signal. RSR configuration and channel allocation is shown. Testing prior to EDL is discussed including software simulations, test bed runs with MSL flight hardware, and the in-flight end-to-end test. EDA configuration parameters and signal dynamics during pre-entry, entry, and parachute deployment are analyzed. RSR and EDA performance during MSL EDL is evaluated, including performance using a single 70-meter DSN antenna and an array of two 34-meter DSN antennas as a back up to the 70-meter antenna.

  13. The Role of la Familia for Women of Mexican Descent Who Are Leaders in Higher Education

    ERIC Educational Resources Information Center

    Elizondo, Sandra Gray

    2012-01-01

    The purpose of this qualitative case study was to describe the role of "la familia" for women of Mexican descent as it relates to their development as leaders and their leadership in academia. Purposeful sampling was utilized to reach the goal of 18 participants who were female academic leaders of Mexican descent teaching full time in…

  14. Introduction to the special issue on lesbians of African descent: contemporary perspectives.

    PubMed

    Wilson, Bianca D M; Johnson, Verlena L

    2011-01-01

    This article serves as an introduction to the special issue entitled, "Lesbians of African Descent: Contemporary Perspectives." We briefly discuss our framing of this collection as a contemporary contribution to the canon of Black lesbian writing and art, and identify themes that appear to transcend both earlier and current works of lesbians of African descent.

  15. Ethnic Identity and Acculturative Stress as Mediators of Depression in Students of Asian Descent

    ERIC Educational Resources Information Center

    Lantrip, Crystal; Mazzetti, Francesco; Grasso, Joseph; Gill, Sara; Miller, Janna; Haner, Morgynn; Rude, Stephanie; Awad, Germine

    2015-01-01

    This study underscored the importance of addressing the well-being of college students of Asian descent, because these students had higher rates of depression and lower positive feelings about their ethnic group compared with students of European descent, as measured by the Affirmation subscale of the Ethnic Identity Scale. Affirmation mediated…

  16. Mars Exploration Rover Mission: Entry, Descent, and Landing System Validation

    NASA Technical Reports Server (NTRS)

    Mitcheltree, Robert A.; Lee, Wayne; Steltzner, Adam; SanMartin, Alejanhdro

    2004-01-01

    System validation for a Mars entry, descent, and landing system is not simply a demonstration that the electrical system functions in the associated environments. The function of this system is its interaction with the atmospheric and surface environment. Thus, in addition to traditional test-bed, hardware-in-the-loop, testing, a validation program that confirms the environmental interaction is required. Unfortunately, it is not possible to conduct a meaningful end-to-end test of a Mars landing system on Earth. The validation plan must be constructed from an interconnected combination of simulation, analysis and test. For the Mars Exploration Rover mission, this combination of activities and the logic of how they combined to the system's validation was explicitly stated, reviewed, and tracked as part of the development plan.

  17. RITD - Adapting Mars Entry, Descent and Landing System for Earth

    NASA Astrophysics Data System (ADS)

    Heilimo, Jyri; Aleksashkin, Sergey; Martynov, Maxim; Schmidt, Walter; Harri, Ari-Matti; Vsevolod Koryanov, D.; Kazakovtcev, Victor; Haukka, Harri; Arruego, Ignacio; Finchenko, Valery; Ostresko, Boris; Ponomarenko, Andrei; Martin, Susanna; Siili, Tero

    Abstract A new generation of inflatable Entry, Descent and Landing System (EDLS) or Mars has been developed. It is used in both the initial atmospheric entry and atmospheric descent before the semi-hard impact of the penetrator into Martian surface. The EDLS applicability to Earth’s atmosphere is studied by the EU/RITD [1] project. Project focuses to the analysis and tests of the transonic behaviour of this compact and light weight payload entry system at the Earth re-entry 1. EDLS for Earth The dynamical stability of the craft is analysed, concentrating on the most critical part of the atmospheric re-entry, the transonic phase. In Martian atmosphere the MetNet vehicle stability during the transonic phase is understood. However, in the more dense Earth’s atmosphere, the transonic phase is shorter and turbulence more violent. Therefore, the EDLS has to be sufficiently dynamically stable to overcome the forces tending to deflect the craft from its nominal trajectory and attitude. The preliminary design of the inflatable EDLS for Earth will be commenced once the scaling of the re-entry system and the dynamical stability analysis have been performed. The RITD-project concentrates on mission and applications achievable with the current MetNet-type (i.e. “Mini-1” category) of lander, and on requirements posed by other type Earth re-entry concepts. 2. Entry Angle Determination for Mini-1 - lander For successful Earth landing, the suitable re-entry angle and velocity with specific descent vehicle (DV) mass and heat flux parameters need to be determined. These key parameters in determining the Earth re-entry for DV are: - qmax (kW/m2): maximal specific heat flux, - Q (MJ/m2): specific integral heat flux to DV front shield, - m (kg): descent vehicle (DV) mass, - V (m/s): re-entry velocity and - theta(deg.): flight-path angle at Earth re-entry For Earth re-entry, the calculation results in the optimal value of entry velocity for MetNet (“Mini-1” category) -type

  18. The descent of words: evolutionary thinking 1780-1880.

    PubMed

    van Wyhe, John

    2005-09-01

    Histories of evolutionary thought are dominated by organic evolution. The colossus in our midst that is evolutionary biology casts its shadow over history, making it appear that what is so widespread and important today was always the primary subject of evolutionary speculation. Thus many histories assume that the core meaning of evolution is the change of organic life and that other forms of evolutionary thinking, such as linguistic, social or cultural evolution, are only analogies or offshoots of the main biological evolutionary trunk. Ironically this is an ahistorical understanding. Long before the work of Charles Darwin, scholars were independently developing evolutionary concepts such as descent with modification and divergence from a common stock in order to understand cultural change.

  19. RITD - Adapting Mars Entry, Descent and Landing System for Earth

    NASA Astrophysics Data System (ADS)

    Heilimo, Jyri; Harri, Ari-Matti; Aleksashkin, Sergey; Koryanov, Vsevolod; Arruego, Ignacio; Schmidt, Walter; Haukka, Harri; Finchenko, Valery; Martynov, Maxim; Ostresko, Boris; Ponomarenko, Andrey; Kazakovtsev, Viktor; Martin, Susanna; Siili, Tero

    2014-05-01

    A new generation of inflatable Entry, Descent and Landing System (EDLS) for Mars has been developed. It is used in both the initial atmospheric entry and atmospheric descent before the semi-hard impact of the penetrator into Martian surface. The EDLS applicability to Earth's atmosphere is studied by the EU/RITD [1] project. Project focuses to the analysis and tests of the transonic behaviour of this compact and light weight payload entry system at the Earth re-entry. 1. EDLS for Earth The dynamical stability of the craft is analysed, concentrating on the most critical part of the atmospheric re-entry, the transonic phase. In Martian atmosphere the MetNet vehicle stability during the transonic phase is understood. However, in the more dense Earth's atmosphere, the transonic phase is shorter and turbulence more violent. Therefore, the EDLS has to be sufficiently dynamically stable to overcome the forces tending to deflect the craft from its nominal trajectory and attitude. The preliminary design of the inflatable EDLS for Earth will be commenced once the scaling of the re-entry system and the dynamical stability analysis have been performed. The RITD-project concentrates on mission and applications achievable with the current MetNet-type (i.e. 'Mini-1' category) of lander, and on requirements posed by other type Earth re-entry concepts. 2. Entry Angle Determination for Mini-1 - lander For successful Earth landing, the suitable re-entry angle and velocity with specific descent vehicle (DV) mass and heat flux parameters need to be determined. These key parameters in determining the Earth re-entry for DV are: qmax (kW/m2): maximal specific heat flux, Q (MJ/m2): specific integral heat flux to DV front shield, m (kg): descent vehicle (DV) mass, V (m/s): re-entry velocity and Θ (deg.): flight-path angle at Earth re-entry For Earth re-entry, the calculation results in the optimal value of entry velocity for MetNet ('Mini-1' category) -type lander, with mass of 22kg, being

  20. Mars Science Laboratory Entry, Descent, and Landing System Overview

    NASA Technical Reports Server (NTRS)

    Prakash, Ravi; Burkhart, P. Dan; Chen, Allen; Comeaux, Keith A.; Guernsey, Carl S.; Devin, M. Kipp; Mendeck, Gavin F.; Powell, Richard W.; Rivellini, Tommaso P.; San Martin, A. Miguel; Sell, Steven W.; Steltzner, Adam D.; Way, David W.

    2008-01-01

    In 2010, the Mars Science Laboratory (MSL) mission will pioneer the next generation of robotic Entry, Descent, and Landing (EDL) systems by delivering the largest and most capable rover to date to the surface of Mars. In addition to landing more mass than prior missions to Mars, MSL will offer access to regions of Mars that have been previously unreachable. The MSL EDL sequence is a result of a more stringent requirement set than any of its predecessors. Notable among these requirements is landing a 900 kg rover in a landing ellipse much smaller than that of any previous Mars lander. In meeting these requirements, MSL is extending the limits of the EDL technologies qualified by the Mars Viking, Mars Pathfinder, and Mars Exploration Rover missions.

  1. The stabilization interval system of a tethered descent underwater vehicle

    NASA Astrophysics Data System (ADS)

    Gayvoronskiy, S. A.; Ezangina, T.; Khozhaev, I.; Efimov, S. V.

    2016-04-01

    To damp the vertical oscillations of a descent submersible caused by dusting the control system utilizing a shock-absorbing hoist located on the submersible was developed. A robust proportional-plus-integral action controller was included in the control loop to ensure acceptable dynamic properties of the system by interval variations of the module mass, the rope length, the equivalent value of stiffness of a spring linkage and the equivalent value of damping factor of the spring linkage. A parametric synthesis of the controller was carried out on the basis of the robust expansion of the coefficient method of the quality rating estimation. The system operability was confirmed by the results of the digital simulation parameters

  2. Human Mars Entry, Descent, and Landing Architecture Study Overview

    NASA Technical Reports Server (NTRS)

    Cianciolo, Alicia D.; Polsgrove, Tara T.

    2016-01-01

    The Entry, Descent, and Landing (EDL) Architecture Study is a multi-NASA center activity to analyze candidate EDL systems as they apply to human Mars landing in the context of the Evolvable Mars Campaign. The study, led by the Space Technology Mission Directorate (STMD), is performed in conjunction with the NASA's Science Mission Directorate and the Human Architecture Team, sponsored by NASA's Human Exploration and Operations Mission Directorate. The primary objective is to prioritize future STMD EDL technology investments by (1) generating Phase A-level designs for selected concepts to deliver 20 t human class payloads, (2) developing a parameterized mass model for each concept capable of examining payloads between 5 and 40 t, and (3) evaluating integrated system performance using trajectory simulations. This paper summarizes the initial study results.

  3. CryoScout: A Descent Through the Mars Polar Cap

    NASA Technical Reports Server (NTRS)

    Hecht, M. H.; Saunders, R. S.

    2003-01-01

    CryoScout was proposed as a subsurface investigation of the stratigraphic climate record embedded in Mars North Polar cap. After landing on a gentle landscape in the midst of the mild summer season, CryoScout was to use the continuous polar sunlight to power the descent of a cryobot, a thermal probe, into the ice at a rate of about 1 m per day. CryoScout would probe deep enough into this time capsule to see the effects of planetary obliquity variations and discrete events such as dust storms or volcanic eruptions. By penetrating tens of meters of ice, the mission would explore at least one of the dominant "MOC layers" observed in exposed layered terrain.

  4. A guidance law for hypersonic descent to a point

    NASA Astrophysics Data System (ADS)

    Eisler, G. R.; Hull, David G.

    1992-08-01

    A neighboring extremal control problem is formulated for a hypersonic glider to execute a maximum-terminal-velocity descent to a stationary target. The resulting two-part, feedback control scheme initially solves a nonlinear algebraic problem to generate a nominal trajectory to the target altitude. Secondly, a neighboring optimal path computation about the nominal provides the lift and side-force perturbations necessary to achieve the target downrange and crossrange. On-line feedback simulations of the proposed scheme and a form of proportional navigation are compared with an off-line parameter optimization method. The neighboring optimal terminal velocity compares very well with the parameter optimization solution and is far superior to proportional navigation.

  5. An approximate, maximum-terminal-velocity descent to a point

    NASA Astrophysics Data System (ADS)

    Eisler, G. Richard; Hull, David G.

    A neighboring extremal control problem is formulated for a hypersonic glider to execute a maximum-terminal-velocity descent to a stationary target in a vertical plane. The resulting two-part, feedback control scheme initially solves a nonlinear algebraic problem to generate a nominal trajectory to the target altitude. Secondly, quadrature about the nominal provides the lift perturbation necessary to achieve the target downrange. On-line feedback simulations are run for the proposed scheme and a form of proportional navigation and compared with an off-line parameter optimization method. The neighboring extremal terminal velocity compares very well with the parameter optimization solution and is far superior to proportional navigation. However, the update rate is degraded, though the proposed method can be executed in real time.

  6. Gametogenesis processes and multilocus gene identity by descent.

    PubMed Central

    Guo, S. W.

    1996-01-01

    With few exceptions, the determination of unconditional probability of genes shared identical by descent (IBD) by relatives can be very difficult, especially if the relationship is complex or if multiple loci are involved. It is particularly difficult if one needs the IBD probability in a explicit form, expressed in terms of interlocus recombination fractions. In this paper, I will further extend the concept of gametogenesis process introduced elsewhere and indicate that it completely determines the gene IBD events of interest in pedigrees. I will demonstrate that the gametogenesis process not only serves as a convenient conceptual framework in considering IBD events in pedigrees but also provides a simple yet powerful tool to solve a wide range of seemingly difficult problems. In particular, I consider the problem of multilocus IBD probability for relative pairs, k siblings, and a group of pedigree members. In addition, I consider the problem of multilocus autozygosity probability and the problem of gene preservation in close relatives. PMID:8571968

  7. Transitions and transversions in evolutionary descent - An approach to understanding

    NASA Technical Reports Server (NTRS)

    Holmquist, R.

    1983-01-01

    A quantitative theoretical groundwork is presented for determining the proportions of the possible types of base substitutions observed between 12 genes sharing a common ancestor and isolated from extant species. Three methods (direct count, regression, and informational entropy maximization) are described by which conditional base substitution probabilities that determine evolutionary descent can be estimated from experimental data. These methods are utilized to study the ratio of transversions to transitions during gene divergence. The limiting ratio is directly calculated from a knowledge of the 12 conditional probabilities for each type of base substitution and from a knowledge of the equilibrium base composition of the DNAs compared. An expression is developed for this calculation. It is concluded that multiple substitutions per se do not lead to a decrease in transition differences with increasing evolutionary divergence.

  8. Overview of the Phoenix Entry, Descent and Landing System Architecture

    NASA Technical Reports Server (NTRS)

    Grover, Myron R., III; Cichy, Benjamin D.; Desai, Prasun N.

    2008-01-01

    NASA s Phoenix Mars Lander began its journey to Mars from Cape Canaveral, Florida in August 2007, but its journey to the launch pad began many years earlier in 1997 as NASA s Mars Surveyor Program 2001 Lander. In the intervening years, the entry, descent and landing (EDL) system architecture went through a series of changes, resulting in the system flown to the surface of Mars on May 25th, 2008. Some changes, such as entry velocity and landing site elevation, were the result of differences in mission design. Other changes, including the removal of hypersonic guidance, the reformulation of the parachute deployment algorithm, and the addition of the backshell avoidance maneuver, were driven by constant efforts to augment system robustness. An overview of the Phoenix EDL system architecture is presented along with rationales driving these architectural changes.

  9. Y Chromosome Lineages in Men of West African Descent

    PubMed Central

    Keita, Shomarka O. Y.; Kittles, Rick A.

    2012-01-01

    The early African experience in the Americas is marked by the transatlantic slave trade from ∼1619 to 1850 and the rise of the plantation system. The origins of enslaved Africans were largely dependent on European preferences as well as the availability of potential laborers within Africa. Rice production was a key industry of many colonial South Carolina low country plantations. Accordingly, rice plantations owners within South Carolina often requested enslaved Africans from the so-called “Grain Coast” of western Africa (Senegal to Sierra Leone). Studies on the African origins of the enslaved within other regions of the Americas have been limited. To address the issue of origins of people of African descent within the Americas and understand more about the genetic heterogeneity present within Africa and the African Diaspora, we typed Y chromosome specific markers in 1,319 men consisting of 508 west and central Africans (from 12 populations), 188 Caribbeans (from 2 islands), 532 African Americans (AAs from Washington, DC and Columbia, SC), and 91 European Americans. Principal component and admixture analyses provide support for significant Grain Coast ancestry among African American men in South Carolina. AA men from DC and the Caribbean showed a closer affinity to populations from the Bight of Biafra. Furthermore, 30–40% of the paternal lineages in African descent populations in the Americas are of European ancestry. Diverse west African ancestries and sex-biased gene flow from EAs has contributed greatly to the genetic heterogeneity of African populations throughout the Americas and has significant implications for gene mapping efforts in these populations. PMID:22295064

  10. An active set algorithm for treatment planning optimization.

    PubMed

    Hristov, D H; Fallone, B G

    1997-09-01

    An active set algorithm for optimization of radiation therapy dose planning by intensity modulated beams has been developed. The algorithm employs a conjugate-gradient routine for subspace minimization in order to achieve a higher rate of convergence than the widely used constrained steepest-descent method at the expense of a negligible amount of overhead calculations. The performance of the new algorithm has been compared to that of the constrained steepest-descent method for various treatment geometries and two different objectives. The active set algorithm is found to be superior to the constrained steepest descent, both in terms of its convergence properties and the residual value of the cost functions at termination. Its use can significantly accelerate the design of conformal plans with intensity modulated beams by decreasing the number of time-consuming dose calculations.

  11. Computational and theoretical investigation of Mars's atmospheric impact on the descent module "Exomars-2018" under aerodynamic deceleration

    NASA Astrophysics Data System (ADS)

    Golomazov, M. M.; Ivankov, A. A.

    2016-12-01

    Methods for calculating the aerodynamic impact of the Martian atmosphere on the descent module "Exomars-2018" intended for solving the problem of heat protection of the descent module during aerodynamic deceleration are presented. The results of the investigation are also given. The flow field and radiative and convective heat exchange are calculated along the trajectory of the descent module until parachute system activation.

  12. Hybridisations Of Simulated Annealing And Modified Simplex Algorithms On A Path Of Steepest Ascent With Multi-Response For Optimal Parameter Settings Of ACO

    NASA Astrophysics Data System (ADS)

    Luangpaiboon, P.

    2009-10-01

    Many entrepreneurs face to extreme conditions for instances; costs, quality, sales and services. Moreover, technology has always been intertwined with our demands. Then almost manufacturers or assembling lines adopt it and come out with more complicated process inevitably. At this stage, products and service improvement need to be shifted from competitors with sustainability. So, a simulated process optimisation is an alternative way for solving huge and complex problems. Metaheuristics are sequential processes that perform exploration and exploitation in the solution space aiming to efficiently find near optimal solutions with natural intelligence as a source of inspiration. One of the most well-known metaheuristics is called Ant Colony Optimisation, ACO. This paper is conducted to give an aid in complicatedness of using ACO in terms of its parameters: number of iterations, ants and moves. Proper levels of these parameters are analysed on eight noisy continuous non-linear continuous response surfaces. Considering the solution space in a specified region, some surfaces contain global optimum and multiple local optimums and some are with a curved ridge. ACO parameters are determined through hybridisations of Modified Simplex and Simulated Annealing methods on the path of Steepest Ascent, SAM. SAM was introduced to recommend preferable levels of ACO parameters via statistically significant regression analysis and Taguchi's signal to noise ratio. Other performance achievements include minimax and mean squared error measures. A series of computational experiments using each algorithm were conducted. Experimental results were analysed in terms of mean, design points and best so far solutions. It was found that results obtained from a hybridisation with stochastic procedures of Simulated Annealing method were better than that using Modified Simplex algorithm. However, the average execution time of experimental runs and number of design points using hybridisations were

  13. Experimental constraints on the Skaergaard liquid line of descent

    NASA Astrophysics Data System (ADS)

    Thy, P.; Lesher, C. E.; Nielsen, T. F. D.; Brooks, C. K.

    2006-11-01

    New experimental information permits a forward approach to modeling the liquid line of descent of the Skaergaard intrusion. A series of melting experiments on chilled margins of evolved tholeiitic and ferrobasaltic dikes associated with the intrusion is, in combination with existing data, used to develop quantitative crystallization models that allow liquid and solid compositions to be predicted for initial magma compositions and crystallization conditions open or closed with respect to oxygen. The new experimental results comprise 6 experiments with melts coexisting with plagioclase and olivine, 29 experiments in addition containing augite, 14 experiments in addition containing ilmenite and/or magnetite, and 6 experiments in addition containing pigeonite and sometimes lacking olivine. All melting experiments were done at atmospheric pressure and with a furnace gas mostly controlled to the fayalite-magnetite-quartz oxygen buffer (FMQ). Using these experimental results, the melt evolution can be constrained for the layered series of the Skaergaard intrusion. Fractionation of a LZa troctolitic assemblage drives the residual liquid toward increasing iron with slight increase in silica. The appearance of augite as an abundant mineral phase in the LZb and the fractionation of a gabbroic assemblage adjust the liquid trend to one of slightly decreasing silica with continued strong increase in iron. Silica decline is principally dependent on the crystallization of augite and restricted to LZb. The appearance of Fe-Ti oxide minerals and the fractionation of Fe-Ti oxide gabbroic assemblages in LZc deflect the evolution trends of iron and silica. The modeling based on the experimental results suggests marked LZc-MZ silica enrichment concurrently with increasing iron content until upper MZ and thereafter relatively constant or slightly decreasing iron. The iron concentration level at which the deflection in iron and silica contents occurs is dependent on several factors of

  14. Finite Element approach for Density Functional Theory calculations on locally refined meshes

    SciTech Connect

    Fattebert, J; Hornung, R D; Wissink, A M

    2007-02-23

    We present a quadratic Finite Element approach to discretize the Kohn-Sham equations on structured non-uniform meshes. A multigrid FAC preconditioner is proposed to iteratively solve the equations by an accelerated steepest descent scheme. The method was implemented using SAMRAI, a parallel software infrastructure for general AMR applications. Examples of applications to small nanoclusters calculations are presented.

  15. Descent strategy comparisons for TNAV-equipped aircraft under airplane-preferred operating conditions

    NASA Technical Reports Server (NTRS)

    Izumi, K. H.

    1989-01-01

    Three 4-D descent strategies were evaluated which were employed by TNAV-equipped aircraft in an advanced metering air traffic control environment. The Flow Management Evaluation Model (FMEM) was used to assess performance using three criteria when traffic enters the simulation under preferred cruise operating conditions (altitude and speed): throughput, fuel usage, and conflict probability. In comparison to an evaluation previously performed under NASA contract, the current analysis indicates that the optimal descent strategy is preferred over the clean-idle and constant descent angle (CFPA) strategies when all three criteria are considered.

  16. Rapid Generation of Optimal Asteroid Powered Descent Trajectories Via Convex Optimization

    NASA Technical Reports Server (NTRS)

    Pinson, Robin; Lu, Ping

    2015-01-01

    This paper investigates a convex optimization based method that can rapidly generate the fuel optimal asteroid powered descent trajectory. The ultimate goal is to autonomously design the optimal powered descent trajectory on-board the spacecraft immediately prior to the descent burn. Compared to a planetary powered landing problem, the major difficulty is the complex gravity field near the surface of an asteroid that cannot be approximated by a constant gravity field. This paper uses relaxation techniques and a successive solution process that seeks the solution to the original nonlinear, nonconvex problem through the solutions to a sequence of convex optimal control problems.

  17. Study of Some Planetary Atmospheres Features by Probe Entry and Descent Simulations

    NASA Technical Reports Server (NTRS)

    Gil, P. J. S.; Rosa, P. M. B.

    2005-01-01

    Characterization of planetary atmospheres is analyzed by its effects in the entry and descent trajectories of probes. Emphasis is on the most important variables that characterize atmospheres e.g. density profile with altitude. Probe trajectories are numerically determined with ENTRAP, a developing multi-purpose computational tool for entry and descent trajectory simulations capable of taking into account many features and perturbations. Real data from Mars Pathfinder mission is used. The goal is to be able to determine more accurately the atmosphere structure by observing real trajectories and what changes are to expect in probe descent trajectories if atmospheres have different properties than the ones assumed initially.

  18. Mars Science Laboratory Entry, Descent, and Landing System Overview

    NASA Technical Reports Server (NTRS)

    Steltzner, Adam D.; Burkhart, P. Dan; Chen, Allen; Comeaux, Keith A.; Guernsey, Carl S.; Kipp, Devin M.; Lorenzoni, Leila V.; Mendeck, Gavin F.; Powell, Richard W.; Rivellini, Tommaso P.; San Martin, A. Miguel; Sell, Steven W.; Prakash, Ravi; Way, David W.

    2010-01-01

    In 2012, the Mars Science Laboratory (MSL) mission will pioneer the next generation of robotic Entry, Descent, and Landing (EDL) systems by delivering the largest and most capable rover to date to the surface of Mars. In addition to landing more mass than prior missions to Mars, MSL will offer access to regions of Mars that have been previously unreachable. The MSL EDL sequence is a result of a more stringent requirement set than any of its predecessors. Notable among these requirements is landing a 900 kg rover in a landing ellipse much smaller than that of any previous Mars lander. In meeting these requirements, MSL is extending the limits of the EDL technologies qualified by the Mars Viking, Mars Pathfinder, and Mars Exploration Rover missions. Thus, there are many design challenges that must be solved for the mission to be successful. Several pieces of the EDL design are technological firsts, such as guided entry and precision landing on another planet, as well as the entire Sky Crane maneuver. This paper discusses the MSL EDL architecture and discusses some of the challenges faced in delivering an unprecedented rover payload to the surface of Mars.

  19. Human Mars Entry, Descent and Landing Architectures Study Overview

    NASA Technical Reports Server (NTRS)

    Polsgrove, Tara T.; Dwyer Cianciolo, Alicia

    2016-01-01

    Landing humans on Mars will require entry, descent and landing (EDL) capability beyond the current state of the art. Nearly twenty times more delivered payload and an order of magnitude improvement in precision landing capability will be necessary. Several EDL technologies capable of meeting the human class payload delivery requirements are being considered. The EDL technologies considered include low lift-to-drag vehicles like Hypersonic Inflatable Aerodynamic Decelerators (HIAD), Adaptable Deployable Entry and Placement Technology (ADEPT), and mid range lift-to-drag vehicles like rigid aeroshell configurations. To better assess EDL technology options and sensitivities to future human mission design variations, a series of design studies has been conducted. The design studies incorporate EDL technologies with conceptual payload arrangements defined by the Evolvable Mars Campaign to evaluate the integrated system with higher fidelity than have been performed to date. This paper describes the results of the design studies for a lander design using the HIAD, ADEPT and rigid shell entry technologies and includes system and subsystem design details including mass and power estimates. This paper will review the point design for three entry configurations capable of delivering a 20 t human class payload to the surface of Mars.

  20. ExoMars Entry, Descent, and Landing Science

    NASA Astrophysics Data System (ADS)

    Karatekin, Özgür; Forget, Francois; Withers, Paul; Colombatti, Giacomo; Aboudan, Alessio; Lewis, Stephen; Ferri, Francesca; Van Hove, Bart; Gerbal, Nicolas

    2016-07-01

    Schiaparelli, the Entry Demonstrator Module (EDM) of the ESA ExoMars Program will to land on Mars on 19th October 2016. The ExoMars Atmospheric Mars Entry and Landing Investigations and Analysis (AMELIA) team seeks to exploit the Entry Descent and Landing (EDL) engineering measurements of Schiaparelli for scientific investigations of Mars' atmosphere and surface. ExoMars offers a rare opportunity to perform an in situ investigation of the martian environment over a wide altitude range. There has been only 7 successfully landing on the surface of Mars, from the Viking probes in the 1970's to the Mars Science Laboratory (MSL) in 2012. ExoMars EDM is equipped with an instrumented heat shield like MSL. These novel flight sensors complement conventional accelerometer and gyroscope instrumentation, and provide additional information to reconstruct atmospheric conditions with. This abstract outlines general atmospheric reconstruction methodology using complementary set of sensors and in particular the use of surface pressure and radio data. In addition, we discuss the lessons learned from previous EDL and the plans for ExoMars AMELIA data analysis.

  1. Experimental Study of Rotor Vortex Wakes in Descent

    NASA Astrophysics Data System (ADS)

    Stack, James; Carradonna, Frank; Savas, Omer

    2002-11-01

    An experimental study is performed on a three-bladed rotor model in a water towing tank. The blade pitch and rotational velocity, the rotor plane angle of attack, and the carriage speed are all varied in order to simulate a wide range of rotorcraft operating states. Circulation Reynolds numbers are of order 105 and blade Reynolds numbers are of order 104. Flow visualization is done using air bubbles or dye injected from the blade tips to mark the vortex core, showing the development of an instability on the helical vortices in the wake. PIV data provide quantitative measures of the flow field as the wake develops. Strain gages are also used to record transient load measurements, allowing a correlation to be made between the rotor performance and the development of the vortex wake. The data so far indicate that as the instability develops, the adjacent vortices merge and form thick vortex rings, especially during descent. The vorticity spreads and is periodically shed from the wake, resulting in significant fluctuations in the rotor loading.

  2. HLA Type Inference via Haplotypes Identical by Descent

    NASA Astrophysics Data System (ADS)

    Setty, Manu N.; Gusev, Alexander; Pe'Er, Itsik

    The Human Leukocyte Antigen (HLA) genes play a major role in adaptive immune response and are used to differentiate self antigens from non self ones. HLA genes are hyper variable with nearly every locus harboring over a dozen alleles. This variation plays an important role in susceptibility to multiple autoimmune diseases and needs to be matched on for organ transplantation. Unfortunately, HLA typing by serological methods is time consuming and expensive compared to high throughput Single Nucleotide Polymorphism (SNP) data. We present a new computational method to infer per-locus HLA types using shared segments Identical By Descent (IBD), inferred from SNP genotype data. IBD information is modeled as graph where shared haplotypes are explored among clusters of individuals with known and unknown HLA types to identify the latter. We analyze performance of the method in a previously typed subset of the HapMap population, achieving accuracy of 96% in HLA-A, 94% in HLA-B, 95% in HLA-C, 77% in HLA-DR1, 93% in HLA-DQA1 and 90% in HLA-DQB1 genes. We compare our method to a tag SNP based approach and demonstrate higher sensitivity and specificity. Our method demonstrates the power of using shared haplotype segments for large-scale imputation at the HLA locus.

  3. Physics-based Entry, Descent and Landing Risk Model

    NASA Technical Reports Server (NTRS)

    Gee, Ken; Huynh, Loc C.; Manning, Ted

    2014-01-01

    A physics-based risk model was developed to assess the risk associated with thermal protection system failures during the entry, descent and landing phase of a manned spacecraft mission. In the model, entry trajectories were computed using a three-degree-of-freedom trajectory tool, the aerothermodynamic heating environment was computed using an engineering-level computational tool and the thermal response of the TPS material was modeled using a one-dimensional thermal response tool. The model was capable of modeling the effect of micrometeoroid and orbital debris impact damage on the TPS thermal response. A Monte Carlo analysis was used to determine the effects of uncertainties in the vehicle state at Entry Interface, aerothermodynamic heating and material properties on the performance of the TPS design. The failure criterion was set as a temperature limit at the bondline between the TPS and the underlying structure. Both direct computation and response surface approaches were used to compute the risk. The model was applied to a generic manned space capsule design. The effect of material property uncertainty and MMOD damage on risk of failure were analyzed. A comparison of the direct computation and response surface approach was undertaken.

  4. Eigenanalysis of SNP data with an identity by descent interpretation.

    PubMed

    Zheng, Xiuwen; Weir, Bruce S

    2016-02-01

    Principal component analysis (PCA) is widely used in genome-wide association studies (GWAS), and the principal component axes often represent perpendicular gradients in geographic space. The explanation of PCA results is of major interest for geneticists to understand fundamental demographic parameters. Here, we provide an interpretation of PCA based on relatedness measures, which are described by the probability that sets of genes are identical-by-descent (IBD). An approximately linear transformation between ancestral proportions (AP) of individuals with multiple ancestries and their projections onto the principal components is found. In addition, a new method of eigenanalysis "EIGMIX" is proposed to estimate individual ancestries. EIGMIX is a method of moments with computational efficiency suitable for millions of SNP data, and it is not subject to the assumption of linkage equilibrium. With the assumptions of multiple ancestries and their surrogate ancestral samples, EIGMIX is able to infer ancestral proportions (APs) of individuals. The methods were applied to the SNP data from the HapMap Phase 3 project and the Human Genome Diversity Panel. The APs of individuals inferred by EIGMIX are consistent with the findings of the program ADMIXTURE. In conclusion, EIGMIX can be used to detect population structure and estimate genome-wide ancestral proportions with a relatively high accuracy.

  5. Engineering description of the ascent/descent bet product

    NASA Technical Reports Server (NTRS)

    Seacord, A. W., II

    1986-01-01

    The Ascent/Descent output product is produced in the OPIP routine from three files which constitute its input. One of these, OPIP.IN, contains mission specific parameters. Meteorological data, such as atmospheric wind velocities, temperatures, and density, are obtained from the second file, the Corrected Meteorological Data File (METDATA). The third file is the TRJATTDATA file which contains the time-tagged state vectors that combine trajectory information from the Best Estimate of Trajectory (BET) filter, LBRET5, and Best Estimate of Attitude (BEA) derived from IMU telemetry. Each term in the two output data files (BETDATA and the Navigation Block, or NAVBLK) are defined. The description of the BETDATA file includes an outline of the algorithm used to calculate each term. To facilitate describing the algorithms, a nomenclature is defined. The description of the nomenclature includes a definition of the coordinate systems used. The NAVBLK file contains navigation input parameters. Each term in NAVBLK is defined and its source is listed. The production of NAVBLK requires only two computational algorithms. These two algorithms, which compute the terms DELTA and RSUBO, are described. Finally, the distribution of data in the NAVBLK records is listed.

  6. Orion Entry, Descent, and Landing Performance and Mission Design

    NASA Technical Reports Server (NTRS)

    Broome, Joel M.; Johnson, Wyatt

    2007-01-01

    The Orion Vehicle is the next spacecraft to take humans into space and will include missions to ISS as well as missions to the Moon. As part of that challenge, the vehicle will have to accommodate multiple mission design concepts, since return from Low Earth Orbit and return from the Moon can be quite different. Commonality between the different missions as it relates to vehicle systems, guidance capability, and operations concepts is the goal. Several unique mission design concepts include the specification of multiple land-based landing sites for a vehicle with closed-loop direct and skip entry guidance, followed by a parachute descent and landing attenuation system. This includes the ability of the vehicle to accurately target and land at a designated landing site, including site location aspects, landing site size, and landing opportunities assessments. Analyses associated with these mission design and flight performance challenges and constraints will be discussed as well as potential operational concepts to provide feasibility and/or mission commonality.

  7. Preliminary Study of a Model Rotor in Descent

    NASA Technical Reports Server (NTRS)

    McAlister, K. W.; Tung, C.; Sharpe, D. L.; Huang, S.; Hendley, E. M.

    2000-01-01

    Within a program designed to develop experimental techniques for measuring the trajectory and structure of vortices trailing from the tips of rotor blades, the present preliminary study focuses on a method for quantifying the trajectory of the trailing vortex during descent flight conditions. This study also presents rotor loads and blade surface pressures for a range of tip-path plane angles and Mach numbers. Blade pressures near the leading edge and along the outer radius are compared with data obtained on the same model rotor, but in open jet facilities. A triangulation procedure based on two directable laser-light sheets, each containing an embedded reference, proved effective in defining the spatial coordinates of the trailing vortex. When interrogating a cross section of the flow that contains several trailing vortices, the greatest clarity was found to result when the flow is uniformly seeded. Surface pressure responses during blade-vortex interactions appeared equally sensitive near the leading edge and along the outer portion of the blade, but diminished rapidly as the distance along the blade chord increased. The pressure response was virtually independent of whether the tip-path plane angle was obtained through shaft tilt or cyclic pitch. Although the shape and frequency of the pressure perturbations on the advancing blade during blade-vortex interaction are similar to those obtained in open-jet facilities, the angle of the tip-path plane may need to be lower than the range covered in this study.

  8. STS-40 descent BET products: Development and results

    NASA Technical Reports Server (NTRS)

    Oakes, Kevin F.; Wood, James S.; Findlay, John T.

    1991-01-01

    Descent Best Estimate Trajectory (BET) Data were generated for the final Orbiter Experiments Flight, STS-40. This report discusses the actual development of these post-flight products: the inertial BET, the Extended BET, and the Aerodynamic BET. Summary results are also included. The inertial BET was determined based on processing Tracking and Data Relay Satellite (TDRSS) coherent Doppler data in conjunction with observations from eleven C-band stations, to include data from the Kwajalein Atoll and the usual California coastal radars, as well as data from five cinetheodolite cameras in the vicinity of the runways at EAFB. The anchor epoch utilized for the trajectory reconstruction was 53,904 Greenwich Mean Time (GMT) seconds which corresponds to an altitude at epoch of approximately 708 kft. Atmospheric data to enable development of an Extended BET for this mission were upsurped from the JSC operational post-flight BET. These data were evaluated based on Space Shuttle-derived considerations as well as model comparisons. The Aerodynamic BET includes configuration information, final mass properties, and both flight-determined and predicted aerodynamic performance estimates. The predicted data were based on the final pre-operational databook, updated to include flight determined incrementals based on an earlier ensemble of flights. Aerodynamic performance comparisons are presented and correlated versus statistical results based on twenty-two previous missions.

  9. Development of a Mars Airplane Entry, Descent, and Flight Trajectory

    NASA Technical Reports Server (NTRS)

    Murray, James E.; Tartabini, Paul V.

    2001-01-01

    An entry, descent, and flight (EDF) trajectory profile for a Mars airplane mission is defined as consisting of the following elements: ballistic entry of an aeroshell; supersonic deployment of a decelerator parachute; subsonic release of a heat shield; release, unfolding, and orientation of an airplane to flight attitude; and execution of a pull up maneuver to achieve trimmed, horizontal flight. Using the Program to Optimize Simulated Trajectories (POST) a trajectory optimization problem was formulated. Model data representative of a specific Mars airplane configuration, current models of the Mars surface topography and atmosphere, and current estimates of the interplanetary trajectory, were incorporated into the analysis. The goal is to develop an EDF trajectory to maximize the surface-relative altitude of the airplane at the end of a pull up maneuver, while subject to the mission design constraints. The trajectory performance was evaluated for three potential mission sites and was found to be site-sensitive. The trajectory performance, examined for sensitivity to a number of design and constraint variables, was found to be most sensitive to airplane mass, aerodynamic performance characteristics, and the pull up Mach constraint. Based on the results of this sensitivity study, an airplane-drag optimized trajectory was developed that showed a significant performance improvement.

  10. Estimating Controller Intervention Probabilities for Optimized Profile Descent Arrivals

    NASA Technical Reports Server (NTRS)

    Meyn, Larry A.; Erzberger, Heinz; Huynh, Phu V.

    2011-01-01

    Simulations of arrival traffic at Dallas/Fort-Worth and Denver airports were conducted to evaluate incorporating scheduling and separation constraints into advisories that define continuous descent approaches. The goal was to reduce the number of controller interventions required to ensure flights maintain minimum separation distances of 5 nmi horizontally and 1000 ft vertically. It was shown that simply incorporating arrival meter fix crossing-time constraints into the advisory generation could eliminate over half of the all predicted separation violations and more than 80% of the predicted violations between two arrival flights. Predicted separation violations between arrivals and non-arrivals were 32% of all predicted separation violations at Denver and 41% at Dallas/Fort-Worth. A probabilistic analysis of meter fix crossing-time errors is included which shows that some controller interventions will still be required even when the predicted crossing-times of the advisories are set to add a 1 or 2 nmi buffer above the minimum in-trail separation of 5 nmi. The 2 nmi buffer was shown to increase average flight delays by up to 30 sec when compared to the 1 nmi buffer, but it only resulted in a maximum decrease in average arrival throughput of one flight per hour.

  11. Foot clearance during stair descent: effects of age and illumination.

    PubMed

    Hamel, Kathryn A; Okita, Noriaki; Higginson, Jill S; Cavanagh, Peter R

    2005-02-01

    It is likely that many stair accidents result from a trip during stair negotiation, yet few studies have examined the exact nature of balance loss during falls on stairs. The purpose of this study was to investigate potential age-related differences in the minimum clearance of the foot during stair descent, and to explore whether the minimum foot clearance was affected by the available ambient lighting. Twelve young adults (24+/-3.3 years) and 10 older adults (73.7+/-1.9 years) participated in the study. The older adults had significantly greater within subject coefficients of variation compared to the young adults, and had a significantly larger number of minimum foot clearances which fell below 5 mm. While the young subjects increased their minimum clearance by 3.6 mm on average in response to a decrease in ambient lighting, the older adults maintained the same clearance over all stairs except one. These results suggest that the variability of minimum foot clearance, and lack of precautionary increases in foot clearance under reduced lighting may contribute to falls on stairs by the elderly.

  12. Cortical network functional connectivity in the descent to sleep.

    PubMed

    Larson-Prior, Linda J; Zempel, John M; Nolan, Tracy S; Prior, Fred W; Snyder, Abraham Z; Raichle, Marcus E

    2009-03-17

    Descent into sleep is accompanied by disengagement of the conscious brain from the external world. It follows that this process should be associated with reduced neural activity in regions of the brain known to mediate interaction with the environment. We examined blood oxygen dependent (BOLD) signal functional connectivity using conventional seed-based analyses in 3 primary sensory and 3 association networks as normal young adults transitioned from wakefulness to light sleep while lying immobile in the bore of a magnetic resonance imaging scanner. Functional connectivity was maintained in each network throughout all examined states of arousal. Indeed, correlations within the dorsal attention network modestly but significantly increased during light sleep compared to wakefulness. Moreover, our data suggest that neuronally mediated BOLD signal variance generally increases in light sleep. These results do not support the view that ongoing BOLD fluctuations primarily reflect unconstrained cognition. Rather, accumulating evidence supports the hypothesis that spontaneous BOLD fluctuations reflect processes that maintain the integrity of functional systems in the brain.

  13. Description of the computations and pilot procedures for planning fuel-conservative descents with a small programmable calculator

    NASA Technical Reports Server (NTRS)

    Vicroy, D. D.; Knox, C. E.

    1983-01-01

    A simplified flight management descent algorithm was developed and programmed on a small programmable calculator. It was designed to aid the pilot in planning and executing a fuel conservative descent to arrive at a metering fix at a time designated by the air traffic control system. The algorithm may also be used for planning fuel conservative descents when time is not a consideration. The descent path was calculated for a constant Mach/airspeed schedule from linear approximations of airplane performance with considerations given for gross weight, wind, and nonstandard temperature effects. The flight management descent algorithm and the vertical performance modeling required for the DC-10 airplane is described.

  14. Description of the computations and pilot procedures for planning fuel-conservative descents with a small programmable calculator

    SciTech Connect

    Vicroy, D.D.; Knox, C.E.

    1983-05-01

    A simplified flight management descent algorithm was developed and programmed on a small programmable calculator. It was designed to aid the pilot in planning and executing a fuel conservative descent to arrive at a metering fix at a time designated by the air traffic control system. The algorithm may also be used for planning fuel conservative descents when time is not a consideration. The descent path was calculated for a constant Mach/airspeed schedule from linear approximations of airplane performance with considerations given for gross weight, wind, and nonstandard temperature effects. The flight management descent algorithm and the vertical performance modeling required for the DC-10 airplane is described.

  15. LINEAR ACCELERATOR

    DOEpatents

    Colgate, S.A.

    1958-05-27

    An improvement is presented in linear accelerators for charged particles with respect to the stable focusing of the particle beam. The improvement consists of providing a radial electric field transverse to the accelerating electric fields and angularly introducing the beam of particles in the field. The results of the foregoing is to achieve a beam which spirals about the axis of the acceleration path. The combination of the electric fields and angular motion of the particles cooperate to provide a stable and focused particle beam.

  16. MACV/Radio integrated navigation for Mars powered descent via robust desensitized central difference Kalman filter

    NASA Astrophysics Data System (ADS)

    Lou, Taishan; Liu, Jie; Jin, Pan; Wang, Yan

    2017-01-01

    An innovative integrated navigation scheme based on MCAV/Radio measurement information during Mars powered descent phase, and a robust desensitized central difference Kalman filter (DCDKF) for systems with uncertain parameters or biases are proposed to improve the navigation descent accuracy. Based on the altitude and velocity information of the Miniature Coherent Altimeter and Velocimeter (MCAV), the radio-range information is added into the integrated navigation system to correct the horizontal position error of the vehicle during the Mars powered descent phase. Based the central difference transform, the sensitivity propagation of the state estimate errors in the DCDKF is described, and a designed desensitized cost function is minimized to obtain the gain matrix of the DCDKF. The performances of the innovative navigation scheme and the proposed DCDKF are all demonstrated by two Monte Carlo simulations with the Inertial Measurement Unit biases during the Mars power descent phase.

  17. Antarctic Polar Descent and Planetary Wave Activity Observed in ISAMS CO from April to July 1992

    NASA Technical Reports Server (NTRS)

    Allen, D. R.; Stanford, J. L.; Nakamura, N.; Lopez-Valverde, M. A.; Lopez-Puertas, M.; Taylor, F. W.; Remedios, J. J.

    2000-01-01

    Antarctic polar descent and planetary wave activity in the upper stratosphere and lower mesosphere are observed in ISAMS CO data from April to July 1992. CO-derived mean April-to-May upper stratosphere descent rates of 15 K/day (0.25 km/day) at 60 S and 20 K/day (0.33 km/day) at 80 S are compared with descent rates from diabatic trajectory analyses. At 60 S there is excellent agreement, while at 80 S the trajectory-derived descent is significantly larger in early April. Zonal wavenumber 1 enhancement of CO is observed on 9 and 28 May, coincident with enhanced wave 1 in UKMO geopotential height. The 9 May event extends from 40 to 70 km and shows westward phase tilt with height, while the 28 May event extends from 40 to 50 km and shows virtually no phase tilt with height.

  18. A conflict analysis of 4D descent strategies in a metered, multiple-arrival route environment

    NASA Technical Reports Server (NTRS)

    Izumi, K. H.; Harris, C. S.

    1990-01-01

    A conflict analysis was performed on multiple arrival traffic at a typical metered airport. The Flow Management Evaluation Model (FMEM) was used to simulate arrival operations using Denver Stapleton's arrival route structure. Sensitivities of conflict performance to three different 4-D descent strategies (clear-idle Mach/Constant AirSpeed (CAS), constant descent angle Mach/CAS and energy optimal) were examined for three traffic mixes represented by those found at Denver Stapleton, John F. Kennedy and typical en route metering (ERM) airports. The Monte Carlo technique was used to generate simulation entry point times. Analysis results indicate that the clean-idle descent strategy offers the best compromise in overall performance. Performance measures primarily include susceptibility to conflict and conflict severity. Fuel usage performance is extrapolated from previous descent strategy studies.

  19. The Cassini/Huygens Doppler Wind Experiment: Results from the Titan Descent

    NASA Astrophysics Data System (ADS)

    Bird, M. K.; Dutta-Roy, R.; Allison, M. D.; Asmar, S. W.; Atkinson, D. H.; Edenhofer, P.; Plettemeier, D.; Tyler, G. L.

    2005-03-01

    The Huygens Doppler Wind Experiment (DWE) determined the height profile of the zonal winds during the Titan descent, commencing with parachute deployment at an altitude of ca. 150 km down to impact on the surface.

  20. User's manual for a fuel-conservative descent planning algorithm implemented on a small programmable calculator

    SciTech Connect

    Vicroy, D.D.

    1984-01-01

    A simplified flight management descent algorithm was developed and programmed on a small programmable calculator. It was designed to aid the pilot in planning and executing a fuel conservative descent to arrive at a metering fix at a time designated by the air traffic control system. The algorithm may also be used for planning fuel conservative descents when time is not a consideration. The descent path was calculated for a constant Mach/airspeed schedule from linear approximations of airplane performance with considerations given for gross weight, wind, and nonstandard temperature effects. An explanation and examples of how the algorithm is used, as well as a detailed flow chart and listing of the algorithm are contained.

  1. Reconstruction of the Mars Science Laboratory Parachute Performance and Comparison to the Descent Simulation

    NASA Technical Reports Server (NTRS)

    Cruz, Juan R.; Way, David W.; Shidner, Jeremy D.; Davis, Jody L.; Adams, Douglas S.; Kipp, Devin M.

    2013-01-01

    The Mars Science Laboratory used a single mortar-deployed disk-gap-band parachute of 21.35 m nominal diameter to assist in the landing of the Curiosity rover on the surface of Mars. The parachute system s performance on Mars has been reconstructed using data from the on-board inertial measurement unit, atmospheric models, and terrestrial measurements of the parachute system. In addition, the parachute performance results were compared against the end-to-end entry, descent, and landing (EDL) simulation created to design, develop, and operate the EDL system. Mortar performance was nominal. The time from mortar fire to suspension lines stretch (deployment) was 1.135 s, and the time from suspension lines stretch to first peak force (inflation) was 0.635 s. These times were slightly shorter than those used in the simulation. The reconstructed aerodynamic portion of the first peak force was 153.8 kN; the median value for this parameter from an 8,000-trial Monte Carlo simulation yielded a value of 175.4 kN - 14% higher than the reconstructed value. Aeroshell dynamics during the parachute phase of EDL were evaluated by examining the aeroshell rotation rate and rotational acceleration. The peak values of these parameters were 69.4 deg/s and 625 deg/sq s, respectively, which were well within the acceptable range. The EDL simulation was successful in predicting the aeroshell dynamics within reasonable bounds. The average total parachute force coefficient for Mach numbers below 0.6 was 0.624, which is close to the pre-flight model nominal drag coefficient of 0.615.

  2. Analysis of Flight Management System Predictions of Idle-Thrust Descents

    NASA Technical Reports Server (NTRS)

    Stell, Laurel

    2010-01-01

    To enable arriving aircraft to fly optimized descents computed by the flight management system (FMS) in congested airspace, ground automation must accurately predict descent trajectories. To support development of the predictor and its uncertainty models, descents from cruise to the meter fix were executed using vertical navigation in a B737-700 simulator and a B777-200 simulator, both with commercial FMSs. For both aircraft types, the FMS computed the intended descent path for a specified speed profile assuming idle thrust after top of descent (TOD), and then it controlled the avionics without human intervention. The test matrix varied aircraft weight, descent speed, and wind conditions. The first analysis in this paper determined the effect of the test matrix parameters on the FMS computation of TOD location, and it compared the results to those for the current ground predictor in the Efficient Descent Advisor (EDA). The second analysis was similar but considered the time to fly a specified distance to the meter fix. The effects of the test matrix variables together with the accuracy requirements for the predictor will determine the allowable error for the predictor inputs. For the B737, the EDA prediction of meter fix crossing time agreed well with the FMS; but its prediction of TOD location probably was not sufficiently accurate to enable idle-thrust descents in congested airspace, even though the FMS and EDA gave similar shapes for TOD location as a function of the test matrix variables. For the B777, the FMS and EDA gave different shapes for the TOD location function, and the EDA prediction of the TOD location is not accurate enough to fully enable the concept. Furthermore, the differences between the FMS and EDA predictions of meter fix crossing time for the B777 indicated that at least one of them was not sufficiently accurate.

  3. An analytical study of nonlinear oscillations during uncontrolled descent in the atmosphere

    NASA Astrophysics Data System (ADS)

    Privarnikov, O. A.

    Reference is made to an earlier study (Privarnikov, 1980) in which expressions have been obtained for the analysis of plane nonlinear oscillations during uncontrolled ballistic descent in the atmosphere. Here, a more accurate solution to the ballistic descent problem is obtained which allows for the nonlinearity of the aerodynamic coefficients and for the effect of oscillations on the motion of the center of mass. The accuracy of the solution is estimated for different degrees of nonlinearity of the aerodynamic coefficients.

  4. Mars Science Laboratory Entry, Descent and Landing System Development Challenges and Preliminary Flight Performance

    NASA Technical Reports Server (NTRS)

    Steltzner, Adam D.; San Martin, A. Miguel; Rivellini, Tommaso P.

    2013-01-01

    The Mars Science Laboratory project recently landed the Curiosity rover on the surface of Mars. With the success of the landing system, the performance envelope of entry, descent, and landing capabilities has been extended over the previous state of the art. This paper will present an overview of the MSL entry, descent, and landing system, a discussion of a subset of its development challenges, and include a discussion of preliminary results of the flight reconstruction effort.

  5. Phase-only Beam Broadening in Large Transmit Arrays Using Complex-Weight Gradient Descent

    DTIC Science & Technology

    2014-04-15

    used gradient descent modified with a classic SVD technique to create point and sector nulls as desired. Here Day’s approach is extended to allow for...amplitude variation. He used gradient descent modified with a classic SVD technique to create point and sector nulls as desired. Here Day’s approach is...steering offset is still present in the plot to better display the weights.) A singular-value decomposition ( SVD ) approach is used to avoid restricting the

  6. Acceleration switch

    DOEpatents

    Abbin, Jr., Joseph P.; Devaney, Howard F.; Hake, Lewis W.

    1982-08-17

    The disclosure relates to an improved integrating acceleration switch of the type having a mass suspended within a fluid filled chamber, with the motion of the mass initially opposed by a spring and subsequently not so opposed.

  7. Acceleration switch

    DOEpatents

    Abbin, J.P. Jr.; Devaney, H.F.; Hake, L.W.

    1979-08-29

    The disclosure relates to an improved integrating acceleration switch of the type having a mass suspended within a fluid filled chamber, with the motion of the mass initially opposed by a spring and subsequently not so opposed.

  8. ION ACCELERATOR

    DOEpatents

    Bell, J.S.

    1959-09-15

    An arrangement for the drift tubes in a linear accelerator is described whereby each drift tube acts to shield the particles from the influence of the accelerating field and focuses the particles passing through the tube. In one embodiment the drift tube is splii longitudinally into quadrants supported along the axis of the accelerator by webs from a yoke, the quadrants. webs, and yoke being of magnetic material. A magnetic focusing action is produced by energizing a winding on each web to set up a magnetic field between adjacent quadrants. In the other embodiment the quadrants are electrically insulated from each other and have opposite polarity voltages on adjacent quadrants to provide an electric focusing fleld for the particles, with the quadrants spaced sufficienily close enough to shield the particles within the tube from the accelerating electric field.

  9. LINEAR ACCELERATOR

    DOEpatents

    Christofilos, N.C.; Polk, I.J.

    1959-02-17

    Improvements in linear particle accelerators are described. A drift tube system for a linear ion accelerator reduces gap capacity between adjacent drift tube ends. This is accomplished by reducing the ratio of the diameter of the drift tube to the diameter of the resonant cavity. Concentration of magnetic field intensity at the longitudinal midpoint of the external sunface of each drift tube is reduced by increasing the external drift tube diameter at the longitudinal center region.

  10. Manifold regularized discriminative nonnegative matrix factorization with fast gradient descent.

    PubMed

    Guan, Naiyang; Tao, Dacheng; Luo, Zhigang; Yuan, Bo

    2011-07-01

    Nonnegative matrix factorization (NMF) has become a popular data-representation method and has been widely used in image processing and pattern-recognition problems. This is because the learned bases can be interpreted as a natural parts-based representation of data and this interpretation is consistent with the psychological intuition of combining parts to form a whole. For practical classification tasks, however, NMF ignores both the local geometry of data and the discriminative information of different classes. In addition, existing research results show that the learned basis is unnecessarily parts-based because there is neither explicit nor implicit constraint to ensure the representation parts-based. In this paper, we introduce the manifold regularization and the margin maximization to NMF and obtain the manifold regularized discriminative NMF (MD-NMF) to overcome the aforementioned problems. The multiplicative update rule (MUR) can be applied to optimizing MD-NMF, but it converges slowly. In this paper, we propose a fast gradient descent (FGD) to optimize MD-NMF. FGD contains a Newton method that searches the optimal step length, and thus, FGD converges much faster than MUR. In addition, FGD includes MUR as a special case and can be applied to optimizing NMF and its variants. For a problem with 165 samples in R(1600), FGD converges in 28 s, while MUR requires 282 s. We also apply FGD in a variant of MD-NMF and experimental results confirm its efficiency. Experimental results on several face image datasets suggest the effectiveness of MD-NMF.

  11. Application of inflatable aeroshell structures for Entry Descent and Landing

    NASA Astrophysics Data System (ADS)

    Jurewicz, David; Lichodziejewski, Leo; Tutt, Ben; Gilles, Brian; Brown, Glen

    Future space missions will require improvements in the Entry, Descent, and Landing (EDL) phases of the mission architecture. The focus of this paper is to discuss recent advances in analysis, fabrication techniques, ground testing, and flight testing of a stacked torus Hypersonic Inflatable Aerodynamic Decelerator (HIAD) and its application to the future of EDL. The primary structure of a stacked torus HIAD consists of nested inflatable tori of increasing major diameter bonded and strapped to form a rigid structure after inflation. The underlying structure of the decelerator is covered with a flexible Thermal Protection System (TPS) capable of high heat flux. The inflatable aeroshell and TPS are packed around a centerbody within the launch fairing and deployed prior to atmospheric reentry. Recent fabrication of multiple HIADs between 3 and 6 meters has led to significant advances in process control and validation of the scalability of the technology. Progress has been made in generating and validating LS-DYNA FEA models to replicate flight loading in addition to analytical models of substructures. Coupon and component testing has improved the validation of modeling techniques and assumptions at the subsystem level. A ground testing campaign at the National Full-Scale Aerodynamics Center (NFAC) wind tunnel at NASA Ames Research center generated substantial aerodynamic and loading data to validate full system modeling with comparable dynamic pressures to a hypersonic reentry. The Inflatable Reentry Vehicle - 3 (IRVE-3) sounding rocket flight test was conducted with NASA Langley Research Center in July 2012. The IRVE-3 mission verified the structural and thermal performance of the stacked torus configuration. Further development of the stacked torus configuration is currently being conducted to increase the thermal capability, deceleration loads, and understanding of the interactions and effects of constituent components. The results of this research have expanded the

  12. Experiments on liquid immiscibility along tholeiitic liquid lines of descent

    NASA Astrophysics Data System (ADS)

    Charlier, Bernard; Grove, Timothy L.

    2012-07-01

    Crystallization experiments have been conducted on compositions along tholeiitic liquid lines of descent to define the compositional space for the development of silicate liquid immiscibility. Starting materials have 46-56 wt% SiO2, 11.7-17.7 wt% FeOtot, and Mg-number between 0.29 and 0.36. These melts fall on the basaltic trends relevant for Mull, Iceland, Snake River Plain lavas and for the Sept Iles layered intrusion, where large-scale liquid immiscibility has been recognized. At one atmosphere under anhydrous conditions, immiscibility develops below 1,000-1,020°C in all of these compositionally diverse lavas. Extreme iron enrichment is not necessary; immiscibility also develops during iron depletion and silica enrichment. Variations in melt composition control the development of silicate liquid immiscibility along the tholeiitic trend. Elevation of Na2O + K2O + P2O5 + TiO2 promotes the development of two immiscible liquids. Increasing melt CaO and Al2O3 stabilizes a single-liquid field. New data and published phase equilibria show that anhydrous, low-pressure fractional crystallization is the most favorable condition for unmixing during differentiation. Pressure inhibits immiscibility because it expands the stability field of high-Ca clinopyroxene, which reduces the proportion of plagioclase in the crystallizing assemblage, thus enhancing early iron depletion. Magma mixing between primitive basalt and Fe-Ti-P-rich ferrobasalts can serve to elevate phosphorous and alkali contents and thereby promote unmixing. Water might decrease the temperature and size of the two-liquid field, potentially shifting the binodal (solvus) below the liquidus, leading the system to evolve as a single-melt phase.

  13. Efficient clustering of identity-by-descent between multiple individuals

    PubMed Central

    Qian, Yu; Browning, Brian L.; Browning, Sharon R.

    2014-01-01

    Motivation: Most existing identity-by-descent (IBD) detection methods only consider haplotype pairs; less attention has been paid to considering multiple haplotypes simultaneously, even though IBD is an equivalence relation on haplotypes that partitions a set of haplotypes into IBD clusters. Multiple-haplotype IBD clusters may have advantages over pairwise IBD in some applications, such as IBD mapping. Existing methods for detecting multiple-haplotype IBD clusters are often computationally expensive and unable to handle large samples with thousands of haplotypes. Results: We present a clustering method, efficient multiple-IBD, which uses pairwise IBD segments to infer multiple-haplotype IBD clusters. It expands clusters from seed haplotypes by adding qualified neighbors and extends clusters across sliding windows in the genome. Our method is an order of magnitude faster than existing methods and has comparable performance with respect to the quality of clusters it uncovers. We further investigate the potential application of multiple-haplotype IBD clusters in association studies by testing for association between multiple-haplotype IBD clusters and low-density lipoprotein cholesterol in the Northern Finland Birth Cohort. Using our multiple-haplotype IBD cluster approach, we found an association with a genomic interval covering the PCSK9 gene in these data that is missed by standard single-marker association tests. Previously published studies confirm association of PCSK9 with low-density lipoprotein. Availability and implementation: Source code is available under the GNU Public License http://cs.au.dk/~qianyuxx/EMI/. Contact: qianyuxx@gmail.com Supplementary information: Supplementary data are available at Bioinformatics online. PMID:24363374

  14. Mars 2020 Entry, Descent and Landing Instrumentation (MEDLI2)

    NASA Technical Reports Server (NTRS)

    Bose, Deepak; Wright, Henry; White, Todd; Schoenenberger, Mark; Santos, Jose; Karlgaard, Chris; Kuhl, Chris; Oishi, TOmo; Trombetta, Dominic

    2016-01-01

    This paper will introduce Mars Entry Descent and Landing Instrumentation (MEDLI2) on NASA's Mars2020 mission. Mars2020 is a flagship NASA mission with science and technology objectives to help answer questions about possibility of life on Mars as well as to demonstrate technologies for future human expedition. Mars2020 is scheduled for launch in 2020. MEDLI2 is a suite of instruments embedded in the heatshield and backshell thermal protection systems of Mars2020 entry vehicle. The objectives of MEDLI2 are to gather critical aerodynamics, aerothermodynamics and TPS performance data during EDL phase of the mission. MEDLI2 builds up the success of MEDLI flight instrumentation on Mars Science Laboratory mission in 2012. MEDLI instrumentation suite measured surface pressure and TPS temperature on the heatshield during MSL entry into Mars. MEDLI data has since been used for unprecedented reconstruction of aerodynamic drag, vehicle attitude, in-situ atmospheric density, aerothermal heating, transition to turbulence, in-depth TPS performance and TPS ablation. [1,2] In addition to validating predictive models, MEDLI data has highlighted extra margin available in the MSL forebody TPS, which can potentially be used to reduce vehicle parasitic mass. MEDLI2 expands the scope of instrumentation by focusing on quantities of interest not addressed in MEDLI suite. The type the sensors are expanded and their layout on the TPS modified to meet these new objectives. The paper will provide key motivation and governing requirements that drive the choice and the implementation of the new sensor suite. The implementation considerations of sensor selection, qualification, and demonstration of minimal risk to the host mission will be described. The additional challenges associated with mechanical accommodation, electrical impact, data storage and retrieval for MEDLI2 system, which extends sensors to backshell will also be described.

  15. Mars Exploration Rover Entry, Descent, and Landing: A Thermal Perspective

    NASA Technical Reports Server (NTRS)

    Tsuyuki, Glenn T.; Sunada, Eric T.; Novak, Keith S.; Kinsella, Gary M.; Phillip, Charles J.

    2005-01-01

    Perhaps the most challenging mission phase for the Mars Exploration Rovers was the Entry, Descent, and Landing (EDL). During this phase, the entry vehicle attached to its cruise stage was transformed into a stowed tetrahedral Lander that was surrounded by inflated airbags through a series of complex events. There was only one opportunity to successfully execute an automated command sequence without any possible ground intervention. The success of EDL was reliant upon the system thermal design: 1) to thermally condition EDL hardware from cruise storage temperatures to operating temperature ranges; 2) to maintain the Rover electronics within operating temperature ranges without the benefit of the cruise single phase cooling loop, which had been evacuated in preparation for EDL; and 3) to maintain the cruise stage propulsion components for the critical turn to entry attitude. Since the EDL architecture was inherited from Mars Pathfinder (MPF), the initial EDL thermal design would be inherited from MPF. However, hardware and implementation differences from MPF ultimately changed the MPF inheritance approach for the EDL thermal design. With the lack of full inheritance, the verification and validation of the EDL thermal design took on increased significance. This paper will summarize the verification and validation approach for the EDL thermal design along with applicable system level thermal testing results as well as appropriate thermal analyses. In addition, the lessons learned during the system-level testing will be discussed. Finally, the in-flight EDL experiences of both MER-A and -B missions (Spirit and Opportunity, respectively) will be presented, demonstrated how lessons learned from Spirit were applied to Opportunity.

  16. Atmospheric Environments for Entry, Descent and Landing (EDL)

    NASA Technical Reports Server (NTRS)

    Justus, Carl G.; Braun, Robert D.

    2007-01-01

    Scientific measurements of atmospheric properties have been made by a wide variety of planetary flyby missions, orbiters, and landers. Although landers can make in-situ observations of near-surface atmospheric conditions (and can collect atmospheric data during their entry phase), the vast majority of data on planetary atmospheres has been collected by remote sensing techniques from flyby and orbiter spacecraft (and to some extent by Earth-based remote sensing). Many of these remote sensing observations (made over a variety of spectral ranges), consist of vertical profiles of atmospheric temperature as a function of atmospheric pressure level. While these measurements are of great interest to atmospheric scientists and modelers of planetary atmospheres, the primary interest for engineers designing entry descent and landing (EDL) systems is information about atmospheric density as a function of geometric altitude. Fortunately, as described in in this paper, it is possible to use a combination of the gas-law relation and the hydrostatic balance relation to convert temperature-versus-pressure, scientific observations into density-versus-altitude data for use in engineering applications. The following section provides a brief introduction to atmospheric thermodynamics, as well as constituents, and winds for EDL. It also gives methodology for using atmospheric information to do "back-of-the-envelope" calculations of various EDL aeroheating parameters, including peak deceleration rate ("g-load"), peak convective heat rate. and total heat load on EDL spacecraft thermal protection systems. Brief information is also provided about atmospheric variations and perturbations for EDL guidance and control issues, and atmospheric issues for EDL parachute systems. Subsequent sections give details of the atmospheric environments for five destinations for possible EDL missions: Venus. Earth. Mars, Saturn, and Titan. Specific atmospheric information is provided for these destinations

  17. Aerodynamics of Reentry Vehicle Clipper at Descent Phase

    NASA Astrophysics Data System (ADS)

    Semenov, Yu. P.; Reshetin, A. G.; Dyadkin, A. A.; Petrov, N. K.; Simakova, T. V.; Tokarev, V. A.

    2005-02-01

    From Gagarin spacecraft to reusable orbiter Buran, RSC Energia has traveled a long way in the search for the most optimal and, which is no less important, the most reliable spacecraft for manned space flight. During the forty years of space exploration, in cooperation with a broad base of subcontractors, a number of problems have been solved which assure a safe long stay in space. Vostok and Voskhod spacecraft were replaced with Soyuz supporting a crew of three. During missions to a space station, it provides crew rescue capability in case of a space station emergency at all times (the spacecraft life is 200 days).The latest modification of Soyuz spacecraft -Soyuz TMA -in contrast to its predecessors, allows to become a space flight participant to a person of virtually any anthropometric parameters with a mass of 50 to 95 kg capable of withstanding up to 6 g load during descent. At present, Soyuz TMA spacecraft are the state-of-the-art, reliable and only means of the ISS crew delivery, in-flight support and return. Introduced on the basis of many years of experience in operation of manned spacecraft were not only the principles of deep redundancy of on-board systems and equipment, but, to assure the main task of the spacecraft -the crew return to Earth -the principles of functional redundancy. That is, vital operations can be performed by different systems based on different physical principles. The emergency escape system that was developed is the only one in the world that provides crew rescue in case of LV failure at any phase in its flight. Several generations of space stations that have been developed have broadened, virtually beyond all limits, capabilities of man in space. The docking system developed at RSC Energia allowed not only to dock spacecraft in space, but also to construct in orbit various complex space systems. These include large space stations, and may include in the future the in-orbit construction of systems for the exploration of the Moon and

  18. Acceleration Studies

    NASA Technical Reports Server (NTRS)

    Rogers, Melissa J. B.

    1993-01-01

    Work to support the NASA MSFC Acceleration Characterization and Analysis Project (ACAP) was performed. Four tasks (analysis development, analysis research, analysis documentation, and acceleration analysis) were addressed by parallel projects. Work concentrated on preparation for and implementation of near real-time SAMS data analysis during the USMP-1 mission. User support documents and case specific software documentation and tutorials were developed. Information and results were presented to microgravity users. ACAP computer facilities need to be fully implemented and networked, data resources must be cataloged and accessible, future microgravity missions must be coordinated, and continued Orbiter characterization is necessary.

  19. Planning fuel-conservative descents in an airline environmental using a small programmable calculator: algorithm development and flight test results

    SciTech Connect

    Knox, C.E.; Vicroy, D.D.; Simmon, D.A.

    1985-05-01

    A simple, airborne, flight-management descent algorithm was developed and programmed into a small programmable calculator. The algorithm may be operated in either a time mode or speed mode. The time mode was designed to aid the pilot in planning and executing a fuel-conservative descent to arrive at a metering fix at a time designated by the air traffic control system. The speed model was designed for planning fuel-conservative descents when time is not a consideration. The descent path for both modes was calculated for a constant with considerations given for the descent Mach/airspeed schedule, gross weight, wind, wind gradient, and nonstandard temperature effects. Flight tests, using the algorithm on the programmable calculator, showed that the open-loop guidance could be useful to airline flight crews for planning and executing fuel-conservative descents.

  20. Planning fuel-conservative descents in an airline environmental using a small programmable calculator: Algorithm development and flight test results

    NASA Technical Reports Server (NTRS)

    Knox, C. E.; Vicroy, D. D.; Simmon, D. A.

    1985-01-01

    A simple, airborne, flight-management descent algorithm was developed and programmed into a small programmable calculator. The algorithm may be operated in either a time mode or speed mode. The time mode was designed to aid the pilot in planning and executing a fuel-conservative descent to arrive at a metering fix at a time designated by the air traffic control system. The speed model was designed for planning fuel-conservative descents when time is not a consideration. The descent path for both modes was calculated for a constant with considerations given for the descent Mach/airspeed schedule, gross weight, wind, wind gradient, and nonstandard temperature effects. Flight tests, using the algorithm on the programmable calculator, showed that the open-loop guidance could be useful to airline flight crews for planning and executing fuel-conservative descents.

  1. Particle acceleration

    NASA Technical Reports Server (NTRS)

    Vlahos, L.; Machado, M. E.; Ramaty, R.; Murphy, R. J.; Alissandrakis, C.; Bai, T.; Batchelor, D.; Benz, A. O.; Chupp, E.; Ellison, D.

    1986-01-01

    Data is compiled from Solar Maximum Mission and Hinothori satellites, particle detectors in several satellites, ground based instruments, and balloon flights in order to answer fundamental questions relating to: (1) the requirements for the coronal magnetic field structure in the vicinity of the energization source; (2) the height (above the photosphere) of the energization source; (3) the time of energization; (4) transistion between coronal heating and flares; (5) evidence for purely thermal, purely nonthermal and hybrid type flares; (6) the time characteristics of the energization source; (7) whether every flare accelerates protons; (8) the location of the interaction site of the ions and relativistic electrons; (9) the energy spectra for ions and relativistic electrons; (10) the relationship between particles at the Sun and interplanetary space; (11) evidence for more than one acceleration mechanism; (12) whether there is single mechanism that will accelerate particles to all energies and also heat the plasma; and (13) how fast the existing mechanisms accelerate electrons up to several MeV and ions to 1 GeV.

  2. Plasma accelerator

    DOEpatents

    Wang, Zhehui; Barnes, Cris W.

    2002-01-01

    There has been invented an apparatus for acceleration of a plasma having coaxially positioned, constant diameter, cylindrical electrodes which are modified to converge (for a positive polarity inner electrode and a negatively charged outer electrode) at the plasma output end of the annulus between the electrodes to achieve improved particle flux per unit of power.

  3. Accelerated Achievement

    ERIC Educational Resources Information Center

    Ford, William J.

    2010-01-01

    This article focuses on the accelerated associate degree program at Ivy Tech Community College (Indiana) in which low-income students will receive an associate degree in one year. The three-year pilot program is funded by a $2.3 million grant from the Lumina Foundation for Education in Indianapolis and a $270,000 grant from the Indiana Commission…

  4. ACCELERATION INTEGRATOR

    DOEpatents

    Pope, K.E.

    1958-01-01

    This patent relates to an improved acceleration integrator and more particularly to apparatus of this nature which is gyrostabilized. The device may be used to sense the attainment by an airborne vehicle of a predetermined velocitv or distance along a given vector path. In its broad aspects, the acceleration integrator utilizes a magnetized element rotatable driven by a synchronous motor and having a cylin drical flux gap and a restrained eddy- current drag cap deposed to move into the gap. The angular velocity imparted to the rotatable cap shaft is transmitted in a positive manner to the magnetized element through a servo feedback loop. The resultant angular velocity of tae cap is proportional to the acceleration of the housing in this manner and means may be used to measure the velocity and operate switches at a pre-set magnitude. To make the above-described dcvice sensitive to acceleration in only one direction the magnetized element forms the spinning inertia element of a free gyroscope, and the outer housing functions as a gimbal of a gyroscope.

  5. Tracer-Based Determination of Vortex Descent in the 1999-2000 Arctic Winter

    NASA Technical Reports Server (NTRS)

    Greenblatt, Jeffery B.; Jost, Hans-Juerg; Loewenstein, Max; Podolske, James R.; Hurst, Dale F.; Elkins, James W.; Schauffler, Sue M.; Atlas, Elliot L.; Herman, Robert L.; Webster, Christopher R.

    2001-01-01

    A detailed analysis of available in situ and remotely sensed N2O and CH4 data measured in the 1999-2000 winter Arctic vortex has been performed in order to quantify the temporal evolution of vortex descent. Differences in potential temperature (theta) among balloon and aircraft vertical profiles (an average of 19-23 K on a given N2O or CH4 isopleth) indicated significant vortex inhomogeneity in late fall as compared with late winter profiles. A composite fall vortex profile was constructed for November 26, 1999, whose error bars encompassed the observed variability. High-latitude, extravortex profiles measured in different years and seasons revealed substantial variability in N2O and CH4 on theta surfaces, but all were clearly distinguishable from the first vortex profiles measured in late fall 1999. From these extravortex-vortex differences, we inferred descent prior to November 26: 397+/-15 K (1sigma) at 30 ppbv N2O and 640 ppbv CH4, and 28+/-13 K above 200 ppbv N2O and 1280 ppbv CH4. Changes in theta were determined on five N2O and CH4 isopleths from November 26 through March 12, and descent rates were calculated on each N2O isopleth for several time intervals. The maximum descent rates were seen between November 26 and January 27: 0.82+/-0.20 K/day averaged over 50-250 ppbv N2O. By late winter (February 26-March 12), the average rate had decreased to 0.10+/-0.25 K/day. Descent rates also decreased with increasing N2O; the winter average (November 26-March 5) descent rate varied from 0.75+/-0.10 K/day at 50 ppbv to 0.40+/-0.11 K/day at 250 ppbv. Comparison of these results with observations and models of descent in prior years showed very good overall agreement. Two models of the 1999-2000 vortex descent, SLIMCAT and REPROBUS, despite theta offsets with respect to observed profiles of up to 20 K on most tracer isopleths, produced descent rates that agreed very favorably with the inferred rates from observation.

  6. Tracer-based Determination of Vortex Descent in the 1999/2000 Arctic Winter

    NASA Technical Reports Server (NTRS)

    Greenblatt, Jeffrey B.; Jost, Hans-Juerg; Loewenstein, Max; Podolske, James R.; Hurst, Dale F.; Elkins, James W.; Schauffler, Sue M.; Atlas, Elliot L.; Herman, Robert L.; Webster, Chrisotopher R.

    2002-01-01

    A detailed analysis of available in situ and remotely sensed N2O and CH4 data measured in the 1999/2000 winter Arctic vortex has been performed in order to quantify the temporal evolution of vortex descent. Differences in potential temperature (theta) among balloon and aircraft vertical profiles (an average of 19-23 K on a given N2O or CH4 isopleth) indicated significant vortex inhomogeneity in late fall as compared with late winter profiles. A composite fall vortex profile was constructed for 26 November 1999, whose error bars encompassed the observed variability. High-latitude extravortex profiles measured in different years and seasons revealed substantial variability in N2O and CH4 on theta surfaces, but all were clearly distinguishable from the first vortex profiles measured in late fall 1999. From these extravortex-vortex differences we inferred descent prior to 26 November: as much as 397 plus or minus 15 K (lsigma) at 30 ppbv N2O and 640 ppbv CH4, and falling to 28 plus or minus 13 K above 200 ppbv N2O and 1280 ppbv CH4. Changes in theta were determined on five N2O and CH4 isopleths from 26 November through 12 March, and descent rates were calculated on each N2O isopleth for several time intervals. The maximum descent rates were seen between 26 November and 27 January: 0.82 plus or minus 0.20 K/day averaged over 50- 250 ppbv N2O. By late winter (26 February to 12 March), the average rate had decreased to 0.10 plus or minus 0.25 K/day. Descent rates also decreased with increasing N2O; the winter average (26 November to 5 March) descent rate varied from 0.75 plus or minus 0.10 K/day at 50 ppbv to 0.40 plus or minus 0.11 K/day at 250 ppbv. Comparison of these results with observations and models of descent in prior years showed very good overall agreement. Two models of the 1999/2000 vortex descent, SLIMCAT and REPROBUS, despite theta offsets with respect to observed profiles of up to 20 K on most tracer isopleths, produced descent rates that agreed very

  7. Diagnostic Clues to Frontal Fibrosing Alopecia in Patients of African Descent

    PubMed Central

    Reid, Sophia D.; Obayan, Olubusayo; Mcclellan, Liza; Sperling, Leonard

    2016-01-01

    Importance: Frontal fibrosing alopecia has previously been reported as rare among patients of African descent. The authors present 18 cases of frontal fibrosing alopecia affecting African American patients and review all published cases of frontal fibrosing alopecia involving patients of African descent. Observations: Since 2010, there have been 66 published cases of frontal fibrosing alopecia among patients of African descent; 59 women, five men, and two cases of unknown gender. Frontal fibrosing alopecia is not uncommon among patients of African descent. In this study, the authors find that female African American patients may have fewer symptoms and unique clinical presentations. Conclusion and relevance: Frontal fibrosing alopecia is an entity that can be seen in patients with many different ethnic backgrounds, often with varying presentations. The diagnosis of frontal fibrosing alopecia must be considered in any patient of African descent who presents with frontotemporal alopecia. In the authors’ patient population, there was a younger age of presentation. The presence of perifollicular hyperpigmentation along the hairline and concomitant facial hyperpigmentation may aid in making the diagnosis and distinguishing this entity from traction alopecia. PMID:27721910

  8. Kinematics of stair descent in young and older adults and the impact of exercise training.

    PubMed

    Mian, Omar S; Thom, Jeanette M; Narici, Marco V; Baltzopoulos, Vasilios

    2007-01-01

    Stair descent is a challenging task in old age. This study firstly investigated lower extremity kinematics during stair descent in young (YOU) and healthy, community dwelling older adults (OLD). Secondly, the impact of an exercise training intervention on age-related differences in stair descent was assessed. At baseline, a motion analysis system was used to determine spatio-temporal gait variables and lower extremity kinematics as YOU (n=23, age=27+/-3 years) and OLD (n=34, age=73+/-4 years) descended a three step staircase. The older adults were then divided into training (TRA) and control (CON) groups. For 12 months, TRA performed resistance, aerobic, balance, and flexibility exercises under supervision in a class environment (twice per week) and unsupervised at home (once per week). CON carried on with normal daily activities. Following the intervention, baseline measurements were repeated in TRA and CON. At baseline, total descent, stride cycle, and single support times were longer in OLD than in YOU. In addition, sagittal plane knee motion was lower in OLD whilst frontal and transverse plane pelvis and hip motion were higher in OLD. Exercise training did not reduce the age-related differences observed. In conclusion healthy older adults perform stair descent at a slower speed and with greater motion outside the plane of progression than young adults. We found no evidence that these differences are reduced by generic exercise training, at least in non-frail older adults.

  9. TRW - Lunar Descent Engine. Chapter 6, Appendix H

    NASA Technical Reports Server (NTRS)

    Elverum, Gerard W.

    2009-01-01

    it came to Apollo 13, we went back into the record, and said, "Hey, we have pushed this system around up there on Apollo 5, and we have also restarted this tandem configuration." The requirements on Apollo 13 were to put it back into play. The spacecraft was out of free return to the earth at the time of the accident. It would not have come back. NASA said, "Okay, we ll use the descent engine to put the spacecraft in a free trajectory; it will go around the moon and be on free trajectory back to Earth." Then, as it came around the far side of the moon, the guys found out that they had an oxygen problem. As you remember, things were getting pretty bad in there. They said, "We ve got to get it back as fast as we can. Is it okay if we re-fire the engine? Now, we re in a free trajectory, so we want to put as much delta-v (or change in velocity) in as we can. Can we re-fire right now?" We said, "Yes, the data says it has been this period of time." We could re-fire the engine, run the rest of the duty cycle up as far as we needed while preserving enough fluids to make the final correction as the spacecraft got near Earth, and restart the engine. It was pretty fortuitous that we could give them those answers.

  10. Particle Accelerators in China

    NASA Astrophysics Data System (ADS)

    Zhang, Chuang; Fang, Shouxian

    As the special machines that can accelerate charged particle beams to high energy by using electromagnetic fields, particle accelerators have been widely applied in scientific research and various areas of society. The development of particle accelerators in China started in the early 1950s. After a brief review of the history of accelerators, this article describes in the following sections: particle colliders, heavy-ion accelerators, high-intensity proton accelerators, accelerator-based light sources, pulsed power accelerators, small scale accelerators, accelerators for applications, accelerator technology development and advanced accelerator concepts. The prospects of particle accelerators in China are also presented.

  11. Descent and Landing Triggers for the Orion Multi-Purpose Crew Vehicle Exploration Flight Test-1

    NASA Technical Reports Server (NTRS)

    Bihari, Brian D.; Semrau, Jeffrey D.; Duke, Charity J.

    2013-01-01

    The Orion Multi-Purpose Crew Vehicle (MPCV) will perform a flight test known as Exploration Flight Test-1 (EFT-1) currently scheduled for 2014. One of the primary functions of this test is to exercise all of the important Guidance, Navigation, Control (GN&C), and Propulsion systems, along with the flight software for future flights. The Descent and Landing segment of the flight is governed by the requirements levied on the GN&C system by the Landing and Recovery System (LRS). The LRS is a complex system of parachutes and flight control modes that ensure that the Orion MPCV safely lands at its designated target in the Pacific Ocean. The Descent and Landing segment begins with the jettisoning of the Forward Bay Cover and concludes with sensing touchdown. This paper discusses the requirements, design, testing, analysis and performance of the current EFT-1 Descent and Landing Triggers flight software.

  12. Experimental liquid line of descent and liquid immiscibility for basalt 70017. [lunar rocks

    NASA Technical Reports Server (NTRS)

    Rutherford, M. J.; Hess, P. C.; Daniel, G. H.

    1974-01-01

    The paper describes one possible liquid line of descent produced for a high-titanium mare basalt composition through an arbitrarily chosen series of partial equilibrium and fractional crystallization experiments on basalt 70017. The liquid line of descent leading to immiscibility at 994 C is characterized by enrichment of FeO, K2O, SiO2, and MnO and depletion of MgO and TiO2 in the residual liquids. The composition of the residual liquid at the onset of immiscibility is ferrobasaltic, and the initial appearance of immiscible liquids in the form of silica-rich spherules is in the vicinity of plagioclase-liquid contacts. The integrated bulk composition of the areas of finely exsolved liquids indicates that the trend of the liquid line of descent is at a small angle to the tie lines joining the two liquids.

  13. Advances in POST2 End-to-End Descent and Landing Simulation for the ALHAT Project

    NASA Technical Reports Server (NTRS)

    Davis, Jody L.; Striepe, Scott A.; Maddock, Robert W.; Hines, Glenn D.; Paschall, Stephen, II; Cohanim, Babak E.; Fill, Thomas; Johnson, Michael C.; Bishop, Robert H.; DeMars, Kyle J.; Sostaric, Ronald r.; Johnson, Andrew E.

    2008-01-01

    Program to Optimize Simulated Trajectories II (POST2) is used as a basis for an end-to-end descent and landing trajectory simulation that is essential in determining design and integration capability and system performance of the lunar descent and landing system and environment models for the Autonomous Landing and Hazard Avoidance Technology (ALHAT) project. The POST2 simulation provides a six degree-of-freedom capability necessary to test, design and operate a descent and landing system for successful lunar landing. This paper presents advances in the development and model-implementation of the POST2 simulation, as well as preliminary system performance analysis, used for the testing and evaluation of ALHAT project system models.

  14. Preliminary assessment of the Mars Science Laboratory entry, descent, and landing simulation

    NASA Astrophysics Data System (ADS)

    Way, David W.

    On August 5, 2012, the Mars Science Laboratory rover, Curiosity, successfully landed inside Gale Crater. This landing was the seventh successful landing and fourth rover to be delivered to Mars. Weighing nearly one metric ton, Curiosity is the largest and most complex rover ever sent to investigate another planet. Safely landing such a large payload required an innovative Entry, Descent, and Landing system, which included the first guided entry at Mars, the largest supersonic parachute ever flown at Mars, and the novel Sky Crane landing system. A complete, end-to-end, six degree-of-freedom, multi-body computer simulation of the Mars Science Laboratory Entry, Descent, and Landing sequence was developed at the NASA Langley Research Center. In-flight data gathered during the successful landing is compared to pre-flight statistical distributions, predicted by the simulation. These comparisons provide insight into both the accuracy of the simulation and the overall performance of the Entry, Descent, and Landing system.

  15. Compact accelerator

    DOEpatents

    Caporaso, George J.; Sampayan, Stephen E.; Kirbie, Hugh C.

    2007-02-06

    A compact linear accelerator having at least one strip-shaped Blumlein module which guides a propagating wavefront between first and second ends and controls the output pulse at the second end. Each Blumlein module has first, second, and third planar conductor strips, with a first dielectric strip between the first and second conductor strips, and a second dielectric strip between the second and third conductor strips. Additionally, the compact linear accelerator includes a high voltage power supply connected to charge the second conductor strip to a high potential, and a switch for switching the high potential in the second conductor strip to at least one of the first and third conductor strips so as to initiate a propagating reverse polarity wavefront(s) in the corresponding dielectric strip(s).

  16. A Task-Analytic Approach to the Determination of Training Requirements for the Precision Descent

    NASA Technical Reports Server (NTRS)

    Smith, Nancy; Rosekind, Mark (Technical Monitor)

    1996-01-01

    A task-analytic approach was used to evaluate the results from an experiment comparing two training methods for the "Precision Descent," a cockpit procedure designed to complement a new, computer-based air traffic control advisory system by allowing air traffic controllers to assign precise descent trajectories to aircraft. A task model was developed for the procedure using a methodology that represents four different categories of task-related knowledge: (1) ability to determine current flight goals; (2) ability to assess the current flight situation relative to those goals; (3) operational knowledge about flight-related tasks; and (4) knowledge about task selection. This model showed what knowledge experienced pilots already possessed, and how that knowledge was supplemented by training material provided in the two training conditions. All flight crews were given a "Precision Descent Chart" that explained the procedure's clearances and compliance requirements. This information enabled pilots to establish appropriate flight goals for the descent, and to monitor their compliance with those goals. In addition to this chart, half of the crews received a "Precision Descent Bulletin" containing technique recommendations for performing procedure-related tasks. The Bulletin's recommendations supported pilots in task selection and helped clarify the procedure's compliance requirements. Eight type-rated flight crews flew eight Precision Descents in a Boeing 747-400 simulator, with four crews in each of the two training conditions. Both conditions (Chart and Chart-with-Bulletin) relied exclusively on the use of those documents to introduce the procedure. No performance feedback was provided during the experiment. Preliminary result show better procedure compliance and higher acceptability ratings from flight crews in the Chart-with-Bulletin condition. These crews performed flight-related tasks less efficiently, however, using the simpler but less efficient methods suggested

  17. Evolutionary analyses of non-genealogical bonds produced by introgressive descent.

    PubMed

    Bapteste, Eric; Lopez, Philippe; Bouchard, Frédéric; Baquero, Fernando; McInerney, James O; Burian, Richard M

    2012-11-06

    All evolutionary biologists are familiar with evolutionary units that evolve by vertical descent in a tree-like fashion in single lineages. However, many other kinds of processes contribute to evolutionary diversity. In vertical descent, the genetic material of a particular evolutionary unit is propagated by replication inside its own lineage. In what we call introgressive descent, the genetic material of a particular evolutionary unit propagates into different host structures and is replicated within these host structures. Thus, introgressive descent generates a variety of evolutionary units and leaves recognizable patterns in resemblance networks. We characterize six kinds of evolutionary units, of which five involve mosaic lineages generated by introgressive descent. To facilitate detection of these units in resemblance networks, we introduce terminology based on two notions, P3s (subgraphs of three nodes: A, B, and C) and mosaic P3s, and suggest an apparatus for systematic detection of introgressive descent. Mosaic P3s correspond to a distinct type of evolutionary bond that is orthogonal to the bonds of kinship and genealogy usually examined by evolutionary biologists. We argue that recognition of these evolutionary bonds stimulates radical rethinking of key questions in evolutionary biology (e.g., the relations among evolutionary players in very early phases of evolutionary history, the origin and emergence of novelties, and the production of new lineages). This line of research will expand the study of biological complexity beyond the usual genealogical bonds, revealing additional sources of biodiversity. It provides an important step to a more realistic pluralist treatment of evolutionary complexity.

  18. Laser acceleration

    NASA Astrophysics Data System (ADS)

    Tajima, T.; Nakajima, K.; Mourou, G.

    2017-02-01

    The fundamental idea of Laser Wakefield Acceleration (LWFA) is reviewed. An ultrafast intense laser pulse drives coherent wakefield with a relativistic amplitude robustly supported by the plasma. While the large amplitude of wakefields involves collective resonant oscillations of the eigenmode of the entire plasma electrons, the wake phase velocity ˜ c and ultrafastness of the laser pulse introduce the wake stability and rigidity. A large number of worldwide experiments show a rapid progress of this concept realization toward both the high-energy accelerator prospect and broad applications. The strong interest in this has been spurring and stimulating novel laser technologies, including the Chirped Pulse Amplification, the Thin Film Compression, the Coherent Amplification Network, and the Relativistic Mirror Compression. These in turn have created a conglomerate of novel science and technology with LWFA to form a new genre of high field science with many parameters of merit in this field increasing exponentially lately. This science has triggered a number of worldwide research centers and initiatives. Associated physics of ion acceleration, X-ray generation, and astrophysical processes of ultrahigh energy cosmic rays are reviewed. Applications such as X-ray free electron laser, cancer therapy, and radioisotope production etc. are considered. A new avenue of LWFA using nanomaterials is also emerging.

  19. BICEP's acceleration

    SciTech Connect

    Contaldi, Carlo R.

    2014-10-01

    The recent Bicep2 [1] detection of, what is claimed to be primordial B-modes, opens up the possibility of constraining not only the energy scale of inflation but also the detailed acceleration history that occurred during inflation. In turn this can be used to determine the shape of the inflaton potential V(φ) for the first time — if a single, scalar inflaton is assumed to be driving the acceleration. We carry out a Monte Carlo exploration of inflationary trajectories given the current data. Using this method we obtain a posterior distribution of possible acceleration profiles ε(N) as a function of e-fold N and derived posterior distributions of the primordial power spectrum P(k) and potential V(φ). We find that the Bicep2 result, in combination with Planck measurements of total intensity Cosmic Microwave Background (CMB) anisotropies, induces a significant feature in the scalar primordial spectrum at scales k∼ 10{sup -3} Mpc {sup -1}. This is in agreement with a previous detection of a suppression in the scalar power [2].

  20. Apollo 12 mission report: Descent, propulsion system final flight evaluation (supplement 5)

    NASA Technical Reports Server (NTRS)

    Seto, R. K. M.; Barrows, R. L.

    1972-01-01

    The results are presented of the postflight analysis of the Descent propulsion system (DPS) performance during the Apollo 12 Mission. The primary objective of the analysis was to determine the steady-state performance of the DPS during the descent phase of the manned lunar landing. This is a supplement ot the Apollo 12 Mission Report. In addition to further analysis of the DPS, this report brings together information from other reports and memorandums analyzing specific anomalies and performance in order to present a comprehensive description of the DPS operation during the Apollo 12 Mission.

  1. Minimum-Cost Aircraft Descent Trajectories with a Constrained Altitude Profile

    NASA Technical Reports Server (NTRS)

    Wu, Minghong G.; Sadovsky, Alexander V.

    2015-01-01

    An analytical formula for solving the speed profile that accrues minimum cost during an aircraft descent with a constrained altitude profile is derived. The optimal speed profile first reaches a certain speed, called the minimum-cost speed, as quickly as possible using an appropriate extreme value of thrust. The speed profile then stays on the minimum-cost speed as long as possible, before switching to an extreme value of thrust for the rest of the descent. The formula is applied to an actual arrival route and its sensitivity to winds and airlines' business objectives is analyzed.

  2. Initial Field Evaluation of Pilot Procedures for Flying CTAS Descent Clearances

    NASA Technical Reports Server (NTRS)

    Palmer, Everett; Goka, Tsuyoshi; Cashion, Patricia; Feary, Michael; Graham, Holly; Smith, Nancy; Shafto, Michael (Technical Monitor)

    1994-01-01

    The Center TRACON Automation System (CTAS) is a new support system that is designed to assist air traffic controllers in the management of arrival traffic. CTAS will provide controllers with more information about current air traffic, enabling them to provide clearances for efficient, conflict-free descents that help achieve an orderly stream of aircraft at the final approach fix. CTAS is a computer-based system that functions as a "ground-based FMS" that can predict flight trajectories and arrival times for all incoming aircraft. CTAS uses an aircraft's cruise airspeed; current air traffic, winds and temperature; performance characteristics of the aircraft type; and individual airline preferences to create a flight profile from cruise altitude to the final approach fix. Controllers can use this flight profile to provide a descent clearance that will allow an aircraft to fly an efficient descent and merge more smoothly with other arriving aircraft. A field test of the CTAS Descent Advisor software was conducted at the Denver Center for aircraft arriving at the Stapleton International Airport from September 12-29. CTAS Descent clearances were given to a NASA flight test aircraft and to 77 airline flights that arrived during low traffic periods. For the airline portion of the field test, cockpit procedures and pilot briefing packages for both FMS equipped and unequipped aircraft were developed in cooperation with an airline. The procedures developed for the FMS equipped aircraft were to fly a VNAV descent at a controller specified speed to cross a metering fix at a specified altitude and speed. For nonFMS aircraft, the clearance also specified a CTAS calculated top-of-descent point. Some CTAS related flight deck issues included how much time was available to the pilots' for compliance, the amount of information that needed to be interpreted in the clearance and possible repercussions of misunderstandings. Data collected during the study ranged from subjective data

  3. Entry, Descent and Landing Systems Analysis: Exploration Class Simulation Overview and Results

    NASA Technical Reports Server (NTRS)

    DwyerCianciolo, Alicia M.; Davis, Jody L.; Shidner, Jeremy D.; Powell, Richard W.

    2010-01-01

    NASA senior management commissioned the Entry, Descent and Landing Systems Analysis (EDL-SA) Study in 2008 to identify and roadmap the Entry, Descent and Landing (EDL) technology investments that the agency needed to make in order to successfully land large payloads at Mars for both robotic and exploration or human-scale missions. The year one exploration class mission activity considered technologies capable of delivering a 40-mt payload. This paper provides an overview of the exploration class mission study, including technologies considered, models developed and initial simulation results from the EDL-SA year one effort.

  4. Overview of the NASA Entry, Descent and Landing Systems Analysis Study

    NASA Technical Reports Server (NTRS)

    Zang, Thomas A.; Dwyer-Cianciolo, Alicia M.; Kinney, David J.; Howard, Austin R.; Chen, George T.; Ivanov, Mark C.; Sostaric, Ronald R.; Westhelle, Carlos H.

    2010-01-01

    NASA senior management commissioned the Entry, Descent and Landing Systems Analysis (EDL-SA) Study in 2008 to identify and roadmap the Entry, Descent and Landing (EDL) technology investments that the agency needed to make in order to successfully land large payloads at Mars for both robotic and human-scale missions. This paper summarizes the approach and top-level results from Year 1 of the Study, which focused on landing 10-50 mt on Mars, but also included a trade study of the best advanced parachute design for increasing the landed payloads within the EDL architecture of the Mars Science Laboratory (MSL) mission.

  5. Analytical Dimensional Reduction of a Fuel Optimal Powered Descent Subproblem

    NASA Technical Reports Server (NTRS)

    Rea, Jeremy R.; Bishop, Robert H.

    2010-01-01

    Current renewed interest in exploration of the moon, Mars, and other planetary objects is driving technology development in many fields of space system design. In particular, there is a desire to land both robotic and human missions on the moon and elsewhere. The landing guidance system must be able to deliver the vehicle to a desired soft landing while meeting several constraints necessary for the safety of the vehicle. Due to performance limitations of current launch vehicles, it is desired to minimize the amount of fuel used. In addition, the landing site may change in real-time in order to avoid previously undetected hazards which become apparent during the landing maneuver. This complicated maneuver can be broken into simpler subproblems that bound the full problem. One such subproblem is to find a minimum-fuel landing solution that meets constraints on the initial state, final state, and bounded thrust acceleration magnitude. With the assumptions of constant gravity and negligible atmosphere, the form of the optimal steering law is known, and the equations of motion can be integrated analytically, resulting in a system of five equations in five unknowns. It is shown that this system of equations can be reduced analytically to two equations in two unknowns. With an additional assumption of constant thrust acceleration magnitude, this system can be reduced further to one equation in one unknown. It is shown that these unknowns can be bounded analytically. An algorithm is developed to quickly and reliably solve the resulting one-dimensional bounded search, and it is used as a real-time guidance applied to a lunar landing test case.

  6. Advanced concepts for acceleration

    SciTech Connect

    Keefe, D.

    1986-07-01

    Selected examples of advanced accelerator concepts are reviewed. Such plasma accelerators as plasma beat wave accelerator, plasma wake field accelerator, and plasma grating accelerator are discussed particularly as examples of concepts for accelerating relativistic electrons or positrons. Also covered are the pulsed electron-beam, pulsed laser accelerator, inverse Cherenkov accelerator, inverse free-electron laser, switched radial-line accelerators, and two-beam accelerator. Advanced concepts for ion acceleration discussed include the electron ring accelerator, excitation of waves on intense electron beams, and two-wave combinations. (LEW)

  7. Accelerators and the Accelerator Community

    SciTech Connect

    Malamud, Ernest; Sessler, Andrew

    2008-06-01

    In this paper, standing back--looking from afar--and adopting a historical perspective, the field of accelerator science is examined. How it grew, what are the forces that made it what it is, where it is now, and what it is likely to be in the future are the subjects explored. Clearly, a great deal of personal opinion is invoked in this process.

  8. Impact accelerations

    NASA Technical Reports Server (NTRS)

    Vongierke, H. E.; Brinkley, J. W.

    1975-01-01

    The degree to which impact acceleration is an important factor in space flight environments depends primarily upon the technology of capsule landing deceleration and the weight permissible for the associated hardware: parachutes or deceleration rockets, inflatable air bags, or other impact attenuation systems. The problem most specific to space medicine is the potential change of impact tolerance due to reduced bone mass and muscle strength caused by prolonged weightlessness and physical inactivity. Impact hazards, tolerance limits, and human impact tolerance related to space missions are described.

  9. Effects of aircraft and flight parameters on energy-efficient profile descents in time-based metered traffic

    NASA Technical Reports Server (NTRS)

    Dejarnette, F. R.

    1984-01-01

    The influence of several parameters on the time required to fly a nominal profile descent of a B-737 from an entry fix to a metering fix 75 n.mi. away was studied. The ground distance for the constant speed segment was adjusted in each case so that the aircraft would always arrive at the metering fix position at the completion of the five segments of the profile descent. The influence of eight parameters on the same nominal profile descent is outlined, but the method used for the off nominal cases was changed. The time calculated for the constant speed segment in the nominal case is used for all off nominal cases. This method allows the aircraft to arrive at the metering fix before or after the profile descent is complete. It is shown that descent Mach number and wind speed have a large effect on the time error, whereas weight was a much smaller effect.

  10. The proof of sufficient descent condition for a new type of conjugate gradient methods

    NASA Astrophysics Data System (ADS)

    Abashar, Abdelrhaman; Mamat, Mustafa; Rivaie, Mohd; Mohd, Ismail; Omer, Osman

    2014-06-01

    Conjugate gradient methods are effective in solving linear equations and solving non-linear optimization. In this work we compare our new conjugate gradient coefficient βk with classical formula under strong Wolfe line search; our method contains sufficient descent condition. Numerical results have shown that the new βk performs better than classical formula.

  11. Conjugate gradient methods with sufficient descent condition for large-scale unconstrained optimization

    NASA Astrophysics Data System (ADS)

    Ling, Mei Mei; Leong, Wah June

    2014-12-01

    In this paper, we make a modification to the standard conjugate gradient method so that its search direction satisfies the sufficient descent condition. We prove that the modified conjugate gradient method is globally convergent under Armijo line search. Numerical results show that the proposed conjugate gradient method is efficient compared to some of its standard counterparts for large-scale unconstrained optimization.

  12. Sexual Health Discussions between African-American Mothers and Mothers of Latino Descent and Their Children

    ERIC Educational Resources Information Center

    Murray, Ashley; Ellis, Monica U.; Castellanos, Ted; Gaul, Zaneta; Sutton, Madeline Y.; Sneed, Carl D.

    2014-01-01

    We examined approaches used by African-American mothers and mothers of Latino descent for informal sex-related discussions with their children to inform sexually transmitted infection (STI)/HIV intervention development efforts. We recruited mothers (of children aged 12-15) from youth service agencies and a university in southern California.…

  13. Access to Health Care Among Latinos of Mexican Descent in "Colonias" in Two Texas Counties

    ERIC Educational Resources Information Center

    Ortiz, Larry; Arizmendi, Lydia; Cornelius, Llewellyn J.

    2004-01-01

    Critical to resolving the problem of health disparities among Latinos is examining the needs within ethnic subpopulations. This paper focused on the unique challenges encountered by one ethnic subpopulation -- Latinos of Mexican descent living in colonias. Findings reaffirm the importance of looking within ethnic subpopulations to understand the…

  14. Smart-Divert Powered Descent Guidance to Avoid the Backshell Landing Dispersion Ellipse

    NASA Technical Reports Server (NTRS)

    Carson, John M.; Acikmese, Behcet

    2013-01-01

    A smart-divert capability has been added into the Powered Descent Guidance (PDG) software originally developed for Mars pinpoint and precision landing. The smart-divert algorithm accounts for the landing dispersions of the entry backshell, which separates from the lander vehicle at the end of the parachute descent phase and prior to powered descent. The smart-divert PDG algorithm utilizes the onboard fuel and vehicle thrust vectoring to mitigate landing error in an intelligent way: ensuring that the lander touches down with minimum- fuel usage at the minimum distance from the desired landing location that also avoids impact by the descending backshell. The smart-divert PDG software implements a computationally efficient, convex formulation of the powered-descent guidance problem to provide pinpoint or precision-landing guidance solutions that are fuel-optimal and satisfy physical thrust bound and pointing constraints, as well as position and speed constraints. The initial smart-divert implementation enforced a lateral-divert corridor parallel to the ground velocity vector; this was based on guidance requirements for MSL (Mars Science Laboratory) landings. This initial method was overly conservative since the divert corridor was infinite in the down-range direction despite the backshell landing inside a calculable dispersion ellipse. Basing the divert constraint instead on a local tangent to the backshell dispersion ellipse in the direction of the desired landing site provides a far less conservative constraint. The resulting enhanced smart-divert PDG algorithm avoids impact with the descending backshell and has reduced conservatism.

  15. A Wind Tunnel Study on the Mars Pathfinder (MPF) Lander Descent Pressure Sensor

    NASA Technical Reports Server (NTRS)

    Soriano, J. Francisco; Coquilla, Rachael V.; Wilson, Gregory R.; Seiff, Alvin; Rivell, Tomas

    2001-01-01

    The primary focus of this study was to determine the accuracy of the Mars Pathfinder lander local pressure readings in accordance with the actual ambient atmospheric pressures of Mars during parachute descent. In order to obtain good measurements, the plane of the lander pressure sensor opening should ideally be situated so that it is parallel to the freestream. However, due to two unfavorable conditions, the sensor was positioned in locations where correction factors are required. One of these disadvantages is due to the fact that the parachute attachment point rotated the lander's center of gravity forcing the location of the pressure sensor opening to be off tangent to the freestream. The second and most troublesome factor was that the lander descends with slight oscillations that could vary the amplitude of the sensor readings. In order to accurately map the correction factors required at each sensor position, an experiment simulating the lander descent was conducted in the Martian Surface Wind Tunnel at NASA Ames Research Center. Using a 115 scale model at Earth ambient pressures, the test settings provided the necessary Reynolds number conditions in which the actual lander was possibly subjected to during the descent. In the analysis and results of this experiment, the readings from the lander sensor were converted to the form of pressure coefficients. With a contour map of pressure coefficients at each lander oscillatory position, this report will provide a guideline to determine the correction factors required for the Mars Pathfinder lander descent pressure sensor readings.

  16. High-Resolution Detection of Identity by Descent in Unrelated Individuals

    PubMed Central

    Browning, Sharon R.; Browning, Brian L.

    2010-01-01

    Detection of recent identity by descent (IBD) in population samples is important for population-based linkage mapping and for highly accurate genotype imputation and haplotype-phase inference. We present a method for detection of recent IBD in population samples. Our method accounts for linkage disequilibrium between SNPs to enable full use of high-density SNP data. We find that our method can detect segments of a length of 2 cM with moderate power and negligible false discovery rate in Illumina 550K data in Northwestern Europeans. We compare our method with GERMLINE and PLINK, and we show that our method has a level of resolution that is significantly better than these existing methods, thus extending the usefulness of recent IBD in analysis of high-density SNP data. We survey four genomic regions in a sample of UK individuals of European descent and find that on average, at a given location, our method detects IBD in 2.7 per 10,000 pairs of individuals in Illumina 550K data. We also present methodology and results for detection of homozygosity by descent (HBD) and survey the whole genome in a sample of 1373 UK individuals of European descent. We detect HBD in 4.7 individuals per 10,000 on average at a given location. Our methodology is implemented in the freely available BEAGLE software package. PMID:20303063

  17. A Critical Analysis of Western Perspectives on Families of Arab Descent

    ERIC Educational Resources Information Center

    Beitin, Ben K.; Allen, Katherine R.; Bekheet, Maureen

    2010-01-01

    Western research on families of Arab descent has increased in the current decade, compared to the previous 30 years. In this review of 256 empirical articles, through a critical postcolonial lens, domestic violence and family planning were the two most established areas of study. Generally, samples have come from a small group of countries such as…

  18. Education by Any Means Necessary: Peoples of African Descent and Community-Based Pedagogical Spaces

    ERIC Educational Resources Information Center

    Douglas, Ty-Ron Michael; Peck, Craig

    2013-01-01

    This study examines how and why peoples of African descent access and utilize community-based pedagogical spaces that exist outside schools. Employing a theoretical framework that fuses historical methodology and border-crossing theory, the researchers review existing scholarship and primary documents to present an historical examination of how…

  19. Heritage Learners of Mexican Descent in Higher Education: A Qualitative Study of Past and Present Experiences

    ERIC Educational Resources Information Center

    Gignoux, Alicia

    2009-01-01

    This is a qualitative interpretive study that explores the past and present experiences of heritage learners (HLs) of Mexican descent who were studying or had recently studied advanced Spanish in institutions of higher education. All of the participants had been exposed to Spanish in the home and began their studies in elementary or middle school…

  20. Rotary-Wing Decelerators for Probe Descent Through the Atmosphere of Venus

    NASA Technical Reports Server (NTRS)

    Young, Larry A.; Briggs, Geoffrey; Aiken, Edwin; Pisanich, Greg

    2005-01-01

    An innovative concept is proposed for atmospheric entry probe deceleration, wherein one or more deployed rotors (in autorotation or wind-turbine flow states) on the aft end of the probe effect controlled descent. This concept is particularly oriented toward probes intended to land safely on the surface of Venus. Initial work on design trade studies is discussed.

  1. Showing up, Remaining Engaged, and Partaking as Students: Resilience among Students of Mexican Descent

    ERIC Educational Resources Information Center

    Sosa, Teresa

    2012-01-01

    This paper examines the ways in which 12 high school students of Mexican descent remain resilient amid difficult and stressful realities. Through an examination of students' interview responses, a case is made that students' ability to engage in school and figure out everyday ways to partake as students are signs of resilience. This work suggests…

  2. Chronic disease self-management: views among older adults of Chinese descent.

    PubMed

    Wang, Jing; Matthews, Judith Tabolt

    2010-01-01

    To understand how Chinese culture influences chronic disease self-management, we conducted focus groups with older adults of Chinese descent. Specifically, we explored their perceptions and self-management practices regarding treatment adherence, lifestyle decisions, and patient-provider communication within the context of their culture.

  3. A molecular signature of an arrest of descent in human parturition

    PubMed Central

    MITTAL, Pooja; ROMERO, Roberto; TARCA, Adi L.; DRAGHICI, Sorin; NHAN-CHANG, Chia-Ling; CHAIWORAPONGSA, Tinnakorn; HOTRA, John; GOMEZ, Ricardo; KUSANOVIC, Juan Pedro; LEE, Deug-Chan; KIM, Chong Jai; HASSAN, Sonia S.

    2010-01-01

    Objective This study was undertaken to identify the molecular basis of an arrest of descent. Study Design Human myometrium was obtained from women in term labor (TL; n=29) and arrest of descent (AODes, n=21). Gene expression was characterized using Illumina® HumanHT-12 microarrays. A moderated t-test and false discovery rate adjustment were applied for analysis. Confirmatory qRT-PCR and immunoblot was performed in an independent sample set. Results 400 genes were differentially expressed between women with an AODes compared to those with TL. Gene Ontology analysis indicated enrichment of biological processes and molecular functions related to inflammation and muscle function. Impacted pathways included inflammation and the actin cytoskeleton. Overexpression of HIF1A, IL-6, and PTGS2 in AODES was confirmed. Conclusion We have identified a stereotypic pattern of gene expression in the myometrium of women with an arrest of descent. This represents the first study examining the molecular basis of an arrest of descent using a genome-wide approach. PMID:21284969

  4. A variational perspective on accelerated methods in optimization

    PubMed Central

    Wibisono, Andre; Wilson, Ashia C.; Jordan, Michael I.

    2016-01-01

    Accelerated gradient methods play a central role in optimization, achieving optimal rates in many settings. Although many generalizations and extensions of Nesterov’s original acceleration method have been proposed, it is not yet clear what is the natural scope of the acceleration concept. In this paper, we study accelerated methods from a continuous-time perspective. We show that there is a Lagrangian functional that we call the Bregman Lagrangian, which generates a large class of accelerated methods in continuous time, including (but not limited to) accelerated gradient descent, its non-Euclidean extension, and accelerated higher-order gradient methods. We show that the continuous-time limit of all of these methods corresponds to traveling the same curve in spacetime at different speeds. From this perspective, Nesterov’s technique and many of its generalizations can be viewed as a systematic way to go from the continuous-time curves generated by the Bregman Lagrangian to a family of discrete-time accelerated algorithms. PMID:27834219

  5. Mapping of Surface and Shallow Subsurface Signatures in the CONSERT Data during the Descent of Philae

    NASA Astrophysics Data System (ADS)

    Plettemeier, Dirk; Statz, Christoph; Hahnel, Ronny; Hegler, Sebastian; Kofman, Wlodek; Herique, Alain; Rogez, Yves; Pasquero, Pierre; Zine, Sonia; Ciarletti, Valerie

    2016-04-01

    The primary scientific objective of the Comet Nucleus Sounding Experiment by Radiowave Transmission (CONSERT) aboard Rosetta is the characterization of comet 67P/Chuyurmov-Gerasimenko's deep interior dielectric properties. This was done during the first science sequence (FSS) by means of bi-static radio propagation measurements between the the CONSERT instrument aboard lander Philae launched onto the comet's surface and its counterpart aboard the Rosetta orbiter. In addition to the FSS measurements, CONSERT was operated during the separation and descent of Philae onto the 67P/C-G's surface. The received CONSERT signal during the SDL consists of the direct propagation between Rosetta and Philae and indirect reflections of 67P/C-G's surface. Using the peak power measurements in the dominant direct path between Rosetta and Philae during the descent we were able to reconstruct the lander's attitude and estimate the spin rate of the lander along its descent trajectory. The deployment of the lander legs and CONSERT antennas as well as the orbiter change of attitude in order to orient the science towards the assumed lander position are visible in the measured CONSERT data as well. The information gained on Philae's attitude is used in the estimation of 67P/C-G's surface and near subsurface dielectric properties. Information on the surface of 67P/C-G are contained in the data during roughly the last third of the descent of Philae onto the comet's surface. The surface signatures in the measured data are mapped to the location of origin on 67P/C-G's surface. The results from the mapping process show good spatial diversity along the descent track of Philae necessary for the estimation of the dielectric properties of prominent features in the CONSERT SDL data.

  6. Accelerator system and method of accelerating particles

    NASA Technical Reports Server (NTRS)

    Wirz, Richard E. (Inventor)

    2010-01-01

    An accelerator system and method that utilize dust as the primary mass flux for generating thrust are provided. The accelerator system can include an accelerator capable of operating in a self-neutralizing mode and having a discharge chamber and at least one ionizer capable of charging dust particles. The system can also include a dust particle feeder that is capable of introducing the dust particles into the accelerator. By applying a pulsed positive and negative charge voltage to the accelerator, the charged dust particles can be accelerated thereby generating thrust and neutralizing the accelerator system.

  7. Acceleration modules in linear induction accelerators

    NASA Astrophysics Data System (ADS)

    Wang, Shao-Heng; Deng, Jian-Jun

    2014-05-01

    The Linear Induction Accelerator (LIA) is a unique type of accelerator that is capable of accelerating kilo-Ampere charged particle current to tens of MeV energy. The present development of LIA in MHz bursting mode and the successful application into a synchrotron have broadened LIA's usage scope. Although the transformer model is widely used to explain the acceleration mechanism of LIAs, it is not appropriate to consider the induction electric field as the field which accelerates charged particles for many modern LIAs. We have examined the transition of the magnetic cores' functions during the LIA acceleration modules' evolution, distinguished transformer type and transmission line type LIA acceleration modules, and re-considered several related issues based on transmission line type LIA acceleration module. This clarified understanding should help in the further development and design of LIA acceleration modules.

  8. Local flow management/profile descent algorithm. Fuel-efficient, time-controlled profiles for the NASA TSRV airplane

    NASA Technical Reports Server (NTRS)

    Groce, J. L.; Izumi, K. H.; Markham, C. H.; Schwab, R. W.; Thompson, J. L.

    1986-01-01

    The Local Flow Management/Profile Descent (LFM/PD) algorithm designed for the NASA Transport System Research Vehicle program is described. The algorithm provides fuel-efficient altitude and airspeed profiles consistent with ATC restrictions in a time-based metering environment over a fixed ground track. The model design constraints include accommodation of both published profile descent procedures and unpublished profile descents, incorporation of fuel efficiency as a flight profile criterion, operation within the performance capabilities of the Boeing 737-100 airplane with JT8D-7 engines, and conformity to standard air traffic navigation and control procedures. Holding and path stretching capabilities are included for long delay situations.

  9. A new conjugate gradient method with sufficient descent without any line search for unconstrained optimization

    NASA Astrophysics Data System (ADS)

    Omer, Osman; Rivaie, Mohd; Mamat, Mustafa; Amani, Zahrahtul

    2015-02-01

    Conjugate gradient methods are one of the most used methods for solving nonlinear unconstrained optimization problems, especially of large scale. Their wide applications are due to their simplicity and low memory requirement. The sufficient descent property is an important issue in the analyses and implementations of conjugate gradient methods. In this paper, a new conjugate gradient method is proposed for unconstrained optimization problems. The theoretical analysis shows that the directions generated by the new method are always satisfy the sufficient descent property, and this property is independent of the line search used. Furthermore, a numerical experiment based on comparing the new method with other known conjugate gradient methods shows that the new is efficient for some unconstrained optimization problems.

  10. Multibody Modeling and Simulation for the Mars Phoenix Lander Entry, Descent and Landing

    NASA Technical Reports Server (NTRS)

    Queen, Eric M.; Prince, Jill L.; Desai, Prasun N.

    2008-01-01

    A multi-body flight simulation for the Phoenix Mars Lander has been developed that includes high fidelity six degree-of-freedom rigid-body models for the parachute and lander system. The simulation provides attitude and rate history predictions of all bodies throughout the flight, as well as loads on each of the connecting lines. In so doing, a realistic behavior of the descending parachute/lander system dynamics can be simulated that allows assessment of the Phoenix descent performance and identification of potential sensitivities for landing. This simulation provides a complete end-to-end capability of modeling the entire entry, descent, and landing sequence for the mission. Time histories of the parachute and lander aerodynamic angles are presented. The response of the lander system to various wind models and wind shears is shown to be acceptable. Monte Carlo simulation results are also presented.

  11. Capture Conditions for Merging Trajectory Segments to Model Realistic Aircraft Descents

    NASA Technical Reports Server (NTRS)

    Zhao, Yiyuan; Slattery, Rhonda A.

    1996-01-01

    A typical commercial aircraft trajectory consists of a series of flight segments. An aircraft switches from one segment to another when certain specified variables reach their desired values. Trajectory synthesis for air traffic control automation must be consistent with practical pilot procedures. We examine capture conditions for merging trajectory segments to model commercial aircraft descent in trajectory synthesis. These conditions translate into bounds on measurements of atmospheric wind, pressure, and temperature. They also define ranges of thrust and drag feasible for a descent trajectory. Capture conditions are derived for the Center-TRACON Automation System developed at NASA Ames Research Center for automated air traffic control. Various uses of capture conditions are discussed. A Boeing 727-200 aircraft is used to provide numerical examples of capture conditions.

  12. A Bayesian Framework for Landing Site Selection During Autonomous Spacecraft Descent

    NASA Technical Reports Server (NTRS)

    Serrano, Navid

    2006-01-01

    The success of a landed space exploration mission depends largely on the final landing site. Factors influencing site selection include safety, fuel-consumption, and scientific return. This paper addresses the problem of selecting the best available landing site based on these factors in real-time during autonomous spacecraft descent onto a planetary surface. The problem is modeled probabilistically using Bayesian Networks (BNs). BNs provide a means of representing the causal relationships between variables that impact the quality of a landing site. The final landing site is determined via probabilistic reasoning based on terrain safety derived from on-board sensors, available fuel based on spacecraft descent dynamics, and regions of interest defined by mission scientists.

  13. MCAV/IMU integrated navigation for the powered descent phase of Mars EDL

    NASA Astrophysics Data System (ADS)

    Li, Shuang; Peng, Yuming; Lu, Yuping; Zhang, Liu; Liu, Yufei

    2010-09-01

    Pin-point landing is considered as a key technology for future manned Mars landing and Mars base missions. The traditional inertial navigation system (INS) based guidance, navigation and control (GNC) mode used in the Mars entry, descent and landing (EDL) phase has no ability to achieve the precise and safe Mars landing, so novel EDL GNC methodologies should be investigated to meet this goal. This paper proposes the MCAV/IMU integrated navigation scheme for the powered descent phase of Mars EDL. The Miniature Coherent Altimeter and Velocimeter (MCAV) is adopted to correct the inertial bias and drift and improve the performance of integrated navigation. Altitude and velocity information derived from MCAV and the lander's state information sensed by inertial measurement unit (IMU) are integrated in extended Kalman filter algorithm. The validity of the proposed navigation scheme is confirmed by computer simulation.

  14. Caste-, work-, and descent-based discrimination as a determinant of health in social epidemiology.

    PubMed

    Patil, Rajan R

    2014-01-01

    Social epidemiology explores health in the context of broad social determinants of health, where the boundary lines between health and politics appear increasingly blurred. Social determinants of health such as caste, discrimination, and social exclusion are inherently political in nature, hence it becomes imperative to look at health through a broader perspective of political philosophy, ideology, and caste that imposes enormous obstacles to a person's full attainment of civil, political, economic, social, and cultural rights. Caste is descent based and hereditary in nature. It is a characteristic determined by one's birth into a particular caste, irrespective of the faith practiced by the individual. Caste denotes a system of rigid social stratification into ranked groups defined by descent and occupation. Under various caste systems throughout the world, caste divisions also dominate in housing, marriage, and general social interaction divisions that are reinforced through the practice and threat of social ostracism, economic boycotts, and even physical violence-all of which undermine health equality.

  15. Reactions to secondhand smoke by nonsmokers of Korean descent: clash of cultures?

    PubMed

    Hughes, Suzanne C; Usita, Paula M; Hovell, Melbourne F; Richard Hofstetter, C

    2011-08-01

    Koreans hail from a culture where men's smoking and secondhand smoke (SHS) exposure were the norm. Little is known about how nonsmokers of Korean descent respond to smokers in the United States. In 2007-2008, trained moderators conducted eight focus groups with nonsmokers (n = 47) of Korean descent in San Diego. Participants discussed their personal experiences and views concerning SHS. Most participants detected SHS quickly and disliked the smell. Their reactions differed by gender, age, and how well they knew the smoker. Reactions ranged from passive (e.g., tolerating SHS or staring) to assertive (moving or asking the smoker to stop smoking). Younger participants were more tolerant than older participants. Participants appeared caught between two cultures. Despite high awareness, they struggled with how to avoid SHS in a manner befitting of their social status and Korean values. Culturally sensitive programs are needed for immigrants such as Koreans in the United States.

  16. Post2 End-to-End Descent and Landing Simulation for ALHAT Design Analysis Cycle 2

    NASA Technical Reports Server (NTRS)

    Davis, Jody L.; Striepe, Scott A.; Maddock, Robert W.; Johnson, Andrew E.; Paschall, Stephen C., II

    2010-01-01

    The ALHAT project is an agency-level program involving NASA centers, academia, and industry, with a primary goal to develop a safe, autonomous, precision-landing system for robotic and crew-piloted lunar and planetary descent vehicles. POST2 is used as the 6DOF descent and landing trajectory simulation for determining integrated system performance of ALHAT landing-system models and lunar environment models. This paper presents updates in the development of the ALHAT POST2 simulation, as well as preliminary system performance analysis for ALDAC-2 used for the testing and assessment of ALHAT system models. The ALDAC-2 POST2 Monte Carlo simulation results have been generated and focus on HRN model performance with the fully integrated system, as well performance improvements of AGNC and TSAR model since the previous design analysis cycle

  17. Entry, Descent and Landing Systems Analysis Study: Phase 2 Report on Exploration Feed-Forward Systems

    NASA Technical Reports Server (NTRS)

    Dwyer Ciancolo, Alicia M.; Davis, Jody L.; Engelund, Walter C.; Komar, D. R.; Queen, Eric M.; Samareh, Jamshid A.; Way, David W.; Zang, Thomas A.; Murch, Jeff G.; Krizan, Shawn A.; Olds, Aaron D.; Powell, Richard W.; Shidner, Jeremy D.; Kinney, Daivd J.; McGuire, M. Kathleen; Arnold, James O.; Covington, M. Alan; Sostaric, Ronald R.; Zumwalt, Carlie H.; Llama, Eduardo G.

    2011-01-01

    NASA senior management commissioned the Entry, Descent and Landing Systems Analysis (EDL-SA) Study in 2008 to identify and roadmap the Entry, Descent and Landing (EDL) technology investments that the agency needed to successfully land large payloads at Mars for both robotic and human-scale missions. Year 1 of the study focused on technologies required for Exploration-class missions to land payloads of 10 to 50 t. Inflatable decelerators, rigid aeroshell and supersonic retro-propulsion emerged as the top candidate technologies. In Year 2 of the study, low TRL technologies identified in Year 1, inflatables aeroshells and supersonic retropropulsion, were combined to create a demonstration precursor robotic mission. This part of the EDL-SA Year 2 effort, called Exploration Feed Forward (EFF), took much of the systems analysis simulation and component model development from Year 1 to the next level of detail.

  18. Assessment of the Mars Science Laboratory Entry, Descent, and Landing Simulation

    NASA Technical Reports Server (NTRS)

    Way, David W.; Davis, J. L.; Shidner, Jeremy D.

    2013-01-01

    On August 5, 2012, the Mars Science Laboratory rover, Curiosity, successfully landed inside Gale Crater. This landing was only the seventh successful landing and fourth rover to be delivered to Mars. Weighing nearly one metric ton, Curiosity is the largest and most complex rover ever sent to investigate another planet. Safely landing such a large payload required an innovative Entry, Descent, and Landing system, which included the first guided entry at Mars, the largest supersonic parachute ever flown at Mars, and a novel and untested Sky Crane landing system. A complete, end-to-end, six degree-of-freedom, multi-body computer simulation of the Mars Science Laboratory Entry, Descent, and Landing sequence was developed at the NASA Langley Research Center. In-flight data gathered during the successful landing is compared to pre-flight statistical distributions, predicted by the simulation. These comparisons provide insight into both the accuracy of the simulation and the overall performance of the vehicle.

  19. Preliminary Assessment of the Mars Science Laboratory Entry, Descent, and Landing Simulation

    NASA Technical Reports Server (NTRS)

    Way, David W.

    2013-01-01

    On August 5, 2012, the Mars Science Laboratory rover, Curiosity, successfully landed inside Gale Crater. This landing was only the seventh successful landing and fourth rover to be delivered to Mars. Weighing nearly one metric ton, Curiosity is the largest and most complex rover ever sent to investigate another planet. Safely landing such a large payload required an innovative Entry, Descent, and Landing system, which included the first guided entry at Mars, the largest supersonic parachute ever flown at Mars, and a novel and untested Sky Crane landing system. A complete, end-to-end, six degree-of-freedom, multibody computer simulation of the Mars Science Laboratory Entry, Descent, and Landing sequence was developed at the NASA Langley Research Center. In-flight data gathered during the successful landing is compared to pre-flight statistical distributions, predicted by the simulation. These comparisons provide insight into both the accuracy of the simulation and the overall performance of the vehicle.

  20. Entry, Descent and Landing Systems Analysis: Exploration Feed Forward Internal Peer Review Slide Package

    NASA Technical Reports Server (NTRS)

    Dwyer Cianciolo, Alicia M. (Editor)

    2011-01-01

    NASA senior management commissioned the Entry, Descent and Landing Systems Analysis (EDL-SA) Study in 2008 to identify and roadmap the Entry, Descent and Landing (EDL) technology investments that the agency needed to successfully land large payloads at Mars for both robotic and human-scale missions. Year 1 of the study focused on technologies required for Exploration-class missions to land payloads of 10 to 50 mt. Inflatable decelerators, rigid aeroshell and supersonic retro-propulsion emerged as the top candidate technologies. In Year 2 of the study, low TRL technologies identified in Year 1, inflatables aeroshells and supersonic retropropulsion, were combined to create a demonstration precursor robotic mission. This part of the EDL-SA Year 2 effort, called Exploration Feed Forward (EFF), took much of the systems analysis simulation and component model development from Year 1 to the next level of detail.

  1. Impact of mismodeled idle engine performance on calculation and tracking of optimal 4-D descent trajectories

    NASA Technical Reports Server (NTRS)

    Williams, D. H.

    1986-01-01

    Advanced flight management systems are being developed which are capable of calculating optimal 3-D and 4-D flight trajectories for arbitrary fuel and time costs. These systems require mathematical models of airplane performance in order to compute the optimal profiles. Mismodeled idle engine characteristics can result in descent trajectories requiring excessive throttle and/or speedbrake activity in order to achieve the desired end conditions. This paper evaluates the cost and fuel penalties, trajectory variations, and flight control requirements associated with typical idle engine modeling errors for a twin-jet transport airplane. Variations in idle power setting, thrust, fuel flow, and surge bleed operation were evaluated for a cruise/descent flight segment. The results of this analysis provide insight into the penalties associated with uncertainties in idle engine performance and suggest methods of modeling which minimize these penalties.

  2. The descent of ant: field-measured performance of gliding ants.

    PubMed

    Munk, Yonatan; Yanoviak, Stephen P; Koehl, M A R; Dudley, Robert

    2015-05-01

    Gliding ants avoid predatory attacks and potentially mortal consequences of dislodgement from rainforest canopy substrates by directing their aerial descent towards nearby tree trunks. The ecologically relevant measure of performance for gliding ants is the ratio of net horizontal to vertical distance traveled over the course of a gliding trajectory, or glide index. To study variation in glide index, we measured three-dimensional trajectories of Cephalotes atratus ants gliding in natural rainforest habitats. We determined that righting phase duration, glide angle, and path directness all significantly influence variation in glide index. Unsuccessful landing attempts result in the ant bouncing off its target and being forced to make a second landing attempt. Our results indicate that ants are not passive gliders and that they exert active control over the aerodynamic forces they experience during their descent, despite their apparent lack of specialized control surfaces.

  3. [Effects of prenatal exposure to phthalate ester on both testicular descent and urogenital development in rats].

    PubMed

    Nakahara, Hiroyuki; Shono, Takeshi; Suita, Sachiyo

    2003-12-01

    Mono-n-butyl phthalate (MBP) was administered to pregnant rats to investigate the effect of phthalate ester on both testicular descent and urogenital development in prenatal rats. Ten pregnant rats were separated into two groups. In-group 1; rats were fed with special rat chow containing 1% of MBP from the 14th to the 19th gestational days. In group 2; rats fed with normal rat chow were used as control. At birth, reduced anogenital distance was seen in MBP-treated male offspring, and additional adverse effects on androgen-dependent organs were seen at the age of 70-80 days. Undescended testis, hypospadias, short prepuce, prostatic hypoplasia and hypolastic seminal vesicles were seen in mature male offspring. The results suggest that prenatal administration of MBP may act as an antiandrogenic chemical and thereby inhibit testicular descent and urogenital development in rats.

  4. Progress on plasma accelerators

    SciTech Connect

    Chen, P.

    1986-05-01

    Several plasma accelerator concepts are reviewed, with emphasis on the Plasma Beat Wave Accelerator (PBWA) and the Plasma Wake Field Accelerator (PWFA). Various accelerator physics issues regarding these schemes are discussed, and numerical examples on laboratory scale experiments are given. The efficiency of plasma accelerators is then revealed with suggestions on improvements. Sources that cause emittance growth are discussed briefly.

  5. A new type of descent conjugate gradient method with exact line search

    NASA Astrophysics Data System (ADS)

    Hajar, Nurul; Mamat, Mustafa; Rivaie, Mohd.; Jusoh, Ibrahim

    2016-06-01

    Nowadays, conjugate gradient (CG) methods are impressive for solving nonlinear unconstrained optimization problems. In this paper, a new CG method is proposed and analyzed. This new CG method satisfies descent condition and its global convergence is established using exact line search. Numerical results show that this new CG method substantially outperforms the previous CG methods. This new CG method is considered robust, efficient and provided faster and stable convergence.

  6. Entry, Descent, and Landing Aerothermodynamics: NASA Langley Experimental Capabilities and Contributions

    NASA Technical Reports Server (NTRS)

    Hollis, Brian R.; Berger, Karen T.; Berry, Scott A.; Bruckmann, Gregory J.; Buck, Gregory M.; DiFulvio, Michael; Horvath, Thomas J.; Liechty, Derek S.; Merski, N. Ronald; Murphy, Kelly J.; Rufer, Shann J.; Schoenenberger, Mark

    2014-01-01

    A review is presented of recent research, development, testing and evaluation activities related to entry, descent and landing that have been conducted at the NASA Langley Research Center. An overview of the test facilities, model development and fabrication capabilities, and instrumentation and measurement techniques employed in this work is provided. Contributions to hypersonic/supersonic flight and planetary exploration programs are detailed, as are fundamental research and development activities.

  7. Multiple descent cost competition: restorable self-organization and multimedia information processing.

    PubMed

    Matsuyama, Y

    1998-01-01

    Multiple descent cost competition is a composition of learning phases for minimizing a given measure of total performance, i.e., cost. If these phases are heterogeneous toward each other, the total learning algorithm shows a variety of extraordinary abilities; especially in regards to multimedia information processing. In the first phase of descent cost learning, elements of source data are grouped. Simultaneously, a weight vector for minimal learning, (i.e., a winner), is found. Then, the winner and its partners are updated for further cost reduction. Therefore, two classes of self-organizing feature maps are generated. One is called a grouping feature map, which partitions the source data. The other is an ordinary weight vector feature map. The grouping feature map, together with the winners, retains most of the source data information. This feature map is able to assist in a high quality approximation of the original data. Traditional weight vector feature maps lack this ability. Another important capacity of the grouping feature map is that it can change its shape. Thus, the grouping pattern can accept external directions in order to metamorphose. In the text, the total algorithm of the multiple descent cost competition is explained first. In that section, image processing concepts are introduced in order to assist in the description of this algorithm. Then, a still image is first data-compressed (DC). Next, a restored image is morphed using the grouping feature map by receiving directions given by an external intelligence. Next, an interpolation of frames is applied in order to complete animation coding (AC). Thus, multiple descent cost competition bridges "DC to AC." Examples of multimedia processing on virtual digital movies are given.

  8. Biological effects of fuel and exhaust components from spacecraft descent engines employing hydrazine

    NASA Technical Reports Server (NTRS)

    Lehwalt, M. E.; Woeller, F. H.; Oyama, V. I.

    1973-01-01

    The effect of the products of the Viking terminal descent engine fuel upon possible extraterrestrial life at the Martian landing site is examined. The effects of the engine exhaust, the hydrazine fuel, and the breakdown products of the latter on terrestrial microorganisms have been studied. The results indicate that the gaseous exhaust products would probably not be hazardous to microorganisms, but that liquid hydrazine would be lethal.

  9. A High-Heritage Blunt-Body Entry, Descent, and Landing Concept for Human Mars Exploration

    NASA Technical Reports Server (NTRS)

    Price, Humphrey; Manning, Robert; Sklyanskiy, Evgeniy; Braun, Robert

    2016-01-01

    Human-scale landers require the delivery of much heavier payloads to the surface of Mars than is possible with entry, descent, and landing (EDL) approaches used to date. A conceptual design was developed for a 10 m diameter crewed Mars lander with an entry mass of approx.75 t that could deliver approx.28 t of useful landed mass (ULM) to a zero Mars areoid, or lower, elevation. The EDL design centers upon use of a high ballistic coefficient blunt-body entry vehicle and throttled supersonic retro-propulsion (SRP). The design concept includes a 26 t Mars Ascent Vehicle (MAV) that could support a crew of 2 for approx.24 days, a crew of 3 for approx.16 days, or a crew of 4 for approx.12 days. The MAV concept is for a fully-fueled single-stage vehicle that utilizes a single pump-fed 250 kN engine using Mono-Methyl Hydrazine (MMH) and Mixed Oxides of Nitrogen (MON-25) propellants that would deliver the crew to a low Mars orbit (LMO) at the end of the surface mission. The MAV concept could potentially provide abort-to-orbit capability during much of the EDL profile in response to fault conditions and could accommodate return to orbit for cases where the MAV had no access to other Mars surface infrastructure. The design concept for the descent stage utilizes six 250 kN MMH/MON-25 engines that would have very high commonality with the MAV engine. Analysis indicates that the MAV would require approx.20 t of propellant (including residuals) and the descent stage would require approx.21 t of propellant. The addition of a 12 m diameter supersonic inflatable aerodynamic decelerator (SIAD), based on a proven flight design, was studied as an optional method to improve the ULM fraction, reducing the required descent propellant by approx.4 t.

  10. STS-35 Pilot Gardner with descent checklist on OV-102's forward flight deck

    NASA Technical Reports Server (NTRS)

    1990-01-01

    STS-35 Pilot Guy S. Gardner, wearing his launch and entry suit (LES), reviews descent checklist while at the pilots station on the forward flight deck of Columbia, Orbiter Vehicle (OV) 102. Crewmembers are conducting procedures related to the final stages of the mission and the landing sequence. Silhouetted in forward windows W4 and W5 are the head up display (HUD), flight mirror assembly, and a drinking water bag with straw.

  11. Flying Schedule-Matching Descents to Explore Flight Crews' Perceptions of Their Load and Task Feasibility

    NASA Technical Reports Server (NTRS)

    Martin, Lynne Hazel; Sharma, Shivanjli; Lozito, Sharon; Kaneshige, John; Hayashi, Miwa; Dulchinos, Victoria

    2012-01-01

    Multiple studies have investigated the development and use of ground-based (controller) tools to manage and schedule traffic in future terminal airspace. No studies have investigated the impacts that such tools (and concepts) could have on the flight-deck. To begin to redress the balance, an exploratory study investigated the procedures and actions of ten Boeing-747-400 crews as they flew eight continuous descent approaches in the Los Angeles terminal airspace, with the descents being controlled using speed alone. Although the study was exploratory in nature, four variables were manipulated: speed changes, route constraints, clearance phraseology, and winds. Despite flying the same scenarios with the same events and timing, there was at least a 50 second difference in the time it took crews to fly the approaches. This variation is the product of a number of factors but highlights potential difficulties for scheduling tools that would have to accommodate this amount of natural variation in descent times. The primary focus of this paper is the potential impact of ground scheduling tools on the flight crews performance and procedures. Crews reported "moderate to low" workload, on average; however, short periods of intense and high workload were observed. The non-flying pilot often reported a higher level of workload than the flying-pilot, which may be due to their increased interaction with the Flight Management Computer, when using the aircraft automation to assist with managing the descent clearances. It is concluded that ground-side tools and automation may have a larger impact on the current-day flight-deck than was assumed and that studies investigating this impact should continue in parallel with controller support tool development.

  12. Strong refraction near the Venus surface - Effects observed by descent probes

    NASA Technical Reports Server (NTRS)

    Croft, T. A.

    1982-01-01

    The telemetry signals from Pioneer Venus probes indicated the strong downward refraction of radio waves. As the probes descended, the strength of the direct signal decreased because of absorption and refractive defocusing. During the last 30 km of descent there was a second measured component in addition to the direct signal. Strong atmospheric reaction is important in strengthening echoes that are scattered toward the earth. Such surface-reflected signals are good indicators of horizontal winds.

  13. Next-Generation Entry/Descent/Landing System for Mars Landers

    NASA Technical Reports Server (NTRS)

    Thurman, Sam W.

    2000-01-01

    Many important scientific objectives for Mars exploration require the ability to land safely at select sites. The 'first-generation' entry, descent, and landing (EDL) systems used in previous missions imposed limitations on target site selection due to the delivery accuracy achievable and those systems' inability to recognize and avoid hazardous terrain. This abstract outlines key capabilities of a proposed second-generation EDL system, currently under development by a consortium of NASA centers, Industry, and academic institutions.

  14. [Radiation sterilization of units of a Mars descent module--a miniature meteorological station].

    PubMed

    Paramonov, D V; Trofimov, V I; Aleksashkin, S N; Khamidullina, N M; Novikova, N D; Deshevaia, E A; Polikarpov, N A

    2010-01-01

    Subject of the test was a procedure of electron sterilization of Mars descent module units. As a result, data on distribution of absorbed dose field across the surface and by the entire volume of the mockup of a miniature meteorological station (MMS) were obtained In addition, electron sterilization technology was developed and the range of absorbed dose from electron radiation that will sterilize reliably packaged MMS hardware were defined in the interval from 30 to 40 kGy.

  15. The relief formed by the descent phenomenon in the north-east part of Kosova.

    PubMed

    Bulliqi, Shpejtim; Isufi, Florim; Ramadani, Ibrahim; Gashi, Gani

    2012-04-01

    In the diverse relief of north-east part of Kosova a relatively wide range occupies the relief modelled by the descent phenomenon, which is conditioned by morph-structural and climatic factors quite suitable for their development. The morphogenesis activity of descent phenomenon is conditioned by the types of rocks, tectonic process of this region and climatic conditions. These factors condition horizontal and vertical relief fragmentation, slope, especially in Gollaku mountains and in SE part of Kopaonik mountain. Along the tectonic descents, the steepness is detaching and the detaching lines consisting of magmatic rocks show overthrows, demolitions and stony torrents, but the Teri gene composition formations are modelled by sliding and muddy torrents, depending upon the presence of clayey and alevrolite belts on these Teri gene ones. The impact of factors and conditions on the relief of this part, the phenomena like demolitions, overthrows, sliding, muddy torrents, stony torrents, etc, operate here, which play an important morphological role in the modelling of relief.

  16. Controlled weather balloon ascents and descents for atmospheric research and climate monitoring

    NASA Astrophysics Data System (ADS)

    Kräuchi, A.; Philipona, R.; Romanens, G.; Hurst, D. F.; Hall, E. G.; Jordan, A. F.

    2015-12-01

    In situ upper-air measurements are often made with instruments attached to weather balloons launched at the surface and lifted into the stratosphere. Present day balloon-borne sensors allow near-continuous measurements from the Earth's surface to about 35 km (3-5 hPa), where the balloons burst and their instrument payloads descend with parachutes. It has been demonstrated that ascending weather balloons can perturb the air measured by very sensitive humidity and temperature sensors trailing behind them, particularly in the upper troposphere and lower stratosphere (UTLS). The use of controlled balloon descent for such measurements has therefore been investigated and is described here. We distinguish between the one balloon technique that uses a simple automatic valve system to release helium from the balloon at a pre-set ambient pressure, and the double balloon technique that uses a carrier balloon to lift the payload and a parachute balloon to control the descent of instruments after the carrier balloon is released at pre-set altitude. The automatic valve technique has been used for several decades for water vapor soundings with frost point hygrometers, whereas the double balloon technique has recently been re-established and deployed to measure radiation and temperature profiles through the atmosphere. Double balloon soundings also strongly reduce pendulum motion of the payload, stabilizing radiation instruments during ascent. We present the flight characteristics of these two ballooning techniques and compare the quality of temperature and humidity measurements made during ascent and descent.

  17. Controlled weather balloon ascents and descents for atmospheric research and climate monitoring

    NASA Astrophysics Data System (ADS)

    Kräuchi, Andreas; Philipona, Rolf; Romanens, Gonzague; Hurst, Dale F.; Hall, Emrys G.; Jordan, Allen F.

    2016-03-01

    In situ upper-air measurements are often made with instruments attached to weather balloons launched at the surface and lifted into the stratosphere. Present-day balloon-borne sensors allow near-continuous measurements from the Earth's surface to about 35 km (3-5 hPa), where the balloons burst and their instrument payloads descend with parachutes. It has been demonstrated that ascending weather balloons can perturb the air measured by very sensitive humidity and temperature sensors trailing behind them, particularly in the upper troposphere and lower stratosphere (UTLS). The use of controlled balloon descent for such measurements has therefore been investigated and is described here. We distinguish between the single balloon technique that uses a simple automatic valve system to release helium from the balloon at a preset ambient pressure, and the double balloon technique that uses a carrier balloon to lift the payload and a parachute balloon to control the descent of instruments after the carrier balloon is released at preset altitude. The automatic valve technique has been used for several decades for water vapor soundings with frost point hygrometers, whereas the double balloon technique has recently been re-established and deployed to measure radiation and temperature profiles through the atmosphere. Double balloon soundings also strongly reduce pendulum motion of the payload, stabilizing radiation instruments during ascent. We present the flight characteristics of these two ballooning techniques and compare the quality of temperature and humidity measurements made during ascent and descent.

  18. Rapid Generation of Optimal Asteroid Powered Descent Trajectories Via Convex Optimization

    NASA Technical Reports Server (NTRS)

    Pinson, Robin; Lu, Ping

    2015-01-01

    Mission proposals that land on asteroids are becoming popular. However, in order to have a successful mission the spacecraft must reliably and softly land at the intended landing site. The problem under investigation is how to design a fuel-optimal powered descent trajectory that can be quickly computed on-board the spacecraft, without interaction from ground control. An optimal trajectory designed immediately prior to the descent burn has many advantages. These advantages include the ability to use the actual vehicle starting state as the initial condition in the trajectory design and the ease of updating the landing target site if the original landing site is no longer viable. For long trajectories, the trajectory can be updated periodically by a redesign of the optimal trajectory based on current vehicle conditions to improve the guidance performance. One of the key drivers for being completely autonomous is the infrequent and delayed communication between ground control and the vehicle. Challenges that arise from designing an asteroid powered descent trajectory include complicated nonlinear gravity fields, small rotating bodies and low thrust vehicles.

  19. Involvement of Fibroblast Growth Factors and Their Receptors in Epididymo-Testicular Descent and Maldescent

    PubMed Central

    Hadziselimovic, Faruk

    2016-01-01

    Maldescent of the epididymo-testicular unit can occur as an isolated event or as a component of various syndromes. When part of a syndrome, crypto-epididymis is usually accompanied by other genital and/or extragenital features. Epididymis development is primarily regulated by androgens, and successful epididymo-testicular unit development and descent requires an intact hypothalamic-pituitary-gonadal axis. The developing gonadotropin-releasing hormone system is essential for epididymo-testicular descent and is highly sensitive to reduced fibroblast growth factor (FGF) signaling. Our understanding of the impact of FGFR1 in the process of epididymo-testicular descent has recently improved. At later stages of embryonic development, the undifferentiated epididymal mesenchyme is a specific domain for FGFR1 expression. The majority of individuals with syndromic crypto-epididymis, as well as individuals with isolated maldescent of the epididymo-testicular unit, exhibit some disturbance of FGF, FGFR1 and/or genes involved in hypothalamic-pituitary-gonadal axis regulation. However, the mechanisms underlying FGF dysregulation may differ between various syndromes. PMID:27022326

  20. Simulation Results of the Huygens Probe Entry and Descent Trajectory Reconstruction Algorithm

    NASA Technical Reports Server (NTRS)

    Kazeminejad, B.; Atkinson, D. H.; Perez-Ayucar, M.

    2005-01-01

    Cassini/Huygens is a joint NASA/ESA mission to explore the Saturnian system. The ESA Huygens probe is scheduled to be released from the Cassini spacecraft on December 25, 2004, enter the atmosphere of Titan in January, 2005, and descend to Titan s surface using a sequence of different parachutes. To correctly interpret and correlate results from the probe science experiments and to provide a reference set of data for "ground-truthing" Orbiter remote sensing measurements, it is essential that the probe entry and descent trajectory reconstruction be performed as early as possible in the postflight data analysis phase. The Huygens Descent Trajectory Working Group (DTWG), a subgroup of the Huygens Science Working Team (HSWT), is responsible for developing a methodology and performing the entry and descent trajectory reconstruction. This paper provides an outline of the trajectory reconstruction methodology, preliminary probe trajectory retrieval test results using a simulated synthetic Huygens dataset developed by the Huygens Project Scientist Team at ESA/ESTEC, and a discussion of strategies for recovery from possible instrument failure.

  1. Flight-Deck Strategies and Outcomes When Flying Schedule-Matching Descents

    NASA Technical Reports Server (NTRS)

    Kaneshige, John T.; Sharma, Shivanjli; Martin Lynne; Lozito, Sandra; Dulchinos, Victoria

    2013-01-01

    Recent studies at NASA Ames Research Center have investigated the development and use of ground-based (air traffic controller) tools to manage and schedule air traffic in future terminal airspace. An exploratory study was undertaken to investigate the impacts that such tools (and concepts) could have on the flight-deck. Ten Boeing 747-400 crews flew eight optimized profile descents in the Los Angeles terminal airspace, while receiving scripted current day and futuristic speed clearances, to ascertain their ability to fly schedulematching descents without prior training. Although the study was exploratory in nature, four variables were manipulated: route constraints, winds, speed changes, and clearance phraseology. Despite flying the same scenarios with the same events and timing, there were significant differences in the time it took crews to fly the approaches. This variation is the product of a number of factors but highlights potential difficulties for scheduling tools that would have to accommodate this amount of natural variation in descent times. The focus of this paper is the examination of the crews' aircraft management strategies and outcomes. This includes potentially problematic human-automation interaction issues that may negatively impact arrival times, speed and altitude constraint compliance, and energy management efficiency.

  2. Modelling the descent of nitric oxide during the elevated stratopause event of January 2013

    NASA Astrophysics Data System (ADS)

    Orsolini, Yvan J.; Limpasuvan, Varavut; Pérot, Kristell; Espy, Patrick; Hibbins, Robert; Lossow, Stefan; Raaholt Larsson, Katarina; Murtagh, Donal

    2017-03-01

    Using simulations with a whole-atmosphere chemistry-climate model nudged by meteorological analyses, global satellite observations of nitrogen oxide (NO) and water vapour by the Sub-Millimetre Radiometer instrument (SMR), of temperature by the Microwave Limb Sounder (MLS), as well as local radar observations, this study examines the recent major stratospheric sudden warming accompanied by an elevated stratopause event (ESE) that occurred in January 2013. We examine dynamical processes during the ESE, including the role of planetary wave, gravity wave and tidal forcing on the initiation of the descent in the mesosphere-lower thermosphere (MLT) and its continuation throughout the mesosphere and stratosphere, as well as the impact of model eddy diffusion. We analyse the transport of NO and find the model underestimates the large descent of NO compared to SMR observations. We demonstrate that the discrepancy arises abruptly in the MLT region at a time when the resolved wave forcing and the planetary wave activity increase, just before the elevated stratopause reforms. The discrepancy persists despite doubling the model eddy diffusion. While the simulations reproduce an enhancement of the semi-diurnal tide following the onset of the 2013 SSW, corroborating new meteor radar observations at high northern latitudes over Trondheim (63.4°N), the modelled tidal contribution to the forcing of the mean meridional circulation and to the descent is a small portion of the resolved wave forcing, and lags it by about ten days.

  3. The Cassini/Huygens Doppler Wind Experiment: Results from the Titan Descent

    NASA Technical Reports Server (NTRS)

    Bird, M. K.; Dutta-Roy, R.; Allison, M.; Asmar, S. W.; Atkinson, D. H.; Edenhofer, P.; Plettemeier, D.; Tyler, G. L.

    2005-01-01

    The primary objective of the Doppler Wind Experiment (DWE), one of the six scientific investigations comprising the payload of the ESA Huygens Probe, is a determination of the wind velocity in Titan's atmosphere. Measurements of the Doppler shift of the S-band (2040 MHz) carrier signal to the Cassini Orbiter and to Earth were recorded during the Probe descent in order to deduce wind-induced motion of the Probe to an accuracy better than 1 m s-1. An experiment with the same scientific goal was performed with the Galileo Probe at Jupiter. Analogous to the Galileo experience, it was anticipated that the frequency of the Huygens radio signal could be measured on Earth to obtain an additional component of the horizontal winds. Specific secondary science objectives of DWE include measurements of: (a) Doppler fluctuations to determine the turbulence spectrum and possible wave activity in the Titan atmosphere; (b) Doppler and signal level modulation to monitor Probe descent dynamics (e.g., spinrate/spinphase, parachute swing); (c) Probe coordinates and orientation during descent and after impact on Titan.

  4. International Space Station (ISS) Soyuz Vehicle Descent Module Evaluation of Thermal Protection System (TPS) Penetration Characteristics

    NASA Technical Reports Server (NTRS)

    Davis, Bruce A.; Christiansen, Eric L.; Lear, Dana M.; Prior, Tom

    2013-01-01

    The descent module (DM) of the ISS Soyuz vehicle is covered by thermal protection system (TPS) materials that provide protection from heating conditions experienced during reentry. Damage and penetration of these materials by micrometeoroid and orbital debris (MMOD) impacts could result in loss of vehicle during return phases of the mission. The descent module heat shield has relatively thick TPS and is protected by the instrument-service module. The TPS materials on the conical sides of the descent module (referred to as backshell in this test plan) are exposed to more MMOD impacts and are relatively thin compared to the heat shield. This test program provides hypervelocity impact (HVI) data on materials similar in composition and density to the Soyuz TPS on the backshell of the vehicle. Data from this test program was used to update ballistic limit equations used in Soyuz TPS penetration risk assessments. The impact testing was coordinated by the NASA Johnson Space Center (JSC) Hypervelocity Impact Technology (HVIT) Group [1] in Houston, Texas. The HVI testing was conducted at the NASA-JSC White Sands Hypervelocity Impact Test Facility (WSTF) at Las Cruces, New Mexico. Figure

  5. Content validation of a clinical assessment instrument for stair ascent and descent in individuals with hemiparesis

    PubMed Central

    Natalio, Mavie A.; Faria, Christina D. C. M.; Teixeira-Salmela, Luci F.; Michaelsen, Stella M.

    2014-01-01

    Background: Among the current instruments used to assess stair ambulation, none were observed that specifically evaluated the quality of movement or biomechanical strategies adopted by stroke patients. Objective: To evaluate the content validity of a clinical instrument designed to identify the qualitative and kinematic characteristics and strategies adopted by stroke patients during stair ascent and descent. Method: The first developed version, which comprised 80 items, had its content evaluated by an expert panel, which was composed of 9 well-known national and international professionals who are involved in stroke rehabilitation. The content validity index (CVI) and modified Kappa coefficients were employed for the statistical analyses. The items that demonstrated a CVI≥0.80 and Kappa≥0.75 were considered valid. Results: The content validation was performed in three stages. The final version of the instrument consisted of 38 items, which were divided into descriptive (8 items), a General Characteristics Domain (16 items) and adopted strategies (14 items) during stair ascent and descent. The total scores ranged from zero to 70 and zero to 74 for ascent and descent, respectively. Lower scores corresponded with better performance. Conclusion: Despite the satisfactory results obtained during the process of content validation, other psychometric properties of the instrument are necessary and must be evaluated. PMID:25054384

  6. Review of studies on metabolic genes and cancer in populations of African descent

    PubMed Central

    Ragin, Camille C.; Langevin, Scott; Rubin, Scott; Taioli, Emanuela

    2010-01-01

    Genetic polymorphisms described for a number of enzymes involved in the metabolism of tobacco carcinogens and alcohol have been linked to increase cancer risk. Racial disparities in cancer between Whites and populations of African descent are well documented. In addition to differences in access to health care, both environment and genetic factors and their interaction may contribute to the increased cancer risk in minority populations. We reviewed the literature to identify case-control studies that included subjects of African descent. Meta analyses investigating the association of genetic polymorphisms in tobacco metabolic genes and cancer were performed. While several genes and cancers have been studied, only one or two studies per gene for each cancer site have been published, with the exception of breast (CYP1A1 and CYP1B1), lung (GSTM1, CYP1A1, and NQO1) and prostate (CYP3A4 A293G and CYP17). Marginal statistically significant associations were observed for CYP3A4 A293G and CYP17 5'UTR polymorphisms and prostate cancer. Our findings support the need for additional genetic association studies of breast, prostate and lung cancers that include a larger number of minority participants. Since incidence and mortality rates for these cancers rank highest among populations of African descent concentrated research in these areas are warranted. PMID:20027111

  7. Additive genetic variation in schizophrenia risk is shared by populations of African and European descent.

    PubMed

    de Candia, Teresa R; Lee, S Hong; Yang, Jian; Browning, Brian L; Gejman, Pablo V; Levinson, Douglas F; Mowry, Bryan J; Hewitt, John K; Goddard, Michael E; O'Donovan, Michael C; Purcell, Shaun M; Posthuma, Danielle; Visscher, Peter M; Wray, Naomi R; Keller, Matthew C

    2013-09-05

    To investigate the extent to which the proportion of schizophrenia's additive genetic variation tagged by SNPs is shared by populations of European and African descent, we analyzed the largest combined African descent (AD [n = 2,142]) and European descent (ED [n = 4,990]) schizophrenia case-control genome-wide association study (GWAS) data set available, the Molecular Genetics of Schizophrenia (MGS) data set. We show how a method that uses genomic similarities at measured SNPs to estimate the additive genetic correlation (SNP correlation [SNP-rg]) between traits can be extended to estimate SNP-rg for the same trait between ethnicities. We estimated SNP-rg for schizophrenia between the MGS ED and MGS AD samples to be 0.66 (SE = 0.23), which is significantly different from 0 (p(SNP-rg = 0) = 0.0003), but not 1 (p(SNP-rg = 1) = 0.26). We re-estimated SNP-rg between an independent ED data set (n = 6,665) and the MGS AD sample to be 0.61 (SE = 0.21, p(SNP-rg = 0) = 0.0003, p(SNP-rg = 1) = 0.16). These results suggest that many schizophrenia risk alleles are shared across ethnic groups and predate African-European divergence.

  8. The role of sensory conflict on stair descent performance in humans.

    PubMed

    Craik, R L; Cozzens, B A; Freedman, W

    1982-01-01

    Electromyographic (EMG) activity produced in the triceps surae (TS) and subsequent landing were examined under various visual conditions during stair descent with the following results: The amount of precontact TS EMG was reduced during each visual perturbation. Perturbations corresponded to no knowledge or visualization of stairs (B), no stair visualization during descent (A) and vertical movement of the surround during descent (M). Erroneous visual information was primarily responsible for altered EMG activity. The only known difference between the M data sets was that the surround moved up (U) or down (D) as the subject descended. However, TS EMG characteristics were different under these two conditions. Specific visual information appeared necessary for vision to override the other sensory systems. There was no difference in EMG when the room moved up (U) compared to the room not moving (NM). However, EMG activity was significantly different when the room moved down (D) compared to the room not moving (NM). The relationship between TS EMG activity and subsequent landing appeared related to landing strategy. Although the EMG was reduced during both the B and M test conditions compared to the control, the landing was "softer" for B and harder for M. The pre-contact EMG is apparently part of a preprogrammed movement pattern which can be modified by sensory information during task execution. Future studies should examine the neuronal mechanisms which provide the visual system access to the center controlling lower limb muscle activity during dynamic movement.

  9. The Uncertain Significance of Low Vitamin D levels in African Descent Populations: A Review of the Bone and Cardiometabolic Literature

    PubMed Central

    O'Connor, Michelle Y; Thoreson, Caroline K; Ramsey, Natalie L M; Ricks, Madia; Sumner, Anne E

    2014-01-01

    Vitamin D levels in people of African descent are often described as inadequate or deficient. Whether low vitamin D levels in people of African descent lead to compromised bone or cardiometabolic health is unknown. Clarity on this issue is essential because if clinically significant vitamin D deficiency is present, vitamin D supplementation is necessary. However, if vitamin D is metabolically sufficient, vitamin D supplementation could be wasteful of scarce resources and even harmful. In this review vitamin D physiology is described with a focus on issues specific to populations of African descent such as the influence of melanin on endogenous vitamin D production and lactose intolerance on the willingness of people to ingest vitamin D fortified foods. Then data on the relationship of vitamin D to bone and cardiometabolic health in people of African descent are evaluated. PMID:24267433

  10. Aerosol and Cloud Properties at the Huygens Entry Site as Derived from the Descent Imager/Spectral

    NASA Technical Reports Server (NTRS)

    Doose, L. R.; Engel, S.; Tomasko, M. G.; Dafoe, L. E.; West, R.; Lemmon, M.

    2005-01-01

    The Huygens Probe descended through Titan s atmosphere on January 14, 2005. The Descent Imager/Spectral Radiometer (DISR) instrument made optical measurements which constrain the nature and vertical distribution and of the aerosols in the atmosphere.

  11. First Results from the Descent Imager/Spectral Radiometer (DISR) Experiment on the Huygens Entry Probe of Titan

    NASA Technical Reports Server (NTRS)

    Tomasko, M. G.; Doose, L. R.; Rizk, B.; Smith, P.; See, C.; Bushroe, M.; McFarlane, L.; Engel, S.; Eibl, A.; Karkoschka, E.

    2005-01-01

    The Cassini-Huygens mission was launched on October 15, 1997, and arrived in Orbit around Saturn in July, 2004. The Huygens Probe was released from the Cassini Orbiter on December 24, 2004 and entered Titan s atmosphere on January 14, 2005. Here we give the first results from the Descent Imager/Spectral Radiometer (DISR) instrument aboard the Huygens Probe during its descent into the atmosphere of Titan. Measurements were made by several different optical systems and sensors.

  12. Future accelerator technology

    SciTech Connect

    Sessler, A.M.

    1986-05-01

    A general discussion is presented of the acceleration of particles. Upon this foundation is built a categorization scheme into which all accelerators can be placed. Special attention is devoted to accelerators which employ a wake-field mechanism and a restricting theorem is examined. It is shown how the theorem may be circumvented. Comments are made on various acceleration schemes.

  13. ACCELERATION AND THE GIFTED.

    ERIC Educational Resources Information Center

    GIBSON, ARTHUR R.; STEPHANS, THOMAS M.

    ACCELERATION OF PUPILS AND SUBJECTS IS CONSIDERED A MEANS OF EDUCATING THE ACADEMICALLY GIFTED STUDENT. FIVE INTRODUCTORY ARTICLES PROVIDE A FRAMEWORK FOR THINKING ABOUT ACCELERATION. FIVE PROJECT REPORTS OF ACCELERATED PROGRAMS IN OHIO ARE INCLUDED. ACCELERATION IS NOW BEING REGARDED MORE FAVORABLY THAN FORMERLY, BECAUSE METHODS HAVE BEEN…

  14. Laser driven ion accelerator

    DOEpatents

    Tajima, Toshiki

    2005-06-14

    A system and method of accelerating ions in an accelerator to optimize the energy produced by a light source. Several parameters may be controlled in constructing a target used in the accelerator system to adjust performance of the accelerator system. These parameters include the material, thickness, geometry and surface of the target.

  15. Laser driven ion accelerator

    DOEpatents

    Tajima, Toshiki

    2006-04-18

    A system and method of accelerating ions in an accelerator to optimize the energy produced by a light source. Several parameters may be controlled in constructing a target used in the accelerator system to adjust performance of the accelerator system. These parameters include the material, thickness, geometry and surface of the target.

  16. Autonomous optimal trajectory design employing convex optimization for powered descent on an asteroid

    NASA Astrophysics Data System (ADS)

    Pinson, Robin Marie

    Mission proposals that land spacecraft on asteroids are becoming increasingly popular. However, in order to have a successful mission the spacecraft must reliably and softly land at the intended landing site with pinpoint precision. The problem under investigation is how to design a propellant (fuel) optimal powered descent trajectory that can be quickly computed onboard the spacecraft, without interaction from ground control. The goal is to autonomously design the optimal powered descent trajectory onboard the spacecraft immediately prior to the descent burn for use during the burn. Compared to a planetary powered landing problem, the challenges that arise from designing an asteroid powered descent trajectory include complicated nonlinear gravity fields, small rotating bodies, and low thrust vehicles. The nonlinear gravity fields cannot be represented by a constant gravity model nor a Newtonian model. The trajectory design algorithm needs to be robust and efficient to guarantee a designed trajectory and complete the calculations in a reasonable time frame. This research investigates the following questions: Can convex optimization be used to design the minimum propellant powered descent trajectory for a soft landing on an asteroid? Is this method robust and reliable to allow autonomy onboard the spacecraft without interaction from ground control? This research designed a convex optimization based method that rapidly generates the propellant optimal asteroid powered descent trajectory. The solution to the convex optimization problem is the thrust magnitude and direction, which designs and determines the trajectory. The propellant optimal problem was formulated as a second order cone program, a subset of convex optimization, through relaxation techniques by including a slack variable, change of variables, and incorporation of the successive solution method. Convex optimization solvers, especially second order cone programs, are robust, reliable, and are guaranteed

  17. Large Eddy Simulation of Aircraft Wake Vortices in a Homogeneous Atmospheric Turbulence: Vortex Decay and Descent

    NASA Technical Reports Server (NTRS)

    Han, Jongil; Lin, Yuh-Lang; Arya, S. Pal; Proctor, Fred H.

    1999-01-01

    The effects of ambient turbulence on decay and descent of aircraft wake vortices are studied using a validated, three-dimensional: large-eddy simulation model. Numerical simulations are performed in order to isolate the effect of ambient turbulence on the wake vortex decay rate within a neutrally-stratified atmosphere. Simulations are conducted for a range of turbulence intensities, by injecting wake vortex pairs into an approximately homogeneous and isotropic turbulence field. The decay rate of the vortex circulation increases clearly with increasing ambient turbulence level, which is consistent with field observations. Based on the results from the numerical simulations, simple decay models are proposed as functions of dimensionless ambient turbulence intensity (eta) and dimensionless time (T) for the circulation averaged over a range of radial distances. With good agreement with the numerical results, a Gaussian type of vortex decay model is proposed for weak turbulence: while an exponential type of Tortex decay model can be applied for strong turbulence. A relationship for the vortex descent based on above vortex decay model is also proposed. Although the proposed models are based on simulations assuming neutral stratification, the model predictions are compared to Lidar vortex measurements observed during stable, neutral, and unstable atmospheric conditions. In the neutral and unstable atmosphere, the model predictions appear to be in reasonable agreement with the observational data, while in the stably-stratified atmosphere, they largely underestimate the observed circulation decay with consistent overestimation of the observed vortex descent. The underestimation of vortex decay during stably-stratified conditions suggests that stratification has an important influence on vortex decay when ambient levels of turbulence are weak.

  18. Implementing the Mars Science Laboratory Terminal Descent Sensor Field Test Campaign

    NASA Technical Reports Server (NTRS)

    Montgomery, James F.; Bodie, James H.; Brown, Joseph D.; Chen, Allen; Chen, Curtis W.; Essmiller, John C.; Fisher, Charles D.; Goldberg, Hannah R.; Lee, Steven W.; Shaffer, Scott J.

    2012-01-01

    The Mars Science Laboratory (MSL) will deliver a 900 kg rover to the surface of Mars in August 2012. MSL will utilize a new pulse-Doppler landing radar, the Terminal Descent Sensor (TDS). The TDS employs six narrow-beam antennas to provide unprecedented slant range and velocity performance at Mars to enable soft touchdown of the MSL rover using a unique sky crane Entry, De-scent, and Landing (EDL) technique. Prior to use on MSL, the TDS was put through a rigorous verification and validation (V&V) process. A key element of this V&V was operating the TDS over a series of field tests, using flight-like profiles expected during the descent and landing of MSL over Mars-like terrain on Earth. Limits of TDS performance were characterized with additional testing meant to stress operational modes outside of the expected EDL flight profiles. The flight envelope over which the TDS must operate on Mars encompasses such a large range of altitudes and velocities that a variety of venues were neces-sary to cover the test space. These venues included an F/A-18 high performance aircraft, a Eurocopter AS350 AStar helicopter and 100-meter tall Echo Towers at the China Lake Naval Air Warfare Center. Testing was carried out over a five year period from July 2006 to June 2011. TDS performance was shown, in gen-eral, to be excellent over all venues. This paper describes the planning, design, and implementation of the field test campaign plus results and lessons learned.

  19. Powered ankle-foot prosthesis to assist level-ground and stair-descent gaits.

    PubMed

    Au, Samuel; Berniker, Max; Herr, Hugh

    2008-05-01

    The human ankle varies impedance and delivers net positive work during the stance period of walking. In contrast, commercially available ankle-foot prostheses are passive during stance, causing many clinical problems for transtibial amputees, including non-symmetric gait patterns, higher gait metabolism, and poorer shock absorption. In this investigation, we develop and evaluate a myoelectric-driven, finite state controller for a powered ankle-foot prosthesis that modulates both impedance and power output during stance. The system employs both sensory inputs measured local to the external prosthesis, and myoelectric inputs measured from residual limb muscles. Using local prosthetic sensing, we first develop two finite state controllers to produce biomimetic movement patterns for level-ground and stair-descent gaits. We then employ myoelectric signals as control commands to manage the transition between these finite state controllers. To transition from level-ground to stairs, the amputee flexes the gastrocnemius muscle, triggering the prosthetic ankle to plantar flex at terminal swing, and initiating the stair-descent state machine algorithm. To transition back to level-ground walking, the amputee flexes the tibialis anterior muscle, triggering the ankle to remain dorsiflexed at terminal swing, and initiating the level-ground state machine algorithm. As a preliminary evaluation of clinical efficacy, we test the device on a transtibial amputee with both the proposed controller and a conventional passive-elastic control. We find that the amputee can robustly transition between the finite state controllers through direct muscle activation, allowing rapid transitioning from level-ground to stair walking patterns. Additionally, we find that the proposed finite state controllers result in a more biomimetic ankle response, producing net propulsive work during level-ground walking and greater shock absorption during stair descent. The results of this study highlight the

  20. Flow Visualizations and Extended Thrust Time Histories of Rotor Vortex Wakes in Descent

    NASA Astrophysics Data System (ADS)

    Stack, James; Caradonna, Frank; Savas, Omer

    2003-11-01

    An experimental study is performed on a three-bladed rotor model in a water tow tank. The blade pitch and rotational velocity, the rotor plane angle of attack (descent angle), and the carriage speed are all varied in order to simulate a wide range of rotorcraft operating states, with the focus being on descent speeds and angles where the rotor is operating in or near vortex ring state an area in which there is currently very little available data. Circulation and blade Reynolds numbers are of order 10^5. Flow visualization is done by injecting air bubbles and fluorescent dye tangentially from the blade tips to mark the vortex core, showing the development of both short-wave (sinuous) and long-wave (leapfrogging) instabilities on the helical vortices in the wake. Strain gages are used to record transient loads, allowing a correlation between the rotor thrust performance and the development of the vortex wake. Test runs are performed for extended periods up to 500 rotor revolutions demonstrating the repeatability of the patterns of thrust variation. The data indicate that as the instabilities develop, adjacent vortices merge and form thick vortex rings, especially during descent. Periodic shedding of these rings from the wake associated with vortex ring state is observed, resulting in peak-to-peak thrust fluctuations of up to 95% of the mean and occurring at regular intervals of 2050 rotor revolutions, depending on flow parameters. Preliminary particle image velocimetry (PIV) data provide a quantitative measure of the entire rotor flow field for the case of a hovering rotor. The data yield additional information on the vortex filament instability, in particular the axial flow in the vortex cores.

  1. Trunk and Lower Extremity Kinematics During Stair Descent in Women With or Without Patellofemoral Pain

    PubMed Central

    Schwane, Brandi G.; Goerger, Benjamin M.; Goto, Shiho; Blackburn, J. Troy; Aguilar, Alain J.; Padua, Darin A.

    2015-01-01

    Context There is limited evidence indicating the contribution of trunk kinematics to patellofemoral pain (PFP). A better understanding of the interaction between trunk and lower extremity kinematics in this population may provide new avenues for interventions to treat PFP. Objective To compare trunk and lower extremity kinematics between participants with PFP and healthy controls during a stair-descent task. Design Cross-sectional study. Setting Research laboratory. Patients or Other Participants Twenty women with PFP (age = 22.2 ± 3.1 years, height = 164.5 ± 9.2 cm, mass = 63.5 ± 13.6 kg) and 20 healthy women (age = 21.0 ± 2.6 years, height = 164.5 ± 7.1 cm, mass = 63.8 ± 12.7 kg). Intervention(s) Kinematics were recorded as participants performed stair descent at a controlled velocity. Main Outcome Measure(s) Three-dimensional joint displacement of the trunk, hip, and knee during the stance phase of stair descent for the affected leg was measured using a 7-camera infrared optical motion-capture system. Pretest and posttest pain were assessed using a visual analogue scale. Kinematic differences between groups were determined using independent-samples t tests. A 2 × 2 mixed-model analysis of variance (group = PFP, control; time = pretest, posttest) was used to compare knee pain. Results We observed greater knee internal-rotation displacement for the PFP group (12.8° ± 7.2°) as compared with the control group (8.9° ± 4.4°). No other between-groups differences were observed for the trunk, hip, or other knee variables. Conclusions We observed no difference in trunk kinematics between groups but did note differences in knee internal-rotation displacement. These findings contribute to the current knowledge of altered movement in those with PFP and provide direction for exercise interventions. PMID:25898109

  2. Dietary Associations of Household Food Insecurity Among Children of Mexican Descent: Results of a Binational Study

    PubMed Central

    Rosas, Lisa G; Harley, Kim; Fernald, Lia CH; Guendelman, Sylvia; Mejia, Fabiola; Neufeld, Lynnette M

    2015-01-01

    Background/objective Children of Mexican descent frequently experience household food insecurity both in the United States (US) and Mexico, however, little is known about the associations of food insecurity with dietary intake. This study aimed to understand the level of perceived food insecurity and its association with dietary intake among children of Mexican descent residing in the US and Mexico. Design This cross-sectional study utilized data from a 2006 binational study of five-year-old children of Mexican descent living in migrant communities in California (CA) and Mexico (MX). Methods In CA, children were 301 participants from the CHAMACOS study, a longitudinal birth cohort in a Mexican immigrant community. MX children (n=301) were participants in the Proyecto Mariposa study, which was designed to capture a sample of women and their children living in Mexico who closely resembled the CA sample, yet who never migrated to the US. Household food insecurity was measured using the US Department of Agriculture Food Security Scale and dietary intake was assessed with food frequency questionnaires. Analysis of variance was used to examine unadjusted and adjusted differences in total energy, nutrient intake, and consumption of food groups by household food security status. Results Approximately 39% of the CA mothers and 75% of the MX mothers reported low or very low food security in the last 12 months (p<0.01). Children in the US, experiencing food insecurity consumed more fat, saturated fat, sweets and fried snacks than children not experiencing food insecurity. In contrast, in Mexico food insecurity was associated with lower intake of total carbohydrates, dairy and vitamin B6. Conclusions Programs and policies addressing food insecurity in the US and Mexico may need to take steps to address dietary intake among children in households experiencing food insecurity, possibly through education and programs to increase resources to obtain healthy foods. PMID:19942017

  3. Altair Descent and Ascent Reference Trajectory Design and Initial Dispersion Analyses

    NASA Technical Reports Server (NTRS)

    Kos, Larry D.; Polsgrove, Tara T.; Sostaric, Ronald r.; Braden, Ellen M.; Sullivan, Jacob J.; Lee, Thanh T.

    2010-01-01

    The Altair Lunar Lander is the linchpin in the Constellation Program (CxP) for human return to the Moon. Altair is delivered to low Earth orbit (LEO) by the Ares V heavy lift launch vehicle, and after subsequent docking with Orion in LEO, the Altair/Orion stack is delivered through translunar injection (TLI). The Altair/Orion stack separating from the Earth departure stage (EDS) shortly after TLI and continues the flight to the Moon as a single stack. Altair performs the lunar orbit insertion (LOI) maneuver, targeting a 100-km circular orbit. This orbit will be a polar orbit for missions landing near the lunar South Pole. After spending nearly 24 hours in low lunar orbit (LLO), the lander undocks from Orion and performs a series of small maneuvers to set up for descending to the lunar surface. This descent begins with a small deorbit insertion (DOI) maneuver, putting the lander on an orbit that has a perilune of 15.24 km (50,000 ft), the altitude where the actual powered descent initiation (PDI) commences. At liftoff from Earth, Altair has a mass of 45 metric tons (mt). However after LOI (without Orion attached), the lander mass is slightly less than 33 mt at PDI. The lander currently has a single descent module main engine, with TBD lb(sub f) thrust (TBD N), providing a thrust-to-weight ratio of approximately TBD Earth g's at PDI. LDAC-3 (Lander design and analysis cycle #3) is the most recently closed design sizing and mass properties iteration. Upgrades for loss of crew (LDAC-2) and loss of mission (LDAC-3) have been incorporated into the lander baseline design (and its Master Equipment List). Also, recently, Altair has been working requirements analyses (LRAC-1). All nominal data here are from the LDAC-3 analysis cycle. All dispersions results here are from LRAC-1 analyses.

  4. Influence of seasonal cycles in Martian atmosphere on entry, descent and landing sequence

    NASA Astrophysics Data System (ADS)

    Marčeta, Dušan; Šegan, Stevo; Rašuo, Boško

    2014-05-01

    The phenomena like high eccentricity of Martian orbit, obliquity of the orbital plane and close alignment of the winter solstice and the orbital perihelion, separately or together can significantly alter not only the level of some Martian atmospheric parameters but also the characteristics of its diurnal and seasonal cycle. Considering that entry, descent and landing (EDL) sequence is mainly driven by the density profile of the atmosphere and aerodynamic characteristic of the entry vehicle. We have performed the analysis of the influence of the seasonal cycles of the atmospheric parameters on EDL profiles by using Mars Global Reference Atmospheric Model (Mars-GRAM). Since the height of the deployment of the parachute and the time passed from the deployment to propulsion firing (descent time) are of crucial importance for safe landing and the achievable landing site elevation we paid special attention to the influence of the areocentric longitude of the Sun (Ls) on these variables. We have found that these variables have periodic variability with respect to Ls and can be very well approximated with a sine wave function whose mean value depends only on the landing site elevation while the amplitudes and phases depend only on the landing site latitude. The amplitudes exhibit behavior which is symmetric with respect to the latitude but the symmetry is shifted from the equator to the northern mid-tropics. We have also noticed that the strong temperature inversions which are usual for middle and higher northern latitudes while Mars is around its orbital perihelion significantly alter the descent time without influencing the height of the parachute deployment. At last, we applied our model to determine the dependence of the accessible landing region on Ls and found that this region reaches maximum when Mars is around the orbital perihelion and can vary 50° in latitude throughout the Martian year.

  5. Changes in labial capillary density on ascent to and descent from high altitude.

    PubMed

    Gilbert-Kawai, Edward; Coppel, Jonny; Phillip, Hennis; Grocott, Michael; Ince, Can; Martin, Daniel

    2016-01-01

    Present knowledge of how the microcirculation is altered by prolonged exposure to hypoxia at high altitude is incomplete and modification of existing analytical techniques may improve our knowledge considerably. We set out to use a novel simplified method of measuring in vivo capillary density during an expedition to high altitude using a CytoCam incident dark field imaging video-microscope. The simplified method of data capture involved recording one-second images of the mucosal surface of the inner lip to reveal data about microvasculature density in ten individuals. This was done on ascent to, and descent from, high altitude. Analysis was conducted offline by two independent investigators blinded to the participant identity, testing conditions and the imaging site.  Additionally we monitored haemoglobin concentration and haematocrit data to see if we could support or refute mechanisms of altered density relating to vessel recruitment. Repeated sets of paired values were compared using Kruskall Wallis Analysis of Variance tests, whilst comparisons of values between sites was by related samples Wilcoxon Signed Rank Test. Correlation between different variables was performed using Spearman's rank correlation coefficient, and concordance between analysing investigators using intra-class correlation coefficient. There was a significant increase in capillary density from London on ascent to high altitude; median capillaries per field of view area increased from 22.8 to 25.3 (p=0.021). There was a further increase in vessel density during the six weeks spent at altitude (25.3 to 32.5, p=0.017). Moreover, vessel density remained high on descent to Kathmandu (31.0 capillaries per field of view area), despite a significant decrease in haemoglobin concentration and haematocrit. Using a simplified technique, we have demonstrated an increase in capillary density on early and sustained exposure to hypobaric hypoxia at thigh altitude, and that this remains elevated on descent

  6. Changes in labial capillary density on ascent to and descent from high altitude

    PubMed Central

    Gilbert-Kawai, Edward; Coppel, Jonny; Phillip, Hennis; Grocott, Michael; Ince, Can; Martin, Daniel

    2016-01-01

    Present knowledge of how the microcirculation is altered by prolonged exposure to hypoxia at high altitude is incomplete and modification of existing analytical techniques may improve our knowledge considerably. We set out to use a novel simplified method of measuring in vivo capillary density during an expedition to high altitude using a CytoCam incident dark field imaging video-microscope. The simplified method of data capture involved recording one-second images of the mucosal surface of the inner lip to reveal data about microvasculature density in ten individuals. This was done on ascent to, and descent from, high altitude. Analysis was conducted offline by two independent investigators blinded to the participant identity, testing conditions and the imaging site.  Additionally we monitored haemoglobin concentration and haematocrit data to see if we could support or refute mechanisms of altered density relating to vessel recruitment. Repeated sets of paired values were compared using Kruskall Wallis Analysis of Variance tests, whilst comparisons of values between sites was by related samples Wilcoxon Signed Rank Test. Correlation between different variables was performed using Spearman’s rank correlation coefficient, and concordance between analysing investigators using intra-class correlation coefficient. There was a significant increase in capillary density from London on ascent to high altitude; median capillaries per field of view area increased from 22.8 to 25.3 (p=0.021). There was a further increase in vessel density during the six weeks spent at altitude (25.3 to 32.5, p=0.017). Moreover, vessel density remained high on descent to Kathmandu (31.0 capillaries per field of view area), despite a significant decrease in haemoglobin concentration and haematocrit. Using a simplified technique, we have demonstrated an increase in capillary density on early and sustained exposure to hypobaric hypoxia at thigh altitude, and that this remains elevated on

  7. Entry, Descent, and Landing Communications for the 2011 Mars Science Laboratory

    NASA Technical Reports Server (NTRS)

    Abilleira, Fernando; Shidner, Jeremy D.

    2012-01-01

    The Mars Science Laboratory (MSL), established as the most advanced rover to land on the surface of Mars to date, launched on November 26th, 2011 and arrived to the Martian Gale Crater during the night of August 5th, 2012 (PDT). MSL will investigate whether the landing region was ever suitable to support carbon-based life, and examine rocks, soil, and the atmosphere with a sophisticated suite of tools. This paper addresses the flight system requirement by which the vehicle transmitted indications of the following events using both X-band tones and UHF telemetry to allow identification of probable root causes should a mission anomaly have occurred: Heat-Rejection System (HRS) venting, completion of the cruise stage separation, turn to entry attitude, atmospheric deceleration, bank angle reversal commanded, parachute deployment, heatshield separation, radar ground acquisition, powered descent initiation, rover separation from the descent stage, and rover release. During Entry, Descent, and Landing (EDL), the flight system transmitted a UHF telemetry stream adequate to determine the state of the spacecraft (including the presence of faults) at 8 kbps initiating from cruise stage separation through at least one minute after positive indication of rover release on the surface of Mars. The flight system also transmitted X-band semaphore tones from Entry to Landing plus one minute although since MSL was occulted, as predicted, by Mars as seen from the Earth, Direct-To-Earth (DTE) communications were interrupted at approximately is approx. 5 min after Entry ( approximately 130 prior to Landing). The primary data return paths were through the Deep Space Network (DSN) for DTE and the existing Mars network of orbiting assets for UHF, which included the Mars Reconnaissance Orbiter (MRO), Mars Odyssey (ODY), and Mars Express (MEX) elements. These orbiters recorded the telemetry data stream and returned it back to Earth via the DSN. The paper also discusses the total power

  8. Adventures in Parallel Processing: Entry, Descent and Landing Simulation for the Genesis and Stardust Missions

    NASA Technical Reports Server (NTRS)

    Lyons, Daniel T.; Desai, Prasun N.

    2005-01-01

    This paper will describe the Entry, Descent and Landing simulation tradeoffs and techniques that were used to provide the Monte Carlo data required to approve entry during a critical period just before entry of the Genesis Sample Return Capsule. The same techniques will be used again when Stardust returns on January 15, 2006. Only one hour was available for the simulation which propagated 2000 dispersed entry states to the ground. Creative simulation tradeoffs combined with parallel processing were needed to provide the landing footprint statistics that were an essential part of the Go/NoGo decision that authorized release of the Sample Return Capsule a few hours before entry.

  9. Cohomological descent theory for a morphism of stacks and for equivariant derived categories

    SciTech Connect

    Elagin, Alexei D

    2011-04-30

    In the paper, we find necessary and sufficient conditions under which, if X{yields}S is a morphism of algebraic varieties (or, in a more general case, of stacks), the derived category of S can be recovered by using the tools of descent theory from the derived category of X. We show that for an action of a linearly reductive algebraic group G on a scheme X this result implies the equivalence of the derived category of G-equivariant sheaves on X and the category of objects in the derived category of sheaves on X with a given action of G on each object. Bibliography: 18 titles.

  10. Design requirements and development of an airborne descent path definition algorithm for time navigation

    NASA Technical Reports Server (NTRS)

    Izumi, K. H.; Thompson, J. L.; Groce, J. L.; Schwab, R. W.

    1986-01-01

    The design requirements for a 4D path definition algorithm are described. These requirements were developed for the NASA ATOPS as an extension of the Local Flow Management/Profile Descent algorithm. They specify the processing flow, functional and data architectures, and system input requirements, and recommended the addition of a broad path revision (reinitialization) function capability. The document also summarizes algorithm design enhancements and the implementation status of the algorithm on an in-house PDP-11/70 computer. Finally, the requirements for the pilot-computer interfaces, the lateral path processor, and guidance and steering function are described.

  11. The Mars Exploration Rovers Entry Descent and Landing and the Use of Aerodynamic Decelerators

    NASA Technical Reports Server (NTRS)

    Steltzner, Adam; Desai, Prasun; Lee, Wayne; Bruno, Robin

    2003-01-01

    The Mars Exploration Rovers (MER) project, the next United States mission to the surface of Mars, uses aerodynamic decelerators in during its entry, descent and landing (EDL) phase. These two identical missions (MER-A and MER-B), which deliver NASA s largest mobile science suite to date to the surface of Mars, employ hypersonic entry with an ablative energy dissipating aeroshell, a supersonic/subsonic disk-gap-band parachute and an airbag landing system within EDL. This paper gives an overview of the MER EDL system and speaks to some of the challenges faced by the various aerodynamic decelerators.

  12. Apollo 14 mission report. Supplement 5: Descent propulsion system final flight evaluation

    NASA Technical Reports Server (NTRS)

    Avvenire, A. T.; Wood, S. C.

    1972-01-01

    The performance of the LM-8 descent propulsion system during the Apollo 14 mission was evaluated and found to be satisfactory. The average engine effective specific impulse was 0.1 second higher than predicted, but well within the predicted l sigma uncertainty. The engine performance corrected to standard inlet conditions for the FTP portion of the burn at 43 seconds after ignition was as follows: thrust, 9802, lbf; specific impulse, 304.1 sec; and propellant mixture ratio, 1603. These values are + or - 0.8, -0.06, and + or - 0.3 percent different respectively, from the values reported from engine acceptance tests and were within specification limits.

  13. Multipoint identity-by-descent computations for single-point polymorphism and microsatellite maps.

    PubMed

    Hinrichs, Anthony L; Bertelsen, Sarah; Bierut, Laura J; Dunn, Gerald; Jin, Carol H; Kauwe, John S; Suarez, Brian K

    2005-12-30

    We used the LOKI software to generate multipoint identity-by-descent matrices for a microsatellite map (with 31 markers) and two single-nucleotide polymorphism (SNP) maps to examine information content across chromosome 7 in the Collaborative Study on the Genetics of Alcoholism dataset. Despite the lower information provided by a single SNP, SNP maps overall had higher and more uniform information content across the chromosome. The Affymetrix map (578 SNPs) and the Illumina map (271 SNPs) provided almost identical information. However, increased information has a computational cost: SNP maps require 100 times as many iterations as microsatellites to produce stable estimates.

  14. PIGS: improved estimates of identity-by-descent probabilities by probabilistic IBD graph sampling.

    PubMed

    Park, Danny S; Baran, Yael; Hormozdiari, Farhad; Eng, Celeste; Torgerson, Dara G; Burchard, Esteban G; Zaitlen, Noah

    2015-01-01

    Identifying segments in the genome of different individuals that are identical-by-descent (IBD) is a fundamental element of genetics. IBD data is used for numerous applications including demographic inference, heritability estimation, and mapping disease loci. Simultaneous detection of IBD over multiple haplotypes has proven to be computationally difficult. To overcome this, many state of the art methods estimate the probability of IBD between each pair of haplotypes separately. While computationally efficient, these methods fail to leverage the clique structure of IBD resulting in less powerful IBD identification, especially for small IBD segments.

  15. Fuel-Efficient Descent and Landing Guidance Logic for a Safe Lunar Touchdown

    NASA Technical Reports Server (NTRS)

    Lee, Allan Y.

    2011-01-01

    The landing of a crewed lunar lander on the surface of the Moon will be the climax of any Moon mission. At touchdown, the landing mechanism must absorb the load imparted on the lander due to the vertical component of the lander's touchdown velocity. Also, a large horizontal velocity must be avoided because it could cause the lander to tip over, risking the life of the crew. To be conservative, the worst-case lander's touchdown velocity is always assumed in designing the landing mechanism, making it very heavy. Fuel-optimal guidance algorithms for soft planetary landing have been studied extensively. In most of these studies, the lander is constrained to touchdown with zero velocity. With bounds imposed on the magnitude of the engine thrust, the optimal control solutions typically have a "bang-bang" thrust profile: the thrust magnitude "bangs" instantaneously between its maximum and minimum magnitudes. But the descent engine might not be able to throttle between its extremes instantaneously. There is also a concern about the acceptability of "bang-bang" control to the crew. In our study, the optimal control of a lander is formulated with a cost function that penalizes both the touchdown velocity and the fuel cost of the descent engine. In this formulation, there is not a requirement to achieve a zero touchdown velocity. Only a touchdown velocity that is consistent with the capability of the landing gear design is required. Also, since the nominal throttle level for the terminal descent sub-phase is well below the peak engine thrust, no bound on the engine thrust is used in our formulated problem. Instead of bangbang type solution, the optimal thrust generated is a continuous function of time. With this formulation, we can easily derive analytical expressions for the optimal thrust vector, touchdown velocity components, and other system variables. These expressions provide insights into the "physics" of the optimal landing and terminal descent maneuver. These

  16. Functional Equivalence Acceptance Testing of FUN3D for Entry Descent and Landing Applications

    NASA Technical Reports Server (NTRS)

    Gnoffo, Peter A.; Wood, William A.; Kleb, William L.; Alter, Stephen J.; Glass, Christopher E.; Padilla, Jose F.; Hammond, Dana P.; White, Jeffery A.

    2013-01-01

    The functional equivalence of the unstructured grid code FUN3D to the the structured grid code LAURA (Langley Aerothermodynamic Upwind Relaxation Algorithm) is documented for applications of interest to the Entry, Descent, and Landing (EDL) community. Examples from an existing suite of regression tests are used to demonstrate the functional equivalence, encompassing various thermochemical models and vehicle configurations. Algorithm modifications required for the node-based unstructured grid code (FUN3D) to reproduce functionality of the cell-centered structured code (LAURA) are also documented. Challenges associated with computation on tetrahedral grids versus computation on structured-grid derived hexahedral systems are discussed.

  17. Maraia Capsule Flight Testing and Results for Entry, Descent, and Landing

    NASA Technical Reports Server (NTRS)

    Sostaric, Ronald R.; Strahan, Alan L.

    2016-01-01

    The Maraia concept is a modest size (150 lb., 30" diameter) capsule that has been proposed as an ISS based, mostly autonomous earth return capability to function either as an Entry, Descent, and Landing (EDL) technology test platform or as a small on-demand sample return vehicle. A flight test program has been completed including high altitude balloon testing of the proposed capsule shape, with the purpose of investigating aerodynamics and stability during the latter portion of the entry flight regime, along with demonstrating a potential recovery system. This paper includes description, objectives, and results from the test program.

  18. Mars Reconnaissance Orbiter Navigation Strategy for Mars Science Laboratory Entry, Descent and Landing Telecommunication Relay Support

    NASA Technical Reports Server (NTRS)

    Williams, Jessica L.; Menon, Premkumar R.; Demcak, Stuart W.

    2012-01-01

    The Mars Reconnaissance Orbiter (MRO) is an orbiting asset that performs remote sensing observations in order to characterize the surface, subsurface and atmosphere of Mars. To support upcoming NASA Mars Exploration Program Office objectives, MRO will be used as a relay communication link for the Mars Science Laboratory (MSL) mission during the MSL Entry, Descent and Landing sequence. To do so, MRO Navigation must synchronize the MRO Primary Science Orbit (PSO) with a set of target conditions requested by the MSL Navigation Team; this may be accomplished via propulsive maneuvers. This paper describes the MRO Navigation strategy for and operational performance of MSL EDL relay telecommunication support.

  19. Nine Degrees-of-Freedom Parachute Model for Exomars Entry Descent and Landing

    NASA Astrophysics Data System (ADS)

    Calantropio, F.; Langlois, S.; Portigliotti, S.; Parisch, M.; DeSanctis, S.

    2012-08-01

    The interest of the planetary re-entry programs and the acknowledgment that the parachute simplified (drag equivalent) models are affected by limitations in their applicability, drove the need to develop the capability of simulate the EDL parachute phase with an additional 3 DoF body which works as decelerator of a 6 DoF forebody.The proposed model summarizes the capability to simulate the complete parachute behavior, which includes different phases as the ejection, the deployment, the inflation and the steady state descent, by means of a reduced set of the equations used to model the decelerator to a minimum of 3 DoF.

  20. Development of simplified airborne computations for fuel conservative descents in a time-based metered air traffic environment

    NASA Technical Reports Server (NTRS)

    Knox, C. E.

    1981-01-01

    The NASA has developed and flight-tested a simple flight management descent algorithm designed to improve the accuracy of delivering an airplane in a fuel-conservative manner to a metering fix at a time designated by air traffic control. This algorithm provides a three-dimensional path with terminal area time constraints (four-dimensional) for an airplane to make an idle-thrust, clean-configured (landing gear up, flaps zero, and speed brakes retracted) descent to arrive at the metering fix at a predetermined time, altitude, and airspeed. The descent path is calculated for a constant Mach/airspeed schedule from linear approximations of airplane performance with considerations given for gross weight, wind, and nonstandard pressure and temperature effects. Applications of the four-dimensional and descent planning capabilities of the algorithm to conventional airplanes is being investigated. This report describes the flight management descent algorithm and presents the results of the flight tests flown with the Terminal Configured Vehicle airplane.

  1. Effects of aircraft and flight parameters on energy-efficient profile descents in time-based metered traffic

    NASA Technical Reports Server (NTRS)

    Dejarnette, F. R.

    1984-01-01

    Concepts to save fuel while preserving airport capacity by combining time based metering with profile descent procedures were developed. A computer algorithm is developed to provide the flight crew with the information needed to fly from an entry fix to a metering fix and arrive there at a predetermined time, altitude, and airspeed. The flight from the metering fix to an aim point near the airport was calculated. The flight path is divided into several descent and deceleration segments. Descents are performed at constant Mach numbers or calibrated airspeed, whereas decelerations occur at constant altitude. The time and distance associated with each segment are calculated from point mass equations of motion for a clean configuration with idle thrust. Wind and nonstandard atmospheric properties have a large effect on the flight path. It is found that uncertainty in the descent Mach number has a large effect on the predicted flight time. Of the possible combinations of Mach number and calibrated airspeed for a descent, only small changes were observed in the fuel consumed.

  2. Using survival analysis to determine association between maternal pelvis height and antenatal fetal head descent in Ugandan mothers

    PubMed Central

    Munabi, Ian Guyton; Luboga, Samuel Abilemech; Mirembe, Florence

    2015-01-01

    Introduction Fetal head descent is used to demonstrate the maternal pelvis capacity to accommodate the fetal head. This is especially important in low resource settings that have high rates of childbirth related maternal deaths and morbidity. This study looked at maternal height and an additional measure, maternal pelvis height, from automotive engineering. The objective of the study was to determine the associations between maternal: height and pelvis height with the rate of fetal head descent in expectant Ugandan mothers. Methods This was a cross sectional study on 1265 singleton mothers attending antenatal clinics at five hospitals in various parts of Uganda. In addition to the routine antenatal examination, each mother had their pelvis height recorded following informed consent. Survival analysis was done using STATA 12. Results It was found that 27% of mothers had fetal head descent with an incident rate of 0.028 per week after the 25th week of pregnancy. Significant associations were observed between the rate of fetal head descent with: maternal height (Adj Haz ratio 0.93 P < 0.01) and maternal pelvis height (Adj Haz ratio 1.15 P < 0.01). Conclusion The significant associations observed between maternal: height and pelvis height with rate of fetal head descent, demonstrate a need for further study of maternal pelvis height as an additional decision support tool for screening mothers in low resource settings. PMID:26918071

  3. Momentum-weighted conjugate gradient descent algorithm for gradient coil optimization.

    PubMed

    Lu, Hanbing; Jesmanowicz, Andrzej; Li, Shi-Jiang; Hyde, James S

    2004-01-01

    MRI gradient coil design is a type of nonlinear constrained optimization. A practical problem in transverse gradient coil design using the conjugate gradient descent (CGD) method is that wire elements move at different rates along orthogonal directions (r, phi, z), and tend to cross, breaking the constraints. A momentum-weighted conjugate gradient descent (MW-CGD) method is presented to overcome this problem. This method takes advantage of the efficiency of the CGD method combined with momentum weighting, which is also an intrinsic property of the Levenberg-Marquardt algorithm, to adjust step sizes along the three orthogonal directions. A water-cooled, 12.8 cm inner diameter, three axis torque-balanced gradient coil for rat imaging was developed based on this method, with an efficiency of 2.13, 2.08, and 4.12 mT.m(-1).A(-1) along X, Y, and Z, respectively. Experimental data demonstrate that this method can improve efficiency by 40% and field uniformity by 27%. This method has also been applied to the design of a gradient coil for the human brain, employing remote current return paths. The benefits of this design include improved gradient field uniformity and efficiency, with a shorter length than gradient coil designs using coaxial return paths.

  4. Optimal landing site selection based on safety index during planetary descent

    NASA Astrophysics Data System (ADS)

    Cui, Pingyuan; Ge, Dantong; Gao, Ai

    2017-03-01

    Landing safety is the prior concern in planetary exploration missions. With the development of precise landing technology, future missions require vehicles to land on places of great scientific interest which are usually surrounded by rocks and craters. In order to perform a safe landing, the vehicle should be capable of detecting hazards, estimating its fuel consumption as well as touchdown performance, and locating a safe spot to land. The landing site selection process can be treated as an optimization problem which, however, cannot be efficiently solved through traditional optimization methods due to its complexity. Hence, the paper proposes a synthetic landing area assessment criterion, safety index, as a solution of the problem, which selects the best landing site by assessing terrain safety, fuel consumption and touchdown performance during descent. The computation effort is cut down after reducing the selection scope and the optimal landing site is found through a quick one-dimensional search. A typical example based on the Mars Science Laboratory mission is simulated to demonstrate the capability of the method. It is proved that the proposed strategy manages to pick out a safe landing site for the mission effectively. The safety index can be applied in various planetary descent phases and provides reference for future mission designs.

  5. SLiMDisc: short, linear motif discovery, correcting for common evolutionary descent

    PubMed Central

    Davey, Norman E.; Shields, Denis C.; Edwards, Richard J.

    2006-01-01

    Many important interactions of proteins are facilitated by short, linear motifs (SLiMs) within a protein's primary sequence. Our aim was to establish robust methods for discovering putative functional motifs. The strongest evidence for such motifs is obtained when the same motifs occur in unrelated proteins, evolving by convergence. In practise, searches for such motifs are often swamped by motifs shared in related proteins that are identical by descent. Prediction of motifs among sets of biologically related proteins, including those both with and without detectable similarity, were made using the TEIRESIAS algorithm. The number of motif occurrences arising through common evolutionary descent were normalized based on treatment of BLAST local alignments. Motifs were ranked according to a score derived from the product of the normalized number of occurrences and the information content. The method was shown to significantly outperform methods that do not discount evolutionary relatedness, when applied to known SLiMs from a subset of the eukaryotic linear motif (ELM) database. An implementation of Multiple Spanning Tree weighting outperformed two other weighting schemes, in a variety of settings. PMID:16855291

  6. [People of African descent in the region of the Americas and health equity].

    PubMed

    Torres, Cristina

    2002-01-01

    The Region of the Americas and the Caribbean has a complex demographic profile from an ethnic and racial perspective. One of the largest groups is composed of persons of African descent, who in some countries, such as Brazil and the Dominican Republic, comprise 46 and 84% of the total population, respectively. Recent analyses of the statistics available in some countries of the Region show wide gaps in terms of living conditions and health in these communities, as well as gaps in access to health services. PAHO, through its Public Policy and Health Program, under the Division of Health and Human Development, supports sectorial efforts and those of civil organizations that aim to improve health conditions in this segment of the population, while taking into account their sociodemographic and cultural characteristics. This article briefly summarizes health conditions and access to health services in selected countries, as well as some aspects of the recent changes to the legislation in those countries. Finally, collaborative activities on the part of United Nations agencies and international financial institutions for the benefit of people of African descent and other ethnic minorities are described.

  7. Mars Phoenix Entry, Descent, and Landing Simulation Design and Modelling Analysis

    NASA Technical Reports Server (NTRS)

    Prince, Jill L.; Desai, Prasun N.; Queen, Eric M.; Grover, Myron R.

    2008-01-01

    The 2007 Mars Phoenix Lander was launched in August of 2007 on a ten month cruise to reach the northern plains of Mars in May 2008. Its mission continues NASA s pursuit to find evidence of water on Mars. Phoenix carries upon it a slew of science instruments to study soil and ice samples from the northern region of the planet, an area previously undiscovered by robotic landers. In order for these science instruments to be useful, it was necessary for Phoenix to perform a safe entry, descent, and landing (EDL) onto the surface of Mars. The EDL design was defined through simulation and analysis of the various phases of the descent. An overview of the simulation and various models developed to characterize the EDL performance is provided. Monte Carlo statistical analysis was performed to assess the performance and robustness of the Phoenix EDL system and are presented in this paper. Using these simulation and modelling tools throughout the design and into the operations phase, the Mars Phoenix EDL was a success on May 25, 2008.

  8. Flight Mechanics of the Entry, Descent and Landing of the ExoMars Mission

    NASA Technical Reports Server (NTRS)

    HayaRamos, Rodrigo; Boneti, Davide

    2007-01-01

    ExoMars is ESA's current mission to planet Mars. A high mobility rover and a fixed station will be deployed on the surface of Mars. This paper regards the flight mechanics of the Entry, Descent and Landing (EDL) phases used for the mission analysis and design of the Baseline and back-up scenarios of the mission. The EDL concept is based on a ballistic entry, followed by a descent under parachutes and inflatable devices (airbags) for landing. The mission analysis and design is driven by the flexibility in terms of landing site, arrival dates and the very stringent requirement in terms of landing accuracy. The challenging requirements currently imposed to the mission need innovative analysis and design techniques to support system design trade-offs to cope with the variability in entry conditions. The concept of the Global Entry Corridor has been conceived, designed, implemented and successfully validated as a key tool to provide a global picture of the mission capabilities in terms of landing site reachability.

  9. Enhancements on the Convex Programming Based Powered Descent Guidance Algorithm for Mars Landing

    NASA Technical Reports Server (NTRS)

    Acikmese, Behcet; Blackmore, Lars; Scharf, Daniel P.; Wolf, Aron

    2008-01-01

    In this paper, we present enhancements on the powered descent guidance algorithm developed for Mars pinpoint landing. The guidance algorithm solves the powered descent minimum fuel trajectory optimization problem via a direct numerical method. Our main contribution is to formulate the trajectory optimization problem, which has nonconvex control constraints, as a finite dimensional convex optimization problem, specifically as a finite dimensional second order cone programming (SOCP) problem. SOCP is a subclass of convex programming, and there are efficient SOCP solvers with deterministic convergence properties. Hence, the resulting guidance algorithm can potentially be implemented onboard a spacecraft for real-time applications. Particularly, this paper discusses the algorithmic improvements obtained by: (i) Using an efficient approach to choose the optimal time-of-flight; (ii) Using a computationally inexpensive way to detect the feasibility/ infeasibility of the problem due to the thrust-to-weight constraint; (iii) Incorporating the rotation rate of the planet into the problem formulation; (iv) Developing additional constraints on the position and velocity to guarantee no-subsurface flight between the time samples of the temporal discretization; (v) Developing a fuel-limited targeting algorithm; (vi) Initial result on developing an onboard table lookup method to obtain almost fuel optimal solutions in real-time.

  10. Trajectory Guidance for Mars Robotic Precursors: Aerocapture, Entry, Descent, and Landing

    NASA Technical Reports Server (NTRS)

    Sostaric, Ronald R.; Zumwalt, Carlie; Garcia-Llama, Eduardo; Powell, Richard; Shidner, Jeremy

    2011-01-01

    Future crewed missions to Mars require improvements in landed mass capability beyond that which is possible using state-of-the-art Mars Entry, Descent, and Landing (EDL) systems. Current systems are capable of an estimated maximum landed mass of 1-1.5 metric tons (MT), while human Mars studies require 20-40 MT. A set of technologies were investigated by the EDL Systems Analysis (SA) project to assess the performance of candidate EDL architectures. A single architecture was selected for the design of a robotic precursor mission, entitled Exploration Feed Forward (EFF), whose objective is to demonstrate these technologies. In particular, inflatable aerodynamic decelerators (IADs) and supersonic retro-propulsion (SRP) have been shown to have the greatest mass benefit and extensibility to future exploration missions. In order to evaluate these technologies and develop the mission, candidate guidance algorithms have been coded into the simulation for the purposes of studying system performance. These guidance algorithms include aerocapture, entry, and powered descent. The performance of the algorithms for each of these phases in the presence of dispersions has been assessed using a Monte Carlo technique.

  11. POST2 End-To-End Descent and Landing Simulation for the Autonomous Landing and Hazard Avoidance Technology Project

    NASA Technical Reports Server (NTRS)

    Fisher, Jody l.; Striepe, Scott A.

    2007-01-01

    The Program to Optimize Simulated Trajectories II (POST2) is used as a basis for an end-to-end descent and landing trajectory simulation that is essential in determining the design and performance capability of lunar descent and landing system models and lunar environment models for the Autonomous Landing and Hazard Avoidance Technology (ALHAT) project. This POST2-based ALHAT simulation provides descent and landing simulation capability by integrating lunar environment and lander system models (including terrain, sensor, guidance, navigation, and control models), along with the data necessary to design and operate a landing system for robotic, human, and cargo lunar-landing success. This paper presents the current and planned development and model validation of the POST2-based end-to-end trajectory simulation used for the testing, performance and evaluation of ALHAT project system and models.

  12. Accelerating Particles with Plasma

    ScienceCinema

    Litos, Michael; Hogan, Mark

    2016-07-12

    Researchers at SLAC explain how they use plasma wakefields to accelerate bunches of electrons to very high energies over only a short distance. Their experiments offer a possible path for the future of particle accelerators.

  13. Peak acceleration limiter

    NASA Technical Reports Server (NTRS)

    Chapman, C. P.

    1972-01-01

    Device is described that limits accelerations by shutting off shaker table power very rapidly in acceleration tests. Absolute value of accelerometer signal is used to trigger electronic switch which terminates test and sounds alarm.

  14. Linear Accelerator (LINAC)

    MedlinePlus

    ... equipment? How is safety ensured? What is this equipment used for? A linear accelerator (LINAC) is the ... Therapy (SBRT) . top of page How does the equipment work? The linear accelerator uses microwave technology (similar ...

  15. Accelerating Particles with Plasma

    SciTech Connect

    Litos, Michael; Hogan, Mark

    2014-11-05

    Researchers at SLAC explain how they use plasma wakefields to accelerate bunches of electrons to very high energies over only a short distance. Their experiments offer a possible path for the future of particle accelerators.

  16. Improved plasma accelerator

    NASA Technical Reports Server (NTRS)

    Cheng, D. Y.

    1971-01-01

    Converging, coaxial accelerator electrode configuration operates in vacuum as plasma gun. Plasma forms by periodic injections of high pressure gas that is ionized by electrical discharges. Deflagration mode of discharge provides acceleration, and converging contours of plasma gun provide focusing.

  17. Accelerator Technology Division

    NASA Astrophysics Data System (ADS)

    1992-04-01

    In fiscal year (FY) 1991, the Accelerator Technology (AT) division continued fulfilling its mission to pursue accelerator science and technology and to develop new accelerator concepts for application to research, defense, energy, industry, and other areas of national interest. This report discusses the following programs: The Ground Test Accelerator Program; APLE Free-Electron Laser Program; Accelerator Transmutation of Waste; JAERI, OMEGA Project, and Intense Neutron Source for Materials Testing; Advanced Free-Electron Laser Initiative; Superconducting Super Collider; The High-Power Microwave Program; (Phi) Factory Collaboration; Neutral Particle Beam Power System Highlights; Accelerator Physics and Special Projects; Magnetic Optics and Beam Diagnostics; Accelerator Design and Engineering; Radio-Frequency Technology; Free-Electron Laser Technology; Accelerator Controls and Automation; Very High-Power Microwave Sources and Effects; and GTA Installation, Commissioning, and Operations.

  18. Accelerators, Colliders, and Snakes

    NASA Astrophysics Data System (ADS)

    Courant, Ernest D.

    2003-12-01

    The author traces his involvement in the evolution of particle accelerators over the past 50 years. He participated in building the first billion-volt accelerator, the Brookhaven Cosmotron, which led to the introduction of the "strong-focusing" method that has in turn led to the very large accelerators and colliders of the present day. The problems of acceleration of spin-polarized protons are also addressed, with discussions of depolarizing resonances and "Siberian snakes" as a technique for mitigating these resonances.

  19. Acceleration: It's Elementary

    ERIC Educational Resources Information Center

    Willis, Mariam

    2012-01-01

    Acceleration is one tool for providing high-ability students the opportunity to learn something new every day. Some people talk about acceleration as taking a student out of step. In actuality, what one is doing is putting a student in step with the right curriculum. Whole-grade acceleration, also called grade-skipping, usually happens between…

  20. Angular Acceleration without Torque?

    ERIC Educational Resources Information Center

    Kaufman, Richard D.

    2012-01-01

    Hardly. Just as Robert Johns qualitatively describes angular acceleration by an internal force in his article "Acceleration Without Force?" here we will extend the discussion to consider angular acceleration by an internal torque. As we will see, this internal torque is due to an internal force acting at a distance from an instantaneous center.

  1. Accelerated test design

    NASA Technical Reports Server (NTRS)

    Mcdermott, P. P.

    1980-01-01

    The design of an accelerated life test program for electric batteries is discussed. A number of observations and suggestions on the procedures and objectives for conducting an accelerated life test program are presented. Equations based on nonlinear regression analysis for predicting the accelerated life test parameters are discussed.

  2. Automatic IQ Imbalance Compensation Technique for Quadrature Modulator by Single-Tone Testing

    NASA Astrophysics Data System (ADS)

    Kim, Minseok; Konishi, Yohei; Takada, Jun-Ichi; Gao, Boxin

    This letter proposes an automatic IQ imbalance compensation technique for quadrature modulators by means of spectrum measurement of RF signal using a spectrum analyzer. The analyzer feeds back only magnitude information of the frequency spectrum of the signal. To realize IQ imbalance compensation, the conventional method of steepest descent is modified; the descent direction is empirically determined and a variable step-size is introduced for accelerating convergence. The experimental results for a four-channel transmitter operating at 11GHz are presented for verification.

  3. The unusual phase curve of Titan's surface observed by Huygens’ Descent Imager/Spectral Radiometer

    NASA Astrophysics Data System (ADS)

    Schröder, S. E.; Keller, H. U.

    2009-12-01

    The Descent Imager/Spectral Radiometer onboard Huygens observed Titan's surface through the atmospheric methane windows [Tomasko, M.G., Doose, L., Engel, S., Dafoe, L.E., West, R., Lemmon, M., Karkoschka, E., See, C., 2008. A model of Titan's aerosols based on measurements made inside the atmosphere. Planet. Space Sci. 56, 669-707]. Infrared spectra obtained during the last stage of the descent, for which the atmospheric contribution is negligible, show that the reflectance of the surface around the sit increases with decreasing solar phase angle. Combining these with a spectrum reconstructed from reflected lamp light [Schröder, S.E., Keller, H.U., 2008. The reflectance spectrum of Titan's surface at the Huygens landing site determined by the Descent Imager/Spectral Radiometer. Planet. Space Sci. 56, 753-769] reveals a strong increase in reflectance towards zero phase angle: the opposition surge. Both shadow hiding and coherent backscatter are required to fit the phase curve with the Hapke [2002. Bidirectional Reflectance Spectroscopy 5. The Coherent Backscatter Opposition Effect and Anisotropic Scattering. Icarus 157, 523-534] model. We find the particle phase function below 60∘ phase angle to be close to isotropic, which is highly unusual for the surfaces of planetary bodies. A terrain with similar scattering properties has been identified on Triton [Lee, P., Helfenstein, P., Veverka, J., McCarthy, D., 1992. Anomalous-scattering region on Triton. Icarus 99, 82-97], and a connection with the tholins thought to be present on both worlds seems plausible. Indeed, tholin laboratory analogs are found to scatter in similar fashion [Lüthi, 2008. Remote sensing of the surface of Titan: Photometric properties, comparison with analogues, and future microscopic observations. Ph.D. Thesis, Philosophisch-naturwissenschaftlichen Fakultät, Universität Bern]. We conclude that Titan's unusual phase curve is consistent with the presence of tholins on the surface. Our result

  4. Relationship of beliefs, epistemology, and alternate conceptions to college student understanding of evolution and common descent

    NASA Astrophysics Data System (ADS)

    Miller, Joyce Catherine

    Quantitative and qualitative methodologies were combined to explore the relationships between an understanding of evolution and 4 epistemology factors: (a) control of learning, (b) speed of learning , (c) stability of knowledge, and (d) belief in evolution/creationism. A 17-item instrument was developed that reliably measured a belief in creationism and subtle differences between this belief and an acceptance of evolution. The subjects were 45 students enrolled in a biology course at a 2-year community college. Evolution was taught in a traditional format, and common descent was taught in an inquiry-based laboratory session consisting of: (a) a comparison of hemoglobin DNA sequences of the human, chimpanzee, and gorilla; and (b) a comparison of 8 primate skull casts, including the modern human, chimpanzee, gorilla, and five prehistoric fossils. Prior to instruction the students completed an epistemology questionnaire and a knowledge test about evolution. Five weeks after instruction, the students completed a posttest. A t-test revealed no differences between the pretest and the posttest. However, the group of students that scored higher on the posttest than on the pretest was found to have a stronger belief in the uncertainty of knowledge. Pearson r was computed to check for relationships between the 4 epistemological factors and the understanding of evolution. There was a significant relationship between a belief in creationism and a lessor understanding of evolution as measured on both the pretest and the posttest (ps < .05). The relationship between gender and test scores was also examined with men demonstrating statistically significantly higher scores on the common descent component than women did. Narrative data included interviews and branching/grouping activities. Four alternate conceptions about common descent were identified. Even after instruction, 16 out of 39 students thought humans evolved from the chimpanzee. Additionally, students grouped the 8

  5. Fiber Accelerating Structures

    SciTech Connect

    Hammond, Andrew P.; /Reed Coll. /SLAC

    2010-08-25

    One of the options for future particle accelerators are photonic band gap (PBG) fiber accelerators. PBG fibers are specially designed optical fibers that use lasers to excite an electric field that is used to accelerate electrons. To improve PBG accelerators, the basic parameters of the fiber were tested to maximize defect size and acceleration. Using the program CUDOS, several accelerating modes were found that maximized these parameters for several wavelengths. The design of multiple defects, similar to having closely bound fibers, was studied to find possible coupling or the change of modes. The amount of coupling was found to be dependent on distance separated. For certain distances accelerating coupled modes were found and examined. In addition, several non-periodic fiber structures were examined using CUDOS. The non-periodic fibers produced several interesting results and promised more modes given time to study them in more detail.

  6. High brightness electron accelerator

    DOEpatents

    Sheffield, Richard L.; Carlsten, Bruce E.; Young, Lloyd M.

    1994-01-01

    A compact high brightness linear accelerator is provided for use, e.g., in a free electron laser. The accelerator has a first plurality of acclerating cavities having end walls with four coupling slots for accelerating electrons to high velocities in the absence of quadrupole fields. A second plurality of cavities receives the high velocity electrons for further acceleration, where each of the second cavities has end walls with two coupling slots for acceleration in the absence of dipole fields. The accelerator also includes a first cavity with an extended length to provide for phase matching the electron beam along the accelerating cavities. A solenoid is provided about the photocathode that emits the electons, where the solenoid is configured to provide a substantially uniform magnetic field over the photocathode surface to minimize emittance of the electons as the electrons enter the first cavity.

  7. Acceleration in astrophysics

    SciTech Connect

    Colgate, S.A.

    1993-12-31

    The origin of cosmic rays and applicable laboratory experiments are discussed. Some of the problems of shock acceleration for the production of cosmic rays are discussed in the context of astrophysical conditions. These are: The presumed unique explanation of the power law spectrum is shown instead to be a universal property of all lossy accelerators; the extraordinary isotropy of cosmic rays and the limited diffusion distances implied by supernova induced shock acceleration requires a more frequent and space-filling source than supernovae; the near perfect adiabaticity of strong hydromagnetic turbulence necessary for reflecting the accelerated particles each doubling in energy roughly 10{sup 5} to {sup 6} scatterings with negligible energy loss seems most unlikely; the evidence for acceleration due to quasi-parallel heliosphere shocks is weak. There is small evidence for the expected strong hydromagnetic turbulence, and instead, only a small number of particles accelerate after only a few shock traversals; the acceleration of electrons in the same collisionless shock that accelerates ions is difficult to reconcile with the theoretical picture of strong hydromagnetic turbulence that reflects the ions. The hydromagnetic turbulence will appear adiabatic to the electrons at their much higher Larmor frequency and so the electrons should not be scattered incoherently as they must be for acceleration. Therefore the electrons must be accelerated by a different mechanism. This is unsatisfactory, because wherever electrons are accelerated these sites, observed in radio emission, may accelerate ions more favorably. The acceleration is coherent provided the reconnection is coherent, in which case the total flux, as for example of collimated radio sources, predicts single charge accelerated energies much greater than observed.

  8. Electronic Nature of Step-edge Barriers Against Adatom Descent on Transition-metal Surfaces

    SciTech Connect

    Mo, Yina; Zhu, Wenguang; Kaxiras, Efthimios; Zhang, Zhenyu

    2008-01-01

    The activation barriers against adatom migration on terraces and across steps play an essential role in determining the growth morphology of surfaces, interfaces, and thin lms. By studying a series of adatoms on representative transition metal surfaces through extensive rst-principles calculations, we establish a clear correlation between the preferred mechanism and activation energy for adatom descent at a step and the relative degree of electronic shell lling between the adatom and the substrate. We also nd an approximate linear relation between the adatom hopping barriers at step edges and the adatom-surface bonding strength. These results may serve as simple guiding rules for predicting the precise atomic nature of surface morphologies in heteroepitaxial growth such as nanowires.

  9. PIGS: improved estimates of identity-by-descent probabilities by probabilistic IBD graph sampling

    PubMed Central

    2015-01-01

    Identifying segments in the genome of different individuals that are identical-by-descent (IBD) is a fundamental element of genetics. IBD data is used for numerous applications including demographic inference, heritability estimation, and mapping disease loci. Simultaneous detection of IBD over multiple haplotypes has proven to be computationally difficult. To overcome this, many state of the art methods estimate the probability of IBD between each pair of haplotypes separately. While computationally efficient, these methods fail to leverage the clique structure of IBD resulting in less powerful IBD identification, especially for small IBD segments. We develop a hybrid approach (PIGS), which combines the computational efficiency of pairwise methods with the power of multiway methods. It leverages the IBD graph structure to compute the probability of IBD conditional on all pairwise estimates simultaneously. We show via extensive simulations and analysis of real data that our method produces a substantial increase in the number of identified small IBD segments. PMID:25860540

  10. Iterative CT reconstruction using coordinate descent with ordered subsets of data

    NASA Astrophysics Data System (ADS)

    Noo, F.; Hahn, K.; Schöndube, H.; Stierstorfer, K.

    2016-04-01

    Image reconstruction based on iterative minimization of a penalized weighted least-square criteria has become an important topic of research in X-ray computed tomography. This topic is motivated by increasing evidence that such a formalism may enable a significant reduction in dose imparted to the patient while maintaining or improving image quality. One important issue associated with this iterative image reconstruction concept is slow convergence and the associated computational effort. For this reason, there is interest in finding methods that produce approximate versions of the targeted image with a small number of iterations and an acceptable level of discrepancy. We introduce here a novel method to produce such approximations: ordered subsets in combination with iterative coordinate descent. Preliminary results demonstrate that this method can produce, within 10 iterations and using only a constant image as initial condition, satisfactory reconstructions that retain the noise properties of the targeted image.

  11. Simulation Framework for Rapid Entry, Descent, and Landing (EDL) Analysis, Phase 2 Results

    NASA Technical Reports Server (NTRS)

    Murri, Daniel G.

    2011-01-01

    The NASA Engineering and Safety Center (NESC) was requested to establish the Simulation Framework for Rapid Entry, Descent, and Landing (EDL) Analysis assessment, which involved development of an enhanced simulation architecture using the Program to Optimize Simulated Trajectories II simulation tool. The assessment was requested to enhance the capability of the Agency to provide rapid evaluation of EDL characteristics in systems analysis studies, preliminary design, mission development and execution, and time-critical assessments. Many of the new simulation framework capabilities were developed to support the Agency EDL-Systems Analysis (SA) team that is conducting studies of the technologies and architectures that are required to enable human and higher mass robotic missions to Mars. The findings, observations, and recommendations from the NESC are provided in this report.

  12. Focal epithelial hyperplasia (Heck's disease): report of a case in a girl of Brazilian Indian descent.

    PubMed

    Martins, W D; de Lima, A A S; Vieira, S

    2006-01-01

    Summary. Background. This report describes the case of a patient with focal epithelial hyperplasia (FEH), a rare but distinctive entity of viral aetiology with characteristic clinical and histopathological features. Case report. The condition is usually seen in children and adolescents of American Indian and Eskimo background. Surgical removal of papillomatous lesions is the treatment of choice, either for aesthetic reasons, or when the lesions interfere with function or are readily traumatized. Recurrence and the site of new lesions are unpredictable, and continued review of the patient is often necessary. The patient described here has been followed for 24 months without recurrences or changes in the aspect of the remaining lesions. Conclusion. This case highlights a possible genetic predilection for FEH, since the patient is a descent of a Brazilian Xavante Indian.

  13. Participation and Research of Astronomers and Astrophysicists of Black African Descent (1900–2005)

    NASA Astrophysics Data System (ADS)

    Oluseyi, Hakeem M.; Urama, Johnson

    The second half of the Twentieth Century witnessed the emergence of the first modern Astronomers and Astrophysicists of Black African descent. In this paper we enumerate these researchers and briefly describe their activities. We also describe the broader social and political contexts which have impacted their participation and research. We focus primarily on researchers in the United States of America (28) and in Nigeria (19) who have together produced over 90% of the astronomical researchers known to the authors. We briefly mention researchers from other countries including South Africa (3) and in Eurasia (2). We conclude by describing the pioneering researchers and disseminators of the Black African Diaspora's contribution of to the modern astronomical sciences.

  14. Participation and Research of Astronomers and Astrophysicists of Black African Descent (1900 2005)

    NASA Astrophysics Data System (ADS)

    Oluseyi, Hakeem M.; Urama, Johnson

    The second half of the Twentieth Century witnessed the emergence of the first modern Astronomers and Astrophysicists of Black African descent. In this paper we enumerate these researchers and briefly describe their activities. We also describe the broader social and political contexts which have impacted their participation and research. We focus primarily on researchers in the United States of America (28) and in Nigeria (19) who have together produced over 90% of the astronomical researchers known to the authors. We briefly mention researchers from other countries including South Africa (3) and in Eurasia (2). We conclude by describing the pioneering researchers and disseminators of the Black African Diaspora's contribution of to the modern astronomical sciences.

  15. Entry, Descent, and Landing Operations Analysis for the Stardust Re-Entry Capsule

    NASA Technical Reports Server (NTRS)

    Desao, Prasun N.; Lyons, Dan T.; Tooley, Jeff; Kangas, Julie

    2006-01-01

    On the morning of January 15, 2006, the Stardust capsule successfully landed at the Utah Test and Training range in northwest Utah returning cometary samples from the comet Wild-2. An overview of the entry, descent, and landing (EDL) trajectory analysis that was performed for targeting during the Stardust Mission Navigation Operations Phase upon final approach to Earth is described. In addition, how the predicted landing location and the resulting overall 99 percentile landing footprint ellipse obtained from a Monte Carlo analysis changed over the final days and hours prior to entry is also presented. The navigation and EDL operations effort accurately delivered the entry capsule to the desired landing site. The final landing location was 8.1 km from the target, which was well within the allowable landing area.

  16. Modeling of the aircraft in-trail-following task during profile descent

    NASA Technical Reports Server (NTRS)

    Goka, T.; Sorensen, J. A.; Phatak, A. V.

    1981-01-01

    The cockpit display of traffic information (CDTI) system concepts enable the pilot to observe the surrounding air traffic pattern. The impact of such a system is far reaching in terms of improved safety, pilot and controller workload, and aircraft fuel efficiency. One direct payoff is the ability to distribute the ATC workload to the pilot in such tasks as merging and spacing. The CDTI application of spacing approach aircraft in the terminal area is addressed. In-trail-following/CDTI experiments were performed using realistic cockpit simulators and profile descent approach scenarios. Based on collected experimental simulator data, pilot models were developed which include state estimation, decision making and flight control aspects. These models were coupled with models of aircraft and CDTI equipment to study the dynamic phenomena and stability of strings of aircraft along various approach patterns.

  17. Overview of the NASA Entry, Descent and Landing Systems Analysis Exploration Feed-Forward Study

    NASA Technical Reports Server (NTRS)

    DwyerCianciolo, Alicia M.; Zang, Thomas A.; Sostaric, Ronald R.; McGuire, M. Kathy

    2011-01-01

    Technology required to land large payloads (20 to 50 mt) on Mars remains elusive. In an effort to identify the most viable investment path, NASA and others have been studying various concepts. One such study, the Entry, Descent and Landing Systems Analysis (EDLSA) Study [1] identified three potential options: the rigid aeroshell, the inflatable aeroshell and supersonic retropropulsion (SRP). In an effort to drive out additional levels of design detail, a smaller demonstrator, or exploration feed-forward (EFF), robotic mission was devised that utilized two of the three (inflatable aeroshell and SRP) high potential technologies in a configuration to demonstrate landing a two to four metric ton payload on Mars. This paper presents and overview of the maximum landed mass, inflatable aeroshell controllability and sensor suite capability assessments of the selected technologies and recommends specific technology areas for additional work.

  18. Simulation Framework for Rapid Entry, Descent, and Landing (EDL) Analysis. Volume 1

    NASA Technical Reports Server (NTRS)

    Murri, Daniel G.

    2010-01-01

    The NASA Engineering and Safety Center (NESC) was requested to establish the Simulation Framework for Rapid Entry, Descent, and Landing (EDL) Analysis assessment, which involved development of an enhanced simulation architecture using the Program to Optimize Simulated Trajectories II (POST2) simulation tool. The assessment was requested to enhance the capability of the Agency to provide rapid evaluation of EDL characteristics in systems analysis studies, preliminary design, mission development and execution, and time-critical assessments. Many of the new simulation framework capabilities were developed to support the Agency EDL Systems Analysis (EDL-SA) team, that is conducting studies of the technologies and architectures that are required to enable higher mass robotic and human mission to Mars. The findings of the assessment are contained in this report.

  19. Accurate Non-parametric Estimation of Recent Effective Population Size from Segments of Identity by Descent.

    PubMed

    Browning, Sharon R; Browning, Brian L

    2015-09-03

    Existing methods for estimating historical effective population size from genetic data have been unable to accurately estimate effective population size during the most recent past. We present a non-parametric method for accurately estimating recent effective population size by using inferred long segments of identity by descent (IBD). We found that inferred segments of IBD contain information about effective population size from around 4 generations to around 50 generations ago for SNP array data and to over 200 generations ago for sequence data. In human populations that we examined, the estimates of effective size were approximately one-third of the census size. We estimate the effective population size of European-ancestry individuals in the UK four generations ago to be eight million and the effective population size of Finland four generations ago to be 0.7 million. Our method is implemented in the open-source IBDNe software package.

  20. The Unparalleled Systems Engineering of MSL's Backup Entry, Descent, and Landing System: Second Chance

    NASA Technical Reports Server (NTRS)

    Roumeliotis, Chris; Grinblat, Jonathan; Reeves, Glenn

    2013-01-01

    Second Chance (SECC) was a bare bones version of Mars Science Laboratory's (MSL) Entry Descent & Landing (EDL) flight software that ran on Curiosity's backup computer, which could have taken over swiftly in the event of a reset of Curiosity's prime computer, in order to land her safely on Mars. Without SECC, a reset of Curiosity's prime computer would have lead to catastrophic mission failure. Even though a reset of the prime computer never occurred, SECC had the important responsibility as EDL's guardian angel, and this responsibility would not have seen such success without unparalleled systems engineering. This paper will focus on the systems engineering behind SECC: Covering a brief overview of SECC's design, the intense schedule to use SECC as a backup system, the verification and validation of the system's "Do No Harm" mandate, the system's overall functional performance, and finally, its use on the fateful day of August 5th, 2012.

  1. Simulation Framework for Rapid Entry, Descent, and Landing (EDL) Analysis. Volume 2; Appendices

    NASA Technical Reports Server (NTRS)

    Murri, Daniel G.

    2010-01-01

    The NASA Engineering and Safety Center (NESC) was requested to establish the Simulation Framework for Rapid Entry, Descent, and Landing (EDL) Analysis assessment, which involved development of an enhanced simulation architecture using the Program to Optimize Simulated Trajectories II (POST2) simulation tool. The assessment was requested to enhance the capability of the Agency to provide rapid evaluation of EDL characteristics in systems analysis studies, preliminary design, mission development and execution, and time-critical assessments. Many of the new simulation framework capabilities were developed to support the Agency EDL Systems Analysis (EDL-SA) team, that is conducting studies of the technologies and architectures that are required to enable higher mass robotic and human mission to Mars. The appendices to the original report are contained in this document.

  2. Comparison of frequency distributions of doubled haploid and single seed descent lines in barley.

    PubMed

    Choo, T M; Reinbergs, E; Park, S J

    1982-09-01

    Both doubled haploid (DH) and single seed descent (SSD) methods were used to derive homozygous lines from two crosses of barley. The frequency distributions of grain yield, heading date, and plant height of the DH and SSD lines were compared by the Mann-Whitney U test, Kolmogorov-Smirnov twosample test and Wald-Wolfowitz runs test. It was found that the DH lines distributed in the same manner as the SSD lines with respect to the three characters. The results indicated that although the SSD method had more opportunity for recombination than the DH method, it did not produce a sample of recombinants which differed significantly from the DH sample; thus both methods were equally efficient for use in deriving homozygous lines from F1 hybrids in a relatively short time.

  3. Accurate Non-parametric Estimation of Recent Effective Population Size from Segments of Identity by Descent

    PubMed Central

    Browning, Sharon R.; Browning, Brian L.

    2015-01-01

    Existing methods for estimating historical effective population size from genetic data have been unable to accurately estimate effective population size during the most recent past. We present a non-parametric method for accurately estimating recent effective population size by using inferred long segments of identity by descent (IBD). We found that inferred segments of IBD contain information about effective population size from around 4 generations to around 50 generations ago for SNP array data and to over 200 generations ago for sequence data. In human populations that we examined, the estimates of effective size were approximately one-third of the census size. We estimate the effective population size of European-ancestry individuals in the UK four generations ago to be eight million and the effective population size of Finland four generations ago to be 0.7 million. Our method is implemented in the open-source IBDNe software package. PMID:26299365

  4. Molecular analysis of patients of Sardinian descent with Crigler-Najjar syndrome type I.

    PubMed Central

    Rosatelli, M C; Meloni, A; Faa, V; Saba, L; Crisponi, G; Clemente, M G; Meloni, G; Piga, M T; Cao, A

    1997-01-01

    This study reports the molecular characterisation of the bilirubin UDP-glucuronosyl-transferase gene (UGT1) in a group of patients of Sardinian descent with Crigler-Najjar syndrome type I and their relatives. Sequence analysis of both UGT1A exon 1 and common exons 2-5 was performed in all patients, leading to the detection of AF170 and a novel mutation (470insT), both residing in UGT1A exon 1. All but two heterozygotes for the AF170 mutation showed normal serum bilirubin levels. These two subjects were also heterozygous for the sequence variation A(TA)7TAA in the promoter region of the UGT1A gene. Images PMID:9039987

  5. A Multidisciplinary Tool for Systems Analysis of Planetary Entry, Descent, and Landing (SAPE)

    NASA Technical Reports Server (NTRS)

    Samareh, Jamshid A.

    2009-01-01

    SAPE is a Python-based multidisciplinary analysis tool for systems analysis of planetary entry, descent, and landing (EDL) for Venus, Earth, Mars, Jupiter, Saturn, Uranus, Neptune, and Titan. The purpose of SAPE is to provide a variable-fidelity capability for conceptual and preliminary analysis within the same framework. SAPE includes the following analysis modules: geometry, trajectory, aerodynamics, aerothermal, thermal protection system, and structural sizing. SAPE uses the Python language-a platform-independent open-source software for integration and for the user interface. The development has relied heavily on the object-oriented programming capabilities that are available in Python. Modules are provided to interface with commercial and government off-the-shelf software components (e.g., thermal protection systems and finite-element analysis). SAPE runs on Microsoft Windows and Apple Mac OS X and has been partially tested on Linux.

  6. Mars Science Laboratory (MSL) Entry, Descent, and Landing Instrumentation (MEDLI): Complete Flight Data Set

    NASA Technical Reports Server (NTRS)

    Cheatwood, F. McNeil; Bose, Deepak; Karlgaard, Christopher D.; Kuhl, Christopher A.; Santos, Jose A.; Wright, Michael J.

    2014-01-01

    The Mars Science Laboratory (MSL) entry vehicle (EV) successfully entered the Mars atmosphere and landed the Curiosity rover safely on the surface of the planet in Gale crater on August 6, 2012. MSL carried the MSL Entry, Descent, and Landing (EDL) Instrumentation (MEDLI). MEDLI delivered the first in-depth understanding of the Mars entry environments and the response of the entry vehicle to those environments. MEDLI was comprised of three major subsystems: the Mars Entry Atmospheric Data System (MEADS), the MEDLI Integrated Sensor Plugs (MISP), and the Sensor Support Electronics (SSE). Ultimately, the entire MEDLI sensor suite consisting of both MEADS and MISP provided measurements that were used for trajectory reconstruction and engineering validation of aerodynamic, atmospheric, and thermal protection system (TPS) models in addition to Earth-based systems testing procedures. This report contains in-depth hardware descriptions, performance evaluation, and data information of the three MEDLI subsystems.

  7. Parametric Mass Modeling for Mars Entry, Descent and Landing System Analysis Study

    NASA Technical Reports Server (NTRS)

    Samareh, Jamshid A.; Komar, D. R.

    2011-01-01

    This paper provides an overview of the parametric mass models used for the Entry, Descent, and Landing Systems Analysis study conducted by NASA in FY2009-2010. The study examined eight unique exploration class architectures that included elements such as a rigid mid-L/D aeroshell, a lifting hypersonic inflatable decelerator, a drag supersonic inflatable decelerator, a lifting supersonic inflatable decelerator implemented with a skirt, and subsonic/supersonic retro-propulsion. Parametric models used in this study relate the component mass to vehicle dimensions and mission key environmental parameters such as maximum deceleration and total heat load. The use of a parametric mass model allows the simultaneous optimization of trajectory and mass sizing parameters.

  8. Quantification of Plume-Soil Interaction and Excavation Due to the Sky Crane Descent Stage

    NASA Technical Reports Server (NTRS)

    Vizcaino, Jeffrey; Mehta, Manish

    2015-01-01

    The quantification of the particulate erosion that occurs as a result of a rocket exhaust plume impinging on soil during extraterrestrial landings is critical for future robotic and human lander mission design. The aerodynamic environment that results from the reflected plumes results in dust lifting, site alteration and saltation, all of which create a potentially erosive and contaminant heavy environment for the lander vehicle and any surrounding structures. The Mars Science Lab (MSL), weighing nearly one metric ton, required higher levels of thrust from its retro propulsive systems and an entirely new descent system to minimize these effects. In this work we seek to quantify plume soil interaction and its resultant soil erosion caused by the MSL's Sky Crane descent stage engines by performing three dimensional digital terrain and elevation mapping of the Curiosity rover's landing site. Analysis of plume soil interaction altitude and time was performed by detailed examination of the Mars Descent Imager (MARDI) still frames and reconstructed inertial measurement unit (IMU) sensor data. Results show initial plume soil interaction from the Sky Crane's eight engines began at ground elevations greater than 60 meters and more than 25 seconds before the rovers' touchdown event. During this time, viscous shear erosion (VSE) was dominant typically resulting in dusting of the surface with flow propagating nearly parallel to the surface. As the vehicle descended and decreased to four powered engines plume-plume and plume soil interaction increased the overall erosion rate at the surface. Visibility was greatly reduced at a height of roughly 20 meters above the surface and fell to zero ground visibility shortly after. The deployment phase of the Sky Crane descent stage hovering at nearly six meters above the surface showed the greatest amount of erosion with several large particles of soil being kicked up, recirculated, and impacting the bottom of the rover chassis. Image

  9. Cassini/Huygens Probe Entry, Descent, and Landing (EDL) at Titan Independent Technical Assessment

    NASA Technical Reports Server (NTRS)

    Powell, Richard W.; Lockwood, Mary Kae; Cruz, Juan R.; Striepe, Scott A.; Sutton, Kenneth; Fisher, Jody; Takashima, Naruhisa T.; Justus, Jere; Keller, Vernon W.; Bose, Deepak; Prabhu, Dinesh; Chen, Y. K.; Olejniczak, Joe; Cruz, Juan R; Duvall, Aleta

    2009-01-01

    Starting in January 2004, the NESC has received several communications from knowledgeable technical experts at NASA expressing shared concerns (mainly at the Langley Research Center (LaRC) and Ames Research Center (ARC)) about Huygens mission success. It was suggested that NASA become more technically involved directly in the analysis of Huygens' entry, descent and landing (EDL) focusing on the parachute deployment trigger performance and the resultant effects on the operation of the parachute system, and the determination of the radiative heating environment at Titan by ESA and the corresponding thermal protection system (TPS) response. A NESC Team was formed and tasked to provide an independent assessment of these concerns. The results of that assessment are documented in this report.

  10. Regolith-Derived Heat Shield for Planetary Body Entry and Descent System with In Situ Fabrication

    NASA Technical Reports Server (NTRS)

    Hogue, Michael D.; Mueller, Robert P.; Rasky, Daniel; Hintze, Paul; Sibille, Laurent

    2012-01-01

    In this paper we will discuss a new mass-efficient and innovative way of protecting high-mass spacecraft during planetary Entry, Descent & Landing (EDL). Heat shields fabricated in situ can provide a thermal-protection system (TPS) for spacecraft that routinely enter a planetary atmosphere. By fabricating the heat shield with space resources from regolith materials available on moons and asteroids, it is possible to avoid launching the heat-shield mass from Earth. Two regolith processing and manufacturing methods will be discussed: 1) Compression and sintering of the regolith to yield low density materials; 2) Formulations of a High-temperature silicone RTV (Room Temperature Vulcanizing) compound are used to bind regolith particles together. The overall positive results of torch flame impingement tests and plasma arc jet testing on the resulting samples will also be discussed.

  11. Supersonic Retropropulsion Technology Development in NASA's Entry, Descent, and Landing Project

    NASA Technical Reports Server (NTRS)

    Edquist, Karl T.; Berry, Scott A.; Rhode, Matthew N.; Kelb, Bil; Korzun, Ashley; Dyakonov, Artem A.; Zarchi, Kerry A.; Schauerhamer, Daniel G.; Post, Ethan A.

    2012-01-01

    NASA's Entry, Descent, and Landing (EDL) space technology roadmap calls for new technologies to achieve human exploration of Mars in the coming decades [1]. One of those technologies, termed Supersonic Retropropulsion (SRP), involves initiation of propulsive deceleration at supersonic Mach numbers. The potential benefits afforded by SRP to improve payload mass and landing precision make the technology attractive for future EDL missions. NASA's EDL project spent two years advancing the technological maturity of SRP for Mars exploration [2-15]. This paper summarizes the technical accomplishments from the project and highlights challenges and recommendations for future SRP technology development programs. These challenges include: developing sufficiently large SRP engines for use on human-scale entry systems; testing and computationally modelling complex and unsteady SRP fluid dynamics; understanding the effects of SRP on entry vehicle stability and controllability; and demonstrating sub-scale SRP entry systems in Earth's atmosphere.

  12. The Mast Cameras and Mars Descent Imager (MARDI) for the 2009 Mars Science Laboratory

    NASA Technical Reports Server (NTRS)

    Malin, M. C.; Bell, J. F.; Cameron, J.; Dietrich, W. E.; Edgett, K. S.; Hallet, B.; Herkenhoff, K. E.; Lemmon, M. T.; Parker, T. J.; Sullivan, R. J.

    2005-01-01

    Based on operational experience gained during the Mars Exploration Rover (MER) mission, we proposed and were selected to conduct two related imaging experiments: (1) an investigation of the geology and short-term atmospheric vertical wind profile local to the Mars Science Laboratory (MSL) landing site using descent imaging, and (2) a broadly-based scientific investigation of the MSL locale employing visible and very near infra-red imaging techniques from a pair of mast-mounted, high resolution cameras. Both instruments share a common electronics design, a design also employed for the MSL Mars Hand Lens Imager (MAHLI) [1]. The primary differences between the cameras are in the nature and number of mechanisms and specific optics tailored to each camera s requirements.

  13. Entry, Descent, and Landing Operations Analysis for the Mars Phoenix Lander

    NASA Technical Reports Server (NTRS)

    Prince, Jill L.; Desai, Prasun N.; Queen, Eric M.; Grover, Myron R.

    2008-01-01

    The Mars Phoenix lander was launched August 4, 2007 and remained in cruise for ten months before landing in the northern plains of Mars in May 2008. The one-month Entry, Descent, and Landing (EDL) operations phase prior to entry consisted of daily analyses, meetings, and decisions necessary to determine if trajectory correction maneuvers and environmental parameter updates to the spacecraft were required. An overview of the Phoenix EDL trajectory simulation and analysis that was performed during the EDL approach and operations phase is described in detail. The evolution of the Monte Carlo statistics and footprint ellipse during the final approach phase is also provided. The EDL operations effort accurately delivered the Phoenix lander to the desired landing region on May 25, 2008.

  14. Stochastic parallel gradient descent based adaptive optics used for a high contrast imaging coronagraph

    NASA Astrophysics Data System (ADS)

    Dong, Bing; Ren, De-Qing; Zhang, Xi

    2011-08-01

    An adaptive optics (AO) system based on a stochastic parallel gradient descent (SPGD) algorithm is proposed to reduce the speckle noises in the optical system of a stellar coronagraph in order to further improve the contrast. The principle of the SPGD algorithm is described briefly and a metric suitable for point source imaging optimization is given. The feasibility and good performance of the SPGD algorithm is demonstrated by an experimental system featured with a 140-actuator deformable mirror and a Hartmann-Shark wavefront sensor. Then the SPGD based AO is applied to a liquid crystal array (LCA) based coronagraph to improve the contrast. The LCA can modulate the incoming light to generate a pupil apodization mask of any pattern. A circular stepped pattern is used in our preliminary experiment and the image contrast shows improvement from 10-3 to 10-4.5 at an angular distance of 2λ/D after being corrected by SPGD based AO.

  15. On the Use of a Range Trigger for the Mars Science Laboratory Entry Descent and Landing

    NASA Technical Reports Server (NTRS)

    Way, David W.

    2011-01-01

    In 2012, during the Entry, Descent, and Landing (EDL) of the Mars Science Laboratory (MSL) entry vehicle, a 21.5 m Viking-heritage, Disk-Gap-Band, supersonic parachute will be deployed at approximately Mach 2. The baseline algorithm for commanding this parachute deployment is a navigated planet-relative velocity trigger. This paper compares the performance of an alternative range-to-go trigger (sometimes referred to as Smart Chute ), which can significantly reduce the landing footprint size. Numerical Monte Carlo results, predicted by the POST2 MSL POST End-to-End EDL simulation, are corroborated and explained by applying propagation of uncertainty methods to develop an analytic estimate for the standard deviation of Mach number. A negative correlation is shown to exist between the standard deviations of wind velocity and the planet-relative velocity at parachute deploy, which mitigates the Mach number rise in the case of the range trigger.

  16. Regolith-Derived Heat Shield for Planetary Body Entry and Descent System with In Situ Fabrication

    NASA Technical Reports Server (NTRS)

    Hogue, Michael D.; Mueller, Robert P.; Rasky, Daniel J.; Hintze, Paul E.; Sibille, Laurent

    2011-01-01

    In this paper we will discuss a new mass-efficient and innovative way of protecting high-mass spacecraft during planetary Entry, Descent & Landing (EDL). Heat shields fabricated in situ can provide a thermal-protection system (TPS) for spacecraft that routinely enter a planetary atmosphere. By fabricating the heat shield with space resources from regolith materials available on moons and asteroids, it is possible to avoid launching the heat-shield mass from Earth. Three regolith processing and manufacturing methods will be discussed: 1) oxygen & metal extraction ISRU processes produce glassy melts enriched in alumina and titania, processed to obtain variable density, high melting point and heat-resistance; 2) compression and sintering of the regolith yield low density materials; 3) in-situ derived high-temperature polymers are created to bind regolith particles together, with a lower energy budget.

  17. A Survey of Supersonic Retropropulsion Technology for Mars Entry, Descent, and Landing

    NASA Technical Reports Server (NTRS)

    Korzun, Ashley M.; Cruz, Juan R.; Braun, Robert D.

    2007-01-01

    This paper presents a literature survey on supersonic retropropulsion technology as it applies to Mars entry, descent, and landing (EDL). The relevance of this technology to the feasibility of Mars EDL is shown to increase with ballistic coefficient to the point that it is likely required for human Mars exploration. The use of retropropulsion to decelerate an entry vehicle from hypersonic or supersonic conditions to a subsonic velocity is the primary focus of this review. Discussed are systems-level studies, general flowfield characteristics, static aerodynamics, vehicle and flowfield stability considerations, and aerothermodynamics. The experimental and computational approaches used to develop retropropulsion technology are also reviewed. Finally, the applicability and limitations of the existing literature and current state-of-the-art computational tools to future missions are discussed in the context of human and robotic Mars exploration.

  18. DASH: a method for identical-by-descent haplotype mapping uncovers association with recent variation.

    PubMed

    Gusev, Alexander; Kenny, Eimear E; Lowe, Jennifer K; Salit, Jaqueline; Saxena, Richa; Kathiresan, Sekar; Altshuler, David M; Friedman, Jeffrey M; Breslow, Jan L; Pe'er, Itsik

    2011-06-10

    Rare variants affecting phenotype pose a unique challenge for human genetics. Although genome-wide association studies have successfully detected many common causal variants, they are underpowered in identifying disease variants that are too rare or population-specific to be imputed from a general reference panel and thus are poorly represented on commercial SNP arrays. We set out to overcome these challenges and detect association between disease and rare alleles using SNP arrays by relying on long stretches of genomic sharing that are identical by descent. We have developed an algorithm, DASH, which builds upon pairwise identical-by-descent shared segments to infer clusters of individuals likely to be sharing a single haplotype. DASH constructs a graph with nodes representing individuals and links on the basis of such segments spanning a locus and uses an iterative minimum cut algorithm to identify densely connected components. We have applied DASH to simulated data and diverse GWAS data sets by constructing haplotype clusters and testing them for association. In simulations we show this approach to be significantly more powerful than single-marker testing in an isolated population that is from Kosrae, Federated States of Micronesia and has abundant IBD, and we provide orthogonal information for rare, recent variants in the outbred Wellcome Trust Case-Control Consortium (WTCCC) data. In both cohorts, we identified a number of haplotype associations, five such loci in the WTCCC data and ten in the isolated, that were conditionally significant beyond any individual nearby markers. We have replicated one of these loci in an independent European cohort and identified putative structural changes in low-pass whole-genome sequence of the cluster carriers.

  19. Strategies for Choosing Descent Flight-Path Angles for Small Jets

    NASA Technical Reports Server (NTRS)

    Wu, Minghong Gilbert; Green, Steven M.

    2012-01-01

    Three candidate strategies for choosing the descent flight path angle (FPA) for small jets are proposed, analyzed, and compared for fuel efficiency under arrival metering conditions. The strategies vary in operational complexity from a universally fixed FPA, or FPA function that varies with descent speed for improved fuel efficiency, to the minimum-fuel FPA computed for each flight based on winds, route, and speed profile. Methodologies for selecting the parameter for the first two strategies are described. The differences in fuel burn are analyzed over a year s worth of arrival traffic and atmospheric conditions recorded for the Dallas/Fort Worth (DFW) Airport during 2011. The results show that the universally fixed FPA strategy (same FPA for all flights, all year) burns on average 26 lbs more fuel per flight as compared to the minimum-fuel solution. This FPA is adapted to the arrival gate (direction of entry to the terminal) and various timespans (season, month and day) to improve fuel efficiency. Compared to a typical FPA of approximately 3 degrees the adapted FPAs vary significantly, up to 1.3 from one arrival gate to another or up to 1.4 from one day to another. Adapting the universally fixed FPA strategy to the arrival gate or to each day reduces the extra fuel burn relative to the minimum-fuel solution by 27% and 34%, respectively. The adaptations to gate and time combined shows up to 57% reduction of the extra fuel burn. The second strategy, an FPA function, contributes a 17% reduction in the 26 lbs of extra fuel burn over the universally fixed FPA strategy. Compared to the corresponding adaptations of the universally fixed FPA, adaptations of the FPA function reduce the extra fuel burn anywhere from 15-23% depending on the extent of adaptation. The combined effect of the FPA function strategy with both directional and temporal adaptation recovers 67% of the extra fuel relative to the minimum-fuel solution.

  20. Modeling of identity-by-descent processes along a chromosome between haplotypes and their genotyped ancestors.

    PubMed

    Druet, Tom; Farnir, Frederic Paul

    2011-06-01

    Identity-by-descent probabilities are important for many applications in genetics. Here we propose a method for modeling the transmission of the haplotypes from the closest genotyped relatives along an entire chromosome. The method relies on a hidden Markov model where hidden states correspond to the set of all possible origins of a haplotype within a given pedigree. Initial state probabilities are estimated from average genetic contribution of each origin to the modeled haplotype while transition probabilities are computed from recombination probabilities and pedigree relationships between the modeled haplotype and the various possible origins. The method was tested on three simulated scenarios based on real data sets from dairy cattle, Arabidopsis thaliana, and maize. The mean identity-by-descent probabilities estimated for the truly inherited parental chromosome ranged from 0.94 to 0.98 according to the design and the marker density. The lowest values were observed in regions close to crossing over or where the method was not able to discriminate between several origins due to their similarity. It is shown that the estimated probabilities were correctly calibrated. For marker imputation (or QTL allele prediction for fine mapping or genomic selection), the method was efficient, with 3.75% allelic imputation error rates on a dairy cattle data set with a low marker density map (1 SNP/Mb). The method should prove useful for situations we are facing now in experimental designs and in plant and animal breeding, where founders are genotyped with relatively high markers densities and last generation(s) genotyped with a lower-density panel.

  1. Atmospheric Risk Assessment for the Mars Science Laboratory Entry, Descent, and Landing System

    NASA Technical Reports Server (NTRS)

    Chen, Allen; Vasavada, Ashwin; Cianciolo, Alicia; Barnes, Jeff; Tyler, Dan; Hinson, David; Lewis, Stephen

    2010-01-01

    In 2012, the Mars Science Laboratory (MSL) mission will pioneer the next generation of robotic Entry, Descent, and Landing (EDL) systems, by delivering the largest and most capable rover to date to the surface of Mars. As with previous Mars landers, atmospheric conditions during entry, descent, and landing directly impact the performance of MSL's EDL system. While the vehicle's novel guided entry system allows it to "fly out" a range of atmospheric uncertainties, its trajectory through the atmosphere creates a variety of atmospheric sensitivities not present on previous Mars entry systems and landers. Given the mission's stringent landing capability requirements, understanding the atmosphere state and spacecraft sensitivities takes on heightened importance. MSL's guided entry trajectory differs significantly from recent Mars landers and includes events that generate different atmospheric sensitivities than past missions. The existence of these sensitivities and general advancement in the state of Mars atmospheric knowledge has led the MSL team to employ new atmosphere modeling techniques in addition to past practices. A joint EDL engineering and Mars atmosphere science and modeling team has been created to identify the key system sensitivities, gather available atmospheric data sets, develop relevant atmosphere models, and formulate methods to integrate atmosphere information into EDL performance assessments. The team consists of EDL engineers, project science staff, and Mars atmospheric scientists from a variety of institutions. This paper provides an overview of the system performance sensitivities that have driven the atmosphere modeling approach, discusses the atmosphere data sets and models employed by the team as a result of the identified sensitivities, and introduces the tools used to translate atmospheric knowledge into quantitative EDL performance assessments.

  2. Mars2020 Entry, Descent, and Landing Instrumentation (MEDLI2): Science Objectives and Instrument Requirements

    NASA Technical Reports Server (NTRS)

    Bose, Deepak; White, Todd; Schoenenberger, Mark; Karlgaard, Chris; Wright, Henry

    2015-01-01

    NASAs exploration and technology roadmaps call for capability advancements in Mars entry, descent, and landing (EDL) systems to enable increased landed mass, a higher landing precision, and a wider planetary access. It is also recognized that these ambitious EDL performance goals must be met while maintaining a low mission risk in order to pave the way for future human missions. As NASA is engaged in developing new EDL systems and technologies via testing at Earth, instrumentation of existing Mars missions is providing valuable engineering data for performance improvement, risk reduction, and an improved definition of entry loads and environment. The most notable recent example is the Mars Entry, Descent and Landing Instrument (MEDLI) suite hosted by Mars Science Laboratory for its entry in Aug 2012. The MEDLI suite provided a comprehensive dataset for Mars entry aerodynamics, aerothermodynamics and thermal protection system (TPS) performance. MEDLI data has since been used for unprecedented reconstruction of aerodynamic drag, vehicle attitude, in-situ atmospheric density, aerothermal heating, and transition to turbulence, in-depth TPS performance and TPS ablation. [1,2] In addition to validating predictive models, MEDLI data has demonstrated extra margin available in the MSL forebody TPS, which can potentially be used to reduce vehicle parasitic mass. The presentation will introduce a follow-on MEDLI instrumentation suite (called MEDLI2) that is being developed for Mars-2020 mission. MEDLI2 has an enhanced scope that includes backshell instrumentation, a wider forebody coverage, and instruments that specifically target supersonic aerodynamics. Similar to MEDLI, MEDLI2 uses thermal plugs with embedded thermocouples and ports through the TPS to measure surface pressure. MEDLI2, however, also includes heat flux sensors in the backshell and a low range pressure transducer to measure afterbody pressure.

  3. Entry, Descent, and Landing with Propulsive Deceleration: Supersonic Retropropulsion Wind Tunnel Testing and Shock Phenomena

    NASA Technical Reports Server (NTRS)

    Palaszewski, Bryan

    2014-01-01

    The future exploration of the Solar System will require innovations in transportation and the use of entry, descent, and landing (EDL) systems at many planetary landing sites. The cost of space missions has always been prohibitive, and using the natural planetary and planet's moon atmospheres for entry, and descent can reduce the cost, mass, and complexity of these missions. This paper will describe some of the EDL ideas for planetary entry and survey the overall technologies for EDL that may be attractive for future Solar System missions. Future EDL systems may include an inflatable decelerator for the initial atmospheric entry and an additional supersonic retropropulsion (SRP) rocket system for the final soft landing. A three engine retropropulsion configuration with a 2.5 in. diameter sphere-cone aeroshell model was tested in the NASA Glenn Research Center's 1- by 1-ft (1×1) Supersonic Wind Tunnel (SWT). The testing was conducted to identify potential blockage issues in the tunnel, and visualize the rocket flow and shock interactions during supersonic and hypersonic entry conditions. Earlier experimental testing of a 70deg Viking-like (sphere-cone) aeroshell was conducted as a baseline for testing of a SRP system. This baseline testing defined the flow field around the aeroshell and from this comparative baseline data, retropropulsion options will be assessed. Images and analyses from the SWT testing with 300- and 500-psia rocket engine chamber pressures are presented here. In addition, special topics of electromagnetic interference with retropropulsion induced shock waves and retropropulsion for Earth launched booster recovery are also addressed.

  4. The Effects of the Diurnal Atmospheric Variability on Entry, Descent and Landing on Mars

    NASA Astrophysics Data System (ADS)

    Marceta, D.

    2014-12-01

    Landing on Mars is extremely challenging task due to the fact that the Martian atmosphere is the most hostile environment in the Solar system to perform the entry, descent and landing (EDL) process, because it is thick enough to create substantial heating of the entry vehicle but not thick enough to reduce its velocity to the one necessary for safe landing. Beside this, the atmosphere is very dynamic mainly due to high eccentricity of the Martian orbit, obliquity of the orbital to the equatorial plane and close alignment of the winter solstice and the orbital perihelion. Although seasonal variations of atmospheric parameters are significantly larger than the diurnal, it is very important to analyze diurnal cycles as they can significantly change vertical and horizontal atmospheric profiles in very short time intervals. This can present a serious threat to missions which have very precise timings and specific requirements such as the requirement for the daytime landing to enable ground images acquisition during the descent and landing phase. A 3-degrees-of-freedom trajectory integration routine was combined with the Mars Global Reference Atmospheric Model (Mars-GRAM) to identify the dependence of the EDL profiles on the diurnal cycles of atmospheric parameters throughout the Martian year. The obtained results show that the influence of the diurnal cycles is the largest at the equator and decreases relatively symmetrically towards the poles with a slightly stronger influence in the northern hemisphere. Also, there is a significant influence of the orbital position of Mars on the effect of diurnal atmospheric variations which causes that, around the orbital perihelion and winter solstice, there is some kind of inversion of the dependance of optimal entry timing on latitude of the landing site comparing to the rest of the Martian year.

  5. Segmented assimilation theory and perinatal health disparities among women of Mexican descent.

    PubMed

    Johnson, Michelle A; Marchi, Kristen S

    2009-07-01

    A higher prevalence of infant low birth weight (<2500 g) has been observed among more acculturated mothers of Mexican descent living in the U.S. when compared to their less acculturated counterparts. Tests of the "acculturation hypothesis" have established that disparities in certain risks for low birth weight exist between subgroups of women of Mexican-origin. However, disparities observed by neighborhood of residence have yet to be explained. Most tests of the acculturation hypothesis assume a classical path of assimilation, whereby Mexican American health is expected to deteriorate with time spent residing in the U.S. and across the generations. The theory of segmented assimilation suggests that alternative paths are possible depending upon individual characteristics and the context of the neighborhood into which immigrant families and their children reside. This study tested the theory of segmented assimilation as a framework for examining the geographic, cultural, and socioeconomic underpinnings of population differences in infant low birth weight among women of Mexican descent in California using the 2000 U.S. Census and population-based data from the Maternal and Infant Health Assessment (1999-2005) (n=6442). Little support was found for the theory's hypotheses. Rather, increased odds for infant low birth weight were observed for English speakers residing in Latino immigrant neighborhoods when compared to English speakers in other neighborhoods, an effect attenuated for Spanish speakers. Elevated odds of low birth weight were also observed among English speakers residing in Latino immigrant neighborhoods when compared to Spanish speakers in the same neighborhoods. Findings suggest the transfer of health-specific social capital in ethnic neighborhoods may depend upon sociocultural consonance between individuals and neighborhood residents. The authors call for additional research that sheds light on the sociocultural dynamics of maternal and infant health at

  6. Icing Frequencies Experienced During Climb and Descent by Fighter-Interceptor Aircraft

    NASA Technical Reports Server (NTRS)

    Perkins, Porter J.

    1958-01-01

    Data and analyses are presented on the relative frequencies of occurrence and severity of icing cloud layers encountered by jet aircraft in the climb and descent phases of flights to high altitudes. Fighter-interceptor aircraft operated by the Air Defense Command (USAF) at bases in the Duluth and Seattle areas collected the data with icing meters installed for a l-year period. The project was part of an extensive program conducted by the NACA to collect Icing cloud data for evaluating the icing problem relevant to routine operations. The average frequency of occurrence of icing was found to be about 5 percent of the number of climbs and descents during 1 year of operations The icing encounters were predominantly in the low and middle cloud layers, decreasing above 15,000 feet to practically none above 25,000 feet. The greatest thickness of ice that would accumulate on any aircraft component (as indicated by the accretion on a small object) was measured with the icing meters. The ice thicknesses on a small sensing probe averaged less than 1/32 inch and did not exceed 1/2 inch. Such accumulations are relatively small when compared with those that can form during horizontal flight in icing clouds. The light accretions resulted from relatively steep angles of flight through generally thin cloud layers. Because of the limited statistical reliability of the results, an analysis was made using previous statistics on icing clouds below an altitude of 20,000 feet to determine the general icing severity probabilities. The calculations were made using adiabatic lifting as a basis to establish the liquid-water content. Probabilities of over-all ice accretions on a small object as a function of airspeed and rate of climb were computed from the derived water contents. These results were then combined with the probability of occurrence of icing in order to give the icing severity that can be expected for routine aircraft operations.

  7. Mathematical modeling approaches in the study of glaucoma disparities among people of African and European descents

    PubMed Central

    Guidoboni, Giovanna; Harris, Alon; Arciero, Julia C.; Siesky, Brent A.; Amireskandari, Annahita; Gerber, Austin L.; Huck, Andrew H.; Kim, Nathaniel J.; Cassani, Simone; Carichino, Lucia

    2014-01-01

    Open angle glaucoma (OAG) is a severe ocular disease characterized by progressive and irreversible vision loss. While elevated intraocular pressure (IOP) is a well-established risk factor for OAG, the progression of OAG in many cases, despite IOP treatment, suggests that other risk factors must play significant roles in the development of the disease. For example, various structural properties of the eye, ocular blood flow properties, and systemic conditions have been identified as risk factors for OAG. Ethnicity has also been indicated as a relevant factor that affects the incidence and prevalence of OAG; in fact, OAG is the leading cause of blindness among people of African descent. Numerous clinical studies have been designed to examine the possible correlation and causation between OAG and these factors; however, these studies are met with the challenge of isolating the individual role of multiple interconnected factors. Over the last decade, various mathematical modeling approaches have been implemented in combination with clinical studies in order to provide a mechanical and hemodynamical description of the eye in relation to the entire human body and to assess the contribution of single risk factors to the development of OAG. This review provides a summary of the clinical evidence of ocular structural differences, ocular vascular differences and systemic vascular differences among people of African and European descent, describes the mathematical approaches that have been proposed to study ocular mechanics and hemodynamics while discussing how they could be used to investigate the relevance to OAG of racial disparities, and outlines possible new directions of research. PMID:24501718

  8. Entry, Descent, and Landing with Propulsive Deceleration: Supersonic Retropropulsion Wind Tunnel Testing and Shock Phenomena

    NASA Technical Reports Server (NTRS)

    Palaszewski, Bryan

    2013-01-01

    The future exploration of the Solar System will require innovations in transportation and the use of entry, descent, and landing (EDL) systems at many planetary landing sites. The cost of space missions has always been prohibitive, and using the natural planetary and planet's moon atmospheres for entry, and descent can reduce the cost, mass, and complexity of these missions. This paper will describe some of the EDL ideas for planetary entry and survey the overall technologies for EDL that may be attractive for future Solar System missions. Future EDL systems may include an inflatable decelerator for the initial atmospheric entry and an additional supersonic retro-propulsion (SRP) rocket system for the final soft landing. A three engine retro-propulsion configuration with a 2.5 inch diameter sphere-cone aeroshell model was tested in the NASA Glenn 1x1 Supersonic Wind Tunnel (SWT). The testing was conducted to identify potential blockage issues in the tunnel, and visualize the rocket flow and shock interactions during supersonic and hypersonic entry conditions. Earlier experimental testing of a 70 degree Viking-like (sphere-cone) aeroshell was conducted as a baseline for testing of a supersonic retro-propulsion system. This baseline testing defined the flow field around the aeroshell and from this comparative baseline data, retro-propulsion options will be assessed. Images and analyses from the SWT testing with 300- and 500-psia rocket engine chamber pressures are presented here. In addition, special topics of electromagnetic interference with retro-propulsion induced shock waves and retro-propulsion for Earth launched booster recovery are also addressed.

  9. Entry, Descent, and Landing With Propulsive Deceleration: Supersonic Retropropulsion Wind Tunnel Testing

    NASA Technical Reports Server (NTRS)

    Palaszewski, Bryan

    2012-01-01

    The future exploration of the Solar System will require innovations in transportation and the use of entry, descent, and landing (EDL) systems at many planetary landing sites. The cost of space missions has always been prohibitive, and using the natural planetary and planet s moons atmosphere for entry, descent, and landing can reduce the cost, mass, and complexity of these missions. This paper will describe some of the EDL ideas for planetary entry and survey the overall technologies for EDL that may be attractive for future Solar System missions. Future EDL systems may include an inflatable decelerator for the initial atmospheric entry and an additional supersonic retro-propulsion (SRP) rocket system for the final soft landing. As part of those efforts, NASA began to conduct experiments to gather the experimental data to make informed decisions on the "best" EDL options. A model of a three engine retro-propulsion configuration with a 2.5 in. diameter sphere-cone aeroshell model was tested in the NASA Glenn 1- by 1-Foot Supersonic Wind Tunnel (SWT). The testing was conducted to identify potential blockage issues in the tunnel, and visualize the rocket flow and shock interactions during supersonic and hypersonic entry conditions. Earlier experimental testing of a 70 Viking-like (sphere-cone) aeroshell was conducted as a baseline for testing of a supersonic retro-propulsion system. This baseline testing defined the flow field around the aeroshell and from this comparative baseline data, retro-propulsion options will be assessed. Images and analyses from the SWT testing with 300- and 500-psia rocket engine chamber pressures are presented here. The rocket engine flow was simulated with a non-combusting flow of air.

  10. Sex difference of autosomal alleles in populations of European and African descent

    PubMed Central

    Zuo, Lingjun; Wang, Tong; Lin, Xiandong; Wang, Jijun; Tan, Yunlong; Wang, Xiaoping; Yu, Xueqing; Luo, Xingguang

    2015-01-01

    In the present study, we aimed to report the individual sex-different genetic markers across autosomes in European- and African-origin populations. A total of 8,400 females and 8,081 males in 19 independent cohorts were genotyped across genomes using Illumina or Affymetrix arrays. The allele frequencies were compared between females and males in 9 non-clean cohorts (with some human disease traits) using genome-wide logistic regression and then the nominally significant associations were replicated across 10 clean cohorts (without disease traits). Meta-analysis was performed to derive the combined p values across all cohorts. We found 13 markers that were genome-wide significant (p≤5×10−8) between females and males in the meta-analysis of all cohorts of European descent, including rs7740449 at SYNE1, rs7531151 at PLD5, rs697455 at PPP1R12B, rs6745746 at LOC100128413, rs17000079 at PARM1, rs11948070 at PDE4D, rs7801825 at INSIG1, rs9551642 at MTUS2, rs2932174 at TPTE2, rs1961597 at SALL3, rs4117529 at METTL4, rs6021473 at SALL4 and rs6092466 at RAE1, and one marker, i.e., rs10145208 at PCNX, that was genome-wide significant in the meta-analysis of all cohorts of African descent. The most robust finding was rs7740449 at SYNE1, next to ESR1. We conclude that there are many sex-different markers on autosomes. These markers may be informative in differentiating females and males. PMID:26702338

  11. Analysis of the Accuracy of Ballistic Descent from a Circular Circumterrestrial Orbit

    NASA Astrophysics Data System (ADS)

    Sikharulidze, Yu. G.; Korchagin, A. N.

    2002-01-01

    The problem of the transportation of the results of experiments and observations to Earth every so often appears in space research. Its simplest and low-cost solution is the employment of a small ballistic reentry spacecraft. Such a spacecraft has no system of control of the descent trajectory in the atmosphere. This can result in a large spread of landing points, which make it difficult to search for the spacecraft and very often a safe landing. In this work, a choice of a compromise scheme of the flight is considered, which includes the optimum braking maneuver, adequate conditions of the entry into the atmosphere with limited heating and overload, and also the possibility of landing within the limits of a circle with a radius of 12.5 km. The following disturbing factors were taken into account in the analysis of the accuracy of landing: the errors of the braking impulse execution, the variations of the atmosphere density and the wind, the error of the specification of the ballistic coefficient of the reentry spacecraft, and a displacement of its center of mass from the symmetry axis. It is demonstrated that the optimum maneuver assures the maximum absolute value of the reentry angle and the insensitivity of the trajectory of descent with respect to small errors of orientation of the braking engine in the plane of the orbit. It is also demonstrated that the possible error of the landing point due to the error of specification of the ballistic coefficient does not depend (in the linear approximation) upon its value and depends only upon the reentry angle and the accuracy of specification of this coefficient. A guided parachute with an aerodynamic efficiency of about two should be used at the last leg of the reentry trajectory. This will allow one to land in a prescribed range and to produce adequate conditions for the interception of the reentry spacecraft by a helicopter in order to prevent a rough landing.

  12. Planning fuel-conservative descents with or without time constraints using a small programmable calculator: Algorithm development and flight test results

    NASA Technical Reports Server (NTRS)

    Knox, C. E.

    1983-01-01

    A simplified flight-management descent algorithm, programmed on a small programmable calculator, was developed and flight tested. It was designed to aid the pilot in planning and executing a fuel-conservative descent to arrive at a metering fix at a time designated by the air traffic control system. The algorithm may also be used for planning fuel-conservative descents when time is not a consideration. The descent path was calculated for a constant Mach/airspeed schedule from linear approximations of airplane performance with considerations given for gross weight, wind, and nonstandard temperature effects. The flight-management descent algorithm is described. The results of flight tests flown with a T-39A (Sabreliner) airplane are presented.

  13. Planning fuel-conservative descents with or without time constraints using a small programmable calculator: algorithm development and flight test results

    SciTech Connect

    Knox, C.E.

    1983-03-01

    A simplified flight-management descent algorithm, programmed on a small programmable calculator, was developed and flight tested. It was designed to aid the pilot in planning and executing a fuel-conservative descent to arrive at a metering fix at a time designated by the air traffic control system. The algorithm may also be used for planning fuel-conservative descents when time is not a consideration. The descent path was calculated for a constant Mach/airspeed schedule from linear approximations of airplane performance with considerations given for gross weight, wind, and nonstandard temperature effects. The flight-management descent algorithm is described. The results of flight tests flown with a T-39A (Sabreliner) airplane are presented.

  14. "Arubaito," or Short-Term Working Abroad in Japan: A Case Study of Brazilian University Students of Japanese Descent

    ERIC Educational Resources Information Center

    Sasaki, Lindsey

    2012-01-01

    International migration between Japan and Brazil dates back to 1908, when the first group of Japanese migrated to Brazil. However, in the 1980s, a reverse flow occurred, as thousands of Brazilians of Japanese descent traveled to Japan to work in manufacturing and construction factories ("dekasegi" workers). Japanese Brazilians up until…

  15. Factors that Enable Women of South Asian and African Descent to Succeed in Leadership Positions in Higher Education

    ERIC Educational Resources Information Center

    Kamassah, Sharon

    2010-01-01

    This research study focused on the factors that enable women of South Asian and African descent to succeed as leaders in the college system. The findings were derived from online questionnaires and in-depth interviews of 16 racialized women from two Greater Toronto Area (GTA) colleges. Many factors and recommendations were shared. Some of the…

  16. Phonological Patterns in Normally Developing Spanish-Speaking 3-and 4-Year Olds of Puerto Rican Descent.

    ERIC Educational Resources Information Center

    Goldstein, Brian A.; Iglesias, Aquiles

    1996-01-01

    This study used quantitative and qualitative methodology to examine the phonological patterns of 24 3-year-old and 30 4-year-old Spanish-speaking preschoolers of Puerto Rican descent. The children acquired the sounds of their language at an early age and did not exhibit high percentages of occurrence on targeted phonological processes. (DB)

  17. Multiple Marginality and Urban Education: Community and School Socialization among Low-Income Mexican-Descent Youth

    ERIC Educational Resources Information Center

    Conchas, Gilberto Q.; Vigil, James Diego

    2010-01-01

    This article conceptualizes the crucial social and developmental features impacting Mexican-descent youth and adolescents in low-income communities in southern California. All youth in these neighborhoods must confront and come to grips with the many environmental, socioeconomic, racial, and cultural forces they confront. However, it is the…

  18. 25 CFR 18.104 - May a tribe include provisions in its tribal probate code regarding the distribution and descent...

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... trust personalty? No. All trust personalty will be distributed in accordance with the American Indian... 25 Indians 1 2010-04-01 2010-04-01 false May a tribe include provisions in its tribal probate code regarding the distribution and descent of trust personalty? 18.104 Section 18.104 Indians BUREAU OF...

  19. 25 CFR 18.104 - May a tribe include provisions in its tribal probate code regarding the distribution and descent...

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... trust personalty? No. All trust personalty will be distributed in accordance with the American Indian... 25 Indians 1 2011-04-01 2011-04-01 false May a tribe include provisions in its tribal probate code regarding the distribution and descent of trust personalty? 18.104 Section 18.104 Indians BUREAU OF...

  20. Load on osseointegrated fixation of a transfemoral amputee during a fall: Determination of the time and duration of descent.

    PubMed

    Frossard, Laurent Alain

    2010-12-01

    Mitigation of fall-related injuries for populations of transfemoral amputees fitted with a socket or an osseointegrated fixation is challenging. Wearing a protective device fitted within the prosthesis might be a possible solution, provided that issues with automated fall detection and time of deployment of the protective mechanism are solved. The first objective of this study was to give some examples of the times and durations of descent during a real forward fall of a transfemoral amputee that occurred inadvertently while attending a gait measurement session to assess the load applied on the residuum. The second objective was to present five semi-automated methods of detection of the time of descent using the load data. The load was measured directly at 200 Hz using a six-channel transducer. The average time and duration of descent were 242 ± 42 ms (145-310 ms) and 619 ± 42 ms (550-715 ms), respectively. This study demonstrated that the transition between walking and falling was characterized by times of descent that occurred sequentially. The sensitivity and specificity of an automated algorithm might be improved by combining several methods of detection based on the deviation of the loads measured from their own trends and from a template previously established.

  1. 14 CFR 121.333 - Supplemental oxygen for emergency descent and for first aid; turbine engine powered airplanes...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Supplemental oxygen for emergency descent..., FLAG, AND SUPPLEMENTAL OPERATIONS Instrument and Equipment Requirements § 121.333 Supplemental oxygen... shall furnish oxygen and dispensing equipment to comply with paragraphs (b) through (e) of this...

  2. 14 CFR 121.333 - Supplemental oxygen for emergency descent and for first aid; turbine engine powered airplanes...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Supplemental oxygen for emergency descent..., FLAG, AND SUPPLEMENTAL OPERATIONS Instrument and Equipment Requirements § 121.333 Supplemental oxygen... shall furnish oxygen and dispensing equipment to comply with paragraphs (b) through (e) of this...

  3. 14 CFR 121.333 - Supplemental oxygen for emergency descent and for first aid; turbine engine powered airplanes...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Supplemental oxygen for emergency descent..., FLAG, AND SUPPLEMENTAL OPERATIONS Instrument and Equipment Requirements § 121.333 Supplemental oxygen... shall furnish oxygen and dispensing equipment to comply with paragraphs (b) through (e) of this...

  4. 14 CFR 121.333 - Supplemental oxygen for emergency descent and for first aid; turbine engine powered airplanes...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Supplemental oxygen for emergency descent..., FLAG, AND SUPPLEMENTAL OPERATIONS Instrument and Equipment Requirements § 121.333 Supplemental oxygen... shall furnish oxygen and dispensing equipment to comply with paragraphs (b) through (e) of this...

  5. 14 CFR 121.333 - Supplemental oxygen for emergency descent and for first aid; turbine engine powered airplanes...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Supplemental oxygen for emergency descent..., FLAG, AND SUPPLEMENTAL OPERATIONS Instrument and Equipment Requirements § 121.333 Supplemental oxygen... shall furnish oxygen and dispensing equipment to comply with paragraphs (b) through (e) of this...

  6. An introduction to acceleration mechanisms

    SciTech Connect

    Palmer, R.B.

    1987-05-01

    This paper discusses the acceleration of charged particles by electromagnetic fields, i.e., by fields that are produced by the motion of other charged particles driven by some power source. The mechanisms that are discussed include: Ponderamotive Forces, Acceleration, Plasma Beat Wave Acceleration, Inverse Free Electron Laser Acceleration, Inverse Cerenkov Acceleration, Gravity Acceleration, 2D Linac Acceleration and Conventional Iris Loaded Linac Structure Acceleration. (LSP)

  7. Schooling in Times of Acceleration

    ERIC Educational Resources Information Center

    Buddeberg, Magdalena; Hornberg, Sabine

    2017-01-01

    Modern societies are characterised by forms of acceleration, which influence social processes. Sociologist Hartmut Rosa has systematised temporal structures by focusing on three categories of social acceleration: technical acceleration, acceleration of social change, and acceleration of the pace of life. All three processes of acceleration are…

  8. Accelerating the Design of Space Vehicles

    NASA Technical Reports Server (NTRS)

    Laufenberg, Larry (Editor)

    2003-01-01

    One of NASA's key goals is to increase the safety and reduce the cost of space transportation. Thus, a key element of NASA's new Integrated Space Transportation Plan is to develop new propulsion, structures, and operations for future generations of reusable launch vehicles (RLVs). As part of this effort to develop the next RLV, the ClCT Program's Computing, Networking, and Information Systems (CNIS) Project is developing and demonstrating collaborative software technologies that use the collective power of the NASA Grid to accelerate spacecraft design. One of these technologies, called AeroDB, automates the execution and monitoring of computational fluid dynamics (CFD) parameter studies on the NASA Grid. About the NASA Grid The NASA Grid, or Information Power Grid,. is being developed to leverage the distributed resources of NASA's many computers. instruments, simulators, and data storage systems. The goal is to use these combined resources to sdve difficult NASA challenges, such as iimulating the entire flight of a space vehicle from ascent to descent.To realize the vision of the NASA Grid, the CNIS Project is developing the software framework and protocols for building domain-specific environments and interfaces, new Grid services based on emerging industry standards, and advanced networking and computing testbeds to support new Grid-based applications such as AeroDB.

  9. Uniformly accelerated black holes

    NASA Astrophysics Data System (ADS)

    Letelier, Patricio S.; Oliveira, Samuel R.

    2001-09-01

    The static and stationary C metric are examined in a generic framework and their interpretations studied in some detail, especially those with two event horizons, one for the black hole and another for the acceleration. We find that (i) the spacetime of an accelerated static black hole is plagued by either conical singularities or a lack of smoothness and compactness of the black hole horizon, (ii) by using standard black hole thermodynamics we show that accelerated black holes have a higher Hawking temperature than Unruh temperature of the accelerated frame, and (iii) the usual upper bound on the product of the mass and acceleration parameters (<1/27) is just a coordinate artifact. The main results are extended to accelerated rotating black holes with no significant changes.

  10. The Dielectric Wall Accelerator

    SciTech Connect

    Caporaso, George J.; Chen, Yu-Jiuan; Sampayan, Stephen E.

    2009-01-01

    The Dielectric Wall Accelerator (DWA), a class of induction accelerators, employs a novel insulating beam tube to impress a longitudinal electric field on a bunch of charged particles. The surface flashover characteristics of this tube may permit the attainment of accelerating gradients on the order of 100 MV/m for accelerating pulses on the order of a nanosecond in duration. A virtual traveling wave of excitation along the tube is produced at any desired speed by controlling the timing of pulse generating modules that supply a tangential electric field to the tube wall. Because of the ability to control the speed of this virtual wave, the accelerator is capable of handling any charge to mass ratio particle; hence it can be used for electrons, protons and any ion. The accelerator architectures, key technologies and development challenges will be described.

  11. Optically pulsed electron accelerator

    DOEpatents

    Fraser, J.S.; Sheffield, R.L.

    1985-05-20

    An optically pulsed electron accelerator can be used as an injector for a free electron laser and comprises a pulsed light source, such as a laser, for providing discrete incident light pulses. A photoemissive electron source emits electron bursts having the same duration as the incident light pulses when impinged upon by same. The photoemissive electron source is located on an inside wall of a radiofrequency-powered accelerator cell which accelerates the electron burst emitted by the photoemissive electron source.

  12. Optically pulsed electron accelerator

    DOEpatents

    Fraser, John S.; Sheffield, Richard L.

    1987-01-01

    An optically pulsed electron accelerator can be used as an injector for a free electron laser and comprises a pulsed light source, such as a laser, for providing discrete incident light pulses. A photoemissive electron source emits electron bursts having the same duration as the incident light pulses when impinged upon by same. The photoemissive electron source is located on an inside wall of a radio frequency powered accelerator cell which accelerates the electron burst emitted by the photoemissive electron source.

  13. ACCELERATION RESPONSIVE SWITCH

    DOEpatents

    Chabrek, A.F.; Maxwell, R.L.

    1963-07-01

    An acceleration-responsive device with dual channel capabilities whereby a first circuit is actuated upon attainment of a predetermined maximum acceleration level and when the acceleration drops to a predetermined minimum acceleriltion level another circuit is actuated is described. A fluid-damped sensing mass slidably mounted in a relatively frictionless manner on a shaft through the intermediation of a ball bushing and biased by an adjustable compression spring provides inertially operated means for actuating the circuits. (AEC)

  14. The foxhole accelerating structure

    SciTech Connect

    Fernow, R.C.; Claus, J.

    1992-07-17

    This report examines some properties of a new type of open accelerating structure. It consists of a series of rectangular cavities, which we call foxholes, joined by a beam channel. The power for accelerating the particles comes from an external radiation source and enters the cavities through their open upper surfaces. Analytic and computer calculations are presented showing that the foxhole is a suitable structure for accelerating relativistic electrons.

  15. Particle acceleration in flares

    NASA Technical Reports Server (NTRS)

    Benz, Arnold O.; Kosugi, Takeo; Aschwanden, Markus J.; Benka, Steve G.; Chupp, Edward L.; Enome, Shinzo; Garcia, Howard; Holman, Gordon D.; Kurt, Victoria G.; Sakao, Taro

    1994-01-01

    Particle acceleration is intrinsic to the primary energy release in the impulsive phase of solar flares, and we cannot understand flares without understanding acceleration. New observations in soft and hard X-rays, gamma-rays and coherent radio emissions are presented, suggesting flare fragmentation in time and space. X-ray and radio measurements exhibit at least five different time scales in flares. In addition, some new observations of delayed acceleration signatures are also presented. The theory of acceleration by parallel electric fields is used to model the spectral shape and evolution of hard X-rays. The possibility of the appearance of double layers is further investigated.

  16. Charged particle accelerator grating

    DOEpatents

    Palmer, Robert B.

    1986-01-01

    A readily disposable and replaceable accelerator grating for a relativistic particle accelerator. The grating is formed for a plurality of liquid droplets that are directed in precisely positioned jet streams to periodically dispose rows of droplets along the borders of a predetermined particle beam path. A plurality of lasers are used to direct laser beams into the droplets, at predetermined angles, thereby to excite the droplets to support electromagnetic accelerating resonances on their surfaces. Those resonances operate to accelerate and focus particles moving along the beam path. As the droplets are distorted or destroyed by the incoming radiation, they are replaced at a predetermined frequency by other droplets supplied through the jet streams.

  17. Charged particle accelerator grating

    DOEpatents

    Palmer, Robert B.

    1986-09-02

    A readily disposable and replaceable accelerator grating for a relativistic particle accelerator. The grating is formed for a plurality of liquid droplets that are directed in precisely positioned jet streams to periodically dispose rows of droplets along the borders of a predetermined particle beam path. A plurality of lasers are used to direct laser beams into the droplets, at predetermined angles, thereby to excite the droplets to support electromagnetic accelerating resonances on their surfaces. Those resonances operate to accelerate and focus particles moving along the beam path. As the droplets are distorted or destroyed by the incoming radiation, they are replaced at a predetermined frequency by other droplets supplied through the jet streams.

  18. Accelerator-based BNCT.

    PubMed

    Kreiner, A J; Baldo, M; Bergueiro, J R; Cartelli, D; Castell, W; Thatar Vento, V; Gomez Asoia, J; Mercuri, D; Padulo, J; Suarez Sandin, J C; Erhardt, J; Kesque, J M; Valda, A A; Debray, M E; Somacal, H R; Igarzabal, M; Minsky, D M; Herrera, M S; Capoulat, M E; Gonzalez, S J; del Grosso, M F; Gagetti, L; Suarez Anzorena, M; Gun, M; Carranza, O

    2014-06-01

    The activity in accelerator development for accelerator-based BNCT (AB-BNCT) both worldwide and in Argentina is described. Projects in Russia, UK, Italy, Japan, Israel, and Argentina to develop AB-BNCT around different types of accelerators are briefly presented. In particular, the present status and recent progress of the Argentine project will be reviewed. The topics will cover: intense ion sources, accelerator tubes, transport of intense beams, beam diagnostics, the (9)Be(d,n) reaction as a possible neutron source, Beam Shaping Assemblies (BSA), a treatment room, and treatment planning in realistic cases.

  19. High Gradient Accelerator Research

    SciTech Connect

    Temkin, Richard

    2016-07-12

    The goal of the MIT program of research on high gradient acceleration is the development of advanced acceleration concepts that lead to a practical and affordable next generation linear collider at the TeV energy level. Other applications, which are more near-term, include accelerators for materials processing; medicine; defense; mining; security; and inspection. The specific goals of the MIT program are: • Pioneering theoretical research on advanced structures for high gradient acceleration, including photonic structures and metamaterial structures; evaluation of the wakefields in these advanced structures • Experimental research to demonstrate the properties of advanced structures both in low-power microwave cold test and high-power, high-gradient test at megawatt power levels • Experimental research on microwave breakdown at high gradient including studies of breakdown phenomena induced by RF electric fields and RF magnetic fields; development of new diagnostics of the breakdown process • Theoretical research on the physics and engineering features of RF vacuum breakdown • Maintaining and improving the Haimson / MIT 17 GHz accelerator, the highest frequency operational accelerator in the world, a unique facility for accelerator research • Providing the Haimson / MIT 17 GHz accelerator facility as a facility for outside users • Active participation in the US DOE program of High Gradient Collaboration, including joint work with SLAC and with Los Alamos National Laboratory; participation of MIT students in research at the national laboratories • Training the next generation of Ph. D. students in the field of accelerator physics.

  20. FFAGS for rapid acceleration

    SciTech Connect

    Carol J. Johnstone and Shane Koscielniak

    2002-09-30

    When large transverse and longitudinal emittances are to be transported through a circular machine, extremely rapid acceleration holds the advantage that the beam becomes immune to nonlinear resonances because there is insufficient time for amplitudes to build up. Uncooled muon beams exhibit large emittances and require fast acceleration to avoid decay losses and would benefit from this style of acceleration. The approach here employs a fixed-field alternating gradient or FFAG magnet structure and a fixed frequency acceleration system. Acceptance is enhanced by the use only of linear lattice elements, and fixed-frequency rf enables the use of cavities with large shunt resistance and quality factor.

  1. Acceleration of polarized protons in circular accelerators

    SciTech Connect

    Courant, E.D.; Ruth, R.D.

    1980-09-12

    The theory of depolarization in circular accelerators is presented. The spin equation is first expressed in terms of the particle orbit and then converted to the equivalent spinor equation. The spinor equation is then solved for three different situations: (1) a beam on a flat top near a resonance, (2) uniform acceleration through an isolated resonance, and (3) a model of a fast resonance jump. Finally, the depolarization coefficient, epsilon, is calculated in terms of properties of the particle orbit and the results are applied to a calculation of depolarization in the AGS.

  2. Scaling FFAG accelerator for muon acceleration

    SciTech Connect

    Lagrange, JB.; Planche, T.; Mori, Y.

    2011-10-06

    Recent developments in scaling fixed field alternating gradient (FFAG) accelerators have opened new ways for lattice design, with straight sections, and insertions like dispersion suppressors. Such principles and matching issues are detailed in this paper. An application of these new concepts is presented to overcome problems in the PRISM project.

  3. Scaling FFAG accelerator for muon acceleration

    NASA Astrophysics Data System (ADS)

    Lagrange, JB.; Planche, T.; Mori, Y.

    2011-10-01

    Recent developments in scaling fixed field alternating gradient (FFAG) accelerators have opened new ways for lattice design, with straight sections, and insertions like dispersion suppressors. Such principles and matching issues are detailed in this paper. An application of these new concepts is presented to overcome problems in the PRISM project.

  4. Angular velocities, angular accelerations, and coriolis accelerations

    NASA Technical Reports Server (NTRS)

    Graybiel, A.

    1975-01-01

    Weightlessness, rotating environment, and mathematical analysis of Coriolis acceleration is described for man's biological effective force environments. Effects on the vestibular system are summarized, including the end organs, functional neurology, and input-output relations. Ground-based studies in preparation for space missions are examined, including functional tests, provocative tests, adaptive capacity tests, simulation studies, and antimotion sickness.

  5. Reactive Sequencing for Autonomous Navigation Evolving from Phoenix Entry, Descent, and Landing

    NASA Technical Reports Server (NTRS)

    Grasso, Christopher A.; Riedel, Joseph E.; Vaughan, Andrew T.

    2010-01-01

    Virtual Machine Language (VML) is an award-winning advanced procedural sequencing language in use on NASA deep-space missions since 1997, and was used for the successful entry, descent, and landing (EDL) of the Phoenix spacecraft onto the surface of Mars. Phoenix EDL utilized a state-oriented operations architecture which executed within the constraints of the existing VML 2.0 flight capability, compatible with the linear "land or die" nature of the mission. The intricacies of Phoenix EDL included the planned discarding of portions of the vehicle, the complex communications management for relay through on-orbit assets, the presence of temporally indeterminate physical events, and the need to rapidly catch up four days of sequencing should a reboot of the spacecraft flight computer occur shortly before atmospheric entry. These formidable operational challenges led to new techniques for packaging and coordinating reusable sequences called blocks using one-way synchronization via VML sequencing global variable events. The coordinated blocks acted as an ensemble to land the spacecraft, while individually managing various elements in as simple a fashion as possible. This paper outlines prototype VML 2.1 flight capabilities that have evolved from the one-way synchronization techniques in order to implement even more ambitious autonomous mission capabilities. Target missions for these new capabilities include autonomous touch-and-go sampling of cometary and asteroidal bodies, lunar landing of robotic missions, and ultimately landing of crewed lunar vehicles. Close proximity guidance, navigation, and control operations, on-orbit rendezvous, and descent and landing events featured in these missions require elaborate abort capability, manifesting highly non-linear scenarios that are so complex as to overtax traditional sequencing, or even the sort of one-way coordinated sequencing used during EDL. Foreseeing advanced command and control needs for small body and lunar landing

  6. Induction linear accelerators

    NASA Astrophysics Data System (ADS)

    Birx, Daniel

    1992-03-01

    Among the family of particle accelerators, the Induction Linear Accelerator is the best suited for the acceleration of high current electron beams. Because the electromagnetic radiation used to accelerate the electron beam is not stored in the cavities but is supplied by transmission lines during the beam pulse it is possible to utilize very low Q (typically<10) structures and very large beam pipes. This combination increases the beam breakup limited maximum currents to of order kiloamperes. The micropulse lengths of these machines are measured in 10's of nanoseconds and duty factors as high as 10-4 have been achieved. Until recently the major problem with these machines has been associated with the pulse power drive. Beam currents of kiloamperes and accelerating potentials of megavolts require peak power drives of gigawatts since no energy is stored in the structure. The marriage of liner accelerator technology and nonlinear magnetic compressors has produced some unique capabilities. It now appears possible to produce electron beams with average currents measured in amperes, peak currents in kiloamperes and gradients exceeding 1 MeV/meter, with power efficiencies approaching 50%. The nonlinear magnetic compression technology has replaced the spark gap drivers used on earlier accelerators with state-of-the-art all-solid-state SCR commutated compression chains. The reliability of these machines is now approaching 1010 shot MTBF. In the following paper we will briefly review the historical development of induction linear accelerators and then discuss the design considerations.

  7. Accelerator Science: Why RF?

    SciTech Connect

    Lincoln, Don

    2016-12-21

    Particle accelerators can fire beams of subatomic particles at near the speed of light. The accelerating force is generated using radio frequency technology and a whole lot of interesting features. In this video, Fermilab’s Dr. Don Lincoln explains how it all works.

  8. Particle Acceleration in Jets

    NASA Technical Reports Server (NTRS)

    Nishikawa, Ken-Ichi

    2005-01-01

    Nonthermal radiation observed from astrophysical systems containing relativistic jets and shocks, e.g., active galactic nuclei (AGNs), gamma ray burst (GRBs), and Galactic microquasar systems usually have power-law emission spectra. Fermi acceleration is the mechanism usually assumed for the acceleration of particles in astrophysical environments.

  9. Accelerators Beyond The Tevatron?

    SciTech Connect

    Lach, Joseph; /Fermilab

    2010-07-01

    Following the successful operation of the Fermilab superconducting accelerator three new higher energy accelerators were planned. They were the UNK in the Soviet Union, the LHC in Europe, and the SSC in the United States. All were expected to start producing physics about 1995. They did not. Why?

  10. Accelerators (3/5)

    ScienceCinema

    None

    2016-07-12

    1a) Introduction and motivation 1b) History and accelerator types 2) Transverse beam dynamics 3a) Longitudinal beam dynamics 3b) Figure of merit of a synchrotron/collider 3c) Beam control 4) Main limiting factors 5) Technical challenges Prerequisite knowledge: Previous knowledge of accelerators is not required.

  11. Diagnostics for induction accelerators

    SciTech Connect

    Fessenden, T.J.

    1996-04-01

    The induction accelerator was conceived by N. C. Christofilos and first realized as the Astron accelerator that operated at LLNL from the early 1960`s to the end of 1975. This accelerator generated electron beams at energies near 6 MeV with typical currents of 600 Amperes in 400 ns pulses. The Advanced Test Accelerator (ATA) built at Livermore`s Site 300 produced 10,000 Ampere beams with pulse widths of 70 ns at energies approaching 50 MeV. Several other electron and ion induction accelerators have been fabricated at LLNL and LBNL. This paper reviews the principal diagnostics developed through efforts by scientists at both laboratories for measuring the current, position, energy, and emittance of beams generated by these high current, short pulse accelerators. Many of these diagnostics are closely related to those developed for other accelerators. However, the very fast and intense current pulses often require special diagnostic techniques and considerations. The physics and design of the more unique diagnostics developed for electron induction accelerators are presented and discussed in detail.

  12. Accelerators (4/5)

    ScienceCinema

    None

    2016-07-12

    1a) Introduction and motivation 1b) History and accelerator types 2) Transverse beam dynamics 3a) Longitudinal beam dynamics 3b) Figure of merit of a synchrotron/collider 3c) Beam control 4) Main limiting factors 5) Technical challenges Prerequisite knowledge: Previous knowledge of accelerators is not required.

  13. Measuring Model Rocket Acceleration.

    ERIC Educational Resources Information Center

    Jenkins, Randy A.

    1993-01-01

    Presents an experiment that measures the acceleration and velocity of a model rocket. Lift-off information is transmitted to a computer that creates a graph of the velocity. Discusses the analysis of the computer-generated data and differences between calculated and experimental velocity and acceleration of several rocket types. (MDH)

  14. Microscale acceleration history discriminators

    DOEpatents

    Polosky, Marc A.; Plummer, David W.

    2002-01-01

    A new class of micromechanical acceleration history discriminators is claimed. These discriminators allow the precise differentiation of a wide range of acceleration-time histories, thereby allowing adaptive events to be triggered in response to the severity (or lack thereof) of an external environment. Such devices have applications in airbag activation, and other safety and surety applications.

  15. Accelerators (5/5)

    ScienceCinema

    None

    2016-07-12

    1a) Introduction and motivation 1b) History and accelerator types 2) Transverse beam dynamics 3a) Longitudinal beam dynamics 3b) Figure of merit of a synchrotron/collider 3c) Beam control 4) Main limiting factors 5) Technical challenges Prerequisite knowledge: Previous knowledge of accelerators is not required.

  16. Accelerators Beyond The Tevatron?

    SciTech Connect

    Lach, Joseph

    2010-07-29

    Following the successful operation of the Fermilab superconducting accelerator three new higher energy accelerators were planned. They were the UNK in the Soviet Union, the LHC in Europe, and the SSC in the United States. All were expected to start producing physics about 1995. They did not. Why?.

  17. Influence of wheel size on muscle activity and tri-axial accelerations during cross-country mountain biking.

    PubMed

    Hurst, Howard Thomas; Sinclair, Jonathan; Atkins, Stephen; Rylands, Lee; Metcalfe, John

    2016-08-01

    This study aimed to investigate the influence of different mountain bike wheel diameters on muscle activity and whether larger diameter wheels attenuate muscle vibrations during cross-country riding. Nine male competitive mountain bikers (age 34.7 ± 10.7 years; stature 177.7 ± 5.6 cm; body mass 73.2 ± 8.6 kg) participated in the study. Riders performed one lap at race pace on 26, 27.5 and 29 inch wheeled mountain bikes. sEMG and acceleration (RMS) were recorded for the full lap and during ascent and descent phases at the gastrocnemius, vastus lateralis, biceps brachii and triceps brachii. No significant main effects were found by wheel size for each of the four muscle groups for sEMG or acceleration during the full lap and for ascent and descent (P > .05). When data were analysed between muscle groups, significant differences were found between biceps brachii and triceps brachii (P < .05) for all wheel sizes and all phases of the lap with the exception of for the 26 inch wheel during the descent. Findings suggest wheel diameter has no influence on muscle activity and vibration during mountain biking. However, more activity was observed in the biceps brachii during 26 inch wheel descending. This is possibly due to an increased need to manoeuvre the front wheel over obstacles.

  18. Mars Sample Return Using Commercial Capabilities: Propulsive Entry, Descent, and Landing of a Capsule Form Vehicle

    NASA Technical Reports Server (NTRS)

    Gonzales, Andrew A.; Lemke, Lawrence G.; Huynh, Loc C.

    2014-01-01

    This paper describes a critical portion of the work that has been done at NASA, Ames Research Center regarding the use of the commercially developed Dragon capsule as a delivery vehicle for the elements of a high priority Mars Sample Return mission. The objective of the investigation was to determine entry and landed mass capabilities that cover anticipated mission conditions. The "Red Dragon", Mars configuration, uses supersonic retro-propulsion, with no required parachute system, to perform Entry, Descent, and Landing (EDL) maneuvers. The propulsive system proposed for use is the same system that will perform an abort, if necessary, for a human rated version of the Dragon capsule. Standard trajectory analysis tools are applied to publically available information about Dragon and other legacy capsule forms in order to perform the investigation. Trajectory simulation parameters include entry velocity, flight path angle, lift to drag Ratio (L/D), landing site elevation, atmosphere density, and total entry mass, in addition engineering assumptions for the performance of the propulsion system are stated. Mass estimates for major elements of the overall proposed architecture are coupled to this EDL analysis to close the overall architecture. Three synodic launch opportunities, beginning with the 2022 opportunity, define the arrival conditions. Results state the relations between the analysis parameters as well as sensitivities to those parameters. The EDL performance envelope includes landing altitudes between 0 and -4 km referenced to the Mars Orbiter Laser Altimeter datum as well as minimum and maximum atmosphere density. Total entry masses between 7 and 10 mt are considered with architecture closure occurring between 9.0 and 10 mt. Propellant mass fractions for each major phase of the EDL - Entry, Terminal Descent, and Hazard Avoidance - have been derived. An assessment of the effect of the entry conditions on the Thermal Protection System (TPS) currently in use for

  19. Accelerators, Beams And Physical Review Special Topics - Accelerators And Beams

    SciTech Connect

    Siemann, R.H.; /SLAC

    2011-10-24

    Accelerator science and technology have evolved as accelerators became larger and important to a broad range of science. Physical Review Special Topics - Accelerators and Beams was established to serve the accelerator community as a timely, widely circulated, international journal covering the full breadth of accelerators and beams. The history of the journal and the innovations associated with it are reviewed.

  20. A parametric approach to kinship hypothesis testing using identity-by-descent parameters.

    PubMed

    García-Magariños, Manuel; Egeland, Thore; López-de-Ullibarri, Ignacio; Hjort, Nils L; Salas, Antonio

    2015-11-01

    There is a large number of applications where family relationships need to be determined from DNA data. In forensic science, competing ideas are in general verbally formulated as the two hypotheses of a test. For the most common paternity case, the null hypothesis states that the alleged father is the true father against the alternative hypothesis that the father is an unrelated man. A likelihood ratio is calculated to summarize the evidence. We propose an alternative framework whereby a model and the hypotheses are formulated in terms of parameters representing identity-by-descent probabilities. There are several advantages to this approach. Firstly, the alternative hypothesis can be completely general. Specifically, the alternative does not need to specify an unrelated man. Secondly, the parametric formulation corresponds to the approach used in most other applications of statistical hypothesis testing and so there is a large theory of classical statistics that can be applied. Theoretical properties of the test statistic under the null hypothesis are studied. An extension to trios of individuals has been carried out. The methods are exemplified using simulations and a real dataset of 27 Spanish Romani individuals.

  1. Final STS-35 Columbia descent BET products and results for LaRC OEX investigations

    NASA Technical Reports Server (NTRS)

    Oakes, Kevin F.; Findlay, John T.; Jasinski, Rachel A.; Wood, James S.

    1991-01-01

    Final STS-35 'Columbia' descent Best Estimate Trajectory (BET) products have been developed for Langley Research Center (LaRC) Orbiter Experiments (OEX) investigations. Included are the reconstructed inertial trajectory profile; the Extended BET, which combines the inertial data and, in this instance, the National Weather Service atmospheric information obtained via Johnson Space Center; and the Aerodynamic BET. The inertial BET utilized Inertial Measurement Unit 1 (IMU1) dynamic measurements for deterministic propagation during the ENTREE estimation process. The final estimate was based on the considerable ground based C-band tracking coverage available as well as Tracking Data and Relay Satellite System (TDRSS) Doppler data, a unique use of the latter for endo-atmospheric flight determinations. The actual estimate required simultaneous solutions for the spacecraft position and velocity, spacecraft attitude, and six IMU parameters - three gyro biases and three accelerometer scale factor correction terms. The anchor epoch for this analysis was 19,200 Greenwich Mean Time (GMT) seconds which corresponds to an initial Shuttle altitude of approximately 513 kft. The atmospheric data incorporated were evaluated based on Shuttle derived considerations as well as comparisons with other models. The AEROBET was developed based on the Extended BET, the measured spacecraft configuration information, final mass properties, and the final Orbiter preoperation databook. The latter was updated based on aerodynamic consensus incrementals derived by the latest published FAD. The rectified predictions were compared versus the flight computed values and the resultant differences were correlated versus ensemble results for twenty-two previous STS entry flights.

  2. The Mars Science Laboratory (MSL) Entry, Descent And Landing Instrumentation (MEDLI): Hardware Performance and Data Reconstruction

    NASA Technical Reports Server (NTRS)

    Little, Alan; Bose, Deepak; Karlgaard, Chris; Munk, Michelle; Kuhl, Chris; Schoenenberger, Mark; Antill, Chuck; Verhappen, Ron; Kutty, Prasad; White, Todd

    2013-01-01

    The Mars Science Laboratory (MSL) Entry, Descent and Landing Instrumentation (MEDLI) hardware was a first-of-its-kind sensor system that gathered temperature and pressure readings on the MSL heatshield during Mars entry on August 6, 2012. MEDLI began as challenging instrumentation problem, and has been a model of collaboration across multiple NASA organizations. After the culmination of almost 6 years of effort, the sensors performed extremely well, collecting data from before atmospheric interface through parachute deploy. This paper will summarize the history of the MEDLI project and hardware development, including key lessons learned that can apply to future instrumentation efforts. MEDLI returned an unprecedented amount of high-quality engineering data from a Mars entry vehicle. We will present the performance of the 3 sensor types: pressure, temperature, and isotherm tracking, as well as the performance of the custom-built sensor support electronics. A key component throughout the MEDLI project has been the ground testing and analysis effort required to understand the returned flight data. Although data analysis is ongoing through 2013, this paper will reveal some of the early findings on the aerothermodynamic environment that MSL encountered at Mars, the response of the heatshield material to that heating environment, and the aerodynamic performance of the entry vehicle. The MEDLI data results promise to challenge our engineering assumptions and revolutionize the way we account for margins in entry vehicle design.

  3. Estimation of IMU and MARG orientation using a gradient descent algorithm.

    PubMed

    Madgwick, Sebastian O H; Harrison, Andrew J L; Vaidyanathan, Andrew

    2011-01-01

    This paper presents a novel orientation algorithm designed to support a computationally efficient, wearable inertial human motion tracking system for rehabilitation applications. It is applicable to inertial measurement units (IMUs) consisting of tri-axis gyroscopes and accelerometers, and magnetic angular rate and gravity (MARG) sensor arrays that also include tri-axis magnetometers. The MARG implementation incorporates magnetic distortion compensation. The algorithm uses a quaternion representation, allowing accelerometer and magnetometer data to be used in an analytically derived and optimised gradient descent algorithm to compute the direction of the gyroscope measurement error as a quaternion derivative. Performance has been evaluated empirically using a commercially available orientation sensor and reference measurements of orientation obtained using an optical measurement system. Performance was also benchmarked against the propriety Kalman-based algorithm of orientation sensor. Results indicate the algorithm achieves levels of accuracy matching that of the Kalman based algorithm; < 0.8° static RMS error, < 1.7° dynamic RMS error. The implications of the low computational load and ability to operate at small sampling rates significantly reduces the hardware and power necessary for wearable inertial movement tracking, enabling the creation of lightweight, inexpensive systems capable of functioning for extended periods of time.

  4. Neighborhood Hispanic composition and depressive symptoms among Mexican-descent residents of Texas City, Texas.

    PubMed

    Shell, Alyssa Marie; Peek, M Kristen; Eschbach, Karl

    2013-12-01

    Substantial research shows that increased Hispanic neighborhood concentration is associated with several beneficial health outcomes including lower adult mortality, better self-rated health, and fewer respiratory problems. Literature on the relationship of Hispanic composition and depressive symptoms is more equivocal. In addition, few studies have directly investigated hypothesized mechanisms of this relationship. This study uses data from a probability sample of 1238 Mexican-descent adults living in 48 neighborhoods in Texas City, Texas. Multilevel regression models investigate whether Hispanic neighborhood composition is associated with fewer depressive symptoms. This study also investigates whether social support, perceived discrimination, and perceived stress mediate or moderate the relationship, and whether results differ by primary language used at home. We find that individuals living in high Hispanic composition neighborhoods experience fewer depressive symptoms than individuals in low Hispanic composition neighborhoods. In addition, we find that these beneficial effects only apply to respondents who speak English. Social support, perceived discrimination, and perceived stress mediate the Hispanic composition-depressive symptoms relationship. In addition, discrimination and stress moderate the relationship between Hispanic composition and depressive symptoms. Our findings support theories linking higher neighborhood Hispanic composition and better mental health, and suggest that Spanish language use, social support, discrimination and stress may play important roles in the Hispanic composition-depressive symptoms relationship.

  5. Association of adiposity genetic variants with menarche timing in 92,105 women of European descent.

    PubMed

    Fernández-Rhodes, Lindsay; Demerath, Ellen W; Cousminer, Diana L; Tao, Ran; Dreyfus, Jill G; Esko, Tõnu; Smith, Albert V; Gudnason, Vilmundur; Harris, Tamara B; Launer, Lenore; McArdle, Patrick F; Yerges-Armstrong, Laura M; Elks, Cathy E; Strachan, David P; Kutalik, Zoltán; Vollenweider, Peter; Feenstra, Bjarke; Boyd, Heather A; Metspalu, Andres; Mihailov, Evelin; Broer, Linda; Zillikens, M Carola; Oostra, Ben; van Duijn, Cornelia M; Lunetta, Kathryn L; Perry, John R B; Murray, Anna; Koller, Daniel L; Lai, Dongbing; Corre, Tanguy; Toniolo, Daniela; Albrecht, Eva; Stöckl, Doris; Grallert, Harald; Gieger, Christian; Hayward, Caroline; Polasek, Ozren; Rudan, Igor; Wilson, James F; He, Chunyan; Kraft, Peter; Hu, Frank B; Hunter, David J; Hottenga, Jouke-Jan; Willemsen, Gonneke; Boomsma, Dorret I; Byrne, Enda M; Martin, Nicholas G; Montgomery, Grant W; Warrington, Nicole M; Pennell, Craig E; Stolk, Lisette; Visser, Jenny A; Hofman, Albert; Uitterlinden, André G; Rivadeneira, Fernando; Lin, Peng; Fisher, Sherri L; Bierut, Laura J; Crisponi, Laura; Porcu, Eleonora; Mangino, Massimo; Zhai, Guangju; Spector, Tim D; Buring, Julie E; Rose, Lynda M; Ridker, Paul M; Poole, Charles; Hirschhorn, Joel N; Murabito, Joanne M; Chasman, Daniel I; Widen, Elisabeth; North, Kari E; Ong, Ken K; Franceschini, Nora

    2013-08-01

    Obesity is of global health concern. There are well-described inverse relationships between female pubertal timing and obesity. Recent genome-wide association studies of age at menarche identified several obesity-related variants. Using data from the ReproGen Consortium, we employed meta-analytical techniques to estimate the associations of 95 a priori and recently identified obesity-related (body mass index (weight (kg)/height (m)(2)), waist circumference, and waist:hip ratio) single-nucleotide polymorphisms (SNPs) with age at menarche in 92,116 women of European descent from 38 studies (1970-2010), in order to estimate associations between genetic variants associated with central or overall adiposity and pubertal timing in girls. Investigators in each study performed a separate analysis of associations between the selected SNPs and age at menarche (ages 9-17 years) using linear regression models and adjusting for birth year, site (as appropriate), and population stratification. Heterogeneity of effect-measure estimates was investigated using meta-regression. Six novel associations of body mass index loci with age at menarche were identified, and 11 adiposity loci previously reported to be associated with age at menarche were confirmed, but none of the central adiposity variants individually showed significant associations. These findings suggest complex genetic relationships between menarche and overall obesity, and to a lesser extent central obesity, in normal processes of growth and development.

  6. Guidance and Control Algorithms for the Mars Entry, Descent and Landing Systems Analysis

    NASA Technical Reports Server (NTRS)

    Davis, Jody L.; CwyerCianciolo, Alicia M.; Powell, Richard W.; Shidner, Jeremy D.; Garcia-Llama, Eduardo

    2010-01-01

    The purpose of the Mars Entry, Descent and Landing Systems Analysis (EDL-SA) study was to identify feasible technologies that will enable human exploration of Mars, specifically to deliver large payloads to the Martian surface. This paper focuses on the methods used to guide and control two of the contending technologies, a mid- lift-to-drag (L/D) rigid aeroshell and a hypersonic inflatable aerodynamic decelerator (HIAD), through the entry portion of the trajectory. The Program to Optimize Simulated Trajectories II (POST2) is used to simulate and analyze the trajectories of the contending technologies and guidance and control algorithms. Three guidance algorithms are discussed in this paper: EDL theoretical guidance, Numerical Predictor-Corrector (NPC) guidance and Analytical Predictor-Corrector (APC) guidance. EDL-SA also considered two forms of control: bank angle control, similar to that used by Apollo and the Space Shuttle, and a center-of-gravity (CG) offset control. This paper presents the performance comparison of these guidance algorithms and summarizes the results as they impact the technology recommendations for future study.

  7. Entry, Descent, and Landing Operations Analysis for the Stardust Entry Capsule

    NASA Technical Reports Server (NTRS)

    Desai, Prasun N.; Lyons, Dan T.; Tooley, Jeff; Kangas, Julie

    2008-01-01

    On the morning of January 15, 2006, the Stardust capsule successfully landed at the Utah Test and Training range in northwest Utah returning cometary samples from the comet Wild-2. An overview of the entry, descent, and landing (EDL) trajectory analysis that was performed for targeting during the mission operations phase upon final approach to Earth is described. The final orbit determination solution produced an inertial entry flight-path angle of -8.21 deg (the desired nominal value) with a 3-sigma uncertainty of +/-0.0017 deg (2% of the requirement). The navigation and EDL operations effort accurately delivered the entry capsule to the desired landing site. The final landing location was 8.1 km from the target, which was well within the allowable landing area. Overall, the Earth approach operation procedures worked well and there were no issues (logistically or performance based) that arose. As a result, the process of targeting a capsule from an interplanetary trajectory and accurately landing it on Earth was successfully demonstrated.

  8. Entry, Descent, and Landing Guidance and Control Approaches to Satisfy Mars Human Mission Landing Criteria

    NASA Technical Reports Server (NTRS)

    Dwyer Cianciolo, Alicia; Powell, Richard W.

    2017-01-01

    Precision landing on Mars is a challenge. All Mars lander missions prior to the 2012 Mars Science Laboratory (MSL) had landing location uncertainty ellipses on the order of hundreds of kilometers. Sending humans to the surface of Mars will likely require multiple landers delivered in close proximity, which will in turn require orders of magnitude improvement in landing accuracy. MSL was the first Mars mission to use an Apollo-derived bank angle guidance to reduce the size of the landing ellipse. It utilized commanded bank angle magnitude to control total range and bank angle reversals to control cross range. A shortcoming of this bank angle guidance is that the open loop phase of flight created by use of bank reversals increases targeting errors. This paper presents a comparison of entry, descent and landing performance for a vehicle with a low lift-to-drag ratio using both bank angle control and an alternative guidance called Direct Force Control (DFC). DFC eliminates the open loop flight errors by directly controlling two forces independently, lift and side force. This permits independent control of down range and cross range. Performance results, evaluated using the Program to Optimize Simulated Trajectories (POST2), including propellant use and landing accuracy, are presented.

  9. A Rigid Mid-Lift-to-Drag Ratio Approach to Human Mars Entry, Descent, and Landing

    NASA Technical Reports Server (NTRS)

    Cerimele, Christopher J.; Robertson, Edward A.; Sostaric, Ronald R.; Campbell, Charles H.; Robinson, Phil; Matz, Daniel A.; Johnson, Breanna J.; Stachowiak, Susan J.; Garcia, Joseph A.; Bowles, Jeffrey V.; Kinney, David J.; Theisinger, John E.

    2017-01-01

    Current NASA Human Mars architectures require delivery of approximately 20 metric tons of cargo to the surface in a single landing. A proposed vehicle type for performing the entry, descent, and landing at Mars associated with this architecture is a rigid, enclosed, elongated lifting body shape that provides a higher lift-to-drag ratio (L/D) than a typical entry capsule, but lower than a typical winged entry vehicle (such as the Space Shuttle Orbiter). A rigid Mid-L/D shape has advantages for large mass Mars EDL, including loads management, range capability during entry, and human spaceflight heritage. Previous large mass Mars studies have focused more on symmetric and/or circular cross-section Mid-L/D shapes such as the ellipsled. More recent work has shown performance advantages for non-circular cross section shapes. This paper will describe efforts to design a rigid Mid-L/D entry vehicle for Mars which shows mass and performance improvements over previous Mid-L/D studies. The proposed concept, work to date and evolution, forward path, and suggested future strategy are described.

  10. Risk-Constrained Dynamic Programming for Optimal Mars Entry, Descent, and Landing

    NASA Technical Reports Server (NTRS)

    Ono, Masahiro; Kuwata, Yoshiaki

    2013-01-01

    A chance-constrained dynamic programming algorithm was developed that is capable of making optimal sequential decisions within a user-specified risk bound. This work handles stochastic uncertainties over multiple stages in the CEMAT (Combined EDL-Mobility Analyses Tool) framework. It was demonstrated by a simulation of Mars entry, descent, and landing (EDL) using real landscape data obtained from the Mars Reconnaissance Orbiter. Although standard dynamic programming (DP) provides a general framework for optimal sequential decisionmaking under uncertainty, it typically achieves risk aversion by imposing an arbitrary penalty on failure states. Such a penalty-based approach cannot explicitly bound the probability of mission failure. A key idea behind the new approach is called risk allocation, which decomposes a joint chance constraint into a set of individual chance constraints and distributes risk over them. The joint chance constraint was reformulated into a constraint on an expectation over a sum of an indicator function, which can be incorporated into the cost function by dualizing the optimization problem. As a result, the chance-constraint optimization problem can be turned into an unconstrained optimization over a Lagrangian, which can be solved efficiently using a standard DP approach.

  11. Testicular descent, sperm maturation and capacitation. Lessons from our most distant relatives, the monotremes.

    PubMed

    Ecroyd, Heath; Nixon, Brett; Dacheux, Jean-Louis; Jones, Russell C

    2009-01-01

    The present review examines whether monotremes may help to resolve three questions relating to sperm production in mammals: why the testes descend into a scrotum in most mammals, why spermatozoa are infertile when they leave the testes and require a period of maturation in the specific milieu provided by the epididymides, and why ejaculated spermatozoa cannot immediately fertilise an ovum until they undergo capacitation within the female reproductive tract. Comparisons of monotremes with other mammals indicate that there is a need for considerable work on monotremes. It is hypothesised that testicular descent should be related to epididymal differentiation. Spermatozoa and ova from both groups share many of the proteins that are thought to be involved in gamete interaction, and although epididymal sperm maturation is significant it is probably less complex in monotremes than in other mammals. However, the monotreme epididymis is unique in forming spermatozoa into bundles of 100 with greatly enhanced motility compared with individual spermatozoa. Bundle formation involves a highly organised interaction with epididymal proteins, and the bundles persist during incubation in vitro, except in specialised medium, in which spermatozoa separate after 2-3 h incubation. It is suggested that this represents an early form of capacitation.

  12. An innovative navigation scheme of powered descent phase for Mars pinpoint landing

    NASA Astrophysics Data System (ADS)

    Qin, Tong; Zhu, Shengying; Cui, Pingyuan; Gao, Ai

    2014-11-01

    Pinpoint landing (within 100 m from the target) is essential for future Mars exploration missions. This paper deals with one aspect of the pinpoint landing architecture-the navigation performance improvement during the powered descent phase, and proposes an innovative navigation scheme to obtain the vehicle complete and accurate states. On the basis of dead reckoning relying on the Inertial Measurement Unit, measurements of the Integrated Doppler Radar are adopted to correct the vehicle velocity and altitude. Distance between the vehicle and one Mars Orbiter as well as their line-of-sight relative velocity is measured by a radio sensor, and integrated in the filter to correct the vehicle horizontal position. The innovative navigation system is based on an Extend Kalman Filter. Two observation schemes are developed. One considers measurements of the Integrated Doppler Radar and radio range measurement. Another further considers radio velocity measurement. The performance of the innovative navigation scheme is greatly influenced by the position of the Mars Orbiter with respect to the target. Stochastic analyses are performed to obtain optimal locations of Mars Orbiter. Finally, the innovative navigation scheme performances are assessed through stochastic simulations. Its performance improvements are demonstrated by comparison with the Integrated Doppler Radar only navigation scheme.

  13. Clogging of Joule-Thomson Devices in Liquid Hydrogen-Lunar Lander Descent Stage Operating Regime

    NASA Astrophysics Data System (ADS)

    Jurns, J. M.

    2010-04-01

    Joule-Thomson (J-T) devices have been identified as critical components for future space exploration missions. The NASA Constellation Program lunar architecture considers LOX/LH2 propulsion for the lunar lander descent stage main engine an enabling technology, ensuring the cryogenic propellants are available at the correct conditions for engine operation. This cryogenic storage system may utilize a Thermodynamic Vent System (TVS) that includes J-T devices to maintain tank fluid pressure and temperature. Previous experimental investigations have indicated that J-T devices may become clogged when flowing LH2 while operating at a temperature range from 20.5 K to 24.4 K. It has been proposed that clogging is due to a trace amount of metastable, supercooled liquid neon in the regular LH2 supply. In time, flow blockage occurs from accretion of solid neon on the orifice. This clogging poses a realistic threat to spacecraft propulsion systems utilizing J-T devices in cryogenic pressure control systems. TVS failure due to J-T clogging would prevent removal of environmental heat from the propellant and potential loss of mission. This report describes J-T clogging tests performed with LH2. Tests were performed in the expected Lunar Lander operating regime, and several methods were evaluated to determine the optimum approach to mitigating the potential risk of J-T clogging.

  14. Length distributions of identity by descent reveal fine-scale demographic history.

    PubMed

    Palamara, Pier Francesco; Lencz, Todd; Darvasi, Ariel; Pe'er, Itsik

    2012-11-02

    Data-driven studies of identity by descent (IBD) were recently enabled by high-resolution genomic data from large cohorts and scalable algorithms for IBD detection. Yet, haplotype sharing currently represents an underutilized source of information for population-genetics research. We present analytical results on the relationship between haplotype sharing across purportedly unrelated individuals and a population's demographic history. We express the distribution of IBD sharing across pairs of individuals for segments of arbitrary length as a function of the population's demography, and we derive an inference procedure to reconstruct such demographic history. The accuracy of the proposed reconstruction methodology was extensively tested on simulated data. We applied this methodology to two densely typed data sets: 500 Ashkenazi Jewish (AJ) individuals and 56 Kenyan Maasai (MKK) individuals (HapMap 3 data set). Reconstructing the demographic history of the AJ cohort, we recovered two subsequent population expansions, separated by a severe founder event, consistent with previous analysis of lower-throughput genetic data and historical accounts of AJ history. In the MKK cohort, high levels of cryptic relatedness were detected. The spectrum of IBD sharing is consistent with a demographic model in which several small-sized demes intermix through high migration rates and result in enrichment of shared long-range haplotypes. This scenario of historically structured demographies might explain the unexpected abundance of runs of homozygosity within several populations.

  15. Negotiating safe sex among women of Afro-Surinamese and Dutch Antillean descent in the Netherlands.

    PubMed

    Bertens, Madelief G B C; Wolfers, Mireille E G; van den Borne, Bart; Schaalma, Herman P

    2008-11-01

    Safe sex negotiation and communication about sexual risks with partners is important for women to ensure sexual risk reduction. This paper describes the results of a survey on safer sex and negotiation behavior, and the correlates of negotiation with partners among 128 women from Surinamese and Dutch Antillean descent in the Netherlands. The key findings are that 50% of the participants had negotiated sexual risk reduction with their partner, yet only 40% of the women who negotiated safer sex actually claimed practicing safe sex. Participants defined safe sex with steady partners primarily as negotiated safety and monogamy, and safe sex with casual partners primarily as condom use. Intentions to negotiate safer sex with steady partners were related to positive attitudes and perceived injunctive norms towards safe sex negotiation, and educational background. Intention to discuss safe sex with casual partners were primarily related to attitudes and perceived self-efficacy. STI/HIV prevention interventions targeting these women should incorporate awareness-raising of safety in different types of relationships, deciding on the appropriateness of relation-specific sexual risk reduction strategies, and building negotiation skills to accomplish the realization of these strategies.

  16. A simple and rapid method for calculating identity-by-descent matrices using multiple markers.

    PubMed

    Pong-Wong, R; George, A W; Woolliams, J A; Haley, C S

    2001-01-01

    A fast, partly recursive deterministic method for calculating Identity-by-Descent (IBD) probabilities was developed with the objective of using IBD in Quantitative Trait Locus (QTL) mapping. The method combined a recursive method for a single marker locus with a method to estimate IBD between sibs using multiple markers. Simulated data was used to compare the deterministic method developed in the present paper with a stochastic method (LOKI) for precision in estimating IBD probabilities and performance in the task of QTL detection with the variance component approach. This comparison was made in a variety of situations by varying family size and degree of polymorphism among marker loci. The following were observed for the deterministic method relative to MCMC: (i) it was an order of magnitude faster; (ii) its estimates of IBD probabilities were found to agree closely, even though it does not extract information when haplotypes are not known with certainty; (iii) the shape of the profile for the QTL test statistic as a function of location was similar, although the magnitude of the test statistic was slightly smaller; and (iv) the estimates of QTL variance was similar. It was concluded that the method proposed provided a rapid means of calculating the IBD matrix with only a small loss in precision, making it an attractive alternative to the use of stochastic MCMC methods. Furthermore, developments in marker technology providing denser maps would enhance the relative advantage of this method.

  17. Approximating identity-by-descent matrices using multiple haplotype configurations on pedigrees.

    PubMed

    Gao, Guimin; Hoeschele, Ina

    2005-09-01

    Identity-by-descent (IBD) matrix calculation is an important step in quantitative trait loci (QTL) analysis using variance component models. To calculate IBD matrices efficiently for large pedigrees with large numbers of loci, an approximation method based on the reconstruction of haplotype configurations for the pedigrees is proposed. The method uses a subset of haplotype configurations with high likelihoods identified by a haplotyping method. The new method is compared with a Markov chain Monte Carlo (MCMC) method (Loki) in terms of QTL mapping performance on simulated pedigrees. Both methods yield almost identical results for the estimation of QTL positions and variance parameters, while the new method is much more computationally efficient than the MCMC approach for large pedigrees and large numbers of loci. The proposed method is also compared with an exact method (Merlin) in small simulated pedigrees, where both methods produce nearly identical estimates of position-specific kinship coefficients. The new method can be used for fine mapping with joint linkage disequilibrium and linkage analysis, which improves the power and accuracy of QTL mapping.

  18. Stochastic Gradient Descent and the Prediction of MeSH for PubMed Records.

    PubMed

    Wilbur, W John; Kim, Won

    2014-01-01

    Stochastic Gradient Descent (SGD) has gained popularity for solving large scale supervised machine learning problems. It provides a rapid method for minimizing a number of loss functions and is applicable to Support Vector Machine (SVM) and Logistic optimizations. However SGD does not provide a convenient stopping criterion. Generally an optimal number of iterations over the data may be determined using held out data. Here we compare stopping predictions based on held out data with simply stopping at a fixed number of iterations and show that the latter works as well as the former for a number of commonly studied text classification problems. In particular fixed stopping works well for MeSH(®) predictions on PubMed(®) records. We also surveyed the published algorithms for SVM learning on large data sets, and chose three for comparison: PROBE, SVMperf, and Liblinear and compared them with SGD with a fixed number of iterations. We find SGD with a fixed number of iterations performs as well as these alternative methods and is much faster to compute. As an application we made SGD-SVM predictions for all MeSH terms and used the Pool Adjacent Violators (PAV) algorithm to convert these predictions to probabilities. Such probabilistic predictions lead to ranked MeSH term predictions superior to previously published results on two test sets.

  19. PRIMUS: rapid reconstruction of pedigrees from genome-wide estimates of identity by descent.

    PubMed

    Staples, Jeffrey; Qiao, Dandi; Cho, Michael H; Silverman, Edwin K; Nickerson, Deborah A; Below, Jennifer E

    2014-11-06

    Understanding and correctly utilizing relatedness among samples is essential for genetic analysis; however, managing sample records and pedigrees can often be error prone and incomplete. Data sets ascertained by random sampling often harbor cryptic relatedness that can be leveraged in genetic analyses for maximizing power. We have developed a method that uses genome-wide estimates of pairwise identity by descent to identify families and quickly reconstruct and score all possible pedigrees that fit the genetic data by using up to third-degree relatives, and we have included it in the software package PRIMUS (Pedigree Reconstruction and Identification of the Maximally Unrelated Set). Here, we validate its performance on simulated, clinical, and HapMap pedigrees. Among these samples, we demonstrate that PRIMUS can verify reported pedigree structures and identify cryptic relationships. Finally, we show that PRIMUS reconstructed pedigrees, all of which were previously unknown, for 203 families from a cohort collected in Starr County, TX (1,890 samples).

  20. A Probabilistic Method for Estimating the Sharing of Identity by Descent for Populations with Migration.

    PubMed

    Ni, Xumin; Guo, Wei; Yuan, Kai; Yang, Xiong; Ma, Zhiming; Xu, Shuhua; Zhang, Shihua

    2016-01-01

    The inference of demographic history of populations is an important undertaking in population genetics. A few recent studies have developed identity-by-descent (IBD) based methods to reveal the signature of the relatively recent historical events. Notably, Pe'er and his colleagues have introduced a novel method (named PIBD here) by employing IBD sharing to infer effective population size and migration rate. However, under island model, PIBD neglects the coalescent information before the time to the most recent common ancestor (tMRCA) which leads to apparent deviations in certain situations. In this paper, we propose a new method, MIBD, by adopting a Markov process to describe the island model and develop a new formula for estimating IBD sharing. The new formula considers the coalescent information before tMRCA and the joint effect of the coalescent and migration events. We apply both MIBD and PIBD to the genome-wide data of two human populations (Palestinian and Bedouin) obtained from the HGDP-CEPH database, and demonstrate that MIBD is competitive to PIBD. Our simulation analyses also show that the results of MIBD are more accurate than those of PIBD especially in the case of small effective population size.