Science.gov

Sample records for accelerated steepest descent

  1. A new steepest descent method

    NASA Astrophysics Data System (ADS)

    Abidin, Zubai'ah Zainal; Mamat, Mustafa; Rivaie, Mohd; Mohd, Ismail

    2014-06-01

    The classical steepest descent (SD) method is known as one of the earliest and the best method to minimize a function. Even though the convergence rate is quite slow, but its simplicity has made it one of the easiest methods to be used and applied especially in the form of computer codes. In this paper, a new modification of SD method is proposed using a new search direction (dk) in the form of two parameters. Numerical results shows that this new SD has far superior convergence rate and more efficient than the classical SD method.

  2. Accelerated projected steepest descent method for nonlinear inverse problems with sparsity constraints

    NASA Astrophysics Data System (ADS)

    Teschke, Gerd; Borries, Claudia

    2010-02-01

    This paper is concerned with the construction of an iterative algorithm to solve nonlinear inverse problems with an ell1 constraint on x. One extensively studied method to obtain a solution of such an ell1 penalized problem is iterative soft-thresholding. Regrettably, such iteration schemes are computationally very intensive. A subtle alternative to iterative soft-thresholding is the projected gradient method that was quite recently proposed by Daubechies et al (2008 J. Fourier Anal. Appl. 14 764-92). The authors have shown that the proposed scheme is indeed numerically much thriftier. However, its current applicability is limited to linear inverse problems. In this paper we provide an extension of this approach to nonlinear problems. Adequately adapting the conditions on the (variable) thresholding parameter to the nonlinear nature, we can prove convergence in norm for this projected gradient method, with and without acceleration. A numerical verification is given in the context of nonlinear and non-ideal sensing. For this particular recovery problem we can achieve an impressive numerical performance (when comparing it to non-accelerated procedures).

  3. Distributed Control by Lagrangian Steepest Descent

    NASA Technical Reports Server (NTRS)

    Wolpert, David H.; Bieniawski, Stefan

    2004-01-01

    Often adaptive, distributed control can be viewed as an iterated game between independent players. The coupling between the players mixed strategies, arising as the system evolves from one instant to the next, is determined by the system designer. Information theory tells us that the most likely joint strategy of the players, given a value of the expectation of the overall control objective function, is the minimizer of a function o the joint strategy. So the goal of the system designer is to speed evolution of the joint strategy to that Lagrangian mhimbhgpoint,lowerthe expectated value of the control objective function, and repeat Here we elaborate the theory of algorithms that do this using local descent procedures, and that thereby achieve efficient, adaptive, distributed control.

  4. A new steepest descent method with global convergence properties

    NASA Astrophysics Data System (ADS)

    Abidin, Zubai'ah Zainal; Mamat, Mustafa; Rivaie, Mohd.

    2016-06-01

    One of the earliest and the best method to minimize a function is the classical steepest descent (SD) method. In this paper, a new modification of SD method is suggested using a new search direction, d k. The numerical results are presented based on number of iterations and CPU time. It shows that the new d k are efficient when compared to the classical SD.

  5. Efficient Love wave modeling via Sobolev gradient steepest descent

    NASA Astrophysics Data System (ADS)

    Browning, Matt; Ferguson, John; McMechan, George

    2016-02-01

    A new method for finding solutions to ordinary differential equation boundary value problems is introduced, in which Sobolev gradient steepest descent is used to determine eigenfunctions and eigenvalues simultaneously in an iterative scheme. The technique is then applied to the 1-D Love wave problem. The algorithm has several advantages when computing dispersion curves. It avoids the problem of mode skipping, and can handle arbitrary Earth structure profiles in depth. For a given frequency range, computation times scale approximately as the square root of the number of frequencies, and the computation of dispersion curves can be implemented in a fully parallel manner over the modes involved. The steepest descent solutions are within a fraction of a percent of the analytic solutions for the first 25 modes for a two-layer model. Since all corresponding eigenfunctions are computed along with the dispersion curves, the impact on group and phase velocity of the displacement behavior with depth is thoroughly examined. The dispersion curves are used to compute synthetic Love wave seismograms that include many higher order modes. An example includes addition of attenuation to a model with a low velocity zone, with values as low as Q = 20. Finally, a confirming comparison is made with a layer matrix method on the upper 700 km of a whole Earth model.

  6. Efficient Love wave modelling via Sobolev gradient steepest descent

    NASA Astrophysics Data System (ADS)

    Browning, Matt; Ferguson, John; McMechan, George

    2016-05-01

    A new method for finding solutions to ordinary differential equation boundary value problems is introduced, in which Sobolev gradient steepest descent is used to determine eigenfunctions and eigenvalues simultaneously in an iterative scheme. The technique is then applied to the 1-D Love wave problem. The algorithm has several advantages when computing dispersion curves. It avoids the problem of mode skipping, and can handle arbitrary Earth structure profiles in depth. For a given frequency range, computation times scale approximately as the square root of the number of frequencies, and the computation of dispersion curves can be implemented in a fully parallel manner over the modes involved. The steepest descent solutions are within a fraction of a per cent of the analytic solutions for the first 25 modes for a two-layer model. Since all corresponding eigenfunctions are computed along with the dispersion curves, the impact on group and phase velocity of the displacement behaviour with depth is thoroughly examined. The dispersion curves are used to compute synthetic Love wave seismograms that include many higher order modes. An example includes addition of attenuation to a model with a low-velocity zone, with values as low as Q = 20. Finally, a confirming comparison is made with a layer matrix method on the upper 700 km of a whole Earth model.

  7. Comparison of minimum-action and steepest-descent paths in gradient systems.

    PubMed

    Díaz Leines, Grisell; Rogal, Jutta

    2016-02-01

    On high-dimensional and complex potential energy surfaces, the identification of the most likely mechanism for the transition between local minima is a challenging task. Usually the steepest-descent path is used interchangeably with the minimum-energy path and is associated with the most likely path. Here we compare the meaning of the steepest-descent path in complex energy landscapes to the path integral formulation of a trajectory that minimizes the action functional for Brownian dynamics. In particular, for energy landscapes with bifurcation points and multiple minima and saddle points, there can be several steepest-descent paths associated with specific saddles that connect two predetermined states but largely differ from the path of maximum likelihood. The minimum-action path, however, additionally takes into account the scalar work along the trajectory. Minimizing the scalar work can be less ambiguous in the identification of the most likely path in different gradient systems. It can also be used to distinguish between multiple steepest-descent paths that connect reactant and product states. We illustrate that in systems with complex energy landscapes a careful assessment of the steepest-descent path is thus advisable. Here the evaluation of the action can provide valuable information on the analysis and description of the most likely path. PMID:26986352

  8. Use of steepest descent and various approximations for efficient computation of minimum noise aircraft landing trajectories

    NASA Technical Reports Server (NTRS)

    Cook, G.; Witt, R. M.

    1976-01-01

    The following areas related to landing trajectory optimization research were discussed: (1) programming and modifying the steepest descent optimization procedure, (2) successfully iterating toward the optimum for a four-mile trajectory, (3) beginning optimization runs for a twenty-mile trajectory, and (4) adapt wind tunnel data for computer usage. Other related areas were discussed in detail in the two previous annual reports.

  9. Efficiently finding the minimum free energy path from steepest descent path.

    PubMed

    Chen, Changjun; Huang, Yanzhao; Ji, Xiaofeng; Xiao, Yi

    2013-04-28

    Minimum Free Energy Path (MFEP) is very important in computational biology and chemistry. The barrier in the path is related to the reaction rate, and the start-to-end difference gives the relative stability between reactant and product. All these information is significant to experiment and practical application. But finding MFEP is not an easy job. Lots of degrees of freedom make the computation very complicated and time consuming. In this paper, we use the Steepest Descent Path (SDP) to accelerate the sampling of MFEP. The SHAKE algorithm and the Lagrangian multipliers are used to control the optimization of both SDP and MFEP. These strategies are simple and effective. For the former, it is more interesting. Because as we known, SHAKE algorithm was designed to handle the constraints in molecular dynamics in the past, has never been used in geometry optimization. Final applications on ALA dipeptide and 10-ALA peptide show that this combined optimization method works well. Use the information in SDP, the initial path could reach the more optimal MFEP. So more accurate free energies could be obtained and the amount of computation time could be saved. PMID:23635126

  10. Nonlinear Performance Seeking Control using Fuzzy Model Reference Learning Control and the Method of Steepest Descent

    NASA Technical Reports Server (NTRS)

    Kopasakis, George

    1997-01-01

    Performance Seeking Control (PSC) attempts to find and control the process at the operating condition that will generate maximum performance. In this paper a nonlinear multivariable PSC methodology will be developed, utilizing the Fuzzy Model Reference Learning Control (FMRLC) and the method of Steepest Descent or Gradient (SDG). This PSC control methodology employs the SDG method to find the operating condition that will generate maximum performance. This operating condition is in turn passed to the FMRLC controller as a set point for the control of the process. The conventional SDG algorithm is modified in this paper in order for convergence to occur monotonically. For the FMRLC control, the conventional fuzzy model reference learning control methodology is utilized, with guidelines generated here for effective tuning of the FMRLC controller.

  11. The nonlinear steepest descent approach to the singular asymptotics of the second Painlevé transcendent

    NASA Astrophysics Data System (ADS)

    Bothner, Thomas; Its, Alexander

    2012-12-01

    We consider the real-valued solutions of the second Painlevé equation on the real line. The two-parameter family of the solutions having singular asymptotics as x→+∞ or/and x→-∞ is studied with the help of the Deift-Zhou nonlinear steepest descent method. Explicit evaluation in terms of trigonometric functions of the (singular) leading orders of the asymptotics is carried out and the corresponding connection formulae obtained. A novel methodological feature is the appearance of the “soliton” type Riemann-Hilbert problem in the course of the implementation of the Deift-Zhou scheme for the Riemann-Hilbert problem corresponding to the second Painlevé equation within the Riemann-Hilbert isomonodromy approach. The result of the paper reproduces previously known formulae derived by Kapaev via the original isomonodromy technique.

  12. The q-G method : A q-version of the Steepest Descent method for global optimization.

    PubMed

    Soterroni, Aline C; Galski, Roberto L; Scarabello, Marluce C; Ramos, Fernando M

    2015-01-01

    In this work, the q-Gradient (q-G) method, a q-version of the Steepest Descent method, is presented. The main idea behind the q-G method is the use of the negative of the q-gradient vector of the objective function as the search direction. The q-gradient vector, or simply the q-gradient, is a generalization of the classical gradient vector based on the concept of Jackson's derivative from the q-calculus. Its use provides the algorithm an effective mechanism for escaping from local minima. The q-G method reduces to the Steepest Descent method when the parameter q tends to 1. The algorithm has three free parameters and it is implemented so that the search process gradually shifts from global exploration in the beginning to local exploitation in the end. We evaluated the q-G method on 34 test functions, and compared its performance with 34 optimization algorithms, including derivative-free algorithms and the Steepest Descent method. Our results show that the q-G method is competitive and has a great potential for solving multimodal optimization problems. PMID:26543781

  13. The DOPEX code: An application of the method of steepest descent to laminated-shield-weight optimization with several constraints

    NASA Technical Reports Server (NTRS)

    Lahti, G. P.

    1972-01-01

    A two- or three-constraint, two-dimensional radiation shield weight optimization procedure and a computer program, DOPEX, is described. The DOPEX code uses the steepest descent method to alter a set of initial (input) thicknesses for a shield configuration to achieve a minimum weight while simultaneously satisfying dose constaints. The code assumes an exponential dose-shield thickness relation with parameters specified by the user. The code also assumes that dose rates in each principal direction are dependent only on thicknesses in that direction. Code input instructions, FORTRAN 4 listing, and a sample problem are given. Typical computer time required to optimize a seven-layer shield is about 0.1 minute on an IBM 7094-2.

  14. Feature Clustering for Accelerating Parallel Coordinate Descent

    SciTech Connect

    Scherrer, Chad; Tewari, Ambuj; Halappanavar, Mahantesh; Haglin, David J.

    2012-12-06

    We demonstrate an approach for accelerating calculation of the regularization path for L1 sparse logistic regression problems. We show the benefit of feature clustering as a preconditioning step for parallel block-greedy coordinate descent algorithms.

  15. An extension of the steepest descent method for Riemann-Hilbert problems: the small dispersion limit of the Korteweg-de Vries (KdV) equation.

    PubMed

    Deift, P; Venakides, S; Zhou, X

    1998-01-20

    This paper extends the steepest descent method for Riemann-Hilbert problems introduced by Deift and Zhou in a critical new way. We present, in particular, an algorithm, to obtain the support of the Riemann-Hilbert problem for leading asymptotics. Applying this extended method to small dispersion KdV (Korteweg-de Vries) equation, we (i) recover the variational formulation of P. D. Lax and C. D. Levermore [(1979) Proc. Natl. Acad. Sci. USA76, 3602-3606] for the weak limit of the solution, (ii) derive, without using an ansatz, the hyperelliptic asymptotic solution of S. Venakides that describes the oscillations; and (iii) are now able to compute the phase shifts, integrating the modulation equations exactly. The procedure of this paper is a version of fully nonlinear geometrical optics for integrable systems. With some additional analysis the theory can provide rigorous error estimates between the solution and its computed asymptotic expression. PMID:11038618

  16. Comparing three stochastic search algorithms for computational protein design: Monte Carlo, replica exchange Monte Carlo, and a multistart, steepest-descent heuristic.

    PubMed

    Mignon, David; Simonson, Thomas

    2016-07-15

    Computational protein design depends on an energy function and an algorithm to search the sequence/conformation space. We compare three stochastic search algorithms: a heuristic, Monte Carlo (MC), and a Replica Exchange Monte Carlo method (REMC). The heuristic performs a steepest-descent minimization starting from thousands of random starting points. The methods are applied to nine test proteins from three structural families, with a fixed backbone structure, a molecular mechanics energy function, and with 1, 5, 10, 20, 30, or all amino acids allowed to mutate. Results are compared to an exact, "Cost Function Network" method that identifies the global minimum energy conformation (GMEC) in favorable cases. The designed sequences accurately reproduce experimental sequences in the hydrophobic core. The heuristic and REMC agree closely and reproduce the GMEC when it is known, with a few exceptions. Plain MC performs well for most cases, occasionally departing from the GMEC by 3-4 kcal/mol. With REMC, the diversity of the sequences sampled agrees with exact enumeration where the latter is possible: up to 2 kcal/mol above the GMEC. Beyond, room temperature replicas sample sequences up to 10 kcal/mol above the GMEC, providing thermal averages and a solution to the inverse protein folding problem. © 2016 Wiley Periodicals, Inc. PMID:27197555

  17. Accelerated Mini-batch Randomized Block Coordinate Descent Method

    PubMed Central

    Zhao, Tuo; Yu, Mo; Wang, Yiming; Arora, Raman; Liu, Han

    2014-01-01

    We consider regularized empirical risk minimization problems. In particular, we minimize the sum of a smooth empirical risk function and a nonsmooth regularization function. When the regularization function is block separable, we can solve the minimization problems in a randomized block coordinate descent (RBCD) manner. Existing RBCD methods usually decrease the objective value by exploiting the partial gradient of a randomly selected block of coordinates in each iteration. Thus they need all data to be accessible so that the partial gradient of the block gradient can be exactly obtained. However, such a “batch” setting may be computationally expensive in practice. In this paper, we propose a mini-batch randomized block coordinate descent (MRBCD) method, which estimates the partial gradient of the selected block based on a mini-batch of randomly sampled data in each iteration. We further accelerate the MRBCD method by exploiting the semi-stochastic optimization scheme, which effectively reduces the variance of the partial gradient estimators. Theoretically, we show that for strongly convex functions, the MRBCD method attains lower overall iteration complexity than existing RBCD methods. As an application, we further trim the MRBCD method to solve the regularized sparse learning problems. Our numerical experiments shows that the MRBCD method naturally exploits the sparsity structure and achieves better computational performance than existing methods. PMID:25620860

  18. Monte Carlo simulations of electromagnetic wave scattering from a random rough surface with three-dimensional penetrable buried object: mine detection application using the steepest-descent fast multipole method.

    PubMed

    El-Shenawee, M; Rappaport, C; Silevitch, M

    2001-12-01

    We present a statistical study of the electric field scattered from a three-dimensional penetrable object buried under a two-dimensional random rough surface. Monte Carlo simulations using the steepest-descent fast multipole method (SDFMM) are conducted to calculate the average and the standard deviation of the near-zone scattered fields. The SDFMM, originally developed at the University of Illinois at Urbana-Champaign, has been modified to calculate the unknown surface currents both on the rough ground and on the buried object that are due to excitation by a tapered Gaussian beam. The rough ground medium used is an experimentally measured typical dry Bosnian soil with 3.8% moisture, while the buried object represents a plastic land mine modeled as an oblate spheroid with dimensions and burial depth smaller than the free-space wavelength. Both vertical and horizontal polarizations for the incident waves are studied. The numerical results show that the TNT mine signature is almost 5% of the total field scattered from the ground. Moreover, relatively recognizable object signatures are observed even when the object is buried under the tail of the incident beam. Interestingly, even for the small surface roughness parameters considered, the standard deviation of the object signature is almost 30% of the signal itself, indicating significant clutter distortion that is due to the roughness of the ground. PMID:11760205

  19. Descent vehicles

    NASA Technical Reports Server (NTRS)

    Popov, Y. I.

    1985-01-01

    The creation of descent vehicles marked a new stage in the development of cosmonautics, involving the beginning of manned space flight and substantial progress in space research on the distant bodies of the Solar System. This booklet describes these vehicles and their structures, systems, and purposes. It is intended for the general public interested in modern problems of space technology.

  20. Comparison of a discrete steepest ascent method with the continuous steepest ascent method for optimal programing

    NASA Technical Reports Server (NTRS)

    Childs, A. G.

    1971-01-01

    A discrete steepest ascent method which allows controls which are not piecewise constant (for example, it allows all continuous piecewise linear controls) was derived for the solution of optimal programming problems. This method is based on the continuous steepest ascent method of Bryson and Denham and new concepts introduced by Kelley and Denham in their development of compatible adjoints for taking into account the effects of numerical integration. The method is a generalization of the algorithm suggested by Canon, Cullum, and Polak with the details of the gradient computation given. The discrete method was compared with the continuous method for an aerodynamics problem for which an analytic solution is given by Pontryagin's maximum principle, and numerical results are presented. The discrete method converges more rapidly than the continuous method at first, but then for some undetermined reason, loses its exponential convergence rate. A comparsion was also made for the algorithm of Canon, Cullum, and Polak using piecewise constant controls. This algorithm is very competitive with the continuous algorithm.

  1. Ascent/Descent Software

    NASA Technical Reports Server (NTRS)

    Brown, Charles; Andrew, Robert; Roe, Scott; Frye, Ronald; Harvey, Michael; Vu, Tuan; Balachandran, Krishnaiyer; Bly, Ben

    2012-01-01

    The Ascent/Descent Software Suite has been used to support a variety of NASA Shuttle Program mission planning and analysis activities, such as range safety, on the Integrated Planning System (IPS) platform. The Ascent/Descent Software Suite, containing Ascent Flight Design (ASC)/Descent Flight Design (DESC) Configuration items (Cis), lifecycle documents, and data files used for shuttle ascent and entry modeling analysis and mission design, resides on IPS/Linux workstations. A list of tools in Navigation (NAV)/Prop Software Suite represents tool versions established during or after the IPS Equipment Rehost-3 project.

  2. Random versus Deterministic Descent in RNA Energy Landscape Analysis

    PubMed Central

    Day, Luke; Abdelhadi Ep Souki, Ouala; Albrecht, Andreas A.; Steinhöfel, Kathleen

    2016-01-01

    Identifying sets of metastable conformations is a major research topic in RNA energy landscape analysis, and recently several methods have been proposed for finding local minima in landscapes spawned by RNA secondary structures. An important and time-critical component of such methods is steepest, or gradient, descent in attraction basins of local minima. We analyse the speed-up achievable by randomised descent in attraction basins in the context of large sample sets where the size has an order of magnitude in the region of ~106. While the gain for each individual sample might be marginal, the overall run-time improvement can be significant. Moreover, for the two nongradient methods we analysed for partial energy landscapes induced by ten different RNA sequences, we obtained that the number of observed local minima is on average larger by 7.3% and 3.5%, respectively. The run-time improvement is approximately 16.6% and 6.8% on average over the ten partial energy landscapes. For the large sample size we selected for descent procedures, the coverage of local minima is very high up to energy values of the region where the samples were randomly selected from the partial energy landscapes; that is, the difference to the total set of local minima is mainly due to the upper area of the energy landscapes. PMID:27110241

  3. Terminal Descent Sensor Simulation

    NASA Technical Reports Server (NTRS)

    Chen, Curtis W.

    2009-01-01

    Sulcata software simulates the operation of the Mars Science Laboratory (MSL) radar terminal descent sensor (TDS). The program models TDS radar antennas, RF hardware, and digital processing, as well as the physics of scattering from a coherent ground surface. This application is specific to this sensor and is flexible enough to handle end-to-end design validation. Sulcata is a high-fidelity simulation and is used for performance evaluation, anomaly resolution, and design validation. Within the trajectory frame, almost all internal vectors are represented in whatever coordinate system is used to represent platform position. The trajectory frame must be planet-fixed. The platform body frame is specified relative to arbitrary reference points relative to the platform (spacecraft or test vehicle). Its rotation is a function of time from the trajectory coordinate system specified via dynamics input (file for open loop, callback for closed loop). Orientation of the frame relative to the body is arbitrary, but constant over time. The TDS frame must have a constant rotation and translation from the platform body frame specified at run time. The DEM frame has an arbitrary, but time-constant, rotation and translation with respect to the simulation frame specified at run time. It has the same orientation as sigma0 frame, but is possibly translated. Surface sigma0 has the same arbitrary rotation and translation as DEM frame.

  4. Innovative Applications of Genetic Algorithms to Problems in Accelerator Physics

    SciTech Connect

    Hofler, Alicia; Terzic, Balsa; Kramer, Matthew; Zvezdin, Anton; Morozov, Vasiliy; Roblin, Yves; Lin, Fanglei; Jarvis, Colin

    2013-01-01

    The genetic algorithm (GA) is a relatively new technique that implements the principles nature uses in biological evolution in order to optimize a multidimensional nonlinear problem. The GA works especially well for problems with a large number of local extrema, where traditional methods (such as conjugate gradient, steepest descent, and others) fail or, at best, underperform. The field of accelerator physics, among others, abounds with problems which lend themselves to optimization via GAs. In this paper, we report on the successful application of GAs in several problems related to the existing CEBAF facility, the proposed MEIC at Jefferson Lab, and a radio frequency (RF) gun based injector. These encouraging results are a step forward in optimizing accelerator design and provide an impetus for application of GAs to other problems in the field. To that end, we discuss the details of the GAs used, including a newly devised enhancement, which leads to improved convergence to the optimum and make recommendations for future GA developments and accelerator applications.

  5. Simulation Test Of Descent Advisor

    NASA Technical Reports Server (NTRS)

    Davis, Thomas J.; Green, Steven M.

    1991-01-01

    Report describes piloted-simulation test of Descent Advisor (DA), subsystem of larger automation system being developed to assist human air-traffic controllers and pilots. Focuses on results of piloted simulation, in which airline crews executed controller-issued descent advisories along standard curved-path arrival routes. Crews able to achieve arrival-time precision of plus or minus 20 seconds at metering fix. Analysis of errors generated in turns resulted in further enhancements of algorithm to increase accuracies of its predicted trajectories. Evaluations by pilots indicate general support for DA concept and provide specific recommendations for improvement.

  6. EXOMARS Descent Module GNC Performance

    NASA Astrophysics Data System (ADS)

    Portigliotti, S.; Capuano, M.; Montagna, M.; Martella, P.; Venditto, P.

    2007-08-01

    The ExoMars mission is the first ESA led robotic mission of the Aurora Programme and combines technology development with investigations of major scientific interest. Italy is by far the major contributor to the mission through the strong support of the Italian Space Agency (ASI). ExoMars will search for traces of past and present life, characterize the Mars geochemistry and water distribution, improve the knowledge of the Mars environment and geophysics, and identify possible surface hazards to future human exploration missions. ExoMars will also validate the technology for safe Entry, Descent and Landing (EDL) of a large size Descent Module (DM) carrying a Rover with medium range surface mobility and the access to subsurface. The ExoMars project is presently undergoing its Phase B1 with Thales Alenia Space-Italia as Industrial Prime Contractor. Additionally, as Descent Module responsible, a dedicated simulation tool is under development in Thales Alenia Space-Italia, Turin site, for the end-to-end design and validation / verification of the DM Entry Descent and Landing.

  7. LANDER program manual: A lunar ascent and descent simulation

    NASA Technical Reports Server (NTRS)

    1988-01-01

    LANDER is a computer program used to predict the trajectory and flight performance of a spacecraft ascending or descending between a low lunar orbit of 15 to 500 nautical miles (nm) and the lunar surface. It is a three degree-of-freedom simulation which is used to analyze the translational motion of the vehicle during descent. Attitude dynamics and rotational motion are not considered. The program can be used to simulate either an ascent from the Moon or a descent to the Moon. For an ascent, the spacecraft is initialized at the lunar surface and accelerates vertically away from the ground at full thrust. When the local velocity becomes 30 ft/s, the vehicle turns downrange with a pitch-over maneuver and proceeds to fly a gravity turn until Main Engine Cutoff (MECO). The spacecraft then coasts until it reaches the requested holding orbit where it performs an orbital insertion burn. During a descent simulation, the lander begins in the holding orbit and performs a deorbit burn. It then coasts to pericynthion, where it reignites its engines and begins a gravity turn descent. When the local horizontal velocity becomes zero, the lander pitches up to a vertical orientation and begins to hover in search of a landing site. The lander hovers for a period of time specified by the user, and then lands.

  8. Consert during the Philae Descent

    NASA Astrophysics Data System (ADS)

    Herique, Alain; Berquin, Yann; Blazquez, Alejandro; Antoine Foulon, Marc; Hahnel, Ronny; Hegler, Sebastian; Jurado, Eric; Kofman, Wlodek; Plettemeier, Dirk; Rogez, Yves; Statz, Christoph; Zine, Sonia

    2014-05-01

    The CONSERT experiment on board Rosetta and Philae is to perform the tomography of the 67P/CG comet nucleus measuring radio waves transmission from the Rosetta S/C to the Philae Lander and using the 67P nucleus rotation to cover different geometries. CONSERT will operate during the Philae descent. This geometry strongly differs from the "nominal" bistatic tomography where the orbiter is on the opposite side of the nucleus by regard to the lander. During the descent, CONSERT will measure direct wave propagating from orbiter to lander and waves reflected / scattered by the 67P surface and subsurface. This signal will provide information of the greatest interest for both scientific investigations of 67P and technical operations of Philae. The landing site position is known a priori with a large ellipse of dispersion due to uncertainties on the Rosetta velocity and Rosetta/Philae separation strength. This dispersion is increased by the difference between nominal and emergency separation strength. An accurate estimation of the landing position as soon as possible after landing is of the greatest interest to optimize Philae operation during FSS. So propagation delay of the direct and reflected waves measured by CONSERT will help to reconstruct the descent geometry in order to more precisely estimate the landing position. The reflected signal is determined by the surface properties: its dielectric permittivity, its roughness and layering. The signal power inversion will allow to map surface properties especially in the vicinity of the landing site. This paper details the measurement configuration. It presents the data retrieval based on Monte-Carlo simulation using Metropolis-Hastings algorithm and expected performances for both science and operations.

  9. Spirit's Descent to Mars-1706

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This image, taken by the descent image motion estimation system camera located on the bottom of the Mars Exploration Rover Spirit's lander, shows a view of Gusev Crater as the lander descends to Mars. The picture is taken at an altitude of 1706 meters. Numerous small impact craters can be seen on the surface of the planet. These images help the onboard software to minimize the lander's horizontal velocity before its bridle is cut, and it falls freely to the surface of Mars.

  10. Spirit's Descent to Mars-1433

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This image, taken by the descent image motion estimation system camera located on the bottom of the Mars Exploration Rover Spirit's lander, shows a view of Gusev Crater as the lander descends to Mars. The picture is taken at an altitude of 1433 meters. Numerous small impact craters can be seen on the surface of the planet. These images help the onboard software to minimize the lander's horizontal velocity before its bridal is cut, and it falls freely to the surface of Mars.

  11. Spirit's Descent to Mars-1983

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This image, taken by the descent image motion estimation system camera located on the bottom of the Mars Exploration Rover Spirit's lander, shows a view of Gusev Crater as the lander descends to Mars. The picture is taken at an altitude of 1983 meters. Numerous small impact craters can be seen on the surface of the planet. These images help the onboard software to minimize the lander's horizontal velocity before its bridal is cut, and it falls freely to the surface of Mars.

  12. Ant colony optimization and stochastic gradient descent.

    PubMed

    Meuleau, Nicolas; Dorigo, Marco

    2002-01-01

    In this article, we study the relationship between the two techniques known as ant colony optimization (ACO) and stochastic gradient descent. More precisely, we show that some empirical ACO algorithms approximate stochastic gradient descent in the space of pheromones, and we propose an implementation of stochastic gradient descent that belongs to the family of ACO algorithms. We then use this insight to explore the mutual contributions of the two techniques. PMID:12171633

  13. Correlation as Probability of Common Descent.

    ERIC Educational Resources Information Center

    Falk, Ruma; Well, Arnold D.

    1996-01-01

    One interpretation of the Pearson product-moment correlation ("r"), correlation as the probability of originating from common descent, important to the genetic measurement of inbreeding, is examined. The conditions under which "r" can be interpreted as the probability of "identity by descent" are specified, and the possibility of generalizing this…

  14. Space Shuttle Orbiter descent navigation

    NASA Technical Reports Server (NTRS)

    Montez, M. N.; Madden, M. F.

    1982-01-01

    The entry operational sequence (OPS 3) begins approximately 2 hours prior to the deorbit maneuver and continues through atmospheric entry, terminal area energy management (TAEM), approach and landing, and rollout. During this flight phase, the navigation state vector is estimated by the Space Shuttle Orbiter onboard navigation system. This estimate is computed using a six-element sequential Kalman filter, which blends inertial measurement unit (IMU) delta-velocity data with external navaid data. The external navaids available to the filter are tactical air navigation (TACAN), barometric altimeter, and microwave scan beam landing system (MSBLS). Attention is given to the functional design of the Orbiter navigation system, the descent navigation sensors and measurement processing, predicted Kalman gains, correlation coefficients, and current flights navigation performance.

  15. Predictability of Top of Descent Location for Operational Idle-Thrust Descents

    NASA Technical Reports Server (NTRS)

    Stell, Laurel L.

    2010-01-01

    To enable arriving aircraft to fly optimized descents computed by the flight management system (FMS) in congested airspace, ground automation must accurately predict descent trajectories. To support development of the trajectory predictor and its uncertainty models, commercial flights executed idle-thrust descents at a specified descent speed, and the recorded data included the specified descent speed profile, aircraft weight, and the winds entered into the FMS as well as the radar data. The FMS computed the intended descent path assuming idle thrust after top of descent (TOD), and the controllers and pilots then endeavored to allow the FMS to fly the descent to the meter fix with minimal human intervention. The horizontal flight path, cruise and meter fix altitudes, and actual TOD location were extracted from the radar data. Using approximately 70 descents each in Boeing 757 and Airbus 319/320 aircraft, multiple regression estimated TOD location as a linear function of the available predictive factors. The cruise and meter fix altitudes, descent speed, and wind clearly improve goodness of fit. The aircraft weight improves fit for the Airbus descents but not for the B757. Except for a few statistical outliers, the residuals have absolute value less than 5 nmi. Thus, these predictive factors adequately explain the TOD location, which indicates the data do not include excessive noise.

  16. Descent Advisor Preliminary Field Test

    NASA Technical Reports Server (NTRS)

    Green, Steven M.; Vivona, Robert A.; Sanford, Beverly

    1995-01-01

    A field test of the Descent Advisor (DA) automation tool was conducted at the Denver Air Route Traffic Control Center in September 1994. DA is being developed to assist Center controllers in the efficient management and control of arrival traffic. DA generates advisories, based on trajectory predictions, to achieve accurate meter-fix arrival times in a fuel efficient manner while assisting the controller with the prediction and resolution of potential conflicts. The test objectives were: (1) to evaluate the accuracy of DA trajectory predictions for conventional and flight-management system equipped jet transports, (2) to identify significant sources of trajectory prediction error, and (3) to investigate procedural and training issues (both air and ground) associated with DA operations. Various commercial aircraft (97 flights total) and a Boeing 737-100 research aircraft participated in the test. Preliminary results from the primary test set of 24 commercial flights indicate a mean DA arrival time prediction error of 2.4 seconds late with a standard deviation of 13.1 seconds. This paper describes the field test and presents preliminary results for the commercial flights.

  17. Descent advisor preliminary field test

    NASA Technical Reports Server (NTRS)

    Green, Steven M.; Vivona, Robert A.; Sanford, Beverly

    1995-01-01

    A field test of the Descent Advisor (DA) automation tool was conducted at the Denver Air Route Traffic Control Center in September 1994. DA is being developed to assist Center controllers in the efficient management and control of arrival traffic. DA generates advisories, based on trajectory predictions, to achieve accurate meter-fix arrival times in a fuel efficient manner while assisting the controller with the prediction and resolution of potential conflicts. The test objectives were to evaluate the accuracy of DA trajectory predictions for conventional- and flight-management-system-equipped jet transports, to identify significant sources of trajectory prediction error, and to investigate procedural and training issues (both air and ground) associated with DA operations. Various commercial aircraft (97 flights total) and a Boeing 737-100 research aircraft participated in the test. Preliminary results from the primary test set of 24 commercial flights indicate a mean DA arrival time prediction error of 2.4 sec late with a standard deviation of 13.1 sec. This paper describes the field test and presents preliminary results for the commercial flights.

  18. Apollo experience report: Descent propulsion system

    NASA Technical Reports Server (NTRS)

    Hammock, W. R., Jr.; Currie, E. C.; Fisher, A. E.

    1973-01-01

    The propulsion system for the descent stage of the lunar module was designed to provide thrust to transfer the fully loaded lunar module with two crewmen from the lunar parking orbit to the lunar surface. A history of the development of this system is presented. Development was accomplished primarily by ground testing of individual components and by testing the integrated system. Unique features of the descent propulsion system were the deep throttling capability and the use of a lightweight cryogenic helium pressurization system.

  19. Artist's rendering of Descent to Lunar Surface

    NASA Technical Reports Server (NTRS)

    1969-01-01

    Descent to Lunar Surface: The Commander and Lunar Module Pilot transfer to the IM, separate it from the Command and Service Module, and fire the IM descent engine to land on the Moon. After checking out the spacecraft and eating and resting, the Commander climbs down the ladder and places his left foot on the Moon while his right foot is inside the Lunar Module landing pad.

  20. Descent relations in cubic superstring field theory

    NASA Astrophysics Data System (ADS)

    Aref'eva, I. Y.; Gorbachev, R.; Medvedev, P. B.; Rychkov, D. V.

    2008-01-01

    The descent relations between string field theory (SFT) vertices are characteristic relations of the operator formulation of SFT and they provide self-consistency of this theory. The descent relations langleV2|V1rangle and langleV3|V1rangle in the NS fermionic string field theory in the κ and discrete bases are established. Different regularizations and schemes of calculations are considered and relations between them are discussed.

  1. Steepest-entropy-ascent quantum thermodynamic modeling of decoherence in two different microscopic composite systems

    NASA Astrophysics Data System (ADS)

    Cano-Andrade, Sergio; Beretta, Gian Paolo; von Spakovsky, Michael R.

    2015-01-01

    The steepest-entropy-ascent quantum thermodynamic (SEAQT) framework is used to model the decoherence that occurs during the state evolution of two different microscopic composite systems. The test cases are a two-spin-1/2-particle composite system and a particle-photon field composite system like that experimentally studied in cavity quantum electrodynamics. The first system is used to study the characteristics of the nonlinear equation of motion of the SEAQT framework when modeling the state evolution of a microscopic composite system with particular interest in the phenomenon of decoherence. The second system is used to compare the numerical predictions of the SEAQT framework with experimental cavity quantum electrodynamic data available in the literature. For the two different numerical cases presented, the time evolution of the density operator of the composite system as well as that of the reduced operators belonging to the two constituents is traced from an initial nonequilibrium state of the composite along its relaxation towards stable equilibrium. Results show for both cases how the initial entanglement and coherence is dissipated during the state relaxation towards a state of stable equilibrium.

  2. Reference energy-altitude descent guidance: Simulator evaluation. [aircraft descent and fuel conservation

    NASA Technical Reports Server (NTRS)

    Abbot, K. H.; Knox, C. E.

    1985-01-01

    Descent guidance was developed to provide a pilot with information to ake a fuel-conservative descent and cross a designated geographical waypoint at a preselected altitude and airspeed. The guidance was designed to reduce fuel usage during the descent and reduce the mental work load associated with planning a fuel-conservative descent. A piloted simulation was conducted to evaluate the operational use of this guidance concept. The results of the simulation tests show that the use of the guidance reduced fuel consumption and mental work load during the descent. Use of the guidance also decreased the airspeed error, but had no effect on the altitude error when the designated waypoint was crossed. Physical work load increased with the use of the guidance, but remained well within acceptable levels. The pilots found the guidance easy to use as presented and reported that it would be useful in an operational environment.

  3. Descent of the larynx in chimpanzee infants.

    PubMed

    Nishimura, Takeshi; Mikami, Akichika; Suzuki, Juri; Matsuzawa, Tetsuro

    2003-06-10

    The human larynx descends during infancy and the early juvenile periods, and this greatly contributes to the morphological foundations of speech development. This developmental phenomenon is believed to be unique to humans. This concept has formed a basis for paleoanthropological studies on the origin and evolution of human speech. We used magnetic resonance imaging to study the development of three living chimpanzees and found that their larynges also descend during infancy, as in human infants. This descent was completed primarily through the rapid descent of the laryngeal skeleton relative to the hyoid, but it was not accompanied by the descent of the hyoid itself. The descent is possibly associated with developmental changes of the swallowing mechanism. Moreover, it contributes physically to an increased independence between the processes of phonation and articulation for vocalization. Thus, the descent of the larynx and the morphological foundations for speech production must have evolved in part during hominoid evolution, and not in a single shift during hominid evolution. PMID:12775758

  4. Shake rattle and roll: the bony labyrinth and aerial descent in squamates.

    PubMed

    Boistel, Renaud; Herrel, Anthony; Lebrun, Renaud; Daghfous, Gheylen; Tafforeau, Paul; Losos, Jonathan B; Vanhooydonck, Bieke

    2011-12-01

    Controlled aerial descent has evolved many times independently in vertebrates. Squamates (lizards and snakes) are unusual in that respect due to the large number of independent origins of the evolution of this behavior. Although some squamates such as flying geckos of the genus Ptychozoon and the flying dragons of the genus Draco show obvious adaptations including skin flaps or enlarged ribs allowing them to increase their surface area and slow down their descent, many others appear unspecialized. Yet, specializations can be expected at the level of the sensory and neural systems allowing animals to maintain stability during controlled aerial descent. The vestibular system is a likely candidate given that it is an acceleration detector and is well-suited to detect changes in pitch, roll and yaw. Here we use conventional and synchrotron μCT scans to quantify the morphology of the vestibular system in squamates able to perform controlled aerial descent compared to species characterized by a terrestrial or climbing life style. Our results show the presence of a strong phylogenetic signal in the data with the vestibular system in species from the same family being morphologically similar. However, both our shape analysis and an analysis of the dimensions of the vestibular system showed clear differences among animals with different life-styles. Species able to perform a controlled aerial descent differed in the position and shape of the inner ear, especially of the posterior ampulla. Given the limited stability of squamates against roll and the fact that the posterior ampulla is tuned to changes in roll this suggests an adaptive evolution of the vestibular system in squamates using controlled aerial descent. Future studies testing for similar differences in other groups of vertebrates known to use controlled aerial descent are needed to test the generality of this observation. PMID:21700578

  5. Assessment of GPS radiosonde descent data

    NASA Astrophysics Data System (ADS)

    Venkat Ratnam, M.; Pravallika, N.; Babu, S. Ravindra; Basha, G.; Pramitha, M.; Krishna Murthy, B. V.

    2014-04-01

    Radiosondes are widely used to obtain basic meteorological parameters such as pressure (P), temperature (T), relative humidity (RH) and horizontal winds during the balloon ascent up to the altitude of balloon burst, usually ~ 32-35 km. Data from the radiosondes released from Gadanki (13.5° N, 79.2° E), a tropical station in India, have been collected during the ascent and during the descent as well without attaching any parachute or its equivalent since the year 2008. In the present study an attempt has been made to characterize the radiosonde descent data with the main objective of exploring its usefulness and reliability for scientific purposes. We compared the data obtained during ascent and descent phases of the same sounding. The mean differences in T, RH and horizontal winds between ascent and descent data are found to be small and are sometimes even within the uncertainty of the measurements and/or expected diurnal variation itself. The very good consistency observed between the ascent and the descent data shows that one more profile of the meteorological parameters can be constructed within 3 h of time of balloon launch practically at no additional cost. Further checks are done by utilizing the 3-hourly radiosonde observations collected during the Tropical Tropopause Dynamics campaigns conducted at Gadanki. In the process of checking the consistency between the radiosonde ascent and descent data, several new findings are arrived at and are reported in this study. In general, it has taken more than half an hour for the balloon to reach the ground from the burst altitude. It is also observed that the fall velocity is close to 10 m s-1 near the surface. Finally, it is suggested to record the observations also when the balloon is descending as this information is useful for scientific purposes.

  6. Assessment of GPS radiosonde descent data

    NASA Astrophysics Data System (ADS)

    Venkat Ratnam, M.; Pravallika, N.; babu, S. Ravindra; Basha, G.; Pramitha, M.; Krishna Murthy, B. V.

    2013-12-01

    Radiosondes are widely used to obtain basic meteorological parameters such as pressure (P), temperature (T), relative humidity (RH), and horizontal winds during the balloon ascent up to the altitude of balloon burst, usually ∼32-35 km. Data from the radiosondes released from Gadanki (13.5° N, 79.2° E), a tropical station in India, has been collected during the ascent and during the descent as well without attaching any parachute or its equivalent since the year 2008. In the present study an attempt has been made to characterize the radiosonde descent data with the main objective of exploring its usefulness and reliability for scientific purposes. We compared the data obtained during ascent and descent phases of the same sounding. The mean differences in T, RH and horizontal winds between ascent and descent data are found to be small and are sometimes even within the uncertainty of the measurements and/or expected diurnal variation itself. The very good consistency observed between the ascent and the descent data shows that one more profile of the meteorological parameters can be constructed within 3 h of time of balloon launch practically at no additional cost. Further checks are done by utilizing the 3 hourly radiosonde observations collected during the Tropical Tropopause Dynamics campaign conducted at Gadanki. In the process of checking the consistency between the radiosonde ascent and descent data, several new findings are arrived at and are reported in this study. In general, it has taken more than half-an-hour for the balloon to reach the ground from the burst altitude. It is also observed that the fall velocity is close to 10 m s-1 near the surface. Finally, it is suggested to record also the observations when the balloon is descending as this information is also useful for scientific purposes.

  7. Diabatic Descent In The Stratospheric Polar Vortex

    NASA Astrophysics Data System (ADS)

    Rosenfield, J.; Schoeberl, M.

    Polar regions experience diabatic cooling during the fall and winter months, resulting in a downward mass flux. An accurate measure of this fall and winter diabatic descent, as well as an understanding of the transport of air into and out of the winter polar vor- tices, is required for estimates of polar ozone depletion. We have calculated diabatic cooling rates using a radiative transfer code and U.K. Met Office (UKMO) tempera- tures for the years 1992-2000. These cooling rates, together with UKMO horizontal winds, have been used to compute three-dimensional forward and backward diabatic trajectories for the seven month fall to spring period in both the NH and the SH. The forward calculations estimate the maximum amount of descent that can occur. How- ever, they are not necessarily a good indicator of the origin of the springtime vortex air because more equatorward air from lower altitudes can be entrained within the vortex during its formation. The back trajectories, starting in the springtime lower middle stratosphere, show a complex final distribution of parcels. One population originates in the fall in the upper stratosphere and mesosphere and experiences considerable de- scent, while the remaining parcels originate at lower altitudes in the midlatitudes and are mixed into the polar regions during vortex formation. The amount of descent ex- perienced by the first population shows little variability from year to year, while the computed descent and mixing of the remaining parcels show considerable interannual variability due to the varying polar meteorology. Because of this complex parcel dis- tribution it is not meaningful to speak of a net amount of descent experienced over the entire winter period. We have also compared diabatic trajectories with kinematic tra- jectories, in which the vertical motion is given by the UKMO analysed omega fields. These show that the kinematic trajectory descent is much less than the diabatic tra- jectory descent and exhibits

  8. Entry, Descent, and Landing With Propulsive Deceleration

    NASA Technical Reports Server (NTRS)

    Palaszewski, Bryan

    2012-01-01

    The future exploration of the Solar System will require innovations in transportation and the use of entry, descent, and landing (EDL) systems at many planetary landing sites. The cost of space missions has always been prohibitive, and using the natural planetary and planet s moons atmospheres for entry, descent, and landing can reduce the cost, mass, and complexity of these missions. This paper will describe some of the EDL ideas for planetary entry and survey the overall technologies for EDL that may be attractive for future Solar System missions.

  9. Descent Assisted Split Habitat Lunar Lander Concept

    NASA Technical Reports Server (NTRS)

    Mazanek, Daniel D.; Goodliff, Kandyce; Cornelius, David M.

    2008-01-01

    The Descent Assisted Split Habitat (DASH) lunar lander concept utilizes a disposable braking stage for descent and a minimally sized pressurized volume for crew transport to and from the lunar surface. The lander can also be configured to perform autonomous cargo missions. Although a braking-stage approach represents a significantly different operational concept compared with a traditional two-stage lander, the DASH lander offers many important benefits. These benefits include improved crew egress/ingress and large-cargo unloading; excellent surface visibility during landing; elimination of the need for deep-throttling descent engines; potentially reduced plume-surface interactions and lower vertical touchdown velocity; and reduced lander gross mass through efficient mass staging and volume segmentation. This paper documents the conceptual study on various aspects of the design, including development of sortie and outpost lander configurations and a mission concept of operations; the initial descent trajectory design; the initial spacecraft sizing estimates and subsystem design; and the identification of technology needs

  10. The hormonal control of testicular descent.

    PubMed

    Levy, J B; Husmann, D A

    1995-01-01

    Descent of the testes is a complex event mediated by hormonal and mechanical factors. At present we hypothesize that testicular descent occurs as the result of the secretion of descendin from a normal testicle. Descendin secretion results in selective growth of the gubernacular cells. Gubernacular outgrowth results in masculinization of the inguinal canal. At the beginning of testicular descent, the patent processus migrates into the inguinal canal, transmitting intraabdominal pressure to the gubernaculum. The gubernaculum in turn applies traction to the testicle to introduce the testicle into the inguinal canal. Descent of the testes into and through the inguinal canal is an interplay between intraabdominal pressure transmitted by a patent processus vaginalis and androgen-induced gubernacular regression. Specifically, we hypothesize that androgens under control of an intact fetal hypothalamic-pituitary axis alter the viscoelastic properties of the gubernaculum. Reductions in the turgidity of the gubernaculum allow intraabdominal pressure to push the testicle into the scrotum. Functional abnormalities in any of the above factors will result in cryptorchidism. PMID:8867594

  11. Ka-Band Radar Terminal Descent Sensor

    NASA Technical Reports Server (NTRS)

    Pollard, Brian; Berkun, Andrew; Tope, Michael; Andricos, Constantine; Okonek, Joseph; Lou, Yunling

    2007-01-01

    The terminal descent sensor (TDS) is a radar altimeter/velocimeter that improves the accuracy of velocity sensing by more than an order of magnitude when compared to existing sensors. The TDS is designed for the safe planetary landing of payloads, and may be used in helicopters and fixed-wing aircraft requiring high-accuracy velocity sensing

  12. Research study: STS-1 Orbiter Descent

    NASA Technical Reports Server (NTRS)

    Hickey, J. S.

    1981-01-01

    The conversion of STS-1 orbiter descent data from AVE-SESAME contact programs to the REEDA system and the reduction of raw radiosonde data is summarized. A first difference program, contact data program, plot data program, and 30 second data program were developed. Six radiosonde soundings were taken. An example of the outputs of each of the programs is presented.

  13. Coping with Discrimination among Mexican Descent Adolescents

    ERIC Educational Resources Information Center

    Edwards, Lisa M.; Romero, Andrea J.

    2008-01-01

    The current research is designed to explore the relationship among discrimination stress, coping strategies, and self-esteem among Mexican descent youth (N = 73, age 11-15 years). Results suggest that primary control engagement and disengagement coping strategies are positively associated with discrimination stress. Furthermore, self-esteem is…

  14. Method of descent for integrable lattices

    NASA Astrophysics Data System (ADS)

    Bogoyavlensky, Oleg

    2009-05-01

    A method of descent for constructing integrable Hamiltonian systems is introduced. The derived periodic and nonperiodic lattices possess Lax representations with spectral parameter and have plenty of first integrals. Examples of Liouville-integrable four-dimensional Hamiltonian Lotka-Volterra systems are presented.

  15. America's Descent into Madness

    ERIC Educational Resources Information Center

    Giroux, Henry A.

    2014-01-01

    This article describes America's descent into madness under the regime of neoliberalism that has emerged in the United States since the late 1970s. In part, this is due to the emergence of a public pedagogy produced by the corporate-owned media that now saturates Americans with a market-driven value system that undermines those formative…

  16. Optimum Strategies for Selecting Descent Flight-Path Angles

    NASA Technical Reports Server (NTRS)

    Wu, Minghong G. (Inventor); Green, Steven M. (Inventor)

    2016-01-01

    An information processing system and method for adaptively selecting an aircraft descent flight path for an aircraft, are provided. The system receives flight adaptation parameters, including aircraft flight descent time period, aircraft flight descent airspace region, and aircraft flight descent flyability constraints. The system queries a plurality of flight data sources and retrieves flight information including any of winds and temperatures aloft data, airspace/navigation constraints, airspace traffic demand, and airspace arrival delay model. The system calculates a set of candidate descent profiles, each defined by at least one of a flight path angle and a descent rate, and each including an aggregated total fuel consumption value for the aircraft following a calculated trajectory, and a flyability constraints metric for the calculated trajectory. The system selects a best candidate descent profile having the least fuel consumption value while the fly ability constraints metric remains within aircraft flight descent flyability constraints.

  17. A Descent Rate Control Approach to Developing an Autonomous Descent Vehicle

    NASA Astrophysics Data System (ADS)

    Fields, Travis D.

    Circular parachutes have been used for aerial payload/personnel deliveries for over 100 years. In the past two decades, significant work has been done to improve the landing accuracies of cargo deliveries for humanitarian and military applications. This dissertation discusses the approach developed in which a circular parachute is used in conjunction with an electro-mechanical reefing system to manipulate the landing location. Rather than attempt to steer the autonomous descent vehicle directly, control of the landing location is accomplished by modifying the amount of time spent in a particular wind layer. Descent rate control is performed by reversibly reefing the parachute canopy. The first stage of the research investigated the use of a single actuation during descent (with periodic updates), in conjunction with a curvilinear target. Simulation results using real-world wind data are presented, illustrating the utility of the methodology developed. Additionally, hardware development and flight-testing of the single actuation autonomous descent vehicle are presented. The next phase of the research focuses on expanding the single actuation descent rate control methodology to incorporate a multi-actuation path-planning system. By modifying the parachute size throughout the descent, the controllability of the system greatly increases. The trajectory planning methodology developed provides a robust approach to accurately manipulate the landing location of the vehicle. The primary benefits of this system are the inherent robustness to release location errors and the ability to overcome vehicle uncertainties (mass, parachute size, etc.). A separate application of the path-planning methodology is also presented. An in-flight path-prediction system was developed for use in high-altitude ballooning by utilizing the path-planning methodology developed for descent vehicles. The developed onboard system improves landing location predictions in-flight using collected flight

  18. Rhinoplasty in the patient of African descent.

    PubMed

    Harris, Monte O

    2010-02-01

    We are in the midst of truly changing times, as patients of African descent actively embrace facial cosmetic surgery. Gaining surgical consistency in patients of African descent has proven to be elusive and unpredictable for many rhinoplasty surgeons. Surgical success relies on the surgeon's ability precisely to identify anatomic variables and reconcile these anatomic realities with the patient's expectations for aesthetic improvement and ethnic identity. An appreciation for underlying heritage provides a link culturally to connect with prospective patients and serves as a tool for establishing realistic aesthetic goals. This article highlights the significance of exploring ancestry in the rhinoplasty consultation; identifies key anatomic variables in the nasal tip, dorsum, and alar base; and reviews surgical logic that has facilitated the achievement of consistent, balanced aesthetic outcomes. PMID:20206100

  19. The steepest slopes on the Moon from Lunar Orbiter Laser Altimeter (LOLA) Data: Spatial Distribution and Correlation with Geologic Features

    NASA Astrophysics Data System (ADS)

    Kreslavsky, Mikhail A.; Head, James W.

    2016-07-01

    We calculated topographic gradients over the surface of the Moon at a 25 m baseline using data obtained by the Lunar Orbiter Laser Altimeter (LOLA) instrument onboard the Lunar Reconnaissance Orbiter (LRO) spacecraft. The relative spatial distribution of steep slopes can be reliably obtained, although some technical characteristics of the LOLA dataset preclude statistical studies of slope orientation. The derived slope-frequency distribution revealed a steep rollover for slopes close to the angle of repose. Slopes significantly steeper than the angle of repose are almost absent on the Moon due to (1) the general absence of cohesion/strength of the fractured and fragmented megaregolith of the lunar highlands, and (2) the absence of geological processes producing steep-slopes in the recent geological past. The majority of slopes steeper than 32°-35° are associated with relatively young large impact craters. We demonstrate that these impact craters progressively lose their steepest slopes. We also found that features of Early Imbrian and older ages have almost no slopes steeper than 35°. We interpret this to be due to removal of all steep slopes by the latest basin-forming impact (Orientale), probably by global seismic shaking. The global spatial distribution of the steepest slopes correlates moderately well with the predicted spatial distribution of impact rate; however, a significant paucity of steep slopes in the southern farside remains unexplained.

  20. Mars Exploration Entry, Descent and Landing Challenges

    NASA Technical Reports Server (NTRS)

    Braun, Robert D.; Manning, Robert M.

    2006-01-01

    The United States has successfully landed five robotic systems on the surface of Mars. These systems all had landed mass below 0.6 metric tons (t), had landed footprints on the order of hundreds of km and landed at sites below -1.4 km MOLA elevation due the need to perform entry, descent and landing operations in an environment with sufficient atmospheric density. At present, robotic exploration systems engineers are struggling with the challenges of increasing landed mass capability to 0.8 t while improving landed accuracy to tens of km and landing at a site as high as +2 km MOLA elevation for the Mars Science Laboratory project. Meanwhile, current plans for human exploration of Mars call for the landing of 40-80 t surface elements at scientifically interesting locations within close proximity (tens of m) of pre-positioned robotic assets. This paper summarizes past successful entry, descent and landing systems and approaches being developed by the robotic Mars exploration program to increased landed performance (mass, accuracy and surface elevation). In addition, the entry, descent and landing sequence for a human exploration system will be reviewed, highlighting the technology and systems advances required.

  1. Simulating Descent and Landing of a Spacecraft

    NASA Technical Reports Server (NTRS)

    Balaram, J.; Jain, Abhinandan; Martin, Bryan; Lim, Christopher; Henriquez, David; McMahon, Elihu; Sohl, Garrett; Banerjee, Pranab; Steele, Robert; Bentley, Timothy

    2005-01-01

    The Dynamics Simulator for Entry, Descent, and Surface landing (DSENDS) software performs high-fidelity simulation of the Entry, Descent, and Landing (EDL) of a spacecraft into the atmosphere and onto the surface of a planet or a smaller body. DSENDS is an extension of the DShell and DARTS programs, which afford capabilities for mathematical modeling of the dynamics of a spacecraft as a whole and of its instruments, actuators, and other subsystems. DSENDS enables the modeling (including real-time simulation) of flight-train elements and all spacecraft responses during various phases of EDL. DSENDS provides high-fidelity models of the aerodynamics of entry bodies and parachutes plus supporting models of atmospheres. Terrain and real-time responses of terrain-imaging radar and lidar instruments can also be modeled. The program includes modules for simulation of guidance, navigation, hypersonic steering, and powered descent. Automated state-machine-driven model switching is used to represent spacecraft separations and reconfigurations. Models for computing landing contact and impact forces are expected to be added. DSENDS can be used as a stand-alone program or incorporated into a larger program that simulates operations in real time.

  2. System for Estimating Horizontal Velocity During Descent

    NASA Technical Reports Server (NTRS)

    Johnson, Andrew; Cheng, Yang; Wilson, Reg; Goguen, Jay; Martin, Alejandro San; Leger, Chris; Matthies, Larry

    2007-01-01

    The descent image motion estimation system (DIMES) is a system of hardware and software, designed for original use in estimating the horizontal velocity of a spacecraft descending toward a landing on Mars. The estimated horizontal velocity is used in generating rocket-firing commands to reduce the horizontal velocity as part of an overall control scheme to minimize the landing impact. DIMES can also be used for estimating the horizontal velocity of a remotely controlled or autonomous aircraft for purposes of navigation and control.

  3. APOLLO 11: Lunar Module Separates for descent

    NASA Technical Reports Server (NTRS)

    1974-01-01

    Separation of the Lunar module for descent to the Lunar surface From the film documentary 'APOLLO 11:'The eagle Has Landed'', part of a documentary series on the APOLLO missions made in the early '70's and narrated by Burgess Meredith. APOLLO 11: First manned lunar landing and return to Earth with Neil A. Armstrong, Michael Collins, and Edwin E. Aldrin. Landed in the Sea of Tranquilityon July 20, 1969; deployed TV camera and EASEP experiments, performed lunar surface EVA, returned lunar soil samples. Mission Duration 195 hrs 18 min 35sec

  4. Regression Analysis of Top of Descent Location for Idle-thrust Descents

    NASA Technical Reports Server (NTRS)

    Stell, Laurel; Bronsvoort, Jesper; McDonald, Greg

    2013-01-01

    In this paper, multiple regression analysis is used to model the top of descent (TOD) location of user-preferred descent trajectories computed by the flight management system (FMS) on over 1000 commercial flights into Melbourne, Australia. The independent variables cruise altitude, final altitude, cruise Mach, descent speed, wind, and engine type were also recorded or computed post-operations. Both first-order and second-order models are considered, where cross-validation, hypothesis testing, and additional analysis are used to compare models. This identifies the models that should give the smallest errors if used to predict TOD location for new data in the future. A model that is linear in TOD altitude, final altitude, descent speed, and wind gives an estimated standard deviation of 3.9 nmi for TOD location given the trajec- tory parameters, which means about 80% of predictions would have error less than 5 nmi in absolute value. This accuracy is better than demonstrated by other ground automation predictions using kinetic models. Furthermore, this approach would enable online learning of the model. Additional data or further knowl- edge of algorithms is necessary to conclude definitively that no second-order terms are appropriate. Possible applications of the linear model are described, including enabling arriving aircraft to fly optimized descents computed by the FMS even in congested airspace. In particular, a model for TOD location that is linear in the independent variables would enable decision support tool human-machine interfaces for which a kinetic approach would be computationally too slow.

  5. Stair ascent and descent at different inclinations.

    PubMed

    Riener, Robert; Rabuffetti, Marco; Frigo, Carlo

    2002-02-01

    The aim of this study was to investigate the biomechanics and motor co-ordination in humans during stair climbing at different inclinations. Ten normal subjects ascended and descended a five-step staircase at three different inclinations (24 degrees, 30 degrees, 42 degrees ). Three steps were instrumented with force sensors and provided 6 dof ground reactions. Kinematics was analysed by a camera-based optoelectronic system. An inverse dynamics approach was applied to compute joint moments and powers. The different kinematic and kinetic patterns of stair ascent and descent were analysed and compared to level walking patterns. Temporal gait cycle parameters and ground reactions were not significantly affected by staircase inclination. Joint angles and moments showed a relatively low but significant dependency on the inclination. A large influence was observed in joint powers. This can be related to the varying amount of potential energy that has to be produced (during ascent) or absorbed (during descent) by the muscles. The kinematics and kinetics of staircase walking differ considerably from level walking. Interestingly, no definite signs could be found indicating that there is an adaptation or shift in the motor patterns when moving from level to stair walking. This can be clearly seen in the foot placement: compared to level walking, the forefoot strikes the ground first--independent from climbing direction and inclination. This and further findings suggest that there is a certain inclination angle or angular range where subjects do switch between a level walking and a stair walking gait pattern. PMID:11809579

  6. A fast and scalable recurrent neural network based on stochastic meta descent.

    PubMed

    Liu, Zhenzhen; Elhanany, Itamar

    2008-09-01

    This brief presents an efficient and scalable online learning algorithm for recurrent neural networks (RNNs). The approach is based on the real-time recurrent learning (RTRL) algorithm, whereby the sensitivity set of each neuron is reduced to weights associated with either its input or output links. This yields a reduced storage and computational complexity of O(N(2)). Stochastic meta descent (SMD), an adaptive step size scheme for stochastic gradient-descent problems, is employed as means of incorporating curvature information in order to substantially accelerate the learning process. We also introduce a clustered version of our algorithm to further improve its scalability attributes. Despite the dramatic reduction in resource requirements, it is shown through simulation results that the approach outperforms regular RTRL by almost an order of magnitude. Moreover, the scheme lends itself to parallel hardware realization by virtue of the localized property that is inherent to the learning framework. PMID:18779096

  7. Accelerated barrier optimization compressed sensing (ABOCS) reconstruction for cone-beam CT: Phantom studies

    PubMed Central

    Niu, Tianye; Zhu, Lei

    2012-01-01

    demonstrated in both digital Shepp–Logan and physical head phantom studies, consistent reconstruction performances are achieved using the same algorithm parameters on scans with different noise levels and/or on different objects. On the contrary, the penalty weight in a TV regularization based method needs to be fine-tuned in a large range (up to seven times) to maintain the reconstructed image quality. The improvement of ABOCS on computational efficiency is demonstrated in the comparisons with adaptive-steepest-descent-projection-onto-convex-sets (ASD-POCS), an existing CS reconstruction algorithm also using constrained optimization. ASD-POCS alternatively minimizes the TV objective using adaptive steepest descent (ASD) and the data fidelity error using projection onto convex sets (POCS). For similar image qualities of the Shepp–Logan phantom, ABOCS requires less computation time than ASD-POCS in MATLAB by more than one order of magnitude. Conclusions: We propose ABOCS for CBCT reconstruction. As compared to other published CS-based algorithms, our method has attractive features of fast convergence and consistent parameter settings for different datasets. These advantages have been demonstrated on phantom studies. PMID:22830790

  8. 14 CFR 31.19 - Performance: Uncontrolled descent.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Performance: Uncontrolled descent. 31.19 Section 31.19 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: MANNED FREE BALLOONS Flight Requirements § 31.19 Performance: Uncontrolled descent. (a) The following must be...

  9. Hair Breakage in Patients of African Descent: Role of Dermoscopy

    PubMed Central

    Quaresma, Maria Victória; Martinez Velasco, María Abril; Tosti, Antonella

    2015-01-01

    Dermoscopy represents a useful technique for the diagnosis and follow-up of hair and scalp disorders. To date, little has been published regarding dermoscopy findings of hair disorders in patients of African descent. This article illustrates how dermoscopy allows fast diagnosis of hair breakage due to intrinsic factors and chemical damage in African descent patients. PMID:27170942

  10. Mars Science Laboratory Entry, Descent and Landing System Overview

    NASA Technical Reports Server (NTRS)

    Steltzner, Adam D.; San Martin, A. Miguel; Rivellini, Tomasso P.; Chen, Allen

    2013-01-01

    The Mars Science Laboratory project recently places the Curiosity rove on the surface of Mars. With the success of the landing system, the performance envelope of entry, descent and landing capabilities has been extended over the previous state of the art. This paper will present an overview to the MSL entry, descent and landing system design and preliminary flight performance results.

  11. 14 CFR 31.19 - Performance: Uncontrolled descent.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Performance: Uncontrolled descent. 31.19 Section 31.19 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: MANNED FREE BALLOONS Flight Requirements § 31.19 Performance: Uncontrolled descent. (a) The following must be...

  12. 14 CFR 31.19 - Performance: Uncontrolled descent.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Performance: Uncontrolled descent. 31.19 Section 31.19 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: MANNED FREE BALLOONS Flight Requirements § 31.19 Performance: Uncontrolled descent. (a) The following must be...

  13. A Gradient Descent Approximation for Graph Cuts

    NASA Astrophysics Data System (ADS)

    Yildiz, Alparslan; Akgul, Yusuf Sinan

    Graph cuts have become very popular in many areas of computer vision including segmentation, energy minimization, and 3D reconstruction. Their ability to find optimal results efficiently and the convenience of usage are some of the factors of this popularity. However, there are a few issues with graph cuts, such as inherent sequential nature of popular algorithms and the memory bloat in large scale problems. In this paper, we introduce a novel method for the approximation of the graph cut optimization by posing the problem as a gradient descent formulation. The advantages of our method is the ability to work efficiently on large problems and the possibility of convenient implementation on parallel architectures such as inexpensive Graphics Processing Units (GPUs). We have implemented the proposed method on the Nvidia 8800GTS GPU. The classical segmentation experiments on static images and video data showed the effectiveness of our method.

  14. Error analysis of stochastic gradient descent ranking.

    PubMed

    Chen, Hong; Tang, Yi; Li, Luoqing; Yuan, Yuan; Li, Xuelong; Tang, Yuanyan

    2013-06-01

    Ranking is always an important task in machine learning and information retrieval, e.g., collaborative filtering, recommender systems, drug discovery, etc. A kernel-based stochastic gradient descent algorithm with the least squares loss is proposed for ranking in this paper. The implementation of this algorithm is simple, and an expression of the solution is derived via a sampling operator and an integral operator. An explicit convergence rate for leaning a ranking function is given in terms of the suitable choices of the step size and the regularization parameter. The analysis technique used here is capacity independent and is novel in error analysis of ranking learning. Experimental results on real-world data have shown the effectiveness of the proposed algorithm in ranking tasks, which verifies the theoretical analysis in ranking error. PMID:24083315

  15. Bridle Device in Mars Science Laboratory Descent Stage

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This view of a portion of the descent stage of NASA's Mars Science Laboratory shows two of the stage's three spherical fuel tanks flanking the bridle device assembly. The photograph was taken in early October 2008 from the center of the descent stage looking outward. The top of the descent stage is toward the top of the image.

    The bridle device assembly is about two-thirds of a meter, or 2 feet, from top to bottom, and has two main parts. The cylinder on the top is the descent brake. The conical-shaped mechanism below that is the bridle assembly, including a spool of nylon and Vectran cords that will be attached to the rover.

    When pyrotechnic bolts fire to sever the rigid connection between the rover and the descent stage, gravity will pull the tethered rover away from the descent stage. The bridle or tether, attached to three points on the rover, will unspool from the bridle assembly, beginning from the larger-diameter portion. The rotation rate of the assembly, hence the descent rate of the rover, will be governed by the descent brake. Inside the housing of that brake are gear boxes and banks of mechanical resistors engineered to prevent the bridle from spooling out too quickly or too slowly. The length of the bridle will allow the rover to be lowered about 7.5 meters (25 feet) while still tethered to the descent stage.

    The Starsys division of SpaceDev Inc., Poway, Calif., provided the descent brake. NASA's Jet Propulsion Laboratory, Pasadena, Calif., built the bridle assembly. Vectran is a product of Kuraray Co. Ltd., Tokyo. JPL, a division of the California Institute of Technology, manages the Mars Science Laboratory Project for the NASA Science Mission Directorate, Washington.

  16. Evaluation of Residual Static Corrections by Hybrid Genetic Algorithm Steepest Ascent Autostatics Inversion.Application southern Algerian fields

    NASA Astrophysics Data System (ADS)

    Eladj, Said; bansir, fateh; ouadfeul, sid Ali

    2016-04-01

    The application of genetic algorithm starts with an initial population of chromosomes representing a "model space". Chromosome chains are preferentially Reproduced based on Their fitness Compared to the total population. However, a good chromosome has a Greater opportunity to Produce offspring Compared To other chromosomes in the population. The advantage of the combination HGA / SAA is the use of a global search approach on a large population of local maxima to Improve Significantly the performance of the method. To define the parameters of the Hybrid Genetic Algorithm Steepest Ascent Auto Statics (HGA / SAA) job, we Evaluated by testing in the first stage of "Steepest Ascent," the optimal parameters related to the data used. 1- The number of iterations "Number of hill climbing iteration" is equal to 40 iterations. This parameter defines the participation of the algorithm "SA", in this hybrid approach. 2- The minimum eigenvalue for SA '= 0.8. This is linked to the quality of data and S / N ratio. To find an implementation performance of hybrid genetic algorithms in the inversion for estimating of the residual static corrections, tests Were Performed to determine the number of generation of HGA / SAA. Using the values of residual static corrections already calculated by the Approaches "SAA and CSAA" learning has Proved very effective in the building of the cross-correlation table. To determine the optimal number of generation, we Conducted a series of tests ranging from [10 to 200] generations. The application on real seismic data in southern Algeria allowed us to judge the performance and capacity of the inversion with this hybrid method "HGA / SAA". This experience Clarified the influence of the corrections quality estimated from "SAA / CSAA" and the optimum number of generation hybrid genetic algorithm "HGA" required to have a satisfactory performance. Twenty (20) generations Were enough to Improve continuity and resolution of seismic horizons. This Will allow

  17. Mars Science Laboratory Entry, Descent, and Landing Trajectory and Atmosphere Reconstruction

    NASA Technical Reports Server (NTRS)

    Karlgaard, Christopher D.; Kutty, Prasad; Schoenenberer, Mark; Shidner, Jeremy D.

    2013-01-01

    On August 5th 2012, The Mars Science Laboratory entry vehicle successfully entered Mars atmosphere and landed the Curiosity rover on its surface. A Kalman filter approach has been implemented to reconstruct the entry, descent, and landing trajectory based on all available data. The data sources considered in the Kalman filtering approach include the inertial measurement unit accelerations and angular rates, the terrain descent sensor, the measured landing site, orbit determination solutions for the initial conditions, and a new set of instrumentation for planetary entry reconstruction consisting of forebody pressure sensors, known as the Mars Entry Atmospheric Data System. These pressure measurements are unique for planetary entry, descent, and landing reconstruction as they enable a reconstruction of the freestream atmospheric conditions without any prior assumptions being made on the vehicle aerodynamics. Moreover, the processing of these pressure measurements in the Kalman filter approach enables the identification of atmospheric winds, which has not been accomplished in past planetary entry reconstructions. This separation of atmosphere and aerodynamics allows for aerodynamic model reconciliation and uncertainty quantification, which directly impacts future missions. This paper describes the mathematical formulation of the Kalman filtering approach, a summary of data sources and preprocessing activities, and results of the reconstruction.

  18. Surface erosion caused on Mars from Viking descent engine plume

    NASA Technical Reports Server (NTRS)

    Hutton, R. E.; Moore, H. J.; Scott, R. F.; Shorthill, R. W.; Spitzer, C. R.

    1980-01-01

    During the Martian landings the descent engine plumes on Viking Lander 1 (VL-1) and Viking Lander 2 (VL-2) eroded the Martian surface materials. This had been anticipated and investigated both analytically and experimentally during the design phase of the Viking spacecraft. This paper presents data on erosion obtained during the tests of the Viking descent engine and the evidence for erosion by the descent engines of VL-1 and VL-2 on Mars. From these and other results, it is concluded that there are four distinct surface materials on Mars: (1) drift materials, (2) crusty to cloddy material, (3) blocky material, and (4) rock.

  19. Surface erosion caused on Mars from Viking descent engine plume

    USGS Publications Warehouse

    Hutton, R.E.; Moore, H.J.; Scott, R.F.; Shorthill, R.W.; Spitzer, C.R.

    1980-01-01

    During the Martian landings the descent engine plumes on Viking Lander 1 (VL-1) and Viking Lander 2 (VL-2) eroded the Martian surface materials. This had been anticipated and investigated both analytically and experimentally during the design phase of the Viking spacecraft. This paper presents data on erosion obtained during the tests of the Viking descent engine and the evidence for erosion by the descent engines of VL-1 and VL-2 on Mars. From these and other results, it is concluded that there are four distinct surface materials on Mars: (1) drift material, (2) crusty to cloddy material, (3) blocky material, and (4) rock. ?? 1980 D. Reidel Publishing Co.

  20. Orion Entry, Descent, and Landing Simulation

    NASA Technical Reports Server (NTRS)

    Hoelscher, Brian R.

    2007-01-01

    The Orion Entry, Descent, and Landing simulation was created over the past two years to serve as the primary Crew Exploration Vehicle guidance, navigation, and control (GN&C) design and analysis tool at the National Aeronautics and Space Administration (NASA). The Advanced NASA Technology Architecture for Exploration Studies (ANTARES) simulation is a six degree-of-freedom tool with a unique design architecture which has a high level of flexibility. This paper describes the decision history and motivations that guided the creation of this simulation tool. The capabilities of the models within ANTARES are presented in detail. Special attention is given to features of the highly flexible GN&C architecture and the details of the implemented GN&C algorithms. ANTARES provides a foundation simulation for the Orion Project that has already been successfully used for requirements analysis, system definition analysis, and preliminary GN&C design analysis. ANTARES will find useful application in engineering analysis, mission operations, crew training, avionics-in-the-loop testing, etc. This paper focuses on the entry simulation aspect of ANTARES, which is part of a bigger simulation package supporting the entire mission profile of the Orion vehicle. The unique aspects of entry GN&C design are covered, including how the simulation is being used for Monte Carlo dispersion analysis and for support of linear stability analysis. Sample simulation output from ANTARES is presented in an appendix.

  1. Auroral precipitation and descent of thermospheric NO

    NASA Astrophysics Data System (ADS)

    Kühl, Sven; Espy, Patrick; Hibbins, Robert; Paxton, Larry; Funke, Bernd

    2016-07-01

    Energetic particle precipitation in Auroras (E <20 keV) produces nitric oxide (NO) in the upper meso- and lower thermosphere region (UMLT). The subsequent descent of the NO produced in the UMLT to the lower meso- and upper stratosphere is referred to as the energetic particle precipitation indirect effect (EPP IE). The downwelling of NO produced in Auroras alters the chemistry of the mesosphere and upper stratosphere (e.g. by the NOx cycle) and possibly has important effects also on its dynamics. By observations of auroral precipitation from SSUSI(DMSP) and measurements of NO from MIPAS(ENVISAT) and SMR(ODIN) we investigate the quantitative relation of the electron fluxes and characteristic energies of auroral precipitation to the NO produced in the lower thermosphere and the subsequent downwelling of NO. Using additional ground-based (e.g. Meteor Radar, Microwave Radiometer) and satellite observations (SOFIE) we attempt to quantify the EPP IE and its impact on atmospheric chemistry and dynamics.

  2. Design and Development of the MSL Descent Stage Propulsion System

    NASA Technical Reports Server (NTRS)

    Weiss, Jeffrey M.; Guernsey, Carl S.

    2013-01-01

    On August 5, 2012, The Mars Science Laboratory mission successfully landed the largest interplanetary rover ever built, Curiosity, on the surface of Mars. The Entry, Descent, and Landing (EDL) phase of this mission was by far the most complex landing ever attempted on a planetary body. The Descent Stage Propulsion System played an integral and critical role during Curiosity's EDL. The Descent Stage Propulsion System was a one of a kind hydrazine propulsion system designed specifically for the EDL phase of the MSL mission. It was designed, built, and tested at the Jet Propulsion Laboratory (JPL). The purpose of this paper is to present an overview of the design and development of the MSL Descent Stage Propulsion System. Driving requirements, system design, component selection, operational sequence of the system at Mars, new developments, and key challenges will be discussed.

  3. Men of African Descent and Carcinoma of the Prostate Consortium

    Cancer.gov

    The Men of African Descent and Carcinoma of the Prostate Consortium collaborates on epidemiologic studies to address the high burden of prostate cancer and to understand the causes of etiology and outcomes among men of African ancestry.

  4. Automation for Accommodating Fuel-Efficient Descents in Constrained Airspace

    NASA Technical Reports Server (NTRS)

    Coopenbarger, Richard A.

    2010-01-01

    Continuous descents at low engine power are desired to reduce fuel consumption, emissions and noise during arrival operations. The challenge is to allow airplanes to fly these types of efficient descents without interruption during busy traffic conditions. During busy conditions today, airplanes are commonly forced to fly inefficient, step-down descents as airtraffic controllers work to ensure separation and maximize throughput. NASA in collaboration with government and industry partners is developing new automation to help controllers accommodate continuous descents in the presence of complex traffic and airspace constraints. This automation relies on accurate trajectory predictions to compute strategic maneuver advisories. The talk will describe the concept behind this new automation and provide an overview of the simulations and flight testing used to develop and refine its underlying technology.

  5. Ascent/descent ancillary data production user's guide

    NASA Technical Reports Server (NTRS)

    Brans, H. R.; Seacord, A. W., II; Ulmer, J. W.

    1986-01-01

    The Ascent/Descent Ancillary Data Product, also called the A/D BET because it contains a Best Estimate of the Trajectory (BET), is a collection of trajectory, attitude, and atmospheric related parameters computed for the ascent and descent phases of each Shuttle Mission. These computations are executed shortly after the event in a post-flight environment. A collection of several routines including some stand-alone routines constitute what is called the Ascent/Descent Ancillary Data Production Program. A User's Guide for that program is given. It is intended to provide the reader with all the information necessary to generate an Ascent or a Descent Ancillary Data Product. It includes descriptions of the input data and output data for each routine, and contains explicit instructions on how to run each routine. A description of the final output product is given.

  6. Air-Traffic Controllers Evaluate The Descent Advisor

    NASA Technical Reports Server (NTRS)

    Tobias, Leonard; Volckers, Uwe; Erzberger, Heinz

    1992-01-01

    Report describes study of Descent Advisor algorithm: software automation aid intended to assist air-traffic controllers in spacing traffic and meeting specified times or arrival. Based partly on mathematical models of weather conditions and performances of aircraft, it generates suggested clearances, including top-of-descent points and speed-profile data to attain objectives. Study focused on operational characteristics with specific attention to how it can be used for prediction, spacing, and metering.

  7. Design principles of descent vehicles with an inflatable braking device

    NASA Astrophysics Data System (ADS)

    Alexashkin, S. N.; Pichkhadze, K. M.; Finchenko, V. S.

    2013-12-01

    A new type of descent vehicle (DVs) is described: a descent vehicle with an inflatable braking device (IBD DV). IBD development issues, as well as materials needed for the design, manufacturing, and testing of an IBD and its thermal protection, are discussed. A list is given of Russian integrated test facilities intended for testing IBD DVs. Progress is described in the development of IBD DVs in Russia and abroad.

  8. Optimal sliding guidance algorithm for Mars powered descent phase

    NASA Astrophysics Data System (ADS)

    Wibben, Daniel R.; Furfaro, Roberto

    2016-02-01

    Landing on large planetary bodies (e.g. Mars) with pinpoint accuracy presents a set of new challenges that must be addressed. One such challenge is the development of new guidance algorithms that exhibit a higher degree of robustness and flexibility. In this paper, the Zero-Effort-Miss/Zero-Effort-Velocity (ZEM/ZEV) optimal sliding guidance (OSG) scheme is applied to the Mars powered descent phase. This guidance algorithm has been specifically designed to combine techniques from both optimal and sliding control theories to generate an acceleration command based purely on the current estimated spacecraft state and desired final target state. Consequently, OSG yields closed-loop trajectories that do not need a reference trajectory. The guidance algorithm has its roots in the generalized ZEM/ZEV feedback guidance and its mathematical equations are naturally derived by defining a non-linear sliding surface as a function of the terms Zero-Effort-Miss and Zero-Effort-Velocity. With the addition of the sliding mode and using Lyapunov theory for non-autonomous systems, one can formally prove that the developed OSG law is globally finite-time stable to unknown but bounded perturbations. Here, the focus is on comparing the generalized ZEM/ZEV feedback guidance with the OSG law to explicitly demonstrate the benefits of the sliding mode augmentation. Results show that the sliding guidance provides a more robust solution in off-nominal scenarios while providing similar fuel consumption when compared to the non-sliding guidance command. Further, a Monte Carlo analysis is performed to examine the performance of the OSG law under perturbed conditions.

  9. Descent from the Summit of 'Husband Hill'

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site] Click on the image for Descent from the Summit of 'Husband Hill' (QTVR)

    In late November 2005 while descending 'Husband Hill,' NASA's Mars Exploration Rover Spirit took the most detailed panorama so far of the 'Inner Basin,' the rover's next target destination. Spirit acquired the 405 individual images that make up this 360-degree view of the surrounding terrain using five different filters on the panoramic camera. The rover took the images on Martian days, or sols, 672 to 677 (Nov. 23 to 28, 2005 -- the Thanksgiving holiday weekend).

    This image is an approximately true-color rendering using camera's 750-, 530-, and 430-nanometer filters. Seams between individual frames have been eliminated from the sky portion of the mosaic to better simulate the vista a person standing on Mars would see.

    'Home Plate,' a bright, semi-circular feature scientists hope to investigate, is harder to discern in this image than in earlier views taken from higher up the hill. Spirit acquired this more oblique view, known as the 'Seminole panorama,' from about halfway down the south flank of Husband Hill, 50 meters (164 feet) or so below the summit. Near the center of the panorama, on the horizon, are 'McCool Hill' and 'Ramon Hill,' named, like Husband Hill, in honor of the fallen astronauts of the space shuttle Columbia. Husband Hill is visible behind the rover, on the right and left sides of the panorama. An arc of rover tracks made while avoiding obstacles and getting into position to examine rock outcrops can be traced over a long distance by zooming in to explore the panorama in greater detail.

    Spirit is now significantly farther downhill toward the center of this panorama, en route to Home Plate and other enigmatic soils and outcrop rocks in the quest to uncover the history of Gusev Crater and the 'Columbia Hills.'

  10. A descent of the aurora over Lapland

    NASA Astrophysics Data System (ADS)

    Whiter, Daniel; Partamies, Noora

    2014-05-01

    A very large statistical study (≃ 4 × 105 measurements) into the peak emission height of the aurora has shown that the aurora over Lapland descended significantly between 1996 and 2007. The study was performed using images from a network of ground-based all-sky cameras which form part of the MIRACLE (Magnetometers-Ionospheric Radar-All-sky Cameras Large Experiment) network, and are located at various observation stations across northern Finland and Sweden. The height of the aurora was first measured about a century ago. Since then, it has generally been assumed that the peak emission height of any particular auroral emission is constant for similar geomagnetic conditions. The present work was motivated by the need to improve estimates of the height of the aurora used to calculate other ionospheric and auroral properties, such as optical flow velocities and auroral arc widths. In recent years MIRACLE has produced approximately 105 images of the aurora per station per year. In order to analyse such a large number of images, a novel fast and automatic method was developed for finding the peak emission height of an auroral structure from a pair of all-sky camera images with overlapping fields of view. This method has been applied to all auroral images recorded by the MIRACLE intensified CCD cameras in operation between 1996 and 2007. Such a large data set allows the study of variations in the height of the aurora with time (yearly, monthly, hourly) and with solar and geomagnetic indices such as F10.7 and Kp. Results from the statistical study show that the peak emission height of green (557.7 nm, O1S - O1D transition) aurora over Lapland descended by about 10 km between 1996 and 2007. This descent occurred independently of the solar cycle, and is thought to be due to a cooling and contraction of the mesosphere and lower thermosphere.

  11. Design of automation tools for management of descent traffic

    NASA Technical Reports Server (NTRS)

    Erzberger, Heinz; Nedell, William

    1988-01-01

    The design of an automated air traffic control system based on a hierarchy of advisory tools for controllers is described. Compatibility of the tools with the human controller, a key objective of the design, is achieved by a judicious selection of tasks to be automated and careful attention to the design of the controller system interface. The design comprises three interconnected subsystems referred to as the Traffic Management Advisor, the Descent Advisor, and the Final Approach Spacing Tool. Each of these subsystems provides a collection of tools for specific controller positions and tasks. This paper focuses primarily on the Descent Advisor which provides automation tools for managing descent traffic. The algorithms, automation modes, and graphical interfaces incorporated in the design are described. Information generated by the Descent Advisor tools is integrated into a plan view traffic display consisting of a high-resolution color monitor. Estimated arrival times of aircraft are presented graphically on a time line, which is also used interactively in combination with a mouse input device to select and schedule arrival times. Other graphical markers indicate the location of the fuel-optimum top-of-descent point and the predicted separation distances of aircraft at a designated time-control point. Computer generated advisories provide speed and descent clearances which the controller can issue to aircraft to help them arrive at the feeder gate at the scheduled times or with specified separation distances. Two types of horizontal guidance modes, selectable by the controller, provide markers for managing the horizontal flightpaths of aircraft under various conditions. The entire system consisting of descent advisor algorithm, a library of aircraft performance models, national airspace system data bases, and interactive display software has been implemented on a workstation made by Sun Microsystems, Inc. It is planned to use this configuration in operational

  12. Mars Descent Imager (MARDI) on the Mars Polar Lander

    USGS Publications Warehouse

    Malin, M.C.; Caplinger, M.A.; Carr, M.H.; Squyres, S.; Thomas, P.; Veverka, J.

    2001-01-01

    The Mars Descent Imager, or MARDI, experiment on the Mars Polar Lander (MPL) consists of a camera characterized by small physical size and mass (???6 ?? 6 ?? 12 cm, including baffle; <500 gm), low power requirements (<2.5 W, including power supply losses), and high science performance (1000 x 1000 pixel, low noise). The intent of the investigation is to acquire nested images over a range of resolutions, from 8 m/pixel to better than 1 cm/pixel, during the roughly 2 min it takes the MPL to descend from 8 km to the surface under parachute and rocket-powered deceleration. Observational goals will include studies of (1) surface morphology (e.g., nature and distribution of landforms indicating past and present environmental processes); (2) local and regional geography (e.g., context for other lander instruments: precise location, detailed local relief); and (3) relationships to features seen in orbiter data. To accomplish these goals, MARDI will collect three types of images. Four small images (256 x 256 pixels) will be acquired on 0.5 s centers beginning 0.3 s before MPL's heatshield is jettisoned. Sixteen full-frame images (1024 X 1024, circularly edited) will be acquired on 5.3 s centers thereafter. Just after backshell jettison but prior to the start of powered descent, a "best final nonpowered descent image" will be acquired. Five seconds after the start of powered descent, the camera will begin acquiring images on 4 s centers. Storage for as many as ten 800 x 800 pixel images is available during terminal descent. A number of spacecraft factors are likely to impact the quality of MARDI images, including substantial motion blur resulting from large rates of attitude variation during parachute descent and substantial rocket-engine-induced vibration during powered descent. In addition, the mounting location of the camera places the exhaust plume of the hydrazine engines prominently in the field of view. Copyright 2001 by the American Geophysical Union.

  13. Atmospheric properties reconstruction from the Mars Science Laboratory Entry, Descent and Landing

    NASA Astrophysics Data System (ADS)

    Holstein-Rathlou, Christina; Withers, Paul

    2014-11-01

    The Mars Science Laboratory (MSL) landed on August 5, 2012 in Gale Crater on Mars (4.5 S, 137.4 E) [1]. The MSL entry vehicle measured accelerations and angular velocity during its descent through the Martian atmosphere using accelerometers and gyroscopes in an inertial measurement unit. We have applied smoothing techniques previously developed for the NASA Phoenix Mars mission [2] to these acceleration data. Smoothed accelerations were used in conjunction with the vehicle’s aerodynamic database to reconstruct atmospheric density, pressure and temperature profiles to above 120 km altitude. The density profile was estimated using axial accelerations in the drag force equation. Corresponding pressure and temperature profiles were calculated using the hydrostatic equilibrium and ideal gas law, respectively. In contrast to previous missions, MSL used a guided entry that resulted in periods of near-horizontal flight at approximately 20 km altitude [3], during which pressure could not be determined from hydrostatic equilibrium. Instead, atmospheric pressures at low altitudes were determined independently by the Mars Entry Atmospheric Data System (MEADS) [4]. These were used in conjunction with accelerometer-derived densities to extend the atmospheric temperature profile through the period of near-horizontal flight. Although the results present only a snapshot of the regional atmospheric conditions at the time of entry, descent and landing of MSL, they have excellent vertical resolution and vertical extent, thereby complementing orbital observations. We will present an overview of our atmospheric reconstruction process, the derived atmospheric profiles, and preliminary scientific interpretation of the atmospheric results. References: [1] Vasavada, A.R. et al (2014), JGR-Planets, 119, 6, 1134-1161 [2] Withers, P. (2013) Planet. & Space Sci., 79-80, 52-55, [3] Dutta, S. et al. (2013) 23rd AAS/AIAA Space Flight Mechanics Meeting, AAS 13-309, [4] Schoenenberger, M. et al

  14. Steepest entropy ascent model for far-nonequilibrium thermodynamics: Unified implementation of the maximum entropy production principle

    NASA Astrophysics Data System (ADS)

    Beretta, Gian Paolo

    2014-10-01

    By suitable reformulations, we cast the mathematical frameworks of several well-known different approaches to the description of nonequilibrium dynamics into a unified formulation valid in all these contexts, which extends to such frameworks the concept of steepest entropy ascent (SEA) dynamics introduced by the present author in previous works on quantum thermodynamics. Actually, the present formulation constitutes a generalization also for the quantum thermodynamics framework. The analysis emphasizes that in the SEA modeling principle a key role is played by the geometrical metric with respect to which to measure the length of a trajectory in state space. In the near-thermodynamic-equilibrium limit, the metric tensor is directly related to the Onsager's generalized resistivity tensor. Therefore, through the identification of a suitable metric field which generalizes the Onsager generalized resistance to the arbitrarily far-nonequilibrium domain, most of the existing theories of nonequilibrium thermodynamics can be cast in such a way that the state exhibits the spontaneous tendency to evolve in state space along the path of SEA compatible with the conservation constraints and the boundary conditions. The resulting unified family of SEA dynamical models is intrinsically and strongly consistent with the second law of thermodynamics. The non-negativity of the entropy production is a general and readily proved feature of SEA dynamics. In several of the different approaches to nonequilibrium description we consider here, the SEA concept has not been investigated before. We believe it defines the precise meaning and the domain of general validity of the so-called maximum entropy production principle. Therefore, it is hoped that the present unifying approach may prove useful in providing a fresh basis for effective, thermodynamically consistent, numerical models and theoretical treatments of irreversible conservative relaxation towards equilibrium from far nonequilibrium

  15. Steepest entropy ascent model for far-nonequilibrium thermodynamics: unified implementation of the maximum entropy production principle.

    PubMed

    Beretta, Gian Paolo

    2014-10-01

    By suitable reformulations, we cast the mathematical frameworks of several well-known different approaches to the description of nonequilibrium dynamics into a unified formulation valid in all these contexts, which extends to such frameworks the concept of steepest entropy ascent (SEA) dynamics introduced by the present author in previous works on quantum thermodynamics. Actually, the present formulation constitutes a generalization also for the quantum thermodynamics framework. The analysis emphasizes that in the SEA modeling principle a key role is played by the geometrical metric with respect to which to measure the length of a trajectory in state space. In the near-thermodynamic-equilibrium limit, the metric tensor is directly related to the Onsager's generalized resistivity tensor. Therefore, through the identification of a suitable metric field which generalizes the Onsager generalized resistance to the arbitrarily far-nonequilibrium domain, most of the existing theories of nonequilibrium thermodynamics can be cast in such a way that the state exhibits the spontaneous tendency to evolve in state space along the path of SEA compatible with the conservation constraints and the boundary conditions. The resulting unified family of SEA dynamical models is intrinsically and strongly consistent with the second law of thermodynamics. The non-negativity of the entropy production is a general and readily proved feature of SEA dynamics. In several of the different approaches to nonequilibrium description we consider here, the SEA concept has not been investigated before. We believe it defines the precise meaning and the domain of general validity of the so-called maximum entropy production principle. Therefore, it is hoped that the present unifying approach may prove useful in providing a fresh basis for effective, thermodynamically consistent, numerical models and theoretical treatments of irreversible conservative relaxation towards equilibrium from far nonequilibrium

  16. Data assimilation using a gradient descent method for estimation of intraoperative brain deformation.

    PubMed

    Ji, Songbai; Hartov, Alex; Roberts, David; Paulsen, Keith

    2009-10-01

    Biomechanical models that simulate brain deformation are gaining attention as alternatives for brain shift compensation. One approach, known as the "forced-displacement method", constrains the model to exactly match the measured data through boundary condition (BC) assignment. Although it improves model estimates and is computationally attractive, the method generates fictitious forces and may be ill-advised due to measurement uncertainty. Previously, we have shown that by assimilating intraoperatively acquired brain displacements in an inversion scheme, the Representer algorithm (REP) is able to maintain stress-free BCs and improve model estimates by 33% over those without data guidance in a controlled environment. However, REP is computationally efficient only when a few data points are used for model guidance because its costs scale linearly in the number of data points assimilated, thereby limiting its utility (and accuracy) in clinical settings. In this paper, we present a steepest gradient descent algorithm (SGD) whose computational complexity scales nearly invariantly with the number of measurements assimilated by iteratively adjusting the forcing conditions to minimize the difference between measured and model-estimated displacements (model-data misfit). Solutions of full linear systems of equations are achieved with a parallelized direct solver on a shared-memory, eight-processor Linux cluster. We summarize the error contributions from the entire process of model-updated image registration compensation and we show that SGD is able to attain model estimates comparable to or better than those obtained with REP, capturing about 74-82% of tumor displacement, but with a computational effort that is significantly less (a factor of 4-fold or more reduction relative to REP) and nearly invariant to the amount of sparse data involved when the number of points assimilated is large. Based on five patient cases, an average computational cost of approximately 2 min for

  17. Crew Procedures for Continuous Descent Arrivals Using Conventional Guidance

    NASA Technical Reports Server (NTRS)

    Oseguera-Lohr, Rosa M.; Williams, David H.; Lewis, Elliot T,

    2007-01-01

    This paper presents results from a simulation study which investigated the use of Continuous Descent Arrival (CDA) procedures for conducting a descent through a busy terminal area, using conventional transport-category automation. This research was part of the Low Noise Flight Procedures (LNFP) element within the Quiet Aircraft Technology (QAT) Project, that addressed development of flight guidance, and supporting pilot and Air Traffic Control (ATC) procedures for low noise operations. The procedures and chart were designed to be easy to understand, and to make it easy for the crew to make changes via the Flight Management Computer Control-Display Unit (FMC-CDU) to accommodate changes from ATC. The test runs were intended to represent situations typical of what exists in many of today's terminal areas, including interruptions to the descent in the form of clearances issued by ATC.

  18. MSL Entry, Descent and Landing Performance and Environments

    NASA Technical Reports Server (NTRS)

    Lockwood, Mary Kae; Dwyer-Cianciola, Alicia; Dyakonov, Artem; Edquist, Karl; Powell, Dick; Striepe, Scott; Way, David; Graves, Claude; Carman, Gil; Sostaric, Ron

    2005-01-01

    A viewgraph presentation on the MARS Science Laboratory (MSL) Entry, Descent and Landing (EDL) performance and environments is shown. The topics include: 1) High Altitude and Precision Landing; 2) Guided, Lifting, Ballistic Trade; 3) Supersonic Chute Deploy Altitude; 4) Guided, Lifting, Ballistic Landing Footprint Video; 5) Transition Indicator at Peak Heating Point on Trajectory; 6) Aeroheating at Peak Heating Point on Trajectory Nominal, No Uncertainty Included; 7) Comparison to Previous Missions; 8) Pork Chop Plots - EDL Performance for Mission Design; 9) Max Heat Rate Est (CBE+Uncert) W/cm2; 10) Nominal Super Chute Deploy Alt Above MOLA (km); 11) Monte Carlo; 12) MSL Option M2 Entry, Descent and Landing; 13) Entry Performance; 14) Entry Aeroheating and Entry g's; 15) Terminal Descent; and 16) How An Ideal Chute Deployment Altitude Varies with Time of Year and Latitude (JSC Chart).

  19. Mars Smart Lander Simulations for Entry, Descent, and Landing

    NASA Technical Reports Server (NTRS)

    Striepe, S. A.; Way, D. W.; Balaram, J.

    2002-01-01

    Two primary simulations have been developed and are being updated for the Mars Smart Lander Entry, Descent, and Landing (EDL). The high fidelity engineering end-to-end EDL simulation that is based on NASA Langley's Program to Optimize Simulated Trajectories (POST) and the end-to-end real-time, hardware-in-the-loop simulation testbed, which is based on NASA JPL's (Jet Propulsion Laboratory) Dynamics Simulator for Entry, Descent and Surface landing (DSENDS). This paper presents the status of these Mars Smart Lander EDL end-to-end simulations at this time. Various models, capabilities, as well as validation and verification for these simulations are discussed.

  20. Flight Data Entry, Descent, and Landing (EDL) Repository

    NASA Technical Reports Server (NTRS)

    Martinez, Elmain M.; Winterhalter, Daniel

    2012-01-01

    Dr. Daniel Winterhalter, NASA Engineering and Safety Center Chief Engineer at the Jet Propulsion Laboratory, requested the NASA Engineering and Safety Center sponsor a 3-year effort to collect entry, descent, and landing material and to establish a NASA-wide archive to serve the material. The principle focus of this task was to identify entry, descent, and landing repository material that was at risk of being permanently lost due to damage, decay, and undocumented storage. To provide NASA-wide access to this material, a web-based digital archive was created. This document contains the outcome of the effort.

  1. Space shuttle descent design: From development to operations

    NASA Technical Reports Server (NTRS)

    Crull, T. J.; Hite, R. E., III

    1985-01-01

    The descent guidance system, the descent trajectories design, and generating of the associated flight products are discussed. The programs which allow the successful transitions from development to STS operations, resulting in reduced manpower requirements and compressed schedules for flight design cycles are addressed. The topics include: (1) continually upgraded tools for the job, i.e., consolidating tools via electronic data transfers, tailoring general purpose software for needs, easy access to tools through an interactive approach, and appropriate flexibility to allow design changes and provide growth capability; (2) stabilizing the flight profile designs (I-loads) in an uncertain environment; and (3) standardizing external interfaces within performance and subsystems constraints of the Orbiter.

  2. Rosetta Mission's "7 Hours of Terror" and Philae's Descent

    NASA Astrophysics Data System (ADS)

    Blanco, Philip

    2015-09-01

    In November 2014 the Rosetta mission to Comet 67P/Churyumov-Gerasimenko made the headlines when its Philae lander completed a successful unpowered descent onto the surface of the comet nucleus after "7 hours of terror" for the mission scientists. 67P's irregular shape and rotation made this task even more challenging. Philae fell almost radially towards 67P, as shown in an animation produced by the European Space Agency (ESA) prior to the event. Below, we investigate whether it is possible to model the spacecraft's descent time and impact speed using concepts taught in an introductory physics course.

  3. Gradient descent learning algorithm overview: a general dynamical systems perspective.

    PubMed

    Baldi, P

    1995-01-01

    Gives a unified treatment of gradient descent learning algorithms for neural networks using a general framework of dynamical systems. This general approach organizes and simplifies all the known algorithms and results which have been originally derived for different problems (fixed point/trajectory learning), for different models (discrete/continuous), for different architectures (forward/recurrent), and using different techniques (backpropagation, variational calculus, adjoint methods, etc.). The general approach can also be applied to derive new algorithms. The author then briefly examines some of the complexity issues and limitations intrinsic to gradient descent learning. Throughout the paper, the author focuses on the problem of trajectory learning. PMID:18263297

  4. Entry, Descent and Landing Systems Analysis Study: Phase 1 Report

    NASA Technical Reports Server (NTRS)

    DwyerCianciolo, Alicia M.; Davis, Jody L.; Komar, David R.; Munk, Michelle M.; Samareh, Jamshid A.; Powell, Richard W.; Shidner, Jeremy D.; Stanley, Douglas O.; Wilhite, Alan W.; Kinney, David J.; McGuire, M. Kathleen; Arnold, James O.; Howard, Austin R.; Sostaric, Ronald R.; Studak, Joseph W.; Zumwalt, Carlie H.; Llama, Eduardo G.; Casoliva, Jordi; Ivanov, Mark C.; Clark, Ian; Sengupta, Anita

    2010-01-01

    NASA senior management commissioned the Entry, Descent and Landing Systems Analysis (EDL-SA) Study in 2008 to identify and roadmap the Entry, Descent and Landing (EDL) technology investments that the agency needed to make in order to successfully land large payloads at Mars for both robotic and human-scale missions. This paper summarizes the motivation, approach and top-level results from Year 1 of the study, which focused on landing 10-50 mt on Mars, but also included a trade study of the best advanced parachute design for increasing the landed payloads within the EDL architecture of the Mars Science Laboratory (MSL) mission

  5. A Portfolio of Outstanding Americans of Mexican Descent.

    ERIC Educational Resources Information Center

    Lelevier, Benjamin, Jr.

    A cross section of Mexican American achievement is presented in a portfolio of 37 portraits of outstanding Americans of Mexican descent. Drawn in black and white on heavy paper stock by Mr. David L. Rodriguez, the sketches are suitable for display purposes. With the likenesses are biographical sketches in both English and Spanish which were…

  6. "Rosetta" Mission's "7 Hours of Terror" and "Philae's" Descent

    ERIC Educational Resources Information Center

    Blanco, Philip

    2015-01-01

    In November 2014 the "Rosetta" mission to Comet 67P/Churyumov-Gerasimenko made the headlines when its "Philae" lander completed a successful unpowered descent onto the surface of the comet nucleus after "7 hours of terror" for the mission scientists. 67P's irregular shape and rotation made this task even more…

  7. Stress within a Bicultural Context for Adolescents of Mexican Descent.

    ERIC Educational Resources Information Center

    Romero, Andrea J.; Roberts, Robert E.

    2003-01-01

    Folkman and Lazarus's theory of stress and coping was used to develop a measure assessing the perceived stress within a bicultural context. Middle school students of Mexican descent (N=881) reported their perceived stress from intergenerational acculturation gaps, within-group discrimination, out-group discrimination, and monolingual stress.…

  8. A Comparison of Inexact Newton and Coordinate Descent Meshoptimization Technqiues

    SciTech Connect

    Diachin, L F; Knupp, P; Munson, T; Shontz, S

    2004-07-08

    We compare inexact Newton and coordinate descent methods for optimizing the quality of a mesh by repositioning the vertices, where quality is measured by the harmonic mean of the mean-ratio metric. The effects of problem size, element size heterogeneity, and various vertex displacement schemes on the performance of these algorithms are assessed for a series of tetrahedral meshes.

  9. Abuse against Women with Disabilities of Mexican Descent: Cultural Considerations

    ERIC Educational Resources Information Center

    Graf, Noreen M.; Reed, Bruce J.; Sanchez, Rubi

    2008-01-01

    Although considerable attention has been focused on violence against women with disabilities, environmental and cultural factors that contribute to this violence have received limited attention. This paper examines violence against women of Mexican descent with disabilities. Recommendations are offered to researchers, educators, and service…

  10. 14 CFR 23.69 - Enroute climb/descent.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Enroute climb/descent. 23.69 Section 23.69 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Flight Performance § 23.69...

  11. The Challenge of Mars EDL (Entry, Descent, and Landing)

    NASA Technical Reports Server (NTRS)

    Sostaric, Ronald

    2010-01-01

    This slide presentation reviews the some of the challenges of Martian atmospheric entry, descent and landing (EDL) on the surface of Mars. It reviews some of the technological difficulties, and some solutions that are being developed for future unmanned missions with larger payloads than previous landers, and ultimately human spacecraft landing.

  12. Simulation Results for Airborne Precision Spacing along Continuous Descent Arrivals

    NASA Technical Reports Server (NTRS)

    Barmore, Bryan E.; Abbott, Terence S.; Capron, William R.; Baxley, Brian T.

    2008-01-01

    This paper describes the results of a fast-time simulation experiment and a high-fidelity simulator validation with merging streams of aircraft flying Continuous Descent Arrivals through generic airspace to a runway at Dallas-Ft Worth. Aircraft made small speed adjustments based on an airborne-based spacing algorithm, so as to arrive at the threshold exactly at the assigned time interval behind their Traffic-To-Follow. The 40 aircraft were initialized at different altitudes and speeds on one of four different routes, and then merged at different points and altitudes while flying Continuous Descent Arrivals. This merging and spacing using flight deck equipment and procedures to augment or implement Air Traffic Management directives is called Flight Deck-based Merging and Spacing, an important subset of a larger Airborne Precision Spacing functionality. This research indicates that Flight Deck-based Merging and Spacing initiated while at cruise altitude and well prior to the Terminal Radar Approach Control entry can significantly contribute to the delivery of aircraft at a specified interval to the runway threshold with a high degree of accuracy and at a reduced pilot workload. Furthermore, previously documented work has shown that using a Continuous Descent Arrival instead of a traditional step-down descent can save fuel, reduce noise, and reduce emissions. Research into Flight Deck-based Merging and Spacing is a cooperative effort between government and industry partners.

  13. Women of African Descent: Persistence in Completing Doctorates

    ERIC Educational Resources Information Center

    Iddrisu, Vannetta Bailey

    2010-01-01

    This study examines the educational persistence of women of African descent (WOAD) in pursuit of a doctorate degree at universities in the southeastern United States. WOAD are women of African ancestry born outside the African continent. These women are heirs to an inner dogged determination and spirit to survive despite all odds (Pulliam, 2003,…

  14. The Huygens Descent Trajectory Working Group and the Reconstruction of the Huygens Probe Entry and Descent Trajectory at Titan

    NASA Astrophysics Data System (ADS)

    Atkinson, David H.; Kazeminejad, Bobby; Lebreton*, Jean-Pierre

    2015-04-01

    Cassini/Huygens, a flagship mission to explore the rings, atmosphere, magnetic field, and moons that make up the Saturn system, is a joint endeavor of NASA, the European Space Agency, and Agenzia Spaziale Italiana. Comprising two spacecraft - a Saturn orbiter built by NASA and a Titan entry/descent probe built by the European Space Agency - Cassini/Huygens was launched in October 1997 and arrived at Saturn in 2004. The Huygens probe parachuted to the surface of Titan in January 2005. During the descent, six science instruments provided measurements of Titan's atmosphere, clouds, and winds, and photographed Titan's surface. It was recognized early in the Huygens program that to correctly interpret and correlate results from the probe science experiments and to provide a reference set of data for ground truth calibration of the Cassini orbiter remote sensing observations, an accurate reconstruction of the probe entry and descent trajectory and surface landing location would be necessary. The Huygens Descent Trajectory Working Group (DTWG) was chartered in 1996 as a subgroup of the Huygens Science Working Team. With membership comprising representatives from all the probe engineering and instrument teams as well as representatives of industry and the Cassini and Huygens Project Scientists, the DTWG presented an organizational framework within which instrument data was shared, the entry and descent trajectory reconstruction implemented, and the trajectory reconstruction efficiently disseminated. The primary goal of the Descent Trajectory Working Group was to develop retrieval methodologies for the probe descent trajectory reconstruction from the entry interface altitude of 1270 km to the surface using navigation data, and engineering and science data acquired by the instruments on the Huygens Probe, and to provide a reconstruction of the Huygens probe trajectory from entry to the surface of Titan that is maximally consistent with all available engineering and science

  15. Measurement of CPAS Main Parachute Rate of Descent

    NASA Technical Reports Server (NTRS)

    Ray, Eric S.

    2011-01-01

    The Crew Exploration Vehicle Parachute Assembly System (CPAS) is being designed to land the Orion Crew Module (CM) at a safe rate of descent at splashdown. Flight test performance must be measured to a high degree of accuracy to ensure this requirement is met with the most efficient design possible. Although the design includes three CPAS Main parachutes, the requirement is that the system must not exceed 33 ft/s under two Main parachutes, should one of the Main parachutes fail. Therefore, several tests were conducted with clusters of two Mains. All of the steady-state rate of descent data are normalized to standard sea level conditions and checked against the limit. As the Orion design gains weight, the system is approaching this limit to within measurement precision. Parachute "breathing," cluster interactions, and atmospheric anomalies can cause the rate of descent to vary widely and lead to challenges in characterizing parachute terminal performance. An early test had contradictory rate of descent results from optical trajectory and Differential Global Positioning Systems (DGPS). A thorough analysis of the data sources and error propagation was conducted to determine the uncertainty in the trajectory. It was discovered that the Time Space Position Information (TSPI) from the optical tracking provided accurate position data. However, the velocity from TPSI must be computed via numerical differentiation, which is prone to large error. DGPS obtains position through pseudo-range calculations from multiple satellites and velocity through Doppler shift of the carrier frequency. Because the velocity from DGPS is a direct measurement, it is more accurate than TSPI velocity. To remedy the situation, a commercial off-the-shelf product that combines GPS and an Inertial Measurement Unit (IMU) was purchased to significantly improve rate of descent measurements. This had the added benefit of solving GPS dropouts during aircraft extraction. Statistical probability

  16. RITD - Adapting Mars Entry, Descent and Landing System for Earth

    NASA Astrophysics Data System (ADS)

    Heilimo, Jyri; Harri, Ari-Matti; Aleksashkin, Sergei; Koryanov, Valeri; Arruego, Ignacio; Schmidt, Walter; Haukka, Harri; Finchenko, Valeri; Martynov, Maxim; Ponomarenko, Andrey; Kazakovtsev, Victor; Martin, Susana

    2015-04-01

    We have developed an atmospheric re-entry and descent system concept based on inflatable hypersonic decelerator techniques that were originally developed for Mars. The ultimate goal of this EU-funded RITD-project (Re-entry: Inflatable Technology Development) was to assess the benefits of this technology when deploying small payloads from low Earth orbits to the surface of the Earth with modest costs. The principal goal was to assess and develop a preliminary EDLS design for the entire relevant range of aerodynamic regimes expected to be encountered in Earth's atmosphere during entry, descent and landing. Low Earth Orbit (LEO) and even Lunar applications envisaged include the use of the EDLS approach in returning payloads of 4-8 kg down to the surface. Our development and assessments show clearly that this kind of inflatable technology originally developed for the Martian atmosphere, is feasible for use by Earth entry and descent applications. The preliminary results are highly promising indicating that the current Mars probe design could be used as it is for the Earth. According tp our analyses, the higher atmospheric pressure at an altitude of 12 km and less requires an additional pressurizing device for the in atable system increasing the entry mass by approximately 2 kg. These analyses involved the calculation of 120 different atmospheric entry and descent trajectories. The analysis of the existing technologies and current trends have indicated that the kind of inflatable technology pursued by RITD has high potential to enhance the European space technology expertise. This kind of technology is clearly feasible for utilization by Earth entry and descent applications.

  17. Analysis of various descent trajectories for a hypersonic-cruise, cold-wall research airplane

    NASA Technical Reports Server (NTRS)

    Lawing, P. L.

    1975-01-01

    The probable descent operating conditions for a hypersonic air-breathing research airplane were examined. Descents selected were cruise angle of attack, high dynamic pressure, high lift coefficient, turns, and descents with drag brakes. The descents were parametrically exercised and compared from the standpoint of cold-wall (367 K) aircraft heat load. The descent parameters compared were total heat load, peak heating rate, time to landing, time to end of heat pulse, and range. Trends in total heat load as a function of cruise Mach number, cruise dynamic pressure, angle-of-attack limitation, pull-up g-load, heading angle, and drag-brake size are presented.

  18. A Symmetric Time-Varying Cluster Rate of Descent Model

    NASA Technical Reports Server (NTRS)

    Ray, Eric S.

    2015-01-01

    A model of the time-varying rate of descent of the Orion vehicle was developed based on the observed correlation between canopy projected area and drag coefficient. This initial version of the model assumes cluster symmetry and only varies the vertical component of velocity. The cluster fly-out angle is modeled as a series of sine waves based on flight test data. The projected area of each canopy is synchronized with the primary fly-out angle mode. The sudden loss of projected area during canopy collisions is modeled at minimum fly-out angles, leading to brief increases in rate of descent. The cluster geometry is converted to drag coefficient using empirically derived constants. A more complete model is under development, which computes the aerodynamic response of each canopy to its local incidence angle.

  19. Helicopter optimal descent and landing after power loss

    NASA Technical Reports Server (NTRS)

    Johnson, W.

    1977-01-01

    An optimal control solution is obtained for the descent and landing of a helicopter after the loss of power in level flight. The model considers the helicopter vertical velocity, horizontal velocity, and rotor speed; and it includes representations of ground effect, rotor inflow time lag, pilot reaction time, rotor stall, and the induced velocity curve in the vortex ring state. The control (rotor thrust magnitude and direction) required to minimize the vertical and horizontal velocity at contact with the ground is obtained using nonlinear optimal control theory. It is found that the optimal descent after power loss in hover is a purely vertical flight path. Good correlation, even quantitatively, is found between the calculations and (non-optimal) flight test results.

  20. Efficient Sensor Placement Optimization Using Gradient Descent and Probabilistic Coverage

    PubMed Central

    Akbarzadeh, Vahab; Lévesque, Julien-Charles; Gagné, Christian; Parizeau, Marc

    2014-01-01

    We are proposing an adaptation of the gradient descent method to optimize the position and orientation of sensors for the sensor placement problem. The novelty of the proposed method lies in the combination of gradient descent optimization with a realistic model, which considers both the topography of the environment and a set of sensors with directional probabilistic sensing. The performance of this approach is compared with two other black box optimization methods over area coverage and processing time. Results show that our proposed method produces competitive results on smaller maps and superior results on larger maps, while requiring much less computation than the other optimization methods to which it has been compared. PMID:25196164

  1. RITD - Adapting Mars Entry, Descent and Landing System for Earth

    NASA Astrophysics Data System (ADS)

    Haukka, H.; Heilimo, J.; Harri, A.-M.; Aleksashkin, S.; Koryanov, V.; Arruego, I.; Schmidt, W.; Finchenko, V.; Martynov, M.; Ponomarenko, A.; Kazakovtsev, V.; Martin, S.

    2015-10-01

    We have developed an atmospheric re-entry and descent system concept based on inflatable hypersonic decelerator techniques that were originally developed for Mars. The ultimate goal of this EU-funded RITD-project (Re-entry: Inflatable Technology Development) was to assess the benefits of this technology when deploying small payloads from low Earth orbits to the surface of the Earth with modest costs. The principal goal was to assess and develop a preliminary EDLS design for the entire relevant range of aerodynamic regimes expected to be encountered in Earth's atmosphere during entry, descent and landing. Low Earth Orbit (LEO) and even Lunar applications envisaged include the use of the EDLS approach in returning payloads of 4-8 kg down to the surface.

  2. Optimum climb and descent trajectories for airline missions

    NASA Technical Reports Server (NTRS)

    Erzberger, H.

    1981-01-01

    The characteristics of optimum fixed-range trajectories whose structure is constrained to climb, steady cruise, and descent segments are derived by application of optimal control theory. The performance function consists of the sum of fuel and time costs, referred to as direct operating cost (DOC). The state variable is range to go and the independent variable is energy. In this formulation a cruise segment always occurs at the optimum cruise energy for sufficiently large range. At short ranges (400 n. mi. and less), a cruise segment may also occur below the optimum cruise energy. The existence of such a cruise segment depends primarily on the fuel flow vs thrust characteristics and on thrust constraints. If thrust is a free control variable along with airspeed, it is shown that such cruise segments will not generally occur. If thrust is constrained to some maximum value in climb and to some minimum in descent, such cruise segments generally will occur.

  3. Apollo LM guidance computer software for the final lunar descent.

    NASA Technical Reports Server (NTRS)

    Eyles, D.

    1973-01-01

    In all manned lunar landings to date, the lunar module Commander has taken partial manual control of the spacecraft during the final stage of the descent, below roughly 500 ft altitude. This report describes programs developed at the Charles Stark Draper Laboratory, MIT, for use in the LM's guidance computer during the final descent. At this time computational demands on the on-board computer are at a maximum, and particularly close interaction with the crew is necessary. The emphasis is on the design of the computer software rather than on justification of the particular guidance algorithms employed. After the computer and the mission have been introduced, the current configuration of the final landing programs and an advanced version developed experimentally by the author are described.

  4. Flight Management System Execution of Idle-Thrust Descents in Operations

    NASA Technical Reports Server (NTRS)

    Stell, Laurel L.

    2011-01-01

    To enable arriving aircraft to fly optimized descents computed by the flight management system (FMS) in congested airspace, ground automation must accurately predict descent trajectories. To support development of the trajectory predictor and its error models, commercial flights executed idle-thrust descents, and the recorded data includes the target speed profile and FMS intent trajectories. The FMS computes the intended descent path assuming idle thrust after top of descent (TOD), and any intervention by the controllers that alters the FMS execution of the descent is recorded so that such flights are discarded from the analysis. The horizontal flight path, cruise and meter fix altitudes, and actual TOD location are extracted from the radar data. Using more than 60 descents in Boeing 777 aircraft, the actual speeds are compared to the intended descent speed profile. In addition, three aspects of the accuracy of the FMS intent trajectory are analyzed: the meter fix crossing time, the TOD location, and the altitude at the meter fix. The actual TOD location is within 5 nmi of the intent location for over 95% of the descents. Roughly 90% of the time, the airspeed is within 0.01 of the target Mach number and within 10 KCAS of the target descent CAS, but the meter fix crossing time is only within 50 sec of the time computed by the FMS. Overall, the aircraft seem to be executing the descents as intended by the designers of the onboard automation.

  5. Biomechanical Analysis of Stair Descent in Patients with Knee Osteoarthritis

    PubMed Central

    Igawa, Tatsuya; Katsuhira, Junji

    2014-01-01

    [Purpose] The purposes of this study were to investigate the lower extremity joint kinematics and kinetics of patients with the knee osteoarthritis (knee OA) during stair descent and clarify the biomechanical factors related to their difficulty in stair descent. [Subjects and Methods] Eight healthy elderly persons and four knee OA patients participated in this study. A 3-D motion analysis system and force plates were employed to measure lower extremity joint angles, ranges of motion, joint moments, joint powers, and ratios of contribution for the joint powers while descending stairs. [Results] Knee joint flexion angle, extension moment, and negative power during the early stance phase in the knee OA group were smaller than those in the healthy subjects group. However, no significant changes in these parameters in the ankle joint were observed between the two subject groups. [Conclusion] Knee OA patients could not use the knee joint to absorb impact during the early stance phase of stair descent. Hence, they might compensate for the roles played by the intact knee joint by mainly using ipsilateral ankle kinematics and kinetics. PMID:24926119

  6. Entry, Descent, and Landing Performance of the Mars Phoenix Lander

    NASA Technical Reports Server (NTRS)

    Desai, Prasun N.; Prince, Jill L.; Wueen, Eric M.; Cruz, Juan R.; Grover, Myron R.

    2008-01-01

    On May 25, 2008, the Mars Phoenix Lander successfully landed on the northern arctic plains of Mars. An overview of a preliminary reconstruction analysis performed on each entry, descent, and landing phase to assess the performance of Phoenix as it descended is presented and a comparison to pre-entry predictions is provided. The landing occurred 21 km further downrange than the predicted landing location. Analysis of the flight data revealed that the primary cause of Phoenix s downrange landing was a higher trim total angle of attack during the hypersonic phase of the entry, which resulted in Phoenix flying a slightly lifting trajectory. The cause of this higher trim attitude is not known at this time. Parachute deployment was 6.4 s later than prediction. This later deployment time was within the variations expected and is consistent with a lifting trajectory. The parachute deployment and inflation process occurred as expected with no anomalies identified. The subsequent parachute descent and powered terminal landing also behaved as expected. A preliminary reconstruction of the landing day atmospheric density profile was found to be lower than the best apriori prediction, ranging from a few percent less to a maximum of 8%. A comparison of the flight reconstructed trajectory parameters shows that the actual Phoenix entry, descent, and landing was close to pre-entry predictions. This reconstruction investigation is currently ongoing and the results to date are in the process of being refined.

  7. Airborne Management of Traffic Conflicts in Descent With Arrival Constraints

    NASA Technical Reports Server (NTRS)

    Doble, Nathan A.; Barhydt, Richard; Krishnamurthy, Karthik

    2005-01-01

    NASA is studying far-term air traffic management concepts that may increase operational efficiency through a redistribution of decisionmaking authority among airborne and ground-based elements of the air transportation system. One component of this research, En Route Free Maneuvering, allows trained pilots of equipped autonomous aircraft to assume responsibility for traffic separation. Ground-based air traffic controllers would continue to separate traffic unequipped for autonomous operations and would issue flow management constraints to all aircraft. To evaluate En Route Free Maneuvering operations, a human-in-the-loop experiment was jointly conducted by the NASA Ames and Langley Research Centers. In this experiment, test subject pilots used desktop flight simulators to resolve conflicts in cruise and descent, and to adhere to air traffic flow constraints issued by test subject controllers. Simulators at NASA Langley were equipped with a prototype Autonomous Operations Planner (AOP) flight deck toolset to assist pilots with conflict management and constraint compliance tasks. Results from the experiment are presented, focusing specifically on operations during the initial descent into the terminal area. Airborne conflict resolution performance in descent, conformance to traffic flow management constraints, and the effects of conflicting traffic on constraint conformance are all presented. Subjective data from subject pilots are also presented, showing perceived levels of workload, safety, and acceptability of autonomous arrival operations. Finally, potential AOP functionality enhancements are discussed along with suggestions to improve arrival procedures.

  8. Free-falls and parachute descents in the standard atmosphere

    NASA Technical Reports Server (NTRS)

    Webster, A P

    1947-01-01

    A detailed table of the standard equilibrium velocity and standard equilibrium time is presented for bodies falling in the standard atmosphere. This table gives the velocity at various altitudes and the time of fall from sea level to -4000 feet and from 80,000 feet to sea level. In addition to this standard table, there are given short tables and charts of an open-parachute descent and free-falls; the terminal velocity at sea level, and the variation of the weight-to-drag ratio (2w/cds)1/2 for various weight jumpers from 90 to 30 feet in open-parachute descent; and estimations of drag coefficients of silk and nylon parachutes. The table of standard equilibrium velocities and standard equilibrium times may be used directly for open-parachute descents, given the weight of the jumper, the diameter of the parachute, and the drag coefficient. For free-falls starting from horizontal flight, approximately 14 seconds must be added to the equilibrium time given in the table to obtain the total time to sea level. (author)

  9. Factors Associated with Sleep Disturbance in Women of Mexican Descent

    PubMed Central

    Heilemann, MarySue V.; Choudhury, Shonali M.; Kury, Felix Salvador; Lee, Kathryn A.

    2014-01-01

    Aims The aims were to identify the most useful parameters of acculturation in relation to self reported sleep disturbance and describe risk factors for sleep disturbance in women of Mexican descent. Background Little is known about acculturation as a factor for poor sleep in the context of other personal factors such as income or sense of resilience or mastery for Latinas in the United States. Methods These personal factors were incorporated into a modification of the Conceptual Framework of Impaired Sleep to guide our secondary analysis of self-reported sleep disturbance. Cross sectional data from a convenience sample of 312 women of Mexican descent of childbearing age (21-40 years) located in an urban California community were collected and previously analyzed in relation to depressive symptoms and post traumatic stress disorder. The General Sleep Disturbance Scale (in English and Spanish) was used to assess sleep disturbance. Results Early socialization to the United States during childhood was the most useful acculturation parameter for understanding self reported sleep disturbance in this sample. In a multivariate regression analysis, three factors (higher acculturation, lower income, and higher depressive symptoms) were significant in accounting for 40% of the variance in sleep disturbance. Conclusion When low income Latinas of Mexican descent report sleep problems, clinicians should probe for environmental sleep factors associated with low income, such as noise, over-crowding, and exposure to trauma and violence, and refer the woman to psychotherapy and counselling rather than merely prescribe a sleep medication. PMID:22221152

  10. Inflammatory bowel disease in children of middle eastern descent.

    PubMed

    Naidoo, Christina Mai Ying; Leach, Steven T; Day, Andrew S; Lemberg, Daniel A

    2014-01-01

    Increasing rates of inflammatory bowel disease (IBD) are now seen in populations where it was once uncommon. The pattern of IBD in children of Middle Eastern descent in Australia has never been reported. This study aimed to investigate the burden of IBD in children of Middle Eastern descent at the Sydney Children's Hospital, Randwick (SCHR). The SCHR IBD database was used to identify patients of self-reported Middle Eastern ethnicity diagnosed between 1987 and 2011. Demographic, diagnosis, and management data was collected for all Middle Eastern children and an age and gender matched non-Middle Eastern IBD control group. Twenty-four patients of Middle Eastern descent were identified. Middle Eastern Crohn's disease patients had higher disease activity at diagnosis, higher use of thiopurines, and less restricted colonic disease than controls. Although there were limitations with this dataset, we estimated a higher prevalence of IBD in Middle Eastern children and they had a different disease phenotype and behavior compared to the control group, with less disease restricted to the colon and likely a more active disease course. PMID:24987422

  11. Lunar Surface Access Module Descent Engine Turbopump Technology: Detailed Design

    NASA Technical Reports Server (NTRS)

    Alvarez, Erika; Forbes, John C.; Thornton, Randall J.

    2010-01-01

    The need for a high specific impulse LOX/LH2 pump-fed lunar lander engine has been established by NASA for the new lunar exploration architecture. Studies indicate that a 4-engine cluster in the thrust range of 9,000-lbf each is a candidate configuration for the main propulsion of the manned lunar lander vehicle. The lander descent engine will be required to perform multiple burns including the powered descent onto the lunar surface. In order to achieve the wide range of thrust required, the engines must be capable of throttling approximately 10:1. Working under internal research and development funding, NASA Marshall Space Flight Center (MSFC) has been conducting the development of a 9,000-lbf LOX/LH2 lunar lander descent engine technology testbed. This paper highlights the detailed design and analysis efforts to develop the lander engine Fuel Turbopump (FTP) whose operating speeds range from 30,000-rpm to 100,000-rpm. The capability of the FTP to operate across this wide range of speeds imposes several structural and dynamic challenges, and the small size of the FTP creates scaling and manufacturing challenges that are also addressed in this paper.

  12. Lunar Surface Access Module Descent Engine Turbopump Technology: Detailed Design

    NASA Technical Reports Server (NTRS)

    Alarez, Erika; Thornton, Randall J.; Forbes, John C.

    2008-01-01

    The need for a high specific impulse LOX/LH2 pump-fed lunar lander engine has been established by NASA for the new lunar exploration architecture. Studies indicate that a 4-engine cluster in the thrust range of 9,000-lbf each is a candidate configuration for the main propulsion of the manned lunar lander vehicle. The lander descent engine will be required to perform minor mid-course corrections, a Lunar Orbit Insertion (LOI) burn, a de-orbit burn, and the powered descent onto the lunar surface. In order to achieve the wide range of thrust required, the engines must be capable of throttling approximately 10:1. Working under internal research and development funding, NASA Marshall Space Flight Center (MSFC) has been conducting the development of a 9,000-lbf LOX/LH2 lunar lander descent engine testbed. This paper highlights the detailed design and analysis efforts to develop the lander engine Fuel Turbopump (FTP) whose operating speeds range from 30,000-rpm to 100,000-rpm. The capability of the FTP to operate across this wide range of speeds imposes several structural and dynamic challenges, and the small size of the FTP creates scaling and manufacturing challenges that are also addressed in this paper.

  13. Titan Explorer Entry, Descent and Landing Trajectory Design

    NASA Technical Reports Server (NTRS)

    Fisher, Jody L.; Lindberg, Robert E.; Lockwood, Mary Kae

    2006-01-01

    The Titan Explorer mission concept includes an orbiter, entry probe and inflatable airship designed to take remote and in-situ measurements of Titan's atmosphere. A modified entry, descent and landing trajectory at Titan that incorporates mid-air airship inflation (under a parachute) and separation is developed and examined for Titan Explorer. The feasibility of mid-air inflation and deployment of an airship under a parachute is determined by implementing and validating an airship buoyancy and inflation model in the trajectory simulation program, Program to Optimize Simulated Trajectories II (POST2). A nominal POST2 trajectory simulation case study is generated which examines different descent scenarios by varying airship inflation duration, orientation, and separation. The buoyancy model incorporation into POST2 is new to the software and may be used in future trajectory simulations. Each case from the nominal POST2 trajectory case study simulates a successful separation between the parachute and airship systems with sufficient velocity change as to alter their paths to avoid collision throughout their descent. The airship and heatshield also separate acceptably with a minimum distance of separation from the parachute system of 1.5 km. This analysis shows the feasibility of airship inflation on a parachute for different orientations, airship separation at various inflation times, and preparation for level-flight at Titan.

  14. Data-Analysis System for Entry, Descent, and Landing

    NASA Technical Reports Server (NTRS)

    Pham, Timothy; Chang, Christine; Sartorius, Edgar; Finley, Susan; White, Leslie; Estabrook, Polly; Fort, David

    2005-01-01

    A report describes the Entry Descent Landing Data Analysis (EDA), which is a system of signal-processing software and computer hardware for acquiring status data conveyed by multiple-frequency-shift-keying tone signals transmitted by a spacecraft during descent to the surface of a remote planet. The design of the EDA meets the challenge of processing weak, fluctuating signals that are Doppler-shifted by amounts that are only partly predictable. The software supports both real-time and post processing. The software performs fast-Fourier-transform integration, parallel frequency tracking with prediction, and mapping of detected tones to specific events. The use of backtrack and refinement parallel-processing threads helps to minimize data gaps. The design affords flexibility to enable division of a descent track into segments, within each of which the EDA is configured optimally for processing in the face of signal conditions and uncertainties. A dynamic-lock-state feature enables the detection of signals using minimum required computing power less when signals are steadily detected, more when signals fluctuate. At present, the hardware comprises eight dual-processor personal-computer modules and a server. The hardware is modular, making it possible to increase computing power by adding computers.

  15. Inflammatory Bowel Disease in Children of Middle Eastern Descent

    PubMed Central

    Naidoo, Christina Mai Ying; Leach, Steven T.; Day, Andrew S.; Lemberg, Daniel A.

    2014-01-01

    Increasing rates of inflammatory bowel disease (IBD) are now seen in populations where it was once uncommon. The pattern of IBD in children of Middle Eastern descent in Australia has never been reported. This study aimed to investigate the burden of IBD in children of Middle Eastern descent at the Sydney Children's Hospital, Randwick (SCHR). The SCHR IBD database was used to identify patients of self-reported Middle Eastern ethnicity diagnosed between 1987 and 2011. Demographic, diagnosis, and management data was collected for all Middle Eastern children and an age and gender matched non-Middle Eastern IBD control group. Twenty-four patients of Middle Eastern descent were identified. Middle Eastern Crohn's disease patients had higher disease activity at diagnosis, higher use of thiopurines, and less restricted colonic disease than controls. Although there were limitations with this dataset, we estimated a higher prevalence of IBD in Middle Eastern children and they had a different disease phenotype and behavior compared to the control group, with less disease restricted to the colon and likely a more active disease course. PMID:24987422

  16. Mars Science Laboratory: Entry, Descent, and Landing System Performance

    NASA Technical Reports Server (NTRS)

    Way, David W.; Powell, Richard W.; Chen, Allen; Steltzner, Adam D.; San Martin, Alejandro M.; Burkhart, Paul D.; mendeck, Gavin F.

    2006-01-01

    In 2010, the Mars Science Laboratory (MSL) mission will pioneer the next generation of robotic Entry, Descent, and Landing (EDL) systems, by delivering the largest and most capable rover to date to the surface of Mars. To do so, MSL will fly a guided lifting entry at a lift-to-drag ratio in excess of that ever flown at Mars, deploy the largest parachute ever at Mars, and perform a novel Sky Crane maneuver. Through improved altitude capability, increased latitude coverage, and more accurate payload delivery, MSL is allowing the science community to consider the exploration of previously inaccessible regions of the planet. The MSL EDL system is a new EDL architecture based on Viking heritage technologies and designed to meet the challenges of landing increasing massive payloads on Mars. In accordance with level-1 requirements, the MSL EDL system is being designed to land an 850 kg rover to altitudes as high as 1 km above the Mars Orbiter Laser Altimeter defined areoid within 10 km of the desired landing site. Accordingly, MSL will enter the largest entry mass, fly the largest 70 degree sphere-cone aeroshell, generate the largest hypersonic lift-to-drag ratio, and deploy the largest Disk-Gap-Band supersonic parachute of any previous mission to Mars. Major EDL events include a hypersonic guided entry, supersonic parachute deploy and inflation, subsonic heatshield jettison, terminal descent sensor acquisition, powered descent initiation, sky crane terminal descent, rover touchdown detection, and descent stage flyaway. Key performance metrics, derived from level-1 requirements and tracked by the EDL design team to indicate performance capability and timeline margins, include altitude and range at parachute deploy, time on radar, and propellant use. The MSL EDL system, which will continue to develop over the next three years, will enable a notable extension in the advancement of Mars surface science by delivering more science capability than ever before to the surface of

  17. Mars Science Laboratory: Entry, Descent, and Landing System Performance

    NASA Technical Reports Server (NTRS)

    Way, David W.; Powell, Richard W.; Chen, Allen; SanMartin, A. Miguel; Burkhart, P. Daniel; Mendeck, Gavin F.

    2007-01-01

    In 2010, the Mars Science Laboratory (MSL) mission will pioneer the next generation of robotic Entry, Descent, and Landing (EDL) systems, by delivering the largest and most capable rover to date to the surface of Mars. To do so, MSL will fly a guided lifting entry at a lift-to-drag ratio in excess of that ever flown at Mars, deploy the largest parachute ever at Mars, and perform a novel Sky Crane maneuver. Through improved altitude capability, increased latitude coverage, and more accurate payload delivery, MSL is allowing the science community to consider the exploration of previously inaccessible regions of the planet. The MSL EDL system is a new EDL architecture based on Viking heritage technologies and designed to meet the challenges of landing increasing massive payloads on Mars. In accordance with level-1 requirements, the MSL EDL system is being designed to land an 850 kg rover to altitudes as high as 1 km above the Mars Orbiter Laser Altimeter defined areoid within 10 km of the desired landing site. Accordingly, MSL will enter the largest entry mass, fly the largest 70 degree sphere-cone aeroshell, generate the largest hypersonic lift-to-drag ratio, and deploy the largest Disk-Gap-Band supersonic parachute of any previous mission to Mars. Major EDL events include a hypersonic guided entry, supersonic parachute deploy and inflation, subsonic heatshield jettison, terminal descent sensor acquisition, powered descent initiation, sky crane terminal descent, rover touchdown detection, and descent stage flyaway. Key performance metrics, derived from level-1 requirements and tracked by the EDL design team to indicate performance capability and timeline margins, include altitude and range at parachute deploy, time on radar, and propellant use. The MSL EDL system, which will continue to develop over the next three years, will enable a notable extension in the advancement of Mars surface science by delivering more science capability than ever before to the surface of

  18. Close proximity spacecraft maneuvers near irregularly shaped small bodies: Hovering, translation, and descent

    NASA Astrophysics Data System (ADS)

    Broschart, Stephen B.

    Recently there has been significant interest in sending spacecraft to small-bodies in our solar system, such as asteroids, comets, and small planetary satellites, for the purpose of scientific study. It is believed that the composition of these bodies, unchanged for billions of years, can aid in understanding the formative period of our solar system. However, missions to small-bodies are difficult from a dynamical standpoint, complicated by the irregular shape and gravitational potential of the small-body, strong perturbations from solar radiation pressure and third body gravity, and significant uncertainty in the small-body parameters. This dissertation studies the spacecraft maneuvers required to enable a sampling mission in this unique dynamical environment, including station-keeping (hovering), translation, and descent. The bulk of this work studies hovering maneuvers, where equilibrium is created at an arbitrary position by using thrusters to null the nominal spacecraft acceleration. Contributions include a numerical study of previous results on the stability of hovering, a definition of the zero-velocity surface that exists in the vicinity of hovering spacecraft (for time-invariant dynamics), and a dead-band hovering controller design that ensures the trajectory is bounded within a prescribed region. It is found that bounded hovering near the surface of a small-body can often be achieved using dead-band control on only one direction of motion; altitude measurements alone are often sufficient to implement this control. A constant thrust strategy for translation and descent maneuvers appropriate for autonomous implementation is also presented and shown to accurately complete maneuvers in the vicinity of the initial position. Sensitivity analysis studies the effects of parameter uncertainty on these maneuvers. The theory presented within is supported throughout with numerical analysis (software tools are described within) and test cases using models of real

  19. Powered Descent Guidance with General Thrust-Pointing Constraints

    NASA Technical Reports Server (NTRS)

    Carson, John M., III; Acikmese, Behcet; Blackmore, Lars

    2013-01-01

    The Powered Descent Guidance (PDG) algorithm and software for generating Mars pinpoint or precision landing guidance profiles has been enhanced to incorporate thrust-pointing constraints. Pointing constraints would typically be needed for onboard sensor and navigation systems that have specific field-of-view requirements to generate valid ground proximity and terrain-relative state measurements. The original PDG algorithm was designed to enforce both control and state constraints, including maximum and minimum thrust bounds, avoidance of the ground or descent within a glide slope cone, and maximum speed limits. The thrust-bound and thrust-pointing constraints within PDG are non-convex, which in general requires nonlinear optimization methods to generate solutions. The short duration of Mars powered descent requires guaranteed PDG convergence to a solution within a finite time; however, nonlinear optimization methods have no guarantees of convergence to the global optimal or convergence within finite computation time. A lossless convexification developed for the original PDG algorithm relaxed the non-convex thrust bound constraints. This relaxation was theoretically proven to provide valid and optimal solutions for the original, non-convex problem within a convex framework. As with the thrust bound constraint, a relaxation of the thrust-pointing constraint also provides a lossless convexification that ensures the enhanced relaxed PDG algorithm remains convex and retains validity for the original nonconvex problem. The enhanced PDG algorithm provides guidance profiles for pinpoint and precision landing that minimize fuel usage, minimize landing error to the target, and ensure satisfaction of all position and control constraints, including thrust bounds and now thrust-pointing constraints.

  20. Entry, Descent, and Landing for Human Mars Missions

    NASA Technical Reports Server (NTRS)

    Munk, Michelle M.; DwyerCianciolo, Alicia M.

    2012-01-01

    One of the most challenging aspects of a human mission to Mars is landing safely on the Martian surface. Mars has such low atmospheric density that decelerating large masses (tens of metric tons) requires methods that have not yet been demonstrated, and are not yet planned in future Mars missions. To identify the most promising options for Mars entry, descent, and landing, and to plan development of the needed technologies, NASA's Human Architecture Team (HAT) has refined candidate methods for emplacing needed elements of the human Mars exploration architecture (such as ascent vehicles and habitats) on the Mars surface. This paper explains the detailed, optimized simulations that have been developed to define the mass needed at Mars arrival to accomplish the entry, descent, and landing functions. Based on previous work, technology options for hypersonic deceleration include rigid, mid-L/D (lift-to-drag ratio) aeroshells, and inflatable aerodynamic decelerators (IADs). The hypersonic IADs, or HIADs, are about 20% less massive than the rigid vehicles, but both have their technology development challenges. For the supersonic regime, supersonic retropropulsion (SRP) is an attractive option, since a propulsive stage must be carried for terminal descent and can be ignited at higher speeds. The use of SRP eliminates the need for an additional deceleration system, but SRP is at a low Technology Readiness Level (TRL) in that the interacting plumes are not well-characterized, and their effect on vehicle stability has not been studied, to date. These architecture-level assessments have been used to define the key performance parameters and a technology development strategy for achieving the challenging mission of landing large payloads on Mars.

  1. A piloted simulator evaluation of a ground-based 4D descent advisor algorithm

    NASA Technical Reports Server (NTRS)

    Green, Steven M.; Davis, Thomas J.; Erzberger, Heinz

    1987-01-01

    A ground-based, four-dimensional (4D) descent-advisor algorithm is under development at NASA Ames Research Center. The algorithm combines detailed aerodynamic, propulsive, and atmospheric models with an efficient numerical integration scheme to generate 4D descent advisories. This paper investigates the ability of the 4D descent advisor algorithm to provide adequate control of arrival time for aircraft not equipped with on-board 4D guidance systems. A piloted simulation was conducted to determine the precision with which the descent advisor could predict the 4D trajectories of typical straight-in descents flown by airline pilots under different wind conditions. The effects of errors in the estimation of wind and initial aircraft weight were also studied. A description of the descent advisor as well as the results of the simulation studies are presented.

  2. A piloted simulator evaluation of a ground-based 4-D descent advisor algorithm

    NASA Technical Reports Server (NTRS)

    Davis, Thomas J.; Green, Steven M.; Erzberger, Heinz

    1990-01-01

    A ground-based, four dimensional (4D) descent-advisor algorithm is under development at NASA-Ames. The algorithm combines detailed aerodynamic, propulsive, and atmospheric models with an efficient numerical integration scheme to generate 4D descent advisories. The ability is investigated of the 4D descent advisor algorithm to provide adequate control of arrival time for aircraft not equipped with on-board 4D guidance systems. A piloted simulation was conducted to determine the precision with which the descent advisor could predict the 4D trajectories of typical straight-in descents flown by airline pilots under different wind conditions. The effects of errors in the estimation of wind and initial aircraft weight were also studied. A description of the descent advisor as well as the result of the simulation studies are presented.

  3. STS-1 operational flight profile. Volume 5: Descent, cycle 3. Appendix C: Monte Carlo dispersion analysis

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The results of three nonlinear the Monte Carlo dispersion analyses for the Space Transportation System 1 Flight (STS-1) Orbiter Descent Operational Flight Profile, Cycle 3 are presented. Fifty randomly selected simulation for the end of mission (EOM) descent, the abort once around (AOA) descent targeted line are steep target line, and the AOA descent targeted to the shallow target line are analyzed. These analyses compare the flight environment with system and operational constraints on the flight environment and in some cases use simplified system models as an aid in assessing the STS-1 descent flight profile. In addition, descent flight envelops are provided as a data base for use by system specialists to determine the flight readiness for STS-1. The results of these dispersion analyses supersede results of the dispersion analysis previously documented.

  4. OFT ascent/descent ancillary data requirements document

    NASA Technical Reports Server (NTRS)

    Bond, A. C., Jr.; Abramson, B.

    1978-01-01

    Requirements are presented for the ascent/descent (A/D) navigation and attitude-dependent ancillary data products to be generated for the space shuttle orbiter in support of orbital flight test requirements, MPAD guidance and navigation performance assessment, and the mission evaluation team. It was intended that this document serve as the sole requirements control instrument between MPB/MPAD and the A/D ancillary data users. The requirements are primarily functional in nature, but some detail level requirements are also included.

  5. Revalidation of the Huygens Descent Control Sub-System

    NASA Technical Reports Server (NTRS)

    2005-01-01

    The Huygens probe, part of the Cassini mission to Saturn, is designed to investigate the atmosphere of Titan, Saturn's largest moon. The passage of the probe through the atmosphere is controlled by the Descent Control Sub-System (DCSS), which consists of three parachutes and associated mechanisms. The Cassini / Huygens mission was launched in October 1997 and was designed during the early 1990's. During the time since the design and launch, analysis capabilities have improved significantly, knowledge of the Titan environment has improved and the baseline mission has been modified. Consequently, a study was performed to revalidate the DCSS design against the current predictions.

  6. [Thyrotoxic hypokalemic periodic paralysis in patients of African descent].

    PubMed

    Maia, Morgana Lima e; Trevisam, Paula Grasiele Carvalho; Minicucci, Marcos; Mazeto, Glaucia M F S; Azevedo, Paula S

    2014-10-01

    Thyrotoxic hypokalemic periodic paralysis (THPP) is an endocrine emergency marked by recurrent attacks of muscle weakness associated with hypokalemia and thyrotoxicosis. Asiatic male patients are most often affected. On the other hand, African descents rarely present this disease. The case described shows an afrodescendant patient with hypokalemia and tetraparesis, whose diagnosis of hyperthyroidism was considered during this crisis. The THPP, although rare, is potentially lethal. Therefore, in cases of flaccid paresis crisis this diagnosis should always be considered, especially if associated with hypokalemia. In this situation, if no previous diagnosis of hyperthyroidism, this should also be regarded. PMID:25372590

  7. Shuttle program: OFT ascent/descent ancillary data requirements document

    NASA Technical Reports Server (NTRS)

    Bond, A. C., Jr.; Knoedler, J.

    1980-01-01

    Requirements are presented for the ascent/descent (A/D) navigation and attitude-dependent ancillary data products to be generated for the space shuttle orbiter in support of the orbital flight test (OFT) flight test requirements, MPAD guidance and navigation performance assessment, and the mission evaluation team. The A/D ancillary data support for OFT mission evaluation activities is confined to providing postflight position, velocity, attitude, and associated navigation and attitude derived parameters for the Orbiter over particular flight phases and time intervals.

  8. Steepest-entropy-ascent quantum thermodynamic modeling of the relaxation process of isolated chemically reactive systems using density of states and the concept of hypoequilibrium state

    NASA Astrophysics Data System (ADS)

    Li, Guanchen; von Spakovsky, Michael R.

    2016-01-01

    This paper presents a study of the nonequilibrium relaxation process of chemically reactive systems using steepest-entropy-ascent quantum thermodynamics (SEAQT). The trajectory of the chemical reaction, i.e., the accessible intermediate states, is predicted and discussed. The prediction is made using a thermodynamic-ensemble approach, which does not require detailed information about the particle mechanics involved (e.g., the collision of particles). Instead, modeling the kinetics and dynamics of the relaxation process is based on the principle of steepest-entropy ascent (SEA) or maximum-entropy production, which suggests a constrained gradient dynamics in state space. The SEAQT framework is based on general definitions for energy and entropy and at least theoretically enables the prediction of the nonequilibrium relaxation of system state at all temporal and spatial scales. However, to make this not just theoretically but computationally possible, the concept of density of states is introduced to simplify the application of the relaxation model, which in effect extends the application of the SEAQT framework even to infinite energy eigenlevel systems. The energy eigenstructure of the reactive system considered here consists of an extremely large number of such levels (on the order of 10130) and yields to the quasicontinuous assumption. The principle of SEA results in a unique trajectory of system thermodynamic state evolution in Hilbert space in the nonequilibrium realm, even far from equilibrium. To describe this trajectory, the concepts of subsystem hypoequilibrium state and temperature are introduced and used to characterize each system-level, nonequilibrium state. This definition of temperature is fundamental rather than phenomenological and is a generalization of the temperature defined at stable equilibrium. In addition, to deal with the large number of energy eigenlevels, the equation of motion is formulated on the basis of the density of states and a set of

  9. Evaluation of the orientation of the steepest meridian of regular astigmatism among highly myopic Egyptian patients seeking non-ablative surgical correction of the refractive error

    PubMed Central

    Refai, Tamer Adel

    2015-01-01

    Introduction: LASIK surgery is currently the preferred procedure to correct low to moderate myopia. The aim of this study was to determine the orientation of the steepest meridian of regular astigmatism in order to determine the relative incidence of vertical, horizontal, and oblique regular astigmatism among highly myopic Egyptian patients seeking non-ablative surgical correction of the refractive error. Methods: One hundred and one eyes of 68 highly myopic patients who were seeking refractive surgery were included in this consecutive case series study. The refractive errors were measured using an autorefractometer and confirmed by trial. We measured the uncorrected and best corrected visual acuity in Snellen lines. Keratometry, central corneal thickness, and anterior chamber depth also were measured. The cylinder power in diopters and the axis in degrees were reported. Astigmatism was graded as with the rule (i.e., vertical meridian steeper), against the rule (i.e., horizontal meridian steeper), and oblique astigmatism. The number and the percentage of eyes with the rule, against the rule, and oblique astigmatism were calculated, and the chi-squared test was performed to analyze the data. Results: The spherical refractive error ranged from −6.5 to −24.5 diopters (−13.45 ± 4.60). The cylinder power (Cyl) ranged from −0.25 to −7.5 diopters (−2.23 ± 1.28). The uncorrected visual acuity (UCVA) in Snellen lines ranged from 0.01 – 0.1 (0.03 ± 0.02). The mean for best corrected visual acuity (BCVA) in Snellen lines was 0.40 (± 0.23). The steepest meridian was vertical (i.e., with-the-rule astigmatism) in 44 eyes (43.56%), horizontal (i.e., against-the-rule astigmatism) in 27 eyes (26.73%), and oblique (i.e., oblique astigmatism) in 30 eyes (29.70%). Conclusions: The incidence of with-the-rule astigmatism in patients with high myopia was found to be much lower than in previous studies for non-myopic patients, with a higher incidence for against

  10. Conceptual design of "Exomars-2018" Descent Module developed by federal enterprise "Lavochkin Association"

    NASA Astrophysics Data System (ADS)

    Khartov, V. V.; Martynov, M. B.; Lukiyanchikov, A. V.; Alexashkin, S. N.

    2015-12-01

    Goals and tasks for "ExoMars-2018" mission and share of responsibilities between European partners and p]Russia are presented. The main design requirements for a Descent Module (DM) that define its design concept as well as design specific features are given. The structure of the descent module, thermal control, means for securing systems interaction onboard the spacecraft "ExoMars-2018", and radio communication with the descent module are examined.

  11. An evaluation of descent strategies for TNAV-equipped aircraft in an advanced metering environment

    NASA Technical Reports Server (NTRS)

    Izumi, K. H.; Schwab, R. W.; Groce, J. L.; Coote, M. A.

    1986-01-01

    Investigated were the effects on system throughput and fleet fuel usage of arrival aircraft utilizing three 4D RNAV descent strategies (cost optimal, clean-idle Mach/CAS and constant descent angle Mach/CAS), both individually and in combination, in an advanced air traffic control metering environment. Results are presented for all mixtures of arrival traffic consisting of three Boeing commercial jet types and for all combinations of the three descent strategies for a typical en route metering airport arrival distribution.

  12. Mars 2020 Entry, Descent and Landing Instrumentation 2 (MEDLI2)

    NASA Technical Reports Server (NTRS)

    Hwang, Helen H.; Bose, Deepak; White, Todd R.; Wright, Henry S.; Schoenenberger, Mark; Kuhl, Christopher A.; Trombetta, Dominic; Santos, Jose A.; Oishi, Tomomi; Karlgaard, Christopher D.; Mahzari, Milad; Pennington, Steven P.

    2016-01-01

    The Mars Entry Descent and Landing Instrumentation 2 (MEDLI2) sensor suite will measure aerodynamic, aerothermodynamic, and TPS performance during the atmospheric entry, descent, and landing phases of the Mars 2020 mission. The key objectives are to reduce design margin and prediction uncertainties for the aerothermal environments and aerodynamic database. For MEDLI2, the sensors are installed on both the heatshield and backshell, and include 7 pressure transducers, 17 thermal plugs, and 3 heat flux sensors (including a radiometer). These sensors will expand the set of measurements collected by the highly successful MEDLI suite, collecting supersonic pressure measurements on the forebody, a pressure measurement on the aftbody, direct heat flux measurements on the aftbody, a radiative heating measurement on the aftbody, and multiple near-surface thermal measurements on the thermal protection system (TPS) materials on both the forebody and aftbody. To meet the science objectives, supersonic pressure transducers and heat flux sensors are currently being developed and their qualification and calibration plans are presented. Finally, the reconstruction targets for data accuracy are presented, along with the planned methodologies for achieving the targets.

  13. High mammographic density in women of Ashkenazi Jewish descent

    PubMed Central

    2013-01-01

    Introduction Percent mammographic density (PMD) adjusted for age and body mass index is one of the strongest risk factors for breast cancer and is known to be approximately 60% heritable. Here we report a finding of an association between genetic ancestry and adjusted PMD. Methods We selected self-identified Caucasian women in the California Pacific Medical Center Research Institute Cohort whose screening mammograms placed them in the top or bottom quintiles of age-adjusted and body mass index-adjusted PMD. Our final dataset included 474 women with the highest adjusted PMD and 469 with the lowest genotyped on the Illumina 1 M platform. Principal component analysis (PCA) and identity-by-descent analyses allowed us to infer the women's genetic ancestry and correlate it with adjusted PMD. Results Women of Ashkenazi Jewish ancestry, as defined by the first principal component of PCA and identity-by-descent analyses, represented approximately 15% of the sample. Ashkenazi Jewish ancestry, defined by the first principal component of PCA, was associated with higher adjusted PMD (P = 0.004). Using multivariate regression to adjust for epidemiologic factors associated with PMD, including age at parity and use of postmenopausal hormone therapy, did not attenuate the association. Conclusions Women of Ashkenazi Jewish ancestry, based on genetic analysis, are more likely to have high age-adjusted and body mass index-adjusted PMD. Ashkenazi Jews may have a unique set of genetic variants or environmental risk factors that increase mammographic density. PMID:23668689

  14. Controller evaluations of the descent advisor automation aid

    NASA Technical Reports Server (NTRS)

    Tobias, Leonard; Volckers, Uwe; Erzberger, Heinz

    1989-01-01

    An automation aid to assist air traffic controllers in efficiently spacing traffic and meeting arrival times at a fix has been developed at NASA Ames Research Center. The automation aid, referred to as the descent advisor (DA), is based on accurate models of aircraft performance and weather conditions. The DA generates suggested clearances, including both top-of-descent point and speed profile data, for one or more aircraft in order to achieve specific time or distance separation objectives. The DA algorithm is interfaced with a mouse-based, menu-driven controller display that allows the air traffic controller to interactively use its accurate predictive capability to resolve conflicts and issue advisories to arrival aircraft. This paper focuses on operational issues concerning the utilization of the DA, specifically, how the DA can be used for prediction, intrail spacing, and metering. In order to evaluate the DA, a real time simulation was conducted using both current and retired controller subjects. Controllers operated in teams of two, as they do in the present environment; issues of training and team interaction will be discussed. Evaluations by controllers indicated considerable enthusiasm for the DA aid, and provided specific recommendations for using the tool effectively.

  15. Mars Exploration Rover Terminal Descent Mission Modeling and Simulation

    NASA Technical Reports Server (NTRS)

    Raiszadeh, Behzad; Queen, Eric M.

    2004-01-01

    Because of NASA's added reliance on simulation for successful interplanetary missions, the MER mission has developed a detailed EDL trajectory modeling and simulation. This paper summarizes how the MER EDL sequence of events are modeled, verification of the methods used, and the inputs. This simulation is built upon a multibody parachute trajectory simulation tool that has been developed in POST I1 that accurately simulates the trajectory of multiple vehicles in flight with interacting forces. In this model the parachute and the suspended bodies are treated as 6 Degree-of-Freedom (6 DOF) bodies. The terminal descent phase of the mission consists of several Entry, Descent, Landing (EDL) events, such as parachute deployment, heatshield separation, deployment of the lander from the backshell, deployment of the airbags, RAD firings, TIRS firings, etc. For an accurate, reliable simulation these events need to be modeled seamlessly and robustly so that the simulations will remain numerically stable during Monte-Carlo simulations. This paper also summarizes how the events have been modeled, the numerical issues, and modeling challenges.

  16. Vascular considerations in glaucoma patients of African and European descent.

    PubMed

    Huck, Andrew; Harris, Alon; Siesky, Brent; Kim, Nathaniel; Muchnik, Michael; Kanakamedala, Priyanka; Amireskandari, Annahita; Abrams-Tobe, Leslie

    2014-08-01

    Glaucoma is the leading cause of blindness in individuals of African descent (AD). While open-angle glaucoma (OAG) disproportionately affects individuals of AD compared with persons of European descent (ED), the physiological mechanisms behind this disparity are largely unknown. The more rapid progression and greater severity of the disease in persons of AD further raise the concern for identifying these underlying differences in disease pathophysiology between AD and ED glaucoma patients. Ocular structural differences between AD and ED patients, including larger optic disc area, cup:disc ratio and thinner corneas, have been found. AD individuals are also disproportionately affected by systemic vascular diseases, including hypertension, cardiovascular disease, stroke and diabetes mellitus. Abnormal ocular blood flow has been implicated as a risk factor for glaucoma, and pilot research is beginning to identify localized ocular vascular differences between AD and ED OAG patients. Given the known systemic vascular deficits and the relationship between glaucoma and ocular blood flow, exploring these concepts in terms of glaucoma risk factors may have a significant impact in elucidating the mechanisms behind the disease disparity in the AD population. PMID:24460758

  17. Mars Science Laboratory Entry Descent and Landing Simulation Using DSENDS

    NASA Technical Reports Server (NTRS)

    Burkhart, P. Daniel; Casoliva, Jordi; Balaram, Bob

    2013-01-01

    The most recent planetary science mission to Mars is Mars Science Laboratory (MSL) with the Curiosity rover, launched November 26, 2011 and landed at Gale Crater on August 6, 2012. This spacecraft was the first use at Mars of a complete closed-loop Guidance Navigation and Control (GN&C) system, including guided entry with a lifting body that greatly reduces dispersions during the Entry, Descent and Landing (EDL) phase to achieve a 25 km x 20 km landing error relative to the selected Gale Crater landing target. In order to confirm meeting the above landing criteria, high-fidelity simulation of the EDL phase is required. The tool used for 6DOF EDL trajectory verification analysis is Dynamics Simulator for Entry, Descent and Surface landing (DSENDS), which is a high-fidelity simulation tool from JPLs Dynamics and Real-Time Simulation Laboratory for the development, test and operations of aero-flight vehicles. DSENDS inherent capability is augmented for MSL with project-specific models of atmosphere, aerodynamics, sensors and thrusters along with GN&C flight software to enable high-fidelity trajectory simulation. This paper will present the model integration and independent verification experience of the JPL EDL trajectory analysis team.

  18. Mars Science Laboratory Entry Descent and Landing Simulation Using DSENDS

    NASA Technical Reports Server (NTRS)

    Burkhart, P. Daniel; Casoliva, Jordi; Balaram, Bob

    2013-01-01

    The most recent planetary science mission to Mars was Mars Science Laboratory (MSL) with the Curiosity rover, launched November 26, 2011 and landed at Gale Crater on August 6, 2012. This spacecraft was the first use at Mars of a complete closed-loop Guidance Navigation and Control (GN&C) system, including guided entry with a lifting body that greatly reduces dispersions during the Entry, Descent and Landing (EDL) phase to achieve a 25 km X 20 km landing error relative to the selected Gale Crater landing target. In order to confirm meeting the above landing criteria, high-fidelity simulation of the EDL phase is required. The tool used for 6DOF EDL trajectory verification analysis is Dynamics Simulator for Entry, Descent and Surface landing (DSENDS), which is a high-fidelity simulation tool from JPLs Dynamics and Real-Time Simulation Laboratory for the development, test and operations of aero-flight vehicles. DSENDS inherent capability is augmented for MSL with project-specific models of atmosphere, aerodynamics, sensors and thrusters along with GN&C flight software to enable high-fidelity trajectory simulation. This paper will present the model integration and independent verification experience of the JPL EDL trajectory analysis team.

  19. Gradient descent algorithm applied to wavefront retrieval from through-focus images by an extreme ultraviolet microscope with partially coherent source

    DOE PAGESBeta

    Yamazoe, Kenji; Mochi, Iacopo; Goldberg, Kenneth A.

    2014-12-01

    The wavefront retrieval by gradient descent algorithm that is typically applied to coherent or incoherent imaging is extended to retrieve a wavefront from a series of through-focus images by partially coherent illumination. For accurate retrieval, we modeled partial coherence as well as object transmittance into the gradient descent algorithm. However, this modeling increases the computation time due to the complexity of partially coherent imaging simulation that is repeatedly used in the optimization loop. To accelerate the computation, we incorporate not only the Fourier transform but also an eigenfunction decomposition of the image. As a demonstration, the extended algorithm is appliedmore » to retrieve a field-dependent wavefront of a microscope operated at extreme ultraviolet wavelength (13.4 nm). The retrieved wavefront qualitatively matches the expected characteristics of the lens design.« less

  20. Gradient descent algorithm applied to wavefront retrieval from through-focus images by an extreme ultraviolet microscope with partially coherent source

    SciTech Connect

    Yamazoe, Kenji; Mochi, Iacopo; Goldberg, Kenneth A.

    2014-12-01

    The wavefront retrieval by gradient descent algorithm that is typically applied to coherent or incoherent imaging is extended to retrieve a wavefront from a series of through-focus images by partially coherent illumination. For accurate retrieval, we modeled partial coherence as well as object transmittance into the gradient descent algorithm. However, this modeling increases the computation time due to the complexity of partially coherent imaging simulation that is repeatedly used in the optimization loop. To accelerate the computation, we incorporate not only the Fourier transform but also an eigenfunction decomposition of the image. As a demonstration, the extended algorithm is applied to retrieve a field-dependent wavefront of a microscope operated at extreme ultraviolet wavelength (13.4 nm). The retrieved wavefront qualitatively matches the expected characteristics of the lens design.

  1. Scintillation-producing Fresnel-scale irregularities associated with the regions of steepest TEC gradients adjacent to the equatorial ionization anomaly

    NASA Astrophysics Data System (ADS)

    Muella, M. T. A. H.; Kherani, E. A.; de Paula, E. R.; Cerruti, A. P.; Kintner, P. M.; Kantor, I. J.; Mitchell, C. N.; Batista, I. S.; Abdu, M. A.

    2010-03-01

    Using ground-based GPS and digital ionosonde instruments, we have built up at latitudes of the equatorial ionization anomaly (EIA), in the Brazilian sector, a time-evolving picture of total electron content (TEC), L-band amplitude scintillations, and F region heights, and we have investigated likely reasons for the occurrence or suppression of equatorial scintillations during the disturbed period of 18-23 November 2003. During the prestorm quiet nights, scintillations are occurring postsunset, as expected; however, during the storm time period, their spatial-temporal characteristics and intensity modify significantly owing to the dramatic changes in the ionospheric plasma density distribution and in the temporal evolution of TEC. The two-dimensional maps showing both TEC and amplitude scintillations revealed strong evidence of turbulences at the Fresnel length (causing scintillations) concurrent with those regions of steepest TEC gradients adjacent to the crests of the EIA. The largest density gradients have been found to occur in an environment of increased background electron density, and their spatial distribution and location during the disturbed period may differ significantly from the magnetic quiet night pattern. However, in terms of magnitude the gradients at equatorial and low latitudes appear to not change during both magnetic quiet and disturbed conditions. The scenarios for the formation or suppression of scintillation-producing Fresnel-scale irregularities during the prestorm quiet nights and disturbed nights are discussed in view of different competing effects computed from numerical simulation techniques.

  2. Essential equivalence of the general equation for the nonequilibrium reversible-irreversible coupling (GENERIC) and steepest-entropy-ascent models of dissipation for nonequilibrium thermodynamics

    NASA Astrophysics Data System (ADS)

    Montefusco, Alberto; Consonni, Francesco; Beretta, Gian Paolo

    2015-04-01

    By reformulating the steepest-entropy-ascent (SEA) dynamical model for nonequilibrium thermodynamics in the mathematical language of differential geometry, we compare it with the primitive formulation of the general equation for the nonequilibrium reversible-irreversible coupling (GENERIC) model and discuss the main technical differences of the two approaches. In both dynamical models the description of dissipation is of the "entropy-gradient" type. SEA focuses only on the dissipative, i.e., entropy generating, component of the time evolution, chooses a sub-Riemannian metric tensor as dissipative structure, and uses the local entropy density field as potential. GENERIC emphasizes the coupling between the dissipative and nondissipative components of the time evolution, chooses two compatible degenerate structures (Poisson and degenerate co-Riemannian), and uses the global energy and entropy functionals as potentials. As an illustration, we rewrite the known GENERIC formulation of the Boltzmann equation in terms of the square root of the distribution function adopted by the SEA formulation. We then provide a formal proof that in more general frameworks, whenever all degeneracies in the GENERIC framework are related to conservation laws, the SEA and GENERIC models of the dissipative component of the dynamics are essentially interchangeable, provided of course they assume the same kinematics. As part of the discussion, we note that equipping the dissipative structure of GENERIC with the Leibniz identity makes it automatically SEA on metric leaves.

  3. Essential equivalence of the general equation for the nonequilibrium reversible-irreversible coupling (GENERIC) and steepest-entropy-ascent models of dissipation for nonequilibrium thermodynamics.

    PubMed

    Montefusco, Alberto; Consonni, Francesco; Beretta, Gian Paolo

    2015-04-01

    By reformulating the steepest-entropy-ascent (SEA) dynamical model for nonequilibrium thermodynamics in the mathematical language of differential geometry, we compare it with the primitive formulation of the general equation for the nonequilibrium reversible-irreversible coupling (GENERIC) model and discuss the main technical differences of the two approaches. In both dynamical models the description of dissipation is of the "entropy-gradient" type. SEA focuses only on the dissipative, i.e., entropy generating, component of the time evolution, chooses a sub-Riemannian metric tensor as dissipative structure, and uses the local entropy density field as potential. GENERIC emphasizes the coupling between the dissipative and nondissipative components of the time evolution, chooses two compatible degenerate structures (Poisson and degenerate co-Riemannian), and uses the global energy and entropy functionals as potentials. As an illustration, we rewrite the known GENERIC formulation of the Boltzmann equation in terms of the square root of the distribution function adopted by the SEA formulation. We then provide a formal proof that in more general frameworks, whenever all degeneracies in the GENERIC framework are related to conservation laws, the SEA and GENERIC models of the dissipative component of the dynamics are essentially interchangeable, provided of course they assume the same kinematics. As part of the discussion, we note that equipping the dissipative structure of GENERIC with the Leibniz identity makes it automatically SEA on metric leaves. PMID:25974469

  4. Evaluation of vertical profiles to design continuous descent approach procedure

    NASA Astrophysics Data System (ADS)

    Pradeep, Priyank

    The current research focuses on predictability, variability and operational feasibility aspect of Continuous Descent Approach (CDA), which is among the key concepts of the Next Generation Air Transportation System (NextGen). The idle-thrust CDA is a fuel economical, noise and emission abatement procedure, but requires increased separation to accommodate for variability and uncertainties in vertical and speed profiles of arriving aircraft. Although a considerable amount of researches have been devoted to the estimation of potential benefits of the CDA, only few have attempted to explain the predictability, variability and operational feasibility aspect of CDA. The analytical equations derived using flight dynamics and Base of Aircraft and Data (BADA) Total Energy Model (TEM) in this research gives insight into dependency of vertical profile of CDA on various factors like wind speed and gradient, weight, aircraft type and configuration, thrust settings, atmospheric factors (deviation from ISA (DISA), pressure and density of the air) and descent speed profile. Application of the derived equations to idle-thrust CDA gives an insight into sensitivity of its vertical profile to multiple factors. This suggests fixed geometric flight path angle (FPA) CDA has higher degree of predictability and lesser variability at the cost of non-idle and low thrust engine settings. However, with optimized design this impact can be overall minimized. The CDA simulations were performed using Future ATM Concept Evaluation Tool (FACET) based on radar-track and aircraft type data (BADA) of the real air-traffic to some of the busiest airports in the USA (ATL, SFO and New York Metroplex (JFK, EWR and LGA)). The statistical analysis of the vertical profiles of CDA shows 1) mean geometric FPAs derived from various simulated vertical profiles are consistently shallower than 3° glideslope angle and 2) high level of variability in vertical profiles of idle-thrust CDA even in absence of

  5. Linear Accelerators

    NASA Astrophysics Data System (ADS)

    Sidorin, Anatoly

    2010-01-01

    In linear accelerators the particles are accelerated by either electrostatic fields or oscillating Radio Frequency (RF) fields. Accordingly the linear accelerators are divided in three large groups: electrostatic, induction and RF accelerators. Overview of the different types of accelerators is given. Stability of longitudinal and transverse motion in the RF linear accelerators is briefly discussed. The methods of beam focusing in linacs are described.

  6. Linear Accelerators

    SciTech Connect

    Sidorin, Anatoly

    2010-01-05

    In linear accelerators the particles are accelerated by either electrostatic fields or oscillating Radio Frequency (RF) fields. Accordingly the linear accelerators are divided in three large groups: electrostatic, induction and RF accelerators. Overview of the different types of accelerators is given. Stability of longitudinal and transverse motion in the RF linear accelerators is briefly discussed. The methods of beam focusing in linacs are described.

  7. DISR imaging and the geometry of the descent of the Huygens probe within Titan's atmosphere

    NASA Astrophysics Data System (ADS)

    Karkoschka, Erich; Tomasko, Martin G.; Doose, Lyn R.; See, Chuck; McFarlane, Elisabeth A.; Schröder, Stefan E.; Rizk, Bashar

    2007-11-01

    The Descent Imager/Spectral Radiometer (DISR) provided 376 images during the descent to Titan and 224 images after landing. Images of the surface had scales between 150 m/pixel and 0.4 mm/pixel, all of which we assembled into a mosaic. The analysis of the surface and haze features in these images and of other data gave tight constraints on the geometry of the descent, particularly the trajectory, the tip and tilt, and the rotation of the Huygens probe. Huygens moved on average in the direction of 2∘ north of east from 145 to 50 km altitude, turning to 5∘ south of east between 30 and 20 km altitude, before turning back to east. At 6.5 km altitude, it reversed to WNW, before reversing back to SE at 0.7 km altitude. At first, Huygens was tilting slowly by up to 15∘ as expected for a descent through layers of changing wind speeds. As the winds calmed, tilts decreased. Tilts were approximately retrieved throughout the main-parachute phase, but only for 160 specific times afterwards. Average swing rates were 5∘/s at high and low altitudes, but 13∘/s between 110 and 30 km altitude. Maximum swing rates were often above 40∘/s, far above the design limit of 6∘/s, but they caused problems only for a single component of DISR, the Sun Sensor. The excitation of such high swing rates on the stabilizer parachute is not fully understood. Before the parachute exchange, the rotational rate of Huygens smoothly approached the expected equilibrium value of 3 rotations per vertical kilometer, although clockwise instead of counterclockwise. Starting at 40 s after the parachute exchange until landing, Huygens rotated erratically. Long-term averages of the rotational rate varied between 2.0 and 4.5 rotations/km. On time scales shorter than a minute, some 100 strong rotational accelerations or decelerations created azimuthal irregularities of up to 180∘, which caused DISR to take most exposures at random azimuths instead of pre-selected azimuths. Nevertheless, we

  8. The Role of la Familia for Women of Mexican Descent Who Are Leaders in Higher Education

    ERIC Educational Resources Information Center

    Elizondo, Sandra Gray

    2012-01-01

    The purpose of this qualitative case study was to describe the role of "la familia" for women of Mexican descent as it relates to their development as leaders and their leadership in academia. Purposeful sampling was utilized to reach the goal of 18 participants who were female academic leaders of Mexican descent teaching full time in…

  9. The Yearly Variation in Fall-Winter Arctic Winter Vortex Descent

    NASA Technical Reports Server (NTRS)

    Schoeberl, Mark R.; Newman, Paul A.

    1999-01-01

    Using the change in HALOE methane profiles from early September to late March, we have estimated the minimum amount of diabatic descent within the polar which takes place during Arctic winter. The year to year variations are a result in the year to year variations in stratospheric wave activity which (1) modify the temperature of the vortex and thus the cooling rate; (2) reduce the apparent descent by mixing high amounts of methane into the vortex. The peak descent amounts from HALOE methane vary from l0km -14km near the arrival altitude of 25 km. Using a diabatic trajectory calculation, we compare forward and backward trajectories over the course of the winter using UKMO assimilated stratospheric data. The forward calculation agrees fairly well with the observed descent. The backward calculation appears to be unable to produce the observed amount of descent, but this is only an apparent effect due to the density decrease in parcels with altitude. Finally we show the results for unmixed descent experiments - where the parcels are fixed in latitude and longitude and allowed to descend based on the local cooling rate. Unmixed descent is found to always exceed mixed descent, because when normal parcel motion is included, the path average cooling is always less than the cooling at a fixed polar point.

  10. The ExoMars Entry & Descent system: an enabler for European planetary science

    NASA Astrophysics Data System (ADS)

    Lebleu, D.; Monier, J.; Marchand, B.; Squillaci, J.-R.; Lubrano, G.; Capus, P.; Laurenti, P.; Poncy, J.; Couzin, P.

    2013-09-01

    After HUYGENS and thanks to the ExoMars Entry and Descent System, Europe will confirm the capacity to land on planetary bodies. This presentation reports the development status of ExoMars EDM Entry & Descent system. All development tests are performed, and the subsystems flight models manufacturing are in progress.

  11. Miniature coherent velocimeter and altimeter (MCVA) for terminal descent control on lunar and planetary landers

    NASA Technical Reports Server (NTRS)

    Chang, Dan; Cardell, Greg; Szwaykowski, Piotr; Shaffat, Syed T.; Meras, Patrick

    2005-01-01

    While the overall architecture of an Entry Descent and Landing (EDL) system may vary depending on specific mission requirementsw, measurements of the rate vector with respect to the surface is a primary requirement for the Terminal Descent Control (TDC) phase of any controlled lander.

  12. Ethnic Identity and Acculturative Stress as Mediators of Depression in Students of Asian Descent

    ERIC Educational Resources Information Center

    Lantrip, Crystal; Mazzetti, Francesco; Grasso, Joseph; Gill, Sara; Miller, Janna; Haner, Morgynn; Rude, Stephanie; Awad, Germine

    2015-01-01

    This study underscored the importance of addressing the well-being of college students of Asian descent, because these students had higher rates of depression and lower positive feelings about their ethnic group compared with students of European descent, as measured by the Affirmation subscale of the Ethnic Identity Scale. Affirmation mediated…

  13. Apollo 16 LM-11 descent propulsion system final flight evaluation

    NASA Technical Reports Server (NTRS)

    Avvenire, A. T.

    1973-01-01

    The performance of the LM-11 Descent Propulsion System during the Apollo 16 Mission was evaluated and found to be satisfactory. The average engine effective specific impulse was 0.1 second higher than predicted, but well within the predicted 1 sigma uncertainty of 0.2 seconds. The engine performance corrected to standard inlet conditions for the FTP portion of the burn at 50 seconds after ignition was as follows: thrust, 9839 lbf; specific impulse, 306.9 sec; and propellant mixture ratio, 1.592. These values are +0.34, +0.03 and +0.0 percent different, respectively, from the values reported from engine acceptance tests and were within specification limits. Several flight measurement discrepancies that existed during the flight are discussed.

  14. Mars Exploration Rover: Launch, Cruise, Entry, Descent, and Landing

    NASA Technical Reports Server (NTRS)

    Erickson, James K.; Manning, Robert M.; Adler, M.

    2004-01-01

    The Mars Exploration Rover Project was an ambitious effort to land two highly capable rovers on Mars and concurrently explore the Martian surface for three months each. Launched in June and July of 2003, cruise operations were conducted through January 4, 2004 with the first landing, followed by the second landing on January 25. The prime mission for the second rover ended on April 27, 2004. This paper will provide an overview of the launch, cruise, and landing phases of the mission, including the engineering and science objectives and challenges involved in the selection and targeting of the landing sites, as well as the excitement and challenges of atmospheric entry, descent and landing execution.

  15. Mars Exploration Rover Mission: Entry, Descent, and Landing System Validation

    NASA Technical Reports Server (NTRS)

    Mitcheltree, Robert A.; Lee, Wayne; Steltzner, Adam; SanMartin, Alejanhdro

    2004-01-01

    System validation for a Mars entry, descent, and landing system is not simply a demonstration that the electrical system functions in the associated environments. The function of this system is its interaction with the atmospheric and surface environment. Thus, in addition to traditional test-bed, hardware-in-the-loop, testing, a validation program that confirms the environmental interaction is required. Unfortunately, it is not possible to conduct a meaningful end-to-end test of a Mars landing system on Earth. The validation plan must be constructed from an interconnected combination of simulation, analysis and test. For the Mars Exploration Rover mission, this combination of activities and the logic of how they combined to the system's validation was explicitly stated, reviewed, and tracked as part of the development plan.

  16. Time-controlled descent guidance in uncertain winds

    NASA Technical Reports Server (NTRS)

    Menga, G.; Erzberger, H.

    1975-01-01

    A procedure has been developed for constructing a statistical model of the altitude-dependent mean wind profile from the historical record of wind measurements at particular locations. The model is constructed by fitting a Markov process, with altitude as the stage variable, to the historical wind data. The wind model, together with the aircraft dynamics and the error characteristics of the navigation system, are incorporated in the design of a state estimator, which gives the minimum variance estimate of the aircraft state and the wind vector. The state and wind estimates are used as inputs to a linear feedback law for guiding the aircraft along the nominal trajectory. An example design of a time-constrained (4D RNAV) descent guidance system is presented, showing tracking accuracy, control activity, and probability of arrival time with and without the wind estimator.

  17. Overview of the Phoenix Entry, Descent and Landing System Architecture

    NASA Technical Reports Server (NTRS)

    Grover, Myron R., III; Cichy, Benjamin D.; Desai, Prasun N.

    2008-01-01

    NASA s Phoenix Mars Lander began its journey to Mars from Cape Canaveral, Florida in August 2007, but its journey to the launch pad began many years earlier in 1997 as NASA s Mars Surveyor Program 2001 Lander. In the intervening years, the entry, descent and landing (EDL) system architecture went through a series of changes, resulting in the system flown to the surface of Mars on May 25th, 2008. Some changes, such as entry velocity and landing site elevation, were the result of differences in mission design. Other changes, including the removal of hypersonic guidance, the reformulation of the parachute deployment algorithm, and the addition of the backshell avoidance maneuver, were driven by constant efforts to augment system robustness. An overview of the Phoenix EDL system architecture is presented along with rationales driving these architectural changes.

  18. Mars Exploration Rovers Entry, Descent, and Landing Trajectory Analysis

    NASA Technical Reports Server (NTRS)

    Desai, Prasun N.; Knocke, Philip C.

    2004-01-01

    The Mars Exploration Rover mission successfully landed two rovers "Spirit" and "Opportunity" on Mars on January 4th and 25th of 2004, respectively. The trajectory analysis performed to define the entry, descent, and landing (EDL) scenario is described. The entry requirements and constraints are presented, as well as uncertainties used in a Monte Carlo dispersion analysis to statistically assess the robustness of the entry design to off-nominal conditions. In the analysis, six-degree-of-freedom and three-degree-of-freedom trajectory results are compared to assess the entry characteristics of the capsule. Comparison of the preentry results to preliminary post-landing reconstruction data shows that all EDL parameters were within the requirements. In addition, the final landing position for both "Spirit" and "Opportunity" were within 15 km of the predicted landing location.

  19. RITD - Adapting Mars Entry, Descent and Landing System for Earth

    NASA Astrophysics Data System (ADS)

    Heilimo, Jyri; Aleksashkin, Sergey; Martynov, Maxim; Schmidt, Walter; Harri, Ari-Matti; Vsevolod Koryanov, D.; Kazakovtcev, Victor; Haukka, Harri; Arruego, Ignacio; Finchenko, Valery; Ostresko, Boris; Ponomarenko, Andrei; Martin, Susanna; Siili, Tero

    Abstract A new generation of inflatable Entry, Descent and Landing System (EDLS) or Mars has been developed. It is used in both the initial atmospheric entry and atmospheric descent before the semi-hard impact of the penetrator into Martian surface. The EDLS applicability to Earth’s atmosphere is studied by the EU/RITD [1] project. Project focuses to the analysis and tests of the transonic behaviour of this compact and light weight payload entry system at the Earth re-entry 1. EDLS for Earth The dynamical stability of the craft is analysed, concentrating on the most critical part of the atmospheric re-entry, the transonic phase. In Martian atmosphere the MetNet vehicle stability during the transonic phase is understood. However, in the more dense Earth’s atmosphere, the transonic phase is shorter and turbulence more violent. Therefore, the EDLS has to be sufficiently dynamically stable to overcome the forces tending to deflect the craft from its nominal trajectory and attitude. The preliminary design of the inflatable EDLS for Earth will be commenced once the scaling of the re-entry system and the dynamical stability analysis have been performed. The RITD-project concentrates on mission and applications achievable with the current MetNet-type (i.e. “Mini-1” category) of lander, and on requirements posed by other type Earth re-entry concepts. 2. Entry Angle Determination for Mini-1 - lander For successful Earth landing, the suitable re-entry angle and velocity with specific descent vehicle (DV) mass and heat flux parameters need to be determined. These key parameters in determining the Earth re-entry for DV are: - qmax (kW/m2): maximal specific heat flux, - Q (MJ/m2): specific integral heat flux to DV front shield, - m (kg): descent vehicle (DV) mass, - V (m/s): re-entry velocity and - theta(deg.): flight-path angle at Earth re-entry For Earth re-entry, the calculation results in the optimal value of entry velocity for MetNet (“Mini-1” category) -type

  20. RITD - Adapting Mars Entry, Descent and Landing System for Earth

    NASA Astrophysics Data System (ADS)

    Heilimo, Jyri; Harri, Ari-Matti; Aleksashkin, Sergey; Koryanov, Vsevolod; Arruego, Ignacio; Schmidt, Walter; Haukka, Harri; Finchenko, Valery; Martynov, Maxim; Ostresko, Boris; Ponomarenko, Andrey; Kazakovtsev, Viktor; Martin, Susanna; Siili, Tero

    2014-05-01

    A new generation of inflatable Entry, Descent and Landing System (EDLS) for Mars has been developed. It is used in both the initial atmospheric entry and atmospheric descent before the semi-hard impact of the penetrator into Martian surface. The EDLS applicability to Earth's atmosphere is studied by the EU/RITD [1] project. Project focuses to the analysis and tests of the transonic behaviour of this compact and light weight payload entry system at the Earth re-entry. 1. EDLS for Earth The dynamical stability of the craft is analysed, concentrating on the most critical part of the atmospheric re-entry, the transonic phase. In Martian atmosphere the MetNet vehicle stability during the transonic phase is understood. However, in the more dense Earth's atmosphere, the transonic phase is shorter and turbulence more violent. Therefore, the EDLS has to be sufficiently dynamically stable to overcome the forces tending to deflect the craft from its nominal trajectory and attitude. The preliminary design of the inflatable EDLS for Earth will be commenced once the scaling of the re-entry system and the dynamical stability analysis have been performed. The RITD-project concentrates on mission and applications achievable with the current MetNet-type (i.e. 'Mini-1' category) of lander, and on requirements posed by other type Earth re-entry concepts. 2. Entry Angle Determination for Mini-1 - lander For successful Earth landing, the suitable re-entry angle and velocity with specific descent vehicle (DV) mass and heat flux parameters need to be determined. These key parameters in determining the Earth re-entry for DV are: qmax (kW/m2): maximal specific heat flux, Q (MJ/m2): specific integral heat flux to DV front shield, m (kg): descent vehicle (DV) mass, V (m/s): re-entry velocity and Θ (deg.): flight-path angle at Earth re-entry For Earth re-entry, the calculation results in the optimal value of entry velocity for MetNet ('Mini-1' category) -type lander, with mass of 22kg, being

  1. The stabilization interval system of a tethered descent underwater vehicle

    NASA Astrophysics Data System (ADS)

    Gayvoronskiy, S. A.; Ezangina, T.; Khozhaev, I.; Efimov, S. V.

    2016-04-01

    To damp the vertical oscillations of a descent submersible caused by dusting the control system utilizing a shock-absorbing hoist located on the submersible was developed. A robust proportional-plus-integral action controller was included in the control loop to ensure acceptable dynamic properties of the system by interval variations of the module mass, the rope length, the equivalent value of stiffness of a spring linkage and the equivalent value of damping factor of the spring linkage. A parametric synthesis of the controller was carried out on the basis of the robust expansion of the coefficient method of the quality rating estimation. The system operability was confirmed by the results of the digital simulation parameters

  2. On Belonging: The American Adolescent of Arab Descent.

    PubMed

    Khouri, Lama Z

    2016-08-01

    Although American families of Arab origin come from 22 countries and from varied backgrounds and cultures, reports suggest that they suffer equally from acculturation stress, stereotyping, discrimination, and the reverberations of the aftermath of September 11 as well as global affairs. However, because children and adolescents from these families, particularly those who are newly arrived immigrants, tend to do well in school, they are rarely targeted by research or policy. This article uses the narratives of 5 middle school age male students from Arab descent who were in a support group that met for 3 years (2004-2007), beginning shortly after President George W. Bush's declaration of the war on the "axis of evil." I used vignettes from this group to illustrate the stressors this population faces. The final section suggests an option for supporting this population. PMID:27472891

  3. Adapting Mars Entry, Descent and Landing System for Earth

    NASA Astrophysics Data System (ADS)

    Heilimo, J.; Harri, A.-M.; Aleksashkin, S.; Koryanov, V.; Guerrero, H.; Schmidt, W.; Haukka, H.; Finchenko, V.; Martynov, M.; Ostresko, B.; Ponomarenko, A.; Kazakovtsev, V.; Arruego, I.; Martin, S.; Siili, T.

    2013-09-01

    In 2001 - 2011 an inflatable Entry, Descent and Landing System (EDLS) for Martian atmosphere was developed by FMI and the MetNet team. This MetNet Mars Lander EDLS is used in both the initial deceleration during atmospheric entry and in the final deceleration before the semi-hard impact of the penetrator to Martian surface. The EDLS design is ingenious and its applicability to Earth's atmosphere is studied in the on-going project. In particular, the behavior of the system in the critical transonic aerodynamic (from hypersonic to subsonic) regime will be investigated. This project targets to analyze and test the transonic behavior of this compact and light weight payload entry system to Earth's atmosphere [1]. Scaling and adaptation for terrestrial atmospheric conditions, instead of a completely new design, is a favorable approach for providing a new re-entry vehicle for terrestrial space applications.

  4. Y chromosome lineages in men of west African descent.

    PubMed

    Torres, Jada Benn; Doura, Menahem B; Keita, Shomarka O Y; Kittles, Rick A

    2012-01-01

    The early African experience in the Americas is marked by the transatlantic slave trade from ∼1619 to 1850 and the rise of the plantation system. The origins of enslaved Africans were largely dependent on European preferences as well as the availability of potential laborers within Africa. Rice production was a key industry of many colonial South Carolina low country plantations. Accordingly, rice plantations owners within South Carolina often requested enslaved Africans from the so-called "Grain Coast" of western Africa (Senegal to Sierra Leone). Studies on the African origins of the enslaved within other regions of the Americas have been limited. To address the issue of origins of people of African descent within the Americas and understand more about the genetic heterogeneity present within Africa and the African Diaspora, we typed Y chromosome specific markers in 1,319 men consisting of 508 west and central Africans (from 12 populations), 188 Caribbeans (from 2 islands), 532 African Americans (AAs from Washington, DC and Columbia, SC), and 91 European Americans. Principal component and admixture analyses provide support for significant Grain Coast ancestry among African American men in South Carolina. AA men from DC and the Caribbean showed a closer affinity to populations from the Bight of Biafra. Furthermore, 30-40% of the paternal lineages in African descent populations in the Americas are of European ancestry. Diverse west African ancestries and sex-biased gene flow from EAs has contributed greatly to the genetic heterogeneity of African populations throughout the Americas and has significant implications for gene mapping efforts in these populations. PMID:22295064

  5. Y Chromosome Lineages in Men of West African Descent

    PubMed Central

    Keita, Shomarka O. Y.; Kittles, Rick A.

    2012-01-01

    The early African experience in the Americas is marked by the transatlantic slave trade from ∼1619 to 1850 and the rise of the plantation system. The origins of enslaved Africans were largely dependent on European preferences as well as the availability of potential laborers within Africa. Rice production was a key industry of many colonial South Carolina low country plantations. Accordingly, rice plantations owners within South Carolina often requested enslaved Africans from the so-called “Grain Coast” of western Africa (Senegal to Sierra Leone). Studies on the African origins of the enslaved within other regions of the Americas have been limited. To address the issue of origins of people of African descent within the Americas and understand more about the genetic heterogeneity present within Africa and the African Diaspora, we typed Y chromosome specific markers in 1,319 men consisting of 508 west and central Africans (from 12 populations), 188 Caribbeans (from 2 islands), 532 African Americans (AAs from Washington, DC and Columbia, SC), and 91 European Americans. Principal component and admixture analyses provide support for significant Grain Coast ancestry among African American men in South Carolina. AA men from DC and the Caribbean showed a closer affinity to populations from the Bight of Biafra. Furthermore, 30–40% of the paternal lineages in African descent populations in the Americas are of European ancestry. Diverse west African ancestries and sex-biased gene flow from EAs has contributed greatly to the genetic heterogeneity of African populations throughout the Americas and has significant implications for gene mapping efforts in these populations. PMID:22295064

  6. Direct-to-Earth Communications with Mars Science Laboratory During Entry, Descent, and Landing

    NASA Technical Reports Server (NTRS)

    Soriano, Melissa; Finley, Susan; Fort, David; Schratz, Brian; Ilott, Peter; Mukai, Ryan; Estabrook, Polly; Oudrhiri, Kamal; Kahan, Daniel; Satorius, Edgar

    2013-01-01

    Mars Science Laboratory (MSL) undergoes extreme heating and acceleration during Entry, Descent, and Landing (EDL) on Mars. Unknown dynamics lead to large Doppler shifts, making communication challenging. During EDL, a special form of Multiple Frequency Shift Keying (MFSK) communication is used for Direct-To-Earth (DTE) communication. The X-band signal is received by the Deep Space Network (DSN) at the Canberra Deep Space Communication complex, then down-converted, digitized, and recorded by open-loop Radio Science Receivers (RSR), and decoded in real-time by the EDL Data Analysis (EDA) System. The EDA uses lock states with configurable Fast Fourier Transforms to acquire and track the signal. RSR configuration and channel allocation is shown. Testing prior to EDL is discussed including software simulations, test bed runs with MSL flight hardware, and the in-flight end-to-end test. EDA configuration parameters and signal dynamics during pre-entry, entry, and parachute deployment are analyzed. RSR and EDA performance during MSL EDL is evaluated, including performance using a single 70-meter DSN antenna and an array of two 34-meter DSN antennas as a back up to the 70-meter antenna.

  7. Direct-to-Earth communications with Mars Science Laboratory during Entry, Descent, and Landing

    NASA Astrophysics Data System (ADS)

    Soriano, M.; Finley, S.; Fort, D.; Schratz, B.; Ilott, P.; Mukai, R.; Estabrook, P.; Oudrhiri, K.; Kahan, D.; Satorius, E.

    Mars Science Laboratory (MSL) undergoes extreme heating and acceleration during Entry, Descent, and Landing (EDL) on Mars. Unknown dynamics lead to large Doppler shifts, making communication challenging. During EDL, a special form of Multiple Frequency Shift Keying (MFSK) communication is used for Direct-To-Earth (DTE) communication. The X-band signal is received by the Deep Space Network (DSN) at the Canberra Deep Space Communication complex, then down-converted, digitized, and recorded by open-loop Radio Science Receivers (RSR), and decoded in real-time by the EDL Data Analysis (EDA) System. The EDA uses lock states with configurable Fast Fourier Transforms to acquire and track the signal. RSR configuration and channel allocation is shown. Testing prior to EDL is discussed including software simulations, test bed runs with MSL flight hardware, and the in-flight end-to-end test. EDA configuration parameters and signal dynamics during pre-entry, entry, and parachute deployment are analyzed. RSR and EDA performance during MSL EDL is evaluated, including performance using a single 70-meter DSN antenna and an array of two 34-meter DSN antennas as a back up to the 70-meter antenna.

  8. Atmospheric studies from the Mars Science Laboratory Entry, Descent and Landing atmospheric structure reconstruction

    NASA Astrophysics Data System (ADS)

    Holstein-Rathlou, C.; Maue, A.; Withers, P.

    2016-01-01

    The Mars Science Laboratory (MSL) entered the martian atmosphere on Aug. 6, 2012 landing in Gale crater (4.6°S, 137.4°E) in the local mid-afternoon. Aerodynamic accelerations were measured during descent and atmospheric density, pressure and temperature profiles have been calculated from this data. Using an averaging technique developed for the NASA Phoenix Mars mission, the profiles are extended to 134.1 km, twice that of the engineering reconstruction. Large-scale temperature oscillations in the MSL temperature profile are suggestive of thermal tides. Comparing the MSL temperature profile with measured Mars Climate Sounder temperature profiles and Mars Climate Database model output highlights the presence of diurnal tides. Derived vertical wavelengths for the diurnal migrating tide are larger than predicted from idealized tidal theory, indicating an added presence of nonmigrating diurnal tides. Sub-CO2 condensation mesospheric temperatures, very similar to the Pathfinder temperature profile, allude to the possibility of CO2 clouds. This is however not supported by recent observations and models.

  9. Can Accelerators Accelerate Learning?

    NASA Astrophysics Data System (ADS)

    Santos, A. C. F.; Fonseca, P.; Coelho, L. F. S.

    2009-03-01

    The 'Young Talented' education program developed by the Brazilian State Funding Agency (FAPERJ) [1] makes it possible for high-schools students from public high schools to perform activities in scientific laboratories. In the Atomic and Molecular Physics Laboratory at Federal University of Rio de Janeiro (UFRJ), the students are confronted with modern research tools like the 1.7 MV ion accelerator. Being a user-friendly machine, the accelerator is easily manageable by the students, who can perform simple hands-on activities, stimulating interest in physics, and getting the students close to modern laboratory techniques.

  10. PARTICLE ACCELERATOR

    DOEpatents

    Teng, L.C.

    1960-01-19

    ABS>A combination of two accelerators, a cyclotron and a ring-shaped accelerator which has a portion disposed tangentially to the cyclotron, is described. Means are provided to transfer particles from the cyclotron to the ring accelerator including a magnetic deflector within the cyclotron, a magnetic shield between the ring accelerator and the cyclotron, and a magnetic inflector within the ring accelerator.

  11. Descent strategy comparisons for TNAV-equipped aircraft under airplane-preferred operating conditions

    NASA Technical Reports Server (NTRS)

    Izumi, K. H.

    1989-01-01

    Three 4-D descent strategies were evaluated which were employed by TNAV-equipped aircraft in an advanced metering air traffic control environment. The Flow Management Evaluation Model (FMEM) was used to assess performance using three criteria when traffic enters the simulation under preferred cruise operating conditions (altitude and speed): throughput, fuel usage, and conflict probability. In comparison to an evaluation previously performed under NASA contract, the current analysis indicates that the optimal descent strategy is preferred over the clean-idle and constant descent angle (CFPA) strategies when all three criteria are considered.

  12. Rapid Generation of Optimal Asteroid Powered Descent Trajectories Via Convex Optimization

    NASA Technical Reports Server (NTRS)

    Pinson, Robin; Lu, Ping

    2015-01-01

    This paper investigates a convex optimization based method that can rapidly generate the fuel optimal asteroid powered descent trajectory. The ultimate goal is to autonomously design the optimal powered descent trajectory on-board the spacecraft immediately prior to the descent burn. Compared to a planetary powered landing problem, the major difficulty is the complex gravity field near the surface of an asteroid that cannot be approximated by a constant gravity field. This paper uses relaxation techniques and a successive solution process that seeks the solution to the original nonlinear, nonconvex problem through the solutions to a sequence of convex optimal control problems.

  13. Description of the computations and pilot procedures for planning fuel-conservative descents with a small programmable calculator

    NASA Technical Reports Server (NTRS)

    Vicroy, D. D.; Knox, C. E.

    1983-01-01

    A simplified flight management descent algorithm was developed and programmed on a small programmable calculator. It was designed to aid the pilot in planning and executing a fuel conservative descent to arrive at a metering fix at a time designated by the air traffic control system. The algorithm may also be used for planning fuel conservative descents when time is not a consideration. The descent path was calculated for a constant Mach/airspeed schedule from linear approximations of airplane performance with considerations given for gross weight, wind, and nonstandard temperature effects. The flight management descent algorithm and the vertical performance modeling required for the DC-10 airplane is described.

  14. Description of the computations and pilot procedures for planning fuel-conservative descents with a small programmable calculator

    SciTech Connect

    Vicroy, D.D.; Knox, C.E.

    1983-05-01

    A simplified flight management descent algorithm was developed and programmed on a small programmable calculator. It was designed to aid the pilot in planning and executing a fuel conservative descent to arrive at a metering fix at a time designated by the air traffic control system. The algorithm may also be used for planning fuel conservative descents when time is not a consideration. The descent path was calculated for a constant Mach/airspeed schedule from linear approximations of airplane performance with considerations given for gross weight, wind, and nonstandard temperature effects. The flight management descent algorithm and the vertical performance modeling required for the DC-10 airplane is described.

  15. Hybridisations Of Simulated Annealing And Modified Simplex Algorithms On A Path Of Steepest Ascent With Multi-Response For Optimal Parameter Settings Of ACO

    NASA Astrophysics Data System (ADS)

    Luangpaiboon, P.

    2009-10-01

    Many entrepreneurs face to extreme conditions for instances; costs, quality, sales and services. Moreover, technology has always been intertwined with our demands. Then almost manufacturers or assembling lines adopt it and come out with more complicated process inevitably. At this stage, products and service improvement need to be shifted from competitors with sustainability. So, a simulated process optimisation is an alternative way for solving huge and complex problems. Metaheuristics are sequential processes that perform exploration and exploitation in the solution space aiming to efficiently find near optimal solutions with natural intelligence as a source of inspiration. One of the most well-known metaheuristics is called Ant Colony Optimisation, ACO. This paper is conducted to give an aid in complicatedness of using ACO in terms of its parameters: number of iterations, ants and moves. Proper levels of these parameters are analysed on eight noisy continuous non-linear continuous response surfaces. Considering the solution space in a specified region, some surfaces contain global optimum and multiple local optimums and some are with a curved ridge. ACO parameters are determined through hybridisations of Modified Simplex and Simulated Annealing methods on the path of Steepest Ascent, SAM. SAM was introduced to recommend preferable levels of ACO parameters via statistically significant regression analysis and Taguchi's signal to noise ratio. Other performance achievements include minimax and mean squared error measures. A series of computational experiments using each algorithm were conducted. Experimental results were analysed in terms of mean, design points and best so far solutions. It was found that results obtained from a hybridisation with stochastic procedures of Simulated Annealing method were better than that using Modified Simplex algorithm. However, the average execution time of experimental runs and number of design points using hybridisations were

  16. Preliminary Study of a Model Rotor in Descent

    NASA Technical Reports Server (NTRS)

    McAlister, K. W.; Tung, C.; Sharpe, D. L.; Huang, S.; Hendley, E. M.

    2000-01-01

    Within a program designed to develop experimental techniques for measuring the trajectory and structure of vortices trailing from the tips of rotor blades, the present preliminary study focuses on a method for quantifying the trajectory of the trailing vortex during descent flight conditions. This study also presents rotor loads and blade surface pressures for a range of tip-path plane angles and Mach numbers. Blade pressures near the leading edge and along the outer radius are compared with data obtained on the same model rotor, but in open jet facilities. A triangulation procedure based on two directable laser-light sheets, each containing an embedded reference, proved effective in defining the spatial coordinates of the trailing vortex. When interrogating a cross section of the flow that contains several trailing vortices, the greatest clarity was found to result when the flow is uniformly seeded. Surface pressure responses during blade-vortex interactions appeared equally sensitive near the leading edge and along the outer portion of the blade, but diminished rapidly as the distance along the blade chord increased. The pressure response was virtually independent of whether the tip-path plane angle was obtained through shaft tilt or cyclic pitch. Although the shape and frequency of the pressure perturbations on the advancing blade during blade-vortex interaction are similar to those obtained in open-jet facilities, the angle of the tip-path plane may need to be lower than the range covered in this study.

  17. STS-40 descent BET products: Development and results

    NASA Technical Reports Server (NTRS)

    Oakes, Kevin F.; Wood, James S.; Findlay, John T.

    1991-01-01

    Descent Best Estimate Trajectory (BET) Data were generated for the final Orbiter Experiments Flight, STS-40. This report discusses the actual development of these post-flight products: the inertial BET, the Extended BET, and the Aerodynamic BET. Summary results are also included. The inertial BET was determined based on processing Tracking and Data Relay Satellite (TDRSS) coherent Doppler data in conjunction with observations from eleven C-band stations, to include data from the Kwajalein Atoll and the usual California coastal radars, as well as data from five cinetheodolite cameras in the vicinity of the runways at EAFB. The anchor epoch utilized for the trajectory reconstruction was 53,904 Greenwich Mean Time (GMT) seconds which corresponds to an altitude at epoch of approximately 708 kft. Atmospheric data to enable development of an Extended BET for this mission were upsurped from the JSC operational post-flight BET. These data were evaluated based on Space Shuttle-derived considerations as well as model comparisons. The Aerodynamic BET includes configuration information, final mass properties, and both flight-determined and predicted aerodynamic performance estimates. The predicted data were based on the final pre-operational databook, updated to include flight determined incrementals based on an earlier ensemble of flights. Aerodynamic performance comparisons are presented and correlated versus statistical results based on twenty-two previous missions.

  18. Evolution and ecology of directed aerial descent in arboreal ants.

    PubMed

    Yanoviak, Stephen P; Munk, Yonatan; Dudley, Robert

    2011-12-01

    Directed aerial descent (DAD) is used by a variety of arboreal animals to escape predators, to remain in the canopy, and to access resources. Here, we build upon the discovery of DAD in ants of tropical canopies by summarizing its known phylogenetic distribution among ant genera, and within both the subfamily Pseudomyrmecinae and the genus Cephalotes. DAD has multiple evolutionary origins in ants, occurring independently in numerous genera in the subfamilies Myrmicinae, Formicinae, and Pseudomyrmecinae. Ablation experiments and video recordings of ants in a vertical wind tunnel showed that DAD in Cephalotes atratus is achieved via postural changes, specifically orientation of the legs and gaster. The occurrence of DAD in Formicinae indicates that the presence of a postpetiole is not essential for the behavior. Evidence to date indicates that gliding behavior is accomplished by visual targeting mediated by the compound eyes, and is restricted to diurnally active ants that nest in trees. Occlusion of ocelli in Pseudomyrmex gracilis workers had no effect on their success or performance in gliding. Experimental assessment of the fate of ants that fall to the understory showed that ants landing in water are 15 times more likely to suffer lethal attacks than are ants landing in leaf litter. Variation in both the aerodynamic mechanisms and selective advantages of DAD merits further study given the broad taxonomic diversity of arboreal ants that engage in this intriguing form of flight. PMID:21562023

  19. Orion Entry, Descent, and Landing Performance and Mission Design

    NASA Technical Reports Server (NTRS)

    Broome, Joel M.; Johnson, Wyatt

    2007-01-01

    The Orion Vehicle is the next spacecraft to take humans into space and will include missions to ISS as well as missions to the Moon. As part of that challenge, the vehicle will have to accommodate multiple mission design concepts, since return from Low Earth Orbit and return from the Moon can be quite different. Commonality between the different missions as it relates to vehicle systems, guidance capability, and operations concepts is the goal. Several unique mission design concepts include the specification of multiple land-based landing sites for a vehicle with closed-loop direct and skip entry guidance, followed by a parachute descent and landing attenuation system. This includes the ability of the vehicle to accurately target and land at a designated landing site, including site location aspects, landing site size, and landing opportunities assessments. Analyses associated with these mission design and flight performance challenges and constraints will be discussed as well as potential operational concepts to provide feasibility and/or mission commonality.

  20. Physics-based Entry, Descent and Landing Risk Model

    NASA Technical Reports Server (NTRS)

    Gee, Ken; Huynh, Loc C.; Manning, Ted

    2014-01-01

    A physics-based risk model was developed to assess the risk associated with thermal protection system failures during the entry, descent and landing phase of a manned spacecraft mission. In the model, entry trajectories were computed using a three-degree-of-freedom trajectory tool, the aerothermodynamic heating environment was computed using an engineering-level computational tool and the thermal response of the TPS material was modeled using a one-dimensional thermal response tool. The model was capable of modeling the effect of micrometeoroid and orbital debris impact damage on the TPS thermal response. A Monte Carlo analysis was used to determine the effects of uncertainties in the vehicle state at Entry Interface, aerothermodynamic heating and material properties on the performance of the TPS design. The failure criterion was set as a temperature limit at the bondline between the TPS and the underlying structure. Both direct computation and response surface approaches were used to compute the risk. The model was applied to a generic manned space capsule design. The effect of material property uncertainty and MMOD damage on risk of failure were analyzed. A comparison of the direct computation and response surface approach was undertaken.

  1. Development of a Mars Airplane Entry, Descent, and Flight Trajectory

    NASA Technical Reports Server (NTRS)

    Murray, James E.; Tartabini, Paul V.

    2001-01-01

    An entry, descent, and flight (EDF) trajectory profile for a Mars airplane mission is defined as consisting of the following elements: ballistic entry of an aeroshell; supersonic deployment of a decelerator parachute; subsonic release of a heat shield; release, unfolding, and orientation of an airplane to flight attitude; and execution of a pull up maneuver to achieve trimmed, horizontal flight. Using the Program to Optimize Simulated Trajectories (POST) a trajectory optimization problem was formulated. Model data representative of a specific Mars airplane configuration, current models of the Mars surface topography and atmosphere, and current estimates of the interplanetary trajectory, were incorporated into the analysis. The goal is to develop an EDF trajectory to maximize the surface-relative altitude of the airplane at the end of a pull up maneuver, while subject to the mission design constraints. The trajectory performance was evaluated for three potential mission sites and was found to be site-sensitive. The trajectory performance, examined for sensitivity to a number of design and constraint variables, was found to be most sensitive to airplane mass, aerodynamic performance characteristics, and the pull up Mach constraint. Based on the results of this sensitivity study, an airplane-drag optimized trajectory was developed that showed a significant performance improvement.

  2. Estimating Controller Intervention Probabilities for Optimized Profile Descent Arrivals

    NASA Technical Reports Server (NTRS)

    Meyn, Larry A.; Erzberger, Heinz; Huynh, Phu V.

    2011-01-01

    Simulations of arrival traffic at Dallas/Fort-Worth and Denver airports were conducted to evaluate incorporating scheduling and separation constraints into advisories that define continuous descent approaches. The goal was to reduce the number of controller interventions required to ensure flights maintain minimum separation distances of 5 nmi horizontally and 1000 ft vertically. It was shown that simply incorporating arrival meter fix crossing-time constraints into the advisory generation could eliminate over half of the all predicted separation violations and more than 80% of the predicted violations between two arrival flights. Predicted separation violations between arrivals and non-arrivals were 32% of all predicted separation violations at Denver and 41% at Dallas/Fort-Worth. A probabilistic analysis of meter fix crossing-time errors is included which shows that some controller interventions will still be required even when the predicted crossing-times of the advisories are set to add a 1 or 2 nmi buffer above the minimum in-trail separation of 5 nmi. The 2 nmi buffer was shown to increase average flight delays by up to 30 sec when compared to the 1 nmi buffer, but it only resulted in a maximum decrease in average arrival throughput of one flight per hour.

  3. Engineering description of the ascent/descent bet product

    NASA Technical Reports Server (NTRS)

    Seacord, A. W., II

    1986-01-01

    The Ascent/Descent output product is produced in the OPIP routine from three files which constitute its input. One of these, OPIP.IN, contains mission specific parameters. Meteorological data, such as atmospheric wind velocities, temperatures, and density, are obtained from the second file, the Corrected Meteorological Data File (METDATA). The third file is the TRJATTDATA file which contains the time-tagged state vectors that combine trajectory information from the Best Estimate of Trajectory (BET) filter, LBRET5, and Best Estimate of Attitude (BEA) derived from IMU telemetry. Each term in the two output data files (BETDATA and the Navigation Block, or NAVBLK) are defined. The description of the BETDATA file includes an outline of the algorithm used to calculate each term. To facilitate describing the algorithms, a nomenclature is defined. The description of the nomenclature includes a definition of the coordinate systems used. The NAVBLK file contains navigation input parameters. Each term in NAVBLK is defined and its source is listed. The production of NAVBLK requires only two computational algorithms. These two algorithms, which compute the terms DELTA and RSUBO, are described. Finally, the distribution of data in the NAVBLK records is listed.

  4. Minimum Landing Error Powered-Descent Guidance for Planetary Missions

    NASA Technical Reports Server (NTRS)

    Blackmore, Lars; Acikmese, Behcet

    2011-01-01

    An algorithm improves the accuracy with which a lander can be delivered to the surface of Mars. The main idea behind this innovation is the use of a lossless convexification, which converts an otherwise non-convex constraint related to thruster throttling to a convex constraint, enabling convex optimization to be used. The convexification leads directly to an algorithm that guarantees finding the global optimum of the original nonconvex optimization problem with a deterministic upper bound on the number of iterations required for convergence. In this innovation, previous work in powered-descent guidance using convex optimization is extended to handle the case where the lander must get as close as possible to the target given the available fuel, but is not required to arrive exactly at the target. The new algorithm calculates the minimum-fuel trajectory to the target, if one exists, and calculates the trajectory that minimizes the distance to the target if no solution to the target exists. This approach poses the problem as two Second-Order Cone Programs, which can be solved to global optimality with deterministic bounds on the number of iterations required.

  5. Race, language, and mental evolution in Darwin's descent of man.

    PubMed

    Alter, Stephen G

    2007-01-01

    Charles Darwin was notoriously ambiguous in his remarks about the relationship between human evolution and biological race. He stressed the original unity of the races, yet he also helped to popularize the notion of a racial hierarchy filling the gaps between the highest anthropoids and civilized Europeans. A focus on Darwin's explanation of how humans initially evolved, however, shows that he mainly stressed not hierarchy but a version of humanity's original mental unity. In his book The Descent of Man, Darwin emphasized a substantial degree of mental development (including the incipient use of language) in the early, monogenetic phase of human evolution. This development, he argued, necessarily came before primeval man's numerical increase, geographic dispersion, and racial diversification, because only thus could one explain how that group was able to spread at the expense of rival ape-like populations. This scenario stood opposed to a new evolutionary polygenism formulated in the wake of Darwin's Origin of Species by his ostensible supporters Alfred Russel Wallace and Ernst Haeckel. Darwin judged this outlook inadequate to the task of explaining humanity's emergence. PMID:17623873

  6. Mars Science Laboratory Entry, Descent, and Landing System Overview

    NASA Technical Reports Server (NTRS)

    Steltzner, Adam D.; Burkhart, P. Dan; Chen, Allen; Comeaux, Keith A.; Guernsey, Carl S.; Kipp, Devin M.; Lorenzoni, Leila V.; Mendeck, Gavin F.; Powell, Richard W.; Rivellini, Tommaso P.; San Martin, A. Miguel; Sell, Steven W.; Prakash, Ravi; Way, David W.

    2010-01-01

    In 2012, the Mars Science Laboratory (MSL) mission will pioneer the next generation of robotic Entry, Descent, and Landing (EDL) systems by delivering the largest and most capable rover to date to the surface of Mars. In addition to landing more mass than prior missions to Mars, MSL will offer access to regions of Mars that have been previously unreachable. The MSL EDL sequence is a result of a more stringent requirement set than any of its predecessors. Notable among these requirements is landing a 900 kg rover in a landing ellipse much smaller than that of any previous Mars lander. In meeting these requirements, MSL is extending the limits of the EDL technologies qualified by the Mars Viking, Mars Pathfinder, and Mars Exploration Rover missions. Thus, there are many design challenges that must be solved for the mission to be successful. Several pieces of the EDL design are technological firsts, such as guided entry and precision landing on another planet, as well as the entire Sky Crane maneuver. This paper discusses the MSL EDL architecture and discusses some of the challenges faced in delivering an unprecedented rover payload to the surface of Mars.

  7. ExoMars Entry, Descent, and Landing Science

    NASA Astrophysics Data System (ADS)

    Karatekin, Özgür; Forget, Francois; Withers, Paul; Colombatti, Giacomo; Aboudan, Alessio; Lewis, Stephen; Ferri, Francesca; Van Hove, Bart; Gerbal, Nicolas

    2016-07-01

    Schiaparelli, the Entry Demonstrator Module (EDM) of the ESA ExoMars Program will to land on Mars on 19th October 2016. The ExoMars Atmospheric Mars Entry and Landing Investigations and Analysis (AMELIA) team seeks to exploit the Entry Descent and Landing (EDL) engineering measurements of Schiaparelli for scientific investigations of Mars' atmosphere and surface. ExoMars offers a rare opportunity to perform an in situ investigation of the martian environment over a wide altitude range. There has been only 7 successfully landing on the surface of Mars, from the Viking probes in the 1970's to the Mars Science Laboratory (MSL) in 2012. ExoMars EDM is equipped with an instrumented heat shield like MSL. These novel flight sensors complement conventional accelerometer and gyroscope instrumentation, and provide additional information to reconstruct atmospheric conditions with. This abstract outlines general atmospheric reconstruction methodology using complementary set of sensors and in particular the use of surface pressure and radio data. In addition, we discuss the lessons learned from previous EDL and the plans for ExoMars AMELIA data analysis.

  8. Rapidly Registering Identity-by-Descent Across Ancestral Recombination Graphs.

    PubMed

    Yang, Shuo; Carmi, Shai; Pe'er, Itsik

    2016-06-01

    The genomes of remotely related individuals occasionally contain long segments that are identical by descent (IBD). Sharing of IBD segments has many applications in population and medical genetics, and it is thus desirable to study their properties in simulations. However, no current method provides a direct, efficient means to extract IBD segments from simulated genealogies. Here, we introduce computationally efficient approaches to extract ground-truth IBD segments from a sequence of genealogies, or equivalently, an ancestral recombination graph. Specifically, we use a two-step scheme, where we first identify putative shared segments by comparing the common ancestors of all pairs of individuals at some distance apart. This reduces the search space considerably, and we then proceed by determining the true IBD status of the candidate segments. Under some assumptions and when allowing a limited resolution of segment lengths, our run-time complexity is reduced from O(n(3) log n) for the naïve algorithm to O(n log n), where n is the number of individuals in the sample. PMID:27104872

  9. Eigenanalysis of SNP data with an identity by descent interpretation.

    PubMed

    Zheng, Xiuwen; Weir, Bruce S

    2016-02-01

    Principal component analysis (PCA) is widely used in genome-wide association studies (GWAS), and the principal component axes often represent perpendicular gradients in geographic space. The explanation of PCA results is of major interest for geneticists to understand fundamental demographic parameters. Here, we provide an interpretation of PCA based on relatedness measures, which are described by the probability that sets of genes are identical-by-descent (IBD). An approximately linear transformation between ancestral proportions (AP) of individuals with multiple ancestries and their projections onto the principal components is found. In addition, a new method of eigenanalysis "EIGMIX" is proposed to estimate individual ancestries. EIGMIX is a method of moments with computational efficiency suitable for millions of SNP data, and it is not subject to the assumption of linkage equilibrium. With the assumptions of multiple ancestries and their surrogate ancestral samples, EIGMIX is able to infer ancestral proportions (APs) of individuals. The methods were applied to the SNP data from the HapMap Phase 3 project and the Human Genome Diversity Panel. The APs of individuals inferred by EIGMIX are consistent with the findings of the program ADMIXTURE. In conclusion, EIGMIX can be used to detect population structure and estimate genome-wide ancestral proportions with a relatively high accuracy. PMID:26482676

  10. HLA Type Inference via Haplotypes Identical by Descent

    NASA Astrophysics Data System (ADS)

    Setty, Manu N.; Gusev, Alexander; Pe'Er, Itsik

    The Human Leukocyte Antigen (HLA) genes play a major role in adaptive immune response and are used to differentiate self antigens from non self ones. HLA genes are hyper variable with nearly every locus harboring over a dozen alleles. This variation plays an important role in susceptibility to multiple autoimmune diseases and needs to be matched on for organ transplantation. Unfortunately, HLA typing by serological methods is time consuming and expensive compared to high throughput Single Nucleotide Polymorphism (SNP) data. We present a new computational method to infer per-locus HLA types using shared segments Identical By Descent (IBD), inferred from SNP genotype data. IBD information is modeled as graph where shared haplotypes are explored among clusters of individuals with known and unknown HLA types to identify the latter. We analyze performance of the method in a previously typed subset of the HapMap population, achieving accuracy of 96% in HLA-A, 94% in HLA-B, 95% in HLA-C, 77% in HLA-DR1, 93% in HLA-DQA1 and 90% in HLA-DQB1 genes. We compare our method to a tag SNP based approach and demonstrate higher sensitivity and specificity. Our method demonstrates the power of using shared haplotype segments for large-scale imputation at the HLA locus.

  11. Finite Elements approach for Density Functional Theory calculations on locally refined meshes

    SciTech Connect

    Fattebert, J; Hornung, R D; Wissink, A M

    2006-03-27

    We present a quadratic Finite Elements approach to discretize the Kohn-Sham equations on structured non-uniform meshes. A multigrid FAC preconditioner is proposed to iteratively solve the equations by an accelerated steepest descent scheme. The method was implemented using SAMRAI, a parallel software infrastructure for general AMR applications. Examples of applications to small nanoclusters calculations are presented.

  12. Finite Element approach for Density Functional Theory calculations on locally refined meshes

    SciTech Connect

    Fattebert, J; Hornung, R D; Wissink, A M

    2007-02-23

    We present a quadratic Finite Element approach to discretize the Kohn-Sham equations on structured non-uniform meshes. A multigrid FAC preconditioner is proposed to iteratively solve the equations by an accelerated steepest descent scheme. The method was implemented using SAMRAI, a parallel software infrastructure for general AMR applications. Examples of applications to small nanoclusters calculations are presented.

  13. Fabrication Assembly and Test of the Mars Science Laboratory Descent Stage Propulsion System

    NASA Technical Reports Server (NTRS)

    Parker, Morgan; Baker, Ray; Casillas, Art; Strommen, Dellon; Tanimoto, Rebekah

    2013-01-01

    The Descent Stage Propulsion System (DSPS) is the most challenging and complex propulsion system ever built at JPL. Performance requirements, such as the entry Reaction Control System (RCS) requirements, and the terminal descent requirements (3300 N maximum thrust and approximately 835,000 N-s total impulse in less than a minute), required a large amount of propellant and a large number of components for a spacecraft that had to fit in a 4.5 meter aeroshell. The size and shape of the aeroshell, along with the envelope of the stowed rover, limited the configuration options for the Descent Stage structure. The configuration and mass constraints of the Descent Stage structure, along with performance requirements, drove the configuration of the DSPS. This paper will examine some of the challenges encountered and solutions developed during the fabrication, assembly, and test of the DSPS.

  14. Antarctic Polar Descent and Planetary Wave Activity Observed in ISAMS CO from April to July 1992

    NASA Technical Reports Server (NTRS)

    Allen, D. R.; Stanford, J. L.; Nakamura, N.; Lopez-Valverde, M. A.; Lopez-Puertas, M.; Taylor, F. W.; Remedios, J. J.

    2000-01-01

    Antarctic polar descent and planetary wave activity in the upper stratosphere and lower mesosphere are observed in ISAMS CO data from April to July 1992. CO-derived mean April-to-May upper stratosphere descent rates of 15 K/day (0.25 km/day) at 60 S and 20 K/day (0.33 km/day) at 80 S are compared with descent rates from diabatic trajectory analyses. At 60 S there is excellent agreement, while at 80 S the trajectory-derived descent is significantly larger in early April. Zonal wavenumber 1 enhancement of CO is observed on 9 and 28 May, coincident with enhanced wave 1 in UKMO geopotential height. The 9 May event extends from 40 to 70 km and shows westward phase tilt with height, while the 28 May event extends from 40 to 50 km and shows virtually no phase tilt with height.

  15. A conflict analysis of 4D descent strategies in a metered, multiple-arrival route environment

    NASA Technical Reports Server (NTRS)

    Izumi, K. H.; Harris, C. S.

    1990-01-01

    A conflict analysis was performed on multiple arrival traffic at a typical metered airport. The Flow Management Evaluation Model (FMEM) was used to simulate arrival operations using Denver Stapleton's arrival route structure. Sensitivities of conflict performance to three different 4-D descent strategies (clear-idle Mach/Constant AirSpeed (CAS), constant descent angle Mach/CAS and energy optimal) were examined for three traffic mixes represented by those found at Denver Stapleton, John F. Kennedy and typical en route metering (ERM) airports. The Monte Carlo technique was used to generate simulation entry point times. Analysis results indicate that the clean-idle descent strategy offers the best compromise in overall performance. Performance measures primarily include susceptibility to conflict and conflict severity. Fuel usage performance is extrapolated from previous descent strategy studies.

  16. Entry, Descent and Landing (EDL) Technology Investments Within NASA's Space Technology Mission Directorate (STMD)

    NASA Astrophysics Data System (ADS)

    Munk, M. M.

    2014-06-01

    NASA’s Space Technology Mission Directorate has several investments in entry, descent and landing technologies, across its nine programs. This presentation will give a top-level view of the various investments.

  17. Atmospheric Properties Reconstruction from the Mars Science Laboratory Entry, Descent and Landing

    NASA Astrophysics Data System (ADS)

    Holstein-Rathlou, C.; Withers, P.

    2014-07-01

    Data acquired during the entry, descent and landing of the Mars Science Laboratory were used to reconstruct the atmospheric profiles for density, pressure and temperature with excellent vertical resolution and extent.

  18. User's manual for a fuel-conservative descent planning algorithm implemented on a small programmable calculator

    NASA Technical Reports Server (NTRS)

    Vicroy, D. D.

    1984-01-01

    A simplified flight management descent algorithm was developed and programmed on a small programmable calculator. It was designed to aid the pilot in planning and executing a fuel conservative descent to arrive at a metering fix at a time designated by the air traffic control system. The algorithm may also be used for planning fuel conservative descents when time is not a consideration. The descent path was calculated for a constant Mach/airspeed schedule from linear approximations of airplane performance with considerations given for gross weight, wind, and nonstandard temperature effects. An explanation and examples of how the algorithm is used, as well as a detailed flow chart and listing of the algorithm are contained.

  19. THE AFRICAN DESCENT AND GLAUCOMA EVALUATION STUDY (ADAGES): PREDICTORS OF VISUAL FIELD DAMAGE IN GLAUCOMA SUSPECTS

    PubMed Central

    Khachatryan, Naira; Medeiros, Felipe A.; Sharpsten, Lucie; Bowd, Christopher; Sample, Pamela A.; Liebmann, Jeffrey M.; Girkin, Christopher A.; Weinreb, Robert N.; Miki, Atsuya; Hammel, Na’ama; Zangwill, Linda M.

    2015-01-01

    Purpose To evaluate racial differences in the development of visual field (VF) damage in glaucoma suspects. Design Prospective, observational cohort study. Methods Six hundred thirty six eyes from 357 glaucoma suspects with normal VF at baseline were included from the multicenter African Descent and Glaucoma Evaluation Study (ADAGES). Racial differences in the development of VF damage were examined using multivariable Cox Proportional Hazard models. Results Thirty one (25.4%) of 122 African descent participants and 47 (20.0%) of 235 European descent participants developed VF damage (p=0.078). In multivariable analysis, worse baseline VF mean deviation, higher mean arterial pressure during follow up, and a race *mean intraocular pressure (IOP) interaction term were significantly associated with the development of VF damage suggesting that racial differences in the risk of VF damage varied by IOP. At higher mean IOP levels, race was predictive of the development of VF damage even after adjusting for potentially confounding factors. At mean IOPs during follow-up of 22, 24 and 26 mmHg, multivariable hazard ratios (95%CI) for the development of VF damage in African descent compared to European descent subjects were 2.03 (1.15–3.57), 2.71 (1.39–5.29), and 3.61 (1.61–8.08), respectively. However, at lower mean IOP levels (below 22 mmHg) during follow-up, African descent was not predictive of the development of VF damage. Conclusion In this cohort of glaucoma suspects with similar access to treatment, multivariate analysis revealed that at higher mean IOP during follow-up, individuals of African descent were more likely to develop VF damage than individuals of European descent. PMID:25597839

  20. A simple method for estimating minimum autorotative descent rate of single rotor helicopters

    NASA Technical Reports Server (NTRS)

    Talbot, P. D.; Schroers, L. G.

    1978-01-01

    Flight test results of minimum autorotative descent rate are compared with calculations based on the minimum power required for steady level flight. Empirical correction factors are derived that account for differences in energy dissipation between these two flight conditions. A method is also presented for estimating the minimum power coefficient for level flight for any helicopter for use in the empirical estimation procedure of autorotative descent rate.

  1. Analysis of Flight Management System Predictions of Idle-Thrust Descents

    NASA Technical Reports Server (NTRS)

    Stell, Laurel

    2010-01-01

    To enable arriving aircraft to fly optimized descents computed by the flight management system (FMS) in congested airspace, ground automation must accurately predict descent trajectories. To support development of the predictor and its uncertainty models, descents from cruise to the meter fix were executed using vertical navigation in a B737-700 simulator and a B777-200 simulator, both with commercial FMSs. For both aircraft types, the FMS computed the intended descent path for a specified speed profile assuming idle thrust after top of descent (TOD), and then it controlled the avionics without human intervention. The test matrix varied aircraft weight, descent speed, and wind conditions. The first analysis in this paper determined the effect of the test matrix parameters on the FMS computation of TOD location, and it compared the results to those for the current ground predictor in the Efficient Descent Advisor (EDA). The second analysis was similar but considered the time to fly a specified distance to the meter fix. The effects of the test matrix variables together with the accuracy requirements for the predictor will determine the allowable error for the predictor inputs. For the B737, the EDA prediction of meter fix crossing time agreed well with the FMS; but its prediction of TOD location probably was not sufficiently accurate to enable idle-thrust descents in congested airspace, even though the FMS and EDA gave similar shapes for TOD location as a function of the test matrix variables. For the B777, the FMS and EDA gave different shapes for the TOD location function, and the EDA prediction of the TOD location is not accurate enough to fully enable the concept. Furthermore, the differences between the FMS and EDA predictions of meter fix crossing time for the B777 indicated that at least one of them was not sufficiently accurate.

  2. Mars Science Laboratory Entry, Descent and Landing System Development Challenges and Preliminary Flight Performance

    NASA Technical Reports Server (NTRS)

    Steltzner, Adam D.; San Martin, A. Miguel; Rivellini, Tommaso P.

    2013-01-01

    The Mars Science Laboratory project recently landed the Curiosity rover on the surface of Mars. With the success of the landing system, the performance envelope of entry, descent, and landing capabilities has been extended over the previous state of the art. This paper will present an overview of the MSL entry, descent, and landing system, a discussion of a subset of its development challenges, and include a discussion of preliminary results of the flight reconstruction effort.

  3. Supervised descent method with low rank and sparsity constraints for robust face alignment

    NASA Astrophysics Data System (ADS)

    Sun, Yubao; Hu, Bin; Deng, Jiankang; Li, Xing

    2015-03-01

    Supervised Descent Method (SDM) learns the descent directions of nonlinear least square objective in a supervised manner, which has been efficiently used for face alignment. However, SDM still may fail in the cases of partial occlusions and serious pose variations. To deal with this issue, we present a new method for robust face alignment by utilizing the low rank prior of human face and enforcing sparse structure of the descent directions. Our approach consists of low rank face frontalization and sparse descent steps. Firstly, in terms of the low rank prior of face image, we recover such a low-rank face from its deformed image and the associated deformation despite significant distortion and corruption. Alignment of the recovered frontal face image is more simple and effective. Then, we propose a sparsity regularized supervised descent model by enforcing the sparse structure of the descent directions under the l1constraint, which makes the model more effective in computation and robust to partial occlusion. Extensive results on several benchmarks demonstrate that the proposed method is robust to facial occlusions and pose variations

  4. The Huygens Probe Descent Trajectory Working Group: Organizational framework, goals, and implementation

    NASA Astrophysics Data System (ADS)

    Atkinson, David H.; Kazeminejad, Bobby; Lebreton, Jean-Pierre; Witasse, Olivier; Pérez-Ayúcar, Miguel; Matson, Dennis L.

    2007-11-01

    Cassini/Huygens, a flagship mission to explore the rings, atmosphere, magnetic field, and moons that make up the Saturn system, is a joint endeavor of the National Aeronautics and Space Administration, the European Space Agency, and Agenzia Spaziale Italiana. Comprising two spacecraft - a Saturn orbiter built by NASA and a Titan entry/descent probe built by the European Space Agency - Cassini/Huygens was launched in October 1997. The Huygens probe parachuted to the surface of Titan in January 2005. During the descent, six science instruments provided in situ measurements of Titan's atmosphere, clouds, and winds, and photographed Titan's surface. To correctly interpret and correlate results from the probe science experiments, and to provide a reference set of data for ground-truth calibration of orbiter remote sensing measurements, an accurate reconstruction of the probe entry and descent trajectory and surface landing location is necessary. The Huygens Descent Trajectory Working Group was chartered in 1996 as a subgroup of the Huygens Science Working Team to develop and implement an organizational framework and retrieval methodologies for the probe descent trajectory reconstruction from the entry altitude of 1270 km to the surface using navigation data, and engineering and science data acquired by the instruments on the Huygens Probe. This paper presents an overview of the Descent Trajectory Working Group, including the history, rationale, goals and objectives, organizational framework, rules and procedures, and implementation.

  5. Reconstruction of the Mars Science Laboratory Parachute Performance and Comparison to the Descent Simulation

    NASA Technical Reports Server (NTRS)

    Cruz, Juan R.; Way, David W.; Shidner, Jeremy D.; Davis, Jody L.; Adams, Douglas S.; Kipp, Devin M.

    2013-01-01

    The Mars Science Laboratory used a single mortar-deployed disk-gap-band parachute of 21.35 m nominal diameter to assist in the landing of the Curiosity rover on the surface of Mars. The parachute system s performance on Mars has been reconstructed using data from the on-board inertial measurement unit, atmospheric models, and terrestrial measurements of the parachute system. In addition, the parachute performance results were compared against the end-to-end entry, descent, and landing (EDL) simulation created to design, develop, and operate the EDL system. Mortar performance was nominal. The time from mortar fire to suspension lines stretch (deployment) was 1.135 s, and the time from suspension lines stretch to first peak force (inflation) was 0.635 s. These times were slightly shorter than those used in the simulation. The reconstructed aerodynamic portion of the first peak force was 153.8 kN; the median value for this parameter from an 8,000-trial Monte Carlo simulation yielded a value of 175.4 kN - 14% higher than the reconstructed value. Aeroshell dynamics during the parachute phase of EDL were evaluated by examining the aeroshell rotation rate and rotational acceleration. The peak values of these parameters were 69.4 deg/s and 625 deg/sq s, respectively, which were well within the acceptable range. The EDL simulation was successful in predicting the aeroshell dynamics within reasonable bounds. The average total parachute force coefficient for Mach numbers below 0.6 was 0.624, which is close to the pre-flight model nominal drag coefficient of 0.615.

  6. Atmospheric Environments for Entry, Descent and Landing (EDL)

    NASA Technical Reports Server (NTRS)

    Justus, Carl G.; Braun, Robert D.

    2007-01-01

    Scientific measurements of atmospheric properties have been made by a wide variety of planetary flyby missions, orbiters, and landers. Although landers can make in-situ observations of near-surface atmospheric conditions (and can collect atmospheric data during their entry phase), the vast majority of data on planetary atmospheres has been collected by remote sensing techniques from flyby and orbiter spacecraft (and to some extent by Earth-based remote sensing). Many of these remote sensing observations (made over a variety of spectral ranges), consist of vertical profiles of atmospheric temperature as a function of atmospheric pressure level. While these measurements are of great interest to atmospheric scientists and modelers of planetary atmospheres, the primary interest for engineers designing entry descent and landing (EDL) systems is information about atmospheric density as a function of geometric altitude. Fortunately, as described in in this paper, it is possible to use a combination of the gas-law relation and the hydrostatic balance relation to convert temperature-versus-pressure, scientific observations into density-versus-altitude data for use in engineering applications. The following section provides a brief introduction to atmospheric thermodynamics, as well as constituents, and winds for EDL. It also gives methodology for using atmospheric information to do "back-of-the-envelope" calculations of various EDL aeroheating parameters, including peak deceleration rate ("g-load"), peak convective heat rate. and total heat load on EDL spacecraft thermal protection systems. Brief information is also provided about atmospheric variations and perturbations for EDL guidance and control issues, and atmospheric issues for EDL parachute systems. Subsequent sections give details of the atmospheric environments for five destinations for possible EDL missions: Venus. Earth. Mars, Saturn, and Titan. Specific atmospheric information is provided for these destinations

  7. Mars 2020 Entry, Descent and Landing Instrumentation (MEDLI2)

    NASA Technical Reports Server (NTRS)

    Bose, Deepak; Wright, Henry; White, Todd; Schoenenberger, Mark; Santos, Jose; Karlgaard, Chris; Kuhl, Chris; Oishi, TOmo; Trombetta, Dominic

    2016-01-01

    This paper will introduce Mars Entry Descent and Landing Instrumentation (MEDLI2) on NASA's Mars2020 mission. Mars2020 is a flagship NASA mission with science and technology objectives to help answer questions about possibility of life on Mars as well as to demonstrate technologies for future human expedition. Mars2020 is scheduled for launch in 2020. MEDLI2 is a suite of instruments embedded in the heatshield and backshell thermal protection systems of Mars2020 entry vehicle. The objectives of MEDLI2 are to gather critical aerodynamics, aerothermodynamics and TPS performance data during EDL phase of the mission. MEDLI2 builds up the success of MEDLI flight instrumentation on Mars Science Laboratory mission in 2012. MEDLI instrumentation suite measured surface pressure and TPS temperature on the heatshield during MSL entry into Mars. MEDLI data has since been used for unprecedented reconstruction of aerodynamic drag, vehicle attitude, in-situ atmospheric density, aerothermal heating, transition to turbulence, in-depth TPS performance and TPS ablation. [1,2] In addition to validating predictive models, MEDLI data has highlighted extra margin available in the MSL forebody TPS, which can potentially be used to reduce vehicle parasitic mass. MEDLI2 expands the scope of instrumentation by focusing on quantities of interest not addressed in MEDLI suite. The type the sensors are expanded and their layout on the TPS modified to meet these new objectives. The paper will provide key motivation and governing requirements that drive the choice and the implementation of the new sensor suite. The implementation considerations of sensor selection, qualification, and demonstration of minimal risk to the host mission will be described. The additional challenges associated with mechanical accommodation, electrical impact, data storage and retrieval for MEDLI2 system, which extends sensors to backshell will also be described.

  8. Mars Exploration Rover Entry, Descent, and Landing: A Thermal Perspective

    NASA Technical Reports Server (NTRS)

    Tsuyuki, Glenn T.; Sunada, Eric T.; Novak, Keith S.; Kinsella, Gary M.; Phillip, Charles J.

    2005-01-01

    Perhaps the most challenging mission phase for the Mars Exploration Rovers was the Entry, Descent, and Landing (EDL). During this phase, the entry vehicle attached to its cruise stage was transformed into a stowed tetrahedral Lander that was surrounded by inflated airbags through a series of complex events. There was only one opportunity to successfully execute an automated command sequence without any possible ground intervention. The success of EDL was reliant upon the system thermal design: 1) to thermally condition EDL hardware from cruise storage temperatures to operating temperature ranges; 2) to maintain the Rover electronics within operating temperature ranges without the benefit of the cruise single phase cooling loop, which had been evacuated in preparation for EDL; and 3) to maintain the cruise stage propulsion components for the critical turn to entry attitude. Since the EDL architecture was inherited from Mars Pathfinder (MPF), the initial EDL thermal design would be inherited from MPF. However, hardware and implementation differences from MPF ultimately changed the MPF inheritance approach for the EDL thermal design. With the lack of full inheritance, the verification and validation of the EDL thermal design took on increased significance. This paper will summarize the verification and validation approach for the EDL thermal design along with applicable system level thermal testing results as well as appropriate thermal analyses. In addition, the lessons learned during the system-level testing will be discussed. Finally, the in-flight EDL experiences of both MER-A and -B missions (Spirit and Opportunity, respectively) will be presented, demonstrated how lessons learned from Spirit were applied to Opportunity.

  9. Plasma accelerators

    SciTech Connect

    Ruth, R.D.; Chen, P.

    1986-03-01

    In this paper we discuss plasma accelerators which might provide high gradient accelerating fields suitable for TeV linear colliders. In particular we discuss two types of plasma accelerators which have been proposed, the Plasma Beat Wave Accelerator and the Plasma Wake Field Accelerator. We show that the electric fields in the plasma for both schemes are very similar, and thus the dynamics of the driven beams are very similar. The differences appear in the parameters associated with the driving beams. In particular to obtain a given accelerating gradient, the Plasma Wake Field Accelerator has a higher efficiency and a lower total energy for the driving beam. Finally, we show for the Plasma Wake Field Accelerator that one can accelerate high quality low emittance beams and, in principle, obtain efficiencies and energy spreads comparable to those obtained with conventional techniques.

  10. Status Needs Positive Change. Report of the Subcommittee on the Immigrant Community of African Descent. Volume 4, Immigrants of African Descent.

    ERIC Educational Resources Information Center

    New York Governor's Advisory Committee for Black Affairs, Albany.

    This document comprises an analysis of the needs of immigrants of African descent to New York State in the following areas: (1) economic planning; (2) culture and the arts; (3) immigration reform and amnesty; and (4) health care. Immigrants from the Caribbean and Africa comprise rapidly growing segments of the State's population. These immigrants…

  11. Aerodynamics of Reentry Vehicle Clipper at Descent Phase

    NASA Astrophysics Data System (ADS)

    Semenov, Yu. P.; Reshetin, A. G.; Dyadkin, A. A.; Petrov, N. K.; Simakova, T. V.; Tokarev, V. A.

    2005-02-01

    From Gagarin spacecraft to reusable orbiter Buran, RSC Energia has traveled a long way in the search for the most optimal and, which is no less important, the most reliable spacecraft for manned space flight. During the forty years of space exploration, in cooperation with a broad base of subcontractors, a number of problems have been solved which assure a safe long stay in space. Vostok and Voskhod spacecraft were replaced with Soyuz supporting a crew of three. During missions to a space station, it provides crew rescue capability in case of a space station emergency at all times (the spacecraft life is 200 days).The latest modification of Soyuz spacecraft -Soyuz TMA -in contrast to its predecessors, allows to become a space flight participant to a person of virtually any anthropometric parameters with a mass of 50 to 95 kg capable of withstanding up to 6 g load during descent. At present, Soyuz TMA spacecraft are the state-of-the-art, reliable and only means of the ISS crew delivery, in-flight support and return. Introduced on the basis of many years of experience in operation of manned spacecraft were not only the principles of deep redundancy of on-board systems and equipment, but, to assure the main task of the spacecraft -the crew return to Earth -the principles of functional redundancy. That is, vital operations can be performed by different systems based on different physical principles. The emergency escape system that was developed is the only one in the world that provides crew rescue in case of LV failure at any phase in its flight. Several generations of space stations that have been developed have broadened, virtually beyond all limits, capabilities of man in space. The docking system developed at RSC Energia allowed not only to dock spacecraft in space, but also to construct in orbit various complex space systems. These include large space stations, and may include in the future the in-orbit construction of systems for the exploration of the Moon and

  12. Planning fuel-conservative descents in an airline environmental using a small programmable calculator: Algorithm development and flight test results

    NASA Technical Reports Server (NTRS)

    Knox, C. E.; Vicroy, D. D.; Simmon, D. A.

    1985-01-01

    A simple, airborne, flight-management descent algorithm was developed and programmed into a small programmable calculator. The algorithm may be operated in either a time mode or speed mode. The time mode was designed to aid the pilot in planning and executing a fuel-conservative descent to arrive at a metering fix at a time designated by the air traffic control system. The speed model was designed for planning fuel-conservative descents when time is not a consideration. The descent path for both modes was calculated for a constant with considerations given for the descent Mach/airspeed schedule, gross weight, wind, wind gradient, and nonstandard temperature effects. Flight tests, using the algorithm on the programmable calculator, showed that the open-loop guidance could be useful to airline flight crews for planning and executing fuel-conservative descents.

  13. Planning fuel-conservative descents in an airline environmental using a small programmable calculator: algorithm development and flight test results

    SciTech Connect

    Knox, C.E.; Vicroy, D.D.; Simmon, D.A.

    1985-05-01

    A simple, airborne, flight-management descent algorithm was developed and programmed into a small programmable calculator. The algorithm may be operated in either a time mode or speed mode. The time mode was designed to aid the pilot in planning and executing a fuel-conservative descent to arrive at a metering fix at a time designated by the air traffic control system. The speed model was designed for planning fuel-conservative descents when time is not a consideration. The descent path for both modes was calculated for a constant with considerations given for the descent Mach/airspeed schedule, gross weight, wind, wind gradient, and nonstandard temperature effects. Flight tests, using the algorithm on the programmable calculator, showed that the open-loop guidance could be useful to airline flight crews for planning and executing fuel-conservative descents.

  14. Tracer-Based Determination of Vortex Descent in the 1999-2000 Arctic Winter

    NASA Technical Reports Server (NTRS)

    Greenblatt, Jeffery B.; Jost, Hans-Juerg; Loewenstein, Max; Podolske, James R.; Hurst, Dale F.; Elkins, James W.; Schauffler, Sue M.; Atlas, Elliot L.; Herman, Robert L.; Webster, Christopher R.

    2001-01-01

    A detailed analysis of available in situ and remotely sensed N2O and CH4 data measured in the 1999-2000 winter Arctic vortex has been performed in order to quantify the temporal evolution of vortex descent. Differences in potential temperature (theta) among balloon and aircraft vertical profiles (an average of 19-23 K on a given N2O or CH4 isopleth) indicated significant vortex inhomogeneity in late fall as compared with late winter profiles. A composite fall vortex profile was constructed for November 26, 1999, whose error bars encompassed the observed variability. High-latitude, extravortex profiles measured in different years and seasons revealed substantial variability in N2O and CH4 on theta surfaces, but all were clearly distinguishable from the first vortex profiles measured in late fall 1999. From these extravortex-vortex differences, we inferred descent prior to November 26: 397+/-15 K (1sigma) at 30 ppbv N2O and 640 ppbv CH4, and 28+/-13 K above 200 ppbv N2O and 1280 ppbv CH4. Changes in theta were determined on five N2O and CH4 isopleths from November 26 through March 12, and descent rates were calculated on each N2O isopleth for several time intervals. The maximum descent rates were seen between November 26 and January 27: 0.82+/-0.20 K/day averaged over 50-250 ppbv N2O. By late winter (February 26-March 12), the average rate had decreased to 0.10+/-0.25 K/day. Descent rates also decreased with increasing N2O; the winter average (November 26-March 5) descent rate varied from 0.75+/-0.10 K/day at 50 ppbv to 0.40+/-0.11 K/day at 250 ppbv. Comparison of these results with observations and models of descent in prior years showed very good overall agreement. Two models of the 1999-2000 vortex descent, SLIMCAT and REPROBUS, despite theta offsets with respect to observed profiles of up to 20 K on most tracer isopleths, produced descent rates that agreed very favorably with the inferred rates from observation.

  15. Analysis of foot clearance in firefighters during ascent and descent of stairs.

    PubMed

    Kesler, Richard M; Horn, Gavin P; Rosengren, Karl S; Hsiao-Wecksler, Elizabeth T

    2016-01-01

    Slips, trips, and falls are a leading cause of injury to firefighters with many injuries occurring while traversing stairs, possibly exaggerated by acute fatigue from firefighting activities and/or asymmetric load carriage. This study examined the effects that fatigue, induced by simulated firefighting activities, and hose load carriage have on foot clearance while traversing stairs. Landing and passing foot clearances for each stair during ascent and descent of a short staircase were investigated. Clearances decreased significantly (p < 0.05) post-exercise for nine of 12 ascent parameters and increased for two of eight descent parameters. Load carriage resulted in significantly decreased (p < 0.05) clearance over three ascent parameters, and one increase during descent. Decreased clearances during ascent caused by fatigue or load carriage may result in an increased trip risk. Increased clearances during descent may suggest use of a compensation strategy to ensure stair clearance or an increased risk of over-stepping during descent. PMID:26360190

  16. TRW - Lunar Descent Engine. Chapter 6, Appendix H

    NASA Technical Reports Server (NTRS)

    Elverum, Gerard W.

    2009-01-01

    it came to Apollo 13, we went back into the record, and said, "Hey, we have pushed this system around up there on Apollo 5, and we have also restarted this tandem configuration." The requirements on Apollo 13 were to put it back into play. The spacecraft was out of free return to the earth at the time of the accident. It would not have come back. NASA said, "Okay, we ll use the descent engine to put the spacecraft in a free trajectory; it will go around the moon and be on free trajectory back to Earth." Then, as it came around the far side of the moon, the guys found out that they had an oxygen problem. As you remember, things were getting pretty bad in there. They said, "We ve got to get it back as fast as we can. Is it okay if we re-fire the engine? Now, we re in a free trajectory, so we want to put as much delta-v (or change in velocity) in as we can. Can we re-fire right now?" We said, "Yes, the data says it has been this period of time." We could re-fire the engine, run the rest of the duty cycle up as far as we needed while preserving enough fluids to make the final correction as the spacecraft got near Earth, and restart the engine. It was pretty fortuitous that we could give them those answers.

  17. Preliminary assessment of the Mars Science Laboratory entry, descent, and landing simulation

    NASA Astrophysics Data System (ADS)

    Way, David W.

    On August 5, 2012, the Mars Science Laboratory rover, Curiosity, successfully landed inside Gale Crater. This landing was the seventh successful landing and fourth rover to be delivered to Mars. Weighing nearly one metric ton, Curiosity is the largest and most complex rover ever sent to investigate another planet. Safely landing such a large payload required an innovative Entry, Descent, and Landing system, which included the first guided entry at Mars, the largest supersonic parachute ever flown at Mars, and the novel Sky Crane landing system. A complete, end-to-end, six degree-of-freedom, multi-body computer simulation of the Mars Science Laboratory Entry, Descent, and Landing sequence was developed at the NASA Langley Research Center. In-flight data gathered during the successful landing is compared to pre-flight statistical distributions, predicted by the simulation. These comparisons provide insight into both the accuracy of the simulation and the overall performance of the Entry, Descent, and Landing system.

  18. Descent and Landing Triggers for the Orion Multi-Purpose Crew Vehicle Exploration Flight Test-1

    NASA Technical Reports Server (NTRS)

    Bihari, Brian D.; Semrau, Jeffrey D.; Duke, Charity J.

    2013-01-01

    The Orion Multi-Purpose Crew Vehicle (MPCV) will perform a flight test known as Exploration Flight Test-1 (EFT-1) currently scheduled for 2014. One of the primary functions of this test is to exercise all of the important Guidance, Navigation, Control (GN&C), and Propulsion systems, along with the flight software for future flights. The Descent and Landing segment of the flight is governed by the requirements levied on the GN&C system by the Landing and Recovery System (LRS). The LRS is a complex system of parachutes and flight control modes that ensure that the Orion MPCV safely lands at its designated target in the Pacific Ocean. The Descent and Landing segment begins with the jettisoning of the Forward Bay Cover and concludes with sensing touchdown. This paper discusses the requirements, design, testing, analysis and performance of the current EFT-1 Descent and Landing Triggers flight software.

  19. Advances in POST2 End-to-End Descent and Landing Simulation for the ALHAT Project

    NASA Technical Reports Server (NTRS)

    Davis, Jody L.; Striepe, Scott A.; Maddock, Robert W.; Hines, Glenn D.; Paschall, Stephen, II; Cohanim, Babak E.; Fill, Thomas; Johnson, Michael C.; Bishop, Robert H.; DeMars, Kyle J.; Sostaric, Ronald r.; Johnson, Andrew E.

    2008-01-01

    Program to Optimize Simulated Trajectories II (POST2) is used as a basis for an end-to-end descent and landing trajectory simulation that is essential in determining design and integration capability and system performance of the lunar descent and landing system and environment models for the Autonomous Landing and Hazard Avoidance Technology (ALHAT) project. The POST2 simulation provides a six degree-of-freedom capability necessary to test, design and operate a descent and landing system for successful lunar landing. This paper presents advances in the development and model-implementation of the POST2 simulation, as well as preliminary system performance analysis, used for the testing and evaluation of ALHAT project system models.

  20. Dissipative descent: rocking and rolling down an incline

    NASA Astrophysics Data System (ADS)

    Balmforth, N. J.; Bush, J. W. M.; Vener, D.; Young, W. R.

    We consider the dynamics of a hollow cylindrical shell that is filled with viscous fluid and another, nested solid cylinder, and allowed to roll down an inclined plane. A mathematical model is compared to simple experiments. Two types of behaviour are observed experimentally: on steeper slopes, the device accelerates; on shallower inclines, the cylinders rock and roll unsteadily downhill, with a speed that is constant on average. The theory also predicts runaway and unsteady rolling motions. For the rolling solutions, however, the inner cylinder cannot be suspended in the fluid by the motion of the outer cylinder, and instead falls inexorably toward the outer cylinder. Whilst only occurs after an infinite time, the system slows progressively as the gap between the cylinders narrows, owing to heightened viscous dissipation. Such a deceleration is not observed in the experiments, suggesting that some mechanism limits the approach to contact. Coating the surface of the inner cylinder with sandpaper of different grades changes the rolling speed, consistent with the notion that surface roughness is responsible for limiting the acceleration.

  1. Minimum-Cost Aircraft Descent Trajectories with a Constrained Altitude Profile

    NASA Technical Reports Server (NTRS)

    Wu, Minghong G.; Sadovsky, Alexander V.

    2015-01-01

    An analytical formula for solving the speed profile that accrues minimum cost during an aircraft descent with a constrained altitude profile is derived. The optimal speed profile first reaches a certain speed, called the minimum-cost speed, as quickly as possible using an appropriate extreme value of thrust. The speed profile then stays on the minimum-cost speed as long as possible, before switching to an extreme value of thrust for the rest of the descent. The formula is applied to an actual arrival route and its sensitivity to winds and airlines' business objectives is analyzed.

  2. Entry, Descent and Landing Systems Analysis: Exploration Class Simulation Overview and Results

    NASA Technical Reports Server (NTRS)

    DwyerCianciolo, Alicia M.; Davis, Jody L.; Shidner, Jeremy D.; Powell, Richard W.

    2010-01-01

    NASA senior management commissioned the Entry, Descent and Landing Systems Analysis (EDL-SA) Study in 2008 to identify and roadmap the Entry, Descent and Landing (EDL) technology investments that the agency needed to make in order to successfully land large payloads at Mars for both robotic and exploration or human-scale missions. The year one exploration class mission activity considered technologies capable of delivering a 40-mt payload. This paper provides an overview of the exploration class mission study, including technologies considered, models developed and initial simulation results from the EDL-SA year one effort.

  3. Overview of the NASA Entry, Descent and Landing Systems Analysis Study

    NASA Technical Reports Server (NTRS)

    Zang, Thomas A.; Dwyer-Cianciolo, Alicia M.; Kinney, David J.; Howard, Austin R.; Chen, George T.; Ivanov, Mark C.; Sostaric, Ronald R.; Westhelle, Carlos H.

    2010-01-01

    NASA senior management commissioned the Entry, Descent and Landing Systems Analysis (EDL-SA) Study in 2008 to identify and roadmap the Entry, Descent and Landing (EDL) technology investments that the agency needed to make in order to successfully land large payloads at Mars for both robotic and human-scale missions. This paper summarizes the approach and top-level results from Year 1 of the Study, which focused on landing 10-50 mt on Mars, but also included a trade study of the best advanced parachute design for increasing the landed payloads within the EDL architecture of the Mars Science Laboratory (MSL) mission.

  4. Initial Field Evaluation of Pilot Procedures for Flying CTAS Descent Clearances

    NASA Technical Reports Server (NTRS)

    Palmer, Everett; Goka, Tsuyoshi; Cashion, Patricia; Feary, Michael; Graham, Holly; Smith, Nancy; Shafto, Michael (Technical Monitor)

    1994-01-01

    The Center TRACON Automation System (CTAS) is a new support system that is designed to assist air traffic controllers in the management of arrival traffic. CTAS will provide controllers with more information about current air traffic, enabling them to provide clearances for efficient, conflict-free descents that help achieve an orderly stream of aircraft at the final approach fix. CTAS is a computer-based system that functions as a "ground-based FMS" that can predict flight trajectories and arrival times for all incoming aircraft. CTAS uses an aircraft's cruise airspeed; current air traffic, winds and temperature; performance characteristics of the aircraft type; and individual airline preferences to create a flight profile from cruise altitude to the final approach fix. Controllers can use this flight profile to provide a descent clearance that will allow an aircraft to fly an efficient descent and merge more smoothly with other arriving aircraft. A field test of the CTAS Descent Advisor software was conducted at the Denver Center for aircraft arriving at the Stapleton International Airport from September 12-29. CTAS Descent clearances were given to a NASA flight test aircraft and to 77 airline flights that arrived during low traffic periods. For the airline portion of the field test, cockpit procedures and pilot briefing packages for both FMS equipped and unequipped aircraft were developed in cooperation with an airline. The procedures developed for the FMS equipped aircraft were to fly a VNAV descent at a controller specified speed to cross a metering fix at a specified altitude and speed. For nonFMS aircraft, the clearance also specified a CTAS calculated top-of-descent point. Some CTAS related flight deck issues included how much time was available to the pilots' for compliance, the amount of information that needed to be interpreted in the clearance and possible repercussions of misunderstandings. Data collected during the study ranged from subjective data

  5. Analytical Dimensional Reduction of a Fuel Optimal Powered Descent Subproblem

    NASA Technical Reports Server (NTRS)

    Rea, Jeremy R.; Bishop, Robert H.

    2010-01-01

    Current renewed interest in exploration of the moon, Mars, and other planetary objects is driving technology development in many fields of space system design. In particular, there is a desire to land both robotic and human missions on the moon and elsewhere. The landing guidance system must be able to deliver the vehicle to a desired soft landing while meeting several constraints necessary for the safety of the vehicle. Due to performance limitations of current launch vehicles, it is desired to minimize the amount of fuel used. In addition, the landing site may change in real-time in order to avoid previously undetected hazards which become apparent during the landing maneuver. This complicated maneuver can be broken into simpler subproblems that bound the full problem. One such subproblem is to find a minimum-fuel landing solution that meets constraints on the initial state, final state, and bounded thrust acceleration magnitude. With the assumptions of constant gravity and negligible atmosphere, the form of the optimal steering law is known, and the equations of motion can be integrated analytically, resulting in a system of five equations in five unknowns. It is shown that this system of equations can be reduced analytically to two equations in two unknowns. With an additional assumption of constant thrust acceleration magnitude, this system can be reduced further to one equation in one unknown. It is shown that these unknowns can be bounded analytically. An algorithm is developed to quickly and reliably solve the resulting one-dimensional bounded search, and it is used as a real-time guidance applied to a lunar landing test case.

  6. Accelerated Reader.

    ERIC Educational Resources Information Center

    Education Commission of the States, Denver, CO.

    This paper provides an overview of Accelerated Reader, a system of computerized testing and record-keeping that supplements the regular classroom reading program. Accelerated Reader's primary goal is to increase literature-based reading practice. The program offers a computer-aided reading comprehension and management program intended to motivate…

  7. Effects of aircraft and flight parameters on energy-efficient profile descents in time-based metered traffic

    NASA Technical Reports Server (NTRS)

    Dejarnette, F. R.

    1984-01-01

    The influence of several parameters on the time required to fly a nominal profile descent of a B-737 from an entry fix to a metering fix 75 n.mi. away was studied. The ground distance for the constant speed segment was adjusted in each case so that the aircraft would always arrive at the metering fix position at the completion of the five segments of the profile descent. The influence of eight parameters on the same nominal profile descent is outlined, but the method used for the off nominal cases was changed. The time calculated for the constant speed segment in the nominal case is used for all off nominal cases. This method allows the aircraft to arrive at the metering fix before or after the profile descent is complete. It is shown that descent Mach number and wind speed have a large effect on the time error, whereas weight was a much smaller effect.

  8. Sexual Health Discussions between African-American Mothers and Mothers of Latino Descent and Their Children

    ERIC Educational Resources Information Center

    Murray, Ashley; Ellis, Monica U.; Castellanos, Ted; Gaul, Zaneta; Sutton, Madeline Y.; Sneed, Carl D.

    2014-01-01

    We examined approaches used by African-American mothers and mothers of Latino descent for informal sex-related discussions with their children to inform sexually transmitted infection (STI)/HIV intervention development efforts. We recruited mothers (of children aged 12-15) from youth service agencies and a university in southern California.…

  9. Predictors of energy cost during stair ascent and descent in individuals with chronic stroke

    PubMed Central

    Polese, Janaine Cunha; Scianni, Aline Alvim; Teixeira-Salmela, Luci Fuscaldi

    2015-01-01

    [Purpose] This study aimed to determine which clinical measures of walking performance and lower limb muscle strength would predict energy cost during stair ascent and descent in community-dwelling individuals with stroke. [Subjects and Methods] Regression analysis of cross-sectional data from 55 individuals between one and five years post-stroke was used to investigate the measures of walking (speed and distance covered during the 6-minute walk test [6MWT]), and strength of the paretic knee extensor and ankle plantar flexor muscles would predict energy cost during stair ascent and descent. [Results] Three predictors (habitual walking speed, distance covered during the 6MWT, and strength of the paretic knee extensor muscles) were kept in the model. Habitual walking speed alone explained 47% of the variance in energy cost during stair ascent and descent. When the strength of the paretic knee extensor muscles was included in the model, the explained variance increased to 53%. By adding the distance covered during the 6MWT, the variance increased to 58%. [Conclusion] Habitual walking speed, distance covered during the 6MWT, and strength of the paretic knee extensor muscles were significant predictors of energy cost during stair ascent and descent in individuals with mild walking limitations. PMID:26834342

  10. Forward stair descent with hybrid neuroprosthesis after paralysis: Single case study demonstrating feasibility

    PubMed Central

    Bulea, Thomas C.; Kobetic, Rudi; Audu, Musa L.; Schnellenberger, John R.; Pinault, Gilles; Triolo, Ronald J.

    2015-01-01

    The ability to negotiate stairs is important for community access and independent mobility but requires more effort and strength than level walking. For this reason, previous attempts to utilize functional neuromuscular stimulation (FNS) to restore stair navigation after spinal cord injury (SCI) have had limited success and are not readily generalizable. Stair descent is particularly challenging because it requires energy absorption via eccentric muscle contractions, a task not easily accomplished with FNS. This article presents the design and initial testing of a hybrid neuroprosthesis with a variable impedance knee mechanism (VIKM-HNP) for stair descent. Using a 16-channel percutaneous FNS system, a muscle activation pattern was synthesized to descend stairs with the VIKM-HNP in a step-by-step fashion. A finite state control system was implemented to deactivate knee extensor stimulation and utilize the VIKM-HNP to absorb energy and regulate descent speed. Feasibility testing was performed on one individual with complete thoracic-level SCI. Stair descent was achieved with maximum upper-limb forces of less than 45% body weight compared with previously reported value of 70% with FNS only. The experiments also provided insight into design requirements for future hybrid systems for stair navigation, the implications of which are discussed. PMID:25437932

  11. Education by Any Means Necessary: Peoples of African Descent and Community-Based Pedagogical Spaces

    ERIC Educational Resources Information Center

    Douglas, Ty-Ron Michael; Peck, Craig

    2013-01-01

    This study examines how and why peoples of African descent access and utilize community-based pedagogical spaces that exist outside schools. Employing a theoretical framework that fuses historical methodology and border-crossing theory, the researchers review existing scholarship and primary documents to present an historical examination of how…

  12. Predictors of energy cost during stair ascent and descent in individuals with chronic stroke.

    PubMed

    Polese, Janaine Cunha; Scianni, Aline Alvim; Teixeira-Salmela, Luci Fuscaldi

    2015-12-01

    [Purpose] This study aimed to determine which clinical measures of walking performance and lower limb muscle strength would predict energy cost during stair ascent and descent in community-dwelling individuals with stroke. [Subjects and Methods] Regression analysis of cross-sectional data from 55 individuals between one and five years post-stroke was used to investigate the measures of walking (speed and distance covered during the 6-minute walk test [6MWT]), and strength of the paretic knee extensor and ankle plantar flexor muscles would predict energy cost during stair ascent and descent. [Results] Three predictors (habitual walking speed, distance covered during the 6MWT, and strength of the paretic knee extensor muscles) were kept in the model. Habitual walking speed alone explained 47% of the variance in energy cost during stair ascent and descent. When the strength of the paretic knee extensor muscles was included in the model, the explained variance increased to 53%. By adding the distance covered during the 6MWT, the variance increased to 58%. [Conclusion] Habitual walking speed, distance covered during the 6MWT, and strength of the paretic knee extensor muscles were significant predictors of energy cost during stair ascent and descent in individuals with mild walking limitations. PMID:26834342

  13. Smart-Divert Powered Descent Guidance to Avoid the Backshell Landing Dispersion Ellipse

    NASA Technical Reports Server (NTRS)

    Carson, John M.; Acikmese, Behcet

    2013-01-01

    A smart-divert capability has been added into the Powered Descent Guidance (PDG) software originally developed for Mars pinpoint and precision landing. The smart-divert algorithm accounts for the landing dispersions of the entry backshell, which separates from the lander vehicle at the end of the parachute descent phase and prior to powered descent. The smart-divert PDG algorithm utilizes the onboard fuel and vehicle thrust vectoring to mitigate landing error in an intelligent way: ensuring that the lander touches down with minimum- fuel usage at the minimum distance from the desired landing location that also avoids impact by the descending backshell. The smart-divert PDG software implements a computationally efficient, convex formulation of the powered-descent guidance problem to provide pinpoint or precision-landing guidance solutions that are fuel-optimal and satisfy physical thrust bound and pointing constraints, as well as position and speed constraints. The initial smart-divert implementation enforced a lateral-divert corridor parallel to the ground velocity vector; this was based on guidance requirements for MSL (Mars Science Laboratory) landings. This initial method was overly conservative since the divert corridor was infinite in the down-range direction despite the backshell landing inside a calculable dispersion ellipse. Basing the divert constraint instead on a local tangent to the backshell dispersion ellipse in the direction of the desired landing site provides a far less conservative constraint. The resulting enhanced smart-divert PDG algorithm avoids impact with the descending backshell and has reduced conservatism.

  14. Access to Health Care Among Latinos of Mexican Descent in "Colonias" in Two Texas Counties

    ERIC Educational Resources Information Center

    Ortiz, Larry; Arizmendi, Lydia; Cornelius, Llewellyn J.

    2004-01-01

    Critical to resolving the problem of health disparities among Latinos is examining the needs within ethnic subpopulations. This paper focused on the unique challenges encountered by one ethnic subpopulation -- Latinos of Mexican descent living in colonias. Findings reaffirm the importance of looking within ethnic subpopulations to understand the…

  15. High-Resolution Detection of Identity by Descent in Unrelated Individuals

    PubMed Central

    Browning, Sharon R.; Browning, Brian L.

    2010-01-01

    Detection of recent identity by descent (IBD) in population samples is important for population-based linkage mapping and for highly accurate genotype imputation and haplotype-phase inference. We present a method for detection of recent IBD in population samples. Our method accounts for linkage disequilibrium between SNPs to enable full use of high-density SNP data. We find that our method can detect segments of a length of 2 cM with moderate power and negligible false discovery rate in Illumina 550K data in Northwestern Europeans. We compare our method with GERMLINE and PLINK, and we show that our method has a level of resolution that is significantly better than these existing methods, thus extending the usefulness of recent IBD in analysis of high-density SNP data. We survey four genomic regions in a sample of UK individuals of European descent and find that on average, at a given location, our method detects IBD in 2.7 per 10,000 pairs of individuals in Illumina 550K data. We also present methodology and results for detection of homozygosity by descent (HBD) and survey the whole genome in a sample of 1373 UK individuals of European descent. We detect HBD in 4.7 individuals per 10,000 on average at a given location. Our methodology is implemented in the freely available BEAGLE software package. PMID:20303063

  16. Feeling Frugal: Socioeconomic Status, Acculturation, and Cultural Health Beliefs among Women of Mexican Descent.

    ERIC Educational Resources Information Center

    Borrayo, Evelinn A.; Jenkins, Sharon Rae

    2003-01-01

    Investigates influences of acculturation, socioeconomic status (SES), and cultural health beliefs on Mexican-descent women's preventive health behaviors. In 5 focus group interviews sampling across levels of acculturation and SES, women expressing more traditional Mexican health beliefs about breast cancer screening were of lower SES and were less…

  17. Rotary-Wing Decelerators for Probe Descent Through the Atmosphere of Venus

    NASA Technical Reports Server (NTRS)

    Young, Larry A.; Briggs, Geoffrey; Aiken, Edwin; Pisanich, Greg

    2005-01-01

    An innovative concept is proposed for atmospheric entry probe deceleration, wherein one or more deployed rotors (in autorotation or wind-turbine flow states) on the aft end of the probe effect controlled descent. This concept is particularly oriented toward probes intended to land safely on the surface of Venus. Initial work on design trade studies is discussed.

  18. Hybrid Entry Ship: A Conceptual Entry-Descent and Surveillance Platform for Venus Atmosphere

    NASA Astrophysics Data System (ADS)

    Alam, Mr.; Saroha, Mr.; Priyadarshi, Mr.; Limaye, Mr.

    2015-04-01

    A hybrid entry ship concept which will enter from low Venus orbit. It will undergo series of changes in its configuration to meet an optimal entry-descent and surveillance sequence. It houses payloads upto 300 kg. Available power to payload is 250W.

  19. A Critical Analysis of Western Perspectives on Families of Arab Descent

    ERIC Educational Resources Information Center

    Beitin, Ben K.; Allen, Katherine R.; Bekheet, Maureen

    2010-01-01

    Western research on families of Arab descent has increased in the current decade, compared to the previous 30 years. In this review of 256 empirical articles, through a critical postcolonial lens, domestic violence and family planning were the two most established areas of study. Generally, samples have come from a small group of countries such as…

  20. A Terminal Descent Sensor Trade Study Overview for the Orion Landing and Recovery System

    NASA Technical Reports Server (NTRS)

    Dunn, Catherine; Prakash, Ravi

    2008-01-01

    This trade study was conducted as a part of the Orion Landing System Advanced Development Project to determine possible Terminal Descent Sensor (TDS) architectures that could be used for a rocket assisted landing system. Several technologies were considered for the Orion TDS including radar, lidar, GPS applications, mechanical sensors, and gamma ray altimetry.

  1. Molecular and genetic regulation of testis descent and external genitalia development.

    PubMed

    Klonisch, Thomas; Fowler, Paul A; Hombach-Klonisch, Sabine

    2004-06-01

    Testicular descent as a prerequisite for the production of mature spermatozoa and normal external genitalia morphogenesis, and therefore facilitating copulation and internal fertilization, are essential developmental steps in reproduction of vertebrate species. Cryptorchidism, the failure of testis descent, and feminization of external genitalia in the male, usually in the form of hypospadias, in which the opening of the urethra occurs along the ventral aspect of the penis, are the most frequent pediatric complications. Thus, elucidating the molecular mechanisms involved in the regulation of testis descent and the formation of external genitalia merits a special focus. Natural and transgenic rodent models have demonstrated both morphogenic processes to be under the control of a plethora of genetic factors with complex time-, space-, and dose-restricted expression pattern. The review elucidates the molecular mechanisms involved in the regulation of testis descent and the formation of external genitalia and, wherever possible, assesses the differences between these rodent animal models and other mammalian species, including human. PMID:15136137

  2. A Wind Tunnel Study on the Mars Pathfinder (MPF) Lander Descent Pressure Sensor

    NASA Technical Reports Server (NTRS)

    Soriano, J. Francisco; Coquilla, Rachael V.; Wilson, Gregory R.; Seiff, Alvin; Rivell, Tomas

    2001-01-01

    The primary focus of this study was to determine the accuracy of the Mars Pathfinder lander local pressure readings in accordance with the actual ambient atmospheric pressures of Mars during parachute descent. In order to obtain good measurements, the plane of the lander pressure sensor opening should ideally be situated so that it is parallel to the freestream. However, due to two unfavorable conditions, the sensor was positioned in locations where correction factors are required. One of these disadvantages is due to the fact that the parachute attachment point rotated the lander's center of gravity forcing the location of the pressure sensor opening to be off tangent to the freestream. The second and most troublesome factor was that the lander descends with slight oscillations that could vary the amplitude of the sensor readings. In order to accurately map the correction factors required at each sensor position, an experiment simulating the lander descent was conducted in the Martian Surface Wind Tunnel at NASA Ames Research Center. Using a 115 scale model at Earth ambient pressures, the test settings provided the necessary Reynolds number conditions in which the actual lander was possibly subjected to during the descent. In the analysis and results of this experiment, the readings from the lander sensor were converted to the form of pressure coefficients. With a contour map of pressure coefficients at each lander oscillatory position, this report will provide a guideline to determine the correction factors required for the Mars Pathfinder lander descent pressure sensor readings.

  3. LINEAR ACCELERATOR

    DOEpatents

    Colgate, S.A.

    1958-05-27

    An improvement is presented in linear accelerators for charged particles with respect to the stable focusing of the particle beam. The improvement consists of providing a radial electric field transverse to the accelerating electric fields and angularly introducing the beam of particles in the field. The results of the foregoing is to achieve a beam which spirals about the axis of the acceleration path. The combination of the electric fields and angular motion of the particles cooperate to provide a stable and focused particle beam.

  4. Acceleration switch

    DOEpatents

    Abbin, J.P. Jr.; Devaney, H.F.; Hake, L.W.

    1979-08-29

    The disclosure relates to an improved integrating acceleration switch of the type having a mass suspended within a fluid filled chamber, with the motion of the mass initially opposed by a spring and subsequently not so opposed.

  5. Acceleration switch

    DOEpatents

    Abbin, Jr., Joseph P.; Devaney, Howard F.; Hake, Lewis W.

    1982-08-17

    The disclosure relates to an improved integrating acceleration switch of the type having a mass suspended within a fluid filled chamber, with the motion of the mass initially opposed by a spring and subsequently not so opposed.

  6. ION ACCELERATOR

    DOEpatents

    Bell, J.S.

    1959-09-15

    An arrangement for the drift tubes in a linear accelerator is described whereby each drift tube acts to shield the particles from the influence of the accelerating field and focuses the particles passing through the tube. In one embodiment the drift tube is splii longitudinally into quadrants supported along the axis of the accelerator by webs from a yoke, the quadrants. webs, and yoke being of magnetic material. A magnetic focusing action is produced by energizing a winding on each web to set up a magnetic field between adjacent quadrants. In the other embodiment the quadrants are electrically insulated from each other and have opposite polarity voltages on adjacent quadrants to provide an electric focusing fleld for the particles, with the quadrants spaced sufficienily close enough to shield the particles within the tube from the accelerating electric field.

  7. LINEAR ACCELERATOR

    DOEpatents

    Christofilos, N.C.; Polk, I.J.

    1959-02-17

    Improvements in linear particle accelerators are described. A drift tube system for a linear ion accelerator reduces gap capacity between adjacent drift tube ends. This is accomplished by reducing the ratio of the diameter of the drift tube to the diameter of the resonant cavity. Concentration of magnetic field intensity at the longitudinal midpoint of the external sunface of each drift tube is reduced by increasing the external drift tube diameter at the longitudinal center region.

  8. Local flow management/profile descent algorithm. Fuel-efficient, time-controlled profiles for the NASA TSRV airplane

    NASA Technical Reports Server (NTRS)

    Groce, J. L.; Izumi, K. H.; Markham, C. H.; Schwab, R. W.; Thompson, J. L.

    1986-01-01

    The Local Flow Management/Profile Descent (LFM/PD) algorithm designed for the NASA Transport System Research Vehicle program is described. The algorithm provides fuel-efficient altitude and airspeed profiles consistent with ATC restrictions in a time-based metering environment over a fixed ground track. The model design constraints include accommodation of both published profile descent procedures and unpublished profile descents, incorporation of fuel efficiency as a flight profile criterion, operation within the performance capabilities of the Boeing 737-100 airplane with JT8D-7 engines, and conformity to standard air traffic navigation and control procedures. Holding and path stretching capabilities are included for long delay situations.

  9. Impact of mismodeled idle engine performance on calculation and tracking of optimal 4-D descent trajectories

    NASA Technical Reports Server (NTRS)

    Williams, D. H.

    1986-01-01

    Advanced flight management systems are being developed which are capable of calculating optimal 3-D and 4-D flight trajectories for arbitrary fuel and time costs. These systems require mathematical models of airplane performance in order to compute the optimal profiles. Mismodeled idle engine characteristics can result in descent trajectories requiring excessive throttle and/or speedbrake activity in order to achieve the desired end conditions. This paper evaluates the cost and fuel penalties, trajectory variations, and flight control requirements associated with typical idle engine modeling errors for a twin-jet transport airplane. Variations in idle power setting, thrust, fuel flow, and surge bleed operation were evaluated for a cruise/descent flight segment. The results of this analysis provide insight into the penalties associated with uncertainties in idle engine performance and suggest methods of modeling which minimize these penalties.

  10. Multibody Modeling and Simulation for the Mars Phoenix Lander Entry, Descent and Landing

    NASA Technical Reports Server (NTRS)

    Queen, Eric M.; Prince, Jill L.; Desai, Prasun N.

    2008-01-01

    A multi-body flight simulation for the Phoenix Mars Lander has been developed that includes high fidelity six degree-of-freedom rigid-body models for the parachute and lander system. The simulation provides attitude and rate history predictions of all bodies throughout the flight, as well as loads on each of the connecting lines. In so doing, a realistic behavior of the descending parachute/lander system dynamics can be simulated that allows assessment of the Phoenix descent performance and identification of potential sensitivities for landing. This simulation provides a complete end-to-end capability of modeling the entire entry, descent, and landing sequence for the mission. Time histories of the parachute and lander aerodynamic angles are presented. The response of the lander system to various wind models and wind shears is shown to be acceptable. Monte Carlo simulation results are also presented.

  11. Dynamics of the adaptive natural gradient descent method for soft committee machines

    NASA Astrophysics Data System (ADS)

    Inoue, Masato; Park, Hyeyoung; Okada, Masato

    2004-05-01

    Adaptive natural gradient descent (ANGD) method realizes natural gradient descent (NGD) without needing to know the input distribution of learning data and reduces the calculation cost from a cubic order to a square order. However, no performance analysis of ANGD has been done. We have developed a statistical-mechanical theory of the simplified version of ANGD dynamics for soft committee machines in on-line learning; this method provides deterministic learning dynamics expressed through a few order parameters, even though ANGD intrinsically holds a large approximated Fisher information matrix. Numerical results obtained using this theory were consistent with those of a simulation, with respect not only to the learning curve but also to the learning failure. Utilizing this method, we numerically evaluated ANGD efficiency and found that ANGD generally performs as well as NGD. We also revealed the key condition affecting the learning plateau in ANGD.

  12. A Bayesian Framework for Landing Site Selection During Autonomous Spacecraft Descent

    NASA Technical Reports Server (NTRS)

    Serrano, Navid

    2006-01-01

    The success of a landed space exploration mission depends largely on the final landing site. Factors influencing site selection include safety, fuel-consumption, and scientific return. This paper addresses the problem of selecting the best available landing site based on these factors in real-time during autonomous spacecraft descent onto a planetary surface. The problem is modeled probabilistically using Bayesian Networks (BNs). BNs provide a means of representing the causal relationships between variables that impact the quality of a landing site. The final landing site is determined via probabilistic reasoning based on terrain safety derived from on-board sensors, available fuel based on spacecraft descent dynamics, and regions of interest defined by mission scientists.

  13. Capture Conditions for Merging Trajectory Segments to Model Realistic Aircraft Descents

    NASA Technical Reports Server (NTRS)

    Zhao, Yiyuan; Slattery, Rhonda A.

    1996-01-01

    A typical commercial aircraft trajectory consists of a series of flight segments. An aircraft switches from one segment to another when certain specified variables reach their desired values. Trajectory synthesis for air traffic control automation must be consistent with practical pilot procedures. We examine capture conditions for merging trajectory segments to model commercial aircraft descent in trajectory synthesis. These conditions translate into bounds on measurements of atmospheric wind, pressure, and temperature. They also define ranges of thrust and drag feasible for a descent trajectory. Capture conditions are derived for the Center-TRACON Automation System developed at NASA Ames Research Center for automated air traffic control. Various uses of capture conditions are discussed. A Boeing 727-200 aircraft is used to provide numerical examples of capture conditions.

  14. The descent of ant: field-measured performance of gliding ants.

    PubMed

    Munk, Yonatan; Yanoviak, Stephen P; Koehl, M A R; Dudley, Robert

    2015-05-01

    Gliding ants avoid predatory attacks and potentially mortal consequences of dislodgement from rainforest canopy substrates by directing their aerial descent towards nearby tree trunks. The ecologically relevant measure of performance for gliding ants is the ratio of net horizontal to vertical distance traveled over the course of a gliding trajectory, or glide index. To study variation in glide index, we measured three-dimensional trajectories of Cephalotes atratus ants gliding in natural rainforest habitats. We determined that righting phase duration, glide angle, and path directness all significantly influence variation in glide index. Unsuccessful landing attempts result in the ant bouncing off its target and being forced to make a second landing attempt. Our results indicate that ants are not passive gliders and that they exert active control over the aerodynamic forces they experience during their descent, despite their apparent lack of specialized control surfaces. PMID:25788722

  15. Assessment of the Mars Science Laboratory Entry, Descent, and Landing Simulation

    NASA Technical Reports Server (NTRS)

    Way, David W.; Davis, J. L.; Shidner, Jeremy D.

    2013-01-01

    On August 5, 2012, the Mars Science Laboratory rover, Curiosity, successfully landed inside Gale Crater. This landing was only the seventh successful landing and fourth rover to be delivered to Mars. Weighing nearly one metric ton, Curiosity is the largest and most complex rover ever sent to investigate another planet. Safely landing such a large payload required an innovative Entry, Descent, and Landing system, which included the first guided entry at Mars, the largest supersonic parachute ever flown at Mars, and a novel and untested Sky Crane landing system. A complete, end-to-end, six degree-of-freedom, multi-body computer simulation of the Mars Science Laboratory Entry, Descent, and Landing sequence was developed at the NASA Langley Research Center. In-flight data gathered during the successful landing is compared to pre-flight statistical distributions, predicted by the simulation. These comparisons provide insight into both the accuracy of the simulation and the overall performance of the vehicle.

  16. Preliminary Assessment of the Mars Science Laboratory Entry, Descent, and Landing Simulation

    NASA Technical Reports Server (NTRS)

    Way, David W.

    2013-01-01

    On August 5, 2012, the Mars Science Laboratory rover, Curiosity, successfully landed inside Gale Crater. This landing was only the seventh successful landing and fourth rover to be delivered to Mars. Weighing nearly one metric ton, Curiosity is the largest and most complex rover ever sent to investigate another planet. Safely landing such a large payload required an innovative Entry, Descent, and Landing system, which included the first guided entry at Mars, the largest supersonic parachute ever flown at Mars, and a novel and untested Sky Crane landing system. A complete, end-to-end, six degree-of-freedom, multibody computer simulation of the Mars Science Laboratory Entry, Descent, and Landing sequence was developed at the NASA Langley Research Center. In-flight data gathered during the successful landing is compared to pre-flight statistical distributions, predicted by the simulation. These comparisons provide insight into both the accuracy of the simulation and the overall performance of the vehicle.

  17. Performance evaluation of a lower limb exoskeleton for stair ascent and descent with paraplegia.

    PubMed

    Farris, Ryan J; Quintero, Hugo A; Goldfarb, Michael

    2012-01-01

    This paper describes the application of a powered lower limb exoskeleton to aid paraplegic individuals in stair ascent and descent. A brief description of the exoskeleton hardware is provided along with an explanation of the control methodology implemented to allow stair ascent and descent. Tests were performed with a paraplegic individual (T10 complete injury level) and data is presented from multiple trials, including the hip and knee joint torque and power required to perform this functionality. Joint torque and power requirements are summarized, including peak hip and knee joint torque requirements of 0.75 Nm/kg and 0.87 Nm/kg, respectively, and peak hip and knee joint power requirements of approximately 0.65 W/kg and 0.85 W/kg, respectively. PMID:23366287

  18. Entry, Descent and Landing Systems Analysis Study: Phase 2 Report on Exploration Feed-Forward Systems

    NASA Technical Reports Server (NTRS)

    Dwyer Ciancolo, Alicia M.; Davis, Jody L.; Engelund, Walter C.; Komar, D. R.; Queen, Eric M.; Samareh, Jamshid A.; Way, David W.; Zang, Thomas A.; Murch, Jeff G.; Krizan, Shawn A.; Olds, Aaron D.; Powell, Richard W.; Shidner, Jeremy D.; Kinney, Daivd J.; McGuire, M. Kathleen; Arnold, James O.; Covington, M. Alan; Sostaric, Ronald R.; Zumwalt, Carlie H.; Llama, Eduardo G.

    2011-01-01

    NASA senior management commissioned the Entry, Descent and Landing Systems Analysis (EDL-SA) Study in 2008 to identify and roadmap the Entry, Descent and Landing (EDL) technology investments that the agency needed to successfully land large payloads at Mars for both robotic and human-scale missions. Year 1 of the study focused on technologies required for Exploration-class missions to land payloads of 10 to 50 t. Inflatable decelerators, rigid aeroshell and supersonic retro-propulsion emerged as the top candidate technologies. In Year 2 of the study, low TRL technologies identified in Year 1, inflatables aeroshells and supersonic retropropulsion, were combined to create a demonstration precursor robotic mission. This part of the EDL-SA Year 2 effort, called Exploration Feed Forward (EFF), took much of the systems analysis simulation and component model development from Year 1 to the next level of detail.

  19. Entry, Descent and Landing Systems Analysis: Exploration Feed Forward Internal Peer Review Slide Package

    NASA Technical Reports Server (NTRS)

    Dwyer Cianciolo, Alicia M. (Editor)

    2011-01-01

    NASA senior management commissioned the Entry, Descent and Landing Systems Analysis (EDL-SA) Study in 2008 to identify and roadmap the Entry, Descent and Landing (EDL) technology investments that the agency needed to successfully land large payloads at Mars for both robotic and human-scale missions. Year 1 of the study focused on technologies required for Exploration-class missions to land payloads of 10 to 50 mt. Inflatable decelerators, rigid aeroshell and supersonic retro-propulsion emerged as the top candidate technologies. In Year 2 of the study, low TRL technologies identified in Year 1, inflatables aeroshells and supersonic retropropulsion, were combined to create a demonstration precursor robotic mission. This part of the EDL-SA Year 2 effort, called Exploration Feed Forward (EFF), took much of the systems analysis simulation and component model development from Year 1 to the next level of detail.

  20. Performance Evaluation of a Lower Limb Exoskeleton for Stair Ascent and Descent with Paraplegia*

    PubMed Central

    Farris, Ryan J.; Quintero, Hugo A.; Goldfarb, Michael

    2013-01-01

    This paper describes the application of a powered lower limb exoskeleton to aid paraplegic individuals in stair ascent and descent. A brief description of the exoskeleton hardware is provided along with an explanation of the control methodology implemented to allow stair ascent and descent. Tests were performed with a paraplegic individual (T10 complete injury level) and data is presented from multiple trials, including the hip and knee joint torque and power required to perform this functionality. Joint torque and power requirements are summarized, including peak hip and knee joint torque requirements of 0.75 Nm/kg and 0.87 Nm/kg, respectively, and peak hip and knee joint power requirements of approximately 0.65 W/kg and 0.85 W/kg, respectively. PMID:23366287

  1. Apollo experience report: Mission planning for lunar module descent and ascent

    NASA Technical Reports Server (NTRS)

    Bennett, F. V.

    1972-01-01

    The premission planning, the real-time situation, and the postflight analysis for the Apollo 11 lunar descent and ascent are described. A comparison between premission planning and actual results is included. A navigation correction capability, developed from Apollo 11 postflight analysis was used successfully on Apollo 12 to provide the first pinpoint landing. An experience summary, which illustrates typical problems encountered by the mission planners, is also included.

  2. A new type of descent conjugate gradient method with exact line search

    NASA Astrophysics Data System (ADS)

    Hajar, Nurul; Mamat, Mustafa; Rivaie, Mohd.; Jusoh, Ibrahim

    2016-06-01

    Nowadays, conjugate gradient (CG) methods are impressive for solving nonlinear unconstrained optimization problems. In this paper, a new CG method is proposed and analyzed. This new CG method satisfies descent condition and its global convergence is established using exact line search. Numerical results show that this new CG method substantially outperforms the previous CG methods. This new CG method is considered robust, efficient and provided faster and stable convergence.

  3. Flying Schedule-Matching Descents to Explore Flight Crews' Perceptions of Their Load and Task Feasibility

    NASA Technical Reports Server (NTRS)

    Martin, Lynne Hazel; Sharma, Shivanjli; Lozito, Sharon; Kaneshige, John; Hayashi, Miwa; Dulchinos, Victoria

    2012-01-01

    Multiple studies have investigated the development and use of ground-based (controller) tools to manage and schedule traffic in future terminal airspace. No studies have investigated the impacts that such tools (and concepts) could have on the flight-deck. To begin to redress the balance, an exploratory study investigated the procedures and actions of ten Boeing-747-400 crews as they flew eight continuous descent approaches in the Los Angeles terminal airspace, with the descents being controlled using speed alone. Although the study was exploratory in nature, four variables were manipulated: speed changes, route constraints, clearance phraseology, and winds. Despite flying the same scenarios with the same events and timing, there was at least a 50 second difference in the time it took crews to fly the approaches. This variation is the product of a number of factors but highlights potential difficulties for scheduling tools that would have to accommodate this amount of natural variation in descent times. The primary focus of this paper is the potential impact of ground scheduling tools on the flight crews performance and procedures. Crews reported "moderate to low" workload, on average; however, short periods of intense and high workload were observed. The non-flying pilot often reported a higher level of workload than the flying-pilot, which may be due to their increased interaction with the Flight Management Computer, when using the aircraft automation to assist with managing the descent clearances. It is concluded that ground-side tools and automation may have a larger impact on the current-day flight-deck than was assumed and that studies investigating this impact should continue in parallel with controller support tool development.

  4. Biological effects of fuel and exhaust components from spacecraft descent engines employing hydrazine

    NASA Technical Reports Server (NTRS)

    Lehwalt, M. E.; Woeller, F. H.; Oyama, V. I.

    1973-01-01

    The effect of the products of the Viking terminal descent engine fuel upon possible extraterrestrial life at the Martian landing site is examined. The effects of the engine exhaust, the hydrazine fuel, and the breakdown products of the latter on terrestrial microorganisms have been studied. The results indicate that the gaseous exhaust products would probably not be hazardous to microorganisms, but that liquid hydrazine would be lethal.

  5. A High-Heritage Blunt-Body Entry, Descent, and Landing Concept for Human Mars Exploration

    NASA Technical Reports Server (NTRS)

    Price, Humphrey; Manning, Robert; Sklyanskiy, Evgeniy; Braun, Robert

    2016-01-01

    Human-scale landers require the delivery of much heavier payloads to the surface of Mars than is possible with entry, descent, and landing (EDL) approaches used to date. A conceptual design was developed for a 10 m diameter crewed Mars lander with an entry mass of approx.75 t that could deliver approx.28 t of useful landed mass (ULM) to a zero Mars areoid, or lower, elevation. The EDL design centers upon use of a high ballistic coefficient blunt-body entry vehicle and throttled supersonic retro-propulsion (SRP). The design concept includes a 26 t Mars Ascent Vehicle (MAV) that could support a crew of 2 for approx.24 days, a crew of 3 for approx.16 days, or a crew of 4 for approx.12 days. The MAV concept is for a fully-fueled single-stage vehicle that utilizes a single pump-fed 250 kN engine using Mono-Methyl Hydrazine (MMH) and Mixed Oxides of Nitrogen (MON-25) propellants that would deliver the crew to a low Mars orbit (LMO) at the end of the surface mission. The MAV concept could potentially provide abort-to-orbit capability during much of the EDL profile in response to fault conditions and could accommodate return to orbit for cases where the MAV had no access to other Mars surface infrastructure. The design concept for the descent stage utilizes six 250 kN MMH/MON-25 engines that would have very high commonality with the MAV engine. Analysis indicates that the MAV would require approx.20 t of propellant (including residuals) and the descent stage would require approx.21 t of propellant. The addition of a 12 m diameter supersonic inflatable aerodynamic decelerator (SIAD), based on a proven flight design, was studied as an optional method to improve the ULM fraction, reducing the required descent propellant by approx.4 t.

  6. STS-35 Pilot Gardner with descent checklist on OV-102's forward flight deck

    NASA Technical Reports Server (NTRS)

    1990-01-01

    STS-35 Pilot Guy S. Gardner, wearing his launch and entry suit (LES), reviews descent checklist while at the pilots station on the forward flight deck of Columbia, Orbiter Vehicle (OV) 102. Crewmembers are conducting procedures related to the final stages of the mission and the landing sequence. Silhouetted in forward windows W4 and W5 are the head up display (HUD), flight mirror assembly, and a drinking water bag with straw.

  7. Scaling Up Coordinate Descent Algorithms for Large ℓ1 Regularization Problems

    SciTech Connect

    Scherrer, Chad; Halappanavar, Mahantesh; Tewari, Ambuj; Haglin, David J.

    2012-07-03

    We present a generic framework for parallel coordinate descent (CD) algorithms that has as special cases the original sequential algorithms of Cyclic CD and Stochastic CD, as well as the recent parallel Shotgun algorithm of Bradley et al. We introduce two novel parallel algorithms that are also special cases---Thread-Greedy CD and Coloring-Based CD---and give performance measurements for an OpenMP implementation of these.

  8. Entry, Descent, and Landing Aerothermodynamics: NASA Langley Experimental Capabilities and Contributions

    NASA Technical Reports Server (NTRS)

    Hollis, Brian R.; Berger, Karen T.; Berry, Scott A.; Bruckmann, Gregory J.; Buck, Gregory M.; DiFulvio, Michael; Horvath, Thomas J.; Liechty, Derek S.; Merski, N. Ronald; Murphy, Kelly J.; Rufer, Shann J.; Schoenenberger, Mark

    2014-01-01

    A review is presented of recent research, development, testing and evaluation activities related to entry, descent and landing that have been conducted at the NASA Langley Research Center. An overview of the test facilities, model development and fabrication capabilities, and instrumentation and measurement techniques employed in this work is provided. Contributions to hypersonic/supersonic flight and planetary exploration programs are detailed, as are fundamental research and development activities.

  9. Strong refraction near the Venus surface - Effects observed by descent probes

    NASA Technical Reports Server (NTRS)

    Croft, T. A.

    1982-01-01

    The telemetry signals from Pioneer Venus probes indicated the strong downward refraction of radio waves. As the probes descended, the strength of the direct signal decreased because of absorption and refractive defocusing. During the last 30 km of descent there was a second measured component in addition to the direct signal. Strong atmospheric reaction is important in strengthening echoes that are scattered toward the earth. Such surface-reflected signals are good indicators of horizontal winds.

  10. Acceleration Studies

    NASA Technical Reports Server (NTRS)

    Rogers, Melissa J. B.

    1993-01-01

    Work to support the NASA MSFC Acceleration Characterization and Analysis Project (ACAP) was performed. Four tasks (analysis development, analysis research, analysis documentation, and acceleration analysis) were addressed by parallel projects. Work concentrated on preparation for and implementation of near real-time SAMS data analysis during the USMP-1 mission. User support documents and case specific software documentation and tutorials were developed. Information and results were presented to microgravity users. ACAP computer facilities need to be fully implemented and networked, data resources must be cataloged and accessible, future microgravity missions must be coordinated, and continued Orbiter characterization is necessary.

  11. The Cassini/Huygens Doppler Wind Experiment: Results from the Titan Descent

    NASA Technical Reports Server (NTRS)

    Bird, M. K.; Dutta-Roy, R.; Allison, M.; Asmar, S. W.; Atkinson, D. H.; Edenhofer, P.; Plettemeier, D.; Tyler, G. L.

    2005-01-01

    The primary objective of the Doppler Wind Experiment (DWE), one of the six scientific investigations comprising the payload of the ESA Huygens Probe, is a determination of the wind velocity in Titan's atmosphere. Measurements of the Doppler shift of the S-band (2040 MHz) carrier signal to the Cassini Orbiter and to Earth were recorded during the Probe descent in order to deduce wind-induced motion of the Probe to an accuracy better than 1 m s-1. An experiment with the same scientific goal was performed with the Galileo Probe at Jupiter. Analogous to the Galileo experience, it was anticipated that the frequency of the Huygens radio signal could be measured on Earth to obtain an additional component of the horizontal winds. Specific secondary science objectives of DWE include measurements of: (a) Doppler fluctuations to determine the turbulence spectrum and possible wave activity in the Titan atmosphere; (b) Doppler and signal level modulation to monitor Probe descent dynamics (e.g., spinrate/spinphase, parachute swing); (c) Probe coordinates and orientation during descent and after impact on Titan.

  12. Simulation Results of the Huygens Probe Entry and Descent Trajectory Reconstruction Algorithm

    NASA Technical Reports Server (NTRS)

    Kazeminejad, B.; Atkinson, D. H.; Perez-Ayucar, M.

    2005-01-01

    Cassini/Huygens is a joint NASA/ESA mission to explore the Saturnian system. The ESA Huygens probe is scheduled to be released from the Cassini spacecraft on December 25, 2004, enter the atmosphere of Titan in January, 2005, and descend to Titan s surface using a sequence of different parachutes. To correctly interpret and correlate results from the probe science experiments and to provide a reference set of data for "ground-truthing" Orbiter remote sensing measurements, it is essential that the probe entry and descent trajectory reconstruction be performed as early as possible in the postflight data analysis phase. The Huygens Descent Trajectory Working Group (DTWG), a subgroup of the Huygens Science Working Team (HSWT), is responsible for developing a methodology and performing the entry and descent trajectory reconstruction. This paper provides an outline of the trajectory reconstruction methodology, preliminary probe trajectory retrieval test results using a simulated synthetic Huygens dataset developed by the Huygens Project Scientist Team at ESA/ESTEC, and a discussion of strategies for recovery from possible instrument failure.

  13. MR Imaging in Diagnosis of Pelvic Floor Descent: Supine versus Sitting Position

    PubMed Central

    Renzi, Adolfo; Monaco, Luigi; Serra, Nicola; Feragalli, Beatrice; Iacomino, Aniello; Brunese, Luca; Cappabianca, Salvatore

    2016-01-01

    Introduction. Functional disorders of the pelvic floor represent have a significant impact on the quality of life. The advent of open-configuration systems allowed for the evaluation of defecation with MR imaging in sitting position. The purpose of the present study is to compare the results of static and dynamic pelvic MR performed in supine position versus sitting position, using a new MR prototype machine, in the diagnosis of pelvic floor descent. Materials and Methods. Thirty-one patients with pelvic floor disorders were enrolled, and underwent MR Defecography in supine position with 1.5 T closed magnet (MAGNETOM Symphony, Siemens, Germany) and in sitting position with a 0.25-Tesla open magnet system (G-Scan ESAOTE, Italy). Results. In rest and squeezing phases, positions of bladder, vagina, and ARJ were significantly different when the patient was imaged in supine versus sitting position. In the defecation phase, a significant difference for the bladder and vagina position was detected between the two exams whereas a significant difference for the ARJ was not found. A statistically significant difference exists when the pelvic floor descent is evaluated in sitting versus supine position. Conclusion. Our results show that MR Defecography in sitting position may represent a useful tool to correctly diagnose and grade the pelvic organ descent. PMID:26880893

  14. Additive Genetic Variation in Schizophrenia Risk Is Shared by Populations of African and European Descent

    PubMed Central

    de Candia, Teresa R.; Lee, S. Hong; Yang, Jian; Browning, Brian L.; Gejman, Pablo V.; Levinson, Douglas F.; Mowry, Bryan J.; Hewitt, John K.; Goddard, Michael E.; O’Donovan, Michael C.; Purcell, Shaun M.; Posthuma, Danielle; Visscher, Peter M.; Wray, Naomi R.; Keller, Matthew C.

    2013-01-01

    To investigate the extent to which the proportion of schizophrenia’s additive genetic variation tagged by SNPs is shared by populations of European and African descent, we analyzed the largest combined African descent (AD [n = 2,142]) and European descent (ED [n = 4,990]) schizophrenia case-control genome-wide association study (GWAS) data set available, the Molecular Genetics of Schizophrenia (MGS) data set. We show how a method that uses genomic similarities at measured SNPs to estimate the additive genetic correlation (SNP correlation [SNP-rg]) between traits can be extended to estimate SNP-rg for the same trait between ethnicities. We estimated SNP-rg for schizophrenia between the MGS ED and MGS AD samples to be 0.66 (SE = 0.23), which is significantly different from 0 (p(SNP-rg = 0) = 0.0003), but not 1 (p(SNP-rg = 1) = 0.26). We re-estimated SNP-rg between an independent ED data set (n = 6,665) and the MGS AD sample to be 0.61 (SE = 0.21, p(SNP-rg = 0) = 0.0003, p(SNP-rg = 1) = 0.16). These results suggest that many schizophrenia risk alleles are shared across ethnic groups and predate African-European divergence. PMID:23954163

  15. The relief formed by the descent phenomenon in the north-east part of Kosova.

    PubMed

    Bulliqi, Shpejtim; Isufi, Florim; Ramadani, Ibrahim; Gashi, Gani

    2012-04-01

    In the diverse relief of north-east part of Kosova a relatively wide range occupies the relief modelled by the descent phenomenon, which is conditioned by morph-structural and climatic factors quite suitable for their development. The morphogenesis activity of descent phenomenon is conditioned by the types of rocks, tectonic process of this region and climatic conditions. These factors condition horizontal and vertical relief fragmentation, slope, especially in Gollaku mountains and in SE part of Kopaonik mountain. Along the tectonic descents, the steepness is detaching and the detaching lines consisting of magmatic rocks show overthrows, demolitions and stony torrents, but the Teri gene composition formations are modelled by sliding and muddy torrents, depending upon the presence of clayey and alevrolite belts on these Teri gene ones. The impact of factors and conditions on the relief of this part, the phenomena like demolitions, overthrows, sliding, muddy torrents, stony torrents, etc, operate here, which play an important morphological role in the modelling of relief. PMID:23424844

  16. Involvement of Fibroblast Growth Factors and Their Receptors in Epididymo-Testicular Descent and Maldescent.

    PubMed

    Hadziselimovic, Faruk

    2016-02-01

    Maldescent of the epididymo-testicular unit can occur as an isolated event or as a component of various syndromes. When part of a syndrome, crypto-epididymis is usually accompanied by other genital and/or extragenital features. Epididymis development is primarily regulated by androgens, and successful epididymo-testicular unit development and descent requires an intact hypothalamic-pituitary-gonadal axis. The developing gonadotropin-releasing hormone system is essential for epididymo-testicular descent and is highly sensitive to reduced fibroblast growth factor (FGF) signaling. Our understanding of the impact of FGFR1 in the process of epididymo-testicular descent has recently improved. At later stages of embryonic development, the undifferentiated epididymal mesenchyme is a specific domain for FGFR1 expression. The majority of individuals with syndromic crypto-epididymis, as well as individuals with isolated maldescent of the epididymo-testicular unit, exhibit some disturbance of FGF, FGFR1 and/or genes involved in hypothalamic-pituitary-gonadal axis regulation. However, the mechanisms underlying FGF dysregulation may differ between various syndromes. PMID:27022326

  17. Flight-Deck Strategies and Outcomes When Flying Schedule-Matching Descents

    NASA Technical Reports Server (NTRS)

    Kaneshige, John T.; Sharma, Shivanjli; Martin Lynne; Lozito, Sandra; Dulchinos, Victoria

    2013-01-01

    Recent studies at NASA Ames Research Center have investigated the development and use of ground-based (air traffic controller) tools to manage and schedule air traffic in future terminal airspace. An exploratory study was undertaken to investigate the impacts that such tools (and concepts) could have on the flight-deck. Ten Boeing 747-400 crews flew eight optimized profile descents in the Los Angeles terminal airspace, while receiving scripted current day and futuristic speed clearances, to ascertain their ability to fly schedulematching descents without prior training. Although the study was exploratory in nature, four variables were manipulated: route constraints, winds, speed changes, and clearance phraseology. Despite flying the same scenarios with the same events and timing, there were significant differences in the time it took crews to fly the approaches. This variation is the product of a number of factors but highlights potential difficulties for scheduling tools that would have to accommodate this amount of natural variation in descent times. The focus of this paper is the examination of the crews' aircraft management strategies and outcomes. This includes potentially problematic human-automation interaction issues that may negatively impact arrival times, speed and altitude constraint compliance, and energy management efficiency.

  18. International Space Station (ISS) Soyuz Vehicle Descent Module Evaluation of Thermal Protection System (TPS) Penetration Characteristics

    NASA Technical Reports Server (NTRS)

    Davis, Bruce A.; Christiansen, Eric L.; Lear, Dana M.; Prior, Tom

    2013-01-01

    The descent module (DM) of the ISS Soyuz vehicle is covered by thermal protection system (TPS) materials that provide protection from heating conditions experienced during reentry. Damage and penetration of these materials by micrometeoroid and orbital debris (MMOD) impacts could result in loss of vehicle during return phases of the mission. The descent module heat shield has relatively thick TPS and is protected by the instrument-service module. The TPS materials on the conical sides of the descent module (referred to as backshell in this test plan) are exposed to more MMOD impacts and are relatively thin compared to the heat shield. This test program provides hypervelocity impact (HVI) data on materials similar in composition and density to the Soyuz TPS on the backshell of the vehicle. Data from this test program was used to update ballistic limit equations used in Soyuz TPS penetration risk assessments. The impact testing was coordinated by the NASA Johnson Space Center (JSC) Hypervelocity Impact Technology (HVIT) Group [1] in Houston, Texas. The HVI testing was conducted at the NASA-JSC White Sands Hypervelocity Impact Test Facility (WSTF) at Las Cruces, New Mexico. Figure

  19. Kinetic comparison of older men and women during walk-to-stair descent transition.

    PubMed

    Singhal, Kunal; Kim, Jemin; Casebolt, Jeffrey; Lee, Sangwoo; Han, Ki Hoon; Kwon, Young-Hoo

    2014-09-01

    Stair walking is one of the most challenging tasks for older adults, with women reporting higher incidence of falls. The purpose of this study was to investigate the gender differences in kinetics during stair descent transition. Twenty-eight participants (12 male and 16 female; 68.5 and 69.0 years of mean age, respectively) performed stair descent from level walking in a step-over-step manner at a self-selected speed over a custom-made three-step staircase with embedded force plates. Kinematic and force data were combined using inverse dynamics to generate kinetic data for gender comparison. The top and the first step on the staircase were chosen for analysis. Women showed a higher trail leg peak hip abductor moment (-1.0 Nm/kg), lower trail leg peak knee extensor moment and eccentric power (0.74 Nm/kg and 3.15 W/kg), and lower peak concentric power at trail leg ankle joint (1.29 W/kg) as compared to men (p<0.05; -0.82 Nm/kg, 0.89 Nm/kg, 3.83 W/kg, and 1.78 W/kg, respectively). The lead leg knee eccentric power was also lower in women (p<0.05). This decreased ability to exert knee control during stair descent transition may predispose women to a higher risk of fall. PMID:25082325

  20. Controlled weather balloon ascents and descents for atmospheric research and climate monitoring

    NASA Astrophysics Data System (ADS)

    Kräuchi, A.; Philipona, R.; Romanens, G.; Hurst, D. F.; Hall, E. G.; Jordan, A. F.

    2015-12-01

    In situ upper-air measurements are often made with instruments attached to weather balloons launched at the surface and lifted into the stratosphere. Present day balloon-borne sensors allow near-continuous measurements from the Earth's surface to about 35 km (3-5 hPa), where the balloons burst and their instrument payloads descend with parachutes. It has been demonstrated that ascending weather balloons can perturb the air measured by very sensitive humidity and temperature sensors trailing behind them, particularly in the upper troposphere and lower stratosphere (UTLS). The use of controlled balloon descent for such measurements has therefore been investigated and is described here. We distinguish between the one balloon technique that uses a simple automatic valve system to release helium from the balloon at a pre-set ambient pressure, and the double balloon technique that uses a carrier balloon to lift the payload and a parachute balloon to control the descent of instruments after the carrier balloon is released at pre-set altitude. The automatic valve technique has been used for several decades for water vapor soundings with frost point hygrometers, whereas the double balloon technique has recently been re-established and deployed to measure radiation and temperature profiles through the atmosphere. Double balloon soundings also strongly reduce pendulum motion of the payload, stabilizing radiation instruments during ascent. We present the flight characteristics of these two ballooning techniques and compare the quality of temperature and humidity measurements made during ascent and descent.

  1. Controlled weather balloon ascents and descents for atmospheric research and climate monitoring

    NASA Astrophysics Data System (ADS)

    Kräuchi, Andreas; Philipona, Rolf; Romanens, Gonzague; Hurst, Dale F.; Hall, Emrys G.; Jordan, Allen F.

    2016-03-01

    In situ upper-air measurements are often made with instruments attached to weather balloons launched at the surface and lifted into the stratosphere. Present-day balloon-borne sensors allow near-continuous measurements from the Earth's surface to about 35 km (3-5 hPa), where the balloons burst and their instrument payloads descend with parachutes. It has been demonstrated that ascending weather balloons can perturb the air measured by very sensitive humidity and temperature sensors trailing behind them, particularly in the upper troposphere and lower stratosphere (UTLS). The use of controlled balloon descent for such measurements has therefore been investigated and is described here. We distinguish between the single balloon technique that uses a simple automatic valve system to release helium from the balloon at a preset ambient pressure, and the double balloon technique that uses a carrier balloon to lift the payload and a parachute balloon to control the descent of instruments after the carrier balloon is released at preset altitude. The automatic valve technique has been used for several decades for water vapor soundings with frost point hygrometers, whereas the double balloon technique has recently been re-established and deployed to measure radiation and temperature profiles through the atmosphere. Double balloon soundings also strongly reduce pendulum motion of the payload, stabilizing radiation instruments during ascent. We present the flight characteristics of these two ballooning techniques and compare the quality of temperature and humidity measurements made during ascent and descent.

  2. Rapid Generation of Optimal Asteroid Powered Descent Trajectories Via Convex Optimization

    NASA Technical Reports Server (NTRS)

    Pinson, Robin; Lu, Ping

    2015-01-01

    Mission proposals that land on asteroids are becoming popular. However, in order to have a successful mission the spacecraft must reliably and softly land at the intended landing site. The problem under investigation is how to design a fuel-optimal powered descent trajectory that can be quickly computed on-board the spacecraft, without interaction from ground control. An optimal trajectory designed immediately prior to the descent burn has many advantages. These advantages include the ability to use the actual vehicle starting state as the initial condition in the trajectory design and the ease of updating the landing target site if the original landing site is no longer viable. For long trajectories, the trajectory can be updated periodically by a redesign of the optimal trajectory based on current vehicle conditions to improve the guidance performance. One of the key drivers for being completely autonomous is the infrequent and delayed communication between ground control and the vehicle. Challenges that arise from designing an asteroid powered descent trajectory include complicated nonlinear gravity fields, small rotating bodies and low thrust vehicles.

  3. The uncertain significance of low vitamin D levels in African descent populations: a review of the bone and cardiometabolic literature.

    PubMed

    O'Connor, Michelle Y; Thoreson, Caroline K; Ramsey, Natalie L M; Ricks, Madia; Sumner, Anne E

    2013-01-01

    Vitamin D levels in people of African descent are often described as inadequate or deficient. Whether low vitamin D levels in people of African descent lead to compromised bone or cardiometabolic health is unknown. Clarity on this issue is essential because if clinically significant vitamin D deficiency is present, vitamin D supplementation is necessary. However, if vitamin D is metabolically sufficient, vitamin D supplementation could be wasteful of scarce resources and even harmful. In this review vitamin D physiology is described with a focus on issues specific to populations of African descent such as the influence of melanin on endogenous vitamin D production and lactose intolerance on the willingness of people to ingest vitamin D fortified foods. Then data on the relationship of vitamin D to bone and cardiometabolic health in people of African descent are evaluated. PMID:24267433

  4. The Uncertain Significance of Low Vitamin D levels in African Descent Populations: A Review of the Bone and Cardiometabolic Literature

    PubMed Central

    O'Connor, Michelle Y; Thoreson, Caroline K; Ramsey, Natalie L M; Ricks, Madia; Sumner, Anne E

    2014-01-01

    Vitamin D levels in people of African descent are often described as inadequate or deficient. Whether low vitamin D levels in people of African descent lead to compromised bone or cardiometabolic health is unknown. Clarity on this issue is essential because if clinically significant vitamin D deficiency is present, vitamin D supplementation is necessary. However, if vitamin D is metabolically sufficient, vitamin D supplementation could be wasteful of scarce resources and even harmful. In this review vitamin D physiology is described with a focus on issues specific to populations of African descent such as the influence of melanin on endogenous vitamin D production and lactose intolerance on the willingness of people to ingest vitamin D fortified foods. Then data on the relationship of vitamin D to bone and cardiometabolic health in people of African descent are evaluated. PMID:24267433

  5. Plasma accelerator

    DOEpatents

    Wang, Zhehui; Barnes, Cris W.

    2002-01-01

    There has been invented an apparatus for acceleration of a plasma having coaxially positioned, constant diameter, cylindrical electrodes which are modified to converge (for a positive polarity inner electrode and a negatively charged outer electrode) at the plasma output end of the annulus between the electrodes to achieve improved particle flux per unit of power.

  6. Accelerated Achievement

    ERIC Educational Resources Information Center

    Ford, William J.

    2010-01-01

    This article focuses on the accelerated associate degree program at Ivy Tech Community College (Indiana) in which low-income students will receive an associate degree in one year. The three-year pilot program is funded by a $2.3 million grant from the Lumina Foundation for Education in Indianapolis and a $270,000 grant from the Indiana Commission…

  7. ACCELERATION INTEGRATOR

    DOEpatents

    Pope, K.E.

    1958-01-01

    This patent relates to an improved acceleration integrator and more particularly to apparatus of this nature which is gyrostabilized. The device may be used to sense the attainment by an airborne vehicle of a predetermined velocitv or distance along a given vector path. In its broad aspects, the acceleration integrator utilizes a magnetized element rotatable driven by a synchronous motor and having a cylin drical flux gap and a restrained eddy- current drag cap deposed to move into the gap. The angular velocity imparted to the rotatable cap shaft is transmitted in a positive manner to the magnetized element through a servo feedback loop. The resultant angular velocity of tae cap is proportional to the acceleration of the housing in this manner and means may be used to measure the velocity and operate switches at a pre-set magnitude. To make the above-described dcvice sensitive to acceleration in only one direction the magnetized element forms the spinning inertia element of a free gyroscope, and the outer housing functions as a gimbal of a gyroscope.

  8. Particle acceleration

    NASA Technical Reports Server (NTRS)

    Vlahos, L.; Machado, M. E.; Ramaty, R.; Murphy, R. J.; Alissandrakis, C.; Bai, T.; Batchelor, D.; Benz, A. O.; Chupp, E.; Ellison, D.

    1986-01-01

    Data is compiled from Solar Maximum Mission and Hinothori satellites, particle detectors in several satellites, ground based instruments, and balloon flights in order to answer fundamental questions relating to: (1) the requirements for the coronal magnetic field structure in the vicinity of the energization source; (2) the height (above the photosphere) of the energization source; (3) the time of energization; (4) transistion between coronal heating and flares; (5) evidence for purely thermal, purely nonthermal and hybrid type flares; (6) the time characteristics of the energization source; (7) whether every flare accelerates protons; (8) the location of the interaction site of the ions and relativistic electrons; (9) the energy spectra for ions and relativistic electrons; (10) the relationship between particles at the Sun and interplanetary space; (11) evidence for more than one acceleration mechanism; (12) whether there is single mechanism that will accelerate particles to all energies and also heat the plasma; and (13) how fast the existing mechanisms accelerate electrons up to several MeV and ions to 1 GeV.

  9. Compact accelerator

    DOEpatents

    Caporaso, George J.; Sampayan, Stephen E.; Kirbie, Hugh C.

    2007-02-06

    A compact linear accelerator having at least one strip-shaped Blumlein module which guides a propagating wavefront between first and second ends and controls the output pulse at the second end. Each Blumlein module has first, second, and third planar conductor strips, with a first dielectric strip between the first and second conductor strips, and a second dielectric strip between the second and third conductor strips. Additionally, the compact linear accelerator includes a high voltage power supply connected to charge the second conductor strip to a high potential, and a switch for switching the high potential in the second conductor strip to at least one of the first and third conductor strips so as to initiate a propagating reverse polarity wavefront(s) in the corresponding dielectric strip(s).

  10. BICEP's acceleration

    SciTech Connect

    Contaldi, Carlo R.

    2014-10-01

    The recent Bicep2 [1] detection of, what is claimed to be primordial B-modes, opens up the possibility of constraining not only the energy scale of inflation but also the detailed acceleration history that occurred during inflation. In turn this can be used to determine the shape of the inflaton potential V(φ) for the first time — if a single, scalar inflaton is assumed to be driving the acceleration. We carry out a Monte Carlo exploration of inflationary trajectories given the current data. Using this method we obtain a posterior distribution of possible acceleration profiles ε(N) as a function of e-fold N and derived posterior distributions of the primordial power spectrum P(k) and potential V(φ). We find that the Bicep2 result, in combination with Planck measurements of total intensity Cosmic Microwave Background (CMB) anisotropies, induces a significant feature in the scalar primordial spectrum at scales k∼ 10{sup -3} Mpc {sup -1}. This is in agreement with a previous detection of a suppression in the scalar power [2].

  11. Advanced concepts for acceleration

    SciTech Connect

    Keefe, D.

    1986-07-01

    Selected examples of advanced accelerator concepts are reviewed. Such plasma accelerators as plasma beat wave accelerator, plasma wake field accelerator, and plasma grating accelerator are discussed particularly as examples of concepts for accelerating relativistic electrons or positrons. Also covered are the pulsed electron-beam, pulsed laser accelerator, inverse Cherenkov accelerator, inverse free-electron laser, switched radial-line accelerators, and two-beam accelerator. Advanced concepts for ion acceleration discussed include the electron ring accelerator, excitation of waves on intense electron beams, and two-wave combinations. (LEW)

  12. Accelerators and the Accelerator Community

    SciTech Connect

    Malamud, Ernest; Sessler, Andrew

    2008-06-01

    In this paper, standing back--looking from afar--and adopting a historical perspective, the field of accelerator science is examined. How it grew, what are the forces that made it what it is, where it is now, and what it is likely to be in the future are the subjects explored. Clearly, a great deal of personal opinion is invoked in this process.

  13. Acquired undescended testes and fertility potential: is orchiopexy at diagnosis better than awaiting spontaneous descent?

    PubMed

    van der Plas, E M; van Brakel, J; Meij-de Vries, A; de Muinck Keizer-Schrama, S M P F; Hazebroek, F W J; Hack, W W M; Dohle, G R

    2015-07-01

    The aim of this study was to evaluate testicular function in men with previous acquired undescended testis (UDT) in whom orchiopexy was performed at diagnosis compared with a similar group of men in whom spontaneous descent was awaited until puberty. Secondly, we examined the influence of age at orchiopexy on fertility parameters in adult life. A total of 169 men of the 'orchiopexy at diagnosis' group and 207 men of the 'wait and see' protocol group were invited for participation. All participants underwent an andrological evaluation, including medical history, physical examination, scrotal ultrasound, determination of reproductive hormones, and semen analysis. Results were compared for men in whom orchiopexy was performed at diagnoses with men in whom spontaneous descent was awaited until puberty followed by orchiopexy in case of non-descent. In the 'orchiopexy at diagnosis' group, 63 men of whom 14 with bilateral UDT, and in the 'wait and see' protocol group, 65 men of whom 15 with bilateral UDT were included. For unilateral UDT Inhibin B was found to be significantly lower and median progressive motility was higher in men with orchiopexy at diagnosis. For bilateral UDT, semen concentration and progressive motility showed a trend toward a favorable outcome for orchiopexy at diagnosis. Age at orchiopexy being under or above 10 years of age had no significant influence on the fertility potential. The outcome of physical examination, scrotal ultrasound, endocrine function, and semen analysis indicates a compromised fertility potential in men with previous acquired UDT. None of the protocols proved to be superior. For bilateral UDT, a trend toward favorable outcome of orchiopexy at diagnosis was seen. Furthermore, age at orchiopexy did not have an influence on fertility parameters. Therefore, in our opinion a 'conservative policy' is warranted for unilateral UDT, especially because over 50% of acquired UDT descend spontaneously. PMID:26084887

  14. Entry, Descent, and Landing Communications for the 2011 Mars Science Laboratory

    NASA Technical Reports Server (NTRS)

    Abilleira, Fernando; Shidner, Jeremy D.

    2012-01-01

    The Mars Science Laboratory (MSL), established as the most advanced rover to land on the surface of Mars to date, launched on November 26th, 2011 and arrived to the Martian Gale Crater during the night of August 5th, 2012 (PDT). MSL will investigate whether the landing region was ever suitable to support carbon-based life, and examine rocks, soil, and the atmosphere with a sophisticated suite of tools. This paper addresses the flight system requirement by which the vehicle transmitted indications of the following events using both X-band tones and UHF telemetry to allow identification of probable root causes should a mission anomaly have occurred: Heat-Rejection System (HRS) venting, completion of the cruise stage separation, turn to entry attitude, atmospheric deceleration, bank angle reversal commanded, parachute deployment, heatshield separation, radar ground acquisition, powered descent initiation, rover separation from the descent stage, and rover release. During Entry, Descent, and Landing (EDL), the flight system transmitted a UHF telemetry stream adequate to determine the state of the spacecraft (including the presence of faults) at 8 kbps initiating from cruise stage separation through at least one minute after positive indication of rover release on the surface of Mars. The flight system also transmitted X-band semaphore tones from Entry to Landing plus one minute although since MSL was occulted, as predicted, by Mars as seen from the Earth, Direct-To-Earth (DTE) communications were interrupted at approximately is approx. 5 min after Entry ( approximately 130 prior to Landing). The primary data return paths were through the Deep Space Network (DSN) for DTE and the existing Mars network of orbiting assets for UHF, which included the Mars Reconnaissance Orbiter (MRO), Mars Odyssey (ODY), and Mars Express (MEX) elements. These orbiters recorded the telemetry data stream and returned it back to Earth via the DSN. The paper also discusses the total power

  15. Trunk and Lower Extremity Kinematics During Stair Descent in Women With or Without Patellofemoral Pain

    PubMed Central

    Schwane, Brandi G.; Goerger, Benjamin M.; Goto, Shiho; Blackburn, J. Troy; Aguilar, Alain J.; Padua, Darin A.

    2015-01-01

    Context There is limited evidence indicating the contribution of trunk kinematics to patellofemoral pain (PFP). A better understanding of the interaction between trunk and lower extremity kinematics in this population may provide new avenues for interventions to treat PFP. Objective To compare trunk and lower extremity kinematics between participants with PFP and healthy controls during a stair-descent task. Design Cross-sectional study. Setting Research laboratory. Patients or Other Participants Twenty women with PFP (age = 22.2 ± 3.1 years, height = 164.5 ± 9.2 cm, mass = 63.5 ± 13.6 kg) and 20 healthy women (age = 21.0 ± 2.6 years, height = 164.5 ± 7.1 cm, mass = 63.8 ± 12.7 kg). Intervention(s) Kinematics were recorded as participants performed stair descent at a controlled velocity. Main Outcome Measure(s) Three-dimensional joint displacement of the trunk, hip, and knee during the stance phase of stair descent for the affected leg was measured using a 7-camera infrared optical motion-capture system. Pretest and posttest pain were assessed using a visual analogue scale. Kinematic differences between groups were determined using independent-samples t tests. A 2 × 2 mixed-model analysis of variance (group = PFP, control; time = pretest, posttest) was used to compare knee pain. Results We observed greater knee internal-rotation displacement for the PFP group (12.8° ± 7.2°) as compared with the control group (8.9° ± 4.4°). No other between-groups differences were observed for the trunk, hip, or other knee variables. Conclusions We observed no difference in trunk kinematics between groups but did note differences in knee internal-rotation displacement. These findings contribute to the current knowledge of altered movement in those with PFP and provide direction for exercise interventions. PMID:25898109

  16. Implementing the Mars Science Laboratory Terminal Descent Sensor Field Test Campaign

    NASA Technical Reports Server (NTRS)

    Montgomery, James F.; Bodie, James H.; Brown, Joseph D.; Chen, Allen; Chen, Curtis W.; Essmiller, John C.; Fisher, Charles D.; Goldberg, Hannah R.; Lee, Steven W.; Shaffer, Scott J.

    2012-01-01

    The Mars Science Laboratory (MSL) will deliver a 900 kg rover to the surface of Mars in August 2012. MSL will utilize a new pulse-Doppler landing radar, the Terminal Descent Sensor (TDS). The TDS employs six narrow-beam antennas to provide unprecedented slant range and velocity performance at Mars to enable soft touchdown of the MSL rover using a unique sky crane Entry, De-scent, and Landing (EDL) technique. Prior to use on MSL, the TDS was put through a rigorous verification and validation (V&V) process. A key element of this V&V was operating the TDS over a series of field tests, using flight-like profiles expected during the descent and landing of MSL over Mars-like terrain on Earth. Limits of TDS performance were characterized with additional testing meant to stress operational modes outside of the expected EDL flight profiles. The flight envelope over which the TDS must operate on Mars encompasses such a large range of altitudes and velocities that a variety of venues were neces-sary to cover the test space. These venues included an F/A-18 high performance aircraft, a Eurocopter AS350 AStar helicopter and 100-meter tall Echo Towers at the China Lake Naval Air Warfare Center. Testing was carried out over a five year period from July 2006 to June 2011. TDS performance was shown, in gen-eral, to be excellent over all venues. This paper describes the planning, design, and implementation of the field test campaign plus results and lessons learned.

  17. Large Eddy Simulation of Aircraft Wake Vortices in a Homogeneous Atmospheric Turbulence: Vortex Decay and Descent

    NASA Technical Reports Server (NTRS)

    Han, Jongil; Lin, Yuh-Lang; Arya, S. Pal; Proctor, Fred H.

    1999-01-01

    The effects of ambient turbulence on decay and descent of aircraft wake vortices are studied using a validated, three-dimensional: large-eddy simulation model. Numerical simulations are performed in order to isolate the effect of ambient turbulence on the wake vortex decay rate within a neutrally-stratified atmosphere. Simulations are conducted for a range of turbulence intensities, by injecting wake vortex pairs into an approximately homogeneous and isotropic turbulence field. The decay rate of the vortex circulation increases clearly with increasing ambient turbulence level, which is consistent with field observations. Based on the results from the numerical simulations, simple decay models are proposed as functions of dimensionless ambient turbulence intensity (eta) and dimensionless time (T) for the circulation averaged over a range of radial distances. With good agreement with the numerical results, a Gaussian type of vortex decay model is proposed for weak turbulence: while an exponential type of Tortex decay model can be applied for strong turbulence. A relationship for the vortex descent based on above vortex decay model is also proposed. Although the proposed models are based on simulations assuming neutral stratification, the model predictions are compared to Lidar vortex measurements observed during stable, neutral, and unstable atmospheric conditions. In the neutral and unstable atmosphere, the model predictions appear to be in reasonable agreement with the observational data, while in the stably-stratified atmosphere, they largely underestimate the observed circulation decay with consistent overestimation of the observed vortex descent. The underestimation of vortex decay during stably-stratified conditions suggests that stratification has an important influence on vortex decay when ambient levels of turbulence are weak.

  18. Dietary Associations of Household Food Insecurity Among Children of Mexican Descent: Results of a Binational Study

    PubMed Central

    Rosas, Lisa G; Harley, Kim; Fernald, Lia CH; Guendelman, Sylvia; Mejia, Fabiola; Neufeld, Lynnette M

    2015-01-01

    Background/objective Children of Mexican descent frequently experience household food insecurity both in the United States (US) and Mexico, however, little is known about the associations of food insecurity with dietary intake. This study aimed to understand the level of perceived food insecurity and its association with dietary intake among children of Mexican descent residing in the US and Mexico. Design This cross-sectional study utilized data from a 2006 binational study of five-year-old children of Mexican descent living in migrant communities in California (CA) and Mexico (MX). Methods In CA, children were 301 participants from the CHAMACOS study, a longitudinal birth cohort in a Mexican immigrant community. MX children (n=301) were participants in the Proyecto Mariposa study, which was designed to capture a sample of women and their children living in Mexico who closely resembled the CA sample, yet who never migrated to the US. Household food insecurity was measured using the US Department of Agriculture Food Security Scale and dietary intake was assessed with food frequency questionnaires. Analysis of variance was used to examine unadjusted and adjusted differences in total energy, nutrient intake, and consumption of food groups by household food security status. Results Approximately 39% of the CA mothers and 75% of the MX mothers reported low or very low food security in the last 12 months (p<0.01). Children in the US, experiencing food insecurity consumed more fat, saturated fat, sweets and fried snacks than children not experiencing food insecurity. In contrast, in Mexico food insecurity was associated with lower intake of total carbohydrates, dairy and vitamin B6. Conclusions Programs and policies addressing food insecurity in the US and Mexico may need to take steps to address dietary intake among children in households experiencing food insecurity, possibly through education and programs to increase resources to obtain healthy foods. PMID:19942017

  19. Altair Descent and Ascent Reference Trajectory Design and Initial Dispersion Analyses

    NASA Technical Reports Server (NTRS)

    Kos, Larry D.; Polsgrove, Tara T.; Sostaric, Ronald r.; Braden, Ellen M.; Sullivan, Jacob J.; Lee, Thanh T.

    2010-01-01

    The Altair Lunar Lander is the linchpin in the Constellation Program (CxP) for human return to the Moon. Altair is delivered to low Earth orbit (LEO) by the Ares V heavy lift launch vehicle, and after subsequent docking with Orion in LEO, the Altair/Orion stack is delivered through translunar injection (TLI). The Altair/Orion stack separating from the Earth departure stage (EDS) shortly after TLI and continues the flight to the Moon as a single stack. Altair performs the lunar orbit insertion (LOI) maneuver, targeting a 100-km circular orbit. This orbit will be a polar orbit for missions landing near the lunar South Pole. After spending nearly 24 hours in low lunar orbit (LLO), the lander undocks from Orion and performs a series of small maneuvers to set up for descending to the lunar surface. This descent begins with a small deorbit insertion (DOI) maneuver, putting the lander on an orbit that has a perilune of 15.24 km (50,000 ft), the altitude where the actual powered descent initiation (PDI) commences. At liftoff from Earth, Altair has a mass of 45 metric tons (mt). However after LOI (without Orion attached), the lander mass is slightly less than 33 mt at PDI. The lander currently has a single descent module main engine, with TBD lb(sub f) thrust (TBD N), providing a thrust-to-weight ratio of approximately TBD Earth g's at PDI. LDAC-3 (Lander design and analysis cycle #3) is the most recently closed design sizing and mass properties iteration. Upgrades for loss of crew (LDAC-2) and loss of mission (LDAC-3) have been incorporated into the lander baseline design (and its Master Equipment List). Also, recently, Altair has been working requirements analyses (LRAC-1). All nominal data here are from the LDAC-3 analysis cycle. All dispersions results here are from LRAC-1 analyses.

  20. Fast Automatic Step Size Estimation for Gradient Descent Optimization of Image Registration.

    PubMed

    Qiao, Yuchuan; van Lew, Baldur; Lelieveldt, Boudewijn P F; Staring, Marius

    2016-02-01

    Fast automatic image registration is an important prerequisite for image-guided clinical procedures. However, due to the large number of voxels in an image and the complexity of registration algorithms, this process is often very slow. Stochastic gradient descent is a powerful method to iteratively solve the registration problem, but relies for convergence on a proper selection of the optimization step size. This selection is difficult to perform manually, since it depends on the input data, similarity measure and transformation model. The Adaptive Stochastic Gradient Descent (ASGD) method is an automatic approach, but it comes at a high computational cost. In this paper, we propose a new computationally efficient method (fast ASGD) to automatically determine the step size for gradient descent methods, by considering the observed distribution of the voxel displacements between iterations. A relation between the step size and the expectation and variance of the observed distribution is derived. While ASGD has quadratic complexity with respect to the transformation parameters, fast ASGD only has linear complexity. Extensive validation has been performed on different datasets with different modalities, inter/intra subjects, different similarity measures and transformation models. For all experiments, we obtained similar accuracy as ASGD. Moreover, the estimation time of fast ASGD is reduced to a very small value, from 40 s to less than 1 s when the number of parameters is 105, almost 40 times faster. Depending on the registration settings, the total registration time is reduced by a factor of 2.5-7 × for the experiments in this paper. PMID:26353367

  1. Influence of seasonal cycles in Martian atmosphere on entry, descent and landing sequence

    NASA Astrophysics Data System (ADS)

    Marčeta, Dušan; Šegan, Stevo; Rašuo, Boško

    2014-05-01

    The phenomena like high eccentricity of Martian orbit, obliquity of the orbital plane and close alignment of the winter solstice and the orbital perihelion, separately or together can significantly alter not only the level of some Martian atmospheric parameters but also the characteristics of its diurnal and seasonal cycle. Considering that entry, descent and landing (EDL) sequence is mainly driven by the density profile of the atmosphere and aerodynamic characteristic of the entry vehicle. We have performed the analysis of the influence of the seasonal cycles of the atmospheric parameters on EDL profiles by using Mars Global Reference Atmospheric Model (Mars-GRAM). Since the height of the deployment of the parachute and the time passed from the deployment to propulsion firing (descent time) are of crucial importance for safe landing and the achievable landing site elevation we paid special attention to the influence of the areocentric longitude of the Sun (Ls) on these variables. We have found that these variables have periodic variability with respect to Ls and can be very well approximated with a sine wave function whose mean value depends only on the landing site elevation while the amplitudes and phases depend only on the landing site latitude. The amplitudes exhibit behavior which is symmetric with respect to the latitude but the symmetry is shifted from the equator to the northern mid-tropics. We have also noticed that the strong temperature inversions which are usual for middle and higher northern latitudes while Mars is around its orbital perihelion significantly alter the descent time without influencing the height of the parachute deployment. At last, we applied our model to determine the dependence of the accessible landing region on Ls and found that this region reaches maximum when Mars is around the orbital perihelion and can vary 50° in latitude throughout the Martian year.

  2. Maraia Capsule Flight Testing and Results for Entry, Descent, and Landing

    NASA Technical Reports Server (NTRS)

    Sostaric, Ronald R.; Strahan, Alan L.

    2016-01-01

    The Maraia concept is a modest size (150 lb., 30" diameter) capsule that has been proposed as an ISS based, mostly autonomous earth return capability to function either as an Entry, Descent, and Landing (EDL) technology test platform or as a small on-demand sample return vehicle. A flight test program has been completed including high altitude balloon testing of the proposed capsule shape, with the purpose of investigating aerodynamics and stability during the latter portion of the entry flight regime, along with demonstrating a potential recovery system. This paper includes description, objectives, and results from the test program.

  3. Fuel-Efficient Descent and Landing Guidance Logic for a Safe Lunar Touchdown

    NASA Technical Reports Server (NTRS)

    Lee, Allan Y.

    2011-01-01

    The landing of a crewed lunar lander on the surface of the Moon will be the climax of any Moon mission. At touchdown, the landing mechanism must absorb the load imparted on the lander due to the vertical component of the lander's touchdown velocity. Also, a large horizontal velocity must be avoided because it could cause the lander to tip over, risking the life of the crew. To be conservative, the worst-case lander's touchdown velocity is always assumed in designing the landing mechanism, making it very heavy. Fuel-optimal guidance algorithms for soft planetary landing have been studied extensively. In most of these studies, the lander is constrained to touchdown with zero velocity. With bounds imposed on the magnitude of the engine thrust, the optimal control solutions typically have a "bang-bang" thrust profile: the thrust magnitude "bangs" instantaneously between its maximum and minimum magnitudes. But the descent engine might not be able to throttle between its extremes instantaneously. There is also a concern about the acceptability of "bang-bang" control to the crew. In our study, the optimal control of a lander is formulated with a cost function that penalizes both the touchdown velocity and the fuel cost of the descent engine. In this formulation, there is not a requirement to achieve a zero touchdown velocity. Only a touchdown velocity that is consistent with the capability of the landing gear design is required. Also, since the nominal throttle level for the terminal descent sub-phase is well below the peak engine thrust, no bound on the engine thrust is used in our formulated problem. Instead of bangbang type solution, the optimal thrust generated is a continuous function of time. With this formulation, we can easily derive analytical expressions for the optimal thrust vector, touchdown velocity components, and other system variables. These expressions provide insights into the "physics" of the optimal landing and terminal descent maneuver. These

  4. Mars Reconnaissance Orbiter Navigation Strategy for Mars Science Laboratory Entry, Descent and Landing Telecommunication Relay Support

    NASA Technical Reports Server (NTRS)

    Williams, Jessica L.; Menon, Premkumar R.; Demcak, Stuart W.

    2012-01-01

    The Mars Reconnaissance Orbiter (MRO) is an orbiting asset that performs remote sensing observations in order to characterize the surface, subsurface and atmosphere of Mars. To support upcoming NASA Mars Exploration Program Office objectives, MRO will be used as a relay communication link for the Mars Science Laboratory (MSL) mission during the MSL Entry, Descent and Landing sequence. To do so, MRO Navigation must synchronize the MRO Primary Science Orbit (PSO) with a set of target conditions requested by the MSL Navigation Team; this may be accomplished via propulsive maneuvers. This paper describes the MRO Navigation strategy for and operational performance of MSL EDL relay telecommunication support.

  5. The effect of navigation state selection on fuel dispersions for powered lunar descent

    NASA Astrophysics Data System (ADS)

    Anderson, Jessica Thornley

    A Monte Carlo simulation is developed to study the performance of the closed-loop guidance, navigation, and control system of a lunar lander in powered descent. The simulation includes six-degrees-of-freedom dynamics, an extended Kalman filter, guidance based upon modified Apollo methods, an attitude control system, and several different types of sensors. Sensors included in the sensor suite include accelerometers, gyroscopes, a star camera, an altimeter, a velocimeter, and a radio navigation system. The simulation is used to examine the effects of sensor errors and the number of navigation states on total fuel use.

  6. Functional Equivalence Acceptance Testing of FUN3D for Entry Descent and Landing Applications

    NASA Technical Reports Server (NTRS)

    Gnoffo, Peter A.; Wood, William A.; Kleb, William L.; Alter, Stephen J.; Glass, Christopher E.; Padilla, Jose F.; Hammond, Dana P.; White, Jeffery A.

    2013-01-01

    The functional equivalence of the unstructured grid code FUN3D to the the structured grid code LAURA (Langley Aerothermodynamic Upwind Relaxation Algorithm) is documented for applications of interest to the Entry, Descent, and Landing (EDL) community. Examples from an existing suite of regression tests are used to demonstrate the functional equivalence, encompassing various thermochemical models and vehicle configurations. Algorithm modifications required for the node-based unstructured grid code (FUN3D) to reproduce functionality of the cell-centered structured code (LAURA) are also documented. Challenges associated with computation on tetrahedral grids versus computation on structured-grid derived hexahedral systems are discussed.

  7. Apollo 14 mission report. Supplement 5: Descent propulsion system final flight evaluation

    NASA Technical Reports Server (NTRS)

    Avvenire, A. T.; Wood, S. C.

    1972-01-01

    The performance of the LM-8 descent propulsion system during the Apollo 14 mission was evaluated and found to be satisfactory. The average engine effective specific impulse was 0.1 second higher than predicted, but well within the predicted l sigma uncertainty. The engine performance corrected to standard inlet conditions for the FTP portion of the burn at 43 seconds after ignition was as follows: thrust, 9802, lbf; specific impulse, 304.1 sec; and propellant mixture ratio, 1603. These values are + or - 0.8, -0.06, and + or - 0.3 percent different respectively, from the values reported from engine acceptance tests and were within specification limits.

  8. PIGS: improved estimates of identity-by-descent probabilities by probabilistic IBD graph sampling.

    PubMed

    Park, Danny S; Baran, Yael; Hormozdiari, Farhad; Eng, Celeste; Torgerson, Dara G; Burchard, Esteban G; Zaitlen, Noah

    2015-01-01

    Identifying segments in the genome of different individuals that are identical-by-descent (IBD) is a fundamental element of genetics. IBD data is used for numerous applications including demographic inference, heritability estimation, and mapping disease loci. Simultaneous detection of IBD over multiple haplotypes has proven to be computationally difficult. To overcome this, many state of the art methods estimate the probability of IBD between each pair of haplotypes separately. While computationally efficient, these methods fail to leverage the clique structure of IBD resulting in less powerful IBD identification, especially for small IBD segments. PMID:25860540

  9. The Mars Exploration Rovers Entry Descent and Landing and the Use of Aerodynamic Decelerators

    NASA Technical Reports Server (NTRS)

    Steltzner, Adam; Desai, Prasun; Lee, Wayne; Bruno, Robin

    2003-01-01

    The Mars Exploration Rovers (MER) project, the next United States mission to the surface of Mars, uses aerodynamic decelerators in during its entry, descent and landing (EDL) phase. These two identical missions (MER-A and MER-B), which deliver NASA s largest mobile science suite to date to the surface of Mars, employ hypersonic entry with an ablative energy dissipating aeroshell, a supersonic/subsonic disk-gap-band parachute and an airbag landing system within EDL. This paper gives an overview of the MER EDL system and speaks to some of the challenges faced by the various aerodynamic decelerators.

  10. Perceived reasons for depression among low income women of Mexican descent.

    PubMed

    Heilemann, MarySue V; Coffey-Love, Melody; Frutos, Lisa

    2004-10-01

    From a larger cross-sectional study of 315 women of Mexican descent, this secondary analysis focused on short answers to open-ended questions related to reasons given by 107 women at risk for depression (>16 on CES-D) for feelings of sadness, hopelessness, or depression within the last month. Data were analyzed using grounded theory techniques. Six categories of reasons were derived from data including: (1) partner issues, (2) family issues, (3) feelings of being alone, (4) inability to provide for material needs, (5) bodily symptoms and experiences, and (6) vague nonspecific reasons. Results are useful for designing future treatment programs. PMID:15529284

  11. Adventures in Parallel Processing: Entry, Descent and Landing Simulation for the Genesis and Stardust Missions

    NASA Technical Reports Server (NTRS)

    Lyons, Daniel T.; Desai, Prasun N.

    2005-01-01

    This paper will describe the Entry, Descent and Landing simulation tradeoffs and techniques that were used to provide the Monte Carlo data required to approve entry during a critical period just before entry of the Genesis Sample Return Capsule. The same techniques will be used again when Stardust returns on January 15, 2006. Only one hour was available for the simulation which propagated 2000 dispersed entry states to the ground. Creative simulation tradeoffs combined with parallel processing were needed to provide the landing footprint statistics that were an essential part of the Go/NoGo decision that authorized release of the Sample Return Capsule a few hours before entry.

  12. Design requirements and development of an airborne descent path definition algorithm for time navigation

    NASA Technical Reports Server (NTRS)

    Izumi, K. H.; Thompson, J. L.; Groce, J. L.; Schwab, R. W.

    1986-01-01

    The design requirements for a 4D path definition algorithm are described. These requirements were developed for the NASA ATOPS as an extension of the Local Flow Management/Profile Descent algorithm. They specify the processing flow, functional and data architectures, and system input requirements, and recommended the addition of a broad path revision (reinitialization) function capability. The document also summarizes algorithm design enhancements and the implementation status of the algorithm on an in-house PDP-11/70 computer. Finally, the requirements for the pilot-computer interfaces, the lateral path processor, and guidance and steering function are described.

  13. Studying the Effect of Adaptive Momentum in Improving the Accuracy of Gradient Descent Back Propagation Algorithm on Classification Problems

    NASA Astrophysics Data System (ADS)

    Rehman, Muhammad Zubair; Nawi, Nazri Mohd.

    Despite being widely used in the practical problems around the world, Gradient Descent Back-propagation algorithm comes with problems like slow convergence and convergence to local minima. Previous researchers have suggested certain modifications to improve the convergence in gradient Descent Back-propagation algorithm such as careful selection of input weights and biases, learning rate, momentum, network topology, activation function and value for 'gain' in the activation function. This research proposed an algorithm for improving the working performance of back-propagation algorithm which is 'Gradient Descent with Adaptive Momentum (GDAM)' by keeping the gain value fixed during all network trials. The performance of GDAM is compared with 'Gradient Descent with fixed Momentum (GDM)' and 'Gradient Descent Method with Adaptive Gain (GDM-AG)'. The learning rate is fixed to 0.4 and maximum epochs are set to 3000 while sigmoid activation function is used for the experimentation. The results show that GDAM is a better approach than previous methods with an accuracy ratio of 1.0 for classification problems like Wine Quality, Mushroom and Thyroid disease.

  14. Using survival analysis to determine association between maternal pelvis height and antenatal fetal head descent in Ugandan mothers

    PubMed Central

    Munabi, Ian Guyton; Luboga, Samuel Abilemech; Mirembe, Florence

    2015-01-01

    Introduction Fetal head descent is used to demonstrate the maternal pelvis capacity to accommodate the fetal head. This is especially important in low resource settings that have high rates of childbirth related maternal deaths and morbidity. This study looked at maternal height and an additional measure, maternal pelvis height, from automotive engineering. The objective of the study was to determine the associations between maternal: height and pelvis height with the rate of fetal head descent in expectant Ugandan mothers. Methods This was a cross sectional study on 1265 singleton mothers attending antenatal clinics at five hospitals in various parts of Uganda. In addition to the routine antenatal examination, each mother had their pelvis height recorded following informed consent. Survival analysis was done using STATA 12. Results It was found that 27% of mothers had fetal head descent with an incident rate of 0.028 per week after the 25th week of pregnancy. Significant associations were observed between the rate of fetal head descent with: maternal height (Adj Haz ratio 0.93 P < 0.01) and maternal pelvis height (Adj Haz ratio 1.15 P < 0.01). Conclusion The significant associations observed between maternal: height and pelvis height with rate of fetal head descent, demonstrate a need for further study of maternal pelvis height as an additional decision support tool for screening mothers in low resource settings. PMID:26918071

  15. [People of African descent in the region of the Americas and health equity].

    PubMed

    Torres, Cristina

    2002-01-01

    The Region of the Americas and the Caribbean has a complex demographic profile from an ethnic and racial perspective. One of the largest groups is composed of persons of African descent, who in some countries, such as Brazil and the Dominican Republic, comprise 46 and 84% of the total population, respectively. Recent analyses of the statistics available in some countries of the Region show wide gaps in terms of living conditions and health in these communities, as well as gaps in access to health services. PAHO, through its Public Policy and Health Program, under the Division of Health and Human Development, supports sectorial efforts and those of civil organizations that aim to improve health conditions in this segment of the population, while taking into account their sociodemographic and cultural characteristics. This article briefly summarizes health conditions and access to health services in selected countries, as well as some aspects of the recent changes to the legislation in those countries. Finally, collaborative activities on the part of United Nations agencies and international financial institutions for the benefit of people of African descent and other ethnic minorities are described. PMID:12162849

  16. Experimental evaluation of active and passive means of alleviating rotor impulsive noise in descent flight

    NASA Technical Reports Server (NTRS)

    Janakiram, D. S.

    1979-01-01

    A controlled wind tunnel test program was conducted on a model 2.14 m (7 ft) diameter teetering rotor to determine the effectiveness of blade tips such as the Ogee tip and the TAMI (Tip Air Mass Injection) tip in reducing the impulsive noise due to blade-vortex interaction in descent flight. In addition, a full rectangular tip which has the same span as the Ogee tip and an effective rectangular tip which has the same lifting area as the Ogee tip were also considered. The tests were conducted at two advance ratios (0.125 and 0.14) with various descent rates ranging from steady level flight to about 6 m/sec (20 ft/sec). A comparison of the performance of different rotors showed that for the same tip Mach number and thrust, the Ogee tip rotor absorbed more power than the full rectangular tip rotor, while the TAMI tip rotor absorbed more power than the effective tip rotor.

  17. Mars Phoenix Entry, Descent, and Landing Simulation Design and Modelling Analysis

    NASA Technical Reports Server (NTRS)

    Prince, Jill L.; Desai, Prasun N.; Queen, Eric M.; Grover, Myron R.

    2008-01-01

    The 2007 Mars Phoenix Lander was launched in August of 2007 on a ten month cruise to reach the northern plains of Mars in May 2008. Its mission continues NASA s pursuit to find evidence of water on Mars. Phoenix carries upon it a slew of science instruments to study soil and ice samples from the northern region of the planet, an area previously undiscovered by robotic landers. In order for these science instruments to be useful, it was necessary for Phoenix to perform a safe entry, descent, and landing (EDL) onto the surface of Mars. The EDL design was defined through simulation and analysis of the various phases of the descent. An overview of the simulation and various models developed to characterize the EDL performance is provided. Monte Carlo statistical analysis was performed to assess the performance and robustness of the Phoenix EDL system and are presented in this paper. Using these simulation and modelling tools throughout the design and into the operations phase, the Mars Phoenix EDL was a success on May 25, 2008.

  18. Caste-, work-, and descent-based discrimination as a determinant of health in social epidemiology.

    PubMed

    Patil, Rajan R

    2014-01-01

    Social epidemiology explores health in the context of broad social determinants of health, where the boundary lines between health and politics appear increasingly blurred. Social determinants of health such as caste, discrimination, and social exclusion are inherently political in nature, hence it becomes imperative to look at health through a broader perspective of political philosophy, ideology, and caste that imposes enormous obstacles to a person's full attainment of civil, political, economic, social, and cultural rights. Caste is descent based and hereditary in nature. It is a characteristic determined by one's birth into a particular caste, irrespective of the faith practiced by the individual. Caste denotes a system of rigid social stratification into ranked groups defined by descent and occupation. Under various caste systems throughout the world, caste divisions also dominate in housing, marriage, and general social interaction divisions that are reinforced through the practice and threat of social ostracism, economic boycotts, and even physical violence-all of which undermine health equality. PMID:24871772

  19. Enhancements on the Convex Programming Based Powered Descent Guidance Algorithm for Mars Landing

    NASA Technical Reports Server (NTRS)

    Acikmese, Behcet; Blackmore, Lars; Scharf, Daniel P.; Wolf, Aron

    2008-01-01

    In this paper, we present enhancements on the powered descent guidance algorithm developed for Mars pinpoint landing. The guidance algorithm solves the powered descent minimum fuel trajectory optimization problem via a direct numerical method. Our main contribution is to formulate the trajectory optimization problem, which has nonconvex control constraints, as a finite dimensional convex optimization problem, specifically as a finite dimensional second order cone programming (SOCP) problem. SOCP is a subclass of convex programming, and there are efficient SOCP solvers with deterministic convergence properties. Hence, the resulting guidance algorithm can potentially be implemented onboard a spacecraft for real-time applications. Particularly, this paper discusses the algorithmic improvements obtained by: (i) Using an efficient approach to choose the optimal time-of-flight; (ii) Using a computationally inexpensive way to detect the feasibility/ infeasibility of the problem due to the thrust-to-weight constraint; (iii) Incorporating the rotation rate of the planet into the problem formulation; (iv) Developing additional constraints on the position and velocity to guarantee no-subsurface flight between the time samples of the temporal discretization; (v) Developing a fuel-limited targeting algorithm; (vi) Initial result on developing an onboard table lookup method to obtain almost fuel optimal solutions in real-time.

  20. Flight Mechanics of the Entry, Descent and Landing of the ExoMars Mission

    NASA Technical Reports Server (NTRS)

    HayaRamos, Rodrigo; Boneti, Davide

    2007-01-01

    ExoMars is ESA's current mission to planet Mars. A high mobility rover and a fixed station will be deployed on the surface of Mars. This paper regards the flight mechanics of the Entry, Descent and Landing (EDL) phases used for the mission analysis and design of the Baseline and back-up scenarios of the mission. The EDL concept is based on a ballistic entry, followed by a descent under parachutes and inflatable devices (airbags) for landing. The mission analysis and design is driven by the flexibility in terms of landing site, arrival dates and the very stringent requirement in terms of landing accuracy. The challenging requirements currently imposed to the mission need innovative analysis and design techniques to support system design trade-offs to cope with the variability in entry conditions. The concept of the Global Entry Corridor has been conceived, designed, implemented and successfully validated as a key tool to provide a global picture of the mission capabilities in terms of landing site reachability.

  1. Trajectory Guidance for Mars Robotic Precursors: Aerocapture, Entry, Descent, and Landing

    NASA Technical Reports Server (NTRS)

    Sostaric, Ronald R.; Zumwalt, Carlie; Garcia-Llama, Eduardo; Powell, Richard; Shidner, Jeremy

    2011-01-01

    Future crewed missions to Mars require improvements in landed mass capability beyond that which is possible using state-of-the-art Mars Entry, Descent, and Landing (EDL) systems. Current systems are capable of an estimated maximum landed mass of 1-1.5 metric tons (MT), while human Mars studies require 20-40 MT. A set of technologies were investigated by the EDL Systems Analysis (SA) project to assess the performance of candidate EDL architectures. A single architecture was selected for the design of a robotic precursor mission, entitled Exploration Feed Forward (EFF), whose objective is to demonstrate these technologies. In particular, inflatable aerodynamic decelerators (IADs) and supersonic retro-propulsion (SRP) have been shown to have the greatest mass benefit and extensibility to future exploration missions. In order to evaluate these technologies and develop the mission, candidate guidance algorithms have been coded into the simulation for the purposes of studying system performance. These guidance algorithms include aerocapture, entry, and powered descent. The performance of the algorithms for each of these phases in the presence of dispersions has been assessed using a Monte Carlo technique.

  2. Accelerator system and method of accelerating particles

    NASA Technical Reports Server (NTRS)

    Wirz, Richard E. (Inventor)

    2010-01-01

    An accelerator system and method that utilize dust as the primary mass flux for generating thrust are provided. The accelerator system can include an accelerator capable of operating in a self-neutralizing mode and having a discharge chamber and at least one ionizer capable of charging dust particles. The system can also include a dust particle feeder that is capable of introducing the dust particles into the accelerator. By applying a pulsed positive and negative charge voltage to the accelerator, the charged dust particles can be accelerated thereby generating thrust and neutralizing the accelerator system.

  3. Attention's Accelerator.

    PubMed

    Reinhart, Robert M G; McClenahan, Laura J; Woodman, Geoffrey F

    2016-06-01

    How do people get attention to operate at peak efficiency in high-pressure situations? We tested the hypothesis that the general mechanism that allows this is the maintenance of multiple target representations in working and long-term memory. We recorded subjects' event-related potentials (ERPs) indexing the working memory and long-term memory representations used to control attention while performing visual search. We found that subjects used both types of memories to control attention when they performed the visual search task with a large reward at stake, or when they were cued to respond as fast as possible. However, under normal circumstances, one type of target memory was sufficient for slower task performance. The use of multiple types of memory representations appears to provide converging top-down control of attention, allowing people to step on the attentional accelerator in a variety of high-pressure situations. PMID:27056975

  4. POST2 End-To-End Descent and Landing Simulation for the Autonomous Landing and Hazard Avoidance Technology Project

    NASA Technical Reports Server (NTRS)

    Fisher, Jody l.; Striepe, Scott A.

    2007-01-01

    The Program to Optimize Simulated Trajectories II (POST2) is used as a basis for an end-to-end descent and landing trajectory simulation that is essential in determining the design and performance capability of lunar descent and landing system models and lunar environment models for the Autonomous Landing and Hazard Avoidance Technology (ALHAT) project. This POST2-based ALHAT simulation provides descent and landing simulation capability by integrating lunar environment and lander system models (including terrain, sensor, guidance, navigation, and control models), along with the data necessary to design and operate a landing system for robotic, human, and cargo lunar-landing success. This paper presents the current and planned development and model validation of the POST2-based end-to-end trajectory simulation used for the testing, performance and evaluation of ALHAT project system and models.

  5. Preliminary assessment of variable geometry stair ascent and descent with a powered lower limb orthosis for individuals with paraplegia.

    PubMed

    Ekelem, Andrew; Murray, Spencer; Goldfarb, Michael

    2015-08-01

    This paper describes a controller for a lower-limb exoskeleton that enables variable-geometry stair ascent and descent for persons with lower limb paralysis. The controller was evaluated on a subject with T10 complete spinal cord injury (SCI) on two staircases, one with a riser height and tread depth of 18.4 × 27.9 cm (7.25 × 11 in) and the other 17.8 × 29.8 cm (7 × 11.75 in). The controller enabled ascent and descent of both staircases without explicit tuning for each, and with an average step rate of 12.9 step/min during ascent and 14.6 step/min during descent. PMID:26737336

  6. Cardiovascular disease, diabetes and established risk factors among populations of sub-Saharan African descent in Europe: a literature review

    PubMed Central

    Agyemang, Charles; Addo, Juliet; Bhopal, Raj; de Graft Aikins, Ama; Stronks, Karien

    2009-01-01

    Background Most European countries are ethnically and culturally diverse. Globally, cardiovascular disease (CVD) is the leading cause of death. The major risk factors for CVD have been well established. This picture holds true for all regions of the world and in different ethnic groups. However, the prevalence of CVD and related risk factors vary among ethnic groups. Methods This article provides a review of current understanding of the epidemiology of vascular disease, principally coronary heart disease (CHD), stroke and related risk factors among populations of Sub-Sahara African descent (henceforth, African descent) in comparison with the European populations in Europe. Results Compared with European populations, populations of African descent have an increased risk of stroke, whereas CHD is less common. They also have higher rates of hypertension and diabetes than European populations. Obesity is highly prevalent, but smoking rate is lower among African descent women. Older people of African descent have more favourable lipid profile and dietary habits than their European counterparts. Alcohol consumption is less common among populations of African descent. The rate of physical activity differs between European countries. Dutch African-Suriname men and women are less physically active than the White-Dutch whereas British African women are more physically active than women in the general population. Literature on psychosocial stress shows inconsistent results. Conclusion Hypertension and diabetes are highly prevalent among African populations, which may explain their high rate of stroke in Europe. The relatively low rate of CHD may be explained by the low rates of other risk factors including a more favourable lipid profile and the low prevalence of smoking. The risk factors are changing, and on the whole, getting worse especially among African women. Cohort studies and clinical trials are therefore needed among these groups to determine the relative

  7. Mesosphere-to-stratosphere descent of odd nitrogen in February-March 2009 after sudden stratospheric warming

    NASA Astrophysics Data System (ADS)

    Salmi, S.-M.; Verronen, P. T.; Thölix, L.; Kyrölä, E.; Backman, L.; Karpechko, A. Yu.; Seppälä, A.

    2011-05-01

    We use the 3-D FinROSE chemistry transport model (CTM) and Atmospheric Chemistry Experiment Fourier Transform Spectrometer (ACE-FTS) observations to study connections between atmospheric dynamics and middle atmospheric NOx (NOx = NO + NO2) distribution. Two cases are considered in the northern polar regions: (1) descent of mesospheric NOx in February-March 2009 after a major sudden stratospheric warming (SSW) and, for comparison, (2) early 2007 when no NOx descent occurred. The model uses the European Centre for Medium-Range Weather Forecasts (ECMWF) operational data for winds and temperature, and we force NOx at the model upper altitude boundary (80 km) with ACE-FTS observations. We then compare the model results with ACE-FTS observations at lower altitudes. For the periods studied, geomagnetic indices are low, which indicates absence of local NOx production by particle precipitation. This gives us a good opportunity to study effects of atmospheric transport on polar NOx. The model results show no NOx descent in 2007, in agreement with ACE-FTS. In contrast, a large amount of NOx descends in February-March 2009 from the upper to lower mesosphere at latitudes larger than 60° N, i.e. inside the polar vortex. Both observations and model results suggest NOx increases of 150-200 ppb (i.e. by factor of 50) at 65 km due to the descent. However, the model underestimates the amount of NOx around 55 km by 40-60 ppb. According to the model results, chemical loss of NOx is insignificant during the descent period, i.e. polar NOx is mainly controlled by dynamics. The descent is terminated and the polar NOx amounts return to pre-descent levels in mid-March, when the polar vortex breaks. The break-up prevents the descending NOx from reaching the upper stratosphere, where it could participate in catalytic ozone destruction. Both ACE-FTS observations and FinROSE show a decrease of ozone of 20-30 % at 30-50 km from mid-February to mid-March. In the model, these ozone changes are not

  8. Prevalence of Hb S (HHB: c.20A > T) in a Honduran population of African descent.

    PubMed

    Erazo, Brian M; Ramírez, Gilberto A; Cerrato, Linda E; Pinto, Luis J; Castro, Edder J; Yanez, Néstor J; Montoya, Brayan; Fontecha, Gustavo A

    2015-01-01

    Sickle cell disease is the most common hemoglobinopathy worldwide, particularly in Africa and among people of African descent. Serious clinical consequences characterize the homozygous condition. To determine the prevalence of Hb S (HBB: c.20A > T) and anemia in a community of people of African descent from Honduras, 202 individuals were analyzed by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP). The high prevalence found indicates that it is necessary to implement a program to prevent the consequences of this disease in vulnerable populations of Honduras. PMID:25707678

  9. Estimation of Pairwise Identity by Descent From Dense Genetic Marker Data in a Population Sample of Haplotypes

    PubMed Central

    Browning, Sharon R.

    2008-01-01

    I present a new approach for calculating probabilities of identity by descent for pairs of haplotypes. The approach is based on a joint hidden Markov model for haplotype frequencies and identity by descent (IBD). This model allows for linkage disequilibrium, and the method can be applied to very dense marker data. The method has high power for detecting IBD tracts of genetic length of 1 cM, with the use of sufficiently dense markers. This enables detection of pairwise IBD between haplotypes from individuals whose most recent common ancestor lived up to 50 generations ago. PMID:18430938

  10. Acceleration modules in linear induction accelerators

    NASA Astrophysics Data System (ADS)

    Wang, Shao-Heng; Deng, Jian-Jun

    2014-05-01

    The Linear Induction Accelerator (LIA) is a unique type of accelerator that is capable of accelerating kilo-Ampere charged particle current to tens of MeV energy. The present development of LIA in MHz bursting mode and the successful application into a synchrotron have broadened LIA's usage scope. Although the transformer model is widely used to explain the acceleration mechanism of LIAs, it is not appropriate to consider the induction electric field as the field which accelerates charged particles for many modern LIAs. We have examined the transition of the magnetic cores' functions during the LIA acceleration modules' evolution, distinguished transformer type and transmission line type LIA acceleration modules, and re-considered several related issues based on transmission line type LIA acceleration module. This clarified understanding should help in the further development and design of LIA acceleration modules.

  11. Relationship of beliefs, epistemology, and alternate conceptions to college student understanding of evolution and common descent

    NASA Astrophysics Data System (ADS)

    Miller, Joyce Catherine

    Quantitative and qualitative methodologies were combined to explore the relationships between an understanding of evolution and 4 epistemology factors: (a) control of learning, (b) speed of learning , (c) stability of knowledge, and (d) belief in evolution/creationism. A 17-item instrument was developed that reliably measured a belief in creationism and subtle differences between this belief and an acceptance of evolution. The subjects were 45 students enrolled in a biology course at a 2-year community college. Evolution was taught in a traditional format, and common descent was taught in an inquiry-based laboratory session consisting of: (a) a comparison of hemoglobin DNA sequences of the human, chimpanzee, and gorilla; and (b) a comparison of 8 primate skull casts, including the modern human, chimpanzee, gorilla, and five prehistoric fossils. Prior to instruction the students completed an epistemology questionnaire and a knowledge test about evolution. Five weeks after instruction, the students completed a posttest. A t-test revealed no differences between the pretest and the posttest. However, the group of students that scored higher on the posttest than on the pretest was found to have a stronger belief in the uncertainty of knowledge. Pearson r was computed to check for relationships between the 4 epistemological factors and the understanding of evolution. There was a significant relationship between a belief in creationism and a lessor understanding of evolution as measured on both the pretest and the posttest (ps < .05). The relationship between gender and test scores was also examined with men demonstrating statistically significantly higher scores on the common descent component than women did. Narrative data included interviews and branching/grouping activities. Four alternate conceptions about common descent were identified. Even after instruction, 16 out of 39 students thought humans evolved from the chimpanzee. Additionally, students grouped the 8

  12. Transitioning from Free-Flight to TRACON Airspace: The Ground Perspective of User-Preferred Descents

    NASA Technical Reports Server (NTRS)

    Prevot, Thomas; Smith, Nancy; Palmer, Everett; Null, Cynthia (Technical Monitor)

    1999-01-01

    Free-flight is considered to play a major role in the future air traffic environment. Studies are underway addressing different concepts for free-flight and self separation in enroute airspace. One common opinion throughout the different concepts is that the airspace surrounding major airports, the Terminal Radar Approach CONtrol (TRACON) will not be a free flight area. This means that aircraft in this area are completely controlled by air traffic controllers, who may be supported by decision support system like the Center TRACON Automation System (CTAS). How the transition from the free-flight area (enroute airspace) to the terminal area will take place is currently unclear, This paper describes a study at NASA Ames Research Center addressing the perspective of air traffic controllers handling user-preferred (FMS-optimized) descent trajectories during this transition phase. Two major issues in enabling user preferred descents from the controllers' point of view are predictability and controllability. In an environment in which the air traffic services are highly responsive to user preferences controllers need to know, where and when aircraft will change their trajectory and they need to have appropriate means and procedures at hand to control the aircraft according to the overall traffic situation. Predictability shall be enhanced by: 1) Indicating airspace corridors for descending aircraft; 2) Modify the controller interface; 3) Using a ground based conflict probe; 4) Making use of downlinked intent information from the aircraft FMS; and 5) Requiring to fly pilots on user preferred trajectories coupled to the FMS in the lateral and vertical axis. Additional controllability shall be achieved by supporting the controllers with CTAS center tools: 1) Traffic Management Advisor (TMA); 2) Conflict Probing and Trial Planning (CP/TP); and 3) Enroute Descent Advisor (E/DA). The paper describes the general concept and the modifications to current systems required to enable

  13. Automatic IQ Imbalance Compensation Technique for Quadrature Modulator by Single-Tone Testing

    NASA Astrophysics Data System (ADS)

    Kim, Minseok; Konishi, Yohei; Takada, Jun-Ichi; Gao, Boxin

    This letter proposes an automatic IQ imbalance compensation technique for quadrature modulators by means of spectrum measurement of RF signal using a spectrum analyzer. The analyzer feeds back only magnitude information of the frequency spectrum of the signal. To realize IQ imbalance compensation, the conventional method of steepest descent is modified; the descent direction is empirically determined and a variable step-size is introduced for accelerating convergence. The experimental results for a four-channel transmitter operating at 11GHz are presented for verification.

  14. Progress on plasma accelerators

    SciTech Connect

    Chen, P.

    1986-05-01

    Several plasma accelerator concepts are reviewed, with emphasis on the Plasma Beat Wave Accelerator (PBWA) and the Plasma Wake Field Accelerator (PWFA). Various accelerator physics issues regarding these schemes are discussed, and numerical examples on laboratory scale experiments are given. The efficiency of plasma accelerators is then revealed with suggestions on improvements. Sources that cause emittance growth are discussed briefly.

  15. Genetic drift. Descent, lineage, and pedigree of the Trojans in Homer's Iliad.

    PubMed

    Bazopoulou-Kyrkanidou, Euterpe

    2007-12-15

    Homer's Iliad, is an epic poem that describes the last 70 days of the Trojan War, which was waged against the city of Troy by the Achaeans. Here, the descent, lineage, and the pedigree of the Trojans are presented. In the Illiad, they are said to have originated from Zeus. Beginning with him, the Trojan pedigree comprised 17 men in 8 generations with Dardanus, founder of Dardania in the second generation; Tros, King of the Trojans in the fourth generation; and the two heroes Hector and Aeneas in the eighth generation. In the seventh generation, Priam, as King of the Trojans, had a huge family, including 50 sons: 19 children with his wife Hecabe, other sons with many different wives, and some daughters as well. Hector, the first born, became leader of the Trojans. Hector's brother, Paris, in abducting Helen of Sparta, the wife of King Menelaus, caused the Trojan War to break out. PMID:17985360

  16. Entry, Descent, and Landing Operations Analysis for the Mars Phoenix Lander

    NASA Technical Reports Server (NTRS)

    Prince, Jill L.; Desai, Prasun N.; Queen, Eric M.; Grover, Myron R.

    2008-01-01

    The Mars Phoenix lander was launched August 4, 2007 and remained in cruise for ten months before landing in the northern plains of Mars in May 2008. The one-month Entry, Descent, and Landing (EDL) operations phase prior to entry consisted of daily analyses, meetings, and decisions necessary to determine if trajectory correction maneuvers and environmental parameter updates to the spacecraft were required. An overview of the Phoenix EDL trajectory simulation and analysis that was performed during the EDL approach and operations phase is described in detail. The evolution of the Monte Carlo statistics and footprint ellipse during the final approach phase is also provided. The EDL operations effort accurately delivered the Phoenix lander to the desired landing region on May 25, 2008.

  17. Mars Science Laboratory (MSL) Entry, Descent, and Landing Instrumentation (MEDLI): Complete Flight Data Set

    NASA Technical Reports Server (NTRS)

    Cheatwood, F. McNeil; Bose, Deepak; Karlgaard, Christopher D.; Kuhl, Christopher A.; Santos, Jose A.; Wright, Michael J.

    2014-01-01

    The Mars Science Laboratory (MSL) entry vehicle (EV) successfully entered the Mars atmosphere and landed the Curiosity rover safely on the surface of the planet in Gale crater on August 6, 2012. MSL carried the MSL Entry, Descent, and Landing (EDL) Instrumentation (MEDLI). MEDLI delivered the first in-depth understanding of the Mars entry environments and the response of the entry vehicle to those environments. MEDLI was comprised of three major subsystems: the Mars Entry Atmospheric Data System (MEADS), the MEDLI Integrated Sensor Plugs (MISP), and the Sensor Support Electronics (SSE). Ultimately, the entire MEDLI sensor suite consisting of both MEADS and MISP provided measurements that were used for trajectory reconstruction and engineering validation of aerodynamic, atmospheric, and thermal protection system (TPS) models in addition to Earth-based systems testing procedures. This report contains in-depth hardware descriptions, performance evaluation, and data information of the three MEDLI subsystems.

  18. Construction and validation of the Measurement of Acculturation Strategies for People of African Descent (MASPAD).

    PubMed

    Obasi, Ezemenari M; Leong, Frederick T L

    2010-10-01

    This paper describes the development of the Measurement of Acculturation Strategies for People of African Descent (MASPAD), a bidimensional instrument designed to assess acculturation strategies (i.e., Traditionalist, Integrationist, Assimilationist, and Marginalist). Two studies were conducted to describe the development of the MASPAD and to assess its psychometric properties. Data were collected from 367 African American participants in Atlanta, GA; Columbus, OH; Los Angeles; and New York City, NY. The MASPAD consistently produced scores with adequate reliability and independent raters provided initial evidence for face and content validity. Pearson correlation coefficients supported the purported orthogonality of the MASPAD subscales. The MASPAD was found to be a significant predictor of cultural worldview and values. The bidimensional model of acculturation theorized to exist in the MASPAD was supported with a confirmatory factor analysis on data collected from 831 participants. Future directions for this body of research are discussed. PMID:21058816

  19. A Survey of Supersonic Retropropulsion Technology for Mars Entry, Descent, and Landing

    NASA Technical Reports Server (NTRS)

    Korzun, Ashley M.; Cruz, Juan R.; Braun, Robert D.

    2007-01-01

    This paper presents a literature survey on supersonic retropropulsion technology as it applies to Mars entry, descent, and landing (EDL). The relevance of this technology to the feasibility of Mars EDL is shown to increase with ballistic coefficient to the point that it is likely required for human Mars exploration. The use of retropropulsion to decelerate an entry vehicle from hypersonic or supersonic conditions to a subsonic velocity is the primary focus of this review. Discussed are systems-level studies, general flowfield characteristics, static aerodynamics, vehicle and flowfield stability considerations, and aerothermodynamics. The experimental and computational approaches used to develop retropropulsion technology are also reviewed. Finally, the applicability and limitations of the existing literature and current state-of-the-art computational tools to future missions are discussed in the context of human and robotic Mars exploration.

  20. Participation and Research of Astronomers and Astrophysicists of Black African Descent (1900–2005)

    NASA Astrophysics Data System (ADS)

    Oluseyi, Hakeem M.; Urama, Johnson

    The second half of the Twentieth Century witnessed the emergence of the first modern Astronomers and Astrophysicists of Black African descent. In this paper we enumerate these researchers and briefly describe their activities. We also describe the broader social and political contexts which have impacted their participation and research. We focus primarily on researchers in the United States of America (28) and in Nigeria (19) who have together produced over 90% of the astronomical researchers known to the authors. We briefly mention researchers from other countries including South Africa (3) and in Eurasia (2). We conclude by describing the pioneering researchers and disseminators of the Black African Diaspora's contribution of to the modern astronomical sciences.

  1. Participation and Research of Astronomers and Astrophysicists of Black African Descent (1900 2005)

    NASA Astrophysics Data System (ADS)

    Oluseyi, Hakeem M.; Urama, Johnson

    The second half of the Twentieth Century witnessed the emergence of the first modern Astronomers and Astrophysicists of Black African descent. In this paper we enumerate these researchers and briefly describe their activities. We also describe the broader social and political contexts which have impacted their participation and research. We focus primarily on researchers in the United States of America (28) and in Nigeria (19) who have together produced over 90% of the astronomical researchers known to the authors. We briefly mention researchers from other countries including South Africa (3) and in Eurasia (2). We conclude by describing the pioneering researchers and disseminators of the Black African Diaspora's contribution of to the modern astronomical sciences.

  2. Computation of identity-by-descent proportions shared by two siblings

    SciTech Connect

    Guo, Sun Wei )

    1994-06-01

    The author provides a novel approach to computing the mean and variance of the proportion of genetic material shared identical by descent (IBD) by sibling paris in a specified chromosomal region, conditional on observed marker data. He first shows that each chromosome in an offspring can be represented by a two-state Markov chain, with the time parameter being map distance along the chromosome. On this basis, it is shown that IBD proportion can be written as a stochastic integral and that the computation of its mean and variance can be reduced to evaluation of an integral of some elementary functions. In addition, it is shown how Goldgar's model can be extended to include dominance effects. Several examples are provided to illustrate the calculation. 13 refs., 1 tab.

  3. Accurate Non-parametric Estimation of Recent Effective Population Size from Segments of Identity by Descent

    PubMed Central

    Browning, Sharon R.; Browning, Brian L.

    2015-01-01

    Existing methods for estimating historical effective population size from genetic data have been unable to accurately estimate effective population size during the most recent past. We present a non-parametric method for accurately estimating recent effective population size by using inferred long segments of identity by descent (IBD). We found that inferred segments of IBD contain information about effective population size from around 4 generations to around 50 generations ago for SNP array data and to over 200 generations ago for sequence data. In human populations that we examined, the estimates of effective size were approximately one-third of the census size. We estimate the effective population size of European-ancestry individuals in the UK four generations ago to be eight million and the effective population size of Finland four generations ago to be 0.7 million. Our method is implemented in the open-source IBDNe software package. PMID:26299365

  4. The Unparalleled Systems Engineering of MSL's Backup Entry, Descent, and Landing System: Second Chance

    NASA Technical Reports Server (NTRS)

    Roumeliotis, Chris; Grinblat, Jonathan; Reeves, Glenn

    2013-01-01

    Second Chance (SECC) was a bare bones version of Mars Science Laboratory's (MSL) Entry Descent & Landing (EDL) flight software that ran on Curiosity's backup computer, which could have taken over swiftly in the event of a reset of Curiosity's prime computer, in order to land her safely on Mars. Without SECC, a reset of Curiosity's prime computer would have lead to catastrophic mission failure. Even though a reset of the prime computer never occurred, SECC had the important responsibility as EDL's guardian angel, and this responsibility would not have seen such success without unparalleled systems engineering. This paper will focus on the systems engineering behind SECC: Covering a brief overview of SECC's design, the intense schedule to use SECC as a backup system, the verification and validation of the system's "Do No Harm" mandate, the system's overall functional performance, and finally, its use on the fateful day of August 5th, 2012.

  5. Three cases of Troyer syndrome in two families of Filipino descent.

    PubMed

    Butler, Shauna; Helbig, Katherine L; Alcaraz, Wendy; Seaver, Laurie H; Hsieh, David T; Rohena, Luis

    2016-07-01

    Troyer syndrome is a complex hereditary spastic paraplegia (HSP) due to a mutation in SPG20 first reported in the Old Amish population. A genetic mutation in SPG20 is responsible for a loss of function of the protein spartin in this disease. Since its initial report, this syndrome has also been reported in Turkish and Omani families. Here we report the case of three patients of Filipino descent with Troyer syndrome. Whole exome sequencing (WES) identified a homozygous mutation c.364_365delAT which predicts p.Met122Valfs*2 in SPG20. This is the same mutation identified in affected patients from the Omani and Turkish families, and is the first report of this syndrome in the Filipino population. Although Troyer syndrome has characteristic phenotypic manifestations it is likely underdiagnosed due to its rarity and we expect that WES will lead to identifying this disease in other individuals. © 2016 Wiley Periodicals, Inc. PMID:27112432

  6. Simulation Framework for Rapid Entry, Descent, and Landing (EDL) Analysis. Volume 2; Appendices

    NASA Technical Reports Server (NTRS)

    Murri, Daniel G.

    2010-01-01

    The NASA Engineering and Safety Center (NESC) was requested to establish the Simulation Framework for Rapid Entry, Descent, and Landing (EDL) Analysis assessment, which involved development of an enhanced simulation architecture using the Program to Optimize Simulated Trajectories II (POST2) simulation tool. The assessment was requested to enhance the capability of the Agency to provide rapid evaluation of EDL characteristics in systems analysis studies, preliminary design, mission development and execution, and time-critical assessments. Many of the new simulation framework capabilities were developed to support the Agency EDL Systems Analysis (EDL-SA) team, that is conducting studies of the technologies and architectures that are required to enable higher mass robotic and human mission to Mars. The appendices to the original report are contained in this document.

  7. Electronic Nature of Step-edge Barriers Against Adatom Descent on Transition-metal Surfaces

    SciTech Connect

    Mo, Yina; Zhu, Wenguang; Kaxiras, Efthimios; Zhang, Zhenyu

    2008-01-01

    The activation barriers against adatom migration on terraces and across steps play an essential role in determining the growth morphology of surfaces, interfaces, and thin lms. By studying a series of adatoms on representative transition metal surfaces through extensive rst-principles calculations, we establish a clear correlation between the preferred mechanism and activation energy for adatom descent at a step and the relative degree of electronic shell lling between the adatom and the substrate. We also nd an approximate linear relation between the adatom hopping barriers at step edges and the adatom-surface bonding strength. These results may serve as simple guiding rules for predicting the precise atomic nature of surface morphologies in heteroepitaxial growth such as nanowires.

  8. Factors affecting breastfeeding among women of Mexican origin or descent in Los Angeles.

    PubMed

    Scrimshaw, S C; Engle, P L; Arnold, L; Haynes, K

    1987-04-01

    Data on breastfeeding intentions and behavior were collected in prenatal and postpartum interviews as part of a study on first birth among 518 women of Mexican origin or descent in two Los Angeles hospitals. The prenatal intentions of 82 per cent of the women to breastfeed were maintained postpartum in one hospital but dropped sharply in the other. A greater number of hours a day with the baby in the hospital and earlier initiation of breastfeeding were associated with the hospital where prenatal breastfeeding intentions were more likely to be carried out. The intention to work postpartum was associated both with the decision not to breastfeed at all and with shorter intended duration of breastfeeding. PMID:3826466

  9. Quantification of Plume-Soil Interaction and Excavation Due to the Sky Crane Descent Stage

    NASA Technical Reports Server (NTRS)

    Vizcaino, Jeffrey; Mehta, Manish

    2015-01-01

    The quantification of the particulate erosion that occurs as a result of a rocket exhaust plume impinging on soil during extraterrestrial landings is critical for future robotic and human lander mission design. The aerodynamic environment that results from the reflected plumes results in dust lifting, site alteration and saltation, all of which create a potentially erosive and contaminant heavy environment for the lander vehicle and any surrounding structures. The Mars Science Lab (MSL), weighing nearly one metric ton, required higher levels of thrust from its retro propulsive systems and an entirely new descent system to minimize these effects. In this work we seek to quantify plume soil interaction and its resultant soil erosion caused by the MSL's Sky Crane descent stage engines by performing three dimensional digital terrain and elevation mapping of the Curiosity rover's landing site. Analysis of plume soil interaction altitude and time was performed by detailed examination of the Mars Descent Imager (MARDI) still frames and reconstructed inertial measurement unit (IMU) sensor data. Results show initial plume soil interaction from the Sky Crane's eight engines began at ground elevations greater than 60 meters and more than 25 seconds before the rovers' touchdown event. During this time, viscous shear erosion (VSE) was dominant typically resulting in dusting of the surface with flow propagating nearly parallel to the surface. As the vehicle descended and decreased to four powered engines plume-plume and plume soil interaction increased the overall erosion rate at the surface. Visibility was greatly reduced at a height of roughly 20 meters above the surface and fell to zero ground visibility shortly after. The deployment phase of the Sky Crane descent stage hovering at nearly six meters above the surface showed the greatest amount of erosion with several large particles of soil being kicked up, recirculated, and impacting the bottom of the rover chassis. Image

  10. A Multidisciplinary Tool for Systems Analysis of Planetary Entry, Descent, and Landing (SAPE)

    NASA Technical Reports Server (NTRS)

    Samareh, Jamshid A.

    2009-01-01

    SAPE is a Python-based multidisciplinary analysis tool for systems analysis of planetary entry, descent, and landing (EDL) for Venus, Earth, Mars, Jupiter, Saturn, Uranus, Neptune, and Titan. The purpose of SAPE is to provide a variable-fidelity capability for conceptual and preliminary analysis within the same framework. SAPE includes the following analysis modules: geometry, trajectory, aerodynamics, aerothermal, thermal protection system, and structural sizing. SAPE uses the Python language-a platform-independent open-source software for integration and for the user interface. The development has relied heavily on the object-oriented programming capabilities that are available in Python. Modules are provided to interface with commercial and government off-the-shelf software components (e.g., thermal protection systems and finite-element analysis). SAPE runs on Microsoft Windows and Apple Mac OS X and has been partially tested on Linux.

  11. Modeling of magma descent and volcano deformation during a vulcanian eruption

    NASA Astrophysics Data System (ADS)

    Minowa, T.; Nishimura, T.

    2013-12-01

    Volcanic edifice generally deflates due to the discharge of magma in the conduit or reservoir when an eruption occurs. Contrary, recent geodetic observations for vulcanian eruptions of Showa crater at Sakurajima, Japan, show uplift toward the crater at the beginning of eruptions (Iguchi, 2013). In this study, we explain such apparently unexpected deformations by considering magma descent processes in a shallow conduit associated with vulcanian eruptions. A vulcanian eruption is simplified to be triggered by a removal of cap-rock that pressurizes magma in the conduit. Magma in the upper part of conduit is fragmented by large pressure differences built up in the conduit to rapidly effuse volcanic ash. The fragmentation surface propagates downward as volcanic ash ejects. Such magma descent during eruption is formulated by Koyaguchi and Mitani (2005). We propose a moving pressure source model for calculating volcano deformation, following their model. The normal stress acting on the conduit wall is reduced after the passage of the fragmentation surface, which acts as a deflation source. Upward drag force works on the conduit wall bellow the fragmentation surface where a high pressure gradient is formed in the magma. These processes are described by seven model parameters: conduit length L, conduit radius, initial overpressure at the top of the conduit, initial position of the magma head, magma porosity, magma viscosity and descent rate of the fragmentation surface, U. We calculate tilt and strain at the foot of volcano with a conical topography with a height of 1km and inclination angle of 11 degrees by using 3-D boundary element method. We assume appropriate parameters for vulcanian eruptions at andesitic volcanoes such as Sakurajima volcano, and set a cylindrical conduit at the summit. Numerical calculations of volcano deformations at 1-4 km distances from the conduit show following characteristics. Uplift toward the crater appears just after an eruption, because

  12. Iterative CT reconstruction using coordinate descent with ordered subsets of data

    NASA Astrophysics Data System (ADS)

    Noo, F.; Hahn, K.; Schöndube, H.; Stierstorfer, K.

    2016-04-01

    Image reconstruction based on iterative minimization of a penalized weighted least-square criteria has become an important topic of research in X-ray computed tomography. This topic is motivated by increasing evidence that such a formalism may enable a significant reduction in dose imparted to the patient while maintaining or improving image quality. One important issue associated with this iterative image reconstruction concept is slow convergence and the associated computational effort. For this reason, there is interest in finding methods that produce approximate versions of the targeted image with a small number of iterations and an acceptable level of discrepancy. We introduce here a novel method to produce such approximations: ordered subsets in combination with iterative coordinate descent. Preliminary results demonstrate that this method can produce, within 10 iterations and using only a constant image as initial condition, satisfactory reconstructions that retain the noise properties of the targeted image.

  13. Development of advanced entry, descent, and landing technologies for future Mars Missions

    NASA Technical Reports Server (NTRS)

    Chu, Cheng-Chih (Chester)

    2006-01-01

    Future Mars missions may need the capability to land much closer to a desired target and/or advanced methods of detecting, avoiding, or tolerating landing hazards. Therefore, technologies that enable 'pinpoint landing' (within tens of meters to 1 km of a target site) will be crucial to meet future mission requirements. As part of NASA Research Announcement, NRA 03-OSS-01, NASA solicited proposals for technology development needs of missions to be launched to Mars during or after the 2009 launch opportunity. Six technology areas were identified as of high priority including advanced entry, descent, and landing (EDL) technologies. In May 2004, 11 proposals with PIs from universities, industries, and NASA centers, were awarded in the area of advanced EDL by NASA for further study and development. This paper presents an overview of these developing technologies.

  14. Regolith-Derived Heat Shield for Planetary Body Entry and Descent System with In Situ Fabrication

    NASA Technical Reports Server (NTRS)

    Hogue, Michael D.; Mueller, Robert P.; Rasky, Daniel; Hintze, Paul; Sibille, Laurent

    2012-01-01

    In this paper we will discuss a new mass-efficient and innovative way of protecting high-mass spacecraft during planetary Entry, Descent & Landing (EDL). Heat shields fabricated in situ can provide a thermal-protection system (TPS) for spacecraft that routinely enter a planetary atmosphere. By fabricating the heat shield with space resources from regolith materials available on moons and asteroids, it is possible to avoid launching the heat-shield mass from Earth. Two regolith processing and manufacturing methods will be discussed: 1) Compression and sintering of the regolith to yield low density materials; 2) Formulations of a High-temperature silicone RTV (Room Temperature Vulcanizing) compound are used to bind regolith particles together. The overall positive results of torch flame impingement tests and plasma arc jet testing on the resulting samples will also be discussed.

  15. Partner violence, depression, and practice implications with families of Chinese descent.

    PubMed

    Yick, Alice G; Shibusawa, Tazuko; Agbayani-Siewert, Pauline

    2003-01-01

    Because the Chinese tend to display psychological problems such as depression in somatic This article examines cultural aspects, experiences, and the mental health consequences of partner violence among families of Chinese descent. A total of 262 Chinese men and women participated in a telephone survey about partner violence and psychological well-being. Symptoms, two indicators of mental health were employed in the research study. Findings indicated a high level of verbal aggression both perpetrated and sustained by participants. Rates of physical abuse were lower; however, these figures dispel the model minority myth associated with Asian Americans. In addition, findings showed a positive correlation between depression and partner violence. Those who experienced verbal and physical aggression by a spouse/intimate partner in the last 12 months were more likely to experience depression. Those who perpetrated physical aggression were more likely to experience somatic symptoms. Practice and research implications are highlighted. PMID:14692179

  16. Cassini/Huygens Probe Entry, Descent, and Landing (EDL) at Titan Independent Technical Assessment

    NASA Technical Reports Server (NTRS)

    Powell, Richard W.; Lockwood, Mary Kae; Cruz, Juan R.; Striepe, Scott A.; Sutton, Kenneth; Fisher, Jody; Takashima, Naruhisa T.; Justus, Jere; Keller, Vernon W.; Bose, Deepak; Prabhu, Dinesh; Chen, Y. K.; Olejniczak, Joe; Cruz, Juan R; Duvall, Aleta

    2009-01-01

    Starting in January 2004, the NESC has received several communications from knowledgeable technical experts at NASA expressing shared concerns (mainly at the Langley Research Center (LaRC) and Ames Research Center (ARC)) about Huygens mission success. It was suggested that NASA become more technically involved directly in the analysis of Huygens' entry, descent and landing (EDL) focusing on the parachute deployment trigger performance and the resultant effects on the operation of the parachute system, and the determination of the radiative heating environment at Titan by ESA and the corresponding thermal protection system (TPS) response. A NESC Team was formed and tasked to provide an independent assessment of these concerns. The results of that assessment are documented in this report.

  17. Overview of the NASA Entry, Descent and Landing Systems Analysis Exploration Feed-Forward Study

    NASA Technical Reports Server (NTRS)

    DwyerCianciolo, Alicia M.; Zang, Thomas A.; Sostaric, Ronald R.; McGuire, M. Kathy

    2011-01-01

    Technology required to land large payloads (20 to 50 mt) on Mars remains elusive. In an effort to identify the most viable investment path, NASA and others have been studying various concepts. One such study, the Entry, Descent and Landing Systems Analysis (EDLSA) Study [1] identified three potential options: the rigid aeroshell, the inflatable aeroshell and supersonic retropropulsion (SRP). In an effort to drive out additional levels of design detail, a smaller demonstrator, or exploration feed-forward (EFF), robotic mission was devised that utilized two of the three (inflatable aeroshell and SRP) high potential technologies in a configuration to demonstrate landing a two to four metric ton payload on Mars. This paper presents and overview of the maximum landed mass, inflatable aeroshell controllability and sensor suite capability assessments of the selected technologies and recommends specific technology areas for additional work.

  18. Supersonic Retropropulsion Technology Development in NASA's Entry, Descent, and Landing Project

    NASA Technical Reports Server (NTRS)

    Edquist, Karl T.; Berry, Scott A.; Rhode, Matthew N.; Kelb, Bil; Korzun, Ashley; Dyakonov, Artem A.; Zarchi, Kerry A.; Schauerhamer, Daniel G.; Post, Ethan A.

    2012-01-01

    NASA's Entry, Descent, and Landing (EDL) space technology roadmap calls for new technologies to achieve human exploration of Mars in the coming decades [1]. One of those technologies, termed Supersonic Retropropulsion (SRP), involves initiation of propulsive deceleration at supersonic Mach numbers. The potential benefits afforded by SRP to improve payload mass and landing precision make the technology attractive for future EDL missions. NASA's EDL project spent two years advancing the technological maturity of SRP for Mars exploration [2-15]. This paper summarizes the technical accomplishments from the project and highlights challenges and recommendations for future SRP technology development programs. These challenges include: developing sufficiently large SRP engines for use on human-scale entry systems; testing and computationally modelling complex and unsteady SRP fluid dynamics; understanding the effects of SRP on entry vehicle stability and controllability; and demonstrating sub-scale SRP entry systems in Earth's atmosphere.

  19. Entry, Descent, and Landing Operations Analysis for the Genesis Re-Entry Capsule

    NASA Technical Reports Server (NTRS)

    Desai, Prasun N.; Lyons, Dan T.

    2005-01-01

    On September 8, 2004, the Genesis spacecraft returned to Earth after spending 29 months about the sun-Earth libration point collecting solar wind particles. Four hours prior to Earth arrival, the entry capsule containing the samples was released for entry and subsequent landing at the Utah Test and Training Range. This paper provides an overview of the entry, descent, and landing trajectory analysis that was performed during the Mission Operations Phase leading up to final approach to Earth. The operations effort accurately delivered the entry capsule to the desired landing site. The final landing location was 8.3 km from the target, and was well within the allowable landing area. Preliminary reconstruction analyses indicate that the actual entry trajectory was very close to the pre-entry prediction.

  20. Descent of tremor source locations before the 2014 phreatic eruption of Ontake volcano, Japan

    NASA Astrophysics Data System (ADS)

    Ogiso, Masashi; Matsubayashi, Hirotoshi; Yamamoto, Tetsuya

    2015-12-01

    On 27 September 2014, Ontake volcano, in central Japan, suddenly erupted without precursory activity. We estimated and tracked the source locations of volcanic tremor associated with the eruption at high temporal resolution, using a method based on the spatial distribution of tremor amplitudes. Although the tremor source locations were not well constrained in depth, their epicenters were well located beneath the erupted crater and the summit. Tremor sources were seen to descend approximately 2 km over a period of several minutes prior to the beginning of the eruption. Detailed analysis of the time series of tremor amplitudes suggests that this descent is a robust feature. Our finding may be an important constraint for modeling the 2014 eruption of Ontake volcano as well as for monitoring activities on this and other volcanoes.

  1. Mars atmospheric winds indicated by motion of the Viking landers during parachute descent

    NASA Astrophysics Data System (ADS)

    Seiff, A.

    1993-04-01

    The parachute descent trajectories of the two Viking landers are used to determine winds in the Martian atmosphere at altitudes from 1.5 to 3.5 km. Viking 1 descended within a vigorously convective boundary layer, while Viking 2 at 1.5 km was above the boundary layer. Turbulent velocities in the Viking 1 boundary layer were approximately 3 m/sec, and mean upflow velocity was approximately 1 m/sec. The Viking 2 atmosphere was relatively quiescent, with orderly wind directional variation possibly suggesting the presence of waves. Comparison of the measured winds with a recent global circulation model showed little or no correspondence, probably an indication that the winds were locally controlled. The high sensitivity of winds at altitudes up to several kilometers to terrain slopes as small as a few meters per kilometer would suggest that slope winds may be widely found in the lowest few kilometers of the Martian atmosphere.

  2. Why the Viking descent probes found only one ionospheric layer at Mars

    NASA Astrophysics Data System (ADS)

    Mayyasi, Majd; Mendillo, Michael

    2015-09-01

    Radio wave transmissions from satellites revealed that Mars had two relatively distinct layers of ionization: a maximum electron density near 130 km, and a secondary layer near 110 km. When the Viking descent probes—with their in situ observing capabilities—passed through the ionosphere, the peak electron density was found, with no indication of a secondary layer below. Here we use an ionospheric model to show that profiles of electron density versus height have shapes that favor the detection of two layers at local times near dawn and dusk (where many thousands of radio occultation observations have been made), but that the two layers essentially merge into one during midday hours (when Viking measurements were made). The profile shapes are attributed to ionizing geometry of solar photons and to chemical processes that affect the profile shapes in a way that favors secondary peak formation near sunrise and sunset.

  3. Regolith-Derived Heat Shield for Planetary Body Entry and Descent System with In Situ Fabrication

    NASA Technical Reports Server (NTRS)

    Hogue, Michael D.; Mueller, Robert P.; Rasky, Daniel J.; Hintze, Paul E.; Sibille, Laurent

    2011-01-01

    In this paper we will discuss a new mass-efficient and innovative way of protecting high-mass spacecraft during planetary Entry, Descent & Landing (EDL). Heat shields fabricated in situ can provide a thermal-protection system (TPS) for spacecraft that routinely enter a planetary atmosphere. By fabricating the heat shield with space resources from regolith materials available on moons and asteroids, it is possible to avoid launching the heat-shield mass from Earth. Three regolith processing and manufacturing methods will be discussed: 1) oxygen & metal extraction ISRU processes produce glassy melts enriched in alumina and titania, processed to obtain variable density, high melting point and heat-resistance; 2) compression and sintering of the regolith yield low density materials; 3) in-situ derived high-temperature polymers are created to bind regolith particles together, with a lower energy budget.

  4. Approach and Entry, Descent, and Landing Operations for the Mars Science Laboratory Mission

    NASA Technical Reports Server (NTRS)

    Chen, Allen; Greco, Martin; Martin-Mur, Tomas; Portock, Brian; Steltzner, Adam

    2013-01-01

    On August 5th, 2012, at 10:31 PM PDT, the Mars Science Laboratory (MSL) rover Curiosity landed safely within Gale Crater. Her successful landing de-pended not only upon the flawless execution of the numerous critical activities during the seven minute entry, descent, and landing (EDL), but also upon the operational preparations and decisions made by the flight team during approach, the final weeks, days, and hours prior to landing. During this period, decisions made by the flight team balanced operational risk to the spacecraft in flight with any resulting risks incurred during EDL as a result of those decisions. This pa-per summarizes the operations plans made in preparation for Approach and EDL and the as flown decisions and actions executed that balanced the operational and EDL risks and prepared the vehicle for a successful landing.

  5. On the Use of a Range Trigger for the Mars Science Laboratory Entry Descent and Landing

    NASA Technical Reports Server (NTRS)

    Way, David W.

    2011-01-01

    In 2012, during the Entry, Descent, and Landing (EDL) of the Mars Science Laboratory (MSL) entry vehicle, a 21.5 m Viking-heritage, Disk-Gap-Band, supersonic parachute will be deployed at approximately Mach 2. The baseline algorithm for commanding this parachute deployment is a navigated planet-relative velocity trigger. This paper compares the performance of an alternative range-to-go trigger (sometimes referred to as Smart Chute ), which can significantly reduce the landing footprint size. Numerical Monte Carlo results, predicted by the POST2 MSL POST End-to-End EDL simulation, are corroborated and explained by applying propagation of uncertainty methods to develop an analytic estimate for the standard deviation of Mach number. A negative correlation is shown to exist between the standard deviations of wind velocity and the planet-relative velocity at parachute deploy, which mitigates the Mach number rise in the case of the range trigger.

  6. Simulation Framework for Rapid Entry, Descent, and Landing (EDL) Analysis. Volume 1

    NASA Technical Reports Server (NTRS)

    Murri, Daniel G.

    2010-01-01

    The NASA Engineering and Safety Center (NESC) was requested to establish the Simulation Framework for Rapid Entry, Descent, and Landing (EDL) Analysis assessment, which involved development of an enhanced simulation architecture using the Program to Optimize Simulated Trajectories II (POST2) simulation tool. The assessment was requested to enhance the capability of the Agency to provide rapid evaluation of EDL characteristics in systems analysis studies, preliminary design, mission development and execution, and time-critical assessments. Many of the new simulation framework capabilities were developed to support the Agency EDL Systems Analysis (EDL-SA) team, that is conducting studies of the technologies and architectures that are required to enable higher mass robotic and human mission to Mars. The findings of the assessment are contained in this report.

  7. Simulation Framework for Rapid Entry, Descent, and Landing (EDL) Analysis, Phase 2 Results

    NASA Technical Reports Server (NTRS)

    Murri, Daniel G.

    2011-01-01

    The NASA Engineering and Safety Center (NESC) was requested to establish the Simulation Framework for Rapid Entry, Descent, and Landing (EDL) Analysis assessment, which involved development of an enhanced simulation architecture using the Program to Optimize Simulated Trajectories II simulation tool. The assessment was requested to enhance the capability of the Agency to provide rapid evaluation of EDL characteristics in systems analysis studies, preliminary design, mission development and execution, and time-critical assessments. Many of the new simulation framework capabilities were developed to support the Agency EDL-Systems Analysis (SA) team that is conducting studies of the technologies and architectures that are required to enable human and higher mass robotic missions to Mars. The findings, observations, and recommendations from the NESC are provided in this report.

  8. Parametric Mass Modeling for Mars Entry, Descent and Landing System Analysis Study

    NASA Technical Reports Server (NTRS)

    Samareh, Jamshid A.; Komar, D. R.

    2011-01-01

    This paper provides an overview of the parametric mass models used for the Entry, Descent, and Landing Systems Analysis study conducted by NASA in FY2009-2010. The study examined eight unique exploration class architectures that included elements such as a rigid mid-L/D aeroshell, a lifting hypersonic inflatable decelerator, a drag supersonic inflatable decelerator, a lifting supersonic inflatable decelerator implemented with a skirt, and subsonic/supersonic retro-propulsion. Parametric models used in this study relate the component mass to vehicle dimensions and mission key environmental parameters such as maximum deceleration and total heat load. The use of a parametric mass model allows the simultaneous optimization of trajectory and mass sizing parameters.

  9. The Mast Cameras and Mars Descent Imager (MARDI) for the 2009 Mars Science Laboratory

    NASA Technical Reports Server (NTRS)

    Malin, M. C.; Bell, J. F.; Cameron, J.; Dietrich, W. E.; Edgett, K. S.; Hallet, B.; Herkenhoff, K. E.; Lemmon, M. T.; Parker, T. J.; Sullivan, R. J.

    2005-01-01

    Based on operational experience gained during the Mars Exploration Rover (MER) mission, we proposed and were selected to conduct two related imaging experiments: (1) an investigation of the geology and short-term atmospheric vertical wind profile local to the Mars Science Laboratory (MSL) landing site using descent imaging, and (2) a broadly-based scientific investigation of the MSL locale employing visible and very near infra-red imaging techniques from a pair of mast-mounted, high resolution cameras. Both instruments share a common electronics design, a design also employed for the MSL Mars Hand Lens Imager (MAHLI) [1]. The primary differences between the cameras are in the nature and number of mechanisms and specific optics tailored to each camera s requirements.

  10. Molecular analysis of patients of Sardinian descent with Crigler-Najjar syndrome type I.

    PubMed Central

    Rosatelli, M C; Meloni, A; Faa, V; Saba, L; Crisponi, G; Clemente, M G; Meloni, G; Piga, M T; Cao, A

    1997-01-01

    This study reports the molecular characterisation of the bilirubin UDP-glucuronosyl-transferase gene (UGT1) in a group of patients of Sardinian descent with Crigler-Najjar syndrome type I and their relatives. Sequence analysis of both UGT1A exon 1 and common exons 2-5 was performed in all patients, leading to the detection of AF170 and a novel mutation (470insT), both residing in UGT1A exon 1. All but two heterozygotes for the AF170 mutation showed normal serum bilirubin levels. These two subjects were also heterozygous for the sequence variation A(TA)7TAA in the promoter region of the UGT1A gene. Images PMID:9039987

  11. Atmospheric Risk Assessment for the Mars Science Laboratory Entry, Descent, and Landing System

    NASA Technical Reports Server (NTRS)

    Chen, Allen; Vasavada, Ashwin; Cianciolo, Alicia; Barnes, Jeff; Tyler, Dan; Hinson, David; Lewis, Stephen

    2010-01-01

    In 2012, the Mars Science Laboratory (MSL) mission will pioneer the next generation of robotic Entry, Descent, and Landing (EDL) systems, by delivering the largest and most capable rover to date to the surface of Mars. As with previous Mars landers, atmospheric conditions during entry, descent, and landing directly impact the performance of MSL's EDL system. While the vehicle's novel guided entry system allows it to "fly out" a range of atmospheric uncertainties, its trajectory through the atmosphere creates a variety of atmospheric sensitivities not present on previous Mars entry systems and landers. Given the mission's stringent landing capability requirements, understanding the atmosphere state and spacecraft sensitivities takes on heightened importance. MSL's guided entry trajectory differs significantly from recent Mars landers and includes events that generate different atmospheric sensitivities than past missions. The existence of these sensitivities and general advancement in the state of Mars atmospheric knowledge has led the MSL team to employ new atmosphere modeling techniques in addition to past practices. A joint EDL engineering and Mars atmosphere science and modeling team has been created to identify the key system sensitivities, gather available atmospheric data sets, develop relevant atmosphere models, and formulate methods to integrate atmosphere information into EDL performance assessments. The team consists of EDL engineers, project science staff, and Mars atmospheric scientists from a variety of institutions. This paper provides an overview of the system performance sensitivities that have driven the atmosphere modeling approach, discusses the atmosphere data sets and models employed by the team as a result of the identified sensitivities, and introduces the tools used to translate atmospheric knowledge into quantitative EDL performance assessments.

  12. Entry, Descent, and Landing with Propulsive Deceleration: Supersonic Retropropulsion Wind Tunnel Testing and Shock Phenomena

    NASA Technical Reports Server (NTRS)

    Palaszewski, Bryan

    2013-01-01

    The future exploration of the Solar System will require innovations in transportation and the use of entry, descent, and landing (EDL) systems at many planetary landing sites. The cost of space missions has always been prohibitive, and using the natural planetary and planet's moon atmospheres for entry, and descent can reduce the cost, mass, and complexity of these missions. This paper will describe some of the EDL ideas for planetary entry and survey the overall technologies for EDL that may be attractive for future Solar System missions. Future EDL systems may include an inflatable decelerator for the initial atmospheric entry and an additional supersonic retro-propulsion (SRP) rocket system for the final soft landing. A three engine retro-propulsion configuration with a 2.5 inch diameter sphere-cone aeroshell model was tested in the NASA Glenn 1x1 Supersonic Wind Tunnel (SWT). The testing was conducted to identify potential blockage issues in the tunnel, and visualize the rocket flow and shock interactions during supersonic and hypersonic entry conditions. Earlier experimental testing of a 70 degree Viking-like (sphere-cone) aeroshell was conducted as a baseline for testing of a supersonic retro-propulsion system. This baseline testing defined the flow field around the aeroshell and from this comparative baseline data, retro-propulsion options will be assessed. Images and analyses from the SWT testing with 300- and 500-psia rocket engine chamber pressures are presented here. In addition, special topics of electromagnetic interference with retro-propulsion induced shock waves and retro-propulsion for Earth launched booster recovery are also addressed.

  13. Entry, Descent, and Landing With Propulsive Deceleration: Supersonic Retropropulsion Wind Tunnel Testing

    NASA Technical Reports Server (NTRS)

    Palaszewski, Bryan

    2012-01-01

    The future exploration of the Solar System will require innovations in transportation and the use of entry, descent, and landing (EDL) systems at many planetary landing sites. The cost of space missions has always been prohibitive, and using the natural planetary and planet s moons atmosphere for entry, descent, and landing can reduce the cost, mass, and complexity of these missions. This paper will describe some of the EDL ideas for planetary entry and survey the overall technologies for EDL that may be attractive for future Solar System missions. Future EDL systems may include an inflatable decelerator for the initial atmospheric entry and an additional supersonic retro-propulsion (SRP) rocket system for the final soft landing. As part of those efforts, NASA began to conduct experiments to gather the experimental data to make informed decisions on the "best" EDL options. A model of a three engine retro-propulsion configuration with a 2.5 in. diameter sphere-cone aeroshell model was tested in the NASA Glenn 1- by 1-Foot Supersonic Wind Tunnel (SWT). The testing was conducted to identify potential blockage issues in the tunnel, and visualize the rocket flow and shock interactions during supersonic and hypersonic entry conditions. Earlier experimental testing of a 70 Viking-like (sphere-cone) aeroshell was conducted as a baseline for testing of a supersonic retro-propulsion system. This baseline testing defined the flow field around the aeroshell and from this comparative baseline data, retro-propulsion options will be assessed. Images and analyses from the SWT testing with 300- and 500-psia rocket engine chamber pressures are presented here. The rocket engine flow was simulated with a non-combusting flow of air.

  14. Entry, Descent, and Landing with Propulsive Deceleration: Supersonic Retropropulsion Wind Tunnel Testing and Shock Phenomena

    NASA Technical Reports Server (NTRS)

    Palaszewski, Bryan

    2014-01-01

    The future exploration of the Solar System will require innovations in transportation and the use of entry, descent, and landing (EDL) systems at many planetary landing sites. The cost of space missions has always been prohibitive, and using the natural planetary and planet's moon atmospheres for entry, and descent can reduce the cost, mass, and complexity of these missions. This paper will describe some of the EDL ideas for planetary entry and survey the overall technologies for EDL that may be attractive for future Solar System missions. Future EDL systems may include an inflatable decelerator for the initial atmospheric entry and an additional supersonic retropropulsion (SRP) rocket system for the final soft landing. A three engine retropropulsion configuration with a 2.5 in. diameter sphere-cone aeroshell model was tested in the NASA Glenn Research Center's 1- by 1-ft (1×1) Supersonic Wind Tunnel (SWT). The testing was conducted to identify potential blockage issues in the tunnel, and visualize the rocket flow and shock interactions during supersonic and hypersonic entry conditions. Earlier experimental testing of a 70deg Viking-like (sphere-cone) aeroshell was conducted as a baseline for testing of a SRP system. This baseline testing defined the flow field around the aeroshell and from this comparative baseline data, retropropulsion options will be assessed. Images and analyses from the SWT testing with 300- and 500-psia rocket engine chamber pressures are presented here. In addition, special topics of electromagnetic interference with retropropulsion induced shock waves and retropropulsion for Earth launched booster recovery are also addressed.

  15. Icing Frequencies Experienced During Climb and Descent by Fighter-Interceptor Aircraft

    NASA Technical Reports Server (NTRS)

    Perkins, Porter J.

    1958-01-01

    Data and analyses are presented on the relative frequencies of occurrence and severity of icing cloud layers encountered by jet aircraft in the climb and descent phases of flights to high altitudes. Fighter-interceptor aircraft operated by the Air Defense Command (USAF) at bases in the Duluth and Seattle areas collected the data with icing meters installed for a l-year period. The project was part of an extensive program conducted by the NACA to collect Icing cloud data for evaluating the icing problem relevant to routine operations. The average frequency of occurrence of icing was found to be about 5 percent of the number of climbs and descents during 1 year of operations The icing encounters were predominantly in the low and middle cloud layers, decreasing above 15,000 feet to practically none above 25,000 feet. The greatest thickness of ice that would accumulate on any aircraft component (as indicated by the accretion on a small object) was measured with the icing meters. The ice thicknesses on a small sensing probe averaged less than 1/32 inch and did not exceed 1/2 inch. Such accumulations are relatively small when compared with those that can form during horizontal flight in icing clouds. The light accretions resulted from relatively steep angles of flight through generally thin cloud layers. Because of the limited statistical reliability of the results, an analysis was made using previous statistics on icing clouds below an altitude of 20,000 feet to determine the general icing severity probabilities. The calculations were made using adiabatic lifting as a basis to establish the liquid-water content. Probabilities of over-all ice accretions on a small object as a function of airspeed and rate of climb were computed from the derived water contents. These results were then combined with the probability of occurrence of icing in order to give the icing severity that can be expected for routine aircraft operations.

  16. The Effects of the Diurnal Atmospheric Variability on Entry, Descent and Landing on Mars

    NASA Astrophysics Data System (ADS)

    Marceta, D.

    2014-12-01

    Landing on Mars is extremely challenging task due to the fact that the Martian atmosphere is the most hostile environment in the Solar system to perform the entry, descent and landing (EDL) process, because it is thick enough to create substantial heating of the entry vehicle but not thick enough to reduce its velocity to the one necessary for safe landing. Beside this, the atmosphere is very dynamic mainly due to high eccentricity of the Martian orbit, obliquity of the orbital to the equatorial plane and close alignment of the winter solstice and the orbital perihelion. Although seasonal variations of atmospheric parameters are significantly larger than the diurnal, it is very important to analyze diurnal cycles as they can significantly change vertical and horizontal atmospheric profiles in very short time intervals. This can present a serious threat to missions which have very precise timings and specific requirements such as the requirement for the daytime landing to enable ground images acquisition during the descent and landing phase. A 3-degrees-of-freedom trajectory integration routine was combined with the Mars Global Reference Atmospheric Model (Mars-GRAM) to identify the dependence of the EDL profiles on the diurnal cycles of atmospheric parameters throughout the Martian year. The obtained results show that the influence of the diurnal cycles is the largest at the equator and decreases relatively symmetrically towards the poles with a slightly stronger influence in the northern hemisphere. Also, there is a significant influence of the orbital position of Mars on the effect of diurnal atmospheric variations which causes that, around the orbital perihelion and winter solstice, there is some kind of inversion of the dependance of optimal entry timing on latitude of the landing site comparing to the rest of the Martian year.

  17. DASH: a method for identical-by-descent haplotype mapping uncovers association with recent variation.

    PubMed

    Gusev, Alexander; Kenny, Eimear E; Lowe, Jennifer K; Salit, Jaqueline; Saxena, Richa; Kathiresan, Sekar; Altshuler, David M; Friedman, Jeffrey M; Breslow, Jan L; Pe'er, Itsik

    2011-06-10

    Rare variants affecting phenotype pose a unique challenge for human genetics. Although genome-wide association studies have successfully detected many common causal variants, they are underpowered in identifying disease variants that are too rare or population-specific to be imputed from a general reference panel and thus are poorly represented on commercial SNP arrays. We set out to overcome these challenges and detect association between disease and rare alleles using SNP arrays by relying on long stretches of genomic sharing that are identical by descent. We have developed an algorithm, DASH, which builds upon pairwise identical-by-descent shared segments to infer clusters of individuals likely to be sharing a single haplotype. DASH constructs a graph with nodes representing individuals and links on the basis of such segments spanning a locus and uses an iterative minimum cut algorithm to identify densely connected components. We have applied DASH to simulated data and diverse GWAS data sets by constructing haplotype clusters and testing them for association. In simulations we show this approach to be significantly more powerful than single-marker testing in an isolated population that is from Kosrae, Federated States of Micronesia and has abundant IBD, and we provide orthogonal information for rare, recent variants in the outbred Wellcome Trust Case-Control Consortium (WTCCC) data. In both cohorts, we identified a number of haplotype associations, five such loci in the WTCCC data and ten in the isolated, that were conditionally significant beyond any individual nearby markers. We have replicated one of these loci in an independent European cohort and identified putative structural changes in low-pass whole-genome sequence of the cluster carriers. PMID:21620352

  18. Strategies for Choosing Descent Flight-Path Angles for Small Jets

    NASA Technical Reports Server (NTRS)

    Wu, Minghong Gilbert; Green, Steven M.

    2012-01-01

    Three candidate strategies for choosing the descent flight path angle (FPA) for small jets are proposed, analyzed, and compared for fuel efficiency under arrival metering conditions. The strategies vary in operational complexity from a universally fixed FPA, or FPA function that varies with descent speed for improved fuel efficiency, to the minimum-fuel FPA computed for each flight based on winds, route, and speed profile. Methodologies for selecting the parameter for the first two strategies are described. The differences in fuel burn are analyzed over a year s worth of arrival traffic and atmospheric conditions recorded for the Dallas/Fort Worth (DFW) Airport during 2011. The results show that the universally fixed FPA strategy (same FPA for all flights, all year) burns on average 26 lbs more fuel per flight as compared to the minimum-fuel solution. This FPA is adapted to the arrival gate (direction of entry to the terminal) and various timespans (season, month and day) to improve fuel efficiency. Compared to a typical FPA of approximately 3 degrees the adapted FPAs vary significantly, up to 1.3 from one arrival gate to another or up to 1.4 from one day to another. Adapting the universally fixed FPA strategy to the arrival gate or to each day reduces the extra fuel burn relative to the minimum-fuel solution by 27% and 34%, respectively. The adaptations to gate and time combined shows up to 57% reduction of the extra fuel burn. The second strategy, an FPA function, contributes a 17% reduction in the 26 lbs of extra fuel burn over the universally fixed FPA strategy. Compared to the corresponding adaptations of the universally fixed FPA, adaptations of the FPA function reduce the extra fuel burn anywhere from 15-23% depending on the extent of adaptation. The combined effect of the FPA function strategy with both directional and temporal adaptation recovers 67% of the extra fuel relative to the minimum-fuel solution.

  19. Mathematical modeling approaches in the study of glaucoma disparities among people of African and European descents

    PubMed Central

    Guidoboni, Giovanna; Harris, Alon; Arciero, Julia C.; Siesky, Brent A.; Amireskandari, Annahita; Gerber, Austin L.; Huck, Andrew H.; Kim, Nathaniel J.; Cassani, Simone; Carichino, Lucia

    2014-01-01

    Open angle glaucoma (OAG) is a severe ocular disease characterized by progressive and irreversible vision loss. While elevated intraocular pressure (IOP) is a well-established risk factor for OAG, the progression of OAG in many cases, despite IOP treatment, suggests that other risk factors must play significant roles in the development of the disease. For example, various structural properties of the eye, ocular blood flow properties, and systemic conditions have been identified as risk factors for OAG. Ethnicity has also been indicated as a relevant factor that affects the incidence and prevalence of OAG; in fact, OAG is the leading cause of blindness among people of African descent. Numerous clinical studies have been designed to examine the possible correlation and causation between OAG and these factors; however, these studies are met with the challenge of isolating the individual role of multiple interconnected factors. Over the last decade, various mathematical modeling approaches have been implemented in combination with clinical studies in order to provide a mechanical and hemodynamical description of the eye in relation to the entire human body and to assess the contribution of single risk factors to the development of OAG. This review provides a summary of the clinical evidence of ocular structural differences, ocular vascular differences and systemic vascular differences among people of African and European descent, describes the mathematical approaches that have been proposed to study ocular mechanics and hemodynamics while discussing how they could be used to investigate the relevance to OAG of racial disparities, and outlines possible new directions of research. PMID:24501718

  20. Analysis of the Accuracy of Ballistic Descent from a Circular Circumterrestrial Orbit

    NASA Astrophysics Data System (ADS)

    Sikharulidze, Yu. G.; Korchagin, A. N.

    2002-01-01

    The problem of the transportation of the results of experiments and observations to Earth every so often appears in space research. Its simplest and low-cost solution is the employment of a small ballistic reentry spacecraft. Such a spacecraft has no system of control of the descent trajectory in the atmosphere. This can result in a large spread of landing points, which make it difficult to search for the spacecraft and very often a safe landing. In this work, a choice of a compromise scheme of the flight is considered, which includes the optimum braking maneuver, adequate conditions of the entry into the atmosphere with limited heating and overload, and also the possibility of landing within the limits of a circle with a radius of 12.5 km. The following disturbing factors were taken into account in the analysis of the accuracy of landing: the errors of the braking impulse execution, the variations of the atmosphere density and the wind, the error of the specification of the ballistic coefficient of the reentry spacecraft, and a displacement of its center of mass from the symmetry axis. It is demonstrated that the optimum maneuver assures the maximum absolute value of the reentry angle and the insensitivity of the trajectory of descent with respect to small errors of orientation of the braking engine in the plane of the orbit. It is also demonstrated that the possible error of the landing point due to the error of specification of the ballistic coefficient does not depend (in the linear approximation) upon its value and depends only upon the reentry angle and the accuracy of specification of this coefficient. A guided parachute with an aerodynamic efficiency of about two should be used at the last leg of the reentry trajectory. This will allow one to land in a prescribed range and to produce adequate conditions for the interception of the reentry spacecraft by a helicopter in order to prevent a rough landing.

  1. Differences in Ocular Blood Flow in Glaucoma Between Patients of African and European Descent

    PubMed Central

    Siesky, Brent; Harris, Alon; Racette, Lyne; Abassi, Rania; Chandrasekhar, Kaarthik; Tobe, Leslie A.; Behzadi, Jennifer; Eckert, George; Amireskandari, Annahita; Muchnik, Michael

    2014-01-01

    Purpose To investigate differences in ocular blood flow in individuals of African descent (AD) and European descent (ED) with open angle glaucoma (OAG). Patients and Methods A retrospective data analysis was performed on OAG patients of AD and ED who were previously examined for ocular blood flow within the Department of Ophthalmology at Indiana University School of Medicine. Data analysis included blood pressure, heart rate, visual fields, intraocular pressure, ocular perfusion pressure, and color Doppler imaging of retrobulbar vessels. Color Doppler imaging measurements were performed on ophthalmic, central retinal, and nasal and temporal short posterior ciliary arteries, with peak systolic (PSV) and end diastolic velocities (EDV) as well as the Pourcelot vascular resistive index calculated for each vessel. Two-sample t tests of unequal variance were performed with P values <0.05 considered statistically significant. Results OAG patients of AD had statistically significant lower retrobulbar blood flow values than patients of ED including lower ophthalmic artery PSV (P=0.0001), ophthalmic artery EDV (P=0.0008), central retinal artery PSV (P=0.01), temporal short posterior ciliary artery PSV (P=0.0037), and nasal short posterior ciliary artery PSV (P<0.0001). No significant differences were found in terms of intraocular pressure or visual field parameters. Conclusions Significantly lower blood flow values were identified in all retrobulbar blood vessels in AD compared with ED OAG patients. These findings suggest that the contribution of ocular blood flow to the disease process may be different in AD compared with ED OAG patients. PMID:23807346

  2. The Lavoisier mission : A system of descent probe and balloon flotilla for geochemical investigation of the deep atmosphere and surface of Venus

    NASA Astrophysics Data System (ADS)

    Chassefière, E.; Berthelier, J. J.; Bertaux, J.-L.; Quèmerais, E.; Pommereau, J.-P.; Rannou, P.; Raulin, F.; Coll, P.; Coscia, D.; Jambon, A.; Sarda, P.; Sabroux, J. C.; Vitter, G.; Le Pichon, A.; Landeau, B.; Lognonné, P.; Cohen, Y.; Vergniole, S.; Hulot, G.; Mandéa, M.; Pineau, J.-F.; Bézard, B.; Keller, H. U.; Titov, D.; Breuer, D.; Szego, K.; Ferencz, Cs.; Roos-Serote, M.; Korablev, O.; Linkin, V.; Rodrigo, R.; Taylor, F. W.; Harri, A.-M.

    Lavoisier mission is a joint effort of eight European countries and a technological challenge aimed at investigating the lower atmosphere and the surface of Venus. The mission consists of a descent probe and three balloons to be deployed below the cloud deck. Its main scientific objectives may be summarized as following : (i) composition of the deep atmosphere : noble gas (elemental/isotopic), molecular species (elemental/ isotopic), oxygen fugacity; vertical/horizontal/temporal variability; (ii) infrared spectroscopy and radiometry (molecular composition, radiative transfer); (iii) dynamics of the atmosphere : p, T, acceleration measurements, balloon localization through VLBI, meteorological events signed by acoustic waves, atmospheric mixing as imprinted on radioactive tracers; (iv) surface morphology and mineralogy through near infrared imaging on dayside, surface temperature through NIR imaging on nightside. Additional tentative objectives are search for (a) atmospheric electrical activity (optically, radioelectrically, acoustically), (b) crustal outgassing and/or volcanic activity : acoustic activity, horizontal/vertical distribution of radioactive tracers, (c) seismic activity : acoustic waves transmitted from crust to atmosphere, and (d) remanent and/or intrinsic magnetic field. Lavoisier was proposed to ESA in response to the F2/F3 mission Announcement of Opportunity at the beginning of 2000, but it was not selected for the assessment study. A wide international partnership was created for this occasion, including Finland (FMI), France (IPSL, MAGIE, Université Orsay, IPSN, INPG, CEA, IPGP, Obs. Paris-Meudon), Germany (MPAe, Univ. Muenster), Hungary (KFKI, Univ. Eotvos), Portugal (OAL), Russia (IKI), Spain (IAA), United Kingdom (Univ. Oxford).

  3. Planning fuel-conservative descents with or without time constraints using a small programmable calculator: Algorithm development and flight test results

    NASA Technical Reports Server (NTRS)

    Knox, C. E.

    1983-01-01

    A simplified flight-management descent algorithm, programmed on a small programmable calculator, was developed and flight tested. It was designed to aid the pilot in planning and executing a fuel-conservative descent to arrive at a metering fix at a time designated by the air traffic control system. The algorithm may also be used for planning fuel-conservative descents when time is not a consideration. The descent path was calculated for a constant Mach/airspeed schedule from linear approximations of airplane performance with considerations given for gross weight, wind, and nonstandard temperature effects. The flight-management descent algorithm is described. The results of flight tests flown with a T-39A (Sabreliner) airplane are presented.

  4. Evaluating the physical demands when using sled-type stair descent devices to evacuate mobility-limited occupants from high-rise buildings.

    PubMed

    Lavender, Steven A; Mehta, Jay P; Hedman, Glenn E; Park, Sanghyun; Reichelt, Paul A; Conrad, Karen M

    2015-09-01

    The physical demands on evacuators were investigated when using different types of sled-type stair descent devices designed for the emergency evacuation of high rise buildings. Twelve firefighters used six sled-type stair descent devices during simulated evacuations. The devices were evaluated under two staircase width conditions (1.12, and 1.32 m). Dependent measures included electromyographic (EMG) data, heart rates, Borg Scale ratings, and descent velocities. All stair descent speeds were below those reported during pedestrian egress trials. With the exception of the inflatable device, the devices operated by two evacuators had higher descent speeds than those operated by a single evacuator. High friction materials under the sleds facilitated control and reduced the muscle demands on stairs but increased physical demands on the landings. Usability assessments found devices with shorter overall lengths had fewer wall contacts on the landing, and handles integrated in the straps were preferred by the evacuators. PMID:25959322

  5. "Arubaito," or Short-Term Working Abroad in Japan: A Case Study of Brazilian University Students of Japanese Descent

    ERIC Educational Resources Information Center

    Sasaki, Lindsey

    2012-01-01

    International migration between Japan and Brazil dates back to 1908, when the first group of Japanese migrated to Brazil. However, in the 1980s, a reverse flow occurred, as thousands of Brazilians of Japanese descent traveled to Japan to work in manufacturing and construction factories ("dekasegi" workers). Japanese Brazilians up until the third…

  6. Making Sense of Women of African Descent's Place in the Politics of (Urban) Space through the Vehicle of Popular Education.

    ERIC Educational Resources Information Center

    Amoo-Adare, Epifania

    This paper is a brief account and argument for using Built Environment Education Workshops (BEEWs) as a data collection method. The research is based on women of African descent and the connections among their social practices, the spaces that generate them and are generated by them, and the language they use to mediate and/or negotiate those…

  7. Factors that Enable Women of South Asian and African Descent to Succeed in Leadership Positions in Higher Education

    ERIC Educational Resources Information Center

    Kamassah, Sharon

    2010-01-01

    This research study focused on the factors that enable women of South Asian and African descent to succeed as leaders in the college system. The findings were derived from online questionnaires and in-depth interviews of 16 racialized women from two Greater Toronto Area (GTA) colleges. Many factors and recommendations were shared. Some of the…

  8. Family Relations and the Adjustment of Young Children of Mexican Descent: Do Family Cultural Values Moderate These Associations?

    ERIC Educational Resources Information Center

    Gamble, Wendy C.; Modry-Mandell, Kerri

    2008-01-01

    This study examined the role of family cultural values as moderators of the association between family relations and the adjustment of young children. Fifty-five families of Mexican descent with young children enrolled in Head Start programs in the Southwest participated. Mothers provided information about closeness of the mother-child…

  9. 14 CFR 121.333 - Supplemental oxygen for emergency descent and for first aid; turbine engine powered airplanes...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... and for first aid; turbine engine powered airplanes with pressurized cabins. 121.333 Section 121.333... for emergency descent and for first aid; turbine engine powered airplanes with pressurized cabins. (a... passenger cabin occupants. (3) For first-aid treatment of occupants who for physiological reasons...

  10. 14 CFR 121.333 - Supplemental oxygen for emergency descent and for first aid; turbine engine powered airplanes...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... and for first aid; turbine engine powered airplanes with pressurized cabins. 121.333 Section 121.333... for emergency descent and for first aid; turbine engine powered airplanes with pressurized cabins. (a... passenger cabin occupants. (3) For first-aid treatment of occupants who for physiological reasons...

  11. 14 CFR 121.333 - Supplemental oxygen for emergency descent and for first aid; turbine engine powered airplanes...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... and for first aid; turbine engine powered airplanes with pressurized cabins. 121.333 Section 121.333... for emergency descent and for first aid; turbine engine powered airplanes with pressurized cabins. (a... passenger cabin occupants. (3) For first-aid treatment of occupants who for physiological reasons...

  12. 14 CFR 121.333 - Supplemental oxygen for emergency descent and for first aid; turbine engine powered airplanes...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... and for first aid; turbine engine powered airplanes with pressurized cabins. 121.333 Section 121.333... for emergency descent and for first aid; turbine engine powered airplanes with pressurized cabins. (a... passenger cabin occupants. (3) For first-aid treatment of occupants who for physiological reasons...

  13. 14 CFR 121.333 - Supplemental oxygen for emergency descent and for first aid; turbine engine powered airplanes...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... and for first aid; turbine engine powered airplanes with pressurized cabins. 121.333 Section 121.333... for emergency descent and for first aid; turbine engine powered airplanes with pressurized cabins. (a... passenger cabin occupants. (3) For first-aid treatment of occupants who for physiological reasons...

  14. 'The full has never been told': building a theory of sexual health for heterosexual Black men of Caribbean descent.

    PubMed

    Crowell, Candice N; Delgado-Romero, Edward A; Mosley, Della V; Huynh, Sophia

    2016-08-01

    Research on Black sexual health often fails to represent the heterogeneity of Black ethnic groups. For people of Caribbean descent in the USA, ethnicity is a salient cultural factor that influences definitions and experiences of sexual health. Most research on people of Caribbean descent focuses on the relatively high rate of STIs, but sexual health is defined more broadly than STI prevalence. Psychological and emotional indicators and the voice of participants are important to consider when exploring the sexual health of a minority culture. The purpose of this study was to qualitatively explore how heterosexual Black men of Caribbean descent define and understand sexual health for themselves. Eleven men who self-identified as Black, Caribbean and heterosexual participated in three focus groups and were asked to define sexual health, critique behaviours expertly identified as healthy and address what encourages and discourages sexual health in their lives. Findings point to six dimensions of sexual health for heterosexual Black men of Caribbean descent. These include: heterosexually privileged, protective, contextual, interpersonal, cultural and pleasurable dimensions. There were some notable departures from current expert definitions of sexual health. Recommendations for further theory development are provided. PMID:26907581

  15. [G-tolerance of female cosmonauts during descent in space flights of 8 up to 169 days in duration].

    PubMed

    Koloteva, M I; Kotovskaia, A R; Vil'-Vil'iams, I F; Luk'ianiuk, V Iu; Gavrilova, L N

    2001-01-01

    Investigations into g-tolerance of female cosmonauts during descent in space flights of varying duration are topical for the present day, as there are little data on this issue. Tolerance of +Gz-loads during descent was analyzed based on the data about 4 female cosmonauts in 5 space flights. The space flights were conventionally divided into short- (8-16 days) and long-term (169 days). In two space flights (16 and 169-d long), tubeless anti-g suit Centaur was warn during descent. In these space flights, g-tolerance of females was quite satisfactory advocating for the possibility for women to fly to space without any constraints. When the anti-g suit was not used, female physiological systems were stressed heavier than male. The spacesuit smoothed away this difference. Our results evidence a distinct positive effect of wearing the anti-g suit by female cosmonauts during descent as it reduces stress to their physiological systems. PMID:11915747

  16. Anticipatory kinematics and muscle activity preceding transitions from level-ground walking to stair ascent and descent.

    PubMed

    Peng, Joshua; Fey, Nicholas P; Kuiken, Todd A; Hargrove, Levi J

    2016-02-29

    The majority of fall-related accidents are during stair ambulation-occurring commonly at the top and bottom stairs of each flight, locations in which individuals are transitioning to stairs. Little is known about how individuals adjust their biomechanics in anticipation of walking-stair transitions. We identified the anticipatory stride mechanics of nine able-bodied individuals as they approached transitions from level ground walking to stair ascent and descent. Unlike prior investigations of stair ambulation, we analyzed two consecutive "anticipation" strides preceding the transitions strides to stairs, and tested a comprehensive set of kinematic and electromyographic (EMG) data from both the leading and trailing legs. Subjects completed ten trials of baseline overground walking and ten trials of walking to stair ascent and descent. Deviations relative to baseline were assessed. Significant changes in mechanics and EMG occurred in the earliest anticipation strides analyzed for both ascent and descent transitions. For stair descent, these changes were consistent with observed reductions in walking speed, which occurred in all anticipation strides tested. For stair ascent, subjects maintained their speed until the swing phase of the latest anticipation stride, and changes were found that would normally be observed for decreasing speed. Given the timing and nature of the observed changes, this study has implications for enhancing intent recognition systems and evaluating fall-prone or disabled individuals, by testing their abilities to sense upcoming transitions and decelerate during locomotion. PMID:26830440

  17. Implicit Theories of Intelligence across Academic Domains: A Study of Meaning Making in Adolescents of Mexican Descent.

    ERIC Educational Resources Information Center

    Quihuis, Gisell; Bempechat, Janine; Jimenez, Norma V.; Boulay, Beth A.

    2002-01-01

    Used quantitative and qualitative methodologies to examine the implicit theories of intelligence of low-income adolescents of Mexican descent and the meanings they attached to these theories in four academic domains. Found that even students who were designated as entity theorists (intelligence as a fixed trait) on the basis of questionnaire…

  18. Multiple Marginality and Urban Education: Community and School Socialization among Low-Income Mexican-Descent Youth

    ERIC Educational Resources Information Center

    Conchas, Gilberto Q.; Vigil, James Diego

    2010-01-01

    This article conceptualizes the crucial social and developmental features impacting Mexican-descent youth and adolescents in low-income communities in southern California. All youth in these neighborhoods must confront and come to grips with the many environmental, socioeconomic, racial, and cultural forces they confront. However, it is the…

  19. Gpgpu Accelerated Landscape-Evolution Modelling

    NASA Astrophysics Data System (ADS)

    Maddy, D.; McGough, A. S.; Wainwright, J.; Trueman, A.

    2011-12-01

    Existing Landscape-Evolution Models (LEMs) have tended to be applied at relatively coarse spatial resolution and over comparatively short timescales (years-centuries). Extending these models to encompass landscape evolution at the scale of, for example, an entire river basin and over important landscape-forming timescales (i.e. tens of thousands of years) is computationally challenging. In order to address this challenge we are currently reformulating and extending an existing LEM, CybErosion, in order to create a new, highly optimised model, called CUDAscape. CUDAscape is being coded for parallel processing in order to exploit CUDA (Compute Unified Device Architecture), the parallel programming architecture developed by NVIDIA. CybErosion, a cellular erosion model written in C++, implements erosion, sediment transport and deposition processes at individual cell level, with each cell storing the cumulative changes in cell value (height) over the duration of the model run. Using a 5,000 cell DEM, and a simulated annual time step over 800k years, the original CybErosion code has an execution time of approximately 22 hours on an Intel 980X hexacore processor. Sequential code optimization has reduced this to ~4.5 hours but to achieve the modelling of grids comprising millions of cells requires orders of magnitude improvements in performance, an objective unlikely to be reached via advances in conventional CPU architectures within the foreseeable future. In this paper we will present our initial results for the CUDA implementation of a number of key methods including sink filling, flat routing, flow direction (D8, steepest descent) and flow accumulation (kernels that potentially have widespread application in a whole range of Earth System Models), the key bottlenecks in the current generation of LEMs (taking >75% of the execution time of the sequential execution of CybErosion). Using a single NVIDIA Tesla C2050 GPGPU we have seen speedup in excess of x100 on both flow

  20. The Descent Imager/Spectral Radiometer (DISR) Experiment on the Huygens Entry Probe of Titan

    NASA Astrophysics Data System (ADS)

    Tomasko, M. G.; Buchhauser, D.; Bushroe, M.; Dafoe, L. E.; Doose, L. R.; Eibl, A.; Fellows, C.; Farlane, E. M.; Prout, G. M.; Pringle, M. J.; Rizk, B.; See, C.; Smith, P. H.; Tsetsenekos, K.

    2002-07-01

    The payload of the Huygens Probe into the atmosphere of Titan includes the Descent Imager/Spectral Radiometer (DISR). This instrument includes an integrated package of several optical instruments built around a silicon charge coupled device (CCD) detector, a pair of linear InGaAs array detectors, and several individual silicon detectors. Fiber optics are used extensively to feed these detectors with light collected from three frame imagers, an upward and downward-looking visible spectrometer, an upward and downward looking near-infrared spectrometer, upward and downward looking violet phtotometers, a four-channel solar aerole camera, and a sun sensor that determines the azimuth and zenith angle of the sun and measures the flux in the direct solar beam at 940 nm. An onboard optical calibration system uses a small lamp and fiber optics to track the relative sensitivity of the different optical instruments relative to each other during the seven year cruise to Titan. A 20 watt lamp and collimator are used to provide spectrally continuous illumination of the surface during the last 100 m of the descent for measurements of the reflection spectrum of the surface. The instrument contains software and hardware data compressors to permit measurements of upward and downward direct and diffuse solar flux between 350 and 1700 nm in some 330 spectral bands at approximately 2 km vertical resolution from an alititude of 160 km to the surface. The solar aureole camera measures the brightness of a 6° wide strip of the sky from 25 to 75° zenith angle near and opposite the azimuth of the sun in two passbands near 500 and 935 nm using vertical and horizontal polarizers in each spectral channel at a similar vertical resolution. The downward-looking spectrometers provide the reflection spectrum of the surface at a total of some 600 locations between 850 and 1700 nm and at more than 3000 locations between 480 and 960 nm. Some 500 individual images of the surface are expected which can

  1. Runway Texture and Grid Pattern Effects on Rate-of-Descent Perception

    NASA Technical Reports Server (NTRS)

    Schroeder, J. A.; Dearing, M. G.; Sweet, B. T.; Kaiser, M. K.; Rutkowski, Mike (Technical Monitor)

    2001-01-01

    To date, perceptual errors occur in determining descent rate from a computer-generated image in flight simulation. Pilots tend to touch down twice as hard in simulation than in flight, and more training time is needed in simulation before reaching steady-state performance. Barnes suggested that recognition of range may be the culprit, and he cited that problems such as collimated objects, binocular vision, and poor resolution lead to poor estimation of the velocity vector. Brown's study essentially ruled out that the lack of binocular vision is the problem. Dorfel added specificity to the problem by showing that pilots underestimated range in simulated scenes by 50% when 800 ft from the runway threshold. Palmer and Petitt showed that pilots are able to distinguish between a 1.7 ft/sec and 2.9 ft/sec sink rate when passively observing sink rates in a night scene. Platform motion also plays a role, as previous research has shown that the addition of substantial platform motion improves pilot estimates of vertical velocity and results in simulated touchdown rates more closely resembling flight. This experiment examined how some specific variations in the visual scene properties affect a pilot's perception of sink rate. It extended another experiment that focused on the visual and motion cues necessary for helicopter autorotations. In that experiment, pilots performed steep approaches to a runway. The visual content of the runway and its surroundings varied in two ways: texture and rectangular grid spacing. Four textures, included a no-texture case, were evaluated. Three grid spacings, including a no-grid case, were evaluated. The results showed that pilot better controlled their vertical descent rates when good texture cues were present. No significant differences were found for the grid manipulation. Using those visual scenes a simple psychophysics, experiment was performed. The purpose was to determine if the variations in the visual scenes allowed pilots to better

  2. Reactive Sequencing for Autonomous Navigation Evolving from Phoenix Entry, Descent, and Landing

    NASA Technical Reports Server (NTRS)

    Grasso, Christopher A.; Riedel, Joseph E.; Vaughan, Andrew T.

    2010-01-01

    Virtual Machine Language (VML) is an award-winning advanced procedural sequencing language in use on NASA deep-space missions since 1997, and was used for the successful entry, descent, and landing (EDL) of the Phoenix spacecraft onto the surface of Mars. Phoenix EDL utilized a state-oriented operations architecture which executed within the constraints of the existing VML 2.0 flight capability, compatible with the linear "land or die" nature of the mission. The intricacies of Phoenix EDL included the planned discarding of portions of the vehicle, the complex communications management for relay through on-orbit assets, the presence of temporally indeterminate physical events, and the need to rapidly catch up four days of sequencing should a reboot of the spacecraft flight computer occur shortly before atmospheric entry. These formidable operational challenges led to new techniques for packaging and coordinating reusable sequences called blocks using one-way synchronization via VML sequencing global variable events. The coordinated blocks acted as an ensemble to land the spacecraft, while individually managing various elements in as simple a fashion as possible. This paper outlines prototype VML 2.1 flight capabilities that have evolved from the one-way synchronization techniques in order to implement even more ambitious autonomous mission capabilities. Target missions for these new capabilities include autonomous touch-and-go sampling of cometary and asteroidal bodies, lunar landing of robotic missions, and ultimately landing of crewed lunar vehicles. Close proximity guidance, navigation, and control operations, on-orbit rendezvous, and descent and landing events featured in these missions require elaborate abort capability, manifesting highly non-linear scenarios that are so complex as to overtax traditional sequencing, or even the sort of one-way coordinated sequencing used during EDL. Foreseeing advanced command and control needs for small body and lunar landing

  3. Spacecraft Trajectory Generation by Successive Approximation for Powered Descent and Cyclers

    NASA Astrophysics Data System (ADS)

    Casoliva, Jordi

    Methods for spacecraft trajectory generation must be reliable. Complex nonlinear dynamics and constraints impede straightforward approaches. The approach pursued in this dissertation is to use successive approximation, which entails solving a sequence of problems, each one of which can be solved reliably, leading to the solution of the problem of interest. First, contractive sequential convex programming (CSCP) is developed and then applied to the problem of optimal powered descent landing in the presence of complex constraints, aerodynamic force and nonlinear engine performance. Second, numerical continuation is applied to the generation of cycler (periodic) spacecraft trajectories in the Earth-Moon system, the challenge here being the multiple scales of the three-body dynamics. The first-order necessary conditions for minimum-fuel powered descent are derived and interpreted. Both a point-mass model with throttle and thrust angle control and a rigid-body model with throttle and angular velocity control are considered, with a more complete analysis of the rigid-body case than previously available in the literature. The effects of boundary conditions on the thrust direction and finite bounds on the angular velocities are analyzed for the rigid-body case. Minimum-fuel solutions, obtained numerically, illustrate the optimal strategies. The optimal powered descent landing problem considered in the development of CSCP has a convex cost function, nonlinear dynamics, convex state constraints and nonlinear non-convex control constraints. The non-convexity in the control constraints is handled with the lossless convexification technique which consists of a convex relaxation on the control constraints. The novelty of CSCP is the ability to account for nonlinear dynamics and nonlinear control bounds in the optimal control problem and the use of interior-point methods for second-order cone programs which are guaranteed to find the optimal solution. CSCP solves a convergent

  4. Laser driven ion accelerator

    DOEpatents

    Tajima, Toshiki

    2006-04-18

    A system and method of accelerating ions in an accelerator to optimize the energy produced by a light source. Several parameters may be controlled in constructing a target used in the accelerator system to adjust performance of the accelerator system. These parameters include the material, thickness, geometry and surface of the target.

  5. Laser driven ion accelerator

    DOEpatents

    Tajima, Toshiki

    2005-06-14

    A system and method of accelerating ions in an accelerator to optimize the energy produced by a light source. Several parameters may be controlled in constructing a target used in the accelerator system to adjust performance of the accelerator system. These parameters include the material, thickness, geometry and surface of the target.

  6. Mars Sample Return Using Commercial Capabilities: Propulsive Entry, Descent, and Landing of a Capsule Form Vehicle

    NASA Technical Reports Server (NTRS)

    Gonzales, Andrew A.; Lemke, Lawrence G.; Huynh, Loc C.

    2014-01-01

    This paper describes a critical portion of the work that has been done at NASA, Ames Research Center regarding the use of the commercially developed Dragon capsule as a delivery vehicle for the elements of a high priority Mars Sample Return mission. The objective of the investigation was to determine entry and landed mass capabilities that cover anticipated mission conditions. The "Red Dragon", Mars configuration, uses supersonic retro-propulsion, with no required parachute system, to perform Entry, Descent, and Landing (EDL) maneuvers. The propulsive system proposed for use is the same system that will perform an abort, if necessary, for a human rated version of the Dragon capsule. Standard trajectory analysis tools are applied to publically available information about Dragon and other legacy capsule forms in order to perform the investigation. Trajectory simulation parameters include entry velocity, flight path angle, lift to drag Ratio (L/D), landing site elevation, atmosphere density, and total entry mass, in addition engineering assumptions for the performance of the propulsion system are stated. Mass estimates for major elements of the overall proposed architecture are coupled to this EDL analysis to close the overall architecture. Three synodic launch opportunities, beginning with the 2022 opportunity, define the arrival conditions. Results state the relations between the analysis parameters as well as sensitivities to those parameters. The EDL performance envelope includes landing altitudes between 0 and -4 km referenced to the Mars Orbiter Laser Altimeter datum as well as minimum and maximum atmosphere density. Total entry masses between 7 and 10 mt are considered with architecture closure occurring between 9.0 and 10 mt. Propellant mass fractions for each major phase of the EDL - Entry, Terminal Descent, and Hazard Avoidance - have been derived. An assessment of the effect of the entry conditions on the Thermal Protection System (TPS) currently in use for

  7. Neighborhood Hispanic composition and depressive symptoms among Mexican-descent residents of Texas City, Texas

    PubMed Central

    Shell, Alyssa Marie; Peek, M. Kristen; Eschbach, Karl

    2014-01-01

    Substantial research shows that increased Hispanic neighborhood concentration is associated with several beneficial health outcomes including lower adult mortality, better self-rated health, and fewer respiratory problems. Literature on the relationship of Hispanic composition and depressive symptoms is more equivocal. In addition, few studies have directly investigated hypothesized mechanisms of this relationship. This study uses data from a probability sample of 1,238 Mexican-descent adults living in 48 neighborhoods in Texas City, Texas. Multilevel regression models investigate whether Hispanic neighborhood composition is associated with fewer depressive symptoms. This study also investigates whether social support, perceived discrimination, and perceived stress mediate or moderate the relationship, and whether results differ by primary language used at home. We find that individuals living in high Hispanic composition neighborhoods experience fewer depressive symptoms than individuals in low Hispanic composition neighborhoods. In addition, we find that these beneficial effects only apply to respondents who speak English. Social support, perceived discrimination, and perceived stress mediate the Hispanic composition-depressive symptoms relationship. In addition, discrimination and stress moderate the relationship between Hispanic composition and depressive symptoms. Our findings support theories linking higher neighborhood Hispanic composition and better mental health, and suggest that Spanish language use, social support, discrimination and stress may play important roles in the Hispanic composition-depressive symptoms relationship. PMID:24355471

  8. Neocytolysis on descent from altitude: a newly recognized mechanism for the control of red cell mass

    NASA Technical Reports Server (NTRS)

    Rice, L.; Ruiz, W.; Driscoll, T.; Whitley, C. E.; Tapia, R.; Hachey, D. L.; Gonzales, G. F.; Alfrey, C. P.

    2001-01-01

    BACKGROUND: Studies of space-flight anemia have uncovered a physiologic process, neocytolysis, by which young red blood cells are selectively hemolyzed, allowing rapid adaptation when red cell mass is excessive for a new environment. OBJECTIVES: 1) To confirm that neocytolysis occurs in another situation of acute plethora-when high-altitude dwellers with polycythemia descend to sea level; and 2) to clarify the role of erythropoietin suppression. DESIGN: Prospective observational and interventional study. SETTING: Cerro de Pasco (4380 m) and Lima (sea level), Peru. PARTICIPANTS: Nine volunteers with polycythemia. INTERVENTIONS: Volunteers were transported to sea level; three received low-dose erythropoietin. MEASUREMENTS: Changes in red cell mass, hematocrit, hemoglobin concentration, reticulocyte count, ferritin level, serum erythropoietin, and enrichment of administered(13)C in heme. RESULTS: In six participants, red cell mass decreased by 7% to 10% within a few days of descent; this decrease was mirrored by a rapid increase in serum ferritin level. Reticulocyte production did not decrease, a finding that establishes a hemolytic mechanism.(13)C changes in circulating heme were consistent with hemolysis of young cells. Erythropoietin was suppressed, and administration of exogenous erythropoietin prevented the changes in red cell mass, serum ferritin level, and(13)C-heme. CONCLUSIONS: Neocytolysis and the role of erythropoietin are confirmed in persons with polycythemia who descend from high altitude. This may have implications that extend beyond space and altitude medicine to renal disease and other situations of erythropoietin suppression, hemolysis, and polycythemia.

  9. Genome-wide patterns of identity-by-descent sharing in the French Canadian founder population

    PubMed Central

    Gauvin, Héloïse; Moreau, Claudia; Lefebvre, Jean-François; Laprise, Catherine; Vézina, Hélène; Labuda, Damian; Roy-Gagnon, Marie-Hélène

    2014-01-01

    In genetics the ability to accurately describe the familial relationships among a group of individuals can be very useful. Recent statistical tools succeeded in assessing the degree of relatedness up to 6–7 generations with good power using dense genome-wide single-nucleotide polymorphism data to estimate the extent of identity-by-descent (IBD) sharing. It is therefore important to describe genome-wide patterns of IBD sharing for more remote and complex relatedness between individuals, such as that observed in a founder population like Quebec, Canada. Taking advantage of the extended genealogical records of the French Canadian founder population, we first compared different tools to identify regions of IBD in order to best describe genome-wide IBD sharing and its correlation with genealogical characteristics. Results showed that the extent of IBD sharing identified with FastIBD correlates best with relatedness measured using genealogical data. Total length of IBD sharing explained 85% of the genealogical kinship's variance. In addition, we observed significantly higher sharing in pairs of individuals with at least one inbred ancestor compared with those without any. Furthermore, patterns of IBD sharing and average sharing were different across regional populations, consistent with the settlement history of Quebec. Our results suggest that, as expected, the complex relatedness present in founder populations is reflected in patterns of IBD sharing. Using these patterns, it is thus possible to gain insight on the types of distant relationships in a sample from a founder population like Quebec. PMID:24129432

  10. PRIMUS: Rapid Reconstruction of Pedigrees from Genome-wide Estimates of Identity by Descent

    PubMed Central

    Staples, Jeffrey; Qiao, Dandi; Cho, Michael H.; Silverman, Edwin K.; Nickerson, Deborah A.; Below, Jennifer E.

    2014-01-01

    Understanding and correctly utilizing relatedness among samples is essential for genetic analysis; however, managing sample records and pedigrees can often be error prone and incomplete. Data sets ascertained by random sampling often harbor cryptic relatedness that can be leveraged in genetic analyses for maximizing power. We have developed a method that uses genome-wide estimates of pairwise identity by descent to identify families and quickly reconstruct and score all possible pedigrees that fit the genetic data by using up to third-degree relatives, and we have included it in the software package PRIMUS (Pedigree Reconstruction and Identification of the Maximally Unrelated Set). Here, we validate its performance on simulated, clinical, and HapMap pedigrees. Among these samples, we demonstrate that PRIMUS can verify reported pedigree structures and identify cryptic relationships. Finally, we show that PRIMUS reconstructed pedigrees, all of which were previously unknown, for 203 families from a cohort collected in Starr County, TX (1,890 samples). PMID:25439724

  11. PRIMUS: rapid reconstruction of pedigrees from genome-wide estimates of identity by descent.

    PubMed

    Staples, Jeffrey; Qiao, Dandi; Cho, Michael H; Silverman, Edwin K; Nickerson, Deborah A; Below, Jennifer E

    2014-11-01

    Understanding and correctly utilizing relatedness among samples is essential for genetic analysis; however, managing sample records and pedigrees can often be error prone and incomplete. Data sets ascertained by random sampling often harbor cryptic relatedness that can be leveraged in genetic analyses for maximizing power. We have developed a method that uses genome-wide estimates of pairwise identity by descent to identify families and quickly reconstruct and score all possible pedigrees that fit the genetic data by using up to third-degree relatives, and we have included it in the software package PRIMUS (Pedigree Reconstruction and Identification of the Maximally Unrelated Set). Here, we validate its performance on simulated, clinical, and HapMap pedigrees. Among these samples, we demonstrate that PRIMUS can verify reported pedigree structures and identify cryptic relationships. Finally, we show that PRIMUS reconstructed pedigrees, all of which were previously unknown, for 203 families from a cohort collected in Starr County, TX (1,890 samples). PMID:25439724

  12. Shape Tracking with Occlusions via Coarse-to-Fine Region-Based Sobolev Descent.

    PubMed

    Yang, Yanchao; Sundaramoorthi, Ganesh

    2015-05-01

    We present a method to track the shape of an object from video. The method uses a joint shape and appearance model of the object, which is propagated to match shape and radiance in subsequent frames, determining object shape. Self-occlusions and dis-occlusions of the object from camera and object motion pose difficulties to joint shape and appearance models in tracking. They are unable to adapt to new shape and appearance information, leading to inaccurate shape detection. In this work, we model self-occlusions and dis-occlusions in a joint shape and appearance tracking framework. Self-occlusions and the warp to propagate the model are coupled, thus we formulate a joint optimization problem. We derive a coarse-to-fine optimization method, advantageous in tracking, that initially perturbs the model by coarse perturbations before transitioning to finer-scale perturbations seamlessly. This coarse-to-fine behavior is automatically induced by gradient descent on a novel infinite-dimensional Riemannian manifold that we introduce. The manifold consists of planar parameterized regions, and the metric that we introduce is a novel Sobolev metric. Experiments on video exhibiting occlusions/dis-occlusions, complex radiance and background show that occlusion/dis-occlusion modeling leads to superior shape accuracy. PMID:26353328

  13. Idiopathic Generalized Epilepsy and Hypokalemic Periodic Paralysis in a Family of South Indian Descent

    PubMed Central

    Subramanian, Muthiah; Senthil, N.; Sujatha, S.

    2015-01-01

    Inherited channelopathies are a heterogeneous group of disorders resulting from dysfunction of ion channels in cellular membranes. They may manifest as diseases affecting skeletal muscle contraction, the conduction system of the heart, nervous system function, and vision syndromes. We describe a family of South Indian descent with hypokalemic periodic paralysis in which four members also have idiopathic generalized epilepsy. Hypokalemic periodic paralysis is a genetically heterogeneous channelopathy that has been linked to mutations in genes encoding three ion channels CACNIAS, SCN4A, and KCNJ2 predominantly. Although data on specific gene in idiopathic generalized epilepsy is relatively scarce, mutations of voltage gated sodium channel subunit genes (CACNB4) and nonsense mutations in voltage gated calcium channels (CACNA1A) have been linked to idiopathic generalized epilepsy in two families. We speculate that gene mutations altering the ability of the beta subunit to interact with the alpha subunit of the CaV1.1 channel and mutations in the pore-forming potassium channel subunit may be possible explanations for the combined manifestation of both diseases. Functional analysis of voltage gated calcium channel and other ion channels mutations may provide additional support and insight for the causal role of these mutations. The understanding of mutations in ion-channel genes will lead to improved diagnosis and treatment of such inherited channelopathies. PMID:25893123

  14. Idiopathic generalized epilepsy and hypokalemic periodic paralysis in a family of South Indian descent.

    PubMed

    Subramanian, Muthiah; Senthil, N; Sujatha, S

    2015-01-01

    Inherited channelopathies are a heterogeneous group of disorders resulting from dysfunction of ion channels in cellular membranes. They may manifest as diseases affecting skeletal muscle contraction, the conduction system of the heart, nervous system function, and vision syndromes. We describe a family of South Indian descent with hypokalemic periodic paralysis in which four members also have idiopathic generalized epilepsy. Hypokalemic periodic paralysis is a genetically heterogeneous channelopathy that has been linked to mutations in genes encoding three ion channels CACNIAS, SCN4A, and KCNJ2 predominantly. Although data on specific gene in idiopathic generalized epilepsy is relatively scarce, mutations of voltage gated sodium channel subunit genes (CACNB4) and nonsense mutations in voltage gated calcium channels (CACNA1A) have been linked to idiopathic generalized epilepsy in two families. We speculate that gene mutations altering the ability of the beta subunit to interact with the alpha subunit of the CaV1.1 channel and mutations in the pore-forming potassium channel subunit may be possible explanations for the combined manifestation of both diseases. Functional analysis of voltage gated calcium channel and other ion channels mutations may provide additional support and insight for the causal role of these mutations. The understanding of mutations in ion-channel genes will lead to improved diagnosis and treatment of such inherited channelopathies. PMID:25893123

  15. Altair Navigation During Trans-Lunar Cruise, Lunar Orbit, Descent and Landing

    NASA Technical Reports Server (NTRS)

    Ely, Todd A.; Heyne, Martin; Riedel, Joseph E.

    2010-01-01

    The Altair lunar lander navigation system is driven by a set of requirements that not only specify a need to land within 100 m of a designated spot on the Moon, but also be capable of a safe return to an orbiting Orion capsule in the event of loss of Earth ground support. These requirements lead to the need for a robust and capable on-board navigation system that works in conjunction with an Earth ground navigation system that uses primarily ground-based radiometric tracking. The resulting system relies heavily on combining a multiplicity of data types including navigation state updates from the ground based navigation system, passive optical imaging from a gimbaled camera, a stable inertial measurement unit, and a capable radar altimeter and velocimeter. The focus of this paper is on navigation performance during the trans-lunar cruise, lunar orbit, and descent/landing mission phases with the goal of characterizing knowledge and delivery errors to key mission events, bound the statistical delta V costs for executing the mission, as well as the determine the landing dispersions due to navigation. This study examines the nominal performance that can be obtained using the current best estimate of the vehicle, sensor, and environment models. Performance of the system under a variety sensor outages and parametric trades is also examined.

  16. Proportion of genome shared identical by descent by relatives: concept, computation, and applications

    SciTech Connect

    Sun-Wei Guo

    1995-06-01

    One widely used measure of genetic similarity for pairs of relatives is gene identity-by-descent (IBD) sharing. Genes that are copies of a single gene in a common ancestor of the individuals who now carry them are said to be IBD. One obvious extension of the IBD concept is IBD gene(s) shared by more than two individuals. In this paper, I further extend the gene IBD concept to the proportion of genomes shared IBD by every member of a group of relatives. Genome may refer either to the entire autosomal genome or to one or more chromosomal segments or regions with known lengths. Consideration of a genome instead of one or two loci has several advantages. I present a model to describe the cross-over process, based on the work of K.P. Donnelly. On the basis of this model, I give a mathematical definition of the proportion of genome shared IBD by relatives, or IBDP for short. Since the distribution of the IBDP is in general very difficult to determine, and since in most applications the mean and variance of the IBDP will suffice, I then provide a method for computing the first two moments of the IBDP. Applications to assessing gene survival, to genetic resemblance between two relatives, and to gene mapping are illustrated with examples. Finally, I discuss the utility of the IBDP in other areas. 34 refs., 3 figs.

  17. Assessment of environments for Mars Science Laboratory entry, descent, and surface operations

    USGS Publications Warehouse

    Vasavada, Ashwin R.; Chen, Allen; Barnes, Jeffrey R.; Burkhart, P. Daniel; Cantor, Bruce A.; Dwyer-Cianciolo, Alicia M.; Fergason, Robini L.; Hinson, David P.; Justh, Hilary L.; Kass, David M.; Lewis, Stephen R.; Mischna, Michael A.; Murphy, James R.; Rafkin, Scot C.R.; Tyler, Daniel; Withers, Paul G.

    2012-01-01

    The Mars Science Laboratory mission aims to land a car-sized rover on Mars' surface and operate it for at least one Mars year in order to assess whether its field area was ever capable of supporting microbial life. Here we describe the approach used to identify, characterize, and assess environmental risks to the landing and rover surface operations. Novel entry, descent, and landing approaches will be used to accurately deliver the 900-kg rover, including the ability to sense and "fly out" deviations from a best-estimate atmospheric state. A joint engineering and science team developed methods to estimate the range of potential atmospheric states at the time of arrival and to quantitatively assess the spacecraft's performance and risk given its particular sensitivities to atmospheric conditions. Numerical models are used to calculate the atmospheric parameters, with observations used to define model cases, tune model parameters, and validate results. This joint program has resulted in a spacecraft capable of accessing, with minimal risk, the four finalist sites chosen for their scientific merit. The capability to operate the landed rover over the latitude range of candidate landing sites, and for all seasons, was verified against an analysis of surface environmental conditions described here. These results, from orbital and model data sets, also drive engineering simulations of the rover's thermal state that are used to plan surface operations.

  18. Ground-based tracking of the Huygens Probe during the Titan descent

    NASA Astrophysics Data System (ADS)

    Folkner, W. M.; Border, J. S.; Lowe, S. T.; Preston, R. A.; Bird, M. K.

    2004-02-01

    The radio signal from the Huygens Probe will be received using radio tracking stations on Earth as it descends through the atmosphere of Titan. The recording will be used to determine the Doppler shift of the signal and hence the velocity of the Probe in the direction of Earth. These velocity measurements will be used to determine the Titan wind speed as a function of altitude, thereby complementing the Huygens signal measurements on the Cassini Orbiter (DWE - Doppler Wind Experiment), which yield a velocity measurement in a different direction. The combined measurements will provide confirmation of the basic wind profile and most probably allow a separation of the wind speed into its meridional and zonal components. The signal strength received at Earth from Huygens will be comparable to that from a similar experiment performed with the Galileo Probe at Jupiter, and will thus probably be too weak to detect in real time because of the modulation by the (then) unknown telemetry. Instead, wide-band recordings of the Probe signal will be made throughout the three-hour descent. After the Probe telemetry is relayed from Cassini to Earth, the recorded signal is processed against a telemetry template, enabling signal integration over several seconds for determining the Probe frequency. Technical aspects and some anticipated results of the Earth-based DWE are presented.

  19. Identity-by-Descent-Based Phasing and Imputation in Founder Populations Using Graphical Models

    PubMed Central

    Palin, Kimmo; Campbell, Harry; Wright, Alan F; Wilson, James F; Durbin, Richard

    2011-01-01

    Accurate knowledge of haplotypes, the combination of alleles co-residing on a single copy of a chromosome, enables powerful gene mapping and sequence imputation methods. Since humans are diploid, haplotypes must be derived from genotypes by a phasing process. In this study, we present a new computational model for haplotype phasing based on pairwise sharing of haplotypes inferred to be Identical-By-Descent (IBD). We apply the Bayesian network based model in a new phasing algorithm, called systematic long-range phasing (SLRP), that can capitalize on the close genetic relationships in isolated founder populations, and show with simulated and real genome-wide genotype data that SLRP substantially reduces the rate of phasing errors compared to previous phasing algorithms. Furthermore, the method accurately identifies regions of IBD, enabling linkage-like studies without pedigrees, and can be used to impute most genotypes with very low error rate. Genet. Epidemiol. 2011. © 2011 Wiley Periodicals, Inc.35:853-860, 2011 PMID:22006673

  20. Clogging of Joule-Thomson Devices in Liquid Hydrogen-Lunar Lander Descent Stage Operating Regime

    NASA Astrophysics Data System (ADS)

    Jurns, J. M.

    2010-04-01

    Joule-Thomson (J-T) devices have been identified as critical components for future space exploration missions. The NASA Constellation Program lunar architecture considers LOX/LH2 propulsion for the lunar lander descent stage main engine an enabling technology, ensuring the cryogenic propellants are available at the correct conditions for engine operation. This cryogenic storage system may utilize a Thermodynamic Vent System (TVS) that includes J-T devices to maintain tank fluid pressure and temperature. Previous experimental investigations have indicated that J-T devices may become clogged when flowing LH2 while operating at a temperature range from 20.5 K to 24.4 K. It has been proposed that clogging is due to a trace amount of metastable, supercooled liquid neon in the regular LH2 supply. In time, flow blockage occurs from accretion of solid neon on the orifice. This clogging poses a realistic threat to spacecraft propulsion systems utilizing J-T devices in cryogenic pressure control systems. TVS failure due to J-T clogging would prevent removal of environmental heat from the propellant and potential loss of mission. This report describes J-T clogging tests performed with LH2. Tests were performed in the expected Lunar Lander operating regime, and several methods were evaluated to determine the optimum approach to mitigating the potential risk of J-T clogging.

  1. Memristor-based multilayer neural networks with online gradient descent training.

    PubMed

    Soudry, Daniel; Di Castro, Dotan; Gal, Asaf; Kolodny, Avinoam; Kvatinsky, Shahar

    2015-10-01

    Learning in multilayer neural networks (MNNs) relies on continuous updating of large matrices of synaptic weights by local rules. Such locality can be exploited for massive parallelism when implementing MNNs in hardware. However, these update rules require a multiply and accumulate operation for each synaptic weight, which is challenging to implement compactly using CMOS. In this paper, a method for performing these update operations simultaneously (incremental outer products) using memristor-based arrays is proposed. The method is based on the fact that, approximately, given a voltage pulse, the conductivity of a memristor will increment proportionally to the pulse duration multiplied by the pulse magnitude if the increment is sufficiently small. The proposed method uses a synaptic circuit composed of a small number of components per synapse: one memristor and two CMOS transistors. This circuit is expected to consume between 2% and 8% of the area and static power of previous CMOS-only hardware alternatives. Such a circuit can compactly implement hardware MNNs trainable by scalable algorithms based on online gradient descent (e.g., backpropagation). The utility and robustness of the proposed memristor-based circuit are demonstrated on standard supervised learning tasks. PMID:25594981

  2. Clinical and molecular evidence for the role of androgens and WT1 in testis descent.

    PubMed

    Lim, H N; Hughes, I A; Hawkins, J R

    2001-12-20

    Testicular maldescent is a common congenital disorder associated with testicular cancer and infertility. In this study, testis position was assessed in subjects with genital abnormalities due to AR mutations, Denys-Drash and WAGR syndromes or an unknown aetiology. Subjects with completely female genitalia and an AR mutation or an unknown aetiology had a greater proportion of maldescended testes (intra-abdominal and inguinal) than those with less severe abnormalities (P=0.00027 and P<0.000001, respectively). Whereas subjects with severe, moderate or mild abnormalities and an unknown aetiology, had similar testis positions. The Denys-Drash and WAGR syndrome group had a greater proportion of maldescended testes than the AR mutation (P=0.013) and unknown aetiology groups (P=0.00019). Androgen production and AR binding were normal in three subjects with Denys-Drash and WAGR syndromes. These findings indicate that the relationship between testis descent and genital abnormalities is a multi-factorial process with greater complexity than previously proposed. PMID:11738793

  3. Development of Thermal Protection Materials for Future Mars Entry, Descent and Landing Systems

    NASA Technical Reports Server (NTRS)

    Cassell, Alan M.; Beck, Robin A. S.; Arnold, James O.; Hwang, Helen; Wright, Michael J.; Szalai, Christine E.; Blosser, Max; Poteet, Carl C.

    2010-01-01

    Entry Systems will play a crucial role as NASA develops the technologies required for Human Mars Exploration. The Exploration Technology Development Program Office established the Entry, Descent and Landing (EDL) Technology Development Project to develop Thermal Protection System (TPS) materials for insertion into future Mars Entry Systems. An assessment of current entry system technologies identified significant opportunity to improve the current state of the art in thermal protection materials in order to enable landing of heavy mass (40 mT) payloads. To accomplish this goal, the EDL Project has outlined a framework to define, develop and model the thermal protection system material concepts required to allow for the human exploration of Mars via aerocapture followed by entry. Two primary classes of ablative materials are being developed: rigid and flexible. The rigid ablatives will be applied to the acreage of a 10x30 m rigid mid L/D Aeroshell to endure the dual pulse heating (peak approx.500 W/sq cm). Likewise, flexible ablative materials are being developed for 20-30 m diameter deployable aerodynamic decelerator entry systems that could endure dual pulse heating (peak aprrox.120 W/sq cm). A technology Roadmap is presented that will be used for facilitating the maturation of both the rigid and flexible ablative materials through application of decision metrics (requirements, key performance parameters, TRL definitions, and evaluation criteria) used to assess and advance the various candidate TPS material technologies.

  4. Identification of 15 genetic loci associated with risk of major depression in individuals of European descent.

    PubMed

    Hyde, Craig L; Nagle, Michael W; Tian, Chao; Chen, Xing; Paciga, Sara A; Wendland, Jens R; Tung, Joyce Y; Hinds, David A; Perlis, Roy H; Winslow, Ashley R

    2016-09-01

    Despite strong evidence supporting the heritability of major depressive disorder (MDD), previous genome-wide studies were unable to identify risk loci among individuals of European descent. We used self-report data from 75,607 individuals reporting clinical diagnosis of depression and 231,747 individuals reporting no history of depression through 23andMe and carried out meta-analysis of these results with published MDD genome-wide association study results. We identified five independent variants from four regions associated with self-report of clinical diagnosis or treatment for depression. Loci with a P value <1.0 × 10(-5) in the meta-analysis were further analyzed in a replication data set (45,773 cases and 106,354 controls) from 23andMe. A total of 17 independent SNPs from 15 regions reached genome-wide significance after joint analysis over all three data sets. Some of these loci were also implicated in genome-wide association studies of related psychiatric traits. These studies provide evidence for large-scale consumer genomic data as a powerful and efficient complement to data collected from traditional means of ascertainment for neuropsychiatric disease genomics. PMID:27479909

  5. Multidisciplinary Tool for Systems Analysis of Planetary Entry, Descent, and Landing

    NASA Technical Reports Server (NTRS)

    Samareh, Jamshid A.

    2011-01-01

    Systems analysis of a planetary entry (SAPE), descent, and landing (EDL) is a multidisciplinary activity in nature. SAPE improves the performance of the systems analysis team by automating and streamlining the process, and this improvement can reduce the errors that stem from manual data transfer among discipline experts. SAPE is a multidisciplinary tool for systems analysis of planetary EDL for Venus, Earth, Mars, Jupiter, Saturn, Uranus, Neptune, and Titan. It performs EDL systems analysis for any planet, operates cross-platform (i.e., Windows, Mac, and Linux operating systems), uses existing software components and open-source software to avoid software licensing issues, performs low-fidelity systems analysis in one hour on a computer that is comparable to an average laptop, and keeps discipline experts in the analysis loop. SAPE uses Python, a platform-independent, open-source language, for integration and for the user interface. Development has relied heavily on the object-oriented programming capabilities that are available in Python. Modules are provided to interface with commercial and government off-the-shelf software components (e.g., thermal protection systems and finite-element analysis). SAPE currently includes the following analysis modules: geometry, trajectory, aerodynamics, aerothermal, thermal protection system, and interface for structural sizing.

  6. Descent and Surface Wind Expectations for Titan North Polar Summer Exploration

    NASA Astrophysics Data System (ADS)

    Lorenz, R. D.; Newman, C. E.; Tokano, T.; Mitchell, J.; Charnay, B.; Lebonnois, S.; Achterberg, R.

    2012-04-01

    Titan’s north polar lakes and seas have emerged as an attractive target of future exploration for the early 2020s, notably for the Titan Mare Explorer (TiME) Discovery mission, presently undergoing a Phase A study. In support of that effort, a detailed study has been made of the winds that may be expected at relevant locations and seasons, since the wind profile with altitude is the principal determinant (as with Huygens) of the size of the expected landing ellipse, and winds on the surface may lead to drift of floating capsules and may generate surface waves. Here we review Cassini data (zonal winds inferred from thermal infrared measurements, as well as a few near-IR cloud-tracking observations) of what should be similar conditions at the ‘mirror image’ place and season - Titan’s southern hemisphere in 2005-2009. In addition, we assess results from four different global circulation models. These inputs are used to define a simple analytic engineering wind envelope for Monte-Carlo descent simulations. The high latitudes of the large seas Ligeia (~80oN) and Kraken (~70oN) during the late summer season (northern autumn equinox is in 2025) mean that stratospheric winds will be considerably weaker than those encountered by the Huygens probe near the equator. We additionally examine the surface windspeed histories. While the various models have broadly similar speeds (in turn consistent with Huygens data) their time histories are somewhat different in character and direction.

  7. A low prevalence of cystic fibrosis in Uruguayans of mainly European descent.

    PubMed

    Cardoso, Horacio; Crispino, Beatriz; Mimbacas, Adriana; Cardoso, Manuel Enrique

    2004-01-01

    Cystic fibrosis is the most common hereditary disease in populations of European descent, with its prevalence depending on the populations and ethnic groups studied. In contrast to Europe and North America, there is little information about this disease in Latin America. Uruguay currently has a human population of 3,000,000, with a low rate of miscegenation and no remaining isolated Amerindian groups. In the present study, we estimated the prevalence of cystic fibrosis in this country based on the detection of DeltaF508 mutation carriers in 500 unrelated individuals and on the frequency of individuals homozygous for this mutation within the affected population. The latter was calculated from the frequency of the different mutations and genotypes observed in a sample of 52 previously described patients with confirmed cystic fibrosis. A theoretical estimate of the prevalence of cystic fibrosis based on anthropological data suggested a frequency of 25 affected individuals/100,000 inhabitants. However, our data indicated that the true prevalence in the population was considerably lower (6.9 cases/100,000 inhabitants). PMID:15266396

  8. The role of the gubernaculum in the descent and undescent of the testis

    PubMed Central

    Hutson, John M.; Nation, T.; Balic, A.; Southwell, B. R.

    2009-01-01

    Testicular descent to the scrotum involves complex anatomical rearrangements and hormonal regulation. The gubernaculum remains the key structure, undergoing the ‘swelling reaction’ in the transabdominal phase, and actively migrating out of the abdominal wall to the scrotum in the inguinoscrotal phase. Insulin-like hormone 3 (Insl3) is the primary regulator of the first phase, possibly augmented by Müllerian inhibiting substance/anitmüllerian hormone (MIS/AMH), and regression of the cranial suspensory ligament by testosterone. The inguinoscrotal phase is controlled by androgens acting both directly on the gubernaculum and indirectly via the genitofemoral nerve, and release of calcitonin gene-related peptide from its sensory fibres. Outgrowth of the gubernaculum and elongation to the scrotum has many similarities to an embryonic limb bud. Cryptorchidism occurs because of both failure of migration congenitally, and failure of elongation of the spermatic cord postnatally. Germ cell development postnatally is disturbed in congenital cryptorchidism, but our current understanding of germ cell biology suggests that early orchidopexy, around 6 months of age, should provide a significant improvement in prognosis compared with a previous generation. Hormone treatment is not currently recommended. Acquired cryptorchid testes may need orchidopexy once they no longer reach the scrotum, although this remains controversial. PMID:21789060

  9. Low Cost Entry, Descent, and Landing (EDL) Instrumentation for Planetary Missions

    NASA Technical Reports Server (NTRS)

    Hwang, H. H.; Munk, M. M.; Dillman, R. A.; Mahzari, M.; Swanson, G. T.; White, T. R.

    2016-01-01

    Missions that involve traversing through a planetary atmosphere are unique opportunities that require elements of entry, descent, and landing (EDL). Many aspects of the EDL sequence are qualified using analysis and simulation due to the inability to conduct appropriate ground tests, however validating flight data are often lacking, especially for missions not involving Earth re-entry. NASA has made strategic decisions to collect EDL flight data in order to improve future mission designs. For example, MEDLI1 and EFT-1 gathered hypersonic pressure and in-depth temperature data in the thermal protection system (TPS). However, the ability to collect EDL flight data from the smaller competed missions, such as Discovery and New Frontiers, has been limited in part due to the Principal Investigator-managed cost-caps (PIMCC). The recent NASA decision to consider EDL instrumentation earlier in the mission design cycle led to the inclusion of a requirement in the Discovery 2014 Announcement of Opportunity which requires all missions that involve EDL to include an Engineering Science Investigation (ESI).2 The ESI would involve sensors for aerothermal environment and TPS; atmosphere, aerodynamics, and flight dynamics; atmospheric decelerator; and/or vehicle structure.3 The ESI activity would be funded outside of the PIMCC.

  10. Kin Preference and Partner Choice: Patrilineal Descent and Biological Kinship in Lamaleran Cooperative Relationships

    PubMed Central

    Nolin, David A.

    2012-01-01

    This paper presents a comparison of social kinship (patrilineage) and biological kinship (genetic relatedness) in predicting cooperative relationships in two different economic contexts in the fishing and whaling village of Lamalera, Indonesia. A previous analysis of boat crew affiliation data collected in the village in 1999 found that social kinship (patrilineage) was a better predictor of crew affiliation than was genetic kinship. A replication of this analysis using similar data collected in 2006 finds the same pattern: lineage is a better predictor than genetic kinship of crew affiliation, and the two together explain little additional variance over that explained by lineage alone. However, an analogous test on food-sharing relationships finds the opposite pattern: biological kinship is a better predictor of food-sharing relationships than is social kinship. The difference between these two cooperative contexts is interpreted in terms of kin preferences that shape partner choice, and the relative autonomy with which individuals can seek to satisfy those preferences. Drawing on stable matching theory, it is suggested that unilineal descent may serve as a stable compromise among multiple individuals’ incongruent partner preferences, with patriliny favored over matriliny in the crew-formation context because it leads to higher mean degrees of relatedness among male cooperators. In the context of food-sharing, kin preferences can be pursued relatively autonomously, without the necessity of coordinating preferences with those of other households through the institution of lineage. PMID:22388806

  11. The Mars Science Laboratory (MSL) Entry, Descent And Landing Instrumentation (MEDLI): Hardware Performance and Data Reconstruction

    NASA Technical Reports Server (NTRS)

    Little, Alan; Bose, Deepak; Karlgaard, Chris; Munk, Michelle; Kuhl, Chris; Schoenenberger, Mark; Antill, Chuck; Verhappen, Ron; Kutty, Prasad; White, Todd

    2013-01-01

    The Mars Science Laboratory (MSL) Entry, Descent and Landing Instrumentation (MEDLI) hardware was a first-of-its-kind sensor system that gathered temperature and pressure readings on the MSL heatshield during Mars entry on August 6, 2012. MEDLI began as challenging instrumentation problem, and has been a model of collaboration across multiple NASA organizations. After the culmination of almost 6 years of effort, the sensors performed extremely well, collecting data from before atmospheric interface through parachute deploy. This paper will summarize the history of the MEDLI project and hardware development, including key lessons learned that can apply to future instrumentation efforts. MEDLI returned an unprecedented amount of high-quality engineering data from a Mars entry vehicle. We will present the performance of the 3 sensor types: pressure, temperature, and isotherm tracking, as well as the performance of the custom-built sensor support electronics. A key component throughout the MEDLI project has been the ground testing and analysis effort required to understand the returned flight data. Although data analysis is ongoing through 2013, this paper will reveal some of the early findings on the aerothermodynamic environment that MSL encountered at Mars, the response of the heatshield material to that heating environment, and the aerodynamic performance of the entry vehicle. The MEDLI data results promise to challenge our engineering assumptions and revolutionize the way we account for margins in entry vehicle design.

  12. Final STS-35 Columbia descent BET products and results for LaRC OEX investigations

    NASA Technical Reports Server (NTRS)

    Oakes, Kevin F.; Findlay, John T.; Jasinski, Rachel A.; Wood, James S.

    1991-01-01

    Final STS-35 'Columbia' descent Best Estimate Trajectory (BET) products have been developed for Langley Research Center (LaRC) Orbiter Experiments (OEX) investigations. Included are the reconstructed inertial trajectory profile; the Extended BET, which combines the inertial data and, in this instance, the National Weather Service atmospheric information obtained via Johnson Space Center; and the Aerodynamic BET. The inertial BET utilized Inertial Measurement Unit 1 (IMU1) dynamic measurements for deterministic propagation during the ENTREE estimation process. The final estimate was based on the considerable ground based C-band tracking coverage available as well as Tracking Data and Relay Satellite System (TDRSS) Doppler data, a unique use of the latter for endo-atmospheric flight determinations. The actual estimate required simultaneous solutions for the spacecraft position and velocity, spacecraft attitude, and six IMU parameters - three gyro biases and three accelerometer scale factor correction terms. The anchor epoch for this analysis was 19,200 Greenwich Mean Time (GMT) seconds which corresponds to an initial Shuttle altitude of approximately 513 kft. The atmospheric data incorporated were evaluated based on Shuttle derived considerations as well as comparisons with other models. The AEROBET was developed based on the Extended BET, the measured spacecraft configuration information, final mass properties, and the final Orbiter preoperation databook. The latter was updated based on aerodynamic consensus incrementals derived by the latest published FAD. The rectified predictions were compared versus the flight computed values and the resultant differences were correlated versus ensemble results for twenty-two previous STS entry flights.

  13. Entry, Descent, and Landing Operations Analysis for the Stardust Entry Capsule

    NASA Technical Reports Server (NTRS)

    Desai, Prasun N.; Lyons, Dan T.; Tooley, Jeff; Kangas, Julie

    2008-01-01

    On the morning of January 15, 2006, the Stardust capsule successfully landed at the Utah Test and Training range in northwest Utah returning cometary samples from the comet Wild-2. An overview of the entry, descent, and landing (EDL) trajectory analysis that was performed for targeting during the mission operations phase upon final approach to Earth is described. The final orbit determination solution produced an inertial entry flight-path angle of -8.21 deg (the desired nominal value) with a 3-sigma uncertainty of +/-0.0017 deg (2% of the requirement). The navigation and EDL operations effort accurately delivered the entry capsule to the desired landing site. The final landing location was 8.1 km from the target, which was well within the allowable landing area. Overall, the Earth approach operation procedures worked well and there were no issues (logistically or performance based) that arose. As a result, the process of targeting a capsule from an interplanetary trajectory and accurately landing it on Earth was successfully demonstrated.

  14. Entry, Descent, and Landing Operations Analysis for the Genesis Entry Capsule

    NASA Technical Reports Server (NTRS)

    Desai, Prasun N.; Lyons, Daniel T.

    2007-01-01

    On September 8, 2004, the Genesis spacecraft returned to Earth after spending 29 months about the sun-Earth libration point (L1) collecting solar wind particles. Four hours prior to Earth arrival, the sample return capsule containing the samples was released for entry and subsequent landing at the Utah Test and Training Range. This paper provides an overview of the entry, descent, and landing trajectory analysis that was performed during the mission operations phase leading up to final approach to Earth. The final orbit determination solution produced an inertial entry flight-path angle of -8.002 deg (which was the desired nominal value) with a 3-sigma error of +/-0.0274 deg (a third of the requirement). The operations effort accurately delivered the entry capsule to the desired landing site. The final landing location was 8.3 km from the target, and was well within the allowable landing area. Overall, the Earth approach operation procedures worked well and there were no issues (logistically or performance based) that arose. As a result, the process of targeting a capsule from deep space and accurately landing it on Earth was successfully demonstrated.

  15. Parachute Models Used in the Mars Science Laboratory Entry, Descent, and Landing Simulation

    NASA Technical Reports Server (NTRS)

    Cruz, Juan R.; Way, David W.; Shidner, Jeremy D.; Davis, Jody L.; Powell, Richard W.; Kipp, Devin M.; Adams, Douglas S.; Witkowski, Al; Kandis, Mike

    2013-01-01

    An end-to-end simulation of the Mars Science Laboratory (MSL) entry, descent, and landing (EDL) sequence was created at the NASA Langley Research Center using the Program to Optimize Simulated Trajectories II (POST2). This simulation is capable of providing numerous MSL system and flight software responses, including Monte Carlo-derived statistics of these responses. The MSL POST2 simulation includes models of EDL system elements, including those related to the parachute system. Among these there are models for the parachute geometry, mass properties, deployment, inflation, opening force, area oscillations, aerodynamic coefficients, apparent mass, interaction with the main landing engines, and off-loading. These models were kept as simple as possible, considering the overall objectives of the simulation. The main purpose of this paper is to describe these parachute system models to the extent necessary to understand how they work and some of their limitations. A list of lessons learned during the development of the models and simulation is provided. Future improvements to the parachute system models are proposed.

  16. Risk-Constrained Dynamic Programming for Optimal Mars Entry, Descent, and Landing

    NASA Technical Reports Server (NTRS)

    Ono, Masahiro; Kuwata, Yoshiaki

    2013-01-01

    A chance-constrained dynamic programming algorithm was developed that is capable of making optimal sequential decisions within a user-specified risk bound. This work handles stochastic uncertainties over multiple stages in the CEMAT (Combined EDL-Mobility Analyses Tool) framework. It was demonstrated by a simulation of Mars entry, descent, and landing (EDL) using real landscape data obtained from the Mars Reconnaissance Orbiter. Although standard dynamic programming (DP) provides a general framework for optimal sequential decisionmaking under uncertainty, it typically achieves risk aversion by imposing an arbitrary penalty on failure states. Such a penalty-based approach cannot explicitly bound the probability of mission failure. A key idea behind the new approach is called risk allocation, which decomposes a joint chance constraint into a set of individual chance constraints and distributes risk over them. The joint chance constraint was reformulated into a constraint on an expectation over a sum of an indicator function, which can be incorporated into the cost function by dualizing the optimization problem. As a result, the chance-constraint optimization problem can be turned into an unconstrained optimization over a Lagrangian, which can be solved efficiently using a standard DP approach.

  17. Atmosphere Assessment for MARS Science Laboratory Entry, Descent and Landing Operations

    NASA Technical Reports Server (NTRS)

    Cianciolo, Alicia D.; Cantor, Bruce; Barnes, Jeff; Tyler, Daniel, Jr.; Rafkin, Scot; Chen, Allen; Kass, David; Mischna, Michael; Vasavada, Ashwin R.

    2013-01-01

    On August 6, 2012, the Mars Science Laboratory rover, Curiosity, successfully landed on the surface of Mars. The Entry, Descent and Landing (EDL) sequence was designed using atmospheric conditions estimated from mesoscale numerical models. The models, developed by two independent organizations (Oregon State University and the Southwest Research Institute), were validated against observations at Mars from three prior years. In the weeks and days before entry, the MSL "Council of Atmospheres" (CoA), a group of atmospheric scientists and modelers, instrument experts and EDL simulation engineers, evaluated the latest Mars data from orbiting assets including the Mars Reconnaissance Orbiter's Mars Color Imager (MARCI) and Mars Climate Sounder (MCS), as well as Mars Odyssey's Thermal Emission Imaging System (THEMIS). The observations were compared to the mesoscale models developed for EDL performance simulation to determine if a spacecraft parameter update was necessary prior to entry. This paper summarizes the daily atmosphere observations and comparison to the performance simulation atmosphere models. Options to modify the atmosphere model in the simulation to compensate for atmosphere effects are also presented. Finally, a summary of the CoA decisions and recommendations to the MSL project in the days leading up to EDL is provided.

  18. Cognitive phylogenies, the Darwinian logic of descent, and the inadequacy of cladistic thinking

    PubMed Central

    Theofanopoulou, Constantina; Boeckx, Cedric

    2015-01-01

    There has been a reappraisal of phylogenetic issues in cognitive science, as reconstructing cognitive phylogenies has been considered a key for unveiling the cognitive novelties that set the stage for what makes humans special. In our opinion, the studies made until now have approached cognitive phylogenies in a non-optimal way, and we wish to both highlight their problems, drawing on recent considerations in philosophy of biology. The inadequacy of current visions on cognitive phylogenies stems from the influence of the traditional “linear cladograms,” according to which every seemingly new or more sophisticated feature of a cognitive mechanism, viewed as a novelty, is represented as a node on top of the old and shared elements. We claim that this kind of cladograms does not succeed in depicting the complexity with which traits are distributed across species and, furthermore, that the labels of the nodes of these traditional representational systems fail to capture the “tinkering” nature of evolution. We argue that if we are to conceive of cognitive mechanisms in a multi-dimensional, bottom-up perspective, in accordance with the Darwinian logic of descent, we should rather focus on decomposing these mechanisms into lower-level, generic functions, which have the additional advantage of being implementable in neural matter, which ultimately produces cognition. Doing so renders current constructions of cognitive phylogenies otiose. PMID:26528479

  19. An overview of the descent and landing of the Huygens probe on Titan.

    PubMed

    Lebreton, Jean-Pierre; Witasse, Olivier; Sollazzo, Claudio; Blancquaert, Thierry; Couzin, Patrice; Schipper, Anne-Marie; Jones, Jeremy B; Matson, Dennis L; Gurvits, Leonid I; Atkinson, David H; Kazeminejad, Bobby; Pérez-Ayúcar, Miguel

    2005-12-01

    Titan, Saturn's largest moon, is the only Solar System planetary body other than Earth with a thick nitrogen atmosphere. The Voyager spacecraft confirmed that methane was the second-most abundant atmospheric constituent in Titan's atmosphere, and revealed a rich organic chemistry, but its cameras could not see through the thick organic haze. After a seven-year interplanetary journey on board the Cassini orbiter, the Huygens probe was released on 25 December 2004. It reached the upper layer of Titan's atmosphere on 14 January and landed softly after a parachute descent of almost 2.5 hours. Here we report an overview of the Huygens mission, which enabled studies of the atmosphere and surface, including in situ sampling of the organic chemistry, and revealed an Earth-like landscape. The probe descended over the boundary between a bright icy terrain eroded by fluvial activity--probably due to methane-and a darker area that looked like a river- or lake-bed. Post-landing images showed centimetre-sized surface details. PMID:16319826

  20. Evaluation of an Airborne Spacing Concept to Support Continuous Descent Arrival Operations

    NASA Technical Reports Server (NTRS)

    Murdoch, Jennifer L.; Barmore, Bryan E.; Baxley, Brian T.; Capron, William R.; Abbott, Terence S.

    2009-01-01

    This paper describes a human-in-the-loop experiment of an airborne spacing concept designed to support Continuous Descent Arrival (CDA) operations. The use of CDAs with traditional air traffic control (ATC) techniques may actually reduce an airport's arrival throughput since ATC must provide more airspace around aircraft on CDAs due to the variances in the aircraft trajectories. The intent of airborne self-spacing, where ATC delegates the speed control to the aircraft, is to maintain or even enhance an airport s landing rate during CDA operations by precisely achieving the desired time interval between aircraft at the runway threshold. This paper describes the operational concept along with the supporting airborne spacing tool and the results of a piloted evaluation of this concept, with the focus of the evaluation on pilot acceptability of the concept during off-nominal events. The results of this evaluation show a pilot acceptance of this airborne spacing concept with little negative performance impact over conventional CDAs.

  1. Guidance and Control Algorithms for the Mars Entry, Descent and Landing Systems Analysis

    NASA Technical Reports Server (NTRS)

    Davis, Jody L.; CwyerCianciolo, Alicia M.; Powell, Richard W.; Shidner, Jeremy D.; Garcia-Llama, Eduardo

    2010-01-01

    The purpose of the Mars Entry, Descent and Landing Systems Analysis (EDL-SA) study was to identify feasible technologies that will enable human exploration of Mars, specifically to deliver large payloads to the Martian surface. This paper focuses on the methods used to guide and control two of the contending technologies, a mid- lift-to-drag (L/D) rigid aeroshell and a hypersonic inflatable aerodynamic decelerator (HIAD), through the entry portion of the trajectory. The Program to Optimize Simulated Trajectories II (POST2) is used to simulate and analyze the trajectories of the contending technologies and guidance and control algorithms. Three guidance algorithms are discussed in this paper: EDL theoretical guidance, Numerical Predictor-Corrector (NPC) guidance and Analytical Predictor-Corrector (APC) guidance. EDL-SA also considered two forms of control: bank angle control, similar to that used by Apollo and the Space Shuttle, and a center-of-gravity (CG) offset control. This paper presents the performance comparison of these guidance algorithms and summarizes the results as they impact the technology recommendations for future study.

  2. Rain, winds and haze during the Huygens probe's descent to Titan's surface

    USGS Publications Warehouse

    Tomasko, M.G.; Archinal, B.; Becker, T.; Bezard, B.; Bushroe, M.; Combes, M.; Cook, D.; Coustenis, A.; De Bergh, C.; Dafoe, L.E.; Doose, L.; Doute, S.; Eibl, A.; Engel, S.; Gliem, F.; Grieger, B.; Holso, K.; Howington-Kraus, E.; Karkoschka, E.; Keller, H.U.; Kirk, R.; Kramm, R.; Kuppers, M.; Lanagan, P.; Lellouch, E.; Lemmon, M.; Lunine, J.; McFarlane, E.; Moores, J.; Prout, G.M.; Rizk, B.; Rosiek, M.; Rueffer, P.; Schroder, S.E.; Schmitt, B.; See, C.; Smith, P.; Soderblom, L.; Thomas, N.; West, R.

    2005-01-01

    The irreversible conversion of methane into higher hydrocarbons in Titan's stratosphere implies a surface or subsurface methane reservoir. Recent measurements from the cameras aboard the Cassini orbiter fail to see a global reservoir, but the methane and smog in Titan's atmosphere impedes the search for hydrocarbons on the surface. Here we report spectra and high-resolution images obtained by the Huygens Probe Descent Imager/Spectral Radiometer instrument in Titan's atmosphere. Although these images do not show liquid hydrocarbon pools on the surface, they do reveal the traces of once flowing liquid. Surprisingly like Earth, the brighter highland regions show complex systems draining into flat, dark lowlands. Images taken after landing are of a dry riverbed. The infrared reflectance spectrum measured for the surface is unlike any other in the Solar System; there is a red slope in the optical range that is consistent with an organic material such as tholins, and absorption from water ice is seen. However, a blue slope in the near-infrared suggests another, unknown constituent. The number density of haze particles increases by a factor of just a few from an altitude of 150 km to the surface, with no clear space below the tropopause. The methane relative humidity near the surface is 50 per cent. ?? 2005 Nature Publishing Group.

  3. An innovative navigation scheme of powered descent phase for Mars pinpoint landing

    NASA Astrophysics Data System (ADS)

    Qin, Tong; Zhu, Shengying; Cui, Pingyuan; Gao, Ai

    2014-11-01

    Pinpoint landing (within 100 m from the target) is essential for future Mars exploration missions. This paper deals with one aspect of the pinpoint landing architecture-the navigation performance improvement during the powered descent phase, and proposes an innovative navigation scheme to obtain the vehicle complete and accurate states. On the basis of dead reckoning relying on the Inertial Measurement Unit, measurements of the Integrated Doppler Radar are adopted to correct the vehicle velocity and altitude. Distance between the vehicle and one Mars Orbiter as well as their line-of-sight relative velocity is measured by a radio sensor, and integrated in the filter to correct the vehicle horizontal position. The innovative navigation system is based on an Extend Kalman Filter. Two observation schemes are developed. One considers measurements of the Integrated Doppler Radar and radio range measurement. Another further considers radio velocity measurement. The performance of the innovative navigation scheme is greatly influenced by the position of the Mars Orbiter with respect to the target. Stochastic analyses are performed to obtain optimal locations of Mars Orbiter. Finally, the innovative navigation scheme performances are assessed through stochastic simulations. Its performance improvements are demonstrated by comparison with the Integrated Doppler Radar only navigation scheme.

  4. Using identity by descent estimation with dense genotype data to detect positive selection.

    PubMed

    Han, Lide; Abney, Mark

    2013-02-01

    Identification of genomic loci and segments that are identical by descent (IBD) allows inference on problems such as relatedness detection, IBD disease mapping, heritability estimation and detection of recent or ongoing positive selection. Here, employing a novel statistical method, we use IBD to find signals of selection in the Maasai from Kinyawa, Kenya (MKK). In doing so, we demonstrate the advantage of statistical tools that can probabilistically estimate IBD sharing without having to thin genotype data because of linkage disequilibrium (LD), and that allow for both inbreeding and more than one allele to be shared IBD. We use our novel method, GIBDLD, to estimate IBD sharing between all pairs of individuals at all genotyped SNPs in the MKK, and, by looking for genomic regions showing excess IBD sharing in unrelated pairs, find loci that are known to have undergone recent selection (eg, the LCT gene and the HLA region) as well as many novel loci. Intriguingly, those loci that show the highest amount of excess IBD, with the exception of HLA, also show a substantial number of unrelated pairs sharing all four of their alleles IBD. In contrast to other IBD detection methods, GIBDLD provides accurate probabilistic estimates at each locus for all nine possible IBD sharing states between a pair of individuals, thus allowing for consanguinity, while also modeling LD, thus removing the need to thin SNPs. These characteristics will prove valuable for those doing genetic studies, and estimating IBD, in the wide variety of human populations. PMID:22781100

  5. Length distributions of identity by descent reveal fine-scale demographic history.

    PubMed

    Palamara, Pier Francesco; Lencz, Todd; Darvasi, Ariel; Pe'er, Itsik

    2012-11-01

    Data-driven studies of identity by descent (IBD) were recently enabled by high-resolution genomic data from large cohorts and scalable algorithms for IBD detection. Yet, haplotype sharing currently represents an underutilized source of information for population-genetics research. We present analytical results on the relationship between haplotype sharing across purportedly unrelated individuals and a population's demographic history. We express the distribution of IBD sharing across pairs of individuals for segments of arbitrary length as a function of the population's demography, and we derive an inference procedure to reconstruct such demographic history. The accuracy of the proposed reconstruction methodology was extensively tested on simulated data. We applied this methodology to two densely typed data sets: 500 Ashkenazi Jewish (AJ) individuals and 56 Kenyan Maasai (MKK) individuals (HapMap 3 data set). Reconstructing the demographic history of the AJ cohort, we recovered two subsequent population expansions, separated by a severe founder event, consistent with previous analysis of lower-throughput genetic data and historical accounts of AJ history. In the MKK cohort, high levels of cryptic relatedness were detected. The spectrum of IBD sharing is consistent with a demographic model in which several small-sized demes intermix through high migration rates and result in enrichment of shared long-range haplotypes. This scenario of historically structured demographies might explain the unexpected abundance of runs of homozygosity within several populations. PMID:23103233

  6. Mars Global Surveyor's View of Gusev Crater During Spirit's Entry, Descent, and Landing

    NASA Technical Reports Server (NTRS)

    2004-01-01

    [figure removed for brevity, see original site] Click on image for larger annotated version

    7 January 2004 When the Mars Exploration Rover (MER-A), Spirit, was landing on 4 January 2004 (3 January 2004, PST), Mars Global Surveyor (MGS) was in position above the region to receive the critical entry, descent, and landing data via ultra high frequency (UHF) radio transmission to the MGS Mars Relay (MR) system. Data from the MR antenna are stored in the Mars Orbiter Camera (MOC) computer until they are transmitted to Earth. The transmission from Spirit on 4 January 2004 occurred in real time, as the rover descended, bounced, and rolled to a stop.

    At the same time that MGS was receiving data during Spirit's landing, the MGS MOC obtained this oblique wide angle view looking east across the martian surface toward Gusev Crater, the site where the MER-A landed. The image on the right is labeled to show the location of Gusev Crater; the arrow points approximately to the place that Spirit touched down. The 165 km (103 mi) diameter Gusev Crater and the Spirit landing site are located near 14.7oS, 184. 6oW. In this view, sunlight is coming from the bottom (west).

  7. Parente2: a fast and accurate method for detecting identity by descent

    PubMed Central

    Rodriguez, Jesse M.; Bercovici, Sivan; Huang, Lin; Frostig, Roy; Batzoglou, Serafim

    2015-01-01

    Identity-by-descent (IBD) inference is the problem of establishing a genetic connection between two individuals through a genomic segment that is inherited by both individuals from a recent common ancestor. IBD inference is an important preceding step in a variety of population genomic studies, ranging from demographic studies to linking genomic variation with phenotype and disease. The problem of accurate IBD detection has become increasingly challenging with the availability of large collections of human genotypes and genomes: Given a cohort’s size, a quadratic number of pairwise genome comparisons must be performed. Therefore, computation time and the false discovery rate can also scale quadratically. To enable accurate and efficient large-scale IBD detection, we present Parente2, a novel method for detecting IBD segments. Parente2 is based on an embedded log-likelihood ratio and uses a model that accounts for linkage disequilibrium by explicitly modeling haplotype frequencies. Parente2 operates directly on genotype data without the need to phase data prior to IBD inference. We evaluate Parente2’s performance through extensive simulations using real data, and we show that it provides substantially higher accuracy compared to previous state-of-the-art methods while maintaining high computational efficiency. PMID:25273070

  8. A parametric approach to kinship hypothesis testing using identity-by-descent parameters.

    PubMed

    García-Magariños, Manuel; Egeland, Thore; López-de-Ullibarri, Ignacio; Hjort, Nils L; Salas, Antonio

    2015-11-01

    There is a large number of applications where family relationships need to be determined from DNA data. In forensic science, competing ideas are in general verbally formulated as the two hypotheses of a test. For the most common paternity case, the null hypothesis states that the alleged father is the true father against the alternative hypothesis that the father is an unrelated man. A likelihood ratio is calculated to summarize the evidence. We propose an alternative framework whereby a model and the hypotheses are formulated in terms of parameters representing identity-by-descent probabilities. There are several advantages to this approach. Firstly, the alternative hypothesis can be completely general. Specifically, the alternative does not need to specify an unrelated man. Secondly, the parametric formulation corresponds to the approach used in most other applications of statistical hypothesis testing and so there is a large theory of classical statistics that can be applied. Theoretical properties of the test statistic under the null hypothesis are studied. An extension to trios of individuals has been carried out. The methods are exemplified using simulations and a real dataset of 27 Spanish Romani individuals. PMID:26509786

  9. Attitude Issues on the Huygens Probe: Balloon Dropped Mock up Role in Determining Reconstruction Strategies During Descent in Lower Atmosphere

    NASA Technical Reports Server (NTRS)

    Bettanini, C.; Angrilli, F.

    2005-01-01

    As part of the collaboration with Italian Space Agency on HASI instrument for Huygens mission, University of Padova has been conducting since 2001 scientific activity on Stratospheric Balloon Launches from the Trapani base in Sicily. The most recent boomerang flight in July 2003 has successfully flown a mock up of the Huygens probe hosting spares of flight scientific units and extra housekeeping and scientific sensors on a parachuted descent from 33 kilometre altitude. This work presents the studies conducted on attitude reconstruction of the probe, as well as the utilisation of iterative extended Kalman filtering in investigating vanes induced spin rate and in providing a baseline for the performance evaluation of Huygens accelerometers operations. Finally some possible contributions on the reconstruction of the lower part of Titan descent for Huygens probe are suggested based on the confrontation of sensor data for 2003 flight.

  10. ACOG Committee Opinion No. 442: Preconception and prenatal carrier screening for genetic diseases in individuals of Eastern European Jewish descent.

    PubMed

    2009-10-01

    Certain autosomal recessive disease conditions are more prevalent in individuals of Eastern European Jewish (Ashkenazi) descent. Previously, the American College of Obstetricians and Gynecologists recommended that individuals of Eastern European Jewish ancestry be offered carrier screening for Tay-Sachs disease, Canavan disease, and cystic fibrosis as part of routine obstetric care. Based on the criteria used to justify offering carrier screening for Tay-Sachs disease, Canavan disease, and cystic fibrosis, the American College of Obstetricians and Gynecologists' Committee on Genetics recommends that couples of Ashkenazi Jewish ancestry also should be offered carrier screening for familial dysautonomia. Individuals of Ashkenazi Jewish descent may inquire about the availability of carrier screening for other disorders. Carrier screening is available for mucolipidosis IV, Niemann-Pick disease type A, Fanconi anemia group C, Bloom syndrome, and Gaucher disease. PMID:19888064

  11. Regolith-Derived Heat Shield for Planetary Body Entry and Descent System with In-Situ Fabrication

    NASA Technical Reports Server (NTRS)

    Hogue, Michael D.; Mueller, Robert P.; Sibille, Laurent; Hintze, Paul E.; Rasky, Daniel J.

    2012-01-01

    High-mass planetary surface access is one of NASA's Grand Challenges involving entry, descent, and landing (EDL). Heat shields fabricated in-situ can provide a thermal protection system for spacecraft that routinely enter a planetary atmosphere. Fabricating the heat shield from extraterrestrial regolith will avoid the costs of launching the heat shield mass from Earth. This project investigated three methods to fabricate heat shield using extraterrestrial regolith and performed preliminary work on mission architectures.

  12. Regolith-Derived Heat Shield for Planetary Body Entry and Descent System with In-Situ Fabrication

    NASA Technical Reports Server (NTRS)

    Hogue, Michael D.; Mueller, Robert P.; Sibille, Laurent; Hintze, Paul E.; Rasky, Daniel J.

    2012-01-01

    High-mass planetary surface access is one of NASA's Grand Challenges involving entry, descent, and landing (EDL). Heat shields fabricated in-situ can provide a thermal protection system for spacecraft that routinely enter a planetary atmosphere. Fabricating the heat shield from extraterrestrial regolith will avoid the costs of launching the heat shield mass from Earth. This project will investigate three methods to fabricate heat shield using extraterrestrial regolith.

  13. Mesosphere-to-stratosphere descent of odd nitrogen in February-March 2009 after sudden stratospheric warming

    NASA Astrophysics Data System (ADS)

    Salmi, S.-M.; Verronen, P. T.; Thölix, L.; Kyrölä, E.; Backman, L.; Karpechko, A. Yu.; Seppälä, A.

    2011-01-01

    We use the 3-D FinROSE chemistry transport model (CTM) and ACE-FTS (Atmospheric Chemistry Experiment Fourier Transform Spectrometer) observations to study the connection between atmospheric dynamics and NOx descent during early 2009 in the northern polar region. We force the model NOx at 80 km poleward of 60° N with ACE-FTS observations and then compare the model results with observations at lower altitudes. Low geomagnetic indices indicate absence of local NOx production in early 2009, which gives a good opportunity to study the effects of atmospheric transport on polar NOx. No in-situ production of NOx by energetic particle precipitation is therefore included. This is the first model study using ECMWF (The European Centre for Medium-Range Weather Forecasts) data up to 80 km and simulating the exceptional winter of 2009 with one of the strongest major sudden stratospheric warmings (SSW). The model results show a strong NOx descent in February-March 2009 from the upper mesosphere to the stratosphere after the major SSW. Both observations and model results suggest an increase of NOx to 150-200 ppb (i.e. by factor of 50) at 65 km due to the descent following the SSW. The model, however, underestimates the amount of NOx around 55 km by 40-60 ppb. The results also show that the chemical loss of NOx was insignificant i.e. NOx was mainly controlled by the dynamics. Both ACE-FTS observations and FinROSE show a decrease of ozone of 20-30% at 30-50 km after mid-February to mid-March. However, these changes are not related to the NOx descent, but are due to activation of the halogen chemistry.

  14. Computer program development and user's manual for program PARACH. [to investigate parachute spent solid rocket booster during terminal descent

    NASA Technical Reports Server (NTRS)

    Murphree, H. I.

    1979-01-01

    A user's manual is provided for program PARACH, a FORTRAN digital computer program operational on the Univac 1108. A description of the program and operating instructions for it are included. Program PARACH is used to study the interaction dynamics of a parachute and its payload during terminal descent. Operating instructions, required input data, program options and limitations, and output data are described. Subroutines used in this program are also listed and explained.

  15. Design and simulation of a descent controller for strategic four-dimensional aircraft navigation. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Lax, F. M.

    1975-01-01

    A time-controlled navigation system applicable to the descent phase of flight for airline transport aircraft was developed and simulated. The design incorporates the linear discrete-time sampled-data version of the linearized continuous-time system describing the aircraft's aerodynamics. Using optimal linear quadratic control techniques, an optimal deterministic control regulator which is implementable on an airborne computer is designed. The navigation controller assists the pilot in complying with assigned times of arrival along a four-dimensional flight path in the presence of wind disturbances. The strategic air traffic control concept is also described, followed by the design of a strategic control descent path. A strategy for determining possible times of arrival at specified waypoints along the descent path and for generating the corresponding route-time profiles that are within the performance capabilities of the aircraft is presented. Using a mathematical model of the Boeing 707-320B aircraft along with a Boeing 707 cockpit simulator interfaced with an Adage AGT-30 digital computer, a real-time simulation of the complete aircraft aerodynamics was achieved. The strategic four-dimensional navigation controller for longitudinal dynamics was tested on the nonlinear aircraft model in the presence of 15, 30, and 45 knot head-winds. The results indicate that the controller preserved the desired accuracy and precision of a time-controlled aircraft navigation system.

  16. The categorization of African descent populations in Europe and the USA: should lexicons of recommended terminology be evidence-based?

    PubMed

    Aspinall, P J

    2008-01-01

    This review attempts to evaluate a proposed lexicon for African-descent populations from the viewpoint of saliency amongst those described and wider official and scientific usage, focusing on Britain and the USA. It is argued that it is unsatisfactory to privilege the term 'African American' over 'Black' for African-descent populations in the USA as the evidence base shows that both labels compete as self-designations on co-equal terms, while 'Black' is the prevalent term in scientific writing. Moreover, 'African American' is not an inclusive term for the African-descent population and it is not known how prevalent and enduring the term will prove to be. With respect to Britain, the census terms of 'Black African' and 'Black Caribbean' are well established, the increasing popularity of 'Black British' also being recognized in census labels. Given the increasing interest in the relationship between ethnic identity and health, there are arguments for documenting the diversity of terminology amongst different user constituencies in country-specific settings. The approach of synthetic glossaries of consensual terms may, through the need for economy and parsimony in the use of terminology, contribute to an unsatisfactory paring of that diversity. PMID:17645900

  17. Development and preliminary evaluation of a behavioural HIV prevention program for teenage girls of Latino descent in the USA

    PubMed Central

    Davidson, Tatiana M.; Lopez, Cristina M.; Saulson, Raelle; Borkman, April L.; Soltis, Kathryn; Ruggiero, Kenneth J.; de Arellano, Michael; Wingood, Gina M.; DiClemente, Ralph J.; Danielson, Carla Kmett

    2014-01-01

    National data suggests that teenage girls of Latino descent in the USA are disproportionately affected by HIV with the rate of new infections being approximately 4 times higher compared to White women of comparable age (Centers for Disease Control and Prevention 2013). This paper highlights the need for an effective single-sex HIV prevention program for teenage girls of Latino descent and describes the development and preliminary evaluation of Chicas Healing, Informing, Living and Empowering (CHILE), a culturally-tailored, HIV prevention programme exclusively for teenage girls of Latino descent that was adapted from Sisters Informing, Healing, Living, and Empowering (SiHLE), an evidence-based HIV prevention program that is culturally tailored for African American young women. Theatre testing, a pre-testing methodology to assess consumer response to a demonstration of a product, was utilised to evaluate the relevance and utility of the HIV program as well as opportunities for the integration of cultural constructs. Future directions for the evaluation of CHILE are discussed. PMID:24697607

  18. Gender difference in older adult's utilization of gravitational and ground reaction force in regulation of angular momentum during stair descent.

    PubMed

    Singhal, Kunal; Kim, Jemin; Casebolt, Jeffrey; Lee, Sangwoo; Han, Ki-Hoon; Kwon, Young-Hoo

    2015-06-01

    Angular momentum of the body is a highly controlled quantity signifying stability, therefore, it is essential to understand its regulation during stair descent. The purpose of this study was to investigate how older adults use gravity and ground reaction force to regulate the angular momentum of the body during stair descent. A total of 28 participants (12 male and 16 female; 68.5 years and 69.0 years of mean age respectively) performed stair descent from a level walk in a step-over-step manner at a self-selected speed over a custom made three-step staircase with embedded force plates. Kinematic and force data were used to calculate angular momentum, gravitational moment, and ground reaction force moment about the stance foot center of pressure. Women show a significantly greater change in normalized angular momentum (0.92Nms/Kgm; p=.004) as compared to men (0.45Nms/Kgm). Women produce higher normalized GRF (p=.031) during the double support phase. The angular momentum changes show largest backward regulation for Step 0 and forward regulation for Step 2. This greater difference in overall change in the angular momentum in women may explain their increased risk of fall over the stairs. PMID:25846952

  19. ATMOS/ATLAS-3 Observations of Long-Lived Tracers and Descent in the Antarctic Vortex in November 1994

    NASA Technical Reports Server (NTRS)

    Abrams, M. C.; Manney, G. L.; Gunson, M. R.; Abbas, M. M.; Chang, A. Y.; Goldman, A.; Irion, F. W.; Michelsen, H. A.; Newchurch, M. J.; Rinsland, C. P.; Salawitch, R. J.; Stiller, G. P.; Zander, R.

    1996-01-01

    Observations of the long-lived tracers N2O, CH4 and HF obtained by the Atmospheric Trace Molecule Spectroscopy (ATMOS) instrument in early November 1994 are used to estimate average descent rates during winter in the Antarctic polar vortex of 0.5 to 1.5 km/month in the lower stratosphere, and 2.5 to 3.5 km/month in the middle and upper stratosphere. Descent rates inferred from ATMOS tracer observations agree well with theoretical estimates obtained using radiative heating calculations. Air of mesospheric origin (N2O less than 5 ppbV) was observed at altitudes above about 25 km within the vortex. Strong horizontal gradients of tracer mixing ratios, the presence of mesospheric air in the vortex in early spring, and the variation with altitude of inferred descent rates indicate that the Antarctic vortex is highly isolated from midlatitudes throughout the winter from approximately 20 km to the stratopause. The 1994 Antarctic vortex remained well isolated between 20 and 30 km through at least mid-November.

  20. Cancer survival among children of Turkish descent in Germany 1980–2005: a registry-based analysis

    PubMed Central

    Spix, Claudia; Spallek, Jacob; Kaatsch, Peter; Razum, Oliver; Zeeb, Hajo

    2008-01-01

    Background Little is known about the effect of migrant status on childhood cancer survival. We studied cancer survival among children of Turkish descent in the German Cancer Childhood Registry, one of the largest childhood cancer registries worldwide. Methods We identified children of Turkish descent among cancer cases using a name-based approach. We compared 5-year survival probabilities of Turkish and other children in three time periods of diagnosis (1980–87, 1988–95, 1996–2005) using the Kaplan-Meier method and log-rank tests. Results The 5-year survival probability for all cancers among 1774 cases of Turkish descent (4.76% of all 37.259 cases) was 76.9% compared to 77.6% in the comparison group (all other cases; p = 0.15). We found no age- or sex-specific survival differences (p-values between p = 0.18 and p = 0.90). For the period 1980–87, the 5-year survival probability among Turkish children with lymphoid leukaemia was significantly lower (62% versus 75.8%; p < 0.0001), this remains unexplained. For more recently diagnosed leukaemias, we saw no survival differences for Turkish and non-Turkish children. Conclusion Our results suggest that nowadays Turkish migrant status has no bearing on the outcome of childhood cancer therapies in Germany. The inclusion of currently more than 95% of all childhood cancer cases in standardised treatment protocols is likely to contribute to this finding. PMID:19040749

  1. Development and test results of a flight management algorithm for fuel conservative descents in a time-based metered traffic environment

    NASA Technical Reports Server (NTRS)

    Knox, C. E.; Cannon, D. G.

    1980-01-01

    A simple flight management descent algorithm designed to improve the accuracy of delivering an airplane in a fuel-conservative manner to a metering fix at a time designated by air traffic control was developed and flight tested. This algorithm provides a three dimensional path with terminal area time constraints (four dimensional) for an airplane to make an idle thrust, clean configured (landing gear up, flaps zero, and speed brakes retracted) descent to arrive at the metering fix at a predetermined time, altitude, and airspeed. The descent path was calculated for a constant Mach/airspeed schedule from linear approximations of airplane performance with considerations given for gross weight, wind, and nonstandard pressure and temperature effects. The flight management descent algorithm is described. The results of the flight tests flown with the Terminal Configured Vehicle airplane are presented.

  2. A General Method for Solving Systems of Non-Linear Equations

    NASA Technical Reports Server (NTRS)

    Nachtsheim, Philip R.; Deiss, Ron (Technical Monitor)

    1995-01-01

    The method of steepest descent is modified so that accelerated convergence is achieved near a root. It is assumed that the function of interest can be approximated near a root by a quadratic form. An eigenvector of the quadratic form is found by evaluating the function and its gradient at an arbitrary point and another suitably selected point. The terminal point of the eigenvector is chosen to lie on the line segment joining the two points. The terminal point found lies on an axis of the quadratic form. The selection of a suitable step size at this point leads directly to the root in the direction of steepest descent in a single step. Newton's root finding method not infrequently diverges if the starting point is far from the root. However, the current method in these regions merely reverts to the method of steepest descent with an adaptive step size. The current method's performance should match that of the Levenberg-Marquardt root finding method since they both share the ability to converge from a starting point far from the root and both exhibit quadratic convergence near a root. The Levenberg-Marquardt method requires storage for coefficients of linear equations. The current method which does not require the solution of linear equations requires more time for additional function and gradient evaluations. The classic trade off of time for space separates the two methods.

  3. The direction of acceleration

    NASA Astrophysics Data System (ADS)

    Wilhelm, Thomas; Burde, Jan-Philipp; Lück, Stephan

    2015-11-01

    Acceleration is a physical quantity that is difficult to understand and hence its complexity is often erroneously simplified. Many students think of acceleration as equivalent to velocity, a ˜ v. For others, acceleration is a scalar quantity, which describes the change in speed Δ|v| or Δ|v|/Δt (as opposed to the change in velocity). The main difficulty with the concept of acceleration therefore lies in developing a correct understanding of its direction. The free iOS app AccelVisu supports students in acquiring a correct conception of acceleration by showing acceleration arrows directly at moving objects.

  4. TURBULENT SHEAR ACCELERATION

    SciTech Connect

    Ohira, Yutaka

    2013-04-10

    We consider particle acceleration by large-scale incompressible turbulence with a length scale larger than the particle mean free path. We derive an ensemble-averaged transport equation of energetic charged particles from an extended transport equation that contains the shear acceleration. The ensemble-averaged transport equation describes particle acceleration by incompressible turbulence (turbulent shear acceleration). We find that for Kolmogorov turbulence, the turbulent shear acceleration becomes important on small scales. Moreover, using Monte Carlo simulations, we confirm that the ensemble-averaged transport equation describes the turbulent shear acceleration.

  5. Output tracking of some class non-minimum phase nonlinear systems via output redefinition

    NASA Astrophysics Data System (ADS)

    Firman, Naiborhu, Janson

    2016-02-01

    In this paper, we present the output tracking for a class non-minimum phase nonlinear. To achive the output tracking, we will apply the modified steepest descent control. To apply the modified steepest descent control, the output of the system will be redefined such that the system will become minimum phase with respect to a new output.

  6. Descent of low-Bond-number liquid-metal diapirs with trailing conduits during core formation

    NASA Astrophysics Data System (ADS)

    Rains, C.; Weeraratne, D. S.

    2012-12-01

    Formation of the early Earth involved violent impacts and meteorite bombardment which partially or fully melted surface materials, facilitating separation of iron metal from silicates. Geochemical constraints on core formation times indicate that this liquid metal must have been transported to the center of the Earth within 30 Ma. Among the mechanisms that have been proposed, metal-silicate plumes resulting from Rayleigh-Taylor instabilities of a liquid-metal pond at the bottom of a magma ocean provide the fastest rates of delivery to the core. Recent studies have shown that these rapidly descending plumes develop trailing conduits that fill with the overlying melted silicate material. However, while large plumes descend quickly, they do not provide enough time or surface area for metal-silicate equilibration to be achieved throughout the mantle. Instead, small metal drops descending in the wake of larger diapirs or in conduits of their own making may have been crucial in the equilibration process that resulted in the excess siderophile mantle abundance. We investigate the instability and descent of liquid-metal drops through a highly viscous layer using three-component laboratory fluid experiments representing the Earth's proto-mantle (layer 2) covered by a magma ocean (layer 1), and a liquid iron pond (layer 3) initially resting at their interface. Silicate materials are represented by dehydrated (layer 2), or diluted (layer 1) glucose and salt solutions. Liquid gallium represents the iron metal phase. We scale our experiments to the Earth's mantle through the use of Bond numbers to characterize drops and diapirs, and a non-dimensional length scale λ, which we define as the ratio of radius to height, to characterize conduits. Previous laboratory work using liquid gallium has investigated high-Bond-number diapirs (B = 13 - 66) and conduits of λ ~ 0.2, analogous to large plumes in the Earth. Here, we focus on low Bond numbers (B ~ 4), and small λ ~ .05 to

  7. Aerodynamic and performance characterization of supersonic retropropulsion for application to planetary entry and descent

    NASA Astrophysics Data System (ADS)

    Korzun, Ashley M.

    The entry, descent, and landing (EDL) systems for the United States' six successful landings on Mars and the 2011 Mars Science Laboratory (MSL) have all relied heavily on extensions of technology developed for the Viking missions of the mid 1970s. Incremental improvements to these technologies, namely rigid 70-deg sphere-cone aeroshells, supersonic disk-gap-band parachutes, and subsonic propulsive terminal descent, have increased payload mass capability to 950 kg (MSL). However, MSL is believed to be near the upper limit for landed mass using a Viking-derived EDL system. To achieve NASA's long-term exploration goals at Mars, technologies are needed that enable more than an order of magnitude increase in landed mass (10s of metric tons), several orders of magnitude increase in landing accuracy (10s or 100s of meters), and landings at higher surface elevations (0+ km). Supersonic deceleration has been identified as a critical deficiency in extending Viking-heritage technologies to high-mass, high-ballistic coefficient systems. As the development and qualification of significantly larger supersonic parachutes is not a viable path forward to increase landed mass capability to 10+ metric tons, alternative approaches must be developed. Supersonic retropropulsion (SRP), or the use of retropropulsive thrust while an entry vehicle is traveling at supersonic conditions, is one such alternative approach. The concept originated in the 1960s, though only recently has interest in SRP resurfaced. While its presence in the historical literature lends some degree of credibility to the concept of using retropropulsion at supersonic conditions, the overall immaturity of supersonic retropropulsion requires additional evaluation of its potential as a decelerator technology for high-mass Mars entry systems, as well as its comparison with alternative decelerators. The supersonic retropropulsion flowfield is typically a complex interaction between highly under-expanded jet flow and the

  8. Accelerating Particles with Plasma

    SciTech Connect

    Litos, Michael; Hogan, Mark

    2014-11-05

    Researchers at SLAC explain how they use plasma wakefields to accelerate bunches of electrons to very high energies over only a short distance. Their experiments offer a possible path for the future of particle accelerators.

  9. Improved plasma accelerator

    NASA Technical Reports Server (NTRS)

    Cheng, D. Y.

    1971-01-01

    Converging, coaxial accelerator electrode configuration operates in vacuum as plasma gun. Plasma forms by periodic injections of high pressure gas that is ionized by electrical discharges. Deflagration mode of discharge provides acceleration, and converging contours of plasma gun provide focusing.

  10. Inference of identity by descent in population isolates and optimal sequencing studies.

    PubMed

    Glodzik, Dominik; Navarro, Pau; Vitart, Veronique; Hayward, Caroline; McQuillan, Ruth; Wild, Sarah H; Dunlop, Malcolm G; Rudan, Igor; Campbell, Harry; Haley, Chris; Wright, Alan F; Wilson, James F; McKeigue, Paul

    2013-10-01

    In an isolated population, individuals are likely to share large genetic regions inherited from common ancestors. Identity by descent (IBD) can be inferred from SNP genotypes, which is useful in a number of applications, including identifying genetic variants influencing complex disease risk, and planning efficient cohort-sequencing strategies. We present ANCHAP--a method for detecting IBD in isolated populations. We compare accuracy of the method against other long-range and local phasing methods, using parent-offspring trios. In our experiments, we show that ANCHAP performs similarly as the other long-range method, but requires an order-of-magnitude less computational resources. A local phasing model is able to achieve similar sensitivity, but only at the cost of higher false discovery rates. In some regions of the genome, the studied individuals share haplotypes particularly often, which hints at the history of the populations studied. We demonstrate the method using SNP genotypes from three isolated island populations, as well as in a cohort of unrelated individuals. In samples from three isolated populations of around 1000 individual each, an average individual shares a haplotype at a genetic locus with 9-12 other individuals, compared with only 1 individual within the non-isolated population. We describe an application of ANCHAP to optimally choose samples in resequencing studies. We find that with sample sizes of 1000 individuals from an isolated population genotyped using a dense SNP array, and with 20% of these individuals sequenced, 65% of sequences of the unsequenced subjects can be partially inferred. PMID:23361219

  11. A Comparison Between Non-Descent Vaginal Hysterectomy and Total Abdominal Hysterectomy

    PubMed Central

    Dibyajyoti, Gharphalia

    2016-01-01

    Introduction Hysterectomy is one of the most common gyneacological surgeries performed worldwide. The vaginal technique has been introduced and performed centuries back, but has been less successful due to lack of experience and enthusiasm among Gynaecologists, due to a misconception that the abdominal route is safer and easier. Aim To evaluate the most efficient route of hysterectomy in women with mobile nonprolapsed uteri of 12 weeks or lesser by comparing the intra and postoperative complications of vaginal and abdominal hysterectomies. Materials and Methods A prospective, randomized controlled trial was performed wherein, 300 consecutive patients requiring hysterectomy for benign diseases were analysed over a period of 2 years (December 2012–November 2014). Group A (n = 150) underwent vaginal hysterectomy (non descent vaginal hysterectomy, NDVH) which was compared with group B (n = 150) who had abdominal hysterectomy. The primary outcome measures were operative time, intraoperative blood loss, postoperative analgesia, hospital stay, postoperative mobility, blood transfusion, wound infection, febrile morbidity and postoperative systemic infections. Secondary outcome measures were conversion of vaginal to abdominal route and re-laparotomy. Results Baseline characteristics were similar between the two groups. There were no intraoperative complications in either group. Regarding operation duration, intraoperative blood loss, postoperative pain, postoperative blood transfusion, mobilization in post operative ward, postoperative wound infection, febrile morbidity, duration of hospital stay, p-value was significant in vaginal hysterectomy compared to abdominal hysterectomy. Regarding postoperative systemic infections, p-value was not significant. None of the cases in the vaginal group were converted to abdominal route and none of the cases in the whole study group underwent re-laparotomy. Conclusion The present study concludes that patients requiring hysterectomy

  12. Stratospheric global winds on Titan at the time of Huygens descent

    NASA Astrophysics Data System (ADS)

    Kostiuk, T.; Livengood, T. A.; Sonnabend, G.; Fast, K. E.; Hewagama, T.; Murakawa, K.; Tokunaga, A. T.; Annen, J.; Buhl, D.; Schmülling, F.; Luz, D.; Witasse, O.

    2006-07-01

    Measurements of stratospheric zonal winds on Titan were made in preparation for and during the time of the descent of the Huygens Probe into Titan's atmosphere on 14 January 2005. Fully resolved emission lines from ethane near 11.7 μm were measured on the east, center, and west positions on Titan using the NASA/GSFC Heterodyne Instrument for Planetary Wind And Composition, HIPWAC, mounted on the National Astronomical Observatory of Japan 8.2 m Subaru Telescope on Mauna Kea, Hawaii. Analysis of the Doppler shifts of the emission line shapes yielded mean prograde gas velocity ~60 +/- 65 m/s at altitudes below ~120 km (~5 mbar). This result is consistent with retrievals from the Huygens Doppler Wind Experiment and from other observations near this altitude range. Current spectral line shapes, however, differed significantly from those obtained in similar measurements on Subaru in 2004 and on the NASA IRTF in 1993-1996, which retrieved prograde zonal winds 190 +/- 90 m/s at 230 km (~0.4 mbar). The cores of the emission lines, which probe the high-altitude region, could not be fitted as before to retrieve wind directly using the accepted atmospheric model for Titan. They imply an approximately tenfold increase in ethane mole fraction (1.2 × 10-4) with strong wind shear above the stratopause, providing a potential probe of the lower mesosphere and possible evidence of temporal and spatial variability. Results contribute to coordinated measurements of winds by various techniques providing information on the altitude distribution of wind velocity in Titan's atmosphere from near the surface to the lower mesosphere.

  13. Genome-wide association study of kidney function decline in individuals of European descent

    PubMed Central

    Gorski, Mathias; Tin, Adrienne; Garnaas, Maija; McMahon, Gearoid M.; Chu, Audrey Y.; Tayo, Bamidele O.; Pattaro, Cristian; Teumer, Alexander; Chasman, Daniel I.; Chalmers, John; Hamet, Pavel; Tremblay, Johanne; Woodward, Marc; Aspelund, Thor; Eiriksdottir, Gudny; Gudnason, Vilmundur; Harris, Tammara B.; Launer, Lenore J.; Smith, Albert V.; Mitchell, Braxton D.; O'Connell, Jeffrey R.; Shuldiner, Alan R.; Coresh, Josef; Li, Man; Freudenberger, Paul; Hofer, Edith; Schmidt, Helena; Schmidt, Reinhold; Holliday, Elizabeth G.; Mitchell, Paul; Wang, Jie Jin; de Boer, Ian H.; Li, Guo; Siscovick, David S.; Kutalik, Zoltan; Corre, Tanguy; Vollenweider, Peter; Waeber, Gérard; Gupta, Jayanta; Kanetsky, Peter A.; Hwang, Shih-Jen; Olden, Matthias; Yang, Qiong; de Andrade, Mariza; Atkinson, Elizabeth J.; Kardia, Sharon L.R.; Turner, Stephen T.; Stafford, Jeanette M.; Ding, Jingzhong; Liu, Yongmei; Barlassina, Cristina; Cusi, Daniele; Salvi, Erika; Staessen, Jan A; Ridker, Paul M; Grallert, Harald; Meisinger, Christa; Müller-Nurasyid, Martina; Krämer, Bernhard K.; Kramer, Holly; Rosas, Sylvia E.; Nolte, Ilja M.; Penninx, Brenda W.; Snieder, Harold; Del Greco, Fabiola; Franke, Andre; Nöthlings, Ute; Lieb, Wolfgang; Bakker, Stephan J.L.; Gansevoort, Ron T.; van der Harst, Pim; Dehghan, Abbas; Franco, Oscar H.; Hofman, Albert; Rivadeneira, Fernando; Sedaghat, Sanaz; Uitterlinden, André G.; Coassin, Stefan; Haun, Margot; Kollerits, Barbara; Kronenberg, Florian; Paulweber, Bernhard; Aumann, Nicole; Endlich, Karlhans; Pietzner, Mike; Völker, Uwe; Rettig, Rainer; Chouraki, Vincent; Helmer, Catherine; Lambert, Jean-Charles; Metzger, Marie; Stengel, Benedicte; Lehtimäki, Terho; Lyytikäinen, Leo-Pekka; Raitakari, Olli; Johnson, Andrew; Parsa, Afshin; Bochud, Murielle; Heid, Iris M.; Goessling, Wolfram; Köttgen, Anna; Kao, H. Linda; Fox, Caroline S.; Böger, Carsten A.

    2014-01-01

    Genome wide association studies (GWAS) have identified multiple loci associated with cross-sectional eGFR, but a systematic genetic analysis of kidney function decline over time is missing. Here we conducted a GWAS meta-analysis among 63,558 participants of European descent, initially from 16 cohorts with serial kidney function measurements within the CKDGen Consortium, followed by independent replication among additional participants from 13 cohorts. In stage 1 GWAS meta-analysis, SNPs at MEOX2, GALNT11, IL1RAP, NPPA, HPCAL1 and CDH23 showed the strongest associations for at least one trait, in addition to the known UMOD locus which showed genome-wide significance with an annual change in eGFR. In stage 2 meta-analysis, the significant association at UMOD was replicated. Associations at GALNT11 with Rapid Decline (annual eGFRdecline of 3ml/min/1.73m2 or more), and CDH23 with eGFR change among those with CKD showed significant suggestive evidence of replication. Combined stage 1 and 2 meta-analyses showed significance for UMOD, GALNT11 and CDH23. Morpholino knockdowns of galnt11 and cdh23 in zebrafish embryos each had signs of severe edema 72 hours after gentamicin treatment compared to controls, but no gross morphological renal abnormalities before gentamicin administration. Thus, our results suggest a role in the deterioration of kidney function for the loci GALNT11 and CDH23, and show that the UMOD locus is significantly associated with kidney function decline. PMID:25493955

  14. Insulin Resistance in Chileans of European and Indigenous Descent: Evidence for an Ethnicity x Environment Interaction

    PubMed Central

    Celis-Morales, Carlos A.; Perez-Bravo, Francisco; Ibañes, Luis; Sanzana, Ruth; Hormazabal, Edison; Ulloa, Natalia; Calvo, Carlos; Bailey, Mark E. S.; Gill, Jason M. R.

    2011-01-01

    Background Effects of urbanisation on diabetes risk appear to be greater in indigenous populations worldwide than in populations of European origin, but the reasons are unclear. This cross-sectional study aimed to determine whether the effects of environment (Rural vs. Urban), adiposity, fitness and lifestyle variables on insulin resistance differed between individuals of indigenous Mapuche origin compared to those of European origin in Chile. Methodology/Principal Findings 123 Rural Mapuche, 124 Urban Mapuche, 91 Rural European and 134 Urban European Chilean adults had blood taken for determination of HOMA-estimated insulin resistance (HOMAIR) and underwent assessment of physical activity/sedentary behaviour (using accelerometry), cardiorespiratory fitness, dietary intake and body composition. General linear models were used to determine interactions with ethnicity for key variables. There was a significant “ethnicity x environment” interaction for HOMAIR (Mean±SD; Rural Mapuche: 1.65±2.03, Urban Mapuche: 4.90±3.05, Rural European: 0.82±0.61, Urban European: 1.55±1.34, p(interaction) = 0.0003), such that the effect of urbanisation on HOMAIR was greater in Mapuches than Europeans. In addition, there were significant interactions (all p<0.004) with ethnicity for effects of adiposity, sedentary time and physical activity on HOMAIR, with greater effects seen in Mapuches compared to Europeans, an observation that persisted after adjustment for potential confounders. Conclusions/Significance Urbanisation, adiposity, physical activity and sedentary behaviour influence insulin resistance to a greater extent in Chilean Mapuches than Chileans of European descent. These findings have implications for the design and implementation of lifestyle strategies to reduce metabolic risk in different ethnic groups, and for understanding of the mechanisms underpinning human insulin resistance. PMID:21931814

  15. Conflation of Short Identity-by-Descent Segments Bias Their Inferred Length Distribution

    PubMed Central

    Chiang, Charleston W. K.; Ralph, Peter; Novembre, John

    2016-01-01

    Identity-by-descent (IBD) is a fundamental concept in genetics with many applications. In a common definition, two haplotypes are said to share an IBD segment if that segment is inherited from a recent shared common ancestor without intervening recombination. Segments several cM long can be efficiently detected by a number of algorithms using high-density SNP array data from a population sample, and there are currently efforts to detect shorter segments from sequencing. Here, we study a problem of identifiability: because existing approaches detect IBD based on contiguous segments of identity-by-state, inferred long segments of IBD may arise from the conflation of smaller, nearby IBD segments. We quantified this effect using coalescent simulations, finding that significant proportions of inferred segments 1–2 cM long are results of conflations of two or more shorter segments, each at least 0.2 cM or longer, under demographic scenarios typical for modern humans for all programs tested. The impact of such conflation is much smaller for longer (> 2 cM) segments. This biases the inferred IBD segment length distribution, and so can affect downstream inferences that depend on the assumption that each segment of IBD derives from a single common ancestor. As an example, we present and analyze an estimator of the de novo mutation rate using IBD segments, and demonstrate that unmodeled conflation leads to underestimates of the ages of the common ancestors on these segments, and hence a significant overestimate of the mutation rate. Understanding the conflation effect in detail will make its correction in future methods more tractable. PMID:26935417

  16. Inference of identity by descent in population isolates and optimal sequencing studies

    PubMed Central

    Glodzik, Dominik; Navarro, Pau; Vitart, Veronique; Hayward, Caroline; McQuillan, Ruth; Wild, Sarah H; Dunlop, Malcolm G; Rudan, Igor; Campbell, Harry; Haley, Chris; Wright, Alan F; Wilson, James F; McKeigue, Paul

    2013-01-01

    In an isolated population, individuals are likely to share large genetic regions inherited from common ancestors. Identity by descent (IBD) can be inferred from SNP genotypes, which is useful in a number of applications, including identifying genetic variants influencing complex disease risk, and planning efficient cohort-sequencing strategies. We present ANCHAP – a method for detecting IBD in isolated populations. We compare accuracy of the method against other long-range and local phasing methods, using parent–offspring trios. In our experiments, we show that ANCHAP performs similarly as the other long-range method, but requires an order-of-magnitude less computational resources. A local phasing model is able to achieve similar sensitivity, but only at the cost of higher false discovery rates. In some regions of the genome, the studied individuals share haplotypes particularly often, which hints at the history of the populations studied. We demonstrate the method using SNP genotypes from three isolated island populations, as well as in a cohort of unrelated individuals. In samples from three isolated populations of around 1000 individual each, an average individual shares a haplotype at a genetic locus with 9–12 other individuals, compared with only 1 individual within the non-isolated population. We describe an application of ANCHAP to optimally choose samples in resequencing studies. We find that with sample sizes of 1000 individuals from an isolated population genotyped using a dense SNP array, and with 20% of these individuals sequenced, 65% of sequences of the unsequenced subjects can be partially inferred. PMID:23361219

  17. Reproductive Factors, Heterogeneity, and Breast Tumor Subtypes in Women of Mexican Descent

    PubMed Central

    Martinez, Maria Elena; Wertheim, Betsy C.; Natarajan, Loki; Schwab, Richard; Bondy, Melissa; Daneri-Navarro, Adrian; Meza-Montenegro, Maria Mercedes; Gutierrez-Millan, Luis Enrique; Brewster, Abenaa; Komenaka, Ian K.; Thompson, Patricia A.

    2013-01-01

    Background Published data support the presence of etiologic heterogeneity by breast tumor subtype, but few studies have assessed this in Hispanic populations. Methods We assessed tumor subtype prevalence and associations between reproductive factors and tumor subtypes in 1041 women of Mexican descent enrolled in a case-only, binational breast cancer study. Multinomial logistic regression comparing human epidermal growth factor receptor 2 positive (HER2+) tumors and triple negative breast cancer (TNBC) to luminal A tumors was conducted. Results Compared to women with luminal A tumors, those with a later age at first pregnancy were less likely to have TNBC (odds ratio [OR], 0.61; 95% CI, 0.39–0.95), whereas those with ≥ 3 full-term pregnancies were more likely to have TNBC (OR, 1.68; 95% CI, 1.10–2.55). A lower odds of TNBC was shown for longer menstruation duration, whether prior to first pregnancy (OR, 0.78; 95% CI, 0.65–0.93 per 10 years) or menopause (OR, 0.79; 95% CI, 0.69–0.91 per 10 years). Patients who reported breastfeeding for >12 months were over twice as likely to have TNBC than luminal A tumors (OR, 2.14; 95% CI, 1.24–3.68). Associations comparing HER2+ to luminal A tumors were weak or non-existent except for the interval between last full-term pregnancy and breast cancer diagnosis. Conclusions Findings show etiologic heterogeneity by tumor subtype in a population of Hispanic women with unique reproductive profiles. Impact Identification of etiologically distinct breast tumor subtypes can further improve our understanding of the disease and help provide personalized prevention and treatment regimens. PMID:23950213

  18. Descent toward the Icehouse: Eocene sea surface cooling inferred from GDGT distributions

    NASA Astrophysics Data System (ADS)

    Inglis, Gordon N.; Farnsworth, Alexander; Lunt, Daniel; Foster, Gavin L.; Hollis, Christopher J.; Pagani, Mark; Jardine, Phillip E.; Pearson, Paul N.; Markwick, Paul; Galsworthy, Amanda M. J.; Raynham, Lauren; Taylor, Kyle. W. R.; Pancost, Richard D.

    2015-07-01

    The TEX86 proxy, based on the distribution of marine isoprenoidal glycerol dialkyl glycerol tetraether lipids (GDGTs), is increasingly used to reconstruct sea surface temperature (SST) during the Eocene epoch (56.0-33.9 Ma). Here we compile published TEX86 records, critically reevaluate them in light of new understandings in TEX86 palaeothermometry, and supplement them with new data in order to evaluate long-term temperature trends in the Eocene. We investigate the effect of archaea other than marine Thaumarchaeota upon TEX86 values using the branched-to-isoprenoid tetraether index (BIT), the abundance of GDGT-0 relative to crenarchaeol (%GDGT-0), and the Methane Index (MI). We also introduce a new ratio, %GDGTRS, which may help identify Red Sea-type GDGT distributions in the geological record. Using the offset between TEX86H and TEX86L (ΔH-L) and the ratio between GDGT-2 and GDGT-3 ([2]/[3]), we evaluate different TEX86 calibrations and present the first integrated SST compilation for the Eocene (55 to 34 Ma). Although the available data are still sparse some geographic trends can now be resolved. In the high latitudes (>55°), there was substantial cooling during the Eocene (~6°C). Our compiled record also indicates tropical cooling of ~2.5°C during the same interval. Using an ensemble of climate model simulations that span the Eocene, our results indicate that only a small percentage (~10%) of the reconstructed temperature change can be ascribed to ocean gateway reorganization or paleogeographic change. Collectively, this indicates that atmospheric carbon dioxide (pCO2) was the likely driver of surface water cooling during the descent toward the icehouse.

  19. Covariance Analysis Tool (G-CAT) for Computing Ascent, Descent, and Landing Errors

    NASA Technical Reports Server (NTRS)

    Boussalis, Dhemetrios; Bayard, David S.

    2013-01-01

    G-CAT is a covariance analysis tool that enables fast and accurate computation of error ellipses for descent, landing, ascent, and rendezvous scenarios, and quantifies knowledge error contributions needed for error budgeting purposes. Because GCAT supports hardware/system trade studies in spacecraft and mission design, it is useful in both early and late mission/ proposal phases where Monte Carlo simulation capability is not mature, Monte Carlo simulation takes too long to run, and/or there is a need to perform multiple parametric system design trades that would require an unwieldy number of Monte Carlo runs. G-CAT is formulated as a variable-order square-root linearized Kalman filter (LKF), typically using over 120 filter states. An important property of G-CAT is that it is based on a 6-DOF (degrees of freedom) formulation that completely captures the combined effects of both attitude and translation errors on the propagated trajectories. This ensures its accuracy for guidance, navigation, and control (GN&C) analysis. G-CAT provides the desired fast turnaround analysis needed for error budgeting in support of mission concept formulations, design trade studies, and proposal development efforts. The main usefulness of a covariance analysis tool such as G-CAT is its ability to calculate the performance envelope directly from a single run. This is in sharp contrast to running thousands of simulations to obtain similar information using Monte Carlo methods. It does this by propagating the "statistics" of the overall design, rather than simulating individual trajectories. G-CAT supports applications to lunar, planetary, and small body missions. It characterizes onboard knowledge propagation errors associated with inertial measurement unit (IMU) errors (gyro and accelerometer), gravity errors/dispersions (spherical harmonics, masscons), and radar errors (multiple altimeter beams, multiple Doppler velocimeter beams). G-CAT is a standalone MATLAB- based tool intended to

  20. Conflation of Short Identity-by-Descent Segments Bias Their Inferred Length Distribution.

    PubMed

    Chiang, Charleston W K; Ralph, Peter; Novembre, John

    2016-01-01

    Identity-by-descent (IBD) is a fundamental concept in genetics with many applications. In a common definition, two haplotypes are said to share an IBD segment if that segment is inherited from a recent shared common ancestor without intervening recombination. Segments several cM long can be efficiently detected by a number of algorithms using high-density SNP array data from a population sample, and there are currently efforts to detect shorter segments from sequencing. Here, we study a problem of identifiability: because existing approaches detect IBD based on contiguous segments of identity-by-state, inferred long segments of IBD may arise from the conflation of smaller, nearby IBD segments. We quantified this effect using coalescent simulations, finding that significant proportions of inferred segments 1-2 cM long are results of conflations of two or more shorter segments, each at least 0.2 cM or longer, under demographic scenarios typical for modern humans for all programs tested. The impact of such conflation is much smaller for longer (> 2 cM) segments. This biases the inferred IBD segment length distribution, and so can affect downstream inferences that depend on the assumption that each segment of IBD derives from a single common ancestor. As an example, we present and analyze an estimator of the de novo mutation rate using IBD segments, and demonstrate that unmodeled conflation leads to underestimates of the ages of the common ancestors on these segments, and hence a significant overestimate of the mutation rate. Understanding the conflation effect in detail will make its correction in future methods more tractable. PMID:26935417